

GUDANI CONSULTING-ECO SOIL CONSORTIUM

2001/077570/23 / 2007/145553/23 P.O. BOX 714, Faunapark, Polokwane, 0787 37A Voortrekker Street, Polokwane, 0699 Tel: 015 – 291 3620 Fax: 015 – 291 4932 <u>setenane@gudaniconsulting.co.za</u> <u>www.gudaniconsulting.co.za</u>

Me. M. Eksteen Jacana Environmental Polokwane

30 October 2013

SPECIALIST STUDY: SOIL CLASSIFICATION AND LAND CAPABILITY: ENVIRONMENTAL STUDY FOR THE GREATER SOUTPANSBERG PROJECT: MOPANE - RFQ NO: GSP-RFQ-004

Attached please find the final Soil and land capability report for the Mopane Project.

Yours sincerely

Setenane Nkopane For Gudani/Eco Soil Consortium

Francois Botha for Gudani/Eco Soil Consortium

Final Soil Specialist Report on the Environmental Study for the Greater Soutpansberg Project: MOPANE

RFQ No: GSP-RFQ-004

Compiled

By

GUDANI CONSULTING-ECO SOIL CONSORTIUM

2001/077570/23 / 2007/145553/23 P.O. BOX 714, Faunapark, Polokwane, 0787 37A Voortrekker Street, Polokwane, 0699 Tel: 015 – 291 3620 Fax: 015 – 291 4932 <u>setenane@gudaniconsulting.co.za</u> <u>fbotha@telkomsa.net</u>

Report by F. Botha and A. M. Hattingh Report Reviewed by: S. Nkopane

October 2013

STATEMENT OF INDEPENDANCE AND PROFESSIONAL AFFILIATION

We, the undersigned, hereby declare that we are not involved in any way with Coal of Africa Limited.

We conducted this survey in a scientific and impartial manner and declare that the findings of this report is free from influence or prejudice.

Setenane Nkopane For Gudani/Eco Soil Consortium

Field of expertise:

Francois Botha for Gudani/Eco Soil Consortium

Field of expertise: Soil classification and land capability studies

.....

Astrid Hattingh For Gudani/Eco Soil Consortium Field of expertise: Soil Scientist and GIS Specialist

Date: 2013/10/28

EXECUTIVE SUMMARY

Coal of Africa Limited (CoAL) requested a detailed EIA study for the proposed opencast mining operations at the Greater Soutpansberg: MOPANE.

According to the parent material map the study area has Amphibolite, Serpentine, Granulite, Siliciclastic rocks, Marble and calc-silicate rocks as parent material (Figure 1) which has an influence on soil properties of the area. According to the 1:250 000 land types map the seven specific ecotopes for the area under investigation are mainly red to yellow apedal soils, as well as shallow Glenrosa/Mispah soils and Rocky areas (Figure 2).

The topography of the area varies between level plains to a rolling landscape with slopes of 2-3% (largest parts of the area), open high hills or ridges, as well as high hills and ridges (Small areas in the south western parts of the area).

The climate of the area is typified by warm to hot summers with low rainfall and high evaporation and dry warm winters. An assessment of the long-term rainfall records, indicate a mean annual rainfall of between 259-364mm within the study area.

- A number of farms were not surveyed due to accessibility problems. The Land Capability of areas not surveyed in this study, were extrapolated from previous land type and land capability data obtained from Dept Agriculture and Fisheries (2013) and presented in Figure 6. The information in Figure 6 can be used for areas not surveyed during this survey. The accuracy of these extrapolations is, however, questionable considering the scale at which the data was generated.
- The soil investigation on the proposed area was done with a soil auger on a grid system (1observation/9ha for the footprint and 1observation/25ha for the mining right area). The soils were classified according to the SA Taxonomic system. Soils were then grouped into soil associations with the same physical characteristics e.g. colour, texture, and depth.

- A combination of variables, which include topography, climate and water quality were then used to obtain land capability for the surveyed area according the Chamber of Mines Classification (Table 3). The results are illustrated in Figure 13.
- The agricultural potential of the soils were classified according to Klingebiel and Montgomery (1961) (Table 4a and 4b).
- From Table 10 it can be concluded that most of the farms are largely covered by grazing and wilderness areas (total 16605 of the approximate 21246ha) according to the Mining classification.
 - Less than 4000ha is classified as arable soils according to the mining classification. These soils are therefore classified as low agricultural potential soils and are recommended for grazing and pasture purposes. Footprint areas are generally covered by soils with a wilderness and grazing classification. The farms Voorburg, Cohen, Pretorius and Banff have significant areas of arable soils. However, the potential of these arable soils are classified as class IV to VII as discussed in point 8.4.1.4 and 8.4.2.
 - Although there are areas of deep soils, these soils are sub optimal for crop production due to climatic and erosion restrictions. As a result of low rainfall, high temperatures (high evapotranspiration), susceptibility to soil compaction, present erosion and erodibility potential, the soils in the area study are not recommended for rain fed crop production.
 - Fields presently used for irrigation are susceptible to salinity and sodicity due to poor water quality with high chloride values. If a water source with high quality can be used for irrigation, the 4000ha classified as arable land can be utilised for crop production under irrigation.
 - Water quality of this area is presently poor for irrigation purposes. However, water samples were taken during the winter and it is recommended to make a continual assessment during the year. Only after a continual assessment a final decision could be made for the evaluation of the quality of water for irrigation.
- Shallow soils and surface rock are dominant in very large areas. Areas classified for grazing have presently low basal grass cover and are dominated by Mopane shrub field and will be discussed in detail by the biodiversity report. Present land use of

these shallow soils is cattle and game farming, but carrying capacity is questionable due to poor physical soil quality (erosion susceptibility, shallow soils, surface rock and poor climatic conditions).

- Approximately 706ha was identified as wetland and should be evaluated separately. In this study area the following criteria was used:
 - Riparian zones were not delineated, and only wetland soil parameters per definition were used.
 - Based on the grid during the soil survey not all small farm dams and pans that fell between two observation points were mapped.
 - Many of the drainage lines are actually erosion dongas and gullies with Oakleaf, Augrabies, Glenrosa and Coega soil forms and cannot be regarded as wetlands soils per definition.
 - Only large water bodies on Jutland and Verdun were found.
- Overall these soils have a low agricultural potential and any disturbance of such a magnitude will have a long term to permanent impact on the land capability and agricultural soil potential (Special measures must be implemented in the soil stripping and rehabilitation process to restore the soils to an arable and grazing potential (see Appendix). Specialist consultation is needed for the severe erosion potential of the area during stock piling and the soil stripping process.
- If mining should be allowed in the area the following is recommended:
 - Specialist consultation is needed for the severe erosion potential and other possible impacts of the area during stock piling and the soil stripping process.
 - Limit impacts to footprint areas to keep physical impacts as small as possible.
 - Specific control measures are needed to control erosion and water run-off to prevent excessive surface run-off from the site.
 - Areas for road and site lay-out should be minimized.
 - Dust generation and vehicle associated pollution must be minimized.

Table of contents

	T OF INDEPENDANCE AND PROFESSIONAL AFFILIATION	
	E SUMMARY	
GLOSSARY	OF TERMINOLOGY	10
1. TERMS	S OF REFERENCE (ToR)	11
	DUCTION	
3. GENER	RAL BACKGROUND INVESTIGATION	13
3.1 PA	RENT MATERIALS	13
3.2 LA	NDTYPES	14
3.2.1	Ah89:	14
3.2.2	Ae266:	15
3.2.3	Fc483:	15
3.2.4	Fc574:	15
3.2.5	IB312:	16
3.2.6	Fa 646:	
3.2.7	Ae305:	
	POGRAPHY	
	IMATE	
	ND CAPABILITY	
	ESENT LAND USE AND POTENTIAL	
	EM STATEMENT AND STUDY OBJECTIVE	
	СТ ТЕАМ	
	IFICATION OF RELEVANT LEGAL REQUIREMENTS AND GUIDELINES	
	FIGATIVE METHODOLOGY AND TECHNIQUES	
	IL CLASSIFICATION	
	FORMATION SYSTEMS	
	ND CAPABILITY AND AGRICULTURAL RATING	
	ND USE AND AGRICULTURAL POTENTIAL FORMS	
	RIGATION WATER QUALITY GUIDELINES	
	VATIONS	
	IL FORMS	
9.1.1	RED APEDAL SOILS	
	YELLOW-BROWN APEDAL SOILS	
	NEOCUTANIC SOILS	
9.1.4	CARBONATE SOILS	
9.1.5	NEOCARBONATE SOILS	
9.1.6	PEDOCUTANIC SOILS	
9.1.7	SHALLOW ROCKY SOILS	
9.1.8	FERNWOOD SOILS	
	IL PHYSICAL PROPERTIES	
	IL CHEMICAL PROPERTIES	
	ATER SAMPLE ANALYSIS	
	LAND CAPABILITY ASSESSMENT	
9.4.2	AGRICULTURAL POTENTIAL ASSESMENT	49

10. SUMMARY OF THE IMPACT OF THE MINING DEVELOPMENT ON	
AGRICULTURAL POTENTIAL AND LAND CAPABILITY	50
11. CONCLUSIONS OF SOILS ASSESSMENT	51
12. RECOMMENDATIONS OF SOILS ASSESSMENT	
13. METHODOLOGY USED FOR IMPACT RATING	
13.1 NATURE OF IMPACT	53
13.2 IMPACT TYPE	53
13.3 GROUPING OF IMPACT	
13.4 CERTAINTY (PROPABILITY) OF IMPACT	
13.5 SPATIAL EXTENT OF IMPACT	54
13.6 DURATION OF IMPACT	
13.7 REVERSIBILITY OF IMPACT	55
13.8 SEVERITY (INTENSITY) OF IMPACT	
13.9 SIGNIFICANCE OF IMPACT	
14. IMPACT ASSESSMENT	
15. DUST GENERATION AND VEHICLE IMPACT ASSESSMENT	
15.1 DUST GENERATION	
15.2 ON SITE VEHICLE OPERATIONS	
16. CONCLUSIONS OF IMPACT ASSESSMENT	
17. RECOMMENDATIONS	
17.1 MITIGATION MEASURES REQUIRED	
17.1.1 SOIL STRIPPING IN CONSTRUCTION PHASE	
17.1.2 OPERATIONAL PHASE	
17.1.3 DECOMMISIONING AND REHABILITATION	
17.1.4 MONITORING AND MEASUREMENT REQUIREMENTS	
18. MANAGEMENT RECOMMENDATIONS	
19. BIBLIOGRAPHY	
20. APPENDIX 1	
21. APPENDIX 2: REHABILITATION OF OPENCAST MINING SOILS	65
1. INTRODUCTION	
2. DEFINITION OF SOIL	
3. SOIL FORMING PROCESSES	
4. FERTILITY / PLANT NUTRITION	
5. THE ROLE OF BIODIVERSITY	
6. MINING PRACTISES THAT CONTRIBUTE TO THE DESTRUCTION C	PF SOIL
FERTILITY AND LOSS OF BIO-DIVERSITY	68
7. RECOMMENDATIONS FOR PROPER REHABILITATION OF SOILS	
DISTURBED BY OPENCAST MINING OPERATIONS	69
7.1. STRIPPING	
7.2. LANDSCAPING AND REPLACEMENT OF SOILS	
7.3. SEEDING WITH GRASS SPECIES AND LEGUME CROPS	70
8. THE ROLE OF COMPOST AND OTHER HUMIC SUBSTANCES IN	
RESTORING BIODIVERSITY IN DISTURBED SOILS	
9. SUMMARY	71

List of Figures

Figure 1: Parent materials of the study area	14
Figure 2: Land-types of the study area	17
Figure 3: Topography of the demarcated study area	18
Figure 4: Terrain types of the demarcated study area	18
Figure 5: Mean annual rainfall of the demarcated study area	20
Figure 6: Land capability as per historic data	21
Figure 7: Present land cover of the demarcated study area	22
Figure 8: Observation and soil sampling points	26
Figure 9: Soil groups (associations) and forms of the study area	
Figure 10: Effective rooting depth of the study area	
Figure 11: Clay content (%) of A Horizons	
Figure 12: Profile available water capacity of the study area	
Figure 13: Land capability of the surveyed area	

List of Tables

Table 1: Mean monthly rainfall, maximum and minimum temperatures	. 19
Table 2: List of the team members	. 23
Table 3: Criteria for Pre-Development Land Capability	. 28
Table 4a: Land use classes suited for cultivation	. 29
Table 4b: Land use classes not suited for cultivation	. 30
Table 5: Land capability classes to establish land use	. 31
Table 6: Water quality guidelines used in this study	. 32
Table 7: Summary of different soil physical properties of the soil groups	. 37
Table 8: Soil analysis Report	
Table 9: Water analysis report	
Table 10: Areas of Land capability classes on respective farms in the study area	. 49
Table 11: Agricultural Potential Classification of land capability classes according to	
agricultural classification system	
Table 12: Summary of the impact of mining on agricultural potential and land capabilit	ty
	. 50
Table 13: Nature of impact	. 53
Table 14: Impact type	. 53
Table 15: Grouping of impact	. 54
Table 16: Certainty of impact	. 54
Table 17: Spatial extent of impact	. 54
Table 18: Duration of impact	. 55
Table 19: Reversibility of impact	. 55
Table 20: Severity of impact	. 56
Table 21: Significance of impact	
Table 22: Predicted impact assessment of the proposed mining activity on the soils	. 58

GLOSSARY OF TERMINOLOGY

- **A-Horizon (30)**. The depth of the topsoil horizon.
- **B-Horizon (100)**. The bottom end of the sub-soil horizon.
- **W** Wetness in the soil. This is an indication of drainage problems.
- W1 Temporary wetness in the sub-soil. Slight mottling occurs in the sub-soil.
- W2 Soil has a bleached / greyish colour with stronger mottling. Indication of serious water logging for longer periods of the year.
- **W3** Permanent water logging for most parts of the year. Dark grey soil matrix with serious mottling. Free water visible in profile pit.
- G The percentage (G3 = 30%) of gravel soil (>2mm) in the total soil profile. This portion has a huge influence on the water holding capacity and water movement (permeability) in the soil.
- **R** The percentage of rocks in the profile. This has an influence on land preparation as well as the water holding capacity of the soil.
- Limiting layer: It can be rock fragments, soil structure or hydromorphic soil conditions that can limit root development.
- Total available moisture (TAM) It is a calculation between the AWC multiplied with the effective rooting depth (ERD). TAM values are therefore the most important value to determine from an irrigation design and scheduling perspective. It is also mentioned as profile available water (PAW)
- Effective rooting depth (ERD). This is the average depth that roots will develop under irrigation or where they are limited by an impeding layer. The effective rooting depth is the most important from a management perspective, which includes irrigation design, water holding capacity, drainage and nutrition.
- **Topsoil**: Is defined as the A Horizon and a portion of the red and yellow apedal B Horizon where microbial activity takes place and the majority of the plants hair roots occur.
- Soil Forms: Soil Forms are identified according to the SA Taxonomic Soil Classification system
- Kriging or kriged: A group of geostatistical techniques to interpolate the value of

a random attribute (e.g., depth or clay content, of the landscape as a function of the geographic location) at an unobserved location from observations of its value at nearby locations.

