THE PROPOSED ROAN 1 PV FACILITY AND ASSOCIATED INFRASTRUCTURE, NORTH WEST PROVINCE, SOUTH AFRICA

Visual Impact Assessment Report

Draft v_2 (Pending I&AP Comment)

DATE: February 2022

Document prepared for Cape EAPrac (Pty) Ltd On behalf of AMDA Mike (Pty) Ltd

Visual Resource Management Africa cc P O Box 7233, George, 6531 Cell: +27 (83) 560 9911 E-Mail: steve@vrma.co.za

Web: www.vrma.co.za

TABLE OF CONTENTS

1	INTRODUCTION	8
1.1	TERMS OF REFERENCE	
1.2	STUDY TEAM	
1.3	VISUAL ASSESSMENT APPROACH	
1.4	ASSUMPTIONS AND UNCERTAINTIES	11
2	PROJECT DESCRIPTION	12
3	LEGAL FRAMEWORK	17
3.1	INTERNATIONAL GOOD PRACTICE	
0	3.1.1 Guidelines for Landscape and Visual Impact Assessment, Second Edition.	
	3.1.2 International Finance Corporation (IFC)	17
	3.1.2 International Finance Corporation (IFC)	18
3.2	NATIONAL AND REGIONAL LEGISLATION AND POLICIES	19
	3.2.1 DEA&DP Visual and Aesthetic Guidelines	20
	3.2.2 REDZ Planning	20
0.0	3.2.3 Local and Regional Planning	21
3.3	POLICY FIT	22
4	METHODOLOGY	
4.1	BASELINE ANALYSIS STAGE	23
	4.1.1 Scenic Quality	23
	4.1.2 Receptor Sensitivity	23
	4.1.4 Visual Resource Management Classes	
4.2	4.1.5 Key Observation Points	
4.2	4.2.1 Contrast Rating	
	4.2.2 Photomontages	
4.3	IMPACT METHODOLOGY	
5	BASELINE VISUAL INVENTORY ASSESSMENT	
5 .1	SITE INVESTIGATION	
5.2	LANDSCAPE CONTEXT	
0.2	5.2.1 Regional Locality	
	5.2.2 Vegetation	
	5.2.3 Mountain and Hill Features	
	5.2.4 Infrastructure, Mining and Road Access	
	5.2.5 Other Renewable Energy Projects	
	5.2.6 Nature and Tourism Activities	
5.3		
	5.3.1 Regional Landscape Topography	
5.4	RECEPTORS AND KEY OBSERVATION POINTS	
6	VISUAL RESOURCE MANAGEMENT	
6.1 6.2	PHYSIOGRAPHIC RATING UNITS	
6.3	SCENIC QUALITY ASSESSMENTRECEPTOR SENSITIVITY ASSESSMENT	
6.4	VISUAL RESOURCE MANAGEMENT (VRM) CLASSES	
U. T	6.4.1 Class I	
	6.4.2 VRM Class II	
	6.4.3 VRM Class III	
	6.4.4 VRM Class IV	

7		UAL IMPACT ASSESSMENT	
7.1		CONTRAST RATING AND PHOTOMONTAGES	
7.2	R	OAN 1 PV PROJECT IMPACT RATINGS AND MOTIVATION	55
8	PR	ELIMINARY ENVIRONMENTAL MANAGEMENT PLAN	60
8.1		V Project	60
	8.1.1	Construction Phase	
	8.1.2	Operation Phase	
	8.1.3	Decommissioning Phase	61
9	PR	ELIMINARY OPPORTUNITIES AND CONSTRAINTS	61
9.1		OAN 1 PV PROJECT	
	9.1.1	Opportunities	61
	9.1.2		
9.2		OAN 1 GRID CONNECT	
	9.2.1	Opportunities	61
0 0	9.2.2	Constraints	62
9.3	9.3.1	IO-GO OPTION	62
	9.3.1	Opportunities	62
		Ourst direction and a second s	02
10	CO	NCLUSION (PENDING SCOPING INPUTS)	62
11	BIE	BLIOGRAPHY	63
12		NEXURE A: SITE VISIT PHOTOGRAPHS AND COMMENTS	
13		NEXURE B: SPECIALIST INFORMATION	
13.1		PROFESSIONAL REGISTRATION CERTIFICATE	
13.2		CURRICULUM VITAE (CV)	
		ONNIOOEOW VII/NE (OV)	\circ
_			
14	AN	NEXURE C: VRM CHECKLISTS AND TERMINOLOGY	
_			92
14		NEXURE C: VRM CHECKLISTS AND TERMINOLOGY NEXURE D: GENERAL LIGHTS AT NIGHT MITIGATIONS	92
14		NEXURE C: VRM CHECKLISTS AND TERMINOLOGY	92
14 15	AN	NEXURE C: VRM CHECKLISTS AND TERMINOLOGY NEXURE D: GENERAL LIGHTS AT NIGHT MITIGATIONS	92 94
14 15	AN RE 1. NA	NEXURE C: VRM CHECKLISTS AND TERMINOLOGY NEXURE D: GENERAL LIGHTS AT NIGHT MITIGATIONS TABLE OF FIGURES TIONAL LOCALITY MAP WITH THE PROJECT LOCATION IDENTIFIED	92 94 9
14 15 FIGU	AN RE 1. NA RE 2: PH	NEXURE C: VRM CHECKLISTS AND TERMINOLOGY NEXURE D: GENERAL LIGHTS AT NIGHT MITIGATIONS TABLE OF FIGURES TIONAL LOCALITY MAP WITH THE PROJECT LOCATION IDENTIFIED	92 94 9
14 15 FIGU FIGU	RE 1. NA RE 2: PH RE 3: PH	NEXURE C: VRM CHECKLISTS AND TERMINOLOGY NEXURE D: GENERAL LIGHTS AT NIGHT MITIGATIONS TABLE OF FIGURES TIONAL LOCALITY MAP WITH THE PROJECT LOCATION IDENTIFIED	92 94 9 .13 .13
14 15 FIGU FIGU	RE 1. NA RE 2: PH RE 3: PH RE 5: PR	NEXURE C: VRM CHECKLISTS AND TERMINOLOGY NEXURE D: GENERAL LIGHTS AT NIGHT MITIGATIONS TABLE OF FIGURES TIONAL LOCALITY MAP WITH THE PROJECT LOCATION IDENTIFIED	92 94 9 .13
14 15 FIGU FIGU FIGU	RE 1. NA RE 2: PH RE 3: PH RE 5: PR CARE OI RE 6: PR	NEXURE C: VRM CHECKLISTS AND TERMINOLOGY	92 94 9 .13 .13
14 15 FIGU FIGU FIGU	RE 1. NA RE 2: PH RE 3: PH RE 5: PR CARE OI RE 6: PR CARE OI	NEXURE C: VRM CHECKLISTS AND TERMINOLOGY	92 94 9 .13 .13
14 15 FIGU FIGU FIGU	RE 1. NA RE 2: PH RE 3: PH RE 5: PR CARE OI RE 6: PR CARE OI RE 7: CC	NEXURE C: VRM CHECKLISTS AND TERMINOLOGY	92 94 9 .13 .13 .14
14 15 FIGU FIGU FIGU FIGU	RE 1. NA RE 2: PH RE 3: PH RE 5: PR CARE OI RE 6: PR CARE OI RE 7: CC WITH TH	NEXURE C: VRM CHECKLISTS AND TERMINOLOGY NEXURE D: GENERAL LIGHTS AT NIGHT MITIGATIONS TABLE OF FIGURES TIONAL LOCALITY MAP WITH THE PROJECT LOCATION IDENTIFIED	92 94 9 .13 .13 .14 .15
14 15 FIGU FIGU FIGU FIGU	RE 1. NA RE 2: PH RE 3: PH RE 5: PR CARE OI RE 6: PR CARE OI RE 7: CC WITH TH RE 8. PL	NEXURE C: VRM CHECKLISTS AND TERMINOLOGY	92 94 9 . 13 . 13 . 14 15
14 15 FIGU FIGU FIGU FIGU FIGU	RE 1. NA RE 2: PH RE 3: PH RE 5: PR CARE OI RE 6: PR CARE OI RE 7: CO WITH TH RE 8. PL REDZ	NEXURE C: VRM CHECKLISTS AND TERMINOLOGY NEXURE D: GENERAL LIGHTS AT NIGHT MITIGATIONS TABLE OF FIGURES TIONAL LOCALITY MAP WITH THE PROJECT LOCATION IDENTIFIED	92 94 9 .13 .13 .14 .15 .16 ORP .20
14 15 FIGU FIGU FIGU FIGU FIGU FIGU	RE 1. NA RE 2: PH RE 3: PH RE 5: PR CARE OI RE 6: PR CARE OI RE 7: CC WITH TH RE 8. PL REDZ RE 9: SL	NEXURE C: VRM CHECKLISTS AND TERMINOLOGY	92 94 9 .13 .13 .14 .15 .16 DRP .20 .33
14 15 FIGU FIGU FIGU FIGU FIGU FIGU FIGU FIGU	RE 1. NA RE 2: PH RE 3: PH RE 5: PR CARE OI RE 6: PR CARE OI RE 7: CC WITH TH RE 8. PL REDZ RE 9: SU RE 10. BG RE 11. CI	NEXURE C: VRM CHECKLISTS AND TERMINOLOGY	92 94 9 .13 .13 .14 .15 .16 ORP .20 .33 .35
14 15 FIGU FIGU FIGU FIGU FIGU FIGU FIGU FIGU	RE 1. NA RE 2: PH RE 3: PH RE 5: PR CARE OI RE 6: PR CARE OI RE 7: CC WITH TH RE 8. PL REDZ RE 9: SL RE 10. BG RE 11. CI RE 12. PI	NEXURE C: VRM CHECKLISTS AND TERMINOLOGY	92 94 9 .13 .13 .14 .15 .16 ORP .20 .33 .35 .35
FIGUE	RE 1. NA RE 2: PH RE 3: PH RE 5: PR CARE OF RE 7: CC WITH TH RE 8. PL RE 10. BF RE 11. CF RE 12. PF RE 13: PF	NEXURE C: VRM CHECKLISTS AND TERMINOLOGY	92 94 9 .13 .13 .14 .15 .16 ORP .20 .33 .35 .35
FIGUE	RE 1. NA RE 2: PH RE 3: PH RE 5: PR CARE OI RE 6: PR CARE OI RE 7: CC WITH TH RE 8. PL RE DZ RE 9: SU RE 10. Be RE 11. CI RE 12. PI RE 13: PI RE 14: PI	NEXURE C: VRM CHECKLISTS AND TERMINOLOGY NEXURE D: GENERAL LIGHTS AT NIGHT MITIGATIONS	92 94 9 .13 .13 .14 .15 .16 .20 .33 .35 .35 .36
FIGUE	RE 1. NA RE 2: PH RE 3: PH RE 5: PR CARE OI RE 6: PR CARE OI RE 7: CO WITH TH RE 8. PL RE DZ RE 10. BG RE 11. CI RE 12. PI RE 13: PI RE 14: PI FROM T	NEXURE C: VRM CHECKLISTS AND TERMINOLOGY	92 94 9 .13 .13 .14 .15 .16 .20 .33 .35 .35 .35
FIGUE	RE 1. NA RE 2: PH RE 3: PH RE 5: PR CARE OI RE 6: PR CARE OI RE 7: CO WITH TH RE 8. PL RE 10. BO RE 10. BO RE 11. CO RE 12. PI RE 13: PI RE 14: PI FROM T RE 15: M	NEXURE C: VRM CHECKLISTS AND TERMINOLOGY NEXURE D: GENERAL LIGHTS AT NIGHT MITIGATIONS	92 94 9 .13 .13 .14 .15 .16 .20 .33 .35 .35 .36 .37
FIGU FIGU FIGU FIGU FIGU FIGU FIGU FIGU	RE 1. NA RE 2: PH RE 3: PH RE 5: PR CARE OI RE 6: PR CARE OI RE 7: CO WITH TH RE 9: SU RE 10. BG RE 11. CG RE 11. CG RE 12. PI RE 13: PI RE 14: PI FROM T RE 15: M RE 16: M	NEXURE C: VRM CHECKLISTS AND TERMINOLOGY NEXURE D: GENERAL LIGHTS AT NIGHT MITIGATIONS TABLE OF FIGURES TIONAL LOCALITY MAP WITH THE PROJECT LOCATION IDENTIFIED. IOTOGRAPHIC EXAMPLE OF WHAT THE PROPOSED PV COULD LOOK LIKE IOTOGRAPHIC EXAMPLE OF MONOPOLES STRUCTURE IOPOSED LAYOUT MAP DEPICTING THE NORTH AND SOUTH PORTIONS OF THE PV1 PROJECT CAPE EAPRAC. IOPOSED LAYOUT MAP DEPICTING THE GRID CONNECT CORRIDORS FOR THE PV1 PROJECT CAPE EAPRAC. IOMBINED LAYOUT MAP DEPICTING THE TWO PROPOSED ROAN PV PROJECTS IN THE AREA HIS STUDY FOCUSSING ON PV1. ANNING LOCALITY MAP DEPICTING THE LOCATION OF THE PROJECT WITHIN THE KLERKSDO INVEY POINT LOCALITY MAP GIS VEGETATION TYPE MAP (SOUTH AFRICAN NATIONAL BIODIVERSITY INSTITUTE, 2018) RITICAL BIODIVERSITY MAPPING. HOTOGRAPH OF THE RENOSTERBERG HILLS LOCATED TO THE WEST OF THE SITE. HOTOGRAPH OF PARTIALLY REHABILITATED RIETKUIL TAILINGS STORAGE FACILITY AS SEEN HE SOUTHERN PV1 SITE. IAP DEPICTING DEA RENEWABLE ENERGY PROJECT STATUS.	92 94 9 .13 .13 .15 .16 .20 .33 .35 .35 .36 .37

ARROW RO	TOGRAPHS DEPICTING THE VIEW FROM THE TOP OF THE RENOSTERBERG WITH THE UGHLY DEPICTING THE EXTENT OF THE PV AREA. ALSO VISIBLE IS THE PARTIALLY	
	TED TAILING STORAGE FACILITY.	_
	ATION PROFILES EAST TO WEST AND NORTH TO SOUTH PROFILES	
	ONAL TERRAIN MODEL AND PROFILE LINE LOCALITY MAP.	
	SHED ANALYSIS MAP	
	BINED VIEWSHED MAP DEPICTING THE CUMULATIVE EXTENT OF THE TWO PROPOSED	
	ECTS	
	PTOR AND KEY OBSERVATION POINT LOCALITY MAP.	
	SHED ANALYSIS DEPICTING THE EXTENT TO WHICH THE PV1 WOULD BE VISIBLE FROM	
	BERG SAFARI CAMP SIOGRAPHIC RATING UNITS DEMARCATED WITHIN THE DEFINED STUDY AREA	
	AL RESOURCE MANAGEMENT CLASSES MAP	
	IODEL VIEW AS SEEN FROM RENOSTERBERG SAFARI ACCOMMODATION KEY OBSERVA	
	H THE PV SURVEY AREA REPRESENTED AS RED AREA	54
		60
FOOTPRINT		60
	LIGT OF TABLES	
	<u>LIST OF TABLES</u>	
		_
	LIST DECLARATION OF INDEPENDENCE	_
	IST REPORT REQUIREMENTS IN TERMS OF APPENDIX 6 OF THE EIA REGULATIONS (201	,,
	ED IN 2017	
	RS AND CONTRIBUTORS TO THIS REPORT.	
	DOLOGY SUMMARY TABLE	
	T INFORMATION TABLE	
	KEY PLANNING INFORMANTS TO THE PROJECT.	
	WEST PROVINCIAL DEVELOPMENT PLAN (NORTH WEST PROVINCIAL GOVERNMENT,	
,	MODI OCAMA LOCAL AMUNICIPALITY SPATIAL DEVICE ORMENT PLAN EDAMENORY (CIT	
	MOTLOSANA LOCAL MUNICIPALITY SPATIAL DEVELOPMENT PLAN FRAMEWORK (CIT	
	ASS MATRIX TABLE	
	DP VISUAL AND AESTHETIC GUIDELINE IMPACT ASSESSMENT CRITERIA TABLE	
	F SAMPLING SITES WHERE LANDSCAPE AND AESTHETIC SURVEY WAS CONDUCTED	
	SED PROJECT HEIGHTS TABLE	
	TOR AND KOP MOTIVATION TABLE	
	OGRAPHIC LANDSCAPE RATING UNITS.	
	C QUALITY AND RECEPTOR SENSITIVITY RATING.	
	RAST RATING KEY OBSERVATION POINTS TABLE	
A. A	TRUCTION PHASE IMPACTS TABLE	
	ATION PHASE IMPACTS TABLE	
	MMISSIONING PHASE IMPACTS TABLE	
	AFRICA PROJECTS ASSESSMENTS TABLE	
	C QUALITY CHECKLIST	
	TIVITY LEVEL RATING CHECKLIST	
	TERMINOLOGY TABLE	
	LIST OF ACRONYMS	
APHP	Association of Professional Heritage Practitioners	
BLM	Bureau of Land Management (United States)	
BPEO	Best Practicable Environmental Option	
CALP	·	
	Collaborative for Advanced Landscape Planning	
DEM	Digital Elevation Model	
DoC	Degree of Contrast	

EIA Environmental Impact Assessment
EMPr Environmental Management Plan
GIS Geographic Information System
GPS Global Positioning System
IDP Integrated Development Plan

IEMA Institute of Environmental Management and Assessment (United Kingdom)

KOP Key Observation Point

LVIA Landscape and Visual Impact Assessment

MAMSL Metres above mean sea level

NELPAG New England Light Pollution Advisory Group

PNR Private Nature Reserve

SDF Spatial Development Framework
SEA Strategic Environmental Assessment

VACVisual Absorption CapacityVIAVisual Impact AssessmentVRMVisual Resource Management

VRMA Visual Resource Management Africa

ZVI Zone of Visual Influence

GLOSSARY OF TECHNICAL TERMS

Technical Terms Definition (Oberholzer, 2005)

Degree of The measure in terms of the form, line, colour and texture of the Contrast existing landscape in relation to the proposed landscape

modification in relation to the defined visual resource management

obiectives.

generally phrased as questions, taking the form of "what will the impact of some activity be on some element of the visual, aesthetic

or scenic environment".

Receptors Individuals, groups or communities who would be subject to the

visual influence of a particular project.

Sense of place The unique quality or character of a place, whether natural, rural

or urban.

Scenic corridor A linear geographic area that contains scenic resources, usually,

but not necessarily, defined by a route.

Viewshed The outer boundary defining a view catchment area, usually along

crests and ridgelines. Similar to a watershed. This reflects the area, or the extent thereof, where the landscape modification

would probably be seen.

Visual Absorption The potential of the landscape to conceal the proposed project.

Capacity

Technical Term Definition (USDI., 2004)

Key Observation Receptors refer to the people located in the most critical locations,

Point or key observation points, surrounding the landscape modification,

who make consistent use of the views associated with the site where the landscape modifications are proposed. KOPs can either be a single point of view that an observer/evaluator uses to rate an area or panorama, or a linear view along a roadway, trail, or river corridor.

Visual Resource Management Zone of Visual Influence

A map-based landscape and visual impact assessment method development by the Bureau of Land Management (USA).

The ZVI is defined as 'the area within which a proposed development may have an influence or effect on visual amenity.'

Table 1. Specialist declaration of independence.

All intellectual property rights and copyright associated with VRM Africa's services are reserved, and project deliverables, including electronic copies of reports, maps, data, shape files and photographs, may not be modified or incorporated into subsequent reports in any form, or by any means, without the written consent of the author. Reference must be made to this report should the results, recommendations or conclusions in this report be used in subsequent documentation. Any comments on the Visual Impact Assessment (VIA) must be put in writing. Any recommendations, statements or conclusions drawn from, or based upon this report, must make reference to it.

This document was completed by Silver Solutions 887 cc trading as VRM Africa, a Visual Impact Study and Mapping organisation located in George, South Africa. VRM Africa cc was appointed as an independent professional visual impact practitioner to facilitate this VIA. I, Stephen Stead, hereby declare that VRM Africa, an independent consulting firm, has no interest or personal gains in this project whatsoever, except receiving fair payment for rendering an independent professional service.

