AVIFAUNAL IMPACT ASSESSMENT

Camden I Solar Energy Facility, Grid Connection and Battery Storage Facility

Mpumalanga Province

June 2022

AFRIMAGE Photography (Pty) Ltd Va: Chris van Rooyen Consulting

VAT#: 4580238113 email: vanrooyen.chris@gmail.com Tel: +27 (0)82 4549570 cell

Carlon St.

EXECUTIVE SUMMARY

1 BACKGROUND

The proposed Camden Renewable Energy Complex (the 'Complex') is being developed by ENERTRAG South Africa (Pty) Ltd ("ENERTRAG" or "Developer") in the context of the Department of Mineral Resources and Energy's (DMRE) Integrated Resource Plan, and the Renewable Energy Independent Power Producer Procurement Programme (REIPPP).

The Complex can be divided into eight (8) Projects, namely:

- Camden I Wind Energy Facility (up to 200MW).
- Camden I Wind Grid Connection (up to 132kV).
- Camden up to 400kV Gid Connection and Collector substation.
- Camden I Solar up to 100MW.
- Camden I Solar up to 132kV Gid Connection.
- Camden Green Hydrogen and Ammonia Facility, including grid connection infrastructure and water pipeline.
- Camden II Wind Energy Facility (up to 200MW).
- Camden II Wind Energy Facility up to 132kV Grid Connection.

This impact report deals with the Camden I Solar Energy Facility (SEF), Battery Energy Storage System (BESS) and 132kV grid connection.

2 AVIFAUNA

The SABAP2 data indicates that a total of 234 bird species could potentially occur within the broader area – Appendix 1 provides a comprehensive list of all the species. Of these, 107 species are classified as solar priority species and 78 as powerline sensitive species. Of the 107 solar priority species, 17 are South African Red List species, and of the 78 powerline sensitive species, 15 are South African Red List species. Of the solar priority species, 35 are likely to occur regularly in the development area, and 55 powerline sensitive species are likely to occur regularly in the project area.

3 SUMMARY AND CONCLUSION

3.1 Solar Energy Facility

The proposed Camden 1 SEF will have several potential impacts on priority avifauna. These impacts are the following:

- Displacement due to disturbance associated with the construction of the solar PV plant and associated infrastructure
- Displacement due to habitat transformation associated with the construction of the solar PV plant and associated infrastructure
- Collisions with the solar panels
- Entrapment in perimeter fences

3.1.1 Displacement of priority species due to disturbance linked to construction activities in the construction phase

As far as disturbance is concerned, it is likely that all the avifauna, including all the priority species, will be temporarily displaced in the footprint area, either completely or more likely partially (reduced densities) during the construction phase, due to the disturbance associated with the construction activities e.g. increased vehicle traffic,

and short-term construction-related noise (from equipment) and visual disturbance. At the PV facility, the priority species which would be most severely affected by disturbance would be ground dwelling species which are the following: White-bellied Bustard, Cloud Cisticola, Blue Crane, Western Cattle Egret, Grey-winged Francolin, Cape Grassbird, Blue Korhaan, African Grass Owl, Marsh Owl, Drakensberg Prinia, and Pied Starling. Secretarybirds breeding or roosting at or near to the project site might also be affected. The impact is rated as **moderate** pre-mitigation and will be reduced but remain at a **moderate** level post-mitigation.

3.1.2 Displacement of priority species due to habitat transformation in the construction phase

Ground-disturbing activities affect a variety of processes, including soil density, water infiltration rate, vulnerability to erosion, secondary plant succession, invasion by exotic plant species, and stability of cryptobiotic soil crusts. These processes have the ability - individually and together - to alter habitat quality, often to the detriment of wildlife, including avifauna. Any disturbance and alteration to the landscape, including the construction and decommissioning of utility-scale solar energy facilities, has the potential to increase soil erosion. Erosion can physically and physiologically affect plant species and can thus adversely influence primary production and food availability for wildlife (Lovich & Ennen 2011). Solar energy facilities require substantial site preparation (including the removal of vegetation) that alters topography and, thus, drainage patterns to divert the surface flow associated with rainfall away from facility infrastructure. Channelling runoff away from plant communities can have dramatic negative effects on water availability and habitat quality. Areas deprived of runoff from sheet flow support less biomass of perennial and annual plants relative to adjacent areas with uninterrupted water-flow patterns. As far as displacement, either completely or partially (reduced densities) due to habitat loss is concerned, it is highly likely that the same pattern of reduced avifaunal densities will manifest itself at the proposed PV facility. In addition, ground dwelling species and some raptors are also likely to be impacted by the habitat transformation, as it will result in reduced prey availability and accessibility. Priority species that could be negatively affected by displacement due to habitat loss are the following: Common Buzzard, Jackal Buzzard, Cloud Cisticola, Blue Crane, Black-chested Snake Eagle, Longcrested Eagle, Western Cattle Egret, Amur Falcon, Lanner Falcon, Grey-winged Francolin, Cape Grassbird, Blackheaded Heron, Southern Bald Ibis, Rock Kestrel, Black-winged Kite, Blue Korhaan, African Grass Owl, Marsh Owl, Pied Starling, White Stork, and South African Cliff Swallow. The impact is rated as moderate pre-mitigation and will be reduced but remain at a moderate level post-mitigation.

3.1.3 Collision mortality of priority species caused by the solar panels in the operational phase

The proposed Camden 1 Solar Energy Facility could potentially pose a collision risk to several priority species which could occur regularly at the site. However, the results of the available literature lack compelling evidence of collisions as a cause of large-scale mortality among birds at PV facilities. The lack of systematic and standardised data collection is a major problem in the assessment of the causes and extent of avian mortality at all types of solar facilities, regardless of the technology employed. Until statistically tested results emerge from existing compliance programmes and more dedicated scientific research, conclusions will inevitably be largely preliminary and based on professional opinion. Based on the lack of evidence to the contrary, it is not foreseen that collisions with the solar panels at the PV facility will be a significant impact. The priority species which would most likely be potentially affected by this impact are mostly small to medium-sized, ground-dwelling birds which forage between the solar panels, and possibly raptors which prey on them, or forage for insects between the PV panels, e.g. Amur Falcons (i.e. if they are not completely displaced due to the habitat transformation). Due to the absence of large permanent waterbodies at or close to the development area, it is unlikely that waterbirds will be attracted in large numbers to the solar arrays due to the "lake effect". Priority species which occur regularly and could potentially be impacted due to collisions with the solar panels are the following: Western Cattle Egret, Amur Falcon, Lanner Falcon, Fiscal Flycatcher, Grey-winged Francolin, Egyptian Goose, Spur-winged Goose, Cape Grassbird, Black-headed Heron, Southern Bald Ibis, African Sacred Ibis, Blue Korhaan, Blacksmith Lapwing, African Grass Owl, Marsh Owl, Threebanded Plover, Drakensberg Prinia, South African Shelduck, African Snipe, Black Sparrowhawk, Pied Starling, South African Cliff Swallow and Cape Weaver. The impact is rated as low. No mitigation measures are recommended.

3.1.4 Electrocution of priority species on the medium voltage overhead lines (if any) in the operational phase

While the intention is to place the medium voltage reticulation network underground where possible, there are areas where the lines might have to run above ground, for technical reasons. In these instances, the electrical infrastructure could potentially pose an electrocution risk to several power line sensitive species that could on occasion perch on these poles. In summary, the following priority species are potentially vulnerable to electrocution in this manner: African Fish Eagle, African Grass Owl, Amur Falcon, Black Sparrowhawk, Black-chested Snake Eagle, Black-headed Heron, Black-winged Kite, Brown Snake Eagle, Cape Crow, Cape Vulture, Common Buzzard, Hadada Ibis, Helmeted Guineafowl, Jackal Buzzard, Lanner Falcon, Long-crested Eagle, Marsh Owl, Martial Eagle, Peregrine Falcon, Pied Crow, Southern Bald Ibis, Spotted Eagle-Owl, Western Barn Owl, Western Osprey and Yellow-billed Kite. The impact is rated as **moderate** pre-mitigation but should be reduced to a **low** level post-mitigation.

3.1.5 Collisions of priority species with the medium voltage overhead lines (if any) in the operational phase

While the intention is to place the medium voltage reticulation network underground where possible, there are areas where the lines might have to run above ground, for technical reasons. These spans could pose a collision risk to virtually all powerline sensitive avifauna, depending on where those spans are located. Species potentially at risk are African Black Duck, African Darter, African Grass Owl, African Sacred Ibis, African Spoonbill, Black Heron, Black-bellied Bustard, Black-crowned Night Heron, Black-headed Heron, Black-necked Grebe, Blue Crane, Blue Korhaan, Blue-billed Teal, Cape Shoveler, Cape Teal, Cape Vulture, Denham's Bustard, Egyptian Goose, Fulvous Whistling Duck, Glossy Ibis, Goliath Heron, Great Egret, Greater Flamingo, Grey Crowned Crane, Grey Heron, Hadada Ibis, Hamerkop, Intermediate Egret, Lesser Flamingo, Little Egret, Little Grebe, Mallard, Marsh Owl, Northern Black Korhaan, Purple Heron, Red-billed Teal, Red-knobbed Coot, Reed Cormorant, Secretarybird, South African Shelduck, Southern Bald Ibis, Southern Pochard, Spotted Eagle-Owl, Spur-winged Goose, Squacco Heron, Wattled Crane, Western Barn Owl, Western Cattle Egret, White Stork, White-backed Duck, White-bellied Bustard, White-breasted Cormorant, White-faced Whistling Duck, Yellow-billed Duck. The impact is rated as **moderate** pre-mitigation but should be reduced to a **low** level post-mitigation.

3.1.6 Displacement of priority species due to disturbance linked to dismantling activities in the decommissioning phase

The impact is likely to be similar in nature and extent to the construction phase of the proposed SEF. The impact is rated as **medium** pre-mitigation and it will decrease to **low** post-mitigation.

3.2 Battery Energy Storage Facility (BESS)

The impact that is associated with the construction of the BESS is the potential displacement of priority avifauna due to disturbance associated with the construction and dismantling of the facility and habitat transformation in the footprint of the facility.

3.2.1 Displacement due to disturbance associated with the construction of the facility

Construction activities in close proximity to breeding locations could be a source of disturbance and could lead to temporary breeding failure or even permanent abandonment of nests. A potential mitigation measure is the timeous identification of nests and the timing of the construction activities to avoid disturbance during a critical phase of the breeding cycle, although in practice that can admittedly be challenging to implement. The priority species which are potentially most vulnerable to the impact of displacement due to disturbance linked to the BESS are terrestrial species and owls. Priority species that could be most affected are the following: African Grass Owl, Black-bellied Bustard, Black-winged Lapwing, Blue Crane, Blue Korhaan, Buff-streaked Chat, Denham's Bustard, Grey Crowned

Crane, Grey-winged Francolin, Marsh Owl, Northern Black Korhaan, Secretarybird and White-bellied Bustard. The impact is rated as **low** pre-mitigation and it will decrease to **very low** post-mitigation.

3.2.2 Displacement due to habitat transformation associated with the construction of the facility

These construction activities will impact on birds breeding, foraging and roosting in or in close proximity of the proposed facility through **transformation of habitat**, which could result in temporary or permanent displacement. Unfortunately, very little mitigation can be applied to reduce the significance of this impact as the total permanent transformation of the natural habitat within the construction footprint of the facility is unavoidable. The loss of habitat for priority species due to direct habitat transformation associated with the construction of the 5 ha proposed facility is likely to be relatively insignificant due to the relatively small size of the footprint (only 0.07% of the total project area, and 2.5% of the buildable area). The impact is rated as **low** pre- and post-mitigation.

3.2.3 Displacement of priority species due to disturbance linked to dismantling activities in the decommissioning phase

The impact is likely to be similar in nature and extent to the construction phase of the proposed BESS. The impact is rated as **low** pre-mitigation and it will decrease to **very low** post-mitigation.

3.3 The up to 132kV OHL

The following potential impacts on powerline sensitive avifauna are associated with the construction and operation of the up to 132kV grid connection related to the Solar Energy Facility:

- Displacement due to disturbance associated with the construction of the proposed OHL and on-site substation.
- Displacement due to habitat transformation associated with the construction of the proposed OHL and on-site substation.
- Mortality due to electrocution on the proposed OHL infrastructure
- Mortality due to electrocution on the electrical infrastructure within the proposed on-site substation.
- Mortality due to collisions with the proposed OHL.
- Displacement due to disturbance associated with the dismantling of the proposed OHL and on-site substation.

3.3.1 Displacement due to disturbance associated with the construction of the proposed OHL and onsite substation.

Construction activities could impact on birds through disturbance; this could lead to breeding failure if the disturbance happens during a critical part of the breeding cycle. Construction activities in close proximity to breeding locations could be a source of disturbance and could lead to temporary breeding failure or even permanent abandonment of nests. A potential mitigation measure is the timeous identification of nests and the timing of the construction activities to avoid disturbance during a critical phase of the breeding cycle, although this is often impractical to implement due to tight construction schedules. Powerline sensitive species which are potentially most vulnerable to displacement due to disturbance are mostly ground dwelling species: African Grass Owl, Black-bellied Bustard, Blue Crane, Blue Korhaan, Denham's Bustard, Grey Crowned Crane, Helmeted Guineafowl, Marsh Owl, Northern Black Korhaan, Secretarybird, Spotted Eagle-Owl and White-bellied Bustard. The impact is rated as **moderate** pre-mitigation and it will decrease to **low** post-mitigation.

3.3.2 Displacement due to habitat transformation associated with the construction of the proposed OHL and on-site substation.

During the construction of powerlines, service roads (jeep tracks), substations and other associated infrastructure, habitat destruction/transformation inevitably takes place. These activities could impact on birds breeding, foraging and roosting in or in close proximity of the proposed OHL grid connection through the transformation of habitat. Relevant to this development, very little mitigation can be applied to reduce the significance of this impact as the total permanent transformation of the natural habitat within the construction footprint of the on-site substation is unavoidable. In the case of the OHL, the direct habitat transformation is limited to the on-site substation and pole/tower footprints and the narrow access road/track under the proposed OHL. The loss of habitat in the substation footprint (2 ha) will be a relatively insignificant percentage of the habitat that regularly supports powerline sensitive species, and the resultant impact is likely to be fairly minimal. Powerline sensitive species which are potentially most vulnerable to displacement due to habitat transformation are mostly ground dwelling species: African Grass Owl, Black-bellied Bustard, Blue Crane, Blue Korhaan, Denham's Bustard, Grey Crowned Crane, Helmeted Guineafowl, Marsh Owl, Northern Black Korhaan, Secretarybird, Spotted Eagle-Owl and, White-bellied Bustard. The impact is rated as **moderate** pre-mitigation and it will decrease to **low** post-mitigation.

3.3.3 Mortality of powerline sensitive avifauna due to electrocutions on the OHL

Electrocution refers to the scenario where a bird is perched or attempts to perch on the electrical structure and causes an electrical short circuit by physically bridging the air gap between live components and/or live and earthed components (Van Rooyen 2004). The electrocution risk is largely determined by the voltage size of the proposed powerline and the pole/tower design. Should the proposed OHL be constructed using a 132kV tower specification, the electrocution impact for the majority of priority species will be negligible. The only priority species capable of bridging the clearance distances of an OHL constructed using this specification is the Cape Vulture, due to their size and gregarious nature. The impact is rated as **moderate** pre-mitigation and it will decrease to **low** post-mitigation.

3.3.4 Mortality of powerline sensitive avifauna due to electrocutions in the onsite substation

Electrocutions within the proposed on-site substation are possible, however the likelihood of this impact on the more sensitive SCC is remote, as these species are unlikely to regularly utilise the infrastructure within the onsite substation station for perching or roosting. Powerline sensitive species that are more vulnerable to electrocutions are medium-sized raptors, corvids, owls and certain species of waterbirds.. As far as the substation is concerned, the following species are potentially at risk of electrocution: African Fish Eagle, African Grass Owl, Amur Falcon, Black Sparrowhawk, Black-chested Snake Eagle, Black-headed Heron, Black-winged Kite, Brown Snake Eagle, Cape Crow, Cape Vulture, Common Buzzard, Hadada Ibis, Helmeted Guineafowl, Jackal Buzzard, Lanner Falcon, Long-crested Eagle, Marsh Owl, Martial Eagle, Peregrine Falcon, Pied Crow, Southern Bald Ibis, Spotted Eagle-Owl, Western Barn Owl, Western Osprey and Yellow-billed Kite. The impact is rated as **low** pre- and post-mitigation.

3.3.5 Mortality of powerline sensitive avifauna due to collisions with the OHL

The up to 132kV OHL could pose a collision risk to virtually all powerline sensitive avifauna, depending on where the spans are located. Several factors are thought to influence avian collisions, including the manoeuvrability of the bird, topography, weather conditions, powerline configuration and visual capacity. Species potentially at risk are African Black Duck, African Darter, African Grass Owl, African Sacred Ibis, African Spoonbill, Black Heron, Black-bellied Bustard, Black-crowned Night Heron, Black-headed Heron, Black-necked Grebe, Blue Crane, Blue Korhaan, Blue-billed Teal, Cape Shoveler, Cape Teal, Cape Vulture, Denham's Bustard, Egyptian Goose, Fulvous Whistling Duck, Glossy Ibis, Goliath Heron, Great Egret, Greater Flamingo, Grey Crowned Crane, Grey Heron, Hadada Ibis, Hamerkop, Intermediate Egret, Lesser Flamingo, Little Egret, Little Grebe, Mallard, Marsh Owl, Northern Black Korhaan, Purple Heron, Red-billed Teal, Red-knobbed Coot, Reed Cormorant, Secretarybird, South African Shelduck, Southern Bald Ibis, Southern Pochard, Spotted Eagle-Owl, Spur-winged Goose, Squacco Heron, Wattled Crane, Western Barn Owl, Western Cattle Egret, White Stork, White-backed Duck, White-bellied Bustard, White-breasted Cormorant, White-faced Whistling Duck, Yellow-billed Duck. The impact is rated as **moderate** pre-mitigation and it will decrease to **low** post-mitigation.

3.3.6 Displacement of priority species due to disturbance linked to dismantling activities in the decommissioning phase

The impact is likely to be similar in nature and extent to the construction phase of the proposed OHL and onsite substation. The impact is rated as **medium** pre-mitigation and it will decrease to **low** post-mitigation.

3.4 Cumulative impacts

3.4.1 Solar Energy Facility

The total area of similar habitat (excluding opencast mining and urban areas) available to birds in the 30km radius around the project area (including the project area) is approximately 4 258 km². The land parcels affected by the planned renewable energy facilities, including the Camden I SEF, in this radius takes up a total of ~124km², which is 2.9% of the available habitat. The impact on avifauna of the currently planned renewable energy projects within this area, including the Camden I SEF, is therefore considered to be **Low**, and the impact could be reduced if the recommended mitigation at the two Camden wind projects and the Camden I SEF is diligently implemented.

3.4.2 Up to 132kV OHL

The maximum combined length of the grid connections for the Camden I and II renewable energy projects listed above, the 400kV OHL to Camden Power Station Substation, and the Camden I SEF (maximum 13.7km) is approximately 40.1km. The existing high voltage lines in the 30km radius around the proposed Camden I SEF run into hundreds of kilometres (see Figure 11). The Camden I SEF OHL contribution (maximum 13.7km) to the total length of high voltage lines within a 30km radius is **Low**. However, the density of all planned and existing high voltage lines within a 30km radius, and by implication the cumulative impact on avifauna, is considered to be **Moderate**.

3.4.3 Battery Energy Storage Facility

The BESS will transform an area of approximately 5 ha. Given the available habitat of 4 258km² within a 30km radius around the project site, the cumulative impact of displacement and habitat transformation caused by the BESS is **Low** due to the small footprint.

4 CONCLUSION AND IMPACT STATEMENT

4.1 Solar Energy Facility

The proposed solar energy facility will have a moderate impact on priority avifauna which, in most instances, could be reduced to a low impact through appropriate mitigation, although some instances moderate residual impacts will still be present after mitigation. No fatal flaws were discovered during the onsite investigations. The proposed SEF development is therefore supported, provided the mitigation measures listed in this report are strictly implemented.

4.2 Battery Energy Storage Facility (BESS)

The proposed BESS will have a low impact on priority avifauna which, could be reduced to a very low level in most instances through appropriate mitigation, although some instances low residual impacts will still be present after mitigation. No fatal flaws were discovered during the onsite investigations. The proposed BESS development is therefore supported, provided the mitigation measures listed in this report are strictly implemented.

4.3 The up to 132kV OHL

The proposed up to 132kV OHL will have a mostly moderate impact on priority avifauna which, in all instances, could be reduced to a low impact through appropriate mitigation. No fatal flaws were discovered during the onsite investigations. The proposed development is therefore supported, provided the mitigation measures listed in this report are strictly implemented.

4 ENVIRONMENTAL SENSITIVITIES

The following specific environmental sensitivities were identified from an avifaunal perspective (see Figure a):

- 100m all infrastructure exclusion zone around drainage lines, associated wetlands and pans excluding essential road and grid crossings. Wetlands are important breeding, roosting and foraging habitat for a variety of Red List priority species, most notably for African Grass Owl (SA status Vulnerable), Grey Crowned Crane (SA status Endangered) and African Marsh Harrier (SA status Endangered).
- High sensitivity grassland Limited infrastructure zone. Development in the remaining high sensitivity grassland must be limited as far as possible. Where possible, infrastructure must be located near margins, with shortest routes taken from the existing roads. The grassland is vital breeding, roosting and foraging habitat for a variety of Red List priority species. These include Blue Crane (SA status near-threatened), Blue Korhaan (Global status near -threatened), White-bellied Bustard (SA Status Vulnerable), Denham's Bustard (SA Status Vulnerable).

