Appendix H.6

AVIFAUNAL ASSESSMENT

Low de VriesPhD Zoology
Pr. Sci. Nat. Zoological Science

Avifaunal Environmental Impact Assessment report for the Proposed Tournee Solar PV 1 and Solar PV 2 Energy Facility near Standerton in Mpumalanga, South Africa

July 2023

Prepared for: Ashlea Strong WSP (Pty) Ltd.

Ashlea.Strong@wsp.com

Compiled by

Low de Vries (Pr. Sci. Nat., PhD: Zoology)

Justin Rhys Nicolau (BSc. (Hons) Biodiversity & Conservation)

Colyn Grobler (MSc: Virology)

Matthew Wood (MSc: Virology)

Volant Environmental (Pty) Ltd.

low@volantenvironmental.com

Cell: +27 82 323 5475

E-mail: <u>low@volantenvironmental.com</u> Web: <u>volantenvironmental.com</u>

Table of Contents

1.	In	troduction	12
	1.1	Project Details	12
	1.2	Project Location and Ecoregion	12
	1.3	Assumptions and Limitations	19
2.	М	ethods	19
	2.1 F	Regulatory Requirements	19
	2.1.2	2 Birds and Solar Energy Best Practice Guidelines	20
	2.2 [Desktop Study	20
	2.3 F	ield Surveys	21
	2.3.1	L Site Visits & Scoping Survey	21
	2.3.2	2 Driven and Walked Transects	22
	2.5 I	mpact assessment	23
	2.	5.1 Methodology	23
	2.	5.2 Impact Mitigation	25
3.	Re	esults	27
	3.1 [Desktop Survey	27
	3.	1.1 Previous Studies in the Region	27
3.	1.1.7	Proposed Waaihoek Wind Energy Facility, Utrecht, KwaZulu-Natal	31
	3.	1.2 Protected Areas	32
	3.	1.3 Potential Species Present on the PAOI	33
	3.2.	Important Bird and Biodiversity Areas (IBAs)	35
	3.3 (Observed Species	36

	3.4 Sensitive Bird Areas	. 42
	3.5 Site Sensitivity Verification	. 43
4.	Impact assessment	. 43
	4.1 Impacts Identified	. 43
	4.2 Evaluation of Impacts	. 44
	4.2.1 Construction Phase	. 44
	4.2.2 Operational Phase	. 46
	4.2.3 Decommissioning Phase	. 50
5.	Conclusion	. 51
6.	References	. 52
Ар	pendix 1: Potential species present on PAOI.	. 53
Ар	pendix 2: Bird species found on the PAOI	. 62
Ар	pendix 3: Specialist qualifications	. 67
An	pendix 4: Curriculum Vitae of specialist	. 69

List of Figures

Figure 1. Location of the proposed Tournee Solar Energy Facilities	13
Figure 2. Vegetation types on and around the Project Area of Influence	15
Figure 3. Examples of winter vegetation found on the Project Area of Influence	16
Figure 4. Examples of summer vegetation found on the Project Area of Influence	17
Figure 5. Location of walked transects across the Project Area of Influence	22
Figure 6. Mitigation Sequence/Hierarchy	26
Figure 7. Position of Important Bird Areas (IBAs) in relation to the Tournee 1 and Tourne	ee 2 Solar
PV facilities	36
Figure 8. Location of priority species across the Tournee SEF	38
Figure 9. Abundance of bird species recorded on walked transects during January	39
Figure 10. Abundance of bird species recorded on walked transects during April	40
Figure 11. Abundance of bird species recorded on walked transects during July	41
Figure 12. Sensitive bird areas located on the Project Area of Influence	42

List of Tables

Table 1. Impact Assessment Criteria and Scoring System	24
Table 2. Bird reports for Wind Energy Facilities and other developments in the region of the	
proposed SEF	28
Table 3. The identified public/privately owned protected areas identified close to proposed SE	F.
	32
Table 4. Priority species that could potentially occur on the Project Area of Influence. Priority	
species recorded on site or within 10 km of site, marked with 'x' and highlighted red	34
Table 5. Displacement of priority species due to disturbance associated with construction of	
Tournee SEF cluster and associated infrastructure	44
Table 6. Displacement of priority species due to habitat transformation associated with	
construction of Tournee SEF Cluster and associated infrastructure	44
Table 7. Mortality of priority species due to collisions with solar panels	46
Table 8. Entrapment of large-bodied birds in the perimeter fence lines of Tournee SEF Cluster.	47
Table 9. Mortality of priority species due to electrocution with reticulation networks	48
Table 10. Mortality of priority species due to collisions with reticulation networks	49
Table 11 Impact due to the habitat transformation during the decommissioning phase	50

AUTHOR CONTRIBUTIONS

Author	Qualification	SACNASP	Role in project	
Low de Vries	Dh.D. Zaalaasi	Pr. Sci. Nat. – 124178	Project management, field work,	
Low de viies	PhD. Zoology	P1. 3CI. IVUL. — 1241/6	data analysis, report writing	
Justin Rhys Nicolau (BSc.	BSc. (Hons) Biodiversity &	NA	Field work, data analysis, report	
(Hons) Biodiversity &	Conservation)		writing	
Conservation)				
Colyn Grobler	MSc. Virology	NA	Field work, report writing	
Matthew Wood	MSc. Virology	NA	Field work, data analysis	

Expertise of Specialist

Justin obtained a BSc in Zoology & Botany, followed by an Honours degree in Biodiversity and Conservation. He is a professional bird guide (over 15 years of experience), who has lead tours across 4 continents (over 20 countries) and is well versed in field identification, ecology and bird calls and has a sound understanding of rigorous scientific data collection. He has served as a bird specialist for Enviro-Insight, EXM as well as Birdlife South Africa. He had lead avifaunal research and atlassing projects both on mainland Africa in the renewable energy sector, as well as conducted data collection out at sea to Antarctica and along the west coast from South Africa to Namibia.

Disclaimer by specialist

I declare that the work presented in this report is my own and has not been influenced in any way by the developer. At no point has the developer asked me as specialist to manipulate the results in order to make it more favourable for the proposed development. I consider myself bound to the rules and ethics of the South African Council for Natural Scientific Professions (SACNASP) and the EIA Regulations (2014, as amended). I have the necessary qualifications and expertise (*Pr. Sci. Nat. Zoological Science*) in conducting this specialist report.

Low de Vries, PhD Zoology, Pr. Sci. Nat. Zoological Science

COMPLIANCE WITH APPENDIX 6 OF THE 2014 EIA REGULATIONS, AS AMENDED

Requirements of Appendix 6 – GN R326 2014 EIA Regulations, 7 April 2017	Specialist Report
1. (1) A specialist report prepared in terms of these Regulations must contain	Appendix 3 and
a) details of:	4
i. the specialist who prepared the report; and	
ii. the expertise of that specialist to compile a specialist report including a curriculum vitae;	
b) a declaration that the specialist is independent in a form as may be specified by the	Declaration
competent authority;	
c) an indication of the scope of, and the purpose for which, the report was prepared;	1.1 Project
e, an indication of the scope of, and the purpose for which, the report was prepared,	Details
cA. an indication of the quality and age of base data used for the specialist report;	2. Methods
cB. a description of existing impacts on the site, cumulative impacts of the proposed	4. Impact
development and levels of acceptable change;	Assessment
d) the date and season of the site investigation and the relevance of the season to the	2.3 Field Surveys
outcome of the assessment;	
e) a description of the methodology adopted in preparing the report or carrying out the	2. Methods
specialised process inclusive of equipment and modelling used;	
f) details of an assessment of the specific identified sensitivity of the site related to	3.4 Sensitive
the proposed activity or activities and its associated structures and infrastructure,	Bird Areas
inclusive of a site plan identifying site alternatives;	
g) an identification of any areas to be avoided, including buffers;	3.4 Sensitive
g) all identification of any areas to be avoided, including buffers,	Bird Areas
h) a map superimposing the activity including the associated structures and infrastructure on	3.4 Sensitive
the environmental sensitivities of the site including areas to be avoided, including buffers;	Bird Areas
i) a description of any assumptions made and any uncertainties or gaps in knowledge;	1.3 Assumptions
i) a description of any assumptions made and any uncertainties of gaps in knowledge,	and Limitations
j) a description of the findings and potential implications of such findings on the impact of the	4. Impact
proposed activity or activities;	Assessment
k) any mitigation measures for inclusion in the EMPr	4. Impact
k) any mitigation measures for inclusion in the EMPr;	Assessment
I) any conditions for inclusion in the environmental authorisation.	4. Impact
l) any conditions for inclusion in the environmental authorisation;	Assessment
m) a reasoned opinion	
i. whether the proposed activity, activities or portions thereof should be authorised;	5. Conclusion
(iA) regarding the acceptability of the proposed activity or activities and	

ii. if the opinion is that the proposed activity, activities or portions thereof should be authorised, any avoidance, management and mitigation measures that should be included in	5. Conclusion
the EMPr, and where applicable, the closure plan;	
n) a description of any consultation process that was undertaken during the course	NA
of preparing the specialist report;	
o) a summary and copies of any comments received during any consultation process and	NA NA
where applicable all responses thereto; and	IVA
p) any other information requested by the competent authority.	NA
2) Where a government notice gazetted by the Minister provides for any protocol or	
minimum information requirement to be applied to a specialist report, the requirements as	NA
indicated in such notice will apply.	

Acronyms & Glossary of Terms

AOI: Area of Influence, the area that is affected by the proposed development.

Buffer zone: A zone established around areas that are identified as sensitive for birds.

CITES: Convention on International Trade in Endangered Species of Wild Fauna and Flora.

Cumulative Impact: Impacts created due to past, present, and future activities and impacts associated with these activities.

EMPr: Environmental Management Programme: A legally binding working document, which stipulates environmental and socio-economic mitigation measures which must be implemented by several responsible parties throughout the duration of the proposed project.

Endemic: A species that is restricted to a particular area.

EIA (Environmental Impact Assessment): The process of identifying environmental impacts due to activities and assessing and reporting these impacts.

GPS: Global Positioning System device.

IUCN: International Union for Conservation of Nature.

MW: Megawatts.

NEMA: National Environmental Management Act.

Pre-construction phase: The period prior to the construction of a wind energy facility.

Red data species: Species included in the Critically Endangered, Endangered, Vulnerable or Rare categories as defined by the IUCN.

REDZ (Renewable Energy Development Zones): Areas were wind and solar photovoltaic power development can occur in concentrated zones.

S&EIA: Social and Environmental Impact Assessment (EIA): The process of identifying social and environmental impacts due to activities and assessing and reporting these impacts.

SACNASP: South African Council for Natural Scientific Professions.

SANBI: South African National Biodiversity Institute.

Scoping Report: A report contemplated in regulation 21 of the NEMA amended EIA regulations R326 dated 7 April 2017.

ToPS: Threatened or Protected Species.

SEF: Solar Energy Facility

SSV: Site Sensitivity Verification

1. Introduction

1.1 Project Details

Volant Environmental (Pty) Ltd was commissioned by WSP Group Africa (Pty) Ltd to conduct a thorough Pre-Construction Survey to assess the potentially Sensitive Areas of avifauna at the proposed Tournee 1 Solar PV facility and Tournee 2 Solar PV facility. This survey serves as a Pre-Construction assessment of the possible avifaunal present in the Project Area of Influence (PAOI) of the proposed SEF.

