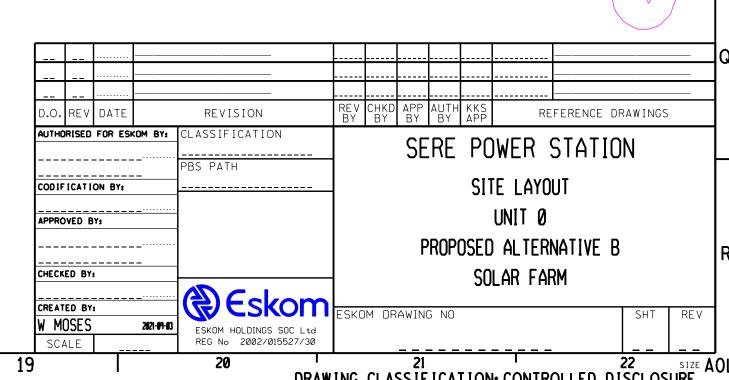
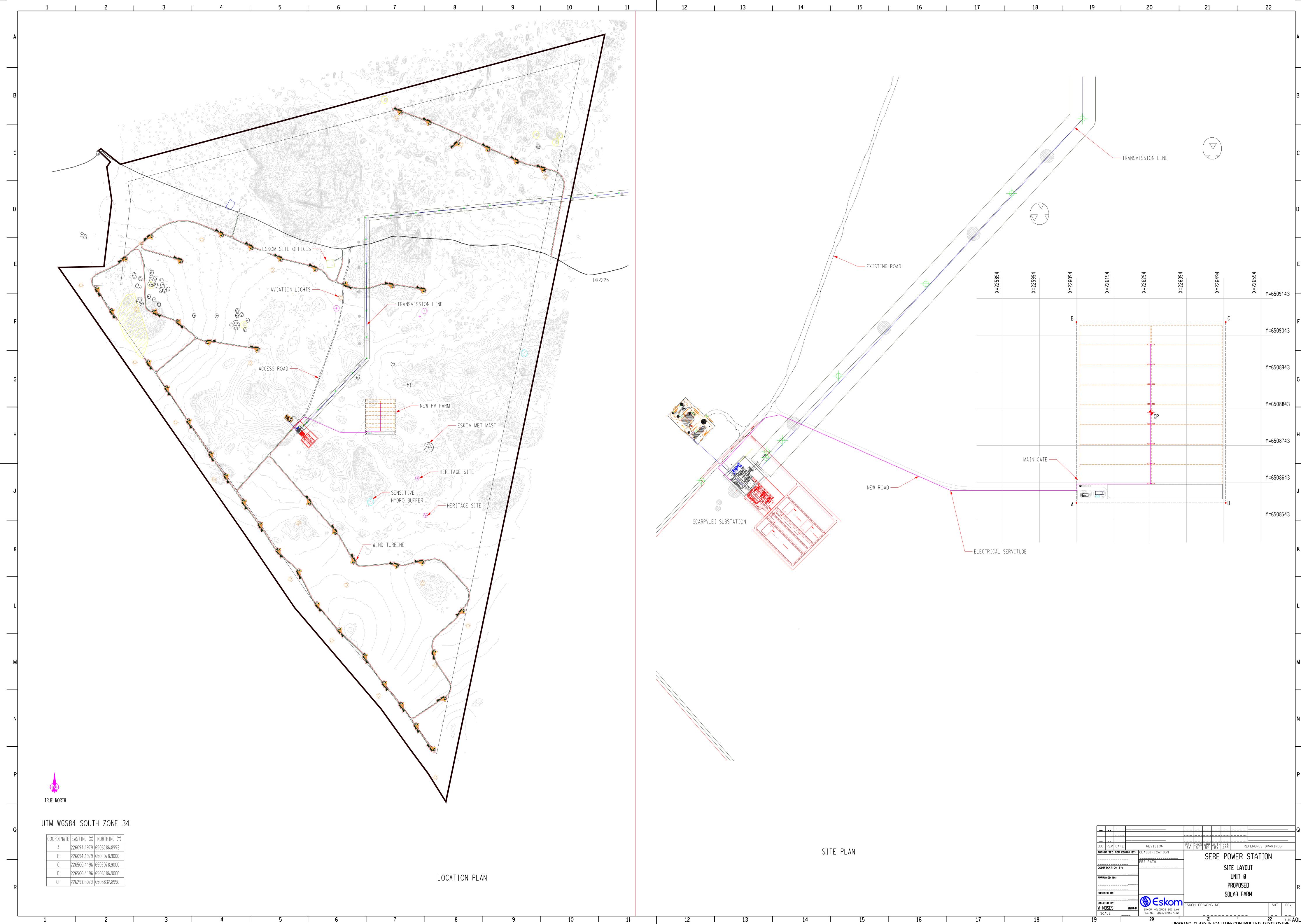

APPENDIX E

TECHNICAL REPORTS AND DRAWINGS

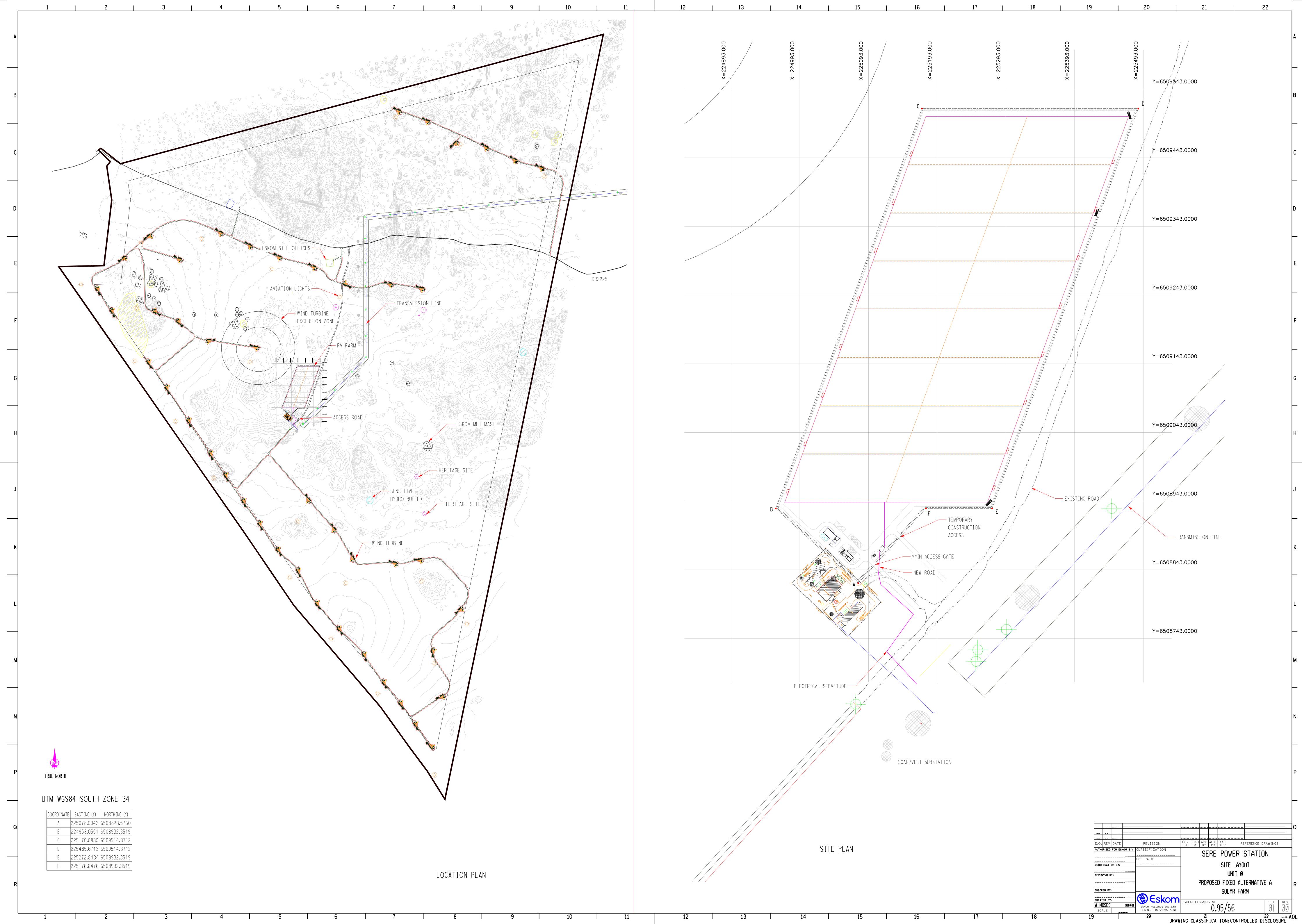


13	I	14	I	15	I	16	17	I	18

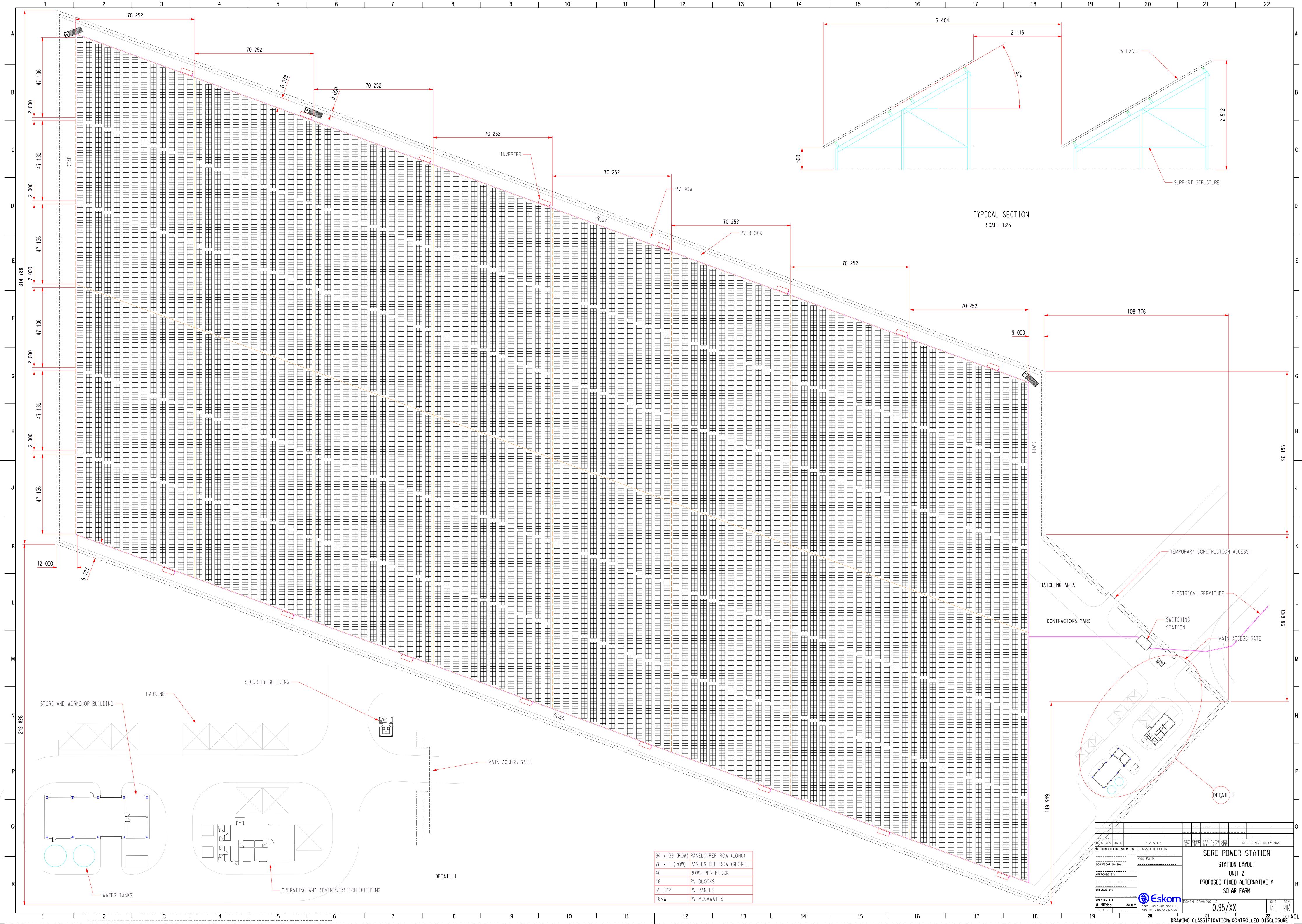

19	20	21	22

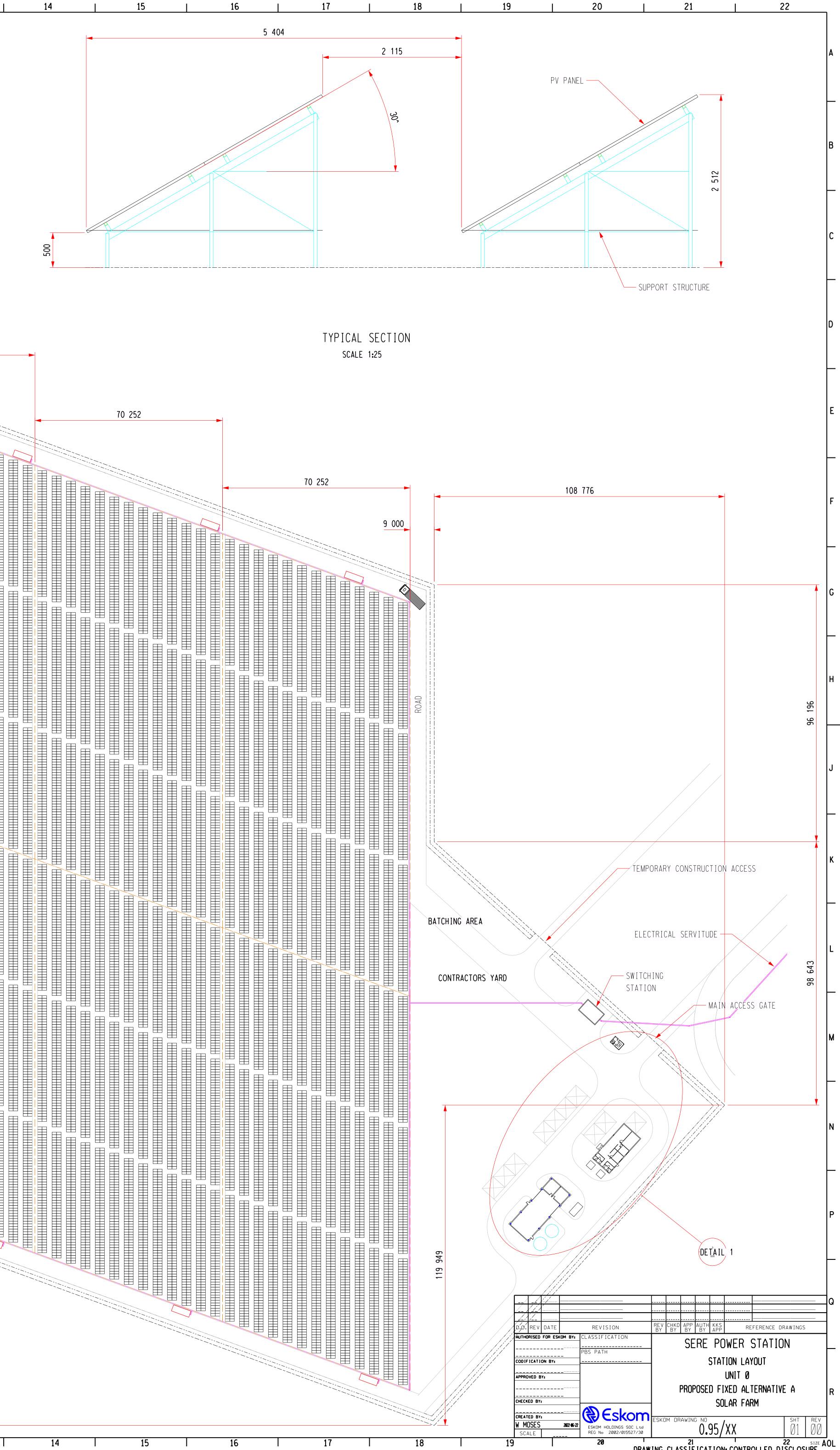
TRANSMISSION LINE

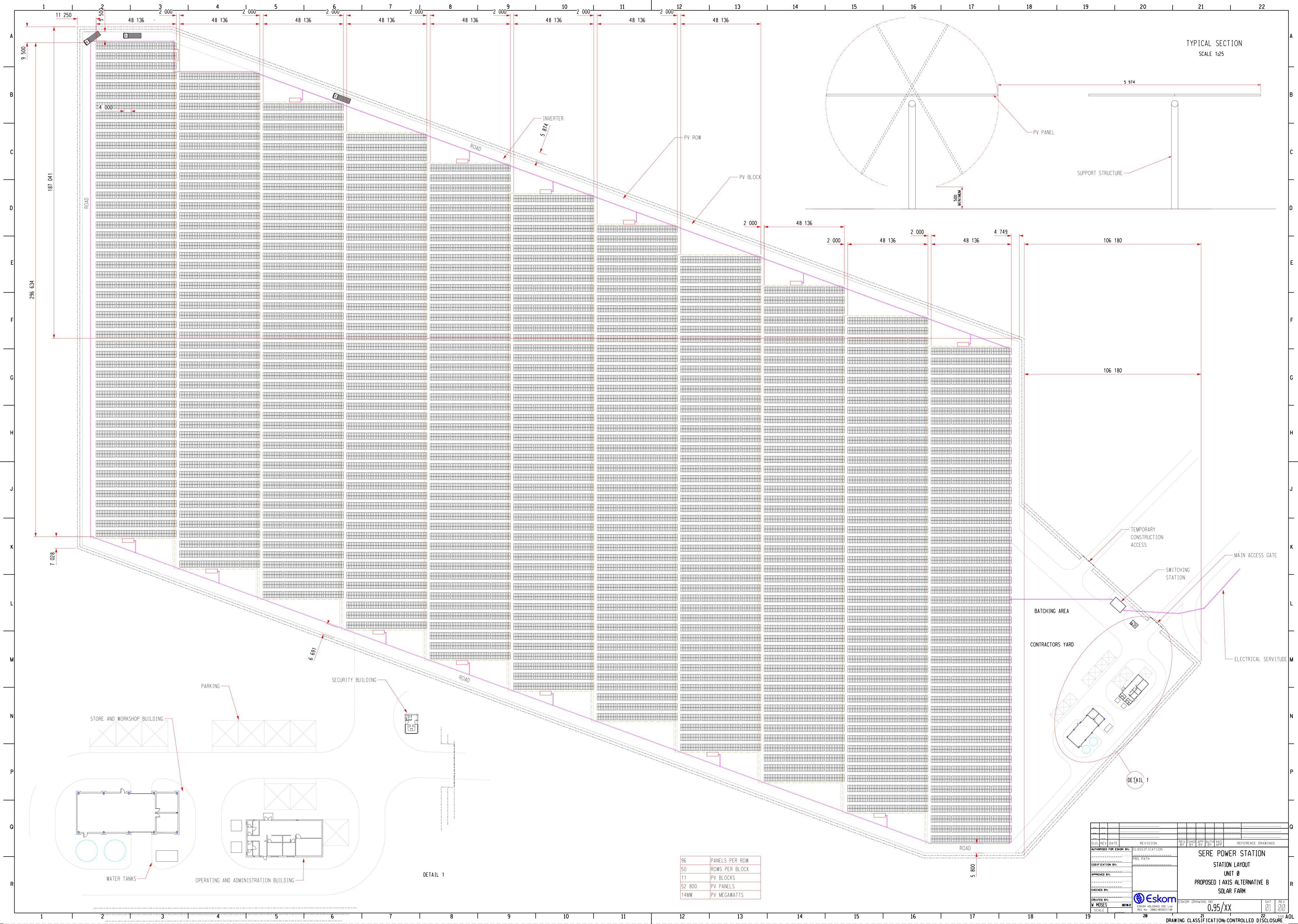
X=226194	X=226294	X=226394	X=226494	X=226594	Y=6509143
					Y=6509043
			C		Y=6508943
					Y=6508843
	СР				Y=6508743
					Y=6508643
			D		Y=6508543

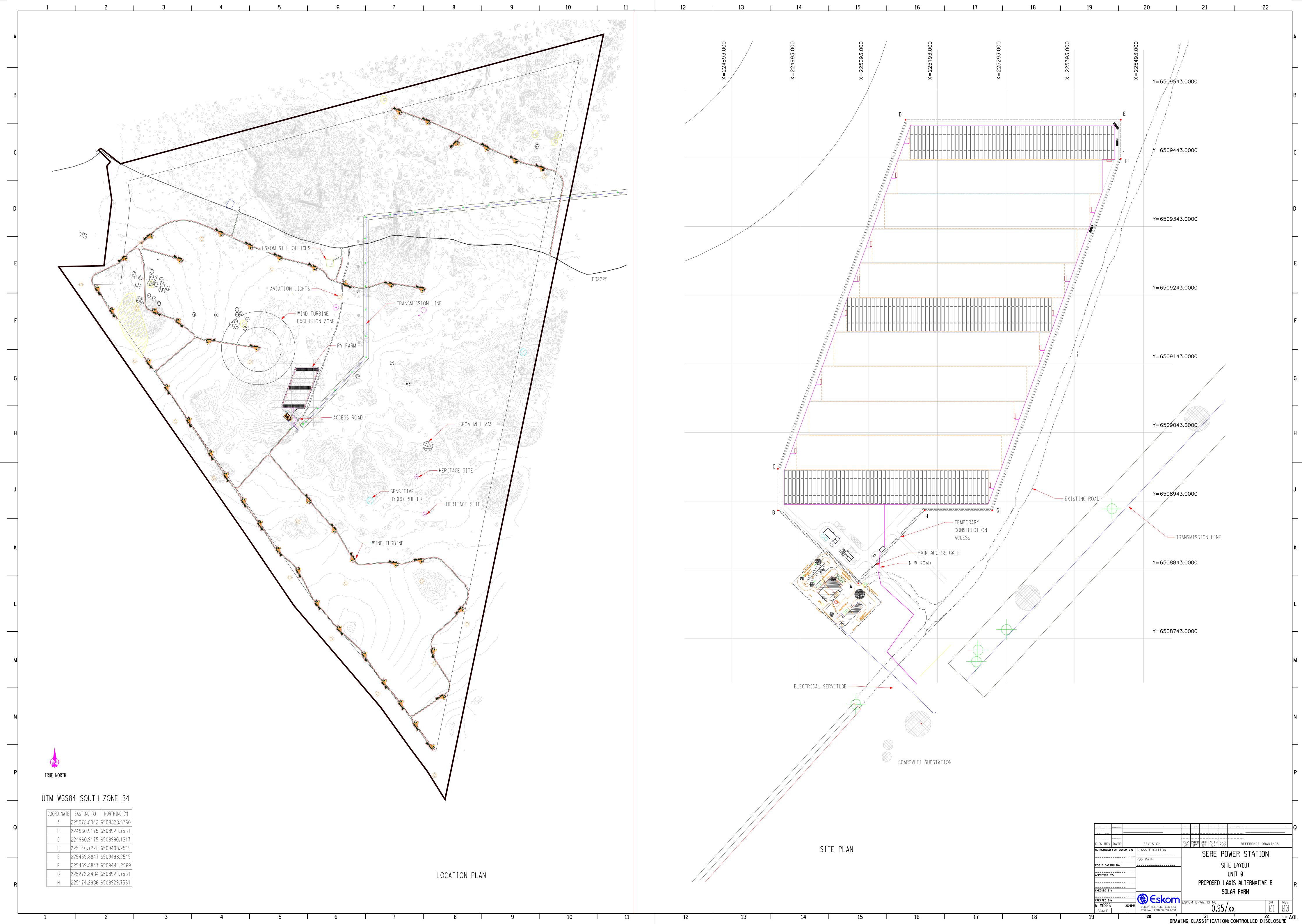


DRAWING CLASSIFICATION: CONTROLLED DISCLOSURE




1	13	1	4	15	Ι	16	17	Т	18


DRAWING CLASSIFICATION: CONTROLLED DISCLOSURE



												10	
D.O. REV DAT	Ē	REVISION	RE V BY	CHKD BY	APP BY	AUTH BY	KKS APP	RI	EFERENCE	DRAWINGS	5		
AUTHORISED FOR	ESKOM BY:	CLASSIFICATION			CE	DE			STAT				
	-		JL	NL	ΓL	WEN	JIHI			┢			
CODIFICATION B	PBS PATH Codification by:					SITE LAYOUT							
APPROVED BY:		_		UNIT Ø									
		-		ĺ					Ternat			Ι.	
	·			I		UJL	ייט	<u>ALD HL</u>				F	
CHECKED BY:			_				SO	lar fa	RM				
CREATED BY:	·	AFelom											
W MOSES 2021-66-22 ESKOM HOLDINGS SOC Ltd			ESKO)M DR	AWIN	G NO	95/	56		sнт [/1]	re v MM		
SCALE		REG No 2002/015527/30			21		55/	50		<u> </u>			

		·		20			21					22	SIZE 🗴	.
	UJEJ Ale		2822-66-22	ESKOM HOLDINGS SOC Ltd REG No 2002/015527/30				0.	95/	ХХ		01	00	
CREATED BY: W MOSES 2022-6-72			ESKO)M DR	AWING	G NO		1		SHT	REV	1		
									50		11 \1*1			
CHECK	ED BY	:							ດກ	lar fa	RM			ľ
						PROPOSED 1 AXIS ALTERNATIVE B							lF	
APPRO	OVED B	Y:												
						UNIT Ø								
CODIF	CODIFICATION BY:					SITE LAYOUT								
	PBS PATH									,,,_,,	•••••	10.1		F
	URISED	FOR ESP		CLASSIFICATION			SF	RF	PC)WFR	STAT	ION		
		DATE		REVISION	RE V BY	CHKD BY	BY	BY	APP	F	EFERENCE	DRAWINGS	,	
<u> </u>				<u> </u>							-	<u>.</u>		-
<u> </u>														
	1		1			1		T						4

Eskom		Report	Asset Management			
Title: Concept Desig PV Plant Phas		Unique Identifier:	Unique Identifier:			
		Alternative Reference	Number:	N/A		
		Area of Applicability:	Area of Applicability:			
			Documentation Type:			
			Revision:			
		Total Pages:	93			
APPROVED FOR AUT Generation e		Next Review Date:	N/A			
DOCUMENT CEN	T R E 🕿 X 4 9 6 2	Disclosure Classification	on:	CONTROLLED DISCLOSURE		
Compiled by	Functio	nal Responsibility	Authori	sed by		
aptshali	Rio	wender		B		
M. Mtshali	K. Gove	K. Govender		der Merwe		
Senior Technologist: <i>A</i> Management Mechani				g Asset Management er (Acting)		
Date: 20 September 202	21 Date: 20	021-09-20	Date:	2021-09-30		

CONTENTS

			Page
1.	INTRODUC		7
2.	SUPPORT	ING CLAUSES	7
	2.1SCOPE		7
	2.1.1	Purpose	7
	2.1.2	Applicability	7
	2.2NORMA	ATIVE/INFORMATIVE REFERENCES	7
	2.2.1	Normative	
	2.2.2	Informative	
	2.3DEFINI	TIONS	
	2.3.1	Disclosure Classification	9
	2.4ABBRE	VIATIONS	9
		AND RESPONSIBILITIES	
	2.6PROCE	SS FOR MONITORING	
	2.7RELATE	ED/SUPPORTING DOCUMENTS	12
3.	CONCEPT	DESIGN	12
		OF CONCEPT DESIGN	
		PT DESIGN OBJECTIVES	
		M DESCRIPTION	
	3.4SYSTE	M ARCHITECTURE	
	3.4.1	PV Modules	
	3.4.2	Ground Mounting Structures and Foundations	
	3.4.3	Inverters	
	3.5SITE TE	ECHNICAL ASSESSMENT	
	3.5.1	Site Location	
	3.5.2	Solar Resource Assessment	
	3.5.3	Meteorological Station	
	3.5.4	Weather Conditions	
	3.5.4.1	Ambient Temperature	
	3.5.4.2	Wind Speed	
	3.5.4.3	Wind Direction	
	3.5.4.4	Rainfall	
		NT DESIGN	
	3.6.1	Simulation Model	
	3.6.2	Design Inputs	
		2.1 Geographical location of site	
	0.0.2	2.2 Weather data	
	3.6.2		
	3.6.3	Generic PV System Design	
	3.6.4	Losses	
	3.6.5	System Performance and Simulation Results	
	3.6.6	Option 1: PV plant size (19.5 MW)	
	3.6.7	Option 2: PV row-to-row optimised design	
	3.6.8	Option 3: Maximise energy yield	
	3.6.9	Option 4: Maximise energy yield (single-axis tracking)	
		NT DESIGN AND PERFORMANCE PARAMETERS	
	3.7.1	16 MW PV installation with fixed mounting structure	
	3.7.2	14 MW PV installation with single-axis tracking with backtracking	
	3.7.3	Effect of curtailment on PV due to wind turbine generation	
		RICAL DESIGN	
	3.8.1	Scope of work	
	3.8.1.1	Electrical Battery limits	
	3.8.1.2	Major equipment	

CONTROLLED DISCLOSURE

3.8.2	Design basis and criteria	
3.8.2.1	Stakeholder Defined Requirements	
3.8.3	Existing Electrical Infrastructure	
3.8.3.1	33 kV Skaapvlei Substation	
3.8.3.2	Sere Electrical reticulation	
3.8.4	PV Plant Electrical Reticulation Philosophy	42
3.8.5	Electrical Reticulation Concept	42
3.8.5.1	DC system	
3.8.5.2	AC System	
3.8.5.2.1		
	Ring Topology MV connected PV	
	Star topology MV connected PV	
3.8.5.2.2		
3.8.5.2.3		
3.8.6	Technology Assessment	
3.8.6.1	PV Generator Power Distribution Switchgear	
3.8.6.1.1		
3.8.6.2	Transformers	
3.8.6.3	Cabling	
3.8.7	Concept design proposal	
3.8.7.1	DC System Design	
3.8.7.2	Combiner Box	
3.8.7.3	DC cabling	
3.8.7.4	Inverter	
3.8.7.5	AC system Design	
3.8.7.6	Step-Up transformers	
3.8.7.7	Ring main unit (RMU)	
3.8.7.8	Point of Connection	48
3.8.7.8.1	Metering and Measurement at PoC	
Та	riff Metering	
3.8.7.9	PV Plant Auxiliary Supplies	
3.8.7.9.1	Field equipment	49
3.8.7.9.2	O&M building	49
3.8.7.10	Backup Supplies	
3.8.7.10.	1 PV Plant Security Lighting	50
3.8.7.11	Earthing and lightning protection	50
3.8.7.12	Surge Protective Devices	
3.8.8	GRID ČODE REQUIREMENTS	
3.9CONTRO	DL AND INSTRUMENTATION DESIGN	
3.9.1	Control and Monitoring system (CMS) Network Design	
3.9.1.1	Network Description and Network Operation	
3.9.1.2	Network Architecture	
3.9.1.3	CMS Servers	
3.9.1.4	Operator System Thin Clients	
3.9.1.5	Network Switches	
3.9.1.6	Network Printer	
3.9.1.7	Network Time Synchronisation	
3.9.1.8	CMS Network Panels	
3.9.1.9	Server Room Network Cabinets	
3.9.1.10	CMS Network Interface to PV Plant Sub-System (or Black Box Systems)	
3.9.1.10	CMS Network Interface to 3 rd Party Networks	 60
3.9.2	CMS Network Interface to S Party Networks	61
3.9.3	Control and Server Room Arrangement	
	EATING, VENTILATION AND AIR-CONDITIONING (HVAC) SYSTEM	
3.10	HVAC System Description	
	RE PROTECTION SYSTEM	
3.11.1	Evaluation of suitable Fire Protection System options	00. ۸۹
5.11.1	בימועמנוסד סו שמונמטופ ד וופ דוטנפטוסד שאונטווא	04

	3.11.2 Fire Protection System Description	
	3.11.3 Fire Safety Risk Assessment	
	3.12 WATER SUPPLY AND RETICULATION SYSTEM	
	3.12.1 Process Water Supply and Reticulation	
	3.12.1.1 Process Water Supply Options	
	3.12.1.2 Process water system description	
	3.13 SEWERAGE AND WASTE DISPOSAL SYSTEM	
	3.14 CIVIL AND STRUCTURAL DESIGN	
	3.14.1 Civil infrastructure	
	3.14.1.1 Mounting Structures/Foundations	66
	3.14.1.2 Foundation Options	67
	Rammed Piles	
	Option 2 - Piles in pre-drilled Holes with Backfilling or Concrete	69
	Option 3 - Ballast Foundations	69
	Selected Option - Foundation	
	Associated Structures, Buildings and Roads	
	Roads	
	3.14.1.3 O&M Building:	
	3.14.1.4 Construction and Maintenance Access:	
	3.15 TEST AND COMMISSIONING	
	3.16 COST ESTIMATION	-
	0	
	3.16.2 Single-axis tracking PV cost estimate	
	3.16.3 Cost estimate	
	3.17 CODES AND STANDARDS	-
	3.17.1 Civil and Structural works	
	3.17.1.1 Roads	
	3.17.1.2 Eskom standards	
	3.17.2 Control and Instrumentation	
	3.17.3 Electrical	
	3.17.3.1 General:	80
	3.17.3.2 PV Modules	80
	3.17.3.3 Inverters	81
	3.17.3.4 Electrical Cabling	81
	3.17.3.5 Earthing, Lighting and Surge Protection	81
	3.17.3.6 Metering and Measurements	
	3.17.3.7 Performance Monitoring	
	3.17.3.8 Transformers	
	3.17.3.9 Switchgear	
	3.17.3.10 Lighting and Small Power	
	3.17.4 Safety Act	
	3.17.5 Environmental Protection	
	3.17.6 Fire Detection and Safety	
	3.17.7 Heating Ventilation and Air Conditioning (HVAC) System	
	3.17.8 Fire Protection System	
	3.17.9 Water supply and reticulation	
	5	
4.	RISK REGISTER	85
5.	AUTHORISATION	86
6.	REVISIONS	86
7.	DEVELOPMENT TEAM	86
8.	ACKNOWLEDGEMENTS	86
AF	PENDIX A : TMY DATA	87
	PENDIX B : SITE LAYOUT	

APPENDIX C : ELECTRICAL SLD	89
APPENDIX D : EXISTING O&M BUILDINGS	
APPENDIX E : RISK REGISTER	91

FIGURES

Figure 1: Types of Mounting Systems	15
Figure 2: Examples of Fixed Mounting Structures	15
Figure 3: Inverter Configuration Types	16
Figure 4: Sere Wind Farm	
Figure 5: Annual GHI Map – South Africa (Source: CRSES)	
Figure 6: Long Term Average Meteorological Data (2005-2016)	19
Figure 7 : Ambient temperature graph	
Figure 8: Wind speed graph	23
Figure 9: Wind Rose	
Figure 10: PV system design inputs	
Figure 11: Module characteristics at reference conditions	27
Figure 12: Inverter characteristics at reference conditions	27
Figure 13: Inverter efficiency curve at reference conditions	27
Figure 14: Single-axis tracking strategies	
Figure 15: 16 MW monthly generation profile (year 1)	
Figure 16: 14 MW monthly generation profile (year 1) comparison	
Figure 17: Sere Wind Farm and BESS in relation to the Juno Substation (Source: DX Planning)	
Figure 18: Ring Topology, MV connected Network	
Figure 19: Star Topology, MV connected Network	
Figure 20: Combiner Box String Configuration for Single PV Block	
Figure 21: Arrangement in an MV inverter Cabin	
Figure 22: Typical implementation of KVM extenders	
Figure 23: Typical Fixed Mounting Structure	67
Figure 24: Typical ground screw pile	
Figure 25: Typical Rammed Piles	
Figure 26: Typical concrete pile foundation	
Figure 27: Typical Ballast Foundation	70
Figure 28: Proposed site Layout	71
Figure 29: Proposed cross fall for access road	72
Figure 30: Utility-scale PV total cost (EPC + developer), 2019 USD/WDC [3]	75
Figure 31: System cost reduction from economies of scale [4]	75
Figure 32: Reference costing (USD-2019)	
Figure 33: Reference costing (ZAR-2019)	
Figure 34: Reference costing (USD-2019)	
Figure 35: Reference costing (ZAR-2019)	77

TABLES

Table 1: Preferred PV module types - Advantages	14
Table 2: Site co-ordinates	
Table 3: Summary of Long-Term Average Annual GHI	18
Table 4: Monthly Average Summary of Meteorological Data for Sere Solar PV Site	20
Table 5: Ambient Temperatures Statistical Values	21
Table 6: Wind Speed Statistical Values	23
Table 7: Annual total rainfall	24
Table 8: Row-to-row optimisation to reduce PV plant footprint	28
Table 9: Maximise PV installed capacity on land available	30
Table 10: PV block footprint (ha) per row-to-row distance	30
Table 11: PV annual net energy (kWh) per row-to-row distance	31

Table 12: PV plant performance parameter per row-to-row distance	
Table 13: Effect of row-to-row distance on road clearance between structures	32
Table 14: PV block footprint (ha) per row-to-row distance	
Table 15: Performance parameters and annual net energy	
Table 16: Plant design 16 MW PV with fixed mounting structure	
Table 17: Plant performance for 16 MW PV with fixed mounting structure	
Table 18: Plant design 14 MW PV with single-axis mounting structure	35
Table 19: Effect of single-axis tracking on plant performance parameters	
Table 20: Effect of curtailment on annual PV generation of 16 MW fixed tilt	
Table 21: Effect of curtailment on annual PV generation on 14 MW (one-axis tracking)	
Table 22: Electrical Scope of Work	
Table 23: User requirements	
Table 24: 22kV Skaapvlei Wind Feeder Allocation	41
Table 25: Comparison of Electrical Reticulation Topology Options	
Table 26: Minimum Plant Technical Grid Code Requirements	51
Table 27: Plant Required Control Functions	
Table 28: Local and remote control	60
Table 29: CMS equipment power supply requirements	
Table 30: Financial parameters	74
Table 31: Financial parameters used to derive the cost estimate	
Table 32: Financial parameters used to derive the cost estimate	
Table 33 : Cost estimate for fixed and tracking systems	
÷ ,	

1. INTRODUCTION

The Eskom Integrated Long Term Plan and the Eskom Corporate Plan sets up the organisation for growth and maps out a low carbon future in a post-coal environment. The plan describes Eskom's participation in renewable energy and other technologies to deliver on opportunities that will add generating capacity and in turn aid in alleviating system constraints, while also pursuing a low carbon future.

The hybridisation of the existing Sere Wind Farm was identified as one of the projects that could achieve these objectives. Sere Wind Farm is a 105.8 MW wind facility located near Vredendal in the Western Cape and entered commercial operation on 31 March 2015. To address the urgent need for additional generating capacity, it has been proposed that PV technology be installed at the Sere Wind Farm site in phases. The following phased approach has been proposed:

- Phase 1a Photovoltaic plant less than 20 MW capacity, occupying less than 20 ha land area
- Phase 1b 50 MW Photovoltaic
- Phase 2 530 MW Photovoltaic

The execution of the proposed phases will result in the Sere PV Plant reaching total capacity of approximately 600 MW. This document is applicable for phase 1a of the programme. Due to the urgent need for additional generation capacity and the tight time constraints for the project, phase 1a is required to not trigger the full scoping and detailed Environmental Impact Assessment (EIA). This requires that phase 1a adhere to environmental basic assessment technical requirements of a plant capacity that is less than 20 MW and occupies land that is less than 20 ha.

2. SUPPORTING CLAUSES

2.1 SCOPE

2.1.1 Purpose

This document describes the conceptual design requirements for the Sere Solar PV Phase 1a project, which will inform the functional specification for the Solar PV facility.

2.1.2 Applicability

This document shall apply to the Sere Solar PV Phase 1a project.

2.2 NORMATIVE/INFORMATIVE REFERENCES

2.2.1 Normative

- [1] 474-12534 Stakeholder Requirements Definition for Sere Solar PV Plant Rev 2
- [2] 480/2 Required Operational Capability Report: Sere PV Plant Phase 1a
- [3] 240-147711627 Operational Plan for Small Scale and Utility Scale Solar PV Plants in Northern Cape
- [4] Engineering Work Request (EWR) Sere Solar PV Plant
- [5] ISO 9001 Quality Management Systems.
- [6] 240-53113953 Manage Engineering Accountability Procedure
- [7] 240-53114026 Project Engineering Change Management Procedure
- [8] 240-53114002 Engineering Change Management Procedure
- [9] 240-50317699 Manage Technical Queries Procedure

- [10] 240-53114194 Control of Non-conforming Product
- [11] 240-53113685 Design Review Procedure
- [12] 240-48929482 Tender Technical Evaluation Procedure
- [13] 240-49910527 Procedure for Plan and Select Technologies
- [14] 240-76992014 Project/Plant Specific Technical Documents and Records Management Work Instruction.

2.2.2 Informative

- [15] A. Pandarum, 2019. Price parity of solar PV with Storage? 27th AMEU Technical Convention
- [16] International Finance Corporation Utility-Scale Solar Photovoltaic Power Plants A Project Developers Guide, 2015
- [17] Benchmarking Utility-Scale PV Operational Expenses and Project Lifetimes: Results from a Survey of U.S. Solar Industry Professionals Wiser, R., Bolinger, M. and J. Seel. 2020
- [18] NREL, 2020. U.S. Solar Photovoltaic System and Energy Storage Cost Benchmark: Q1 2020
- [19] NREL, 2018. U.S. Solar Photovoltaic System Cost Benchmark: Q1 2018

2.3 DEFINITIONS

Definition	Description	
Annual average GHI	Global Horizontal Irradiance (GHI) is the total irradiance from the sun on a horizontal surface on Earth. It is the sum of diffuse horizontal and direct irradiance, after accounting for the solar zenith angle of the sun.	
Annual energy generation	AC electrical output of the system. This is electricity available for the grid, building load, or battery storage. When curtailment, i.e. clipping, is implemented, this curtailment losses are deducted from the annual energy generation total.	
Array	An array is the PV plant configuration. The number of modules per string and strings in parallel constitutes an array. In this study, the PV plant or array is the same. In bigger plant designs, you can have multiple arrays represented in the PV plant.	
DC/AC ratio	The ratio of total inverter DC capacity to total AC capacity.	
Energy yield	The ratio of the system's annual AC electric output in Year one to its nameplate DC capacity. Energy Yield = Net Annual Energy - Nameplate Capacity.	
Irradiance	Irradiance is the radiant flux, i.e. power or solar energy, received by a surface per unit area. The unit of irradiance is measured in watt per square metre (W/m^2)	
Module	The module converts solar irradiance into electric power. The module is the area within a PV panel that fulfil this function.	
Nameplate DC capacity	Maximum DC power output of the plant at the reference conditions. Nameplate Capacity ($kWdc$) = Module Rated Power (Wdc) × 0.001 (kW/W) × Total Modules	
Net Annual Energy	The total annual electric generation in the first year of operation.	
Nominal energy on plane of	Total radiation incident on the entire array before shading and soiling	

CONTROLLED DISCLOSURE

Definition	Description	
array	factors are applied for all sub arrays.	
Performance ratio	The performance ratio is a measure of the PV annual electric generation output in AC kWh compared to its nameplate rated capacity in DC kW, taking into account the solar resource at the system's location, and shading and soiling of the array. <i>Performance ratio</i> = <i>annual energy</i> (<i>kWh</i>) \div (<i>annual POA total</i> <i>radiation (nominal)</i> (<i>kWh</i>) × <i>module efficiency</i> (%))	
Plant Efficiency	Annual energy generation of plant over nominal energy received on plane of array, i.e. PV module surface area	
POC	The electrical node on a transmission/Dx system where a customer's assets are physically connected to the transmission /Distribution network service provider's assets.	
PV Block	A PV block is a single 1 MW PV plant consisting of a single transformer and inverter, with the associated PV modules and structures, combiner boxes, switchgear, and protection etc.	
PV system, PV plant	A power system designed to supply usable electrical power by means of photovoltaics, consisting of an arrangement of PV modules, inverters, transformers, cabling, and other electrical accessories	
Typical meteorological year	Typical meteorological year (TMY) is a collation of selected weather data for a specific location, listing hourly values of solar radiation and meteorological elements for a one-year period. These values are generated from hourly data from a much longer period, (normally 10 years or more). The hourly data is specially selected so that it represents the range of weather phenomena for the location in question, while still providing annual averages that are consistent with the long-term averages for the location in question.	

2.3.1 Disclosure Classification

Controlled disclosure: controlled disclosure to external parties (either enforced by law, or discretionary).

2.4 ABBREVIATIONS

Abbreviation	Description		
AC or ac	Alternating current		
AIS	Air Insulated Switchgear		
BESS	Battery Energy Storage System		
C&I	Control and Instrumentation		
CAPEX	Capital Expenditure		
CCTV	Closed Circuit Television		
CdTe	Cadmium Telluride		
CIGS	Copper Indium/Gallium/Selenite		
CIS	Copper Indium Selenide		
CMS	Control and Monitoring System		

CONTROLLED DISCLOSURE

Abbreviation	Description		
CPU	Central Processing Unit		
c-Si	Crystalline silicon		
DC or dc	Direct current		
DMZ	Demilitarised zones		
EIA	Environmental Impact Assessment		
EMI	Electromagnetic Interface		
EPC	Engineering, Procurement and Construction		
GHI	Global Horizontal Irradiation		
GIS	Gas Insulated Switchgear		
GPS	Global Positioning System		
GTI	Global Tilt Irradiation		
HAP	Hourly Analysis Program		
HDMI	High definition multimedia interface		
НМІ	Human Machine Interface		
HV	High Voltage		
HVAC	Heating, Ventilation and Air-Conditioning		
IEC	International Electrotechnical Commission		
IM	Information Management		
IP	Internet Protocol/Ingress Protection		
IT	Information Technology		
kW	Kilowatt, AC power of the Plant		
kWp	Kilowatt Peak, DC power of the Plant		
LAN	Local Area Network		
LCOE	Levelised Cost of Energy		
LPU	Large Power User		
LV	Low Voltage		
MV	Medium Voltage		
MWp	Megawatt Peak, DC Power of the Plant		
NTP	Network Time Protocol		
O&M	Operating and Maintenance		
OHL	Overhead Line		
OHS	Occupational Health and Safety		
OPC	Open Platform Communications		
OPEX	Operational Expenditure		
OS	Operating System		
ОТ	Operational Technology		

CONTROLLED DISCLOSURE

Abbreviation	Description		
PAT	Provisional Acceptance Test		
PDS	Plant Data System		
PILC	Paper Insulated Lead Covered		
PLC	Programmable Logic Controller		
POA	Plane of Array		
PoC	Point of Connection		
PV	Photovoltaic		
PVGIS	Photovoltaic Geographical Information Systems		
RMU	Ring Main Unit		
RTU	Remote Terminal Unit		
SAM	System Advisor Model		
SANS	South African National Standards		
SCADA	Supervisory Control and Data Acquisition		
SLD	Single Line Diagram		
SPD	Surge Protection Device		
SPR	Self-Powered Protection Relay		
SRD	Stakeholder Requirement Definition		
STC	Standard Test Condition		
STP	Shielded Twisted Pair		
TMY	Typical Meteorological Year		
UPS	Uninterrupted Power Supply		
USB	Universal Serial Bus		
VPN	Virtual Private Network		
WULA	Water Use Licence Approval		
XLPE	Cross Linked Polyethylene		
ZAR	South African Currency, Rand		

2.5 ROLES AND RESPONSIBILITIES

Compiler: Responsible to compile the document and to ensure that the content is integrated to reflect the requirements of every stakeholder forming part of this project.

Functional Responsibility: The Functional Responsible person is responsible to approve the content of the document and assure its correctness before the document is submitted for authorisation.

Authoriser: The document Authoriser is responsible to ensure that the correct processes were followed in developing this document and that the relevant stakeholders have been involved. The Authoriser also reviews the document for alignment to business strategy, policy, objectives and requirements. He/she shall authorise the release and application of the document.

2.6 PROCESS FOR MONITORING

The document shall be utilised as a baselined concept design document. Should the document require modification, the Project Engineering Change Procedure [7] shall be adhered to.

2.7 RELATED/SUPPORTING DOCUMENTS

N/A

3. CONCEPT DESIGN

3.1 SCOPE OF CONCEPT DESIGN

The scope of the concept design study covers several systems necessary for the design of the solar PV plant and summarised as follows:

- Solar resource, modelling and energy yield assessment
- PV layout development
- AC and DC Electrical reticulation design
- Control Monitoring System (CMS) Network Design requirements
- HVAC system requirements
- Fire Detection and Protection requirements
- Water supply and reticulation design
- Sewerage and waste removal services
- Civil and structural designs
- CAPEX, OPEX Estimation
- LCoE Estimation

3.2 CONCEPT DESIGN OBJECTIVES

The main objective of the concept design study is to assess and recommend feasible technical design solutions that are considered suitable for a solar PV plant that will assist meeting the following project requirements:

- Due to the urgent need for additional generation capacity and the tight time constraints for the project, phase 1a is required to not trigger the full scoping and detailed EIA. This requires that phase 1a adhere to environmental basic assessment technical requirements of a plant capacity that is less than 20 MW and occupies land that is less than 20 ha.
- Provide sufficient level of conceptual design that adequately informs the functional specification that will be issued to the market.

It is assumed that the Sere PV phase 1a facility will be procured utilising an EPC/Turnkey approach. This concept design is aimed at exploring the potential solution set, understanding the technical constraints and boundaries, and thereby allowing for the development of a functional specification to adequately describe the project requirements to potential Bidders. This concept design will therefore not exclude/eliminate options that could potentially meet the defined project requirements.

3.3 SYSTEM DESCRIPTION

The conceptual design for the Sere Solar PV phase 1a plant evaluates and assesses the following scenario:

- Option 1: PV plant size of 19.5 MW
- Option 2: PV row-to-row optimised design
- Option 3: Maximised energy yield
- Option 4: Maximised energy yield with single axis tracking

The project also includes scope of work performed by Others, such as the Security, Information Technology (IT) and Telecommunications designs. These are not included in this concept design report.

The PV plant has interfaces to only Security, Information Technology, and Telecommunications. There are no interfaces or integration between the PV and Battery Energy Storage System (BESS) project. The PV plant and BESS operate independently from each other.

The following external interfaces have been identified:

- IT interface via firewall/DMZ to OT network for remote monitoring of the PV plant
- IT interface to business network for day-to-day work activities, i.e. office LAN, printer etc.
- Security access control, perimeter fencing, CCTV
- 33 kV intermediate busbar to accommodate PV plant outgoing AC cables
- Where required look at interfaces with local municipalities for water supply and firefighting support and approval of fire protection/detection rational designs based on local bylaws.

The PV plant will be required to have remote monitoring and control. When the O&M contract is placed upon commissioning of the plant, remote monitoring and control will be required from the contractor's control centre. This would require an architectural design and topology from IT to ensure Eskom's Cyber Security, required firewalls and secure VPN are catered for.

- An IT/OT interface with the required DMZ and firewalls is required for the plant to achieve remote control and monitoring.
- The existing onsite office is expected to have access to the business network.
- The IT architectural design and topology for the project is done by others.
- A security risk assessment for the entire site has not been concluded. Physical Security Design for the project is done by others.

3.4 SYSTEM ARCHITECTURE

A Solar PV Plant generates electrical power by converting solar radiation through a process known as the photovoltaic effect.

The Solar PV Plant consists of:

- PV modules that are connected in series to form strings. These strings are further combined via combiner boxes to form PV arrays.
- PV ground mounting structures and foundations used to fix the PV modules to the ground at the appropriate orientation to the sun.
- Inverter and transformer cabins which house the inverters that converts DC electricity from the PV arrays to AC electricity at grid frequency, and transformers to step-up the voltage as determined by the selected point of connection.
- Solar PV plant power collection switchgear, auxiliary transformers, and battery tripping units.
- AC cabling that will connect the Solar PV plant to the selected point of connection.

• Infrastructure and associated utilities such as roads, storm water infrastructure, security fence, buildings, and meteorological measuring stations.

The three main components that form the backbone of a PV plant are PV modules, PV ground mounting structures, and inverters. These are further described in the following sections.

3.4.1 PV Modules

PV modules are made up of PV cells that generate electricity on exposure to solar radiation. PV technologies can be divided into different types depending upon the materials used in the modules. Generally, two different concepts for generating energy by means of PV technology are commercially available on the market; crystalline silicon based and thin film-based PV technology. Both use direct and diffuse components of solar irradiation.

Crystalline silicon (c-Si) based Solar PV modules can be divided into two main categories: mono and poly crystalline silicon. Mono crystalline silicon PV modules are based on mono crystalline silicon cells and are the most efficient modules to generate electrical energy from solar energy.

Thin film-based PV modules can be amorphous silicon, Copper Indium Selenide (CIS), Cadmium Telluride (CdTe) and Copper Indium/Gallium/Selenite (CIGS), depending on the type of material used. Thin film module technology used to be cheaper than silicon crystalline but with a lower efficiency. This gap is significantly reduced in the current PV market due to decreases in c-Si module prices in recent years.

Some recently introduced thin-film technologies can reach efficiencies comparable with poly silicon technology. Aside from the cost advantage, thin film technology has two further benefits to be considered: the more effective use of diffuse light, as well as mostly more favourable temperature related performance compared to crystalline modules.

From the thin film technologies, amorphous Silicon (a-Si), Copper Indium Selenide (CIS) and CIGS are not preferred due to their large footprint, i.e. land usage that would be required. Furthermore, these modules are not easily available on the market and have a very limited track record.

For c-Si modules, the Poly-crystalline types are preferred, while for the thin film modules, CdTe types are preferred. The advantages of these types of PV modules are listed in Table 1.

Poly-crystalline PV modules	Cadmium Telluride PV modules
Good efficiencySmall footprint (land usage)	 Good efficiency (now comparable to poly- crystalline)
 Extensive track record 	Good performance in hot weather locations
 Low unit cost (per Wp installed) 	Extensive track record
Market leader	Market available
Extensive list of suppliers	 Low unit cost (per Wp installed)

Table 1: Preferred PV module types - Advantages

3.4.2 Ground Mounting Structures and Foundations

PV mounting options include fixed tilted mounting systems and tracking systems. Tracking systems can be single axis or dual axis systems. Figure 1 illustrates these different types of mounting systems.

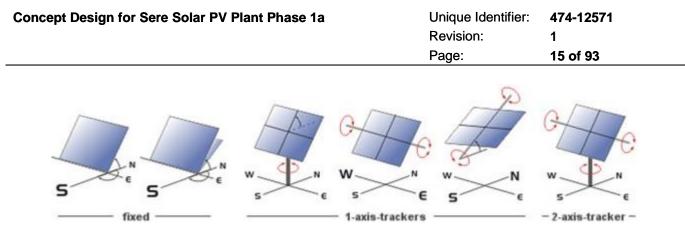


Figure 1: Types of Mounting Systems

The simplest installation for large scale free field mounted PV systems is fixed mounted systems, where groups of PV modules, i.e. PV arrays, are mounted on a structure with fixed slope or inclination and fixed azimuth, generally due north in the southern hemisphere. These structures are usually metallic. Figure 2 illustrates examples of fixed mounting structures.

Figure 2: Examples of Fixed Mounting Structures

For maximum annual energy production, the optimum inclination with respect to horizontal plane and the module plane is generally determined in accordance with the respective latitude of the site. For PV plants located in South Africa, the optimal inclination angle or tilt is generally between 20° and 30°, depending on the exact location.

Fixed mounted structures are considered as very robust and mostly maintenance free solutions. The use of these systems usually allows the plant layout to be easily adaptable to the terrain.

Single-axis tracking systems have recently become widely implemented in utility-scale applications due to their decreasing costs, and the desire for maximising energy production from PV facilities, thereby maximising profits. Tracking systems make financial sense when the energy generation yield gain over fixed-tilt applications outweighs the capital and operational expense of the system. Single-axis trackers generally rotate PV modules from east to west throughout the day, about a fixed axis which is parallel to the ground (other variations do exist). This allows the PV modules to approximately follow the sun's movement from the morning to evening across the sky and can result in increased energy yield depending on the site and other factors.

Detailed geotechnical investigations will be required to determine the geotechnical parameters and to inform the foundation design of the mounting structures (fixed-tilt or tracking systems).

3.4.3 Inverters

The inverter is a key component of the plant when it comes to reliability and efficiency. The three most common inverter-module configurations in PV systems are central inverter, string inverter and module integrated inverter, as shown in Figure 3.

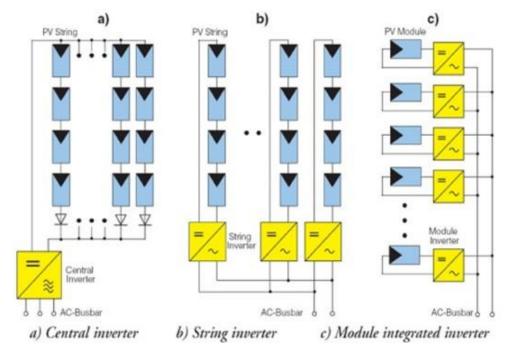


Figure 3: Inverter Configuration Types

Module integrated inverters or micro inverters use a single inverter for each PV module. This configuration minimises shading losses and module mismatch losses in a string, however, this solution is relatively expensive for large scale grid tied power plants, due to the number of module inverters required.

Mini central or string inverters use a single string or group of strings as input to the inverter. The string inverter concept is most suitable on complex sites, where different shadings or orientation of the strings occur. String inverters tend to have higher cost than central inverters and will also have higher AC cable loss than a plant with central inverters.

Central inverters aggregate a large number of strings or all strings of a PV array, several hundred kWp, through DC combiner boxes. Central inverters are generally characterised by a lower cost per kW. Central inverter concepts are commonly used in utility scale PV plant. Central inverters also ease operation and maintenance as the number of units required for a given PV plant capacity is significantly lower than for the other configurations.

3.5 SITE TECHNICAL ASSESSMENT

3.5.1 Site Location

The solar PV plant is located within the Sere Wind Farm. The site is located on portions of the farms Olifants River Settlement 617 and 620, and Gravewaterkop 158 portion 5 situated on the Namaqualand Coast in the Vredendal District, about 14km west of Koekenaap in the north of the Western Cape Province as seen below.

Figure 4: Sere Wind Farm

As per the limitations of the environmental basic assessment, the development of the solar PV plant should be less than a 20 ha footprint. The solar PV plant will be accessed from the R363 road.

The site boundary co-ordinates are summarised below (these are subject to change based on the environmental basic assessment and the final design configuration):

Co-ordinate	Latitude (º)	Longitude (º)
A	31.530777	18.111159
В	31.526435	18.111292
С	31.526533	18.115657
D	31.530876	18.115524
Central Point	31.528655	18.113408

Table 2: Site co-ordinates

3.5.2 Solar Resource Assessment

This section provides an overview on meteorological data and solar resource data analysis at the project location.

South Africa in general has excellent solar resource providing a favourable condition for the development of solar projects. The annual average Global Horizontal Irradiation (GHI), depending upon the regions, varies approximately between 1500 kWh/m² and 2400 kWh/m², see Figure 5.

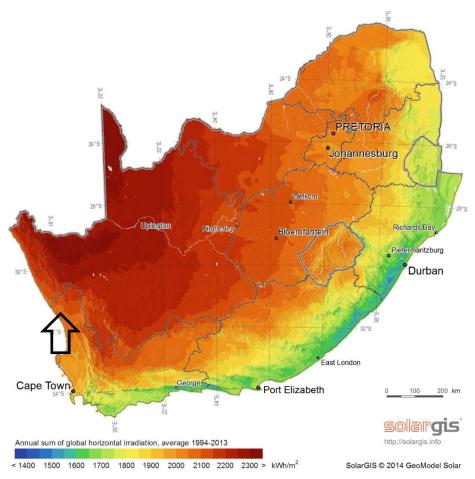


Figure 5: Annual GHI Map – South Africa (Source: CRSES)

The project site has an approximate geographic location of 31°31'43.158" South, and 18°6'48.2688" East, at a height above sea level of 32 m. The site lies in regions of the South Africa with some of the highest solar resource, as shown with an arrow mark in Figure 5. The annual average GHI at the project location can be expected to be between 2000 kWh/m² and 2200 kWh/m². Table 3 shows the comparison of long term annual average GHI between different data sources at the project location.

Data Base	Data Source	Data Spatial Resolution	Period	GHI [kWh/m²]
HelioClim	Satellite	2.5 km × 2.5 km	1990 - 2006	1891
PVGIS	Satellite	1 km × 1 km	2005 - 2016	2161
SolarGIS	Satellite	Up to 90 m × 90 m	1994 - recent	2091

The long-term average GHI derived from different meteorological data sources mentioned in the above table have a maximum deviation of approximately 12%. This result indicates that the long term annual average GHI at the solar PV plant lies between 1891 kWh/m² and 2161 kWh/m². This deviation could be as a result of the spatial resolution of HelioClim data being larger than the PVGIS and SolarGIS data resolution or the fact that although HelioClim has data dating back from 1990, the data available for the

CONTROLLED DISCLOSURE

annual average calculation is from 2004 to 2006. SolarGIS and PVGIS have a longer term in which the annual average was calculated. However, the deviation between PVGIS and SolarGIS data is approximately 3%.

For concept designs, Photovoltaic Geographical Information Systems (PVGIS) was used to provide Typical Meteorological Year (TMY) data for the System Advisor Model (SAM) software simulation and is also used for the energy yield estimation.

PVGIS uses long-term monthly averages of solar irradiation to calculate solar radiation and PV energy outputFigure 6. This is done by simulating how the solar radiation and PV power varies during a "typical" day in each month. The advantage of this method is that the calculations are much faster than calculating a full multi-year time series and that much less data needs to be stored.

PVGIS calculates solar radiation and PV energy output using hourly values of solar radiation and other climatic parameters over a period of several years (2005-2016). This innovation helps to overcome the problems listed above.

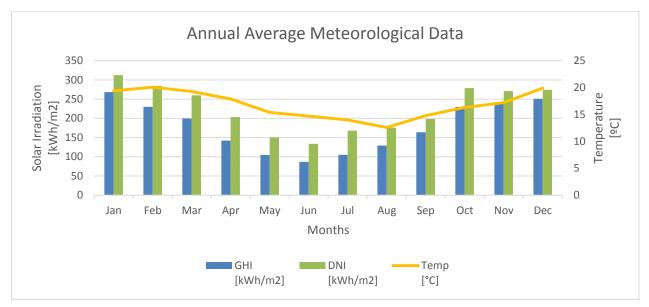


Figure 6: Long Term Average Meteorological Data (2005-2016)

The following table shows the monthly average summary of meteorological data to be used for the project.

CONTROLLED DISCLOSURE

Month	GHI (kWh/m²)	DNI (kWh/m²)	GTI (kWh/m²)	Temp (° C)
January	268	242	313	19,4
February	230	230	284	20,1
March	200	229	260	19,3
April	142	188	203	17,9
May	104	152	151	15,4
June	86	135	134	14,7
July	105	163	168	14,0
August	129	177	176	12,6
September	164	195	198	14,8
October	230	240	279	16,3
November	241	224	271	17,2
December	251	221	274	19,9

Table 4: Monthly Average Summary of Meteorological Data for Sere Solar PV Site

3.5.3 Meteorological Station

The site will have a meteorological station installed to measure onsite meteorological and weather data. The installation of any meteorological station should not result in shading of the PV array. The site meteorological station should comprise of the following:

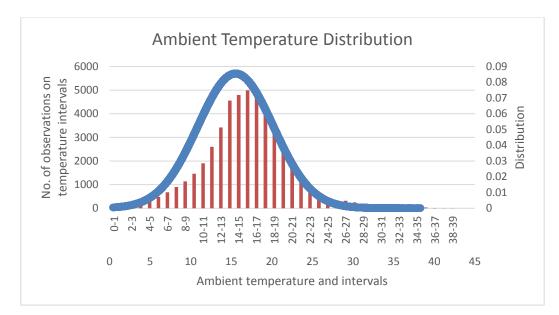
- a. Two (2) high accuracy calibrated solar reference cells installed on the module plane of array (POA) with the same technology and type as installed PV modules. The calibration of the reference cell is performed according to IEC 60904-2: Photovoltaic device Part 2: Requirements for reference solar devices.
- b. Two (2) thermal sensors (Pt 100 class B according to IEC 60751) to measure module surface temperature with a measurement resolution up to $\pm 1^{\circ}$ C at the back sheet.
- c. One (1) shielded ventilated thermocouple to measure the ambient temperature with a measurement accuracy of ±1°C (Pt 100 class B according to IEC 60751).
- d. One (1) wind speed and wind direction sensor mounted on a 10 m mast.
- e. One (1) relative humidity sensor, and
- f. One (1) rain gauge.

In addition to the site meteorological station, the following measuring equipment will be installed at every PV block:

a. Two (2) horizontally mounted and completely unshaded, calibrated pyranometers to measure the global horizontal irradiation according to Secondary Standard as stipulated in ISO 9060. One of the pyranometers to be installed in the Plane of Array.

3.5.4 Weather Conditions

The following section is a high-level summary of the weather data recorded at the Sere Wind Farm meteorological station from January to December 2020. It should be noted that this weather data is incomplete and has sections where the data was not recorded due to power interruptions, faulty or no equipment, or lack of site services. Conclusions taken from the following sections are preliminary


estimations. More rigorous analysis with larger datasets would be required to minimise the risks and will be conducted during the detailed design phase.

3.5.4.1 Ambient Temperature

Table 5 indicates the average, standard deviation, maximum and minimum temperatures that were measured during the analysis period. The lowest temperature measured during the analysis period was 0.4 $^{\circ}C$ with the maximum being $38^{\circ}C$.

Date	Average	Standard deviation	Minimum	Maximum
January	18.19	2.46	12.19	32.15
February	18.51	2.29	12.57	25.64
March	17.81	3.74	6.40	38.32
April	17.12	4.82	6.75	36.66
May	15.33	5.68	4.20	36.27
June	13.53	4.92	1.93	31.02
July	13.84	5.36	3.01	31.25
August	12.03	4.40	0.45	31.98
September	13.69	4.44	2.26	33.87
October	14.75	3.26	5.69	31.01
November	16.71	3.85	7.31	37.95
December	17.31	2.52	9.13	26.03
Annual	15.54	4.67	0.45	38.32

Figure 7 illustrates the range the ambient temperature varied during the measurement period. The ambient temperature frequency distribution is also shown.

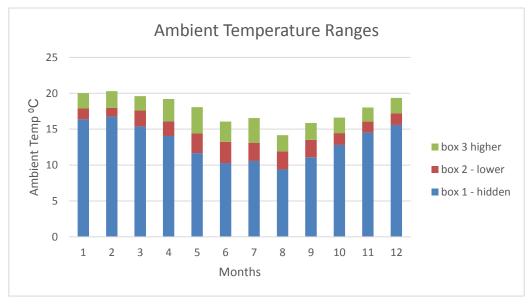


Figure 7 : Ambient temperature graph

3.5.4.2 Wind Speed

Table 6 indicates the average, standard deviation and maximum wind speeds that were measured during the analysis period. The maximum wind speed measured during this period was 21.1 m/s. The high wind speeds measured are consistent with the fact that the site is in an area in South Africa with excellent wind resource.

CONTROLLED DISCLOSURE

Date	Mean	Standard deviation	Maximum
January	6.03	2.49	13.49
February	5.10	2.32	11.66
March	5.49	2.85	15.47
April	5.91	2.82	17.72
May	4.77	2.39	16.79
June	6.08	4.20	20.20
July	6.77	4.13	20.41
August	6.24	3.18	21.10
September	6.41	3.18	18.15
October	6.14	2.84	15.26
November	7.08	3.17	18.73
December	6.32	2.90	15.83
Annual	6.11	3.18	21.10

Table 6: Wind Speed Statistical Values

Figure 8 illustrates the wind speed frequency distributions.