Stephen Stead

APHP accredited VIA Specialist

Table 2 Specialist report requirements in terms of Appendix 6 of the EIA Regulations (2014), as amended in 2017

A specialist report prepared in terms of the Environmental Impact Regulations of 2014 (as amended in 2017) must contain:	Relevant section in report
Details of the specialist who prepared the report	Stephen Stead, owner / director of Visual Resource Management Africa. steve@vrma.co.za Cell: 0835609911
The expertise of that person to compile a specialist report including a curriculum vitae	Registration with Association of Professional Heritage Practitioners

A specialist report prepared in terms of the Environmental Impact Regulations of 2014 (as amended in 2017) must contain:	Relevant section in report
A declaration that the person is independent in a form as may be specified by the competent authority	Table 1. Specialist declaration of independence.
An indication of the scope of, and the purpose for which, the report was prepared	Terms of Reference
A description of existing impacts on the site, cumulative impacts of the proposed development and levels of acceptable change	Visual Resource Management (VRM) Classes
The duration, date and season of the site investigation and the relevance of the season to the outcome of the assessment	NA
A description of the methodology adopted in preparing the report or carrying out the specialised process inclusive of equipment and modelling used;	Methodology
Details of an assessment of the specific identified sensitivity of the site related to the proposed activity or activities and its associated structures and infrastructure, inclusive of a site plan identifying site alternative;	Baseline Visual Inventory
An identification of any areas to be avoided, including buffers	NA
A map superimposing the activity including the associated structures and infrastructure on the environmental sensitivities of the site including areas to be avoided, including buffers;	Figure 25
A description of any assumptions made and any uncertainties or gaps in knowledge;	Assumptions and Limitations
A description of the findings and potential implications of such findings on the impact of the proposed activity or activities	Visual Resource Management Classes
Any mitigation measures for inclusion in the EMPr	Environmental Management Plan
Any conditions for inclusion in the environmental authorisation	NA
Any monitoring requirements for inclusion in the EMPr or environmental authorisation	NA
A reasoned opinion as to whether the proposed activity or portions thereof should be authorised	Conclusion
Regarding the acceptability of the proposed activity or activities; and	Conclusion
If the opinion is that the proposed activity or portions thereof should be authorised, any avoidance, management and mitigation measures that should be included in the EMPr, and where applicable, the closure plan	The proposed project should be authorised WITH MITIGIATON, as the southern portion is located in front view of the Renosterberg

A specialist report prepared in terms of the Environmental Impact Regulations of 2014 (as amended in 2017) must contain:	Relevant section in report
	Safari accommodation.
A description of any consultation process that was undertaken during the course of carrying out the study	A Draft Basic Assessment Report containing this VIA will be subjected to a consultative process as required in terms of regulation 56 of the NEMA 2014 EIA Regulations.
A summary and copies if any comments that were received during any consultation process	Pending I&AP comments
Any other information requested by the competent authority.	Pending I&AP comments

1 Introduction

Visual Resource Management Africa CC (VRMA) was appointed by Cape EAPrac (Pty) Ltd (hereafter referred to as EAP) to undertake a *Visual Impact Assessment* on the proposed Roan 1 PV Facility and Associated Infrastructure on behalf of AMDA Mike (Pty) Ltd. (Proponent). The site visit was undertaken on the 22 January 2021. The proposed development site is located in the North West Province, Dr Kenneth Kaunda District Municipality and within the City of Matlosana Local Municipality. The Proponent proposes to construct a Photovoltaic (PV) solar energy facility and associated infrastructure on Parcel 338 located 3 km south of Haartbeesfontein.

As this Visual and Landscape assessment forms part a Basic Assessment EIA due to the location of the project within the Klerksdorp REDZ, impacts are grouped at a project level. The different project components are unpacked in the Opportunities and Constraints section, with recommendation on alternative preference.

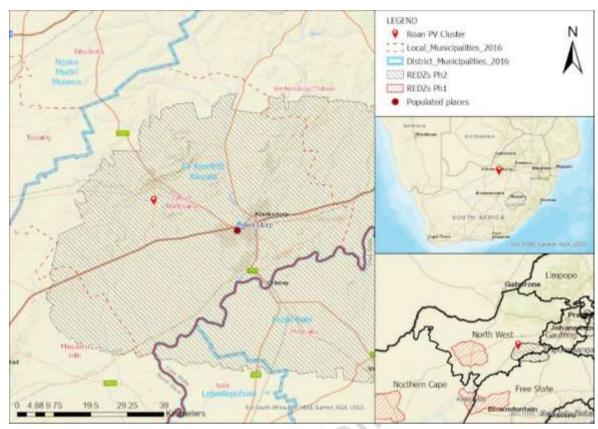


Figure 1. National locality map with the project location identified.

1.1 Terms of Reference

The scope of this study is to cover the entire proposed project area. The broad terms of reference for the study are as follows:

- Collate and analyse all available secondary data relevant to the affected proposed project area. This includes a site visit of the full site extent, as well as of areas where potential impacts may occur beyond the site boundaries.
- Specific attention is to be given to the following:
 - Quantifying and assessing existing scenic resources/visual characteristics on, and around, the proposed site.
 - Evaluation and classification of the landscape in terms of sensitivity to a changing land use.
 - Determining viewsheds, view corridors and important viewpoints in order to assess the visual impacts of the proposed project.
 - Determining visual issues, including those identified in the public participation process.
 - Reviewing the legal framework that may have implications for visual/scenic resources.
 - Assessing the significance of potential visual impacts resulting from the proposed project for the construction, operation and decommissioning phases of the proposed project.
 - Assessing the potential cumulative impacts associated with the visual impact.
 - o Generate photomontages of the proposed landscape modification.
 - Identifying possible mitigation measures to reduce negative visual impacts for inclusion into the proposed project design, including input into the Environmental Management Programme (EMPr).

1.2 Study Team

Contributors to this study are summarised in the table below.

Table 3: Authors and Contributors to this Report.

Aspect	Person	Organisation	Qualifications
		/ Company	
Visual Assessment	d Stephen Stead B.A (Hons) Human Geography, 1991 s (UKZN, Pietermaritzburg)	VRMA	 Accredited with the Association of Professional Heritage Practitioner and 16 years of experience in visual assessments including renewable energy, Power lines, roads, dams across southern Africa. Registered with the Association of Professional Heritage Practitioners since
			2014.

1.3 Visual Assessment Approach

The process that VRM Africa follows when undertaking a VIA is based on the United States Bureau of Land Management's (BLM) Visual Resource Management method (USDI., 2004). This mapping and GIS-based method of assessing landscape modifications allows for increased objectivity and consistency by using standard assessment criteria.

The following approach was used in understanding the landscape processes and informing the magnitude of the impacts of the proposed landscape modification. The table below lists a number of standardised procedures recommended as a component of best international practice.

Table 4: Methodology Summary Table

Action	Description		
Site Survey	The identification of existing scenic resources and sensitive receptors in		
	and around the study area to understand the context of the proposed		
	development within its surroundings to ensure that the intactness of the		
	landscape and the prevailing sense of place are taken into consideration.		
Project Description	Provide a description of the expected project, and the components that		
	will make up the landscape modification.		
Reviewing the Legal	The legal, policy and planning framework may have implications for		
Framework	visual aspects of the proposed development. The heritage legislation		
	tends to be pertinent in relation to natural and cultural landscapes, while		
	Strategic Environmental Assessments (SEAs) for renewable energy		
	provide a guideline at the regional scale.		
Determining the	This includes mapping of viewsheds and view corridors in relation to the		
Zone of Visual	proposed project elements, in order to assess the zone of visual		
Influence	influence of the proposed project. Based on the topography of the		
	landscape as represented by a Digital Elevation Model, an approximate		
	area is defined which provides an expected area where the landscape		
	modification has the potential to influence landscapes (or landscape		
	processes) or receptor viewpoints.		
Identifying Visual	Visual issues are identified during the public participation process, which		
Issues and Visual	is being carried out by others. The visual, social or heritage specialists		
Resources			

	may also identify visual issues. The significance and proposed mitigation
	of the visual issues are addressed as part of the visual assessment.
Assessing Potential	An assessment is made of the significance of potential visual impacts
Visual Impacts	resulting from the proposed project for the construction, operational and
	decommissioning phases of the project. The rating of visual significance
	is based on the methodology provided by the Environmental Assessment
	Practitioner (EAP).
Formulating	Possible mitigation measures are identified to avoid or minimise negative
Mitigation Measures	visual impacts of the proposed project. The intention is that these would
	be included in the project design, the Environmental Management
	programme (EMPr) and the authorisation conditions.

1.4 Assumptions and Uncertainties

- Digital Elevation Models (DEM) and viewsheds were generated using ASTER elevation data (NASA, 2009). Although every effort to maintain accuracy was undertaken, as a result of the DEM being generated from satellite imagery and not being a true representation of the earth's surface, the viewshed mapping is approximate and may not represent an exact visibility incidence. Thus, specific features identified from the DEM and derived contours (such as peaks and conical hills) would need to be verified once a detailed survey of the project area took place.
- The use of open-source satellite imagery was utilised for base maps in the report.
- Some of the mapping in this document was created using Bing Maps, Open-Source Map, ArcGIS Online and Google Earth Satellite imagery.
- The project deliverables, including electronic copies of reports, maps, data, shape files and photographs are based on the author's professional knowledge, as well as available information.
- VRM Africa reserves the right to modify aspects of the project deliverables if and when new/additional information may become available from research or further work in the applicable field of practice or pertaining to this study.

2 Project Description

The following table outlines the project information that was provided by the client that will be incorporated into the assessment and proposed infrastructure relating to the project would include:

No alternatives are provided for the PV or the Grid Connect, and as such, a comparison of the No-go is included as a comparative analysis in Section 9.

Table 5: Project Information Table

PROPONENT SPECIFICATIONS		
Applicant Details	Description	
Applicant Name:	AMDA Mike (Pty) Ltd	
Project Name: Proposed Roan 1 PV Solar Facility VIA		

PROPERTY SPECIFICATIONS			
Name	Description		Size (Ha)
Farm 338	Parcel 338	(C)	250ha

PROJECT SPECIFICATIONS		
COMPONENT	SPECIFICATION	
PV modules and mounting structures	100 MW PV facility	
Inverters and transformers	Both string and centralized inverters are under consideration	
Site and internal access roads (up to 8 m wide)	Main access road up 10m wide and internal and perimeter roads up to 6m wide.	
Auxiliary buildings	33 kV switch room, gate-house and security, control centre, office, warehouse, canteen & visitors centre, staff lockers etc.	
Perimeter fencing and security infrastructure	Electrified perimeter fencing up to 2.4m high	
Rainwater tanks	Up to 60kl	
Temporary and permanent laydown areas	Construction laydown not exceeding 6ha, Permanent laydown not exceeding 1ha.	
Facility substation	Up to 1.2ha (inclusive of IPP and Eskom side)	
Grid connection solution	A grid connection corridor of approximately 300 m wide including: On Site facility substation On Site Falses Switching Station	
	On Site Eskom Switching Station	

	 An up to 132kV overhead powerline from the on site switching station to the Existing Eskom Roan Substation. The gridline servitude, once registered, will be 31m in width.
Additional associated infrastructure	Including access roads, feeder bays (inclusive of line bays, busbars, bus section and protection equipment), a fibre and optical ground wire (OPGW) layout, insulation and assembly structures including BESS.

(www.hawaiirenewableenergy.org/Villamesias2, n.d.)

Figure 2: Photographic example of what the proposed PV could look like

Figure 3: Photographic example of monopoles structure (Source VRM Africa Lundskip VIA)

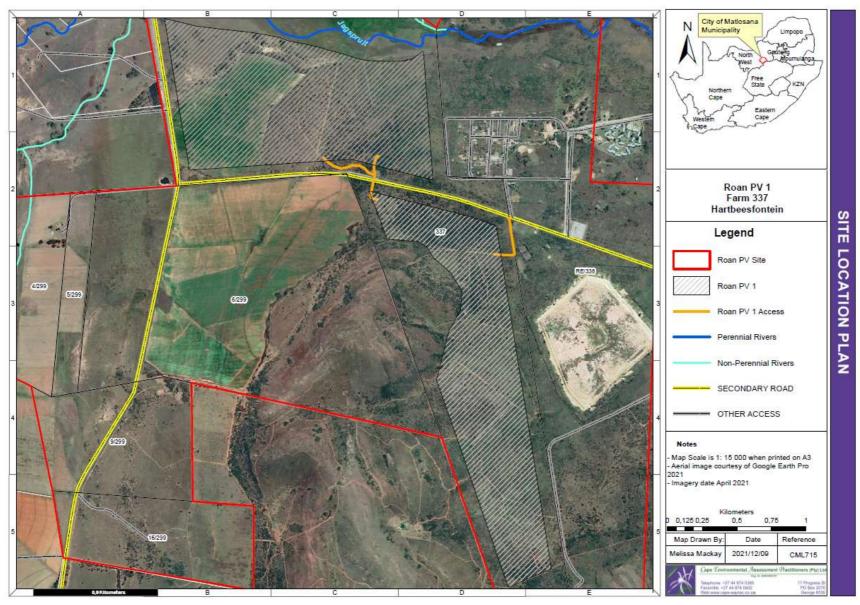


Figure 4: Proposed layout map depicting the north and south portions of the PV1 project care of Cape EAPrac.

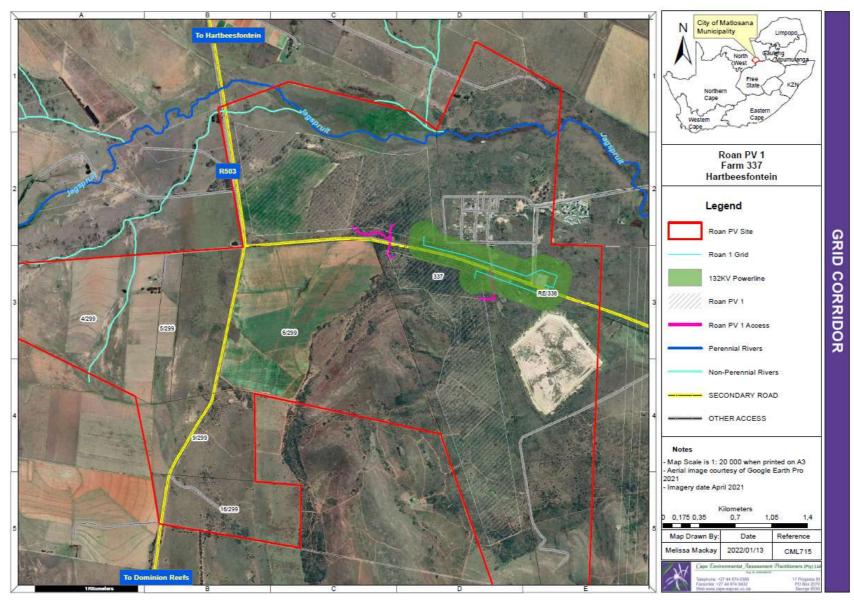


Figure 5: Proposed layout map depicting the grid connect corridors for the PV1 project care of Cape EAPrac.

Roggeveld CFT VIA 15

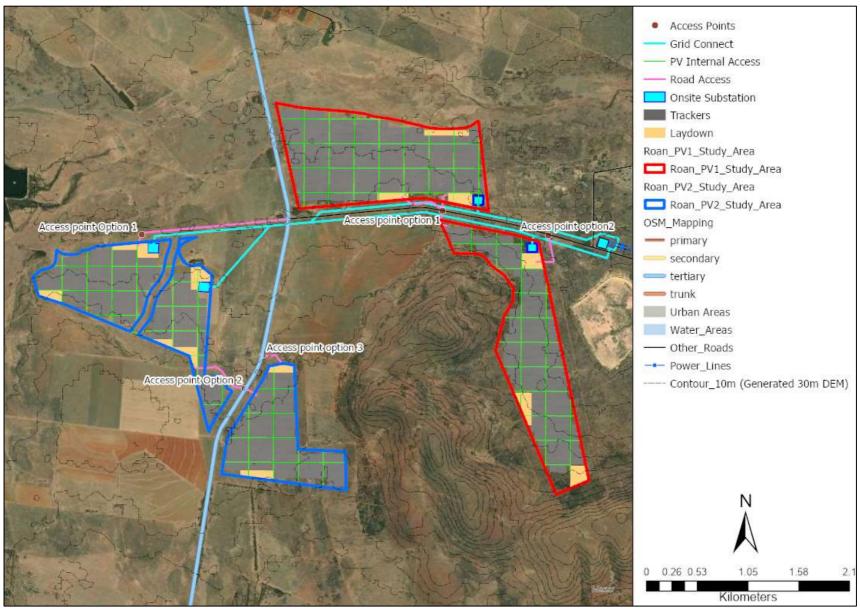


Figure 6: Combined layout map depicting the two proposed Roan PV projects in the area with this study focussing on PV1.

Roggeveld CFT VIA 16

3 LEGAL FRAMEWORK

In order to comply with the Visual Resource Management requirements, it is necessary to relate the proposed landscape modification in terms of international best practice in understanding landscapes and landscape processes. The proposed project also needs to be evaluated in terms of 'policy fit'. This requires a review of International, National and Regional best practice, policy and planning for the area to ensure that the scale, density and nature of activities or developments are harmonious and in keeping with the planned sense of place and character of the area.

3.1 International Good Practice

For cultural landscapes, the following documentation provides good practice guidelines, specifically:

- Guidelines for Landscape and Visual Impact Assessment (GLVIA), Second Edition.
- International Finance Corporation (IFC).
- Millennium Ecosystem Assessment (MEA).
- United Nations Educational, Scientific and Cultural Organisation (UNESCO) World Heritage Convention (WHC).

3.1.1 Guidelines for Landscape and Visual Impact Assessment, Second Edition

The Landscape Institute and the Institute of Environmental Management and Assessment (United Kingdom) have compiled a book outlining best practice in landscape and visual impact assessment. This has become a key guideline for LVIA in the United Kingdom. "The principal aim of the guideline is to encourage high standards for the scope and context of landscape and visual impact assessments, based on the collegiate opinion and practice of the members of the Landscape Institute and the Institute of Environmental Management and Assessment. The guidelines also seek to establish certain principles and will help to achieve consistency, credibility and effectiveness in landscape and visual impact assessment, when carried out as part of an EIA" (The Landscape Institute, 2003);

In the introduction, the guideline states that 'Landscape encompasses the whole of our external environment, whether within village, towns, cities or in the countryside. The nature and pattern of buildings, streets, open spaces and trees – and their interrelationships within the built environment – are an equally important part of our landscape heritage" (The Landscape Institute, 2003: Pg. 9). The guideline identifies the following reasons why landscape is important in both urban and rural contexts, in that it is:

- An essential part of our natural resource base.
- A reservoir of archaeological and historical evidence.
- An environment for plants and animals (including humans).
- A resource that evokes sensual, cultural and spiritual responses and contributes to our urban and rural quality of life; and
- Valuable recreation resources. (The Landscape Institute, 2003).

3.1.2 International Finance Corporation (IFC)

The IFC Performance Standards (IFC, 2012) do not explicitly cover visual impacts or assessment thereof. Under IFC PS 6, ecosystem services are organized into four categories, with the third category related to cultural services which are defined as "the non-material benefits people obtain from ecosystems" and "may include natural areas that are sacred sites and areas of importance for recreation and aesthetic enjoyment" (IFC, 2012).

However, the IFC Environmental Health and Safety Guidelines for Electric Power Transmission and Distribution (IFC, 2007) specifically identifies the risks posed by power transmission and distribution projects to create visual impacts to residential communities. It recommends mitigation measures to be implemented to minimise visual impact. These should include the siting of powerlines and the design of substations with due consideration to landscape views and important environmental and community features. Prioritising the location of high-voltage transmission and distribution lines in less populated areas, where possible, is promoted.

IFC PS 8 recognises the importance of cultural heritage for current and future generations and aims to ensure that projects protect cultural heritage. The report defines Cultural Heritage as "(i) tangible forms of cultural heritage, such as tangible moveable or immovable objects, property, sites, structures, or groups of structures, having archaeological (prehistoric), paleontological, historical, cultural, artistic, and religious values; (ii) unique natural features or tangible objects that embody cultural values, such as sacred groves, rocks, lakes, and waterfalls" (IFC, 2012). The IFC PS 8 defines Critical Heritage as "one or both of the following types of cultural heritage: (i) the internationally recognized heritage of communities who use or have used within living memory the cultural heritage for long-standing cultural purposes; or (ii) legally protected cultural heritage areas, including those proposed by host governments for such designation" (IFC, 2012).

Legally protected cultural heritage areas are identified as important in the IFC PS 8 report. This is for "the protection and conservation of cultural heritage, and additional measures are needed for any projects that would be permitted under the applicable national law in these areas". The report states that "in circumstances where a proposed project is located within a legally protected area or a legally defined buffer zone, the client, in addition to the requirements for critical cultural heritage, will meet the following requirements:

- Comply with defined national or local cultural heritage regulations or the protected area management plans.
- Consult the protected area sponsors and managers, local communities and other key stakeholders on the proposed project; and
- Implement additional programs, as appropriate, to promote and enhance the conservation aims of the protected area". (IFC, 2012).

3.1.3 Millennium Ecosystem Assessment

In the Ecosystems and Human Well-being document compiled by the Millennium Ecosystem Assessment in 2005, Ecosystems are defined as being "essential for human well-being through their provisioning, regulating, cultural, and supporting services. Evidence in recent decades of escalating human impacts on ecological systems worldwide raises concerns about the consequences of ecosystem changes for human well-being". (Millennium Ecosystem Assessment, 2005)

The Millennium Ecosystem Assessment defined the following non-material benefits that can be obtained from ecosystems:

• Inspiration: Ecosystems provide a rich source of inspiration for art, folklore, national symbols, architecture, and advertising.

- Aesthetic values: Many people find beauty or aesthetic value in various aspects of ecosystems, as reflected in the support for parks, scenic drives, and the selection of housing locations.
- Sense of place: Many people value the "sense of place" that is associated with recognised features of their environment, including aspects of the ecosystem.
- Cultural heritage values: Many societies place high value on the maintenance of either historically important landscapes ("cultural landscapes") or culturally significant species; and
- Recreation and ecotourism: People often choose where to spend their leisure time based in part on the characteristics of the natural or cultivated landscapes in a particular area. (Millennium Ecosystem Assessment, 2005)

The Millennium Ecosystem Assessment Ecosystems and Human Well-being: Synthesis report indicates that there has been a "rapid decline in sacred groves and species" in relation to spiritual and religious values, and aesthetic values have seen a "decline in quantity and quality of natural lands". (Millennium Ecosystem Assessment, 2005)

3.2 National and Regional Legislation and Policies

In order to comply with the Visual Resource Management requirements, it is necessary to clarify which National and Regional planning policies govern the proposed development area to ensure that the scale, density and nature of activities or developments are harmonious and in keeping with the sense of place and character of the area as mapped in Figure 7 below.