1.2 Project Location and Ecoregion

The proposed SEF is located 24.5 km Northeast of the town of Standerton in the Lekwa Local Municipality in the Mpumalanga province of South Africa. The town is known for its large commercial and agricultural output, specializing in cattle, dairy, maize, and poultry farming. The proposed SEF cluster can be accessed off the R39 that runs south of the project area. The SEF cluster is divided into two facilities namely Tournee 1 PV and Tournee 2 PV. Together these facilities cover an area of ca 880 ha (PV1 - 306.65 ha; PV2 – 573.78 ha) and is currently used as agricultural land with livestock present across a large section of the PAOI.

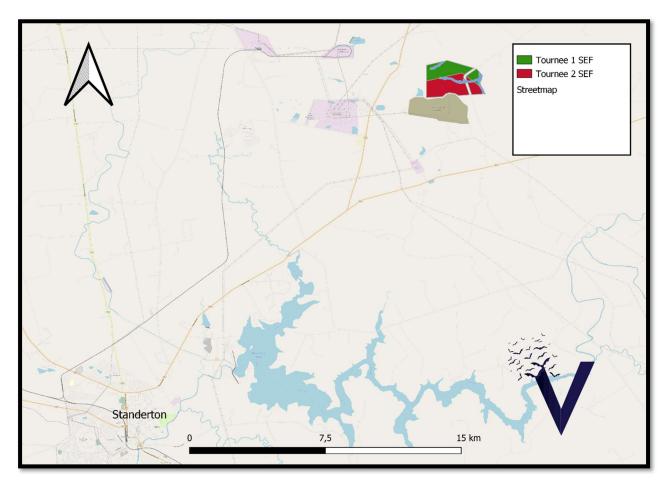


Figure 1. Location of the proposed Tournee Solar Energy Facilities.

The proposed PAOI falls across the Grassland Bioregion with Soweto Highveld Grassland vegetation present across the entire proposed development site (SANBI 2018, Figure 4). The extent of the Grassland Biome is relatively well defined on the basis of the specific known vegetation structure when seen in combination with the amount of rainfall in the summer and the average minimum temperatures in the winter. This biome occurs mainly on the high central plateau (Highveld), as well as the inland areas of the eastern seaboard and the established mountainous areas of KwaZulu-Natal and Eastern Cape. The biome is primarily characterised as flat to rolling, but also includes mountainous regions and escarpments. The effect of this biome

being at a higher altitude result in larger temperature differences at different times of the year. The climate in winter months specifically, can be cold and dry with the occurrence and relative high frequency of frost (Figure 3). The presence of high amounts of moisture allows for grassland regions to be divided into two classes. Moist grassland primarily consists of sour grasses, leached and dystrophic soils and high canopy cover, high plant production and high fire frequency. Dry grasslands are seen as sweet, palatable grasses, where the soils are less leached and are eutrophic and canopy cover, plant production and fire frequency are lower than in moist grasslands. Grasslands are structurally simple and strongly dominated by grasses (Poaceae). It is noted that the moisture index effects canopy cover and decreases with lower mean annual rainfall but is influenced by the amount and type of grazing and by the presence of fire. This in turn allows for woody species to occur but are limited to specialised niches/habitats within the grassland biome. Soweto Highveld Grassland specifically is characterised by a moderately undulating landscape on the Highveld plateau. It primarily supports short to medium-high, dense, grassland that is almost entirely dominated Themeda triandra. In places that are not disturbed, scattered small wetlands, pans (figure 4) and occasional ridges or rocky outcrops are found that interrupt the continuous grassland cover. These ecoregion characteristics were used when assessing avifaunal habitat as well as species assemblages that could be present on the PAOI.

The warmest month (with the highest average high temperature) is February (28.95°C) while the coldest month (with the lowest average low temperature) is June (8.8°C). The area receives an average of 177 mm of rain during January, which is the wettest month of the year based on averages.

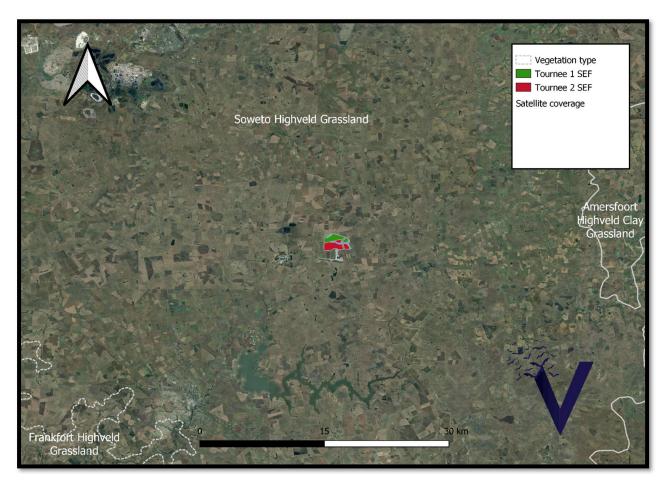


Figure 2. Vegetation types on and around the Project Area of Influence

Figure 3. Examples of winter vegetation found on the Project Area of Influence.

Figure 4. Examples of summer vegetation found on the Project Area of Influence.

The extent of the Grassland Biome is relatively well defined on the basis of the specific known vegetation structure when seen in combination with the amount of rainfall in the summer and the average minimum temperatures in the winter. This biome occurs mainly on the high central plateau (Highveld), as well as the inland areas of the eastern seaboard and the established mountainous areas of KwaZulu-Natal and Eastern Cape. The biome is primarily characterised as flat to rolling, but also includes mountainous regions and escarpments. The effect of this biome being at a higher altitude results in larger temperature differences at different times of the year. The climate in winter months specifically, can be cold and dry with the occurrence and relative high frequency of frost. The presence of high amounts of moisture allows for grassland regions to be divided into two classes. Moist grassland primarily consists of sour grasses, leached and dystrophic soils and high canopy cover, high plant production and high fire frequency. Dry grasslands are seen as sweet, palatable grasses, where the soils are less leached and are eutrophic and canopy cover, plant production and fire frequency are lower than in moist grasslands. Grasslands are structurally simple and strongly dominated by grasses (*Poaceae*).

It is noted that the moisture index affects canopy cover and decreases with lower mean annual rainfall but is influenced by the amount and type of grazing and by the presence of fire. This in turn allows for woody species to occur but are limited to specialised niches/habitats within the grassland biome. Income Sandy Grassland vegetation is known by very flat areas with generally shallow, poorly drained, sandy soils. These soils are known for supporting low, tussock-dominated sourveld forming a mosaic with wooded grasslands and on well-drained sites with the trees.

The warmest month (with the highest average high temperature) is February (29.1°C) while the coldest month (with the lowest average low temperature) is July (17.75°C). The area receives an average of 190.31mm of rain during January, which is the wettest month of the year based on averages.

1.3 Assumptions and Limitations

- The assumption was made that all sources of information used during the completion of this report, are reliable and accurate.
- Transects are only conducted during daylight hours. Therefore, any bird movement occurring at night was recorded under *ad hoc* conditions. Some waterbirds and migrants are known to make regular movements at night.
- Although very useful, the SABAP1 bird data set is more than two decades old. This dataset
 does however provide an adequate baseline to use when assessing species presence,
 distribution, and abundance. The use of SABAP2 along with SABAP1 will provide substantial
 data to be used during initial desktop assessments. This data was, however, mostly
 obtained by citizen scientists, and accuracy depends on their identification skills.
- Placement and dimensions of solar equipment has not yet been finalized and provided.
- Final layout of the proposed SEF has not yet been provided.

2. Methods

2.1 Regulatory Requirements

The Minister of Environment, Forestry and Fisheries, gave notice that the submission of a report generated from the national web-based environmental screening tool, as contemplated in Regulation 16(1)(b)(v) of the Environmental Impact Assessment Regulations, 2014, published under Government Notice No. R982 in Government Gazette No. 38282 of 4 December 2014, as amended, will be compulsory from 4 October 2019 when submitting an application for environmental authorisation in terms of regulation 19 and regulation 21 of the Environmental Impact Assessment Regulations, 2014.

In addition, a set of protocols that an applicant needs to adhere to in the Environmental Authorisation (EA) process were developed and on 20 March 2020 the Minister of Forestry, Fisheries and the Environment gazetted the Protocols for national implementation purposes. The gazette 'Procedures to be followed for the Assessment and Minimum Criteria for Reporting of

Identified Environmental Themes in terms of Section 24(5)(a) and (h) of the National Environmental Management Act (1998) when Applying for Environmental Authorisation', has protocols that have been developed for environmental themes which include agriculture, avifauna, biodiversity (Terrestrial and Aquatic Biodiversity), noise, defence, and civil aviation.

The protocols set requirements for the assessment and reporting of environmental impacts of activities requiring EA. The higher the sensitivity rating of the features on the proposed site as identified by the screening tool report, the more rigorous the assessment and reporting requirements.

Based on the screening report generated on 19/10/2022, the Avian Combined Sensitivity Theme is indicated as **Low** sensitivity in the PAOI.

2.1.2 Birds and Solar Energy Best Practice Guidelines

Based on Appendix 2 (Minimum requirements for avifaunal impact assessment) in the Best-Practice Guidelines for assessing and monitoring the impact of solar energy facilities on birds in southern Africa (Jenkins et al., 2017) monitoring at a potential SEF must follow a tiered approach with three stages.

During Stage 1 a preliminary assessment is conducted. This assessment should give an overview of likely impacts and potential red flags. During this stage methodologies for the monitoring phase should be planned.

Stage 2 includes an in-depth study with structured data collection following set methodologies on which to base the Impact Assessment Report.

The final tier is Stage 3 during which an Impact assessment is done based on the data collected during Stage 2.

2.2 Desktop Study

A thorough desktop study was undertaken to determine the likelihood of specific avifauna species being present at the proposed SEF. This included investigations into available literature, including Southern African Bird Atlas Project 1 (Harrison et al, 1997), The Southern African Bird Atlas Project 2 (http://sabap2.adu.org.za/v1/index.php), The Important Bird Areas report

(http://www.birdlife.org.za/conservation/important-bird-areas), the IUCN 2013 Red List (http://www.iucnredlist.org/), Birdlife South Africa Checklist of Birds in South Africa (2014) and any other birds surveys or monitoring reports for nearby WEF, SEF or any facilities which included avifaunal monitoring as determined from the REEA (2022 Q1) information. Lack of public access to existing monitoring reports is a recurring problem in the industry and one that severely hampers pre-construction monitoring studies and the recommendations therein, a problem to be addressed by relevant NGOs and the governmental institutions. A search was conducted to identify any protected areas present within 100 km of the proposed SEF project area using the South African Protected Area Data (SAPAD 2022 Q1).

2.3 Field Surveys

All methods used for field surveys were implemented according to the Best Practice Guidelines for Birds & Solar Energy in South Africa (Jenkins *et al.*, 2017). This document was strictly followed.

2.3.1 Site Visits & Scoping Survey

Three site visits of a minimum of three days each were completed on the Tournee SEF's. The initial screening visit was conducted between the 9th and 12th of January 2023 to obtain data for the summer period. Follow up seasonal visits were completed between the 4th and 6thth of June and 4th and 6th of July, where walked transects were replicated.

The initial survey was conducted as a Site Sensitivity Verification (SSV) and to obtain preliminary data on the species present at the site. This initial SSV survey was performed by walking and driving across the project area and investigating areas surrounding the PAOI as a ground truthing exercise. This was done to identify potentially sensitive areas and hotspots for birds and to identify potential nest and roost sites for priority species. No nest or roost sites of priority species were recorded during the duration of the survey period.