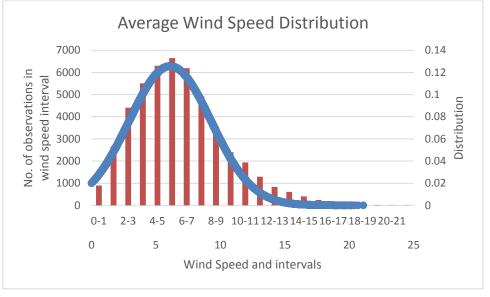


Figure 8: Wind speed graph

3.5.4.3 Wind Direction

Figure 9 illustrates the predominant wind directions based on the measurements recorded. It is noticed that in 2020 the wind seems to blow predominantly from south-south-west directions.

CONTROLLED DISCLOSURE

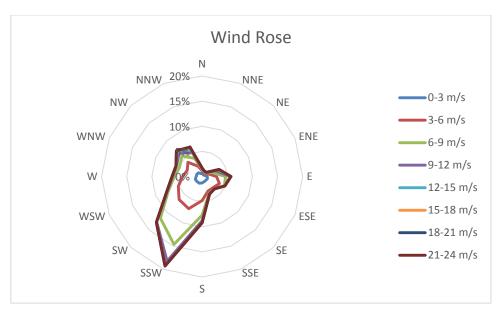


Figure 9: Wind Rose

3.5.4.4 Rainfall

Table 7 indicates the amount of rainfall that was measured for each month of 2020. The highest amount of rainfall measured was approximately 77.37 mm in July. The lowest was in February with a measurement of approximately 2.64 mm. The total annual rainfall for 2020 was measured to be approximately 448.75 mm.

Date	Total rainfall (mm)		
January	55.91		
February	2.64		
March	11.47		
April	33.82		
May	20.02		
June	58.27		
July	77.37		
August	71.83		
September	35.08		
October	55.64		
November	11.59		
December	15.12		
Annual	448.75		

Table 7: Annual total rainfall

CONTROLLED DISCLOSURE

3.6 PV PLANT DESIGN

3.6.1 Simulation Model

The stakeholder's requirements, captured in the SRD, determine the simulation models developed during concept design. Site specific geographical inputs are required for the simulation model, these include geographical location, solar resource, ambient and other weather conditions and PV plant footprint or area constraints. Other operational requirements from stakeholders such as the operating strategy, operational limitations or constraints, O&M requirements and others are specified in the SRD.

The results from the simulation model during concept design inform other disciplines on the requirements of the plant. This include interconnection requirements to evacuate the power, the auxiliary power required for plant operation, water requirements for cleaning of panels (if required) and the overall footprint of the plant.

In addition, the simulation model also further informs the expected performance over the lifetime of the plant. Important performance parameters include the installed capacity of the plant, energy yield, performance ratio, capacity factor and generating profiles. These performance parameters are key in satisfying the stakeholder's requirements and provide the level of confidence of the expected performance of the plant.

The concept design used the simulation software package System Advisor Model (SAM) to design and simulate the PV system.

3.6.2 Design Inputs

The required PV system design inputs are illustrated in Figure 10.

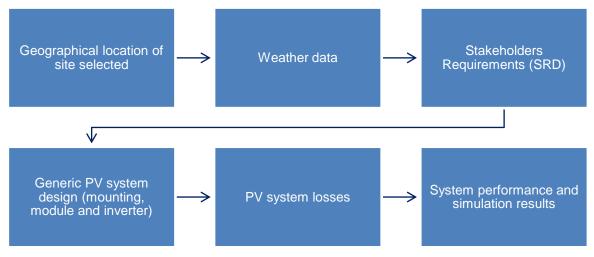


Figure 10: PV system design inputs

3.6.2.1 Geographical location of site

The geographical information is retrieved from Section 3.5.1.

3.6.2.2 Weather data

The solar resource assessment is discussed in Section 3.5.2. The TMY dataset used in the simulation model is retrieved from PVGIS.

CONTROLLED DISCLOSURE

3.6.2.3 Stakeholder Requirements

The aim of the project is to accelerate the implementation of PV at the Sere Wind farm site. Therefore, the PV plant design should remain within the envelope covered by an Environmental Basic Assessment, and not trigger the lengthy processes required for a full Environmental Impact Assessment.

The stakeholder requirements are considered in the development of the simulation model:

- The PV plant footprint should be less than 20 ha (this includes supporting infrastructure, internal roads and site boundary fencing and roads)
- The PV installed capacity should be less than 20 MW ac
- The interconnection of the PV plant to utilise the existing Sere Wind farm substation
- The combined generation output from the existing Sere Wind Farm and the proposed PV plant not to exceed 105.8 MW
- When observing the evacuation limit of 105.8 MW, generation from Sere Wind Farm to be prioritised, hence PV generation to be curtailed as required
- Annual average Performance Ratio (PR) of 80%
- Operating strategy of PV plant is to maximise plant generation and energy yield
- Plant design minimum life of 25 years

Other stakeholder requirements affecting plant design:

- Minimum maintenance should be considered in design
- PV panels to be cleaned when reference cells difference is greater than 50 W/m²
- Plant design to consider local environmental conditions, i.e. coastal region imply corrosion protection due to closeness to the coastline, structural design due to high wind speeds, etc.
- Expandability for Phase 1b and Phase 2 of Sere PV Plant to be considered

A request from the project was received to deliver a high-level concept design. The associated risks are captured in Appendix E for excluding the following engineering activities related to simulation model:

- Technology selection of PV module and inverters
- Optimisation of PV model
- Sensitivity analysis on PV plant performance
- Detail on concept design options

3.6.3 Generic PV System Design

The generic PV system design is primarily used for feasibilities studies. During concept design, alternative technology options associated to the PV module, inverter, mounting structures, etc. are considered to optimise the design based on the environmental conditions and/or stakeholder requirements.

To satisfy the project requirements, a high-level concept design is requested which entails the use of the generic PV system design during simulation. The components are as follows:

Module Selection

The 320 Wp PV module is a multi c-Si module with characteristics shown in Figure 11.

Concept Design for Sere Solar PV Plant Phase 1a	Unique Identifier:	474-12571
	Revision:	1
	Page:	27 of 93

Nominal efficiency	16.8223 %	Temperature coefficients	
Maximum power (Pmp)	319.792 Wdc	-0.400 %/°C	-1.280 W/°C
Max power voltage (Vmp)	36.8 Vdc		
Max power current (Imp)	8.7 Adc		
Open circuit voltage (Voc)	45.3 Vdc	-0.307	-0.139 V/°C
Short circuit current (lsc)	9.3 Adc	0.047 %/°C	0.004 A/°C

Figure 11: Module characteristics at reference conditions

• Inverter Selection

The inverter selected has a 1 MW capacity, with characteristics shown in Figure 12 and efficiency curve in Figure 13.

-Datasheet Parameters								
Maximum AC power	1e+06	Wac	Maximum DC voltage	800	Vdc	-Sand	ia Coefficients—	
Maximum DC power	1.0369e+06	Wdc	Maximum DC current	1389.95	Adc	C0	-2.43682e-08	1/Wac
Power use during operation	4451.37	Wdc	Minimum MPPT DC voltage	585	Vdc	C1	-4e-05	1/Vdc
Power use at night	300	Wac	Nominal DC voltage	746	Vdc	C2	-0.000528	1/Vdc
Nominal AC voltage	690	Vac	Maximum MPPT DC voltage	800	Vdc	C3	-0.000677	1/Vdc
				CEC we	eighteo	l efficien	cy 96.922	%
				European we	eighteo	l efficien	cy 96.696	%

Figure 12: Inverter characteristics at reference conditions

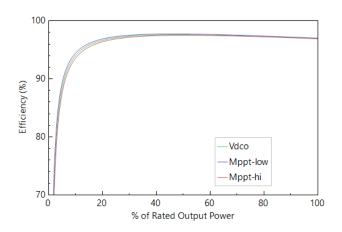


Figure 13: Inverter efficiency curve at reference conditions

• Mounting Structure

The tilt angle for a fixed mounting structure is selected to be 30 degrees, facing north. The 30 degree angle is selected due to the fact that the latitude of the plant is in the most southern parts of South Africa. See Section 3.5.1 on Geographical location of site.

The row to row distance between each structure is determined on the shadowing effects of adjacent rows. The generic PV system design has a row to row distance of 7.76 m.

CONTROLLED DISCLOSURE

The mounting structure accommodates two rows of PV modules, i.e. bottom and top row in a portrait orientation. A total of six strings, i.e. 96 panels are placed per structure. For fixed or static PV systems, the height of the structure can be up to 3.5 m above ground level. Single axis tracking PV systems can have a height up to 6 m above ground level.

Tracking systems in PV plants increase the energy output of the plant by tracking the sun through single-axis (or dual-axis) systems. In large commercial plants the tracking of a PV system can lead to a higher energy yield but increase the effort of maintenance throughout the life of the plant. An additional cost component is associated with the mounting structure, tracking systems, calibration, and control systems. Regular maintenance and monitoring are also required to ensure efficient plant operations.

Single axis tracking is considered for this concept design, as an attempt to increase the annual energy generated by the plant to satisfy the requirement to maximise the energy yield of the plant.

3.6.4 Losses

No additional losses are considered for the simulation model. The generic PV system design losses are a default selection.

3.6.5 System Performance and Simulation Results

For the concept design, various design options will be considered to satisfy the stakeholder requirements. Additional design optimisation and sensitivity analysis will not form part of this concept design as per the project's request. The associated risks are detailed in Appendix E.

3.6.6 Option 1: PV plant size (19.5 MW)

The initial project objective, referenced as Phase 1a for PV installation at Sere, denotes a plant capacity of 19.5 MW (Phase 1a). Although the proposed plant is less than the 20 MW limit required for performing a Basic Environmental Assessment, the footprint area required by the plant exceeds the 20 ha limit and trigger the need to perform a full environmental impact assessment.

Analysing the design requirements of the generic PV model, the total PV module area for a 19.5 MW plant is 138 788 m². This translates to a PV plant footprint of 27.7 ha, thus triggering the need for a full environmental impact assessment.

To decrease the PV plant footprint, the row-to-row distance of the mounting structure can be reduced (to a limit), but this trade-off introduces an increase in shadowing losses and decrease in plant performance. The sensitivity analysis as seen on Table 8 shows the row-to-row spacing, PV block footprint, shading, and plant performance ratio.

Row to Row [m]	Road Clearance between structures	PV plant footprint [ha]	Losses Shading (%)	Performance Ratio (PR)
7.77	4.40	27.76	2.54	0.86
6.47	3.11	23.13	3.06	0.85
5.55	2.18	19.83	3.69	0.82
4.85	1.49	17.35	4.45	0.79
4.31	0.95	15.42	5.29	0.76

Table 8: Row-to-row optimisation to reduce PV plant footprint

CONTROLLED DISCLOSURE

From Table 8 it is clear that there is a direct relationship between the row-to-row distance of the mounting structures and the footprint of the PV block. To realise a PV plant capacity of 19.5 MW within a 20 ha land parcel (from which up to 2 ha is allocated to fencing, laydown area and other supporting infrastructure), the row-to-row distance needs to be reduced to about 4.85 m. However, the performance ratio of the plant is reduced from 0.86 to 0.79.

This stakeholder requirements states that the minimum performance ratio is to be 0.80. Additional challenges are introduced with only a 1.49 m road clearance between structures, i.e. limiting access for panel cleaning, maintenance, and other O&M activities.

3.6.7 Option 2: PV row-to-row optimised design

Option 1 of the concept design demonstrated that the feasibility of a 19.5 MW PV plant is unlikely to satisfy both the environmental limitations (plant size less than 20 ha) and the stakeholder requirements (performance ratio greater than 80%). Additional O&M constraints are also introduced with a narrow road clearance of about 1.5 m.

Option 2 of the concept design investigates the optimisation of the row-to-row distance to determine a PV plant size that meets requirements specified in the SRD. From Table 8 the performance ratio of the plant is greater than 0.80 where the row-to-row distance is greater than approximately 5.55 m. The road clearance is also more acceptable for O&M activities at approximately 2.18 m.

Based on the information above, the following boundary conditions are set for row-to-row optimisation of the PV plant design:

- PV block footprint not to exceed 16 ha (20 ha less approximately 4 ha required for other supporting infrastructure, laydown area, fencing, internal roads etc.)
- Road clearance greater than 2 m between PV mounting structures for O&M activities
- Operating strategy: Maximise PV plant installed capacity
- Performance Ratio (PR) greater than 0.80

Road clearance between structures

To achieve a road clearance greater than 2 m, the minimum row-to-row distance is calculated to be 5.36 m based on the generic PV model design.

Performance ratio

The performance ratio is affected by the row-to-row distance as it introduces additional shadowing on adjacent rows. With a minimum road clearance of 2 m, i.e. row-to-row distance at 5.36 m, the simulation model indicates that a performance ratio of 0.80 is feasible.

PV block footprint and maximise installed capacity

With the row-to-row distance established by satisfying the road clearance and performance ratio, the maximum installed capacity can be determined. The limiting factor is the 16 ha land availability for the PV block footprint. From the simulation results, a plant capacity of up to 16 MW is feasible, see Table 9.

Installed Capacity (MW)	Performance Ratio	Module Area (m²)	PV Block Footprint (ha)
15	0.80	106 760	14.88
16	0.80	113 878	15.87
17	0.80	120 995	16.86
18	0.80	128 112	17.85
19	0.80	135 230	18.85

Table 9: Maximise PV installed capacity on land available

3.6.8 Option 3: Maximise energy yield

Although Option 2 demonstrated the maximum PV installed capacity given the specified boundary conditions, the maximum energy yield of the plant has not been established. To maximise the energy yield of a plant design, various design considerations are taken into account. These may include technology options such as various PV modules, inverters, mounting structure orientation or tilt, panel configuration and others.

The aim of maximising the energy yield of a plant is to determine the best technology configuration and plant design to yield maximum energy while minimising energy losses. This concept design only considers the generic PV design model and no further optimisation is performed. Based on the performance results of the simulation model, as per Table 10 to Table 12, the following conclusions are made:

The PV block footprint is the limiting factor for the PV plant capacity that can be installed. In Table 10 an overview of the footprint required per row-to-row distance is shown. The areas less than 16 ha is highlighted for ease of reference.

	Mounting structure row-to-row distance				
MW	7.77 m	6.47 m	5.55 m	5.36 m	
15	21.35	17.79	15.25	14.75	
16	22.78	18.98	16.27	15.73	
17	24.20	20.17	17.28	16.71	
18	25.62	21.35	18.30	17.70	
19	27.05	22.54	19.32	18.68	

Table 10: PV block footprint (ha) per row-to-row distance

The annual net energy (kWh) of each configuration (row-to-row spacing and plant capacity) is determined and overlaid with the PV block footprint, shown in Table 11. The maximum energy output decrease with the row-to-row spacing due to the shadowing effects on adjacent rows.

Therefore, the stakeholder requirement to maximise the capacity and energy yield is satisfied with a PV plant capacity of 16 MW with a row-to-row spacing of 5.36 m. This finding is based on the generic PV design model with a fixed mounting structure.

Table 11: PV annual net energy (kWh) per row-to-row distance
----------------------------------	------------------------------

	Mounting structure row-to-row distance						
MW	7.77 m 6.47 m 5.55 m 5.36 m						
15	36 035 500	35 424 600	34 055 600	33 776 200			
16	38 437 800	37 786 200	36 325 800	36 027 800			
17	40 840 100	40 147 700	38 596 000	38 279 300			
18	43 242 500	42 509 300	40 866 200	40 530 900			
19	45 644 800	44 870 900	43 136 300	42 782 400			

The PV plant performance parameters for various row-to-row distances are shown in Table 12. As previously mentioned, the increased shading losses experienced by narrowing the row-to-row distance affects the plant performance parameters. The parameters in Table 12 are similar for all PV plant capacities as only the row-to-row distance parameter changed. The stakeholder requirement of performance ratio of 0.80 is satisfied.

	Mounting structure row-to-row distance			
Parameter	7.77 m	6.47 m	5.55 m	5.36 m
Performance Ratio	0.86	0.84	0.81	0.80
Losses Shading (%)	2.61	3.14	3.79	3.96
Energy Yield (kWh/kW)	2006	1972	1896	1881
Capacity Factor AC (%)	27.4	27.0	25.9	25.7

Table 12: PV plant performance parameter per row-to-row distance

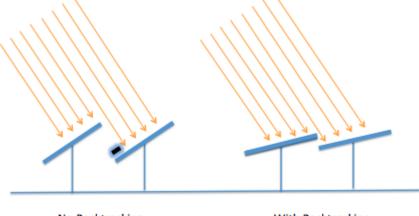
3.6.9 Option 4: Maximise energy yield (single-axis tracking)

To further maximise the energy yield of a PV plant, tracking systems can be implemented in the PV design. However, this has impact on the mounting structure, additional mechanical systems such as motors, control systems and the layout of the plant. For this concept design option, only single axis tracking is considered.

• Single-axis tracking

The mounting structure is fixed at a tilt angle of zero degrees, i.e. the rotating axis is flat or horizontal (parallel to the ground). The mounting structure rotates about the axis from east in the morning to west in the evening to approximately track the daily movement of the sun across the sky. The configuration also requires a greater footprint than fixed mounted structures at a specified tilt angle. The increase is about 12% more than compared to fixed mounted structures.

There are two types of tracking algorithms or strategies that can be implemented in single-axis tracking:


• Normal tracking

The azimuth tilt angle towards the sun is the same for every row. Depending on the row-to-row distance and location of the plant, the shadowing losses can have an increased effect.

• Backtracking in single-axis tracking

Backtracking is a tracking strategy that minimises row-to-row shading. Without backtracking, a oneaxis tracker points the modules toward at the sun. For an array with closely spaced rows, modules in adjacent rows will shade each other at certain sun angle. With backtracking, under these conditions,

the tracker orients the modules away from the sun to avoid shading. The following diagram, Figure 14, illustrates how backtracking avoids row-to-row shading for a simple array with two rows:

No Backtracking

With Backtracking

Figure 14: Single-axis tracking strategies

Due to the fact the panels are horizontal on a structure that tilt/track the sun's position, i.e. azimuth angle, the road clearance is affected. This is illustrated in the following table:

Table 13: Effect of row-to-row distance on road clearance between structures

Mounting structure row-to-row distance	7.77 m	6.47 m	5.97 m	5.55 m	5.36 m
Road clearance in between rows	3.88 m	2.59 m	2.09 m	1.66 m	1.48 m

It is noted from

Table **13** that the previous optimised row-to-row distance of 5.36 m no longer allows for sufficient road clearance between the structures, i.e. minimum of 2 m. It was found that a row-to-row distance of about 5.97 m and greater allows for 2 m clearance. Subsequently, the maximum installed PV capacity for single-axis tracking systems should be determined. The results are shown in Table 14. This results in a maximum PV installed capacity of 14 MW with single-axis tracking is achievable.

Table 14: PV block footprint (ha) per row-to-row distance

_	Mounting structure row-to-row distance					
MW	7.77 m	6.47 m	5.97 m	5.55 m	5.36 m	
13	18.78	15.65	14.45	13.42	12.97	
14	20.23	16.86	15.56	14.45	13.97	
15	21.67	18.06	16.67	15.48	14.97	
16	23.12	19.26	17.78	16.51	15.96	
17	24.56	20.47	18.89	17.54	16.96	
18	26.01	21.67	20.01	18.58	17.96	
19	27.45	22.88	21.12	19.61	18.96	

CONTROLLED DISCLOSURE

For the three configurations that satisfy the boundary conditions, that is the minimum clearance between structures of 2 m and having footprint of less than 16 ha, the annual energy yield and performance parameters are determined. The results are shown in Table 15. The plant configuration that generate the most power is a 14 MW plant with backtracking.

Tracking Strategy	No backtracking		Backtracking	
Mounting structure row- to-row distance (m)	6.47	5.97	6.47	5.97
Performance Ratio	0.71	0.69	0.84	0.84
Losses Shading (%)	3.30	3.58	2.44	2.41
Energy Yield (kWh/kW)	2002	1935	2151	2108
Capacity Factor AC (%)	27.4	26.4	29.4	28.8
13 MW Plant Annual Net Energy (kWh)	31 157 200	30 116 300	33 482 500	32 814 700
14 MW Plant Annual Net Energy (kWh)		32 431 900		35 338 900

Table 15: Performance parameters and annual net energy

3.7 PV PLANT DESIGN AND PERFORMANCE PARAMETERS

From the simulation model results, Option 3 and Option 4 of the concept design meet the SRD requirements and practical assumptions:

- PV block footprint not to exceed 16 ha (20 ha less 4 ha required for other supporting infrastructure, laydown area, fencing, internal roads etc.)
- Road clearance greater than 2 m between PV mounting structures for O&M activities
- Operating strategy: Maximise PV plant installed capacity
- Performance Ratio (PR) greater than 0.80

The following sections summarise the PV plant design and performance parameters for:

- 16 MW PV installation with fixed mounting structure (Option 3)
- 14 MW PV installation with single-axis tracking with backtracking (Option 4)

3.7.1 16 MW PV installation with fixed mounting structure

The design parameters for the 16 MW PV plant is set out below in Table 16. The simulation model determines the plant's performance. These parameters are reported in Table 17. A visual representation of the monthly energy generated by the plant is shown in Figure 15.

Table 16: Plant design 16 MW PV with	n fixed mounting structure
--------------------------------------	----------------------------

Plant Design	Value	Unit
PV module rating	320	Wp
PV mounting configuration	2 rows - portrait	
Number of PV modules per string	16	
Number of strings in parallel	3744	
Number of PV modules per mounting	96	
PV module configuration (PV rows)	80	
Number of inverters	16	
PV plant DC capacity	19.15	MWdc
PV plant AC capacity	16.00	MWac
DC/AC ratio	1.2	
Tracking	None - Fixed	
Tilt angle	30	degree
Azimuth angle	North	
Row-to-row distance	5.363	m
Road clearance between structures	2	m
PV plant footprint	15.73	ha

Table 17: Plant performance for 16 MW PV with fixed mounting structure

Performance Parameters		
Installed Capacity	16	MWac
Annual Energy Gross Energy	36 100	MWh/yr
Annual Energy Net Energy	36 027	MWh/yr
Capacity Factor AC	25.7	%
Energy Yield	1881	kWh/kW
Performance Ratio	0.80	-
Losses Shading	3.96	%

*Note: The shading losses are high due to the row-to-row distance that was optimised to satisfy the user requirement to maximise the installed capacity on the land. A better performing plant will have a lower installed capacity and an increase in row-to-row distance to minimise on these shading losses.

Unique Identifier:	474-12571
Revision:	1
Page:	35 of 93

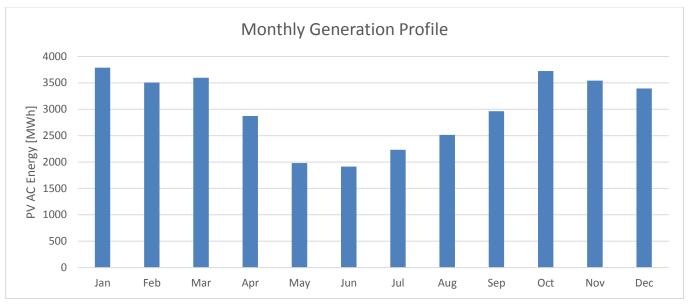


Figure 15: 16 MW monthly generation profile (year 1)

3.7.2 14 MW PV installation with single-axis tracking with backtracking

The 14 MW plant design see Table 18, and performance parameters for both tracking strategies are reported. A visual representation of the monthly energy generated by the plant for all three configurations is shown in Figure 15.

Plant Design	Value	Unit
PV module rating	320	Wp
PV mounting configuration	2 rows - portrait	
Number of PV modules per string	14	
Number of parallel strings per in parallel	3276	
Number of PV modules per mounting	96	
PV module configuration (PV rows)	78	
Number of inverters	14	
PV plant DC capacity	16.76	MWdc
PV plant AC capacity	14.00	MWac
DC/AC ratio	1.2	
Tracking	Single-axis	
Tilt angle	0	degree
Axis of rotation	North-South	
Row-to-row distance	5.974	m

Table 18: Plant design 14 MW PV with single-axis mounting structure

CONTROLLED DISCLOSURE

PV plant footprint

Table 19: Effect of single-axis tracking on plant performance parameters

m

ha

15.56

Performance Parameters	Va	Unit	
Tracking operating strategy	Backtracking	No backtracking	-
Installed Capacity	14	14	MWac
Annual Energy Gross Energy	35 409	32 496	MWh/yr
Annual Energy Net Energy	35 338	32 431	MWh/yr
Capacity Factor AC	28.8	26.4	%
Energy Yield	2108	1935	kWh/kW
Performance Ratio	0.84	0.69	-
Losses Shading	2.41	3.58	%

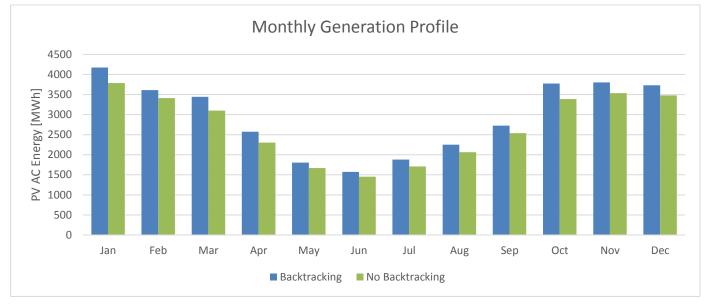


Figure 16: 14 MW monthly generation profile (year 1) comparison

3.7.3 Effect of curtailment on PV due to wind turbine generation

At the Point of Connection (PoC) there is a generating exporting limit of 105.8 MW. In the event that the generation from both PV and wind exceed this limitation, the PV generation will be curtailed. The historic plant data of Sere Wind Farm for the years 2016-2020 has been used in this sensitivity analysis. The losses due to curtailment is to inform the effect on the expected annual generation of the plant.

The 16 MW plant design (Option 3) is considered and the performance are measured for each year, see

CONTROLLED DISCLOSURE

Concept Design for Sere Solar PV Plant Phase 1a	Unique Identifier:	474-12571
	Revision:	1
	Page:	37 of 93

Table 20. From the results, expected curtailment losses are in the 3-7% range. Similarly, the performance is measured on the 14 MW one-axis tracking plant, see Table 21. As expected, a higher percentage curtailment loss is expected with the tracking as wind generation is more during the afternoons.

Plant Performance Parameter	rs Before C	urtailment				
Installed Capacity			16			MWac
Annual Energy Gross Energy			36 100			MWh/yr
Annual Energy Net Energy			36 027			MWh/yr
Capacity Factor AC			25.7			%
Energy Yield			1881			kWh/kW
Performance Ratio			0.80			-
Losses Shading		3.96			%	
Plant Performance Parameter	rs After Cur	tailment				1
Wind generation profile	2016	2017	2018	2019	2020	
Installed Capacity			16			MWac
Annual Energy Gross Energy			36 100			MWh/yr
Annual Energy Net Energy	33 701	33 482	33 838	34 338	34 856	MWh/yr
Curtailment Energy	3 2 67 2 5 45 2 1 89 1 6 89 1 1 7 1					MWh/yr
Curtailment Losses	6.46	7.06	6.08	4.69	3.25	%
Capacity Factor AC	24.04	23.89	24.14	24.50	24.87	%
Losses Shading	3.96				%	

Table 20: Effect of curtailment on annual PV generation of 16 MW fixed tilt

Table 21: Effect of curtailment on annual PV generation on 14 MW (one-axis tracking)

Plant Performance Parameters Before Curtailment						
Installed Capacity			14			MWac
Annual Energy Gross Energy		36 100				MWh/yr
Annual Energy Net Energy		36 027				MWh/yr
Capacity Factor AC	28.8			%		
Energy Yield	2108			kWh/kW		
Performance Ratio	0.84				-	
Losses Shading	2.41				%	
Plant Performance Parameters After Curtailment						
Wind generation profile	2016	2017	2018	2019	2020	

CONTROLLED DISCLOSURE

Installed Capacity		14				MWac
Annual Energy Gross Energy	35 409			MWh/yr		
Annual Energy Net Energy	33 103	32 765	33 188	33 632	34 276	MWh/yr
Curtailment Energy	2 235	2 573	2 150	1 706	1 062	MWh/yr
Curtailment Losses	6.33	7.28	6.09	4.83	3.00	%
Capacity Factor AC	23.62	23.38	23.68	24.00	24.46	%
Losses Shading		1	2.41	1	1	%

3.8 ELECTRICAL DESIGN

This section details the electrical concept for the Sere PV Plant.

3.8.1 Scope of work

Table 22: Electrical Scope of Work

Equipment	Description		
PV Modules	PV modules as the main source of power generation.		
Inverters	Inverters to convert the DC power generated by the PV modules into AC power.		
MV Switchgear and protection	Switchgear and protection at MV level to enable power distribution and electrical protection up to the Point of Connection (POC) as well as Switchgear and protection to accommodate the POC.		
Transformers	Step-up transformers to transform the output voltage of the inverter to the required operating voltage (33 kV), at the Point of Connection (POC)		
DC and AC Cabling	DC cabling required for the DC side of the plant viz. running from the PV modules up to the input of the inverter.		
	AC cabling required from the output of the inverter up to the Point of connection (POC).		
Earthing, surge and lightning protection			
	Surge protection devices to protect the PV system against electromagnetic influences.		
Metering and measurement	Tariff and Statistical metering to provide energy measurements at the POC as well as that of power quality at the same point.		

Lighting and small Power	Lighting to provide illumination on the site as well as the O&M buildings.
	Small power such as distribution boards for power distribution of small power loads and auxiliary supply on the site as well as the O&M buildings.
Uninterruptible power supplies (UPS)	AC backup supply for equipment requiring AC supply necessary to safely shut down the plant.

3.8.1.1 Electrical Battery limits

The project makes provision for the design, plant interface design, manufacture, factory testing, supply, delivery, off-loading, move into position, installation, assembly site testing and commissioning of all new equipment forming part of the PV electrical scope of the project. Also, the design and specification limit for the electrical PV scope is the POC (inclusive of the switchgear and control) at the 33 kV Skaapvlei indoor switchgear.

3.8.1.2 Major equipment

The major equipment has been identified as:

- PV Modules
- Inverters
- 33 kV Switchgear and protection
- MV Power Cables
- Transformers

3.8.2 Design basis and criteria

The basis of design for the electrical system is the requirements stipulated in the Stakeholder Requirements Definition for Sere Solar PV Plant [1].

3.8.2.1 Stakeholder Defined Requirements

The following requirements from the users operational and maintenance plan forms the basis for the electrical systems design:

Table	23:	User requireme	ents
-------	-----	----------------	------

Criteria	Description	Electrical requirements
Functional	 The interconnection of the PV plant is at the existing Sere Wind farm Skaapvlei Substation. The combined generation output from the existing Sere Wind Farm and the proposed PV plant must not exceed the licensed maximum power evacuation capacity of 105.8 MW. 	 The POC for the Sere PV plant is on Busbar 1a and Busbar 1b of the Sere 33 kV Skaapvlei indoor substation. The connection capacity constraint for the Wind farm and the PV plant is 105.8 MW.

CONTROLLED DISCLOSURE

Operability	• The electrical system is designed to be operable viz. be able to function with ease and as per operational requirements for as long as is expected.	 PV modules, inverters, switchgear, transformers, AC and DC cables, meters, protection devices must be operational for a minimum of 25 years. Switchgear local and remote supervisory control. Comply with the Renewable Grid code to insure power stability.
Availability, Reliability,	 Probability of functionality when required viz. electrical system designed to minimise the probability of failure of the plant. 	 Electrical reticulation to maximise availability as far as possible. Reliable power supply for protection devices Main and backup supply for AC distribution board supplying the O&M building and field equipment.
Safety	 Electrical system designed in such a way that electrical hazards to human beings and animals is minimised. 	 Internal arc proof switchgear, earthing systems, protection associated with switching such as overcurrent and earth faults, surge and lightning protection, fail safe operation.
Legislative	Electrical plant design that supports grid stability.	Compliance to Renewable Grid code requirements.

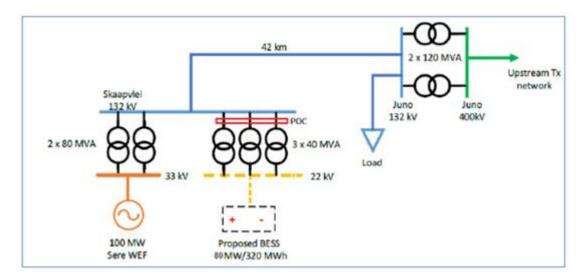
3.8.3 Existing Electrical Infrastructure

This section is discussed with reference to Appendix C: Sere Solar Farm 33 kV Station SLD and layouts.

3.8.3.1 33 kV Skaapvlei Substation

The Skaapvlei substation consists of an indoor 33 kV Skaapvlei Substation and an outdoor 132 kV Skaapvlei Substation. The POC of the Sere Wind Farm is at the 33 kV Skaapvlei indoor substation.

The switchgear that accommodates the POC of the wind farm within this substation is a metal-clad; air insulated primary switchgear equipped with vacuum breakers and consisting of 8 feeders and 2 outgoing feeders. The 7 x feeders accommodate the 7 x wind turbine generator strings, the 8th feeder is used to supply the wind farm O&M offices and workshop. The 2 outgoing feeders are respectively connected to two 80 MVA transformers that respectively allow the 33 kV Skaapvlei substation to be connected to the 132 kV Skaapvlei Substation.


The switchgear has a voltage rating of 36 kV, a main busbar current rating of 3150 A and a short time current rating of 31.5 kA/3s. It is also internal arc proof and classified AFLR that is operator safety accessibility for the front, side, lateral side and rear side of the panel.

This switchgear has been designed to accommodate 3 more feeders in its current state. These 'spares' are unequipped hence to accommodate the PV plant the switchgear will have to undergo panel extension as part of this project.

3.8.3.2 Sere Electrical reticulation

The Sere Wind Farm is licenced to generate a maximum of 105.8 MW. The electrical reticulation of this plant consists of 7 strings, each with a maximum of 6 or 7, 2.3 MW wind turbine generators. The power generated in each string is distributed through secondary switchgear viz. Ring Main Units. The strings are grouped accordingly and connected to 33 kV Skaapvlei substation switchgear busbar 1a and busbar 1b. There is a bus section breaker between busbar 1a and 1b which is normally closed.

The 33 kV Skaapvlei substation has 2 outgoing feeders, each connected to the 132 kV Skaapvlei Substation and limited in capacity by respective 80 MVA transformers. The 132 kV Skaapvlei substation connects the wind farm to the national grid via a 42 km long, 132 kV Juno – Skaapvlei line. This is the only line and there is no redundancy. The maximum capacity on this line is limited to 176 MW.

Figure 17: Sere Wind Farm and BESS in relation to the Juno Substation (Source: DX Planning)

The extra capacity on this line will be utilised by the Eskom BESS programme which is at an advanced stage of procurement. The intent is to install a BESS with a capacity of 80 MW / 320 MWh at the 132 kV Skaapvlei outdoor substation.

The exiting feeder allocation on the 33 kV Skaapvlei indoor switchgear is as shown in Table 24

33 kV busbar 1a connected loads	Capacity (MVA)	33 kV busbar 1b connected loads	Capacity (MVA)
String 1-FDR 3	16.1	String 5-FDR 11	13.8
String 2-FDR 4	13.8	String 6- FDR 12	16.1
String 3-FDR 6	16.1	String 7-FDR 14	13.8
String 4-FDR 7	16.1		
Total Capacity	62.1		43.7

Table 24: 22kV Skaapvlei Wind Feeder Allocation

CONTROLLED DISCLOSURE

According to this feeder allocation, the maximum power that can be generated by the wind turbines and fed into the 33 kV Skaapvlei busbar 1a, is 62.1 MVA; the maximum power that can be generated and fed into the 33 kV Skaapvlei busbar 1b, is 43.7 MVA.

3.8.4 PV Plant Electrical Reticulation Philosophy

The reticulation philosophy for the PV plant is driven by the constraint to limit the combined generation output from the existing Sere Wind Farm and the proposed PV plant to the licensed maximum power evacuation capacity of 105.8 MW. Based on Table 3, the maximum PV capacity that can be accommodated at the 33kV Skaapvlei busbar 1a is 17.9 MVA whilst a maximum of 36.3 MVA can be accommodated at busbar 1b. The proposed electrical reticulation for the PV plant must comply with this philosophy to accommodate the capacity constraints. For this reason, 2 points of connection, 1 on busbar 1a and another on busbar 1b is required to accommodate the PV plant.

3.8.5 Electrical Reticulation Concept

3.8.5.1 DC system

The DC system mainly comprises of PV modules, DC cabling, combiner boxes, protective devices, and disconnector switches. PV modules are first connected in series to make a string. A group of strings (arrays) is then connected to the inverter through combiner boxes. The PV design (discussed in an earlier section utilizes polycrystalline modules with a central inverter topology configuration.

3.8.5.2 AC System

The AC system comprises mainly of step-up, two winding transformers, collector busbars (switchgear and protection) and AC cabling. The AC system facilitates power collection and distribution within the internal PV plant up to the POC.

3.8.5.2.1 Collection grid options

There are two internal PV plant electrical AC reticulation topologies that can be considered for this project viz. ring topology and star topology

a) Ring Topology MV connected PV

In a ring topology a closed ring of PV generators is created where either side of the ring is connected to a central collector system at MV level as shown in Figure 18.

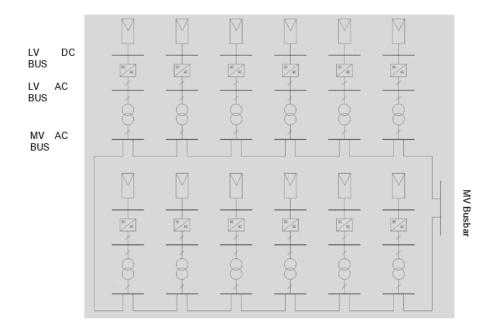


Figure 18: Ring Topology, MV connected Network

b) Star topology MV connected PV

In this option, each embedded PV generator viz. one generator consisting of modules, inverters, switchgear and transformer is individually connected to a central collector system at MV level as shown in Figure 19.

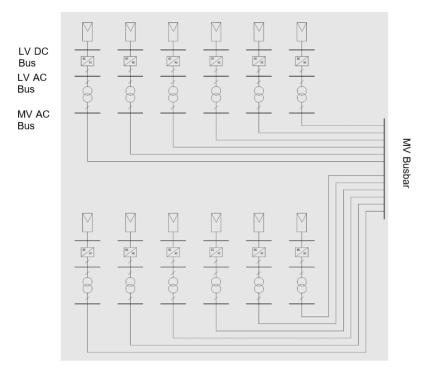


Figure 19: Star Topology, MV connected Network

CONTROLLED DISCLOSURE

3.8.5.2.2 Comparison of options

Topology	Advantages	Disadvantages
Ring topology	 The ring can be configured to send power in two directions from the generation source. The primary direction is established for normal operation. The alternate direction is established if one of the generators or cable is faulty. The topology is single fault tolerant hence offers a good reliability for the plant, Less costly option 	 Not as reliable as a star topology, May violate the capacity constraint to maintain the maximum power evacuated at 105.8 MW under faulty conditions.
Star topology	 Most reliable because the failure of a PV generator or cable does not affect the other generators. 	 Uses the most cable and thus is more costly to install as compared to the ring topology,

3.8.5.2.3 Discussion and Recommendation

The preferred solution will be to implement a ring topology as in this instance; the PV generators are looped, thus resulting in lower cable cost when compared to a star topology. Also, the ring is configured to send power in two directions from the source. In the case where one of the generators or cable is faulty, the power generated by the running PV generators in the loop goes in the alternate direction allowing power to still be fed into the substation. It is however possible in this configuration to violate the capacity constraints in instances where the wind turbines are generating at maximum with the likelihood being higher on busbar 1a, as that's where the least available capacity is. The proposed optimum solution, hence, is to maintain the ring formation however to limit connection at busbar 1a at 17 MVA and 36 MVA on busbar 1b. This can be done by keeping a normally open disconnector in the loop which can be closed as and when necessitated by operational requirements.

3.8.6 Technology Assessment

This section discusses the technology options available for the major equipment.

3.8.6.1 PV Generator Power Distribution Switchgear

The market survey showed that there is primary distribution Air Insulated Switchgear (AIS), Gas Insulated Switchgear (GIS) and secondary distribution Gas Insulated Ring Main Units (RMU) available as possible solutions for the collection and distribution of AC power at the PV plant. In addition to these switchgear technologies, another technology that is widely used in solar PV applications for power collection is an integrated MV inverter cabin which provides power conversion, voltage transformation, power collection and protection for a solar PV plant. By virtue of the proposed reticulation topology, the most applicable switchgear technology type in this case is the RMU switchgear.

A Ring Main Unit, (RMU), is a medium voltage metal-enclosed secondary switchgear assembly that comprises a combination of switch-disconnectors, switch-fuse combinations, or circuit-breaker functions. These functions incorporate integral cable earthing switches and have facilities for cable testing. This type of switchgear typically has low fault and current ratings and simple protection and control capabilities and has fewer mechanical operations compared to primary switchgear.

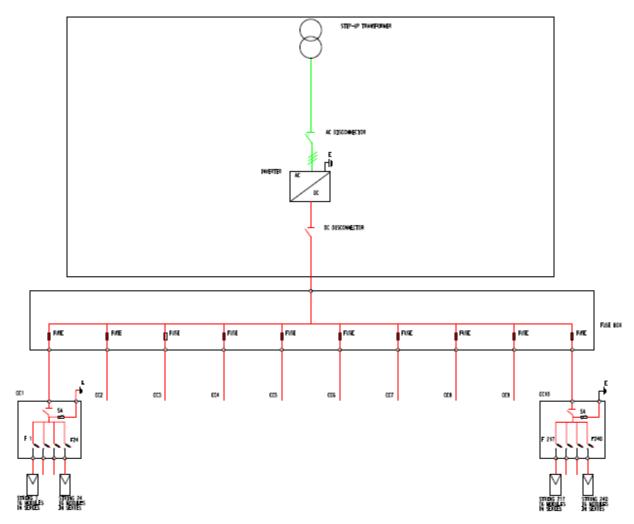
The inverter/MV cabin is not switchgear however it is a fully integrated technology available in the market for solar PV applications. The typical solution is an MV inverter cabin or shelter which favours a central inverter configuration. The cabin is a compact modular type-tested assembly which includes an inverter, LV distribution board, step-up transformer, MV switchgear and protection and an optional LV/LV auxiliary supply transformer. It operates between the DC field and AC MV grid connection point and carries out the DC/AC conversion and AC voltage elevation to the grid voltage level. The cabin is also equipped with protection devices that ensure the protection of maintenance personnel and against electrical defaults such as short-circuit and lightning.

3.8.6.1.1 Discussion and Recommendation

AIS and GIS primary switchgear is the least suited for this application. The MV inverter cabin technology is the optimal solution for this application. It offers a more compact integrated solution that enables power conversion, transformation, and collection. Also, keeping the major equipment in an enclosed cabin mitigates against the risk of corrosion typically present in coastal areas. Although the mechanical operations of the RMU are less compared to primary switchgear, it is acceptable in this case because there will be minimal switching in this application.

3.8.6.2 Transformers

Technically both liquid immersed and non-liquid immersed transformers are suitable in for this project however, to minimise risks of fire non-liquid immersed transformer is proposed. Also, it is most suitable for the inverter cabin solution proposed.


3.8.6.3 Cabling

Power from the strings of PV generators will be evacuated through underground power cables. This is a suitable solution for this project as the point of termination i.e. 33 kV busbar is localised i.e. approximately less than 1.5 km away. Typical competitive technology types for MV power cables are the paper insulated lead covered cable (PILC) and Cross-linked polyethylene cable (XLPE). PILC cable is the oldest cable technology used in entire voltage range starting from 1.1 kV ac to 750 kV ac. PILC cable is being gradually replaced by less hygroscopic polymeric insulated cable, XLPE. XLPE cable has distinct advantages, lighter weight, better electrical and thermal properties, less maintenance, and easier terminating procedure. XLPE is most suitable for this application where the service life of the plant is limited to 30 years and the soil conditions have limited moisture content. Currently XLPE cable is widely available and being extensively used in most installations. This cable technology type is recommended for AC MV cables.

3.8.7 Concept design proposal

3.8.7.1 DC System Design

The overall PV field is divided into sub-fields referred to as 'PV blocks'. As seen in Appendix C: Sere Solar Farm PV Block DC SLD, each PV block is equipped with PV Module arrays, combiner boxes, fuse boxes, DC cabling and a central inverter as shown in Figure 20

3.8.7.2 Combiner Box

The combiner box collects individual strings to form an array by terminating the individual string connections at the combiner box terminals. It houses the fuses for overcurrent protection for each individual string, on-load disconnector switch for array isolation and surge arrestors for over voltage protection. The combiner box is located between the solar field and the inverter. The fuse box can be a separate box or integrated to the inverter depending on the inverter type.

3.8.7.3 DC cabling

DC cables refer to the electrical wiring that interconnects the PV modules and the inverter. This is the wiring indicated in red in Figure 21 and on the indicative DC PV block SLD in Appendix C: Sere Solar Farm PV Block DC SLD .The minimum cable sizes shall be based on a current rating calculation.

3.8.7.4 Inverter

The inverter will have a DC disconnect switch and an AC disconnect switch on each side for isolation and maintenance purposes. The inverter will have the capability of detecting islanded operation as per the grid code referenced in this document. The inverter considered in this proposal is a 1 MW ac central inverter.

Concept Design for Sere Solar PV Plant Phase 1a	Unique Identifier:	474-12571
	Revision:	1
	Page:	47 of 93

3.8.7.5 AC system Design

The proposed design considers an AC electrical reticulation through MV inverter cabins. Each PV block contains 1 × inverter, 1 × transformer and 3.3 kV RMU switchgear as shown in Appendix C: Sere Solar Farm 33 kV AC SLD. The cabin houses inverter(s), transformer(s) and MV switchgear. Each inverter is connected to the transformer via an AC disconnect switch for isolation and maintenance purposes. The RMU is used to connect or loop to other adjacent inverter cabins and for inverter cabin isolation and protection. Each RMU accommodates one PV block. Figure 21 shows the arrangement for one such cabin. LV auxiliary supply for each inverter cabin is provided by LV/LV transformer inside the cabin.

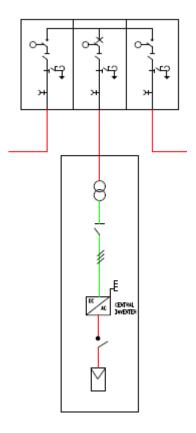


Figure 21: Arrangement in an MV inverter Cabin

3.8.7.6 Step-Up transformers

The step-up transformers in this design have two windings, one for low voltage (LV) and other for Medium voltage (MV). The transformers will step up the LV voltage at the output of the inverter to the required operating level of 33 kV at the POC.

3.8.7.7 Ring main unit (RMU)

The RMU comprises a combination of switch-disconnectors and circuit-breaker functions. As there is a requirement for remote control, the RMU is fitted with a remote terminal unit (RTU). Each MV cabin accommodates one PV block in the indicative design. The RMU configuration for each MV cabin is R-B-R viz.:

• 'R' for a switch disconnector

• 'B' for a circuit-breaker

The first and third panel consist of switch disconnectors; three positions switch each with their own disconnector and cable earthing switch. The second panel consist of a circuit breaker for transformer protection.

A suitable protection relay with the capability to perform protection (overcurrent, earth fault, under-and – over voltage protection), fault recording and calculation functions with a mimic that indicates the breaker status, remote control and monitoring of the breakers is required. The relay and all associated equipment should be specified for use with AC power supplies. The protection relay is installed for each circuit breaker forming part of the RMU.

Adequate mechanical interlock system designed (according to Eskom standard 240-56030406) for the circuit breakers, disconnect switches and the earth switches to prevent mal-operation and to ensure operator safety is required. The design of the interlock system must prevent the operator from physically overriding the interlock controls.

The main functionality and features of the RMU is as follows:

- MV CB for transformer protection
- Cable disconnect switches for isolation or maintenance
- Earth Switches
- Interlocking for the CBs, disconnect switch and the earth switch
- CBs disconnect switch and earth switch provision to be locked in the ON/OFF position.
- CBs disconnect switches and earth switches capable of being operated local and on remote.
- Metering and Measurement
- Internal arc classified
- Free standing suitable for use in the cabin

3.8.7.8 Point of Connection

The identified POC is the 33kV indoor switchgear located in the Skaapvlei substation. This substation is an Eskom distribution network component and is thus operated by Eskom Distribution. The Skaapvlei substation is the collector substation for the 100MW Sere Wind Farm. This Skaapvlei substation connects to Juno Main Transmission Substation via a 132kV line. The new breaker panels and associated equipment required to accommodate the POCs is to be extended to the existing 33kV switchgear. The existing gear consists of 12 single busbar panels. Floor frames have been installed to the left and right of the existing switchgear for future panel extensions. The extension panels will comply technically with the existing breaker panels. The new panel and breaker shall comply with all internal arc, mechanical service, voltage, and current specifications of the existing switchboard as well as comply with any additional requirements for the PV plant installation such as the metering and measurement requirements.

The breaker panel shall comply with 240-56065131 and manufactured in accordance with SANS 62271-200. The on-board protection scheme shall comply with all the protection functionalities currently provided by the protection schemes installed on the existing feeders which include the following: O/C & E/F protection, Arc flash Busbar Protection and Breaker Fail protection. Arc flash and breaker fail functions to be integrated into the IEC61850 system by using Goose messaging. Furthermore, the protection relay shall have event recording facility and provide DNP3 protocol via RS485 to the existing SCADA system. The protection relay shall also be capable to interface with the existing Remote Engineering Access IEC61850 protocol installed at the substation.

The 33kV Breaker Panels will be respectively connected to the Solar PV plant via two respective XLPE 33kV cables. All new 33kV cables will comply with 240-56063792 - Specification for Medium Voltage

XLPE And Impregnated Paper Insulated Cables Standard. All new cable accessories will comply with 240 – 56030619 – Accessories for Medium-Voltage Power Cables for Systems with Nominal Voltages of 11kV to 33kV Standard.

3.8.7.8.1 Metering and Measurement at PoC

Tariff Metering

Full four quadrant tariff metering (Class 0.2) Main and Check energy meters will be installed at each 33 kV PV POC feeder at the 33 kV Skaapvlei Substation as per the indicative design in Appendix C. The meters shall be capable of providing the following at minimum:

- Tariff metering,
- Bi-directional energy measurements
- Power quality analysis with harmonic measurement capability
- Demand and power factor control
- Load curtailment
- Equipment monitoring and control
- Energy pulsing and totalisation
- Instrument transformer correction

The meters procured must be listed in the Eskom standard 240-56227589; List of approved electronic devices to be used on Eskom Power Stations.

The tariff metering installation shall be in accordance with 240-56364444, Standard minimum requirements for the metering of electrical energy and demand. This includes but is not limited to the requirements around the accuracy class of the meters, CTs and VTs.

The metering equipment shall be installed in a standard metering panel according to 240-65292589, Standard for Switching Station Meter Panels: HV/MV Indoor. The panels shall include meter modules, modem modules or VT selection modules, where applicable.

3.8.7.9 PV Plant Auxiliary Supplies

3.8.7.9.1 Field equipment

The LV auxiliary supply required for the PV plant field equipment is provided through a PV field auxiliary supply DB which is supplied from an LV/LV transformer which can be located inside the MV cabin. This transformer taps off the output of the inverter and steps down to the applicable LV required by the Auxiliary loads. These loads can be localised loads such HVAC systems, UPSs, lighting, etc. The field auxiliary DB can be located outside the MV cabin and hence suitable for outdoor applications. It should also be easily accessible. Backup supplies for the auxiliaries are provided through a UPS system which is fed from the LV/LV transformer. The UPS and associated equipment are located in the MV cabin.

3.8.7.9.2 O&M building

Auxiliary power to the Sere wind farm administration building and workshop areas is supplied through a 1 MVA transformer owned and operated by Eskom Distribution. The same transformer is proposed to be used to supply auxiliary power to the PV O&M building. Auxiliary loads include HVAC, lighting, socket outlets, CMS and related equipment, security systems (perimeter lighting, cameras, gate motors, etc.), UPSs, telephones, fire detection, etc.

CONTROLLED DISCLOSURE

These loads will be supplied through an auxiliary DB (distribution board). The sizing of the board is to be based on the short-circuit study and PV plant auxiliaries load requirement. Backup supplies for the auxiliaries are provided through a UPS system which can be fed from the existing Sere Wind Farm DB.

3.8.7.10 Backup Supplies

Uninterruptible Power Supplies (UPS') will be used to provide ac backup supply to electrical equipment located in the field and power the SCADA system in the O&M building.

3.8.7.10.1 PV Plant Security Lighting

Security lighting shall provide sufficient illumination to secure zones and external areas of the PV plant. Illumination shall be designed according to the security design.

3.8.7.11 Earthing and lightning protection

An earthing system shall be provided in the solar PV plant and shall be designed and installed in accordance with Eskom and all other applicable standards such as IEEE80. The fault levels at the solar PV plant will be used as input to the design. The design shall reduce the risk (safe step and touch potential) to personnel or animals from electric shock under normal operating conditions as well as fault conditions. It also ensures the functionality of electrical protection equipment during electrical faults.

Earthing and lightning protection installation shall meet the applicable standards including, but not limited to Eskom standard 240-56356396, SANS 10142-1, SANS 62305 and IEC 60364-7-712. Earthing and lightning protection is achieved by means of a well-structured and integrated earthing system. It starts with earthmats, electrodes, structures etc., all connected to form a network. The electrical equipment is then connected to the earthing network. The current solution for grounding and lightning protection consists of three elements: Earthing; Equipotential bonding; and Surge Protective Devices all of which shall be assessed and designed by the EPC.

Single core MV cables shall be single point earthed as per Eskom standard 240-56227443 and any other applicable standards. All exposed conductive parts of the PV system (e.g. module frames, mounting frames, cable trays, weather station, etc.) will be earthed via an equipotential bonding structure. The aim of bonding is to bring all the bonded parts to the same electrical potential to avoid dangerous differences in voltages. The bonding conductors shall be parallel to and in close contact as possible with D.C. cables and A.C. cables and accessories (source: IEC 60364-7-712). Where the bonding conductors are likely to carry lightning current, the cross-sectional area of the conductor shall be sufficient sized.

3.8.7.12 Surge Protective Devices

Surge protection devices shall be installed to protect the PV system against voltage surges. Surge protection devices shall be installed at the combiner boxes, inverters' DC inputs and AC sides, interconnection lines and PV plant auxiliary distribution boards.

3.8.8 GRID CODE REQUIREMENTS

The PV system will be designed to meet the latest requirements of the Grid Connection Code for Renewable Power Plants (RPPs) Connected to the Electricity Transmission system (TS) or the Distribution System (DS) in South Africa, where compliance to this code will be assessed at the POC. A PV plant of maximum 20 MVA falls under Category B of the Grid code definition, that is, a plant sized between 1 MVA and 20 MVA connected at MV level, however, to enable the grid code compliance of the Sere wind and PV plant as a hybrid, the solar PV plant is required to match the category of the Wind plant which is category C

Table 26 summarizes the major Grid Connection technical requirements that apply for this plant to ensure the safe operation of the plant in conjunction with the grid. The plant is required to disconnect from the grid automatically and safely in the event of an abnormal condition.

Table 26: Minimum Plant Technical Grid Code Requirements

Grid Code Requirement	Description	
Voltage Range	Operating continuously within the POC voltage range of 0.9 pu and 1.08 pu.	
Frequency Range	Allowed frequency is within the range of 49.0 Hz and 51.0 Hz to the grid. The plant shall disconnect when its frequency is higher than 51.5 Hz for longer than 4 seconds or less than 47.0 Hz for longer than 200 ms.	
	The plant is to synchronise with the grid before a connection is established according to category C synchronising conditions stipulated in the Grid Code.	
Voltage Ride Through	The plant shall be designed to withstand voltage drops to zero, measured at the POC, for a minimum period of 0.15 seconds without disconnecting. It shall also be designed to withstand Voltage peaks up to 120% of the nominal voltage measured at the POC, for a minimum period of 2 seconds without disconnecting. The plant shall comply with the voltage ride through capability for a category C utilising non-synchronous machines.	
Power Quality	Plant power quality is measured at the POC. Voltage jumps, phase jumps and harmonics at the POC are required to be maintained within the desired range. As a result, the plant must be able to withstand sudden phase jumps of up to 40° at the POC without disconnecting or reducing its output. After conditions at the POC have reverted to normal, the maximum allowed settling period to resume normal operation is 5 seconds.	
	Power quality parameters to be reported on flicker, harmonics, and unbalanced voltages.	
Power Frequency Response	In case of frequency deviations, the plant shall be designed to be capable to provide power-frequency response to stabilise the grid frequency. This is done by either supplying additional generation or reducing it.	
	During high frequency >50.5 Hz, operating conditions, the PV shall be able to provide mandatory active power reduction requirement to stabilise the frequency.	
	During high frequency > 51.5 Hz for longer than 4 seconds the PV shall be tripped.	
	Additional power frequency response requirements specific to category stipulated in the grid code, are also applicable for this plant.	
Reactive Power Capabilities	When operating between 5% and 100% of rated power (MW) the plant of category B shall have the capability of varying reactive power (Mvar) support at the POC within the reactive power capability ranges as illustrated by the Reactive power requirements for RPPs of category C at the POC figure in the Grid Code.	
Protection and fault levels	The RPP generator shall ensure that the plant is dimensioned and equipped with the necessary protection functions so that the plant is	

protected against damage due to faults and incidents in the Transmission and Distribution system as per the grid code. The RPP of category shall be equipped with effective detection of islanded operation in all system configurations and capability to shut down generation of power in such condition within 2 seconds. Islanded operation with part of the TS or DS is not permitted unless specifically agreed with the Network Service Provider.
--

The Control Function Requirements to aid in the overall control and monitoring of the plant are summarised below:

Control Function	Description
Voltage Control	The plant shall have a voltage control function to control the voltage at the POC.
Power factor Control	The plant shall have a power factor control function to control the reactive power proportionally to the active power at the POC
Reactive Power	The plant shall have a reactive power control function to control the reactive power supply and absorption at the POC independently of the active power and the voltage.

Table 27: Plant Required Control Functions

Note: All function requirements shall be as per the Grid Code

3.9 CONTROL AND INSTRUMENTATION DESIGN

3.9.1 Control and Monitoring system (CMS) Network Design

3.9.1.1 Network Description and Network Operation

The on-site Control and monitoring system (CMS), otherwise known as the Supervisory Control and Data Acquisition (SCADA) system, will be required on-site. The on-site CMS will be responsible for data acquisition and monitoring of instruments and equipment, that include,

- PV Inverter systems,
- PV meteorological systems (Weather stations),
- PV string combiner boxes,
- Electrical Medium voltage (MV) switchgear,
- Electrical transformers,
- Electrical Protection relays,
- Electrical Energy measurement and metering,
- CMS Uninterruptable power supplies (UPS),
- CMS Internal environmental sensors of equipment cabinets,
- BoP potable water and sewage tank levels,
- BoP Fire detection system (FDS),
- BoP Heating, ventilation, and air-conditioning (HVAC) system

The plant will include a control room for two (2) plant operators. The Sere Wind Farm control room will be shared for this purpose. Under normal operating condition, the plant is expected to operate automatically with minimal operator intervention.

The on-site CMS will include redundant plant information servers to store all plant production data for the lifespan of the plant. All redundant equipment shall be alarmed if a failure occurs to return the functional redundant system to service as soon as possible. The on-site CMS will include a web-server that securely communicates real time and historical plant data to web-clients. The web-clients are remote users with authorised access for monitoring the plant in near real time via a web browser. A standardised set of display pages will present data to the local operator and remote users.

The CMS will automatically generate and send a short message service (SMS) notification to Eskom maintenance staff in the event a breaker at the POC or a central inverter is automatically disconnected from the power grid under a fault condition experienced during normal operation. The SMS will notify the user of the fault condition resulting in automatic disconnection.

A daily, weekly, and monthly report of the plant production will be generated automatically and sent via email notification to authorised users.

3.9.1.2 Network Architecture

The network will be single fault tolerant and will form the backbone CMS network to enable data communication between the field equipment and CMS servers. Any fault in a single segment of the network should not cause data communication failure between the control room and the plant. The core network will allow for full duplex communication.

The PV plant will contain a CMS network panel that connects the various sub-systems of the plant:

- Central inverters,
- Auxiliary power (LV) and generator transformers (MV),
- Switchgear MCCBs and status indication relays,
- String combiner boxes,
- Weather stations,
- UPS and
- Fire panels.

The CMS network panel will be installed inside the inverter cabin. Active cooling of the equipment is required.

The substation will include a CMS network panel that connects to the CMS network. The panel will interface to:

- Switchgear breakers and status indication relays (including IEDs),
- protection systems,
- UPS,
- Fire panel (In O&M room)
- HVAC panel (in O&M room).

There will be one pair (2) of redundantly configured CMS servers and one pair (2) of redundantly configured network switches that will be installed in the Sere Wind Farm O&M building server room to store the plant data, process the data and present information to the operator via the human machine interface (HMI) of the operator systems. It is preferred that a Master-slave redundant configuration is employed for the network switched and servers located at the server room. Each CMS server will include a plant information server which will store all plant production data for the lifespan of the plant. The plant is required to have two (2) operators, therefore, two (2) thin client PCs will be required for the operators in the control room. A single CMS software application will be installed onto the CMS servers for control and monitoring of all plant equipment.

At an operational level, redundancy will be employed such that any failure of a server, or a thin client, or network switch should not result in loss of operations and monitoring of the plant.

A common network switch will be installed in the network cabinet of the server room for interfacing to systems such as:

- GPS based time synchronisation system,
- Control building HVAC system,
- Server room UPS monitoring,
- HVAC panel (at O&M building),
- Network printer,

The firewall, webserver and VPN gateway are required for highly secured and stable connectivity of the PV plant to the internet. The Eskom Cyber Security, DMZ, IT/OT interface standards need to be complied with.

3.9.1.3 CMS Servers

There will be one pair (2) of redundantly configured CMS servers. The servers are required to operate as a primary-standby configuration. The standby server will continue full operation of the CMS if the primary server fails to operate normally. A high speed (watchdog) interface will interconnect both servers to establish a dual redundant configuration. Each server machine of the redundant pair will include the following hardware:

- Redundant central processing units (CPU),
- Redundant array of independent disks (RAID) configuration,
- Redundant power supplies with dual power input ports,
- 19" (inch.) rack-mountable type enclosure,
- on-board memory to continuously process and store all real time plant data for the lifespan of the plant,
- Removal media such as a digital versatile disk (DVD) writer and front accessible universal serial bus (USB) ports.

The dual redundant CMS servers will accomplish multiple functions that include:

- hosting the latest Windows operating system,
- hosting a single CMS application software for operating and monitoring of all equipment.
- hosting anti-virus software,
- store all engineering logic and CMS network configuration settings,
- processing of plant data via the redundant information servers and storage of data onto the CPU database,
- communicating to the thin clients for plant operation and network configuration,
- network configuration, logic development, mimic development, antivirus, and software updates,
- automatic copying of data from the CPU's built-in historian onto the removable media at preconfigured intervals, and
- saving of information, backing up of data onto removable media, closing all running applications and shutting down the CPU in an automatic sequence after detecting the loss of the input power to the UPS system.

The operating system and application software versions will be confirmed during tender clarifications.

3.9.1.4 Operator System Thin Clients

There will be two (2) thin client machines for the HMI between the plant operator and the CMS servers. The thin clients will be configured such that each thin client can be used to operate and monitor the entire plant with full functionality. Both thin client machines will be configured to run simultaneously, i.e. 100% operational redundancy.

Option 1: Thin clients will be installed at the operators' desk in the control room.

Each thin client will be a tower type and will be securely installed on the plant Operator's desk. Operating temperature within the control room will be uncontrolled since operators are likely to switch off the air-conditioner during seasonal periods. Thin clients will be exposed to warmer temperatures if heat mode is switched on HVAC system in the control room. Care must be taken to allow for circulation of heat generated by the thin clients. Improper air circulation will expose the thin clients to higher operating temperatures due to thermal runaway. This will deteriorate the lifespan of the thin clients and could cause repetitive failures during operation.

Option 2: Thin clients will be installed at the server room.

The thin clients will either be tower type or 19" rack type installed in the network cabinet. KVM (keyboard, video, and mouse) extenders will be required to extend the use of the peripherals between the thin clients at the server room and the HMI peripherals at the control room. The advantage of using KVM extenders is realised through the benefit of installing the thin clients inside a controlled environment. The disadvantage of this method is the additional cost for KVM extenders.

Industrial type KVM (keyboard, video, and mouse) extenders are used to extend data communication between the thin clients located at the server room and the peripherals and monitors located at the control room. Depending on the requirement, each KVM extender is equipped with multiple ports (I.e. SUB-D, PS2, HDMI, USB, Ethernet, DisplayPort). The interface between each KVM is an Ethernet cable.

The KVM extenders should not degrade the video quality, as displayed on the operating screens, nor should it introduce any operating delay. All KVM extenders will be securely installed at the operators' desk to prevent physical interference. It is recommended the KVM extenders be rated for industrial use.

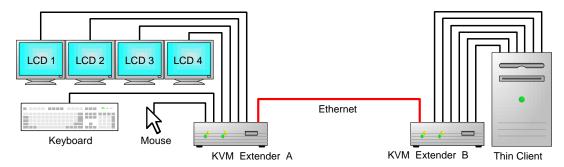


Figure 22: Typical implementation of KVM extenders

Recommendation:

Option 2 is recommended to maintain a fixed operating temperature of the thin client machines. This ensures that the lifespan of the equipment will not deteriorate and that the control room temperature can be adjustable to suit the plant operator's needs. The server room is situated next to the control room.

3.9.1.5 Network Switches

Industrial Ethernet network switches will be installed to communicate between multiple network nodes. The switch will include as a minimum:

- managed type with management and configuration via the CMS server,
- monitoring of the port connections, communication link status, bandwidth, and device health status indicating alarms and faults to the server and remote users,

- compatibility with Simple network management protocol version 3 (SNMP v3) and Internet protocol version 6 (IPv6),
- power supply from dual redundant power sources (230 Vac or 24 Vdc),
- dual power input ports
- mounted on a Deutsche Industrie Norm (DIN) rail in CMS network panels, or, mounted on a 19" network cabinet for redundant master switches located in the server room,
- ingress protection (IP) 20 rating as minimum,
- 20% spare network ports (rounded up),
- wide operating temperature range,
- optical fibre and Ethernet ports,
- auto negotiation, and
- auto crossover (MDIX)

3.9.1.6 Network Printer

There will be one A3 colour printer installed in the PV plant control room and connected to the CMS network.

3.9.1.7 Network Time Synchronisation

Over a period of time, the internal clock of each device will drift from the internal reference point. A time synchronisation system will be installed to synchronise the time of the system clock of each device connected to the CMS network to a common time source. A GPS type time synchronisation system uses the geographical position of the plant and orbital satellites to continuously update the time source with reference to the Universal time clock (UTC). Common clock synchronisation assures consistent stamping of data onto the CPU historian database which simplifies data analysis and troubleshooting during an investigation. The time synchronisation system will include a Global positioning system (GPS) antenna and a time server. The time synchronisation system will implement the network time protocol (NTP) via an Ethernet connection to the CMS network switches. Time stamping with an accuracy of ± 10 milliseconds (UTC+2) is required.