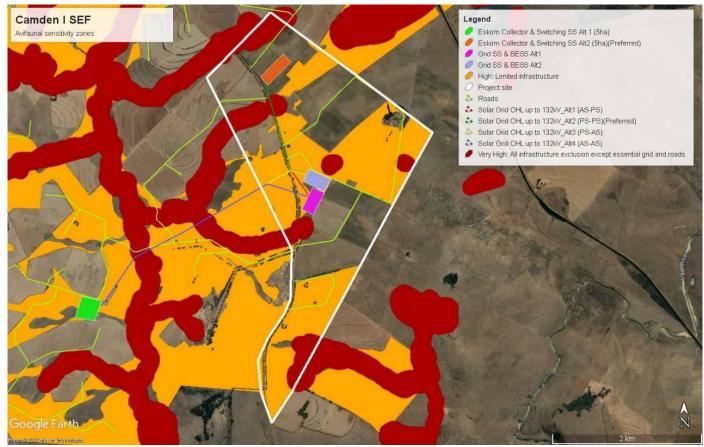


Figure a: Avifaunal sensitivity zones at the Camden 1 Solar Energy Facility.

CONTENTS

1	IN	NTRODUCTION	
	1.1	SOLAR ENERGY FACILITY AND BATTERY ENERGY STORAGE FACILITY	
	1.2	UP TO 132KV GRID CONNECTION	13
2	т	ERMS OF REFERENCE & PROTOCOLS	15
-	2.1	SOLAR ENERGY FACILITY PROTOCOL	-
		UP TO 132KV GRID CONNECTION PROTOCOL	
_			
3		UTLINE OF METHODOLOGY AND INFORMATION REVIEWED	
4	A	SSUMPTIONS AND LIMITATIONS	17
5	LI	EGISLATIVE CONTEXT	17
	5.1	AGREEMENTS AND CONVENTIONS	17
	5.2	NATIONAL LEGISLATION	
	5.3	PROVINCIAL LEGISLATION	19
6	B	ASELINE ASSESSMENT	
	6.1	IMPORTANT BIRD AREAS	
	6.2	DFFE NATIONAL SCREENING TOOL	
	6.3	PROTECTED AREAS	
	6.4	BIOMES AND VEGETATION TYPES	
	6.5	BIRD HABITAT	
	6.6	AVIFAUNA	
7	IN	MPACT ASSESSMENT	44
'	7.1	SOLAR ENERGY FACILITY	
	7.2	IMPACTS ASSOCIATED WITH PV FACILITY	
	7.3	IMPACTS ASSOCIATED WITH THE MEDIUM VOLTAGE NETWORK	
	7.4	BATTERY ENERGY STORAGE FACILITY (BESS)	
	7.5	UP TO 132KV OVERHEAD LINE (OHL)	
8		MPACT RATINGS	
ð	8.1	DETERMINATION OF SIGNIFICANCE OF IMPACTS	-
	-	IMPACT ASSESSMENTS	
		CUMULATIVE IMPACTS	
9		IITIGATION MEASURES	
		SOLAR ENERGY FACILITY	
		BATTERY ENERGY STORAGE FACILITY (BESS)	
	9.3	UP TO 132KV OHL	
10) Pl	REFERRED ALTERNATIVE	65
	10.1	SOLAR ENERGY FACILITY	65
	10.2	BATTERY ENERGY STORAGE SYSTEM	
	10.3	ир то 132кV OHL	
11	C	ONDITIONS FOR INCLUSION IN THE EMPR	66
12) (N	NO-GO' ALTERNATIVE	AA
13			
		BATTERY ENERGY STORAGE FACILITY (BESS)	
		3 THE UP TO 132KV OHL	
	13.4	CUMULATIVE IMPACTS	

14 CONCLUSION AND IMPACT STATEMENT	
14.1 SOLAR ENERGY FACILITY	
14.2 BATTERY ENERGY STORAGE FACILITY (BESS)	72
14.3 THE UP TO 132KV OHL	73
15 REFERENCES	73
APPENDIX 1: SPECIES LISTS	78
APPENDIX 2: HABITAT FEATURES AT THE PROJECT AREA	85
APPENDIX 3: PRE-CONSTRUCTION MONITORING	88
APPENDIX 4: IMPACT TABLES	91
APPENDIX 5: ENVIRONMENTAL MANAGEMENT PROGRAMME (EMPR)	102

DETAILS OF THE SPECIALIST

Chris van Rooyen (Bird Specialist)

Chris has 25 years' experience in the management of wildlife interactions with electricity infrastructure. He was head of the Eskom-Endangered Wildlife Trust (EWT) Strategic Partnership from 1996 to 2007, which has received international acclaim as a model of co-operative management between industry and natural resource conservation. He is an acknowledged global expert in this field and has worked in South Africa, Namibia, Botswana, Lesotho, New Zealand, Texas, New Mexico and Florida. Chris also has extensive project management experience and has received several management awards from Eskom for his work in the Eskom-EWT Strategic Partnership. He is the author of 15 academic papers (some with co-authors), co-author of two book chapters and several research reports. He has been involved as ornithological consultant in numerous power line and wind generation projects. Chris is also co-author of the Best Practice for Avian Monitoring and Impact Mitigation at Wind Development Sites in Southern Africa, which is currently (2016) accepted as the industry standard. Chris also works outside the electricity industry and had done a wide range of bird impact assessment studies associated with various residential and industrial developments.

Albert Froneman (Bird and GIS Specialist)

Albert has an M. Sc. in Conservation Biology from the University of Cape Town and started his career in the natural sciences as a Geographic Information Systems (GIS) specialist at Council for Scientific and Industrial Research (CSIR). In 1998, he joined the Endangered Wildlife Trust where he headed up the Airports Company South Africa – EWT Strategic Partnership, a position he held until he resigned in 2008 to work as a private ornithological consultant. Albert's specialist field is the management of wildlife, especially bird related hazards at airports. His expertise is recognized internationally; in 2005 he was elected as Vice Chairman of the International Bird Strike Committee. Since 2010, Albert has worked closely with Chris van Rooyen in developing a protocol for pre-construction monitoring at wind energy facilities, and he is currently jointly coordinating pre-construction monitoring programmes at several solar facility facilities. Albert also works outside the electricity industry and had done a wide range of bird impact assessment studies associated with various residential and industrial developments.

1 INTRODUCTION

The proposed Camden Renewable Energy Complex (the 'Complex') is being developed by ENERTRAG South Africa (Pty) Ltd ("ENERTRAG" or "Developer") in the context of the Department of Mineral Resources and Energy's (DMRE) Integrated Resource Plan, and the Renewable Energy Independent Power Producer Procurement Programme (REIPPP).

The Complex can be divided into eight (8) Projects, namely:

- Camden I Wind Energy Facility (up to 200MW).
- Camden I Wind Grid Connection (up to 132kV).
- Camden up to 400kV Gid Connection and Collector substation.
- Camden I Solar up to 100MW.
- Camden I Solar up to 132kV Gid Connection.
- Camden Green Hydrogen and Ammonia Facility, including grid connection infrastructure.
- Camden II Wind Energy Facility (up to 200MW).
- Camden II Wind Energy Facility up to 132kV Gid Connection.

This impact report deals with the Camden I Solar Energy Facility (SEF), Battery Energy Storage System (BESS) and 132kV grid connection.

1.1 Solar Energy Facility and Battery Energy Storage Facility

Table 1 summarises the main features of the proposed SEF, relevant to potential avifaunal impacts.

Facility Name	Camden I Solar Energy Facility
Applicant	Camden I Solar Energy Facility (RF) Propriety Limited
Municipalities	Msukaligwa Local Municipality of the Gert Sibande
	District Municipality
Affected Farms ¹	Portion 1 of Welgelegen Farm No. 322
Extent	~ 695 ha
Buildable area	Approximately 310 ha, subject to finalization based on
	technical and environmental requirements
Capacity	Up to 100MW
Power system technology	PV panels will have a maximum height of 5 m, and
	could be mounted on fixed tilt, single axis tracking or
	dual axis tracking mounting structures or Bifacial Solar
	Modules with a maximum combined height of up to
	10m. Where desirable and feasible, Agri-Voltaic
	principles could be considered in the final design.
Operations and Maintenance (O&M) building	Located near the substation.
footprint:	Septic tanks with portable toilets
	Typical areas include:
	 Operations building – 20m x 10m = 200m²
	 Workshop – 15m x 10m = 150m²
	Stores - 15m x 10m = $150m^2$
Construction camp and laydown area	Typical construction camp area $100m \times 50m = 5,000m^2$.
	Typical laydown area 100m x 200m = 20,000m ² .
	Sewage: Septic tanks and portable toilets
Cement batching plant (temporary):	Gravel and sand will be stored in separate heaps whilst
	the cement will be contained in a silo.
Internal Roads:	Width of internal road – Between 4m and 5m. Where
	required for turning circle/bypass areas, access or
	internal roads may be up to 20m to allow for larger
	component transport. Length of internal road -

Table 1: Camden I Solar Energy Facility summary

¹ Based on the current conceptual layout.

	Approximately 8km.
Cables:	Communication, AC and DC cables.
Independent Power Producer (IPP) site substation	Total footprint will be up to 6.5ha in extent (5ha for the
and battery energy storage system (BESS):	BESS and 1.5ha for the IPP portion of the substation).
	The substation will consist of a high voltage substation
	yard to allow for multiple (up to) 132kV feeder bays and
	transformers, control building, telecommunication
	infrastructure, access roads, etc.
	The associated BESS storage capacity will be up to
	100MW/400MWh with up to four hours of storage. It is
	proposed that Lithium Battery Technologies, such as
	Lithium Iron Phosphate, Lithium Nickel Manganese
	Cobalt oxides or Vanadium Redox flow technologies will
	be considered as the preferred battery technology. The
	main components of the BESS include the batteries,
	power conversion system and transformer which will all
	be stored in various rows of containers.

1.2 Up to 132kV Grid Connection

It is proposed that Camden I Solar will connect to the nearby Camden Collector substation (which in turn will connect to the Camden Power Station), through an up to 132kV powerline (either single or double circuit) between the grid connection substation portion (immediately adjacent the Camden I Solar PV on-site IPP substation portion) and that of the Camden Collector substation. The powerline will be approximately 14km in length, depending on the authorized location of the collector substation. The onsite grid connection substation will consist of high voltage substation yard to allow for multiple (up to) 132kV feeder bays and transformers, control building, telecommunication infrastructure, access roads, etc. The area for the onsite substation will be up to 1.5ha. The up to 132kV powerline and substation will have a 250m corridor. This application includes the necessary up to 132kV voltage electrical components required for connection at the Collector Substation (i.e. the termination works).

See Figure 1 for a map of the development area.



Figure 1: Proposed layout of the project area of the proposed Camden I SEF, BESS and grid alternatives.

2 TERMS OF REFERENCE & PROTOCOLS

2.1 Solar Energy Facility protocol

The Protocol for the specialist assessment and minimum report content requirements for environmental impacts on terrestrial animal species (Government Gazette No 43855, 30 October 2020).

2.2 Up to 132kV grid connection protocol

The Protocol for the specialist assessment and minimum report content requirements for environmental impacts on terrestrial animal species (Government Gazette No 43855, 30 October 2020).

The purpose of the specialist report is to determine the main issues and potential impacts of the solar facility, BESS and grid connection, based by the on existing information and field assessments, according to the said protocols. In summary, the protocols require the following:

- Describe the affected environment from an avifaunal perspective.
- Discuss gaps in baseline data and other limitations and describe the expected impacts associated with the solar facility, BESS and the up to 132kV grid connection.
- Identify potential sensitive environments and receptors that may be impacted on by the proposed solar facility, BESS and 132kV grid connection and the types of impacts (i.e. direct, indirect and cumulative) that are most likely to occur.
- Determine the nature and extent of potential impacts during the construction, operational and decommissioning phases of the SEF, BESS and up to 132kV grid connection.
- Identify avifaunal sensitivities, including 'No-Go' areas, where applicable.
- Recommend mitigation measures to reduce the impact of the expected impacts.
- Provide an impact statement on whether the projects should be approved or not.

3 OUTLINE OF METHODOLOGY AND INFORMATION REVIEWED

The following methods were employed to conduct this study:

- Priority species were defined as follows:
 - o South African Red Data species: High conservation significance
 - o South African endemics and near-endemics: High conservation significance
 - Raptors: High conservation significance. Raptors are at the top of the food chain and play a key role in their ecosystems. When populations of birds of prey go down, then the numbers of their prey species go up, creating an imbalance in the ecosystem.
 - Waterbirds: Evidence indicate that waterbirds may be particular susceptible to collisions with solar arrays due to the so-called lake effect, caused by the reflection of the sun of the smooth surface of solar panels.
- Powerline sensitive species were defined as species which could potentially be impacted by powerline collisions or electrocutions, based on their morphology. Larger birds, particularly raptors and vultures, are more vulnerable to electrocution as they are more likely to bridge the clearances between electrical components than smaller birds. Large terrestrial species and certain waterbirds with high wing loading are less manoeuvrable than smaller species and are therefore more likely to collide with overhead lines.
- Bird distribution data from the Southern African Bird Atlas Project 2 (SABAP 2) was obtained (http://sabap2.adu.org.za/), in order to ascertain which species, occur in the pentads where the proposed development is located. A pentad grid cell covers 5 minutes of latitude by 5 minutes of longitude (5' × 5'). Each pentad is approximately 8 × 7.6 km. To get a more representative impression of the birdlife, a consolidated data set was obtained for a total of 16 pentads some of which intersect and others that are near the development area, henceforth

referred to as "the broader area" (see Figure 2Figure 2). The decision to include multiple pentads around the development area was to get a more representative picture of the bird abundance and variety in the region. The additional pentads and their data augment the bird distribution data. A total of 165 full protocol lists (i.e. bird listing surveys lasting a minimum of two hours each) and 227 ad hoc protocol lists (surveys lasting less than two hours but still yielding valuable data) have been completed to date for the 16 pentads where the development area is located. The SABAP2 data was therefore regarded as a reliable reflection of the avifauna which occurs in the area, but the data was also supplemented by data collected during the site surveys and general knowledge of the area.

- A classification of the vegetation types in the development area was obtained from the Atlas of Southern African Birds 1 (SABAP1) and the National Vegetation Map compiled by the South African National Biodiversity Institute (Mucina & Rutherford 2006).
- The national threatened status of all priority species was determined with the use of the most recent edition of the Red List Book of Birds of South Africa, Lesotho and Swaziland (Taylor *et al.* 2015), and the latest authoritative summary of southern African bird biology (Hockey *et al.* 2005).
- The global threatened status of all priority species was determined by consulting the latest (2021.3) IUCN Red List of Threatened Species (http://www.iucnredlist.org/).
- The Important Bird and Biodiversity Areas of South Africa (Marnewick *et al.* 2015; http://www.birdlife.org.za/conservation/important-bird-areas) was consulted for information on potentially relevant Important Bird Areas (IBAs).
- Satellite imagery (Google Earth © 2022) was used in order to view the broader area on a landscape level and to help identify bird habitat on the ground.
- The South African National Biodiversity BGIS map viewer was used to determine the locality of the development areas relative to National Protected Areas.
- The DFFE National Screening Tool was used to determine the assigned avian sensitivity of the development areas.
- The South African National Biodiversity Institute (SANBI) guidelines for the implementation of the Terrestrial Fauna and Terrestrial Flora Species Protocols for environmental impact assessments in South Africa (2020) were consulted to assist with the interpretation of the Terrestrial Animal Species protocol.
- The main source of information on the avifaunal diversity and abundance at the project area is an integrated preconstruction monitoring programme which was implemented at the project area, covering all seven proposed sub projects of the Camden Renewable Energy Complex, including the Camden I SEF, according to the applicable best practice guidelines (See Appendix 3).

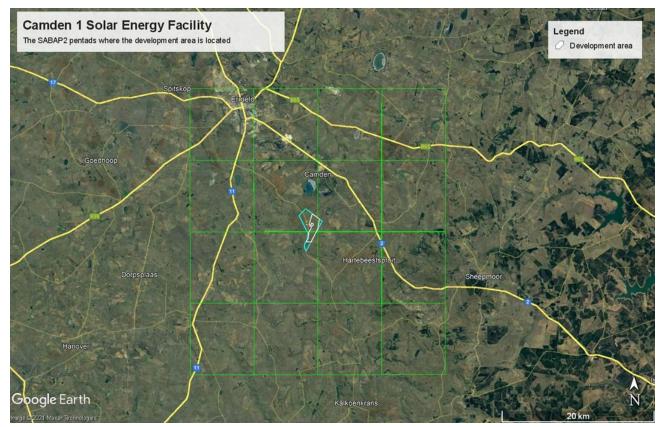


Figure 2: Area covered by the sixteen SABAP2 pentad grid cells (green squares).

4 ASSUMPTIONS AND LIMITATIONS

This study made the basic assumption that the sources of information used are reliable and accurate. The following must be noted:

- The SABAP2 dataset is a comprehensive dataset which provides a reasonably accurate snapshot of the avifauna which could occur at the proposed site. For purposes of completeness, the list of species that could be encountered was supplemented with personal observations, general knowledge of the area, and the results of the pre-construction monitoring which was conducted over 12 months.
- Conclusions in this report are based on experience of these and similar species at solar facility developments in different parts of South Africa. However, bird behaviour can never be predicted with absolute certainty.
- The impact of solar installations on avifauna is a new field of study, with only one published scientific study on the impact of PV facilities on avifauna in South Africa (Visser *et al.* 2019). Strong reliance was therefore placed on expert opinion and data from existing monitoring programmes at solar facilities in the USA where monitoring has been ongoing since 2013. The pre-cautionary principle was applied throughout as the full extent of impacts on avifauna at solar facilities is not presently known.
- According to the specifications received from the proponent, the 33kV medium-voltage lines will be buried where practically feasible. It was therefore assumed that there could be 33kV overhead lines which could pose an electrocution risk to priority species.
- It is assumed that the up to 132kV overhead line will be built on poles/towers designed to 132kV specifications.

5 LEGISLATIVE CONTEXT

5.1 Agreements and conventions

Table 2 below lists agreements and conventions which South Africa is party to, and which are relevant to the conservation of avifauna².

Table 2: Agreements and conventions which South Africa is party to and which are relevant to the conservation of
avifauna.

Convention name	Description	Geographic scope
African-Eurasian Waterbird Agreement (AEWA)	The Agreement on the Conservation of African-Eurasian Migratory Waterbirds (AEWA) is an intergovernmental treaty dedicated to the conservation of migratory waterbirds and their habitats across Africa, Europe, the Middle East, Central Asia, Greenland and the Canadian Archipelago. Developed under the framework of the Convention on Migratory Species (CMS) and administered by the United Nations Environment Programme (UNEP), AEWA brings together countries and the wider international conservation community in an effort to establish coordinated conservation and management of migratory waterbirds throughout their entire migratory range.	Regional
Convention on Biological Diversity (CBD), Nairobi, 1992	The Convention on Biological Diversity (CBD) entered into force on 29 December 1993. It has 3 main objectives: The conservation of biological diversity The sustainable use of the components of biological diversity The fair and equitable sharing of the benefits arising out of the utilization of genetic resources.	Global
Convention on the Conservation of Migratory Species of Wild Animals, (CMS), Bonn, 1979	As an environmental treaty under the aegis of the United Nations Environment Programme, CMS provides a global platform for the conservation and sustainable use of migratory animals and their habitats. CMS brings together the States through which migratory animals pass, the Range States, and lays the legal foundation for internationally coordinated conservation measures throughout a migratory range.	Global
Convention on the International Trade in Endangered Species of Wild Flora and Fauna, (CITES), Washington DC, 1973	CITES (the Convention on International Trade in Endangered Species of Wild Fauna and Flora) is an international agreement between governments. Its aim is to ensure that international trade in specimens of wild animals and plants does not threaten their survival.	Global
Ramsar Convention on Wetlands of International Importance, Ramsar, 1971	The Convention on Wetlands, called the Ramsar Convention, is an intergovernmental treaty that provides the framework for national action and international cooperation for the conservation and wise use of wetlands and their resources.	Global
Memorandum of Understanding on the Conservation of Migratory Birds of Prey in Africa and Eurasia	The Signatories will aim to take co-ordinated measures to achieve and maintain the favourable conservation status of birds of prey throughout their range and to reverse their decline when and where appropriate.	Regional

5.2 National legislation

5.2.1 Constitution of the Republic of South Africa, 1996

The Constitution of the Republic of South Africa provides in the Bill of Rights that: Everyone has the right -

- (a) to an environment that is not harmful to their health or well-being; and
- (b) to have the environment protected, for the benefit of present and future generations, through reasonable legislative and other measures that
 - (i) prevent pollution and ecological degradation;
 - (ii) promote conservation; and
 - (iii) secure ecologically sustainable development and use of natural resources while promoting justifiable economic and social development.

² (BirdLife International (2021) Country profile: South Africa. Available from:

http://www.birdlife.org/datazone/country/south_africa. Checked: 2021-09-20).

5.2.2 The National Environmental Management Act 107 of 1998 (NEMA)

The National Environmental Management Act 107 of 1998 (NEMA) creates the legislative framework for environmental protection in South Africa and is aimed at giving effect to the environmental right in the Constitution. It sets out a number of guiding principles that apply to the actions of all organs of state that may significantly affect the environment. Sustainable development (socially, environmentally and economically) is one of the key principles, and internationally accepted principles of environmental management, such as the precautionary principle and the polluter pays principle, are also incorporated. NEMA also provides that a wide variety of listed developmental activities, which may significantly affect the environment, may be performed only after an environmental impact assessment has been done and authorization has been obtained from the relevant authority. Many of these listed activities can potentially have negative impacts on bird populations in a variety of ways. The clearance of natural vegetation, for instance, can lead to a loss of habitat and may depress prey populations, while erecting structures needed for generating and distributing energy, communication, and so forth can cause mortalities by collision or electrocution.

NEMA makes provision for the prescription of procedures for the assessment and minimum criteria for reporting on identified environmental themes (Sections 24(5)(a) and (h) and 44) when applying for environmental authorisation. The Protocol for the Specialist Assessment and Minimum Report Content Requirements for Environmental Impacts on Terrestrial Animal Species was published on 30 October 2020. This protocol applies also for the assessment of impacts caused by solar facilities, power lines and BESS on avifauna.