1. TERMS OF REFERENCE (ToR)

The ToR for the soil assessment is outlined as follows:

To perform the necessary soil impact assessment required to support the applications. It should include (as a minimum):

- Detail soil, land use and land capability mapping
- Potential impact and quantification thereof (as far as possible) on soils, land use and land capability
- Recommendations for mitigation measures to reduce the identified impacts
- Conceptual rehabilitation plan based on soil types no soil utilisation plan required at this stage due to limited information on infrastructure and mining footprints

The following sampling intensity to be used:

- Larger MRA area Broad Reconnaissance (500m grid, 1 observation per 25 ha)
- Resource footprint Intensified Reconnaissance (300m grid, 1 observation per 9 ha).

2. INTRODUCTION

A broad soil classification, chemical composition and agricultural potential were done on approximately 21246ha (4600ha footprint area) to get baseline information regarding soil potential, land use and land capability.

Profile pits could not be opened due to limitations with access and time constraints, as land owners are hosting hunters in the peak hunting season.

The soil investigation on the proposed area was done with a soil auger on a grid system. Applying these criteria where possible to soils that were mapped based on the limitations of the soils' chemical and physical characteristics and site constraints. A combination of these variables was then used to obtain the land capability and agricultural potential of the soils.

Soils were classified in terms of the Taxonomic System for South Africa. Land capability of the study area was classified into four classes (wetland, arable land, grazing land and wilderness) according to Coaltech 2020/ Chamber of Mines of SA 2007 and Chamber of Mines Guidelines (1991).

The following farms were fully surveyed on the recommended grid:

Ancaster BANFF Cavan Cohen Delft Du Toit Faure Hermanus Honeymoon Jutland Pretorius Vd Byl Vera Small holdings Verdun Voorburg

Vrienden

The following farms were partly surveyed:

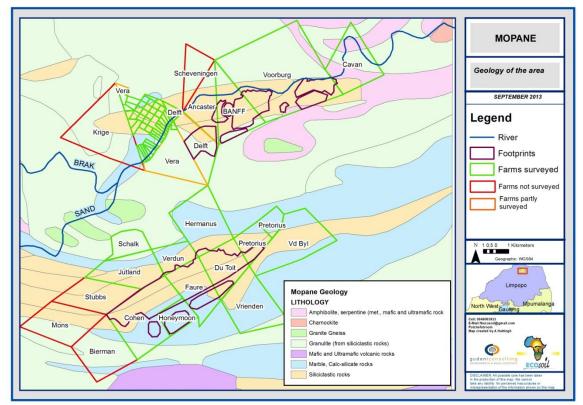
Vera

Ancaster

No soil surveys were done on the following farms:

- Ancaster (North of Sand River)
- Krige
- Bierman
- Mons
- Schalk
- Stubbs
- Ursa Minor
- Scheveningen

3. GENERAL BACKGROUND INVESTIGATION


3.1 PARENT MATERIALS

The regional parent materials of the area are illustrated in Figure 1. The following materials are found in the area and may have an influence on the soil properties.

- Amphibolite, serpentine (mafic and ultramafic rock) of the Messina stratification, Beit Bridge Complex. It is igneous rock with polycyclic deformation.
- Granulite (from siliciclastic rock) is metamorphic rock from the Malala Drift or Mount Dowe Group, Beit Bridge Complex with polycyclic deformation.
- Marble, calc-silicate rocks are metamorphic rocks of the Gumbu Group, Beit Bridge Complex with polycyclic deformation
- Siliciclastic rocks are sedimentary rocks of the Solitude or Clarens Formation, Karoo supergroup.
- Chamokite found in the area but not present on the farms under investigation
- Granite Gneiss- found in the area but not present on the farms under investigation

• Mafic and ultramafic volcanic rocks- found in the area but not present on the farms under investigation

Footprints are mainly on Siliciclastic rocks and the southern footprints are on marble, calc-silicate rocks.

3.2 LANDTYPES

Seven land types are found in the study area (Figure 2). Land types found in the study area, in the ranking order of area covered, are:

3.2.1 Ah89:

 Red-yellow apedal, freely drained soils. Red and yellow colours, high base status, usually < 15% clay.

- The majority of the area namely 15058ha falls within this class.
- Parent material is: Beit bridge complex, Malala drift formation; leucogneiss, metaquartzite, and amphibolite; gumbu gneiss, marble, gneiss; metaquartzite and amphibolite.
- Soil depth: 450mm 750mm.
- Profile available water (PAW) content is between 41 60 mm, indicating low potential soils.

3.2.2 Ae266:

- Red-yellow apedal, freely drained soils. High base status > 300 mm deep (no dunes).
- 1378ha.
- Parent material is: Bulai gneiss and metaquartzite, gneiss and amphibolite of the Beit Bridge complex.
- Soil depth: 450mm 750mm.
- Profile available water (PAW) content is between 41 60 mm, indicating low potential soils.

3.2.3 Fc483:

- Glenrosa and/or Mispah forms (other soils may occur). Lime generally present in the entire landscape.
- 1277ha.
- Parent material is: metaquartzite, magnetite quartzite, amphibolite and metapelite of the Mount dowe group, Beit Bridge complex; migmatite grey and leucocratic pyroxene-bearing gneiss of the Sand river gneiss.
- Soil depth: 450mm 750mm.
- Profile available water (PAW) content is between 21 40 mm indicating very low potential soils.

3.2.4 Fc574:

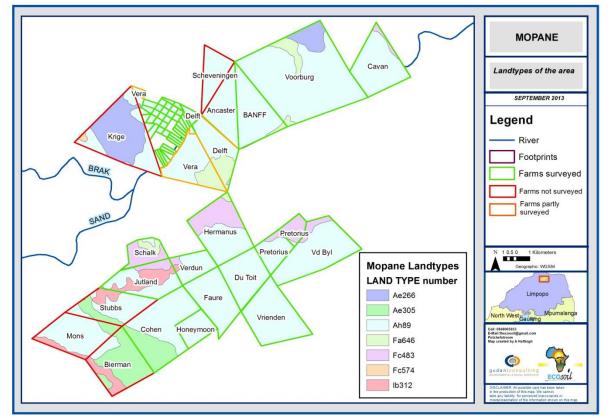
• Glenrosa and/or Mispah forms (other soils may occur). Lime generally present in the entire landscape.

- 948ha.
- Parent material is: basalt of the Letaba formation in the Lebombo group Karoo sequence. leucogneiss, amphibolite, metapelite of the Malala drift group.
- Soil depth: 450mm 750mm.
- Profile available water (PAW) content is between 21 40 mm indicating very low potential soils.

3.2.5 IB312:

- Rocky areas with miscellaneous soils.
- 804ha.
- Parent material is: quartzite, conglomerate, sandstone and shale of the Stayt formation, Soutpansberg group; argillaceous sandstone of the Clarens formation, Karoo sequence.
- Soil depth: < 450mm.
- Profile available water (PAW) content is between 21 40 mm indicating very low potential soils.

3.2.6 Fa 646:


- Glenrosa and/or Mispah forms (other soils may occur). Lime rare or absent in the entire landscape.
- 602Ha.
- Parent material is: metaquartzite, leucogneiss and pink gneiss of the Mount Dowe group and Beit Bridge complex.
- Soil depth: < 450mm.
- Profile available water (PAW) content is between 21 40 mm indicating very low potential soils.

3.2.7 Ae305:

- Red-yellow apedal, freely drained soils. red, high base status > 300 mm deep (no dunes).
- 587ha.

- Parent material is: mainly sand of the quaternary system.
- Soil depth: >750mm.
- Profile available water (PAW) content is between 41 60 mm, indicating low potential soils.

3.3 TOPOGRAPHY

Topography of the area is illustrated in Figure 3. Terrain types are illustrated in Figure 4.

The demarcated study exists of four terrain types:

- Rolling or irregular plains with some relief (largest parts of the area)
- Open high hills or ridges (mainly in the central parts of the study area)
- Level plains with some relief
- High hills or ridges (Small areas in the south western parts of the area)

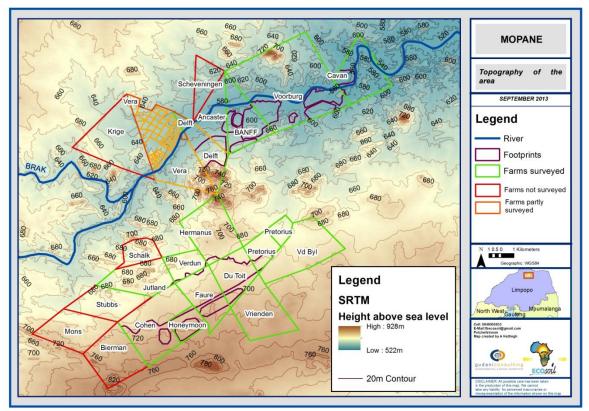
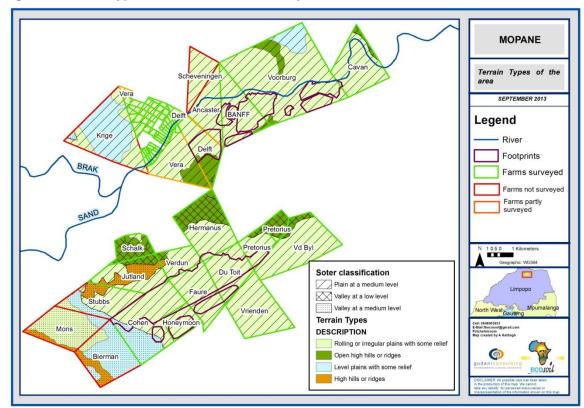



Figure 3: Topography of the demarcated study area

Figure 4: Terrain types of the demarcated study area

3.4 CLIMATE

The climate of the area is typified by warm to hot summers with low rainfall and high evaporation and dry warm winters.

An assessment of the long-term rainfall records, indicate a mean annual rainfall of between 259-364mm within the study area. Highest mean annual rainfall and lowest temperatures are found in the area of the farm Mons and Bierman in the western part and lowest rainfall and highest temperatures in the area of Vera in the central parts of the study area. Precipitation is strongly seasonal with about 85% of the yearly rainfall falling in the summer months (October to March). Monthly statistics are given in Table 1.

Month	Mean Rainfall	Mean Maximum	Mean Minimum
	mm	Temperatures C°	Temperatures C ^o
January	43-62	30.4-32.4	19.0-20.4
February	36-49	29.8-31.6	18.8-20.2
March	18-29	29.1-30.7	17.6-18.9
April	10-16	27.3-29.0	14.7-15.7
Мау	0-2	25.3-27.0	10.3-11.3
June	0	22.7-24.2	6.9-8.1
July	0	22.7-24.2	6.7-7.9
August	0	24.8-26.3	8.9-9.9
September	0-2	27.0-28.6	12.5-13.5
October	11-17	28.7-30.2	15.7-16.7
November	29-43	29.8-31.5	17.4-18.8
December	37-51	30.1-31.8	18.5-19.9

 Table 1: Mean monthly rainfall, maximum and minimum temperatures

The Area falls mainly in two Quaternary Water Catchment areas. The eastern and north eastern parts fall in A71K and the south-western parts in A71J.