2.3.2 Driven and Walked Transects

All accessible roads were driven, and bird species identified based on sight and calls. Additionally, the survey team walked transects across the property where no roads were available to ensure that we obtained adequate coverage of the area. All these incidental observations were noted to construct a species list for the area (Appendix 2). Based on these transects we identified four transects that were walked repeatedly, three times each, during different times of the day across each surveyed season, to obtain an estimate of bird abundance and diversity in each habitat type (Figure 5).

Figure 5. Location of walked transects across the Project Area of Influence.

Low de Vries PhD Zoology Pr. Sci. Nat. Zoological Science

2.5 Impact assessment

2.5.1 Methodology

The assessment of impacts and mitigation evaluates the likely extent and significance of the potential impacts on identified receptors and resources against defined assessment criteria, to develop and describe measures that will be taken to avoid, minimise or compensate for any adverse environmental impacts, to enhance positive impacts, and to report the significance of residual impacts that occur following mitigation.

The key objectives of the risk assessment methodology are to identify any additional potential environmental issues and associated impacts likely to arise from the proposed project, and to propose a significance ranking. Issues / aspects will be reviewed and ranked against a series of significance criteria to identify and record interactions between activities and aspects, and resources and receptors to provide a detailed discussion of impacts. The assessment considers direct¹, indirect², secondary³ as well as cumulative⁴ impacts.

A standard risk assessment methodology is used for the ranking of the identified environmental impacts pre-and post-mitigation (*i.e.*, residual impact). The significance of environmental aspects is determined and ranked by considering the criteria⁵ presented in Table 1.

¹ Impacts that arise directly from activities that form an integral part of the Project.

² Impacts that arise indirectly from activities not explicitly forming part of the Project.

³ Secondary or induced impacts caused by a change in the Project environment.

⁴ Impacts are those impacts arising from the combination of multiple impacts from existing projects, the Project and/or future projects

⁵ The definitions given are for guidance only, and not all the definitions will apply to all the environmental receptors and resources being assessed. Impact significance was assessed with and without mitigation measures in place.

Table 1. Impact Assessment Criteria and Scoring System

Criteria	Score 1	Score 2	Score 3	Score 4	Score 5
Impact Magnitude (M)	Very low:	Low:	Medium:	High:	Very High:
The degree of alteration of the	No impact	Slight impact	Processes	Processes	Permanent
affected environmental receptor	on processes	on processes	continue but	temporarily	cessation of
			in a modified	cease	processes
			way		
Impact Extent (E) The	Site: Site	Local: Inside	Regional:	National:	International:
geographical extent of the impact	only	activity area	Outside	National	Across
on a given environmental			activity area	scope or	borders or
receptor				level	boundaries
Impact Reversibility (R) The	Reversible:		Recoverable:		Irreversible:
ability of the environmental	Recovery		Recovery		Not possible
receptor to rehabilitate or	without		with		despite
restore after the activity has	rehabilitation		rehabilitation		action
caused environmental change					
Impact Duration (D) The length of	Immediate:	Short term:	Medium	Long term:	Permanent:
permanence of the impact on the	On impact	0-5 years	term: 5-15	Project life	Indefinite
environmental receptor			years		
Probability of Occurrence (P) The	Improbable	Low	Probable	Highly	Definite
likelihood of an impact occurring		Probability		Probability	
in the absence of pertinent					
environmental management					
measures or mitigation					
Significance (S) is determined by	[S = (E + D -	$+R+M)\times P$			
combining the above criteria in	Significance	= (Extent + L)	Ouration + Rev	ersibility + M	agnitude)
the following formula:		\times Probabil	ity		
Impact Significance Rating	Impact Significance Rating				
Total Score	4 to 15	16 to 30	31 to 60	61 to 80	81 to 100
Environmental Significance	Very low	Low	Moderate	High	Very High
Rating (Negative (-))					
Environmental Significance	Very low	Low	Moderate	High	Very High
Rating (Positive (+))					

2.5.2 Impact Mitigation

The impact significance without mitigation measures will be assessed with the design controls in place. Impacts without mitigation measures in place are not representative of the proposed development's actual extent of impact and are included to facilitate understanding of how and why mitigation measures were identified. The residual impact is what remains following the application of mitigation and management measures and is thus the final level of impact associated with the development. Residual impacts also serve as the focus of management and monitoring activities during Project implementation to verify that actual impacts are the same as those predicted in this report.

The mitigation measures chosen are based on the mitigation sequence/hierarchy which allows for consideration of five (5) different levels, which include avoid/prevent, minimise, rehabilitate/restore, offset and no-go in that order. The idea is that when project impacts are considered, the first option should be to avoid or prevent the impacts from occurring in the first place if possible, however, this is not always feasible. If this is not attainable, the impacts can be allowed, however they must be minimised as far as possible by considering reducing the footprint of the development for example so that little damage is encountered. If impacts are unavoidable, the next goal is to rehabilitate or restore the areas impacted back to their original form after project completion. Offsets are then considered if all the other measures described above fail to remedy high/significant residual negative impacts. If no offsets can be achieved on a potential impact, which results in full destruction of any ecosystem for example, the no-go option is considered so that another activity or location is considered in place of the original plan.

The mitigation sequence/hierarchy is shown in Figure 6 below.

Avoidance / Prevention

Refers to considering options in project location, nature, scale, layout, technology and phasing to avoid environmental and social impacts. Although this is the best option, it will not always be feasible, and then the next steps become critical.

Refers to considering alternatives in the project location, scale, layout, technology and phasing Mitigation / Reduction that would minimise environmental and social impacts. Every effort should be made to minimise impacts where there are environmental and social constraints.

Rehabilitation / Restoration

Refers to the restoration or rehabilitation of areas where impacts were unavoidable and measure are taken to return impacted areas to an agreed land use after the activity / project. Restoration, or even rehabilitation, might not be achievable, or the risk of achieving it might be very high. Additionally it might fall short of replicating the diversity and complexity of the natural system. Residual negative impacts will invariably still need to be compensated or offset.

Compensation / Offset

Refers to measures over and above restoration to remedy the residual (remaining and unavoidable) negative environmental and social impacts. When every effort has been made to avoid, minimise, and rehabilitate remaining impacts to a degree of no net loss, compensation / offsets provide a mechanism to remedy significant negative impacts.

No-Go

Refers to 'fatal flaw' in the proposed project, or specifically a proposed project in and area that cannot be offset, because the development will impact on strategically important ecosystem services, or jeopardise the ability to meet biodiversity targets. This is a fatal flaw and should result in the project being rejected.

Figure 6. Mitigation Sequence/Hierarchy

3. Results

3.1 Desktop Survey

3.1.1 Previous Studies in the Region

All nearby existing and proposed WEF and SEF facilities were searched for online to find additional data regarding important avifaunal findings that might be of importance to the proposed SEF (Table 2). Investigations into available literature on other bird surveys or monitoring reports nearby (100 km) the proposed SEF application were undertaken as determined from the REEA (2022 Q1) information. These reports identified the potential impact of the proposed energy generating facilities on bird populations present and mitigation strategies followed. An extensive list of bird species that could possibly be present on or near the proposed SEF was also compiled using the previous study data and publicly available bird ecological information.

Table 2. Bird reports for Wind Energy Facilities and other developments in the region of the proposed SEF.

Project	Report details	Consultant	Location from SEF
Camden 1 Wind	Camden I Wind Energy Facility	WSP Group Africa (Pty)	57.6 Km
Energy Facility		Ltd	Northeast
Camden 2 Wind	Camden 2 Wind Energy Facility	WSP Group Africa (Pty)	63 Km
Energy Facility		Ltd	Northeast
Camden 1 Solar	Camden 1 Solar Energy Facility	WSP Group Africa (Pty)	62 Km
Energy Facility		Ltd	Northeast
Majuba PV Solar	Majuba PV Solar Energy	Savannah	39 Km
Energy Facility	Facility near Amersfoort	Environmental (Pty) Ltd	Southeast
Tutuka Solar	Tutuka Solar Photovoltaic	Savannah	13 Km
Photovoltaic Facility	Facility	Environmental (Pty) Ltd	Northwest
Volksrust truck stop	Proposed Truck Stop & Filling	SSI Engineers and	70 Km
and Filling Station	Station; Volksrust in	Environmental	Southeast
	Mpumalanga Province	Consultants	
Waaihoek Wind	Proposed Waaihoek Wind	EOH Coastal &	132 Km
Energy Facility	Energy Facility, Utrecht, Kwazulu-Natal	Environmental Services	Southeast

3.1.1.1 Camden I Wind Energy Facility

- The South African Bird Atlas Project 2 (SABAP2) data showed that a total of 234 bird species could potentially occur within the broader area of the proposed WEF PAOI.
- Of these, 37 species were classified as priority species and 16 of these were identified on the South African Red List species. Of the priority species, 25 were likely to occur regularly in the development area.
- The project site is not located in an Important Bird Area (IBA), but it is located between three IBAs.

- Due to the proximity of the site to the IBAs, it is possible that some highly mobile priority species which are also IBA trigger species, and which occur either permanently or sporadically in the IBAs, might be impacted by the project
- Specific environmental sensitivity areas have been identified from an avifaunal perspective indicating where mitigation strategies should be applied.

3.1.1.2 Camden 2 Wind Energy Facility

- The Camden II WEF project area was classified as Medium to High sensitivity when the DFFE Screening Tool was utilized.
- This was determined based on the potential presence of several SCC namely Grey Crowned Crane (Globally and Regionally Endangered), Martial Eagle (Globally and Regionally Endangered), Southern Bald Ibis (Globally and Regionally Vulnerable), White-bellied Korhaan (Regionally Vulnerable), Secretarybird (Globally Endangered and Regionally Vulnerable) and Wattled Crane (Globally Vulnerable and Regionally Critically Endangered).
- This classification was confirmed during on-site visits and field surveys conducted throughout the study period.
- It was stated that the development in the sensitivity grassland must be limited as far as possible.
- It was stated that a 100 m buffer from all infrastructure exclusion zones must be implemented around drainage lines and associated wetlands.
- After the pre-construction survey was completed, the avifauna specialist was informed of a potential Martial Eagle nest located near the Camden II WEF. A 5 km no turbine exclusion zone around this nest was therefore suggested.

3.1.1.3 Camden 1 Solar Energy Facility

- It was determined that the proposed solar energy facility will have a moderate impact on priority avifaunal species which could be reduced to low impact through appropriate mitigation.
- No fatal flaws were discovered during the onsite investigations of the proposed SEF.

- It was stated that the development in the sensitivity grassland must be limited as far as possible.
- It was stated that a 100m all infrastructure exclusion zone must be implemented around drainage lines and associated wetlands.

3.1.1.4 Majuba PV Solar Energy Facility near Amersfoort

- The South African Bird Atlas Project 2 (SABAP2) data showed that a total of 168 bird species could potentially occur within the broader area of the proposed SEF PAOI.
- Of these, 12 were identified on the South African Red List species.
- The proposed SEF PAOI was located on the boundary of the Grassland Biosphere Reserve IBA.
- This IBA is known to hold a large portion of South Africa's population of the endangered White-winged Flufftail. In addition, Corn Crake, Little Bittern, Baillon's Crake, Red-chested Flufftail, African Rail, and breeding populations of African Marsh Harrier, Grey Crowned Crane and African Grass Owl. It has also been established that a large portion of the global population of Rudd's Lark and Botha's Lark occur inside this IBA. The largest breeding colony of Southern Bald Ibis was also found within this area. However, none of the abovementioned species were recorded by the specialists during the study period.
- Specific environmental sensitivity areas have been identified from an avifaunal perspective indicating where mitigation strategies should be applied.