5.2.3 The National Environmental Management: Biodiversity Act 10 of 2004 (NEMBA) and the Threatened or Protected Species Regulations, February 2007 (TOPS Regulations)

The most prominent statute containing provisions directly aimed at the conservation of birds is the National Environmental Management: Biodiversity Act 10 of 2004 read with the Threatened or Protected Species Regulations, February 2007 (TOPS Regulations). Chapter 1 sets out the objectives of the Act, and they are aligned with the objectives of the Convention on Biological Diversity, which are the conservation of biodiversity, the sustainable use of its components, and the fair and equitable sharing of the benefits of the use of genetic resources. The Act also gives effect to CITES, the Ramsar Convention, and the Bonn Convention on Migratory Species of Wild Animals. The State is endowed with the trusteeship of biodiversity and has the responsibility to manage, conserve and sustain the biodiversity of South Africa.

5.3 Provincial Legislation

The current legislation applicable to the conservation of fauna and flora in Mpumalanga is the Mpumalanga Nature Conservation Act 10 of 1998. It consolidated and amended the laws relating to nature conservation within the province and provides for matters connected therewith. All birds are classified as Protected Game (Section 4 (1) (b)), except those listed in Schedule 3, which are classified as Ordinary Game (Section 4 (1)(c)).

6 BASELINE ASSESSMENT

6.1 Important Bird Areas

The project site is not located in an Important Bird Area (IBA), but it is located between three IBAs. The closest IBA to the project site is the Grasslands IBA SA020, which is located 6-7km to the east of the site. The Chrissies Pans IBA SA019 is located 16-17km to the north-east of the site, and the Amersfoort-Bethal-Carolina IBA SA018 is located about 7-8km to the west. Due to the close proximity of the site to the IBAs, it is possible that some highly mobile priority species which are also IBA trigger species, and which occur either permanently or sporadically in the IBAs, might be impacted by the project when they leave to forage or breed beyond the borders of the IBA. Species that were recorded in the broader area and fall within this category are the following:

- Secretarybird
- Pied Avocet
- Denham's Bustard
- Blue Crane
- Grey Crowned Crane
- Wattled Crane
- White-backed Duck
- Yellow-billed Duck
- Martial Eagle
- Lanner Falcon
- Greater Flamingo
- Lesser Flamingo
- Black-necked Grebe
- Little Grebe
- African Marsh Harrier
- Black Harrier
- Southern Bald Ibis
- African Grass Owl
- Southern Pochard
- Cape Shoveler
- White-winged Tern

6.2 DFFE National Screening Tool

In the case of the Animal Species theme, relevant to the proposed solar facility, grid connection and BESS, the project area is classified as **Medium to High** sensitivity, based on the potential presence of Southern Bald Ibis (Globally and Regionally Vulnerable) and African Grass Owl (Locally Vulnerable) (Figure 4). This classification was confirmed during the surveys at the site and immediate environment, based on the presence of recorded species of conservation concern (SCC), namely Secretarybird (Globally Endangered, Regionally Vulnerable) White-bellied Bustard (Regionally Vulnerable), Blue Crane (Globally Vulnerable, Regionally Near-threatened), Grey Crowned Crane (Globally and Regionally Endangered), Martial Eagle (Globally and Regionally Endangered), Lanner Falcon (Regionally Vulnerable), Greater Flamingo (Regionally Near-threatened), Lesser Flamingo (Globally and Regionally Near-threatened), Black Harrier (Regionally and Globally Endangered), Southern Bald Ibis (Regionally and Globally Vulnerable), Blue Korhaan (Globally Near-threatened), African Grass Owl (Regionally Vulnerable) and Cape Vulture (Globally Vulnerable) and Regionally Endangered).



Figure 3: The National Web-Based Environmental Screening Tool map of the Camden I solar development area, grid connection and BESS, indicating sensitivities for the Animal Species theme. The classification of High sensitivity based on the presence of Red List species at the site namely African Grass Owl (Local Status Vulnerable) and Southern Bald Ibis (Locally and Globally Vulnerable).

6.3 Protected Areas

According to the South African Protected Areas database (SAPAD), part of the project area overlaps with the Langcarel Private Nature Reserve. From an avifaunal perspective the state of the habitat and land use at the project area is more important than the legal status, which has been surveyed and assessed for this assessment. The results provided are therefore applicable regardless of the legal status of the land parcels considered.

6.4 Biomes and vegetation types

The project area is situated in the Grassland Biome, in the Mesic Highveld Grassland Bioregion (Muchina & Rutherford 2006). Vegetation on site consists predominantly Amersfoort Highveld Clay Grassland and Eastern Highveld Grassland, which is comprised of undulating grassland plains, with small, scattered patches of dolerite outcrops in areas, low hills, and pan depressions. The vegetation is comprised of a short, closed grassland cover, largely dominated by a dense *Themeda triandra* sward, often severely grazed to form a short lawn (Mucina & Rutherford 2006).

Ermelo has a temperate climate. January is the warmest month with a maximum temperature of 24.4 C°. June and July are the coldest months, with a minimum temperature of 0.2 C°. The driest month is June with an average of 3 mm of precipitation. Most of the precipitation falls in December, averaging 151 mm. The average annual precipitation is around 756 mm (Climate – data.org 2021).

The topography in the project area is characterised by gentle undulating plains. The predominant land use for this area is livestock grazing with some crop farming, mostly maize, soya beans and pastures. The livestock in the project area is a combination of mostly sheep and cattle, with a few horses.

6.5 Bird habitat

Whilst much of the distribution and abundance of the bird species in the project area can be explained by the dominant biomes and vegetation types, it is also important to examine the modifications which have changed the natural landscape, and which may have an effect on the distribution of avifauna. These are sometimes evident at a much smaller spatial scale than the biome or vegetation types and are determined by a host of factors such as topography, land use and man-made infrastructure.

The following bird habitat classes were identified in the project area (see Appendix 2 for examples of the habitat classes):

6.5.1 Grassland

The majority of the habitat in the project area comprises grassland. The grassland varies from dense stands of relatively high grass to areas of heavily grazed short grass.

6.5.1.1 Solar priority species

The **solar** priority species which could potentially use the grassland in the project area on a <u>regular</u> basis are the following:

- African Grass Owl
- African Harrier-Hawk
- Amur Falcon
- Black-chested Snake Eagle
- Black-headed Heron
- Black-winged Kite
- Blue Crane
- Blue Korhaan
- Cape Grassbird
- Cloud Cisticola
- Common Buzzard
- Grey-winged Francolin
- Jackal Buzzard
- Lanner Falcon
- Long-crested Eagle
- Marsh Owl
- Pied Starling
- Rock Kestrel
- Secretarybird
- South African Cliff Swallow
- Southern Bald Ibis
- Western Cattle Egret
- White Stork
- White-bellied Bustard

The solar priority species which could <u>occasionally</u> use the grassland in the project area are the following:

• Black Harrier

- Brown Snake Eagle
- Cape Vulture
- Denham's Bustard
- Eastern Long-billed Lark
- Grey Crowned Crane
- Martial Eagle
- Montagu's Harrier
- Peregrine Falcon
- Red-chested Flufftail
- Spotted Eagle-Owl
- Western Barn Owl
- Yellow-billed Kite

6.5.1.2 Powerline sensitive species

The powerline sensitive species which could potentially use the grassland in the project area on a <u>regular</u> basis are the following:

- Secretarybird
- White-bellied Bustard
- Lanner Falcon
- Southern Bald Ibis
- African Grass Owl
- Blue Crane
- Blue Korhaan
- Grey Crowned Crane
- Common Buzzard
- Jackal Buzzard
- Cape Crow
- Pied Crow
- Black-chested Snake Eagle
- Long-crested Eagle
- Spotted Eagle-Owl
- Western Cattle Egret
- Amur Falcon
- Helmeted Guineafowl
- African Harrier-Hawk
- Black-headed Heron
- Hadada Ibis
- Black-winged Kite
- Marsh Owl
- Western Barn Owl
- White Stork

The powerline sensitive species which could <u>occasionally</u> use the grassland in the project area are the following:

- Denham's Bustard
- Martial Eagle
- Black Harrier

- Cape Vulture
- Black-bellied Bustard
- Brown Snake Eagle
- Peregrine Falcon
- Montagu's Harrier
- Yellow-billed Kite
- Northern Black Korhaan

6.5.2 Drainage lines and wetlands

There are several wetlands in the project area, most of which are associated with drainage lines. Wetlands are characterised by static or slow flowing water and are extensively covered by tall emergent wetland vegetation.

6.5.2.1 Solar priority species

The priority species which could potentially use the wetlands in the project area on a regular basis are the following:

- African Grass Owl
- African Snipe
- Black-headed Heron
- Blacksmith Lapwing
- Blue Crane
- Egyptian Goose
- Marsh Owl

The priority species which could <u>occasionally</u> use the wetlands in the project area are the following:

- African Black Duck
- African Marsh Harrier
- African Rail
- African Swamphen
- Glossy Ibis
- Grey Crowned Crane
- Hamerkop
- Ruff
- Wattled Crane

6.5.2.2 Powerline sensitive species

The powerline sensitive species which could potentially use the wetlands in the project area on a <u>regular</u> basis are the following:

- African Grass Owl
- Blue Crane
- Grey Crowned Crane
- Hamerkop
- African Black Duck
- Great Egret
- Intermediate Egret
- Little Egret

- Glossy Ibis
- Hadada Ibis
- Marsh Owl

The powerline sensitive species which could <u>occasionally</u> use the wetlands in the project area are the following:

- African Marsh Harrier
- Wattled Crane

6.5.3 Agricultural lands

The project site contains a patchwork of agricultural fields, where maize, soya beans and pastures are cultivated. Some fields are lying fallow or are in the process of being re-vegetated by grass.

6.5.3.1 Solar priority species

The solar priority species which could potentially use the agricultural fields in the project area on a <u>regular</u> basis are the following:

- Common Buzzard
- Blue Crane
- Amur Falcon
- Lanner Falcon
- Egyptian Goose
- Spur-winged Goose
- Southern Bald Ibis
- Black-winged Kite

The priority species which could <u>occasionally</u> use the agricultural lands in the project area are the following:

• Grey Crowned Crane

6.5.3.2 Powerline sensitive species

The powerline sensitive species which could potentially use the agricultural fields in the project area on a <u>regular</u> basis are the following:

- Amur Falcon
- Blue Crane
- Egyptian Goose
- Grey Crowned Crane
- Helmeted Guineafowl
- Lanner Falcon
- Southern Bald Ibis
- Spur-winged Goose

The powerline sensitive species which could <u>occasionally</u> use the agricultural lands in the project area are the following:

- Black-bellied Bustard
- Brown Snake Eagle

- Cape Vulture
- Denham's Bustard
- Martial Eagle
- Montagu's Harrier
- Northern Black Korhaan
- Peregrine Falcon
- Wattled Crane
- Yellow-billed Kite

6.5.4 Alien trees

The development area contains few trees. Most trees are alien species, particularly Eucalyptus, Australian Acacia (Wattle), Quercus (Oak), and Salix (Willow) species. Trees are often planted as wind breaks next to agricultural lands and around homesteads. Some of the drainage lines also have trees growing in them.

6.5.4.1 Solar priority species

The priority species which could potentially use the alien trees in the project area on a <u>regular</u> basis are the following:

- Secretarybird
- Common Buzzard
- Jackal Buzzard
- Black-chested Snake Eagle
- Long-crested Eagle
- Western Cattle Egret
- Amur Falcon
- Lanner Falcon
- Fiscal Flycatcher
- African Harrier-Hawk
- Black-headed Heron
- African Sacred Ibis
- Southern Bald Ibis
- Rock Kestrel
- Black-winged Kite
- Black Sparrowhawk
- Pied Starling
- White Stork
- Cape Weaver

The priority species which could <u>occasionally</u> use the alien trees in the project area are the following:

- Reed Cormorant
- White-breasted Cormorant
- Grey Crowned Crane
- African Darter
- African Fish Eagle
- Brown Snake Eagle
- Martial Eagle
- Spotted Eagle-Owl

- Peregrine Falcon
- Black-crowned Night Heron
- Grey Heron
- Giant Kingfisher
- Yellow-billed Kite
- Western Osprey
- Western Barn Owl
- African Spoonbill
- Karoo Thrush
- Cape Vulture
- Cape White-eye

6.5.5 Dams

There are three small ground dams at the project site, located in drainage lines.

6.5.5.1 Solar priority species

The priority species which could potentially use the dams in the project area on a regular basis are the following:

- Egyptian Goose
- Spur-winged Goose
- African Sacred Ibis
- Blacksmith Lapwing
- Three-banded Plover
- South African Shelduck
- Cape Weaver

The priority species which could occasionally use the dams in the project area are the following:

- Hamerkop
- Pied Avocet
- Red-knobbed Coot
- Reed Cormorant
- White-breasted Cormorant
- Black Crake
- African Darter
- Fulvous Whistling Duck
- White-backed Duck
- White-faced Whistling Duck
- Yellow-billed Duck
- African Fish Eagle
- Martial Eagle
- Great Egret
- Intermediate Egret
- Little Egret
- Black-necked Grebe
- Little Grebe
- Common Greenshank

- Grey-headed Gull
- Black Heron
- Black-crowned Night Heron
- Goliath Heron
- Grey Heron
- Purple Heron
- Squacco Heron
- African Jacana
- Giant Kingfisher
- Malachite Kingfisher
- Pied Kingfisher
- Common Moorhen
- Lesser Moorhen
- Western Osprey
- Kittlitz's Plover
- Southern Pochard
- African Rail
- Common Sandpiper
- Wood Sandpiper
- Cape Shoveler
- African Spoonbill
- Black-winged Stilt
- Little Stint
- African Swamphen
- Blue-billed Teal
- Cape Teal
- Red-billed Teal
- Whiskered Tern

6.5.5.2 Powerline sensitive species

The powerline sensitive species which could potentially use the dams in the project area on a <u>regular</u> basis are the following:

- African Darter
- African Sacred Ibis
- African Swamphen
- Common Moorhen
- Egyptian Goose
- Great Egret
- Grey Heron
- Hamerkop
- Intermediate Egret
- Little Egret
- Little Grebe
- Purple Heron
- Red-billed Teal
- Red-knobbed Coot
- Reed Cormorant

- South African Shelduck
- Southern Pochard
- Spur-winged Goose
- White Stork
- White-breasted Cormorant

The priority species which could occasionally use the dams in the project area are the following:

- Black Heron
- Black-crowned Night Heron
- Black-necked Grebe
- Blue-billed Teal
- Cape Teal
- Goliath Heron
- Mallard
- Squacco Heron
- Western Osprey

6.5.6 Pans

The project site contains two small pans. These pans are a potential drawcard for many species. Lesser and Greater Flamingos could use these pans for foraging and roosting. Large raptors and vultures could use the pans for bathing and drinking, and Blue Cranes could roost there on occasion.

6.5.6.1 Solar priority species

The solar priority species which could potentially use the pans in the project site on a regular basis are the following:

- Blue Crane
- Egyptian Goose
- Spur-winged Goose
- African Sacred Ibis
- Blacksmith Lapwing
- Three-banded Plover
- African Snipe

The priority species which could occasionally use the pans in the project site are the following:

- Red-knobbed Coot
- Black Crake
- White-faced Whistling Duck
- African Fish Eagle
- Martial Eagle
- Great Egret
- Intermediate Egret
- Little Egret
- Greater Flamingo
- Lesser Flamingo
- Little Grebe
- Common Greenshank

- Grey-headed Gull
- Black Heron
- African Jacana
- Kittlitz's Plover
- African Rail
- Common Sandpiper
- Wood Sandpiper
- African Spoonbill
- Black-winged Stilt
- Little Stint
- Blue-billed Teal
- Red-billed Teal
- Whiskered Tern

6.5.6.2 Powerline sensitive species

The powerline sensitive species which could potentially use the pans in the project area on a <u>regular</u> basis are the following:

- Black-chested Snake Eagle
- Blue Crane
- Egyptian Goose
- Greater Flamingo
- Grey Crowned Crane
- Hamerkop
- Lanner Falcon
- Lesser Flamingo
- Red-knobbed Coot
- Secretarybird
- South African Shelduck

The powerline sensitive species which could <u>occasionally</u> use the pans in the project area are the following:

- Brown Snake Eagle
- Cape Teal
- Cape Vulture
- Mallard
- Martial Eagle
- Peregrine Falcon
- Yellow-billed Kite

6.5.7 High voltage lines

The project area is transected by two high voltage lines which originating at the nearby Camden power station and substation. High voltage lines are used by a variety of avifauna for perching, roosting and in some cases, breeding These include raptors, vultures, ibis and also cranes.

6.5.7.1 Solar priority species

The solar priority species which could potentially use the high voltage lines in the project area on a <u>regular</u> basis are the following:

- African Fish Eagle
- Amur Falcon
- Black-chested Snake Eagle
- Black-winged Kite
- Common Buzzard
- Grey Crowned Crane
- Lanner Falcon
- Long-crested Eagle
- Southern Bald Ibis

The solar priority species which could <u>occasionally</u> use the high voltage lines in the project area are the following:

- Brown Snake Eagle
- Cape Vulture
- Martial Eagle
- Peregrine Falcon

6.5.7.2 Powerline sensitive species

The powerline sensitive species which could potentially use the high voltage lines in the project area on a <u>regular</u> basis are the following:

- Amur Falcon
- Black-chested Snake Eagle
- Black-winged Kite
- Cape Crow
- Common Buzzard
- Jackal Buzzard
- Lanner Falcon
- Long-crested Eagle
- Pied Crow
- Rock Kestrel
- Southern Bald Ibis

The powerline sensitive species which could <u>occasionally</u> use the high voltage lines in the project area are the following:

- Brown Snake Eagle
- Cape Vulture
- Martial Eagle
- Peregrine Falcon
- Western Osprey

See Appendix 2 for photographic record of habitat features in the development area and immediate surroundings.

6.6 AVIFAUNA

6.6.1 South African Bird Atlas Project 2

The SABAP2 data indicates that a total of 234 bird species could potentially occur within the broader area – Appendix 1 provides a comprehensive list of all the species. Of these, 107 species are classified as solar priority species and 78 as powerline sensitive species. Of the 107 solar priority species, 17 are South African Red List species, and of the 78 powerline sensitive species, 15 are South African Red List species. Of solar priority species are likely to occur regularly in the development area, and 55 powerline sensitive species are likely to occur regularly in the project area.

Table 3 and Table 4 list all the solar priority species and powerline sensitive species respectively that are likely to occur regularly and the possible impact on the respective species by the proposed solar facility (including the BESS) and 132kV grid connection. The following abbreviations and acronyms are used:

- NT = Near threatened
- VU = Vulnerable
- EN = Endangered

Table 3: Solar priority species potentially occurring at the project area.

		SABA report rate	ing		Statu	6	B	JCe			На	ıbitat						Impac	ts		
Species name	Scientific name	Full protocol	Ad hoc protocol	Global status	Regional status	IBA trigger species	Recorded during monitoring	Likelihood of regular occurrence	Grassland	Drainage line & wetlands	Agriculture	Dams	Pans	Alien trees	HV lines	Solar - Collisions with solar panels	Solar - Displacement: Disturbance	Solar - Displacement: Habitat transformation	Solar - Entanglement in fences	Powerline - Electrocution MV	Powerline - Collision
African Black Duck	Anas sparsa	10.9	0.0	-	-		х	L		х						х					х
African Darter	Anhinga rufa	16.4	2.2	-	-		х	L				х		х		х					х
African Fish Eagle	Haliaeetus vocifer	12.1	0.9	-	-		х	L				х	х	х	х		х	х		х	
African Grass Owl	Tyto capensis	2.4	0.0	-	VU	х	х	М	х	х						х	х	х	х	х	х
African Harrier-Hawk	Polyboroides typus	11.5	1.8	-	-		х	М	х					х						х	
African Jacana	Actophilornis africanus	1.8	1.3	-	-			L				х	х			х					
African Marsh Harrier	Circus ranivorus	0.6	0.0	-	EN	х		L		х							х	х		х	
African Rail	Rallus caerulescens	5.5	0.0	-	-		х	L		х		х	х			х					
African Sacred Ibis	Threskiornis aethiopicus	47.9	6.2	-	-		х	Μ				х	х	х	х	х				х	х
African Snipe	Gallinago nigripennis	20.0	0.9	-	-		х	М		х			х			х					
African Spoonbill	Platalea alba	16.4	2.2	-	-		х	L				х	х	х		х					х
African Swamphen	Porphyrio madagascariensis	6.1	2.2	-	-		x	L		х		х				х					
Amur Falcon	Falco amurensis	29.1	6.6	-	-		х	Н	х		х			х	х	х		х			
Black Crake	Zapornia flavirostra	9.1	0.0	-	-		х	L				х	х			х					
Black Harrier	Circus maurus	0.0	0.9	EN	EN	х		L	х									х		х	
Black Heron	Egretta ardesiaca	0.6	0.0	-	-			L				х	х			х					х
Black Sparrowhawk	Accipiter melanoleucus	12.1	0.9	-	-		х	М						х		х				х	
Black-chested Snake Eagle	Circaetus pectoralis	3.0	0.4	-	-		x	М	x					х	x			x		x	
Black-crowned Night Heron	Nycticorax nycticorax	0.6	0.0	-	-			L				х		х		x					x
Black-headed Heron	Ardea melanocephala	52.1	4.0	-	-		х	Н	х	х				х	х	х		х		х	х
Black-necked Grebe	Podiceps nigricollis	0.6	0.4	-	-	х		L				х				х					х
Blacksmith Lapwing	Vanellus armatus	67.9	7.0	-	-		х	Н		х		х	х			х					