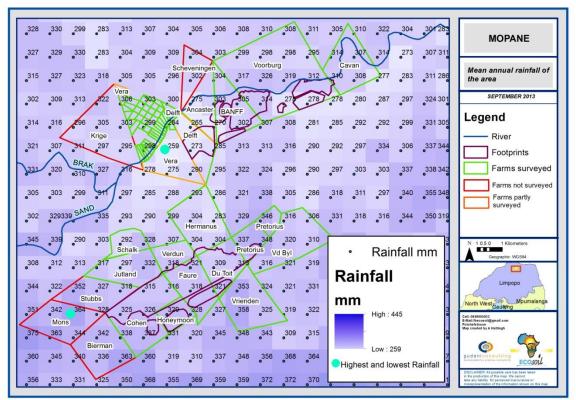
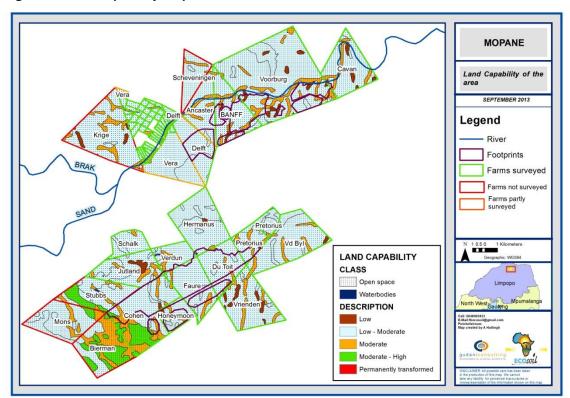
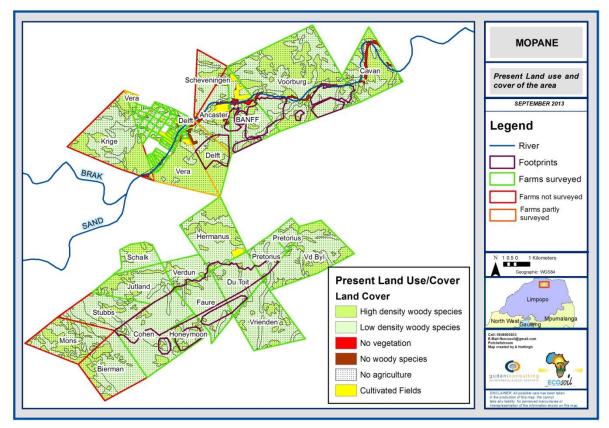


Figure 5: Mean annual rainfall of the demarcated study area

3.5 LAND CAPABILITY

Historic land capability was derived from the ENPAT data base and the Dept. of Agriculture and Fisheries data (2013). Land capability for areas not surveyed during this study can be derived from Figure 6. The accuracy of these extrapolations is questionable considering the scale at which the data was generated and should only be used in areas not surveyed.




Figure 6: Land capability as per historic data

3.6 PRESENT LAND USE AND POTENTIAL

- There is arable crop production (predominantly vegetables) under irrigation taking place in small areas along the floodplains of the Sand River as indicated in yellow in Figure 7.
- The majority of area is presently covered with low density woody species and used for grazing purposes for either cattle or game farming.
- In the higher lying areas large areas are largely covered with high density woody species, especially on the farms Vera, Delft, northern Hermanus, Voorburg and Cavan. However, these high density woody species are present on almost all farms.
- There are significant areas on Banff, Voorburg, Delft, Cavan, Verdun, Jutland and Cohen that has no or very scarce basal cover. This leads to severe rill and sheet erosion.

- Approximately 360ha are presently under crop production. The majority of the fields are on the flood plains of the Sand River.
- According to previous studies the following land use of the total study area (including the non-surveyed areas) were found:
 - o Commercial (or cleared) land: 360ha. (289 ha irrigated and 71ha dry land)
 - Degraded: Thicket and Bushland: 155ha.
 - Thicket and Bushland: 25340 ha (Vacant or unspecified)
 - o Woodlands: 755ha

Figure 7: Present land cover of the demarcated study area

4. PROBLEM STATEMENT AND STUDY OBJECTIVE

The soils occurring on the proposed development area will be disturbed during the mining operation. Any medium to long-term impacts after mining needs to be limited. The purpose of this study is to identify the present soil quality in terms of soil forms, as well as their physical and chemical characteristics and how they will react to any disturbance.

5. PROJECT TEAM

SPECIALISTS	FUNCTION	QUALIFICATION	
S. Nkopane	Project Management, Liaison and	M.Sc, Environmental	
	communication	Management	
F Botha	Soils project leader	B.Sc (Honn)	
A.M. Hattingh	Pedologist, GIS Specialist	M.Sc (Soil Science)	
J.M. Hattingh	Pedologist, Soil Chemist	M.Sc (Engineering geology)	
J.L. Pauer	Pedologist	B.Sc (Honn)	
JHA Thiart	Pedologist	Soil Pedology Technician	
MJ Botha	Pedologist	Soil Pedology Technician	

Table 2: List of the team members

6. IDENTIFICATION OF RELEVANT LEGAL REQUIREMENTS AND GUIDELINES

A soil classification and agricultural potential study is required with every EIA where agricultural land is concerned.

7. INVESTIGATIVE METHODOLOGY AND TECHNIQUES

The investigation commenced conducting the following actions:

- The collation and evaluation of available information.
- A soil survey was conducted on a total area of approximately 21 246ha during this study.
- The soil survey involved the traversing of the area on a grid base using a conventional bucket hand auger (1.5 m in length) to investigate and log the soil

depths. More than 1200 points were logged (Figure 8). Selected terrain information, topography and any other infield data of significance, and of relevance to the investigation, was used.

- The land capability of the study area was classified according to soil depth and PAW, as well as the elevation of the area. Observation point data was transformed with a process called kriging to a 100 by 100meter grid. On this grid basis it was decided upon the 4 represented land use groups: arable land, grazing, wilderness or wetland. Wetlands were first delineated and polygons for the other groupings were then drawn from the kriged data. Detached areas smaller than one hectare was ignored.
- PAW was calculated by using soil form, soil depth and clay content.
- The data was recorded and stored in an electronic format (data base), and the information was then mapped with the ArcGIS program (See Figures 1 to Figure 13).
 Figures were created based on GPS information (Geographic: WGS 84). The field information was used to determine the Land Potential.
- Forty six soil samples (Figure 8) were taken for chemical analysis.
- At each sampling point three soil samples were taken to a depth of 30cm. These three samples were then mixed thoroughly to get a composite representative sample for the area.
- The soil samples were sent to NVirotek Laboratory at Brits (South Africa) for analyses.
- pH (KCl), P (Bray 1), K, Ca, Mg Na and S (ammonium acetate) were determined. Ratios, CEC and percentages were calculated from the soil analyses.
- The chemical results were recorded and stored in an electronic format (data base). The information was then summarized in Table 6.
- Three water samples were analysed at Eco Analitica laboratory (Potchefstroom) for irrigation purposes. Results are summarized in Table 7.

7.1 SOIL CLASSIFICATION

The investigation of the soils involved the traversing of the area on a grid base where possible, using a conventional bucket auger to investigate and log the soil characteristics. The following sampling intensity was used:

- Larger MRA area Broad Reconnaissance (500m grid, 1 observation per 25 ha).
- Resource footprint Intensified Reconnaissance (300m grid, 1 observation per 9 ha).

It was not possible to open profile pits due to restraints in terms of accessibility and time. Selected terrain information, topography and other infield data of significance, and of relevance to the soil investigation, was also recorded and stored in an electronic format (data base), and the information mapped on a recognised GIS system. Soil samples were taken for chemical analysis (Figure 8).

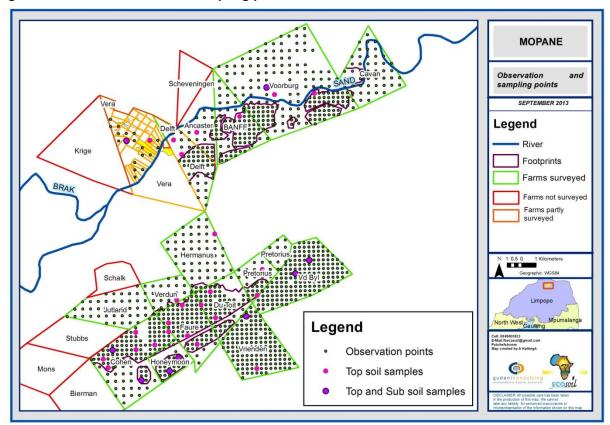


Figure 8: Observation and soil sampling points

The identification and classification of the soil profiles was carried out using the TAXONOMIC SYSTEM FOR SOUTH AFRICA (*Soil Classification working group, 1991*). The land capability of the study area was classified into four classes (wetland, arable land, grazing land and wilderness) according to Coaltech 2020/Chamber of Mines of SA (2007) and Chamber of Mines Guidelines (1991).

In this way, standardised soil identification and communication is allowed by use of the names and numbers given to the soils classified. The procedure adopted when classifying the soil profiles is as follows:

- a. Demarcate master horizons
- b. Identify applicable diagnostic horizons by visually noting the physical characteristics such as:
 - o Depth
 - o Texture
 - o Structure
 - o Mottling

- Visible pores
- Concretions
- c. Determine from a. and b. the appropriate Soil Form

7.2 INFORMATION SYSTEMS

The following sources of information were utilized:

- Initial maps supplied by Jacana
- Preliminary site layout plans
- ENPAT: Geology, Land use land capability, Land use, Land types
- Topo maps:
 - o 2229DA Bandur,
 - o 2229DB Mopane
- Climate: Rasters University of Natal
- Remote sensing information:
 - SRTM data
 - Google Earth[™] image; digital image Background and cultivated fields
- Esri shapefile information, ArcGIS.
- The Dept of Agriculture's website (Agis) was used to determine the land types.
- The Taxonomic system for South Africa was used to identify the soil forms on the proposed site.
- Land Capability Classification Coaltech 2020/ Chamber of Mines of SA (2007) and Chamber of Mines Guidelines (1991).

7.3 LAND CAPABILITY AND AGRICULTURAL RATING

The land capability of the study area was classified into four classes (wetland, arable land, grazing land and wilderness) according to the Chamber of Mines Guidelines (1991).

Table 3: Criteria for Pre-Development Land Capability

Criteria for Wetland Land with organic soils or supporting hygrophilous vegetation where soil and vegetation processes are water determined.

Criteria for Arable land

- Land, which does not qualify as a wetland.
- The soil is readily permeable to a depth of 750 mm.
- The soil has a pH value of between 4.0 and 8.4.
- The soil has a low salinity and SAR
- The soil has less than 10% (by volume) rocks or pedocrete fragments larger than 100 mm in the upper 750 mm.
- Has a slope (in %) and erodibility factor (K) such that their product is <2.0
- Occurs under a climate of crop yields that are at least equal to the current national average for these crops.

Criteria for Grazing land

- Land, which does not qualify as wetland or arable land.
- Has soil, or soil-like material, permeable to roots of native plants, that is more than 250 mm thick and contains less than 50 % by volume of rocks or pedocrete fragments larger than 100 mm.
- Supports, or is capable of supporting, a stand of native or introduced grass species, or other forage plants utilisable by domesticated livestock or game animals on a commercial basis.

Criteria for Wilderness land

• Land, which does not qualify as wetland, arable land or grazing land.

7.4 LAND USE AND AGRICULTURAL POTENTIAL FORMS

The original concepts (Klingebiel & Montgomery, 1961) are as follows:

Table 4a: Land use classes suited for cultivation

Land suited for cultivation			
	Land in Class I has few limitations that restrict its use.		
	It may be used safely and profitably for cultivated crops.		
	The soils are nearly level and deep.		
Class I	They hold water well and are generally well drained.		
Classi	They are easily worked, and are either fairly well supplied with plant nutrients or are highly responsive to inputs of fertilizer.		
	When used for crops, the soils need ordinary management practices to maintain productivity.		
	The climate is favourable for growing many of the common field crops.		
	Land in Class II have some limitations that reduce the choice of plants or require moderate conservation practices.		
	It may be used for cultivated crops, but with less latitude in the choice of crops or management practices than Class I.		
	The limitations are few and the practices are easy to apply.		
	Limitations may include singly or in combination the effects of:		
	*Gentle slopes.		
	*Moderate susceptibility to wind and water erosion.		
	*Less than ideal soil depth.		
Class II	*Somewhat unfavourable soil structure and workability. *Slight to moderate salinity or sodicity easily corrected but likely to recur.		
	*Occasional damaging flooding.		
	*Wetras correctable by drainage but existing permanently as a moderate limitation.		
	*Slight climatic limitations on soil use and management.		
	Limitations may cause special soil-conserving cropping systems, soil conservation practices, water-control devices or tillage methods to be required whon used for cultivated crops		
	when used for cultivated crops. Note: "Slight to moderate salinity or sodicity, easily corrected, but likely to recur"		
	is taken to imply that strong subsoil acidity, costly to correct and likely to recur, would disqualify land from Class II.		
	High susceptibility to water or wind erosion or severe adverse effects of past erosion.		
	It may be used for cultivated crops, but has more restrictions than Class II. When used for cultivated crops, the conservation practices are usually more difficult to apply and to maintain.		
	Limitations restrict, singly or in combination, the amount of clean cultivation, time of planting, tillage, harvesting, choice of crops.		
	Limitations may result from the effects of one or more of the following:		
	The number of practical alternatives for average farmers is less than that for soils in Class II.		
Class III	*Moderately steep slopes.		
Class III	*Frequent flooding accompanied by some crop damage.		
	*Very slow permeability of the subsoil.		
	*Wetness or some continuing waterlogging after drainage.		
	*Shallow soil depth to bedrock, hardpan, fragipan or claypan that limit the rooting zone and the water storage.		
	*Low water-holding capacity.		
	*Low fertility not easily corrected.		
	*Moderate salinity or sodicity. *Moderate climatic limitations.		
	Note: "Severe limitations" and "Low fertility not easily corrected" are taken to		
	imply that land dominated by soils with severe subsoil acidity belongs in Class III.		
	Land in Class IV has very severe limitations that restrict the choice of plants, require very careful management, or both.		
	It may be used for cultivated crops, but more careful management is required than for Class III and conservation practices are more difficult to apply and maintain.		
	Restrictions to land use are greater than those in Class III and the choice of plants is more limited.		
	It may be well suited to only two or three of the common crops or the harvest produced may be low in relation to inputs over long period of time.		
Class IV	In sub-humid and semi-arid areas, land in Class IV may produce good yields of adapted cultivated crops during years of above average rainfall and failures during years of below average rainfall.		
	Use for cultivated crops is limited as a result of the effects of one or more permanent features such as:		
	*Steep slopes.		
	*Severe susceptibility to water or wind erosion or severe effects of past erosion.		
	*Shallow soils.		
	*Low water-holding capacity.		
	*Frequent flooding accompanied by severe crop damage *Excessive wetness with continuing hazard of waterlogging after drainage.		
	*Severe salinity or sodicity.		
	*Moderately adverse climate.		