- DEA&DP Visual and Aesthetic Guidelines.
- REDZ Planning.
- Regional and Local Municipality Planning and Guidelines.

Table 6: List of key planning informants to the project.

Theme	Requirements
Province	North West Province
District Municipality	Dr Kenneth Kaunda District Municipality
Local Municipality	City of Matlosana Municipality
REDZ	National Energy Planning
X	Klerksdorp REDZ 10

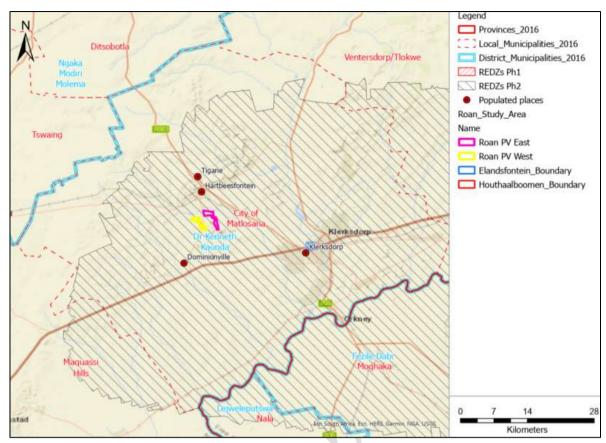


Figure 7. Planning locality map depicting the location of the project within the Klerksdorp REDZ.

3.2.1 DEA&DP Visual and Aesthetic Guidelines

Reference to the Western Cape Department of Environmental Affairs and Development Planning (DEA&DP) Guideline for involving visual and aesthetic specialists in Environmental Impact Assessment (EIA) processes is provided in terms of southern African best practice in Visual Impact Assessment. The report compiled by Oberholzer states that the Best Practicable Environmental Option (BPEO) should address the following:

- Ensure that the scale, density and nature of activities or developments are harmonious and in keeping with the sense of place and character of the area. The BPEO must also ensure that development must be located to prevent structures from being a visual intrusion (i.e. to retain open views and vistas).
- Long term protection of important scenic resources and heritage sites.
- · Minimisation of visual intrusion in scenic areas.
- Retention of wilderness or special areas intact as far as possible.
- Responsiveness to the area's uniqueness, or sense of place." (Oberholzer, 2005)

3.2.2 REDZ Planning

A Strategic Environmental Assessment commissioned by the Department of Environmental Affairs, undertaken by the CSIR, identified Renewable Energy Development Zones (REDZs). These are gazetted geographical areas in which several wind and solar PV development projects will have the lowest negative impact on the environment while yielding the highest possible social and economic benefit to the country. The project is situated within a Renewable Energy Development Zone (REDZ) known as the Klerksdorp REDZ (REDZ10). (Department of Environment Affairs).

3.2.3 Local and Regional Planning

The following tables list key regional and local planning that has relevance to the project pertaining to landscape-based tourism, and renewable energy projects.

Table 7: North West Provincial Development Plan (North West Provincial Government, 2013).

Theme	Requirements	Page
Renewable	Renewable energies, especially solar and waste/biomass to energy	110
Energy	initiatives will play an increasingly important role in the following two	
	decades and will contribute a much greater share of provincial energy consumption.	
	Promote more sustainable and energy efficient building techniques to	79
	reduce the demand on electricity over the long-term. Encourage more	
	independent power producers and promote the use of solar power	
	The provincial potential as a destination for solar power is	112
	often overlooked. The North West province shares a	
	similar solar energy potential than the Northern Cape The Renewable	
	Energy Strategy for the North West Province (DEDECT, 20129F x)	
	identified two solar power options for the province, Solar Water Heaters	
	and Solar Photovoltaic Technologies.	
	The North West province has substantial land area available that could	113
	potentially be utilised for solar photovoltaic plant applications	
Tourism	It is critical to develop linkages with the mining and agricultural sectors in	125
	manufacturing (agro-processing, input products and beneficiation) and	
	services and to develop the tourism industry	

Table 8: City of Motlosana Local Municipality Spatial Development Plan Framework (City of Matlosana Municipality, 2009)

Theme	Requirements	Page
Environment	A number of prominent environmental features and resources exist in the municipal area that must be protected against negative impacts of human related activities in order to ensure environmental sustainability. These features and resources include: Existing protected areas Dolomite aquifers and dolomite eyes Hills and ridges Wetland areas (dam, river, streams and wetlands) High potential agricultural land Cultural heritage sites	
Agriculture	Agricultural land is the most important natural resource within the municipal area. Most of the cultivated land within the municipal area is classified as 'prime agricultural land'.	41
Tourism	Stimulation of tourism nodes along the Vaal River, Vredefort Dome, Highveld National Park and Boskop Dam Nature Reserve Sensitive environmental areas and features form a significant structuring element in the form and structure of future development in the region. On	48

Theme	Requirements	Page
	the one hand, it must be protected in order to ensure long term sustainability and on the other and the functional, educational,	
	recreational and tourism value of these assets must be enhanced.	

3.3 Policy Fit

Policy fit refers to the degree to which the proposed landscape modifications align with International, National, Provincial and Local planning and policy.

In terms of international best practice, the proposed landscape modification would not trigger any best practice guidelines as there are no significant cultural/ landscape resources on the site or immediate surrounds.

In terms of the local planning, there is a clear emphasis in support of renewable energy that aligns with the project planning. This is further emphasised by the Klerksdorp REDZ. There is also a strong focus on tourism and protection of tourist related resources with the following triggers potentially relating to the proposed landscape change.

- Hills and ridges: The Renosterberg is located adjacent to the proposed site and the visual resources are being used for tourism by the Renosterberg Safari & Farming.
- Wetland areas (dam, river, streams and wetlands) are located to the north of the PV1
 project, and a suitable buffer would need to be set in place to ensure that
 encroachment into these visual and ecological resources does not take place.
- High potential agricultural land: The areas proposed for PV development are currently used for agricultural practice and do add to the existing rural agricultural sense of place. Input from soil specialist would need to ensure that loss of high potential agricultural land does not take place.

In terms of regional and local planning, the *expected policy visual/ landscape fit of the landscape change is rated Medium.* While the proposed landscape change is to be seen against the backdrop of the Klerksdorp REDZ planning where renewable energy projects are likely to become more common, the existing tourism activities do make use of landscape resources that could influence the activity sense of place. Mitigation would need to ensure that significant eco-tourism activities are not undermined by the change in landscape character.

4 METHODOLOGY

The process that VRMA followed when determining landscape significance is based on the United States Bureau of Land Management's (BLM) Visual Resource Management method (USDI., 2004). This mapping and Geographic Information System (GIS) based method of assessing landscape modifications allows for increased objectivity and consistency by using standard assessment criteria. The following key factors determine the suitability of landscape change:

 "Different levels of scenic values require different levels of management. For example, management of an area with high scenic value might be focused on preserving the existing character of the landscape, and management of an area with little scenic value might allow for major modifications to the landscape. Determining how an area should be managed first requires an assessment of the area's scenic values". "Assessing scenic values and determining visual impacts can be a subjective process. Objectivity and consistency can be greatly increased by using the basic design elements of form, line, colour, and texture, which have often been used to describe and evaluate landscapes, to also describe proposed projects. Projects that repeat these design elements are usually in harmony with their surroundings; those that don't create contrast. By adjusting project designs so the elements are repeated, visual impacts can be minimized" (USDI., 2004).

The assessment comprises two main sections: firstly, the **Baseline Stage** to identify the visual resources and key observation locations within the project zone of visual influence; and secondly, the **Assessment Stage** which determines the visual impacts and significance of the proposed landscape modifications.

4.1 Baseline Analysis Stage

In terms of VRM methodology, landscape character is derived from a combination of **scenic quality**, **receptor sensitivity** to landscape change and **distance** from the proposed landscape change. The objective of the analysis is to compile a mapped inventory of the visual resources found in the receiving landscape, and to derive a mapped Visual Resource sensitivity layer from which to evaluate the suitability of the landscape change.

4.1.1 Scenic Quality

The scenic quality is determined making use of the VRM Scenic Quality Checklist (refer to Annexure D). The checklist identifies seven scenic quality criteria which are rated with 1 (low) to 5 (high) scale. The scores are totalled and assigned an A (High), B (Moderate) or C (low) based on the following split:

```
A= scenic quality rating of ≥19. B = rating of 12 – 18, C= rating of ≤11
```

The seven scenic quality criteria are defined below:

- Land Form: Topography becomes more of a factor as it becomes steeper, or more severely sculptured.
- **Vegetation**: Primary consideration given to the variety of patterns, forms, and textures created by plant life.
- Water: That ingredient which adds movement or serenity to a scene. The degree to which water dominates the scene is the primary consideration.
- **Colour**: The overall colour(s) of the basic components of the landscape (e.g., soil, rock, vegetation, etc.) are considered as they appear during seasons or periods of high use.
- Scarcity: This factor provides an opportunity to give added importance to one, or all, of
 the scenic features that appear to be relatively unique or rare within one physiographic
 region.
- Adjacent Land Use: Degree to which scenery and distance enhance, or start to influence, the overall impression of the scenery within the rating unit.
- **Cultural Modifications**: Cultural modifications should be considered and may detract from the scenery or complement or improve the scenic quality of an area.

4.1.2 Receptor Sensitivity

Receptor Sensitivity levels are a measure of public concern for scenic quality and assessed making use of the Sensitivity Checklist in Annexure D. Receptor sensitivity to landscape change is determined by rating the following factors in terms of Low to High:

- **Type of Users**: Visual sensitivity will vary with the type of users, e.g., recreational sightseers may be highly sensitive to any changes in visual quality, whereas workers who pass through the area on a regular basis may not be as sensitive to change.
- Amount of Use: Areas seen or used by large numbers of people are potentially more sensitive.
- Public Interest: The visual quality of an area may be of concern to local, or regional, groups. Indicators of this concern are usually expressed via public controversy created in response to proposed activities.
- Adjacent Land Uses: The interrelationship with land uses in adjacent lands. For example, an area within the viewshed of a residential area may be very sensitive, whereas an area surrounded by commercially developed lands may not be as visually sensitive.
- Special Areas: Management objectives for special areas such as Natural Areas, Wilderness Areas or Wilderness Study Areas, Wild and Scenic Rivers, Scenic Areas, Scenic Roads or Trails, and Critical Biodiversity Areas frequently require special consideration for the protection of their visual values.
- Other Factors: Consider any other information such as research or studies that include indicators of visual sensitivity.

4.1.3 Exposure

The area where a landscape modification starts to influence the landscape character is termed the Zone of Visual Influence (ZVI) and is defined by the U.K. Institute of Environmental Management and Assessment's (IEMA) 'Guidelines for Landscape and Visual Impact Assessment' as 'the area within which a proposed development may have an influence or effect on visual amenity (of the surrounding areas).'

The inverse relationship of distance and visual impact is well recognised in visual analysis literature (Hull & Bishop, 1988). According to Hull and Bishop, exposure, or visual impact, tends to diminish exponentially with distance. The areas where most landscape modifications would be visible are located within 2 km from the site of the landscape modification. Thus, the potential visual impact of an object diminishes at an exponential rate as the distance between the observer and the object increases due to atmospheric conditions prevalent at a location, which causes the air to appear greyer, thereby diminishing detail. For example, viewed from 1000 m from a landscape modification, the impact would be 25% of the impact as viewed from 500 m from a landscape modification. At 2000 m it would be 10% of the impact at 500 m.

<u>Distance</u> from a landscape modification influences the size and clarity of the landscape modification viewing. The Bureau of Land Management defines three distance categories:

- i. **Foreground / Middle ground**, up to approximately 6km, which is where there is potential for the sense of place to change.
- ii. **Background areas**, from 6km to 24km, where there is some potential for change in the sense of place, but where change would only occur in the case of very large landscape modifications; and

iii. **Seldom seen areas**, which fall within the Foreground / Middle ground area but, as a result of no receptors, are not viewed or are seldom viewed.

4.1.4 Visual Resource Management Classes

These findings are then submitted to a VRM Matrix below. The VRM Classes are not prescriptive and are used as a guideline to determine the carrying capacity of a visually preferred landscape as a basis for assessing the suitability of the landscape change associated with the proposed project.

Table 9: VRM Class Matrix Table

			VISUAL SENSITIVITY LEVELS								
		High		Medium			Low				
	A (High)	П	П	II	II	II	II	II	П	Ш	
SCENIC QUALITY	B (Medium)	II	III	III/ IV *	III	IV	IV	IV	ΙV	IV	
	C (Low)	Ш	IV	IV	IV	IV	IV	IV	IV	IV	
DISTANCE ZONES		Fore/middle ground	Background	Seldom seen	Fore/middle ground	Background	Seldom seen	Fore/middle ground	Background	Seldom seen	

^{*} If adjacent areas are Class III or lower, assign Class III, if higher, assign Class IV

The visual objectives of each of the classes are listed below:

- The Class I objective is to preserve the existing character of the landscape, the level of change to the characteristic landscape should be very low and must not attract attention. Class I is assigned when a decision is made to maintain a natural landscape.
- The Class II objective is to retain the existing character of the landscape and the level of change to the characteristic landscape should be low. The proposed development may be seen but should not attract the attention of the casual observer, and should repeat the basic elements of form, line, colour and texture found in the predominant natural features of the characteristic landscape.
- The Class III objective is to partially retain the existing character of the landscape, where
 the level of change to the characteristic landscape should be moderate. The proposed
 development may attract attention, but should not dominate the view of the casual
 observer, and changes should repeat the basic elements found in the predominant
 natural features of the characteristic landscape; and
- The Class IV objective is to provide for management activities that require major modifications of the existing character of the landscape. The level of change to the landscape can be high, and the proposed development may dominate the view and be the major focus of the viewer's (s') attention without significantly degrading the local landscape character.

4.1.5 Key Observation Points

During the Baseline Inventory Stage, Key Observation Points (KOPs) are identified. KOPs are defined by the Bureau of Land Management as the people (receptors) located in

strategic locations surrounding the property that make consistent use of the views associated with the site where the landscape modifications are proposed. These locations are important in terms of the VRM methodology, which requires that the Degree of Contrast (DoC) that the proposed landscape modifications will make to the existing landscape be measured from these most critical locations, or receptors, surrounding the property. To define the KOPs, potential receptor locations were identified in the viewshed analysis, and screened, based on the following criteria:

- Angle of observation.
- Number of viewers.
- Length of time the project is in view.
- Relative project size.
- Season of use.
- Critical viewpoints, e.g., views from communities, road crossings; and
- Distance from property.

4.2 Assessment and Impact Stage

The analysis stage involves determining whether the potential visual impacts from proposed surface-disturbing activities or developments will meet the management objectives established for the area, or whether design adjustments will be required. This requires a contrast rating to assess the expected DoC the proposed landscape modifications would generate within the receiving landscape in order to define the Magnitude of the impact.

4.2.1 Contrast Rating

The contrast rating is undertaken to determine if the VRM Class Objectives are met. The suitability of landscape modification is assessed by comparing and contrasting existing receiving landscape to the expected contrast that the proposed landscape change will generate. This is done by evaluating the level of change to the existing landscape by assessing the line, colour, texture and form, in relation to the visual objectives defined for the area.

The following criteria are utilised in defining the DoC:

- **None**: The element contrast is not visible or perceived.
- Weak: The element contrast can be seen but does not attract attention.
- Moderate: The element contrast begins to attract attention and begins to dominate the characteristic landscape.
- **Strong**: The element contrast demands attention, will not be overlooked, and is dominant in the landscape.

As an example, in a Class I area, the visual objective is to preserve the existing character of the landscape, and the resultant contrast to the existing landscape should not be notable to the casual observer and cannot attract attention. In a Class IV area example, the objective is to provide for proposed landscape activities that allow for major modifications of the existing character of the landscape. Based on whether the VRM objectives are met, mitigations, if required, are defined to avoid, reduce or mitigate the proposed landscape modifications so that the visual impact does not detract from the surrounding landscape sense of place. Based on the findings of the contrast rating, the Magnitude of the Landscape and Visual Impact Assessment is determined.

4.2.2 Photomontages

As a component in this contrast rating process, visual representation, such as photo montages are vital in large-scale modifications, as this serves to inform Interested & Affected Parties and decision-making authorities of the nature and extent of the impact associated with the proposed project/development. There is an ethical obligation in this process, as visualisation can be misleading if not undertaken ethically. In terms of adhering to standards for ethical representation of landscape modifications, VRMA subscribes to the Proposed Interim Code of Ethics for Landscape Visualisation developed by the Collaborative for Advanced Landscape Planning (CALP) (Sheppard, 2000). This code states that professional presenters of realistic landscape visualisations are responsible for promoting full understanding of proposed landscape changes, providing an honest and neutral visual representation of the expected landscape, by seeking to avoid bias in responses and demonstrating the legitimacy of the visualisation process. Presenters of landscape visualisations should adhere to the principles of:

- Access to Information
- Accuracy
- Legitimacy
- Representativeness
- Visual Clarity and Interest

The Code of Ethical Conduct states that the presenter should:

- Demonstrate an appropriate level of qualification and experience.
- Use visualisation tools and media that are appropriate to the purpose.
- Choose the appropriate level of realism.
- Identify, collect and document supporting visual data available for, or used in, the visualisation process.
- Conduct an on-site visual analysis to determine important issues and views.
- Seek community input on viewpoints and landscape issues to address in the visualisations.
- Provide the viewer with a reasonable choice of viewpoints, view directions, view angles, viewing conditions and timeframes appropriate to the area being visualised.
- Estimate and disclose the expected degree of uncertainty, indicating areas and possible visual consequences of the uncertainties.
- Use more than one appropriate presentation mode and means of access for the affected public.
- Present important non-visual information at the same time as the visual presentation, using a neutral delivery.
- Avoid the use, or the appearance of, 'sales' techniques or special effects.
- Avoid seeking a particular response from the audience.
- Provide information describing how the visualisation process was conducted and how key decisions were taken (Sheppard, 2000).

4.3 Impact Methodology

The following impact criteria were used to assess visual impacts. The criteria were defined by the Western Cape *DEA&DP Guideline for involving Visual and Aesthetic Specialists in EIA Processes* (Oberholzer, 2005)

Table 10. DEA&DP Visual and Aesthetic Guideline Impact Assessment Criteria Table.

Criteria	Definition
Extent	 The spatial or geographic area of influence of the visual impact, i.e.: site-related: extending only as far as the activity. local: limited to the immediate surroundings. regional: affecting a larger metropolitan or regional area. national: affecting large parts of the country. international: affecting areas across international boundaries.
<u>Duration</u>	 The predicted life-span of the visual impact: short term, (e.g., duration of the construction phase). medium term, (e.g., duration for screening vegetation to mature). long term, (e.g., lifespan of the project). permanent, where time will not mitigate the visual impact.
<u>Intensity</u>	 The magnitude of the impact on views, scenic or cultural resources. low, where visual and scenic resources are not affected. medium, where visual and scenic resources are affected to a limited extent. high, where scenic and cultural resources are significantly affected.
Probability	 The degree of possibility of the visual impact occurring: improbable, where the possibility of the impact occurring is very low. probable, where there is a distinct possibility that the impact will occur. highly probable, where it is most likely that the impact will occur. definite, where the impact will occur regardless of any prevention measures.
Significance	 The significance of impacts can be determined through a synthesis of the aspects produced in terms of their nature, duration, intensity, extent and probability, and be described as: low, where it will not have an influence on the decision. medium, where it should have an influence on the decision unless it is mitigated. high, where it would influence the decision regardless of any possible mitigation.

5 BASELINE VISUAL INVENTORY ASSESSMENT

Landscape character is defined by the U.K. Institute of Environmental Management and Assessment (IEMA) as the 'distinct and recognisable pattern of elements that occurs consistently in a particular type of landscape, and how this is perceived by people. It reflects particular combinations of geology, landform, soils, vegetation, land use and human settlement'. It creates the specific sense of place or essential character and 'spirit of the place' (IEMA, 2002). This section of the VIA identified the main landscape features that define the landscape character, as well as the key receptors that make use of the visual resources created by the landscape.

5.1 Site Investigation

A field survey was undertaken to inform the landscape and visual impact assessment. During the site visit, photographs were taken from each viewpoint, and the view direction and GPS location captured. The main land-use was documented as well as the nature of the dominant landscape in the vista. In order to represent views of the proposed landscape modification by means of photomontages for assessment purposes, panoramic photographs were also taken from key viewpoints. The site survey locations mapped on the following page (Figure 8). The photographs are located in Annexure A.

The site investigation also flagged landscape features and receptors that should be taken into consideration, and that were communicated to the EAP for early planning. The following landscape value issues were flagged:

 High Exposure to the Renosterberg Safari and Farming eco-tourism activities to the east.