		SABA report rate	ing		Status	6	B	JCe			На	bitat						Impac	ts		
Species name	Scientific name	Full protocol	Ad hoc protocol	Global status	Regional status	IBA trigger species	Recorded during monitoring	Likelihood of regular occurrence	Grassland	Drainage line & wetlands	Agriculture	Dams	Pans	Alien trees	HV lines	Solar - Collisions with solar panels	Solar - Displacement: Disturbance	Solar - Displacement: Habitat transformation	Solar - Entanglement in fences	Powerline - Electrocution MV	Powerline - Collision
Black-winged Kite	Elanus caeruleus	60.6	12.8	-	-		х	Н	х		х			х	х			х			
Black-winged Stilt	Himantopus himantopus	9.1	0.0	-	-		х	L				х	х			х					
Blue Crane	Grus paradisea	11.5	0.4	VU	NT	х	х	Н	х	х	х		х				х	х	х		х
Blue Korhaan	Eupodotis caerulescens	6.1	0.0	NT	LC		х	М	х							х	х	х	х		х
Blue-billed Teal	Spatula hottentota	1.2	0.0	-	-			L				х	х			х					х
Brown Snake Eagle	Circaetus cinereus	1.8	0.0	1	-			L	х					х	х		х	х		х	
Buff-streaked Chat	Campicoloides bifasciatus	5.5	0.4	-	-			L								x	x				
Cape Grassbird	Sphenoeacus afer	24.8	0.9	1	-		х	Н	х							х	х	х			
Cape Shoveler	Spatula smithii	18.8	0.0	1	-	х	х	L				х				х					х
Cape Teal	Anas capensis	3.0	0.0	-	-		х	L				х				х					х
Cape Vulture	Gyps coprotheres	0.00	0.00	EN	EN		х	L	х					х	х		х			х	х
Cape Weaver	Ploceus capensis	33.9	2.2	-	-		х	Н				х		х		х					
Cape White-eye	Zosterops virens	35.2	1.3	-	-		х	L						х		х	х	х			
Chorister Robin-Chat	Cossypha dichroa	1.2	0.0	-	-			L								х		х			
Cloud Cisticola	Cisticola textrix	7.9	0.9	-	-		х	М	х							х	х	х			
Common Buzzard	Buteo buteo	27.9	9.3	-	-		х	Н	х		х			х	х			х		х	
Common Greenshank	Tringa nebularia	5.5	0.0	-	-		х	L				х	х			х					
Common Moorhen	Gallinula chloropus	32.7	1.8	-	-		х	L				х				х					
Common Sandpiper	Actitis hypoleucos	1.2	0.0	-	-			L				х	х			х					
Denham's Bustard	Neotis denhami	1.8	0.0	NT	VU	х		L	х								х	х	х		х
Drakensberg Prinia	Prinia hypoxantha	18.8	0.0	-	-		х	М								х	х				
Eastern Long-billed Lark	Certhilauda semitorquata	4.8	0.0	-	-		х	L	х							х	х				
Egyptian Goose	Alopochen aegyptiaca	78.2	6.2	-	-		х	Н		х	х	х	х		х	х				х	х
Fiscal Flycatcher	Melaenornis silens	17.0	0.9	-	-		х	М						х		х					
Fulvous Whistling Duck	Dendrocygna bicolor	0.0	0.4	-	-			L				х				х					х

		SABA report rate		Status	6	D	JCe			На	abitat						Impac	ts			
Species name	Scientific name	Full protocol	Ad hoc protocol	Global status	Regional status	IBA trigger species	Recorded during monitoring	Likelihood of regular occurrence	Grassland	Drainage line & wetlands	Agriculture	Dams	Pans	Alien trees	HV lines	Solar - Collisions with solar panels	Solar - Displacement: Disturbance	Solar - Displacement: Habitat transformation	Solar - Entanglement in fences	Powerline - Electrocution MV	Powerline - Collision
Giant Kingfisher	Megaceryle maxima	4.8	0.0	-	-			L				х		х							
Glossy Ibis	Plegadis falcinellus	4.2	1.8	-	-			L		х						х				ł	х
Goliath Heron	Ardea goliath	2.4	0.0	-	-			L				х				х					х
Great Egret	Ardea alba	7.9	1.3	-	-			L				х	х			х					х
Greater Flamingo	Phoenicopterus roseus	3.6	4.4	-	NT	х	х	L					х			х					х
Grey Crowned Crane	Balearica regulorum	5.5	0.0	ΕN	EN	х	х	L	х	х	х			х	х		х	х	х	Х	х
Grey Heron	Ardea cinerea	24.8	3.5	1	-		х	L				х		х	х	х				1	х
Grey-headed Gull	Chroicocephalus cirrocephalus	3.6	0.4	-	-			L				x	x								
Grey-winged Francolin	Scleroptila afra	27.3	2.2	-	-		х	Н	х							х	х	х	х		
Hamerkop	Scopus umbretta	11.5	0.0	-	-		х	L		х		х	х			х				х	х
Intermediate Egret	Ardea intermedia	13.9	1.8	-	-		х	L				х	х			х					х
Jackal Buzzard	Buteo rufofuscus	19.4	2.2	-	-		х	Н	х					х	х			х		х	
Karoo Thrush	Turdus smithi	5.5	0.0	-	-			L						х		х	х	х			
Kittlitz's Plover	Charadrius pecuarius	7.3	0.4	-	-		х	L				х	х			х				1	
Lanner Falcon	Falco biarmicus	7.3	0.0	-	VU	х	х	М	х		х			х	х	х		х		х	
Lesser Flamingo	Phoeniconaias minor	3.6	1.3	NT	NT	х	х	L					х			х					х
Lesser Moorhen	Paragallinula angulata	0.6	0.4	-	-		х	L				х				х					
Little Egret	Egretta garzetta	4.2	1.3	1	-			L				х	х			х					х
Little Grebe	Tachybaptus ruficollis	38.8	3.1	-	-	х	х	L				х	х			х				1	х
Little Stint	Calidris minuta	1.8	0.0	1	-			L				х	х			х					
Long-crested Eagle	Lophaetus occipitalis	6.7	9.3	-	-		х	М	х					х	х			х		х	
Malachite Kingfisher	Corythornis cristatus	7.3	0.0	-	-		х	L				х								<u> </u>	
Marsh Owl	Asio capensis	5.5	0.4	-	-		х	Н	х	х						х	х	х	х	х	х
Martial Eagle	Polemaetus bellicosus	2.4	0.0	EN	EN	х	х	L	х			х	х	х	х		х	х		х	
Montagu's Harrier	Circus pygargus	1.2	0.0	-	-			L	х									х		х	

		SABA report rate	ting		Status	6	B	JCe			На	bitat						Impac	ts		
Species name	Scientific name	Full protocol	Ad hoc protocol	Global status	Regional status	IBA trigger species	Recorded during monitoring	Likelihood of regular occurrence	Grassland	Drainage line & wetlands	Agriculture	Dams	Pans	Alien trees	HV lines	Solar - Collisions with solar panels	Solar - Displacement: Disturbance	Solar - Displacement: Habitat transformation	Solar - Entanglement in fences	Powerline - Electrocution MV	Powerline - Collision
Peregrine Falcon	Falco peregrinus	1.2	0.0	-	-		х	L	х					х	х			х		х	
Pied Avocet	Recurvirostra avosetta	4.8	0.0	-	-	х	х	L				х	х			х					
Pied Kingfisher	Ceryle rudis	12.7	0.4	-	-		х	L				х									
Pied Starling	Lamprotornis bicolor	55.2	11.5	-	-		х	Н	х					х		х	х	х			
Purple Heron	Ardea purpurea	4.2	0.0	-	-			L				х				х					х
Red-billed Teal	Anas erythrorhyncha	17.0	1.3	-	-		х	L				х	х			х					х
Red-chested Flufftail	Sarothrura rufa	0.6	0.0	-	-		х	L	х							х	х				
Red-knobbed Coot	Fulica cristata	58.2	4.8	-	-		х	L				х	х			х					х
Reed Cormorant	Microcarbo africanus	63.6	4.8	-	-		х	L				х		х		х					х
Rock Kestrel	Falco rupicolus	5.5	0.9	-	-		х	Μ	х					х	х			х			
Ruff	Calidris pugnax	1.8	0.4	-	-			L		х						х					
Secretarybird	Sagittarius serpentarius	13.3	0.0	EN	VU	х	х	Н	х					х			х	х	х		х
Sentinel Rock Thrush	Monticola explorator	2.4	0.0	NT	LC		х	L								х					
South African Cliff Swallow	Petrochelidon spilodera	38.2	3.5	-	-		х	Н	х							х		х			
South African Shelduck	Tadorna cana	30.3	3.5	-	-		х	М				х				х					х
Southern Bald Ibis	Geronticus calvus	23.0	3.1	VU	VU	х	х	Н	х		х			х	х	х		х		х	х
Southern Pochard	Netta erythrophthalma	9.1	0.0	-	-	х	х	L				х				х					х
Spotted Eagle-Owl	Bubo africanus	9.1	0.9	-	-		х	L	х					х	х	х	х		х	Х	х
Spur-winged Goose	Plectropterus gambensis	44.2	1.8	-	-		х	М			х	х	х		х	х				х	х
Squacco Heron	Ardeola ralloides	1.2	0.0	-	-			L				х				х					х
Three-banded Plover	Charadrius tricollaris	35.2	0.9	-	-		х	М				х	х			х					
Wattled Crane	Grus carunculata	0.6	0.0	VU	CR	х		L		х						х	х	х	х		х
Western Barn Owl	Tyto alba	3.0	0.4	-	-			L	х					х						Х	х
Western Cattle Egret	Bubulcus ibis	44.8	12.3	-	-		х	Н	х					х		х	х	х			х
Western Osprey	Pandion haliaetus	0.6	0.0	-	-			L				х		х	х					х	
Whiskered Tern	Chlidonias hybrida	12.1	5.3	-	-			L				х	х								

		SABAP2 reporting rate		Status		5	B	JCe			На	bitat				Impacts						
Species name	Scientific name	Full protocol	Ad hoc protocol	Global status	Regional status	IBA trigger species	Recorded during monitoring	Likelihood of regular occurrence	Grassland	Drainage line & wetlands	Agriculture	Dams	Pans	Alien trees	HV lines	Solar - Collisions with solar panels	Solar - Displacement: Disturbance	Solar - Displacement: Habitat transformation	Solar - Entanglement in fences	Powerline - Electrocution MV	Powerline - Collision	
White Stork	Ciconia ciconia	7.3	1.3	-	-		х	Μ	х					х	х			х			х	
White-backed Duck	Thalassornis leuconotus	6.7	0.0	-	-	х	х	L				х				х					х	
White-bellied Bustard	Eupodotis senegalensis	7.9	0.0	-	VU		х	Μ	х							х	х	х	х		х	
White-breasted Cormorant	Phalacrocorax lucidus	11.5	0.9	-	-		х	L				х		х		х					х	
White-faced Whistling Duck	Dendrocygna viduata	0.6	0.0	-	-			L				х	х			х					x	
White-winged Tern	Chlidonias leucopterus	3.6	0.9	-	-	х	х	L														
Wood Sandpiper	Tringa glareola	6.1	0.0	-	-			L				х	х			х						
Yellow-billed Duck	Anas undulata	61.8	4.4	-	-	х	х	L				х				х					х	
Yellow-billed Kite	Milvus aegyptius	2.4	0.0	-	-		х	L	х					х	х					х		

	repo	SABAP2 rting rate		Sta	atus	veys	ar			На	bitat					Im	pacts		
Species name	Scientific name	SABAp2 full protocol reporting rate	SABAp2 Ad hoc protocol reporting rate	Global status	Regional status	IBA trigger species	Recorded during surveys	Likelihood of regular occurrence	Grassland	Drainage lines and wetlands	Dams	Pans	Alien trees	HV lines	Agriculture	Collisions: Powerline	Displacement: Disturbance	Displacement: Habitat transformation	Electrocutions: Substation and MV lines
African Black Duck	Anas sparsa	11	0	-	-		х	Н		х						х			
African Darter	Anhinga rufa	16	2.2	-	-		х	Н			х		х			х			
African Fish Eagle	Haliaeetus vocifer	12	0.9	-	-		Х	Н					x						х
African Grass Owl	Tyto capensis	2.4	0	I	VU		Х	М	х	х						х	х	х	х
African Harrier-Hawk	Polyboroides typus	12	1.8	-	-		х	М	х				х						
African Marsh Harrier	Circus ranivorus	0.6	0	-	EN			L		х									
African Sacred Ibis	Threskiornis aethiopicus	48	6.2	-	-		х	Н			х		х			х			
African Spoonbill	Platalea alba	16	2.2	-	-		х	Н								х			
African Swamphen	Porphyrio madagascariensis	6.1	2.2	-	-		x	М			x								
Amur Falcon	Falco amurensis	29	6.6	-	-		х	Н	х				х	х	х				х
Black Harrier	Circus maurus	0	0.9	EN	EN			L	х										
Black Heron	Egretta ardesiaca	0.6	0	-	-			L			х					x			
Black Sparrowhawk	Accipiter melanoleucus	12	0.9	-	-		Х	Н					х						х
Black-bellied Bustard	Lissotis melanogaster	0.6	0	-	-			L	х						х	х	х	x	
Black-chested Snake Eagle	Circaetus pectoralis	3	0.4	-	-		Х	М	х			х	x	х					х
Black-crowned Night Heron	Nycticorax nycticorax	0.6	0	-	-			L			х					х			
Black-headed Heron	Ardea melanocephala	52	4	-	-		Х	Н	х							х			х
Black-necked Grebe	Podiceps nigricollis	0.6	0.4	-	-			L			х					х			
Black-winged Kite	Elanus caeruleus	61	13	-	-		х	Н	х				х	х					х
Blue Crane	Grus paradisea	12	0.4	VU	NT		х	Н	х	х		х			х	х	х	х	
Blue Korhaan	Eupodotis caerulescens	6.1	0	NT			Х	Н	х							х	х	х	
Blue-billed Teal	Spatula hottentota	1.2	0	-	-			L			х					х			
Brown Snake Eagle	Circaetus cinereus	1.8	0	-	-			L	х			х	х	х	х				х
Cape Crow	Corvus capensis	18	0.4	-	-		Х	Н	х				х	х					х
Cape Shoveler	Spatula smithii	19	0	-	-		х	Н								х			
Cape Teal	Anas capensis	3	0	-	-		х	L			х	х				х			

		repo	SABAP2 rting rate		Sta	atus	veys	ar			На	bitat				Impacts				
Species name	Scientific name	SABAp2 full protocol reporting rate	SABAp2 Ad hoc protocol reporting rate	Global status	Regional status	IBA trigger species	Recorded during surveys	Likelihood of regular occurrence	Grassland	Drainage lines and wetlands	Dams	Pans	Alien trees	HV lines	Agriculture	Collisions: Powerline	Displacement: Disturbance	Displacement: Habitat transformation	Electrocutions: Substation and MV lines	
Cape Vulture	Gyps coprotheres	0	0	EN	EN		x	L	х			х	х	х	х	х			х	
Common Buzzard	Buteo buteo	28	9.3	-	-		х	Н	х				х	х					х	
Common Moorhen	Gallinula chloropus	33	1.8	-	-		x	Н			х									
Denham's Bustard	Neotis denhami	1.8	0	NT	VU			L	х						х	х	х	Х		
Egyptian Goose	Alopochen aegyptiaca	78	6.2	-	-		х	Н			х	х			х	х				
Fulvous Whistling Duck	Dendrocygna bicolor	0	0.4	-	-			L								х				
Glossy Ibis	Plegadis falcinellus	4.2	1.8	-	-			М		х						х				
Goliath Heron	Ardea goliath	2.4	0	-	-			L			х					х				
Great Egret	Ardea alba	7.9	1.3	-	-			М		х	х					х				
Greater Flamingo	Phoenicopterus roseus	3.6	4.4	-	NT		x	М				х				х				
Grey Crowned Crane	Balearica regulorum	5.5	0	EN	EN		x	М	х	х		х	х		х	х	х	Х		
Grey Heron	Ardea cinerea	25	3.5	-	-		х	Н			х					х				
Hadada Ibis	Bostrychia hagedash	90	14	-	-		х	Н	х	х			х			х			х	
Hamerkop	Scopus umbretta	12	0	-	-		х	Н		х	х	х				х				
Helmeted Guineafowl	Numida meleagris	49	3.1	-	-		х	Н	х				х		х		х	Х	х	
Intermediate Egret	Ardea intermedia	14	1.8	-	-		х	Н		х	х					х				
Jackal Buzzard	Buteo rufofuscus	19	2.2	-	-		х	Н	х				х	х					х	
Lanner Falcon	Falco biarmicus	7.3	0	-	VU		х	М	х			х	х	х	х				х	
Lesser Flamingo	Phoeniconaias minor	3.6	1.3	NT	NT		х	М				х				х				
Little Egret	Egretta garzetta	4.2	1.3	-	-			Н		х	х					х				
Little Grebe	Tachybaptus ruficollis	39	3.1	-	-		х	Н			х					х				
Long-crested Eagle	Lophaetus occipitalis	6.7	9.3	-	-		x	М	х				х	х					х	
Mallard	Anas platyrhynchos	0.6	0.4	-	-			L			х	х				х				
Marsh Owl	Asio capensis	5.5	0.4	-	-		х	М	х	х						х	х	х	х	
Martial Eagle	Polemaetus bellicosus	2.4	0	EN	EN		х	L	х			х	х	х	х				х	
Montagu's Harrier	Circus pygargus	1.2	0	-	-			L	х						х					
Northern Black Korhaan	Afrotis afraoides	0.6	0	-	-			L	х						х	х	х	х		
Peregrine Falcon	Falco peregrinus	1.2	0	-	-		х	L	х			х	х	х	х				х	
Pied Crow	Corvus albus	12	3.5	-	-		х	Н	х				х	х					х	
Purple Heron	Ardea purpurea	4.2	0	-	-			М			х					х				

		repo	SABAP2 rting rate		Sta	atus	veys	lar			На	bitat				Impacts			
Species name	Scientific name	SABAp2 full protocol reporting rate	SABAp2 Ad hoc protocol reporting rate	Global status	Regional status	IBA trigger species	Recorded during surveys	Likelihood of regular occurrence	Grassland	Drainage lines and wetlands	Dams	Pans	Alien trees	HV lines	Agriculture	Collisions: Powerline	Displacement: Disturbance	Displacement: Habitat transformation	Electrocutions: Substation and MV lines
Red-billed Teal	Anas erythrorhyncha	17	1.3	-	-		х	Н			х					х			
Red-knobbed Coot	Fulica cristata	58	4.8	-	-		Х	Н			х	х				х			
Reed Cormorant	Microcarbo africanus	64	4.8	-	-		х	Н			х		х			х			
Rock Kestrel	Falco rupicolus	5.5	0.9	-	-		х	М					х	х					
Secretarybird	Sagittarius serpentarius	13	0	EN	VU		х	Н	х			х	х			х	х	х	
South African Shelduck	Tadorna cana	30	3.5	-	-		х	Н			х	х				х			
Southern Bald Ibis	Geronticus calvus	23	3.1	VU	VU		х	Н	х				х	х	х	х			х
Southern Pochard	Netta erythrophthalma	9.1	0	-	-		х	М			х					х			
Spotted Eagle-Owl	Bubo africanus	9.1	0.9	-	-		х	М	х				х			х	х	х	х
Spur-winged Goose	Plectropterus gambensis	44	1.8	-	-		х	Н			х				х	х			
Squacco Heron	Ardeola ralloides	1.2	0	-	-			L			х					х			
Wattled Crane	Grus carunculata	0.6	0	VU	CR			L		х					х	х			
Western Barn Owl	Tyto alba	3	0.4	-	-			М	х				х			х			х
Western Cattle Egret	Bubulcus ibis	45	12	-	-		х	Н	х				х			х			
Western Osprey	Pandion haliaetus	0.6	0	-	-			L			х		х	х					х
White Stork	Ciconia ciconia	7.3	1.3	-	-		х	М	х		х					х			
White-backed Duck	Thalassornis leuconotus	6.7	0	-	-		х	М								х			
White-bellied Bustard	Eupodotis senegalensis	7.9	0	-	VU		х	М	х							х	х	х	
White-breasted Cormorant	Phalacrocorax lucidus	12	0.9	-	-		х	Н			х		х			х			
White-faced Whistling Duck	Dendrocygna viduata	0.6	0	-	-			L								х			
Yellow-billed Duck	Anas undulata	62	4.4	-	-		х	н								х			
Yellow-billed Kite	Milvus aegyptius	2.4	0	-	-		х	L	x			х	х		x				х

6.6.2 Pre-construction monitoring

Table 55, and Figure 4 5 and 6 below present the results of the pre-construction monitoring conducted at the Camden I PV project area. Monitoring was conducted by means of drive and walk transect counts (see Appendix 3 for more detail on the methodology) as per the requirements of the latest avifaunal guideline at the time of writing. Monitoring was implemented in the following time slots:

- 1. Survey 1: 10 11, 20 26 February 2021
- 2. Survey 2: 20 21 March,12 and 14 April, 5 and 12 May 2021

6.6.2.1 Transects

The results of the transect counts are tabled in Table 5 below:

Table 5: The results of the transect counts

PV site	Number of records
Species composition	
All Species	74
Solar Priority Species (30%)	22
Non-Priority Species	52
Total count	
Drive transects	1103
Walk transects	217
Total	1320

An Index of Kilometric Abundance (IKA = birds/km) was calculated for each solar priority species recorded during transects counts (see Figures 5 and 6 below).

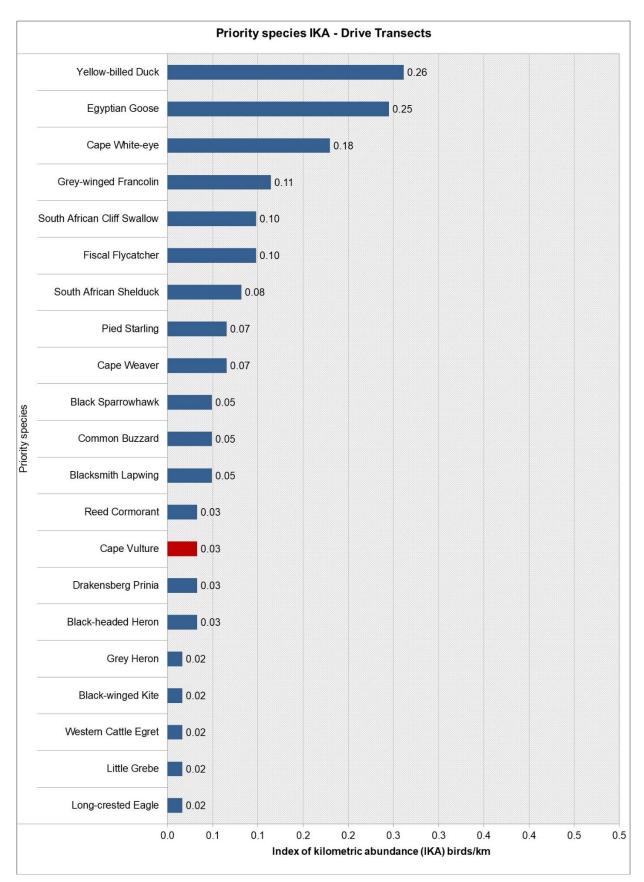


Figure 4: Index of kilometric abundance of solar priority species recorded at the project site. Species of conservation concern (SCC) are indicated in red.