Table 4b: Land use classes not-suited for cultivation

Land with limited use - generally	not suited to cultivation	
	Land in Class V has little or no erosion hazard but have other limitations impractical to remove that limit its use largely to pasture, range, woodland or wildlife food and cover. These limitations restrict the kind of plants that can be grown and prevent normal tillage of cultivated crops. Pastures can be improved	
	and benefits from proper management can be expected.	
	It is nearly level. Some occurrences are wet or frequently flooded. Other are stony, have climatic limitations, or have some combination of these limitations.	
Class V	*Bottomlands subject to frequent flooding that prevents the normal production	
	of cultivated crops.	
	*Nearly level land with a growing season that prevents the normal production of cultivated crops.	
	*Level or nearly level stony or rocky land. *Ponded areas where drainage for cultivated crops is not feasible but is suitable	
	for grasses or trees.	
	Land in Class VI has severe limitations that make it generally unsuited to cultivation and limit its use largely to pasture and range, woodland or wildlife.	
	Land in Class VI has continuing limitations that cannot be corrected, such as:	
	*Steep slope.	
	*Severe erosion hazard.	
	*Effects of past erosion.	
	*Stoniness.	
	*Shallow rooting zone.	
	*Excessive wetness or flooding.	
Class VI	*Low water-holding capacity.	
	*Salinity or sodicity.	
	*Severe climate.	
	Physical conditions are such that it is practical to apply range or pasture improvements, if needed, such as seeding, liming and fertilizing.	
	Some occurrences can be safely used for the common crops, provided unusually intensive management is used. Some occurrences are adapted to special crops.	
	Depending on soil features and climate, land in Class VI may be well to poorly suited to woodlands.	
	Land in Class VII has very severe limitations that makes it unsuited to cultivation and that restrict its use largely to grazing, woodland or wildlife.	
	Restrictions are more severe than those for Class VI because of one or more continuing limitations that cannot be corrected, such as: *Very steep slopes.	
	*Erosion.	
	*Shallow soil.	
	*Stones.	
Class VII	*Wet soil.	
	*Salts or sodicity.	
	*Unfavourable climate.	
	Physical conditions are such that it is impractical to apply such pasture or range improvements as seeding, liming and fertilizing.	
	Depending on soil characteristics and climate, land in Class VII may be well or poorly suited to woodland.	
	In unusual instances some occurrences may be used for special crops under unusual management practices.	
	Land in Class VIII have limitations that preclude its use for commercial plant production and restrict its use to recreation, wildlife, water supply or aesthetic purposes	
	Limitations that cannot be corrected may result from the effects of one or more of:	
	*Erosion or erosion hazard.	
	*Severe climate.	
	*Wet soil.	
Class VIII	*Stones.	
	*Low water-holding capacity.	
	*Salinity or sodicity.	
	Land in Class VIII cannot be expected to return significant on-site benefits from	
	management for crops, grasses or trees, although benefits from wildlife use watershed protection or recreation may be possible.	
	Badlands, rock outcrop, sandy beaches, river wash, mine tailings and other nearly barren lands are included in Class VIII.	

LAND CAPABILITY CLASS	LAND USE OPTIONS	LAND CAPABILITY GROUPS
Class I	W F LG MG IG LC MC IC VIC	Arable land
Class II	W F LG MG IG LC MC IC	Arable land
Class III	W F LG MG IG LC MC	Arable land
Class IV	W F LG MG IG LC	Arable land
Class V	W F LG MG	Grazing
Class VI	W F LG MG	Grazing
Class VII	W F LG MG	Grazing
Class VIII	W	Wildlife
W - Wildlife LC - Poorly ad	lapted cultivation	
F - Forestry MC - Moderat	ely well adapted cultivation	
LG - Light grazing IC - Inte	ensive, well adapted cultivation	
MG - Moderate grazing VI	C - Very intensive, well adapted cultiva	tion
IG - Intensive grazing		
IG - Intensive grazing		

Table 5: Land capability classes to establish land use

8. FAO IRRIGATION WATER QUALITY GUIDELINES

Detential invigation problems	L lucitor		Degree of restriction on use		
Potential irrigation problems	Units	None	Slight to moderate	Severe	
Salinity (affects crop water availibility)					
ECw	dS m ⁻¹	<0.7	0.7-3.0	>3.0	
or TDS	mg l ⁻¹	<450	450-2000	>2000	
Infiltration (affects infiltration rate of water i		ate using Ecw a	nd SAR together)		
SAR 0-3 and ECw=		>0.7	0.7-0.2	<0.2	
SAR 3-6 and ECw=		>1.2	1.2 -0.3	<0.3	
SAR 6-12 and ECw=		>1.9	1.9-0.5	<0.5	
SAR 12-20 and ECw=		>2.9	2.9-1.3	<1.3	
SAR 20-40 and ECw=		>5.0	5.0-2.9	<2.9	
Spesific ion toxicity (effects sensitive crops)					
Sodium (Na)					
Surface irrigation	SAR	<3	3-9	>9	
Sprinkler irrigation	meq l ⁻¹	<3	>3		
Chloride (Cl)					
Surface irrigation	meq l ⁻¹	<4	4-10	>10	
Sprinkler irrigation	meq l ⁻¹	<3	>3		
Boron (B)	mg l ⁻¹	<0.7	0.7-3.0	>3.0	
Miscellaneous effects (on susceptible crops)					
Nitrate NO ₃ -N	mg l ⁻¹	<5	5-30	>30	
Bicarbonate HCO ₃ (overhead sprinkling only)	meq l ⁻¹	<1.5	1.5-8.5	>8.5	
рН			Normal range 6.5 -8	.4	

Table 6: Water quality guidelines used in this study

9. OBSERVATIONS

9.1 SOIL FORMS

The soils vary significantly in physical and chemical composition over the different areas. They are strongly influenced by the underlying rocks (geology) from which they are derived, as well as by their position in the landscape and the origin of the parent material (*in-situ* versus colluvium derived).

The major soil forms that have generally the same characteristics were grouped together in soil associations. The associations occurring on the proposed development and the number of soil form occurrences (in brackets), are as follow:

9.1.1 RED APEDAL SOILS

• Hutton (Hu) [327] soils: Have an Orthic A-Horizon over a Red Apedal B

Horizon over unspecified materials, like hard or weathered rock, or gravel.

- Plooysburg (Py) [9] and Kimberley Ky [4] soils: Have an Orthic A-Horizon over a Red Apedal B Horizon over a hardpan- or soft carbonate horizon respectively.
- Bloemdal (Bd) [1] soils: Is similar to the Hutton soils from, but has signs of wetness in the subsoil.

The depth of the apedal red soils in this study area ranges between 50cm to deeper than 150cm (average 75cm). Clay content of the top soil is between 3 and 35% (mean 15%), and at 50cm the clay content varies between 3 and 45% (mean 22%).

9.1.2 YELLOW-BROWN APEDAL SOILS

- Clovelly (Cv) [22] soils: Have an Orthic A Horizon over a Yellow Brown Apedal B Horizon over unspecified materials, like hard or weathered rock, or gravel.
- Askham (Ak) [1] soils: Have an Orthic A Horizon over a Yellow Brown Apedal B Horizon over hardpan carbonate.

The average depth of the apedal yellow soils in this study area ranges from 10-120cm with a mean of 62cm. They have a mean clay content of 14% (ranging between 5 and 30) in the top soil and 23% at 50cm depth (ranging from 5 to 50%) They are present on the mid- and foot-slopes.

9.1.3 NEOCUTANIC SOILS

- **Oakleaf (Oa) [105] soils:** Have an Orthic A Horizon over a Neocutanic B-Horizon over unspecified materials, without signs of wetness in the subsoil.
- Gamoep (Gm) [3] and Etosha (Et) [7] soils: Have an Orthic A Horizon over a Neocutanic B-Horizon over a hardpan- or soft carbonate horizon respectively.

In this study area the average depth of the neocutanic soils range from 40-150cm (mean 88cm). Clay content in the top soils of these soils varies between 9 and 35% (mean 18%) and between 11 and 45% at 50cm depth (mean 26%).

9.1.4 CARBONATE SOILS

• Coega (Cg) [133] and Brandvlei Br [7] soils: Have an Orthic A Horizon over a hardpan- or soft carbonate horizon respectively.

The depth ranges from 5-45cm (mean 17cm). The clay content in the top soil ranges between 8 and 35% (mean 17%). These soils were seldom deeper than 45cm in this study area.

9.1.5 NEOCARBONATE SOILS

- Augrabies (Ag) [66] soils: Have an Orthic A-Horizon over a Neocarbonate B on unspecified materials.
- Prieska (Pr) [18] and Addo (Ad) [2] soils: Have an Orthic A Horizon over a Neocutanic B on a Hardpan- or Soft carbonate horizon respectively.

The depth ranges from 35cm to deeper than 150cm (mean 85cm). The clay content in the top soil ranges between 8 and 35% (mean 17%) and at 50cm depth it is between 18 and 35% (mean 31%).

9.1.6 PEDOCUTANIC SOILS

- Swartland (Sw) [27] soils: Have an Orthic A-Horizon over a Pedocutanic Bhorizon on Weathered rock (saprolite).
- Valsrivier (Va) [14] soils: Have an Orthic A-Horizon over a Pedocutanic B-Horizon without signs of wetness in the sub-soil.

The depth ranges between 40-110cm (mean 66cm). The clay content in the

top soil is between 13 and 50% (mean 29%) and at 50cm depth it is between 30 and 60% (mean 37%).

9.1.7 SHALLOW ROCKY SOILS

- Mispah (Ms) [263] soils: Have an Orthic A-Horizon over hard rock.
- Glenrosa (Gs) [189] soils: Have an Orthic A-Horizon on a Lithocutanic B-Horizon.

The average depth of these soils ranges from 0 to 65cm (mean 21cm). The clay content in the A-Horizon varies between 5 and 55% (mean 15%) and at 50cm depth it varies between 25 and 55% (mean 53%).

9.1.8 FERNWOOD SOILS

• Fernwood (Fw) [2] soils: Have an Orthic A-Horizon over an E-Horizon on unspecified material.

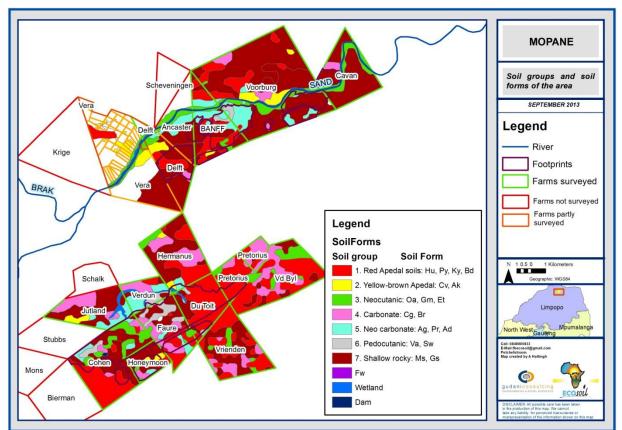


Figure 9: Soil groups (associations) and forms of the study area

Although soil forms can give a slight indication of soil capability, it cannot give an indication of agricultural potential. Soil forms give an indication of expected soil colour, properties and soil forming processes.

Large areas of the farms Vd Byl, Pretorius, Du Toit, Hermanus, Cohen, Vrienden and Faure are covered with Hutton soil forms. When deep and when climate permits these soils can be considered as high potential. However this is not the case in the project area and the potential of these soils are degraded to Class IV, as will be discussed in point 10.4.1 (due to climatic constraints).

Relatively small areas of Yellow Apedal soils are found on localized areas on the farms Voorburg, Honeymoon and Jutland as well as on Vera and Delft. Only a small area of the footprint of Honeymoon is covered by yellow apedal soils. These soils are generally considered as having high agricultural potential where climatic

conditions (e.g. rainfall) are favourable. Unfortunately this is not the case at Mopane. The agricultural potential is therefore downgraded.