Table 11: List of Sampling Sites where Landscape and Aesthetic Survey was Conducted

ID	NAME	REMARKS	REC_TIME	LAT	LONG	ELEV
1	Hartbeesfontein	View from Hartbeesfontein towards the Rietkuil Uranium Mine Tailings Dam that does influence the sense of place.	01/22/2022 07:51:04.000 SAST	-26.7707	26.44128	1462
2	Hartbeesfontein	View from Hartbeesfontein of the large grain silo defining the area as an agricultural town.	01/22/2022 07:51:04.000 SAST	-26.7707	26.44128	1462
2	Dominionville Road	KOP view north towards Roan PV1 northern site with the Rietkuil Tailings Dam in the background	01/22/2022 08:06:21.000 SAST	-26.7906	26.42388	1451.1
3	Dominionville Road	KOP view north towards Roan PV2 northern site as seen from the Dominionville Road (R503) southbound.	01/22/2022 08:06:21.000 SAST	-26.7906	26.42388	1451.1
3	Roan PV1	Site sense of place (SoP) of western portion depicting grasslands and small scattered trees.	01/22/2022 08:10:17.838 SAST	-26.803	26.42877	1451.1
4	Roan PV2 Power Line	View from the farm road along the proposed Roan PV2 power line corridor.	01/22/2022 08:37:09.000 SAST	-26.8114	26.42591	1444.3
5	Roan PV2 PV	View from the western portion of PV2 to the northwest with Jagspruit River in the midground.	01/22/2022 08:49:20.541 SAST	-26.8186	26.40826	0
5	Roan PV2 PV	Zoomed view across the valley to the town of Hartbeesfontein to the north.	01/22/2022 08:49:20.541 SAST	-26.8186	26.40826	
6	Roan PV2 Central	View east from the Roan PV2 central site with the grasslands in the foreground and the Renosterberg hill in the background.	01/22/2022 09:02:56.689 SAST	-26.8166	26.42005	0
7	Roan PV2 Central	View east from the Roan PV2 central site of typical limited agricultural infrastructure and the Renosterberg hill in the background.	01/22/2022 09:20:28.000 SAST	-26.8272	26.42225	1469.5
7	Roan PV2 Central	View east towards the telephone poles located along the R503 located 100m from the road.	01/22/2022 09:20:28.000 SAST	-26.8272	26.42225	1469.5
8	Roan PV1 South	View east from site of the Rietkuil Mine Tailings Dam located adjacent to the site that degrades the local sense of place.	01/22/2022 10:02:42.065 SAST	-26.8228	26.45243	0
8	Roan PV1 South	Zoomed view of the Rietkuil Mine Tailings Dam and partial rehabilitation on the top and erosion of the sides walls.	01/22/2022 10:02:42.065 SAST	-26.8228	26.45243	

Roan PV1 South	View west from the site of the Renosterberg hill in the background owned by Renosterberg Safari and Farming.	01/22/2022 10:06:55.000 SAST	-26.8319	26.45622	1457.4
Roan PV1 South	Zoomed view of the Renosterberg Safari accommodation and Lion enclosures overlooking the southern portion of the site, located 550m from the proposed development area.	01/22/2022 10:14:51.000 SAST	-26.8326	26.45306	1467.7
Roan PV1 South	View southwest from site along the existing fence line important for management of existing cattle farming.	01/22/2022 10:27:01.040 SAST	-26.8255	26.44766	0
Roan PV1 South	Elevated view of the slimes dam located adjacent to the site.	01/22/2022 10:38:12.000 SAST	-26.8198	26.44751	1458.1
Roan PV1 South	View west of the higher ground and steeper slopes adjacent to the site.	01/22/2022 10:38:12.000 SAST	-26.8198	26.44751	1458.1
Roan PV1 North	Reservoir infrastructure located on the Roan PV1 northern site.	01/22/2022 10:51:19.000 SAST	-26.8086	26.43819	1439.1
Roan PV1 North	Lower lying areas that could be associated with water holding soils.	01/22/2022 10:55:05.000 SAST	-26.8028	26.43955	1420
Roan PV Power Corridor	View of substation build to power the now defunct Rietkuil Uranium Mine.	01/22/2022 11:15:05.000 SAST	-26.8129	26.45345	1429.9
Roan PV1 North	Previously cultivated areas on the western portion of the Roan PV1 North site.	01/22/2022 11:21:36.724 SAST	-26.8092	26.43273	0
Roan PV2 Eastern Site	Game fence around the Renosterberg Game Farm that is located 100m to the east of the site.	01/22/2022 12:32:32.000 SAST	-26.8262	26.42957	1476.3
Roan PV2 Eastern Site	Photograph southeast of the previously cultivated lands on the site as well as a continuation of the game fence.	01/22/2022 12:41:40.207 SAST	-26.8335	26.43075	0
Roan PV2 Eastern Site	View south of the site of the slightly elevated knoll to the south of the site the restricts views from southern receptors to some degree.	01/22/2022 12:42:38.064 SAST	-26.8333	26.42605	0
Roan PV2 Eastern Site	Zoomed view to the south of the local farm receptor 2km distance.	01/22/2022 12:45:25.233 SAST	-26.8564	26.43213	0
Roan PV2 Eastern Site	View north from the moderately elevated site depicting open views to Hartbeesfontein located in the background	01/22/2022 12:52:48.524 SAST	-26.8285	26.42726	0
	Roan PV1 South Roan PV1 South Roan PV1 South Roan PV1 South Roan PV1 North Roan PV1 North Roan PV Power Corridor Roan PV1 North Roan PV2 Eastern Site Roan PV2 Eastern Site	Roan PV1 South View southwest from site along the existing fence line important for management of existing cattle farming. Roan PV1 South View southwest from site along the existing fence line important for management of existing cattle farming. Roan PV1 South Elevated view of the slimes dam located adjacent to the site. Roan PV1 South View west of the higher ground and steeper slopes adjacent to the site. Roan PV1 North Reservoir infrastructure located on the Roan PV1 northern site. Roan PV1 Lower lying areas that could be associated with water holding soils. Roan PV Power Corridor View of substation build to power the now defunct Rietkuil Uranium Mine. Roan PV1 Previously cultivated areas on the western portion of the Roan PV1 North site. Roan PV2 Eastern Site View south of the game fence. Roan PV2 Lower southern receptors to some degree. Roan PV2 Zoomed view to the south of the local farm receptor 2km distance. Roan PV2 Eastern Site View north from the moderately elevated site depicting open views to Hartbeesfontein	Roan PV1 South Reservoir infrastructure located on the Roan PV1 northern site. Roan PV1 North Roan PV1 North Roan PV1 North Reservoir infrastructure located on the Roan PV1 northern site. Roan PV1 North Roan PV1 North Roan PV1 North Reservoir infrastructure located with water holding soils. Roan PV1 North Roan PV1 North Roan PV1 North Previously cultivated areas on the western portion of the Roan PV1 North site. Roan PV1 Roan PV1 North Previously cultivated areas on the western portion of the Roan PV1 North site. Roan PV1 Roan PV1 Roan PV1 North Previously cultivated areas on the western portion of the Roan PV1 North site. Roan PV2 Eastern Site View South safet is first structure located on the Roan PV1 North site are first site. Roan PV1 North Previously cultivated areas on the western portion of the Roan PV1 North site. Roan PV2 Eastern Site View South safet of the slightly elevated knoll to the south of the site as well as a continuation of the game fence. Roan PV2 Roan PV2 View of word the Roan PV2 North site as well as a continuation of the game fence. View south of the slightly elevated knoll to the south of the site the restricts views from southern receptors to some degree. Roan PV2 View north from the moderately elevated site depicting open views to Hartbeesfontein 101/22/2022 10:35:233.SAST	Roan PV1 South Reservoir infrastructure located on the Roan PV1 northern site. Roan PV1 North Power Corridor Roan PV1 South Reservoir infrastructure located on the Roan PV1 northern site. Roan PV1 South Power Corridor Roan PV1 Roan PV1 South Previously cultivated areas on the western portion of the Roan PV1 North site. Roan PV1 South Previously cultivated areas on the proviously cultivated lands on the site as well as a continuation of the game fence. Roan PV2 Power South Previously View southwest for the site of the slightly elevated knoll to the south of the liste north provision shart of 10/12/2/2022 10:38:12:000 SAST P26.8198 10/12/2/2022 10:38:12:000 SAST P26.8198 10/12/2/2022 10:38:12:000 SAST P26.8086 10/12/2	Roan PV1 View west of the higher ground and steeper slopes adjacent to the site. Roan PV1 View west of the higher ground and steeper slopes adjacent to the site. Roan PV1 View west of the higher ground and steeper slopes adjacent to the site. Roan PV1 View west of the higher ground and steeper slopes adjacent to the site. Roan PV1 View west of the higher ground and steeper slopes adjacent to the site. Roan PV1 View west of the higher ground and steeper slopes adjacent to the site. Roan PV1 View west of the higher ground and steeper slopes adjacent to the site. Roan PV1 View west of the higher ground and steeper slopes adjacent to the site. Roan PV1 View west of the higher ground and steeper slopes adjacent to the site. Roan PV1 View west of the higher ground and steeper slopes adjacent to the site. Roan PV1 North Reservoir infrastructure located on the Roan PV1 northern site. Roan PV1 Lower lying areas that could be associated with water holding soils. Roan PV1 View of substation build to power the now defunct Rietkuil Uranium Mine. Roan PV1 View of substation build to power the now defunct Rietkuil Uranium Mine. Roan PV1 View of substation build to power the now defunct Rietkuil Uranium Mine. Roan PV2 Cappe Substation build to power the now defunct Rietkuil Uranium Mine. Roan PV2 Cappe Substation Steeper Substation build to power the now defunct Rietkuil Uranium Mine. Roan PV2 Cappe Substation Steeper Substation St

22	Roan PV2 Central Site	View northwest towards the Roan PV2 Central Site as seen from the R503 KOP	01/22/2022 13:10:33.000 SAST	-26.8231	26.42577	1462.5
23	Roan PV2 Eastern Site	View southeast towards the elevated Roan PV2 Eastern Site that creates a skyline as seen from the local road KOP.	01/22/2022 13:10:33.000 SAST	-26.8231	26.42577	1462.5
24	Roan PV2 Central Site	View northwest towards the Roan PV2 Central Site as seen from the Dominionville Road KOP	01/22/2022 13:18:20.000 SAST	-26.8312	26.42158	1469.4
25	Roan PV2 Eastern Site	View northeast from the Dominionville Road of the Roan PV2 Eastern Site.	01/22/2022 13:20:59.000 SAST	-26.8355	26.42076	1472.7
25	Roan PV2 Eastern Site	Photograph south of the Dominionville Road with gum trees along the route limited views of the proposed PV landscape change.	01/22/2022 13:20:59.000 SAST	-26.8355	26.42076	1472.7
26	Roan PV2 Grid Connect	Photograph west along the R503 of the existing telephone and power line infrastructure that increases the visual absorption capacity.	01/22/2022 13:40:27.000 SAST	-26.8109	26.42955	1443.9
27	Roan PV1 North	Key Observation Point for the R503 northbound towards the Roan PV1 Northern Site.	01/22/2022 13:42:50.000 SAST	-26.8095	26.42781	1443
28	Roan PV1 North	Zoomed photograph of the well vegetation screened farmstead KOP located 800m to the north of the proposed development.	01/22/2022 13:47:04.256 SAST	-26.7936	26.43232	0
29	Roan PV1 South	Main accommodation of the Renosterberg Safari & Farm	01/22/2022 13:47:04.256 SAST	-26.833	26.44526	
29	Roan PV1 South	View as seen from the main accommodation area to the east overlooking the proposed PV site.	01/22/2022 13:47:04.256 SAST	-26.833	26.44526	
29	Roan PV1 South	Photograph of the lower tented camp located on the game farm also view east over the proposed PV site.	01/22/2022 13:47:04.256 SAST	-26.833	26.44526	
30	Roan PV1 South	Elevated view from the top of Renosterberg Safari & Farm depicting the extent of the PV landscape change.	01/22/2022 13:47:04.256 SAST	-26.83	26.44125	
31	Roan PV2 Western Site	Zoomed view to the adjacent farm located 3km to the northwest.	01/22/2022 13:47:04.256 SAST	-26.8029	26.37848	

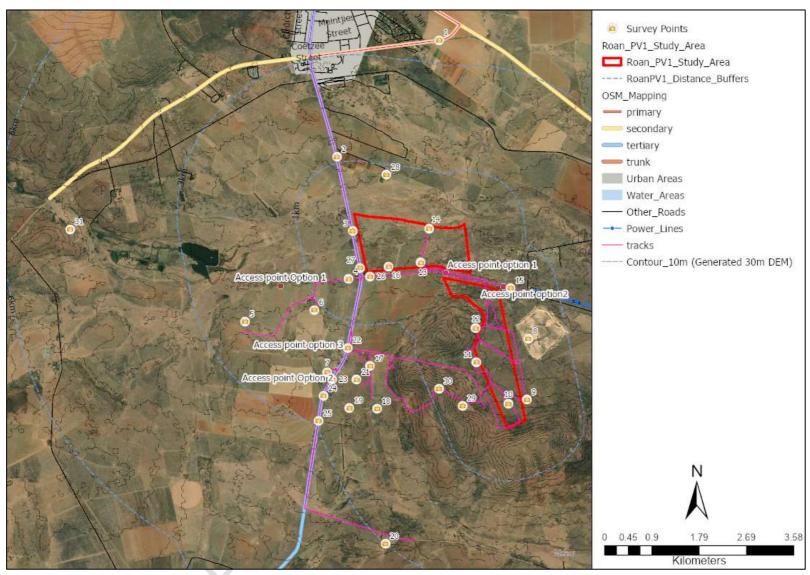


Figure 8: Survey Point Locality Map

5.2 Landscape Context

5.2.1 Regional Locality

The proposed Roan 1 PV Solar Facility is located 3 km south of the town of Hartbeesfontein in the North West Province of South Africa. Like many small rural towns, infrastructure is degraded. The large silo located to the south of the town is the main landscape feature. Within the regional context, the property is located in a rural agrarian landscape predominantly related to maize production, but also including cattle farming. To the east towards Klerksdorp, there is a strongly landscape context of mining, with the now non-operational Rietkuil Uranium Mine located adjacent to the PV1 site. Also clearly visible is the Tailing Storage Facility located to the east of the site. Some rehabilitation has taken place but only on the crest, but this is marginal and with the sides of the tailings eroding, creates a clear mining landscape feature.

5.2.2 Vegetation

Vegetation type is a large factor in determining the scenic quality of the site in terms of colour and texture, as well as influencing the local ability of the landscape to absorb the landscape change. The following paragraph and mapping outline the broad vegetation biome and type.

The Klerksdorp area falls within the grassland biome comprising a wide range of grasses typical of arid areas. The grassland biome, which is second highest to the fynbos biome in species diversity, is regarded as one of the most critically threatened southern African ecosystems (RUTHERFORD & WESTFALL, 1994; SIEGFRIED, 1989). Most of this grassland has been cleared and cultivated with predominantly wheat and maize or is used for cattle and game farming and is disrupted by unnatural fire cycles (RUTHERFORD & WESTFALL, 1994). As can be seen in the map below generated by Cape EAPrac, the southern portion of the PV1 area is associated with Klerksdorp Thornveld, and the northern portion of the site, Vaal-Vet Sandy Grassland. (City of Matlosana Municipality, 2009)

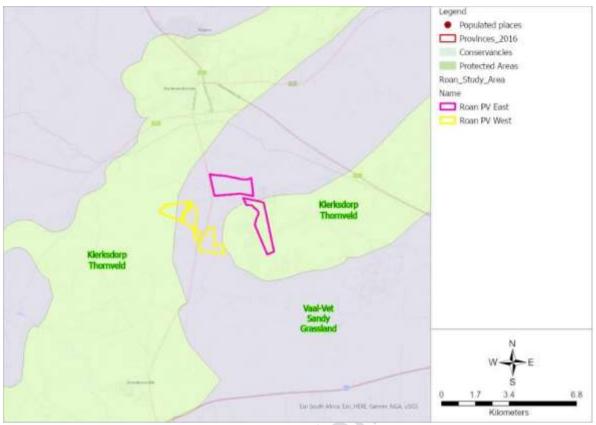


Figure 9. BGIS Vegetation Type Map (South African National Biodiversity Institute, 2018)

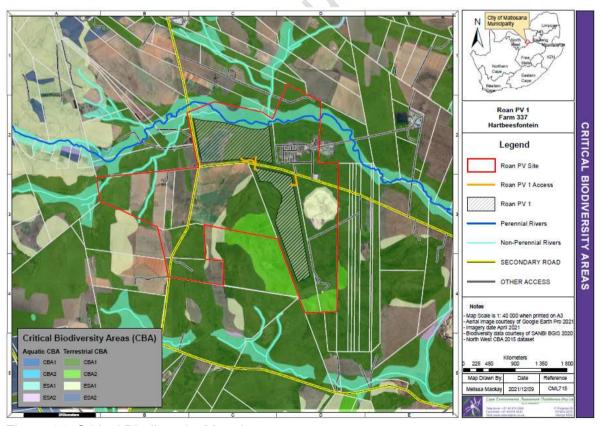


Figure 10. Critical Biodiversity Mapping.

As depicted in the Critical Biodiversity Map provided by Cape EAPrac, the southern and the north-western portion of the sites are classified as CBA1. These areas could have significant vegetation and biodiversity, and these areas would need to be incorporated into the Visual Resource Management mapping as No-go areas should the relevant specialist define this area as not suitable for development.

5.2.3 Mountain and Hill Features

The Matlosana municipal area has a slightly irregular undulating topography dictated by the Vredefort event, which brought about the Vredefort Dome near Parys. The height above sea level ranges between 1 300m and 1 600m, increasing in a general north-westerly direction. The interaction between climate and topography has led to the evolution of a rich biodiversity. The ridges and hills of Klerksdorp have a characteristic range of different aspects, slopes, altitudes, soils and hydrological conditions conducive to heterogeneous abiotic conditions that provide a greater diversity of potential niches for plants and animals than homogeneous landscapes. As a result, many Red Data or threatened species of plants and animals inhabit ridges. In the North West Province, 65% of Red Data plant species have been recorded on ridges (PFAB, 2001). Besides representing habitats, the hills and ridges also serve as important wildlife corridors and provide for movement between defragmented surroundings (ROSENBERG et al., 1997). It is for these reasons that a ridges policy like that which exists for Gauteng, has been recommended in the Provincial Strategic Development Framework (PSDF) for the North West Province (Pg36). (City of Matlosana Municipality, 2009)

As depicted in the photograph below, the Renosterberg Hill is located adjacent to the project area on the western border of the southern portion of the site. The elevated views from this landscape feature are been used for eco-tourism related activities and as such, receptors are likely to have a high sensitivity to landscape change.

Figure 11. Photograph of the Renosterberg Hills located to the west of the site.

5.2.4 Infrastructure, Mining and Road Access

There are not significant roads or major infrastructure located within the project Zone of Visual Influence (ZVI). The main road past the site is the Hartbeesfontein / Dominionville tarred road that connects the main roads of R503 (north) to the N12 (south). There are no

significant tourist destinations in the regional vicinity that would result in tourist related traffic making use of the minor roads located with the project ZVI. There is a substation located to the northeast of the site that provided electricity to the closed Rietkuil Uranium Mine. There is a large power line corridor linking to the substation but this routes to the east away from the proposed site.

Figure 12: Photograph of Rietkuil Substation.

Figure 13: Photograph of partially rehabilitated Rietkuil Tailings Storage Facility as seen from the Southern PV1 site.

5.2.5 Other Renewable Energy Projects

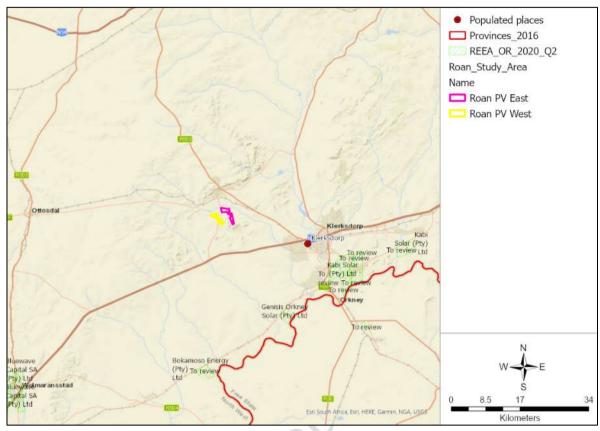


Figure 14: Map depicting DEA Renewable Energy project status.

Even though the area does fall within a REDZ area, there are no other renewable energy projects located within the ZVI that would result is cumulative visual issues associated with landscape cluttering.

5.2.6 Nature and Tourism Activities

As depicted in Figure 15 below, the nearest significant nature conservation areas are the Bosworth and Faan Mentjies Private Nature Reserve. These facilities are not located in the project ZVI.

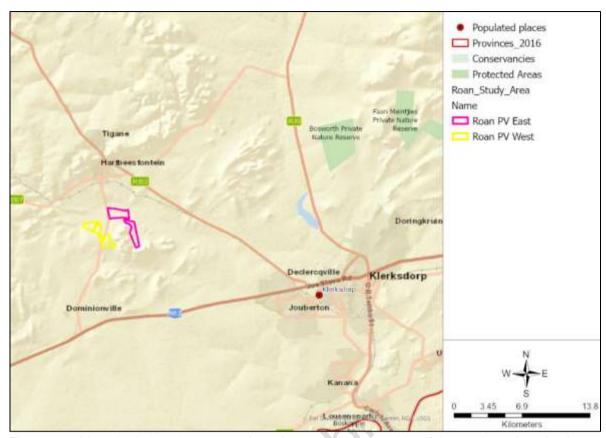


Figure 15: Map depicting the mapped tourism activities outside of the project viewshed.

The nearest tourist related activity is the Renosterberg Safari located adjacent to the site. The area is well established with game and includes two accommodation areas. The following photographs depict the accommodation units. The views from the accommodation look due east and would overlook the proposed PV areas located within the midground.

Figure 16: Photographs depicting the main accommodation.

Figure 17: Photographs depicting the tented camp.

Figure 18: Photographs depicting the view from the top of the Renosterberg with the arrow roughly depicting the extent of the PV area. Also visible is the partially rehabilitated Tailing Storage Facility.

As eco-tourism is emphasised in the local and regional planning, care would need to be taken to ensure that the proposed landscape change does not degrade the views of the main accommodation areas of the Renosterberg Safari areas.