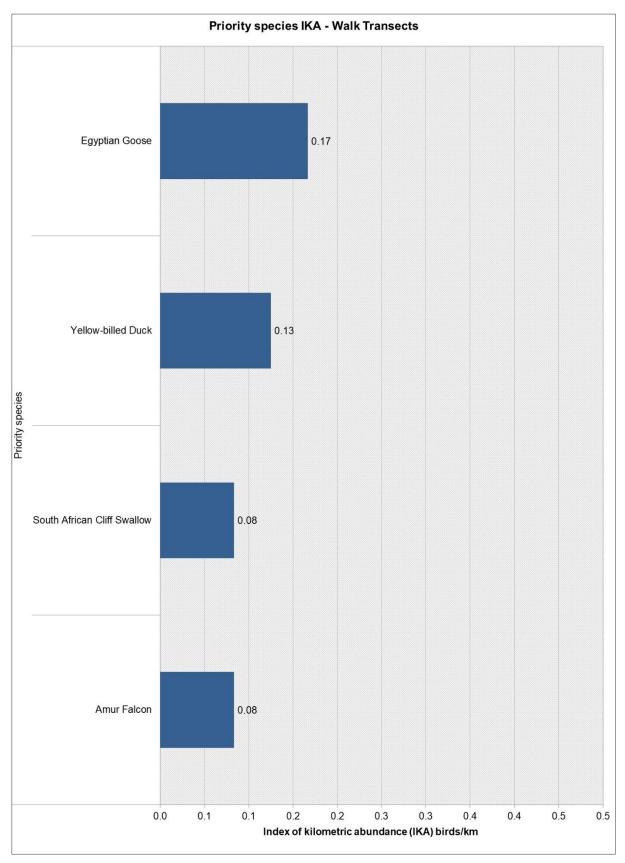


Figure 5: Index of kilometric abundance of solar priority species recorded at the SEF through walk transect surveys.

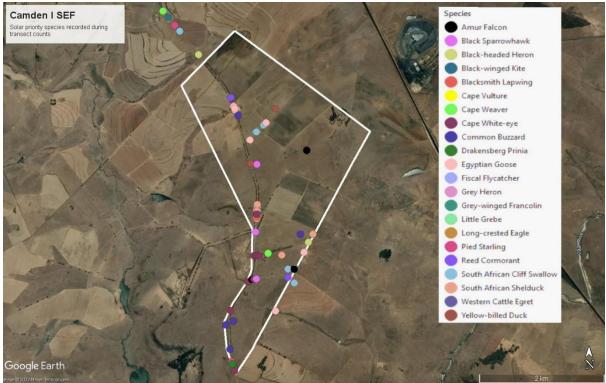


Figure 67 below shows the spatial distribution of the solar priority species recorded during transect counts.

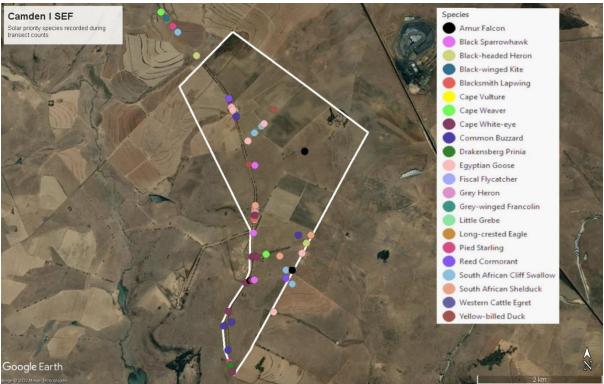


Figure 6: The location of solar priority species recorded at the proposed SEF through transect counts.

See Appendix 1 for a list of all species recorded during the pre-construction monitoring.

7 IMPACT ASSESSMENT

7.1 Solar Energy Facility

A literature review reveals a scarcity of published, scientifically examined information regarding largescale PV plants and birds. The reason for this is mainly that large-scale PV plants is a relatively recent phenomenon. The main source of information for these types of impacts are from compliance reports and a few government-sponsored studies relating to recently constructed solar plants in the southwest United States. In South Africa, one published scientific study has been completed on the impacts of PV plants in a South African context (Visser *et al.* 2019).

In summary, the main impacts of PV plants on avifauna which have emerged so far include the following:

- Displacement due to disturbance associated with the construction of the solar PV plant and associated infrastructure
- Displacement due to habitat transformation associated with the construction of the solar PV plant and associated infrastructure
- Collisions with the solar panels
- Entrapment in perimeter fences

Increasingly, human-induced climate change is recognized as a fundamental driver of biological processes and patterns. Historic climate change is known to have caused shifts in the geographic ranges of many plants and animals, and future climate change is expected to result in even greater redistributions of species (National Audubon Society 2015). In 2006 WWF Australia produced a report on the envisaged impact of climate change on birds worldwide (Wormworth, J. & Mallon, K. 2006). The report found that:

- Climate change now affects bird species' behaviour, ranges and population dynamics;
- Some bird species are already experiencing strong negative impacts from climate change;
- In future, subject to greenhouse gas emissions levels and climatic response, climate change will put large numbers bird species at risk of extinction, with estimates of extinction rates varying from 2 to 72%, depending on the region, climate scenario and potential for birds to shift to new habitat.

Using statistical models based on the North American Breeding Bird Survey and Audubon Christmas Bird Count datasets, the National Audubon Society assessed geographic range shifts through the end of the century for 588 North American bird species during both the summer and winter seasons under a range of future climate change scenarios (National Audubon Society 2015). Their analysis showed the following:

- 314 of 588 species modelled (53%) lose more than half of their current geographic range in all three modelled scenarios.
- For 126 species, loss occurs without accompanying range expansion.
- For 188 species, loss is coupled with the potential to colonize new areas.

Climate sensitivity is an important piece of information to incorporate into conservation planning and adaptive management strategies. The persistence of many birds will depend on their ability to colonize climatically suitable areas outside of current ranges and management actions that target climate change adaptation.

South Africa is among the world's top 10 developing countries required to significantly reduce their carbon emissions (Seymore *et al.* 2014), and the introduction of low-carbon technologies into the country's compliment of power generation will greatly assist with achieving this important objective (Walwyn & Brent 2015). Given that South Africa receives among the highest levels of solar radiation on earth (Fluri 2009; Munzhedi *et al.* 2009), it is clear that solar power generation should feature prominently in future efforts to convert to a more sustainable energy mix in order to combat climate change, also from an avifaunal impact perspective. However, while the expansion of solar power generation is undoubtedly a positive development for avifauna in the longer term in that it will help reduce the effect of climate change and thus habitat transformation, it must also be acknowledged that renewable energy facilities, including solar PV facilities, in themselves have some potential for negative impacts on avifauna.

A literature review reveals a scarcity of published, scientifically examined information regarding largescale PV plants and birds. The reason for this is mainly that large-scale PV plants are a relatively recent phenomenon. The main source of information for these types of impacts are from compliance reports and a few government-sponsored studies relating to recently constructed solar plants in the south-west United States. In South Africa, only one published scientific study has been completed on the impacts of PV plants in a South African context (Visser *et al.* 2019).

7.2 Impacts associated with PV facility

7.2.1 Impact trauma (collisions)

This impact refers to collision-related fatality i.e. fatality resulting from the direct contact of the bird with a project structure(s). This type of fatality has been occasionally documented at solar projects of all technology types (McCrary *et al.* 1986; Hernandez *et al.* 2014; Kagan *et al.* 2014). In some instances, the bird is not killed outright by the collision impact, but succumbs to predation later, as it cannot avoid predators due to its injured state.

Sheet glass used in commercial and residential buildings has been well established as a hazard for birds. When the sky is reflected in the sheet glass, birds fail to see the building as an obstacle and attempt to fly through the glass, mistaking it for empty space (Loss *et al.* 2014). Although very few cases have been reported it is possible that the reflective surfaces of solar panels could constitute a similar risk to avifauna.

An extremely rare but potentially related problem is the so-called "lake effect" i.e. it seems possible that reflections from solar facilities' infrastructure, particularly large sheets of dark blue photovoltaic panels, may attract birds in flight across the open desert, who mistake the broad reflective surfaces for water (Kagan *et al.* 2014)³. The unusually high percentage of waterbird mortalities at the Desert Sunlight PV facility (44%) may support the "lake effect" hypothesis (West 2014). Although in the case of Desert Sunlight, the proximity of evaporation ponds may act as an additional risk increasing factor, in that birds are both attracted to the water feature and habituated to the presence of an accessible aquatic environment in the area. This may translate into the misinterpretation of diffusely reflected sky or horizontal polarised light source as a body of water. However, due to limited data it would be

³ This could either result in birds colliding directly with the solar panels or getting stranded and unable to take off again because many aquatic bird species find it very difficult and sometimes impossible to take off from dry land e.g. grebes and cormorants. This exposes them to predation, even if they do not get injured through direct collisions with the panels.

premature to make any general conclusions about the influence of the lake effect or other factors that contribute to fatality of water-dependent birds. The activity and abundance of water-dependent species near solar facilities may depend on other site-specific or regional factors, such as the surrounding landscape (Walston *et al.* 2015). However, until such time that enough scientific evidence has been collected to discount the "lake effect" hypothesis, it must be considered as a potential source of impacts.

Weekly mortality searches at 20% coverage were conducted at the 250MW, 1300ha California Valley Solar Ranch PV site (Harvey & Associates 2014a and 2014b). According to the information that could be sourced from the internet (two quarterly reports), 152 avian mortalities were reported for the period 16 November 2013 – 15 February 2014, and 54 for the period 16 February 2014 – 15 May 2014, of which approximately 90% were based on feather spots which precluded a finding on the cause of death. These figures give an estimated unadjusted 1 030 mortalities per year, which is obviously an underestimate as it does not include adjustments for carcasses removed by scavengers and missed by searchers. The authors stated clearly that these quarterly reports do not include the results of searcher efficiency trials, carcass removal trials, or data analyses, nor does it include detailed discussions.

In a report by the National Fish and Wildlife Forensic Laboratory (Kagan *et al.* 2014), the cause of avian mortalities was estimated based on opportunistic avian carcass collections at several solar facilities, including the 550MW, 1 600ha Desert Sunlight PV plant. Impact trauma emerged as the highest identifiable cause of avian mortality, but most mortality could not be traced to an identifiable cause.

Walston *et al.* (2015) conducted a comprehensive review of avian fatality data from large scale solar facilities (all technology types) in the USA. Collision as cause of death (19 birds) ranked second at Desert Sunlight PV plant and California Valley Solar Ranch (CVSR) PV plant, after unknown causes. Cause of death could not be determined for over 50% of the fatality observations and many carcasses included in these analyses consisted only of feather spots (feathers concentrated together in a small area) or partial carcasses, thus making determination of cause of death difficult. It is anticipated that some unknown fatalities were caused by predation or some other factor unrelated to the solar project. However, they found that the lack of systematic data collection and standardization was a major impediment in establishing the actual extent and causes of fatalities across all projects.

Koskiuch *et al.* (2020) synthesized results from fatality monitoring studies at 10 photovoltaic solar facilities across 13 site years in California and Nevada in the USA. They concluded that there are consistent patterns in several aspects of their analysis that could provide insight into potential patterns of bird mortality at PV facilities. Four patterns that could provide broader inference to other regions are: 1) the most widely occurring species among site-years have populations in the millions in the areas where studies occurred, and 3 of the top 4 species detected are ground-dwelling birds; 2) most detections occurred in autumn (seasonal variation); 3) there was no evidence of a comparatively large-scale fatality events of nocturnal migrating passerines or migrating water associates or water obligates⁴; 4) most detections were of unknown cause feather spots.

⁴ They define water-associated birds based on life history traits and include any species that relies primarily upon aquatic habitats for the purposes of foraging, reproduction, and/or roosting and could be present in the study areas based upon their known range. Water associates can walk on and take off from land. They distinguished water-obligate birds, which rely on water for landing or take off, from water associates because of the importance of water obligates to the foundation of the lake-effect hypothesis.

The only scientific investigation of potential avifaunal impacts that has been performed at a South African PV facility was completed in 2016 at the 96MW Jasper PV solar facility (28°17'53"S, 23°21'56"E) which is located on the Humansrus Farm, approximately 4 km south-east of Groenwater and 30km east of Postmasburg in the Northern Cape Province (Visser et al. 2019). The Jasper PV facility contains 325 360 solar panels over a footprint of 180 hectares with the capacity to deliver 180 000 MWh of renewable electricity annually. The solar panels face north at a fixed 20° angle, reaching a height of approximately 1.86 m relative to ground level with a distance of 3.11 m between successive rows of panels. Mortality surveys were conducted from the 14th of September 2015 until the 6th of December 2015, with a total of seven mortalities recorded among the solar panels which gives an average rate of 0.003 birds per hectare surveyed per month. All fatalities were inferred from feather spots. Extrapolated bird mortality within the solar field at the Jasper PV facility was 435 birds/yr (95% CI 133 - 805). The broad confidence intervals result from the small number of birds detected. The mortality estimate is likely conservative because detection probabilities were based on intact birds, and probably decrease for older carcasses and feather spots. The study concluded inter alia that the short study period, and lack of comparable results from other sources made it difficult to provide a meaningful assessment of avian mortality at PV facilities. It further stated that despite these limitations, the few bird fatalities that were recorded might suggest that there is no significant collisionrelated mortality at the study site. The conclusion was that to fully understand the risk of solar energy development on birds, further collation and analysis of data from solar energy facilities across spatial and temporal scales, based on scientifically rigorous research designs, is required (Visser et al. 2019).

The results of the available literature lack compelling evidence of collisions as a cause of large-scale mortality among birds at PV facilities. However, it is clear from this limited literature survey that the lack of systematic and standardised data collection is a major problem in the assessment of the causes and extent of avian mortality at all types of solar facilities, regardless of the technology employed. Until statistically tested results emerge from existing compliance programmes and more dedicated scientific research, conclusions will inevitably be largely speculative and based on professional opinion.

Based on the lack of evidence to the contrary, it is not foreseen that collisions with the solar panels at the PV facility will be a significant impact. The priority species which would most likely be potentially affected by this impact are mostly small to medium-sized, ground-dwelling birds which forage between the solar panels, and possibly raptors which prey on them, or forage for insects between the PV panels, e.g. Amur Falcons (i.e. if they are not completely displaced due to the habitat transformation). Due to the absence of large permanent waterbodies at or close to the development area, it is unlikely that waterbirds will be attracted in large numbers to the solar arrays due to the "lake effect".

Priority species which occur regularly and could potentially be impacted due to collisions with the solar panels are the following: Western Cattle Egret, Amur Falcon, Lanner Falcon, Fiscal Flycatcher, Grey-winged Francolin, Egyptian Goose, Spur-winged Goose, Cape Grassbird, Black-headed Heron, Southern Bald Ibis, African Sacred Ibis, Blue Korhaan, Blacksmith Lapwing, African Grass Owl, Marsh Owl, Three-banded Plover, Drakensberg Prinia, South African Shelduck, African Snipe, Black Sparrowhawk, Pied Starling, South African Cliff Swallow and Cape Weaver.

7.2.2 Entrapment in perimeter fences

Visser *et al.* (2018) recorded a fence-line fatality (Orange River Francolin *Scleroptila gutturalis*) resulting from the bird being trapped between the inner and outer perimeter fence of the facility. This was further supported by observations of large-bodied birds unable to escape from between the two fences (e.g. Red-crested Korhaan *Lophotis ruficrista*) (Visser *et al.* 2019). Considering that one would expect the birds to be able to take off in the lengthwise direction (parallel to the fences), it seems possible that the birds panicked when they were approached by observers and thus flew into the fence.

It is not foreseen that entrapment of priority species in perimeter fences will be a significant impact at the PV facility. The priority species which could potentially be affected by this impact are most likely medium to large terrestrial species.

Priority species which could potentially be impacted due entrapment are the following: Secretarybird, White-bellied Bustard, Blue Crane, Blue Korhaan, African Grass Owl, Grey-winged Francolin and Marsh Owl.

7.2.3 Displacement due to habitat transformation associated with the construction of the solar PV facility

Ground-disturbing activities affect a variety of processes, including soil density, water infiltration rate, vulnerability to erosion, secondary plant succession, invasion by exotic plant species, and stability of cryptobiotic soil crusts. These processes have the ability – individually and together – to alter habitat quality, often to the detriment of wildlife, including avifauna. Any disturbance and alteration to the landscape, including the construction and decommissioning of utility-scale solar energy facilities, has the potential to increase soil erosion. Erosion can physically and physiologically affect plant species and can thus adversely influence primary production and food availability for wildlife (Lovich & Ennen 2011).

Solar energy facilities require substantial site preparation (including the removal of vegetation) that alters topography and, thus, drainage patterns to divert the surface flow associated with rainfall away from facility infrastructure. Channelling runoff away from plant communities can have dramatic negative effects on water availability and habitat quality. Areas deprived of runoff from sheet flow support less biomass of perennial and annual plants relative to adjacent areas with uninterrupted water-flow patterns (Lovich & Ennen 2011).

The activities listed below are typically associated with the construction and operation of solar facilities and could have direct impacts on avifauna through the transformation of habitat (County of Merced 2014):

- Preparation of solar panel areas for installation, including vegetation clearing, grading, cut and fill;
- Excavation/trenching for water pipelines, cables, fibre-optic lines, and the septic system;
- Construction of piers and building foundations;
- Construction of new dirt or gravel roads and improvement of existing roads;

- Temporary stockpiling and side-casting of soil, construction materials, or other construction wastes;
- Soil compaction, dust, and water runoff from construction sites;
- Degradation of water quality in drainages and other water bodies resulting from project runoff;
- Maintenance of fire breaks and roads; and
- Weed removal, brush clearing, and similar land management activities related to the ongoing operation of the project.

These activities could have an impact on birds breeding, foraging, and roosting in or in close proximity through transformation of habitat, which could result in temporary or permanent displacement.

In a study comparing the avifaunal habitat use in PV arrays with adjoining managed grassland at airports in the USA, DeVault *et al.* (2014) found that species diversity in PV arrays was reduced compared to the grasslands (37 vs 46), supporting the view that solar development is generally detrimental to wildlife on a local scale.

In order to identify functional and structural changes in bird communities in and around the development footprint, Visser *et al.* (2018) gathered bird transect data at the 180 hectares, 96MW Jasper PV solar facility in the Northern Cape, representing the solar development, boundary, and untransformed landscape. The study found both bird density and diversity per unit area was higher in the boundary and untransformed landscape, however, the extent therefore was not considered to be statistically significant. This indicates that the PV facility matrix is permeable to most species. However, key environmental features, including available habitat and vegetation quality are most likely the overriding factors influencing species' occurrence and their relative density within the development footprint. Her most significant finding was that the distribution of birds in the landscape changed, from a shrubland to open country and grassland bird community, in response to changes in the distribution and abundance of habitat resources such as food, water and nesting sites. These changes in resource availability patterns were detrimental to some bird species and beneficial to others. Shrubland specialists appeared to be negatively affected by the presence of the PV facility. In contrast, open country/grassland and generalist species, were favoured by its development (Visser *et al.* 2019).

As far as displacement, either completely or partially (reduced densities) due to habitat loss is concerned, it is highly likely that the same pattern of reduced avifaunal densities will manifest itself at the proposed PV facility. In addition, ground dwelling species and some raptors are also likely to be impacted by the habitat transformation, as it will result in reduced prey availability and accessibility.

Priority species that could be negatively affected by displacement due to habitat loss are the following: Common Buzzard, Jackal Buzzard, Cloud Cisticola, Blue Crane, Black-chested Snake Eagle, Long-crested Eagle, Western Cattle Egret, Amur Falcon, Lanner Falcon, Grey-winged Francolin, Cape Grassbird, Black-headed Heron, Southern Bald Ibis, Rock Kestrel, Black-winged Kite, Blue Korhaan, African Grass Owl, Marsh Owl, Pied Starling, White Stork, and South African Cliff Swallow

7.2.4 Displacement due to disturbance associated with the construction of the solar PV facility

As far as disturbance is concerned, it is likely that all the avifauna, including all the priority species, will be temporarily displaced in the footprint area, either completely or more likely partially (reduced densities) during the construction phase, due to the disturbance associated with the construction activities e.g. increased vehicle traffic, and short-term construction-related noise (from equipment) and visual disturbance.

At the PV facility, the priority species which would be most severely affected by disturbance would be ground dwelling species which are the following: White-bellied Bustard, Cloud Cisticola, Blue Crane, Western Cattle Egret, Grey-winged Francolin, Cape Grassbird, Blue Korhaan, African Grass Owl, Marsh Owl, Drakensberg Prinia, and Pied Starling. Secretarybirds breeding or roosting at or near to the project site might also be affected.

7.3 Impacts associated with the medium voltage network

7.3.1 Electrocution of priority species on the internal medium voltage reticulation network

Medium voltage electricity poles could potentially pose an electrocution risk to raptors. Electrocution refers to the scenario where a bird is perched or attempts to perch on the electrical structure and causes an electrical short circuit by physically bridging the air gap between live components and/or live and earthed components (van Rooyen 2000). The electrocution risk is largely determined by the design of the electrical hardware.

While the intention is to place the majority of the medium voltage reticulation network underground at the PV facility, there are areas where the lines will run above ground. Priority species which could be at risk of electrocution on the medium voltage powerlines are the following: Common Buzzard, Jackal Buzzard, Black-chested Snake Eagle, Long-crested Eagle, Lanner Falcon, Egyptian Goose, Spurwinged Goose, African Harrier-Hawk, Black-headed Heron, Southern Bald Ibis, African Sacred Ibis, African Grass Owl, Marsh Owl and Black Sparrowhawk.