3.9.1.8 CMS Network Panels

The CMS network panel will be installed inside each inverter cabin and the switchgear rooms. The following equipment will be installed inside each CMS network panel:

- a managed type optical fibre switch with multiple ports.
- network protocol or medium convertors (E.g.: RS485 to Ethernet),
- digital or analogue input or output (IO-Ethernet modules) to measure signals from the ambient air temperature and relative humidity sensors inside each CMS network panel,
- an optional programmable logic controller (PLC) with on-board IO cards and protocol convertors,
- splice trays for fibre optic cables (located in a separate compartment of the network panel),
- cable channels, terminal strips, and
- 24 Vdc DIN rail mount power supplies.

All electronic equipment installed inside CMS network panels will be suitable for continuous operations in an uncontrolled environment subjected to wide temperature ranges.

The panel will be designed such that the following equipment is physically segregated from each other within the panel:

• Electronic network equipment (switches, protocol or media convertors, IO cards, PLCs, internal temperature sensors, etc.),

- power supply and associated equipment, (MCBs, SPDs, etc.) and
- Splice trays and patch panels for optical fibre cabling.

3.9.1.9 Server Room Network Cabinets

The CMS servers, thin clients, redundant network switches and UPSs will be installed in 19" rack type network cabinets. It is preferred that patch panels be mounted in separate network cabinets from the servers. As far as possible, all connectors on rack mounted components must be rear facing in the cabinet for easier cable management. Network cabling will be top entry while power cabling will be bottom entry. The server room network cabinets will have the following characteristics:

- Top and bottom panels with holes for cable entry,
- Grommets will be installed where panels are cut for communication and power cable entry,
- Internal cable channels or traces to neatly route cables inside the cabinet,
- Removable blanking panels on all unused slots or sections,
- Sufficient depth (> 200mm free space) to allow air circulation around cables in the rear,
- Perforated front and rear door and side panels to allow circulation of air,
- Flexible brushes to be used to prevent air leakage via cable entries or cut-out,
- Include 19" racks and DIN rails to mount equipment,
- Removable perforated front and rear door panels,
- Doors with manual locking mechanism and automatic open/close detection,
- Internal lights for illumination,
- IP 20 rating,
- 20% uninstalled space on the racks and DIN slots to install spare equipment, and
- internal air temperature and relative humidity sensors monitored on the network cabinet (local) and the CMS (operator HMI). Internal temperature to be controlled at 22°C ± 2°C.

3.9.1.10 CMS Network Interface to PV Plant Sub-System (or Black Box Systems)

Meteorological System

The meteorological system commonly referred to as 'weather station' containing specific instruments will be installed at specific positions on the PV plant to provide environmental data. The instruments at specific location of the plant will connect to its dedicated data acquisition system. Each weather station data acquisition system will communicate to the CMS server via the optical fibre ring network.

The meteorological information that is required to be measured by specific instruments is described:

Global horizontal irradiance (GHI) is measured by the Pyranometer and irradiance at the Plane of array (POA) will be measured by a pair of Calibrated solar cells. The output parameters from both instruments are an analogue (4-20mA) current reading that is converted to watts per square meter (W/m^2) .

A pair of calibrated cells is installed to determine the cleaning frequency of the PV panels on the plant. This is achieved by cleaning one solar cell while leaving the other cell dirty. A comparison is made with the output irradiation of both cells to determine what percentage of power is lost when the PV panels are soiled with dust or silt.

The speed and direction of the wind that blows along the horizontal plane of the plant is measured by an anemometer and a wind vane. The main purpose of these sensors is to record the wind situation at specific site and the data from these sensors along with others will be useful to estimate the solar irradiation at module plane, if the installed reference cells are malfunctioned. Furthermore, the data from these sensors can be useful to support any claim during operation if the failure is due to wind related issue. The output parameter from the anemometer is an analogue (4-20mA) current reading that is converted to meters per second (m/s) or kilometres per hour (km/h). The output parameter

from the wind vane is a 4-20mA reading that is converted to an angle (0-359°) in degrees with 0° being true north.

The rainfall on a PV plant is measured by a tipping bucket rain gauge which uses a tip switch to count the number of droplets. The digital pulses are transmitted to the CMS server to be converted to millimetres (mm) of rainfall.

Ambient air temperature and relative humidity measurement is done to record the meteorological condition of the site. Panel surface temperature data is used when verifying the short term performance against the long term guaranteed performance (commonly called temperature correct performance ratio). The PT100 temperature sensor is installed upright in a secure housing to measure the ambient air temperature by outputting a 4-20mA signal. The PT100 sensor is installed at the back pane of the PV panel to continuously measure the surface temperature of the panel. The performance of the semiconductor cells in the PV panels changes as the temperature of the material change.

The data from meteorological instruments is normally communicated to a weather station or data acquisition system to be processed. The system is an intelligent, black box unit that can communicate with the CMS server. The weather station will connect to the CMS network using either RS485 or optical fibre.

The data from reference cell and PT 100 (module back- on special case) will be used directly to evaluate the plant performance. A Pyranometer and ambient temperature will be measured to have a record of meteorological status on project location and these data will be used to cross check the reading from reference cell (especially from Pyranometer). The measured meteorological parameters will be stored on at least 15 minutes inverter basis.

• Central Inverters

The inverters are intelligent devices that can communicate data to the CMS servers. Inverters include their own built-in control and protection system. The on-site CMS will interface to the inverter control system to monitor data in real time. Open/close commands will be sent from the CMS thin clients to start/stop the inverter from the control room. The communication interface between the inverter and CMS is Ethernet, RS485 or optical fibre.

• Intelligent DC String Combiner Boxes (SCB)

DC string combiner boxes used in solar PV plants basically combine multiple parallel strings from the PV array. The combined DC power is supplied over a single DC cable to an inverter or a second combiner box. Intelligent DC combiner boxes are installed with measurement and data communication capabilities to monitor individual string current, average DC voltage, isolation switch status and internal temperature of the box. Each SCB will connect to the CMS network using either RS485 or optical fibre.

• Switchgear

Medium voltage (MV) switchgear panels (RMU) at the inverter cabins will be controlled using motorised controlled circuit breakers (MCCB). The plant CMS will interface to the switchgear panel to monitor the status of the MCCBs. Command to open/close each MCCB will be initiated via the plant CMS at the control room. The switchgear panel will include 24 Vdc interposing relays to allow the CMS to interface using digital IO cards with potential free terminals. This method is commonly known as hardwiring.

Emergency stop/trip signals will be hardwired from the push button switch directly to the switchgear breaker. No emergency trip/stop commands will be communicated to the switchgear via the CMS network.

• Energy Meters

All RMU integrated energy meters are required to communicate data to the on-site CMS using either optical fibre or Ethernet.

• Protection relays

Each PV block will be equipped with IEDs at the POC switchgear. All these protection relays are required to communicate data to the on-site CMS using either optical fibre or Ethernet.

• Uninterruptable Power Supply (UPS)

An uninterruptable power supply (UPS) system, including battery backup, will provide 230 Vac power to the CMS servers and network equipment inside the server room, control room and CMS network panels of the Project.

The UPS system will have the capability to communicate to the CMS server via the core network. The following parameters are required as a minimum:

- Warning indications and alarms in an event of UPS failure or fault conditions,
- Remaining battery life in terms of percentage (%) and remaining minutes of supply, Safe shut off commands to the CMS server when the battery life reaches the reserve level of 25%.

• Potable Water and Sewage Tanks

Where applicable, the potable water storage tank and sewage storage tanks will include continuous levels sensors that are required to be monitored at the CMS. The level sensors will interface to CMS network panel closest to the tanks. IO cards will be installed to sample the data from the level sensors.

• Fire Detection System

A fire detection system (FDS) will be installed. The plant FDS is required to be monitored remotely and on-site. A detailed fire risk assessment, Eskom Fire Protection – Detection Assessment Standard 240-54937439, will be conducted to determine the type and number of sensors, warning indicators and fire panels that will be required for the Project. The Fire detection system need to comply with SANS 10139 (latest revision) or equivalent accepted standard as well as the Eskom Fire Detection and Life Safety Design Standard 240-56737448. The following areas of plant require FDS as a minimum:

- All inverter cabins,
- O&M building rooms

The number of fire panels used will be dependent on the distance between each equipment room and the limitation of the data communications. Based on RS485 communications between a fire panel and associated sensors, it is preferred that the following number panels be used per plant area:

Each fire panel is required to have an on-board display for local monitoring. Each fire panel is required to be monitored at the PV plant control room and remotely. It is preferred that each fire panel will interface to the closest CMS network panel using either RS485, Ethernet or optical fibre. Each fire panel will operate as a standalone unit to ensure that local alarms are maintained in the event that communication between panels and control room fails. Each FDS will be powered from a local UPS either at the inverter cabin or switchgear room.

3.9.2 CMS Network Interface to 3rd Party Networks

Remote Access to the PV plant CMS Network

Remote monitoring is achieved through an IT/OT interface and required DMZ, as per Eskom's 32-373: Information Security – IT/OT and Third-Party Remote Access Standard and 240-79669677 DMZ Designs for OT Systems.

Remote control and monitoring is required at the O&M Contractor's offices during O&M period of commercial operation. The detailed design of the IT architecture and required topology, as well as the required cyber security designs and requirements will be achieved through a collaboration effort between the appointed EPC contractor and Eskom stakeholders.

The O&M contractor and authorised Eskom users will be granted access to the plant CMS network via this interface to monitor the plant in near real time. The remote access will be via a firewall to establish a secured virtual private network (VPN) connection using the IPSec protocol.

The following table summarises the local and remote control.

Table 28: Local and remote control

	Control vs. Monitoring	Location	Communications	Alarm Response & Fault Reporting
Local (on-site)	Full control and monitoring. Alarm + fault response	On-site control room	OT network	Full functionality as per alarm philosophy and fault detection
Remote (off-site) EAL offices	Only monitoring No control Alarm + fault response	EAL offices (Midrand)	Achieved via an IT network where an IT/OT interface is at plant. DMZ, firewalls, cyber security – detail design to be by Eskom IT & Cyber Security	As per alarm philosophy and fault detection SMS/email of alarms, faults and fire detection sent to operational and maintenance personal
Regional Control	Limited control / monitoring. Grid Code compliance	Regional Control offices	Telecommunication through the substation	In line with the control / monitoring required
EPC O&M	Full control and monitoring. Alarm + fault response O&M period of commercial operation	TBD – EPC offices	Achieved via an IT network where an IT/OT interface is at plant. DMZ, firewalls, cyber security – design to be done with Eskom teams	Full functionality as per alarm philosophy and fault detection
Web- based client	Only monitoring. No control. Access to plant	Anywhere from Eskom LAN/business network	OPC via IT network.	Status reporting and when the plant overview is shown

CONTROLLED DISCLOSURE

Control vs. Monitoring	Location	Communications	Alarm Response & Fault Reporting
historian for data and reporting.			

3.9.3 CMS Power Supply and Power Distribution

The power source to CMS equipment will be either 24 V dc or 230 V ac. It is recommended at all 230 V ac equipment installed in the server room be supplied by a dual redundantly configured 230 Vac UPS with a battery bank to provide uninterruptable source of power for a duration of four (4) hours, immediately after the main 230 V ac supply to the UPS system is isolated. The purpose of the UPS system is to provide a regulated power source to sensitive CMS equipment. Furthermore, the UPS will continue providing regulated power to essential CMS equipment in order to ensure a safe shutdown of the CMS servers and thin clients when the main 230 V ac supply to the UPS is isolated. The dual redundant UPS system will be installed in a dedicated 19" cabinet inside the server room. The batteries will be sealed-type, deep cycle and free from hydrogen discharge. Batteries that discharge hydrogen must be installed in a dedicated battery room with adequate ventilation in accordance with Eskom standards. The following types of batteries are acceptable:

- Valve regulated lead acid (VRLA),
- Nickel Cadmium (NiCd), or
- Lithium Ion (Li-ion).

If during operation, the batteries reach a capacity of 25%, the UPS will send a command to the CMS servers and thin client PCs, to safely shutdown. The UPSs will include an on-board LCD panel to display the performance parameters of the system and an on-board audible alarm to buzz when the battery is running on reserve power or if there is a system fault.

Each CMS network panel and fire panel will be fed from the UPS that's located in each inverter cabin and control room of the Project. This ensures continuous supply of power to the core optical fibre ring network. DC-DC rectifiers (e.g. 110 V dc - 24 V dc) will be installed inside the CMS network panel and fire panel as required.

Electronic equipment such as weather stations and string combiner boxes will be fed from suitably rated 230 V ac - 24 V dc power supply units (PSU) that are installed inside the equipment itself. The PSUs will be fed from the local auxiliary power DB.

The power source requirement for the CMS system equipment is documented in the table below.

Table 29: CMS equipment power supply requirements

Control system equipment	Equipment room / location	Power source per device
CMS network panels	Inverter cabins	230 V ac (UPSs) per inverter cabin and DB
String combiner boxes	PV field	230 V ac from Aux. DB per cabin
Weather station (DAS)	Next to O&M buildings	230 V ac from Aux. DB per cabin
Fire panels (FDS)	Inverter cabins and O&M room	230 V ac (UPSs) per inverter cabin and control room
1 x 19" UPS cabinet	PV plant server room	230 V ac from PV Aux DBs located in the control room (Aux 1 and Aux 2)

CONTROLLED DISCLOSURE

Control system equipment		
1 x 19" network/server cabinet	PV plant server room	230 V ac (UPSs)
- Redundant CMS and plant information servers		
- Redundant master switches		
- Common switch		
- GPS clock		
- Web server		
- Firewall & internet modem		
2 x thin clients	PV plant control room / server room	230 V ac (UPSs)
4 x KVM extenders	PV plant server room and control room	230 V ac (UPSs)
6 x 19" and 2x 40" monitors	PV plant control room	230 V ac (UPSs)
3 rd party equipment		
Local security system cabinet	PV plant server room	230 V ac (UPSs)
IT/IM cabinet	PV plant server room	230 V ac (UPSs)

3.9.4 Control and Server Room Arrangement

The PV plant control and server room is expected to comply with the Eskom standards for Process control and ergonomic design. The existing Server room includes raised floors to allow for cable access into the network cabinets. Redundant equipment/servers are not to share the same server cabinet and are split over across two cabinets. The Server room is expected to cater for the following number of 19" floor standing network cabinets:

- 1 x CMS network cabinet (servers, thin clients, etc.),
- 1 x CMS network cabinet (network switches, splice trays patch panels),
- 1 x redundantly configured CMS UPS system cabinet,
- 1 x PV plant security system network cabinet,
- 1 x IT/IM network cabinet, and
- 1 x network cabinet for Eskom approved gateway/RTU (Grid code).

3.10 HEATING, VENTILATION AND AIR-CONDITIONING (HVAC) SYSTEM

The solar PV plant will be using the building infrastructure built for the wind farm as far as possible. This being the case, certain hardware to ensure continuous operation and security monitoring of the plant will still require continuous cooling. The servers installed to ensure this functionality is in the server room. The server room, office (including kitchen area and ablution facilities) and control room will be shared with the existing infrastructure for the wind farm.

A HVAC system is required for continuous temperature and humidity control in the server room.

The server room requirements are specified in the 32-894 Eskom Server Room and Data Centre Standard. The O&M PV storeroom ventilation is provided by a ducted extraction system and window extractor fans discharging contaminated air to outside with make-up air supplied from the surrounding areas via door grilles and ducted fresh air supply.

The site environmental conditions are as follows:

- Summer: 40°C DB
- Winter: 0°C DB
- Altitude: 32 m

The following general design criteria is applicable for HVAC system design:

- Air pressurization and filtration to be implemented to maintain good indoor air quality.
- Adequate fresh air for normal and emergency ventilation.
- Avoid refrigerants harmful to the ozone layer.
- Noise levels of HVAC plant to not exceed background noise levels.
- The operation of the HVAC system for the storeroom shall be manually operated when in use by staff and turned off when not in use.
- The split units will mitigate the risk of the unit being left on for extended periods of time or the unit automatically switching on after a power cut with the use of motion sensors, auto-control cards or other means that are suitable for the application
- All HVAC equipment that services the server room shall operate for 24 hours per day, seven days per week, and are to be supplied with electrical and mechanical redundancy.
- Duct work is to be externally insulated.
- Ducts are designed to low pressure standard. The criteria for duct sizing are pressure drop of 1 Pa/m for air flow up to 1 m³/s and the criteria of 6 m/s for higher flow.
- The supply air flow for air conditioning and ventilation shall be calculated from the required heat removal and applicable temperature difference.
- The minimum air flow, where no heat load is present shall be 5 air changes per hour.

3.10.1 HVAC System Description

Outdoor filtered air is to be provided by means of fresh units which are connected to an external insulated galvanized sheet metal ductwork. Air is to be introduced into the space by means of constant air volume (CAV) diffusers/grilles.

O&M spares room ventilation is provided by a ducted extraction system and window extractor fans discharging contaminated air to outside with make-up air supplied from the surrounding areas via door grilles and ducted fresh air supply.

3.11 FIRE PROTECTION SYSTEM

The solar PV plant will be using the building infrastructure built for the wind farm as far as possible. The fire protection system in the existing O&M buildings to be reviewed for suitability where these buildings needs to accommodate PV plant. These fire protection systems must comply with the requirements of SANS 10400, SANS 246 and the Eskom Fire and Life Safety Design Standard (240-54937450). The complete fire protection system is to be designed, constructed, and equipped to satisfy the following requirements:

- Ensure protection of occupants (life safety).
- Minimise the spread and intensity of fire.
- Minimise and control the generation of fire and spread of smoke.
- Ensure sufficient building stability is retained in a fire; and to
- Provide adequate fire detection and fire extinguishing equipment, and access for fire brigade services.

3.11.1 Evaluation of suitable Fire Protection System options

SANS 10400, SANS 246 and the Eskom Fire and Life Safety Design Standard (240-54937450, revision 2) recommend that portable fire-fighting equipment should be installed to low risk buildings with minimum of 1-off 5 kg CO² (carbon dioxide) fire extinguishers per 50 m² floor area in control rooms.

The required fire protection system for the solar PV plant is a function of fire protection/detection assessment which is based on possible failure modes (electrical faults) that may result in a fire, and therefore can only be concluded during the detailed design phase of the project.

3.11.2 Fire Protection System Description

The envisaged portable fire-fighting equipment to be provided is as follows:

- 2-off 5 kg CO₂ (carbon dioxide) fire extinguishers will be provided to service the O&M building (control room, office, ablution facilities, server and equipment room).
- 2-off 5 kg CO₂ (carbon dioxide) fire extinguishers will be provided to service the spares storeroom.

The required fire protection system for the solar PV plant is to be determined through a fire protection/detection assessment by checking all possible failure modes in a PV system during the detailed design phase.

3.11.3 Fire Safety Risk Assessment

A fire protection/detection assessment will be conducted by the EPC Contractor during the detailed design phase of the project.

3.12 WATER SUPPLY AND RETICULATION SYSTEM

The water supply and reticulation systems comprise of process water for the washing of panels. Potable water for ablution and kitchen facilities will be catered for by the existing wind farm

3.12.1 Process Water Supply and Reticulation

Process water supply and reticulation is required for panel washing and dust suppression activities.

The quality of water required for panel washing will be determined based on the requirements of the panel manufacturer. It is envisaged that the water quality for panel washing will be at potable water quality at a minimum. PV panels to be cleaned when required. The preliminary estimation is that panel washing will occur twice a year in June and September or when reference cells show a difference of GHI measurements of greater than 50 Wh/m². The amount of water required for cleaning each module is to be confirmed during the detailed design stage of the project.

3.12.1.1 Process Water Supply Options

The following options can be considered for the site and confirmed during the detailed design phase of the project:

- Tap off from the municipal water pipeline to provide the site with process water.
- Process water is to be trucked to the solar PV plant in tanker trucks and used via onsite reticulation system when required (panel washing, dust suppression).

Borehole water is not considered as a viable option as the borehole water on site has high mineral content and would require a water treatment plant.

3.12.1.2 Process water system description

The process water must be stored and reticulated across the solar PV plant as required. Taps shall be located at various locations in the solar PV plant. The maximum distance between the tap and point if use is 50 m. Suitable treatment processes may be required to ensure the process water is at the required quality for panel washing, based on requirements from the panel manufacturer.

3.13 SEWERAGE AND WASTE DISPOSAL SYSTEM

The solar PV plant will be utilising the existing building infrastructure built for the Sere Wind farm as far as possible. Hence, personnel will be utilising the ablutions and kitchen facility within the existing O&M building. The size of the existing sewage septic must be verified if adequate for the additional users.

If under sized, the following options are available:

- Re-size and install a larger tank to accommodate both Sere Wind Farm and additional Solar PV Plant contributors
- Connect an additional small septic tank to tie into the existing system
- Change the desludging/emptying process to be more frequent

From the above options, it would be more feasible to replace the existing tank with a tank of a larger capacity if required.

However, should a new Operating and Maintenance building be constructed, the following would apply to sewerage and waste disposal.

If adequate municipal infrastructure exists in the area, then the sewage and waste from the O&M building will be reticulated to tap into such infrastructure.

Alternatively, a sewage septic tank that is imbedded in the ground will be installed. The sewage septic tank will be linked with pipes from the kitchen and ablutions in the O&M building. The sewage septic tank will have an overfill detection and protection to avoid environment contamination.

As a minimum, the tank's design should meet the following requirements:

- The tank shall be constructed and designed in accordance to the information contained within SANS 10400-P: 2010 standard.
- The tank shall be designed such that all requirements of the Occupational Health and Safety Act (Act No. 85 of 1993) and its regulations are adhered to.
- The inlet should be designed such that blockage by the scum layer is prevented.
- The depth of the tank should be designed in line with acceptable standards.
- The tank shall be designed with two compartments to allow for periodic desludging. The tank should be easily accessible.

The tank must always be watertight and shall not allow for any storm water inflow. The tank must be constructed of materials which are not susceptible to excessive corrosion. The interior should be

plastered with a waterproof material. Adequate water supply must always be available for use with a water connection point available within the vicinity of the tank.

3.14 CIVIL AND STRUCTURAL DESIGN

3.14.1 Civil infrastructure

The EPC Contractor will be responsible for performing:

- Geotechnical investigations and assessments
- Site earthworks
- Mounting Structures
- Foundations
- Buildings and structures
- Roads and Storm water
- Parking areas
- Fencing and access gates

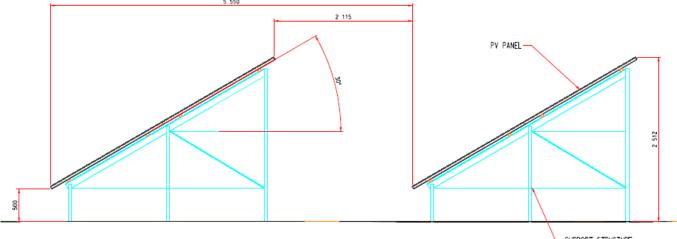
From previous studies conducted it was found to be feasible to utilise the existing building infrastructure built for the Sere Wind farm for the solar PV plant as far as possible. The site operations and buildings required for Sere PV Plant – Phase 1a project must be optimised with the existing Sere Wind Farm e.g. monitoring from a common control room, common workshops, common ablution, kitchen, common office area, etc.

The Civil Works must interface with the current infrastructure at the existing substation.

The high wind speeds at the Sere site could impact on the PV mounting structure and foundation requirements. It is recommended that this is considered in the structural design.

Sere is located on the west coast. The coastal location could impact the corrosion protection requirements for PV modules, equipment, and structures, as well as the required module cleaning frequency due to soiling from salt deposits. It is recommended that this is considered in the design stage of the project.

The design life of the civil works to be a minimum of 25 years


3.14.1.1 Mounting Structures/Foundations

The detailed design for the foundations and mounting structures shall be based on the findings from a geotechnical study, requirements, and conditions from the EIA approval, as well as considering applicable design loads and standards.

The PV Modules would be connected in series to form strings. PV ground mounting structures and foundations would be used to fix the PV modules to the ground at the appropriate orientation to the sun. The PV mounting options would include fixed tilted mounting systems and tracking systems. Tracking systems could be single axis or dual axis systems. The use of these systems usually allows the plant layout to be easily adaptable to the terrain.

The simplest and most common installation for large scale free field mounted PV systems is fixed mounted systems, where groups of PV modules, i.e. PV arrays, are mounted on a structure with fixed slope or inclination. These structures are usually steel structures. The height of the structure can be up to 2.5 to 3.5 m. The width of the structure could be up to 3.5 m wide.

SUPPORT STRUCTURE

Figure 23: Typical Fixed Mounting Structure

The project foresees that the contractor will propose the appropriate mounting solutions for the project along with detail design of the plant. The contractor will optimise on the plant layout, configuration, and panel size to achieve the highest output based on the land, topography, rainfall patterns, ambient temperatures, aerosols and dust particles. The EPC contractor must take cognisance as the Sere Wind Farm may present safety and damage concerns for a PV facility that is located in proximity to the wind turbines. It is recommended that this is considered in the design and final layout. Geotechnical investigations will be required to determine the geotechnical parameters and to inform the foundation design of the mounting structures. The foundation design could either be of the type where the mounting structure is piled into the ground (no concrete foundations), pad footings or ballast foundations.

3.14.1.2 Foundation Options

There are three foundation techniques which are common for PV installation, namely:

- a. Screwed or rammed piles
- b. Piles in pre-drilled holes with backfilling or concrete
- c. Ballast foundations

Option 1 - Screwed or Rammed piles

Geotechnical criteria for screwed or rammed piles

Screwed or rammed piles are the cheapest and preferred founding methodology for PV mounting structures and are therefore always considered first when investigating the founding conditions of a site. The following criteria are investigated to determine if the conditions are adequate for a screwed or rammed pile foundation type:

- If bedrock is present too close to the surface this option becomes impractical as the piles generally can't penetrate the bedrock and a sufficient founding depth cannot be reached.
- Consideration needs to be given to the layer of topsoil (if any) to determine if it can take any static loads transferred from the posts.
- The founding rocks or soil must be capable of tolerating all loads transferred from the posts.
- Generally, the depth to which the posts should be founded is determined by the horizontal forces • (wind) at the upper end of the post, which are to be transferred into the ground. The upward force or

uplift of the structure due to wind loads also need to be considered when determining the depth to which the piles will be screwed or rammed.

Construction Methodology for screwed or rammed Piles

Screwed Piles or earth screws

Earth screws are embedded in the soil the same way that wood screws are embedded in wood and provide resistance to loads in much the same way. Maximum allowable uplift forces for a given earth screw size are determined primarily by the soil's shear resistance and the depth to which the earth screw is sunk. Figure 24 show a typical earth screw and the machine used to screw it into the earth.

Figure 24: Typical ground screw pile

Rammed Piles

The anchoring of the pile driven profiles in the soil is carried out using special terrain-friendly hydraulic pile drivers. This pile-driving technique is especially suitable for utility scale plants. Depending on the terrain, a pile-driving performance of 250 piles/day can be achieved. Pile-driving on difficult terrain (stones, etc.) is also possible. In case of rocky subsoils, the machine can be additionally equipped with a drilling unit. Figure 25 show a typical machine used to drive the piles into the ground and the finished product rammed piles.

Figure 25: Typical Rammed Piles

CONTROLLED DISCLOSURE

Option 2 - Piles in pre-drilled Holes with Backfilling or Concrete

Geotechnical Criteria for pre-drilled holes with backfilling or concrete

Geotechnical conditions may result in the need for foundation holes to be pre-drilled prior to ramming the piles and backfilling with concrete or some other aggregate. These conditions are as follows:

- 1. The presence of bedrock close to the surface; and
- 2. Inadequate sheer strength of the founding soil.

Construction Methodology for pre-drilled holes with back filling or concrete

Pre-drilled holes with backfilling

A hole is drilled not more than 5 cm wider than the breadth of the steel profile and the cuttings that result from the drilling process remain in the hole. If a small amount is missing from the drilled hole, it is replaced by a suitable material such as concrete recyclate or chalky gravel. The filling is not compacted before ramming the pile. The steel profiles are then to be rammed into the holes to the necessary depth, and during this process the filling is compacted and the transfer of forces from the post to the wall of the drill hole is improved.

Pre-drilled holes with concrete

If ramming or screw posts are not able to penetrate the bedrock, pre-drilling and filling the boreholes will have to be done. This is done using the same approach as above, however the cuttings are removed and the voids are grouted up with the post rammed in place. Figure 26 shows a typical concrete filled foundation.

Figure 26: Typical concrete pile foundation

Option 3 - Ballast Foundations

Geotechnical Criteria

Ballast foundations are the most expensive and least preferred founding methodology for PV mounting structures. The only geotechnical consideration is the bearing capacity of the soil which is the maximum pressure that the soil can bear without compacting so much that the structural integrity or functionality of the structure being supported is compromised.

CONTROLLED DISCLOSURE

Construction Methodology

The primary purpose of the concrete foundation is to provide sufficient weight to counteract any lift forces generated by the wind loading on the modules. Concrete slabs are cast either above ground or in shallow excavations. The Mounting structures are then mounted to the concrete slabs by using fixings cast into the slab or base plates bolted onto the slab. Figure 27 shows typical ballast foundations for a ground mounted PV facility.

Figure 27: Typical Ballast Foundation

Selected Option - Foundation

The present geotechnical study conducted for the Sere Wind Farm is insufficient to make a recommendation on foundation design, therefore, a detailed geotechnical study shall be performed by the Contractor for the Project and the foundation design shall be prepared based on the findings from the study.

Associated Structures, Buildings and Roads

Infrastructure and associated utilities would consist of roads, storm water infrastructure, security fencing, buildings, cable trenches and meteorological measuring stations. Switchgear and server rooms to be constructed from brick and concrete. Concrete/brick trenches for cabling and services need to be provided for where required. Transformer bays to be designed with appropriate bunding. This would entail oil holding tanks if oil filled transformers are used. The transformer bays and bunds must be constructed from reinforced concrete. The foundation design for all buildings and structures will be based on the geotechnical investigation as well as the required loadings.

The PV Plant Security Lighting, to entail steel mast or concrete towers on concrete pad foundations. Lighting masts to have reinforced concrete pad foundations. A security/access control building to be positioned at the main gate of the PV Plant.

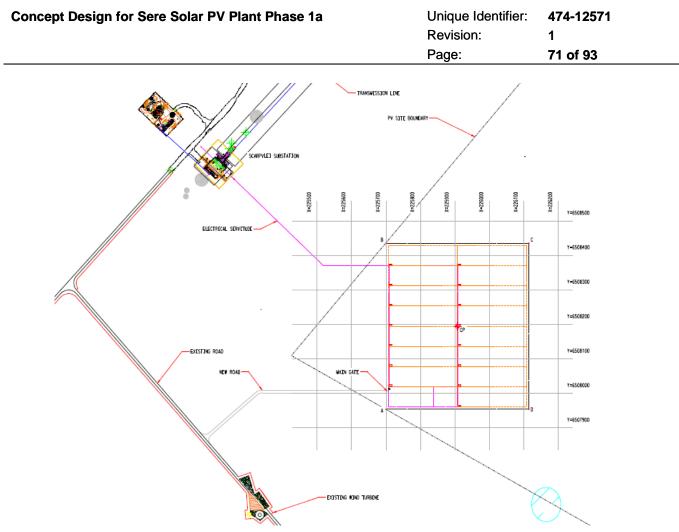


Figure 28: Proposed site Layout

The Solar PV Plant will be utilising the existing building infrastructure built for the Sere Wind farm as far as possible. This would consist of an Operating and Maintenance building to house a PV control room, offices, ablutions, and kitchen. This is to be confirmed at design stage and the suitability of utilising existing building space. The buildings to consist of brick structures on reinforced concrete strip foundations. A Stores building for storage of PV spare panels and parts and workshop building to undertake any maintenance work would be required. The workshops and stores building could incorporate an overhead crane. The O&M buildings will be located close to the entrance. Installation of a meteorological stations which includes any associated civil work for phase 1a.

The area is water scarce which needs to be considered in determining the cleaning method/technology of the PV panels. The storage and reticulation of process water must be considered in the civil design. Storage water tanks and foundations would be to manufacturer's specifications. The water storage tanks to be confirmed at design stage and the tanks sized accordingly. Water reticulation piping in the PV plant area is required and if deemed necessary at the O&M buildings then further reticulation piping would also be required. The process water must be stored and reticulated across the solar PV plant as required.

Roads

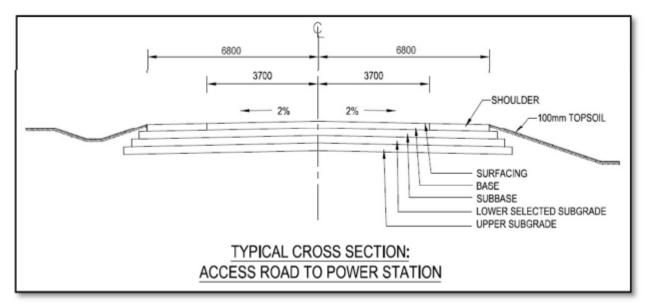
The road infrastructure will be designed in such a manner as to comply with the relevant legislation and regulations.

It is expected that the EPC Contractor will perform pavement designs for the access road and internal roads. The pavement designs shall comply with the Eskom Road Specification Manual (240-84418186).

The geometric properties of the roads shall be to the safest and optimal geometric design possible and shall comply with the Eskom Road Specification Manual (240-84418186).

As a minimum the roads will entail:

- Construction of a new gravel access road
- Perimeter ring road around the PV plant.
- Gravel access roads to inverters and transformers.
- Gravel internal roads for maintenance purposes.


The road widths and pavement structure to be confirmed at design stage.

The EPC Contractor will be responsible to conduct the required geotechnical investigation and survey, to enable them to perform the designs for the access road and internal roads.

The gravel roads surface finish shall be finished to minimise dust.

The roads will be designed for abnormal vehicle loads where required.

Road access to Inverter/MV switch-rooms must cater for a truck with a crane.

Figure 29: Proposed cross fall for access road

3.14.1.3 O&M Building:

The feasible option is to utilise the existing O&M Building. If an additional O&M Building(s) is required, it is to have the following minimum facilities.

- Control room for 2 employees (For employees to view status of plant equipment, air-conditioned)
- 1 x small office
- Server room and security equipment room (Air-conditioned room for sensitive electronic equipment)
- Ablution facilities

• Storeroom (for the storage of spare solar panels and electronic equipment)

The control room with regards to operator interface shall be designed to ergonomic principles and good Solar Power Plant practice.

All civil infrastructure and security requirements associated with the O&M building must be catered for during the detail design. This includes but is not limited to cable routings and trunking/racking.

3.14.1.4 Construction and Maintenance Access:

Access for construction equipment and materials during the construction phase must be provided for in the design. Construction of a gravel perimeter road, access roads to inverters and transformers, gravel internal roads for maintenance purposes must be considered. The gravel road shall be finished to minimise dust. The Contractor shall prepare the detail design with requirements from the works information as well as with the requirements from EIA approval. Suitable drainage system for the site shall be designed and constructed according to the approved environmental permit and Water Use License permit.

3.15 TEST AND COMMISSIONING

The commissioning strategy for the project includes different tests and inspection that will be performed before construction, during construction, on completion and after completion. These includes:

- Factory Acceptance Test
- Site Acceptance test
- Mechanical Completion Test
- Electrical Completion Test
- Provisional Acceptance Test, and
- Final Acceptance Test

Factory Acceptance Tests will be performed on major plant components before the delivery of components to the site. The objective of this test is to ensure the quality of the products that will be used for the project. PV Modules, Inverters and Transformers are considered as major plant components in this project. These tests will be performed at manufacturer/suppliers' premises. The Contractor shall organize the necessary requirements for the test. The test type and requirement for each test type will be detailed in Works Information. The Employer's representative will inspect and verify the quality of components, according to requirement set in Works Information.

Site Acceptance Tests will be performed on site upon the delivery of components on site. The test verifies that all components that are delivered to the site are free from any defects and includes all warranties, certificates, and technical documents.

Mechanical Completion Test will be performed once the plant is completely constructed. This test will be performed by the Contractor with Employer witnessing the tests. Visual inspection on plant component, verification of plant according to design document and availability of all project documents (guarantees, technical data sheet, and component manual) will be checked during the Mechanical completion test. Upon the successful completion of this test, Mechanical completion certificate will be issued, and the Electrical completion tests will be followed.

During Electrical completion tests, functional measurement of components (such as string voltage current tests, polarity test, infrared scanning, etc.) including safety checks (earthing, over voltage/over current protection) will be performed and proper functioning will be verified. The tests will be performed according to relevant IEC standards; IEC 62446 and IEC 60364-6, common practice in PV commissioning as well as the requirements of the South African Grid Code.

During, Provisional Acceptance Test (PAT), performance (performance ratio) and plant availability will be verified against the respective guaranteed values from the Contractor. The Contractor shall provide such guaranteed values along with their bidding documents during the tendering period. Upon the successful completion of PAT, the Substantial Completion Certificate will be issued.

Final Acceptance Test shall be performed over a predefined period, after the issue of substantial completion certificate. Plant performance ratio and plant availability will be verified during Final Acceptance Test along with visual inspection tests and some functional tests.

The tests during commissioning will be performed according to relevant IEC standards and common best practice in PV industry. Training to the Employer's O&M staff will be performed before the start of commissioning activities. The details on commissioning procedure will be included in the Works Information document.

3.16 COST ESTIMATION

This section indicates the determining factors to derive a cost estimate for the installed PV installation. The LCOE formula has many finance variables which require further investigation. The LCOE of a PV plant is generally determined by the following equation:

$$LCOE = \frac{\sum_{t=1}^{n} \frac{I_t + M_t + F_t}{(1+r)^t}}{\sum_{t=1}^{n} \frac{E_t}{(1+r)^t}}$$

Where, I_t , M_t , F_t and E_t represent the investment cost, operating and maintenance cost, fuel cost, and electricity generated in year (*t*), respectively. *r* and *n* represent the discount rate and plant's lifetime, respectively. The aim of this concept design is to determine the cost estimate for the installation/investment (CAPEX) and operating and maintenance (OPEX) of the plant. The following parameters are of interest listed in Table 30.

For the past 10 years, the associated cost to PV has reduced drastically. Therefore, it is important to have an accurate costing benchmark for the analysis. The latest reliable reference document found in the literature study was released by NREL, "*U.S. Solar Photovoltaic System and Energy Storage Cost Benchmark:* Q1 2020" [18]. Another supplementary reference in the South African context was presented at the 27th AMEU Technical Convention in 2019, "*Price parity of solar PV with storage*" [15].

Parameter	Description
Installed Cost	The cost associated to the installation of a typical utility scale PV plant.
Yearly Operating Cost	The cost associated with the yearly operation of the plant, and the replacement of components, i.e. inverter every 10 years.
Cost Estimate	Installed and yearly operating cost in relation to the total energy yield.

The biggest challenge found in the literature review is that reliable references, such as Lazard, IRENA, EPRI and Fraunhofer report directly on the LCOE for PV installations. Often a constant factor installed cost (R/MW) is applied for utility scale PV systems, with a different installed cost associated with commercial and residential systems. A constant factor installed cost model is not considered as a true representation since it does not consider the specific cost reductions experienced as the size of the plant increases. This is best represented by Figure 30.

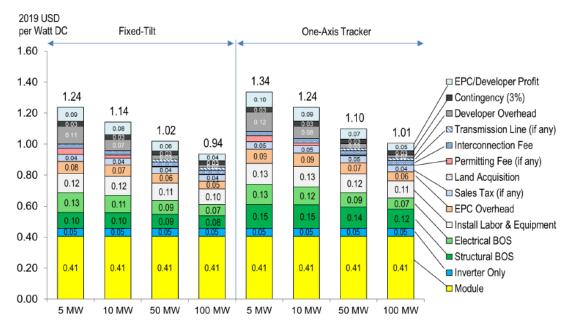
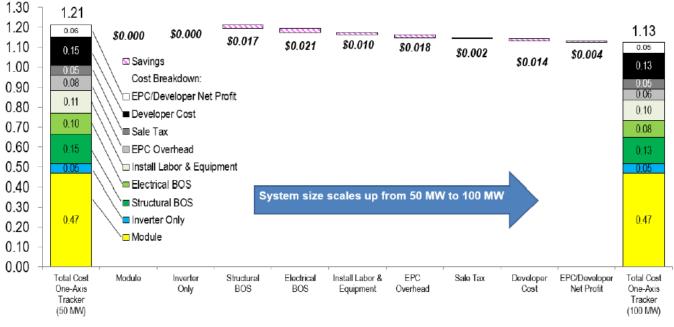



Figure 30: Utility-scale PV total cost (EPC + developer), 2019 USD/WDC [3]

It is worth noting, that the \$/W for the module and inverter stay fixed for any plant size, whereas other specific costs reduce with an increase in capacity. This relationship in the variance in specific cost as the plant size increases can therefore not be accurately represented by a constant factor.

Due to the economies of scale, there is a cost saving from increasing the size of the system. Scaling up the system size from 50 MW to 100 MW reduces specific costs in several ways; per-watt Balance of System (BOS) costs are reduced due to bulk purchasing, labour costs benefit from learning-related improvements for larger systems and EPC overhead and developer costs are spread over with more installed capacity. The effect of the economies of scale is represented in Figure 31.

2018 USD per Watt DC

CONTROLLED DISCLOSURE

Concept Design for Sere Solar PV Plant Phase 1a	Unique Identifier:	474-12571
	Revision:	1
	Page:	76 of 93

3.16.1 Fixed mounting PV cost estimate

The costing information used in this report was derived from the Utility-scale PV Cost data 5 MW to 100 MW, the Commercial ground-mount PV system cost data for 1 MW and 2 MW and the system cost reduction from economies of scale. The data is presented in Figure 32. The derived trendline was converted to South African Rands, see Figure 33, and correlated with the cost as presented in Figure 32.

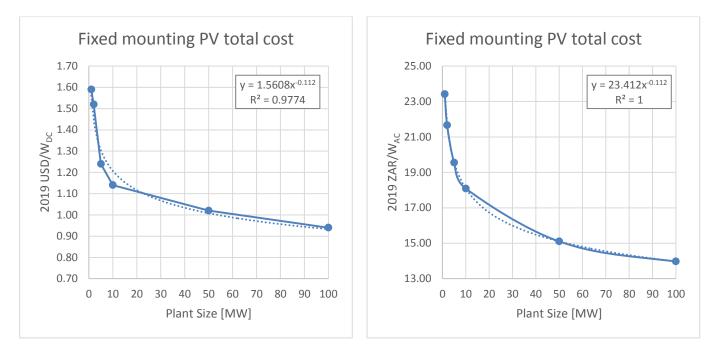


Figure 32: Reference costing (USD-2019)

Figure 33: Reference costing (ZAR-2019)

The average specific costing presented in [15] for a 2 MW to 100 MW in 2019 is R14.43. In comparison, the costing curve for a 50 MW plant, results in a specific cost of R15.00. The financial parameters used to derive the cost estimate is presented in Table 31.

Parameter	Value	Unit
Total installation cost	23.412 x (Size of plant [MW]) ^{-0.112}	R
Operating and maintenance cost	1.5% of capital cost per year	R
Inverter replacement cost	3% of capital cost every 10 years	R
Cost Estimate	*From simulation results over lifetime of plant *0.5% degradation rate for PV modules per year	MWh

3.16.2 Single-axis tracking PV cost estimate

The same methodology applied to the cost estimate for fixed mounted PV systems was applied to singleaxis tracking PV systems. The cost estimation curves are presented in Figure 34 and Figure 35.

CONTROLLED DISCLOSURE

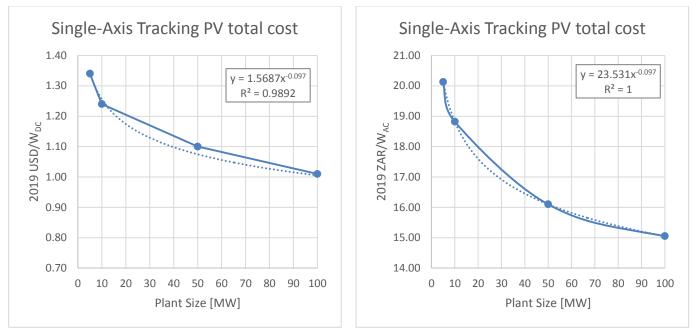


Figure 34: Reference costing (USD-2019)

Figure 35: Reference costing (ZAR-2019)

Table 32: Financial pa	arameters used to derive	the cost estimate
------------------------	--------------------------	-------------------

Parameter	Value	Unit
Total installation cost	23.531 x (Size of plant [MW]) ^{-0.097}	R
Operating and maintenance cost	1.5% of capital cost per year	R
Inverter replacement cost	3% of capital cost every 10 years	R
Cost Estimate	*From simulation results over lifetime of plant *0.5% degradation rate for PV modules per year	MWh

3.16.3 Cost estimate

The Cost Estimate [R/kWh] is presented in the following equation:

```
Cost \ Estimate = \frac{Total \ Installation \ Cost + \ O\&M \ per \ year \ Cost + \ Inverter \ Replacement \ Cost}{Total \ Energy \ Generated}
```

Options	Plant Size	Curtailment	CAPEX	OPEX	LCOE (R/kWh)
Option 4	14 MW tracking	YES	255 million	110 million	0.47
Option 4	14 MW tracking	NO	255 million	110 million	0.43
Option 3	16 MW fixed	NO	274 million	119 million	0.46
Option 3	16 MW fixed	YES	274 million	119 million	0.49

CONTROLLED DISCLOSURE

3.17 CODES AND STANDARDS

This section provides an overview of the standardisation approach for the design, the design Codes and Standards considered for the plant design. With respect to the multidisciplinary structure of PV projects various standards and codes have to be applied within the project lifecycle, particularly in the design and construction phase focussing on electrical interconnection, civil works, regulatory national framework and C&I system. A summary of subject's codes and standards have be considered for is given below. <u>The</u> <u>Contractor shall consider the latest issued standards applicable during the execution of the Project</u>:

3.17.1 Civil and Structural works

- SANS 10400 Code of Practice The Application of the National Building Regulations
- SANS 10100 The structural use of concrete.
- SANS 10160 Basis of structural design and actions for buildings and industrial standards.
- SANS 10162-1 The structural use of steel Part 1: Limit states design of hot-rolled steelwork
- SANS 10162-2 The structural use of steel Part 2: Limit states design of cold-formed steelwork
- SANS 10162-4 The structural use of steel Part 4: The design of cold-formed stainless-steel structural members
- SANS 10021 Ed4.0 The waterproofing of buildings (including damp-proofing and vapour barrier installation
- SANS121:2011 Ed2 Hot dip galvanized coatings on fabricated iron and steel articles -Specifications and test methods
- SANS 2001 CS1 Ed.1.01 Construction works Part CS1 Structural steel works.
- SANS 1921-3 Ed.1 Construction and Management requirements for works contracts Part 3 Structural steel works
- SANS 1200H Ed3 Standard specification for Civil Engineering construction Structural steel work installation
- SANS 1200HC Standardized specification for civil engineering construction Section HC: Corrosion protection of structural steelwork
- SANS 2001 Construction
- SANS 10163-1- The Structural use of Timber Part1: Limit-states design
- SANS 10163-2 The Structural use of Timber Part2: Allowable stress design
- SANS 10161- The design of foundations for buildings
- SANS 10164-1 The structural use of masonry Part1: Unreinforced masonry walling
- SANS 10164-2 The structural use of masonry Part2: Structural design and requirements for reinforced and pre-stressed masonry
- SANS 1200 Ed3 Standard specification for Civil Engineering Works

3.17.1.1 Roads

- T.R.H. series: "Technical Recommendation for Highways
- T.H.M series Technical Methods for Highways
- UTG series: Urban Transport guidelines
- SANS 1200 Standardized specification for civil engineering construction
- SANS 1200 LD Standardized specification for civil engineering construction Section LD: Sewers
- SANS 3001 Civil engineering test methods
- COLTO : standard specifications for road and bridge works for state road authorities

3.17.1.2 Eskom standards

• 240- 56364535 Architectural technical specification for structures and other buildings

- 240- 56364545 Structural design and engineering standard
- 240- 56364542 Standard for reinforced concrete foundations and structures
- 240 -85549846 Standard for design of drainage and sewerage infrastructure
- Eskom Road Specification Manual (240-84418186).

3.17.2 Control and Instrumentation

- IEC 61724 Photovoltaic system performance monitoring Guidelines for measurement, data exchange and analysis
- SANS 61850-7 Communication networks and systems for power utility automation Part 7-420: Basic communication structure – Distributed energy resources logical nodes
- IEC 60870 Tele control equipment and systems. Remote control of photovoltaic power plants.
- IEC 62381 Factory Acceptance test (FAT), Site Acceptance test (SAT), and Site Integration Test (SIT)
- IEC 62382 Electrical and Instrumentation loop check activities
- IEC 62337 Commissioning of electrical, instrumentation & control systems
- EIA/TIA 568 Standard for structured cabling
- EIA/TIA 569 Standard for communication pathways and spaces
- EIA/TIA 607 Standard for grounding and bonding of communication cabling
- TIA/EIA 485 Electrical Characteristics of Generators and Receivers for Use in Balanced Digital Multipoint Systems
- SANS 10142-1 The Wiring of Premises Part 1: Low-voltage installations
- SANS 10340-1 Installation of telecommunication cables Part 1: Fibre optic cables in buildings
- SANS 10340-2 Installation of telecommunication cables Part 2: Outdoor fibre optic cables
- SANS 60794-1-1 Optical fibre cables Part 1-1: Generic specification General
- SANS 60794-1-2 Optical fibre cables Part 1-2: Generic specification Basic optical cable test procedures
- SANS 61312 Protection against lightning electromagnetic impulse
- SABS 1411: Parts 2-6 Materials of Insulated Electric Cables and Flexible Cords
- SANS 60947-7-1 and SANS 60947-7-2 The terminal blocks for the junction box terminations
- SANS 60529 Degree of Protection provided by enclosures (IP)
- 240-56227443 Requirements for Control and Power Cables for Power Stations Standard, Sections 3.2.7, 3.6, 3.7, 3.8.7, 8, Tables 16, 17, 18 & 19;
- 240-56355754 Field Instrument Installation Standard, Section 3
- 240-56355815 Field Instrument Installation Standard Junction Boxes and Cable Termination
- 240-56355541 Control System Computer Equipment Habitat Requirements Guideline
- 240-56355731 Environmental Conditions for Process Control Equipment Used at Power Stations Standard
- 240-56355808 Ergonomic Design of Power Station Control Suite Guideline
- 240-56355728 Human Machine Interface Design Requirements Standard.
- 32-894 Eskom Server Rooms and Data Systems Standard
- 240-55410927 Cyber Security Standard for Operational Technology
- 240-55863502 Definition of operational technology (OT) and OT IT collaboration accountabilities
- 240-79669677 DMZ Designs for OT Systems
- 240-56355466 Alarm Management System Guideline
- 240-56227443 Requirements for Control and Power Cables for Power Stations Standard

3.17.3 Electrical

All equipment and services supplied comply with the codes and standards listed below.

3.17.3.1 General:

- SANS 10142-1 The wiring of Premises Part 1: Low voltage installation.
- Grid Connection Code for Renewable Power Plants (RPPs) Connected to the Electricity
- Transmission system (TS) or the Distribution System (DS) in South Africa.
- 240-61268576: Standard for the Interconnection of Embedded Generation
- NRS 048 Electricity Supply Quality of Supply

3.17.3.2 PV Modules

- IEC 61215-1 Terrestrial photovoltaic (PV) modules Design qualification and type approval -
- Part 1: Test Requirements.
- IEC 61215-1-1 Terrestrial photovoltaic (PV) modules Design qualification and type approval -
- Part 1-1: Special requirements for testing of crystalline silicon photovoltaic (PV) modules.
- IEC 61215-1-2 Terrestrial photovoltaic (PV) modules Design qualification and type approval -
- Part 1-2: Special requirements for testing of thin-film cadmium telluride (CDTE) based Photovoltaic (PV) modules.
- IEC 61215-1-3 Terrestrial photovoltaic (PV) modules Design qualification and type approval -
- Part 1-3: Special requirements for testing of thin-film amorphous silicon based photovoltaic (PV) Modules
- IEC 61215-1-4 Terrestrial photovoltaic (PV) modules Design qualification and type approval -
- Part 1-4: Special requirements for testing of thin-film Cu(In,GA)(S,Se)2 based photovoltaic (PV) modules
- IEC 61215-2 Terrestrial photovoltaic (PV) modules Design qualification and type approval -
- Part 2: Test procedures
- IEC 61730-1 Photovoltaic (PV) module safety qualification Part 1: Requirements for Construction
- IEC 61730-2 Photovoltaic (PV) module safety qualification Part 2: Requirements for testing
- IEC 61701 Photovoltaic (PV) modules Salt mist corrosion testing
- IEC 62716 Photovoltaic (PV) modules Ammonia corrosion testing
- IEC 60891 Photovoltaic devices Procedures for temperature and irradiance corrections to
- measured I-V characteristics
- IEC 60904-1 Photovoltaic devices Part 1: Measurement of photovoltaic current-voltage Characteristics
- IEC 60904-2 Photovoltaic devices Part 2: Requirements for photovoltaic reference devices
- IEC 60904-3 Photovoltaic devices Part 3: Measurement principles for terrestrial photovoltaic
- (PV) solar devices with reference spectral irradiance data
- IEC 60904-7 Photovoltaic devices Part 7: Computation of the spectral mismatch correction for Measurements of photovoltaic devices
- IEC 60904-8 Photovoltaic devices Part 8: Measurement of spectral responsivity of a
- photovoltaic (PV) device
- IEC 60904-9 Photovoltaic devices Part 9: Classification of solar simulator characteristics
- IEC 60904-10 Photovoltaic devices Part 10: Methods of linear dependence and linearity measurements
- IEC 61829 Photovoltaic (PV) array On-site measurement of current-voltage characteristics
- IEC 61853 Photovoltaic (PV) module performance testing and energy rating
- IEC 60068-2-78 Environmental testing Part 2-78: Tests Test Cab: Damp heat steady state
- IEC 6134 UV test for photovoltaic (PV) modules
- IEC 62548 Photovoltaic (PV) arrays Design requirements

3.17.3.3 Inverters

- IEC 62093 Ed. 1.0: Balance-of-system components for photovoltaic systems Design qualification natural environments
- SANS 62109-1 Ed 1.0: Safety of power converters for use in photovoltaic power systems Part 1: General requirements
- IEC 62109-2 Ed 2.0: Safety of power converters for use in photovoltaic power systems Part 2: Particular requirements for inverters
- IEC 62116 Ed 2.0: Utility-interconnected photovoltaic inverters Test procedure of islanding prevention measures.
- SANS 60730-1: Automatic electrical controls Part 1: General requirements.
- IEC 61683: Photovoltaic systems Power conditioners Procedure for measuring efficiency
- SANS 61000 6 2, 3 and 4: Electromagnetic compatibility (EMC)
- IEC 61727 Ed.2: Photovoltaic (PV) systems Characteristics of the utility interface
- Grid connection code for Renewable Power Plants (RPPs) connected to the electricity Transmission system (TS) or the Distribution system (DS) in South Africa Version 2.6.
- IEC 60364-7-712 Electrical Installations of Buildings: Requirements for Special Installations or Locations – Solar Photovoltaic power supply systems
- IEC 62103 Electronic equipment for use in power installations

3.17.3.4 Electrical Cabling

- Requirements for cables for use in photovoltaic systems 2Pfg1169" by TÜV
- SANS 1507 Part 1: General Electric cables with extruded solid dielectric insulation for fixed installations (300/500 V to 1900/3300 V)
- SANS 1507 Part 2: Wiring Cables Electric cables with extruded solid dielectric insulation for fixed installations (300/500 V to 1900/3300 V)
- SANS 1507 Part 3: PVC Distribution cables Electric cables with extruded solid dielectric insulation for fixed installations (300/500 V to 1900/3300 V)
- SANS 1507 Part 4: XLPE Distribution cables Electric cables with extruded solid dielectric insulation for fixed installations (300/500 V to 1 900/3300 V)
- SANS 1507 Part 5: Halogen-free Distribution Cables Electric cables with extruded solid dielectric insulation for fixed installations (300/500 V to 1900/3300 V)
- SANS 1507 Part 6: Service cables Electric cables with extruded solid dielectric insulation for fixed installations (300/500 V to 1900/3300 V)
- SANS 10198 Parts 1-14 The selection, handling and installation of electric power cables of rating not exceeding 33 kV Part 1 to 14
- SANS 1213 Mechanical Cable Glands
- NRS 074- Part1 and Part 2 Low Voltage cables systems
- 240-56227443: Requirements for control and power cables for power stations standard

3.17.3.5 Earthing, Lighting and Surge Protection

- IEC 60364-4-41 Low-voltage plants installation. Part 4-41 Protection for safety protection against shock
- SANS 10313 Protection against lightning
- SANS 62305 Earthing and Lightning Protection
- SANS 10292 Earthing of low-voltage (LV) distribution systems
- SANS 1063 Earth rods and coupling
- SANS 10199 The design and installation of earth electrodes
- IEEE 80 Earthing Ground System Design

- IEEE 665 Guide for Generating Station Grounding
- SANS 61312-3 Protection against lightning electromagnetic impulse Part 3: Requirements of surge protective devices (SPDs)
- SANS 62305-1 to 4 Protection against lightning Parts 1 to 4
- SANS 10313 Protection against lightning Physical damage to structures and life hazard
- SANS 10200 Neutral earthing medium voltage industrial power systems
- NRS 039 Part 1 and Part 2 Surge arresters for use in distribution systems
- IEC 61009 Residual current operated circuit-breakers with integral overcurrent protection for household and similar uses (RCBO's)
- SANS 61024 Protection of structures against lightning

3.17.3.6 Metering and Measurements

- 240-56227589: List of approved electronic devices to be used on Eskom Power station standard
- IEC 62053 Electricity metering equipment (A.C.) particular requirements
- IEC 61036 Alternating current static watt-hour meters for active energy
- NRS 057/ SANS 474 Code of practice for electricity metering
- 240-56364444, Standard minimum requirements for the metering of electrical energy and demand
- SANS 61869-3/ IEC 61869-3 Instrument transformers Part 3: Additional requirements for inductive voltage transformers
- SANS 61869-2/IEC 61869-2 Instrument transformers Part 2: Additional requirements for current transformers

3.17.3.7 Performance Monitoring

- IEC 61724, Photovoltaic system performance monitoring Guidelines for measurement, data exchange and analysis
- IEC 61683, Photovoltaic systems Power conditioners Procedure for measuring efficiency
- IEC 60364-6 Ed. 1: Low Voltage Electrical installations.
- IEC 62446 "Grid connected photovoltaic systems Minimum requirements for System documentation, commissioning tests & Inspections"
- ISO 9845-1, Solar energy Reference solar spectral irradiance at the ground at different receiving conditions, Part 1: Direct normal and hemispherical solar irradiance for air mass 1.5.
- ISO 9847, Solar energy Calibration of field pyranometers by comparison to a reference pyranometer. / BS 7621:1993 Method for calibrating field pyranometers by comparison to a reference pyranometer
- ISO 9060, Solar energy Specification and classification of instruments for measuring hemispherical solar and direct solar radiation.
- ISO/TR 9901, Solar energy Field pyranometers Recommended practice for use.
- IEC 61725, Analytical expression for daily solar profiles

3.17.3.8 Transformers

- SANS 60076 -1 to12: Power transformers
- SANS 780 Distribution transformers

3.17.3.9 Switchgear

- SANS 60269 Low-Voltage fuses Part 1 and Part 2
- SANS 1765 Low-voltage switchgear and controlgear assemblies (distribution boards) with a rated short-circuit withstand strength up to and including 10 kA

- SANS 60439-1 to 5 Low-voltage switchgear and controlgear assemblies pars 1 to 5
- SANS 60529 Specification for degrees of protection provided by enclosures (IP code)
- SANS1874: Switchgear- Metal-enclosed ring main units for rate AC voltage above 1kV and up to and including 36kV
- IEC 60255-1 Measuring relays and protection equipment part 1: common requirements
- 240-53114248: Thyristor and Switch mode chargers, AC/DC and DC/AC and UPS standard

3.17.3.10 Lighting and Small Power

- SANS 164: Plug and socket-outlet systems for household and similar purposes for use in South
- Africa
- SANS 890: Ballasts for fluorescent lamps
- SANS 1041: Tubular fluorescent lamps for general service
- SANS 1088: Luminaire entries and spigots
- SANS 10142-1: The wiring of premises Part 1: Low-voltage installations
- SANS 10114-1: Interior lighting Part 1: Artificial lighting of interiors
- SANS 10114-2: Interior lighting Part 2: Emergency lighting
- SANS 1266: Ballasts for discharge lamps (excluding tubular fluorescent lamps)

3.17.4 Safety Act

- Occupational Health and Safety Act 85 of 1993
- ISO 18001 Occupational Health and Safety Management Systems

3.17.5 Environmental Protection

- IEC 60721-3-1 Classification of groups of environmental parameters and their severities; Storage.
- IEC 60721-3-2 Classification of groups of environmental parameters and their severities; Transportation.
- IEC 60721 -3-3 Classification of groups of environmental parameters and their severities; Stationary use at weather protected locations.
- SANS 12944 Corrosion Protection of Steel Structures
- SANS 14713 Protection against corrosion of iron and steel structures Zinc and aluminium coatings Guidelines.
- ISO 14000 Environmental Management Systems.

3.17.6 Fire Detection and Safety

- SANS 246: Code of Practice for the Fire Protection for Electronic Equipment Installations.
- NFPA 850: Recommended Practice for Fire Protection for Electric Generating Plants and High Voltage Direct Current Converter Stations.
- SANS 10400-T: South African National Standard Part T: Fire Protection
- SANS 10139 Fire detection and alarm systems for buildings System design, installation and servicing
- International Fire Code: Chapter 1 (Scope and Administration), Chapter 2 (Definitions), Chapter 3 (General Requirements), Chapter 4 (Emergency Planning and Preparedness), Chapter 5 (Fire Service Features), Chapter 6 (Building Services and Systems), Chapter 7 (Fire Resistance Rated Construction) and Chapter 9 (Fire Protection Systems)

3.17.7 Heating Ventilation and Air Conditioning (HVAC) System

- SANS 10400: The Application of the National Building Regulations
- SANS 10103: The measurement and rating of environmental noise with respect to annoyance and to speech communication
- SANS 10140-3: Identification colour marking Part 3: Contents of pipelines
- SANS 10142-1: The wiring of premises Part 1: Low-voltage installations
- SANS 10147: Refrigerating systems including plants associated with air-conditioning systems
- SANS 10173: The installation, testing, and balancing of air-conditioning duct work
- SANS 193: Fire dampers
- SANS 1238: Air-conditioning ductwork
- SANS 1287-1: Ventilation brattices and ducting Part 1: Flexible ducting
- SANS 1287-2: Ventilation brattices and ducting Part 2: Brattices, unsupported
- SANS 1424: Filters for use in air-conditioning and general ventilation
- ASHRAE 15: Safety Codes for mechanical refrigeration
- ASHRAE 62: American Society of Heating Refrigeration and Air Conditioning Engineers. Ventilation for acceptable indoor air quality
- ASHRAE 55: Thermal environmental condition for human occupancy
- ASHRAE 52/76: Standard test method for filters
- ASHRAE G1: Guideline for commissioning of air conditioning system

3.17.8 Fire Protection System

- SANS 246: Code of Practice for Fire Protection for Electrical Equipment Installations
- SANS 10400: The Application of the National Building Regulations
- SANS 1186: Symbolic safety signs
- SANS 1910: Portable refillable fire extinguishers
- SANS 1464: Safety of luminaires Part 22: Luminaires for emergency lighting
- SANS 10105: The use and control of fire-fighting equipment
- SANS 10139: Fire detection and alarm systems for buildings System design, installation and servicing
- SANS 10177: Fire testing of materials, components and elements used in building
- 240-54937450: Fire Protection & Life Safety Design Standard
- 240-56737448: Fire Detection and Life Safety Design Standard

3.17.9 Water supply and reticulation

- SANS 62: Pipes suitable for threading and of nominal size not exceeding 150mm
- SANS 719: Electric welded low carbon steel pipes for aqueous fluids (large bore)
- SANS 776: Copper alloy gate valves
- SANS 1056-3: Ball Valves
- SANS 1123: Pipe Flanges
- SANS 241: Drinking water
- SANS 10400-A: The application of the National Building Regulations Part A: General principles and requirements
- SANS 10400-S: The application of the National Building Regulations Part S: Facilities for persons with disabilities
- SANS 10400-XA: The application of the National Building Regulations Part X: Environmental sustainability Part XA: Energy usage in buildings
- SANS 10252: Water supply and drainage for buildings

3.17.10 Sewerage and waste disposal

• SANS 10400-P:2010 Ed3 – The application of the National Building Regulations Part P: Drainage

4. RISK REGISTER

See Appendix E

CONTROLLED DISCLOSURE

5. AUTHORISATION

Name & Surname	Designation
Dr Titus Mathe	GM - Generation Engineering
Prof Saneshan Govender	GM - Master Specialist
Dr Gary de Klerk	Senior Manager – Asset Management Mechanical (Acting)
Dr Oelof de Meyer	Asset Management Renewables
Miranda Skaka	Asset Management Renewables
Viren Heera	Asset Management Renewables
Funeka Grootboom	Asset Management - Civil & Structural
Dheneshree Lalla	Asset Management - Chemical
Prudence Madiba	Asset Management - Control & Instrumentation
Machiel Viljoen	Asset Management - Electrical
Phera Rakeketsi	Asset Management - Electrical
Marlize Andre	Asset Management - Low Pressure Services
Isaac Blou	Sere Solar PV Project Manager
Koogendran Govender	Chief Engineer – Peaking Asset Management
Reggie Chippe	Peaking Client Office
Lehlohonolo Tinte	Peaking Operational Support
Deon Van der Merwe	Peaking Operational Support
Kuben Naicker	Maintenance Manager-Renewables Business Unit
Zahier Kapery	Chief Engineer – Peaking Asset Management Civil

This document has been seen and accepted by:

6. REVISIONS

Date	Rev.	Compiler	Remarks
August 2021	0.1	M Mtshali	First draft for Comments review Process
September 2021	0.2	M Mtshali	Final Draft after Comments Review Process
September 2021	1	M Mtshali	Final Document for Authorisation and Publication

7. DEVELOPMENT TEAM

The following people were involved in the development of this document:

- Miranda Skaka
- Oelof de Meyer
- Viren Heera
- Zahier Kapery
- 8. ACKNOWLEDGEMENTS
- Waleed Moses

Concept Design for Sere Solar PV Plant Phase 1a	Unique Identifier:	474-12571
	Revision:	1
	Page:	87 of 93

APPENDIX A: TMY DATA

[Files attached]

CONTROLLED DISCLOSURE

Concept Design for Sere Solar PV Plant Phase 1a	Unique Identifier:	474-12571
	Revision:	1
	Page:	88 of 93

APPENDIX B: SITE LAYOUT

[Files attached]

CONTROLLED DISCLOSURE

Concept Design for Sere Solar PV Plant Phase 1a	Unique Identifier:	474-12571
	Revision:	1
	Page:	89 of 93

APPENDIX C: ELECTRICAL SLD

[Files attached]

CONTROLLED DISCLOSURE

APPENDIX D: EXISTING O&M BUILDINGS

[Files attached]

CONTROLLED DISCLOSURE

Unique Identifier:	474-12571
Revision:	1
Page:	91 of 93

APPENDIX E: RISK REGISTER

The following risks are highlighted to enable further discussions with the Project Manager and other affected stakeholders.