5.3 Project Zone of Visual Influence

The visible extent, or viewshed, is "the outer boundary defining a view catchment area, usually along crests and ridgelines" (Oberholzer, 2005). In order to define the extent of the possible influence of the proposed project, a viewshed analysis was undertaken from the proposed site at a specified height above ground level as indicated in the table below, which makes use of open-source NASA ASTER Digital Elevation Model data (NASA, 2009). The extent of the viewshed analysis was restricted to a defined distance that represents the approximate zone of visual influence (ZVI) of the proposed activities, which takes the scale,

and size of the proposed projects into consideration in relation to the natural visual absorption capacity of the receiving environment. The maps are informative only as visibility tends to diminish exponentially with distance, which is well recognised in visual analysis literature (Hull & Bishop, 1988). The viewshed is strongly associated with the regional topography and as such this topic is address before the viewshed analysis.

5.3.1 Regional Landscape Topography

Making use of the NASA STRM digital elevation model, profile lines were generated for the area within 3km on either side of the project area. The map depicting the regional elevation profile lines can be view in Figure 19 below, with the regional terrain model and profile line locality map in Figure 20 on the following page.

Within the immediate regional topographic context, the minimum elevation is 1361mamsl, the Maximum 1566mamsl and the average 1440mamsl. High ground is to the northwest with drainage to the southeast. To the north of the development site is a low ridgeline lying in an east-west configuration. The town of Hartbeesfontein is located just south of the ridgeline with the upper northern areas creating a shallow plateau. The regional terrain is fairly undulating, with the only main hill feature in close proximity to the proposed site being the Renosterberg Hill located adjacent to the site with an elevation of 1526mamsl, approximately 100m above the average elevation of the adjacent farming areas. With the close proximity of the Renosterberg to the two Roan PV sites, visibility would be strongly divided depending on which site of the hill the development is located.

Figure 19: Elevation Profiles East to West and North to South profiles.

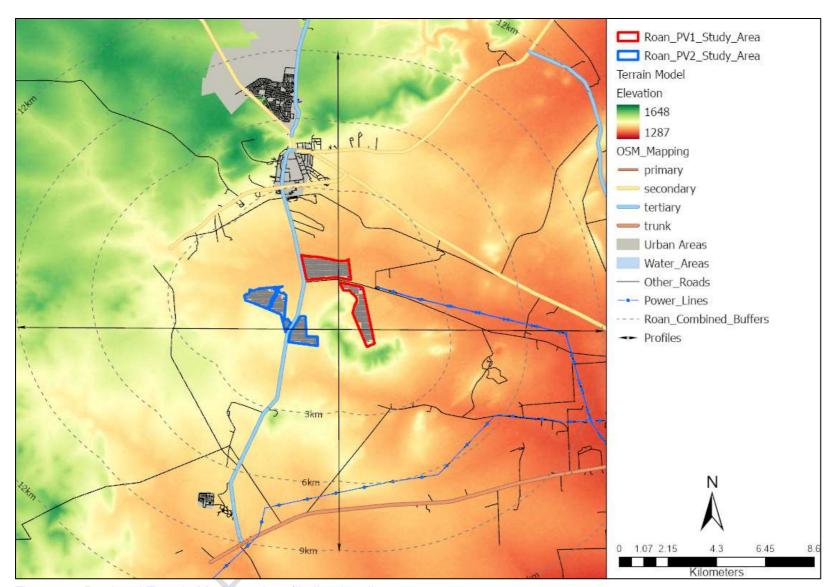


Figure 20: Regional Terrain Model and profile line locality map.

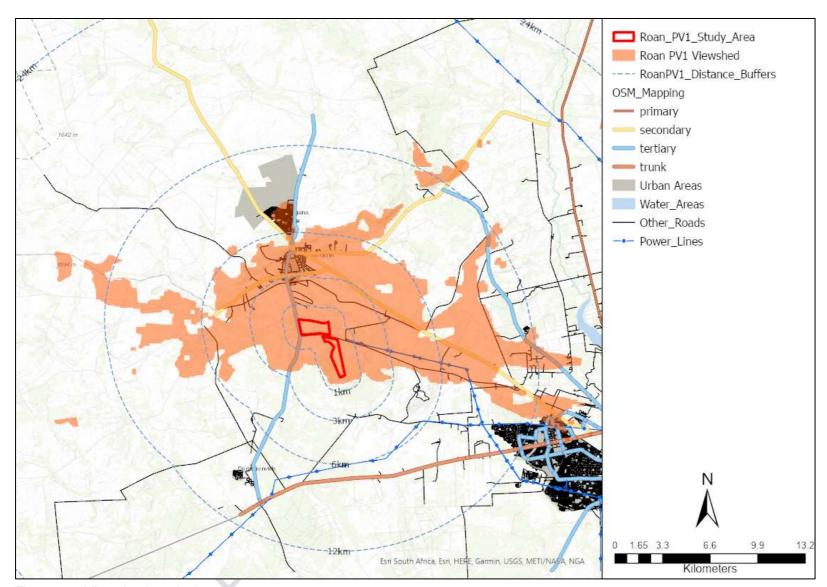


Figure 21: Viewshed analysis map.

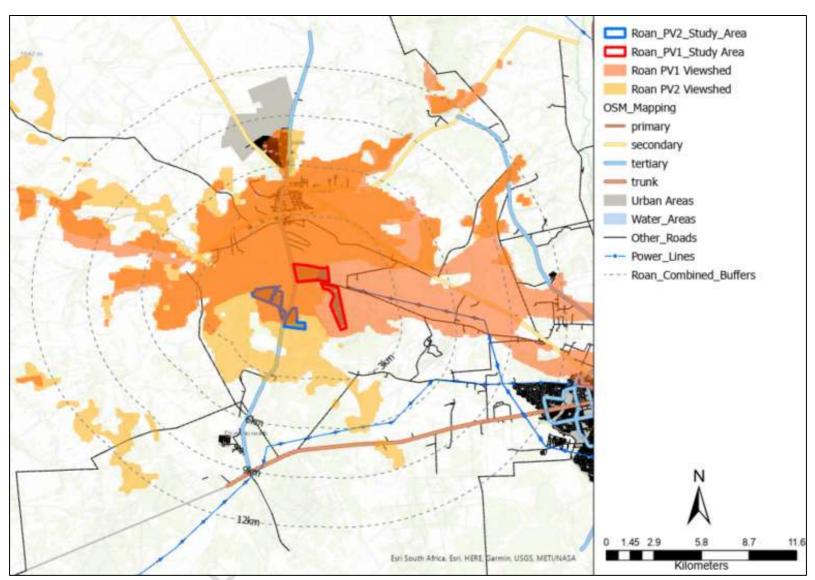


Figure 22: Combined viewshed map depicting the cumulative extent of the two proposed Roan projects.

5.3.2 Viewshed Analysis

A viewshed analysis was undertaken for the site making use of NASA SRTM 30m Digital Elevation Model data. The Offset value for the Roan 1 PV Solar Facility was set above ground to represent the approximate height of the proposed development as reflected in the table below.

Table 12: Proposed Project Heights Table

Proposed Activity	Approx. Height (m)	Terrain Model Extent
Roan 1 PV Solar Facility	3.5m	24km

As can be viewed in Figure 21 on the previous page, the viewshed is mainly east-west oriented in shape and contained by the north and east by raised terrain after the 6km distance. Some expansion to the east is depicted but unlikely to take place due to the wooded vegetation coverage in this area. Views to the south area predominately restricted at the 1km distance due to raised ground. Due to the relatively contained viewshed of the project which is mainly contained to the Foreground/ Mid Ground areas (6km), the Zone of Visual Influence is rated Medium for the Roan PV 1 and Medium to High for the combined viewshed with Roan PV2.

From a cumulative perspective, the combined viewsheds of the two proposed Roan PV projects is likely to dominate the local landscape character within the 3km to 6km distance buffer from the project areas. This has relevance from the Renosterberg Safari & Farm ecotourism venture as both sides of the mountain will be subject to PV landscape changes. For the lower lying farm related receptors, the combined views of the two projects will be limited in that the Renosterberg effectively separates the viewsheds, resulting in less dominating perception of landscape change away from the rural agriculture.

To reduce the 'wrap-around' effect experience for the Renosterberg Safari receptors, it is recommended that the eastern accommodation view is retained as rural farmlands so as to enable the current rural farming/ thornveld landscape character as seen from this locality. This would need to included as a specific project mitigation.

5.4 Receptors and Key Observation Points

As defined in the methodology, KOPs are defined by the Bureau of Land Management as the people (receptors) located in strategic locations surrounding the property that make consistent use of the views associated with the site where the landscape modifications are proposed. The following table identifies the receptors identified within the ZVI, as well as motivates if they have significance and should be defined as KOP for further evaluation in the impact assessment phase. The receptors located within the ZVI, and KOPs view lines are indicated the map on the following page. As motivated and mapped in Figure 23 below, the following receptors have been identified as Key Observation Points and should be used as locations to assess the suitability of the landscape change.

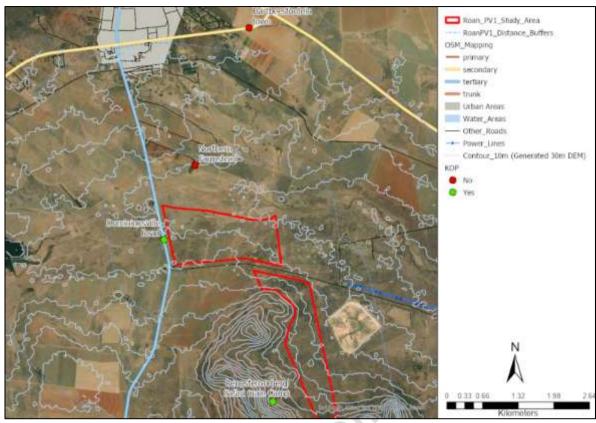


Figure 23: Receptor and Key Observation Point locality map.

Table 13: Receptor and KOP Motivation Table.

ID	NAME	REMARKS	КОР	MOTIVATION
1	Receptor	Hartbeesfontein town	No	The town of Hartbeesfontein is located outside the FG/MG distance zone with landscape change is less likely to be noticeable. The town is heavily wooded restricting views to the south.
27	Receptor	Dominionville Road	Yes	High Exposure to a district road where the landscape change from cultivated landscape would be strongly perceived by receptors.
28	Receptor	Northern Farmstead	No	Although located within the Foreground distance (within 2km), the views to the south area are well screened by large shade trees located around the dwelling, with limited clear visibility from the residence.
29	Receptor	Renosterberg Safari main Camp	Yes	Location 500m to the west of the proposed PV site (southern portion), the camp is located on elevated ground overlooking the southern portion of the site. As the camp is used for eco-tourism, receptor sensitivity to landscape change is likely to be strong.

In order to better understand the visual intrusion of the proposed PV as seen from the Renosterberg Safari camp, the following viewshed map was generated depicting the portion of the proposed PV1 project that would be visible. As is depicted, the southern section of the PV site would be clearly visible given the elevated locality on the site of the mountain.

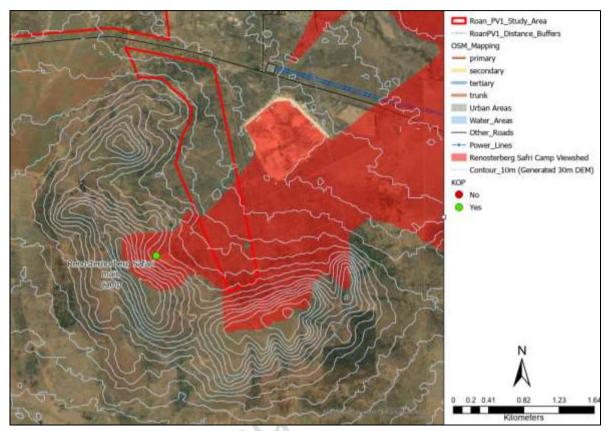


Figure 24: Viewshed analysis depicting the extent to which the PV1 would be visible from the Renosterberg Safari Camp.

6 VISUAL RESOURCE MANAGEMENT

In terms of the VRM methodology, landscape character is derived from a combination of scenic quality, receptor sensitivity to landscape change, and distance of the proposed landscape modification from key receptor points. Making use of the key landscape elements defined in the landscape contextualisation sections above, landscape units are defined which are then rated to derive their intrinsic scenic value, as well as how sensitive people living in the area would be to changes taking place in these landscapes.

6.1 Physiographic Rating Units

The Physiographic Rating Units are the areas within the proposed Roan 1 PV Solar Facility development area that reflect specific physical and graphic elements that define a particular landscape character. These unique landscapes within the project development areas are rated to assess the scenic quality and receptor sensitivity to landscape change, which is then used to define a Visual Resource Management Class for each of the site's unique landscape/s. The exception is Class I, which is determined based on national and international policy / best practice and landscape significance and as such are not rated for

scenic quality and receptor sensitivity to landscape change. Based on the SANBI mapping and the site visit to define key landscape features, the following broad-brush areas were tabled and mapped in Figure 25 below.

Table 14: Physiographic Landscape Rating Units.

Landscapes	Motivation
	The area includes the previously modified Vaal-Vet Sandy Grassland
Vaal-Vet Sandy	located on the northern portion of the proposed development site. The
Grassland	western portion of this site has been recently cultivated and cleared of
Grassiariu	trees. The eastern portion of this area has been used for cattle farming
	and the thornveld vegetation has been retained.
	This area is located on the southern portion of the proposed PV site
Klerksdorp	where the predominant vegetation is defined as Klerksdorp Thornveld.
Thornveld	The area is highly vegetated with many small to medium sized trees that
	characterised the thornveld.
	This area is the portion of the proposed southern PV site that is currently
	characterised by Klerksdorp Thornveld but falls within the High Exposure
High Exposure	viewshed from the adjacent Renosterberg Safari eco-tourism camp.
Safari Camp	Landscape change within this area will fall directly within view of the
	camp, resulting in a strong change to the local landscape resources that
	are being used as a resource for the eco-tourism venture.

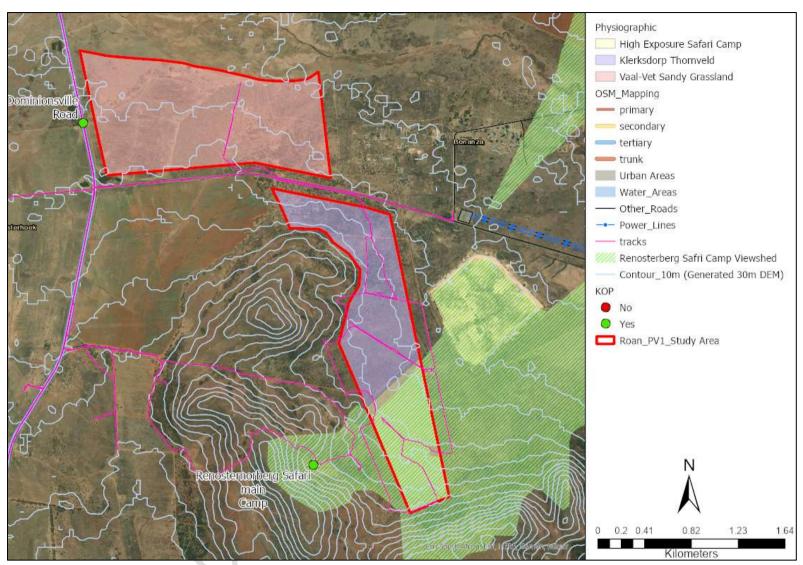


Figure 25: Physiographic Rating Units demarcated within the defined study area.

Table 15: Scenic Quality and Receptor Sensitivity Rating.

	Scei	nic Qu	ality							Rece	eptor	Sensi	tivity				
Landscape Rating Units	A= scenic quality rating of ≥19; B = rating of 12 – 18, C= rating of ≤11						H = High; M = Medium; L = Low				VRM						
Attribute	Landform	Vegetation	Water	Colour	Scarcity	Adjacent Landscape	Cultural Modifications	uns	Rating	Type of Users	Amount of Use	Public Interest	Adjacent Land Uses	Special Areas	Rating	Inventory Class	Management Class
Significant Landscape Features (Heritage / Ecological / Hydrology)		(Class I is not rated)															
Vaal-Vet Sandy Grassland	1	2	3	3	2	4	0	15	В	М	М	L	L	L	L	IV	Ш
Klerksdorp Thornveld	1	2	3	3	2	4	0	15	В	М	М	L	L	L	L	IV	Ш
High Exposure Safari Camp	1	2	3	3	2	4	0	15	В	Н	М	Н	Н	Н	Н	II	II

Red colour indicates change in rating from Visual Inventory to Visual Resource Management Classes motivated in the following section.

The **Scenic Quality** scores are totalled and assigned an A (High scenic quality), B (Moderate scenic quality) or C (Low scenic quality) category based on the following split: A = scenic quality rating of ≥ 19 ; B = rating of 12 - 18, C = rating of ≤ 11 (USDI., 2004).

Receptor Sensitivity levels are a measure of public concern for scenic quality. Receptor sensitivity to landscape change is determined by rating the key factors relating to the perception of landscape change in terms of Low to High.

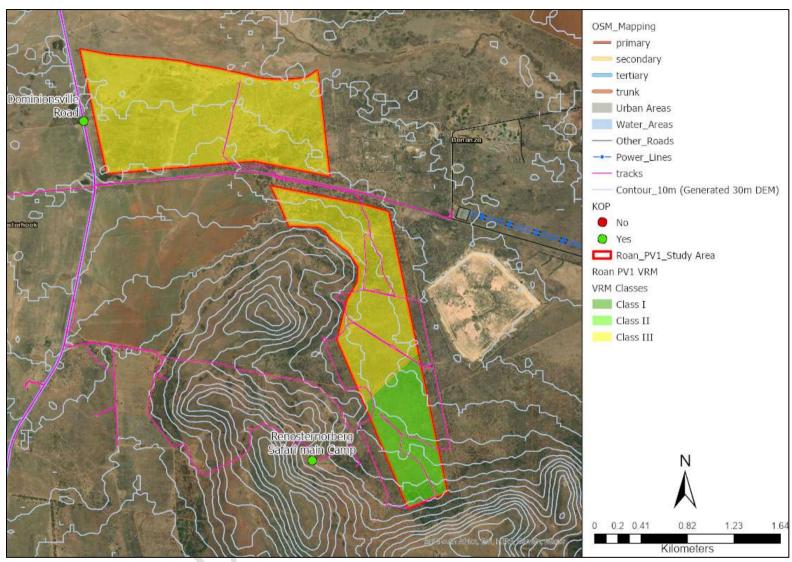


Figure 26: Visual Resource Management Classes map.

6.2 Scenic Quality Assessment

The scenic quality of the proposed development site is rated Medium. This is predominantly due to the Thornveld vegetation, the proximity to the Renosterberg Hill as well as the surrounding rural agricultural landscapes. While water is not apparent on site, there are likely to be drainage lines, but they are not a dominating feature in the landscape. Terrain of the area is essentially flat in gradient, with some slope on the southern portion of the land. Colours were interesting with the darker greens of the thornveld contrasting with the khaki colours of the grasslands. Adjacent Scenery includes the Renosterberg Hill, adding value to the locality, but also the close Rietkuil Uranium Tailings Dam, that detracts from the landscape character.

6.3 Receptor Sensitivity Assessment

Receptor sensitivity to landscape changes is rated Medium to High. Type of Users for the northern portion of the site would be related to rural agricultural practices of the region, with amount of use limited. As this type of rural agricultural landscape is fairly common in the region, Public Interest is likely to be Low. Adjacent Users is rated High due to the close proximity views from the Renosterberg Safari & Farm, located on the lower regions of the hill. Overlooking the southern portion of the site, with High Exposure (less than 500m), the maintenance of visual quality would be a major concern for the game farm owners, as well as the tourists. Although not a proclaimed conservation area, tourism is emphasised in the local and regional planning and rated higher for Special Areas.

6.4 Visual Resource Management (VRM) Classes

The BLM has defined four Classes that represent the relative value of the visual resources of an area and are defined making use of the VRM Matrix below:

- i. Classes I and II are the most valued
- ii. Class III represent a moderate value
- iii. Class IV is of least value

6.4.1 Class I

Class I is assigned when legislation restricts development in certain areas. The visual objective is to preserve the existing character of the landscape, the level of change to the characteristic landscape should be very low and must not attract attention. A Class I visual objective was assigned to the following features within the proposed development area due to their protected status within the South African legislation:

- Any river / streams and associated flood lines buffers identified as significant in terms
 of the WULA process.
- Any wetlands identified as significant in terms of the WULA process.
- Any ecological areas (or plant species) identified as having a high significance.
- Any heritage area identified as having a high significance.

6.4.2 VRM Class II

The Class II objective is to retain the existing character of the landscape and the level of change to the characteristic landscape should be low. The proposed development may be seen but should not attract the attention of the casual observer, and should repeat the basic

elements of form, line, colour and texture found in the predominant natural features of the characteristic landscape.

• High Exposure Safari Camp

The area is located in close proximity to the Renosterberg Safari & Farm camp. While views do include the closed Rietkuil Uranium Mine Tailings, the tailings is partially rehabilitated on the crest reducing visual intrusion to moderate levels. Views from the camp accommodation would look directly over the PV site, generating strong levels of landscape change.

6.4.3 VRM Class III.

The Class III objective is to partially retain the existing character of the landscape, where the level of change to the characteristic landscape should be moderate. Management activities may attract attention but should not dominate the view of the casual observer, and changes should repeat the basic elements found in the predominant natural features of the characteristic landscape. The following landscape was defined as having Class III Visual Objectives where development would be most suitable:

- Vaal-Vet Sandy Grassland
- Klerksdorp Thornveld

While offering some value to the landscape due to the medium levels of scenic quality, landscape change to the northern area outside of the direct views of the Renosterberg Safari areas is likely to be Medium to Low. The areas also fall within the Klerksdorp REDZ where renewable energy project is promoted.