3.1.1.5 Tutuka Solar Photovoltaic Facility

- The South African Bird Atlas Project 2 (SABAP2) data showed that a total of 190 bird species could potentially occur within the broader area of the proposed SEF PAOI.
- Of these, 10 were identified on the South African Red List species.
- It was stated that although most the Red List species could occur on the PAOI, the presence of sufficiently similar habitat around the site will allow for movement of these species and no displacement impact of regional and national significance will occur.

• The proposed SEF does not fall within an established IBA, but the Amersfoort-Bethal-Carolina District IBA lies 27 Km East of the site. Although this IBA is relatively close to the proposed development site, it was stated that it is unlikely that some of the bird species found there will occur on the PAOI site.

3.1.1.6 Proposed truck stop and filling station near Volksrust in Mpumalanga Province

- Twenty-two bird species were recorded during the brief field survey.
- It was mentioned that the species that were recorded are common, widespread and are typical of the grassland environment.
- It was further stated that Southern Bald Ibis may use the site during certain times of the year for foraging purposes especially after fires. Lesser Kestrels may also be present on the proposed site.
- The specialists did not identify any threatened bird species during the brief field survey.

3.1.1.7 Proposed Waaihoek Wind Energy Facility, Utrecht, KwaZulu-Natal

- A total of 92 species were recorded at the study area during the study period.
- Of these, a total of 26 species were priority species.
- It was established that the majority of the proposed PAOI is in an IBA, namely the Grasslands Important Bird and Biodiversity Area (SA125), with the proposed power line alternatives for the grid connection located just outside the IBA.
- Ultimately it was established that the proposed wind farm will constitute a potential impact on grassland avifauna due to fragmentation of the grassland habitat.
- However, the specialist stated that if the habitat is carefully managed to conserve the grassland for the benefit of the birds, many species will benefit in the longer term through this protection and the wind farm should only constitute a moderate cumulative impact.

3.1.2 Protected Areas

A search was conducted to identify any protected areas present within 100 km of the proposed SEF project area using the South African Protected Area Data (SAPAD 2022 Q1). The identified public/privately owned protected areas are listed the table below (Table 3). The reserves consist of privately as well as publicly owned land, used for wildlife conservation as well as specific livestock farming.

Table 3. The identified public/privately owned protected areas identified close to proposed SEF.

Name	Location from SEF site
Moreson Nature Reserve	98 Km Southwest
Shozaloza Safaris	100 Km Southwest
Lorensa Game Farm	90 Km Southwest
Vaaldam Nature Reserve	90 Km West
S.J. Van Der Merwe Private Nature Reserve	90 Km West
J.N. Van Der Merwe Private Nature Reserve	90 Km West
Daisy Private Nature Reserve	100 Km Northwest
Voortrekker Private Nature Reserve	99 Km Northwest
Nicolaas Private Nature Reserve	99 Km Northwest
Devon Protected Environment	96 Km Northwest
John Cairns Private Nature Reserve	97 Km North
Witbank Nature Reserve	98 Km North
Heyns Private Nature Reserve	98 Km North
Burnside Private Nature Reserve	99 Km North
Chrissiesmeer Protected Environment	90 Km Northeast
Rietvlei Private Nature Reserve	59 Km Northeast
Ahlers Private Nature Reserve	73 Km Northeast
Langcarel Private Nature Reserve	65 Km East
(in de-proclamation process)	OD VIII EGSL
Jericho Dam Nature Reserve	100 Km East

Name	LOCATION FROM SEF SITE
Majuba Nature Reserve	43 Km Southeast
Afrikan Farms Protected Environment	47 Km Southeast
Mabola Protected Environment	97 Km Southeast
Tafelkop Nature Reserve	97 Km Southeast
Mkhothane Protected Environment	73 Km Southeast
Lotterkrantz Private Nature Reserve	47 Km South
Sneeuberg Protected Environment	85 Km South
Rosedale Private Nature Reserve	98 Km South

3.1.3 Potential Species Present on the PAOI

Based on a list of bird species drawn from the SABAP 2 pentads that both cover and surround the PAOI, a total of 201 potential species have been identified to occur on or around the PAOI via desktop analysis. The desktop study identified 30 Priority Species (Appendix 1 & Table 6).

From this list of potential priority species, eight species have an Overall Priority Score of 290 or higher, placing them in the top 30 priority species as ranked by Birdlife South Africa. These key species include Southern Bald Ibis, Blue Crane, Secretarybird, African Marsh Harrier, Lanner Falcon, African Fish Eagle, Greater Flamingo and, Lesser Flamingo. Only one of these key priority species have been confirmed to occur on the PAOI, with a single observation of Secretarybird in January 2023.

Based on the habitat present, eleven of the 30 listed priority species are very unlikely to utilize the PAOI with any regularity, whilst a further nine species are likely to occur on the PAOI, based on habitat suitability, but were however not located during the survey period. These include Blue Crane, African Marsh Harrier, Lanner Falcon, African Fish Eagle, White Stork, Lesser Kestrel, Montagu's Harrier, Greater Kestrel, and Spotted Eagle Owl.

Table 4. Priority species that could potentially occur on the Project Area of Influence. Priority species recorded on site or within 10 km of site, marked with 'x' and highlighted red.

	Common name	Scientific name	Recorded (x)	Likely (x)	Score
1	Southern Bald Ibis	Geronticus calvus			330
2	Blue Crane	Grus paradisea		Х	320
3	Secretarybird	Sagittarius serpentarius	Х		320
4	African Marsh Harrier	Circus ranivorus		X	300
5	Lanner Falcon	Falco biarmicus		Х	300
6	African Fish Eagle	Haliaeetus vocifer		Х	290
7	Lesser Flamingo	Phoenicopterus minor			290
8	Greater Flamingo	Phoenicopterus ruber			290
9	Blue Korhaan	Eupodotis caerulescens	Х		270
10	Pallid Harrier	Circus macrourus			260
11	Jackal Buzzard	Buteo rufofuscus	Х		270
12	Caspian Tern				240
13	Peregrine Falcon	Falco peregrinus			240
14	Osprey	Pandion haliaetus			230
15	White Stork	Ciconia ciconia		X	220
16	Lesser Kestrel	Falco naumanni		Х	214
17	Montagu's Harrier	Circus pygargus		Х	210
18	Common Buzzard	Buteo buteo	Х		210
19	Amur Falcon	Falco amurensis	Х		210
20	Black-winged Pratincole	Glareola nordmanii			202
21	Marsh Owl	Asio capensis	Х		190
22	Grey-winged Francolin	Scleroptila africanus	Х		190
23	Long-crested Eagle	Lophaetus occipitalis			190
24	African Harrier-Hawk	Polyboroides typus	Х		190

	Common name	Scientific name	Recorded (x)	Likely (x)	Score
25	Northern Black Korhaan	Afrotis afraoides			180
26	Black-winged Kite	Elanus caeruleus	X		174
27	Greater Kestrel	Falco rupicoloides		Х	174
28	Red-footed Falcon	Falco vespertinus			174
29	Spotted Eagle Owl	Bubo africanus		Х	170
30	Black Sparrowhawk	Accipiter melanoleucus	Х		170
	TOTALS		10	9	

3.2. Important Bird and Biodiversity Areas (IBAs)

Important Bird and Biodiversity Areas (IBAs) are defined by Birdlife International, as sites of global significance for bird conservation, identified nationally through multi-stakeholder processes using globally standardized, quantitative, and scientifically agreed criteria. These areas are seen as the most important sites for conservation and must be considered during avifaunal impact assessments.

The closest IBA (17 Km East) from the PAOI is known as Amersfoort—Bethal—Carolina District IBA. This specific IBA stretches throughout Mpumalanga province and covers an area of 343 320 ha (Figure 7). The IBA is classified as an unprotected site which correlates to no official protection under the National Environmental Management: Protected Areas Act (2003). However, the conservation response is not completely absent from unprotected IBAs with input from civil society groups, a degree of monitoring, research and conservation action still taking place at sites of biological significance.

Species found within this IBA that are of conservational concern is the globally threatened Botha's Lark, with 10% of the global population suspected to be present within this area. Other globally threatened species are Blue Crane, Southern Bald Ibis, Black Harrier, Blue Korhaan, Black-winged Pratincole, Secretarybird, Martial Eagle and Denham's Bustard. Regionally threatened species are African Grass Owl, White-bellied Korhaan and Lanner Falcon. Restricted-range and biomerestricted species are the previously mentioned Botha's Lark, and Buff-streaked Chat.

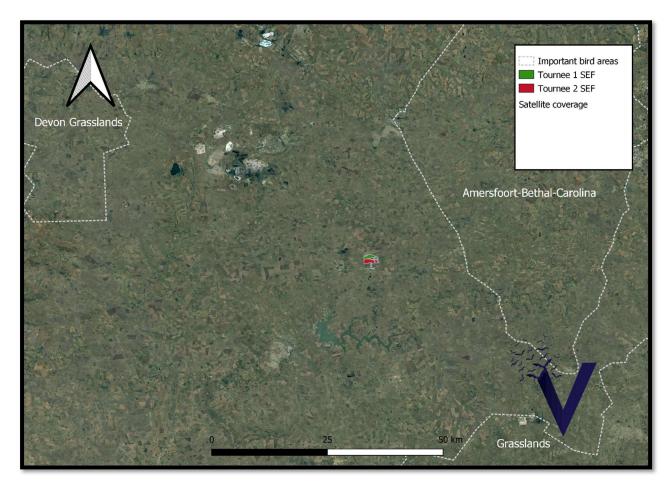


Figure 7. Position of Important Bird Areas (IBAs) in relation to the Tournee 1 and Tournee 2 Solar PV facilities.

3.3 Observed Species

All species that were seen or heard on an *adhoc* basis, or during both walked transect and driven coverage were recorded. A total of 90 unique species of avifauna were identified on the PAOI and the surrounding area (Appendix 2). Of this list, priority species observed within the PAOI included

Secretarybird, Blue Korhaan, Jackal Buzzard, Common Buzzard, Amur Falcon, Marsh Owl, Greywinged Francolin, African Harrier Hawk, Black-winged Kite, and, Black Sparrowhawk.

Locality data for all priority species sightings on the PAOI have been mapped and ranked according to their priority scores (Figure 8).

- Low risk (green), priority score of 170 209.
- Medium risk (yellow) priority score of 210 289.
- **High risk** (red), priority score of 290 405.

These sightings include fly-overs from raptors and other priority species that may not be impacted significantly by the development of the SEF.

Data obtained from the walked transects across the Tournee SEF Cluster, indicated a moderate to low diversity with 50 species recorded across transects in January (Figure 9), 51 species in April (Figure 10), and 32 species recorded in July (Figure 11). As excepted, the winter surveys produced lower species counts, and many migrants had returned to the northern hemisphere, and grassland birds were not as vocal outside of the breeding season. The ten most abundant birds recorded in each seasonal survey included few priority species, with the risk for Marsh Owls being mitigated by buffering the wetlands and drainage lines, whilst Black-winged Kite adapt to developed land and will likely remain in the area during and post construction.

Figure 8. Location of priority species across the Tournee SEF.