Neocutanic soils are mainly found on the floodplains along the river banks.

Shallow rocky soils are dominant in the farms Voorburg, Cavan, BANFF, and the southern parts of the farms Vera, Delft and Ancaster.

Neo Carbonate soils are found in significant areas around the Sand River on the farms Voorburg, Banff and Ancaster.

Properties	Soil Group 1	Soil Group 2	Soil Group 3	Soil Group 4	Soil Group 5	Soil Group 6	Soil Group 7
Soil association	Red Apedal	Yellow - brown Apedal	Neo cutanic	Carbo- nate	Neo- carbonate	Pedo- cutanic	Shallow, rocky
Soil forms	Hu, Py, Ky, Bd	Cv, Ak	Oa, Gm, Et	Cg, Br	Ag, Pr, Ad	Sw, Va	Ms, Gs
Dominant soil	Hutton	Clovelly	Oakleaf	Coega	Augrabies	Swartland	Mispah
Soil family	1200	1200	1120	1000	1120	1122	1100
Soil Depth cm	50-150	10-120	40-150	5-40	35-120	40-110	0-40
Mean rooting depth cm	75	62	88	17	85	66	21
Infiltration rate	Moderate 10-15mm/h	Fast 15- 20mm/h	Slow 5-10mm/h	Very Slow <5mm/h	Slow 5-10mm/h	Very Slow <5mm/h	Slow 5-10mm/h
Consistency	Loose	Loose	Friable	Soft	Soft	Hard	Loose
Structure	Apedal	Apedal	Weak blocky	Weak blocky	Weak blocky	Strong blocky	
Clay % A (mean)	3-28(15)	5-30 (14)	9-35(18)	8-35(17)	3-50(19)	13-50(29)	5-55(53)
Clay % 50cm	3-45 (22)	5-31 (23)	11-45 (26)	Soil not 50cm	18-50 (31)	18-60 (34)	Soil not 50cm
PAW	29-184	12-134	42-203	4-98	49-197	54-149	0-140
mm/profile	(82)	(78)	(112)	(19)	(110)	(93)	(25)
Field capacity mm	49-338 (146)	22-237 (136)	71-396 (208)	7-171 (33)	90-383 (207)	104-290 (182)	0-267 (44)

Table 7: Summary of different soil physical properties of the soil groups

Wilting point	20-126	10-107	30-139	3-79	38-1390	49-141	0-128
mm	(64)	(58)	(96)	(14)	(98)	(89)	(19)
Drainage	Fast	Fast	Poor	Poor			
Gravel/Rocks	-	-	-	R1	-	-	R5
A Horizon							
Gravel/rocks B1 Horizon	G1	G1	G3	R6	G3	-	R
Gravel/rocks B2 Horizon	G1	G1	G3	-	G3	G3	-
Wetness	0	0	0	0	0	W1	0
Compactability	High	High	High	Moderat e	High	Moderate	Low
Erodibility	Very High	Very High	High	Very High	Very High	Very High	Very High
Potential Nematode Infestation	High	High	Moderate	Low	Low	Low	High
Irrigation classification	3	3	4	5	5	4	5
Agricultural potential	Low to Medium	Low to medium	Medium	Marginal	Low	Low	Marginal

9.2 SOIL PHYSICAL PROPERTIES

Figures 10-12 shows the effective rooting depth, Clay content of the A- Horizon and Profile Available Water capacity (PAWC) respectively.

Deep soils (>125cm) are found in the south western parts of Cohen, as well as on localised areas in the western parts of the Farm Pretorius. Soils between 75 and 125cm are generally found on the western parts of Voorburg, and Vera, as well as on Banff (north), Du Toit and on significant areas of the farm Pretorius. According to the Chamber of Mines (1991) classification (Table 3) these deep soils can be regarded as arable. But according the agricultural classification (Klingebiel & Montgomery, 1961) these soils are classified as classes IV to VII as is outlined in Table 4a and 4b.

Soils on Cavan, eastern parts of Voorburg, southern parts of Ancaster and almost the entire farms of Delft, Hermanus, Jutland, Faure, as well as localized areas on Pretorius are shallower than 50cm.

The depth of the soils on the farms Pretorius north, Vrienden, Vd Byl, Honeymoon, central parts of Cohen varies considerably between shallow and deep.

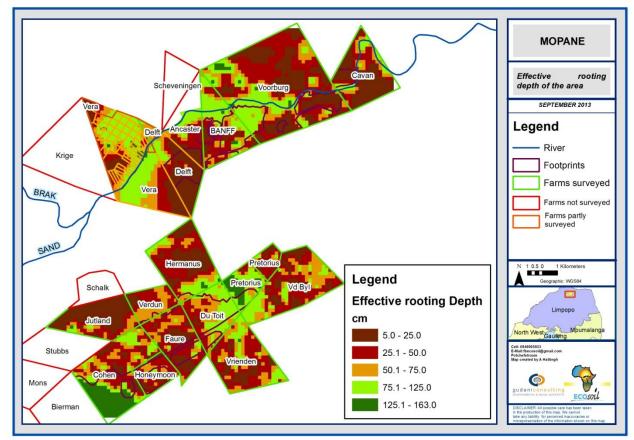
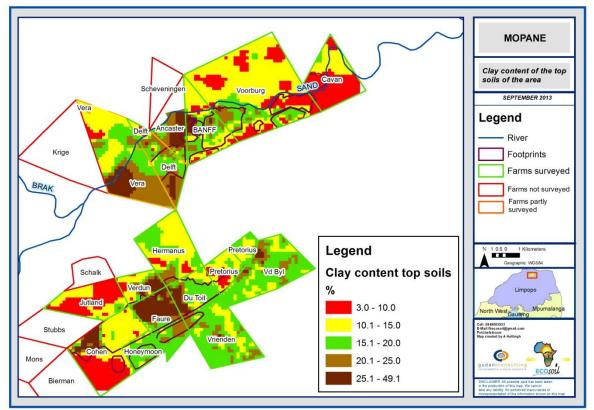



Figure 10: Effective rooting depth of the study area

Clay contents of the top soils are illustrated in Figure 11. Clay content of the top soil gives an indication of the susceptibility to soil erosion. Clay contents of top soils on the farms Cohen, Jutland, Cavan and smaller areas on Voorburg are generally lower than 10%. These soils can be considered as prone to wind erosion. Footprints on the eastern parts of Voorburg have such low clay contents. It will be

necessary to protect these soils from wind erosion if it is to be considered for moving soils during the mining process. Special attention is needed for this operation and specialist should be consulted. High clay contents (>25%) can give rise to water erosion, especially during intensive rainstorms that occasionally may occur.

Profile available water capacity (PAWC) is illustrated in Figure 12. PAWC is the capacity of soil to keep a certain amount of water in the profile that can be used by a plant. The values are calculated from soil depth, soil texture (clay content) and soil forms. These combined factors give an indication of the potential of the soil for dry land crop production, as well as the amount of water that will be needed to fill the profile in the case of irrigation.

PAWC of the majority of the area is very low and ranges between 6 and 100mm (illustrated in brown, red, orange and yellow in Figure 12), which can be considered as sub-optimum for crop production purposes. Only relatively small areas along the Sand River can be considered as having high water holding water capacities of higher than 120mm (darkest two green hues in Figure 12). However, the rainfall of the area is too low to regard these areas of value for crop production, unless irrigated with **good** quality water.

On the footprint areas only Voorburg has a small area with a high profile available water capacity, which can be considered as of potential value for irrigation purposes if good quality irrigation water was available.

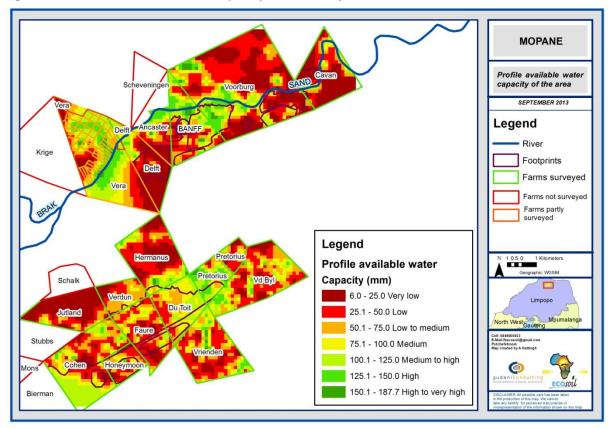


Figure 12: Profile available water capacity of the study area

9.3 SOIL CHEMICAL PROPERTIES

Table 7 is a copy of the soil analysis and co-ordinates of sample sites.

- The pH of most soil samples are close to neutral. This is an indication of the influence of the free lime in the soil profile.
- The phosphate (P) levels are generally extremely low and are generally below 10mg kg⁻¹, except for observation points 635 (Farm Hermanus), 835, 856 (Farm Pretorius) as well as 411 (Delft), which have higher than normal values. These high values cannot be explained, but has no implications for the mining process.
- K contents are generally high, except for observation points 221, 227 and 1128, with low clay contents and it can therefore be expected (Table 7).
- Ca and Mg contents are normal. The Ca and S values of observation point 98 on the footprint of BANFF is extremely high.
- There is no indication of any salinity or sodicity in any of the soil samples.
- Cation ratios are within acceptable ranges.

		SOILANALYSIS REPORT											
							_			086 68	33 7781		
					lvi	ro	Te	k-					
							La	_					
							La	65					
			anagement Olienhout						NAME:		Franco	is Botha	1
			otchefstroo						FARM: EMAIL:		ecosoil@	amail c	om
			2531						FAX:	<u></u>		<u>-gmaile</u>	<u>om</u>
								0	RDER N				
Obs No	Longs	Lats	Ref No	pH (KCI)	PBray1	К	Na	Са	Mg	%Ca	%Mg	%K	%Na
					mg/kg	mg/kg	mg/kg	1	mg/kg		%	%	%
689	29.7333291	-22.6679104	M1	6.26	22	223	3	908	161	70.48	20.43	8.87	0.23
1128 1128	29.83264355	-22.5307927	M2A M2B	6.04 6.16	2	66 64	94 47	1492 2813	365 378	67.65 80.25	27.10 17.65	1.54 0.93	3.71 1.17
1035	29.74585137	-22.563891	M3A	6.09	13	498	5	811	219	56.73	25.16	17.80	0.31
1035			M3B	6.79	3	993	11	1217	291	55.05	21.55	22.98	0.41
1558	29.82009	-22.67272	M4A	4.55	5	158	4	266	88	53.79	29.14	16.31	0.76
1558			M4B	4.10	2	137	7	281	129	45.50	34.07	11.31	1.03
1539	29.82659	-22.70510	M5	4.88	6	174	4	628	280	53.25	38.92	7.53	0.30
1397 1397	29.85907776	-22.6378447	M6A M6B	5.88 6.06	55 3	424 245	2	1415 1081	208 179	71.63 71.88	17.28 19.48	10.99 8.35	0.11 0.29
1438	29.85049748	-22.6461209	M7A	6.54	48	375	4	1422	238	70.83	19.40	9.56	0.29
1438	20100010110	2210101200	M7B	5.84	2	170	17	1380	479	60.85	34.64	3.84	0.67
13	29.78948013	-22.5586262	M8	6.49	8	608	28	3526	449	76.69	16.02	6.76	0.53
575	29.78044342	-22.665836	M9	6.63	1	419	45	3813	576	76.08	18.86	4.27	0.79
1093	29.77699116	-22.6626457	M10	6.52	1	245	44	3107	457	77.28	18.65	3.12	0.95
98 662	29.81598922 29.77818163	-22.5487772 -22.6983699	M11 M12A	6.39 6.12	1	443 276	52 7	6710 1202	412 282	87.63 66.38	8.83 25.49	2.96 7.80	0.59 0.33
662	29.11010105	-22.0903099	M12A M12B	5.82	1	248	15	1524	340	68.61	25.09	5.72	0.57
647	29.77251029	-22.706592	M13A	5.74	4	250	6	951	250	63.63	27.43	8.57	0.38
647			M13B	5.84	1	106	15	1270	317	68.39	27.98	2.91	0.72
1048	29.76042476	-22.5636413	M14	6.51	23	161	76	804	486	45.97	45.57	4.71	3.76
432	29.80102556	-22.6736007	M15	5.28	9	109	6	309	90	59.80	28.47	10.76	0.97
1219 1182	29.83759209 29.8623362	-22.5352185 -22.5344196	M16 M17	6.60 6.99	2	487 204	11 22	1287 2719	228 519	67.06 73.64	19.47 23.02	12.97 2.83	0.50 0.51
407	29.78003669	-22.5723295	M17 M18	6.70	38	204	52	588	346	44.97	43.37	8.21	3.46
502	29.78968685	-22.690046	M19	5.89	6	415	12	861	310	54.08	31.93	13.35	0.64
513	29.78374291	-22.6847338	M20	4.95	6	170	10	563	143	63.03	26.31	9.72	0.94
447	29.79211041	-22.6656329	M21	5.41	3	172	10	545	143	62.19	26.71	10.08	1.03
411	29.77499795	-22.5633902	M22	7.08	49	1113	418	1744	797	43.79	32.79	14.29	9.13
481 535	29.7977791 29.77191083	-22.6574103 -22.6768156	M23 M24	6.65 6.60	1	175 169	21 21	3195 3356	619 629	74.00 74.72	23.50 22.95	2.07	0.43
531	29.78946758		M25	5.53	4	240	3	451	113	59.23	24.28	16.13	0.37
635	29.80047286		M26	7.24	91	350	9	1391	161	75.55	14.30	9.73	0.41
835	29.82699958	-22.6596049	M27	7.27	101	417	7	1613	186	75.45	14.27	9.98	0.30
856	29.83009247		M28	7.18	97	378	6	1487	173	75.52	14.37	9.83	0.28
258	29.73722877	-22.6936603	M29A	6.44	3	469	25	1408	309	64.71	23.27	11.03	0.99
258 315	29.77201975	-22.6822295	M29B M30	6.92 5.73	1	406 410	18 8	2067 1494	436 317	68.81 66.99	23.77 23.29	6.91 9.41	0.51 0.31
237	29.73150125		M30 M31	7.20	1	357	0 11	2667	286	80.16	14.07	5.49	0.31
227	29.7345264	-22.7045384	M32A	6.37	1	66	5	337	41	76.24	15.07	7.64	1.05
227			M32B	6.27	3	87	3	355	28	79.24	10.30	9.95	0.51
263	29.75181596	-22.69341	M33	6.19	1	139	9	530	136	63.73	26.78	8.53	0.95
	29.75159963	-22.682582	M34	6.20	4	406	7	1674	266	72.06	18.74	8.95	0.26
279	29.76343124 29.75511268	-22.6905018	M35 M36A	5.54 5.21	1	254	6 3	721 244	309 29	52.89 78.28	37.17 15.06	9.54	0.40
221	JU /6611060	-22.7123087				35						5.70	