6.4.4 VRM Class IV

As the area is zoned agricultural and located adjacent to an area that does have scenic value and could carry tourist receptors in the area region, no Class IV areas were defined.

7 VISUAL IMPACT ASSESSMENT

Impacts are defined in terms of the standardised impact assessment criteria provided by the environmental practitioner. Using the EAP impact assessment criteria, the potential environmental impacts identified for the project were evaluated according to severity, duration, extent and significance of the impact. The potential occurrence and cumulative impact (as defined in the methodology) was also assessed. In order to better understand the nature of the severity of the visual impacts, a Contrast Rating exercise was undertaken.

7.1 Contrast Rating and Photomontages

As indicated in the methodology, a contrast rating is undertaken to determine if the VRM Class Objectives are met. The suitability of a landscape modification is assessed by comparing and contrasting the existing receiving landscape to the expected contrast that the proposed landscape change will generate. This is done by evaluating the level of change to the existing landscape by assessing the line, colour, texture and form, in relation to the visual objectives defined for the area.

The following criteria are utilised in defining the DoC:

• None: The element contrast is not visible or perceived.

- Weak: The element contrast can be seen but does not attract attention.
- **Moderate**: The element contrast begins to attract attention and begins to dominate the characteristic landscape.
- **Strong**: The element contrast demands attention, will not be overlooked, and is dominant in the landscape.

As this is a Basic Assessment due to the location of the study area within the Klerksdorp REDZ, no photomontages were generated. The expected positioning of the PV area in the landscape was provisionally depicted on KOP photographs in the Annexure. The scale and positioning of the PV areas was informed by a 3D model that replicated the view of the area where the landscape change is proposed as per the example below. The following table identified the KOP that would need to be used to assess the suitability of the landscape change.

Figure 27. 3D model view as seen from Renosterberg Safari Accommodation Key Observation Point with the PV Survey Area represented as red area.

Table 16: Contrast Rating Key Observation Points Table

	Exposu	Exposure			Landscape Elements					
Key Observation Point	Distance	Exposure	Mitigation	Form	Line	Colour	Texture	Degree of Contrast	Visual Objectives Met?	
Dominionville Road	100m	High	W/Out	W	S	S	М	S	No	
Dominionvine Road	100111	riigii	With	N	М	М	М	М	Yes	
Renosterberg	500m	Lliab	W/Out	М	S	S	S	S	No	
Safari main camp	300111	High	With	N	W	W	W	W	Yes	

^{*} S = Strong, M = Medium, W = Weak, N = None

Dominionville Road

As seen from the Dominionville Road travelling in a north and southbound direction at a similar height, there is unlikely to be much visible Form change as the PV structures would be placed on surface of the ground with limited excavation (if at all). Without vegetation screening along the road, the Line created by the PV panels would be Strong, as well as the

black colour and shiny texture. Without mitigation the visual intensity is likely to be strongly experienced, detracting from the higher scenic quality of the rural agrarian landscape. With mitigation and the planting of Thornveld trees in the buffer between the road and the PV site, the trees would effectively screen the panels over time. As such, the Class III visual objective would be met allowing for the retaining of the local landscape character, but with the landscape change still being a visual element in the landscape. As there are existing Thornveld trees along the road indicating that the trees can be established in the region, the mitigation confidence is rated High.

Regarding the grid connection, the views of the short connection to the existing Roan Substation would not fall within the route ZVI. The minor road along the routing would see the power line on either side of the road creating a boxing effect. However, the VAC levels of the receiving environment are Higher due to the close proximity to the substation, as well as clear views of the closed Rietkuil Uranium Mine and Tailings Dam Facility. Within this landscape context, the contrast generated by the proposed power lines would be moderated.

Renosterberg Safari main Camp

Located on the side of the Renosterberg Hill overlooking the proposed PV site with High levels of Visual Exposure (500m), no screening mitigation is achievable on site, with Strong Line, Colour and Texture contrast. Form change would be limited as the PV panels would follow the landform. The resulting Strong DoC would not meeting the Class II Visual Resource Management Objective, degrading the landscape resources used in the ecotourism venture. Mitigation would require the removal of the PV panels from the southern portion of the site, retaining this area as farmlands. This would place the landscape change outside the dominant view location of the accommodation camp, with no Form change, and Weak Line, Colour and Texture change. Without mitigation, the Class II VRM Objective would be met resulting in loss of visual resources. With mitigation and the retaining of the southern portion as a No-go area, the views from the Renosterberg Safari camp would be retained and the VRM Class II Visual Objectives would be met.

In terms of the power line, the Renosterberg Safari receptors would not be exposed to landscape change associated with the power lines.

7.2 Roan 1 PV Project Impact Ratings and Motivation

The following visual impacts could take place during the lifetime of the *proposed* Roan 1 PV Solar Facility project:

Construction:

- Loss of site landscape character due to the removal of vegetation and the construction of the PV structures and associated infrastructure.
- Wind-blown dust due to the removal of large areas of vegetation.
- Possible soil erosion from temporary roads crossing drainage lines.
- Wind-blown litter from the laydown and construction sites.

Operation:

Massing effect in the landscape from a large-scale modification.

- On-going soil erosion.
- On-going windblown dust.

Decommissioning:

- Movement of vehicles and associated dust.
- Wind-blown dust from the disturbance of cover vegetation / gravel.

Cumulative:

 A long-term change in land use setting a precedent for other similar types of solar energy projects.

Table 17: Construction Phase Impacts Table

Project phase		Construct	ion Phase					
Impact	Short-term	Short-term landscape change from the current rural agricultural sense of						
		place to the semi-ind	ustrial RE la	ndscape.				
Description	Loss of site landscape character due to the removal of vegetation and							
of impact	the	the construction of the PV structures and associated infrastructure.						
	• Win	d-blown dust due to the rem	noval of large	areas of vegetation.				
	• Pos	sible soil erosion from temp	orary roads c	rossing drainage lines.				
	• Win	d-blown litter from the laydo	wn and cons	truction sites.				
B#141 1. 1114	12.1	The 190 control 190 control	d . C C	· · · · · · · · · · · · · · · · · · ·				
Mitigability	High	The mitigation will reduce	the significan	ce of the visual and				
Detential	D. (landscape impacts	CIL D	(l O . f !				
Potential		ain the visible areas in front	of the Renos	terberg Safari				
mitigation		ommodation as No-go.		on along the DEOF and I'm				
		nting of indigenous, endemic		_				
		cattered pattern reflecting na	iturai scattere	d growin patterns.				
		ees per 2500m square.						
		w nature growth of the trees	s in the butter	without the trees				
		oming a fire risk.						
		w cattle access to the buffer						
		retain a link to the rural agr		•				
		nt rescue of saplings on t						
		se along the road such th	at they do n	ot shade the panel or				
	cre	ate a fire risk.						
Assessment	Wi	thout mitigation		With mitigation				
Nature	Negative	thout mitigation	Negative	viui iiiugation				
Duration	Short term	Impact will last	Short term	Impact will last				
Duration	Short term	approximately 8 months.	Short term	approximately 8 months.				
Extent	Local	Contained within the	Local	Contained within the				
Extent	Local	Foreground/ Mid Ground	Lucai	Foreground/ Mid Ground				
		(approx. 6km from site)		(approx. 6km from site)				
Intensity	High	Natural and/ or social	Low	Natural and/ or social				
intensity	l High	functions and/ or	LOW	functions and/ or				
		processes are strongly		processes				
		altered.		are somewhat altered.				
Probability	Likely	The impact is likely to	Likely	The impact is likely to				
Tiobability	Likely	occur	Likely	occur.				
Confidence	Sure	Substantive supportive	Sure	Substantive supportive				
Joinnaence		data exists to verify the	Juic	data exists to verify the				
		assessment		assessment				
	I	accomment	1	addoddiiloiit				

Reversibility	Medium	The affected landscape will be able to recover from the impact as there are minimal cut/fills and the thornveld vegetation will regrow over time to some degree.	Medium	The affected landscape will be able to recover from the impact as there are minimal cut/fills and the thornveld vegetation will regrow over time to some degree.
Significance		dium to High (-ve)		dium to Low (-ve)
Comment on significance	would be re Renosterbe significantly visual resou for eco-tour change is m of the Rietki Dam, that is and clearly	gation the vegetation moved in front view of the rg Safari Camp, detracting from current arces that are being used ism. The landscape noderated by the presence uil Uranium Mine Tailings a partially in the viewshed visible (pending n that may still take place).	Intrusion are said accommentural/ farm existing sen accommodaloss of vege from higher but these vices and accommodaloss.	
Cumulatives		High (-ve)		Medium (-ve)
Cumulative impacts	negatively in resources in the planning	gation the precedent could nfluence tourist related in the region, undermining gemphasis encouraging related tourism.	minimalised precedence related land tendency fo energy proje	ion, the cumulative risk is , setting a positive for accommodating tourist scapes. As there is a r clustering of renewable ects, some risk remains action of other RE projects y.

Table 18: Operation Phase Impacts Table

	I		_				
Project phase		Operation					
Impact	Long term	Long term landscape change from the existing rural agricultural setting					
		to that of a semi-in	dustrial land	scape.			
Description	• Mas	sing effect in the landscape	from a large	-scale modification.			
of impact	• Soil	erosion.					
	• Wind	dblown dust.					
Mitigability	Medium to	The mitigation will reduce	the significar	nce of the visual and			
	High	landscape impacts					
Potential	• On-g	going soil erosion preventio	n.				
mitigation	• On-g	going windblown dust mana	agement and	the planting of vegetation			
	cove	er of the impacted areas.					
	Light spillage management.						
	∣ • Lign	t spillage management.					
Assessment		t spillage management.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Vith mitigation			
Assessment Nature			Negative	With mitigation			
	Wit			With mitigation Impact will last			
Nature	With Negative	thout mitigation	Negative				
Nature	With Negative	thout mitigation Impact will last	Negative	Impact will last			
Nature Duration	With Negative Long term	Impact will last approximately 20 years	Negative Long term	Impact will last approximately 20 years			
Nature Duration	With Negative Long term	Impact will last approximately 20 years Contained within the	Negative Long term	Impact will last approximately 20 years Contained within the			
Nature Duration	With Negative Long term	Impact will last approximately 20 years Contained within the Foreground/ Mid Ground	Negative Long term	Impact will last approximately 20 years Contained within the Foreground/ Mid Ground			
Nature Duration Extent	With Negative Long term Local	Impact will last approximately 20 years Contained within the Foreground/ Mid Ground (approx. 6km from site) Natural and/ or social	Negative Long term Local	Impact will last approximately 20 years Contained within the Foreground/ Mid Ground (approx. 6km from site) Natural and/ or social			
Nature Duration Extent	With Negative Long term Local	Impact will last approximately 20 years Contained within the Foreground/ Mid Ground (approx. 6km from site)	Negative Long term Local	Impact will last approximately 20 years Contained within the Foreground/ Mid Ground (approx. 6km from site)			

		processes are strongly		processes			
		altered.		are somewhat altered.			
Probability	Likely	The impact is likely to	Likely	The impact is likely to			
		occur		occur.			
Confidence	Sure	Substantive supportive	Sure	Substantive supportive			
		data exists to verify the		data exists to verify the			
		assessment		assessment			
Reversibility	Medium	The affected landscape	Medium	The affected landscape will			
		will be able to recover		be able to recover from			
		from the impact as there		the impact as there are			
		are minimal cut/fills and		minimal cut/fills and the			
		the thornveld vegetation		thornveld vegetation will			
		will regrow over time to		regrow over time to some			
		some degree.		degree.			
Significance		High (-ve)		Medium (-ve)			
Comment on	The long-term	n time periods would	With mitigati	on the High Visual Intrusion			
significance	_	ocal landscape resources	areas in the front view of the said				
ŭ	used by the R	enosterberg Safari	accommodation are retain as natural/				
		on. Un-necessary light	farming, maintaining the existing sense of				
		des into the current dark sky	place for the accommodation areas.				
	night-time ser	nse of place.	Views of the loss of vegetation will still be				
			visible from higher vantage points on the hill, but these views also include the				
			tailings facility that detract from the				
				e. Light spillage			
				: limits light pollution to			
			acceptable le	vels.			
Cumulatives		High (-ve)		Medium (-ve)			
Cumulative	_	gation the precedent could	_	on, the cumulative risk is			
impacts		luence tourist related	-	setting a positive			
		he region, undermining the	-	or accommodating tourist			
		hasis encouraging elated tourism.		capes. As there is a clustering of renewable			
	blodiversity it	eiatea tourisiii.	=	cts, some risk remains with			
	70			n of other RE projects to the			
			vicinity.	and the project to the			

Table 19: Decommissioning Phase Impacts Table

Project phase	Decommissioning Phase				
Impact	Short-term landscape change from the removal of the PV structures, followed by rehabilitation of the impacted areas back to agricultural lands.				
Description of impact	pow • Win	vement of large vehicles required for the removal of the PV panels, ver lines, mono-poles and substations. id-blown dust from impacts to vegetation. id-blown litter from the laydown and deconstruction sites.			
Mitigability	Medium	The mitigation will reduce the significance of the visual and landscape impacts			

Potential	Dust suppression measures.						
mitigation	• Litte	Litter management measures.					
	• Reh	 Rehabilitation of impacted areas to agriculturally viable grasslands. 					
Assessment	Wi	thout mitigation	With mitigation				
Nature	Negative		Negative				
Duration	Short term	Impact will last approximately 8 months.	Short term	Impact will last approximately 8 months.			
Extent	Local	Contained within the Foreground/ Mid Ground (approx. 6km from site)	Local	Contained within the Foreground/ Mid Ground (approx. 6km from site)			
Intensity	Medium	Natural and/ or social functions and/ or processes are moderately altered.	Medium	Natural and/ or social functions and/ or processes are moderately altered.			
Probability	Likely	The impact is likely to occur	Likely	The impact is likely to occur.			
Confidence	Sure	Substantive supportive data exists to verify the assessment	Sure	Substantive supportive data exists to verify the assessment			
Reversibility	Medium	The affected landscape will be able to recover from the impact as there are minimal cut/fills and the thornveld vegetation will regrow over time to some degree.	Medium	The affected landscape will be able to recover from the impact as there are minimal cut/fills and the thornveld vegetation will regrow over time to some degree.			
Significance		Medium (-ve)		Low (-ve)			
Comment on significance	impacts are and outside	d vehicle movement short-term in Duration, the main views of the rg Safari accommodation.	and from ve	sion from wind blown dust hicle movement is limited rm in Duration.			
Cumulatives		Medium (-ve)		None (-ve)			
Cumulative impacts	vegetation to associated values longer time is likely to o	abilitation, the return of the of the site and the visual impacts would last a period. However, as this ccur naturally, the risk is limited.	can result in	anagement of rehabilitation the return of the o that of a functional area.			

8 Preliminary Environmental Management Plan

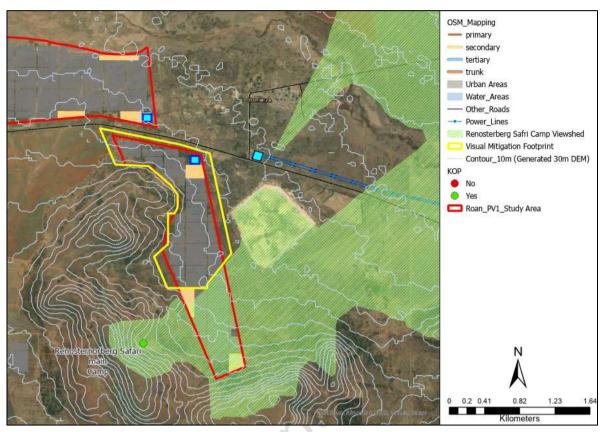


Figure 28. Mitigation map depicting recommended shift to the proposed development footprint.

8.1 PV Project

8.1.1 Construction Phase

- The southern proportion of the PV area should be retained as a No-go area and continue to functional as an agricultural area, as this area forms a key vista of the Renosterberg Safari accommodation.
- Bushveld trees surrounding the proposed PV sites should be retained for visual screening, with further indigenous trees allowed to grow. Saplings located within the development area should be relocated to the buffer verge such that the trees do not pose a shade or fire risk to the panels.
- In order to retain the functional rural agricultural sense of place, the buffer areas around the PV site should be fenced off and used for cattle grazing to reduce the risk of fire.
- Following the removal of the vegetation, wind blown dust during construction should be monitored by the ECO to ensure that it does not become a nuisance factor to the local receptors. Should excessive dust be generated from the movement of vehicles on the roads such that the dust becomes visible to the immediate surrounds, dustretardant measures should be implemented under authorisation of the ECO.
- Topsoil from the footprints of the road and structures should be dealt with in accordance with EMP.
- The buildings should be painted a grey-brown colour.

- Fencing should be simple, diamond shaped (to catch wind-blown litter) and appear transparent from a distance. The fences should be checked on a monthly basis for the collection of litter caught on the fence.
- Signage on the Dominionville Road should be moderated.
- Lights at night have the potential to significantly increase the visual exposure of the proposed project. It is recommended that mitigations be implemented to reduce light spillage (refer to appendix for general guidelines).
- Limit the height of the PV panels to 3.5m above ground level.

8.1.2 Operation Phase

- Control of lights at night to allow only local disturbance to the current dark sky night landscape (refer to appendix for general guidelines).
- Continued erosion control and management of dust.

8.1.3 Decommissioning Phase

- All structures should be removed and where possible, recycled.
- Building structures should be broken down (including foundations).
- The rubble should be managed according to NEMWA and deposited at a registered landfill if it cannot be recycled or reused.
- All compacted areas should be rehabilitated according to a rehabilitation specialist.
- Monitoring for soil erosion should be undertaken on a routine basis.

9 Preliminary Opportunities and Constraints

9.1 Roan 1 PV Project

9.1.1 Opportunities

- The ZVI is contained to the local area with Foreground/ Mid Ground distancing due to undulating terrain and thornveld vegetation. This would result in a moderate zone of visual influence.
- National energy objectives for renewable energy and job creation will be met with the site located within the REDZ area.
- No significant landscape features located within the ZVI.

9.1.2 Constraints

 High Exposure views from adjacent Renosterberg Safari & Farm game farm and hunting accommodation areas without mitigation.

9.2 Roan 1 Grid Connect

9.2.1 Opportunities

- The ZVI is contained to the local area with immediate locality distancing due to thornveld vegetation and topographic screening to the south. This would result in a contained zone of visual influence.
- National energy objectives for renewable energy and job creation will be met with the site located within the REDZ area.
- No significant landscape features located within the ZVI with the old Rietkuil Uranium Mine Tailings Dam significantly degrading the local landscape character.
- Short section of power line.

9.2.2 Constraints

High Exposure views from adjacent minor road.

9.3 No-Go Option

9.3.1 Opportunities

- The current rural agricultural land uses of the property do add to the regional sense of place, due to the remoteness of the locality and the undulating fynbos landscape.
- Agricultural productivity from cattle farming creates some employment opportunities.

9.3.2 Constraints

National energy objectives for renewable energy and job creation will not be met.

Findings

The findings of the comparative analysis for the Visual and Landscape components of the project assessment, are the proposed PV landscape modification is preferred to the No-go Option but only with mitigation. Without mitigation, the precedent set for landscape degradation in close proximity to existing eco-tourist activities would not justify the benefits. While the study area does fall within the Klerksdorp REDZ, the local and regional planning also call for protection of landscape and visual resources associated with tourism. As the landscape is to some degree already compromised by the previous mining activities adjacent to the site, and no significant landscape features are located within the project ZVI, the PV landscape change would be acceptable, with mitigation.

10 CONCLUSION (PENDING SCOPING INPUTS)

It is the recommendation that the proposed development should be authorised WITH MITIGAITON for the following key reasons:

- Alignment with National REDZ and local planning related to energy and job creation.
- Moderated ZVI that does include mining related landforms that do detract from the local sense of place to some degree.
- Receptors sensitive to landscape change are likely to be limited but do include the Renosterberg Safari & Farm who have expressed concern regarding the location of the PV in from on their eco-tourism accommodation.

Mitigation required to ensure that the landscape change remains congruent with the rural agricultural landscape character:

- Retaining the southern portion in from the Renosterberg Safari accommodation as a No-go area.
- Retain a 100m buffer from the tarred roads where existing Thornveld trees are retained and encouraged to grow but fenced in such a manner as to allow cattle access to the buffer strips for grazing and grass management purposed. This would need to be managed such that this area does not become a fire risk to the project.

11 BIBLIOGRAPHY

- City of Matlosana Municipality . (2009). City of Matlosana SDF .
- Department of Environment Affairs. (2013). DEA National Wind and Solar PV Strategic Environmenal Assessment.
- Dr Kenneth Kaunda District Municipality. (2017). *Final Integrated Development Plan 2017-2022*.
- Hull, R. B., & Bishop, I. E. (1988). Scenic Impacts of Electricity Power Mine: The Influence of Landscape Type and Observer Distance. Journal of Environmental Management.(27) Pg 99-108.
- IEMA. (2002). U.K Institute of Environmental Management and Assessment (IEMA). 'Guidelines for Landscape and Visual Impact Assessment' Second Edition, Spon Press. Pg 44.
- IFC. (2012). International Finance Corporation (IFC) prescribes eight performance standards (PS) on environmental and social sustainability. Millennium Ecosystem Assessment. 2005.
- Millennium Ecosystem Assessment. (2005). *Ecosystems and Human Well-Being: Synthesis.* Washington D.C: Island Press.
- NASA, A. G. (2009). Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model Version 2 (GDEM V2 2011). Ministry of Economy, Trade, and Industry (METI) of Japan and United States National Aeronauti.
- NELPAG. (n.d.). New England Light Pollution Advisory Group (NELPAG) http://cfa/ www.harvard.edu/cfa/ps/nelpag.html) and Sky & Telescope http://SkyandTelescope.com/). NELPAG and Sky & Telescope support the International Dark-Sky Association (IDA) (http://www.darksky.o.
- North West Provincial Government. (2013). North West Provincial Development Plan.