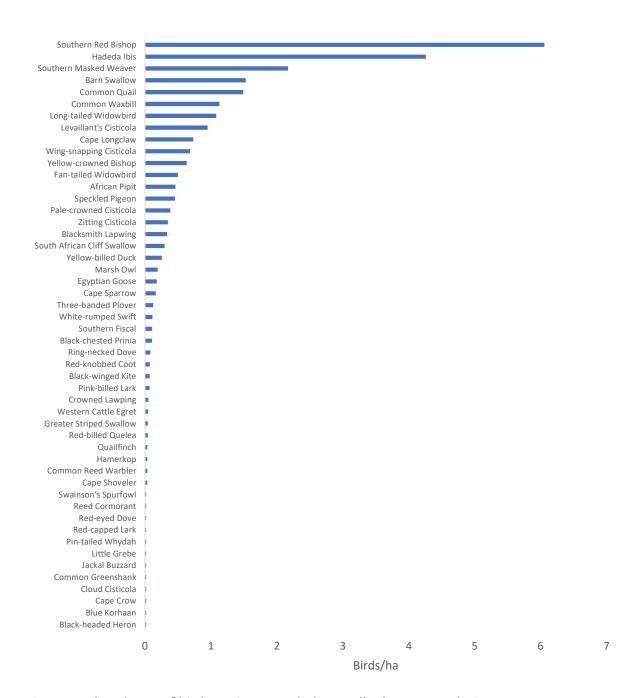


Figure 9. Abundance of bird species recorded on walked transects during January.

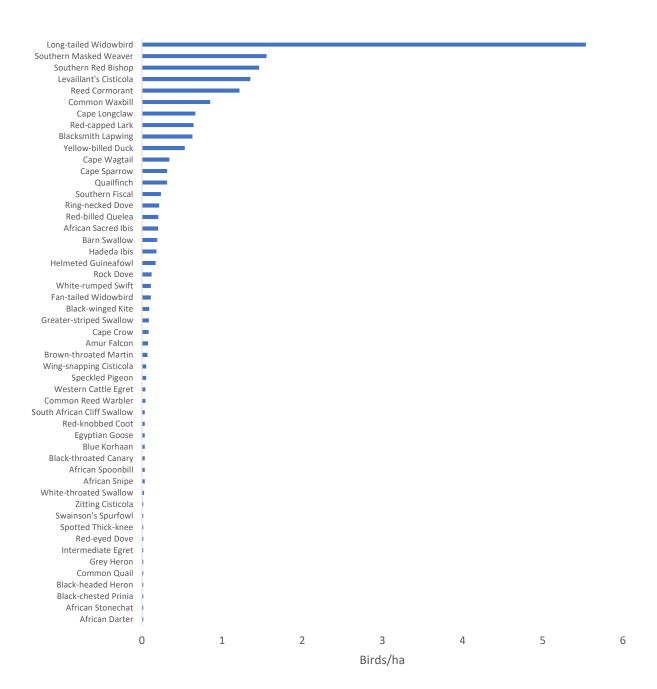


Figure 10. Abundance of bird species recorded on walked transects during April.

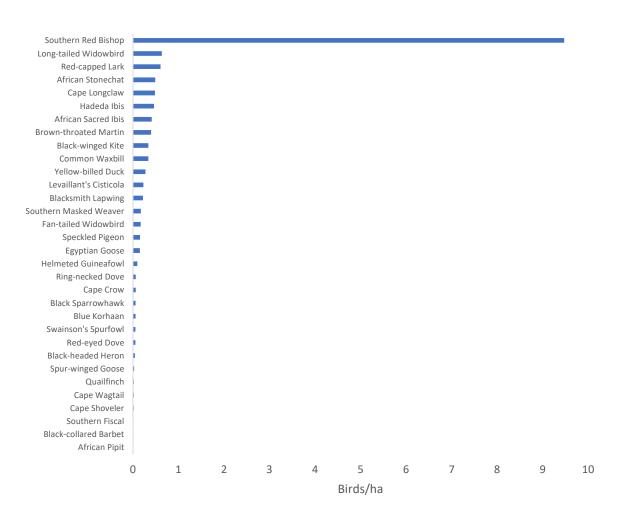


Figure 11. Abundance of bird species recorded on walked transects during July.

3.4 Sensitive Bird Areas

Large farm dams, wetlands, and any of their drainage lines were walked to survey for Priority Species and ascertain whether they could serve as breeding or roosting sites for Priority Species. No nests or active roost sites were located in these sensitive areas during either of the two survey periods. However, due to the presence of numerous priority species which would utilize these habitats, we include a 100-meter solar-panel free buffer around the wetlands, and waterbodies (Figure 12).

Figure 12. Sensitive bird areas located on the Project Area of Influence.

3.5 Site Sensitivity Verification

Based on the screening report generated on 19/10/2022, the Avian Combined Sensitivity Theme is indicated as **Low sensitivity** in areas covering both the Tournee 1 and Tournee 2 Solar PV facilities, which aligns with our findings compiled after our three seasonal surveys.

4. Impact assessment

4.1 Impacts Identified

The main impacts of PV plants on avifauna which have emerged from previous studies include:

- **Displacement due to disturbance**, created by the construction of the solar PV plant and associated infrastructure.
- **Displacement due to habitat destruction and transformation**, created by the construction of the solar PV plant and associated infrastructure.
- Mortality and injury, caused by collisions with solar PV panels and associated infrastructure.
- **Entrapment** within perimeter fencing.
- Chemical pollution, usually linked to dust suppressants.
- **Electrocution** on power lines, and associated infrastructure.

These main impacts are outlined below across the construction, operational and decommissioning phases of the project.

4.2 Evaluation of Impacts

4.2.1 Construction Phase

Table 5. Displacement of priority species due to disturbance associated with construction of Tournee SEF cluster and associated infrastructure.

Nature: Displacement of Priority Species due to disturbance associated with construction of Tournee SEF Cluster and associated infrastructure.

Impact M	lagnitude	Score	Impact	Extent	Score
Without mitigation	High	4	Without mitigation	Local	2
With mitigation	Medium	3	With mitigation	Local	2
Impact Reversibility		Score	Impact (Duration	Score
Without mitigation	Reversible	1	Without mitigation	Short term	2
With mitigation	Reversible	1	With mitigation	Immediate	1
Proba	ability	Score	Rat	ting	Score
Without mitigation	Definite	5	Without mitigation	Moderate	45
With mitigation	Definite	5	With mitigation	Moderate	35

Mitigation:

- Construction activity should be restricted as far as possible to the immediate footprint of the required infrastructure.
- Access to the surrounding site outside of the footprint should be controlled and limited to reduce unnecessary disturbance to priority species.
- Best practice guidelines should be followed to control noise and dust.
- Existing roads should be used and construction of new roads kept to a minimum.
- Areas deemed most sensitive, should be avoided altogether to limit disturbance.
- Recommendations of the ecological specialist studies should be strictly followed.

Residual Risks:

The residual risk of displacement will be reduced in the development, but will remain at a moderate level after mitigation, if proposed mitigation measures are implemented. Avoiding the areas deemed too sensitive, would reduce the disturbance risk to priority species to low and potentially provide areas of respite for those priorities in the areas where construction is approved.

Table 6. Displacement of priority species due to habitat transformation associated with construction of Tournee SEF Cluster and associated infrastructure.

Nature: Displacement of priority species due to habitat transformation associated with construction of Tournee SEF Cluster and associated infrastructure.

Impact M	1agnitude	Score	Impact	: Extent	Score
Without mitigation	High	4	Without mitigation	Local	2
With mitigation	Medium	3	With mitigation	Local	2
Impact Reversibility		Score	Impact	Duration	Score
Without mitigation	Recoverable	3	With mitigation	Long term	4
With mitigation	Recoverable	3	Without mitigation	Long term	4
Prob	ability	Score	Rat	ting	Score
Without mitigation	Definite	5	Without mitigation	High	65
With mitigation	Highly probability	4	With mitigation	Moderate	48

Mitigation:

- A 100m solar panel free buffer zone should be implemented around dams, wetlands, and drainage lines.
- Sensitive grasslands and habitats where breeding and roosting occurs should be avoided.
- Existing roads should be used and construction of new roads kept to a minimum.
- Recommendations of the ecological specialist studies should be strictly followed.

Residual Risks:

The residual risk of displacement will be reduced, but will change to a moderate level after mitigation, if proposed mitigation measures are implemented. For some species this may remain due to the change in habitat.

4.2.2 Operational Phase

Table 7. Mortality of priority species due to collisions with solar panels.

Nature: Mortality of priority species due to collisions with solar panels.					
Impact Magnitude Score Impact Extent Score					Score
Without mitigation	Low	2	Without mitigation	Local	2
With mitigation	Low	2	With mitigation	Local	2
Impact Re	eversibility	Score	Impact I	Duration	Score
Without mitigation	Reversible	1	Without mitigation	Long term	4
With mitigation	Reversible	1	With mitigation	Long term	4
Prob	ability	Score	Rat	ting	Score
Without mitigation	Probable	3	Without mitigation	Low	27
With mitigation	Probable	3	With mitigation	Low	27

Mitigation:

Water dependant Priority Species were not prevalent on site in large numbers. These species are known to confuse PV solar panel arrays with waterbodies, but due to their low numbers the expected significance of this impact on the PAOI is low and no mitigation measures are currently recommended.

Residual Risks:

Not applicable.

Table 8. Entrapment of large-bodied birds in the perimeter fence lines of Tournee SEF Cluster.

Nature: Entrapment of large-bodied birds in the perimeter fence lines of Tournee SEF Cluster.					
Impact M	1agnitude	Score	Impact	: Extent	Score
Without mitigation	Medium	3	Without mitigation	Local	2
With mitigation	Low	2	With mitigation	Local	2
Impact Re	eversibility	Score	Impact	Duration	Score
Without mitigation	Reversible	1	Without mitigation	Long term	4
With mitigation	Reversible	1	With mitigation	Long term	4
Probability		Score	Ra	ting	Score
Without mitigation	Probable	3	Without mitigation	Low	30
With mitigation	Low probability	2	With mitigation	Low	18

Mitigation:

- A single perimeter fence is recommended to reduce entrapment of priority species.
- Increasing the spacing between the two top wires (minimum of 30cm) and ensuring wires are barbless and correctly tensioned, will reduce snaring risk of birds (Especially the Marsh Owls present on site)

Residual Risks:

The residual risk of entrapment will remain low if mitigation measures are followed.

Table 9. Mortality of priority species due to electrocution with reticulation networks.

Nature: Mortality of priority species due to electrocution with reticulation networks.					
Impact Magnitude Score Impact Extent					Score
Without mitigation	Medium	3	Without mitigation	Local	2
With mitigation	Low	2	With mitigation	Local	2
Impact Re	eversibility	Score	Impact	Duration	Score
Without mitigation	Reversible	1	With mitigation	Long term	4
With mitigation	Reversible	1	Without mitigation	Long term	4
Prob	ability	Score	Ra	ting	Score
Without mitigation	Probable	3	Without mitigation	Low	30
With mitigation	Low probability	1	With mitigation	Very Low	9

Mitigation:

- Use underground cables as much as possible.
- Use raptor friendly pole designs, approved by an avifaunal specialist.

Residual Risks:

The residual risk of entrapment will be reduced to very low if mitigation measures are followed.

Table 10. Mortality of priority species due to collisions with reticulation networks.

Nature: Mortality of priority species due to collisions with reticulation networks.					
Impact Magnitude Score Impact Extent					Score
Without mitigation	Medium	3	Without mitigation	Local	2
With mitigation	Low	2	With mitigation	Local	2
Impact Re	eversibility	Score	Impact	Duration	Score
Without mitigation	Reversible	1	With mitigation	Long term	4
With mitigation	Reversible	1	Without mitigation	Long term	4
Prob	ability	Score	Rat	ting	Score
Without mitigation	Probable	3	Without mitigation	Low	30
With mitigation	Low probability	2	With mitigation	Low	18

Mitigation:

- Use underground cables as much as possible.
- All overhead lines must be marked with Eskom approved flight diverters/flappers according to the latest official Eskom Engineering Instruction.