Table 8: Soil analysis Report

(Continues)

Obs	Ca:Mg	(Ca+Mg)/K	Mg:K	S-Value	Na:K	Т	Density	S AmAc	Clay	Silt	Sand	EC	Са	Mg	Na	SAR
No	1.5-4.5	10.0-20.0	3.0-4.0	cmol(+)/kg	cmol	(c)/kg	/cm3	mg/kg	%	%	%	ms/m	me/l	me/l	me/l	
689	3.45	10.25	2.30	6.44	0.03	6.44	1.55	0.74	13	2	85					
1128	2.50	61.46	17.58	11.03	2.41	11.03	1.25	12.71	21	7	72					
1128	4.55	105.55	19.03	17.53	1.26	17.53	1.17	0.53	23	12	65	22.8	1.21	0.79	1.07	1.07
1035	2.26	4.60	1.41	7.15	0.02	7.15	1.49	0.67	15	5	80					
1035	2.55	3.33	0.94	11.05	0.02	11.05	1.43	0.35	21	4	75	49.9	1.69	1.00	0.47	0.41
1558	1.85	5.08	1.79	2.47	0.05	2.47	1.51	1.31	15	3	82					
1558	1.34	7.03	3.01	2.84	0.09	3.09	1.43	4.37	21	2	77	16.7	0.65	0.69	0.44	0.53
1539	1.37	12.24	5.17	5.90	0.04	5.90	1.52	0.61	19	4	77					
1397	4.14	8.09	1.57	9.88	0.01	9.88	1.44	2.35	17	10	73					
1397	3.69	10.94	2.33	7.52	0.04	7.52	1.37	1.88	29	7	64	28.3	1.95	0.98	0.45	0.37
1438	3.65	9.44	2.03	10.04	0.02	10.04	1.50	3.40	15	8	77					
1438	1.76	24.87	9.02	11.34	0.17	11.34	1.29	1.29	31	12	57	18.5	1.10	1.17	0.47	0.44
13	4.79	13.70	2.37	22.99	0.08	22.99	1.29	7.49	31	14	55					
575	4.04	22.22	4.41	25.05	0.18	25.05	1.15	16.47	35	17	48					
1093	4.14	30.74	5.98	20.10	0.30	20.10	1.42	8.04	27	13	60					
98	9.93	32.60	2.98	38.28	0.20	38.28	1.39	3318.40	27	26	47					
662	2.60	11.77	3.27	9.06	0.04	9.06	1.54	52.81	17	4	79					
662	2.73	16.38	4.39	11.11	0.10	11.11	1.40	1.98	23	4	73	27.1	1.93	1.12	0.38	0.31
647	2.32	10.62	3.20	7.47	0.04	7.47	1.58	2.31	17	6	77					
647	2.44	33.12	9.62	9.29	0.25	9.29	1.49	0.13	21	4	75	14.3	0.97	0.82	0.34	0.36
1048	1.01	19.45	9.68	8.74	0.80	8.74	1.36	10.98	15	4	81					
432	2.10	8.20	2.65	2.58	0.09	2.58	1.60	1.46	15	3	82					
1219	3.44	6.67	1.50	9.60	0.04	9.60	1.55	0.02	19	14	67					
1182	3.20	34.21	8.15	18.46	0.18	18.46	1.41	3.09	23	13	64					
407	1.04	10.76	5.28	6.54	0.42	6.54	1.28	5.28	17	1	82					
502	1.69	6.44	2.39	7.96	0.05	7.96	1.53	1.41	21	9	70					
513	2.40	9.20	2.71	4.47	0.10	4.47	1.56	0.90	19	5	76					
447	2.33	8.82	2.65	4.38	0.10	4.38	1.60	1.82	19	7	74					
411	1.34	5.36	2.29	19.91	0.64	19.91	1.30	73.03	33	18	49					
481	3.15	47.11	11.36	21.59	0.21	21.59	1.36	0.32	35	19	46					
535	3.26	50.69	11.91	22.46	0.21	22.46	1.35	26.34	36	18	46					
531	2.44	5.18	1.51	3.81	0.02	3.81	1.62	0.75	17	5	78					
635	5.28	9.24	1.47	9.20	0.04	9.20	1.56	3.59	15	8	77					
835	5.29	8.99	1.43	10.69	0.03	10.69	1.57	4.49	13	9	78					
856	5.25	9.15	1.46	9.85	0.03	9.85	1.59	4.08	13	9	78					
258	2.78	7.97	2.11	10.88	0.09	10.88	1.53	8.17	25	15	60					
258	2.90	13.39	3.44	15.02	0.07	15.02	1.46	3.45	37	16	47	13.8	9.89	3.79	0.56	0.21
315	2.88	9.60	2.48	11.15	0.03	11.15	1.44	0.84	25	8	67					
237	5.70	17.15	2.56	16.64	0.05	16.64	1.50	1.51	27	18	55					
227	5.06	11.95	1.97	2.21	0.14	2.21	1.72	0.39	10	1	89					
227	7.69	9.00	1.03	2.24	0.05	2.24	1.71	2.45	10	1	89					
263	2.38	10.61	3.14	4.16	0.11	4.16	1.66	0.61	21	4	75					
308	3.85	10.15	2.09	11.62	0.03	11.62	1.48	0.64	22	13	65					
279	1.42	9.44	3.90	6.81	0.04	6.81	1.56	0.42	17	7	76					
221	5.20	16.36	2.64	1.56	0.17	1.56	1.74	0.63	10	1	89					
221	4.63	18.65	3.31	1.28	0.24	1.28	1.75	0.18	11	1	88	9.6	0.72	0.37	0.20	0.27

9.4 WATER SAMPLE ANALYSIS

Three borehole water samples were taken for analysis from Vera, Du Toit and Honeymoon respectively. **Table 8** is a copy of the water analysis results, analysed for agricultural and irrigation purposes only.

Soils will be maintained in a good condition (non-saline, non sodic) when good quality irrigation water and adequate leaching is used. The criteria of quality are

low salinity, low ratio of Na⁺ to (Ca²⁺ + Mg²⁺) to prevent sodicity, and small concentrations of those ions which may have specific toxic effects. High salinity water has a direct effect on sensitive crops. At lower salinities, salts may accumulate leading to crop damage.

SALINITY:

EC (dS/m): Sample M3 has no restriction (<0.7)

Sample du Toit has slight to moderate restriction (0.7 to 3.0) Sample Vera has severe restriction (>3.0)

The major hazard is a reduction in infiltration rate due to structural damage caused by exchangeable Na⁺. The extent of structural damage at a given sodicity depends on the salinity of the water.

SODICITY:

SAR: 0-3 AND EC: 0.7 -0.2 M3 has slight to moderate restriction3.0 - 6.0 AND EC :> 0.7 Du Toit and Vera has no restriction

Remark: These are broad guidelines and the effects will depend on crop sensitivity Use of irrigation water may cause crusting and run-off under rainy conditions on Du Toit and Vera due to dispersion.

SPECIFIC ION TOXICITY:

Na+ (SAR):	Vera and M3 has no restriction (<3)				
	Du Toit has slight to moderate restriction (3.0-9.0)				
Cl+ (mmol/l):	M3 has no restriction (<4)				
	Du Toit and Vera have severe restriction (>10)				
Boron (mg/l):	M3 and du Toit have no restriction (<0.7)				
	Vera has slight to moderate restriction (0.7-3.0)				

 The Chloride (CI) content of both Vera and Du Toit samples are extremely high and will have a negative impact on Chloride sensitive crops. • The Sodium (Na) content of both the Vera and Du Toit samples are high and could lead to the potential build-up of sodicity on poorly drained soils.

Table 9: Water analysis report

NOORDWES U	J NIVERS	ITEIT				Eco Analy	ytica			
ECO ANALYT	ICA					Posbus 19140				
						NOORDBRUG 2522		2		
						Tel: 018-2	93 3900			
FRANCOIS	вотн	Α								
27/9/2013			H ₂ 0	-ANAL	ISE					
		-	-	Makr	o-elemen	te		•		•
Monster	Ca	Mg	Κ	Na	PO_4	SO_4	NO ₃	NH_4	Cl	HCO ₃
nommer					Millimo	l per liter				
DUTOIT	3.04	4.07	0.56	9.77	0.01	1.55	0.52	0.02	12.05	8.90
HONEYMOON	0.62	0.43	0.02	0.56	0.01	0.21	0.08	0.02	0.62	1.55
VERA	4.06	12.89	0.70	12.05	<0.01	4.78	3.45	0.01	24.76	8.90
		Mikro	o-elemente e	n ander dat	a					
Monster	Fe	Mn	Cu	Zn	В	pH	EG	P-BRAY1		
nommer		Mi	kromol per	liter			(mS/cm)	dpm		
DUTOIT	0.84	0.36	0.02	0.38	39	7.01	2.46			
HONEYMOON	0.03	0.02	0.02	0.18	5	6.58	0.27			
VERA	0.66	0.05	0.05	0.17	85	6.96	4.67			
Fen einde betroub	aarheid van	analises te	verseker, nee	em Eco Anal	lytica deel a	an die volge	nde instansi	es se kontrol	eskemas:	
l. Agri-Laboratoriu	ım Assosias	sie van Suid	elike Afrika							
2. International Soi	l Analytical	Exchange (ISE), Wagen	ingen, Nede	rland					
Geen verantwoordeli	kheid word e	egter deur No	ordwes Unive	rsiteit aanvaa	r vir enige ve	erliese wat uit	die gebruik va	an hierdie data	mag spruit n	ie

9.4.1 LAND CAPABILITY ASSESSMENT

The land capability of the area (according to the Chamber of Mines 1991) classification is presented in Figure 13 and is summarised per farm in Table 10.

- Wetlands are defined as: "Land with organic soils or supporting hygrophilous vegetation where soil and vegetation processes are water determined". In this study area the following criteria was used:
 - Riparian zones were not delineated, and only wetland soil parameters per definition were used.
 - Small farm dams and pans that fell between two observation points (based on the grid size in the ToR's) were not mapped.
 - Many of the drainage lines are actually erosion dongas and gullies with Oakleaf, Augrabies, Glenrosa and Coega soils and cannot be regarded as wetlands soils per definition.
 - Only large water bodies on Jutland and Verdun were found.
- Footprint areas are generally covered by soils classified with a wilderness and grazing capability. The farms Cohen and Pretorius have significant areas of arable soils. The farms Banff and Cohen have small areas of arable soils. However, the potential of these arable soils are classified as class IV soils (as discussed in point 8.4.1.4 and 8.4.2).

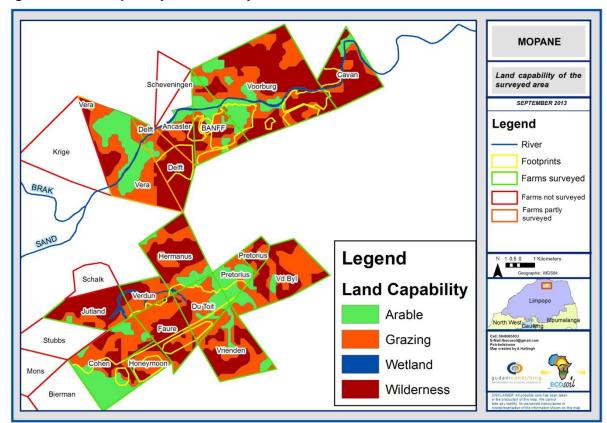


Figure 13: Land capability of the surveyed area

Farm name	Total area (ha)	Arable	Grazing	Wetland	Wilderness
Ancaster	552	93	144	40	275
BANFF	1157	341	516	17	283
Cavan	1248	110	149	77	912
Cohen	1808	761	652	0	395
Delft	887	49	187	11	640
Du Toit	935	268	563	11	93
Faure	1106	0	469	0	638
Hermanus	1398	167	498	10	723
Honeymoon	467	0	323	0	144
Jutland	1371	23	240	371	737
Pretorius	761	371	250	0	140
Vd Byl	1588	170	797	0	621
Vera	1056	307	408	21	320
Vera Small holdings	988	489	372	7	120
Verdun	516	0	314	53	149
Voorburg	4024	612	1216	88	2108
Vrienden	1384	175	656	0	553
Total	21246	3936	7754	706	8851

Table 10: Areas of Land capability classes on respective farms in the study area

9.4.2 AGRICULTURAL POTENTIAL ASSESMENT

For purposes of international and national technology transfer and simplicity, the methodology was aimed at reflecting the classic concepts of land capability, as established by Klingebiel and Montgomery (1961) as far as possible. These concepts were to be brought under parameters suited to South African conditions and the local availability of data.