No.	Risk Identified	Impact	Level	Proposed Mitigation
1.	 The project has imposed time constraints on engineering and design activities. Engineering has conducted high level concept designs and has not performed a thorough global technology assessment, sensitivity analysis on plant performance, or provided optimised solutions. 	 Higher uncertainty on PV plant capacity installation, energy yield estimations and plant performance. Associated auxiliary power and water requirements not well defined. Without the sensitivity analysis on PV plant performance and design optimisation, the following parameters have a high uncertainty: energy yield estimation, losses, capacity factor, performance ratio, amount of expected energy curtailment. 	High	 The project's concept design should be sufficient to provide input to the functional specification. A more detailed design will completed by the EPC contractor.
2.	Basic Environmental Assessment findings might require that the location of the plant as per the conceptual site layout be relocated.	 This may result in changes to the design of the plant and hence trigger an engineering change process. Point of connection may change and this will increase the costs of underground cabling or require overhead power lines. 	Medium	The exact location of the plant will be determined by the EPC contractor.
3.	Water scarcity in the area may result in water not being available for operation of the plant	 Increased cost. Technology options for panel cleaning will be limited. Frequency of panel cleaning will be impacted. 	Medium	 Proposed EPC cost benefit analysis.

		Plant performance will be impacted		
4.	 Installation of a PV plant within a coastal area 	 Corrosion of materials. Salt deposits on panels. Increase in O&M costs. 	High	 Proposed EPC cost benefit analysis.
5.	 Utilisation of existing O&M building 	 Expansion of the Sere Wind Farm staff complement will limit the space available for the solar PV staff. Server room might not have sufficient space to accommodate the PV plant. 	Low	EPC contractor to design for expansion.
6.	 No access to information on the electricity supply to the neighbouring mine. 	 Overhead lines could run through Site A. Preferred solar PV location might have to change. 	High	 Eskom to engage with the mine project team to obtain proposed layout.
7.	 Falling blades 	 Damage to the PV plant by the falling blades. Possible impact on insurance premiums for the site. 	Low	EPC contractor to finalise the solar PV plant layout according to the wind turbine location

Concept Desi	gn for Sere Solar PV Plant Phase 1a	Unique Identifier:474-12571Revision:1Page:93 of 93		
8.	High wind speeds	• The high wind speeds at the Sere site could impact on the PV mounting structure and foundation requirements, affecting the feasibility of the project.	High	 EPC contractor design to cater for the uptake caused by high wind speeds.
9.	 Generation output of wind turbines is high during a period of solar generation 	 Higher curtailment on PV generation output. Plant performance negatively affected. Increase in the solar PV LCoE. 	Low	 Sensitivity analysis should be done on the cost benefit. Application to increase 105.8 MW site generation output.
10.	 Insufficient data from the existing Sere Wind Farm Geotechnical report 	Impact on selecting correct mounting structures and foundation options.	Low	EPC contractor will conduct a geotech study for the solar PV mounting structure and foundations.

REPORT ON THE GEOTECHNICAL FOUNDATION INVESTIGATION FOR THE PROPOSED SERE WIND ENERGY FACILITY AT KOEKENAAP, WESTERN CAPE PROVINCE

REPORT NO. 108/942 Revision 00

Volume 1

PREPARED BY:

BKS Palace Consortium PO Box 3173 PRETORIA 0001

CONTACT PERSON

Mr R Tluczek Tel No: 012 421 3500

BKS Palace Consortium

November 2010

PREPARED FOR:

Eskom Holdings Limited Megawatt Park Sunnighill Ext. JOHANNESBURG

CONTACT PERSON

Mr Dan Dukhan Tel No: 011 800 5084

TITLE	:	REPORT ON THE GEOTECHNICAL FOUNDATION INVESTIGATION FOR THE PROPOSED SERE WIND ENERGY AT KOEKENAAP, WESTERN CAPE PROVINCE
Project Team	:	BKS Palace Consortium
Client	:	Eskom Holdings Limited
BKS Project No	:	J01386
Status of Report	:	Final
BKS Report No	:	108/942
Key Words	:	Wind farm. Eskom. Renewable energy
Date of this Issue	:	November 2010

For BKS Palace Consortium

Compiled by	: K Moletsane		
	Initials & Surname	Signature	Date
Reviewed by	: H Davis		
	Initials & Surname	Signature	Date
Approved by	: HJ Tluczek		
	Initials & Surname	Signature	Date
Approval by Cl	ient		
Approved by	:		
	Initials & Surname	Signature	Date

SERE WIND ENERGY FACILITY

DETAILED GEOTECHNICAL FOUNDATION INVESTIGATION REPORT

1.	TERMS OF REFERENCE	1
2.	EXISTING INFORMATION	3
3.	SITE DESCRIPTION	4
4.	GEOLOGY	5
4.1	Regional Geology	5
4.2	Project Geology	7
5.	METHOD OF INVESTIGATION	12
5.1	Percussion Drilled Boreholes	13
5.2	Rotary Core Boreholes	15
5.3	Dynamic Probe Super Heavy (DPSH)	17
5.4	Plate Load Tests	20
5.5	Excavation of Test Pits	20
5.6	Laboratory Testing	21
5.7	Seismic Refraction and Electrical Resistivity	21
5.8	Probabilistic Seismic Hazard Analysis	22
5.9	Dynamic Response of the Soil Assessment	23
6.	EVALUATION OF INVESTIGATION RESULTS	25
6.1	Percussion Borehole Results	25
6.2	Rotary Cored Borehole Results	27
6.3	Results from Standard Penetration Tests (SPT)	32
6.4	Results from Dynamic Probe Super Heavy (DPSH) Testing	34
6.5	Results from Plate Load Tests	36
6.6	Results from Test Pits	37
6.7	Laboratory Test Results	38
6.8	Results from the Seismic Refraction Survey	45
6.9	Results from the Probabilistic Seismic Hazard Analysis	47
6.10	Results from the Dynamic Response of the Soil Analysis	48

7.	GEOTECHNICAL EVALUATION	51
7.1	Founding Conditions	51
7.2	Foundation Types Being Considered	52
7.3	Bearing Capacity	53
7.4	Assessment of Potential Total and Differential Settlement	
7.5	Dynamic Compaction	59
7.6	Caisson and Piled Foundations	62
7.7	Groundwater	65
7.8	Liquefaction Potential	
7.9	Earthworks and Stability of Cuts and Fills	65
7.10	Drainage and Erodability	67
7.11	Excavability	67
8.	CONCLUSIONS	68
9.	REFERENCES	74

APPENDICES

APPENDIX A	FIGURES
------------	---------

- APPENDIX B DRAWINGS
- APPENDIX C SOIL AND ROCK DESCRIPTIVE TERMS
- APPENDIX D PERCUSION LOGS
- APPENDIX E ROTARY CORE BOREHOLE LOGS AND PHOTOGRAPHS
- APPENDIX F DPSH RESULTS
- APPENDIX G PLATE LOAD TEST RESULTS
- APPENDIX H TEST PIT PROFILES
- APPENDIX I SEISMIC REFRACTION AND ELECTRICAL RESISTIVITY
- APPENDIX J SEISMIC HAZARD AND DYNAMIC RESPONSE ASSESSMENT
- APPENDIX K LABORATORY TEST RESULTS

SERE WIND ENERGY FACILITY

DETAILED GEOTECHNICAL FOUNDATION INVESTIGATION REPORT

1. TERMS OF REFERENCE

In the last few years Eskom has been actively responding to the pressure to meet the electricity generating capacity for the nation in a number of ways. Besides increasing generating capacity through the use of conventional energy sources, Eskom has also embarked on a process to contribute clean renewable wind and solar energy to the National Transmission Grid. The Sere Wind Energy facility has been identified as one of the wind energy projects

In July 2010 the BKS Palace Consortium was appointed to carry out the detailed geotechnical investigations for the Sere Wind Energy Facility Scheme through Task Order No. 08, Panel B, signed on the 7th July 2010.

This final report deals with the information and data obtained from the geotechnical foundation investigation for the turbines, substation and related infrastructure. The report details the nature and properties of the surface and subsurface soils and rocks as well as the groundwater. This information is required for the design of the earthworks and the foundations for the proposed Sere Wind Energy Facility Phase 1 Project.

Following on from the feasibility level studies and the detailed geotechnical evaluation, the main components of the scheme are expected to be as follows:-:

- Wind Turbine Units. Originally fifty unit positions were to be investigated but this was reduced to fourty six units, at the request of the Client. It is anticipated that each unit will consist of an 80m to 110m high concrete tower supporting a swiveling generator nacelle weighing 60 tons. The blade diameter will be 100m.
- **Concrete Foundations.** If conventional pad footings are to be utilized, the pad foundations are expected to be between 20m x 20m or 15m x 15m depending on the supplier, to support each tower.

- **Substation.** The substation area is expected to be 80m x 80m which will receive generated power via underground distribution cabling from each wind turbine.
- Workshop/Office Building and Visitors Centre is expected to be located at the facility entrance.
- Internal Access Roads providing access to each wind turbine site, with a permanent travel surface of approximately 6m in width.
- **132kV Overhead Powerline** from the wind farm substation to the national power grid at Juno substation.

A separate final report has been submitted detailing the geotechnical investigations carried out at prospective borrow areas (BKS Report Reference I08/941, November 2010).

2. EXISTING INFORMATION

This report has been compiled predominantly form information obtained from the various investigations that have been undertaken since July 2010. Work previously undertaken at the site was utilized to optimize the current investigation. Previous reports relating to the site are listed below:

- Draft Report on the Geotechnical Investigation for the proposed Sere Wind Energy Facility-Borrow Areas for Construction Material.
 BKS Report Number J01386/171 of September 2010
- Report to Eskom, on an Eskom Wind Preliminary Geotechnical Evaluation.
 Black and Veatch Project 148645, File 41.0403, Rev 0. April 2008.
- Report to Eskom, on a Construction & Operation Environmental Management Plan (EMP) for the Wind Energy facility Project: Principles of Environmental Management Supported by Site Specific Guidelines. By Savannah Environmental (Pty) Ltd. submitted as part of the final EIA Report. February 2008.
- Report to Eskom, on a Geomorphological Assessment of the Proposed Wind Energy Facility and Associated Infrastructure on the West Coast (Matzikama Local Municipality and Western Cape Municipal Area 1) PM Illgner for Savannah Environmental (Pty) Ltd. January 2008.
- Report to Eskom, on a Heritage Impact Assessment (prepared as part of an EIA) of a Proposed Wind Energy Facility to be Situated at Olifants River Settlement 617, 620 and Grave Water Kop 158/5 situated on the Namaqualand Coast in the Vredendal District, South Western Cape, Tim Hart for Savannah Environmental (Pty) Ltd. December 2007.
- Report to Eskom, on a Specialist Impact Assessment for Proposed Eskom Wind Energy Facility on the Cape West Coast: Terrestrial Vegetation Component, Rev 2.
 Nick Helme Botanical Surveys for Savannah Environmental (Pty) Ltd. December 2007.

3. SITE DESCRIPTION

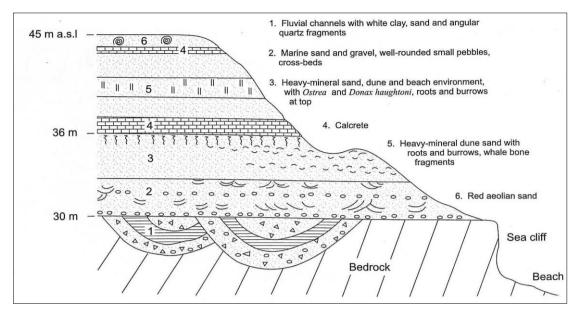
The 25 km² site is located on portions of the farms Olifants River Settlement 617 and 620, and Gravewaterkop 158 portion 5 situated on the Namaqualand Coast in the Vredendal District, about 14km west of Koekenaap in the north of the Western Cape Province . The locality of the site is indicated in Figure 1, Appendix A.

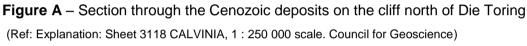
The area is remote and has been used mostly as a stock grazing area by local farmers, with sheep being the main livestock while the coastline has been subjected to diamond mining.

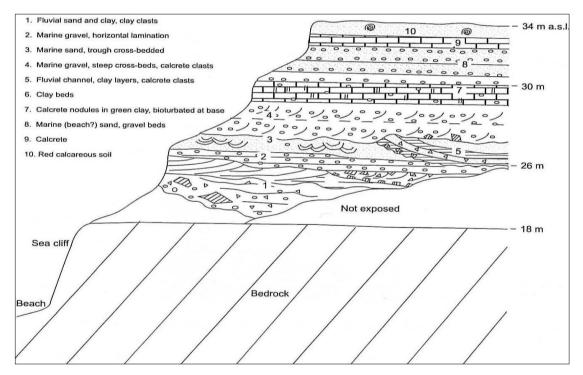
There are two main vegetation types present on the site, and where they meet a highly complex mosaic of both may be found. Namaqualand Strandveld occupies the coastal parts of the site and represents an extremely widespread vegetation type along the west coast. Namaqualand Sand Fynbos is found in the interior and lower parts of the site on a series of stabilised dunes.

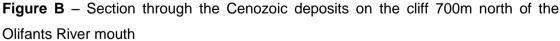
Due to the numerous environmentally and archeologically sensitive regions within the study area, the investigations and borrow areas identified have been positioned in such a manner that minimum impact is experienced by these regions. The locations of the sensitive regions are indicated in Drawing Number J01386–004–117–01–R-00, Appendix B.

4. GEOLOGY


4.1 Regional Geology


According to the published 1:250 000 geological map, Sheet 3118 Calvinia, the area is underlain by deposits laid down in the Cenozoic Era, as indicated in Figure 2, Appendix A.


The Cenozoic Era began approximately 65 million years ago and has continued to the present day. During the Cenozoic Era there was significant continental uplift and erosion accompanied by fluctuations in the sea level. These events led to marine erosion and sedimentation with the sediments being, generally, comprised of fluvial and marine gravels, calcrete, silcrete and sand. Some of these deposits are still being laid down today along rivers and beaches. The published explanation of the published geological sheet (*De Beer, C.H., Gresse, P.G., Theron, J.N. and Almond, J.E. (2002), The Geology of the Calvinia Area, Explanation: Sheet 3118 Calvinia, 1:250 000 scale, The Council for Geoscience, Geological Survey of South Africa*) presents two sections showing the typical profiles to be found close to the Sere Wind Farm Facility. The first profile is present at a site approximately 700m north of the Olifants River Mouth. The general profile at these two sites is presented below.


TABLE 4.1: GENERALISED STRATIGRAPHY

PROFILE IN THE CLIFFTOP NORTH OF DIE TORING (refer Figure A, below)	PROFILE 700M NORTH OF THE OLIFANTS RIVER MOUTH (refer Figure B, below)
Red Aeolian sand	Red calcareous soil
	Calcrete
Heavy mineral dune sand with roots, burrows and whale bone fragments	Marine (beach) sand and gravel beds
	Calcrete
Calcrete	Clay beds
	Fluvial channels
Heavy mineral sand, dune and beach environment with shells, roots and burrows	Marine sand and gravel with calcrete clasts
Marine sand and gravel with well rounded small pebbles and cross beds	Fluvial sand and clay
Bedrock with fluvial channels into which white clay, sand and angular quartz has been deposited	Bedrock

(Ref: Explanation: Sheet 3118 CALVINIA, 1: 250 000 scale. Council for Geoscience)

It can be seen that the profile can vary considerably from location to location but basically comprises Aeolian (wind-blown) sands with a distinctive red colour indicative of the arid conditions in which the sand was deposited. This is underlain by marine and dune sands and gravels overlying bedrock. The aeolian, marine and dune sands have undergone varying degrees of pedogenesis and cementation with calcrete being present as discreet nodules or as much harder layers.

Based on the two sections showing the typical profiles (Figures A and B above), it was interpreted that both the aeolian and the dune sands have the same transporting agent, which is wind. The aeolian sand was however, blown from the coastal sands inland by the predominant wind direction. The dune sand on the other hand is very close to the sea and contains a significant amount of fragmented shells as well as some gravelly and gritty layers.

The bedrock comprises phylite, limestone and sandstone of the Gariep Supergroup.

4.2 Project Geology

In general, the profile at the Sere Wind Farm Facility was interpreted as follows:-

TABLE 4.2:STRATIGRAPHY AT THE SERE WIND FACILITY

Aeolian Deposits of the Cenozoic Era Pale red and orange, very loose to loose, sand. No gravel
Marine Deposits of the Cenozoic Era Lighter coloured, brown and beige, sand, silt, gravel and boulders. Significantly denser than the aeolian deposits above.
Bedrock Phylite, sandstone and quartzitic sandstone of the Gariep Supergroup.

In some areas the Cenozoic deposits are absent and sandstone and phylite of the Gariep Supergroup present themselves at surface as outcrops. However in general the bedrock occurs at depths of between 14m (Borehole WTG 28) and at a depth greater than 102m (for example in WTG 39, 41 and 43). This marked variation in depth to bedrock could be due to the presence of in-filled fluvial channels such as those present in the typical profile found north of Die Toring, as explained by the Council of Geoscience.

The thickness of the Cenozoic deposits, therefore, varies greatly across the site and generalizations are not valid.

The anticipated regional and project geology as shown in Figure 2, Appendix A, indicates that significant calcrete layers occur along the eastern boundary of the site. These outcrops were however not encountered during the site investigations. This is attributed to the fact that the original mapping was carried out on a macro scale (probably from aerial photography) and therefore at best may only be indicative, especially with the significant Aeolian deposits which cover the site.

Some calcrete layers, and indications of calcretisation have been encountered at depth in some of the boreholes and test pits across the site. The cemented materials that were encountered at the wind turbine positions are summarized below:

Wind Turbine		Depth	Thickness	Description
Position	Drill Type	(m)	(m)	Description
WTG 1	Rotary core	0.76 - 1.37	0.61	Cemented sand
		1.37 - 1.60	0.23	Very weakly cemented sand
		3.54 - 4.80	1.26	Minor ferricrete nodules
		34.71 - 34.81	0.10	Very weakly cemented sand
		35.15 - 36.21	1.06	Very weakly cemented sand
WTG 2	Rotary core	5.60 - 20.73	15.13	Minor ferricrete nodules
		33.79 - 35.39	1.60	Very weakly cemented sand
WTG 2	Percussion	4.00 – 18.00	14.0	Minor ferricrete nodules
		18.00 – 19.00	1.00	Ferruginised sand
WTG 4	Rotary core	0.70 - 1.64	0.94	Very weakly cemented sand
		2.02 - 3.34	1.32	Cemented sand
		4.22 - 6.47	2.25	Weakly cemented sand

 TABLE 4.3:
 SUMMARY OF CEMENTED LAYERS ENCOUNTERED

		26.46 - 26.81	0.35	Abundant ferricrete nodules
		37.04 - 37.17	0.33	Very weakly cemented sand
WTG 6	Deterritoria		1.56	
WIG6	Rotary core	3.44 - 5.00		Very weakly cemented sand
		15.66 - 15.78	0.12	Abundant ferricrete nodules
		15.78 - 23.34	7.56	Minor ferricrete nodules
WTG 6	Percussion	15.00 – 23.00	8.00	Ferruginised sand
WTG 8	Rotary core	4.61 - 5.73	1.12	Cemented sand
		5.73 - 14.39	8.66	Very weakly to weakly
				cemented sand
WTG 10	Rotary core	3.72 - 5.52	1.80	Very weakly to weakly
				cemented sand
WTG 12	Rotary core	21.80 - 23.28	1.48	Very weakly cemented sand
WTG 16	Rotary core	12.04 - 13.66	1.62	Very weakly to weakly
				cemented sand
WTG 19	Rotary core	2.44 - 2.64	0.20	Weakly cemented sand
		12.77 - 12.86	0.09	Weakly cemented sand
		13.44 - 13.75	0.31	Weakly cemented sand
		15.96 - 16.11	0.15	Very weakly cemented sand
WTG 20	Percussion	26.00 - 27.00	1.00	Very weakly cemented sand
WTG 21	Rotary core	0.75 - 0.90	0.15	Very weakly cemented sand
		1.20 - 1.48	0.28	Very weakly cemented sand
WTG 23	Rotary core	1.32 - 1.73	0.41	Very weakly cemented sand
WTG 26	Rotary core	0.76 - 1.50	0.74	Ferricrete nodules
		1.50 - 2.13	0.63	Minor ferricrete nodules
		26.16 - 35.85	9.69	Layers of cemented sand and
				silt layers
WTG 32	Rotary core	16.90	<0.05	Layers of cemented sand
		28.17	<0.05	(thickness was not recorded
		28.24	<0.05	during logging(assumed to be
		30.51	<0.05	less than 0.05m))
WTG 34	Rotary core	10.11 - 10.12	0.01	Weakly cemented sand
WTG 39	Percussion	2.00 - 4.00	2.00	Cemented sand
WTG 40	Rotary core	0.86 - 1.72	0.86	Weakly cemented sand
		12.03 - 12.45	0.42	Cemented sand
WTG 42	Rotary core	0.85 - 2.70	1.85	Cemented to strongly
				cemented sand
		8.00 - 8.25	0.25	Strongly cemented sand
		10.83 - 10.90	0.07	Strongly cemented sand
WTG 43	Percussion	2.00 - 10.00	8.00	Traces of weakly cemented
				-

				sand
		10.00 – 15.00	5.00	Ferricrete nodules
WTG 44	Rotary core	1.10 - 2.27	1.17	Weakly cemented sand
WTG 46	Rotary core	16.10 - 16.17	0.07	Cemented sand
		16.30 - 16.40	0.10	Cemented sand
		16.70 - 16.80	0.10	Cemented sand
WTG 50	Rotary core	33.91 - 35.14	1.23	Cemented sand
WTG 51	Rotary core	0.77 - 1.31	0.54	Cemented sand
		1.31 - 1.62	0.31	Very weakly cemented sand
WTG 52	Rotary core	1.91 - 3.10	1.19	Very weakly cemented sand
		3.10 - 6.26	3.16	Weakly cemented to cemented
				sand
		6.26 - 6.87	0.61	Very weakly to weakly
				cemented sand
		7.93 - 9.14	1.21	Weakly cemented to cemented
				sand
		9.14 - 9.27	0.13	Very weakly cemented sand
		9.65 – 9.80	0.15	Very weakly cemented sand
		10.24 - 11.11	0.87	Very weakly cemented sand
		11.11 - 12.52	1.41	Weakly cemented to cemented
				sand
		12.52 - 12.89	0.37	Cemented sand
WTG 53	Rotary core	7.36 - 11.22	3.86	Very weakly to weakly
				cemented sand
		11.22 - 11.49	0.27	Cemented sand
		11.49 - 12.36	0.87	Weakly cemented sand
		13.30 - 15.39	2.09	Weakly cemented sand
		17.13 - 17.36	0.23	Very weakly cemented sand
		20.07 - 20.20	0.13	Very weakly cemented sand
WTG 54	Rotary core	2.63 - 2.73	0.10	Weakly cemented
		2.95 - 5.09	2.14	Weakly cemented
Substation				
Sub-Stn C	Rotary core	23.83 - 23.93	0.10	Hard ferricrete layer

It can be seen from the table above that most of the cemented layers are very weakly to weakly cemented with some having minor traces of ferricrete nodules. The cemented to strongly cemented layers were encountered at WTG 1, WTG 4, WTG 6, WTG 8, WTG26, WTG 32, WTG 39, WTG 40, WTG 42, WTG 46, WTG 50, WTG 51, WTG 52,

WTG 53 and at substation C. The thickness of the cemented layers range from 0.02m in WTG 26 to 2.0m in WTG 39, with an average thickness of 0.5m.

Occasional cobbles and boulders were encountered at depth in some of the boreholes across the site. The cobbles and boulders that were encountered at the wind turbine positions are summarized below:

Wind Turbine Position	Drill Type	Depth (m)	Thickness (m)	Description
WTG 6	Percussion	29.00 - 30.00	1.00	Quartz boulder
WTG 6	Rotary core	29.41 - 29.88	0.47	Quartz boulder
WTG 10	Percussion	5.00 - 7.00	2.00	Possible cobble or boulder
WTG 12	Rotary core	54.37 - 54.51	0.14	Quartz cobble
WTG 16	Rotary core	42.29 - 42.65	0.36	Quartzitic sandstone boulder
		43.52 - 46.68	3.16	Quartzitic sandstone boulder
WTG 23	Rotary core	48.08 - 48.71	0.63	Sandstone boulder
WTG 36	Rotary core	8.22 - 8.28	0.06	Sandstone cobble
		8.75 - 9.36	0.61	Sandstone boulder
		24.10 - 24.20	0.10	Sandstone cobble
WTG 50	Rotary core	19.75 - 21.32	1.57	Sandstone boulder
		22.77 - 25.28	2.51	Sandstone boulder

TABLE 4.4: SUMMARY OF COBBLES AND BOULDERS ENCOUNTERED

It can be seen from the table above that the occurrence of the cobbles and boulders generally occurs at depths greater than 20m. The only locations where cobbles and boulders were found at depths less than 20m were at WTG 10, WTG 36 and WTG 50.

5. METHOD OF INVESTIGATION

The current investigation was tailored to obtain information with regards to founding conditions at the proposed Wind Turbine Generator (WTG) locations and the substation area. The turbines are presently arranged in three distinct lines as indicated in Table 5.1 below:

Turbine Line	Number of Turbines	Approximate Line Length (km)	Turbine Positions
Line 1 (Southern Line)	16	7.560	WTG1, 2, 4, 6, 8, 10, 12, 14, 16, WTG18 – WTG24
Line 2 (Middle Line)	14	6.600	WTG25 – WTG38
Line 3 (Northern Line)	12	5.000	WTG 39 – WTG50
Line 1 (Additional Holes)	4	-	WTG 51 – WTG 54

Drawing Number J01386–004–117–02–R-00, Appendix B, indicates the three distinct lines along which the wind turbines are located as well as the positions of the individual wind turbines. The co-ordinates for the wind turbine positions are indicated on Drawing Number J01386–004–117–03–R-00, Appendix B.

The geotechnical field investigations commenced in July 2010 and were completed in October 2010. The geotechnical field investigations comprised the following:

- Percussion drilling (at locations alternating with rotary core boreholes),
- Rotary core drilling (at locations alternating with percussion drilled boreholes),
- Dynamic Probe Super Heavy (DPSH) testing,
- Plate load testing,
- Excavation of test pits
- Geophysical surveys comprising electrical resistivity survey and seismic refraction surveys

In addition, the following investigations were also carried out:

- Laboratory testing
- Seismic hazard assessment
- Assessment of the dynamic response of the soil

5.1 Percussion Drilled Boreholes

Percussion boreholes were drilled at selected wind turbine positions along the three turbine lines and at the corner positions of the substation area to confirm the stratigraphy to depth. The percussion drilling was carried out by JKay Developments under the supervision of BKS (Pty) Ltd during the period 20th July 2010 to the 3rd August 2010. Percussion drilling was carried out at alternate wind turbine positions, as indicated in Table 5.2 below:

Structure	Borehole Number	Total Depth Drilled (m)
	WTG 2	40
	WTG 6	40
	WTG 10	54
Line 1	WTG 14	54
(Southern Line)	WTG 18	24
	WTG 20	27
	WTG 22	18
	WTG 24	18
	WTG 25	54
	WTG 27	54
Line O	WTG 29	54
Line 2	WTG 31	54
(Middle Line)	WTG 33	47
	WTG 35	40
	WTG 37	40
	WTG 39	102
	WTG 40	40
	WTG 41	102
	WTG 42	40
Line 3	WTG 43	102
(Northern Line)	WTG 44	40
	WTG 45	84
	WTG 46	40
	WTG 47	57
	WTG 49	40
	A	20
Substation	В	20
Substation	С	20
	D	20

TABLE 5.2: PERCUSSION DRILLED BOREHOLE POSITIONS

During percussion drilling disturbed samples of the material being penetrated are recovered; such as dust and fines of the softer materials and small chips of the harder materials. This information is supplemented by the recording of various drilling parameters such as penetration time, air loss whilst drilling and sample recovery.

Samples were recovered at 1.0m intervals during percussion drilling. These samples were logged on site by an Engineering Geologist according to current standards and practice (Brink and Bruin, 2002).

5.2 Rotary Core Boreholes

Rotary cored boreholes were generally drilled at locations alternating with percussion drilled boreholes. However, selected rotary core boreholes were drilled at the same location where a percussion hole had been drilled to confirm the sub-soil profile and consistency. The rotary core boreholes were drilled to provide information on the stratigraphy to depth and to obtain undisturbed samples for subsequent testing. Standard Penetration Tests (SPT) were generally carried out at 3.0m intervals within the borehole to determine the in-situ consistency of materials at depth.

Structure	Borehole Number	Total Depth Drilled (m)
	WTG 1	37.77
	WTG 2	39.83
	WTG 4	39.99
Line 1	WTG 6	39.90
(Southern Line)	WTG 8	56.07
	WTG 10	61.60
	WTG 12	99.25
	WTG 16	50.10
	WTG 19	43.36
	WTG 21	50.41
Line 1	WTG 22	50.03
(Southern Line)	WTG 23	50.08
	WTG 24	49.57
	WTG 26	50.82
	WTG 28	18.35
	WTG 30	37.68
Line 2	WTG 32	38.21
(Middle Line)	WTG 34	49.92
	WTG 36	49.53
	WTG 38	50.04
	WTG 40	50.29
	WTG 42	49.94
Line 3	WTG 44	48.37
(Northern Line)	WTG 46	50.17
	WTG 48	50.00
	WTG 50	40.77
	WTG 51	39.81
Line 1	WTG 52	40.53
(Additional Holes)	WTG 53	40.72
	WTG 54	40.15
Substation	A	24.99
Substation	С	25.04

TABLE 5.3: Rotary Cored Borehole Positions

From the above table it can be seen that four additional holes were drilled along Line 1. These holes were drilled to investigate a possible relocation of the wind turbines along Line 1.

The boreholes were drilled by the main contractor, RW Enterprises under the supervision of BKS (Pty) during the period 20th July 2010 to October 2010.

The rotary cored borehole core was logged and photographed on site by an Engineering Geologist according to current standards and practice (Brink and Bruin, 2002). The legend and descriptive terms utilized for soil and rock in this report are included in Appendix C. The core is at present stored in a purpose built shed on the site.

5.3 Dynamic Probe Super Heavy (DPSH)

Dynamic Probe Super Heavy (DPSH) testing was undertaken in order to ascertain the consistency of the underlying soils at each proposed wind turbine position and at the substation. These were carried out by Geopractica under the supervision of BKS (Pty) Ltd from 20th July 2010 through to the 3rd August 2010. The depth to refusal at each test location is indicated in the table below:

TABLE 5.4: POSITIONS OF DPSH TI

Structure	Borehole Number	Depth to Refusal (m)
	WTG 1	0.9
	WTG 2	8.1
	WTG 4	2.1
	WTG 6	3.6
	WTG 8	4.5
	WTG 10	4.5
	WTG 12	5.7
Line 1	WTG 14	3.9
(Southern Line)	WTG 16	2.4
	WTG 18	2.7
	WTG 19	3.3
	WTG 20	2.7
	WTG 21	8.1
	WTG 22	12.6
	WTG 23	10.8
	WTG 24	11.7
	WTG 25	0.9
	WTG 26	1.2
	WTG 27	0.6
Line O	WTG 28	3.3
Line 2	WTG 29	9.6
(Middle Line)	WTG 30	0.9
	WTG 31	2.6
	WTG 32	4.8
	WTG 33	3.6
	WTG 34	3.0
Line 2	WTG 35	7.5
(Middle Line)	WTG 36	4.2
	WTG 37	3.3
	WTG 38	1.5
	WTG 39	0.9
Line 3	WTG 40	6.6
(Northern Line)	WTG 41	5.4
	WTG 42	0.9

Structure	Borehole Number	Depth to Refusal (m)
	WTG 43	1.8
	WTG 44	3.3
	WTG 45	1.8
	WTG 46	8.0
	WTG 47	4.0
	WTG 48	5.5
	WTG 49	5.1
	WTG 50	4.0
	A	4.5
Substation	В	3.0
Gubstation	С	3.0
	D	4.5

TABLE 5.4: POSITIONS OF DPSH TESTS

From the above table, the range of values for depth of refusal may be summarized as follows:

TABLE 5.5: RANGE OF VALUES FOR DEPTH OF DPSH REFUSAL

Location	Minimum Depth to Refusal (m)	Average Depth to Refusal (m)	Maximum Depth to Refusal (m)
Line 1 (Southern)	0.9	5.5	12.6
Line 2 (Middle)	0.6	3.4	9.6
Line 3 (Northern)	0.9	3.9	8.0
Substation	3.0	3.8	4.5

From the above table it can be seen that there is no obvious correlation between the various lines or location on site.

5.4 Plate Load Tests

Plate load testing was carried out at selected turbine positions in order to obtain load/settlement curves to determine the elastic (subgrade) modulus in the vertical and horizontal directions. The tests were undertaken by Geopractica under the supervision of BKS (Pty) Ltd from 20th July 2010 through to the 5th August 2010.

Plate load tests were carried out in the weakly cemented marine deposits which underlie the loose Aeolian sands. It is anticipated that the wind turbine structures will be founded in the marine deposits and that the overlying loose Aeolian sands will be stripped to spoil.

For the vertical tests, the soils were subjected to maximum stresses of either 943kPa or 531kPa utilizing 600mm and 450mm diameter plates respectively. For the horizontal tests, the soils were subjected to a maximum stress of 912kPa utilizing a 300mm diameter plate. The locations where plate load tests were carried out are indicated in Table 5.5 below:

Wind Turbine Line	Borehole	Depth (m)	Depth (m)
	Number	Vertical	Horizontal
Line 1	WTG 4	2.1	2.5
(Southern Line)	WTG 16	3.1	3.5
Line 2	WTG 26	1.0	1.5
(Middle Line)	WTG 34	2.3	No test due to wall collapse
Line 3	WTG 41	1.3	1.5
(Northern Line)	WTG 46	1.3	1.7

TABLE 5.6: LOCATION OF PLATE LOAD TESTS

5.5 Excavation of Test Pits

Test pits were excavated with a tracked excavator at the locations where plate load tests were carried out. Test pits allowed the profiling and sampling of the upper layers of a profile. Representative samples (undisturbed and/or disturbed) were obtained for

subsequent laboratory testing. The presence of water and depth of refusal for each pit was noted and a visual assessment made of the stability of the sidewalls.

Each test pit was profiled and photographed by an Engineering Geologist according to current South African standards and procedures (Brink and Bruin 2002). The legend and descriptive terms utilized for soil and rock in this report are included in Appendix C. All test pits were labeled with the prefix "T" such as TWTG34, i.e. test pit excavated at Wind Turbine Position WTG34.

5.6 Laboratory Testing

Both disturbed and undisturbed soil samples were submitted for laboratory testing. The laboratory testing was carried out by Soillab in Bellville, Cape Town and comprised the following:-

- Determination of Indicator properties including grading and Atterberg Limits
- Determination of shear strength properties.
- Determination of Collapse Potential

Chemical Tests (pH, sulphates, chlorides and resistivity) were only carried out on samples from the potential borrow pit areas, but the results will be reported on in this report.

5.7 Seismic Refraction and Electrical Resistivity

Geophysical surveys were carried out on site by Engineering and Exploration Geophysical Services from 26th July 2010 through to September 2010.

The objective of the geophysical survey was to measure in-situ physical properties, namely P-wave velocity, S-wave velocity and electrical resistivity, at the potential turbine sites. Estimates of shear wave velocity were required to a depth of 50m. To achieve this it was necessary to conduct multiple MASW surveys at each site with different source and receiver geometries, and with the application of an additional technique, refraction micro-tremor (ReMI). Seismic refraction data gathered at the same time as the shear wave measurements and ERI data provides images of near surface and deeper

changes in rock properties, as well as near-surface resistance measurements for electrical grounding calculations.

MASW, ReMi, seismic refraction and ERI data were collected at each of the potential turbine sites. MASW and ReMi spreads were deployed such that the centre of the receiver array coincided with boreholes or as close as could be practically achieved, however, it was found that survey orientations had to be altered sometimes to enable the best compromise in terms of acquiring data of the greatest possible quality so that, for example, full advantage was taken of background energy sources (e.g. ocean swell) suitable for the ReMi survey technique. Resistivity lines were also collected along the three rows of turbine sites.

The three data-sets (MASW/ReMi, seismic refraction and ERI) usually exhibit a high degree of correlation between each other and to the lithology. Exceptions to this appear in the refraction data; in some instances the pressure wave velocity does not vary in a fashion as would be predicted from the MASW/ReMi data, instead being faster than expected perhaps because of moisture within the overburden matrix.

Whilst a degree of caution should be taken when using p-wave refraction velocities, on the basis of the high degree of correlation between different geophysical techniques as demonstrated by the data synthesis sections, a high degree of confidence can be assumed when using the derived physical properties for further geotechnical engineering and design.

5.8 Probabilistic Seismic Hazard Analysis

The probabilistic seismic hazard analysis was undertaken by the Council for Geoscience (CGS) in Pretoria.

The scope of work carried out by the CGS, included the following elements:

- Review of local / regional geological and seismological information within 300km of the site;
- Preparation of a regional seismotectonic model on the basis of the earthquake catalogue defined above, as well as geological information regarding the tectonic structures of the area.
- Ground motion assessment in terms of PGA and UHS for a return period of 475 years.

• Deaggregation of spectral accelerations (Sa(0.5), Sa(1.0), Sa(2.0) and Sa(3.0)).

The seismic hazard assessment was performed based on a very simple geological model. This assessment considered the contributions of natural seismicity to the groundshaking hazard, using a simplified seismotectonic model based on existing seismological data. The calculations were carried out within a probabilistic framework, and included consideration of uncertainties associated with the inputs. These uncertainties were treated using a logic-tree methodology.

CGS provided ground motion parameters required for the seismic design of the wind farm. These included Peak Ground Acceleration (PGA) values, uniform hazard spectrum (UHS) for 10% probability of exceedance in 50 years (475 year return period, or 1: 475 annual frequency of exceedance) and deaggregation. No specific building code was provided to guide the work, but guidelines for a normal multi-story building were adopted.

5.9 Dynamic Response of the Soil Assessment

The dynamic response of the soil assessment was undertaken by the Council for Geoscience (CGS) in Pretoria.

The procedure for investigating the dynamic response of the soil to strong ground motion consisted of the following steps:

- Typical soil profiles (soil models) are compiled to represent the range of ground conditions encountered at the site. Each profile is defined in terms of the soil material types encountered and the variation of shear wave velocity versus depth.
- Dynamical soil properties are assigned to the geological profile.
- Scaled time histories are then generated based on recorded ground motions at bedrock. Bedrock response spectra, representative of seismic hazard level at site are used to define appropriate earthquake strong-motion records for input as reference bedrock ground motions.
- Amplification factors are determined for each soil profile using two methods. One dimensional site response analysis is carried out using the program Shake.
- Surface response spectra are obtained for a range of periods using two methods.

Local site conditions play an important role in earthquake-resistant design and must be

accounted for on a case-by-case basis. A significant part of damage observed in destructive earthquakes around the world is associated with seismic wave amplification due to local site effects. The local site conditions could be very different due to variations in thickness and properties of soil layers and could have significant effects on the characteristics of earthquake ground motions on the ground surface. The soil amplification factors are directly related to the shear-wave velocity profiles, modulus degradation and damping ratio of the soil. Site response analysis is therefore a fundamental part of assessing the seismic hazard.

6. EVALUATION OF INVESTIGATION RESULTS

6.1 Percussion Borehole Results

The percussion borehole logs are presented in Appendix D and the observed stratigraphy is summarised in Table 6.1 below.

The wind turbine positions are located on aeolian sands which range from 1m to in excess of 50m in thickness and which are underlain by marine deposits consisting of silt, sand, clay, gravel and occasionally rock. Various levels of pedogenesis are evident within these deposits. The variability in the profiles is due to the depositional environment as discussed in Section 4, Geology, of this report.

Calcrete was encountered at various depths within some of the boreholes with the layers of calcrete varying in thickness from 1m to 17m.

The water table was encountered at depths of 72m, 69m and 79m in Boreholes WTG 39, 41 and 43 respectively.

The percussion boreholes drilled at the substation (A, B, C and D) were terminated at a depth of 20m. The full depth profile consisted of aeolian sands with some occasional ferruginisation being evident. No water was encountered in the boreholes drilled at the substation.

TABLE 6.1: STRATIGRAPHY OBSERVED AT PERCUSSION HOLES

	THICKNESS OF LAYERS (m)										
BOREHOLES	AEOLIAN		MARI	NE		ROC	к				
BOILEHOLLO			Sandy Silt		Clayey Silt						
	Sand	Sand	Silty Sand	Clayey Sand	Silt	Depth	Rock				
WTG 2	0.0 - 12	12.0 - 40.0									
WTG 6	0.0 - 29.0	30.0 - 40				29.0 - 30.0	Quartzite Cobble				
	0.0 - 5.0	5.0 - 7.0			7.0 - 48.0		000010				
WTG 10		48.0 - 53.0			53.0 - 54.0 ¹						
WTG 14	0.0 - 54.0										
WTG 18	0.0 - 24.0										
WTG 20	0.0 - 26.0	26.0 - 27.0									
WTG 22	0.0 -18.0										
WTG 24	0.0 - 1.0	1.0 - 18.0									
WTG 25	0.0 - 3.0	3.0 - 5.0	5.0 - 54.0								
WTG 27	0.0 - 3.0		32.0 - 54.0		3.0 - 32.0						
WTG 29	0.0 - 13.0	16.0 -28	13.0 - 16.0			28.0 - 54.0	Quartzite				
WTG 31	0.0 - 17.0	17.0 -18.0	22.0 - 38.0		18.0 - 22.0	38.0 - 54.0	Quartzite				
WTG 33	0.0 - 47.0										
WTG 35	0.0 - 40.0										
WTG 37	0.0 - 5.0				5.0 - 40.0						
WTG 39	0.0 - 29.0	29.0 - 31.0	31.0 - 102.0 ¹								
WTG 40	0.0 - 13.0		13.0 - 32.0		32.0 - 40.0 ¹						
WTG 41	0. 0 - 18.0	18.0 - 30.0				30.0 - 102.0	Quartzite				
	0.0 - 7.0	8.0 - 11.0	7.0 - 8.0								
		16.0 - 17.0	11.0 - 16.0								
WTG 42		25.0 - 38.0	17.0 - 25.0								
			38.0 - 40.0								
WTC 42	0.0 - 10.0	10.0 - 64.0			64.0 - 74.0 ¹						
WTG 43		74.0 - 102 ¹									
WTG 44	0.0 - 2.0	10.0 - 40.0		2.0 - 10.0							
WTG 45	0.0 - 6.0	22.0 - 42.0	12.0 - 22.0	6.0 - 12.0							
WTG 45		80.0 - 84.0	42.0 - 80.0								
WTG 46	0.0 - 1.0	16.0 - 17.0	17.0 - 18.0	1.0 - 16.0	18.0 - 29.0						
W10 +0			29.0 - 40.0								
WTG 47	0.0 - 26.0		26.0 - 38.0		38.0 - 57.0						
WTG 49	0.0 - 18.0	18.0 - 24.0 ²				24.0 - 40.0	Quartzite				
А	0.0-20.0										
В	0.0-20.0										
С	0.0-20.0										
D	0.0-20.0										

6.2 Rotary Cored Borehole Results

The rotary cored borehole logs and accompanying core photography are presented in Appendix E and the observed stratigraphy is summarised in Table 6.2 below.

Based on the rotary cored borehole profiles, the wind turbines positions are underlain by aeolian sands ranging from 0 to 44m in thickness, these in turn are underlain by marine deposits consisting of silt, sand, clay, gravel and occasionally rock. Various levels of pedogenesis are evident within these deposits. The substation is underlain by aeolian sands present from surface to a depth of at least 25m.

The variability in the profiles is due to the depositional environment as discussed in Section 4, Geology, of this report.

The water table was not encountered during the rotary drilling.

Utilizing the information from the rotary core and percussion boreholes, geotechnical long-sections were developed along the three wind turbine lines. These long sections are indicated on Drawing Numbers J01386–004–117–04–R-00, J01386–004–117–05– R-00 and J01386–004–117–06–R-00 in Appendix B.

					THICKNESS OF L	AYERS (m)				
	AEOLIAN				MARINE					ROCK
BOREHOLES	Sand	Cond	Citty Cond (Condy Citt	Clayey Sand clS	Clayey Silt clSi	Clau	Boulders and Cobbles Layers		Depth	Description
		Sand	Silty Sand/Sandy Silt	Sandy Clay sCl	Silty Clay siCl	Clay	Depth	Description		
WTG 1	0.00 - 11.10	11.10 - 37.77						· · · · · · · · · · · · · · · · · · ·		
WTG 2	0.00 - 10.82	10.82 - 39.83								
WTG 4	0.00 - 5.40	5.40 - 39.99								
WTG 6	0.00 - 26.86	26.86 - 29.41	29.88 - 36.17		36.17 - 39.90 **clSi		29.41 - 29.88	Quarzite Cobble		
	0.00 - 5.73	5.73 - 14.07* WC	14.07 - 14.39	14.39 - 14.56 clS	14.56 - 18.57 clSi				50.15 - 50.52	VSR-Phyllite
		18.57 - 20.07	38.07 - 40.30	24.81 - 25.02 clS	20.07 - 24.81 clSi					
		20.07 20.07	41.45 -42.35	42.82 - 42.88 ** clS-CM	25.02 - 38.07 clSi					
WTG 8			42.50 - 42.82 **	43.90 - 44.86 ** clS	40.30 - 41.45 clSi					
			42.88 - 43.90 **		42.35 - 42.50 clSi					
			44.86 - 55.96 **		42.55 42.50 051					
	0.00 - 4.29	4.29 - 5.52 VWC-WC	33.92 - 35.12		5.52 - 33.92					
0.00	0.00 4.25	42.51 - 43.70 ³	39.22 - 42.51		35.12 - 39.22 clSi					
		42.51 45.70	43.70 - 49.00		49.00 - 49.14 clSi					
WTG 10			49.14 - 50.30		50.30 - 50.71 clSi					
			50.71 - 57.17		57.17 - 58.04** clS					
			58.04 - 61.60**		57.17 - 56.04 (15					
	0.00 - 20.50	21.80 - 23.28 VWC	20.50 - 21.80		27.99 - 30.04 Si	41.04 - 41.10	54.37 - 54.51	Quartz cobble		
	0.00 20.50	80.04 - 81.54 **	23.28 - 27.99		30.14 - 30.50 Si					
		00.04 01.04	30.04 - 30.14		30.54 - 32.34 Si					
			30.50 - 30.54		33.53 - 33.88 Si					
			32.34 - 33.53		36.22 - 38.02 Si					
			33.88 - 36.22		38.92 - 40.19 Si					
			38.02 - 38.92		62.04 - 64.23 ** clSi					
WTG 12			40.19 - 41.04		66.68 - 66.82** clSi					
WIG 12			41.10 - 54.37		70.90 - 75.54** clSi					
			54.51 - 62.04 **		77.04 - 79.71** clSi					
			64.23 - 66.68 **							
			66.82 - 70.90 **		81.54 - 93.42** clSi					
			75.54 - 77.04 **							
			79.71 - 80.04 **							
			93.42 - 97.70 **							
R Soft Rock IHR Medium hard R Hard rock HR Very Hard Rock AEOLIAN I MARINE alcrete-Pedogenic al -Calcareous	k		*Silcrete (Pedogenic Origin) **RESIDUAL PHYLLITE <i>Phyllite</i> with scattered hard su ¹ Pedogenic origin, with occasic ² Clayey silt with soft to mediur ³ Quartz gravel	nal ferricrete		DEGREE OF CEME VWC Very Weakly WC Weakly Ceme CM Cemented SC Strongly Ceme	r Cemented ented		MATERIAL S Sand Si Silt Cl Clay G Gravel C Cobbles B Boulder Q Quartz	

					THICKNESS OF I	AYERS (m)				
	AEOLIAN				MARINE					ROCK
BOREHOLES	Sand			Clayey Sand clS	Clayey Silt clSi			Boulders and Cobbles Layers	Depth	Description
		Sand	Silty Sand/Sandy Silt	Sandy Clay sCl	Silty Clay siCl	Clay	Depth	Description		
	0.00 - 13.66		13.66 - 17.85		17.85 - 21.35 Si		42.29 - 42.65	SR-MHR Quartzitic sandstone boulder		
			21.35 - 25.59		25.59 - 42.29 clSi		43.52 - 44.15	SR-MHR Quartzitic sandstone boulder		
WTG 16			46.86 - 50.10		42.65 - 43.52 clSi					
					44.15 - 46.86 ² clSi					
	0.00 - 16.11	16.11 - 17.49	28.78 - 31.70		17.49 - 20.96 Si				34.80 - 43.36	VSR-HR Sandstone
		20.96 - 21.29	32.80 - 34.52		21.29 - 22.07 clSi					
		22.07 - 25.68								
WTG 19		25.78 - 28.78		25.68 - 25.78 clS						
		31.70 - 32.80								
		34.52 - 34.80								
WTG 21	0.00 - 44.44	44.44 - 50.41								
WTG 22	0.00 - 44.03		44.03 - 50.03							
	0.00 - 0.36 clS	1.32 - 21.84	23.22 - 42.80	0.36 - 1.32 clS	42.80 - 44.32 clSi		48.08 - 48.71	Sandstone Boulder		
WTG 23		44.32 - 45.58	45.58 - 48.08	21.84 - 23.22 clS						
			48.71 - 50.08							
	0.00 - 0.60	3.50 - 15.40	15.40 - 44.17	0.60 - 3.50 clS	44.17 - 44.81 clSi					
WTG 24		45.04 - 45.24	44.81 - 45.04	45.24 - 47.34 sCl	48.44 - 49.57 clSi					
		47.34 - 48.44								
	0.00 - 0.76	0.76 - 2.13	21.61 - 42.76	42.76 - 44.98 clS	2.13 - 21.61 clSi				45.44 - 46.52	HR-Phyllite
WTG 26					44.98 - 45.44 ** clSi				46.82 - 50.85	, HR-Phyllite
					46.52 -46.82 ** clSi					,
WTG 28	0.00 - 3.11 clSi	3.11 - 4.99			4.99 - 14.33 clSi				14.33 - 18.35	SR-HR Quartzite
WTG 30	0.00 - 9.90	9.90 -11.70	11.70 - 33.59						33.59 - 37.68	HR-VHR Quartzite
	0.00 - 21.76	21.76 - 27.85	30.52 - 35.02	27.85 - 28.50					35.02 - 38.21	HR-Sandstone
WTG 32		28.50 - 30.30		30.30 - 30.52 clS						
WTG 34	0.00 - 31.81	31.81 - 48.81				48.81 - 49.92				
	0.00 - 8.22	8.28 - 8.75	13.70 - 24.10		35.37 - 35.47 Si		8.22 - 8.28	Sandstone Boulder	24.65 - 24.70	SR-Phyllite
		9.36 - 13.70	24.50 - 24.65		35.68 - 47.45 ** Si		8.75 - 9.36	Sandstone Boulder	34.13 - 34.50	HR-Phyllite
WTG 36		24.20 - 24.50 ³	24.70 - 34.13 **				24.10 - 24.20	Sandstone Boulder	35.23 - 35.37	HR-Phyllite
			34.50 - 35.23 **						35.47 - 35.68	HR-Phyllite
									47.45 - 49.53	, HR-SR Phyllite
SR Soft Rock MHR Medium hard HR Hard rock VHR Very Hard Roc A AEOLIAN M MARINE Calcrete-Pedogenic	ck		*Silcrete (Pedogenic Origin) **RESIDUAL PHYLLITE <i>Phyllite</i> with scattered hard suba ¹ Pedogenic origin, with occasion ² Clayey silt with soft to medium ³ Quartz gravel	al ferricrete		DEGREE OF CEMEN VWC Very Weakly WC Weakly Cemen CM Cemented SC Strongly Cemen	Cemented nted		MATERIAL S Sand Si Silt Cl Clay G Gravel C Cobbles B Boulder	
Cal-Calcareous	-								Q Quartz	

Sere Wind Energy Facility

					THICKNESS OF L	AYERS (m)				
	AEOLIAN				MARINE					ROCK
BOREHOLES	Sand	Sand	Silty Sand/Sandy Silt	Clayey Sand clS Sandy Clay sCl	Clayey Silt clSi Silty Clay siCl	Clay	Βοι	lders and Cobbles Layers	Depth	Description
		Sana	Sirry Sundy Sundy Sire	Sundy Cidy Sci	Sitty city sici		Depth	Description		
	0.00 - 1.42	20.78 - 20.86 ** ³	21.10 - 21.81 **		3.00 - 3.60 ** Si				1.42 - 3.00	HR-Phyllite
			30.42 - 31.92 **		4.80 - 6.54 ** Si				3.60 - 4.80	HR-Phyllite
					7.04 - 8.04 ** Si				6.40 - 7.04	SR-Phyllite
					10.22 - 10.70 ** Si				8.04 - 10.22	SR-Phyllite
WTG 38					18.28 - 20.78 ** Si				10.70 - 18.28	SR-HR Phyllite
					36.56 - 47.04 ** Si				20.86 - 21.10	SR-HR Phyllite
									21.81 - 30.42	SR-HR Phyllite
									31.92 - 36.56	SR-HR Phyllite
									47.04 - 50.04	SR-MHR Phyllite
	0.00 - 12.45	43.50 - 43.55 ** ³	12.45 - 32.03	46.36 - 47.03 ** sCl	32.03 - 41.13 ** Si					, -
			41.13 - 43.50 **		43.55 - 44.38 ** Si					
WTG 40			44.38 - 46.36 **							
			47.03 - 50.29 **							
	0.00 - 6.80	8.00 - 11.10	6.80 - 8.00							
		16.06 - 16.99	11.10 - 16.06							
WTG 42		24.47 - 37.49	16.99 - 24.47							
		43.92 - 49.94	37.49 - 43.92							
	0.00 - 2.27	10.14 - 14.75	14.75 - 18.51	2.27 - 10.14					43.00 - 46.67	MHR-VHR-Sandstone
		18.51 - 43.00								
WTG 44		46.67 - 47.78**								
		48.00 - 48.37**								
	0.00 - 0.70	15.97 - 16.92	16.92 - 17.42	0.70 - 15.97 clS	17.42 - 28.45 Si					
WTG 46			28.45 - 39.80		39.80 - 39.92 siCl					
			39.92 - 40.17		40.17 - 50.17					
	0.00 - 12.75	26.85 - 29.00	29.00 - 29.70	12.75 - 26.85 clS		49.64 - 50.0 **				
WTG 48		29.70 - 32.00		32.0 - 35.20 clS						
		35.20 - 49.64								
N/TO 50	0.00 - 19.75	21.32 - 22.77	27.81 - 28.88		25.28 - 27.81 siCl	1	9.75 - 21.32	Sandstone Boulder	37.30 - 40.77	VHR-Quartzite
WTG 50		32.13 - 37.30 **			28.88 - 32.13 siCl		2.77 - 25.28	Sandstone Boulder		
WTG 51	0.00 - 0.77	0.77 - 39.81								
	0.00 - 5.05	5.05 - 12.89	12.89 - 18.50 **		18.50 - 38.00					
WTG 52					38.00 - 40.53 ** clSi					
SR Soft Rock MHR Medium hard HR Hard rock VHR Very Hard Rock A AEOLIAN M MARINE	k		*Silcrete (Pedogenic Origin) **RESIDUAL PHYLLITE <i>Phyllite</i> with scattered hard sub- ¹ Pedogenic origin, with occasion ² Clayey silt with soft to medium ³ Quartz gravel	al ferricrete		DEGREE OF CEMENTATI VWC Very Weakly Ceme WC Weakly Cemented CM Cemented SC Strongly Cemented			MATERIAL S Sand Si Silt CI Clay G Gravel C Cobbles	
Calcrete-Pedogenic Cal -Calcareous			Qualiz glavel						B Boulder Q Quartz	

					THICKNESS OF L	AYERS (m)					
	AEOLIAN				MARINE		_			ROCK	
BOREHOLES	Sand	Sand Silty Sand/Sandy Silt	Silty Sand/Sandy Silt	Clayey Sand clS Sandy Clay sCl	Clayey Silt clSi Silty Clay siCl	Clay	Boulders and Cobbles Layers		Depth	Description	
						Depth	Description				
	0.00 - 11.49	11.49 - 13.30	13.30 - 13.87 WC		13.87 - 14.66 WC-Si						
			14.66 - 26.44		26.44 - 30.76 Si						
WTG 53			30.76 - 30.96		30.96 - 31.87 Si						
			31.87 - 34.26		34.26 - 36.54 Si						
			36.54 - 40.72								
	0.00 - 2.73	2.95 - 5.09 WC	5.09 - 6.49	2.73 - 2.95 clS	6.49 - 16.30 clSi				39.57 - 40.15	SR-PHYLLITE	
WTG 54			16.30 - 27.79	33.57 - 38.12 ** clS	27.79 - 33.57** clSi						
					38.12 - 39.57 ** clSi						
А	0.00 - 25.00										
С	0.00 - 25.04										
SR Soft Rock MHR Medium hard HR Hard rock VHR Very Hard Rod A AEOLIAN M MARINE Calcrete-Pedogeni Cal -Calcareous	ck		*Silcrete (Pedogenic Origin) **RESIDUAL PHYLLITE <i>Phyllite</i> with scattered hard sul ¹ Pedogenic origin, with occasio ² Clayey silt with soft to mediun ³ Quartz gravel	nal ferricrete		DEGREE OF CEM VWC Very Weakl WC Weakly Ceme CM Cemented SC Strongly Ceme	ly Cemented ented		MATERIAL S Sand Si Silt Cl Clay G Gravel C Cobbles B Boulder Q Quartz		

6.3 Results from Standard Penetration Tests (SPT)

From the SPT "N" values, the allowable bearing capacity for material at various depths can be determined. The allowable bearing capacity has been determined using the "Brink, Partridge and Williams, 1982" method which is based on permissible settlements of 25 mm derived from average N values below the footprint of the foundation for different founding depths.

Beneath the wind turbine positions, the SPT results indicate that the in-situ soils are typically loose to medium dense, consisting of unconsolidated sediments to approximately 10m depth. Thereafter the in-situ soil consistencies increase from dense to extremely dense with depth to 50m. For the substation, the SPT results indicate that the in-situ soils are typically medium dense to very dense from approximately 1.0m to 25m depth.

The estimated allowable bearing capacities on in-situ soil between 3.0m and 4.0m depth are summarised in Table 6.3 below. A conservative maximum of 500 kPa has been assumed. The different soil types have been taken into account when estimating the allowable bearing capacities, hence bearing capacities may differ where the "Blows per 300mm" are the same for different material types.

Structure	Borehole	Depth Below	Blows Per	Allowable Bearing
Structure	Position	Surface (m)	300mm	Capacity (kPa)
	WTG 1	3.0 – 3.5	9	150
	WTG 2	3.0 – 3.5	20	250
	WTG 4	4.0	Refusal	500
	WTG 6	3.0 - 3.5	Refusal	500
	WTG 8	3.2 – 3.7	33	350
Line 1	WTG 10	3.0 - 3.4	Refusal	500
Line 1	WTG 12	3.4	29	300
(Southern Line)	WTG 16	3.0 – 3.4	Refusal	500
	WTG 19	3.5 – 3.9	60	470
	WTG 21	3.5 – 3.9	28	300
	WTG 22	3.0 – 3.5	18	240
	WTG 23	3.2 – 3.7	21	260
	WTG 24	3.2 – 3.7	15	200
	WTG 26	3.0 – 3.5	35	250
	WTG 28	3.4 - 3.6	Refusal	500
	WTG 30	3.0 – 3.5	45	450
Line 2	WTG 32	3.0 – 3.5	23	280
(Middle Line)	WTG 34	3.0 - 3.5	36	370
	WTG 36	3.4 – 3.8	24	300
	WTG 38	5.0	Refusal	300
	WTG 40	4.2	42	400
	WTG 42	4.0	Refusal	500
Line 3	WTG 44	4.0	60	500
(Northern Line)	WTG 46	4.0	24	200
	WTG 48	3.0 – 3.5	46	450
	WTG 50	3.5 – 3.6	Refusal	500
Substation	A	3.3 – 3.7	35	350
Substation	С	3.0 - 3.6	74	500
1	WTG 51	3.0	19	250
Line 1	WTG 52	3.0	Refusal	500
(Additional	WTG53	3.0	42	400
positions)	WTG 54	6.6	53	300

TABLE 6.3 : ALLOWABLE BEARING CAPACITY FROM SPT "N" VALUES

6.4 Results from Dynamic Probe Super Heavy (DPSH) Testing

The results from the DPSH tests are presented in Appendix F.

From the DPSH results the allowable bearing capacity for material at various depths can be determined. The allowable bearing capacities were determined using the "Brink, Partridge and Williams, 1982" method which is based on permissible settlements of 25 mm derived from average N values below the footprint of the foundation for different founding depths.

For the wind turbine positions, the DPSH results indicate that the overlying in-situ soils are generally loose to approximately 1.0m depth, thereafter increasing to medium dense to very dense to depths of 12.6m. Refusal depths were variable occurring between 0.9m to 12.6m across the site.

The DPSH results for the substation indicate that the in-situ soils are typically medium dense to dense sediments to approximately 2.5m depth, thereafter increasing to dense to very dense material with depth to 4.5m. Refusal depths varied slightly occurring at depths ranging between 3.0m and 4.5m across the substation footprint.

The estimated allowable bearing capacities on in-situ soil between 3.0m and 4.0m depth are summarised in Table 6.4 below. A conservative maximum of 500 kPa has been assumed. The different soil types have been taken into account when estimating the allowable bearing capacities, hence bearing capacities may differ where the "Blows per 300mm" are the same for different material types.

Structure	Borehole	Depth Below	Blows Per	Allowable Bearing
Structure	Number	Surface (m)	300mm	Capacity (kPa)
	WTG 1	0.9	Refusal	500
	WTG 2	3.0	25	300
	WTG 4	2.0	Refusal	500
	WTG 6	3.6	Refusal	500
Line 1	WTG 8	3.0	32	350
(Southern Line)	WTG 10	3.0	34	350
	WTG 12	3.0	27	300
	WTG 14	3.0	58	470
	WTG 16	3.0	Refusal	500
	WTG 18	3.0	Refusal	500
_	WTG 19	3.0	Refusal	500
	WTG 20	3.0	Refusal	500
Line 1	WTG 21	3.0	22	270
(Southern Line)	WTG 22	3.0	22	270
	WTG 23	3.0	35	350
	WTG 24	3.0	29	300
Line 2	WTG 25	0.9	Refusal	500
	WTG 26	1.2	Refusal	500
(Middle Line)	WTG 27	0.6	Refusal	500
Line)	WTG 28	3.3	Refusal	500
	WTG 29	3.0	19	250
	WTG 30	0.9	Refusal	500
	WTG 31	2.6	Refusal	500
	WTG 32	3.0	44	430
Line 2	WTG 33	3.3	90	500
(Middle Line)	WTG 34	3.0	Refusal	500
	WTG 35	3.0	21	200
	WTG 36	3.9	Refusal	500
	WTG 37	3.0	Refusal	500
	WTG 38	1.5	Refusal	500

TABLE 6.4 : ALLOWABLE BEARING CAPACITIES FROM DPSH TESTS

TABLE 6.4 (cont) :

Chruchurg	Borehole	Depth Below	Blows Per	Allowable Bearing
Structure	Number	Surface (m)	300mm	Capacity (kPa)
	WTG 39	0.9	Refusal	500
	WTG 40	3.0	44	400
	WTG 41	3.0	41	400
	WTG 42	0.9	Refusal	500
	WTG 43	1.8	Refusal	500
Line 3	WTG 44	3.3	Refusal	500
(Northern Line)	WTG 45	1.8	Refusal	500
	WTG 46	3.0	35	350
	WTG 47	4.0	Refusal	500
	WTG 48	3.0	40	400
	WTG 49	3.0	15	200
	WTG 50	3.3	Refusal	500
	А	3.0	24	200
Substation	В	3.0	Refusal	500
Gubstation	С	3.0	Refusal	500
	D	3.0	25	200

ALLOWABLE BEARING CAPACITIES FROM DPSH TESTS

These values correlate well with the results from the SPT values obtained during the rotary core drilling.

6.5 Results from Plate Load Tests

The plate load test results are presented in Appendix G.

Plate load testing was carried out at selected turbine positions in order to obtain load/settlement curves to determine the elastic (subgrade) modulus in the vertical and horizontal directions. Plate load tests were carried out in the weakly cemented marine deposits which underlie the loose Aeolian sands. It is anticipated that the wind turbine structures will be founded in the marine deposits and that the overlying loose Aeolian sands will be stripped to spoil.

In assessing the results from the plate load tests, only the moduli determined from the second (reload) cycle are recorded in Table 6.5 as bedding effects are largely eliminated in the second cycle. The estimated Elastic Moduli of the upper marine deposits summarised in Table 6.4 below.

	Vertic	al Stiffness	(MPa)	Horizontal Stiffness (MPa)			
Structure	2nd	cycle	Depth	2nd c	Donth (m)		
	E ₅₀ Secant	E ₅₀ ^{Tangent}	(m)	E ₅₀ Secant	E ₅₀ ^{Tangent}	Depth (m)	
WTG4	848	959	2.1	250	257	2.5	
WTG16	316	280	3.1	140	132	3.5	
WTG26	110	192	1.0	132	156	1.5	
WTG34	187	194	2.3		No horizontal test done (wall collapse)		
WTG41	429	229	1.3	81	46	1.5	
WTG46	285	280	1.3	65	72	1.7	

TABLE 6.5: ELASTIC MODULI FROM PLATE LOAD TEST RESULTS

6.6 Results from Test Pits

The test pit profiles are presented in Appendix H.

The test pits were excavated at the wind turbine positions where plate load testing was carried out. Based on the test pits, the site is underlain by dry to slightly moist pale red very loose to loose aeolian sand followed by slightly moist orange medium dense clayey SAND, marine origin. This is in turn underlain by slightly moist orange medium dense to dense very weakly to weakly cemented calcareous clayey sand which is pedogenic in origin. The exception is Wind Turbine 26, which is underlain by slightly moist grey firm to stiff intact clayey SILT which is considered to be pedogenic in origin.

No groundwater seepage was encountered in any of the test pits.

Due to the dry to slightly moist moisture content and loose granular nature of the upper layer(s), the sidewalls in the upper portion of the majority of the test pits were unstable.

The stratigraphy observed in the test pitws is summarized in Table 6.6 below:

	THICKNESS OF LAYERS (m)									
TEST PIT	AEOLIAN			PED	Depth					
	Sand	Sand	Silty Sand	Clayey Sand clS	Clayey Silt clSi	Depth	Material	of hole		
		Junu		Sandy Clay sCl	Silty Clay siCl	Deptil	Wateria	(m)		
T WTG4	0.0 - 1.2			1.2 – 1.75 clS 1.75 - 2.2 clS WC 2.2 – 2.8 clS WC		2.2 - 2.7	Calcrete	5		
				2.7 - 2.8 clS WC						
				3.1 - 3.4 clS VWC*						
T WTG16	0.0 - 1.5			3.4 - 4.6 clS				5		
				4.6 - 4.8 clS VWC*						
				4.8 - 5.0 clS						
T WTG26	0.0 - 1.0				1.0 - 5.0 clSi*			5		
T WTG34	0.0 - 2.2	2.2 - 2.4		2.4 - 4.5 clS				4.5		
T WTG41	0.0 - 0.9		0.9 - 1.6 clsiS VWC*	1.6 - 5.0 CM Cal				5		
T WTG46	0.0 - 0.9		0.9 - 2.0 clsiS	2.0 - 5.0 siclS WC				5		
	siS		WC*	Cal*				,		
MATERIAL TYPE				DEGREE OF CEMENTAT	ORIGIN					
S Sand	C Cobbles			VWC Very Weakly Cen	* Pedogenic :					
Si Silt		B Bould		WC Weakly cemente						
Cl Clay		Cal Calc			CM Cemented					
G Gravel		Q Quar	tz	SC Strongly Cemented						

TABLE 6.6: STATIGRAPHY OBSERVED IN THE TEST PITS

6.7 Laboratory Test Results

The results from the laboratory testing on the soil samples are presented in Appendix K. The results from laboratory testing are summarized in the following tables:

The results from grading analysis are presented in Table 6.7.