7.3.2 Collisions with the internal medium voltage overhead lines

Collisions are the biggest threat posed by transmission lines to birds in southern Africa (Van Rooyen 2004). Most heavily impacted upon are bustards, storks, cranes, and various species of waterbirds, and to a lesser extent, vultures. These species are mostly heavy-bodied birds with limited manoeuvrability, which makes it difficult for them to take the necessary evasive action to avoid colliding with transmission lines (Van Rooyen 2004, Anderson 2001).

From incidental record keeping by the Endangered Wildlife Trust, it is possible to give a measure of what species are generally susceptible to power line collisions in South Africa (see Figure 5 below).

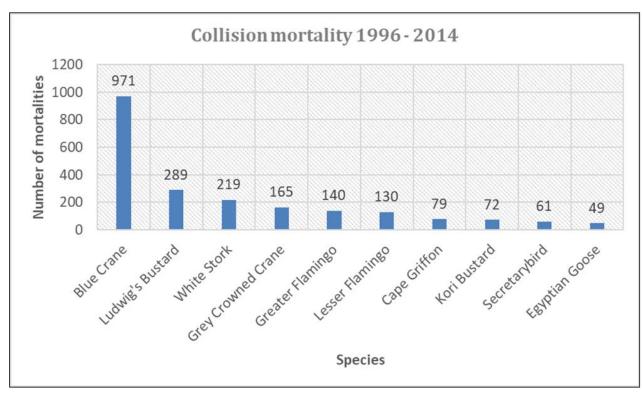


Figure 7: The top 10 collision prone bird species in South Africa, in terms of reported incidents contained in the Eskom/Endangered Wildlife Trust Strategic Partnership central incident register 1996 - 2014 (EWT unpublished data)

Power line collisions are generally accepted as a key threat to bustards (Raab *et al.* 2009; Raab *et al.* 2010; Jenkins & Smallie 2009; Barrientos *et al.* 2012, Shaw 2013). In one study, carcass surveys were performed under high voltage transmission lines in the Karoo for two years, and low voltage distribution lines for one year (Shaw 2013). Ludwig's Bustard was the most common collision victim (69% of carcasses), with bustards generally comprising 87% of mortalities recovered. Total annual mortality was estimated at 41% of the Ludwig's Bustard population, with Kori Bustards *Ardeotis kori* also dying in large numbers (at least 14% of the South African population killed in the Karoo alone). Karoo Korhaan was also recorded, but to a much lesser extent than Ludwig's Bustard. The reasons for the relatively low collision risk of this species probably include their smaller size (and hence greater agility in flight) as well as their more sedentary lifestyles, as local birds are familiar with their territory and are less likely to collide with power lines (Shaw 2013).

Using a controlled experiment spanning a period of nearly eight years (2008 to 2016), the Endangered Wildlife Trust (EWT) and Eskom tested the effectiveness of two types of line markers in reducing power line collision mortalities of large birds on three 400kV transmission lines near Hydra substation in the Karoo. Marking was highly effective for Blue Cranes, with a 92% reduction in mortality, and large birds in general with a 56% reduction in mortality, but not for bustards, including the endangered Ludwig's Bustard. The two different marking devices were approximately equally effective, namely spirals and bird flappers, they found no evidence supporting the preferential use of one type of marker over the other (Shaw *et al.* 2017).

While the intention is to place the majority of the medium voltage reticulation network underground at the PV facility, there are areas where the lines could run above ground. Priority species which are most at risk of collisions with the medium voltage powerlines are the following: Secretarybird, Whitebellied Bustard, Blue Crane, Western Cattle Egret, Egyptian Goose, Spur-winged Goose, Blackheaded Heron, Southern Bald Ibis, African Sacred Ibis, Blue Korhaan, African Grass Owl, Marsh Owl, South African Shelduck and White Stork.

7.4 Battery Energy Storage Facility (BESS)

The impact that is associated with the construction of the BESS is the potential displacement of priority avifauna due to disturbance associated with the construction of the facility and habitat transformation in the footprint of the facility.

7.4.1 Displacement due to habitat destruction and disturbance

During the construction of the BESS, habitat destruction/transformation will inevitably take place. The construction activities will constitute the following:

- Site clearance and preparation.
- Construction of the infrastructure related to the BESS.
- Transportation of personnel, construction material and equipment to the site, and personnel away from the site.
- Removal of vegetation for the proposed infrastructure line, stockpiling of topsoil and cleared vegetation.
- Excavations for infrastructure.

These activities will impact on birds breeding, foraging and roosting in or in close proximity of the proposed facility through **transformation of habitat**, which could result in temporary or permanent displacement. Unfortunately, very little mitigation can be applied to reduce the significance of this impact as the total permanent transformation of the natural habitat within the construction footprint of the facility is unavoidable. The loss of habitat for priority species due to direct habitat transformation associated with the construction of the 5 ha proposed facility is likely to be relatively insignificant due to the relatively small size of the footprint (only 0.07% of the total project area, and 2.5% of the buildable area).

Apart from direct habitat destruction, the above-mentioned activities also impact on birds through **disturbance**; this could lead to breeding failure if the disturbance happens during a critical part of the breeding cycle. Construction activities in close proximity to breeding locations could be a source of disturbance and could lead to temporary breeding failure or even permanent abandonment of nests. A potential mitigation measure is the timeous identification of nests and the timing of the construction activities to avoid disturbance during a critical phase of the breeding cycle, although in practice that can admittedly be challenging to implement.

The priority species which are potentially most vulnerable to the impact of displacement due to disturbance and habitat transformation linked to the BESS are terrestrial species and owls. Priority species that could be affected are the following: African Grass Owl, Black-bellied Bustard, Black-winged Lapwing, Blue Crane, Blue Korhaan, Buff-streaked Chat, Denham's Bustard, Grey Crowned Crane, Grey-winged Francolin, Marsh Owl, Northern Black Korhaan, Secretarybird and White-bellied Bustard

7.5 Up to 132kV overhead line (OHL)

The following potential impacts on powerline sensitive avifauna are associated with the construction and operation of the up to 132kV grid connection:

- Mortality due to electrocution on the proposed OHL infrastructure
- Mortality due to electrocution on the electrical infrastructure within the proposed on-site substation.
- Mortality due to collisions with the proposed OHL.
- Displacement due to disturbance associated with the construction of the proposed OHL and on-site substation.
- Displacement due to habitat transformation associated with the construction of the proposed OHL and on-site substation.

7.5.1 Mortality of powerline sensitive avifauna due to electrocutions

Electrocution refers to the scenario where a bird is perched or attempts to perch on the electrical structure and causes an electrical short circuit by physically bridging the air gap between live components and/or live and earthed components (Van Rooyen 2004). The electrocution risk is largely determined by the voltage size of the proposed powerline and the pole/tower design. Should the proposed OHL be constructed using a 132kV tower specification, the electrocution impact for the majority of priority species will be negligible. The only priority species capable of bridging the clearance distances of an OHL constructed using this specification is the Cape Vulture, due to their size and gregarious nature.

Ordinarily, the construction of a single circuit powerline using the approved vulture friendly pole/tower design D-DT-7649 accordance with the Distribution Technical Bulletin titled *Refurbishment of 66/88kV line kite type frames with D-DT-7649 type top configuration - Reference Number 240-170000467* will eliminate the electrocution risk. The configuration of the insulators and the clearance distances between the live and earthed components on this structure can comfortably accommodate a perching vulture. However if the OHL will be built on lattice structures, it is imperative that there is a minimum clearance of 1.8m between the jumper cables and/or insulators and the horizontal earthed component on the lattice structure (pers.comm. Lourens Leeuwner - Eskom-EWT Strategic Partnership Manager). Additional mitigation in the form of insulating sleeves on jumper cables present on strain poles and terminal poles is also recommended (if suitable insulation material is readily available), alternatively all jumper cables must be suspended below the crossarms.

Electrocutions within the proposed on-site substation are possible, however the likelihood of this impact on the more sensitive SCC is remote, as these species are unlikely to regularly utilise the infrastructure within the onsite substation station for perching or roosting. Species that are more vulnerable to this impact are medium-sized raptors, corvids, owls and certain species of waterbirds.

It is assumed that the OHL will be built on 132kV pole/tower designs therefore the powerline sensitive species which is potentially vulnerable to electrocution on the actual towers/poles is Cape Vulture. As far as the substation is concerned, the following species are potentially at risk of electrocution: African Fish Eagle, African Grass Owl, Amur Falcon, Black Sparrowhawk, Black-chested Snake Eagle, Black-headed Heron, Black-winged Kite, Brown Snake Eagle, Cape Crow, Cape Vulture, Common Buzzard, Hadada Ibis, Helmeted Guineafowl, Jackal Buzzard, Lanner Falcon, Long-crested Eagle, Marsh Owl, Martial Eagle, Peregrine Falcon, Pied Crow, Southern Bald Ibis, Spotted Eagle-Owl, Western Barn Owl, Western Osprey and Yellow-billed Kite.

7.5.2 Mortality of powerline sensitive avifauna due to collisions

See also the discussion under 7.1.5.

In a PhD study, Shaw (2013) provides a concise summary of the phenomenon of avian collisions with transmission lines:

"The collision risk posed by powerlines is complex and problems are often localised. While any bird flying near a powerline is at risk of collision, this risk varies greatly between different groups of birds, and depends on the interplay of a wide range of factors (APLIC 1994). Bevanger (1994) described these factors in four main groups – biological, topographical, meteorological and technical. Birds at highest risk are those that are both susceptible to collisions and frequently exposed to powerlines, with waterbirds, gamebirds, rails, cranes and bustards usually the most numerous reported victims (Bevanger 1998, Rubolini et al. 2005, Jenkins et al. 2010).

The proliferation of man-made structures in the landscape is relatively recent, and birds are not evolved to avoid them. Body size and morphology are key predictive factors of collision risk, with large-bodied birds with high wing loadings (the ratio of body weight to wing area) most at risk (Bevanger 1998, Janss 2000). These birds must fly fast to remain airborne, and do not have sufficient manoeuvrability to avoid unexpected obstacles. Vision is another key biological factor, with many collision-prone birds principally using lateral vision to navigate in flight, when it is the lower-resolution, and often restricted, forward vision that is useful to detect obstacles (Martin & Shaw 2010, Martin 2011, Martin et al. 2012). Behaviour is important, with birds flying in flocks, at low levels and in crepuscular or nocturnal conditions at higher risk of collision (Bevanger 1994). Experience affects risk, with migratory and nomadic species that spend much of their time in unfamiliar locations also expected to collide more often (Anderson 1978, Anderson 2002). Juvenile birds have often been reported as being more collision-prone than adults (e.g. Brown et al. 1987, Henderson et al. 1996).

Topography and weather conditions affect how birds use the landscape. Powerlines in sensitive bird areas (e.g. those that separate feeding and roosting areas, or cross flyways) can be very dangerous (APLIC 1994, Bevanger 1994). Lines crossing the prevailing wind conditions can pose a problem for large birds that use the wind to aid take-off and landing (Bevanger 1994). Inclement weather can disorient birds and reduce their flight altitude, and strong winds can result in birds colliding with powerlines that they can see but do not have enough flight control to avoid (Brown et al. 1987, APLIC 2012).

The technical aspects of powerline design and siting also play a big part in collision risk. Grouping similar powerlines on a common servitude, or locating them along other features such as tree lines, are both approaches thought to reduce risk (Bevanger 1994). In general, low lines with short span lengths (i.e. the distance between two adjacent pylons) and flat conductor configurations are thought to be the least dangerous (Bevanger 1994, Jenkins et al. 2010). On many higher voltage lines, there is a thin earth (or ground) wire above the conductors, protecting the system from lightning strikes. Earth wires are widely accepted to cause the majority of collisions on powerlines with this configuration because they are difficult to see, and birds flaring to avoid hitting the conductors often put themselves directly in the path of these wires (Brown et al. 1987, Faanes 1987, Alonso et al. 1994a, Bevanger 1994)."

Several factors are thought to influence avian collisions, including the manoeuvrability of the bird, topography, weather conditions and powerline configuration. An important additional factor that previously has received little attention is the visual capacity of birds; i.e. whether they are able to see obstacles such as powerlines, and whether they are looking ahead to see obstacles with enough time to avoid a collision. In addition to helping explain the susceptibility of some species to collision, this factor is key to planning effective mitigation measures. Recent research provides the first evidence that birds can render themselves blind in the direction of travel during flight through voluntary head movements (Martin & Shaw 2010). Visual fields were determined in three bird species representative of families known to be subject to high levels of mortality associated with powerlines i.e. Kori Bustard Ardeotis kori, Blue Crane and White Stork. In all species the frontal visual fields showed narrow and vertically long binocular fields typical of birds that take food items directly in the bill under visual guidance. However, these species differed markedly in the vertical extent of their binocular fields and in the extent of the blind areas which project above and below the binocular fields in the forwardfacing hemisphere. The importance of these blind areas is that when in flight, head movements in the vertical plane (pitching the head to look downwards) will render the bird blind in the direction of travel. Such movements may frequently occur when birds are scanning below them (for foraging or roost sites, or for conspecifics). In bustards and cranes pitch movements of only 25° and 35°, respectively, are sufficient to render the birds blind in the direction of travel; in storks, head movements of 55° are necessary. That flying birds can render themselves blind in the direction of travel has not been previously recognised and has important implications for the effective mitigation of collisions with human artefacts including wind turbines and powerlines. These findings have applicability to species outside of these families especially raptors (Accipitridae) which are known to have small binocular fields and large blind areas similar to those of bustards and cranes, and are also known to be vulnerable to powerline collisions.

Despite doubts about the efficacy of line marking to reduce the collision risk for bustards (Jenkins et al. 2010; Martin et al. 2010), there are numerous studies which prove that marking a line with PVC spiral type Bird Flight Diverters (BFDs) generally reduce mortality rates (e.g. Bernardino et al. 2018; Sporer et al. 2013, Barrientos et al. 2011; Jenkins et al. 2010; Alonso & Alonso 1999; Koops & De Jong 1982), including to some extent for bustards (Barrientos et al. 2012; Hoogstad 2015 pers.comm). Beaulaurier (1981) summarised the results of 17 studies that involved the marking of earth wires and found an average reduction in mortality of 45%. Barrientos et al. (2011) reviewed the results of 15 wire marking experiments in which transmission or distribution wires were marked to examine the effectiveness of flight diverters in reducing bird mortality. The presence of flight diverters was associated with a decrease of 55-94% in bird mortalities. Koops and De Jong (1982) found that the spacing of the BFDs was critical in reducing the mortality rates - mortality rates are reduced up to 86% with a spacing of 5m, whereas using the same devices at 10m intervals only reduces the mortality by 57%. Barrientos et al. (2012) found that larger BFDs were more effective in reducing Great Bustard collisions than smaller ones. Line markers should be as large as possible, and highly contrasting with the background. Colour is probably less important as during the day the background will be brighter than the obstacle with the reverse true at lower light levels (e.g. at twilight, or during overcast conditions). Black and white interspersed patterns are likely to maximise the probability of detection (Martin et al. 2010).

The up to 132kV OHL could pose a collision risk to virtually all powerline sensitive avifauna, depending on where those spans are located. Species potentially at risk are African Black Duck, African Darter, African Grass Owl, African Sacred Ibis, African Spoonbill, Black Heron, Black-bellied Bustard, Black-crowned Night Heron, Black-headed Heron, Black-necked Grebe, Blue Crane, Blue

Korhaan, Blue-billed Teal, Cape Shoveler, Cape Teal, Cape Vulture, Denham's Bustard, Egyptian Goose, Fulvous Whistling Duck, Glossy Ibis, Goliath Heron, Great Egret, Greater Flamingo, Grey Crowned Crane, Grey Heron, Hadada Ibis, Hamerkop, Intermediate Egret, Lesser Flamingo, Little Egret, Little Grebe, Mallard, Marsh Owl, Northern Black Korhaan, Purple Heron, Red-billed Teal, Redknobbed Coot, Reed Cormorant, Secretarybird, South African Shelduck, Southern Bald Ibis, Southern Pochard, Spotted Eagle-Owl, Spur-winged Goose, Squacco Heron, Wattled Crane, Western Barn Owl, Western Cattle Egret, White Stork, White-backed Duck, White-bellied Bustard, White-breasted Cormorant, White-faced Whistling Duck and, Yellow-billed Duck.

7.5.3 Displacement due to habitat transformation

During the construction of powerlines, service roads (jeep tracks), substations and other associated infrastructure, habitat destruction/transformation inevitably takes place. These activities could impact on birds breeding, foraging and roosting in or in close proximity of the proposed OHL grid connection through the transformation of habitat. The construction activities will constitute the following:

- Site clearance and preparation;
- Excavations for infrastructure;
- Construction of the substation and grid connection infrastructure; and
- Transportation of personnel, construction material and equipment to the site, and personnel away from the site.

Relevant to this development, very little mitigation can be applied to reduce the significance of this impact as the total permanent transformation of the natural habitat within the construction footprint of the on-site substation is unavoidable. In the case of the OHL, the direct habitat transformation is limited to the on-site substation and pole/tower footprints and the narrow access road/track under the proposed OHL. The loss of habitat in the substation footprint (2 ha) will be a relatively insignificant percentage of the habitat that regularly supports powerline sensitive species and the resultant impact is likely to be fairly minimal.

Powerline sensitive species which are potentially vulnerable to displacement due to habitat transformation are mostly ground dwelling species: African Grass Owl, Black-bellied Bustard, Blue Crane, Blue Korhaan, Denham's Bustard, Grey Crowned Crane, Helmeted Guineafowl, Marsh Owl, Northern Black Korhaan, Secretarybird, Spotted Eagle-Owl and, White-bellied Bustard

7.5.4 Displacement due to disturbance

Apart from direct habitat destruction, the above-mentioned activities also impact on birds through disturbance; this could lead to breeding failure if the disturbance happens during a critical part of the breeding cycle. Construction activities in close proximity to breeding locations could be a source of disturbance and could lead to temporary breeding failure or even permanent abandonment of nests. A potential mitigation measure is the timeous identification of nests and the timing of the construction activities to avoid disturbance during a critical phase of the breeding cycle, although this is often impractical to implement due to tight construction schedules.

Powerline sensitive species which are potentially vulnerable to displacement due to disturbance are mostly ground dwelling species: African Grass Owl, Black-bellied Bustard, Blue Crane, Blue Korhaan,

8 IMPACT RATINGS

The impacts on avifauna of the proposed Camden 1 SEF, BESS and 132V OHL are rated according to the criteria set out below.

8.1 Determination of Significance of Impacts

The EIA Methodology assists in evaluating the overall effect of a proposed activity on the environment. The determination of the effect of an environmental impact on an environmental parameter is determined through a systematic analysis of the various components of the impact. This is undertaken using information that is available to the environmental practitioner through the process of the environmental impact assessment. The impact evaluation of predicted impacts was undertaken through an assessment of the significance of the impacts.

The assessment of impacts and mitigation evaluates the likely extent and significance of the potential impacts on identified receptors and resources against defined assessment criteria, to develop and describe measures that will be taken to avoid, minimise or compensate for any adverse environmental impacts, to enhance positive impacts, and to report the significance of residual impacts that occur following mitigation. The key objectives of the risk assessment methodology are to identify any additional potential environmental issues and associated impacts likely to arise from the proposed project, and to propose a significance ranking. Issues / aspects are reviewed and ranked against a series of significance criteria to identify and record interactions between activities and aspects, and resources and receptors to provide a detailed discussion of impacts. The assessment considers direct⁵, indirect⁶, secondary⁷ as well as cumulative⁸ impacts.

A standard risk assessment methodology is used for the ranking of the identified environmental impacts pre-and post-mitigation (i.e. residual impact). The significance of environmental aspects is determined and ranked by considering the criteria⁹ presented in Table 8.

CRITERIA	SCORE 1	SCORE 2	SCORE 3	SCORE 4	SCORE 5
Impact Magnitude (M) The degree of alteration of the affected environmental receptor	Very low: No impact on processes	Low: Slight impact on processes	Medium: Processes continue but in a modified way	High: Processes temporarily cease	Very High: Permanent cessation of processes

Table 6: Impact Assessment Criteria and Scoring System

⁵ Impacts that arise directly from activities that form an integral part of the Project.

⁶ Impacts that arise indirectly from activities not explicitly forming part of the Project.

⁷ Secondary or induced impacts caused by a change in the Project environment.

⁸ Impacts are those impacts arising from the combination of multiple impacts from existing projects, the Project and/or future projects.

⁹ The definitions given are for guidance only, and not all the definitions will apply to all the environmental receptors and resources being assessed. Impact significance was assessed with and without mitigation measures in place.

Impact Extent (E) The geographical extent of the impact on a given environmental receptor	Site: Site only	Local: Inside activity area	Regional: Outside activity area	National: National scope or level	International: Across borders or boundaries
Impact Reversibility (R) The ability of the environmental receptor to rehabilitate or restore after the activity has caused environmental change	Reversible: Recovery without rehabilitation		Recoverable: Recovery with rehabilitation		Irreversible: Not possible despite action
Impact Duration (D) The length of permanence of the impact on the environmental receptor	Immediate: On impact	Short term: 0-5 years	Medium term: 5- 15 years	Long term: Project life	Permanent: Indefinite
Probability of Occurrence (P) The likelihood of an impact occurring in the absence of pertinent environmental management measures or mitigation	Improbable	Low Probability	Probable	Highly Probability	Definite
Significance (S) is determined by combining the above criteria in the following formula:	-	+ R + M) × P] = (Extent + D × Probabili	Ouration + Rei ity	versibility + M	lagnitude)
	IMPACT SIC	GNIFICANCE	RATING		
Total Score	4 to 15	16 to 30	31 to 60	61 to 80	81 to 100
Environmental Significance Rating (Negative (-))	Very low	Low	Moderate	High	Very High
Environmental Significance Rating (Positive (+))	Very low	Low	Moderate	High	Very High

8.2 Impact Assessments

8.2.1 Impact assessment tables

The impacts are summarised in table form are in Appendix 4.