Residual Risks:

The residual risk of collision will still be present for Blue Korhaan and Blue Crane, but should be significantly reduced for other species.

4.2.3 Decommissioning Phase

Table 11. Impact due to the habitat transformation during the decommissioning phase

Nature: Displacement of priority species due to habitat transformation associated with construction of Tournee SEF Cluster and associated infrastructure.

Impact M	1agnitude	Score	Impact	Extent	Score
Without mitigation	High	4	Without mitigation	Local	2
With mitigation	Medium	3	With mitigation	Local	2
Impact Re	eversibility	Score	Impact I	Duration	Score
Without mitigation	Reversible	1	With mitigation	Short term	2
With mitigation	Reversible	1	Without mitigation	Short term	2
Proba	ability	Score	Rat	ting	Score
Without mitigation	Definite	5	Without mitigation	Moderate	45
With mitigation	Definite	5	With mitigation	Moderate	40

Mitigation:

- Activity should be restricted as far as possible to the immediate footprint of the developed site.
- Access to the surrounding site outside of the footprint should be controlled and limited to reduce unnecessary disturbance to priority species.
- Decommissioning should take place outside of key breeding seasons for any priority species.
- Best practice guidelines should be followed to control noise and dust.
- Existing roads should be used and any construction of new roads kept to a minimum.
- Recommendations of the ecological specialist studies should be strictly followed.

Residual Risks:

The residual risk of displacement will be reduced, but will remain at a moderate level after mitigation, if proposed mitigation measures are implemented.

5. Conclusion

Large sections of the PAOI have already been transformed and consists of agricultural land, used for crops and cattle grazing, with the most sensitive areas for birds identified as the wetlands and farm dams. These damp areas serve as potential roosting areas for Black Harrier, African Marsh Harrier, Montagu's Harrier, Pallid Harrier, and Blue Crane. They are also likely to attract large raptors, storks and bustards which may use these to both bath and drink. Blue Cranes regularly enter farm dams to protect their chicks from terrestrial predators in the evenings.

The more natural grasslands on the PAOI seemed to hold a greater number of priority species such as Blue Korhaan, Secretarybird, and although these species would all be affected by the permanent removal of these grasslands for the construction of the proposed SEF, the surrounding grasslands neighbouring the PAOI should be sufficient to allow for the feeding and breeding of these species. Currently, with only thirty percent of the potential Priority Species being recorded on both the Tournee 1 Solar PV and Tournee 2 Solar PV facilities, the overall impact on birds based off the seasonal surveys is considered **LOW**, and we have identified no fatal flaws and all likely risks can be mitigated.

6. References

EOH Coastal & Environmental Services, (2015). Proposed Waaihoek Wind Energy Facility, Final Amended Environmental Impact Assessment Report, CES, East London.

Jenkins, A.R., Ralston-Paton, S., Smit-Robinson, H.A.. 2017. Best Practise guidelines for birds and solar facilities.

Ladislav, M., Rutherford, M.C., (2006). The vegetation of South Africa, Lesotho and Swaziland, South African National Biodiversity Institute.

WSP Group Africa (Pty) Ltd (2022). Camden I Wind Energy Facility Environmental Impact Assessment report.

WSP Group Africa (Pty) Ltd (2022). Camden I Solar Energy Facility Final Environmental Impact Assessment Report.

WSP Group Africa (Pty) Ltd (2022). Camden II Wind Energy Facility Final Environmental Impact Assessment Report.

Appendix 1: Potential species present on PAOI.

Common name	Scientific name
Ostriches (Struthionidae)	
Common Ostrich	Struthio camelus
Ducks, Geese, Swans (Anatidae)	
White-faced Whistling Duck	Dendrocygna viduata
Fulvous Whistling Duck	Dendrocygna bicolor
White-backed Duck	Thalassornis leuconotus
Spur-winged Goose	Plectropterus gambensis
Egyptian Goose	Alopochen aegyptiaca
South African Shelduck	Tadorna cana
Blue-billed Teal	Spatula hottentota
Cape Shoveler	Spatula smithii
African Black Duck	Anas sparsa
Yellow-billed Duck	Anas undulata
Mallard	Anas platyrhynchos
Cape Teal	Anas capensis
Red-billed Teal	Anas erythrorhyncha
Southern Pochard	Netta erythrophthalma
Maccoa Duck	Oxyura maccoa
Guineafowl (Numididae)	
Helmeted Guineafowl	Numida meleagris
Pheasants & Allies (Phasianidae)	
Grey-winged Francolin	Scleroptila afra
Orange River Francolin	Scleroptila gutturalis
Common Quail	Coturnix coturnix
Swainson's Spurfowl	Pternistis swainsonii
Swifts (Apodidae)	
African Palm Swift	Cypsiurus parvus
Common Swift	Apus apus
African Black Swift	Apus barbatus
Little Swift	Apus affinis
White-rumped Swift	Apus caffer

Common name	Scientific name
Bustards (Otididae)	
Blue Korhaan	Eupodotis caerulescens
Northern Black Korhaan	Afrotis afraoides
Cuckoos (Cuculidae)	
Diederik Cuckoo	Chrysococcyx caprius
Pigeons, Doves (Columbidae)	
Rock Dove	Columba livia
Speckled Pigeon	Columba Ilviu Columba guinea
Red-eyed Dove	Streptopelia semitorquata
Ring-necked Dove	Streptopelia capicola
Laughing Dove	Spilopelia senegalensis
Namaqua Dove	Oena capensis
Rails, Crakes & Coots (Rallidae)	
African Crake	Crecopsis egregia
Common Moorhen	Gallinula chloropus
Red-knobbed Coot	Fulica cristata
African Swamphen	Porphyrio madagascariensis
Black Crake	Zapornia flavirostra
Cranes (Gruidae)	
Blue Crane	Grus paradisea
blue Craffe	Grus puruuiseu
Grebes (Podicipedidae)	
Little Grebe	Tachybaptus ruficollis
Great Crested Grebe	Podiceps cristatus
Flamingos (Phoenicopteridae)	
Greater Flamingo	Phoenicopterus roseus
Lesser Flamingo	Phoeniconaias minor
Stone-curlews, Thick-knees (Burhinidae)	
Spotted Thick-knee	Burhinus capensis
Spotted Thick-knee	burninus cupensis

Common name	Scientific name	
Stilts, Avocets (Recurvirostridae)		
Black-winged Stilt	Himantopus himantopus	
Pied Avocet	Recurvirostra avosetta	
Plovers (Charadriidae)		
Blacksmith Lapwing	Vanellus armatus	
Crowned Lapwing	Vanellus coronatus	
African Wattled Lapwing	Vanellus senegallus	
Kittlitz's Plover	Charadrius pecuarius	
Three-banded Plover	Charadrius tricollaris	
Sandpipers, Snipes (Scolopacidae)		
Ruff	Calidris pugnax	
Curlew Sandpiper	Calidris ferruginea	
Little Stint	Calidris minuta	
African Snipe	Gallinago nigripennis	
Common Sandpiper	Actitis hypoleucos	
Marsh Sandpiper	Tringa stagnatilis	
Wood Sandpiper	Tringa glareola	
Common Greenshank	Tringa nebularia	
Coursers, Pratincoles (Glareolidae)		
Black-winged Pratincole	Glareola nordmanni	
Gulls, Terns, Skimmers (Laridae)		
Grey-headed Gull	Chroicocephalus cirrocephalus	
Caspian Tern	Hydroprogne caspia	
Whiskered Tern	Chlidonias hybrida	
White-winged Tern	Chlidonias leucopterus	
Storks (Ciconiidae)		
African Openbill	Anastomus lamelligerus	
White Stork	Ciconia ciconia	
Anhingas, Darters (Anhingidae)		
African Darter	Anhinga rufa	
	5 %	

Common name	Scientific name	
Cormorants, Shags (Phalacrocoracidae)		
Reed Cormorant	Microcarbo africanus	
White-breasted Cormorant	Phalacrocorax lucidus	
Ibises, Spoonbills (Threskiornithidae)		
African Sacred Ibis	Threskiornis aethiopicus	
Southern Bald Ibis	Geronticus calvus	
Hadada Ibis	Bostrychia hagedash	
Glossy Ibis	Plegadis falcinellus	
African Spoonbill	Platalea alba	
Herons, Bitterns (Ardeidae)		
Little Bittern	Ixobrychus minutus	
Black-crowned Night Heron	Nycticorax nycticorax	
Squacco Heron	Ardeola ralloides	
Vestern Cattle Egret Bubulcus ibis		
Grey Heron	Ardea cinerea	
Black-headed Heron	Ardea melanocephala	
Goliath Heron	Ardea goliath	
Purple Heron	Ardea purpurea	
Great Egret	Ardea alba	
Intermediate Egret	Ardea intermedia	
Black Heron	Egretta ardesiaca	
Little Egret	Egretta garzetta	
Hamerkop (Scopidae)		
Hamerkop	Scopus umbretta	
Secretarybird (Sagittariidae)		
Secretarybird	Sagittarius serpentarius	
Ospreys (Pandionidae)		
Osprey	Pandion haliaetus	
Kites, Hawks, Eagles (Accipitridae)		
Black-winged Kite	Elanus caeruleus	
African Harrier-Hawk	Polyboroides typus	
Long-crested Eagle	Lophaetus occipitalis	
Black Sparrowhawk	Accipiter melanoleucus	

<u> </u>	0-1	
Common name	Scientific name	
African Marsh Harrier	Circus ranivorus	
Black Harrier	Circus maurus	
Pallid Harrier	Circus macrourus	
Montagu's Harrier	Circus pygargus	
Yellow-billed Kite	Milvus aegyptius	
African Fish Eagle	Haliaeetus vocifer	
Common Buzzard	Buteo buteo	
Jackal Buzzard	Buteo rufofuscus	
Barn Owls (Tytonidae)		
Western Barn Owl	Tyto alba	
Owls (Strigidae)		
Marsh Owl	Asio capensis	
Spotted Eagle-Owl	Bubo africanus	
Mousebirds (Coliidae)		
Speckled Mousebird	Colius striatus	
Hoopoes (Upupidae)		
African Hoopoe	Upupa africana	
Wood Hoopoes (Phoeniculidae)		
Green Wood Hoopoe	Phoeniculus purpureus	
Rollers (Coraciidae)		
European Roller	Coracias garrulus	
Kingfishers (Alcedinidae)		
Malachite Kingfisher	Corythornis cristatus	
Giant Kingfisher	Megaceryle maxima	
Pied Kingfisher	Ceryle rudis	
African Barbets (Lybiidae)		
Black-collared Barbet	Lybius torquatus	
Crested Barbet	Trachyphonus vaillantii	

Jynx ruficollis			
Jynx ruficollis			
Jynx ruficollis			
Falco naumanni			
Falco rupicolus			
Falco rupicoloides			
Falco vespertinus			
Falco amurensis			
Falco biarmicus			
Falco peregrinus			
Psittacula krameri			
Telophorus zeylonus			
Lanius collurio			
Lanius minor			
Lanius collaris			
Oriolus larvatus			
Corvus capensis			
Corvus albus			
Chersomanes albofasciata			
Eremopterix leucotis			
Mirafra fasciolata			
Mirafra africana		Mirafra africana	
Spizocorys conirostris			
Calandrella cinerea			