 Oberholzer, B. (2005). Guideline for involving visual and aesthetic specialists in EIA processes: Edition 1. CSIR Report No ENV-S-C 2005 053 F. Republic of South Africa, Provincial Government of the Western Cape, Department of Environmental Affairs and Deve.
- Sheppard, D. S. (2000). Guidance for crystal ball gazers: Developing a code of ethics for landscape visualization. Department of Forest Resources Management and Landscape Architecture Program, University of British Columbia, Vancouver, Canada.
- South African National Biodiversity Institute. (2018). Vegetation Map of South Africa, Lesotho and Swaziland.
- The Landscape Institute. (2003). *Guidelines for Landscape and Visual Impact Assessment* (Second ed.). Spon Press.
- USDI., B. (2004). Bureau of Land Management, U.S. Department of Interior. 2004. Visual Resource Management Manual 8400.
- www.hawaiirenewableenergy.org/Villamesias2. (n.d.).

12 ANNEXURE A: SITE VISIT PHOTOGRAPHS AND COMMENTS

The following photographs were taken during the field survey. The text below the photograph describes the landscape and visual issues of the locality, if applicable.

ID	1
NAME	Hartbeesfontein Sense of Place
REMARKS	View from Hartbeesfontein towards the Rietkuil Uranium Mine Tailings Dam that does
	influence the sense of place.
REC_TIME	01/22/2022 07:51:04.000 SAST
LATITUDE	-26.77074
LONGITUDE	26.44128

ID	2
NAME	Hartbeesfontein Sense of Place
REMARKS	View from Hartbeesfontein of the large grain silo defining the area as an agricultural
	town.
REC_TIME	01/22/2022 07:51:04.000 SAST
LATITUDE	-26.77074
LONGITUDE	26.44128

ID	2
NAME	Dominionville Road
REMARKS	KOP view north towards Roan PV1 northern site with the Rietkuil Tailings Dam in the
	background
REC_TIME	01/22/2022 08:06:21.000 SAST
LATITUDE	-26.7906
LONGITUDE	26.42388167

ID	3
NAME	Dominionville Road Receptor
REMARKS	KOP view north towards Roan PV2 northern site as seen from the Dominionville Road
	southbound.
REC_TIME	01/22/2022 08:06:21.000 SAST
LATITUDE	-26.7906
LONGITUDE	26.42388167

ID	3
NAME	Roan PV1 Site
REMARKS	Site SoP of western portion depicting grasslands and small scattered trees.
REC_TIME	01/22/2022 08:10:17.838 SAST
LATITUDE	-26.80301597
LONGITUDE	26.42876733

ID	4
NAME	Roan PV2 Power Line Site
REMARKS	View from the farm road along the proposed Roan PV2 power line corridor.
REC_TIME	01/22/2022 08:37:09.000 SAST
LATITUDE	-26.8114
LONGITUDE	26.42591333

ID	5
NAME	Roan PV2 PV Site
REMARKS	View from the western portion of PV2 to the northwest with Jagspruit River and farm
	dams in the midground.
REC_TIME	01/22/2022 08:49:20.541 SAST
LATITUDE	-26.81860458
LONGITUDE	26.40825748

ID	5
NAME	Roan PV2 PV Receptors
REMARKS	Zoomed view across the valley to the town of Hartbeesfontein to the north.
REC_TIME	01/22/2022 08:49:20.541 SAST
LATITUDE	-26.81860458
LONGITUDE	26.40825748

ID	6
NAME	Roan PV2 Central Site
REMARKS	View east from the Roan PV2 central site with the grasslands in the foreground and
	the Renosterberg hill in the background.
REC_TIME	01/22/2022 09:02:56.689 SAST
LATITUDE	-26.81663394
LONGITUDE	26.42005082

ID	7
NAME	Roan PV2 Central Site
REMARKS	View east from the Roan PV2 central site of typical limited agricultural infrastructure
	and the Renosterberg hill in the background.
REC_TIME	01/22/2022 09:20:28.000 SAST
LATITUDE	-26.82720333
LONGITUDE	26.42225167

ID	7
NAME	Roan PV2 Central Receptor
REMARKS	View east towards the telephone poles located along the Dominionville Road located
	100m from the road.
REC_TIME	01/22/2022 09:20:28.000 SAST
LATITUDE	-26.82720333
LONGITUDE	26.42225167

ID	8
NAME	Roan PV1 South Site
REMARKS	View east from site of the Rietkuil Mine Tailings Dam located adjacent to the site that
	degrades the local sense of place.
REC_TIME	01/22/2022 10:02:42.065 SAST
LATITUDE	-26.82275011
LONGITUDE	26.45243179

ID	8
NAME	Roan PV1 South Site
REMARKS	Zoomed view of the Rietkuil Mine Tailings Dam and partial rehabilitation on the top
	and erosion of the sides walls.
REC_TIME	01/22/2022 10:02:42.065 SAST
LATITUDE	-26.82275011
LONGITUDE	26.45243179

ID	9
NAME	Roan PV1 South Site
REMARKS	View west from the site of the Renosterberg Hill in the background owned by
	Renosterberg Safari and Farming.
REC_TIME	01/22/2022 10:06:55.000 SAST
LATITUDE	-26.83191667
LONGITUDE	26.45622333

ID	10	
NAME	Roan PV1 South Receptor	
REMARKS	Zoomed view of the Renosterberg Safari accommodation and Lion enclosures overlooking the southern portion of the site, located 550m from the proposed development area.	
REC_TIME	01/22/2022 10:14:51.000 SAST	
LATITUDE	-26.83263833	
LONGITUDE	26.45306333	

ID	11
NAME	Roan PV1 South Site
REMARKS	View southwest from site along the existing fence line important for management of
	existing cattle farming.
REC_TIME	01/22/2022 10:27:01.040 SAST
LATITUDE	-26.82550812
LONGITUDE	26.4476645

ID	12
NAME	Roan PV1 South Site
REMARKS	Elevated view of the slimes dam located adjacent to the site.
REC_TIME	01/22/2022 10:38:12.000 SAST
LATITUDE	-26.81976
LONGITUDE	26.447505

ID	12
NAME	Roan PV1 South Site
REMARKS	View west of the higher ground and steeper slopes adjacent to the site.
REC_TIME	01/22/2022 10:38:12.000 SAST
LATITUDE	-26.81976
LONGITUDE	26.447505

ID	13
NAME	Roan PV1 North Site
REMARKS	Reservoir infrastructure located on the Roan PV1 northern site.
REC_TIME	01/22/2022 10:51:19.000 SAST
LATITUDE	-26.80860333
LONGITUDE	26.43819167

ID	14
NAME	Roan PV1 North Site
REMARKS	Lower lying areas that could be associated with water holding soils.
REC_TIME	01/22/2022 10:55:05.000 SAST
LATITUDE	-26.802795
LONGITUDE	26.43955333

ID	15
NAME	Roan PV Power Line Corridor Site
REMARKS	View of substation build to power the now defunct Rietkuil Uranium Mine.
REC_TIME	01/22/2022 11:15:05.000 SAST
LATITUDE	-26.81289833
LONGITUDE	26.45345333

ID	16
NAME	Roan PV1 North Stie
REMARKS	Previously cultivated areas on the western portion of the Roan PV1 North site.
REC_TIME	01/22/2022 11:21:36.724 SAST
LATITUDE	-26.80924539
LONGITUDE	26.43272627

ID	17
NAME	Roan PV2 Eastern Site
REMARKS	Game fence around the Renosterberg Game Farm that is located 100m to the east of
	the site.
REC_TIME	01/22/2022 12:32:32.000 SAST
LATITUDE	-26.82615667
LONGITUDE	26.42957167

ID	18
NAME	Roan PV2 Eastern Site
REMARKS	Photograph southeast of the previously cultivated lands on the site as well as a
	continuation of the game fence.
REC_TIME	01/22/2022 12:41:40.207 SAST
LATITUDE	-26.83345926
LONGITUDE	26.43075384

ID	19
NAME	Roan PV2 Eastern Site
REMARKS	View south of the site of the slightly elevated knoll to the south of the site the
	restricts views from southern receptors to some degree.
REC_TIME	01/22/2022 12:42:38.064 SAST
LATITUDE	-26.83331117
LONGITUDE	26.42605126

ID	20
NAME	Roan PV2 Eastern Receptor
REMARKS	Zoomed view to the south of the local farm receptor 2km distance.
REC_TIME	01/22/2022 12:45:25.233 SAST
LATITUDE	-26.8564069
LONGITUDE	26.43212914

ID	21
NAME	Roan PV2 Eastern Site
REMARKS	View north from the moderately elevated site depicting open views to
	Hartbeesfontein located in the background
REC_TIME	01/22/2022 12:52:48.524 SAST
LATITUDE	-26.82849286
LONGITUDE	26.42725591

ID	22
NAME	Roan PV2 Central Site
REMARKS	View northwest towards the Roan PV2 Central Site as seen from the Dominionville
	Road KOP
REC_TIME	01/22/2022 13:10:33.000 SAST
LATITUDE	-26.82308833
LONGITUDE	26.42577333

ID	23
NAME	Roan PV2 Eastern Site
REMARKS	View southeast towards the elevated Roan PV2 Eastern Site that creates a skyline as
	seen from the Dominionville Road KOP
REC_TIME	01/22/2022 13:10:33.000 SAST
LATITUDE	-26.82308833
LONGITUDE	26.42577333

ID	24	
NAME	Roan PV2 Central Receptor	
REMARKS	View northwest towards the Roan PV2 Central Site in the midground as seen from the	
	Dominionville Road KOP	
REC_TIME	01/22/2022 13:18:20.000 SAST	
LATITUDE	-26.83121333	
LONGITUDE	26.42158333	

ID	25		
NAME	Roan PV2 Eastern Receptor		
REMARKS	View northeast from the Dominionville Road of the Roan PV2 Eastern Site.		
REC_TIME	01/22/2022 13:20:59.000 SAST		
LATITUDE	-26.83549333		
LONGITUDE	26.42076		

ID	25			
NAME	Dominionville Road Landscape			
REMARKS	Photograph south of the Dominionville Road with gum trees along the route limited			
	views of the proposed PV landscape change.			
REC_TIME	01/22/2022 13:20:59.000 SAST			
LATITUDE	-26.83549333			
LONGITUDE	26.42076			

ID	26		
NAME	Roan PV2 Grid Connect Receptor		
REMARKS	IARKS Photograph west along of the Dominionville the existing telephone and power line		
	infrastructure that increases the visual absorption capacity.		
REC_TIME	01/22/2022 13:40:27.000 SAST		
LATITUDE	-26.81094333		
LONGITUDE	26.42954833		

ID	27			
NAME	Roan PV1 North Receptor			
REMARKS	Key Observation Point for the Dominionville northbound towards the Roan PV1			
	Northern Site.			
REC_TIME	01/22/2022 13:42:50.000 SAST			
LATITUDE	-26.809475			
LONGITUDE	26.42780667			

15	20			
ID	28			
NAME	Roan PV1 North Receptor Dwelling			
REMARKS	Zoomed photograph of the well vegetation screened farmstead KOP located 800m to			
	the north of the proposed development.			
REC_TIME	01/22/2022 13:47:04.256 SAST			
LATITUDE	-26.79364921			
LONGITUDE	26.43231589			

ID	29		
NAME	Roan PV1 South Receptor Dwelling		
REMARKS	Main accommodation of the Renosterberg Safari & Farm		
REC_TIME	01/22/2022 13:47:04.256 SAST		
LATITUDE	-26.83295191		
LONGITUDE	26.44525988		

ID	29	
NAME	Roan PV1 South Receptor View	
REMARKS	View as seen from the main accommodation area to the east overlooking the	
	proposed PV site.	
REC_TIME	01/22/2022 13:47:04.256 SAST	
LATITUDE	-26.83295191	
LONGITUDE	26.44525988	

ID	29			
NAME	Roan PV1 South Receptor Dwelling			
REMARKS	Photograph of the lower tented camp located on the game farm also view east over			
	the proposed PV site.			
REC_TIME	01/22/2022 13:47:04.256 SAST			
LATITUDE	-26.83295191			
LONGITUDE	26.44525988			

ID	30	
NAME	Roan PV1 South Receptor View	
REMARKS	Elevated view from the top of Renosterberg Safari & Farm depicting the extent of the	
	PV landscape change.	
REC_TIME	01/22/2022 13:47:04.256 SAST	
LATITUDE	-26.8300335	
LONGITUDE	26.44125301	

ID	31		
NAME	Roan PV2 Western Receptor Dwelling		
REMARKS	Zoomed view to the adjacent farm located 3km to the northwest.		
REC_TIME	01/22/2022 13:47:04.256 SAST		
LATITUDE	-26.80291937		
LONGITUDE	26.37847703		

13 ANNEXURE B: SPECIALIST INFORMATION

13.1 Professional Registration Certificate

MEMBERSHIP CERTIFICATE

THIS CERTIFIES THAT

STEPHEN STEAD MEMBERSHIP NUMBER: 0063

has been accredited as a

PROFESSIONAL HERITAGE PRACTITIONER (PHP)

This membership is subject to the Standards for Accreditation and Code of Conduct, referred to in Sections 2 and 3 of the APHP Constitution respectively. The definition of a PHP may be found at: www.aphp.org.za/membership

Please contact us via info@aphp.org.za should further information be required.

THIS CERTIFICATE IS VALID FROM 1 JUNE 2021 - 1 JULY 2022

[Issued by the Association of Professional Heritage Practitioners Executive Committee]

Image Source: Salvage of Materials at the UCT Jagger Library, https://photos.google.com/share/AF1Q/pM8rU-VqzrpiaS7W8zr_amF6lkH6Q/vzkx6P6PLNT16wAluyyRwE46sl47NQdg7key=VEZ2ZUZldmpQcDFJRG8yc1h3TlNqVXlNdzNHSJF3

> Association of Professional Heritage Practitioners info@aphp.org.za www.aphp.org.za

CHAIRPERSON

13.2 Curriculum Vitae (CV)

1. Position: Owner / Director

2. Name of Firm: Visual Resource Management Africa cc (www.vrma.co.za)

3. Name of Staff: Stephen Stead

4. Date of Birth: 9 June 1967

5. Nationality: South African

6. Contact Details: Tel: +27 (0) 44 876 0020

Cell: +27 (0) 83 560 9911 Email: steve@vrma.co.za

7. Educational qualifications:

• University of Natal (Pietermaritzburg):

- Bachelor of Arts: Psychology and Geography
- Bachelor of Arts (Hons): Human Geography and Geographic Information Management Systems

8. Professional Accreditation

- Association of Professional Heritage Practitioners (APHP) Western Cape
 - Accredited VIA practitioner member of the Association (2011)

9. Association involvement:

- International Association of Impact Assessment (IAIA) South African Affiliate
 - o Past President (2012 2013)
 - o President (2012)
 - President-Elect (2011)
 - o Conference Co-ordinator (2010)
 - National Executive Committee member (2009)
 - Southern Cape Chairperson (2008)

10. Conferences Attended:

- IAIAsa 2012
- IAIAsa 2011
- IAIA International 2011 (Mexico)
- IAIAsa 2010
- IAIAsa 2009
- IAIAsa 2007

11. Continued Professional Development:

- Integrating Sustainability with Environment Assessment in South Africa (IAIAsa Conference, 1 day)
- Achieving the full potential of SIA (Mexico, IAIA Conference, 2 days 2011)
- Researching and Assessing Heritage Resources Course (University of Cape Town, 5 days, 2009)

12. Countries of Work Experience:

South Africa, Mozambique, Malawi, Lesotho, Kenya and Namibia

13. Relevant Experience:

Stephen gained six years of experience in the field of Geographic Information Systems mapping and spatial analysis working as a consultant for the KwaZulu-Natal Department of Health and then with an Environmental Impact Assessment company based in the Western Cape. In 2004 he set up the company Visual Resource Management Africa that specializes in visual resource management and visual impact assessments in Africa. The company makes use of the well-documented Visual Resource Management methodology developed by the Bureau of Land Management (USA) for assessing the suitability of landscape modifications. Stephen has assessed of over 150 major landscape modifications throughout southern and eastern Africa. The business has been operating for eighteen years and has successfully established and retained a large client base throughout Southern Africa which include amongst other, Rio Tinto (Pty) Ltd, Bannerman (Pty) Ltd, Anglo Coal (Pty) Ltd, Eskom (Pty) Ltd, NamSolar and Vale (Pty) Ltd, Ariva (Pty) Ltd, Harmony Gold (Pty) Ltd, Millennium Challenge Account (USA), Pretoria Portland Cement (Pty) Ltd

14. Languages:

- English First Language
- Afrikaans fair in speaking, reading and writing

15. Projects:

A list of **some** of the large-scale projects that VRMA has assessed has been attached below with the client list indicated per project (Refer to www.vrma.co.za for a full list of projects undertaken).

Table 20: VRM Africa Projects Assessments Table

YEAR	NAME	DESCRIPTION	LOCATION
2020	Dysanklip & Re Capital 3C BESS	Battery Storage	Northern Cape (SA)
2020	Hotazel PV 2	Solar Energy	Northern Cape (SA)
2020	Hotazel PV Amend	Solar Energy	Northern Cape (SA)
2020	Penhill Water Reservoir	Infrastructure	Western Cape (SA)
2020	Kenhardt BESS x 6	Battery Storage	Northern Cape (SA)
2020	Humansdorp BESS	Battery Storage	Northern Cape (SA)
2020	Bloemsmond PV BESS x 5	Battery Storage	Northern Cape (SA)
2020	Mulilo Prieska BESS x 5	Battery Storage	Northern Cape (SA)
2020	Mulilo De Arr BESS x 3	Battery Storage	Northern Cape (SA)
2020	Sandpiper Estate	Residential	Western Cape (SA)
2020	Obetsebi Lampley Interchange	Infrastructure	Ghana
2019	Port Barry Residential	Settlement	Western Cape (SA)
2019	Gamsberg Smelter	Plant	Northern Cape (SA)
2019	Sandpiper Nature Reserve Lodge	Residential	Western Cape (SA)
2019	Bloemsmond PV 4 - 5	Solar Energy	Northern Cape (SA)
2019	Mphepo Wind (Scoping Phase)	Wind Energy	Zambia

2018	Mogara PV	Solar Energy	Northern Cape (SA)
2018	Gaetsewe PV	Solar Energy	Northern Cape (SA)
2017	Kalungwishi Hydroelectric (2) and power line	Hydroelectric	Zambia
2017	Mossel Bay UISP (Kwanoqaba)	Settlement	Western Cape (SA)
2017	Pavua Dam and HEP	Hydroelectric	Mozambique (SA)
2017	Penhill UISP Settlement (Cape Town)	Settlement	Western Cape (SA)
2016	Kokerboom WEF * 3	Wind Energy	Northern Cape (SA)
2016	Hotazel PV	Solar Energy	Northern Cape (SA)
2016	Eskom Sekgame Bulkop Power Line	Infrastructure	Northern Cape (SA)
2016	Ngonye Hydroelectric	Hydroelectric	Zambia
2016	Levensdal Infill	Settlement	Western Cape (SA)
2016	Arandis CSP	Solar Energy	Namibia
2016	Bonnievale PV	Solar Energy	Western Cape (SA)
2015	Noblesfontein 2 & 3 WEF (Scoping)	Wind Energy	Eastern Cape (SA)
2015	Ephraim Sun SEF	Solar Energy	Nothern Cape (SA)
2015	Dyasonsklip and Sirius Grid TX	Solar Energy	Nothern Cape (SA)
2015	Dyasonsklip PV	Solar Energy	Nothern Cape (SA)
2015	Zeerust PV and transmission line	Solar Energy	North West (SA)
2015	Bloemsmond SEF	Solar Energy	Nothern Cape (SA)
2015	Juwi Copperton PV	Solar Energy	Nothern Cape (SA)
2015	Humansrus Capital 14 PV	Solar Energy	Nothern Cape (SA)
2015	Humansrus Capital 13 PV	Solar Energy	Nothern Cape (SA)
2015	Spitzkop East WEF (Scoping)	Solar Energy	Western Cape (SA)
2015	Lofdal Rare Earth Mine and Infrastructure	Mining	Namibia
2015	AEP Kathu PV	Solar Energy	Nothern Cape (SA)
2014	AEP Mogobe SEF	Solar Energy	Nothern Cape (SA)
2014	Bonnievale SEF	Solar Energy	Western Cape (SA)
2014	AEP Legoko SEF	Solar Energy	Northern Cape (SA)
2014	Postmasburg PV	Solar Energy	Northern Cape (SA)
2014	Joram Solar	Solar Energy	Northern Cape (SA)
2014	RERE PV Postmasberg	Solar Energy	Northern Cape (SA)
2014	RERE CPV Upington	Solar Energy	Northern Cape (SA)
2014	Rio Tinto RUL Desalinisation Plant	Industrial	Namibia
2014	NamPower PV * 3	Solar Energy	Namibia
2014	Pemba Oil and Gas Port Expansion	Industrial	Mozambique
2014	Brightsource CSP Upington	Solar Energy	Northern Cape (SA)
2014	Witsand WEF (Scoping)	Wind Energy	Western Cape (SA)
2014	Kangnas WEF	Wind Energy	Western Cape (SA)
2013	Cape Winelands DM Regional Landfill	Industrial	Western Cape (SA)
2013	Drennan PV Solar Park	Solar Energy	Eastern Cape (SA)
2013	Eastern Cape Mari-culture	Mari-culture	Eastern Cape (SA)