8.3 Cumulative impacts

"Cumulative Impact", in relation to an activity, means the past, current and reasonably foreseeable future impact of an activity, considered together with the impact of activities associated with that activity, that in itself may not be significant, but may become significant when added to existing and reasonably foreseeable impacts eventuating from similar or diverse activities.

The role of the cumulative assessment is to test if such impacts are relevant to the proposed project in the proposed location (i.e. whether the addition of the proposed project in the area will increase the impact). This section addresses whether the construction of the proposed development will result in:

- Unacceptable risk
- Unacceptable loss
- Complete or whole-scale changes to the environment
- Unacceptable increase in impact

8.3.1 Solar Energy Facility

According to the official database of DFFE and other documents in the public domain, there are currently two additional planned renewable energy facilities within a 30km radius around the proposed development, namely the Camden I and II Wind Energy Facilities (see Figure 11).

The total area of similar habitat (excluding opencast mining and urban areas) available to birds in the 30km radius around the project area (including the project area) is approximately 4 258 km². The land parcels affected by the planned renewable energy facilities, including the Camden I SEF, in this radius takes up a total of ~124km², which is 2.9% of the available habitat. The impact on avifauna of the currently planned renewable energy projects within this area, including the Camden I SEF, is therefore considered to be **Low**, and the impact could be reduced if the recommended mitigation at the two Camden wind projects and the Camden I SEF is diligently implemented.

Figure 8: Proposed renewable energy projects and existing HV lines within 30km of the proposed Camden I SEF (Source: DFFE database 2022 & WSP Environmental).

8.3.2 Up to 132kV OHL

According to the official database of DFFE and other documents in the public domain, there are currently two additional planned renewable energy facility within a 30km radius around the proposed development, namely the Camden I and II Wind Energy Facilities (see Figure 11) which will have grid connections with a maximum combined length of 17.5km. In addition, there will be a 400kV connection to the Camden Power Station Substation of maximum 8.9km.

The maximum combined length of the grid connections for the Camden I and II renewable energy projects listed above, the 400kV OHL to Camden Power Station Substation, and the Camden I SEF (maximum 13.7km) is approximately 40.1km. The existing high voltage lines in the 30km radius around the proposed Camden I SEF run into hundreds of kilometres (see Figure 11). The Camden I

SEF OHL contribution (maximum 13.7km) to the total length of high voltage lines within a 30km radius is **Low.** However, the density of all planned and existing high voltage lines within a 30km radius, and by implication the cumulative impact on avifauna, is considered to be **Moderate**.

8.3.3 Battery Energy Storage System

The BESS will transform an area of approximately 5 ha. Given the available habitat of 4 258km² within a 30km radius around the project site, the cumulative impact of displacement and habitat transformation caused by the BESS is **Low** due to the small footprint.

9 MITIGATION MEASURES

The impact significance without mitigation measures is assessed with the design controls in place. Impacts without mitigation measures in place are not representative of the proposed development's actual extent of impact and are included to facilitate understanding of how and why mitigation measures were identified. The residual impact is what remains following the application of mitigation and management measures and is thus the final level of impact associated with the proposed Project. Residual impacts also serve as the focus of management and monitoring activities during Project implementation to verify that actual impacts are the same as those predicted in this report.

The mitigation measures chosen are based on the mitigation sequence/hierarchy which allows for consideration of five (5) different levels, which include avoid/prevent, minimise, rehabilitate/restore, offset and no-go in that order. The idea is that when project impacts are considered, the first option should be to avoid or prevent the impacts from occurring in the first place if possible, however, this is not always feasible. If this is not attainable, the impacts can be allowed, however they must be minimised as far as possible by considering reducing the footprint of the development for example so that little damage is encountered. If impacts are unavoidable, the next goal is to rehabilitate or restore the areas impacted back to their original form after project completion. Offsets are then considered if all the other measures described above fail to remedy high/significant residual negative impacts. If no offsets can be achieved on a potential impact, which results in full destruction of any ecosystem for example, the no-go option is considered so that another activity or location is considered in place of the original plan.

The mitigation sequence/hierarchy is shown in Figure 13.

Avoid or preve	ent Refers to considering options in project location, nature, scale, layout, technology and phasing to avoid impacts on biodiversity, associated ecosystem services, and people. Where environmental and social factors give rise to unacceptable negative impacts the projects should not take place, as such impacts are rarely offsetable. Although this is the best option, it will not always be feasible, and then the next steps become critical.
Minimise	Refers to considering alternatives in the project location, scale, layout, technology and phasing that would minimise impacts on biodiversity and ecosystem services. Every effort should be made to minimise impacts where there are environmental and social constraints.
Rehabilitate Restore	Refers to the restoration or rehabilitation of areas where impacts were unavoidable and measures are taken to return impacted areas to an agreed land use after the project. Restoration, or even rehabilitation, might not be achievable, or the risk of achieving it might be very high, and it might fall short of replicating the diversity and complexity of the natural system, and residual negative impacts on biodiversity and ecosystem services will invariably still need to be offset.
Offset on biodin then reh offsets	o measures over and above restoration to remedy the residual (remaining and unavoidable) negative impacts versity and ecosystem services. When every effort has been made to avoid or prevent impacts, minimise and abilitate remaining impacts to a degree of no net loss of biodiversity against biodiversity targets, biodiversity can – in cases where residual impacts would not cause irreplaceable loss - provide a mechanism to remedy nt residual negative impacts on biodiversity.
because the de	law' in the proposed project, or specifically a proposed project in an area that cannot be offset, velopment will impact on strategically important Ecosystem Services, or jeopardise the ability to y targets. This is a fatal flaw and should result in the project being rejected.

Figure 9: Mitigation Sequence/Hierarchy

9.1 Solar Energy Facility

The mitigation measures that are proposed for the solar energy facility are listed below.

9.1.1 Design Phase

- The medium voltage cable should be buried as far as possible. Overhead lines should only be considered if technical constraints to trenching are present.
- A bird-friendly pole design must be employed for all medium voltage overhead lines. The avifaunal specialist must approve the final design prior to construction commencing.
- Bird flight diverters should be installed on all overhead medium voltage power lines according to the applicable Eskom Engineering Instruction (Eskom Unique Identifier 240 93563150: The utilisation of Bird Flight Diverters on Eskom Overhead Lines).
- A 100m all infrastructure exclusion zone must be implemented around drainage lines, associated wetlands, and pans (except essential road and gridline crossings). Wetlands are important breeding, roosting and foraging habitat for a variety of SCC, most notably for African Grass Owl (SA status Vulnerable), Grey Crowned Crane (SA status Endangered) and African

Marsh Harrier (SA status Endangered). Where unavoidable, road and grid line crossings across these features should be restricted to the immediate footprint of the infrastructure only.

- Development in the remaining **high sensitivity grassland must be limited as far as possible** (limited infrastructure zone). Where possible, infrastructure must be located near margins, with shortest routes taken from the existing roads. The grassland is vital breeding, roosting and foraging habitat for a variety of SCC. These include Blue Crane (SA status near-threatened), Blue Korhaan (Global status near -threatened), White-bellied Bustard (SA Status Vulnerable), Denham's Bustard (SA Status Vulnerable).
- It is recommended that a single perimeter fence is used to reduce the risk of entrapment of large-bodied birds.

9.1.2 Construction phase

- Conduct an inspection to identify SCC that may be breeding within the project footprint to ensure that the impacts on breeding species (if any) are adequately managed.
- Construction activity should be restricted to the immediate footprint of the infrastructure as far as possible.
- Access to the remainder of the site should be strictly controlled to prevent unnecessary disturbance of priority species. Maximum use should be made of existing access roads and the construction of new roads should be kept to a minimum
- Measures to control noise and dust should be applied according to current best practice in the industry.

9.1.3 Operational phase

• The mitigation measures proposed by the vegetation specialist must be strictly enforced, including rehabilitation of disturbed areas.

9.1.4 De-commissioning phase

- Decommissioning activity should be restricted to the immediate footprint of the infrastructure as far as possible.
- Access to the remainder of the site should be strictly controlled to prevent unnecessary disturbance of priority species.
- Measures to control noise and dust should be applied according to current best practice in the industry.
- Maximum used should be made of existing access roads and the construction of new roads should be kept to a minimum.
- The mitigation measures proposed by the vegetation specialist must be strictly enforced, including rehabilitation of disturbed areas.

Figure 13 indicates the avifauna sensitivity zones identified in the course of the study, relevant to the solar energy facility.

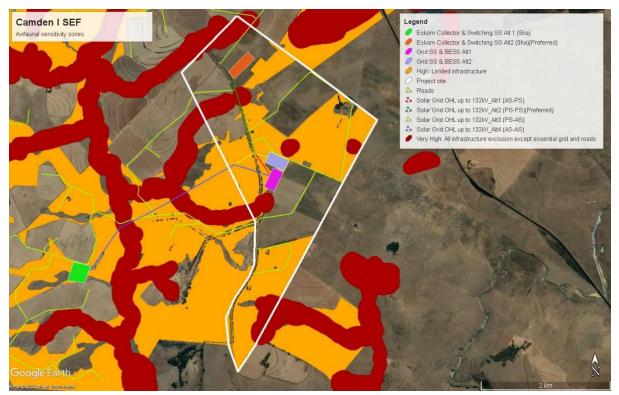


Figure 10: Avifaunal sensitivity zones

9.2 Battery Energy Storage Facility (BESS)

The mitigation measures that are proposed for the BESS are listed below.

9.2.1 Design Phase

None.

9.2.2 Construction phase

- Conduct an inspection to identify SCC that may be breeding within the project footprint to ensure that the impacts on breeding species (if any) are adequately managed.
- Construction activity should be restricted to the immediate footprint of the infrastructure as far as possible.
- Access to the remainder of the site should be strictly controlled to prevent unnecessary disturbance of priority species. Maximum use should be made of existing access roads and the construction of new roads should be kept to a minimum
- Measures to control noise and dust should be applied according to current best practice in the industry.

9.2.3 Operational phase

• None.

9.2.4 De-commissioning phase

- Decommissioning activity should be restricted to the immediate footprint of the infrastructure as far as possible.
- Access to the remainder of the site should be strictly controlled to prevent unnecessary disturbance of priority species.
- Measures to control noise and dust should be applied according to current best practice in the industry.
- Maximum use should be made of existing access roads and the construction of new roads should be kept to a minimum.
- The mitigation measures proposed by the vegetation/biodiversity specialist must be strictly enforced, including rehabilitation of disturbed areas.

9.3 Up to 132kV OHL

The mitigation measures that are proposed for the up to 132kV OHL are listed below.

9.3.1 Planning & Design phase

- If a steel monopole pole design is used, the approved vulture friendly pole/tower design D-DT-7649 in accordance with the Eskom Distribution Technical Bulletin titled *Refurbishment of* 66/88kV line kite type frames with D-DT-7649 type top configuration - Reference Number 240-170000467 relating to bird friendly structures, must be used.
- If lattice type structures are used, it is imperative that a minimum vertical clearance of 1.8m is maintained between the jumper cables and/or insulator live ends, and the horizontal earthed components. Additional mitigation in the form of insulating sleeves on jumper cables present on strain poles and terminal poles is also recommended (if suitable insulation material is readily available).

9.3.2 Construction phase

- Conduct an inspection (avifaunal walk-through) to identify SCC that may be breeding within the
 infrastructure footprints. If a nest is occupied, the avifaunal specialist must consult with the
 contractor to find ways of minimising the potential disturbance to the breeding birds during the
 construction period. This could include measures such as delaying some of the activities until
 after the breeding season, or other measures deemed suitable and practical at the time.
- Bird Flight Diverters must be fitted to the entire OHL according to the applicable Eskom Engineering Instruction (*Eskom Unique Identifier 240 – 93563150: The utilisation of Bird Flight Diverters on Eskom Overhead Lines*). These devices must be installed as soon as the conductors and earthwires are strung.
- Construction activity should be restricted to the immediate footprint of the infrastructure.
- Access to the remainder of the site should be strictly controlled to prevent unnecessary disturbance of priority species.
- Measures to control noise and dust should be applied according to current best practice in the industry.
- Maximum use should be made of existing access roads and the construction of new roads should be kept to a minimum.

- Vegetation clearance should be limited to what is absolutely necessary.
- The mitigation measures proposed by the vegetation specialist must be strictly enforced.

9.3.3 Operational phase

• No management actions are required for the operational phase

9.3.4 De-commissioning phase

- Conduct an avifaunal inspection of the OHL prior to its decommissioning to identify nests on the poles/towers.
- Decommissioning activity should be restricted to the immediate footprint of the infrastructure as far as possible.
- Access to the remainder of the site should be strictly controlled to prevent unnecessary disturbance of priority species.
- Measures to control noise and dust should be applied according to current best practice in the industry.
- Maximum use should be made of existing access roads and the construction of new roads should be kept to a minimum.

10 PREFERRED ALTERNATIVE

10.1 Solar energy facility

Only one proposed solar lay-out was provided for assessment. This layout has been refined to consider the specialist sensitivities as far as possible and adheres to the no-go zones requested in this report.

10.2 Battery Energy Storage System

Alternative 1 and Alternative 2 two are both located in the same habitat type, namely partially in low and in high sensitivity grassland. Both alternatives will therefore have the same potential displacement impact on priority avifauna, therefore no preferred alternative can be selected. However, both options are acceptable, due to the low impact of the small footprint.

10.3 Up to 132kV OHL

Alternatives 1 and 2 are the preferred alternatives due to them being the shortest alternatives. Alternatives 3 and 4 are the least preferred alternatives due to them being the longest and running mostly through high sensitivity grassland, and they cross two drainage lines. However, all the alternatives can be mitigated to acceptable levels and therefore are considered suitable from an avifaunal perspective.

11 CONDITIONS FOR INCLUSION IN THE EMPr

Please see Appendix 6 for the monitoring requirements to be included in the EMPr for the SEF project.

12 'NO-GO' ALTERNATIVE

The 'no-go' alternative is the option of not constructing the Camden 1 SEF, BESS and up to 132kV OHL, where the *status quo* of the current status and/or activities on the project areas would prevail. This alternative would result in no additional impact on the receiving environment.

Should the 'no-go' alternative be considered, there would be no impact on the existing environmental baseline and no benefits to the local economy and affected communities. The alternative also bears the opportunity cost of missed socio-economic benefits to the local community that would otherwise realise from establishing the farms which form part of the project areas. The option of not developing also entails that the bid to provide renewable/clean energy to the national grid and contribute to meeting the country's energy demands will be forfeited.

However, from a strictly avifaunal perspective, the 'no-go' alternative will result in the current *status quo* being maintained. The 'no-go' option would eliminate any additional impact on the ecological integrity of the proposed SEF development site, as far as avifauna is concerned, bearing in mind that there have already been extensive impacts in the project area in the form of agriculture.

13 SUMMARY AND CONCLUSION

13.1 Solar Energy Facility

The proposed Camden 1 SEF will have several potential impacts on priority avifauna. These impacts are the following:

- Displacement due to disturbance associated with the construction of the solar PV plant and associated infrastructure
- Displacement due to habitat transformation associated with the construction of the solar PV plant and associated infrastructure
- Collisions with the solar panels
- Entrapment in perimeter fences

13.1.1 Displacement of priority species due to disturbance linked to construction activities in the construction phase

As far as disturbance is concerned, it is likely that all the avifauna, including all the priority species, will be temporarily displaced in the footprint area, either completely or more likely partially (reduced densities) during the construction phase, due to the disturbance associated with the construction activities e.g. increased vehicle traffic, and short-term construction-related noise (from equipment) and visual disturbance. At the PV facility, the priority species which would be most severely affected by disturbance would be ground dwelling species which are the following: White-bellied Bustard, Cloud Cisticola, Blue Crane, Western Cattle Egret, Grey-winged Francolin, Cape Grassbird, Blue Korhaan, African Grass Owl, Marsh Owl, Drakensberg Prinia, and Pied Starling. Secretarybirds breeding or roosting at or near to the project site might also be affected. The impact is rated as **moderate** pre-mitigation and will be reduced but remain at a **moderate** level post-mitigation.

13.1.2 Displacement of priority species due to habitat transformation in the construction phase

Ground-disturbing activities affect a variety of processes, including soil density, water infiltration rate, vulnerability to erosion, secondary plant succession, invasion by exotic plant species, and stability of cryptobiotic soil crusts. These processes have the ability - individually and together - to alter habitat quality, often to the detriment of wildlife, including avifauna. Any disturbance and alteration to the landscape, including the construction and decommissioning of utility-scale solar energy facilities, has the potential to increase soil erosion. Erosion can physically and physiologically affect plant species and can thus adversely influence primary production and food availability for wildlife (Lovich & Ennen 2011). Solar energy facilities require substantial site preparation (including the removal of vegetation) that alters topography and, thus, drainage patterns to divert the surface flow associated with rainfall away from facility infrastructure. Channelling runoff away from plant communities can have dramatic negative effects on water availability and habitat quality. Areas deprived of runoff from sheet flow support less biomass of perennial and annual plants relative to adjacent areas with uninterrupted water-flow patterns. As far as displacement, either completely or partially (reduced densities) due to habitat loss is concerned, it is highly likely that the same pattern of reduced avifaunal densities will manifest itself at the proposed PV facility. In addition, ground dwelling species and some raptors are also likely to be impacted by the habitat transformation, as it will result in reduced prey availability and accessibility. Priority species that could be negatively affected by displacement due to habitat loss are the following: Common Buzzard, Jackal Buzzard, Cloud Cisticola, Blue Crane, Black-chested Snake Eagle, Long-crested Eagle, Western Cattle Egret, Amur Falcon, Lanner Falcon, Grey-winged Francolin, Cape Grassbird, Black-headed Heron, Southern Bald Ibis, Rock Kestrel, Black-winged Kite, Blue Korhaan, African Grass Owl, Marsh Owl, Pied Starling, White Stork, and South African Cliff Swallow. The impact is rated as moderate pre-mitigation and will be reduced but remain at a moderate level post-mitigation.

13.1.3 Collision mortality of priority species caused by the solar panels in the operational phase

The proposed Camden 1 Wind Energy Facility could potentially pose a collision risk to several priority species which could occur regularly at the site. However, the results of the available literature lack compelling evidence of collisions as a cause of large-scale mortality among birds at PV facilities. The lack of systematic and standardised data collection is a major problem in the assessment of the causes and extent of avian mortality at all types of solar facilities, regardless of the technology employed. Until statistically tested results emerge from existing compliance programmes and more dedicated scientific research, conclusions will inevitably be largely preliminary and based on professional opinion. Based on the lack of evidence to the contrary, it is not foreseen that collisions with the solar panels at the PV facility will be a significant impact. The priority species which would most likely be potentially affected by this impact are mostly small to medium-sized, ground-dwelling birds which forage between the solar panels, and possibly raptors which prey on them, or forage for insects between the PV panels, e.g. Amur Falcons (i.e. if they are not completely displaced due to the habitat transformation). Due to the absence of large permanent waterbodies at or close to the development area, it is unlikely that waterbirds will be attracted in large numbers to the solar arrays due to the "lake effect". Priority species which occur regularly and could potentially be impacted due to collisions with the solar panels are the following: Western Cattle Egret, Amur Falcon, Lanner Falcon, Fiscal Flycatcher, Grey-winged Francolin, Egyptian Goose, Spur-winged Goose, Cape Grassbird, Black-headed Heron, Southern Bald Ibis, African Sacred Ibis, Blue Korhaan, Blacksmith Lapwing, African Grass Owl, Marsh Owl, Three-banded Plover, Drakensberg Prinia, South African Shelduck, African Snipe, Black Sparrowhawk, Pied Starling, South African Cliff Swallow and Cape Weaver. The impact is rated as **low**. No mitigation measures are recommended.

13.1.4 Electrocution of priority species on the medium voltage overhead lines (if any) in the operational phase

While the intention is to place the medium voltage reticulation network underground where possible, there are areas where the lines might have to run above ground, for technical reasons. In these instances, the electrical infrastructure could potentially pose an electrocution risk to several power line sensitive species that could on occasion perch on these poles. In summary, the following priority species are potentially vulnerable to electrocution in this manner: African Fish Eagle, African Grass Owl, Amur Falcon, Black Sparrowhawk, Black-chested Snake Eagle, Black-headed Heron, Blackwinged Kite, Brown Snake Eagle, Cape Crow, Cape Vulture, Common Buzzard, Hadada Ibis, Helmeted Guineafowl, Jackal Buzzard, Lanner Falcon, Long-crested Eagle, Marsh Owl, Martial Eagle, Peregrine Falcon, Pied Crow, Southern Bald Ibis, Spotted Eagle-Owl, Western Barn Owl, Western Osprey and Yellow-billed Kite. The impact is rated as **moderate** pre-mitigation but should be reduced to a **low** level post-mitigation.

13.1.5 Collisions of priority species with the medium voltage overhead lines (if any) in the operational phase

While the intention is to place the medium voltage reticulation network underground where possible, there are areas where the lines might have to run above ground, for technical reasons. These spans could pose a collision risk to virtually all powerline sensitive avifauna, depending on where those spans are located. Species potentially at risk are African Black Duck, African Darter, African Grass Owl, African Sacred Ibis, African Spoonbill, Black Heron, Black-bellied Bustard, Black-crowned Night Heron, Black-headed Heron, Black-necked Grebe, Blue Crane, Blue Korhaan, Blue-billed Teal, Cape Shoveler, Cape Teal, Cape Vulture, Denham's Bustard, Egyptian Goose, Fulvous Whistling Duck, Glossy Ibis, Goliath Heron, Great Egret, Greater Flamingo, Grey Crowned Crane, Grey Heron, Hadada Ibis, Hamerkop, Intermediate Egret, Lesser Flamingo, Little Egret, Little Grebe, Mallard, Marsh Owl, Northern Black Korhaan, Purple Heron, Red-billed Teal, Red-knobbed Coot, Reed Cormorant, Secretarybird, South African Shelduck, Southern Bald Ibis, Southern Pochard, Spotted Eagle-Owl, Spur-winged Goose, Squacco Heron, Wattled Crane, Western Barn Owl, Western Cattle Egret, White Stork, White-backed Duck, White-bellied Bustard, White-breasted Cormorant, White-faced Whistling Duck, Yellow-billed Duck. The impact is rated as **moderate** pre-mitigation but should be reduced to a **low** level post-mitigation.