The results from collapse potential and shear box tests are presented in Table 6.8. The results from chemical tests carried out on selected samples from Borrow are A and B are presented in Tables 6.9 and 6.10 respectively.

Discussion of these results is presented after the summary tables.

TABLE 6.7: SUMMARY OF GRADING ANALYSES

Test Pit		Soil Description	Atterberg Limits			Percentage Composition					Moisture	Potential
	Depth (m)		Plasticity Index	Liquid Limit (%)	Linear Shrinkage (%)	Gravel	Sand	Silt	Clay	Unified Soil Classification	Content (%)	Expansive- ness
TWTG16	1.5 - 5	Silty SAND	NP	0	0	0	87	3	10	SM	8.3	Low
TWTG26	2.6 - 5	SILT	10	34	5	0	3	51.3	45.8	ML	31.4	Low
TWTG34	2.2 - 2.4	Poorly graded SAND	NP	0	0	0	99	0.7	0.3	SP	0.7	Low
TWTG34	2.4 - 4.5	Silty, clayey SAND	4	21	2	0	84	2.3	13.7	SC-SM	6.5	Low
TWTG41	0.9 - 1.6	Silty, clayey SAND	6	27	3	0	73	20.5	6.6	SC-SM	11.4	Low
TWTG41	1.6 - 5	Silty SAND	NP	0	0	0	79	4.8	16.3	SM	8	Low
TWTG46	0.9 - 2	Silty SAND	24	56	12	0	57	26	17	SM	14.7	Medium
TWTG48	2.0 - 5	Silty SAND	NP	0	0	0	82	9	9	SM	8.9	Low
WTG16	3.1 - 3.5	Poorly graded SAND, with Silt	SP	0	0.5	0	88	3.2	8.8	SP-SM	6.5	Low
WTG46	1.1 - 1.5	Silty SAND	0	0	0	0	62	24.3	13.7	SM	15.3	Low
	NP Non Plastic SP Semi Plastic											

TABLE 6.8: SUMMARY OF COLLAPSE POTENTIAL AND SHEAR BOX TESTS

Test Pit						Severity	Dry Shear Box		Remoulded	
	Sample number	Depth (m)	Soil Description	Collapse Potential	Severity of Problem	Classification (after ASTM D5333)	Cohesion (kPa)	Friction Angle (°)	Cohesion (kPa)	Friction Angle (°)
	A	2.8	Silty coarse SAND, weakly cemented	0.0%	No Problem	None	131	44.1		
TWTG 4	В	2.8	Silty coarse SAND, weakly cemented	0.0%	No Problem	None				
	С	2.8	Silty coarse SAND, weakly cemented	0.1%	No Problem	Slight	157.9	46.7		
TWTG 16	-	2.4	Silty SAND	1.5%	Moderate Trouble	Slight	1.1	41.7		
-	3.1 - 3.5	Silty SAND	0.0%	No Problem	None	9.4	42.6	1.1	35.3	
TWTG 21	-	4.98 - 5.29	SAND	0.2%	No Problem	Slight				
TWTG 23	-	4.5 - 4.85	SAND	0.1%	No Problem	Slight				
TWTG 26	-	5.02 - 5.27	CLAY	0.0%	No Problem	None				
TWTG 28	-	6.34 - 6.53	SILT	0.0%	No Problem	None				
TWTG 34	-	2.0 - 2.3	Silty SAND	0.6%	No Problem	Slight	5.2	40.5	2.0	31.1
TWTG 46	A	1.5	Silty coarse SAND, weakly cemented	0.5%	No Problem	Slight			0.5	35.2

Test Pit /	Depth (m)	Soil Description	РН	Conductivity	Chloride	Chloride	SO₄ (mg/l)	SO4 (%)
Sample ID				(S/m)	content (mg/l)	content (%)		
В3	2.4 – 5.0	Silty SAND	7.5	0.18	530.43	0.053	130.51	0.013
B5	2.7 – 4.7	Silty SAND	6.97/6.86	0.25	378.88	0.038	143.34	0.014
B6	1.2 - 5.0	Silty SAND	6.67	0.30	519.86	0.052	117.76	0.12
C1	0.9 – 2.4				511.05	0.051	90.45	0.009
C6	2.0 - 4.6	Silty SAND	7.94	0.13	280.20	0.028	46.10	0.005
D3	3.0 – 4.3	Silty SAND	6.72 / 7.59	0.19	361.26	0.036	173.67	0.017
G3	0.9 – 2.1	Silty SAND	8.87	0.49	722.52	0.072	220.02	0.022
G5	1.9 – 5.0				348.93	0.035	177.54	0.018
G6	2.7 – 5.0	Silty SAND	8.24	0.53	907.57	0.091	744.88	0.074
G7	1.5 - 2.5	Silty SAND	7.33	0.23	572.73	0.057	158.03	0.016

Table 6.9: SUMMARY OF CHEMICAL TEST RESULTS – BORROW AREA A

pH ranges from 6.67 – 8.24, degree of aggressiveness of water is low to moderately aggressive

Conductivity (s/m) ranges from 0.13 – 0.53, which shows that the soils are very corrosive on site.

Chloride content (mg/l) ranges from 280.20 – 905.57, degree of aggressiveness of water is low to moderately aggressive

Sulphate content (mg/l) ranges from 46.1 – 744.88, degree of aggressiveness of water is low to moderately aggressive

Test Pit / Sample ID	Depth (m)	Soil Description	РН	Conductivity (S/m)	Chloride content (mg/l)	Chloride content (%)	SO₄ (mg/I)	SO₄ (%)
11	4.2 - 5.0	Silty SAND	7.69	0.25	500.48	0.050	114.27	0.011
J3	1.5 – 4.7	Silty, clayey SAND	8.07	0.45	713.71	0.071	206.83	0.021
КЗА	1.0 - 4.2	Clayey SAND	8.11 / 7.89	0.24	447.61	0.045	112.83	0.011
КЗА	4.2 - 5.0	Silty, clayey SAND	6.99	0.26	451.14	0.045	145.43	0.015
M2	2.9 – 5.0	Sandy, lean Clay	7.4	0.50	942.80	0.094	148.16	0.015

Table 6.10: SUMMARY OF CHEMICAL TEST RESULTS – BORROW AREA A

pH ranges from 6.99 - 8.11 degree of aggressiveness of water is low to moderately aggressive

Conductivity (s/m) ranges from 0.24 - 0.50, which shows that the soils are very corrosive on site.

Chloride content (mg/l) ranges from 447.61 – 942.80 degree of aggressiveness of water is low to moderately aggressive

Sulphate content (mg/l) ranges from 112.83 – 206.83 degree of aggressiveness of water is low to moderately aggressive

a) Results from Grading Analyses

No grading analyses were carried out on the overlying loose Aeolian sands as these are expected to be excavated to spoil. Only the underlying marine deposits were submitted for laboratory testing. Based on the grading analyses, the soils in the Sere Wind Facility consist of 62% to 88% sand, 3.2% to 24.3% of silt and 8.8% to 13.7% clay, classifying the material as either SM, SP, SP - SM or SC – SM according to the Unified Soil Classification System. This means that the marine deposits to a depth of approximately 5.0m consist predominantly of poorly graded sand, gravelly sands with little or no fines, or silty sands, poorly graded sand silt mixtures. The results of the laboratory tests confirm that the soils are not plastic indicating that the soil is unlikely to be expansive.

b) Results from Compaction Tests

In the compacted state the sands have a Maximum Dry Density of 1835kg/m³ to 1920kg/m³ under 100% Modified AASHTO effort, at Optimum Moisture Contents of 9% to 12.8%. California Bearing Ratio tests revealed it to have a CBR value of between 14 and 22 at 95% Maximum Modified AASHTO density (extracted from the companion Borrow Pit Report for the Sere Wind Facility).

c) Results from Collapse Potential Tests

Undisturbed block samples of the sand were subjected to Collapse Potential tests The Collapse Potential was generally less than 1% indicating "no trouble" with collapse settlement. Although one sample, WTG16 at 2.4m had a Collapse Potential of 1.48% which just brings it into the "moderate trouble".

d) Results from Shear Box Tests

Shear box testing was undertaken in order to determine the shear strength parameters of the material.

An initial set of tests were carried out on undisturbed dry samples in order to evaluate the shear strength parameters of the in-situ material. These tests produced peak angles of internal friction between 40.5° and 46.7° with cohesions between 1.1kPa and 157.9kPa. The higher values of cohesion are as a result of the cementing that has taken place in the soil sample.

A second set of tests were carried out on remoulded saturated samples in order to obtain relevant shear strength parameters for material that would be reworked on site. Tests on the remoulded samples produced peak angles of internal friction between 31.1° and 35.3° with cohesions between 0.5kPa and 2.0kPa.

e) Stable Side Slopes

Slopes in the cemented soils could have temporary slopes cut semi-vertical. Based on the angle of internal friction, soil slopes created with the remoulded material should have batters of between 1 (vertical) to 2 (horizontal) and 1 (vertical) to 1.5 (horizontal). However it must be noted that these recommendations are valid for temporary slopes only, and for those in the dry condition. Any seepage would warrant further investigation and perhaps flattening of the sidewalls.

f) Results from Chemical Testing

Selected samples of the near surface samples encountered at site (Borrow Areas A & B) were subjected to chemical analysis to test for pH, resistivity, soluble sulphates and soluble chlorides. assumption has been made that other soils found across the site may be more, less or of a similar corrosive nature.

g) Corrosivity of Soils

Selected samples from Borrow Area A and B were subjected to chemical test analysis for the purpose of corrosion assessment. The samples were tested for pH, resistivity, soluble sulphates and soluble chlorides. The range of chemical test results from both borrow areas are summarised below:

р	oH Conductivity (S/m) Chlorides (mg/l)		Conductivity (S/m)		es (mg/l)	Sulphat	es (mg/l)
Min	Max	Min	Max	Min	Max	Min	Max
6.67	8.87	0.13	0.53	280.20	942.80	46.10	744.88

According to the publication by the Concrete – Durability Bureau of the Portland Cement Institute (*Deterioration of Concrete in Aggressive Waters – Measuring aggressiveness and Taking Countermeasures, Table 3*), a pH range of 6.67 – 8.87, a water soluble chloride content of 280.20 – 942.80 mg/l and a sulphate concentration of 46.10 – 744.88 mg/l are all considered moderately aggressive.

Resistivity/conductivity tests indicated that the soils range from 0.13 - 0.53 S/m, and this range is considered to be very corrosive to steel.

The corrosion test results above are indicative of potential soil corrosivity based on the tested samples. Due to the relative uniformity of the soils across the Sere Wind Facility, it is assumed that other soils across the site, including founding soils for the wind turbines may be of a similar corrosive nature.

6.8 Results from the Seismic Refraction Survey

The results of the seismic refraction and electrical resistivity analysis are contained within the report tiltled:

"Multi-Channel Analysis of Surface Waves, Seismic Refraction and Electrical Resistivity Imaging on Turbine Sites. Sere Wind Energy Facility, Lutzville, South Africa. Dated 02 November 2010"

This report is included as Appendix I and the major findings are summarised below.

Overall, data quality for the seismic techniques (MASW, ReMi and seismic refraction) was good although wind-generated noise resulted in some degradation during the refraction acquisition program. Repeats of the some of the survey lines were carried out to improve data quality. After successful completion of the affected site, first arrivals could be confidently picked for all shots.

Data quality for the ERI surveys was reasonable but due to significant heterogeneity both laterally and vertically, the section plots presented in the report appear patchy. Limitations of the inversion package used to process the data may have contributed to some of the artefacts present in the sections, however, in general the sections correlate with the results from the seismic survey, suggesting that most of the complexity observed in the ERI data can be attributed to genuine changes in ground resistivity. Additionally, the Wenner array used for the ERI surveys is optimally suited to resolve vertical variations in resistivity such as horizontal bedding, as was expected on the site, but is less capable in accurately mapping horizontal changes, for example vertical pillar like structures.

All shear wave data sets were mapped to a maximum depth of 50m, the proposed depth of investigation. For each row of the proposed wind turbine sites, cross-section data is displayed in the report in sections of approximately 1000 m to eliminate the need to apply disproportionate vertical exaggeration to the plots. These figures are presented with line distance along the upper X-axis and WGS84 Zone 34S Easting or Northing coordinates along the lower X-axis. The elevation (relative RL) is annotated on the Y-axis using elevations derived from Shuttle Radar Topography Mission (SRTM).

The data sets in the report are coloured as follows:

- Shear Velocity (Vs) is coloured in such that faster Vs are warmer colours (yellows through reds) and slower Vs are cooler colours.
- P-wave (Vp) velocity is coloured such that faster Vp are warmer colours (yellows through reds) and slower Vp are cooler colours.
- ERI data (resistivity) is coloured such that more resistive layers are warmer colours (yellows through reds) and areas of lower resistivity are cooler colours.

a) Results from Seismic Refraction

The seismic refraction data has demonstrated that harder, more competent lithologies such as sandstone and quartzite are likely to be present in the near surface (less than 20m). The existence of such units is, at some sites, confirmed by a sharp increase in shear wave velocity as derived from MASW / ReMi data. However, in some circumstances this correlation does not exist. The lack of correlation between the two techniques is attributed to differences in the way in which the techniques interact with the environment (for example saturated vs unsaturated ground) and its effect on the correlation between p-wave velocity from refraction and s-wave velocity from MASW/ReMi. In this situation the two techniques may demonstrate a high degree of similarity in the dry situation, but have no apparent correlation if the ground is saturated, particularly if the p-wave velocity of the ground is low.

b) Results from Electrical Resistivity Imaging

The dominant feature in the ERI data is a four layer geometry, with a highconductivity layer approximately 10m thick at surface. (A thin resistor blanketing the area is not resolved in the sections but it is clearly visible in the data collected for the mat design.) This correlates well with a similar thickness surface layer in the refraction profiles that is defined by a low p-wave velocity, and is mapped as sand in available borehole data. In many areas there is also a good correlation between low velocities in the MASW/ReMi profiles and the low resistivity in the ERI sections. Beneath the surface layer, there is a layer that is highly variable in thickness and resistivity. On average this more resistive layer often coincides with silty sand and clayey silt. The lateral heterogeneity may reflect changes in porosity linked to variations in lithology, leading to changes in water content.

Beneath this layer, most of the sections exhibit a second increase in resistivity associated with sand, clayey sand and silt, according to the borehole logs. Finally at the base of the ERI sections, a highly resistive interface is reached which correlates very well with intersections of phyllite, quartzite and sandstone in the drill holes.

6.9 Results from the Probabilistic Seismic Hazard Analysis

The results of the seismic hazard analysis are contained within the report tiltled:

"Probabilistic Seismic Hazard Analysis for the Eskom Sere Wind Farm Site, Western Cape. Dated 05 November 2010"

This report is included as Appendix J and the major findings are summarised below.

A site-specific probabilistic seismic hazard assessment has determined site-specific ground-motion parameter values, corresponding to ground motion defined as that motion having a 10% probability of being exceeded over a lifetime of 50 years, (or annual frequency of exceedance (AFE) of 1:475 years). The hazard was determined for rock defined by a shear wave velocity of 750m/s.

The peak ground acceleration (PGA₄₇₅) value for a return period of 475 years was determined as 0.047g. Spectral acceleration values were also obtained for selected response periods for 1% critical damping. These values were used to prepare mean and median uniform hazard spectra.

Deaggregation showed that the hazard is dominated by nearby sources (13 - 15 km) with moderate sized earthquake (5.8 - 6.4). This corresponds to major contribution to the hazard by the Cape Fold Belt West source zone.

These values were calculated by considering a source model that included local and regional seismic sources. The assessment was based on a simplified geological model and existing information only.

It should be noted that only those effects resulting directly from shaking of the ground were considered in this study. No consideration was given to hazard at the site due to surface faulting, and to secondary effects such as tsunamis, landslides or liquefaction.

6.10 Results from the Dynamic Response of the Soil Analysis

The results of the dynamic response of the soil analysis are contained within the report tiltled:

"Dynamic Response of the Soil to Strong Ground Motion, Dated 22 November 2010"

This report is included as Appendix J and the major findings are summarised below.

The report presents the analysis of a dynamic response of the soil to a strong ground motion for the planned Eskom Sere Wind Farm Facility. An assessment of the dynamic response of the soil to strong ground motion was carried out in accordance with the IEC (2005) and GL (2010) standards for the design and safety requirements of wind turbines.

The ground-motion predictions for the site took into consideration the local site conditions in that the following four typical profiles were interpreted from geophysical survey results, percussion drilling results, rotary core drilling results and standard penetration tests and were submitted to the Council for Geoscience as input for seismic hazard analysis:-

- Profile No. 1: Sand to depth
- Profile No. 2: Shallow bedrock
- Profile No. 3: Sand overlying clayey/silty soils, clays and silts
- Profile No. 4: Cemented materials and boulders

The first 50.0m of the shear velocity profile model is based on an average velocity as determined from field measurements. Below 50.0m the velocity model was constructed using material properties obtained from rotary cored boreholes and percussion

boreholes as well as some indication from the resistivity investigation. At the Sere Wind Farm site the shear modulus degradation curves and damping ratio curves were selected using generic data suitable for deep soil conditions. The generic curves developed by EPRI (1993) are considered suitable to model pressure-dependent cohesionless soils, soils with gravels, sands, and low PI clays, and were therefore used to model the soil at the Sere Wind Facility.

The seismic hazard analysis described in Section 6.9 of this report, provides uniform hazard spectra (UHS) at bedrock level (Vs=750m/s) and an assessment that most of the hazard comes from a magnitude 6.4 earthquake at a distance of 13 -15 km. The UHS exists for the period range of 0.05 sec to 3.0 sec. Since the natural period of the structure is 3 sec, the UHS was extended to a 4.5 sec period to comply with EC and US standards. As recommended by the GL (2010) guidance, six earthquakes were selected with two independent horizontal components each. The amplitude of the recorded time history was adjusted, so it would match the UHS between 0.05 sec and 4.5 sec period. The modified acceleration records were used as input each of the site types.

In general, it can be said that deeper the base rock level, the larger the value of amplification and higher the value of predominant period. The periods and amplification factors for each site are listed below:

- Profile No. 1 (bedrock depth 150 m) maximal amplification 2.77 at 0.31 sec
- Profile No. 2 (bedrock depth 28 m) maximal amplification 2.51 at 0.25 sec
- Profile No. 3 (bedrock depth 100 m) maximal amplification 2.12 at 0.29 sec
- Profile No. 4 (bedrock depth 100 m) maximal amplification 2.64 at 0.29 sec

The amplification factor caused by the soil column could be quantified by the Ratios of Response Spectra (RRS). The RRS approach forms the basis of the site response coefficients used in many building codes and it is recommended by regulators. Two methods were used to calculate the surface response spectra: one from surface acceleration time history and the second from the average RRS. Similar patterns of response spectra at each of the four typical soil types were observed.

According to the building regulation codes, a band of periods from 0.6 to 6 sec (EC, 2004) or from 0.6 to 4.5 sec (ASCE, 2007) should be analyzed for the structure with a natural period of 3 seconds. Soil columns do not amplify response spectra between

2.0 sec to 4.5 sec, therefore, the fundamental mode of the turbine will not be affected by soil conditions. However, response spectra in the period range 0.6 sec - 2.0 sec are gradually affected by the soil column and at a period of 0.6 sec the amplification factor in comparison to outcrop motion is almost 2. This indicates that the higher mode of the turbine could be affected by soil conditions..

7. GEOTECHNICAL EVALUATION

7.1 Founding Conditions

The following four typical soil profiles were identified at the Sere Wind Facility:

TABLE 7.1: TYPICAL SOIL PROFILES UNDERLYING WIND TURBINES

PROFILE	WIND TURBINE - WTG Number
Sand to depth	1, 2, 4, 14, 18, 21, 33, 35, 48
Shallow Bedrock	19, 26, 28, 29, 30, 31, 32, 36, 38?, 41, 49, 50
Sand overlying clayey/silty soils,	6, 10, 12, 16, 20, 22, 23, 24, 25, 27, 34, 37, 39,
clays and silts	40, 43, 44, 46, 47
Cemented Material / Boulders	20

The various typical soil profiles may be generally summarized as follows:

The sand to depth profile is interbedded with clayey sand/sandy clay from 23 - 25m, silty sand from 30 - 45m and clayey silt/silty clay/clay from 45 - 47m.

The shallow bedrock profile is overlain by sand from 0 - 22m, clayey sand/sandy clay from 22 - 24m, clayey silt/silty clay/clay from 24 - 28m intermixed with silty sand.

The sand overlying clayey and silty clays and sands profile comprises sand from 0 - 19m, clayey sand/sandy clay from 19 - 33m, silty sand from 33 - 44m and clayey silt/silty clay/clay from 44 - 48m.

The cemented material/boulders profile consists of sand from 0 - 50m interbedded with sandstone boulders in a matrix of silty sand at 24 - 25m, silty sand from 25 - 31m, cemented materials (calcrete and calcareous silty sand at 31 - 34m, clayey silt/silty clay/clay from 34 - 37m and clayey sand/sandy clay from 37 - 45m.

The laboratory results indicate that the materials on site are not expected to be expansive. However during the site investigation a pin hole voided texture or open texture was noted in some of the sandy material. This is, often, an indication of the presence of a collapsible soil fabric. However, subsequent laboratory testing has confirmed that collapse settlement is negligible on this site. The worst sample tested, WTG16 at 2.4m, had a Collapse Potential of 1.48% which just brings it into the "moderate trouble" category.

It is anticipated that the top loose Aeolian sand will be excavated to spoil. This material is generally not suitable for use in fills as it will be problematic to compact due to its predominantly single grain size.

The wind turbine structures will therefore be founded in the underlying marine deposits.

Foundations should specifically satisfy the following two independent criteria with respect to founding soils:

- The allowable bearing capacity of the founding material.
- Variation in settlement due to consistency/density variations down the profile.

The choice of the most suitable founding option will be dictated by many factors such as economics, nature of the structure in terms of loading, flexibility and tolerance to settlement, variable soil conditions as well as time and space constraints.

7.2 Foundation Types Being Considered

The structures which will house the wind turbines are relatively tall and slender, which by their nature will be sensitive to settlement, especially any differential settlement. Three main types of foundation system are considered appropriate at present:-

a) Caissons

Caissons support the load by the resistance of the soil at their base and by friction between the surface of the caissons and the soil. The lower ends may be enlarged or belled to spread the loads.

b) Piled Foundation

Piles support the load by either the resistance of the soil at their base or by friction between the surface of the piles and the soil or a combination of the two.

The lower ends may also be enlarged or belled to spread compressive loads or resist tension loads.

c) Conventional Pad Footings

Large pad footings support the load by spreading it over a large area thereby decreasing the load per unit area. However, the influence of the raft load will extend to greater depths than the conventional smaller pad footing. This system may include in situ improvement of the in situ materials by dynamic compaction.

The elements within the substation, however, are unlikely to be so sensitive to differential movement and caissons or piles would not normally be considered.

7.3 Bearing Capacity

Utilizing the results from Standard Penetration Tests (SPT) and Dynamic Probe Super Heavy (DPSH) tests, the anticipated allowable bearing capacities at the various wind turbine positions on in-situ soil at a depth of approximately 3.0m have been summarized in Tables 6.3 and 6.4. the values from these two types of test correlate well and indicate that allowable bearing pressures between 200kPa and 500kPa can be expected. The loads from the wind turbine structures are not known at present, but these allowable bearing values are probably more than adequate.

7.4 Assessment of Potential Total and Differential Settlement

The total settlement that occurs under a structure may not be detrimental to the structure if the settlement occurs evenly under the foundation. However, it is known from studies of case records of structures founded on granular soils that the differential settlement can on occasions approach the total settlement. Generally, the differential settlement for granular materials is assumed to be two thirds (i.e. 67%) of the total settlement. This could be detrimental for a tall slender structure like that for a wind turbine.

a) Method of Determining Potential Settlement

In order to determine the potential settlement below the pad footings, the stratigraphy below the footing is needed. This was obtained from the rotary core boreholes, as the

information from the percussion boreholes was deemed to be unsuitable for an accurate determination of the different soil layers and their consistencies.

From the core logging, the soil type for each layer has been described and is noted in the rotary core logs e.g. silty sand, clayey sand, silt etc. Due to the disturbance of the soil during the core drilling process, no indication of the in-situ consistency can be adequately determined from the core recovered. Approximate consistency can, however, be determined from the Standard Penetration Tests (SPTs). The greater the SPT value (number of blows/300mm), the more dense or more stiff the material is. Table 7.2 shows the correlation between SPT and consistency of the material, as taken from *'Guidelines for Soil and Rock Logging in South Africa'* and Franki (2008).

Consistency Description	SPT 'N' (blows per 300mm)
Sandy	materials
Very loose	<5
Loose	5 – 10
Medium Dense	10 – 30
Dense	30 – 50
Very Dense	>50
Clayey	v Materials
Very soft	<2
Soft	2 – 4
Firm	4 – 8
Stiff	8 – 15
Very stiff	15 – 30

TABLE 7.2: CORRELATION BETWEEN SPT "N" VALUE AND CONSISTENCY

The SPTs were therefore used to determine the consistency of the corresponding layers in the borehole logs. Where there were no SPTs, consistencies were assumed based on general correlations with other boreholes. In some instances, the horizons or depths at which the consistency changes e.g. from medium dense to dense also had to be assumed. In general, the upper metre is assumed to be loose.

In order to simplify the classification of layers, a number of generalisations have been made:

- There is no distinction between slightly clayey sand and clayey sand, slightly sandy silt and sandy silt etc. The 'slightly' is removed as this is deemed to have no major influence on the E-value.
- Gravel in the layers has been ignored (i.e. scattered, minor and abundant gravel).

- No distinction has been made between loose sand and loose clayey sand, they have both been described as loose sand. As this material is assumed to be removed from below the foundations, this does not affect settlement calculations.
- Gravelly silt has been called sandy silt.
- Weakly cemented silt, silty sand and sandy silt have all been included in weakly cemented sand as it is assumed that they will have similar E-values.

The potential settlement that can occur in each layer is dependent on the stress experienced and the thickness. The actual stress experienced by the ground is dependent on the founding stress and decreases with depth below the design founding level. The stress conditions that are assumed to prevail (from Craig 1983) are shown in Table 7.3, where B is the width of the foundation. It is assumed that the overlying loose material is removed and that the founding stress is applied on the next layer.

TABLE 7.3: DEPTH OF INFLUENCE OF FOUNDING STRESS

Depth Range	Stress (kPa)
Surface to B/2	100% of founding stress
B/2 to B	60% of founding stress
B to 2B	40% of founding stress

As can be seen, only those layers up to a depth of 2B below the founding level are considered as contributing to the potential settlement.

As has been mentioned, Plate Load Testing was carried out at selected positions in order to determine the elastic modulus (otherwise known as E-value or Young's Modulus) of the different soil types; these are considered to be representative of what there is on site. In determining the E-value, the E_{50} -secant on the reload cycle for the vertical tests have been used as this largely eliminates bedding effects. Table 7.4 shows the correlation between the E-value and the material description in the test pit logs.

WTG	Depth (m)	E₅₀ Secant (MPa)	Log Description
4	2.10	848	Medium dense clayey SAND
16	3.60	316	Medium dense clayey SAND
26	1.00	110	Soft to firm shattered clayey SILT
34	2.80	187	Medium dense to dense with patches of loose clayey SAND
41	1.30	429	Dense weakly cemented clayey silty SAND
46	1.30	285	Dense weakly cemented clayey silty SAND

TABLE 7.4: PLATE LOAD TEST E-VALUES (VERTICAL) AND MATERIAL TYPES

The value at WTG 4 is seen as an anomaly and will not be considered. In general, the following deductions are made:

- Medium dense sand: 200 300 MPa
- Dense sand: 300 450 MPa
- Cohesive material: 100 MPa (only one test was done on cohesive material)

Correlations between SPT "N" values and E-values were not deemed suitable for the material on site and have therefore not been used. Due to the slight cementation between particles of the material on site, the final E-values used for the settlement calculations are higher than typical values encountered in literature for clean sands. The E-values are therefore derived directly from the Plate Load Test results and Table 7.5 shows the different material types encountered in the various rotary core boreholes and the corresponding E-value that has been used in assessing potential settlement. It has been assumed that no settlement occurs in rock.

E-values	MPa
Loose Sand	100
Medium Dense Sand	250
Dense Sand	350
Very Dense Sand	400
Very weakly cemented sand	350
Weakly cemented sand	375
Cemented Sand	400
Gravel	350
Medium dense clayey sand	250
Dense clayey Sand	350
Very Dense clayey Sand	400
Dense Silty Sand	350
Very dense Silty Sand	400
Medium dense clayey silty sand	250
Dense clayey silty sand	350
Very stiff silt	200
Very stiff clayey silt	200
Very stiff sandy silt	200
Very stiff clayey sandy silt	200
Very stiff silty clay	150

TABLE 7.5: ASSUMED E-VALUES OF MATERIAL ON SITE

b) Elastic Settlement

As the design and configuration of the wind turbine structure is unknown at present, the base size and founding stress are not known and have been assumed in order to determine the potential settlement. Base sizes of 15m x 15m and 20m x 20m have been assumed with founding stresses of 200kPa, 350kPa and 500kPa.

The elastic settlement of the foundations has been calculated for both base sizes (15mx15m and 20mx20m) and for each different founding stress.

Elastic settlement = $\frac{\text{Stress}}{\text{E}_{\text{insitu}}}$ * thickness of layer under consideration

The elastic settlement has been calculated for each layer and then summed at each wind turbine position in order to get the total potential elastic settlement. These values are presented in Table 7.6 below.

						2/1020
		E	lastic Settl	ement (mn	n)	
Stress (kPa)	200	350	500	200	350	500
B (m)	20	20	20	15	15	15
WTG 1	15.7	27.5	39.2	12.9	22.6	32.2
WTG 2	12.3	21.6	30.9	9.4	16.4	23.4
WTG 4	11.8	20.7	29.6	8.8	15.5	22.1
WTG 6	12.8	22.4	32.0	8.6	15.1	21.6
WTG 8	17.9	31.4	44.8	11.5	20.2	28.9
WTG 10	21.0	36.7	52.4	15.8	27.6	39.5
WTG 12	14.7	25.7	36.8	10.3	18.0	25.7
WTG 16	16.6	29.1	41.6	11.6	20.3	29.0
WTG 19	12.2	21.3	30.4	9.8	17.2	24.6
WTG 21	13.4	23.4	33.4	10.3	18.0	25.8
WTG 22	13.6	23.8	33.9	10.4	18.2	26.0
WTG 23	16.8	29.5	42.1	11.3	19.7	28.2
WTG 24	13.5	23.6	33.7	10.0	17.5	25.1
WTG 26	22.3	38.9	55.6	16.5	28.8	41.2
WTG 28	11.8	20.6	29.4	10.8	18.8	26.9
WTG 30	12.7	22.3	31.8	10.1	17.8	25.4
WTG 32	12.5	21.8	31.1	9.6	16.8	24.0
WTG 34	12.2	21.4	30.5	9.2	16.1	23.0
WTG 36	17.9	31.3	44.8	11.8	20.6	29.5
WTG 38	8.2	14.4	20.5	4.9	8.6	12.3
WTG 40	16.0	27.9	39.9	11.1	19.4	27.7
WTG 42	12.2	21.4	30.6	8.7	15.2	21.7
WTG 44	11.6	20.2	28.9	8.5	14.9	21.3
WTG 46	18.1	31.7	45.3	12.9	22.7	32.4
WTG 48	12.5	21.9	31.3	9.5	16.6	23.7
WTG 50	11.9	20.8	29.7	8.7	15.3	21.8
WTG 51	12.7	22.2	31.8	9.7	16.9	24.2
WTG 52	17.8	31.1	44.4	12.1	21.1	30.2
WTG 53	13.4	23.4	33.4	9.3	16.2	23.2
WTG 54	17.8	31.2	44.6	13.3	23.3	33.2
ANTICIPATE	D TOTAL SI	ETTLEMEN	T:			
Minimum	8.2	14.4	20.5	4.9	8.6	12.3
Average	14.5	25.3	36.2	10.6	18.5	26.5
Maximum	22.3	38.9	55.6	16.5	28.8	41.2
ANTICIPATE	D DIFFEREI		LEMENT (O	GRANULAR	MATERIA	_):
Minimum	5.5	9.6	13.7	3.3	5.8	8.2
Average	9.6	16.9	24.1	7.1	12.3	17.6
Maximum	14.8	26.0	37.1	11.0	19.2	27.5

TABLE 7.6: ANTICIPATED SETTLEMENTS AT TURBINE BASES

As can be seen from the above table, the expected differential settlements below the wind turbine bases range from 3.3mm (for a 15m x 15m base at 200kPa) to 37.1mm (for a 20m x 20m base at 500kPa). Although a differential settlement of 3.3mm may be acceptable, it is felt that the magnitude of differential settlement will be unacceptable for the tall slender wind turbine structure. It is therefore recommended that some form of ground improvement is deployed in order to mediate the problem of differential settlement.

c) Consolidation Settlement

In order for consolidation and the resulting settlement to occur, excess pore pressures in the cohesive material (clay and silt) needs to be generated and then dissipated. Given the relatively dry nature of the material on site up to the maximum influence depth of 40m, it is unlikely that the material will ever be saturated enough to allow for the generation and dissipation of excess pore pressures. For this reason, consolidation settlement has not been considered.

7.5 Dynamic Compaction

Dynamic Compaction (DC) is carried out by repeated dropping of a heavy weight (pounder) lifted high above the ground onto footprints set out on a grid pattern. The grid pattern is generally comprised of two or more stages of prints. Primary stage prints are spaced 5 to 10 metres apart with secondary prints evenly spaced between the primary prints. At each print, the pounder is dropped a set number of times from a set height which is referred to as a "pass" before the crater is backfilled with in-situ material bladed from the surafce around the craters or imported material. The depth of improvement is related to the energy per blow (Byrne and Berry, 2008) by:

$$D = k \cdot \sqrt{Wh}$$

Where D = depth of improvement (m)K = influence factor varying from 0.3 to 1W = pounder weight (ton)H = drop height (m)

The final stage of DC comprises ironing with a pounder having a larger flat surface with the prints spaced so as to ensure a minimum overlap of 50%.

The equipment available in South Africa comprises of 60 to 90 tonne crawler cranes with lift range up to 20m and 11 to 14 tonne pounders. It is recommended that in-situ trials are conducted on site in order to assess the effectiveness of the treatment and to optimise the method and DC programme for the site. DC work will then be carried out according to a method specification based on design site trials.

Preliminary calculations have been carried out to assess the dynamic compaction requirements on site. In-situ dry densities were taken from the laboratory tests on the undisturbed samples and maximum dry densities were taken from the laboratory tests for CBRs. This was only possible where both sets of samples had been taken i.e. WTG 16, WTG 34 and WTG 46. The minimum dry density was assumed to be 75% of the maximum, and the density required after DC was assumed to be 1900 kg/m³. If the maximum density is taken to be 100% and the minimum density as 0% then relative density (D_R) is determined as follows:

$$D_{r} = \frac{\gamma_{d \max}}{\gamma_{d}} \cdot \frac{\gamma_{d} - \gamma_{d \min}}{\gamma_{d \max} - \gamma_{d \min}}$$

The D_R for the in-situ density and the required density is determined and then Δ Dr is calculated. These values are shown in Table 7.7.

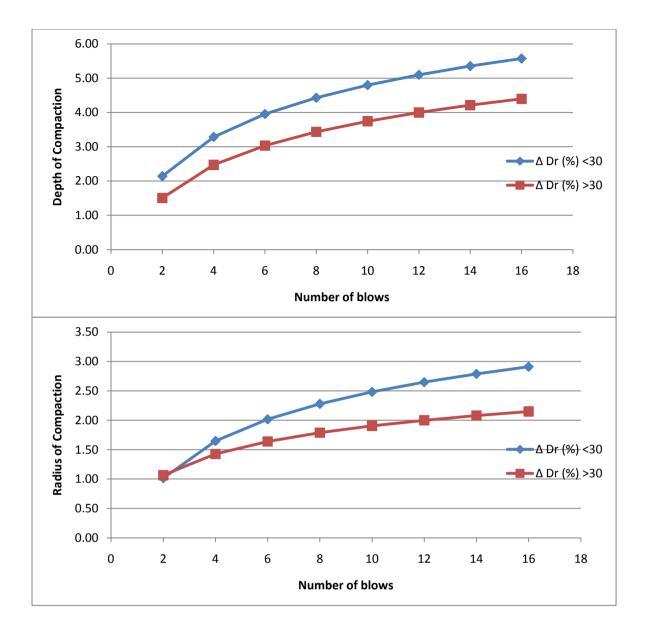
		WTG16		WTG34	WTG46
Max dry density (kg/m ³)	1920	1920	1920	1915	1900
Min dry density (kg/m ³)	1440	1440	1440	1436	1425
In situ dry density (kg/m ³)	1784	1842	1745	1679	1647
Required density (kg/m ³)	1900	1900	1900	1900	1900
Dr (%) in situ	77	87	70	58	54
Dr (%) required	97	97	97	98	100
Δ Dr (%)	20	10	27	40	46

TABLE 7.7:	DYNAMIC COMPACTION INPUT DATA

The depth (Z) and radius (R) of compaction are calculated according to Oshima and Takada (1997):

 $Z = a_z + b_z \log(m \cdot \sqrt{2gH} \cdot N)$

 $R = a_R + b_R \log(m \cdot \sqrt{2gH} \cdot N)$


Where $a_z b_z a_R b_R$ are constants

m = mass of pounder in ton

H = drop height (m)

N = number of blows

Preliminary calculations have been done assuming a 14 ton pounder and 18m drop height. Using Byrne and Berry (2008) with an influence factor of 0.5, the depth of improvement is 7.94m. Incorporating the number of blows as per Oshima and Takada, the depth and radius of improvement are shown in Figure 7.1 below.

FIGURE 7.1: DEPTH AND RADIUS OF IMPROVEMENT vs BLOW COUNT

Byrne, G., & Berry, A. (2008). A Guide to Practical Geotechnical Engineering in Southern Africa. Franki.

Oshima, A., & Takada, N. (1997). Relation between compacted area and ram momentum by heavy tamping. *14th Int Conference SMFE*, (Vol 3, 1641 - 1644). Hamburg.

7.6 Caisson and Piled Foundations

It should be noted that although in the following section the methods outlined for predicting the bearing capacity of piles are based on field and laboratory tests, pile loading tests should be carried out wherever circumstances permit, as a check on the computations.

of pile

a) Granular Soils

The load carrying capacity of a caisson or pile installed in granular material can be estimated as follows:

$$P_{ultimate} = A_b * p' * (Nq-1) + A_s * K * p'_{ave} * tan \phi$$

Where:

P _{ultimate} =	failure load on pile
A _b =	base area of pile
p' =	effective overburden pressure at base of pile
Nq =	bearing capacity factor
A _s =	shaft area of pile
K =	a coefficient of earth pressure
p' _{ave} =	average effective overburden pressure over the length
$\phi =$	angle of shear resistance

For concrete elements, Broms (1965) suggests the following values for K in granular soils:

K = 1.0 in loose soils

K = 2.0 in dense soils

The angle of shear resistance may be obtained from Table 6.8 in this report, which summarises the data from shear box tests carried out on samples from the Sere Wind Facility.

When assessing the lateral restraint of the founding structure, the modulus of subgrade reaction may be obtained from Table 6.5 in this report, which summarises the data from plate load tests carried out on samples from the Sere Wind Facility

An overall factor of safety of 2.5 should be utilized, otherwise partial factors of safety of 3 on end bearing and 1.5 on shaft resistance.

b) Cohesive Soils

The load carrying capacity of a caisson or pile installed in cohesive material can be estimated as follows:

$P_{ultimate} = Nc * A_b * S_u * w + A_s * \alpha * s * S_u'$

Where:

P _{ultimate} =	failure load on pile
Nc =	bearing capacity factor
A _b =	base area of pile
S _u =	undrained shear strength at base of pile
w =	size factor
A _s =	shaft area of pile
α =	adhesion factor
S =	shape factor
S _u ' =	average undrained shear strength over length of pile

The undrained shear strength at the base of the pile may be assumed to be as follows:

S_u = <20kPa for very soft material 20 – 40kPa for soft material 40 – 75kPa for firm material 75 – 150kPa for stiff material >150kPa for very stiff material 500 – 1000kPa for bedrock

Values for the size factor are as follows:

w = 0.8 for B < 1.0m 0.75 for B > 1.0m

The adhesion factor may be assumed to be as follows:

 α = 0.4 for soft material

- 0.4 for stiff material (for pile length between 8 20 diameters)
- 0.7 for stiff material (for pile length >20 diameters)

The shape factor may be assumed to be as follows:

- s = 1.0 for plain shafts
 - 1.2 for tapered shafts

An overall factor of safety of 2.5 should be utilized, otherwise partial factors of safety of 3 on end bearing and 1.5 on shaft resistance.

7.7 Groundwater

No free water was encountered in any of the test pits or rotary core boreholes across the site. Water was however encountered at three windmill turbine positions during percussion drilling at depths ranging from 69m to 79m below ground level. It is unlikely that ground water will be a significant factor on this project

7.8 Liquefaction Potential

Liquefaction is a condition where saturated soils (loose sandy soils and some granular silts) lose shear strength as a result of increased pore pressure and 'flow' in a liquid-like behavior during ground shaking (earthquake). The effects of liquefaction on structures are both differential and total settlements as well as loss of foundation support.

The potential for an earthquake is a possibility during the design life of the project, however, given the silty/clayey nature, the density and/or cementation of the soils underlying the site combined with the deep groundwater table, the potential for this phenomenon is considered negligible.

7.9 Earthworks and Stability of Cuts and Fills

To ensure stability, it is recommended that cut slopes have a slope of 1 (vertical) to 1.5 (horizontal) and fill embankments have a slope of 1 (vertical) to 2 (horizontal). This is acceptable for temporary slopes which are dry. Any seepage would require a further inspection, analysis and perhaps flattening.

Prior to placing any fill material, it is recommended that the in-situ material be impact rolled to at least 100% Mod AASHTO density. For fills between 0m to 1.2m in height, the fill material should be :-

• Either placed in layers not exceeding 200mm loose thickness, and compacted by conventional compaction equipment to 100% Modified AASHTO density at

0% to +2% of optimum moisture content. Particles larger than 2/3 of the final layer thickness (after compaction) should not be included in the fill material.

 Or placed in layers not exceeding 500mm loose thickness, and compacted by impact roller to 100% Modified AASHTO density at 0% to +2% of optimum moisture content. Solids larger than 2/3 of the final layer thickness (after compaction) should not be included in the fill material.

For fills greater than 1.2m in height, the fill material should be:-

- Either placed in layers not exceeding 200mm loose thickness, and compacted by conventional compaction equipment to 95% Modified AASHTO density at 0% to +2% of optimum moisture content. Solids larger than 2/3 of the final layer thickness (after compaction) should not be included in the fill material.
- Or placed in layers not exceeding 500mm loose thickness, and compacted by impact roller to 95% Modified AASHTO density at 0% to +2% of optimum moisture content. Solids larger than 2/3 of the final layer thickness (after compaction) should not be included in the fill material.

Both during and after construction, the site should be well graded to permit surface water to drain away readily and to prevent ponding of water anywhere on the ground surface. All terraces and earthworks in general should be sloped to a gradient of not less than 1 (vertical) to 50 (horizontal) to prevent ingress of water into the subsoils since these soils are significantly permeable. Surface drainage should be directed away from the crests of fill embankments to prevent over-topping and erosion of fill slopes.

Erosion protection for both cuts and fills in sands is strongly recommended. Protection procedures may include (but not be restricted to) the following:-

- Rock or gravel protection where the slope surface is covered with a layer of rock or gravel.
- Slope faces can be protected by spreading a layer of topsoil over the slope. The topsoil should contain sufficient grass roots, seed or pioneer plants to establish growth of vegetation on the slope.
- Hydroseeding or planting may be utilised to establish vegetation on embankment slopes.

It is worth noting that the predominantly encountered silts, lean clays and clayey sands may be re-used for engineered fills at site provided that strict moisture control and overall quality control measures are maintained during and following placement and compaction.

7.10 Drainage and Erodability

Foundations and slab performance depends largely on how well runoff waters drain from structures and site in general. It is therefore imperative that the control and removal of both surface and groundwater from the site is closely monitored. Groundwater is not a potential problem on this site, but the natural ingress of stormwater should be managed and controlled to prevent the potential collapse of materials as well as instability of slopes.

It is fundamental that all drainage installations should have adequate capacities to deal with surface runoff and that they should be designed to minimize erosion, ponding and infiltration. The ground surface around structures should be graded so that water flows rapidly away from structures into natural drainage lines without ponding.

7.11 Excavability

The excavability characteristics have been estimated from the performance of the tracked excavator used for the excavation and from the percussion drilled holes. Trenching and excavability may be carried out with earth moving machinery to depth in excess of 5m. However, it is important to note that in the area investigated, unstable trench or test pit side walls were encountered, especially in the upper loose Aeolian deposits. It is thus strongly recommended that the loose Aeolian deposits be removed to spoil prior to excavation and that sidewalls of excavations in the marine deposits be either battered back to 1 (vertical) to 1.5 (horizontal) or shoring be used to ensure stability of the sides of the excavations. Placing of additional loads such as soil heaps and heavy vibrations next to the excavations should be avoided.

It is important to note that large isolated boulders (2.5m to 3m) have been encountered during test pit excavations and isolated rocky outcrops were also observed across the site. These may prove problematic to remove and some boulder splitting (i.e. blasting) may be required.

8. CONCLUSIONS

This report sets out the results of a geotechnical investigation carried out for the Sere Wind Energy Facility. The findings of the field investigations and the available laboratory tests are presented, described and evaluated within this report.

No geotechnical constraints are considered sufficiently significant to prevent development of the site for the use as a Wind Energy Facility.

The following points summarise the findings of this report:

The geotechnical field investigations commenced in July 2010 and were completed in October 2010. The geotechnical field investigations comprised the following:

- a) Percussion drilling (at locations alternating with rotary core boreholes),
- b) Rotary core drilling (at locations alternating with percussion drilled boreholes),
- c) Dynamic Probe Super Heavy (DPSH) testing,
- d) Plate load testing,
- e) Excavation of test pits
- f) Geophysical surveys comprising electrical resistivity survey and seismic refraction surveys

In addition, the following investigations were also carried out:

- g) Laboratory testing
- h) Seismic hazard assessment
- i) Assessment of the dynamic response of the soil

No free water was encountered in any of the test pits or rotary core boreholes across the site. Water was however encountered at three windmill turbine positions during percussion drilling at depths ranging from 69m to 79m below ground level. It is unlikely that ground water will be a significant factor on this project

No grading analyses were carried out on the overlying loose Aeolian sands as these are expected to be excavated to spoil. Based on the grading analyses, the soils in the Sere Wind Facility classify as either SM, SP, SP - SM or SC – SM according to the Unified Soil Classification System. This means that the marine deposits to a depth of

approximately 5.0m consist predominantly of poorly graded sand, gravelly sands with little or no fines, or silty sands, poorly graded sand silt mixtures. The results of the laboratory tests confirm that the soils are not plastic indicating that the soil is unlikely to be expansive.

It is anticipated that the top loose Aeolian sand will be excavated to spoil. This material is generally not suitable for use in fills as it will be problematic to compact due to its predominantly single grain size.

Undisturbed block samples of the sand were subjected to Collapse Potential tests The Collapse Potential was generally less than 1% indicating "no trouble" with collapse settlement. Although one sample, WTG16 at 2.4m had a Collapse Potential of 1.48% which just brings it into the "moderate trouble". Collapse potential is not seen to be problematic in this site.

Shear box testing was undertaken in order to determine the shear strength parameters of the material.

An initial set of tests were carried out on undisturbed dry samples in order to evaluate the shear strength parameters of the in-situ material. These tests produced peak angles of internal friction between 40.5° and 46.7° with cohesions between 1.1kPa and 157.9kPa. The higher values of cohesion are as a result of the cementing that has taken place in the soil sample.

A second set of tests were carried out on remoulded saturated samples in order to obtain relevant shear strength parameters for material that would be reworked on site. Tests on the remoulded samples produced peak angles of internal friction between 31.1° and 35.3° with cohesions between 0.5kPa and 2.0kPa.

Selected samples of the near surface samples encountered at site (Borrow Areas A & B) were subjected to chemical analysis to test for pH, resistivity, soluble sulphates and soluble chlorides. assumption has been made that other soils found across the site may be more, less or of a similar corrosive nature.

Selected samples from Borrow Area A and B were subjected to chemical test analysis for the purpose of corrosion assessment. The samples were tested for pH, resistivity,

soluble sulphates and soluble chlorides. According to the publication by the Concrete – Durability Bureau of the Portland Cement Institute (*Deterioration of Concrete in Aggressive Waters – Measuring aggressiveness and Taking Countermeasures, Table 3*), a pH range of 6.67 – 8.87, a water soluble chloride content of 280.20 – 942.80 mg/l and a sulphate concentration of 46.10 – 744.88 mg/l are all considered moderately aggressive.

Resistivity/conductivity tests indicated that the soils range from 0.13 – 0.53 S/m, and this range is considered to be very corrosive to steel.

The seismic refraction data has demonstrated that harder, more competent lithologies such as sandstone and quartzite are likely to be present in the near surface (less than 20m). The existence of such units is, at some sites, confirmed by a sharp increase in shear wave velocity as derived from MASW / ReMi data. However, in some circumstances this correlation does not exist. The lack of correlation between the two techniques is attributed to differences in the way in which the techniques interact with the environment (for example saturated vs unsaturated ground) and its effect on the correlation between p-wave velocity from refraction and s-wave velocity from MASW/ReMi. In this situation the two techniques may demonstrate a high degree of similarity in the dry situation, but have no apparent correlation if the ground is saturated, particularly if the p-wave velocity of the ground is low.

The dominant feature in the ERI data is a four layer geometry, with a high-conductivity layer approximately 10m thick at surface. (A thin resistor blanketing the area is not resolved in the sections but it is clearly visible in the data collected for the mat design.) This correlates well with a similar thickness surface layer in the refraction profiles that is defined by a low p-wave velocity, and is mapped as sand in available borehole data. In many areas there is also a good correlation between low velocities in the MASW/ReMi profiles and the low resistivity in the ERI sections.

Beneath the surface layer, there is a layer that is highly variable in thickness and resistivity. On average this more resistive layer often coincides with silty sand and clayey silt. The lateral heterogeneity may reflect changes in porosity linked to variations in lithology, leading to changes in water content.

Beneath this layer, most of the sections exhibit a second increase in resistivity associated with sand, clayey sand and silt, according to the borehole logs. Finally at the

base of the ERI sections, a highly resistive interface is reached which correlates very well with intersections of phyllite, quartzite and sandstone in the drill holes.

A site-specific probabilistic seismic hazard assessment has determined site-specific ground-motion parameter values, corresponding to ground motion defined as that motion having a 10% probability of being exceeded over a lifetime of 50 years, (or annual frequency of exceedance (AFE) of 1:475 years). The hazard was determined for rock defined by a shear wave velocity of 750m/s.

The peak ground acceleration (PGA₄₇₅) value for a return period of 475 years was determined as 0.047g. Spectral acceleration values were also obtained for selected response periods for 1% critical damping. These values were used to prepare mean and median uniform hazard spectra.

Deaggregation showed that the hazard is dominated by nearby sources (13 - 15 km) with moderate sized earthquake (5.8 - 6.4). This corresponds to major contribution to the hazard by the Cape Fold Belt West source zone.

During the assessment of the dynamic response of the soil, the ground-motion predictions for the site took into consideration the local site conditions in that the following four typical profiles were interpreted from geophysical survey results, percussion drilling results, rotary core drilling results and standard penetration tests and were submitted to the Council for Geoscience as input for seismic hazard analysis:-

- Profile No. 1: Sand to depth
- Profile No. 2: Shallow bedrock
- Profile No. 3: Sand overlying clayey/silty soils, clays and silts
- Profile No. 4: Cemented materials and boulders

In general, it can be said that deeper the base rock level, the larger the value of amplification and higher the value of predominant period. The periods and amplification factors for each site are listed below:

- Profile No. 1 (bedrock depth 150 m) maximal amplification 2.77 at 0.31 sec
- Profile No. 2 (bedrock depth 28 m) maximal amplification 2.51 at 0.25 sec
- Profile No. 3 (bedrock depth 100 m) maximal amplification 2.12 at 0.29 sec
- Profile No. 4 (bedrock depth 100 m) maximal amplification 2.64 at 0.29 sec

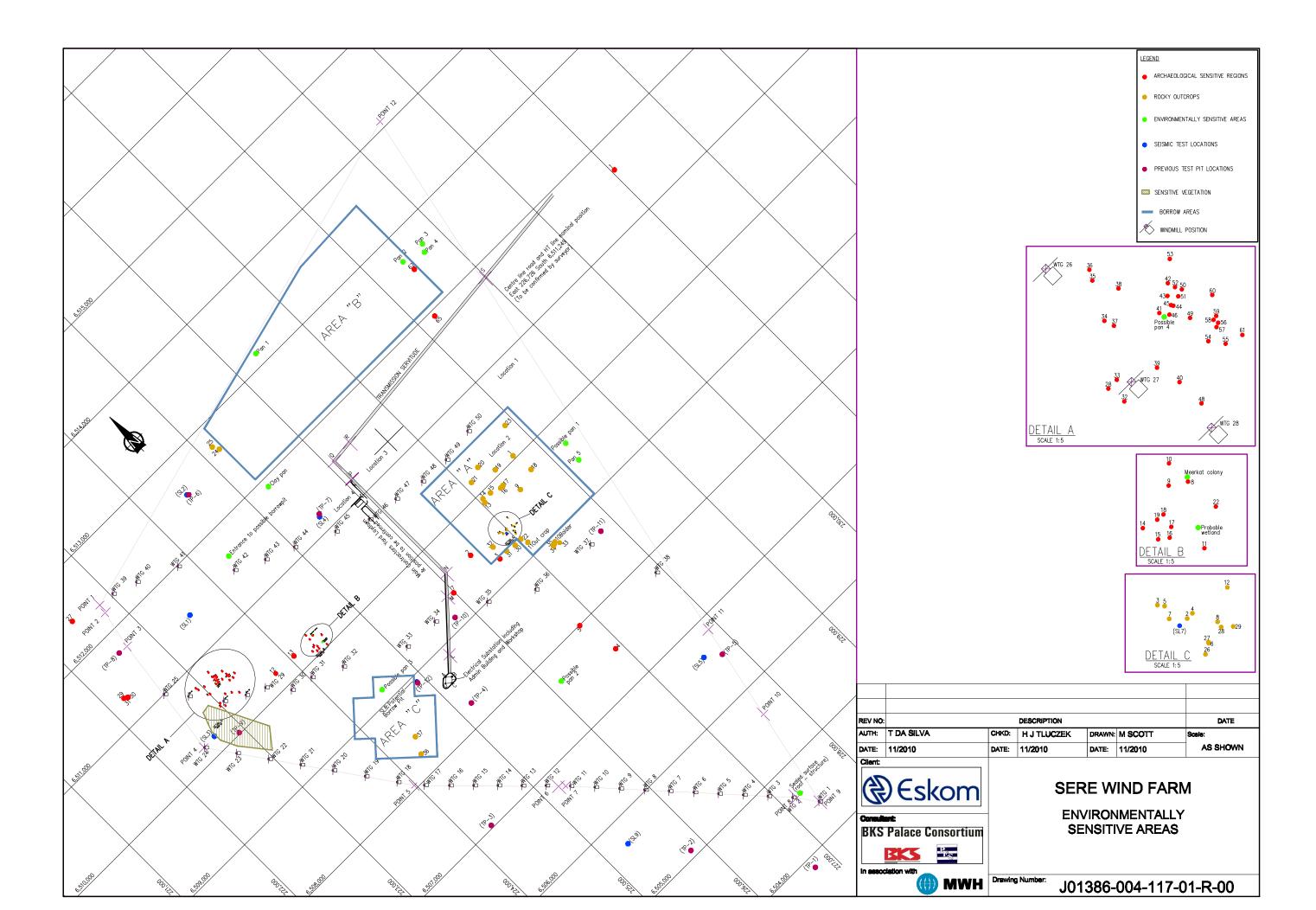
The structures which will house the wind turbines are relatively tall and slender, which by their nature will be sensitive to settlement, especially any differential settlement. Three main types of foundation system are considered appropriate at present, namely; caissons, piled foundations and conventional pad footings.

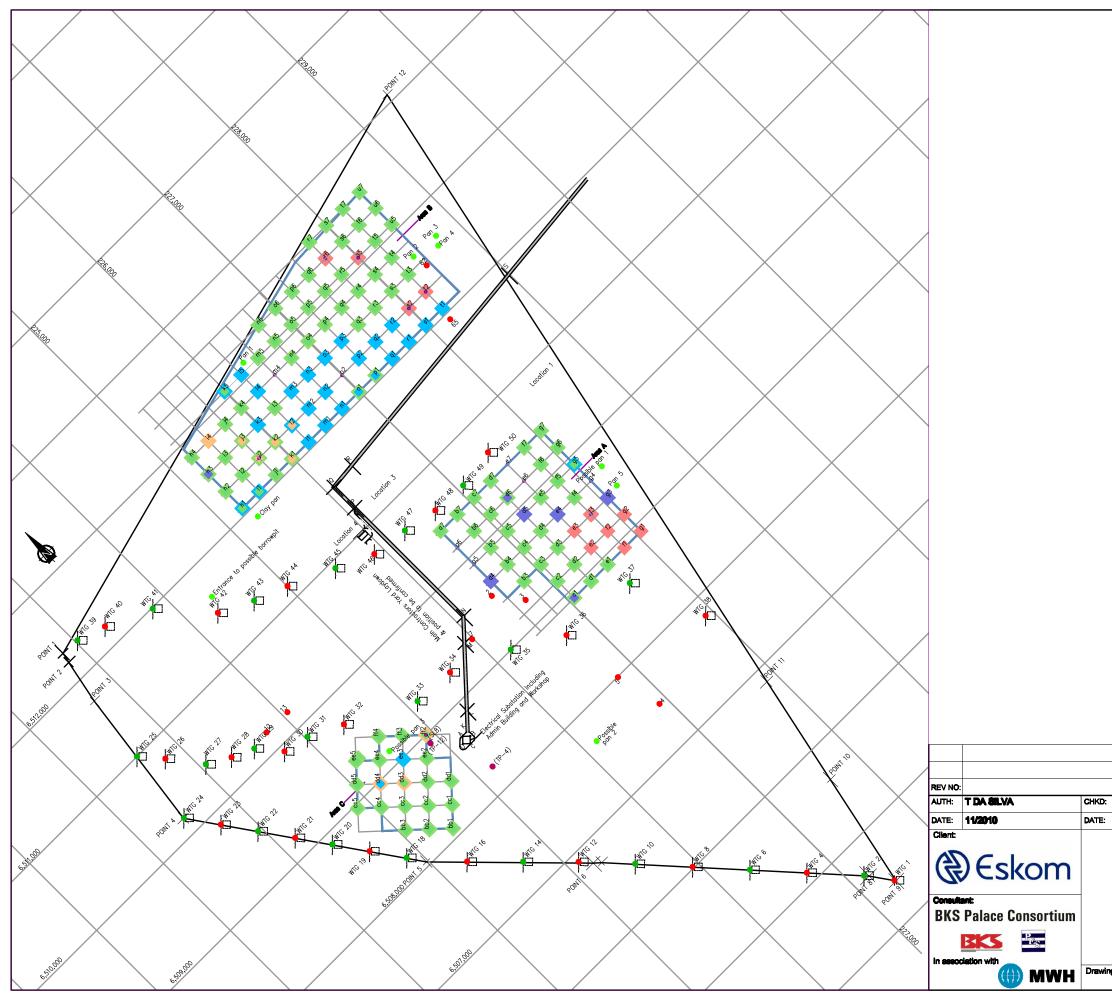
Utilizing the results from Standard Penetration Tests (SPT) and Dynamic Probe Super Heavy (DPSH) tests, the anticipated allowable bearing capacities at the various wind turbine positions range between 200kPa and 500kPa. The loads from the wind turbine structures are not known at present, but these allowable bearing values are probably more than adequate.

The total settlement that occurs under a structure may not be detrimental to the structure if the settlement occurs evenly under the foundation. However, it is known from studies of case records of structures founded on granular soils that the differential settlement can on occasions approach the total settlement. Generally, the differential settlement for granular materials is assumed to be two thirds (i.e. 67%) of the total settlement. This could be detrimental for a tall slender structure like that for a wind turbine.

The expected differential settlements below the wind turbine bases range from 3.3mm (for a 15m x 15m base at 200kPa) to 37.1mm (for a 20m x 20m base at 500kPa). Although a differential settlement of 3.3mm may be acceptable, it is felt that in general the magnitude of differential settlement will be unacceptable for the tall slender wind turbine structure. It is therefore recommended that some form of ground improvement is deployed in order to mediate the problem of differential settlement.

In order for consolidation and the resulting settlement to occur, excess pore pressures in the cohesive material (clay and silt) needs to be generated and then dissipated. Given the relatively dry nature of the material on site up to the maximum influence depth of 40m, it is unlikely that the material will ever be saturated enough to allow for the generation and dissipation of excess pore pressures. For this reason, consolidation settlement has not been considered.


Dynamic compaction has been considered as a ground improvement technique below conventional pad footings for the wind turbine structures. Preliminary calculations have


been done assuming a 14 ton pounder and 18m drop height. Using Byrne and Berry (2008) with an influence factor of 0.5, the depth of improvement is 7.94m.

9. REFERENCES

- The Geotechnical Division of SAICE. (2008). *Site Investigation Code of Practice* (Rev B Peer Review Draft). SAICE Geotechnical division and SAIEG.
- Brink, A., & Bruin, R. (2002). *Guidelines for soil and rock logging in South Africa* (2nd impression). AEG, SAICE and SAIEG.
- Franki. (2008). A guide to Practical Geotechnical Engineering in Southern Africa (4th ed.).
- De Beer, C.H., Gresse, P.G., Theron, J.N. and Almond, J.E. (2002). The Geology of the Calvinia Area. Explanation: Sheet 3118 Calvinia, 1:250 000 scale. The Council for Geoscience, Geological Survey of South Africa.
- Tomlinson, M.J. (1995). *Foundation Design and Construction* (6th ed.). London: Longman Scientific & Technical.
- Basson, J.J. *Deterioration of concrete in aggressive waters-measuring aggressiveness and taking countermeasures.* Published by the Concrete-Durability Bureau of the Portland Cement Institute
- Draft Report on the Geotechnical Investigation for the proposed Sere Wind Energy Facility-Borrow Areas for Construction Material. BKS Report Number J01386/171 of September 2010
- Report to Eskom, on an Eskom Wind Preliminary Geotechnical Evaluation.
 Black and Veatch Project 148645, File 41.0403, Rev 0. April 2008.
- Report to Eskom, on a Construction & Operation Environmental Management Plan (EMP) for the Wind Energy facility Project: Principles of Environmental Management Supported by Site Specific Guidelines. By Savannah Environmental (Pty) Ltd. Submitted as part of the final EIA Report. February 2008.