Common name	Scientific name	
Bulbuls (Pycnonotidae)		
Dark-capped Bulbul	Pycnonotus tricolor	
Swallows, Martins (Hirundinidae)		
Banded Martin	Neophedina cincta	
Brown-throated Martin	Riparia paludicola	
Rock Martin	Ptyonoprogne fuligula	
White-throated Swallow	Hirundo albigularis	
Barn Swallow	Hirundo rustica	
Common House Martin	Delichon urbicum	
Lesser Striped Swallow	Cecropis abyssinica	
Greater Striped Swallow	Cecropis cucullata	
South African Cliff Swallow	Petrochelidon spilodera	
Leaf Warblers (Phylloscopidae)		
Willow Warbler	Phylloscopus trochilus	
Reed Warblers & Allies (Acrocephalidae)		
Lesser Swamp Warbler	Acrocephalus gracilirostris	
Great Reed Warbler	Acrocephalus arundinaceus	
Sedge Warbler	Acrocephalus schoenobaenus	
Common Reed Warbler	Acrocephalus scirpaceus	
Grassbirds & Allies (Locustellidae)		
Little Rush Warbler	Bradypterus baboecala	
Cisticolas & Allies (Cisticolidae)		
Levaillant's Cisticola	Cisticola tinniens	
Neddicky	Cisticola fulvicapilla	
Zitting Cisticola	Cisticola juncidis	
Cloud Cisticola	Cisticola textrix	
Pale-crowned Cisticola	Cisticola cinnamomeus	
Wing-snapping Cisticola	Cisticola ayresii	
Tawny-flanked Prinia	Prinia subflava	
Black-chested Prinia	Prinia flavicans	
White-eyes (Zosteropidae)		

ommon name Scientific name			
Starlings, Rhabdornises (Sturnidae)			
Common Myna Acridotheres tristis			
Wattled Starling	Creatophora cinerea		
Cape Starling	Lamprotornis nitens		
Pied Starling	Lamprotornis bicolor		
Thrushes (Turdidae)			
Karoo Thrush	Turdus smithi		
Chats, Old World Flycatchers (Muscicapidae)			
Spotted Flycatcher	Muscicapa striata		
Cape Robin-Chat	Cossypha caffra		
African Stonechat	Saxicola torquatus		
Ant-eating Chat	Myrmecocichla formicivora		
Mountain Wheatear	Myrmecocichla monticola		
Capped Wheatear	Oenanthe pileata		
Old World Sparrows, Snowfinches (Passeridae)			
Cape Sparrow	Passer melanurus		
Southern Grey-headed Sparrow	Passer diffusus		
House Sparrow	Passer domesticus		
Weavers, Widowbirds (Ploceidae)			
White-browed Sparrow-Weaver	Plocepasser mahali		
Southern Masked Weaver	Ploceus velatus		
Red-billed Quelea	Quelea quelea		
Yellow-crowned Bishop	Euplectes afer		
Southern Red Bishop	Euplectes orix		
Yellow Bishop	Euplectes capensis		
Fan-tailed Widowbird	Euplectes axillaris		
White-winged Widowbird	Euplectes albonotatus		
Long-tailed Widowbird	Euplectes progne		
Waxbills, Munias & Allies (Estrildidae)			
Common Waxbill	Estrilda astrild		
Quailfinch	Ortygospiza atricollis		
Red-headed Finch	Amadina erythrocephala		
ange-breasted Waxbill Amandava subflava			

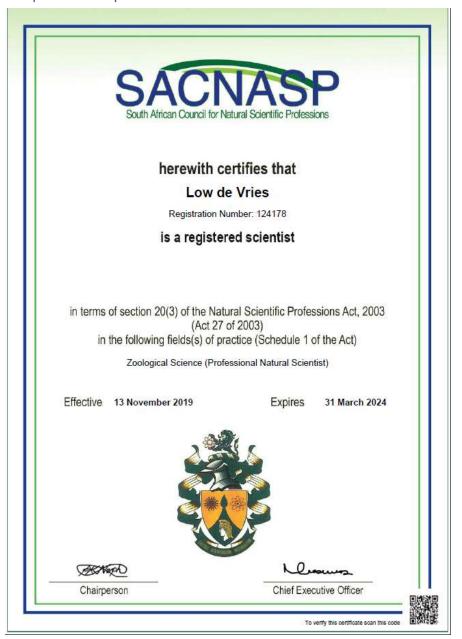
Common name	Scientific name
Indigobirds, Whydahs (Viduidae)	
Pin-tailed Whydah	Vidua macroura
Wagtails, Pipits (Motacillidae)	
Cape Wagtail	Motacilla capensis
Cape Longclaw	Macronyx capensis
African Pipit	Anthus cinnamomeus
Nicholson's Pipit	Anthus nicholsoni
Finches, Euphonias (Fringillidae)	
Black-throated Canary	Crithagra atrogularis
Yellow-fronted Canary	Crithagra mozambica
Yellow Canary	Crithagra flaviventris
Streaky-headed Seedeater	Crithagra gularis
Cape Canary	Serinus canicollis
Buntings (Emberizidae)	
Lark-like Bunting	Emberiza impetuani
Cinnamon-breasted Bunting	Emberiza tahapisi
Species: 201	
IOC World Bird List 13.1 (January 2023)	

Appendix 2: Bird species found on the PAOI.

ommon name Scientific name		
Ducks, Geese, Swans (Anatidae)		
Spur-winged Goose	Plectropterus gambensis	
Egyptian Goose	Alopochen aegyptiaca	
Cape Shoveler	Spatula smithii	
Yellow-billed Duck	Anas undulata	
Guineafowl (Numididae)		
Helmeted Guineafowl	Numida meleagris	
Pheasants & Allies (Phasianidae)		
Grey-winged Francolin	Scleroptila afra	
Common Quail	Coturnix coturnix	
Swainson's Spurfowl	Pternistis swainsonii	
Swifts (Apodidae)		
African Palm Swift	Cypsiurus parvus	
Little Swift	Apus affinis	
White-rumped Swift	Apus caffer	
Bustards (Otididae)		
Blue Korhaan	Eupodotis caerulescens	
Cuckoos (Cuculidae)		
Diederik Cuckoo	Chrysococcyx caprius	
Pigeons, Doves (Columbidae)		
Rock Dove	Columba livia	
Speckled Pigeon	Columba guinea	
Red-eyed Dove	Streptopelia semitorquata	
Ring-necked Dove	Streptopelia capicola	
Rails, Crakes & Coots (Rallidae)		
Corn Crake	Crex crex	
Red-knobbed Coot	Fulica cristata	

Common name	Scientific name
Grebes (Podicipedidae)	
Little Grebe	Tachybaptus ruficollis
Stone-curlews, Thick-knees (Burhinidae)	
Spotted Thick-knee	Burhinus capensis
Plovers (Charadriidae)	
Blacksmith Lapwing	Vanellus armatus
Crowned Lapwing	Vanellus coronatus
African Wattled Lapwing	Vanellus senegallus
Three-banded Plover	Charadrius tricollaris
Sandpipers, Snipes (Scolopacidae)	
African Snipe	Gallinago nigripennis
Common Greenshank	Tringa nebularia
Anhingas, Darters (Anhingidae)	
African Darter	Anhinga rufa
Cormorants, Shags (Phalacrocoracidae)	
Reed Cormorant	Microcarbo africanus
Ibises, Spoonbills (Threskiornithidae)	
African Sacred Ibis	Threskiornis aethiopicus
Hadada Ibis	Bostrychia hagedash
Glossy Ibis	Plegadis falcinellus
African Spoonbill	Platalea alba
Herons, Bitterns (Ardeidae)	
Western Cattle Egret	Bubulcus ibis
Grey Heron	Ardea cinerea
Black-headed Heron	Ardea melanocephala
Purple Heron	Ardea purpurea
Intermediate Egret	Ardea intermedia
Hamerkop (Scopidae)	
Hamerkop	Scopus umbretta

Common name	Scientific name	
Secretarybird (Sagittariidae)		
Secretarybird	Sagittarius serpentarius	
Kites, Hawks, Eagles (Accipitridae)		
Black-winged Kite	Elanus caeruleus	
African Harrier-Hawk	Polyboroides typus	
Black Sparrowhawk	Accipiter melanoleucus	
Yellow-billed Kite	Milvus aegyptius	
Common Buzzard	Buteo buteo	
Jackal Buzzard	Buteo rufofuscus	
Barn Owls (Tytonidae)		
Western Barn Owl	Tyto alba	
Trestern Barr & III	Tyte alla	
Owls (Strigidae)		
Marsh Owl	Asio capensis	
Mousebirds (Coliidae)		
Red-faced Mousebird	Urocolius indicus	
African Barbets (Lybiidae)		
Black-collared Barbet	Lybius torquatus	
Caracaras, Falcons (Falconidae)		
Amur Falcon	Falco amurensis	
Shrikes (Laniidae)		
Southern Fiscal	Lanius collaris	
Crows, Jays (Corvidae)		
Cape Crow	Corvus capensis	
Larks (Alaudidae)		
Pink-billed Lark	Spizocorys conirostris	
Red-capped Lark	Calandrella cinerea	
Bulbuls (Pycnonotidae)		
Dark-capped Bulbul	Pycnonotus tricolor	


Common name	Scientific name		
Swallows, Martins (Hirundinidae)			
Banded Martin	Neophedina cincta		
own-throated Martin Riparia paludicola			
White-throated Swallow	Hirundo albigularis		
Barn Swallow	Hirundo rustica		
Greater Striped Swallow	Cecropis cucullata		
South African Cliff Swallow	Petrochelidon spilodera		
Reed Warblers & Allies (Acrocephalidae)			
Common Reed Warbler	Acrocephalus scirpaceus		
Cisticolas & Allies (Cisticolidae)			
Levaillant's Cisticola	Cisticola tinniens		
Zitting Cisticola	Cisticola juncidis		
Cloud Cisticola	Cisticola textrix		
Pale-crowned Cisticola	Cisticola cinnamomeus		
Wing-snapping Cisticola	Cisticola ayresii		
Black-chested Prinia	Prinia flavicans		
Starlings, Rhabdornises (Sturnidae)			
Wattled Starling	Creatophora cinerea		
Cape Starling	Lamprotornis nitens		
Pied Starling	Lamprotornis bicolor		
Chats, Old World Flycatchers (Muscicapidae)			
Cape Robin-Chat	Cossypha caffra		
African Stonechat	Saxicola torquatus		
Old World Sparrows, Snowfinches (Passerida	ne)		
Cape Sparrow Passer melanurus			
Southern Grey-headed Sparrow Passer diffusus			
Weavers, Widowbirds (Ploceidae)			
Southern Masked Weaver	Ploceus velatus		
Red-billed Quelea	Quelea quelea		
Yellow-crowned Bishop	Euplectes afer		
Southern Red Bishop	Euplectes orix		
Fan-tailed Widowbird Euplectes axillaris			
White-winged Widowbird Euplectes albonotatus			

Common name	Scientific name	
Long-tailed Widowbird	Euplectes progne	
Waxbills, Munias & Allies (Estrildidae)		
Common Waxbill	Estrilda astrild	
Quailfinch	Ortygospiza atricollis	
Indigobirds, Whydahs (Viduidae)		
Pin-tailed Whydah	Vidua macroura	
Wagtails, Pipits (Motacillidae)		
Cape Wagtail	Motacilla capensis	
Cape Longclaw	Macronyx capensis	
African Pipit	Anthus cinnamomeus	
Finches, Euphonias (Fringillidae)		
Black-throated Canary	Crithagra atrogularis	
Species: 90		
IOC World Bird List 13.1 (January 2023)		

Appendix 3: Specialist qualifications

04290887

University of Pretoria

The Council and Senate hereby declare that at a congregation of the University the degree

Doctor of Philosophy

in

Zoology

with all the associated rights and privileges was conferred on

John Low de Vries

in terms of the Higher Education Act, 1997 and the Statute of the University

On behalf of the Council and Senate

On behalf of the Faculty of Natural and Agricultural Sciences

Vice-Chancellor and Principal

C. de la Rey

Dean (Acting)

en juiste afskrif van die

Registrar

2014-09-04

Appendix 4: Curriculum Vitae of specialist

Personal details

Full Name John Low de Vries
DOB 7 November 1984
Nationality South African
Marital Status Married

Email low@volantenvironmental.com

Phone +27 82 323 5475 ID number 841107 5188087

Education

Completed	Degree and Institution
2002	Matric, Hoërskool Jeugland, Kempton Park, South Africa
2006	B. Sc Zoology, University of Pretoria, Pretoria, South Africa
2007	B. Sc (Hons) Zoology, University of Pretoria, Pretoria, South Africa
2014	PhD Zoology, University of Pretoria, Pretoria, South Africa

Key areas of expertise

Bat Specialist
 Conducting surveys on bat diversity and abundance and researh on bat

ecology.