2013	Eskom Pantom Pass Substation	Substation /Tx lines	Western Cape (SA)	
2013	Frankfort Paper Mill	Plant	Free State (SA)	
2013	Gibson Bay Wind Farm Transmission lines	Transmission lines	Eastern Cape (SA)	
2013	Houhoek Eskom Substation	Substation /Tx lines	Western Cape (SA)	
2013	Mulilo PV Solar Energy Sites (x4)	Solar Energy	Northern Cape (SA)	
2013	Namies Wind Farm	Wind Energy	Northern Cape (SA)	
2013	Rossing Z20 Pit and WRD	Mining	Namibia	
2013	SAPPI Boiler Upgrade	Plant	Mpumalanga (SA)	
2013	Tumela WRD	Mine	North West (SA)	
2013	Weskusfleur Substation (Koeburg)	Substation /Tx lines	Western Cape (SA)	
2013	Yzermyn coal mine	Mining	Mpumalanga (SA)	
2012	Afrisam	Mining	Western Cape (SA)	
2012	Bitterfontein	Solar Energy	Northern Cape (SA)	
2012	Kangnas PV	Solar Energy	Northern Cape (SA)	
2012	Kangnas Wind	Solar Energy	Northern Cape (SA)	
2012	Kathu CSP Tower	Solar Energy	Northern Cape (SA)	
2012	Kobong Hydro	Hydro & Powerline	Lesotho	
2012	Letseng Diamond Mine Upgrade	Mining	Lesotho	
2012	Lunsklip Windfarm	Wind Energy	Western Cape (SA)	
2012	Mozambique Gas Engine Power Plant	Plant	Mozambique	
2012	Ncondezi Thermal Power Station	Substation /Tx lines	Mozambique	
2012	Sasol CSP Tower	Solar Power	Free State (SA)	
2012	Sasol Upington CSP Tower	Solar Power	Northern Cape (SA)	
2011	Beaufort West PV Solar Power Station	Solar Energy	Western Cape (SA)	
2011	Beaufort West Wind Farm	Wind Energy	Western Cape (SA)	
2011	De Bakke Cell Phone Mast	Structure	Western Cape (SA)	
2011	ERF 7288 PV	Solar Energy	Western Cape (SA)	
2011	Gecko Industrial park	Industrial	Namibia	
2011	Green View Estates	Residential	Western Cape (SA)	
2011	Hoodia Solar	Solar Energy	Western Cape (SA)	
2011	Kalahari Solar Power Project	Solar Energy	Northern Cape (SA)	
2011	Khanyisa Power Station	Power Station	Western Cape (SA)	
2011	Olvyn Kolk PV	Solar Energy	Northern Cape (SA)	
2011	Otjikoto Gold Mine	Mining	Namibia	
2011	PPC Rheebieck West Upgrade	Industrial	Western Cape (SA)	
2011	George Southern Arterial	Road	Western Cape (SA)	
2010	Bannerman Etango Uranium Mine	Mining	Namibia	
2010	Bantamsklip Transmission	Transmission	Eastern Cape (SA)	
2010	Beaufort West Urban Edge	Mapping	Western Cape (SA)	
2010	Bon Accord Nickel Mine	Mining	Mpumalanga (SA)	

2010	Etosha National Park Infrastructure	Housing	Namibia
2010		Residential	Western Cape (SA)
2010	Herolds Bay N2 Development Baseline		Namibia
2010	MET Housing Etosha MET Housing Etosha Amended MCDM	Residential Residential	Namibia
2010	MTN Lattice Hub Tower	Structure	
		Residential	Western Cape (SA)
2010	N2 Herolds Bay Residential Onifin(Pty) Ltd Hartenbos Quarry		Western Cape (SA)
2010	Extension	Mining	Western Cape (SA)
2010	Still Bay East	GIS Mapping	Western Cape (SA)
2010	Vale Moatize Coal Mine and Railway	Mining / Rail	Mozambique
2010	Vodacom Mast	Structure	Western Cape (SA)
2010	Wadrif Dam	Dam	Western Cape (SA)
2009	Asazani Zinyoka UISP Housing	Residential Infill	Western Cape (SA)
2009	Eden Telecommunication Tower	Structure	Western Cape (SA)
2009	George SDF Landscape Characterisation	GIS Mapping	Western Cape (SA)
2009	George SDF Visual Resource Management	GIS Mapping	Western Cape (SA)
2009	George Western Bypass	Road	Western Cape (SA)
2009	Knysna Affordable Housing Heidevallei	Residential Infill	Western Cape (SA)
2009	Knysna Affordable Housing Hornlee Project	Residential Infill	Western Cape (SA)
2009	Rossing Uranium Mine Phase 2	Mining	Namibia
2009	Sun Ray Wind Farm	Wind Energy	Western Cape (SA)
2008	Bantamsklip Transmission Lines Scoping	Transmission	Western Cape (SA)
2008	Erf 251 Damage Assessment	Residential	Western Cape (SA)
2008	Erongo Uranium Rush SEA	GIS Mapping	Namibia
2008	Evander South Gold Mine Preliminary VIA	Mining	Mpumalanga (SA)
2008	George SDF Open Spaces System	GIS Mapping	Western Cape (SA)
2008	Hartenbos River Park	Residential	Western Cape (SA)
2008	Kaaimans Project	Residential	Western Cape (SA)
2008	Lagoon Garden Estate	Residential	Western Cape (SA)
2008	Moquini Beach Hotel	Resort	Western Cape (SA)
2008	NamPower Coal fired Power Station	Power Station	Namibia
2008	Oasis Development	Residential	Western Cape (SA)
2008	RUL Sulphur Handling Facility Walvis Bay	Mining	Namibia
2008	Walvis Bay Power Station	Structure	Namibia
2007	Calitzdorp Retirement Village	Residential	Western Cape (SA)
2007	Calitzdorp Visualisation	Visualisation	Western Cape (SA)
2007	Camdeboo Estate	Residential	Western Cape (SA)
2007	Destiny Africa	Residential	Western Cape (SA)
2007	Droogfontein Farm 245	Residential	Western Cape (SA)
2007	Floating Liquified Natural Gas Facility	Structure tanker	Western Cape (SA)

2007	George SDF Municipality Densification	GIS Mapping	Western Cape (SA)
2007	Kloofsig Development	Residential	Western Cape (SA)
2007	OCGT Power Plant Extension	Structure Power Plant	Western Cape (SA)
2007	Oudtshoorn Municipality SDF	GIS Mapping	Western Cape (SA)
2007	Oudtshoorn Shopping Complex	Structure	Western Cape (SA)
2007	Pezula Infill (Noetzie)	Residential	Western Cape (SA)
2007	Pierpoint Nature Reserve	Residential	Western Cape (SA)
2007	Pinnacle Point Golf Estate	Golf/Residential	Western Cape (SA)
2007	Rheebok Development Erf 252 Appeal	Residential	Western Cape (SA)
2007	Rossing Uranium Mine Phase 1	Mining	Namibia
2007	Ryst Kuil/Riet Kuil Uranium Mine	Mining	Western Cape (SA)
2007	Sedgefield Water Works	Structure	Western Cape (SA)
2007	Sulphur Handling Station Walvis Bay Port	Industrial	Namibia
2007	Trekkopje Uranium Mine	Mining	Namibia
2007	Weldon Kaya	Residential	Western Cape (SA)
2006	Farm Dwarsweg 260	Residential	Western Cape (SA)
2006	Fynboskruin Extention	Residential	Western Cape (SA)
2006	Hanglip Golf and Residential Estate	Residential	Western Cape (SA)
2006	Hansmoeskraal	Slopes Analysis	Western Cape (SA)
2006	Hartenbos Landgoed Phase 2	Residential	Western Cape (SA)
2006	Hersham Security Village	Residential	Western Cape (SA)
2006	Ladywood Farm 437	Residential	Western Cape (SA)
2006	Le Grand Golf and Residential Estate	Residential	Western Cape (SA)
2006	Paradise Coast	Residential Western Cape	
2006	Paradyskloof Residential Estate	Residential	Western Cape (SA)
2006	Riverhill Residential Estate	Residential	Western Cape (SA)
2006	Wolwe Eiland Access Route	Road	Western Cape (SA)
2005	Harmony Gold Mine	Mining	Mpumalanga (SA)
2005	Knysna River Reserve	Residential	Western Cape (SA)
2005	Lagoon Bay Lifestyle Estate	Residential	Western Cape (SA)
2005	Outeniquabosch Safari Park	Residential	Western Cape (SA)
2005	Proposed Hotel Farm Gansevallei	Resort	Western Cape (SA)
2005	Uitzicht Development	Residential	Western Cape (SA)
2005	West Dunes	Residential	Western Cape (SA)
2005	Wilderness Erf 2278	Residential	Western Cape (SA)
2005	Wolwe Eiland Eco & Nature Estate	Residential	Western Cape (SA)
2005	Zebra Clay Mine	Mining	Western Cape (SA)
2004	Gansevallei Hotel	Residential	Western Cape (SA)
2004	Lakes Eco and Golf Estate	Residential	Western Cape (SA)
2004	Trekkopje Desalination Plant	Structure Plant	Namibia (SA)

1995	Greater Durban Informal Housing Analysis	Photogrammetry	KwaZulu-Natal (SA)
------	---	----------------	--------------------

14 ANNEXURE C: VRM CHECKLISTS AND TERMINOLOGY

Table 21: Scenic Quality Checklist

KEY FACTORS	S RATING CRITERIA AND SCORE			
SCORE	5	3	1	
Land Form	High vertical relief as expressed in prominent cliffs, spires or massive rock outcrops, or severe surface variation or highly eroded formations or detail features that are dominating and exceptionally striking and intriguing.	Steep-sided river valleys, or interesting erosion patterns or variety in size and shape of landforms; or detail features that are interesting, though not dominant or exceptional.		
Vegetation	A variety of vegetative types as expressed in interesting forms, textures and patterns.	Some variety of vegetation, but only one or two major types.	Little or no variety or contrast in vegetation.	
Water	Clear and clean appearing, still or cascading white water, any of which are a dominant factor in the landscape.	Flowing, or still, but not dominant in the landscape.	Absent, or present but not noticeable.	
Colour	Rich colour combinations, variety or vivid colour: or pleasing contrasts in the soil, rock, vegetation, water.	Some intensity or variety in colours and contrast of the soil, rock and vegetation, but not a dominant scenic element.	Subtle colour variations contrast or interest: generally mute tones.	
Adjacent Scenery	Adjacent scenery greatly enhances visual quality.	Adjacent scenery moderately enhances overall visual quality.	Adjacent scenery has little or no influence on overall visual quality.	
Scarcity	One of a kind: unusually memorable, or very rare within region. Consistent chance for exceptional wildlife or wildflower viewing etc.	Distinctive, though somewhat similar to others within the region.	Interesting within its setting, but fairly common within the region.	
SCORE	2	0	-4	
Cultural Modification	Modifications add favourably to visual variety, while promoting visual harmony.	Modifications add little or no visual variety to the area and introduce no discordant elements.	but are very discordant	

Table 22: Sensitivity Level Rating Checklist

FACTORS	QUESTIONS		
Type of Users	Maintenance of visual quality is:		
	A major concern for most users	High	
	A moderate concern for most users	Moderate	
	A low concern for most users	Low	
Amount of use	Maintenance of visual quality becomes more important as the level of use increases:		
	A high level of use	High	
	Moderately level of use	Moderate	
	Low level of use	Low	

Public interest	Maintenance of visual quality:			
	A major concern for most users	High		
	A moderate concern for most users	Moderate		
	A low concern for most users	Low		
Adjacent land Users	Maintenance of visual quality to sustain adjacent land use objectives is:			
	Very important	High		
	Moderately important	Moderate		
	Slightly important	Low		
Special Areas	Maintenance of visual quality to sustain Special Area mai	nagement objectives is:		
	Very important	High		
	Moderately important	Moderate		
	Slightly important	Low		

Table 23: VRM Terminology Table

FORM		LINE	COLOUR		TEXTURE
Simple)	Horizontal			Smooth
Weak		Vertical			Rough
Strong	3	Geometric			Fine
Domina	nt	Angular			Coarse
Flat		Acute			Patchy
Rolling	9	Parallel			Even
Undulati	ng	Curved	Dark		Uneven
Comple	ex	Wavy	Light		Complex
Platea	u	Strong	Mottled		Simple
Ridge		Weak			Stark
Valley	,	Crisp			Clustered
Plain		Feathered			Diffuse
Steep		Indistinct			Dense
Shallov	N	Clean			Scattered
Organi	С	Prominent			Sporadic
Structur	ed	Solid			Consistent
Simple	Basic, cor	mposed of few elements	Organic	Derived from	m nature, occurring or developing
				gradually a	nd naturally
Complex	Complicat	ted; made up of many interrelat	ted Structure	Organised;	planned and controlled; with
	parts			definite shap	e, form, or pattern
Weak	Lacking s	trength of character	Regular	Repeatedly	occurring in an ordered fashion
Strong	Bold, defin	nite, having prominence	Horizontal	Parallel to t	he horizon
Dominant	Controlling	•	ing Vertical	Perpendicular to the horizon; upright	
Flat		d horizontal without any slope; eventh without any bumps or hollows	ren Geometric	Consisting shapes	of straight lines and simple
Rolling	Progressi [*] rounded	ve and consistent in form, usua	ally Angular	Sharply defined; used to describe an object identified by angles	
Undulating	Moving appearan	sinuously like waves; wavy	in Acute	Less than angle	90°; used to describe a sharp
Plateau		elevated flat to gently undulating la on one or more sides by steep slop		surfaces the	or being lines, planes, or curved at are always the same distance herefore never meet
Ridge		landform typical of a highpoint ng narrow hilltop or range of hills	or Curved	Rounded or	r bending in shape
Valley	Low-lying with a rive	area: a long low area of land, offer or stream running through it, that all by higher ground			curving forming a series of ves that go in one direction and er

Plain	A flat expanse of land; fairly flat dry land, usually with few trees	Feathered	Layered, consisting of many fine parallel strands
Steep	Sloping sharply often to the extent of being almost vertical	Indistinct	Vague; lacking clarity or form
Prominent	Noticeable; distinguished, eminent, or well-known	Patchy	Irregular and inconsistent;
Solid	Unadulterated or unmixed; made of the same material throughout; uninterrupted	Even	Consistent and equal; lacking slope, roughness, and irregularity
Broken	Lacking continuity; having an uneven surface	Uneven	Inconsistent and unequal in measurement irregular
Smooth	Consistent in line and form; even textured	Stark	Bare and plain; lacking ornament or relieving features
Rough	Bumpy; knobbly; or uneven, coarse in texture	Clustered	Densely grouped
Fine	Intricate and refined in nature	Diffuse	Spread through; scattered over an area
Coarse	Harsh or rough to the touch; lacking detail	Diffuse	To make something less bright or intense

15 ANNEXURE D: GENERAL LIGHTS AT NIGHT MITIGATIONS

Mitigation:

- Effective light management needs to be incorporated into the design of the lighting to
 ensure that the visual influence is limited to the mine, without jeopardising project
 operational safety and security (See lighting mitigations by The New England Light
 Pollution Advisory Group (NELPAG) and Sky Publishing Corp in 14.2).
- Utilisation of specific frequency LED lighting with a green hue on perimeter security fencing.
- Directional lighting on the more exposed areas of operation, where point light source is an issue.
- No use of overhead lighting and, if possible, locate the light source closer to the operation.
- If possible, the existing overhead lighting method utilised at the mine should be phased out and replaced with an alternative lighting using closer to source, directed LED technology.

Mesopic Lighting

Mesopic vision is a combination of photopic vision and scotopic vision in low, but not quite dark, lighting situations. The traditional method of measuring light assumes photopic vision and is often a poor predictor of how a person sees at night. The light spectrum optimized for mesopic vision contains a relatively high amount of bluish light and is therefore effective for peripheral visual tasks at mesopic light levels. (CIE, 2012)

The Mesopic Street Lighting Demonstration and Evaluation Report by the Lighting Research Centre (LRC) in New York found that the 'replacement of white light sources (induction and ceramic metal halide) were tuned to optimize human vision under low light levels while remaining in the white light spectrum. Therefore, outdoor electric light sources that are tuned to how humans see under mesopic lighting conditions can be used to reduce the luminance of the road surface while providing the same, or better, visibility. Light sources with shorter wavelengths, which produce a "cooler" (bluer and greener) light, are needed to produce better mesopic vision. Based on this understanding, the LRC developed a means of predicting visual performance under low light conditions. This system is called the unified photometry system. Responses to surveys conducted on new installations revealed that area residents perceived higher levels of visibility, safety, security, brightness, and colour rendering with the new lighting

systems than with the standard *High-Purity Standards* (HPS) systems. The new lighting systems used 30% to 50% less energy than the HPS systems. These positive results were achieved through tuning the light source to optimize mesopic vision. Using less wattage and photopic luminance also reduces the reflectance of the light off the road surface. Light reflectance is a major contributor to light pollution (sky glow).' (*Lighting Research Centre. New York. 2008*)

'Good Neighbour - Outdoor Lighting'

Presented by the New England Light Pollution Advisory Group (NELPAG) (http://cfa/www.harvard.edu/cfa/ps/nelpag.html) and Sky & Telescope (http://SkyandTelescope.com/). NELPAG and Sky & Telescope support the International Dark-Sky Association (IDA) (http://www.darksky.org/). (NELPAG)

What is good lighting? Good outdoor lights improve visibility, safety, and a sense of security, while minimizing energy use, operating costs, and ugly, dazzling glare.

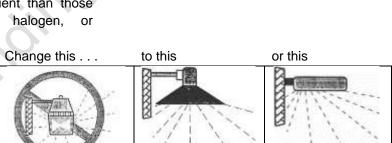
Why should we be concerned? Many outdoor lights are poorly designed or improperly aimed. Such lights are costly, wasteful, and distractingly glary. They harm the night-time environment and neighbours' property values. Light directed uselessly above the horizon creates murky skyglow — the "light pollution" that washes out our view of the stars.

Glare Here's the basic rule of thumb: If you can see the bright bulb from a distance, it's a bad light. With a good light, you see lit ground instead of the dazzling bulb. "Glare" is light that beams directly from a bulb into your eye. It hampers the vision of pedestrians, cyclists, and drivers.

Light Trespass Poor outdoor lighting shines onto neighbours' properties and into bedroom windows, reducing privacy, hindering sleep, and giving the area an unattractive, trashy look. Energy Waste Many outdoor lights waste energy by spilling much of their light where it is not needed, such as up into the sky. This waste results in high operating costs. Each year we waste more than a billion dollars in the United States needlessly lighting the night sky.

Excess Lighting Some homes and businesses are flooded with much stronger light than is necessary for safety or security.

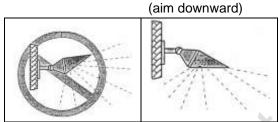
Good and Bad Light Fixtures "Shoe **Typical** "Wall **Typical** Pack" Box" (forward throw) GOOD Waste light goes up Directs all light down and sideways **Typical** "Yard **Opaque Reflector** Light" (lamp inside) **BAD** GOOD Directs all light down Waste light goes up and sideways **Area Flood Light Area Flood Light** with Hood BAD GOOD Waste light goes up Directs all light down


How do I switch to good lighting?

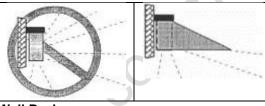
Provide only enough light for the task at hand; don't over-light, and don't spill light off your property. Specifying enough light for a job is sometimes hard to do on paper. Remember that a full Moon can make an area quite bright. Some lighting systems illuminate areas 100 times more brightly than the

and sideways

full Moon! More importantly, by choosing properly shielded lights, you can meet your needs without bothering neighbours or polluting the sky.


- Aim lights down. Choose "full-cut-off shielded" fixtures that keep light from going uselessly up or sideways. Fullcut-off fixtures produce minimum glare. They create a pleasant-looking environment. They increase safety because you see illuminated people, cars, and terrain, not dazzling bulbs.
- Install fixtures carefully to maximize their effectiveness on the targeted area and minimize their impact elsewhere. Proper aiming of fixtures is crucial. Most are aimed too high. Try to install them at night, when you can see where all the rays actually go. Properly aimed and shielded lights may cost more initially, but they save you far more in the long run. They can illuminate your target with a low-wattage bulb just as well as a wasteful light does with a high-wattage bulb.
- If colour discrimination is not important, choose energyefficient fixtures utilising yellowish high-pressure sodium (HPS) bulbs. If "white" light is needed. fixtures using compact fluorescent or metal-halide (MH) bulbs are more energy-efficient than those halogen, using incandescent, mercury-vapour bulbs.
- Where feasible, put lights on timers to turn them off each night after they are no longer needed. Put home security lights on a motiondetector switch, which turns them on only when someone enters the area; this provides a great deterrent effect!

Opaque Reflector


Show Box

What You Can Do To Modify Existing Fixtures Change this . . . to this

Floodlight:

Change this . . . to this (aim downward)

Wall Pack

Replace bad lights with good lights.

You'll save energy and money. You'll be a good neighbour. And you'll help preserve our view of the stars.

Yard Light