- Report to Eskom, on a Geomorphological Assessment of the Proposed Wind Energy Facility and Associated Infrastructure on the West Coast (Matzikama Local Municipality and Western Cape Municipal Area 1). PM Illgner for Savannah Environmental (Pty) Ltd. January 2008.
- Report to Eskom, on a Heritage Impact Assessment (prepared as part of an EIA) of a Proposed Wind Energy Facility to be Situated at Olifants River Settlement 617, 620 and Grave Water Kop 158/5 situated on the Namaqualand Coast in the Vredendal District, South Western Cape. Tim Hart for Savannah Environmental (Pty) Ltd. December 2007.
- Report to Eskom, on a Specialist Impact Assessment for Proposed Eskom Wind Energy Facility on the Cape West Coast: Terrestrial Vegetation Component, Rev 2.
 Nick Helme Botanical Surveys for Savannah Environmental (Pty) Ltd. December 2007.

xer

J01386-004-117-02-R-00

WINDMILL AND BORROW PIT TEST PIT POSITIONS

SERE WIND FARM

	DESCRIPTION		DATE	
) :	H J TLUCZEK	DRAWN:	M SCOTT	Scale:
:	11/2010	DATE:	11/2010	AS SHOWN

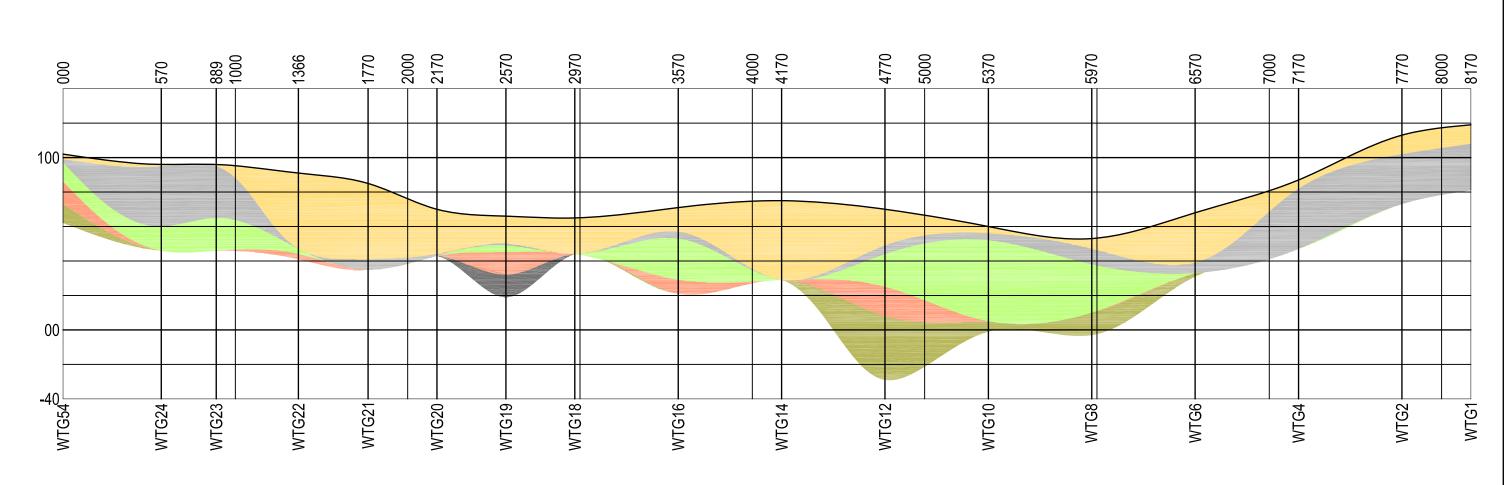
WINDMILL POSITIONS LEGEND									
PERCURSION									
PRIMARY ROTARY CORE									
NOTES 1. DRILLING POSITIONS WTG 3, 5, 7, 9, 11, 13, 15 AND 17 NO LONGER TO BE INVESTIGATED/DRILLED AT ESKOM REQUEST. 2. CO-ORDINATES FOR 4 CORNERS OF THE SUBSTATION NOW INCLUDED.									
LEGEND									
ARCHAEOLOGICAL SENSITIVE REGIONS									
ENVIRONMENTALLY SENSITIVE AREAS									
BORROW AREAS									
SUBSOIL LEGEND									
SANDSTONE BEDROCK									
STRONGLY CEMENTED "PEDOGENIC"									
SLIGHTLY SILTY SAND									
SANDY CLAY / CLAYEY SAND									
AEOLIAN SAND									

	CO-ORDINATE LIST OF TEST PIT		CO-ORDINATE LIST ARCHAEOLOGICAL	CENCITIVE REGIONS		
SITE BOUNDARY COORDINATES		CO-ORDINATE LIST OF TEST PIT			CO-ORDINATE LIST OF ROCKY OUTCROPS	
UTM SYSTEM (meters, Kilometers)	POSITIONS BORROW AREA B	POSITIONS BORROW AREA C	NAME No	EAST SOUTH	NAME No	EAST SOUTH
NAME EAST SOUTH			Defalation hollow		Large area, near windmil 1	227687 6510041
	NAME EAST SOUTH	NAME No EAST SOUTH	site with ephemeral 1 scatter of LSA.	231038 6511637	Earge area, near winanni i	2227007
POINT 1 222 821.18 6 512 324.92	H1 225250.0000 6512068.4822	BB1 1 224430.8859 6508096.464			a)Large, part of the 2	226984 6509452
POINT 2 222 798.37 6 512 213.80	H2 225250.0000 6512318.4822		Ferricrete outcrop. 2	226460 6509547	outcrop.	220001 0000102
FOINT 2 222 730.37 0 312 213.80		BB2 2 224247.673 6508266.561	Ferricrete outcrop with 3	226683 6509263	a)Small, part of the 3	226893 6509493
POINT 3 222 697.14 6 511 734.67	H3 225250.0000 6512576.3035	BB3 3 224064.4602 6508436.658	MSA scatter.		a)Small, part of the 3 outcrop trend.	220000
	H4 225250.0000 6512826.3035	BB4 4 223881.2473 6508606.755	Deflated msa scatter 4	226907 6507485		
POINT 4 222 490.99 6 510 189.89	11 225500.0000 6512068.4822				b)Large, part of the 4 outcrop trend	227000 6509468
POINT 5 223 981.87 6 508 045.20		CC1 6 224600.9831 6508279.677	Ferricrete with msa 5 scatter.	226796 6507995	oútcrŏp trend	
POINT 5 223 981.87 6 508 045.20	12 225500.0000 6512318.4822	CC2 7 224417.7702 6508449.774		005000 0500700	b)Small, part of the 5 outcrop trend.	226915 6509490
POINT 6 225 221.56 6 506 788.20	13 225500.0000 6512576.3035	CC3 8 224234.5574 6508649.871	Ephemeral LSA midden. 7	225989 6509369	outcrop trend.	
			Large LSA midden with		c)Large, part of the 6	227050 6509377
POINT 7 225 287.48 6 506 728.67	14 225500.0000 6512826.3035	CC4 9 224051.3445 6508789.968	stone artefacts,ceramic. 8	224400 6510222	outcrp trend.	
	J1 225750.0000 6512068.482	CC5 10 223868.1316 6508960.065	LSA midden with stone 9	224341 6410210	c)Small, part of the 7	226929 6509451
POINT 8 227 186.85 6 504 626.76	J2 225750.0000 6512318.4822		artefacts.		c)Small, part of the 7 outcrop trend.	220020 0000101
POINT 9 227 351.69 6 504 390.77		DD1 11 224771.0802 6508462.889	LSA midden with stone 10	224342 6510278	d)Small, part of the 8	227077 6509442
TOINT 9 227 331.09 0 304 330.77	J3 225750.0000 6512576.3035	DD2 12 224587.8674 6508632.987	artefacts.		outcrop frend.	22/07/ 0003112
POINT 10 227 619.44 6 505 639.16	J4 225750.0000 6512826.3035	DD3 13 224404.6545 6508803.084	Ephemeral LSA midden. 11	224450 6510019		
	K1 225990.6507 6512068.4822	┥┝╾╍┽╸╸╸┥			Medium size boulders. 9	227459 6509686
POINT 11 227 877.52 6 506 845.97		DD4 14 224221.4417 6508973.181	Ephemeral LSA midden. 12	223752 6510211		
DOINT 10 200 407 00 6 514 091 59	K2 225990.6507 6512318.4822	DD5 15 224038.2288 6509143.278	Ephemeral LSA midden. 13	224060 6510206	Boulders. 10	227310 6508939
POINT 12 229 427.22 6 514 081.58	K3 225990.6507 6512576.3035	EE2 17 224757.9646 6508816.199	Ephemeral LSA midden. 14	224262 6510080		
					Outcrop 11	227068 6509166
CO-ORDINATE LIST OF TEST PIT	K4 225990.6507 6512826.3035	EE3 18 224574.7517 6508986.297	Dense LSA midden with 15 stone artefacts.	224309 6510046	outorop in	227000
II ———————————————————————————————————	K5 225990.6507 6513076.3035	EE4 19 224391.5389 6509156.394			Outcrop 12	227107 6509547
POSITIONS BORROW AREA A	L1 226240.6507 6512068.4822		Ephemeral LSA midden. 16	224344 6510051	041010p 12	22/10/ 000331/
		EE5 20 224208.326 6509326.491	LSA midden. 17	224349 6510084	Outcrop 13	227039 6509880
NAME EAST SOUTH	L2 226240.6507 6512318.4822	FF2 22 224928.0617 6508999.412				22/003 0000000
A4 226562.2649 6509664.5615	L3 226240.6507 6512576.3035	FF3 23 224744.8489 6509169.51	LSA midden. 18	224325 6510122	Outcrop 14	227055 6509930
A5 226562,2649 6509914,5615			Ephemeral LSA midden. 19	224306 6510106	Outcrop 14	221022 0008900
	L4 226240.6507 6512826.3035	FF4 24 224561.636 6509339.607	Ephemeral LSA midden. 22	224485 6510146	Outorop	227172 6500010
A6 226562.2649 6510164.5615	L5 226240.6507 6513076.3035				Outcrop 15	227172 6509916
A7 226562.2649 6510414.5615	M1 226490.6507 6512068.4822	CO OPDINATE LIST OF WINDWILL DOSITIONS	LSA midden. 27	222443 6512423	0.4	007700 0500070
		CO-ORDINATE LIST OF WINDMILL POSITIONS	Ephemeral LSA midden, 28	222990 6510406	Outcrop 16	227302 6509870
B3 226812.2649 6509414.5615	M2 226490.6507 6512318.4797	NAME No EAST SOUTH				
B4 226812.2649 6509664.5615	M3 226490.6507 6512576.3035	WTG 1 227344.2702 6504407.091	LSA midden. 29	222223 6511311	Outcrop 17	227343 6509872
			Dense LSA midden with 30	222268 6511283		I
	M4 226490.6507 6512826.3035	WTG 2 227151.2749 6504670.130	stone artefacts.		Outcrop 18	227726 6509767
B6 226812.2649 6510164.5615	M5 226490.6507 6513076.3035	WTG 4 226746.3644 6505118.767	Dense LSA midden with 31	222259 6511289		I
B7 226812.2649 6510414.5615	N1 226740.6507 6512068.4822		stone artefacts.		Outcrop 19	227413 6510075
		WTG 6 226341.5456 6505567.222	Ephemeral LSA midden. 32	223039 6510367		
C1 227062.2649 6508914.5615	N2 226740.6507 6512318.4822	WTG 8 225934.8934 6506017.968			Outcrop 20	227284 6510246
C2 227062.2649 6509164.5615	N3 226740.6507 6512576.3035	WTG 10 225528.6078 6506469.722	Ephemeral LSA midden. 33	223016 6510433		
C3 227062.2649 6509414.5615			LSA midden. 34	222978 6510613	Outcrop 21	227098 6510171
	N4 226740.6507 6512826.3035	WTG 12 225119.3888 6506907.542	LSA midden. 35	222941 6510736	50(0) D	227000 0010111
C4 227062.2649 6509664.5615	N5 226740.6507 6513076.3035	WTG 14 224705.0362 6507322.995			Outcrop 22	227035 6509253
C5 227062.2649 6509914.561	N6 226740.6507 6513317.0184		LSA midden. 36	222932 6510769	541010p 22	227000 0003200
		WTG 16 224286.6501 6507743.214	Dense LSA midden with 37	223007 6510598	Outcrop 23	227881 6510373
C6 227062.2649 6510164.5615	01 226990.6507 6512068.4822	WTG 18 223863.1304 6508223.937	stone artefacts.		001010p 23	22/001 03/03/5
C7 227062.2649 6510414.5615	02 226990.6507 6512318.4822	WTG 19 223635.4199 6508550.652	LSA midden. 38	223021 6510712	Outcrop 24	225203 6512640
D1 227312.2649 6508914.5615					outcrop 24	223203 0312640
		WTG 20 223408.076 6508880.667	Dense LSA midden with 39 stone artefacts.	223139 6510470	Quitana 25	20E1C1 6E10700
D2 227312.2649 6509164.5615	04 226990.6507 6512826.3035	WTG 21 223178.532 6509207.749			Outcrop 25	225161 6512720
D3 227312.2649 6509414.5615	05 226990.6507 6513076.3035		LSA midden. 40	223208 6510426		007010 0500717
		WTG 22 222950.4547 6509535.564	LSA midden. 41	223146 6510637	Outcrop 26	227040 6509343
D4 227312.2649 6509664.5615	06 226990.6507 6513317.0184	WTG 23 222722.7441 6509862.646				
D5 227312.2649 6509914.5615	P1 227240.6507 6512068.4822	WTG 24 222495.0335 6510189.728	LSA midden. 42	223172 6510728	Outcrop 27	227049 6509380
D6 227312.2649 6510164.5615			LSA midden. 43	223171 6510689		
	P2 227240.6507 6512318.4822	WTG 25 222603.9386 6511000.466	LSA midden. 44	223189 6510659	Outcrop 28	227088 6509426
D7 227312.2649 6510414.5615	P3 227240.6507 6512576.3035	WTG 26 222798.9608 6510771.637	LSA midden. 44	223169 6510659		
E1 227562.2649 6508914.5615			LSA midden. 45	223182 6510661	Outcrop 29	227125 6509428
	P4 227240.6507 6512826.3035	WTG 27 223061.2858 6510426.513	LSA midden. 46	223177 6510632		
E2 227562.2649 6509164.5615	P5 227240.6507 6513076.3035	WTG 28 223305.813 6510287.225			Outcrop 30	226933 6509249
E3 227562.2649 6509414.5615	P6 227240.6507 6513317.0184		LSA midden with 48	223275 6510361	001010p 30	220355 0503245
		WTG 29 223541.0543 6510181.986	ceramics.		Outcrop 31	226808 6509274
E4 227562.2649 6509664.5615	Q1 227490.6507 6512068.4822	WTG 30 223745.3428 6509934.363	Ephemeral LSA midden. 49	223240 6510622	Outcrop 31	220000 0309274
E5 227562.2649 6509914.5615	Q2 227490.6507 6512318.482	WTG 31 224027.0133 6509872.458	Ephemeral LSA midden. 50	223215 6510709	Quitana 70	000705 0500400
					Outcrop 32	226725 6509426
E6 227562.2649 6510164.5615	Q3 227490.6507 6512576.3035	WTG 32 224392.2563 6509692.931	Ephemeral LSA midden. 51	223204 6510688		007740
E7 227562.2649 6510414.5615	Q4 227490.6507 6512826.3035	WTG 33 225117.3257 6509315.307	Ephemeral LSA midden. 52	223194 6510716	Outcrop 33	227340 6508886
F1 227812.2649 6508914.5615						
		WTG 34 225575.4272 6509287.450	LSA midden. 53	223178 6510802	Outcrop 34	227256 6508913
F2 227812.2649 6509164.5615	Q6 227490.6507 6513317.0184	WTG 35 226200.5557 6509003.506	LSA midden with 54	223296 6510551	↓ → ↓	I
F3 227812.2649 6509414.5615	R1 227740.6507 6512068.4822		ceramics.		Outcrop 35	227282 6508922
			Ephemeral LSA midden. 55	223349 6510543		
F4 227812.2649 6509664.5615	R2 227740.6507 6512318.4822	WTG 37 227588.5201 6508610.551	Ephemeral LSA midden. 56	223326 6510607	Outcrop 36	224312 6508257
F5 227812.2649 6509914.5615	R3 227740.6507 6512576.3035	WTG 38 227911.9769 6507799.587				
F6 227812.2649 6510164.5615	R4 227740.6507 6512826.3035		Ephemeral LSA midden. 57	223321 6510594	Outcrop 37	224414 6508458
			Ephemeral LSA midden. 58	223312 6510616		
F7 227812.2649 6510414.5615	R5 227740.6507 6513076.3035	WTG 40 223337.5396 6512212.490				
G1 228062.2649 6508914.5615	R6 227740.6507 6513317.0184	WTG 41 223828.1415 6511988.082	Ephemeral LSA midden. 59	223320 6510628		
G2 228062.2649 6509164.5615			Ephemeral LSA midden. 60	223308 6510692		
	R7 227740.6507 6513557.7333	WTG 42 224283.9215 6511469.622				
G3 228062.2649 6509414.5615	S1 227990.6507 6512068.4822	WTG 43 224646.0693 6511290.096	Ephemeral LSA midden. 61			
G4 228062.2649 6509664.5615			Ephemeral LSA scatter 62 in deflation hollow	228446 6512508		
	S2 227990.6507 6512318.4822	WTG 44 225004.348 6511149.261	in deflation hollow midden.			
G5 228062.2649 6509914.5615	S3 227990.6507 6512576.3035	WTG 45 225497.2714 6510924.853				
G6 228062.2649 6510164.5615	S4 227990.6507 6512826.3035		Ephemeral LSA scatter 65	228219 6511928		
		WTG 46 225893.4673 6510739.136	Ephemeral LSA scatter 65 in deflation hollow midden.			
G7 228062.2649 6510414.5615	S5 227990.6507 6513076.3035	WTG 47 226298.949 6510686.516				
1	S6 227990.6507 6513317.0184	WTG 48 226676.5732 6510609.134	CO-ORDINATE LIST OF ENVIROMENTA	LLY SENSITIVE AREAS		
1			NAME	EAST SOUTH		REV NO:
1	S7 227990.6507 6513557.7333	WTG 49 227072.769 6510587.467				
	T1 228240.6507 6512068.4822	WTG 50 227506.1083 6510649.373	Clay Pan	225305 6511892		AUTH: T DA BILVA
1	T2 228240.6507 6512318.4822		Entrance to possible borrowpit	224361 6511634		
		4	borrowpit			DATE: 11/2010
1	T3 228240.6507 6512576.3035		Meerkat Colony	224398 6510236		DATE: 11/2010
	T4 228240.6507 6512826.3035					Client:
1		4	Pan 1	226347 6513151		
	T5 228240.6507 6513076.3035	4	Pan 2	228413 6512672		
1	T6 228240.6507 6513317.0184		Pan 3	228737 6512659		
1		1				(2)
1		4	Pan 4	228682 6512569		Eskom
1	U5 228490.6507 6513076.3035		Pan 5	228222 6509438		
		4				
1	U6 228490.6507 6513317.0184	4	Possible Pan 1	228253 6509694		Consultant.
	U7 228490.6507 6513557.7333	1	Possible Pan 2	226158 6507675		Consultant:
1	·	-				BKS Palace Consortium
			Possible Pan 3	224532 6509152		DIVO LAIGCE COUROU LIAM
1			Possible Pan 4	223161 6510625		
1			Probable Wetland	224431 6510082		

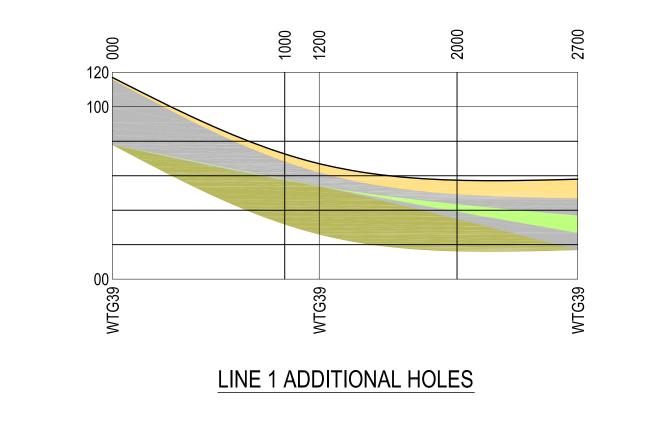
6510082

6504641

224431


227255

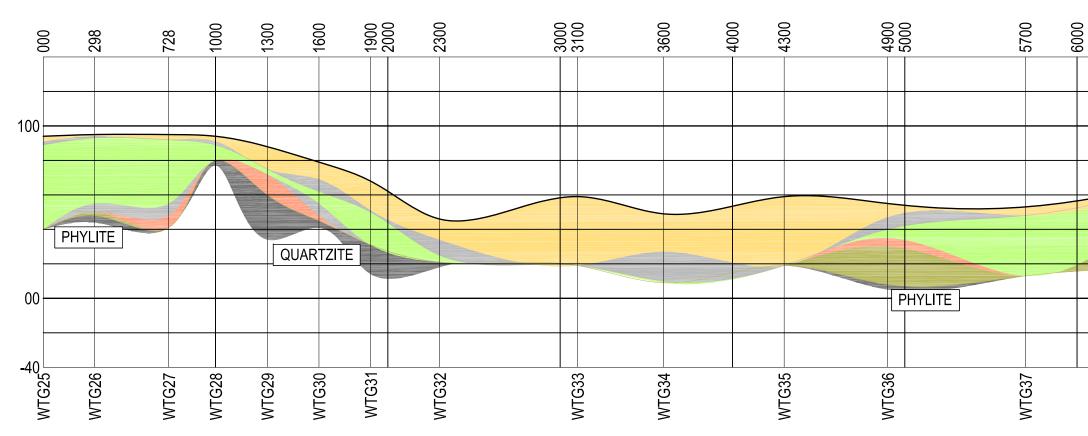
Probable Wetland


Sealed Surface (roof-structure)

BKS Palace Consortium BKS Providence In association with

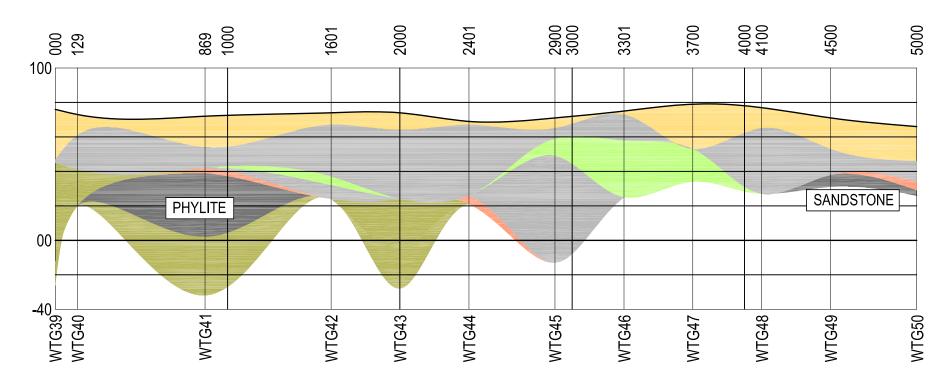
	DESCRIPTION			DATE
CHKD:	H J TLUCZEK	DRAWN:	M SCOTT	Scale:
DATE:	11/2010	DATE:	11/2010	AS SHOWN
			'IND FA . POSITIC	
	441		DINATES	

LINE 1



BKS n association with

	1	NOTE: ORIGINAL SCALE H 1:1000 V 1:100	(A1)		
11. \ / A		DESCRIPTION			DATE
LVA	CHKD:	H J TLUCZEK		M SCOTT	Scale:
)	DATE:	11/2010	DATE:	11/2010	AS SHOWN
skom e Consortium	SERE WIND FARM GEOLOGICAL LONGSECTION ALONG LINE 1				
MWH	Drawing	Number: J01	386-	004-117	′-04-R-00

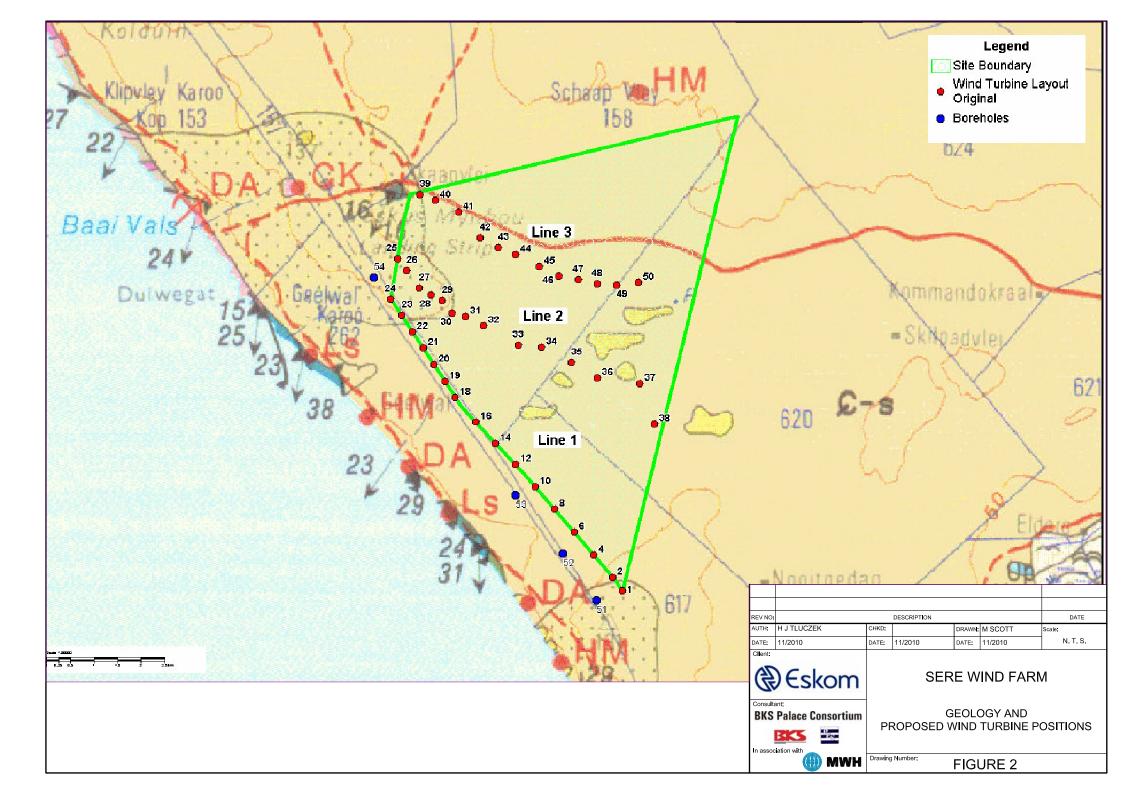


LINE 2

In association with

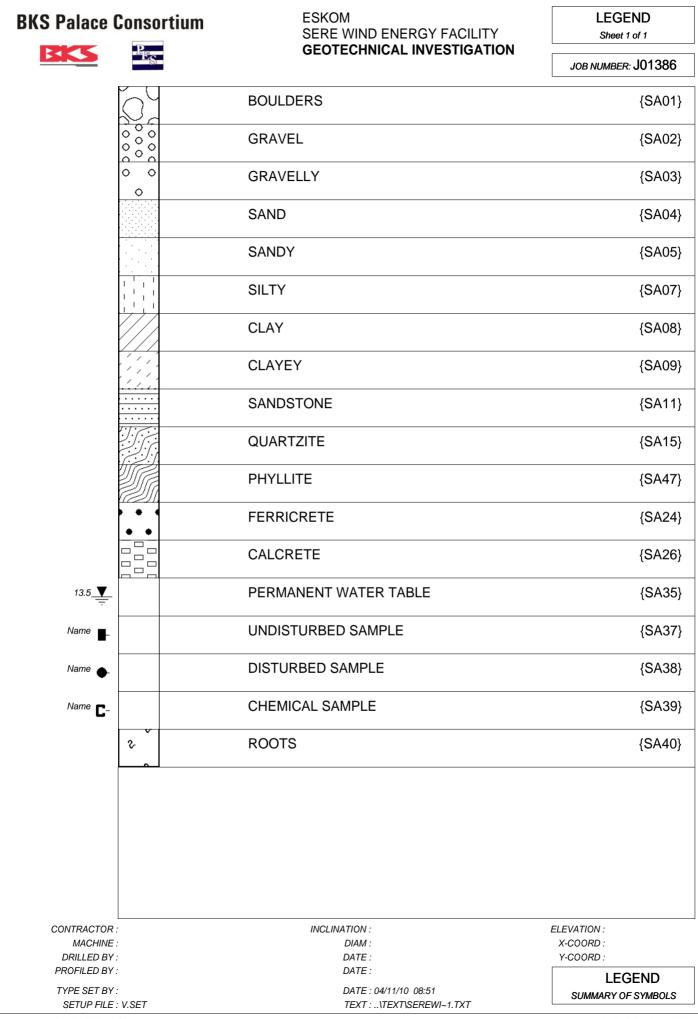
9/00 9/00				Residual	arine rine I Quartzite
WIG37		IGINAL SCALE H 1:1000 V 1:100	(A1)	Rock	
	DESCRI	PTION			DATE
ILVA				M SCOTT	Scale: AS SHOWN
skom e Consortium	<u>дате:</u> 11/201	SER		IND FAR LONGSEC G LINE 2	M
HWM	Drawing Number	J01	386-(004-117-	05-R-00

LINE 3


n association with

	NOTE: OR	RIGINAL SCALE (A1) H 1:1000 V 1:100			
	CHKD:	DESCRIPTION	DATE Scale:		
	DATE:	11/2010	DRAWN:	M SCOTT 11/2010	AS SHOWN
N ium	_	GEOLOG	SICAL	IND FARM LONGSEC ⁻ G LINE 3	
VH	Drawing	Number: J01	386-	004-117-0)6-R-00

LEGEND


SAND Aeolian Sand Marine SILT Marine Residual Quartzite Residual Phylite Rock

APPENDIX C:

SOIL AND ROCK DESCRIPTIVE TERMS

SOIL DESCRIPTIVE TERMS (Guide to Core logging for Civil Engineering Purposes,(1993)

DESCRIPTIVE ORDER: 1. CONSISTENCY 2. SOIL TYPE 3. MOISTURE CONDITION 4. COLOUR 5. SOIL STRUCTURE 6. ORIGIN

1.(a) CONSISTENCY : GRANULAR SOILS.

SPT "N"	GRAVEL	TYPICAL DRY DENSITY (kg/m ²)	
<4	VERY LOOSE	Crumbles very easily when scraped with geological pick	<1450
4–10	LOOSE	Small resistance to penetration by sharp pick point	1450-1600
10–30	MEDIUM DENSE	Considerable resistance to penetration by sharp pick point	1600-1725
30-50	DENSE	Very high resistance to penetration by sharp pick point. Requires many blows of pick for excavation	1750-1925
>50	VERY DENSE	High resistance to repeated blows of geological pick. Requires power tools for excavation	>1925

2 SOIL TYPE

SOIL TYPE.	PARTICLE SIZE (mm)
CLAY	<0,002
SILT	0,002 – 0,06
SAND	0,06 - 2
GRAVEL	2 - 60
COBBLES	60 – 200
BOULDERS	>200

 \ast Specify ave/max sizes, hardness, shape and proportion

4. COLOUR

Described at natural moisture content, as seen in profile (unless otherwise specified)

SPECKLED	Very small patches of colour <2 mm			
MOTTLED	Irregular patches of colour 2 – 6mm			
BLOTCHED	Large irregular patches 6 – 20 mm			
BANDED	Approximately parallel bands of varying colour			
STREAKED	Randomly orientated streaks of colour			
STAINED	Local colour variations : associated with discontinuity surfaces			
Described using bedding thickness criteria, (e.g. thickly banded, thinly streaked etc.)				

SPT "N"	SILTS &	U.C.S. (kPa)	
<2	VERY SOFT	Pick point easily pushed in 100mm Easily moulded by fingers	<50
2–4	SOFT	Pick point easily pushed in 30-40mm. Moulded by fingers with some pressure. Easily penetrated by thumb.	50-12500
4-8	FIRM	Pick point penetrates up to 10mm. Very difficult to mould with fingers. Indented by thumb with effort. Spade just penetrates.	125-250
8-15	STIFF	Slight indentation by pushing in pick point. Cannot be moulded by fingers. Penetrated by thumb nail. Pick necessary to excavate	250-500
15-30	VERY STIFF	Slight indentation by blow of pick point. Requires power tools for excavation.	500-1000

3. MOISTURE CONDITION	
DRY	No water detectable
SLIGHTLY MOIST	Water just discernable
MOIST	Water easily discernable
VERY MOIST	Water can be squeezed out
WET	Generally below the water table

5 SOIL STRUCTURE

INTACT	No structure present
FISSURED	Presence of discontinuities, possibly cemented.
SLICKENSIDED	Very smooth, glossy, often striated discontinuity planes
SHATTERED	Presence of open fissures. Soil breaks into gravel size
MICRO-SHATTERED	Small scale shattering, very closely spaced open fissures. Soil breaks into sands size crumbs
RESIDUAL STRUCTURES	Relict bedding, lamination, foliation, etc.

6. ORIGIN

TRANSPORTED	Alluvium, hillwash, talus, etc.	
RESIDUAL	Weathered from parent rock e.g. residual granite	
PEDOCRETES	Ferricrete, laterite, silcrete, clacrete, etc.	

	DEGREE OF CEMENTATION OF PEDOCRETES			
VERY WEAKLY CEMENTED	Some material can be crumbled between finger and thumb. Disintegrates under knife blade to a friable state			
WEAKLY CEMENTED	Cannot be crumbled between strong fingers. Some material can be crumbled by strong pressure between thumb and hard surface. Under light hammer blows disintegrates to friable.			
CEMENTED	Material crumbles under firm blows of sharp pick point. Grains can be dislodged with some difficulty by a knife blade.			
STRONGLY CEMENTED	Firm blows of sharp pick point on hand-held specimen show 1-3mm indentations. Grains cannot be dislodged by knife blade			
V. STRONGLY CEMENTED	Hand-held specimen can be broken by single firm blow of hammer head. Similar appearance to concrete.			

DESCRIPTIVE ORDER: 1. HARDNESS 2. ROCK TYPE 3. WEATHERING 6. DISCONTNUITY SURFACE DESCRIPTION 7. GRAIN SIZE

1. ROCK HARDNESS

HARDNESS	DESCRTIPTION	U.C.S. MPa
VERY SOFT ROCK	Material crumbles under firm blows of pick point. Can be peeled with a knife. SPT refusal. Too hard to cut triaxial sample by hand.	1-3
SOFT ROCK	Firm blows with pick point : 2-4mm indents. Can just be scraped with a knife.	3-10
MEDIUM HARD ROCK	Firm blows of pick head will break hand- held specimen. Cannot be scraped or peeled with a knife.	10.25

HARDNESS	DESCRIPTION	U.C.S. MPa
HARD ROCK	Breaks with difficulty, rings when struck Point load	25-70
VERY HARD ROCK	or laboratory test results necessary to distinguish between categories	70-200
VERY VERY HARD ROCK		>200

4. COLOUR

Described in the dry state unless otherwise indicated

2 ROCK TYPE

Quartzite, sandstone, granite, limestone, etc.

3. WEATHERING						
DEGREE OF WEATHERING	EXTENT OF DISCOLOURATION	FRACTURE CONDITION	SURFACE3 CHARACTERISTICS	ORIGINAL FABRIC	GRAIN BOUNDARY CONDITION	
UNWEATHERED	None	Closed or stained	Unchanged	Preserved	Tight	
SLIGHTLY WEATHERED			Partial discolouration. Often unweathered rock colour	Preserved	Tight	
MODERATELY WEATHERED	<20 % of fracture spacing on both sides of fracture.	Discoloured, may contain thick filling	Partial to complete discolouration. Not friable except poorly cemented rocks	Preserved	Partial opening	
HIGHLY WEATEHRED	Throughout	-	Friable, possibly pitted	Mainly preserved	Partial separation. Not easily indented with knife. Does not slake	
COMPLETELY WEATHERED	Throughout	-	Resembles a soil	Partially preserved	Complete separation. Easily indented with knife. Slakes	

5. DISCONTNUITY SPACING

SEPARATION (mm)	SPACING (foliation, cleavage, bedding, etc.)	SPACING (bedding, etc.)	
<6	Very intensely	Very highly fractured Highly fractured	
6 - 20	Intensely		
20 - 60	Very thinly		
60 - 200	Thinly		
200 - 600	Medium	Moderately fractured	
600 - 2000	Thickly	Slightly fractured	
>2000	Very thickly	Very slightly fractured	

6.3 ROUGHNESS OF DISCONTINUITY PLANES

CLASSIFICATION	DESCRIPTION		
SMOOTH	Appears smooth and is essentially smooth to the touch. May be slickensided		
SLIGHTLY ROUGH	Asperities on the fracture surface are visible and can be distinctly felt		
MEDIUM ROUGH	Asperities are clearly visible and fracture surface feels abrasive		
ROUGH	Large angular asperities can be seen. Some ridge and high side angle steps evident		
VERY ROUGH	Near vertical steps and ridges occur on the fracture surface		

* Where slickensideds occur the direction of the slickensides should be recorded.

6. DISCONTINUITY SURFACE DESCRIPTION:

6.1 JOINT FILLING

JOINT FILL TYPE	DEFINITATION (wall separation specified in mm)			
CLEAN	No fracture filling			
STAINED	Colouration of rock only. No recognizable filling material			
FILLED	Fracture filled with finite thickness filling material			

6.2 DISCONTINUITY ORIENTATION

Discontinuity inclination (i.e. of joints, bedding, faults, etc.) are measured with respect to the horizontal i.e. a vertical joint dips at 90%. In oriented core the fracture inclinations are w.r.t. the core axis.

7. GRAIN SIZE

CLASSIFICATION	SIZE (mm)	RECOGNITION		
VERY FINE GRAINED	<0.2	Individual grains cannot be seen with a hand lens		
FINE GRAINED	0.2 - 0.6	Just visible as individual grains under hand lens		
MEDIUM GRAINED	0.6 – 2	Grains clearly visible under hand lens, just visible to the naked eye		
COARSE GRAINED	2-6	Grains clearly visible to the naked eye		
VERY COARSE GRAINED	>6	Grains measurable		

8. ROCK FORMATION Brixton Formation, Halfway House Granite Dome Etc.

4. COLOUR 5. FRACTURE SPACING 8. ROCK FORMATION NAME

APPENDIX D: PERCUSSION LOGS

APPENDIX D:

PERCUSSION LOGS

- a) Substation
- b) Wind Turbine Positions

APPENDIX D:

PERCUSSION LOGS

a) Substation

CLIENT: SITE: INVESTIGATION:	KOE SER	(OM EKENAAP WESTE RE WIND ENERG 3STATION		Bł	(S Pala	ace Consortium	Α
PENETRATION TIME	ı	AIR LOSS	SAMPLE RECOVERY	(E) F			JOB. NO. J01386
Min	Sec			DEPTH (m)		DESCRIPTION	SHEET 1 OF 1
	: 04 : 10 : 12 : 59 : 08 : 22	None	Good Good Good Good Good Good Good	5.0		SAND Pale red SAND. AEOLIAN. SAND Orange brown SAND. AEOLIA	۸N.
0 1 0	: 43 : 51 : 05 : 58 : 47	None None None None None None None None	Good Good Good Good Good Good	10.0		SAND	
	: 47 : 39 : 27 : 24 : 03 : 30 : 30 : 20 : 19 : 20 : 20 : 22	None None	Good Good Good Good Good Good Good Good	15.0		Brown SAND. AEOLIAN.	
				200			
Profiled by: Drilling Contractor: Machine: Drilling operator:		r	Diam Date	oressor: eter: drilled: rded by:	21 bar 6.5in 2010/03 Frank		34 J 0225197 6508714 58

SITE: KI INVESTIGATION: SI	SKOM OEKENAAP WESTI ERE WIND ENERG` UBSTATION		BKS Pa	llace Consortium	В
PENETRATION TIME	AIR LOSS	SAMPLE RECOVERY	1 (m)		JOB. NO. J01386
Min Sec			DEPTH (m)	DESCRIPTION	SHEET 1 OF 1
	5	Good Good Good Good Good Good Good Good		SAND Pale red SAND. AEOLIAN. SAND Brown SAND. AEOLIAN. SAND Reddish light brown SAND bed depth. AEOLIAN.	
Drilling Contractor: 12 Machine: Th	Ehlers 21 Drilling hor aniel	Compr Diamet Date di Recorc	er: 6.5in rilled: 2010/0	x D3/08 y	34 J 0225252 6508658 54

CLIENT: ES SITE: KO INVESTIGATION: SE SU	ERN CAPE		alace Co	nsortium ^{Pe} s	С	
PENETRATION TIME	AIR LOSS	SAMPLE RECOVERY	(m) H			JOB. NO. J01386
Min Sec			DEPTH (m)		DESCRIPTION	SHEET 1 OF 1
0 : 08 0 : 07 0 : 14 0 : 45 0 : 40 0 : 30 0 : 24 0 : 7 0 : 40 0 : 30 0 : 24 0 : 7 0 : 07 0 : 07 0 : 07 0 : 16 0 : 13 0 : 13 0 : 15 0 : 13 0 : 15 0 : 13 0 : 15 0 : 13 0 : 10 0 : 10	None None None	Image: Comparison of the second se	5.0 10.0 20.0	SANI	red SAND. AEOLIAN. D ge brown SAND. AEOLIAN	
Drilling Contractor: 121 Machine: The	hlers 1 Drilling or niel	Compre Diamet Date dr Record	er: illed:	21 bar 6.5in 2010/03/08 Frank	Coordinates x y z	34 J 0225191 6508608 56

SITE: INVESTIGATION:	ESKOM KOEKENAAP WESTE SERE WIND ENERG SUBSTATION		BKS Palace	e Consortium	D
PENETRATION TIME	AIR LOSS	SAMPLE RECOVERY	DEPTH (m)	DESCRIPTION	JOB. NO. J01386
Min (Sec Nec		DEPT	DESCRIPTION	SHEET 1 OF 1
	11 None 14 None 18 None 17 None 19 None 105 None 11 None 11 None 12 None 13 None 14 None 159 None 14 None 14 None 14 None 14 None 157 None 148 None 121 None 121 None 121 None 121 None 121 None 121 None 130 None 141 None 152 None 153 None 154 None 157 None 158 None 159 None 150 None 151 None 152 None <td< td=""><td>Good Good Good</td><td>5.0</td><td>SAND Pale red SAND. AEOLIAN. SAND Brown SAND. AEOLIAN. Orange brown SAND. AEOLIAN</td><td>٩.</td></td<>	Good Good	5.0	SAND Pale red SAND. AEOLIAN. SAND Brown SAND. AEOLIAN. Orange brown SAND. AEOLIAN	٩.
Drilling Contractor: 1 Machine: T	J Ehlers 121 Drilling Thor Daniel	Compr Diamet Date di Record	er: 6.5in rilled: 2010/0	Х	34 J 022539 6508654 58

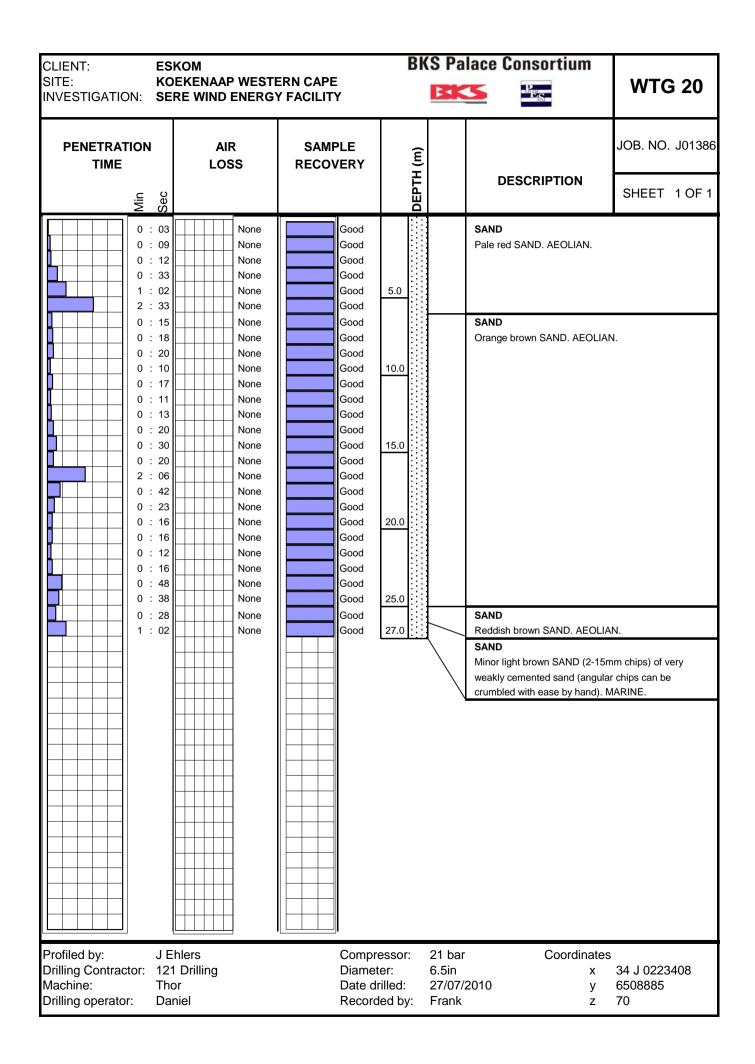
APPENDIX D:

PERCUSSION LOGS

b) Wind Turbine Positions

CLIENT: SITE: INVESTIGATION:	T: ESKOM KOEKENAAP WESTERN CAPE TIGATION: SERE WIND ENERGY FACILITY				(S Pa	lace Consortium	WTG 2
PENETRATION TIME	1	AIR LOSS	SAMPLE RECOVERY	(m) H			JOB. NO. J01386
Min	Sec			DEPTH (m)		DESCRIPTION	SHEET 1 OF 1
	: 06 : 21 : 42 : 13 : 04 : 07 : 18 : 14	None	Good Good Good Good Good Good Good Good	5.0		SAND Pale red brown SAND. AEOLI SAND Brown SAND. AEOLIAN. Inter zone.	
	: 24 : 32 : 14 : 23 : 23 : 20 : 16 : 20 : 26	None None	Good Good Good Good Good Good Good Good	<u>10.0</u> <u>15.0</u>		SAND Yellow light brown SAND. MAI ferruginized zone.	RINE. Interpreted as
	: 20 : 16 : 48 : 28 : 08 : 09 : 21 : 26	None	Good Good Good Good Good Good Good	20.0		NO SAMPLE Interpreted as ferruginized SA SAND Yellow brown SAND. MARINE	
0 0 0 0 0	: 25 : 20 : 19	None None None None None None None None	None None None Good	25.0		NO SAMPLES Interpreted as SAND. MARINE SAND	Ξ.
	: 23 : 34 : 16 : 12 : 13 : 08 : 20 : 32	None	Good Good Good Good Good Good Good Good	30.0		Yellow brown SAND. MARINE	
0	: 15 : 20 : 22	None None	None None None	40.0		NO SAMPLES Interpreted as SAND. MARINE	Ξ.
Profiled by: Drilling Contractor: Machine: Drilling operator:			Diame Date o		21 bar 6.5in 28/07/2 Frank	Х	34 J 0227156 6504669 113

SITE:	ESKOM KOEKENAAP WEST SERE WIND ENERG	-	BKS Palace Consortium			WTG 6
PENETRATION TIME	AIR LOSS	SAMPLE RECOVERY	H (m)			JOB. NO. J01386
Min	Sec		DEPTH (m)		DESCRIPTION	SHEET 1 OF 1
2 : 3 :	09 None 18 None 44 None 08 None 28 None	Good Good Good Good Good Good	5.0		SAND Pale red SAND. AEOLIAN. SAND	
0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 :	12 None 17 None 10 None 17 None 16 None 19 None 26 None	Good Good Good Good Good Good Good Good	10.0		Light orange brown SAND. AEC	DLIAN.
0 :	12 None 18 None 14 None	Good Good Good	15.0			
0 : 0 :	19 None 14 None 09 None 28 None 13 None 10 None 13 None 14 None 15 None 16 None 13 None 14 None 20 None 09 None 09 None 09 None 09 None 09 None 09 None 16 None	Good Good Good Good Good Good Good Good	20.0		SAND Yellowish brown SAND. AEOLI. ferruginized zone.	AN. Interpreted as
	08 None 33 None 37 None	Good None Good	30.0		SAND Light brown SAND. AEOLIAN. NO SAMPLE	
0 :	14 None 18 None	Good Good			Interpreted as moderately to slip to very hard quartzite COBBLE	
0 : 3 : 2 :	26 None 27 None 15 None 41 None 12 None	Good Good Good Good Good Good	35.0		SAND Light brown SAND. MARINE.	
	05 None 48 None	Good Good	40.0		SAND Light brown SAND with traces of Interpreted as RESIDUAL PHY	
Drilling Contractor: Machine:	J Ehlers 121 Drilling Thor Daniel	Compr Diamet Date di Record	er: rilled:	21 bar 6.5in 28/07/ Frank	Х	34 J 0226341 6505567 70


SITE: KC	SKOM DEKENAAP WESTE ERE WIND ENERGY		B	KS Pa	WTG 10	
PENETRATION TIME	AIR LOSS	SAMPLE RECOVERY	H (m)			JOB. NO. J01386
Min Sec			DEPTH (m)		DESCRIPTION	SHEET 1 OF 2
0 : 06 0 : 08 0 : 38 3 : 33 2 : 35	None None None None	Good Good Good Good Good Good	5.0		SAND Pale red SAND. AEOLIAN.	
0 : 28 0 : 07 0 : 12 0 : 13	None None None None None	Good Good Good Good Good		/	SAND Light brown SAND with minor-abur hard slightly weathered quartz grav (Possible cobble/boulder).	
0 : 15 0 : 09 0 : 16 0 : 11 0 : 22 0 : 14 0 : 13 0 : 12 0 : 13 0 : 14 0 : 12 0 : 13 0 : 14 0 : 12 0 : 12 0 : 14 0 : 15 0 : 15 0 : 12 0 : 14 0 : 14 0 : 12 0 : 14 0 : 12 0 : 14 0 : 14 0 : 12 0 : 14 0 : 14 0 : 14 0 : 14 0 : 14 0 : 14	None None	Good	10.0 15.0 20.0 25.0 30.0		SILT Light grey SILT with traces of grey slightly weathered quartz gravel (2	e e e e e e e e e e e e e e e e e e e
0 : 26 0 : 50 0 : 58 1 : 06	None None	Good Good Good Good Good			SILT Light brown SILT with traces of wh slightly weathered quartz gravel (2	° , °
1 : 12 1 : 01 0 : 59 1 : 21 1 : 15 0 : 26	None None None None None None	Good Good Good Good Good Good Good	<u>35.0</u> 40.0		SILT Dark grey SILT with traces of white slightly weathered quartz gravel (2	• • •
1 : 18 0 : 34 0 : 24 0 : 59 0 : 37	None None None None	Good Good Good Good Good Good	45.0		SILT Light brown SILT with traces of wh slightly weathered quartz gravel (2	• • •
Drilling Contractor: 12 Machine: Th	-	Compre Diamet Date di Record	er: rilled:	21 bai 6.5in 28/07/ Frank	x /2010 y	34 J 0225529 6506469 60

CLIENT: SITE: INVESTIGATION:		P WESTERN CA ENERGY FACIL		Bł	(S Pa	lace Consortium	WTG 10
PENETRATION TIME	I AIF		MPLE OVERY	(m) H			JOB. NO. J01386
Min	Sec			DEPTH (m)		DESCRIPTION	SHEET 2 OF 2
0 :	: 39 : 40 : 35 : 17	None None None None	Good Good Good Good			SILT Light brown SILT with traces of slightly weathered quartz grave	
0 :	: 19 : 16	None None	Good Good	50.0		SANDY SILT Light brown and yellow brown s	andy SILT. MARINE.
0 :	: 23 : 19	None None	Good Good			FINE SAND Light grey to light brown fine SA	ND. MARINE.
0 :	: 41	None	Good	Good 54.0	Щ	SILT Grey SILT with traces of highly phyllite chips (highly weathered RESIDUAL PHYLLITE.	
Profiled by: Drilling Contractor: Machine: Drilling operator:	J Ehlers 121 Drilling Thor Daniel		Compr Diame Date d Record	ter:	21 bar 6.5in 28/07/2 Frank	Х	34 J 0225529 6506469 60

	KOM DEKENAAP WESTI RE WIND ENERG`		Bł	(S Pa	WTG 14	
PENETRATION TIME	AIR LOSS	SAMPLE RECOVERY	DEPTH (m)		DESCRIPTION	JOB. NO. J01386
Min			DEP			SHEET 1 OF 2
0 : 09 0 : 04 0 : 24 1 : 41 1 : 41 1 : 43 0 : 08 0 : 08 0 : 03 0 : 33 0 : 33 0 : 33 0 : 33 0 : 33 0 : 33 0 : 11 0 : 33 0 : 33 0 : 33 0 : 11 0 : 11 0 : 11 0 : 11 0 : 11 0 : 11 0 : 11 0 : 11 0 : 11 0 :	None None None <td>Good Good Good</td> <td>5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0</td> <td></td> <td>SAND Pale red SAND. AEOLIAN. SAND Orange SAND. AEOLIAN. SAND Light yellow SAND. AEOLIAN.</td> <td></td>	Good Good	5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0		SAND Pale red SAND. AEOLIAN. SAND Orange SAND. AEOLIAN. SAND Light yellow SAND. AEOLIAN.	
Drilling Contract 12 Machine: Th	Ehlers 1 Drilling or niel	Compro Diamet Date di Record	ter: rilled:	21 bar 6.5in 27/07/2 Frank	х	34 J 0224704 6507321 75

SITE:	ESKOM KOEKENAAP WESTERN CAI SERE WIND ENERGY FACILI	PE	S Palace Consortium	WTG 14
		MPLE (W) DVERY HLA DU	DESCRIPTION	JOB. NO. J01386 SHEET 2 OF 2
	46 None None 34 None None 52 None None 54 None None 29 None None 20 None None 21 None None 29 None None 20 None None 20	Good i i i i i None 50.0 None 50.0 None 54.0	SAND Light yellow SAND. AEOLIAN. NO SAMPLE RETURN Interpreted as SAND. AEOLIAN	
Drilling Contractor: 7 Machine:	J Ehlers 121 Drilling Thor Daniel	Diameter: Date drilled:	27/07/2010 y	34 J 0224704 6507321 75

CLIENT: SITE: INVESTIGATION:	ESKOM KOEKENAAF SERE WIND			Bl	(S Palaco	e Consortium	WTG 18
PENETRATION TIME		R	SAMPLE RECOVERY	(E) T			JOB. NO. J01386
Min	Sec			DEPTH (m)		DESCRIPTION	SHEET 1 OF 1
	: 06	None Image: Constraint of the constrated of the constraint of the constraint of the constrai	Good None None None None None None Good Good <t< td=""><td></td><td>SAN Yell SAN Brow NO Intel SAN Brow NO Intel Note and Note</td><td>e red SAND. AEOLIAN.</td><td>I. enses of no samples return n vicinity of drillhole.</td></t<>		SAN Yell SAN Brow NO Intel SAN Brow NO Intel Note and Note	e red SAND. AEOLIAN.	I. enses of no samples return n vicinity of drillhole.
Profiled by: Drilling Contractor: Machine: Drilling operator:	J Ehlers 121 Drilling Thor Daniel		Diame Date o	oressor: eter: drilled: rded by:	21 bar 6.5in 27/07/2010 Frank	Coordinates x y z	34 J 0223861 6508223 65

CLIENT: SITE: INVESTIGATION:		KENAAP WESTE		BI	(S Pa	lace Consortium	WTG 22
PENETRATION TIME		AIR LOSS	SAMPLE RECOVERY	(m) H			JOB. NO. J01386
Min	Sec			DEPTH (m)		DESCRIPTION	SHEET 1 OF 1
0 : 0 :	: 09 : 07 : 09 : 09 : 09 : 13 : 20 : 13 : 20 : 20 : 20 : 33 : 20 : 20 : 20 : 20 : 20 : 20 : 20 : 28	None None	Good Good Good Good Good Good Good Good	5.0		SAND Pale red sand. AEOLIAN. SAND Light yellow sand. AEOLIAN.	
0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 :	29 29 15 15 15 13 07 09	None	Good Good Good Good Good Good None None	15.0		NO SAMPLE RETURN Interpreted as sand. AEOLIAN?	
						Note; drilling terminated due to and collapsing of sidewalls.	no samples return
Profiled by: Drilling Contractor: Machine: Drilling operator:			Diam Date	oressor: eter: drilled: rded by:	21 bar 6.5in 26/07/ Frank	Х	34 J 0222951 6509531 91

	ESKOM KOEKENAAP WESTI SERE WIND ENERG			alace Consortium	WTG 24
PENETRATION TIME	AIR LOSS	SAMPLE RECOVERY	DEPTH (m)	DESCRIPTION	JOB. NO. J01386
U 0 0 0 0 0 0 1 0	15 None 26 None 13 None 14 None 21 None 22 None 23 None 24 None 25 None 26 None 27 None 28 None 29 None 20 None 21 None 22 None 23 None 24 None 25 None 26 None 27 None	Good Good Good Good Good Good Good Good	5.0 10.0 15.0 18.0	SAND Pale red SAND. AEOLIAN. SAND Light brown SAND. MARINE. SAND Light brown SAND with minor I fine quartz gravel. MARINE. NO SAMPLE Interpreted as SAND with minor I fine quartz gravel. MARINE. SAND Light brown SAND with minor I quartz gravel. MARINE.	or hard subangular
Drilling Contractor: 1 Machine: T	Ehlers 21 Drilling hor Daniel	Compr Diamet Date d Record	ter: 6.5in rilled: 26/0	n x 7/2010 y	s 34 J 0222495 6510190 97

	KOM DEKENAAP WESTI RE WIND ENERGY		BI	(S Pa	alace Consortium	WTG 25
PENETRATION TIME	AIR LOSS	SAMPLE RECOVERY	H (m)			JOB. NO. J01386
Min Sec			DEPTH (m)		DESCRIPTION	SHEET 1 OF 2
2 00 0 : 27 0 : 10 0 : 23 0 : 11 0 : 11 0 : 11 0 : 11 0 : 11 0 : 11 0 : 11 0 : 11 0 : 11 0 : 11 0 : 11 0 : 01 0 : 01 0 : 01 0 : 01 0 : 01 0 : 01 0 : 01 0 : 01 0 : 01 0 : 01 0 : 01 0 : 01		Cood </td <td>5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0</td> <td></td> <td>SAND Pale red SAND. AEOLIAN. SAND Light brown SAND. MARINE. SANDY SILT Light brownish grey slightly san of hard grey quartz gravel (2-4m</td> <td></td>	5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0		SAND Pale red SAND. AEOLIAN. SAND Light brown SAND. MARINE. SANDY SILT Light brownish grey slightly san of hard grey quartz gravel (2-4m	
Profiled by: J E Drilling Contractor: 12 Machine: The	hlers Drilling	Compr Diamet Date di Record	essor: er: rilled:	21 bar 6.5in 26/07/2 Frank	Х	34 J 0222605 6510997 94

CLIENT: SITE: INVESTIGATION:	ESKOM KOEKENAAP WE SERE WIND ENER		BKS F	Palace Consortium	WTG 25
PENETRATION TIME	AIR LOSS	SAMPLE RECOVERY	DEPTH (m)	DESCRIPTION	JOB. NO. J01386
	800 : 11 None			SANDY SILT	SHEET 2 OF 2
	31 None 21 None 19 None 06 None 09 None 08 None 07 None 34 None 14 None 15 None 16 None 17 None 18 None 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 <t< td=""><td>Good Good Good Good Good Good Good Good</td><td>50.0</td><td>Light brownish grey slightly san of hard grey quartz gravel (2-4r</td><td>•</td></t<>	Good Good Good Good Good Good Good Good	50.0	Light brownish grey slightly san of hard grey quartz gravel (2-4r	•
Profiled by: Drilling Contractor: Machine: Drilling operator:	J Ehlers 121 Drilling Thor Daniel	Diame Date d		n x 7/2010 y	34 J 0222605 6510997 94

SITE: KC	KOM DEKENAAP WESTE RE WIND ENERGY		BKS Palace Consortium			WTG 27
PENETRATION TIME	AIR LOSS	SAMPLE RECOVERY	H (m)			JOB. NO. J01386
Min Sec			DEPTH (m)		DESCRIPTION	SHEET 1 OF 2
0 : 08 0 : 29 0 : 58 0 : 29 0 : 58 0 : 29	None None None None None None None	Good Good Good Good	50	/ /	SAND Pale red SAND. AEOLIAN. SAND Reddish brown SAND with mind	° ,
0 : 16 0 : 59 0 : 44 0 : 32 0 : 45 0 : 45 0 : 45 0 : 50 1 : 12 0 : 58 1 : 11 1 : 11 1 : 11 1 : 11 1 : 11 1 : 01 1 : 01 1 : 01 1 : 01 1 : 01 1 : 01 1 : 01 1 : 01 1 : 01 1 : 01 1 : 01 1 : 01 1 : 01 1 :	None None None <td>Cood<!--</td--><td>5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0</td><td></td><td>weakly cemented reddish brown SILT Light brown grey SILT with trace subangular quartz gravel. MAR Subangular quartz dravel. MAR Siltry SAND Reddish brown silty SAND. MAR SANDY SILT Brownish grey sandy SILT. MAR SILTY SAND Brown silty SAND. MARINE.</td><td>n sand. AEOLIAN.</td></td>	Cood </td <td>5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0</td> <td></td> <td>weakly cemented reddish brown SILT Light brown grey SILT with trace subangular quartz gravel. MAR Subangular quartz dravel. MAR Siltry SAND Reddish brown silty SAND. MAR SANDY SILT Brownish grey sandy SILT. MAR SILTY SAND Brown silty SAND. MARINE.</td> <td>n sand. AEOLIAN.</td>	5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0		weakly cemented reddish brown SILT Light brown grey SILT with trace subangular quartz gravel. MAR Subangular quartz dravel. MAR Siltry SAND Reddish brown silty SAND. MAR SANDY SILT Brownish grey sandy SILT. MAR SILTY SAND Brown silty SAND. MARINE.	n sand. AEOLIAN.
0 : 16 0 : 09		Good Good	45.0		SANDY SILT Brownish grey sandy SILT. MAR	RINE.
Drilling Contractor: 12 Machine: The	Ehlers 1 Drilling or niel	Compro Diamet Date di Record	er: rilled:	21 ba 6.5in 26/07 Franł	x 7/2010 y	34 J 0223061 6510427 95

	SKOM OEKENAAP WESTE ERE WIND ENERGY		BKS Pa	lace Consortium	WTG 27
PENETRATION TIME	AIR LOSS	SAMPLE RECOVERY	(m) H		JOB. NO. J01386
Min Sec			DEPTH (m)	DESCRIPTION	SHEET 2 OF 2
0 : 18 1 : 11 0 : 26 0 : 26 0 : 26 0 : 26 0 : 26 0 : 26 0 : 26 0 : 36 0 : 36 0 : 36 0 : 18 0 : 32 0 : 16	1 None 6 None 6 None 6 None 6 None 7 None 8 None 2 None	Good Good Good Good Good Good Good Good	50.0	SANDY SILT Brownish grey sandy SILT. MAI SILTY SAND Light brown silty SAND with ligh subangular phyllite gravel (2-12 RESIDUAL PHYLLITE.	nt brown black red hard
Drilling Contractor 12 Machine Th	Ehlers 21 Drilling nor aniel	Compr Diamet Date di Record	ter 6.5in rilled 26/07/2	Coordinates x 2010 y z	34 J 0223061 6510427 95

-	SKOM OEKENAAP WEST ERE WIND ENERG		BK	S Palace Consortium	WTG 29
PENETRATION TIME	AIR LOSS	SAMPLE RECOVERY	(m) H	DECODIPTION	JOB. NO. J01386
Min			DEPTH (m)	DESCRIPTION	SHEET 1 OF 2
0 : 0 : 0 0 : 2 0 : 4 0 : 2 0 : 4 0 : 2 0 : 4 1 : 1 : 1 : 4 1 : 0 : 3 0 : 3 0 : 3 0 : 3 0 : 3 0 : 3 0 : 3 0 : 3 0 : 3 0 : <td< td=""><td>77 </td><td>Good Good Good Good Good Good Good Good</td><td></td><td>SAND Pale red SAND. AEOLIAN. SAND Reddish orange SAND. AEOLI Reddish orange SAND. AEOLI SAND Reddish orange Gray (light yellow at 15 MARINE. SAND Light brownish white SAND with hard subangular fine to mediur quartz gravel. Interpreted as R SAND Light brownish white SAND with hard subangular fine to mediur quartz gravel. Interpreted as R QUARTZITE Light brownish white SAND with hard subangular fine to mediur quartz gravel. Interpreted as Q</td><td>AN. -16m) sandy SILT. h minor light brown n slightly weathered ESIDUAL QUARTZITE. h traces of light brown n slightly weathered ESIDUAL QUARTZITE. h minor light brown n slightly weathered</td></td<>	77	Good Good Good Good Good Good Good Good		SAND Pale red SAND. AEOLIAN. SAND Reddish orange SAND. AEOLI Reddish orange SAND. AEOLI SAND Reddish orange Gray (light yellow at 15 MARINE. SAND Light brownish white SAND with hard subangular fine to mediur quartz gravel. Interpreted as R SAND Light brownish white SAND with hard subangular fine to mediur quartz gravel. Interpreted as R QUARTZITE Light brownish white SAND with hard subangular fine to mediur quartz gravel. Interpreted as Q	AN. -16m) sandy SILT. h minor light brown n slightly weathered ESIDUAL QUARTZITE. h traces of light brown n slightly weathered ESIDUAL QUARTZITE. h minor light brown n slightly weathered
Drilling Contractor 1 Machine T	Ehlers 21 Drilling hor Daniel	Compr Diame Date d Recorr	ter 6 rilled 2	21 bar Coordinates 3.5in x 26/07/2010 y Frank z	34 J 0223539 6510181 88

CLIENT: SITE: INVESTIGATION:		KOM BKS Palace Consortium EKENAAP WESTERN CAPE RE WIND FARM ENERGY FACILITY						WTG 29
PENETRATION TIME	LO		SAMF RECOV		DEPTH (m)		DESCRIPTION	JOB. NO. J01386
		None None None None None None None None		Good Good Good Good Good Good Good	45.0		QUARTZITE Light brownish white SAND with hard subangular fine to medium quartz gravel. Interpreted as QU QUARTZITE Light brownish white SAND with hard subangular fine to medium quartz gravel. Interpreted as QU	a slightly weathered JARTZITE BEDROCK. es-minor fine quartz ITE BEDROCK. a minor light brown a slightly weathered JARTZITE BEDROCK.
Profiled by: Drilling Contractor: Machine: Drilling operator:	J Ehlers 121 Drilling Thor Daniel			Compre Diamete Date dr Record	er: illed:	21 bar 6.5in 26/07/2 Frank	Х	34 J 0223539 6510181 88

	ESKOM KOEKENAAP WESTI SERE WIND ENERG		Bŀ	(S Pa	lace Consortium	WTG 31
PENETRATION TIME	LOSS	SAMPLE RECOVERY	DEPTH (m)		DESCRIPTION	JOB. NO. J01386
0 : 0	05 None 33 None 28 None 14 None 23 None 24 None 38 None 48 None 48 None 48 None 48 None 38 None 38 None 38 None 39 No	Good </th <th>5.0 10.0 20.0 25.0 30.0 35.0</th> <th></th> <th>DESCRIPTION SAND Pale red SAND. AEOLIAN. SAND Reddish orange SAND. AEOLIA Reddish orange SAND. AEOLIA SAND Light brown SAND with traces of gravel. MARINE. SILT Light grey SILT. MARINE. SANDY SILT Yellowish grey slightly sandy SI (Possible contamination from s SANDY SILT Brownish white sandy SILT with hard subangular fine to medium quartz gravel. MARINE.</th> <th>of rounded quartz ILT. MARINE. and).</th>	5.0 10.0 20.0 25.0 30.0 35.0		DESCRIPTION SAND Pale red SAND. AEOLIAN. SAND Reddish orange SAND. AEOLIA Reddish orange SAND. AEOLIA SAND Light brown SAND with traces of gravel. MARINE. SILT Light grey SILT. MARINE. SANDY SILT Yellowish grey slightly sandy SI (Possible contamination from s SANDY SILT Brownish white sandy SILT with hard subangular fine to medium quartz gravel. MARINE.	of rounded quartz ILT. MARINE. and).
0 : 0 : 0 : 0 : 0 : 0 : 0 :	19 None 39 None 32 None 42 None 40 None 49 None 36 None	Good Good Good Good Good Good Good Good	40.0		QUARTZITE Brownish white sandy SILT with hard subangular fine to medium quartz gravel. Interpreted as QU BEDROCK.	n slightly weathered
	J Ehlers 121 Drilling Thor Daniel	Compr Diamet Date di Record	er: rilled:	21 bar 6.5in 26/07/2 Frank	Х	34 J 0224029 6509871 68

CLIENT: SITE: INVESTIGATION:		WESTERN CAPI NERGY FACILIT		BK	S Pa	lace Consortium	WTG 31
PENETRATION TIME	AIR LOSS			H (m)			JOB. NO. J01386
Min	Sec			DEPTH (m)		DESCRIPTION	SHEET 2 OF 2
	33 38 29 50 16 16 14	None None None None None None None None	Good Good Good	<u>0.0</u> 4.0		QUARTZITE Brownish white sandy SILT with hard subangular fine to medium quartz gravel. Interpreted as QU	slightly weathered
Profiled by: Drilling Contractor: Machine: Drilling operator:	J Ehlers 121 Drilling Thor Daniel		Compress Diameter: Date drille Recorded	: ed:	21 bar 6.5in 26/07/2 Frank	х	34 J 0224029 6509871 68

CLIENT: SITE: INVESTIGATION:	ESKOM KOEKENAAP WESTERN CAPE ATION: SERE WIND ENERGY FACILITY							alace Consortium	WTG 33
PENETRATION TIME		IR SS	SAMI RECO			ł (m)			JOB. NO. J01386
Min	Sec					DEPTH (m)		DESCRIPTION	SHEET 1 OF 2
0 :	: 06 : 06 : 53 : 20	None None None None		Good Good Good Good				SAND Pale red SAND. AEOLIAN. SAND	
	55 02 15 24	None None None None		Good Good Good Good	5.0			Orange brown SAND. AEOLIAN	I.
0 :	30 34 29 30 28	None None None None None		Good Good Good Good Good	10.0				
0 :	28 30 31 09	None None None None		Good Good Good Good	15.0			SAND	
0 :	57 12 12 13 17	None None None None None		Good Good Good Good Good	20.0			Orange light brown SAND. AEC	ILIAN.
0 : 0 : 0 :	13 19 12 28 27	None None None None None		Good Good Good Good Good	25.0			SAND	
0 : 0 : 0 : 0 : 0 :	20 20 21 06	None None None None		Good Good Good Good	30.0			Yellow brown SAND. AEOLIAN.	
0 :	08 15 18 09 08	None None None None None		None None None None None	35.0			NO SAMPLE RETURN Interpreted as SAND. AEOLIAN	
0 : 0 : 0 : 2 :	10 11 18 10	None None None None		Good Good Good Good	40.0			SAND Yellow brown SAND. AEOLIAN.	
0 :	03 11 27 57 04	None None None None None		None None None None None	45.0			NO SAMPLE RETURN Interpreted as SAND. AEOLIAN	?
Profiled by: Drilling Contractor: Machine: Drilling operator:	J Ehlers 121 Drilling Thor Daniel			Compro Diamet Date di Record	er: rilled:		21 ba 6.5in 22/07 Franl	x 7/2010 y	34 J 0225119 6509316 59

CLIENT: SITE: INVESTIGATION:		VESTERN CAPE IERGY FACILITY	BK	S Palace Co	nsortium ^{Be} s	WTG 33
PENETRATION TIME	I AIR LOSS	SAMPLE RECOVER				JOB. NO. J01386
Min	Sec		DEPTH (m)	DES	CRIPTION	SHEET 2 OF 2
		lone No lone No			LE RETURN I as SAND. AEOLIAN'	?
				top of bore		15 to 45m below
Profiled by: Drilling Contractor: Machine: Drilling operator:	J Ehlers 121 Drilling Thor Daniel	Di Da	ameter: ate drilled:	21 bar 6.5in 22/07/2010 Frank	У	34 J 0225119 6509316 59