External factors like climate, topography, erosion factors, surface rock and water quality parameters are brought in consideration to determine the present agricultural potential.

Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Management Unit	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7	Group 8
Soil Types	Red Apedal	Yellow Apedal	Neo Cutanic	Carbonate	Neo Carbonate	Pedo cutanic	Shallow rocky	Wetland
Soil depths cm	50->150	10-120	40->150	5-45	35->150	40-110	0-65	-
Average soil depth cm	75	69	88	17	87	70	21	-
Limiting Factors	Texture, Water- holding capacity	Texture, Water- holding capacity	Erosion, Depth, Surface rock	Surface Rock, Erosion,	Surface Rock, Erosion,	Structure, Erosion	Rock, Depth	Water- logging
External Factors	Climate, Water Quality	Climate, Water Quality	Climate, Water Quality	Climate, Water Quality	Climate, Water Quality	Climate, Water Quality	Climate, Water Quality	Climate, Water Quality
Land capability	Arable, crop production	Arable crop production	Grazing	Grazing / Wilderness	Wilderness / Grazing	Grazing	Wilderness	Wetland
Agricultural potential	Low	Low	Low	Marginal	Marginal	Low	Marginal	Marginal
Agricultural Classification	4	4	4	5-6	6	4	6	8
Area %	5237ha 24.6%	565ha 2.7%	1610ha 7.6%	2116ha 10.0%	1363ha 6.4%	430ha 2.0%	9219ha 43.4ha	706ha 3.3%

Table 11: Agricultural Potential Classification of land capability classes according to agricultural classification system

10. SUMMARY OF THE IMPACT OF THE MINING DEVELOPMENT ON AGRICULTURAL POTENTIAL AND LAND CAPABILITY

Impact	Loss of agricultural potential	and land capability					
	Without mitigation	With mitigation					
Extent	Low	Low					
Duration	Permanent	Permanent					
Magnitude	Low	Low					
Probability	Highly probable	Highly probable					
Significance	Low	Low					
Status (positive or negative)	Negative	Negative					
Reversibility	Medium	Medium					
Irreplaceable loss of resources	No	No					
Can impacts be mitigated	No	No					
* The agricultural potential of the area is low, but the loss of agricultural land stretches far beyond the							

operational mining processes.

* Soil erosion is a strong possibility due to increased surface run-off and occasional high intensity rain occurrences. Erosion control and adequate management is needed.

* Loss of agricultural land is a long term loss. There are no mitigation measures that can combat this type of loss.

11. CONCLUSIONS OF SOILS ASSESSMENT

- Generally the soils are heavily degraded through erosion and top soil loss.
- Although there are large areas of deep soils, these areas are sub optimal due to low clay contents. As a result of low rainfall, high temperatures (high evapotranspiration), susceptibility to compaction, present erosion and erodibility the soils in the area is study is not recommended for rain fed crop production.
- Fields presently used for irrigation are susceptible to salinity and sodicity due to poor water quality with high chloride values. The relatively high salt contents currently prevents dispersion, however rain water can cause dispersion and enhance crust formation on the soils.
- Water quality for irrigation purposes is of low quality with restriction to sensitive crops. Water samples were taken during the winter and it is recommended to make a continual assessment of water quality during the year, since it can change significantly during the year.
- Shallow soils and surface rock are dominant in large areas. Areas classified for grazing have presently low basal grass cover and are dominated by Mopane shrub field and will be discussed in detail by the biodiversity report.
- Present land use is cattle and game farming, but carrying capacity is questionable due to poor physical soil quality (erosion susceptibility, shallow soils, surface rock and poor climatic conditions).
- Approximately 706ha was identified as wetland and should be evaluated separately.
- Land capability per farm is summarized in Table 10. From this Table it can be concluded that most of the farms are largely covered by grazing and wilderness areas (total 16605 of the approximate 21246ha) according to the Mining classification.
- Less than 4000ha is classified as arable soils according to the mining classification. However, these soils fall into classes 4 to 7 according to the agricultural classification system, which recommends these soils for grazing purposes.

- The same restrictions and limitations discussed above apply for the footprint areas. The footprint on the Jutland Portion overlies some of the deep soils, previously mentioned.
- Stripping and rehabilitation for the proposed mining operation will be discussed separately under point 15 and onwards.

12. RECOMMENDATIONS OF SOILS ASSESSMENT

Impacts on the environment must be minimized or limited on construction sites.

The following is recommended:

- Specialists should be used to evaluate the erosion and other possible impacts during the entire mining process
- Limit impacts to the footprints to keep physical impacts as small as possible
- Specific control measures are needed to control erosion and water run-off to prevent excessive surface run-off from the site
- Areas for road and site lay-out should be minimized.
- Dust generation and vehicle associated pollution must be minimized.

13. METHODOLOGY USED FOR IMPACT RATING

The methodology includes the following:

- Descriptions of all methods, measures and instruments adopted during the undertaking of the applicable specialist study; and
- Impact rating method used, which is provided below.

13.1 NATURE OF IMPACT

The nature of the impact refers to whether an impact is positive or negative

Table 13: Nature of impact

Status	Description	Rating
Positive	Benefit to the environment	+'ve'
Negative	Detriment to the environment	-'ve'

13.2 IMPACT TYPE

Each impact needs to be classified as a direct, indirect or cumulative impact. (Centre for Environmental Excellence, 2008) (Council on Environmental Quality, 2008)

Table 14: Impact type

Туре	Description	Rating
Direct Impact	Is a reaction that is caused by the direct interaction of a planned action or activity on the receiving environment, e.g. the discharge of water into a water stream, the discharge of pollutions through a stack. Usually in close proximity to the action or activity.	Direct
Indirect Impact	Is a reasonably foreseeable reaction that is indirectly caused as a result of a planned action or activity, the effects/ impacts are usually later in time and farther removed from the action or activity, e.g. growth inducing effects, changes in patterns of land use, population density or growth rate and related effects on air, water, ground and ecosystems.	Indirect
Cumulative Impact	Is the impact on the environment, which results from the incremental impact of the action when added to other past, present and reasonably foreseeable future actions, regardless of undertakings by other industries, mines, developments or persons? Cumulative impacts can result from individually minor but collectively significant actions taking place over a period of time.	Cumulative

13.3 GROUPING OF IMPACT

The grouping of the impact refers to whether the impact will be a result of a

planned project activities or unplanned project activities.

Table 15: Grouping o	f impact
----------------------	----------

Grouping	Description	Rating
Routine	Impact that occurs as a result of expected and planned project activities.	'R'
Non-Routine	Impact that occurs as a result of an unexpected and unplanned project activity. Usually occurs in emergency events.	'NR'

13.4 CERTAINTY (PROPABILITY) OF IMPACT

The certainty of the impact describes the likelihood of the impact occurring.

Certainty	Description	Rating	
Unlikely	Less than 40% sure that the impact or benefit will occur.	1	
Possibility	Between 40% and 70% sure that the impact or benefit will occur.	2	
Probable	Between 70% and 90% sure that the impact or benefit will occur.	3	
Definite	Over 90% sure that the impact or benefit will occur.	4	

Table 16: Certainty of impact

13.5 SPATIAL EXTENT OF IMPACT

The extent of the impact refers to the spatial scale of the impact or benefit of the proposed project and the area over which it extends.

 Table 17: Spatial extent of impact

Spatial Extent	Description	Rating
Site specific	Effects felt within the site boundary area.	1
Local	Effects are felt within 5 km radius from the site boundary area.	2
Regional	Effects are felt within a 50 km radius from the site boundary area.	3
National	Effects are felt beyond a 50 km radius from the site boundary area within South Africa.	4

13.6 DURATION OF IMPACT

The duration refers to the time scale of the impact or benefit in terms of the period of time that the surrounding environment will be affected or altered by the proposed project.

Table 18: Duration of impact

Duration	Description	Rating
Short term	Less than 5 years	1
Medium term	Between 5 and 20 years	2
Long term	Between 21 and 40 years	3
Permanent	Permanent impact	4

13.7 REVERSIBILITY OF IMPACT

Reversibility refers to the time it would take to reverse or undo the impact under

discussion.

Table 19: Reversibility of impact

Reversibility	Description	Rating			
Short term	Less than 5 years	1			
Medium term	Between 5 and 20 years	2			
Long term	Between 21 and 40 years	3			
Permanent	Permanent impact, i.e. not reversible	4			

13.8 SEVERITY (INTENSITY) OF IMPACT

The severity is the attempt to quantify the magnitude of the impact whether positive or negative, which is associated with the proposed project. The scale therefore accounts for the extent and magnitude but is subject to the value judgement.

Status of Impact	Severity	Description	Rating
Inpact	Slight	 Minor deterioration; Short to medium term duration; and Mitigation is easy, cheap and quick. 	1
e	Moderately severe	 Moderate deterioration; Medium to long term duration; and Fairly easy to mitigate. 	2
Negative	Severe	 Marked deterioration; Long term duration; Serious and severe impact; and Mitigation is very expensive, difficult or time consuming. 	3
	Very severe	 Substantial deterioration; Irreversible of permanent; and Cannot be mitigated. 	4
0	Slightly beneficial	Minor improvement; andShort to medium term duration.	1
Positive	Moderately beneficial	Moderate improvement; andMedium to long term duration.	2
Po,	Beneficial	Large improvement; andLong term duration.	3
	Very Beneficial	Permanent improvement.	4

 Table 20: Severity of impact

13.9 SIGNIFICANCE OF IMPACT

The significance of a positive or negative impact describes and evaluates the importance of that impact in accordance with the scope of the project. Impacts can be described and evaluated in terms of their type, extent, complexity, intensity and duration. This evaluation criterion provides a basis for comparison and the application of judgement (Department of Environmental Affairs and Tourism, 2002). The significance of an impact is calculated as follows:

(Severity + Reversibility + Duration + Spatial) x Certainty = Significance

Significance		Description	Rating	
Very low(1)		 Constitutes as a short term effect, which is site specific; Easily reversible by the application of easy, cheap or quick mitigation measures; Mitigation might not even be required, and Society and/or specialist view the change as negligible. Slightly beneficial impact, which constitutes a minor improvement; 	0-4	
	Positive	 Short term duration; and Enhancement measures to be implemented to increase the effect of the positive impact. 		
Negative North Nor		 Marked deterioration; Short to medium term; Effects are not substantial. Society and/or specialists view the change as unimportant; and Mitigation is easy, cheap or quick. 	5 - 15	
	Positive	 Marked improvement; Short to medium term; and Enhancement measures to be implemented to increase the effect of the positive impact. 		
Moderate (2 - 3)		 Constitutes as medium to long term effect; Effects are real but not substantial and ; Society and/or specialist do not view the impact as substantial and very important; and Mitigation is fairly easily possible. 	16 - 35	
	Positive	 Marked improvement; Medium to long term; Effects are real, but not substantial; and Enhancement measures to be implemented to increase the effect of the positive impact. 		
High (3-4) Bedation Nedation		 Long term effect; Society and specialist view the change as very serious; The reversibility of the impact is long term; and Mitigation is very expensive, difficult and time consuming. 	36-63	
	Positive	 Long term effect; Society and specialist view the change as very positive; and Enhancement measures to be implemented to increase the effects of the positive impact. 		
Very high (4)		 Constitutes as a permanent change to the environment; Society and/or specialist view the change as very serious; The impact cannot be reversed; and The impact cannot be mitigated. 	64	
	Positive	 Constitutes as a permanent change to the environment; Society and specialist view the change as very positive; and Impacts cannot be reversed. 		

Table 21: Significance of impact

14. IMPACT ASSESSMENT

Project phase	Nature	Certainty	Extent	Duration	Reversibility	Severity	Significance
Before Mitigation							
Construction	-	4	2	1	3	3	36
Operation	-	4	2	4	3	3	48
Decommissioning	-	2	2	2	3	3	20
After Mitigation							
Construction	-	4	1	1	3	2	28
Operation	-	4	2	4	3	3	36
Decommissioning	-	2	2	2	3	3	20

Table 22: Predicted impact assessment of the proposed mining activity on the soils

15. DUST GENERATION AND VEHICLE IMPACT ASSESSMENT

15.1 DUST GENERATION

During the operational time all vegetation will be removed and creates a potential for wind erosion and therefore dust generation.

- A soil with low clay contents is susceptible to wind erosion, but has a low dust generation potential.
- Soils with high clay contents have an inherent stability and have a low dust generation potential, except for Vehicle movement. Vehicles can cause powdering and breaking of the soil structure. It is recommended that all roads should be gravelled.
- Soils with clay contents between 12 and 25 percent have a high dust potential.