• Environmental Writing and collating Basic Assessment (BA) for proposed Wind Energy

Assessment Facilities

Practitioner

Memberships & Certificates

- SACNASP Registered Professional Natural Scientist in the field of Zoological Science -Registration Number: 124178
- Bat Assessment Specialist with South African Bat Assessment Association (SABAA)

Other Training

- Multivariate statistical modelling (Cape Town, South Africa)
- Bat handling and identification course (AfricanBats)
- Snake handling (Chameleon Village (South Africa)

- ArcGis online course
- First Aid level 2 (Johannesburg, South Africa)

Focal Experience relevant to current project

2022-current - Bat specialist for a wind energy facility and associated grid connection Free State, South Africa 2022-current - Bat specialist for a wind energy facility and associated grid connection near Doringbaai, Western Province, South Africa

2021 -current – Bat specialist for three wind energy facilities and associated grid connection near Dordrecht, Eastern Cape Province, South Africa

2021-current – Bat specialist for wind energy facility and associated grid connection near Belfast, Northern Cape Province, South Africa

2021-current – Bat specialist for wind energy facility and associated grid connection near Aggeneys, Northern Cape Province, South Africa

2021-current – Bat specialist for wind energy facility and associated grid connection near Pofadder, Northern Cape Province, South Africa

2020-2021 – Bat specialist for wind energy facility and associated grid connection near Loeriesfontein, Northern Cape Province, South Africa

2020-2021 – Bat specialist for wind energy facility and associated grid connection near Gouda, Northern Cape Province, South Africa

2017 - Biodiversity survey of Bats in Gorongosa National Park, Mozambique

2016-current – Bat Ecologist for the Centre for Viral Zoonoses at the University of Pretoria

Publications

Wood, M., **de Vries, JL**., Monadjem, A., Markotter, W. A critical review of factors influencing interspecific variation in home range size of bats. Mammal Review. *In submission*

Markotter W, **de Vries**, J.L, Paweska, J. 2022. Wing tattoos: A cost-effective and permanent method for marking bats. *In review*

Geldenhuys, M., de Vries, JL., Dietrich, M., Mortlock, M., Epstein, J. H., Weyer, J., Paweska, J T., Markotter, W. Longitudinal surveillance of diverse coronaviruses within a *Rousettus aegyptiacus* maternal colony towards understanding viral maintenance and excretion dynamics. *In submission*

Markotter, W., Coertse, J., **de Vries, JL.**, Geldenhuys, M., Mortlock, M. 2020. Bat-borne viruses in Africa: A critical review. Journal of Zoology. 311:2. 77-98

de Vries JL, Marneweck D, Dalerum F, Page-Nicholson S, Mills MGL, Yarnell RW, Sliwa A, Do Linh San E. 2016. A conservation assessment of *Proteles cristata*. In Child MF, Roxburgh L, Do Linh San E, Raimondo D, Davies-Mostert HT, editors. The Red List of Mammals of South Africa, Swaziland, and Lesotho. South African National Biodiversity Institute and Endangered Wildlife Trust, South Africa.

Dalerum F, Le Roux A, **de Vries JL**, Kamler JF, Page-Nicholson S, Stuart C, Stuart M, Wilson B, Do Linh San E. 2016. A conservation assessment of *Otocyon megalotis*. In Child MF, Roxburgh L, Do Linh San E, Raimondo D, Davies-Mostert HT, editors. The Red List of Mammals of South Africa, Swaziland, and Lesotho. South African National Biodiversity Institute and Endangered Wildlife Trust, South Africa.

Dalerum, F., **de Vries, J.L.,** Pirk, C.W.W., Cameron, E.Z. 2016. Spatial and temporal dimensions to the taxonomic diversity of arthropods in an arid grassland savannah. *Journal of Arid Environments*. 144. 21-30

Kotze, R., Bennett, N., Cameron, E.Z., **de Vries, J.L.**, Marneweck, D.G., Pirk, C.W.W., Dalerum, F. 2012. Temporal patterns of den use suggest polygamous mating patterns in an obligate monogamous mammal. *Animal Behaviour*. 84. 1573-1578

de Vries, J.L., Pirk, C.W.W., Bateman, P.W., Cameron, E.Z., Dalerum, F. 2011. Extension of the diet of an extreme foraging specialist, the aardwolf (*Proteles cristata*). *African Zoology*. 6:1 194-196.

de Vries, J. L., Oosthuizen, M. K., Sichilima, A. M., Bennett, N. C. 2008. Circadian rhythms of locomotor activity in Ansell's mole-rat: are mole-rat's clocks ticking? *Journal of Zoology*.

Conference Contributions

Markotter W, **de Vries, J.L,** Wood, M. 2022. Small scale movement of *Rousettus aegyptiacus*. International Bat Research Conference. Austin, Texas

Infectious Diseases of Bats Symposium. Fort Collins, Colorado 2017. Body mass index of the Egyptian fruit bat, *Rousettus aegyptiacus*: An indicator of infection status. **de Vries, J.L**., Dietrich, M., Paweska, J., Markotter, W.

SASAS 2016. **de Vries, J.L.,** Jonker, M.L., Kriel, D., Kotze, A.K. The Tankwa goat: Phenotypically that different?

De Beers Diamond Route Conference, 2010. **de Vries, J.L.,** Pirk, C.W.W., Bennett, N.C. Is the aardwolf a seasonally influenced optimal forager?

Kimberley biodiversity research symposium, 2009. **de Vries, J.L.,** Bennett, N.C., Pirk, C.W.W., Dalerum, F., Cameron, E.Z. Den, and home range use of the aardwolf, *Proteles cristatus*

Employment & work-related experiences

2020 - present	Director and founder of Volant Environmental
2016 - present	Postdoctoral fellow, University of Pretoria
2015 - 2016	Postdoctoral fellow, NZG
2014 - 2015	Marion Island field assistant, University of Pretoria
2013	Documentary presenter, Oxford Scientific Films
2010 - 2011	Wildlife Education Trainer, Enviro- Insight
2010 - 2011	Game Raning Lecturer, Damelin Centurion
2009 - 2018	Lecturer and tutor, University of Pretoria

Recent Project Experience

For further details please contact me directly under low@volantenvironmental.com

Time	Nature of project	Capacity	Industry /	Client /	Country (Province)
span			Sector	Developer	
2023	Kareedouw Impact Assessment	Bat and Bird Specialist	Renewable Energy /	Energy team (Pty)	South Africa (Eastern Cape)
	7.03C33ITICITE	Specialist	Onshore Wind	Etta	cape
2023	Varsputs and Brakputs	Bat Specialist	Renewable	Enertrag SA (Pty)	South Africa (Northern
	Impact assessment		Energy /	Ltd	Cape)
			Onshore Wind		
2023	Hartebees skeur Impact	Bat Specialist	Renewable	Enertrag SA (Pty)	South Africa (Northern
	assessment		Energy /	Ltd	Cape)
			Onshore Wind		
2023	Daggakraal Impact	Bat and Bird	Renewable	EDF Renewables	South Africa
	assessment	Specialist	Energy /		(Mpumalanga)
			Onshore Wind		
2022	Thand Tau Bat Impact	Bat Specialist	Renewable	Enertrag SA (Pty)	South Africa (Free State)
	Assessment		Energy /	Ltd	
			Onshore Wind		
2022	Camden Bird Impact	Bird Specialist	Renewable	EDF Renewables	South Africa
	Assessment		Energy /		(Mpumalanga)
			Onshore Wind		
2022	Castle Wind Energy	Bat Specialist	Renewable	Savannah	South Africa (Northern
	walkthrough		Energy /	Environmental	Cape)
			Onshore Wind		
2022	Doringbaai Wind Energy	Bat Specialist	Renewable	WKN-Windcurrent	South Africa (Western
	Facility		Energy /		Cape)
			Onshore Wind		
2022	Aggeneys Bat Impact	Bat Specialist	Renewable	Genesis Eco-	South Africa (Northern
	Assessment Review		Energy /	Energy	Cape)
			Onshore Wind	Developments	
2021	Dandua shi Dat Imana it	Dat Carrielist	Danamahla	(Pty) Ltd	Cauth Africa /Fast
2021	Dordrecht Bat Impact			South Africa (Eastern	
	Assessment		Energy / Onshore Wind		Cape)
2021	Indus Dat Ire t	Dot Cocsistist		VCED (Dt. :) 1+4	Courth Africa /Castana
2021	Indwe Bat Impact Assessment	Bat Specialist	Renewable Energy /	ACED (Pty) Ltd	South Africa (Eastern Cape)
	ASSESSITIETT		Onshore Wind		Capej
			Ousnois wind		

2021	Waschbank Bat Impact	Bat Specialist	Renewable	ACED (Pty) Ltd	South Africa (Eastern
	Assessment		Energy /		Cape)
			Onshore Wind		
2021	Gorachouqua Bat Impact	Bat Specialist	Renewable	Enertrag SA (Pty)	South Africa (Northern
	Assessment		Energy /	Ltd	Cape)
			Onshore Wind		
2021	Khoemana Bat Impact	Bat Specialist	Renewable	Enertrag SA (Pty)	South Africa (Northern
	Assessment		Energy /	Ltd	Cape)
			Onshore Wind		
2021-	Dalmanutha Bat Impact	Bat Specialist	Renewable	Enertrag SA (Pty)	South Africa
2022	Assessment		Energy /	Ltd	(Mpumalanga)
			Onshore Wind		
2020-	Bergrivier Bat Impact	Bat Specialist	Renewable	Genesis Eco-	South Africa (Western
2021	Assessment		Energy /	Energy	Cape)
			Onshore Wind	Developments	
				(Pty) Ltd	
2020-	Botterblom Bat Impact	Bat Specialist	Renewable	Genesis Eco-	South Africa (Northern
2021	Assessment		Energy /	Energy	Cape)
			Onshore Wind	Developments	
				(Pty) Ltd	
2012	Dangerous snake removal	Herpetologist	Mining (Coal)	Anadarko	Mocimboa da Paia,
					Mozambique

Low de Vries PhD Zoology Pr. Sci. Nat. Zoological Science