SITE:	ESKOM KOEKENAAP WESTI SERE WIND ENERG`			Palace Consortium	WTG 35
PENETRATION TIME	AIR LOSS	SAMPLE RECOVERY	DEPTH (m)	DESCRIPTION	JOB. NO. J01386
Min	Sec		DEPT	DESCRIPTION	SHEET 1 OF 1
0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1 :	06 None 04 None 03 None 03 None 03 None 03 None 03 None 03 None 04 None 05 None 06 None	Good Good Good Good Good Good Good Good	5.0	SAND Pale red SAND. AEOLIAN. SAND Orange brown becoming more SAND. AEOLIAN.	orange with depth
1 : 0 : 0 :	08 None 59 None 36 None 37 None 36 None 9 None 12 None 08 None	Good Good Good Good Good Good Good Good	10.0		
	11 None 05 None 04 None 03 None 09 None	Good Good Good Good Good Good Good	20.0	SAND	
0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1 : 2 : 1 : 2 : 1 : 2 : 1 : 2 : 1 : 2 : 1 : 2 : 1 : 2 : 1 : 2 : : 1 : 2 : : : 2 :	21 None 06 None 38 None 46 None 20 None 12 None 04 None 26 None 03 None	Good Good Good Good Good Good Good Good	30.0	Yellow orange SAND. AEOLIAI	Ν.
0 : 0 : 0 : 0 : 0 :	45 None 48 None 53 None	Good Good Good Good	40.0		
Drilling Contractor: Machine:	J Ehlers 121 Drilling Thor Daniel	Compro Diamet Date du Record	er: 6. rilled: 31	l bar Coordinates 5in x I/07/2010 y rank z	34 J 0226202 6509006 59

CLIENT: SITE: INVESTIGATION:	ESKOM KOEKENAAP WESTERN CAPE ATION: SERE WIND ENERGY FACILITY					BK	WTG 37		
PENETRATION		AIR LOSS	SAMP RECOV			H (m)			JOB. NO. J01386
Min	Sec					DEPTH (m)		DESCRIPTION	SHEET 1 OF 1
	: 06 : 06 : 06 : 21 : 10 : 17 : 11	None None None None None None None None		Good Good Good Good Good Good	5.0			SAND Pale red sand. AEOLIAN. SILT	
	: 14 : 19 : 14 : 18 : 18 : 18 : 18 : 20 : 18 : 20 : 18 : 20 : 18 : 20 : 18 : 28	None None None None None None None None		Good Good Good Good Good Good Good Good	10.0 15.0			Light grey to white SILT with tra weathered quartz gravel. MARI	
	: 25 : 19 : 15 : 13 : 11 : 15 : 16 : 13 : 14 : 15 : 16 : 13 : 19 : 09	None None None None None None None None		Good Good Good Good Good Good Good Good	20.0 25.0				
	: 10	None None		Good Good Good Good Good Good Good Good	30.0 35.0				
	: 46 : 33 : 30 : 29 : 18	None None None None None None None None		Good Good Good Good	40.0				
Profiled by: Drilling Contractor: Machine: Drilling operator:	J Ehlers 121 Drillin Thor Daniel	g		Compre Diamete Date dr Record	er: illed:		21 bar 6.5in 2010/0 Frank	Х	34 J 0227590 6508606 53

CLIENT: SITE: INVESTIGATION:	SITE: KOEKENAAP WESTERN CAPE					BK	(S Pa	lace Consortium	WTG 39
PENETRATION TIME	I	AIR LOSS	SAMF RECO\			H (m)			JOB. NO. J01386
Min	Sec					DEPTH (m)		DESCRIPTION	SHEET 1 OF 3
	20	None None		Good Good	5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0			SAND Pale red SAND. AEOLIAN. SAND Reddish yellowish orange SAN 2mm of cemented orange sand SILTY SAND Orange red slightly silty SAND. SAND Reddish yellow orange SAND. SAND Light brown SAND with minor b weathered angular quartz grave FINE SAND Brown fine SAND with traces of weathered angular quartz grave CLAYEY SANDY SILT Greyish brown slightly micaceoo Interpreted as RESIDUAL PHY	AEOLIAN. AEOLIAN. AEOLIAN. AEOLIAN. Proven to grey highly (2-8mm). MARINE. f brown to grey highly (2-8mm). MARINE. us clayey sandy SILT.
Profiled by: Drilling Contractor: Machine: Drilling operator:	J Ehlers 121 Drilli Thor Daniel			Compro Diamet Date di Record	ter: rilled:		21 bar 6.5in 20/07/2 Frank	х	34 J 0223029 6512317 76

CLIENT: SITE: INVESTIGATION:	ESKOM KOEKENAAP WESTERN CAPE DN: SERE WIND ENERGY FACILITY				BKS Palace Consortium			
PENETRATION TIME	4	AIR LOSS	SAMPLE RECOVERY	(m) H	()-		JOB. NO. J01386	
Min	Sec			DEPTH (m)	i	DESCRIPTION	SHEET 2 OF 3	
0 0 0	: 15 : 36 : 19 : 33 : 55	None None None None None None None None	Good Good None Good Good	50.0		CLAYEY SANDY SILT Greyish brown slightly micaceou Interpreted as RESIDUAL PHYI		
	: 01 : 56 : 25 : 24 : 24	None None None None None None None None	Good Good Good Good Good Good	55.0		Dark brown slightly micaceous		
	: 41 : 04 : 02 : 42 : 45 : 32 : 15 : 15 : 14 : 46 : 38	None	Good Good Good Good Good Good Good Good	60.0		SILTY FINE SAND Light brown silty fine SAND. Inte PHYLLITE.	erpreted as RESIDUAL	
	: 23 : 30 : 28 : 35	Image: state	Good Good Good Good Good Good Good Good	70.0 75.0 80.0		CLAYEY SANDY SILT Greyish brown slightly micaceo with subrangular quartz chips (g RESIDUAL PHYLLITE.		
0 1 0 1 2	: 06 - : 52 - : 01 - : 48 - : 08 - : 08 - : 48 -	None	None None None None None None None None	85.0 90.0		NO SAMPLES Interpreted as RESIDUAL PHY	LITE.	
Profiled by: Drilling Contractor: Machine: Drilling operator:			Diame Date c		21 ba 6.5in 20/07 Frank	x /2010 y	34 J 0223029 6512317 76	

CLIENT: SITE: INVESTIGATION:	ко			ERN CAPI Y FACILIT		I	BK	S Pa	lace Consortium	WTG 39
PENETRATION TIME	1	AIF LOS		SAM RECO			H (m)			JOB. NO. J01386
Min	Sec						DEPTH (m)		DESCRIPTION	SHEET 3 OF 3
1 1 1 1 1 0 0 0 1 1 0 0 0 1 1 0 2 1 1 1 1	: 42 : 12 : 08 : 52 : 55 : 02 : 59 : 13 : 37 : 59 : 39 : 39 : 43		None None None None None None None None		None None None None None None None None	95.0 100.0 102.0			NO SAMPLES Interpreted as RESIDUAL PHY Note; water struck at 72m.	LLITE.
								24 hor	Coordinatos	
Profiled by: Drilling Contractor: Machine: Drilling operator:		g			Compro Diamet Date de Record	ter: rilled:		21 bar 6.5in 20/07/2 Frank	Х	34 J 0223029 6512317 76

SITE: K	SKOM OEKENAAP WEST ERE WIND ENERG		BKS	S Pa	WTG 40	
PENETRATION TIME	AIR LOSS	SAMPLE RECOVERY	(m) H			JOB. NO. J01386
Min Sec			DEPTH (m)		DESCRIPTION	SHEET 1 OF 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A None None No	Good Good Good Good Good Good Good Good	5.0 10.0 15.0 20.0 25.0 30.0 40.0		CLAYEY SAND Pale red clayey SAND. AEOLIA SAND Orange SAND. AEOLIAN. SAND Red becoming orange with dept SAND Orange SAND. AEOLIAN. SAND Orange SAND. AEOLIAN. SAND Brown SAND with traces of blac nodules. PEDOGENIC. SAND AND SILT Yellow orange SAND and white SILTY SAND Orange becoming white silty SA SILTY SAND Orange mottled yellow and grey fine subangular sandstone grav SILTY SAND Orange and white silty SAND. M SANDY SILT White sandy SILT with minor ro MARINE. SILTY SAND Orange to yellow and grey silty angular calcrete gravel. MARIN SILT Reddish grey and yellow SILT w medium subrounded quartz grav RESIDUAL PHYLLITE.	h SAND. AEOLIAN. k hard ferricrete SILT. MARINE. ND. MARINE. silty SAND with el. MARINE. MARINE. MARINE. SAND with fine sub- E. ith traces of fine to
Drilling Contractor: 12 Machine: Th	Ehlers 21 Drilling hor aniel	Compr Diamet Date d Record	ter: 6 rilled: 2	1 bar 5.5in 2010/0 Frank	Coordinates x 2/08 y z	34 J 0223340 6512212 73

-	ESKOM KOEKENAAP WEST SERE WIND ENERG		BK	S Pa	lace Consortium	WTG 41
PENETRATION TIME	AIR LOSS	SAMPLE RECOVERY	(m) H			JOB. NO. J01386
Min	Sec		DEPTH (m)		DESCRIPTION	SHEET 1 OF 3
1 1 1	03	Cood </td <td>5.0 10.0 20.0 25.0 30.0 35.0 40.0 42.0</td> <td></td> <td>SAND Pale red SAND. AEOLIAN. SAND Orange borwn SAND. AEOLIAN SAND Yellowish brown SAND. MARIN Yellowish brown SAND. MARIN Light brown SAND. MARINE. QUARTZITE Light brown SAND with minor fir weathered quartz gravel (2-5mn weathered QUARTZITE. QUARTZITE Light grey SAND with abundant quartz gravel (2-10mm). Interprese BEDROCK.</td> <td>E. he subangular slightly h). Interpreted as grey hard subangular eted as QUARTZITE of grey hard avel (2-5mm).</td>	5.0 10.0 20.0 25.0 30.0 35.0 40.0 42.0		SAND Pale red SAND. AEOLIAN. SAND Orange borwn SAND. AEOLIAN SAND Yellowish brown SAND. MARIN Yellowish brown SAND. MARIN Light brown SAND. MARINE. QUARTZITE Light brown SAND with minor fir weathered quartz gravel (2-5mn weathered QUARTZITE. QUARTZITE Light grey SAND with abundant quartz gravel (2-10mm). Interprese BEDROCK.	E. he subangular slightly h). Interpreted as grey hard subangular eted as QUARTZITE of grey hard avel (2-5mm).
	J Ehlers		00007	21 bar	Interpreted as weathered zone i BEDROCK with slight contamin Coordinates	
Drilling Contractor: 7 Machine:	121 Drilling Thor Daniel	Compr Diame Date d Record	ter: rilled:	21 bar 6.5in 20/07/2 Frank	Х	34 J 0223834 6511989 73

	KOM DEKENAAP WESTE RE WIND ENERGY	-	BK	S Pa	lace Consortium	WTG 41
PENETRATION TIME	AIR LOSS	SAMPLE RECOVERY	DEPTH (m)		DESCRIPTION	JOB. NO. J01386
Min Sec			DEP			SHEET 2 OF 3
1 : 34 0 : 59 1 : 11 1 : 38 0 : 56 1 : 11 1 : 24 1 : 24 1 : 24 1 : 24 1 : 24 1 : 24 1 : 24 1 : 24 1 : 24 1 : 24 1 : 24 1 : 24 1 : 24 1 : 24 1 : 20 1 : 37 1 : 28 1 : 32 1 : 33 1 : 32 1 : 32 1 : 32 1 :	None None	Good Good Good None None None None <td>45.0 50.0 55.0 60.0 65.0 70.0 75.0 75.0 80.0 80.0 85.0</td> <td>21 bar</td> <td>QUARTZITE Light grey SAND with abundant quartz gravel (2-10mm). Interpresent to the second second</td> <td>eted as QUARTZITE s of grey hard subangular n). Interpreted as ight contamination. agular slightly weathered RTZITE BEDROCK. DROCK.</td>	45.0 50.0 55.0 60.0 65.0 70.0 75.0 75.0 80.0 80.0 85.0	21 bar	QUARTZITE Light grey SAND with abundant quartz gravel (2-10mm). Interpresent to the second	eted as QUARTZITE s of grey hard subangular n). Interpreted as ight contamination. agular slightly weathered RTZITE BEDROCK. DROCK.
Drilling Contractor: 12 Machine: The		Compr Diame Date d Recore	ter:	21 bar 6.5in 20/07/2 Frank	Х	34 J 0223834 6511989 73

CLIENT: ESKOM SITE: KOEKENAAP WESTERN CAP INVESTIGATION: SERE WIND ENERGY FACILI				E	BKS Pala	ace Consortium	WTG 41
PENETRATION TIME		AIR LOSS	SAM RECO		DEPTH (m)	DESCRIPTION	JOB. NO. J01386
Min	Sec				DEPT	DESCRIPTION	SHEET 3 OF 3
2 1 <td< td=""><td>00 50 46 49 14 37 50 06 51 38 03 06 51 38 03 06 52</td><td>None None None None None</td><td></td><td>None None None None None None None None</td><td>90.0 95.0 100.0 102.0</td><td>NO SAMPLES Interpreted as QUARTZITE BE</td><td>DROCK.</td></td<>	00 50 46 49 14 37 50 06 51 38 03 06 51 38 03 06 52	None None None		None None None None None None None None	90.0 95.0 100.0 102.0	NO SAMPLES Interpreted as QUARTZITE BE	DROCK.
Profiled by: Drilling Contractor: Machine: Drilling operator:		or		Compressor: Diameter: Date drilled: Recorded by:		n x 7/2010 y	34 J 0223834 6511989 73

CLIENT: SITE: INVESTIGATION:	KO	KOM EKENAAP WESTE RE WIND ENERGY			BK	(S Pa	lace Consortium	WTG 42
PENETRATIO TIME	N	AIR LOSS	SAMPI RECOVE		H (m)			JOB. NO. J01386
Line and the second	Sec				DEPTH (m)		DESCRIPTION	SHEET 1 OF 1
	: 06 : 08 : 30 : 32 : 22 : 15 : 59 : 31 : 29 : 22 : 11 : 28 : 23 : 16 : 15 : 11 : 23 : 23 : 16 : 15 : 11 : 23 : 25 : 21 : 14 : 09 : 22 : 21 : 14 : 09 : 22 : 21 : 15 : 11 : 12 : 23 : 21 : 15 : 15 : 11 : 12 : 23 : 21 : 11 : 12 : 23 : 21 : 12 : 23 : 21 : 12 : 21 : 12 : 23 : 21 : 12 : 21 : 12 : 23 : 25 : 21 : 14 : 09 : 22 : 13 : 17 : 08 : 42 : 38	None None None None		Good Good Good Good Good Good Good 5.0 Good 5.0 Good Good Good Good Good 5.0 Good Good Good Good Good 10.0 Good 10.0 Good 15.0 Good 15.0 Good 15.0 Good 20.0 Good 25.0 Good 25.0 Good 30.0 Good 30.0 Good 30.0 Good 30.0 Good 30.0 Good 30.0			SAND Pale red SAND. AEOLIAN. SAND Orange to yellow SAND. AEOL SAND Orange red SAND. AEOLIAN. SILTY SAND Orange silty SAND. MARINE. SAND White orange yellow SAND wit gravel. MARINE. SILTY SAND White silty SAND. MARINE. SILTY SAND White silty SAND. MARINE. SILTY SAND White silty SAND. MARINE.	h fine rounded quartz
		hlers 1 Drilling Dr		Good Good Good Good Good Good Good Good		21 bar 6.5in 2010/C Frank	х	

	KOM DEKENAAP WESTE RE WIND ENERGY		Bl	(S Palace (Consortium	WTG 43
PENETRATION TIME	AIR LOSS	SAMPLE RECOVERY	DEPTH (m)	D	ESCRIPTION	JOB. NO. J01386 SHEET 1 OF 3
E O : 09 0 : 09 0 : 09 0 : 14 1 : 48 0 : 0 : 0 : 10 1 : 0 : 0 : 44 0 : 29 0 : 24 0 : 0 : 0 : 34 0 : 29 0 : 27 0 : 30 : 32 0 : 36 0 : 30 : 27 0 : 34 0 : 32 0 : 36 0 : 53 0 : 0 : 0 : 30 0 : 28 0 : 0 : 0 : 11 0 : 16 0 : 13 0 : 11 0 : 13 0 : 0 : 11 0 : 11 0 : 11 0 : 12 0 : 14 0 : 12 0 : 14 0 : 14 0		Cood </th <th>5.0 10.0 20.0 25.0 30.0 40.0 45.0</th> <th>SAND Orange of orang AEOLIA SAND Light or ferricret SAND Orange weather SAND Whitish</th> <th>ange brown SAND with t e nodules (<5mm). MAR light brown SAND with t red quartz gravel (<5mm light brown SAND. MAR</th> <th>ed sand (<3mm chips). races of black hard INE. races of grey slightly). MARINE.</th>	5.0 10.0 20.0 25.0 30.0 40.0 45.0	SAND Orange of orang AEOLIA SAND Light or ferricret SAND Orange weather SAND Whitish	ange brown SAND with t e nodules (<5mm). MAR light brown SAND with t red quartz gravel (<5mm light brown SAND. MAR	ed sand (<3mm chips). races of black hard INE. races of grey slightly). MARINE.
Drilling Contractor: 12 Machine: The		Compr Diamet Date di Record	er rilled	21 bar 6.5in 21/07/2010 Frank	У	34 J 0224645 6511291 74

SITE:		KOM EKENAAP WESTERN CAPE RE WIND ENERGY FACILITY			BKS Palace Consortium				WTG 43
PENETRATION TIME	All LOS		SAMP RECOV			H (m)			JOB. NO. J01386
Min	Sec					DEPTH (m)		DESCRIPTION	SHEET 2 OF 3
0 : 0 : 0 : 0 : 0 : 0 : 0 :	12 09 07 20	None None None None None		Good Good Good Good Good	50.0			FINE SAND Whitish grey very fine SAND. M	IARINE.
0 : 1 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0	38 32 50 28 28 36	None None None None None None None		Good Good Good Good Good Good Good	55.0			FINE SAND Light grey brown fine SAND. M/	ARINE.
	21 33 53 40 46 07	None None None None None None None		Good Good Good Good Good Good Good	60.0			SILT	
0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 :	46 55 52 36 56 49	None None None None None None None		Good Good Good Good Good Good Good	70.0			Dark and grey slightly micaceou RESIDUAL PHYLLITE.	us SILT. Interpreted as
	02 02	None None		None None				NO SAMPLES Interpreted as RESIDUAL PHYI	LLITE.
1 :	07 13 32	None None None None		Good Good Good Good	75.0			FINE SAND Light grey brown fine SAND. Int PHYLLITE.	erpreted as RESIDUAL
1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 :	14 15 33 12 13 10 13 36 48	None None None None None None None None		None None None None None None None None	80.0 85.0 90.0			NO SAMPLES Interpreted as RESIDUAL PHYI	LLITE.
Drilling Contractor: Machine:	J Ehlers 121 Drilling Thor Daniel	J		Compre Diamet Date dr Record	er illed		21 bar 6.5in 21/07/2 Frank	Coordinates x 2010 y z	34 J 0224645 6511291 74

CLIENT: SITE: INVESTIGATION:		P WESTERN CAPE ENERGY FACILITY				P	WTG 43
PENETRATION TIME	AI LO		SAMPLE RECOVERY	H (m)			JOB. NO. J01386
Min	Sec			DEPTH (m)		DESCRIPTION	SHEET 3 OF 3
1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	36 14 37 24 35 42 35 42 33 30 33 30 33 347 30 31 32 33 347 30 33 347 30 33 347 30 31 32 33 347 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 39 39 39 39 39 39 39 39 39 39	None		95.0		NO SAMPLES Interpreted as RESIDUAL PHYI Note; water struck at 79m.	LITE.
Profiled by: Drilling Contractor: Machine: Drilling operator:	J Ehlers 121 Drilling Thor Daniel		Diam Date		21 bar 6.5in 21/07/2 Frank	Х	34 J 0224645 6511291 74

SITE: KO	KOM DEKENAAP WESTI RE WIND ENERG`		BK	S Pa	lace Consortium	WTG 44
PENETRATION TIME	AIR LOSS	SAMPLE RECOVERY	DEPTH (m)		DESCRIPTION	JOB. NO. J01386
Min Sec			DEP1		BEGONII HON	SHEET 1 OF 1
0 : 11 0 : 13 0 : 13 0 : 13 0 : 13 0 : 13 0 : 13 0 : 13 0 : 13 0 : 13 0 : 11 0 : 11 0 : 11 0 : 11 0 : 11 0 : 11 0 : 11 0 : 11 0 : 10 0 : 11 0 : 11 0 : 12 0 : 12 0 : 14 0 : 11 0 : 11 0 : 11 0 : 11 0 :	None None None <td>Good Good Good</td> <td>5.0 10.0 20.0 25.0 30.0 35.0 40.0</td> <td></td> <td>SAND Pale red SAND. AEOLIAN. SAND White to orange SAND. AEOLIA Interpreted as cemented from re CLAYEY SAND Light orange clayey SAND. MA SAND White SAND. MARINE. SAND White yellowish orange silty SA SAND White SAND. MARINE. SAND Yellow and white SAND with mi quartz gravel. MARINE. SAND White SAND with grey fine subb MARINE.</td> <td>ND. MARINE.</td>	Good Good	5.0 10.0 20.0 25.0 30.0 35.0 40.0		SAND Pale red SAND. AEOLIAN. SAND White to orange SAND. AEOLIA Interpreted as cemented from re CLAYEY SAND Light orange clayey SAND. MA SAND White SAND. MARINE. SAND White yellowish orange silty SA SAND White SAND. MARINE. SAND Yellow and white SAND with mi quartz gravel. MARINE. SAND White SAND with grey fine subb MARINE.	ND. MARINE.
Drilling Contractor: 12 Machine: The	hlers 1 Drilling or niel	Compr Diamet Date di Record	ter: rilled:	21 bar 6.5in 2010/0 Frank	Х	34 J 0225009 6511151 69

SITE: K	SKOM OEKENAAP WESTI ERE WIND ENERG`	-	Bł	(S Pa	lace Consortium	WTG 45
PENETRATION TIME ⊑ Ø	AIR LOSS	SAMPLE RECOVERY	DEPTH (m)		DESCRIPTION	JOB. NO. J01386 SHEET 1 OF 2
0 : 1 0 : 1 0 : 1 0 : 1 0 : 1 0 : 1 0 : 1 0 : 1 0 : 2 0 : 2 0 : 2 0 : 3 0 : 3 0 : 3 0 : 3 0 : 3 0 : 3 0 : 3 0 : 3 0 : 3 0 : 3 0 : 3 0 : 1 0 : 1 0 : 1 0 : 1 0 : 1 0 : 1 0 : 1	None None None	Good </td <td>5.0 10.0 20.0 25.0 30.0 35.0 40.0</td> <td></td> <td>SAND Pale red SAND. AEOLIAN. SAND Yellowish orange brown SAND SAND Reddish brown SAND. AEOLIA CLAYEY SAND Reddish brown to yellow brown MARINE. Note, wet samples. CLAYEY SAND Brown slightly clayey SAND. M samples. SANDY SILT Light brown slightly sandy SILT subrounded grey slightly weath MARINE. Note, wet samples. SANDY SILT Light brown to yellow brown sa hard subrounded quartz gravel (Sand is possibly contaminated) FINE SAND White to light brown fine graine of subrounded slightly weathered SILTY SAND Light brown and light grey silty slightly weathered quartz gravel</td> <td>N. Slightly clayey SAND. ARINE. Note, wet with traces of hard ered quartz gravel. NARINE. O SAND with traces of gravel. MARINE.</td>	5.0 10.0 20.0 25.0 30.0 35.0 40.0		SAND Pale red SAND. AEOLIAN. SAND Yellowish orange brown SAND SAND Reddish brown SAND. AEOLIA CLAYEY SAND Reddish brown to yellow brown MARINE. Note, wet samples. CLAYEY SAND Brown slightly clayey SAND. M samples. SANDY SILT Light brown slightly sandy SILT subrounded grey slightly weath MARINE. Note, wet samples. SANDY SILT Light brown to yellow brown sa hard subrounded quartz gravel (Sand is possibly contaminated) FINE SAND White to light brown fine graine of subrounded slightly weathered SILTY SAND Light brown and light grey silty slightly weathered quartz gravel	N. Slightly clayey SAND. ARINE. Note, wet with traces of hard ered quartz gravel. NARINE. O SAND with traces of gravel. MARINE.
Drilling Contractor: 12 Machine: Th	Ehlers 21 Drilling nor aniel	Compr Diamet Date d Record	ter rilled	21 bar 6.5in 21/07/2 Frank	Coordinates x 2010 y z	34 J 0225499 6510926 71

CLIENT: SITE: INVESTIGATION:	ESKOM KOEKENAAP WEST SERE WIND ENERG	-		Palace Consortium	WTG 45
PENETRATION TIME	AIR LOSS	SAMPLE RECOVERY	DEPTH (m)	DESCRIPTION	JOB. NO. J01386 SHEET 2 OF 2
Profiled by:	30 Anone 22 Anone 30 Anone 30 Anone 30 Anone 31 Anone 32 Anone 34 Anone 39 Anone 30 Anone 31 Anone 32 Anone 33 Anone 34 Anone 32 Anone 33 Anone 34 Anone 34 Anone 34 Anone 34 Anone 34 Anone 38 Anone 38 Anone 38 Anone	Good Good <t< td=""><td>50.0 55.0 60.0 65.0 70.0 75.0 80.0 84.0</td><td>SILTY SAND Light brown and light grey silty S slightly weathered quartz gravel Silty Silghtly weathered quartz gravel Silty Sand Light brown and light grey silty S Silghtly weathered quartz gravel Silghtly weathered quartz gravel Sand Light brown SAND with mir quartz gravel (2-8mm). MARINE Sand Light brown SAND with rounded walls collapse/unstable side wa Sand Light brown SAND with rounded Walls collapse/unstable side wa</td><td>I (2-8mm). MARINE.</td></t<>	50.0 55.0 60.0 65.0 70.0 75.0 80.0 84.0	SILTY SAND Light brown and light grey silty S slightly weathered quartz gravel Silty Silghtly weathered quartz gravel Silty Sand Light brown and light grey silty S Silghtly weathered quartz gravel Silghtly weathered quartz gravel Sand Light brown SAND with mir quartz gravel (2-8mm). MARINE Sand Light brown SAND with rounded walls collapse/unstable side wa Sand Light brown SAND with rounded Walls collapse/unstable side wa	I (2-8mm). MARINE.
Profiled by: Drilling Contractor: Machine: Drilling operator:	J Ehlers 121 Drilling Thor Daniel	Compr Diamet Date di Record	er 6.5 rilled 21	bar Coordinates 5in x /07/2010 y ank z	34 J 0225499 6510926 71

CLIENT: SITE: INVESTIGATION:		KENAAP WESTE			BK	S Pa	lace Consortium	WTG 46
PENETRATION TIME	1	AIR LOSS	SAMPLE RECOVER		H (m)			JOB. NO. J01386
Min	Sec				DEPTH (m)		DESCRIPTION	SHEET 1 OF 1
	: 25 : 24 : 23 : 27 : 17 : 49 : 23 : 08 : 33 : 03 : 43 : 16 : 37 : 38 : 32 : 39 : 22	Image:	Image: Constraint of the sector of	add			SAND Pale red SAND AEOLIAN. CLAYEY SAND Orange yellow clayey SAND. M CLAYEY SAND Red to orange clayey SAND. M SAND Orange to grey SAND with minu SANDY SILT Brown red sandy SILT. MARINI SILT Light brown to white SILT. MAR	IARINE. or gravel. MARINE. E.
	23 53 56 12 54 51 54 51 56 51 56 50 50 50	None		bd bd		21 bar	SANDY SILT Grey and white calcareous san	
Profiled by: Drilling Contractor: Machine: Drilling operator:	J Ehle 121 D Thor Daniel	rilling	Dia Da	ompressor ameter: ate drilled: ecorded by		21 bar 6.5in 2010/0 Frank	х	34 J 0225893 6510742 75

SITE: K		KOM BKS Palace Consortium EKENAAP WESTERN CAPE RE WIND ENERGY FACILITY				WTG 47
PENETRATION TIME	AIR LOSS	SAMPLE RECOVERY	(m) H			JOB. NO. J01386
Min			DEPTH (m)		DESCRIPTION	SHEET 1 OF 2
0 : 0 0 : 0 0 : 0 1 : 1 0 : 0	6 None 9 None 8 None 7 None 3 None 9 None 9 None 9 None 1 None None 1<	Good Good	5.0 10.0 20.0 25.0 30.0 35.0		SAND Pale red SAND. AEOLIAN. SAND Orange brown SAND. AEOLIAN SAND Yellowish brown SAND. AEOLIAN NO SAMPLES Interpreted as SAND. AEOLIAN SAND Brown SAND. AEOLIAN. SAND Brown SAND. AEOLIAN. SANDY SILT Light brown and grey sandy SIL (Sand can be contaminated).	J. AN.
,	4 None 9 None 4 None 6 None 1 None 8 None 9 None 1 None 2 None	Good Good Good Good Good Good Good Good			CLAYEY SILT Dark grey slightly clayey SILT. I Coordinates	MARINE. 34 J 0226298
Machine: T	hor aniel	Date dr Record	illed:	22/07/20 Frank		6510685 79

	SKOM OEKENAAP WESTE ERE WIND ENERGY		BKS Pa	lace Consortium	WTG 47
PENETRATION TIME	AIR LOSS	SAMPLE RECOVERY	DEPTH (m)	DESCRIPTION	JOB. NO. J01386
	2	Image: None Image: None	50.0 55.0 57.0	NO SAMPLE RETURN Interpreted as CLAY or SILT. M	
Drilling Contractor: 12 Machine: Th	Ehlers 21 Drilling nor aniel	Compr Diamet Date di Recorc	ter: 6.5in rilled: 22/07/2	х	34 J 0226298 6510685 79

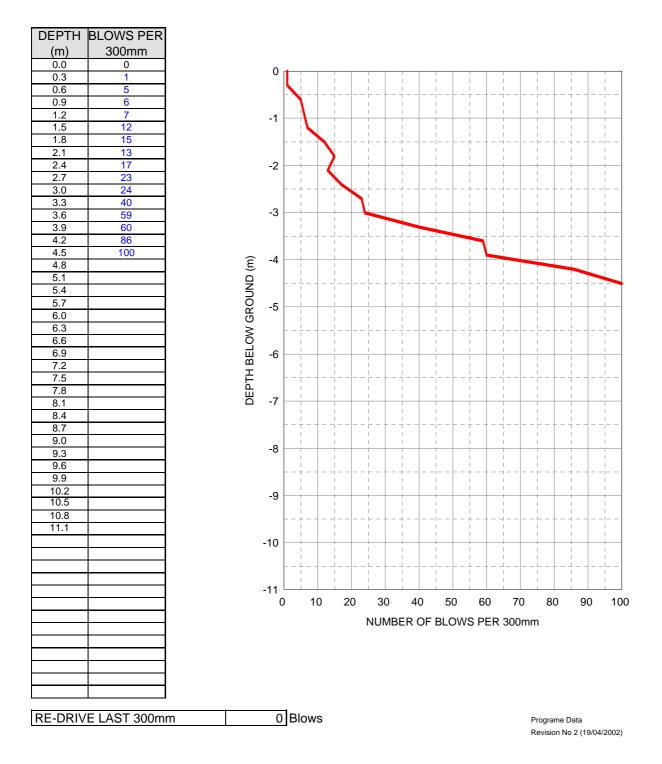
SITE: K	SKOM OEKENAAP WEST ERE WIND ENERG		BKS Palace Consortium			WTG 49
PENETRATION TIME	AIR LOSS	SAMPLE RECOVERY	DEPTH (m)		DESCRIPTION	JOB. NO. J01386 SHEET 1 OF 1
1 :: 3 1 :: 4 1 :: 4 1 :: 4 1 :: 4 1 :: 4 1 :: 4 1 :: 0 0 :: 4 0 :: 4 0 :: 4 0 :: 4 0 :: 4 0 :: 2 0 :: 1 0 :: 2 0 :: 3 0 :: 2 0 :: 2 0 :: 2 0 :: 2 0 :: 2 0 :: 2 0 :: 2 0 :: 3	1	Image: Construction of the sector of the	5.0 10.0 15.0 20.0 25.0 30.0 35.0	21 bar	SAND Pale red SAND. AEOLIAN. Pale red SAND. AEOLIAN. SAND Orange brown SAND. AEOLIAN FINE SAND Light brown fine SAND. Interpre QUARTZITE Light brown fine SAND. Interpre QUARTZITE. GUARTZITE Light brown fine SAND with mir hard quartz gravel (3-6mm). Int weathered QUARTZITE BEDRO FINE SAND Reddish brown fine sand with li gravel (3-6mm). Interpreted as QUARTZITE BEDROCK with c FINE SAND Light brown fine SAND with mir hard quartz gravel (3-6mm). Int weathered QUARTZITE BEDRO SAND White to light brown slightly we (2-8mm chips) with minor fine S QUARTZITE BEDROCK.	N. eted as RESIDUAL hor angular light brown erpreted as slightly OCK. ight brown hard quartz weathered ontamination. hor angular light brown erpreted as slightly OCK. athered quartz SAND. Interpreted as
Drilling Contractor: 1 Machine: T	Ehlers 21 Drilling hor Daniel	Compr Diamet Date d Record	ter: rilled:	21 bar 6.5in 30/07/ Frank	х	34 J 0227068 6510586 71

APPENDIX F: DPSH RESULTS

APPENDIX F:

DPSH RESULTS

- a) Substation
- b) Wind Turbine Positions

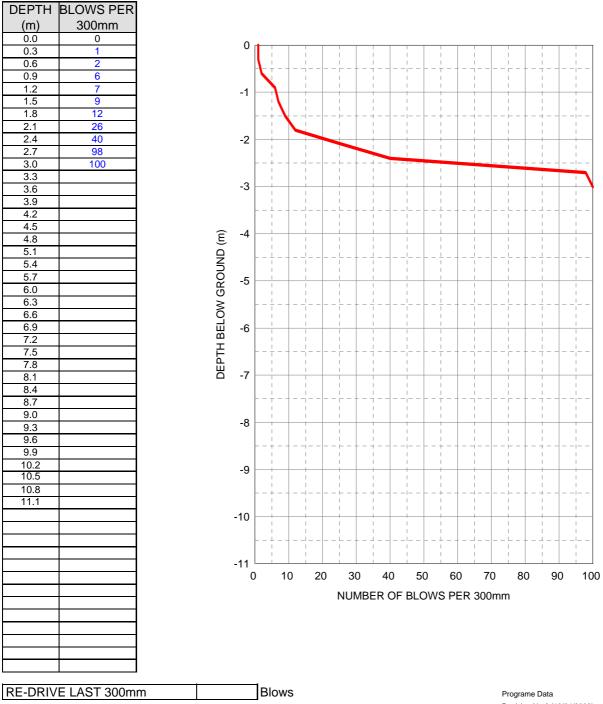

APPENDIX F:

DPSH RESULTS

a) Substation

SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

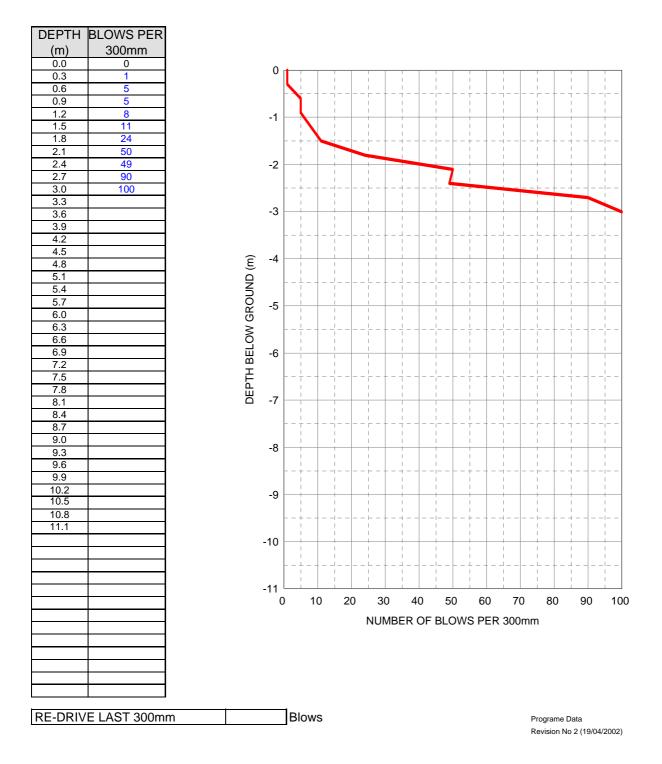
Client	RWBE GEOTECHNICAL DRILLING					
Location	KOEKENAAP					
Date	20 JULY 2010	Test No	DPSH - A			
Job No	10174	Checked By	EB			



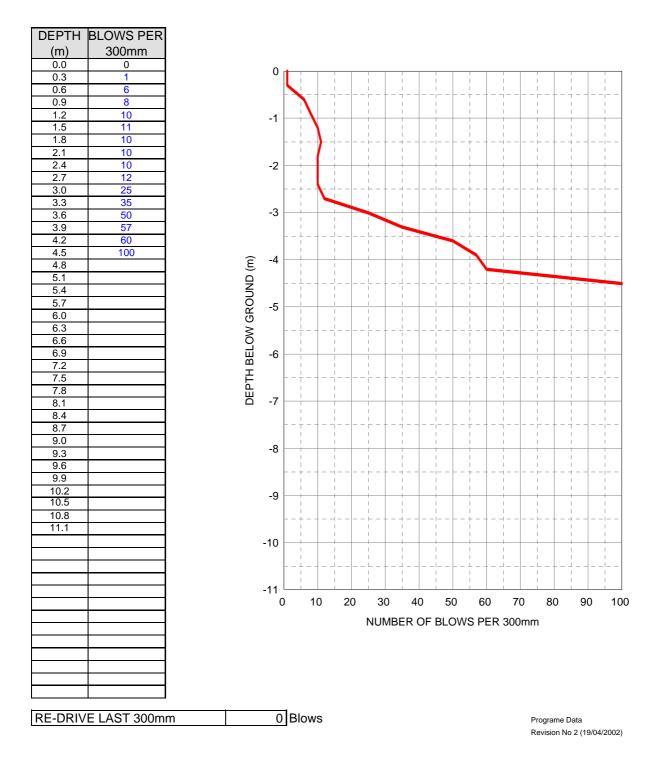
прадстіса

SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

DYNAMIC CONE PENETROMETER (DPSH)


Client	RWBE GEOTECHNICAL DRILLING		
Location	KOEKENAAP		
Date	20 JULY 2010 Test No DPSH - B		
Job No	10174	Checked By	EB

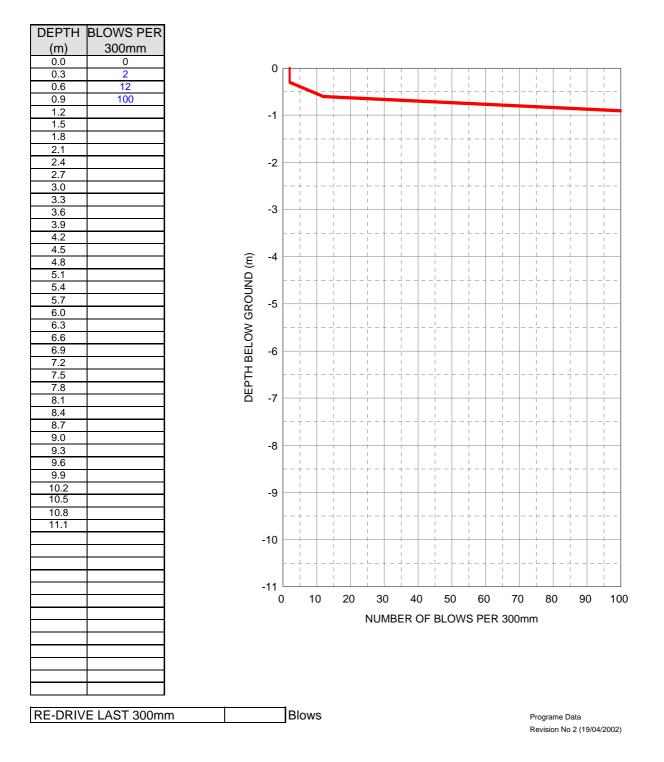
Revision No 2 (19/04/2002)


SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

Client	RWBE GEOTECHNICAL DRILLING		
Location	KOEKENAAP	_	
Date	20 JULY 2010	Test No	DPSH - C
Job No	10174	Checked By	EB

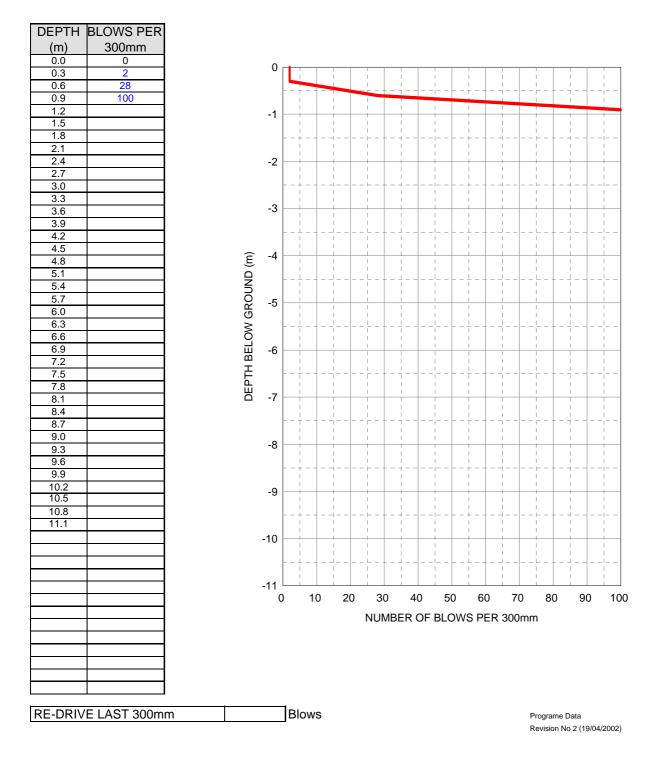
SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

Client	RWBE GEOTECHNICAL DRILLING		
Location	KOEKENAAP	_	
Date	20 JULY 2010	Test No	DPSH - D
Job No	10174	Checked By	EB

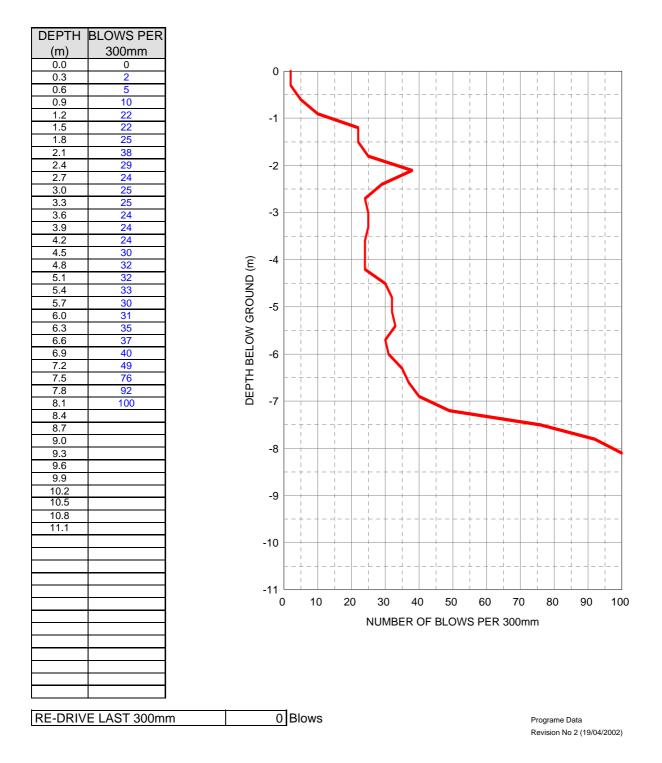

APPENDIX F:

DPSH RESULTS

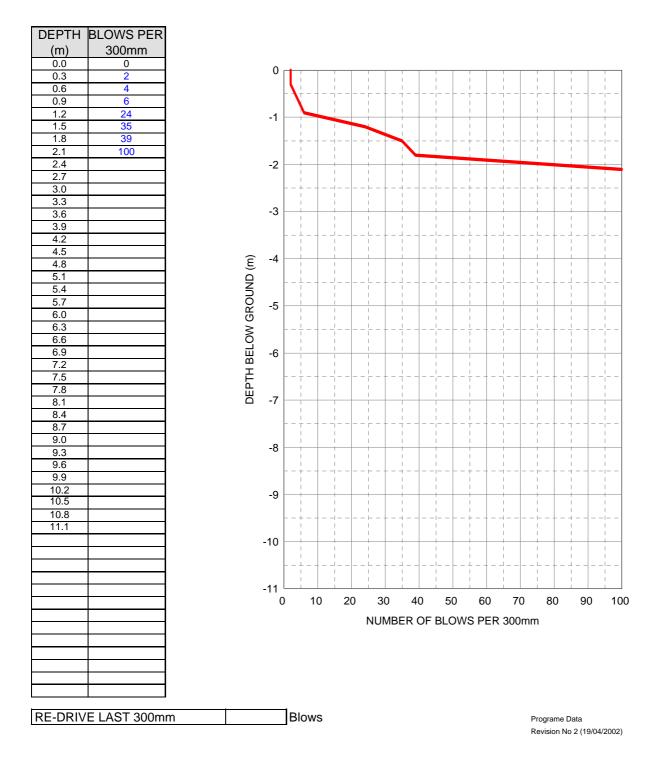
b) Wind Turbine Positions


SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

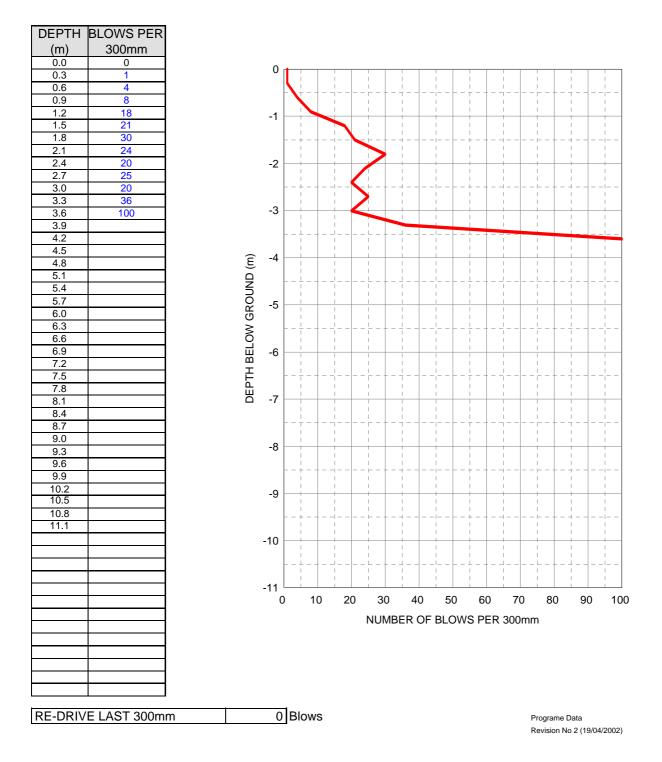
Client	RWBE GEOTECHNICAL DRILLING		
Location	KOEKENAAP		
Date	20 JULY 2010 Test No DPSH - WTG 1 (A)		
Job No	10174	Checked By	EB


SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

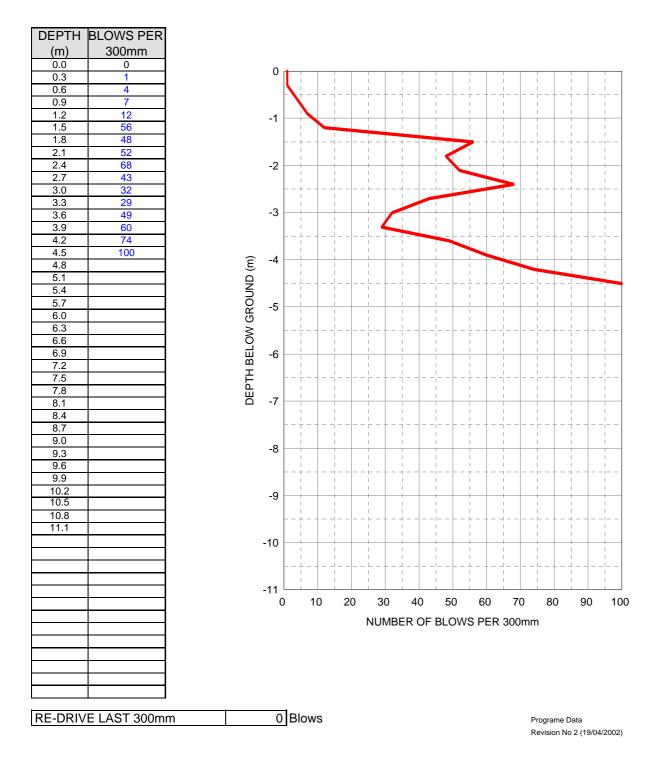
Client	RWBE GEOTECHNICAL DRILLING		
Location	KOEKENAAP		
Date	20 JULY 2010 Test No DPSH - WTG 1 (B)		
Job No	10174	Checked By	EB


SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

Client	RWBE GEOTECHNICAL DRILLING		
Location	KOEKENAAP		
Date	20 JULY 2010 Test No DPSH - WTG 2		
Job No	10174	Checked By	EB


SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

Client RWBE GEOTECHNICAL DRILLING			
Location	KOEKENAAP		
Date	20 JULY 2010	Test No	DPSH - WTG 4
Job No	10174	Checked By	EB


SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

Client	RWBE GEOTECHNICAL DRILLING		
Location	KOEKENAAP		
Date	20 JULY 2010	Test No	DPSH - WTG 6
Job No	10174	Checked By	EB

SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

Client	RWBE GEOTECHNICAL DRILLING				
Location	KOEKENAAP				
Date	20 JULY 2010	Test No	DPSH - WTG 8		
Job No	10174	Checked By	EB		

Client

Date

Job No

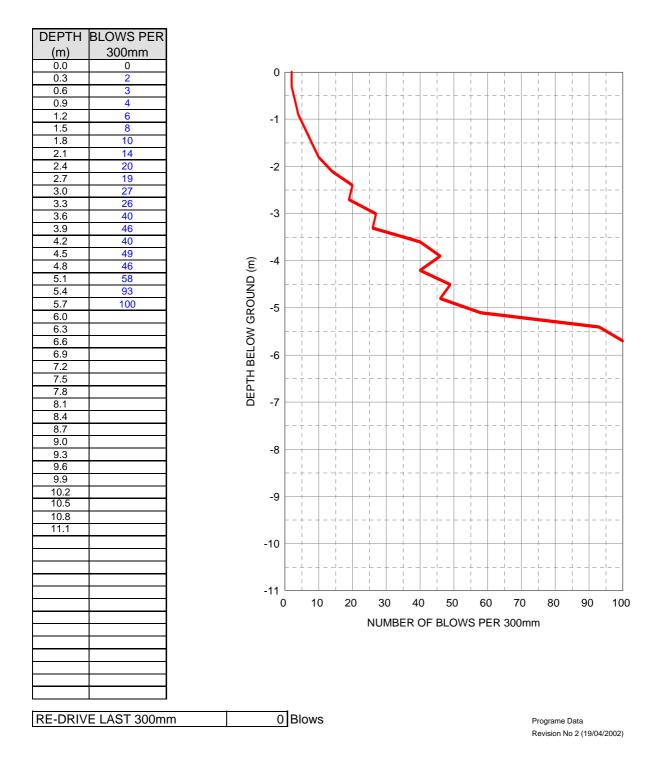
SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700

10174

TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

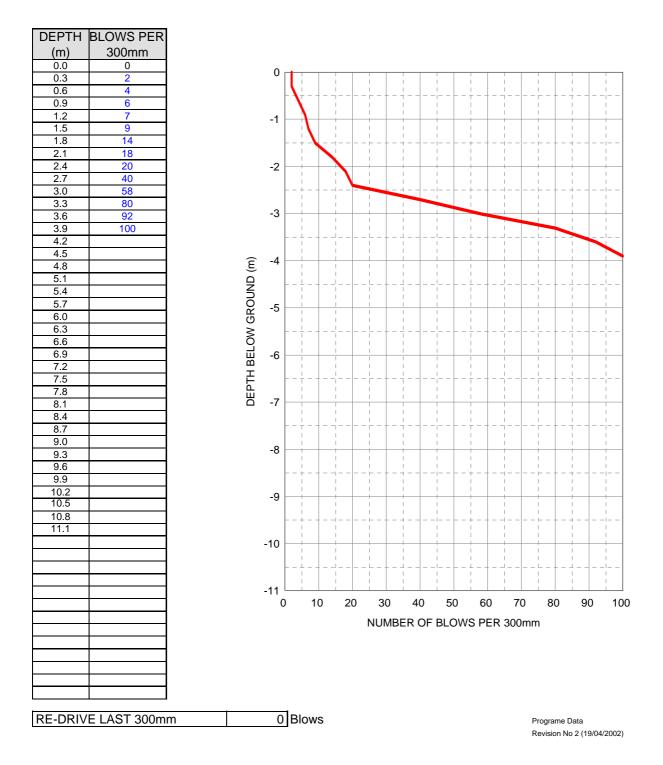
EΒ

DYNAMIC CONE PENETROMETER (DPSH) RWBE GEOTECHNICAL DRILLING Location KOEKENAAP Test No DPSH - WTG 10 20 JULY 2010

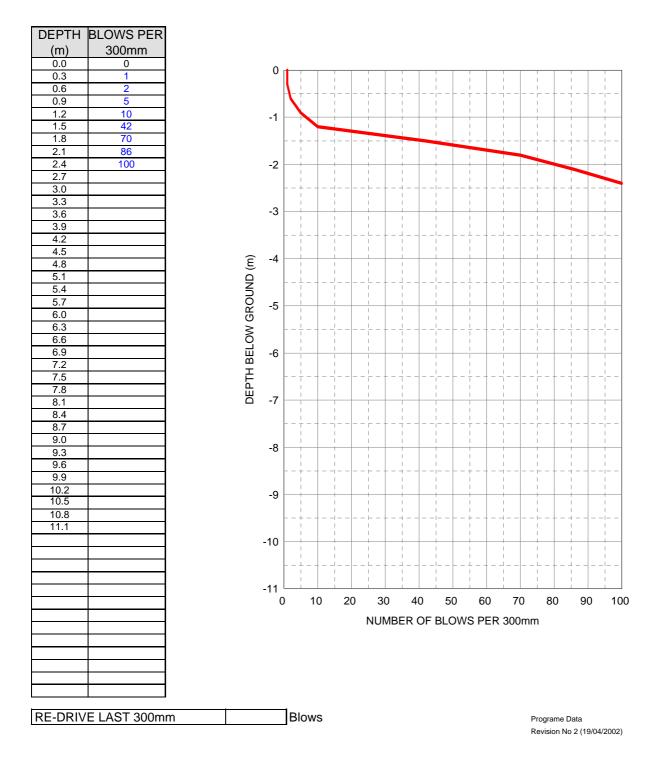

Checked By

DEPTH	BLOWS PER	1																	
(m)	300mm																		
0.0	0																		
0.3	2		0												1		1		
0.6	5					i			1	i		i i	i		i		i		
0.9	8					-1						т — - I			- F -			-	
1.2	23		-1			I			1	1		1	1		1		1	1	
1.5	32					1			i l	i.		i i	i		i.		i -	1	
1.8	35			+				\vdash – +	+		_	 +		-	· - - ·	_ + _	+		
2.1	32			1		1			1			I I			1		1		
2.4	25		-2		_	-			4	_	_	-			_		-		
2.7	23					1						1			1		1		
3.0	34			+	- + -	-!	-1	+ -	+	!		+		-	· ·	- + -	+		
3.3	36					1				- i			i		- i		i -		
3.6	35		-3			1						1			-		1		
3.9	33			1								 							
4.2	75			+	- 1 -			† _	1-1-	!		1		-	L .	- † -	1		
4.5	100	<u> </u>	-4																
4.8		E E	, 7	1		1													
5.1		DEPTH BELOW GROUND (m)		+	- + -					!			!	-	Ļ .	- + -	1		
5.4		5				1			i l	i.		i i			I		i -		
5.7		Or Cr	-5			1		I	1	<u> </u>	_			_			1		
6.0				į.						÷.		i I	i		į.		i.	i	
6.3		<u> </u>		$\frac{1}{1}$	- + -			+-		¦- :		÷		-		- + -	+	¦-	
6.6		Ľ		1					1	1		1			1		1		
6.9		ШШ	-6	Ì		1			1	i			1		- i		İ		
7.2		Ē				i l			i l	i.		I I			i		i -		
7.5				T		7						T		-	. – – .	- † -	T		
7.8 8.1		Щ	-7	i		i		i	i	i		i	i		i		i	i	
8.4			'			i i				÷.		i l			i.		ì		
8.7				+						¦		і т – -		-	· ·	- + -	+		
9.0				1		1				- E		1	l i		1		i.		
9.3			-8		_	-		1	1			-					-		
9.5												-			1		1		
9.9				+	- + -	-i			+	i- ·		+		-		- + -	+		
10.2						i i		1		i.		I I			i.		i.		
10.2		1	-9												-		-		
10.8		1				1				j.		i L					1	i	
11.1				+	- 1 -	1						+					1		
		1	-10														-		
			10	1		1			1			I I					1		
		1		+	- + -					!		+		-		- + -	<u> -</u>	i-	
		1				1			1			I I					1		
		1	-11												1				
			0)	10	20)	30	40		50	60	0	70		80	9	0	100
								NUMB		FRI	O\//	S PI	=R ?	200 m	nm				
							1							001					
		l																	
				1															
RE-DRIV	E LAST 300m	m	0	Blo	WS											grame			
															Revi	sion N	0 2 (1	9/04/2	002)

Revision No 2 (19/04/2002)

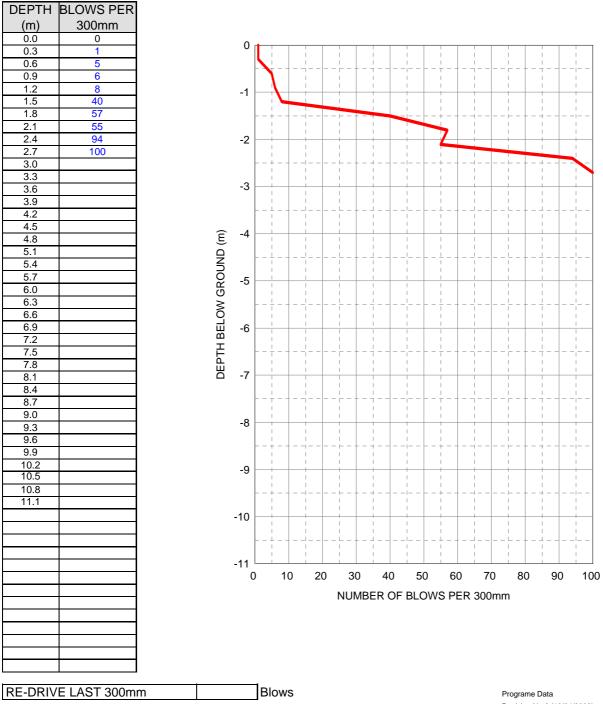

SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

Client	RWBE GEOTECHNICAL DRILLING				
Location	KOEKENAAP	_			
Date	20 JULY 2010	Test No	DPSH - WTG 12		
Job No	10174	Checked By	EB		


SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

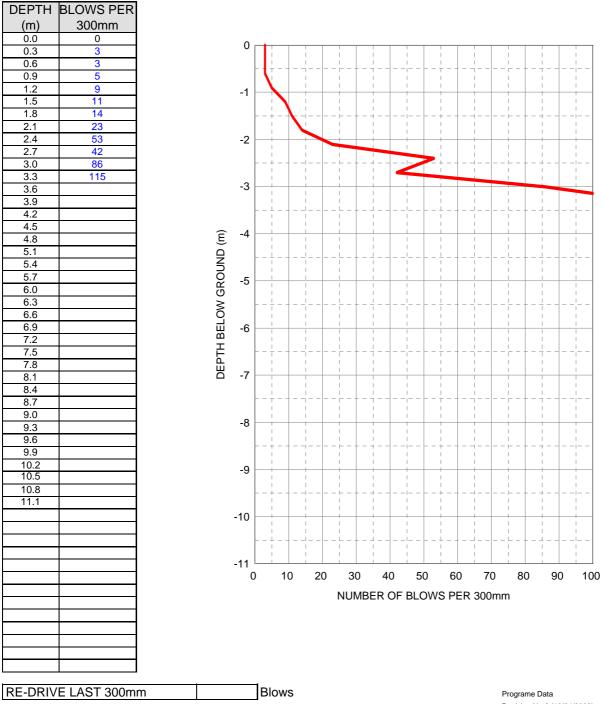
Client	RWBE GEOTECHNICAL DRILLING				
Location	KOEKENAAP				
Date	20 JULY 2010	Test No	DPSH - WTG 14		
Job No	10174	Checked By	EB		

SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za


Client	RWBE GEOTECHNICAL DRILLING				
Location	KOEKENAAP				
Date	20 JULY 2010	Test No	DPSH - WTG 16		
Job No	10174	Checked By	EB		

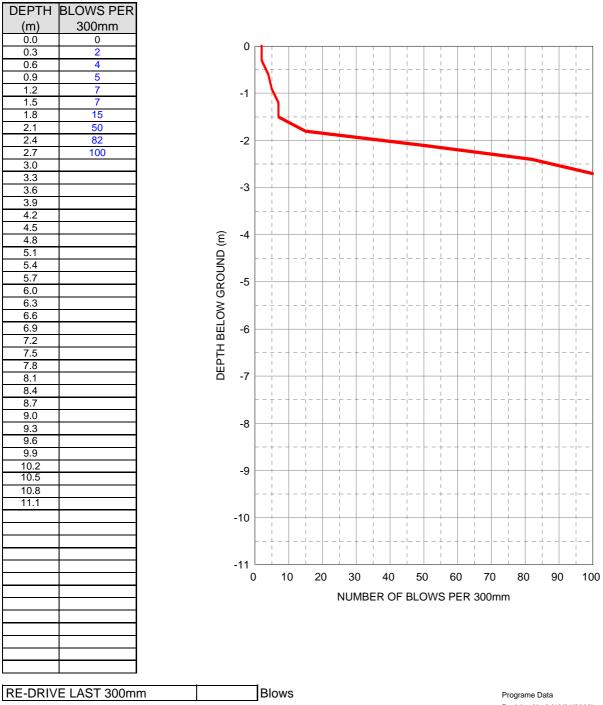
SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

DYNAMIC CONE PENETROMETER (DPSH)


Client	RWBE GEOTECHNICAL DRILLING				
Location	KOEKENAAP	_			
Date	20 JULY 2010	Test No	DPSH - WTG 18		
Job No	10174	Checked By	EB		

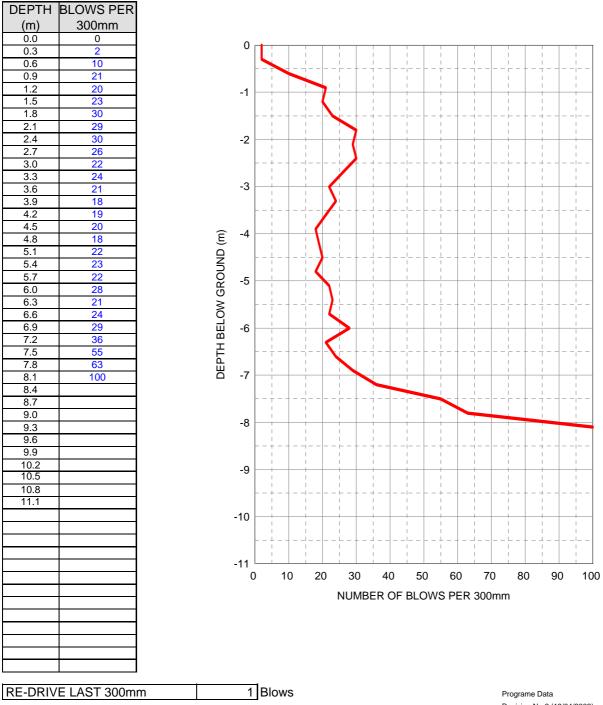
SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

DYNAMIC CONE PENETROMETER (DPSH)


Client	RWBE GEOTECHNICAL DRILLING				
Location	KOEKENAAP				
Date	20 JULY 2010	Test No	DPSH - WTG 19		
Job No	10174	Checked By	EB		

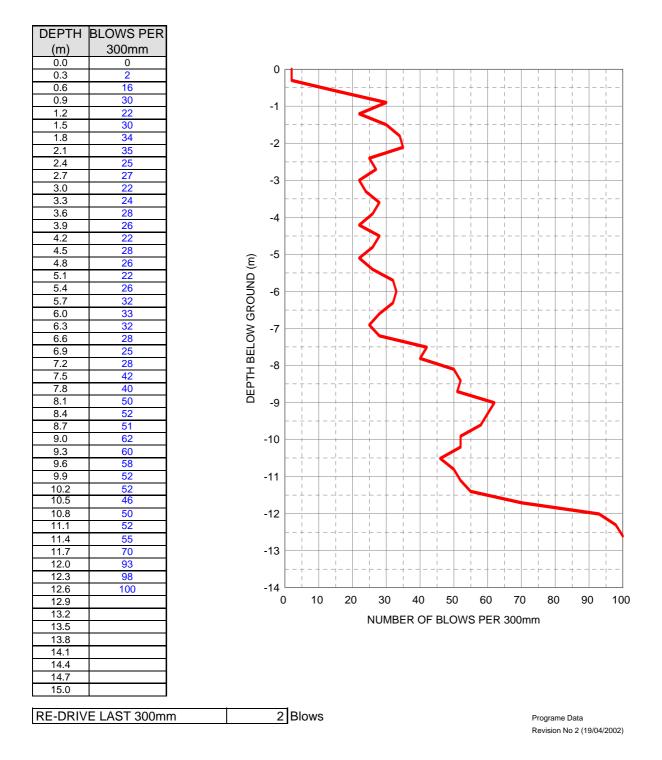
SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

DYNAMIC CONE PENETROMETER (DPSH)

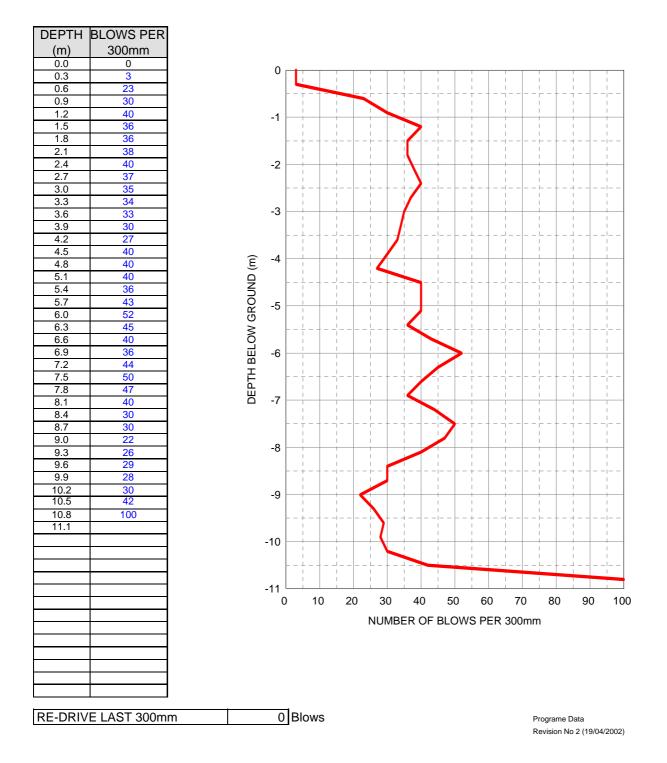

Client	RWBE GEOTECHNICAL DRILLING				
Location	KOEKENAAP				
Date	20 JULY 2010	Test No	DPSH - WTG 20		
Job No	10174	Checked By	EB		