Three potential areas of dust formation are identified:

- Open-pit areas: Dust control can be achieved by additives like molasses or watering.
- Stockpiling areas: Rock armouring of the stock piles can reduce wind and water erosion.
- All roads: Use of gravelled roads.

15.2 ON SITE VEHICLE OPERATIONS

- Vehicle movement should be minimized and restricted to the construction site on gravelled roads, in order to reduce potential rill erosion and dust formation.
- Maintain vehicles and prevent and address spillages of lubricants and petroleum.

16. CONCLUSIONS OF IMPACT ASSESSMENT

- As mentioned previously, generally the soils are severely degraded through erosion and top soil loss. The majority of area has a poor basal cover, and it is prone to compaction and crust formation
- A large percentage of the area has very shallow and rocky soils as well as surface rock outcrops.
- The soils are not high potential arable soils and have low soil fertility. This has the implication that rehabilitation will be complex and special measures need to be implemented to prevent soil loss through wind and water erosion (see Appendix)
- Water for irrigation purposes is already of poor quality. Special measures should be put in place to protect surface and sub-surface water sources from further contamination.

17. RECOMMENDATIONS

17.1 MITIGATION MEASURES REQUIRED

17.1.1 SOIL STRIPPING IN CONSTRUCTION PHASE

- The Red and Yellow Apedal soil groups are suitable as growing medium; effort should therefore be made to strip the topsoil separate from the underlying material (see Appendix) for later use.
- Soils in the wetland should be kept undisturbed.
- Average soil depths range from 30-90 and are generally shallower than 70cm. If soil stripping is necessary, it is recommended to strip only 40-60cm of the soil. These estimates take into consideration a possible 10% topsoil loss through compaction and allow the rehabilitated areas to be returned to the pre-mining land capability, i.e. arable cropping and grazing land.
- Any soil that might possibly be contaminated during the construction phase should be stripped and stockpiled in advance of construction activities.
- The stripped soils should be stockpiled upslope of areas of disturbance to prevent contamination of stockpiled soils by runoff or seepage.
- All stockpiles should also be protected by a bund wall to prevent erosion of stockpiled material and deflect water runoff.
- Stockpiles should be placed where possibly on the areas covered by stony or rocky soils (Mispah, Glenrosa and Coega).
- Care should be taken that stockpiles do not to block too many drainage lines as high intensity rainfall events can occur in this area (e.g. the rainfall in January 2013 exceeds the average annual rainfall).

17.1.2 OPERATIONAL PHASE

• Stockpiles can be used as a barrier to screen operational activities. If stockpiles are used as screens, the same preventative measures described above should be implemented to prevent loss or contamination of soil.

- The stockpiles should not exceed a maximum height of 6m and it is recommended that the side slopes and surface areas be vegetated in order to prevent water and wind erosion and to keep the soils biologically active.
- If used to screen operations, the surface of the stockpile should not be used as roadway as this will result in excessive soil compaction.

17.1.3 DECOMMISIONING AND REHABILITATION

Detailed recommendations concerning a sustainable approach to soil rehabilitation of opencast mining areas are given in the appendix. The following issues need to be taken into consideration before, during mining operations, with closure and rehabilitation:

- Loss of topsoil and usable soil
 - Strip all usable soil and stockpile.
 - Vegetate long-term soil stockpiles
- Contamination of topsoil and stockpiled soil
 - Prevent contamination of topsoil and stockpiled soil.
 - Site all soil stockpiles upslope from any mining / development activities
 - Position stockpiles upslope of mining areas, or as screens to restrict visibility of the mining operation provided that in doing so, the stockpile is not exposed to the risk of seepage or dirty water contamination.
- Erosion of stockpiled soil
 - Ensure that all stockpiles have a storm water diversion berm for protection against erosion and contamination by dirty water.
- Loss of soil biodiversity
 - Most soil stockpiles become sterile as soil microbiology dies off due to longfallow syndrome. Compost, Kraal Manure and / or humic and microbial substances can be used to restore soil biology.
- Probability of compaction

 The footprints of stockpiles on deep soils (not necessary for shallow soils) must be loosened after removal of the stockpiles, because of compaction during the stockpiling process.

17.1.4 MONITORING AND MEASUREMENT REQUIREMENTS

- Sampling sites need to be established down- stream on neighbouring farms.
- Regular water quality monitoring also need to take place in the Sand River to monitor any impact the proposed development might have on the regional surroundings.

18. MANAGEMENT RECOMMENDATIONS

The area can be converted to mining, but measures must be put in place to limit soil erosion and contamination of boreholes and surface water and the wetlands.

19. BIBLIOGRAPHY

- Dept of Agriculture, forestry, and fisheries (2013). Land use and land capability.
- Soil classification working group. 1991. Soil classification. A Taxonomic system for South Africa. Department of Agricultural Development. Pretoria.
- Coaltech 202/Chamber of mines of South Africa (2007). Chamber of Mines Guidelines for the rehabilitation of mined land (1991).

20. APPENDIX 1

ILLUSTRATION OF SHEET EROSION DUE TO POOR BASAL COVER

21. APPENDIX 2: REHABILITATION OF OPENCAST MINING SOILS

1. INTRODUCTION

Global agriculture is facing a trend in yield decline for most crops. This is specifically applicable to crops that are practised under a mono-cropping system. It is a well-known scientific fact that monoculture has a negative impact on soil fertility and potential.

With mono cropping and overuse of land, it has become necessary for farmers to resort to more drastic measures to maintain yields. One such practise is to increase N, P and K chemical fertilisers at ever increasing costs, because the perception is that the higher the fertiliser levels the higher the yield.

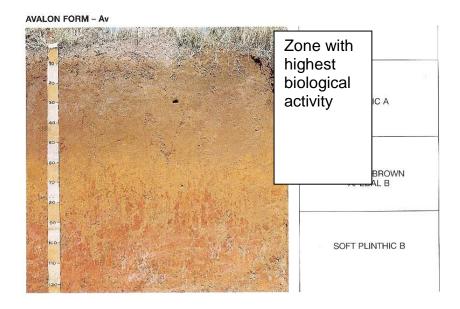
This same mind-set is prevalent with the rehabilitation of opencast mining areas. The impact of mining operations is just so much amplified as the whole soil profile with all the integrated soil physical, chemical and biological processes is destroyed. This is often the result of a lack of understanding that soil is a living eco-system and that there is a difference between soil fertility and plant nutrition. There is also a difference in understanding the term topsoil from a soil science and mining perspective.

A distinction must be made between restoring soils to previous inherent potential for crop production and sustainable rehabilitation. As previously mentioned soils form over a long period of time with various processes involved. The opencast mining operations totally disturb these process and soil forming factors.

It is not possible to restore the soil potential and initial characteristics to its original state but huge improvements can be made in the methodology of stripping and re-dressing of soil material to ensure sustainability of rehabilitation. Over time these soils can produce proper vegetation and grazing of cattle and arable crop production at lower yields then the initial soil potential. To achieve this it is necessary to understand the soil forming factors and processes and the difference between soil fertility and plant nutrition.

2. DEFINITION OF SOIL

Soil is an open living ecosystem and can therefore be defined as a function of physical, chemical and biological processes.


3. SOIL FORMING PROCESSES

The following factors are involved in soil formation:

- Parent Material (geology, e.g. sedimentary rock (sandstone), acid igneous (granite) or basic rock dolerite) etc.)
- Topography (slope of landscape)
- Climate (wind, water, temperature etc.)
- Microbial Activity and microbial diversity
- Time (soil formation occurs over a long time period, e.g. 1cm of topsoil is formed over 100yrs)

These factors with different physical, chemical and biological processes combine under specific conditions to form specific soil diagnostic horizons with a unique character and inherent soil fertility.

Photo 1: Avalon soil showing different horizons (Soil classification working group, (1991)

4. FERTILITY / PLANT NUTRITION

Fertility refers to the inherent capacity of a soil to supply nutrients to plants in adequate amounts and in suitable proportions as well as oxygen and moisture to maintain a healthy soil bio-diversity (active micro-biology, immune system). The focus here is soil health.

Plant nutrition refers to the soils ability to supply nutrients to the plant so it can complete its reproductive cycle. The nutrient status of the soil can be manipulated by adding organic and inorganic fertilisers according to the crop's need. The focus here is on the crop's needs.

It can now be summarised that different soils have different levels of soil fertility according to the combination of the soil forming factors and soil processes involved under specific conditions. All these factors and processes are interlinked and no single soil type has all these factors in the ideal combination, therefore the yield potential and use of soils varies.

Unfortunately soil fertility and nutrition was relegated to a simple recipe of four elements provided through chemical fertilisers e.g. Nitrogen (N), Phosphorous (P), Potassium (K) and Zinc (Zn) to meet only the crop needs at the expense of soil fertility. Very little attention was given to the important role of bio-diversity and active microbiology in plant nutrition. It is only in the last couple of years that there is a serious interest on this matter.

5. THE ROLE OF BIODIVERSITY

Active and healthy soil microbiology is able to:

- Mineralise nitrogen, phosphorous and sulphur
- Suppress nematodes, bacterial and fungal diseases
- Actively decompose organic material
- Improve root development with the result of better nutrient and water uptake
- Recycle and keep nutrients available for plants, especially micro-nutrients
- Improve soil physical and chemical conditions by increasing the humus content
- Improve water holding capacity of soil
- Less KWa power needed for soil tillage

6. MINING PRACTISES THAT CONTRIBUTE TO THE DESTRUCTION OF SOIL FERTILITY AND LOSS OF BIO-DIVERSITY

- Incorrect stripping of topsoil. Various soil horizons with different properties are stripped together and stockpiled.
- Stockpiling of proper topsoil with sterile or acidic subsoil (plinthic or grey clay material)
- Long periods of stockpiling creates anaerobic conditions, resulting in a decline in microbial activity and/ or changes in bio diversity.
- Soils are nutritionally stripped and have low microbial activity

- Long fallow periods are as detrimental to soil health as no fallowing.
- Incorrect soil placement with rehabilitation (plinthic and grey clay material on the soil surface), causes slaking, increasing crust formation, and compaction resulting in poor infiltration, aeration and increased run-off and erosion. These plinthic and grey clay materials are also basically sterile in terms of microbial activity
- Poor irrigation practises. Over irrigation causes leaching of nutrients.
- Decline in water quality in major river systems is causing a gradual build-up of salinity and sodicity.

In most cases poor seed germination or die-back of seeded grass occur because of a combination of these factors mentioned.

The following can be done to improve soil bio-diversity and therefore sustainable rehabilitation:

- Crop rotation
- Fallowing and green-manuring
- If there is not sufficient time to introduce proper fallowing or green-manuring practises compost can be applied to the soil

7. RECOMMENDATIONS FOR PROPER REHABILITATION OF SOILS DISTURBED BY OPENCAST MINING OPERATIONS

7.1. STRIPPING

- Sequential stripping of soil horizons. In some cases the A and B Horizons can be stripped together. This has a huge practical, logistics and cost implication, but until such time that it is implemented, no improvement in sustainability of rehabilitation will occur
- Smaller stockpiles and seeding of stockpiles with grass

7.2. LANDSCAPING AND REPLACEMENT OF SOILS

- It is imperative to reshape the landscape as close as possible to its original topographic features (e.g. slope and drainage lines, wetlands). Various surveying and GIS software can be used to achieve this goal
- Where possible use the "freshest" stripped soils for redressing, as this will alleviate the soils becoming sterile or lose microbial activity
- Place the plinthic and grey clay material in the sub-soils and the original A and B horizon material on top. Create an environment where the topsoil is at least 40-60cm deep for proper aeration, water-holding capacity and drainage, resulting in proper root development

7.3. SEEDING WITH GRASS SPECIES AND LEGUME CROPS

- A three stage approach can be implemented where pioneer species are planted to create a soil environment for sub-climax species. After some time climax species can be introduced. There are many case studies where reseeding is necessary because the sub-climax and climax grass species die back after the first or second season
- Legume crops like soya, cow peas, Dolichos, or Lucerne can be introduced to improve the soils microbial activity and soil structure.
- Compost and other organic humic substances can be used to speed up the process of restoring soil biodiversity

8. THE ROLE OF COMPOST AND OTHER HUMIC SUBSTANCES IN RESTORING BIODIVERSITY IN DISTURBED SOILS

Many books have been written about the role of compost in improving soil bio-diversity as well as the making of compost. It never became a standard practise in commercial agriculture for the following reasons:

- It is bulky and transport costs did not make it viable
- Practical problems with application

• The value was always measured in terms of N, P and K content and in monetary terms.

Times have changed however and recent research across the world has shown that soil bio-diversity has great value in commercial agriculture and rehabilitation both from fertility as well as a plant nutrition perspective. Compost is a great and fairly quick way in restoring soil fertility although it must be made clear that it is a long term approach that is necessary. Organic and humic products can overcome to some degree the practical and logistical problems posed of importing large volumes of organic matter.

9. SUMMARY

- There is no quick fix solution to the seriously negative impact of opencast mining on high potential soils
- Proper stripping and replacement of soils is imperative for any proper redressing and seeding with grass species to take place
- A holistic long term, staged approach is necessary to restore physical, chemical and biological processes in the growth medium
- Long term monitoring and relevant adjustments must be made to restore the soils to some sort of arable crop production potential to ensure future food security problems that might loom.