NPRACTICA

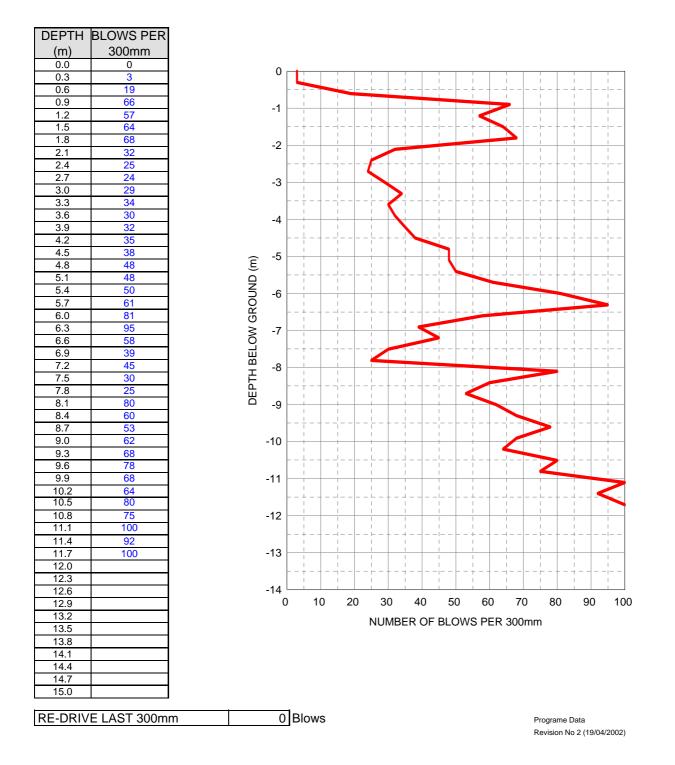
SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za


Client	RWBE GEOTECHNICAL DRILLING		
Location	KOEKENAAP		
Date	20 JULY 2010	Test No	DPSH - WTG 21
Job No	10174	Checked By	EB

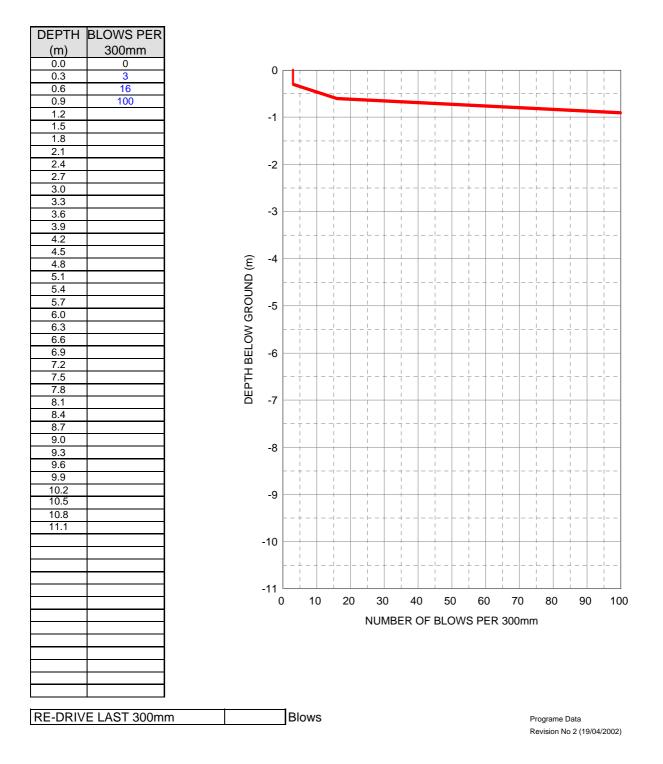
Revision No 2 (19/04/2002)


SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

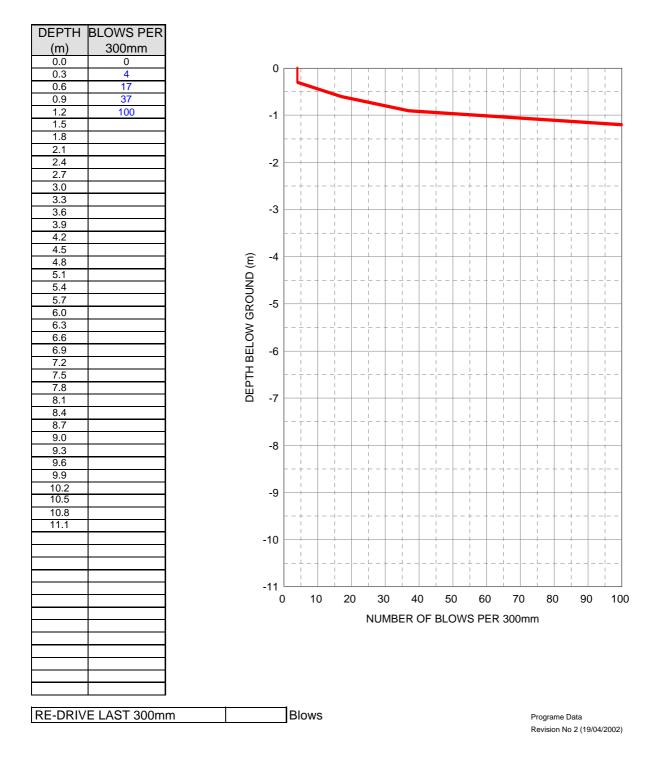
Client	RWBE GEOTECHNICAL ENGINEERS		
Location	KOEKENAAP	_	
Date	20 JULY 2010	Test No	DPSH - WTG 22
Job No	10174	Checked By	EB


SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

Client	RWBE GEOTECHNICAL DRILLING			
Location	KOEKENAAP			
Date	20 JULY 2010	Test No	DPSH - WTG 23	
Job No	10174	Checked By	EB	


SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

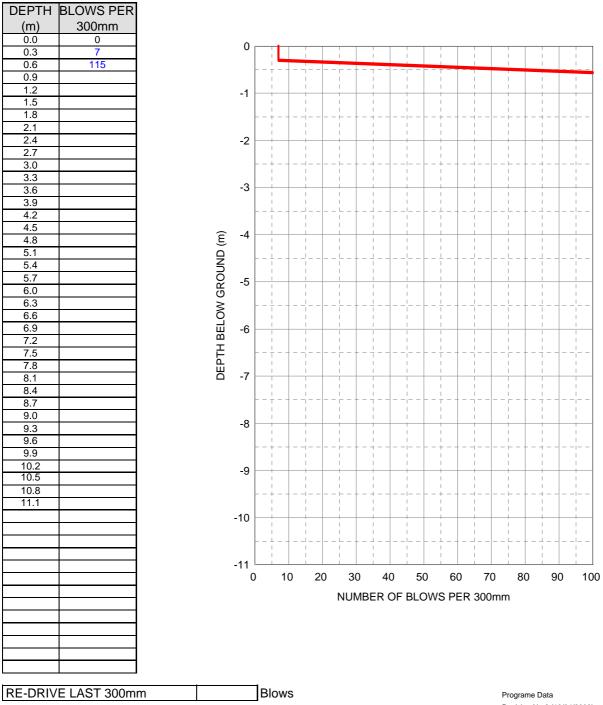
Client	RWBE GEOTECHNICAL ENGINEERS		
Location	KOEKENAAP		
Date	20 JULY 2010	Test No	DPSH - WTG 24
Job No	10174	Checked By	EB


SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

Client	RWBE GEOTECHNICAL DRILLING		
Location	KOEKENAAP		
Date	20 JULY 2010	Test No	DPSH - WTG 25
Job No	10174	Checked By	EB

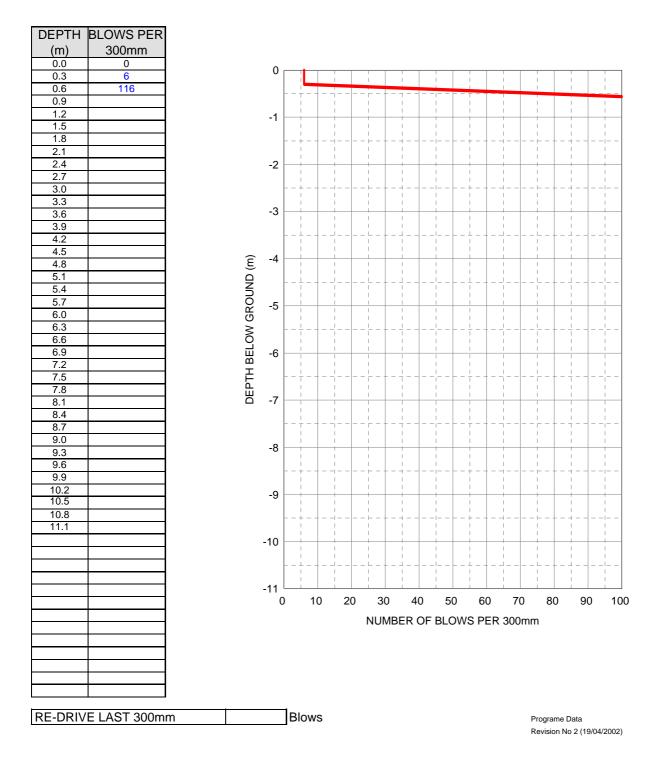
SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

Client	RWBE GEOTECHNICAL DRILLING		
Location	KOEKENAAP		
Date	20 JULY 2010	Test No	DPSH - WTG 26
Job No	10174	Checked By	EB



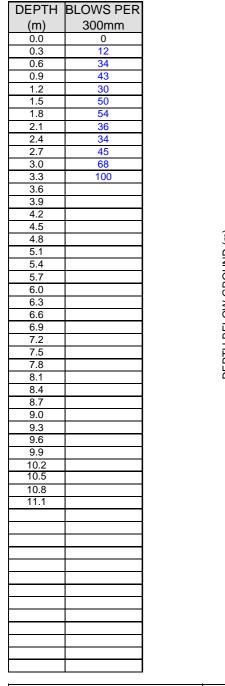
ПРПАСТІСА

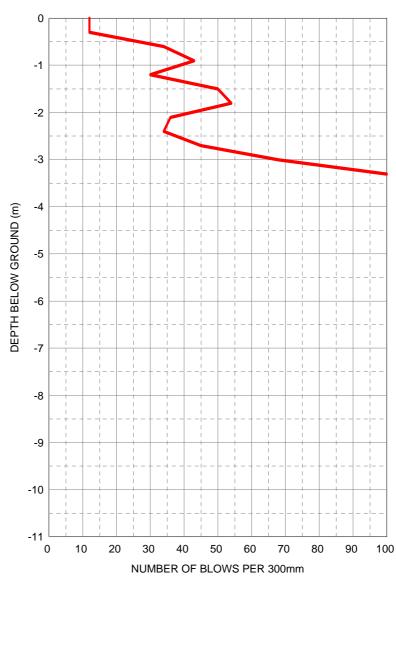
SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za


DYNAMIC CONE PENETROMETER (DPSH)

Client	RWBE GEOTECHNICAL DRILLING		
Location	KOEKENAAP		
Date	20 JULY 2010	Test No	DPSH - WTG 27 (A)
Job No	10174	Checked By	EB

SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

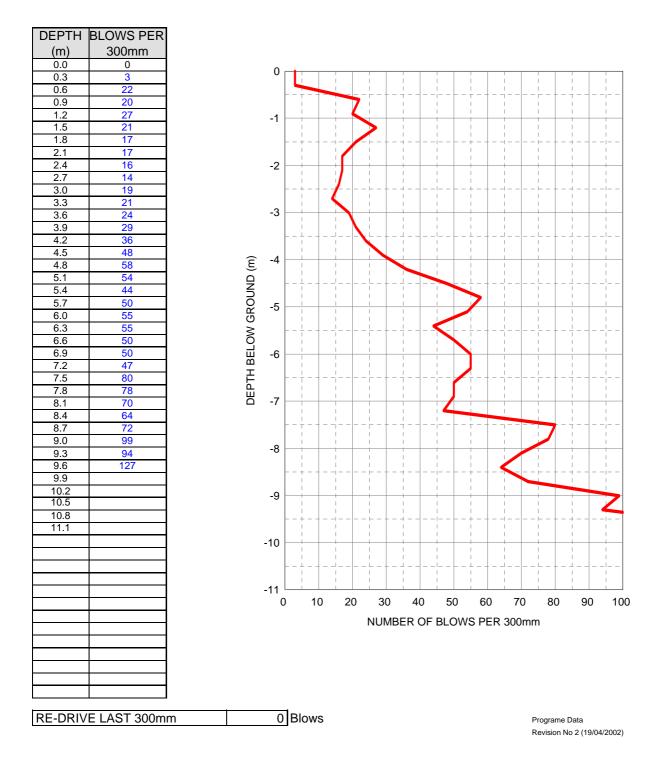

Client	RWBE GEOTECHNICAL DRILLING		
Location	KOEKENAAP		
Date	20 JULY 2010	Test No	DPSH - WTG 27 (B)
Job No	10174	Checked By	EB



SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

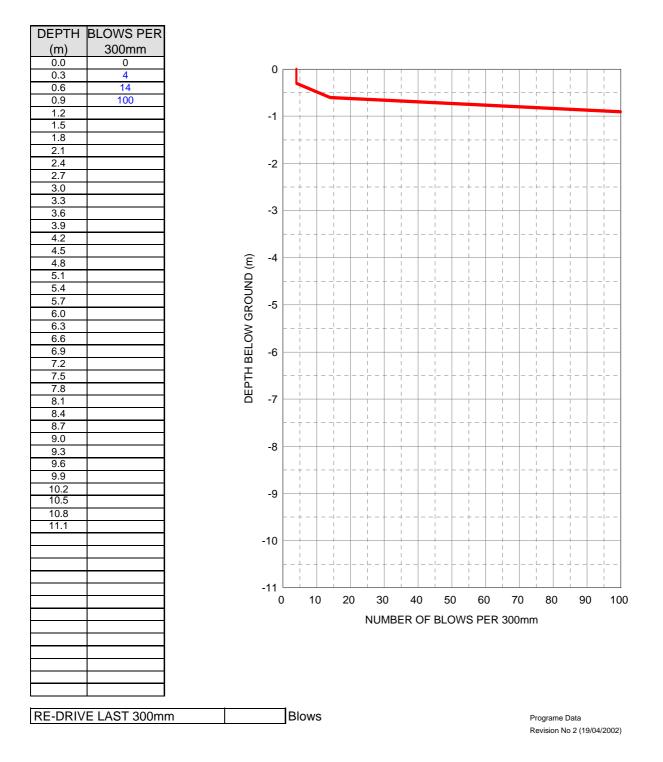
DYNAMIC CONE PENETROMETER (DPSH)

Client	RWBE GEOTECHNICAL DRILLING		
Location	KOEKENAAP		
Date	20 JULY 2010	Test No	DPSH - WTG 28
Job No	10174	Checked By	EB

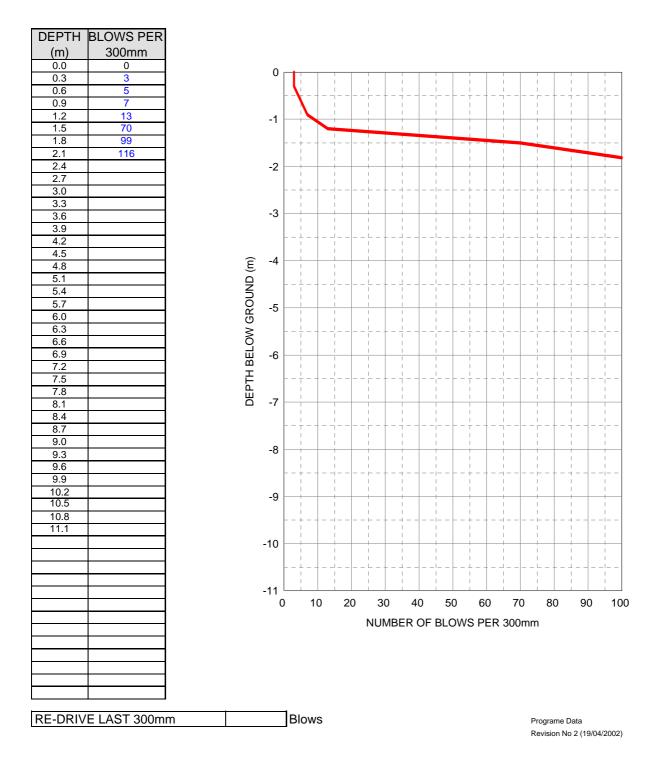

RE-DRIVE LAST 300mm

Blows

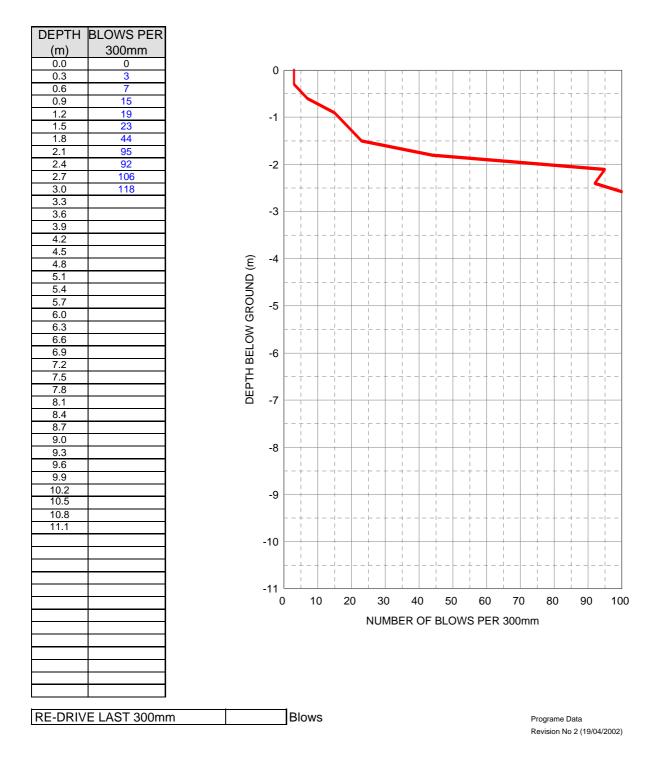
Programe Data Revision No 2 (19/04/2002)


SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

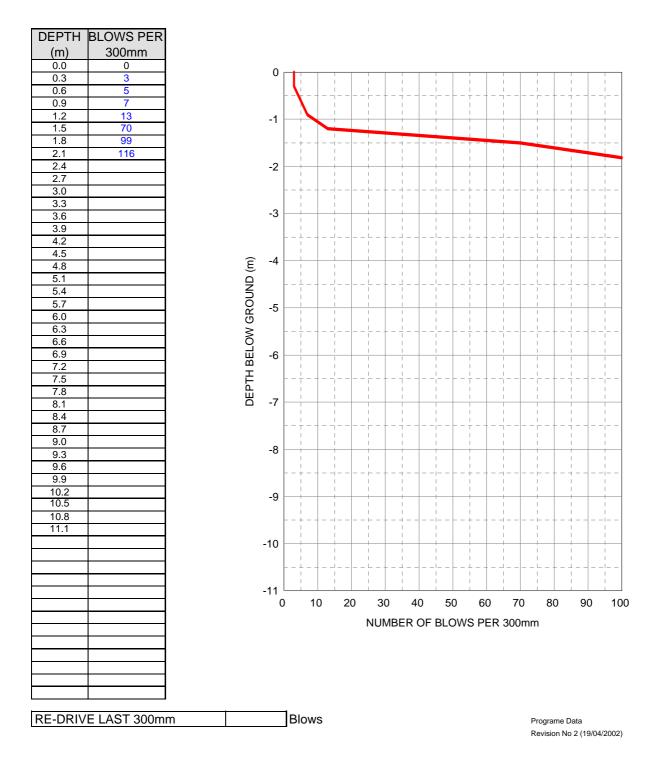
Client	RWBE GEOTECHNICAL DRILLING		
Location	KOEKENAAP		
Date	20 JULY 2010	Test No	DPSH - WTG 29
Job No	10174	Checked By	EB


SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

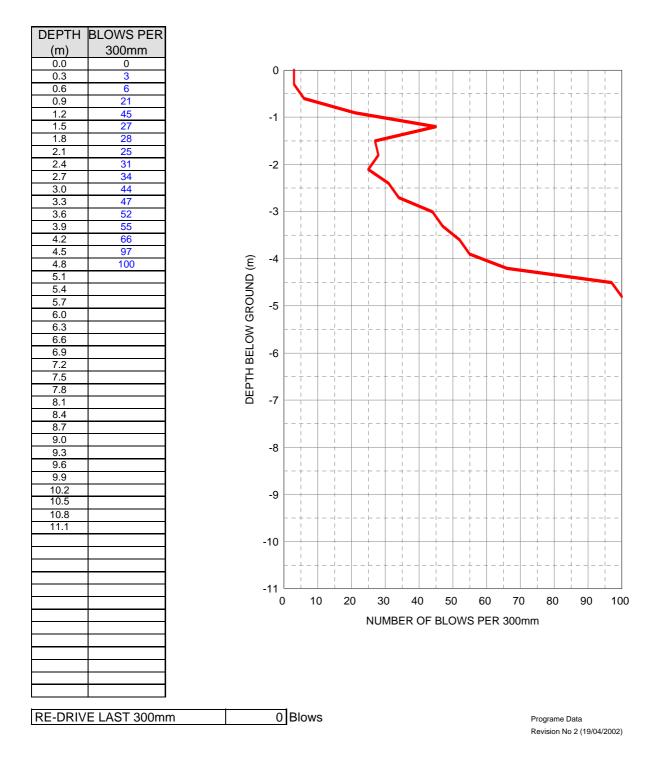
Client	RWBE GEOTECHNICAL DRILLING		
Location	KOEKENAAP		
Date	20 JULY 2010	Test No	DPSH - WTG 30
Job No	10174	Checked By	EB


SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

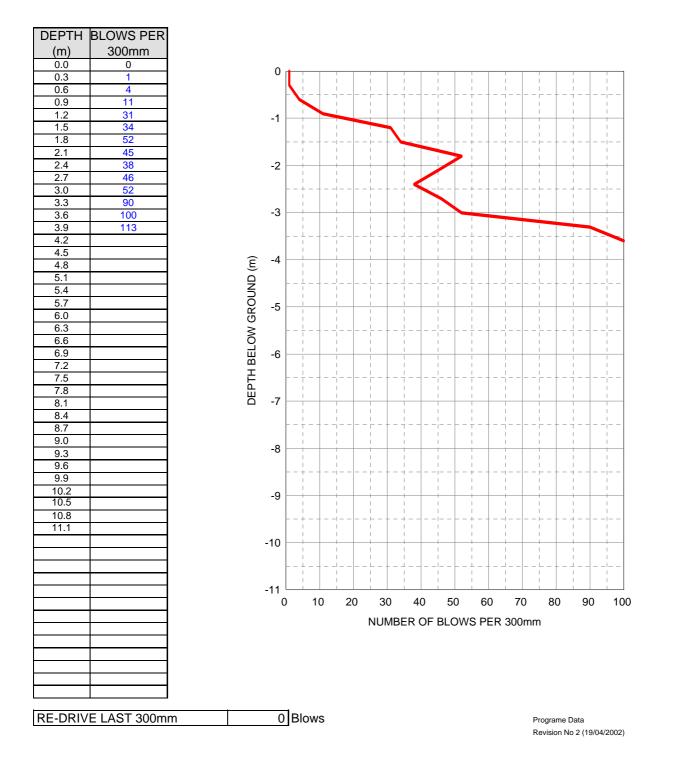
Client	RWBE GEOTECHNICAL DRILLING		
Location	KOEKENAAP		
Date	20 JULY 2010	Test No	DPSH - WTG 31 (A)
Job No	10174	Checked By	EB


SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

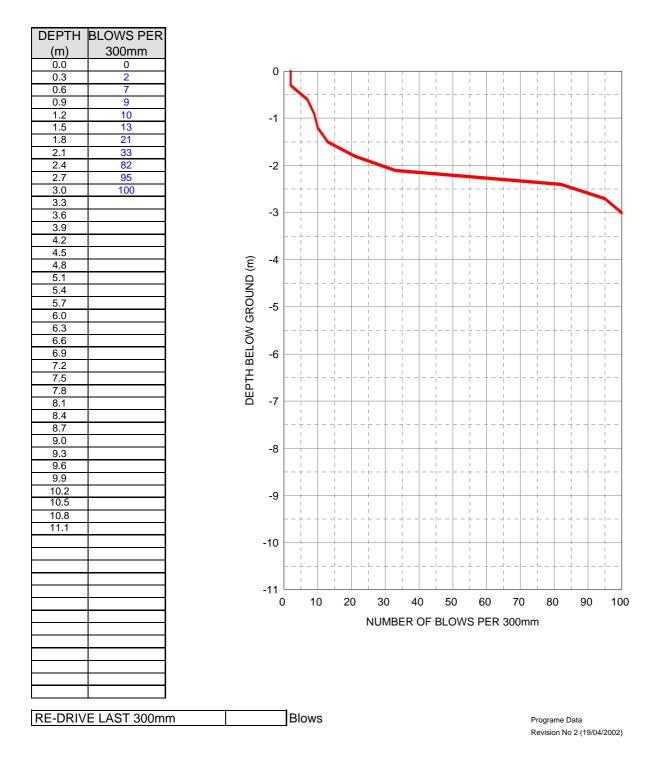
Client	RWBE GEOTECHNICAL DRILLING		
Location	KOEKENAAP		
Date	20 JULY 2010	Test No	DPSH - WTG 31 (B)
Job No	10174	Checked By	EB


SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

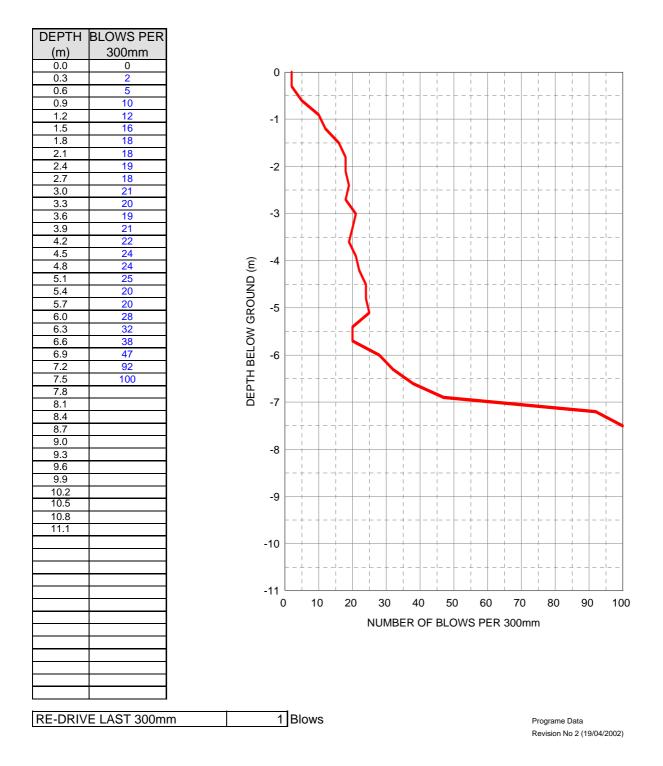
Client	RWBE GEOTECHNICAL DRILLING		
Location	KOEKENAAP		
Date	20 JULY 2010	Test No	DPSH - WTG 31 (A)
Job No	10174	Checked By	EB


SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

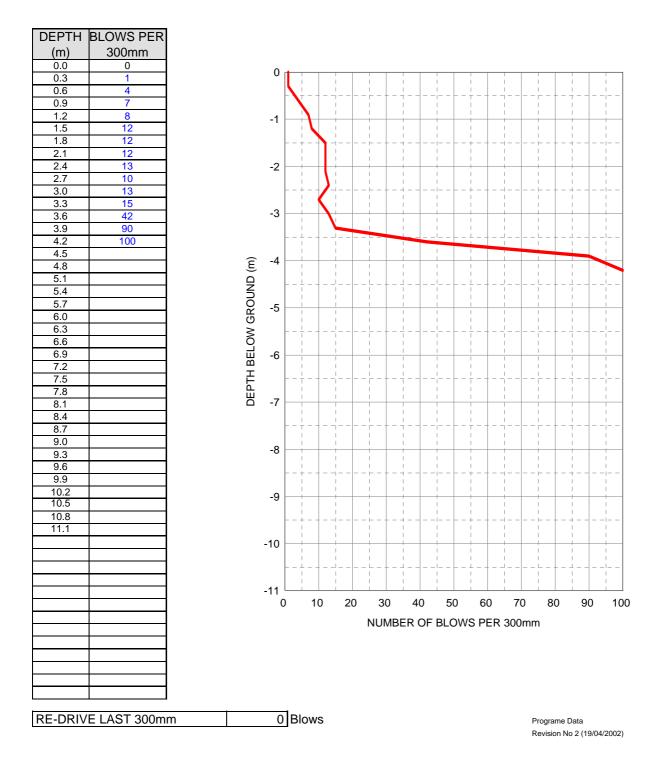
Client	RWBE GEOTECHNICAL DRILLING		
Location	KOEKENAAP		
Date	20 JULY 2010	Test No	DPSH - WTG 32
Job No	10174	Checked By	EB


SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

Client	RWBE GEOTECHNICAL DRILLING		
Location	KOEKENAAP		
Date	20 JULY 2010	Test No	DPSH - WTG 33
Job No	10174	Checked By	EB

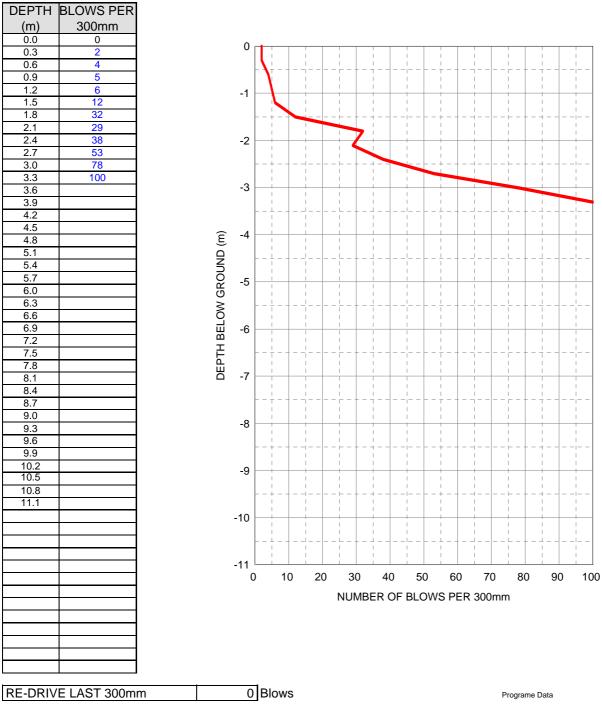

SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

Client	RWBE GEOTECHNICAL DRILLING		
Location	KOEKENAAP		
Date	20 JULY 2010	Test No	DPSH - WTG 34
Job No	10174	Checked By	EB

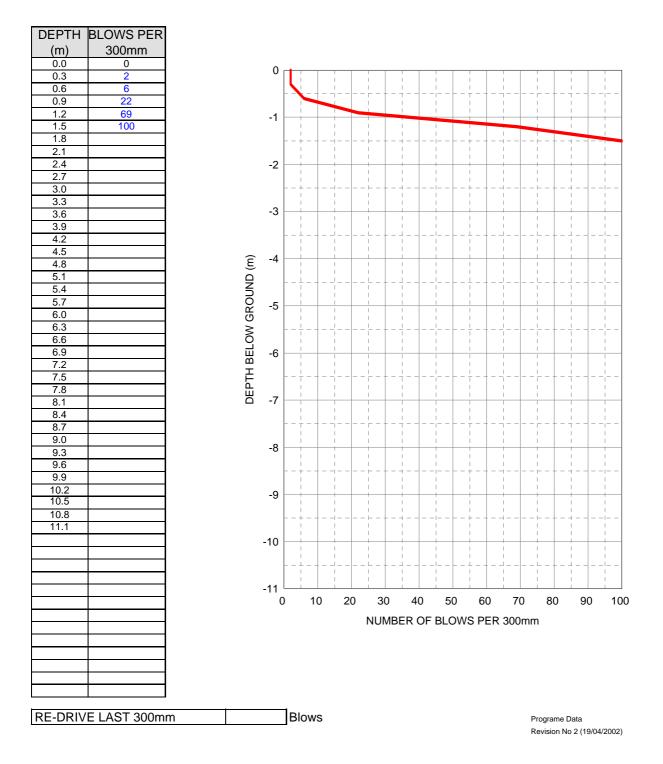

SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

Client	RWBE GEOTECHNICAL DRILLING		
Location	KOEKENAAP		
Date	20 JULY 2010	Test No	DPSH - WTG 35
Job No	10174	Checked By	EB

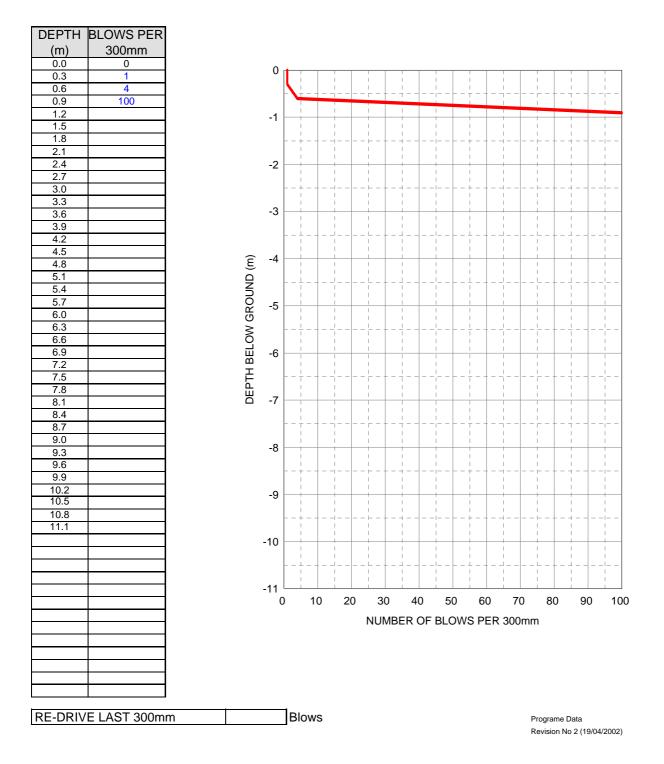
SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za


Client	RWBE GEOTECHNICAL DRILLING		
Location	KOEKENAAP		
Date	20 JULY 2010	Test No	DPSH - WTG 36
Job No	10174	Checked By	EB

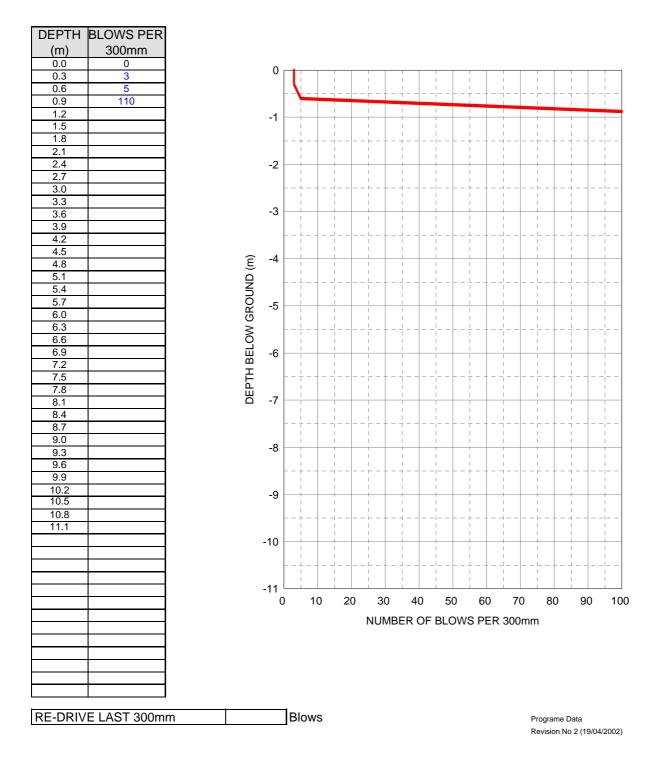
SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za


DYNAMIC CONE PENETROMETER (DPSH)

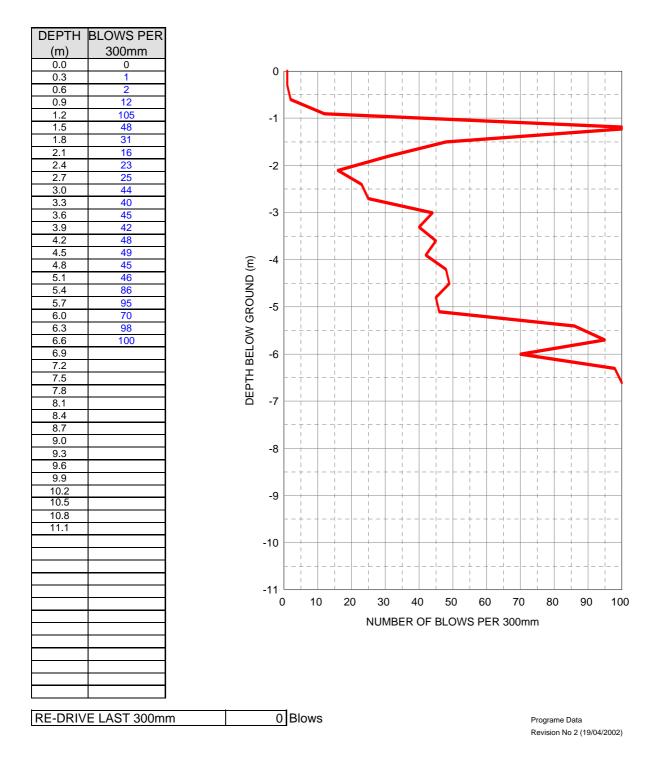
Client	RWBE GEOTECHNICAL DRILLING		
Location	KOEKENAAP		
Date	20 JULY 2010	Test No	DPSH - WTG 37
Job No	10174	Checked By	EB


SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

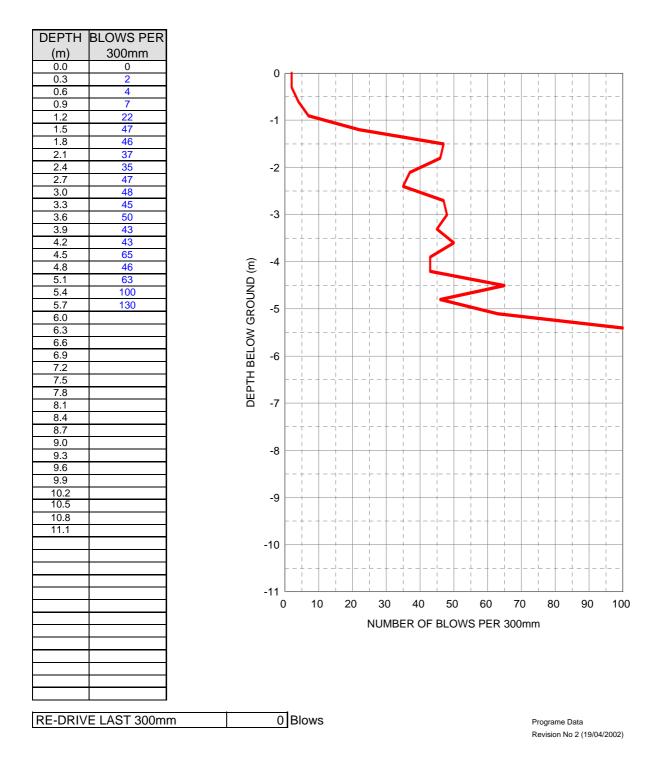
Client	RWBE GEOTECHNICAL DRILLING		
Location	KOEKENAAP		
Date	20 JULY 2010	Test No	DPSH - WTG 38
Job No	10174	Checked By	EB


SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

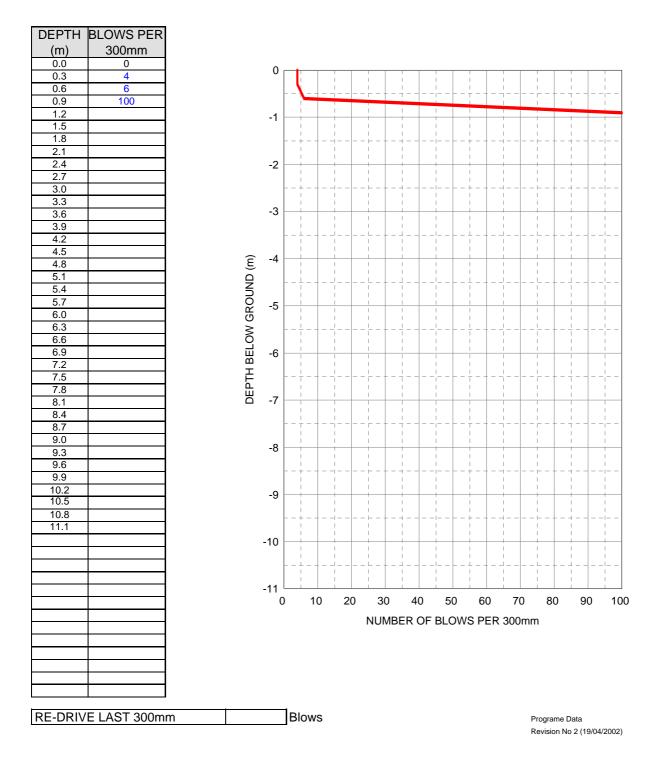
Client	RWBE GEOTECHNICAL DRILLING		
Location	KOEKENAAP		
Date	20 JULY 2010	Test No	DPSH - WTG 39 (A)
Job No	10174	Checked By	EB


SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

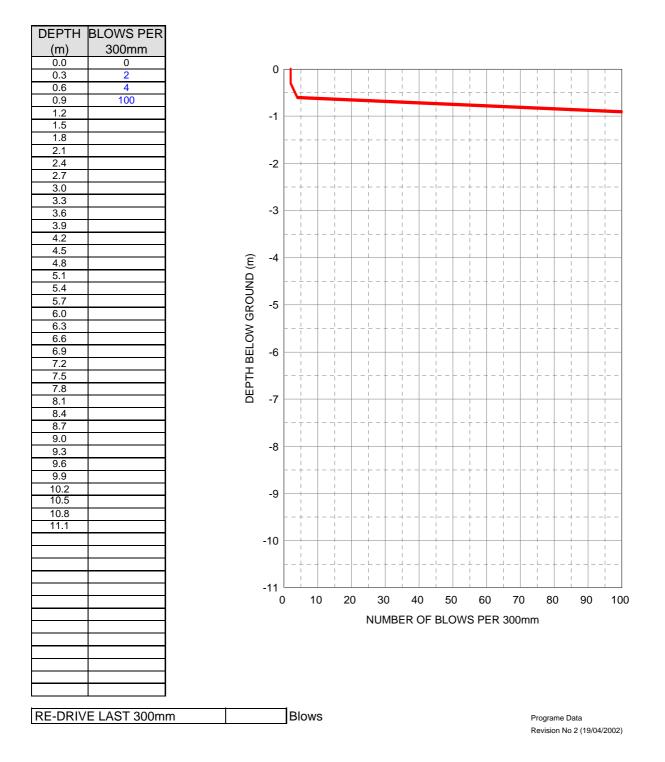
Client	RWBE GEOTECHNICAL DRILLING		
Location	KOEKENAAP		
Date	20 JULY 2010	Test No	DPSH - WTG 39 (B)
Job No	10174	Checked By	EB


SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

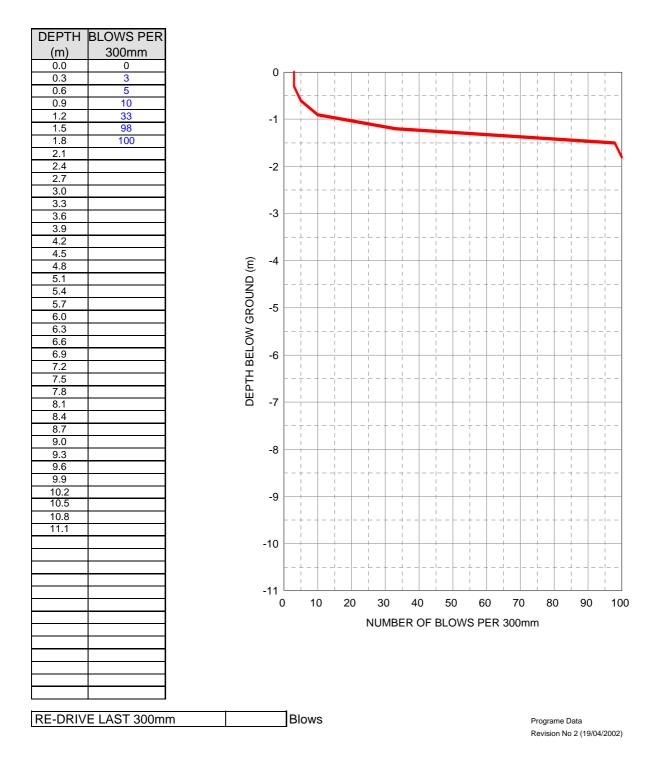
Client	RWBE GEOTECHNICAL DRILLING		
Location	KOEKENAAP		
Date	20 JULY 2010	Test No	DPSH - WTG 40
Job No	10174	Checked By	EB


SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

Client	RWBE GEOTECHNICAL DRILLING		
Location	KOEKENAAP		
Date	20 JULY 2010	Test No	DPSH - WTG 41
Job No	10174	Checked By	EB

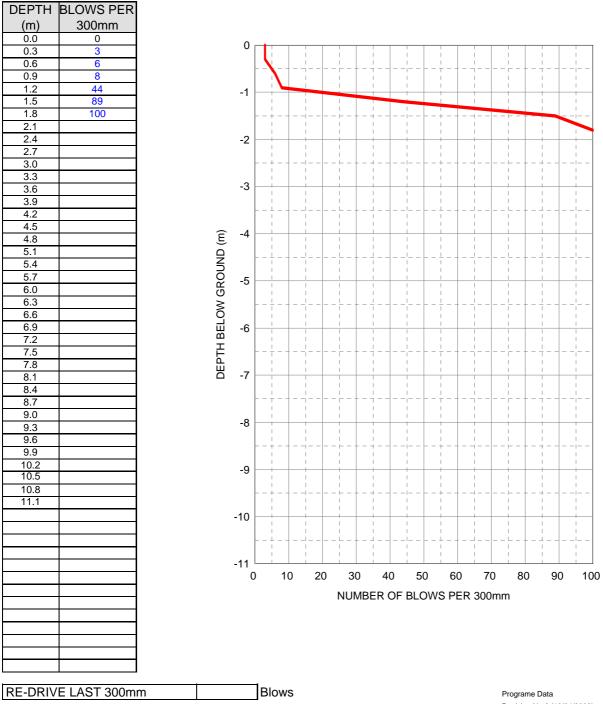

SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

Client	RWBE GEOTECHNICAL DRILLING		
Location	KOEKENAAP		
Date	20 JULY 2010	Test No	DPSH - WTG 42 (A)
Job No	10174	Checked By	EB


SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

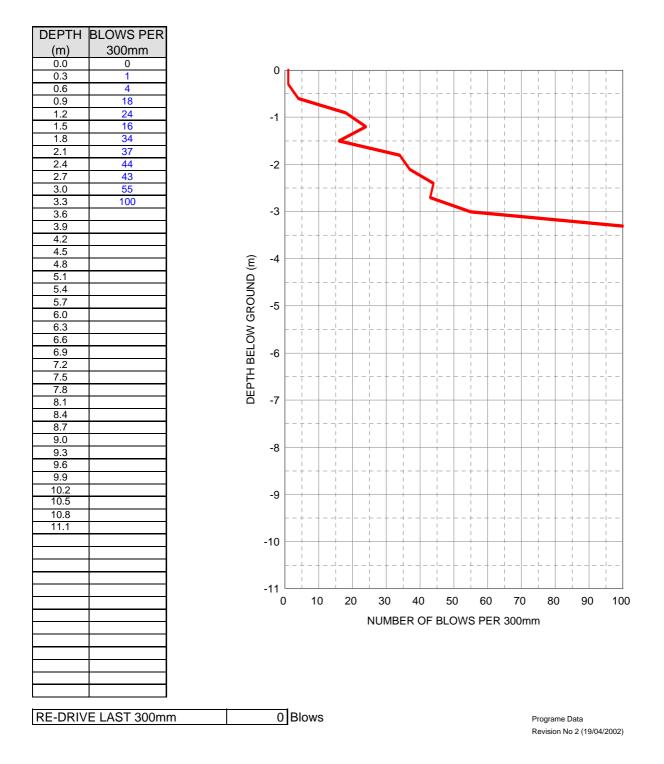
Client	RWBE GEOTECHNICAL DRILLING		
Location	KOEKENAAP		
Date	20 JULY 2010	Test No	DPSH - WTG 42 (B)
Job No	10174	Checked By	EB

SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

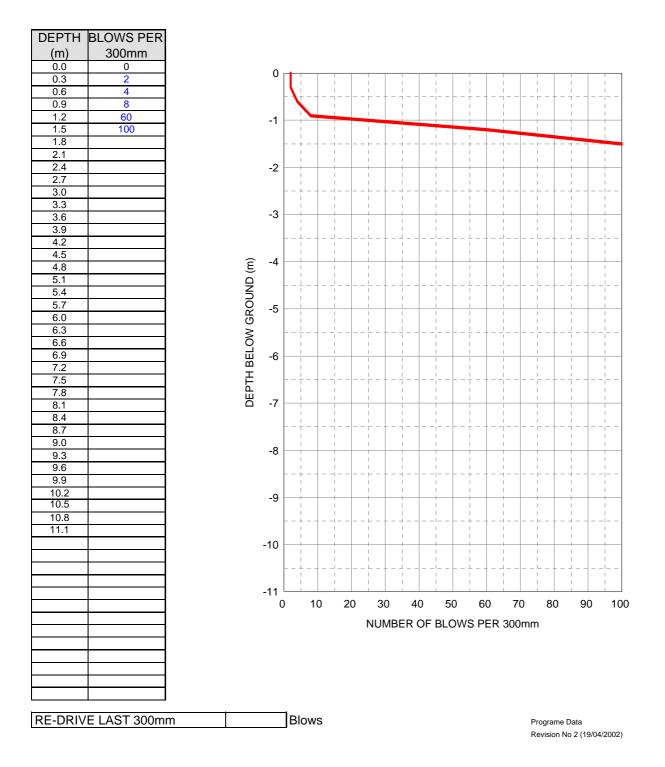

Client	RWBE GEOTECHNICAL I	RWBE GEOTECHNICAL DRILLING		
Location	KOEKENAAP	KOEKENAAP		
Date	20 JULY 2010	Test No	DPSH - WTG 43 (A)	
Job No	10174	Checked By	EB	

ПРПАСТІСА

SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

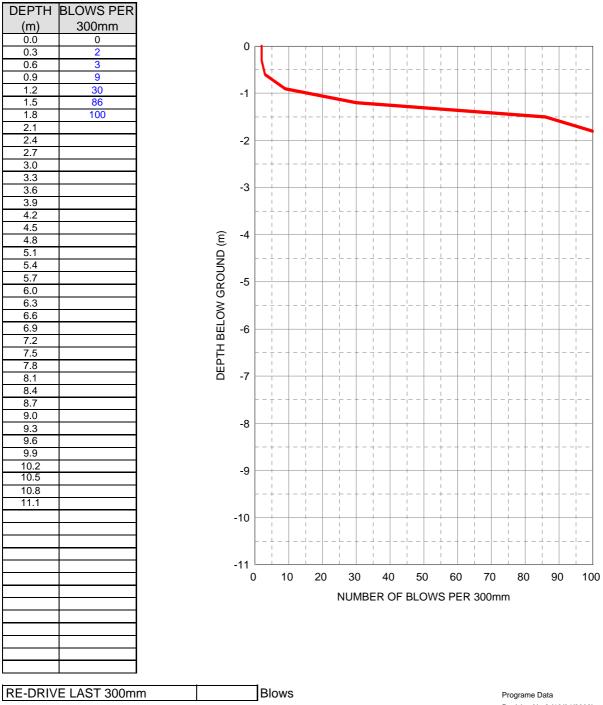

Client	RWBE GEOTECHNICAL DRILLING				
Location	KOEKENAAP				
Date	20 JULY 2010 Test No DPSH - WTG 43 (B)				
Job No	10174	Checked By	EB		

Revision No 2 (19/04/2002)


SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

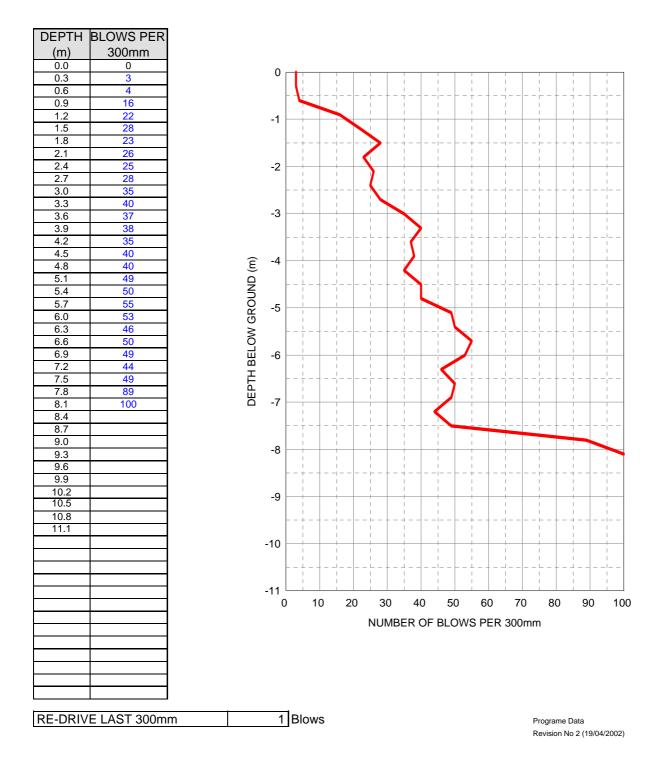
Client	RWBE GEOTECHNICAL DRILLING				
Location	KOEKENAAP				
Date	20 JULY 2010 Test No DPSH - WTG 44				
Job No	10174	Checked By	EB		

SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za


Client	RWBE GEOTECHNICAL DRILLING			
Location	KOEKENAAP			
Date	20 JULY 2010	Test No	DPSH - WTG 45 (A)	
Job No	10174	Checked By	EB	

ПРПАСТІСА

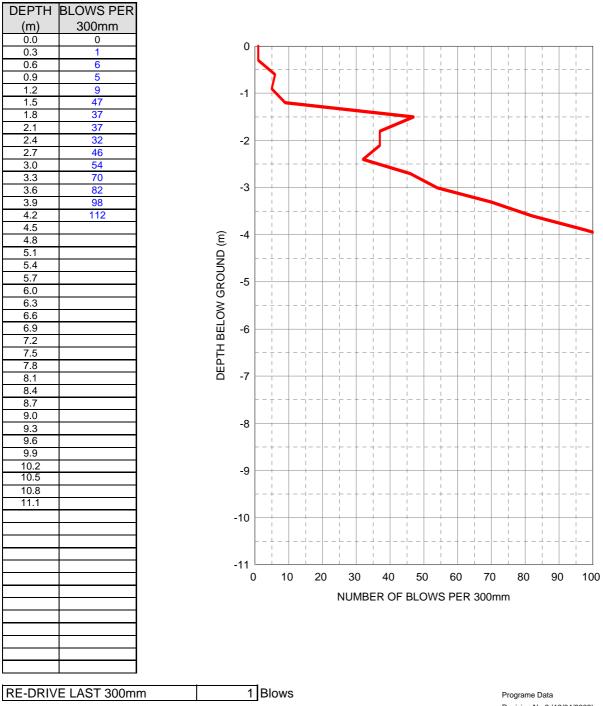
SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za


Client	RWBE GEOTECHNICAL DRILLING				
Location	KOEKENAAP				
Date	20 JULY 2010	Test No	DPSH - WTG 45 (B)		
Job No	10174	Checked By	EB		

Revision No 2 (19/04/2002)

SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

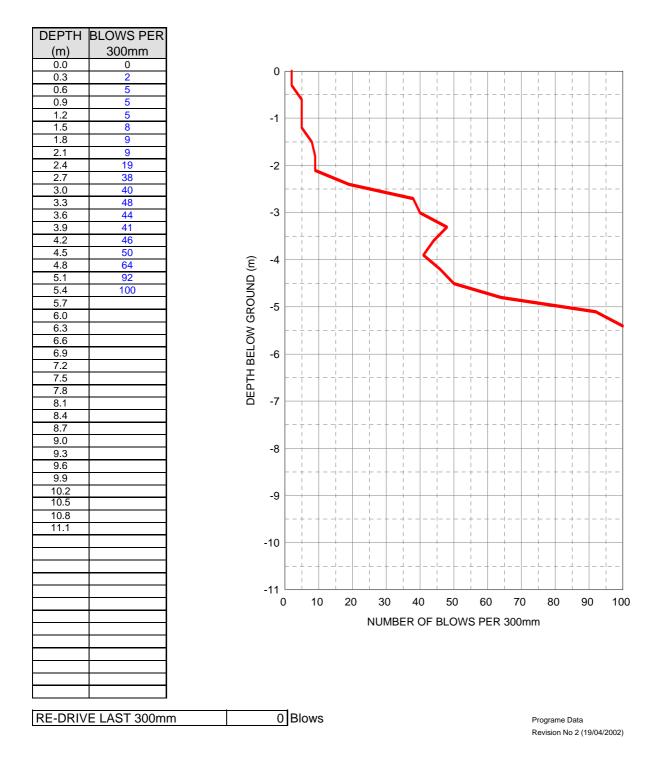
Client	RWBE GEOTECHNICAL DRILLING			
Location	KOEKENAAP			
Date	20 JULY 2010	Test No	DPSH - WTG 46	
Job No	10174	Checked By	EB	



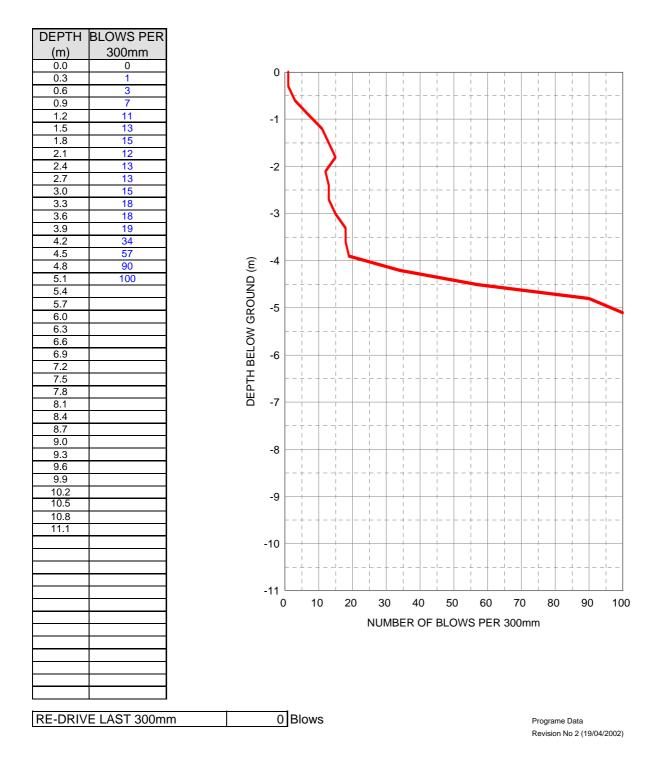
прадстіса

SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

DYNAMIC CONE PENETROMETER (DPSH)


Client	RWBE GEOTECHNICAL DRILLING				
Location	KOEKENAAP				
Date	20 JULY 2010 Test No DPSH - WTG 47				
Job No	10174	Checked By	EB		

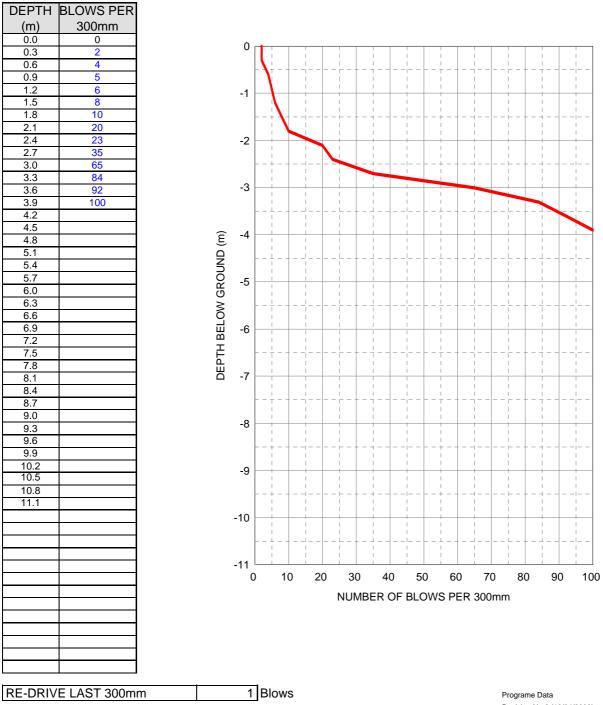
Revision No 2 (19/04/2002)


SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

Client	RWBE GEOTECHNICAL DRILLING				
Location	KOEKENAAP				
Date	20 JULY 2010 Test No DPSH 48				
Job No	10174	Checked By	EB		

SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

Client	RWBE GEOTECHNICAL DRILLING			
Location	KOEKENAAP			
Date	20 JULY 2010	Test No	DPSH - WTG 49	
Job No	10174	Checked By	EB	



прадстіса

SOILS & MATERIALS TESTING P.O.BOX 227, MARAISBURG, 1700 TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

DYNAMIC CONE PENETROMETER (DPSH)

Client	RWBE GEOTECHNICAL DRILLING			
Location	KOEKENAAP			
Date	20 JULY 2010	Test No	DPSH - WTG 50	
Job No	10174	Checked By	EB	

Revision No 2 (19/04/2002)

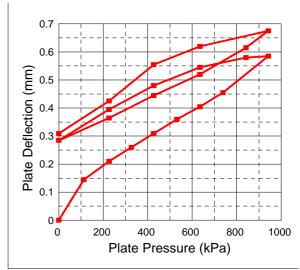
APPENDIX G: PLATE LOAD TEST RESULTS

P.O.BOX 227, MARAISBURG, 1700

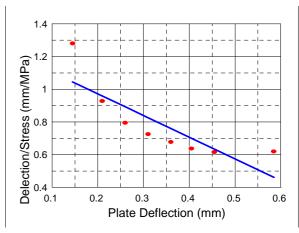
TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

PLATE JACKING TEST - VERTICAL

Client	RWBE			
Location	Koekenaaps Site	PLT. WTG 4a (2.1m)		
Date	4th August 2010		Test No	9A
Job No	10174		Checked By	CD


Direction of Test	Vertical F		Plate Diameter (mm)		450.00	
Jack Number	490		Ram Diameter (mm)		65.00	
Gauge No:	80MPa Calibration Cert No. 2		2178	Calibration	Date	2 sept 2010

Direct Readings & Analysis


Gauge	Ram	Plate	Plate	Incremental	Average
Pressure	Load	Stress	DefIn	Value of E	Value of E
(MPa)	(kN)	(kPa)	(mm)	(MPa)	(MPa)
0	0.0	0	0.00	0.00	0
5	18.0	113	0.15	258.62	258.62
10	36.0	226	0.21	576.92	357.14
15	52.0	327	0.26	666.67	416.67
20	68.0	428	0.31	666.67	456.99
25	84.5	531	0.36	687.50	489.00
30	101.0	635	0.41	763.89	519.55
35	117.5	739	0.46	687.50	538.00
45	150.0	943	0.59	520.83	534.19
40	134.0	843	0.58		
30	101.0	635	0.55		
20	68.0	428	0.48		
10	36.0	226	0.40		
0	0.0	0	0.29		
10	36.0	226	0.37		
20	68.0	428	0.45		
30	101.0	635	0.52		
40	134.0	843	0.62		
45	150.0	943	0.68		
30	101.0	635	0.62		
20	68.0	428	0.56		
10	36.0	226	0.43		
0	0.0	0	0.31		
	0.0	0			
	0.0	0			
	0.0	0			
	0.0	0			
	0.0	0			
	0.0	0			
	0.0	0			
	0.0	0			
	0.0	0			
	0.0	0			
	0.0	0			
		-			
	0.0	0			

Hyperbolic Transformation value of E (MPa) 172.68

Graphical Representation of Stress/Strain

Hyperbolic Representation

Programe Data Revision No 3 (30/08/2010)

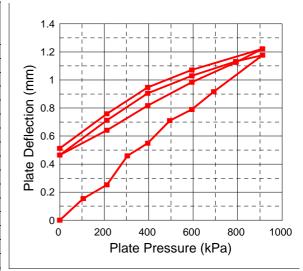
TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

P.O.BOX 227, MARAISBURG, 1700

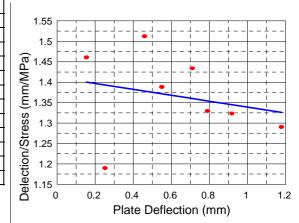
PLATE JACKING TEST - HORIZONTAL

Client	RWBE			
Location	Koekenaaps Site PLT.	WTG 4b (2.5m)		
Date	5th August 2010		Test No	10A
Job No	10174		Checked By	CD

Direction of Test	Horizontal		Plate Diameter (mm)		300.00	
Jack Number	C106		Ram Diameter (mm)		42.82	
Gauge No:	80MPa	Calibration Cert No.	2177	Calibration	Date	2 sept 2010


Direct Readings & Analysis

Gauge	Ram	Plate	Plate	Incremental	Average
Pressure	Load	Stress	Defln	Value of E	Value of E
(MPa)	(kN)	(kPa)	(mm)	(MPa)	(MPa)
0	0.0	0	0.00	0.00	0
5	7.5	106	0.16	151.21	151.21
10	15.0	212	0.25	240.38	185.64
15	21.5	304	0.46	97.89	146.06
20	28.0	396	0.55	225.69	159.09
25	35.0	495	0.71	136.72	154.05
30	42.0	594	0.79	273.44	166.14
35	49.0	693	0.92	171.57	166.89
45	64.5	912	1.18	186.30	171.18
40	56.0	792	1.13		
30	42.0	594	1.03		
20	28.0	396	0.91		
10	15.0	212	0.71		
0	0.0	0	0.47		
10	15.0	212	0.64		
20	28.0	396	0.82		
30	42.0	594	0.99		
40	56.0	792	1.13		
45	64.5	912	1.22		
30	42.0	594	1.07		
20	28.0	396	0.95		
10	15.0	212	0.76		
0	0.0	0	0.51		
	0.0	0			
	0.0	0			
	0.0	0			
	0.0	0			
	0.0	0			
	0.0	0			
	0.0	0			
	0.0	0			
	0.0	0			
	0.0	0			
	0.0	0			
	0.0	0			
ļ	0.0		ł	ł	L


100.96

Hyperbolic Transformation value of E (MPa)

Graphical Representation of Stress/Strain

Hyperbolic Representation

Programe Data Revision No 3 (30/08/2010)