13.1.6 Displacement of priority species due to disturbance linked to dismantling activities in the decommissioning phase

The impact is likely to be similar in nature and extent to the construction phase of the proposed SEF. The impact is rated as **medium** pre-mitigation and it will decrease to **low** post-mitigation.

13.2 Battery Energy Storage Facility (BESS)

The impact that is associated with the construction of the BESS is the potential displacement of priority avifauna due to disturbance associated with the construction and dismantling of the facility and habitat transformation in the footprint of the facility.

13.2.1 Displacement due to disturbance associated with the construction of the facility

Construction activities in close proximity to breeding locations could be a source of disturbance and could lead to temporary breeding failure or even permanent abandonment of nests. A potential mitigation measure is the timeous identification of nests and the timing of the construction activities to avoid disturbance during a critical phase of the breeding cycle, although in practice that can admittedly be challenging to implement. The priority species which are potentially most vulnerable to the impact of displacement due to disturbance linked to the BESS are terrestrial species and owls. Priority species that could be most affected are the following: African Grass Owl, Black-bellied Bustard, Black-winged Lapwing, Blue Crane, Blue Korhaan, Buff-streaked Chat, Denham's Bustard, Grey Crowned Crane, Grey-winged Francolin, Marsh Owl, Northern Black Korhaan, Secretarybird and White-bellied Bustard. The impact is rated as **low** pre-mitigation and it will decrease to **very low** postmitigation.

13.2.2 Displacement due to habitat transformation associated with the construction of the facility

These construction activities will impact on birds breeding, foraging and roosting in or in close proximity of the proposed facility through **transformation of habitat**, which could result in temporary or permanent displacement. Unfortunately, very little mitigation can be applied to reduce the significance of this impact as the total permanent transformation of the natural habitat within the construction footprint of the facility is unavoidable. The loss of habitat for priority species due to direct habitat transformation associated with the construction of the 5 ha proposed facility is likely to be relatively insignificant due to the relatively small size of the footprint (only 0.07% of the total project area, and 2.5% of the buildable area). The impact is rated as **low** pre- and post-mitigation.

13.2.3 Displacement of priority species due to disturbance linked to dismantling activities in the decommissioning phase

The impact is likely to be similar in nature and extent to the construction phase of the proposed BESS. The impact is rated as **low** pre-mitigation and it will decrease to **very low** post-mitigation.

13.3 The up to 132kV OHL

The following potential impacts on powerline sensitive avifauna are associated with the construction and operation of the up to 132kV grid connection related to the Solar Energy Facility:

- Displacement due to disturbance associated with the construction of the proposed OHL and on-site substation.
- Displacement due to habitat transformation associated with the construction of the proposed OHL and on-site substation.
- Mortality due to electrocution on the proposed OHL infrastructure
- Mortality due to electrocution on the electrical infrastructure within the proposed on-site substation.
- Mortality due to collisions with the proposed OHL.
- Displacement due to disturbance associated with the dismantling of the proposed OHL and onsite substation.

13.3.1 Displacement due to disturbance associated with the construction of the proposed OHL and on-site substation.

Construction activities could impact on birds through disturbance; this could lead to breeding failure if the disturbance happens during a critical part of the breeding cycle. Construction activities in close proximity to breeding locations could be a source of disturbance and could lead to temporary breeding failure or even permanent abandonment of nests. A potential mitigation measure is the timeous identification of nests and the timing of the construction activities to avoid disturbance during a critical phase of the breeding cycle, although this is often impractical to implement due to tight construction schedules. Powerline sensitive species which are potentially most vulnerable to displacement due to disturbance are mostly ground dwelling species: African Grass Owl, Black-bellied Bustard, Blue Crane, Blue Korhaan, Denham's Bustard, Grey Crowned Crane, Helmeted Guineafowl, Marsh Owl, Northern Black Korhaan, Secretarybird, Spotted Eagle-Owl and White-bellied Bustard. The impact is rated as **moderate** pre-mitigation and it will decrease to **low** post-mitigation.

13.3.2 Displacement due to habitat transformation associated with the construction of the proposed OHL and on-site substation.

During the construction of powerlines, service roads (jeep tracks), substations and other associated infrastructure, habitat destruction/transformation inevitably takes place. These activities could impact on birds breeding, foraging and roosting in or in close proximity of the proposed OHL grid connection through the transformation of habitat. Relevant to this development, very little mitigation can be applied to reduce the significance of this impact as the total permanent transformation of the natural habitat within the construction footprint of the on-site substation is unavoidable. In the case of the OHL, the direct habitat transformation is limited to the on-site substation and pole/tower footprints and the narrow access road/track under the proposed OHL. The loss of habitat in the substation footprint (2 ha) will be a relatively insignificant percentage of the habitat that regularly supports powerline sensitive species, and the resultant impact is likely to be fairly minimal. Powerline sensitive species which are potentially most vulnerable to displacement due to habitat transformation are mostly ground dwelling species: African Grass Owl, Black-bellied Bustard, Blue Crane, Blue Korhaan, Denham's Bustard, Grey Crowned Crane, Helmeted Guineafowl, Marsh Owl, Northern Black Korhaan, Secretarybird, Spotted Eagle-Owl and, White-bellied Bustard. The impact is rated as **moderate** premitigation and it will decrease to **low** post-mitigation.

13.3.3 Mortality of powerline sensitive avifauna due to electrocutions on the OHL

Electrocution refers to the scenario where a bird is perched or attempts to perch on the electrical structure and causes an electrical short circuit by physically bridging the air gap between live components and/or live and earthed components (Van Rooyen 2004). The electrocution risk is largely determined by the voltage size of the proposed powerline and the pole/tower design. Should the proposed OHL be constructed using a 132kV tower specification, the electrocution impact for the majority of priority species will be negligible. The only priority species capable of bridging the clearance distances of an OHL constructed using this specification is the Cape Vulture, due to their size and gregarious nature. The impact is rated as **moderate** pre-mitigation and it will decrease to **low** post-mitigation.

13.3.4 Mortality of powerline sensitive avifauna due to electrocutions in the onsite substation

Electrocutions within the proposed on-site substation are possible, however the likelihood of this impact on the more sensitive SCC is remote, as these species are unlikely to regularly utilise the infrastructure within the onsite substation station for perching or roosting. Powerline sensitive species that are more vulnerable to electrocutions are medium-sized raptors, corvids, owls and certain species of waterbirds.. As far as the substation is concerned, the following species are potentially at risk of electrocution: African Fish Eagle, African Grass Owl, Amur Falcon, Black Sparrowhawk, Black-chested Snake Eagle, Black-headed Heron, Black-winged Kite, Brown Snake Eagle, Cape Crow, Cape Vulture, Common Buzzard, Hadada Ibis, Helmeted Guineafowl, Jackal Buzzard, Lanner Falcon, Long-crested Eagle, Marsh Owl, Martial Eagle, Peregrine Falcon, Pied Crow, Southern Bald Ibis, Spotted Eagle-Owl, Western Barn Owl, Western Osprey and Yellow-billed Kite. The impact is rated as **low** pre- and post-mitigation.

13.3.5 Mortality of powerline sensitive avifauna due to collisions with the OHL

The up to 132kV OHL could pose a collision risk to virtually all powerline sensitive avifauna, depending on where the spans are located. Several factors are thought to influence avian collisions, including the manoeuvrability of the bird, topography, weather conditions, powerline configuration and visual capacity. Species potentially at risk are African Black Duck, African Darter, African Grass Owl, African Sacred Ibis, African Spoonbill, Black Heron, Black-bellied Bustard, Black-crowned Night Heron, Black-headed Heron, Black-necked Grebe, Blue Crane, Blue Korhaan, Blue-billed Teal, Cape Shoveler, Cape Teal, Cape Vulture, Denham's Bustard, Egyptian Goose, Fulvous Whistling Duck, Glossy Ibis, Goliath Heron, Great Egret, Greater Flamingo, Grey Crowned Crane, Grey Heron, Hadada Ibis, Hamerkop, Intermediate Egret, Lesser Flamingo, Little Egret, Little Grebe, Mallard, Marsh Owl, Northern Black Korhaan, Purple Heron, Red-billed Teal, Red-knobbed Coot, Reed Cormorant, Secretarybird, South African Shelduck, Southern Bald Ibis, Southern Pochard, Spotted Eagle-Owl, Spur-winged Goose, Squacco Heron, Wattled Crane, Western Barn Owl, Western Cattle Egret, White Stork, White-backed Duck, White-bellied Bustard, White-breasted Cormorant, White-faced Whistling Duck, Yellow-billed Duck. The impact is rated as **moderate** pre-mitigation and it will decrease to **low** post-mitigation.

13.3.6 Displacement of priority species due to disturbance linked to dismantling activities in the decommissioning phase

The impact is likely to be similar in nature and extent to the construction phase of the proposed OHL and onsite substation. The impact is rated as **medium** pre-mitigation and it will decrease to **low** post-mitigation.

13.4 Cumulative impacts

13.4.1 Solar Energy Facility

The total area of similar habitat (excluding opencast mining and urban areas) available to birds in the 30km radius around the project area (including the project area) is approximately 4 258 km². The land parcels affected by the planned renewable energy facilities, including the Camden I SEF, in this radius takes up a total of ~124km², which is 2.9% of the available habitat. The impact on avifauna of the currently planned renewable energy projects within this area, including the Camden I SEF, is

therefore considered to be **Low**, and the impact could be reduced if the recommended mitigation at the two Camden wind projects and the Camden I SEF is diligently implemented.

13.4.2 Up to 132kV OHL

The maximum combined length of the grid connections for the Camden I and II renewable energy projects listed above, the 400kV OHL to Camden Power Station Substation, and the Camden I SEF (maximum 13.7km) is approximately 40.1km. The existing high voltage lines in the 30km radius around the proposed Camden I SEF run into hundreds of kilometres (see Figure 11). The Camden I SEF OHL contribution (maximum 13.7km) to the total length of high voltage lines within a 30km radius is **Low.** However, the density of all planned and existing high voltage lines within a 30km radius, and by implication the cumulative impact on avifauna, is considered to be **Moderate**.

13.4.3 Battery Energy Storage Facility

The BESS will transform an area of approximately 5 ha. Given the available habitat of 4 258km² within a 30km radius around the project site, the cumulative impact of displacement and habitat transformation caused by the BESS is **Low** due to the small footprint.

14 CONCLUSION AND IMPACT STATEMENT

14.1 Solar Energy Facility

The proposed solar energy facility will have a moderate impact on priority avifauna which, in most instances, could be reduced to a low impact through appropriate mitigation, although some instances moderate residual impacts will still be present after mitigation. No fatal flaws were discovered during the onsite investigations. The proposed SEF development is therefore supported, provided the mitigation measures listed in this report are strictly implemented.

14.2 Battery Energy Storage Facility (BESS)

The proposed BESS will have a low impact on priority avifauna which, could be reduced to a very low level in most instances through appropriate mitigation, although some instances low residual impacts will still be present after mitigation. No fatal flaws were discovered during the onsite investigations. The proposed BESS development is therefore supported, provided the mitigation measures listed in this report are strictly implemented.

14.3 The up to 132kV OHL

The proposed up to 132kV OHL will have a mostly moderate impact on priority avifauna which, in all instances, could be reduced to a low impact through appropriate mitigation. No fatal flaws were discovered during the onsite investigations. The proposed development is therefore supported, provided the mitigation measures listed in this report are strictly implemented.

15 REFERENCES

- Alonso, J. A. and Alonso, J. C. 1999 Collision of birds with overhead transmission lines in Spain. Pp. 57–82 in Ferrer, M. and Janss, G. F. E., eds. Birds and power lines: Collision, electrocution and breeding. Madrid, Spain: Quercus.Google Scholar
- Amar, A., Buij, R., Suri, J., Sumasgutner, P., & Virani, M. Z. (2018). Conservation and ecology of African raptors. In Birds of Prey (pp. 419–455). Springer.
- University of Cape Town. 2022. The southern African Bird Atlas Project 2. University of Cape Town. http://sabap2.adu.org.za.
- Avian Power Line Interaction Committee (APLIC). 2012. Mitigating Bird Collisions with Power Lines: The State of the Art in 2012. Edison Electric Institute. Washington D.C.
- Barrientos R, Ponce C, Palacin C, Martín Ca, Martín B, et al. 2012. Wire marking results in a small but significant reduction in avian mortality at power lines: A BACI Designed Study. PLoS ONE 7(3): e32569. doi:10.1371/journal.pone.0032569.
- Barrientos, R., Alonso, J.C., Ponce, C., Palacín, C. 2011. Meta-Analysis of the effectiveness of marked wire in reducing avian collisions with power lines. Conservation Biology 25: 893-903.
- Barrientos, R., Ponce, C., Palacín, C., Martín, C. A., Martín, B., & Alonso, J. C. 2012. Wire marking results in a small but significant reduction in avian mortality at power lines: A baci designed study. PLoS ONE, 7(3). https://doi.org/10.1371/journal.pone.0032569
- Beaulaurier, D.L. 1981. Mitigation of bird collisions with transmission lines. Bonneville Power Administration. U.S. Dept. of Energy.
- Bernardino, J., Bevanger, K., Barrientos, R., Dwyer, J.F. Marques, A.T., Martins, R.C., Shaw, J.M., Silva, J.P., Moreira, F. 2018. Bird collisions with power lines: State of the art and priority areas for research. https://doi.org/10.1016/j.biocon.2018.02.029. Biological Conservation 222 (2018) 1 – 13.
- Bevanger, K. (1994). Bird interactions with utility structures: collision and electrocution, causes and mitigating measures. Ibis, 136(4), 412–425.
- Bidwell, M. T. (2004). Breeding habitat selection and reproductive success of Blue Cranes Anthropoides paradiseus in an agricultural landscape of the Western Cape, South Africa. In MSc (Conservation Biology) thesis, University of Cape Town.
- BirdLife International. (2022). IUCN Red List for birds. Downloaded from http://www.birdlife.org on 24/07/2021.
- Calvert, A.M., Bishop, C.A., Elliot, R.D., Krebs, E.A., Kydd, T.M., Machtans, C.S., Robertson, G.J., 2013. A synthesis of human-related avian mortality in Canada. Avian Conserv. Ecol. 8 (2), 11.
- Endangered Wildlife Trust. 2014. Central incident register for powerline incidents. Unpublished data.
- Frid, A., & Dill, L. (2002). Human-caused disturbance stimuli as a form of predation risk. Ecology and Society, 6(1). https://doi.org/10.5751/es-00404-060111
- Guichard, F. (2017). Recent advances in metacommunities and meta-ecosystem theories. F1000Research, 6(May), 1–8. https://doi.org/10.12688/f1000research.10758.1
- Haas, D., Nipkow, M., Fiedler, G., Handschuh, M., Schneider-Jacoby, M., & Schneider, R. (2006). Caution: Electrocution! NABU-German Society for Nature Conservation.

- Harrison, J. A., Allan, D. G., Underhill, L. G., Herremans, M., Tree, A. J., Parker, V., & Brown, C. J. (Eds.). (1997). The atlas of southern African birds. Vol. 2: Passerines. BirdLife South Africa, Johannesburg, SA.
- Hobbs, J.C.A. & Ledger J.A. 1986a. The Environmental Impact of Linear Developments; Power lines and Avifauna. Proceedings of the Third International Conference on Environmental Quality and Ecosystem Stability. Israel, June 1986.
- Hobbs, J.C.A. & Ledger J.A. 1986b. Power lines, Birdlife and the Golden Mean. Fauna and Flora, 44:23-27.
- Hockey P.A.R., Dean W.R.J., and Ryan P.G. 2005. Robert's Birds of Southern Africa, seventh edition. Trustees of the John Voelcker Bird Book Fund, Cape Town.
- Janss, G. F. E. (2000). Avian mortality from power lines: A morphologic approach of a species-specific mortality. Biological Conservation, 95(3), 353–359. https://doi.org/10.1016/S0006-3207(00)00021-5
- Jenkins, A. & Smallie, J. 2009. Terminal velocity: the end of the line for Ludwig's Bustard? Africa Birds and Birding. Vol 14, No 2.
- Jenkins, A., De Goede, J.H. & Van Rooyen, C.S. 2006. Improving the products of the Eskom Electric Eagle Project. Unpublished report to Eskom. Endangered Wildife Trust.
- Jenkins, A., De Goede, K. H., Sebele, L., & Diamond, M. (2013). Brokering a settlement between eagles and industry: Sustainable management of large raptors nesting on power infrastructure. Bird Conservation International, 23(2), 232–246. https://doi.org/10.1017/S0959270913000208
- Jenkins, A., Ralston-Paton, S., & Smit-Robinson, H. A. (2017). Guidelines for Assessing and Monitoring the Impact of Solar Power Generating Facilities on Birds in Southern Africa. BirdLife South Africa.
- Jenkins, A., Smallie, J. J., & Diamond, M. (2010). Avian collisions with power lines: A global review of causes and mitigation with a South African perspective. Bird Conservation International, 20(3), 263–278. https://doi.org/10.1017/S0959270910000122
- Koops, F.B.J. & De Jong, J. 1982. Vermindering van draadslachtoffers door markering van hoogspanningsleidingen in de omgeving van Heerenveen. Electrotechniek 60 (12): 641 – 646.
- Kruger, R. & Van Rooyen, C.S. 1998. Evaluating the risk that existing power lines pose to large raptors by using risk assessment methodology: The Molopo Case Study. Proceedings of the 5th World Conference on Birds of Prey and Owls. August 4-8,1998. Midrand, South Africa.
- Kruger, R. 1999. Towards solving raptor electrocutions on Eskom Distribution Structures in South Africa. Bloemfontein (South Africa): University of the Orange Free State. (M. Phil. Mini-thesis)
- Ledger, J. 1983. Guidelines for Dealing with Bird Problems of Transmission Lines and Towers. Eskom Test and Research Division. (Technical Note TRR/N83/005).
- Ledger, J.A. & Annegarn H.J. 1981. Electrocution Hazards to the Cape Vulture (*Gyps coprotheres*) in South Africa. Biological Conservation 20:15-24.
- Ledger, J.A. 1984. Engineering Solutions to the Problem of Vulture Electrocutions on Electricity Towers. The Certificated Engineer, 57:92-95.
- Ledger, J.A., J.C.A. Hobbs & Smith T.V. 1992. Avian Interactions with Utility Structures: Southern African Experiences. Proceedings of the International Workshop on Avian Interactions with Utility Structures. Miami (Florida), Sept. 13-15, 1992. Electric Power Research Institute.

- Loss, S. R., Will, T., & Marra, P. P. (2014). Refining estimates of bird collision and electrocution mortality at power lines in the United States. PLoS ONE, 9(7), 26–28. https://doi.org/10.1371/journal.pone.0101565
- Marnewick, M. D., Retief, E. F., Theron, N. T., Wright, D. R., & Anderson, T. A. (2015). Important bird and biodiversity areas of South Africa. Johannesburg: BirdLife South Africa. http://www.birdlife.org.za/conservation/importantbird-areas/documents-and-downloads
- Martin, G. (2011). Understanding bird collisions with man-made objects: A sensory ecology approach. Ibis, 153(2), 239–254. https://doi.org/10.1111/j.1474-919X.2011.01117.x
- Martin, G., & Katzir, G. (1999). Visual fields in short-toed eagles, Circaetus gallicus (Accipitridae), and the function of binocularity in birds. Brain, Behavior and Evolution, 53(2), 55–66.
- Martin, G., Portugal, S. J., & Murn, C. P. (2012). Visual fields, foraging and collision vulnerability in Gyps vultures. Ibis, 154(3), 626–631. https://doi.org/10.1111/j.1474-919X.2012.01227.x
- Martin, G., Shaw, J., Smallie J. & Diamond, M. 2010. Bird's eye view How birds see is key to avoiding power line collisions. Eskom Research Report. Report Nr: RES/RR/09/31613.
- Martin, G., Shaw, J., Smallie, J., & Diamond, M. (2010). Bird's eye view–How birds see is key to avoiding power line collisions. Eskom Research Report. Report Nr: RES/RR/09/31613.
- Mitkus, M., Potier, S., Martin, G. R., Duriez, O., & Kelber, A. (2018). Raptor vision. In Oxford research encyclopedia of neuroscience.
- Mucina, L., & Rutherford, M. C. (Eds.). (2006). The vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19, South African National Biodiversity Institute: Pretoria, South Africa.
- Osborn, R.G., Dieter, C.D., Higgins, K.F., Usgaard, R.E., 1998. Bird flight characteristics near wind turbines in Minnesota. Am. Midl. Nat. 139, 29–38.
- Rutherford, M. C., Muncina, L., Lotter, M. C., Bredenkamp, G. J., Smit, J. H. L., Scott-Shaw, C. R., Hoare, D. B., Goodman, P. S., Bezuidenhout, H., Scott, L., Ellis, F., Powrie, L. W., Siebert, F., Mostert, T. H., Henning, B. J., Venter, C. E., Camp, G. T. C., Siebert, S. J., Matthews, W. S., Hunter, P. J. H. (2006). Savanna Biome - 9. In L. Mucina & M. C. Rutherford (Eds.), The Vegetation of South Africa, Lesotho and Swaziland (pp. 438–539). Strelitzia 19, South African National Biodiversity Institute: Pretoria, South Africa.
- Shaw, J. (2013). Power line collisions in the Karoo: Conserving Ludwig's Bustard. University of Cape Town.
- Shaw, J., Jenkins, A., Ryan, P., & Smallie, J. (2010). A preliminary survey of avian mortality on power lines in the Overberg, South Africa. Ostrich, 81(2), 109–113. https://doi.org/10.2989/00306525.2010.488421
- Shaw, J., Reid, T. A., Schutgens, M., Jenkins, A. R., & Ryan, P. G. (2018). High power line collision mortality of threatened bustards at a regional scale in the Karoo, South Africa. Ibis, 160(2), 431–446. https://doi.org/10.1111/ibi.12553
- Shaw, J., Van Den Merwe, R., & Van Den Merwe, E. (2015). Winter scavenging rates under power lines in the Karoo, South Africa. African Journal of Wildlife Research, 45(1), 122–126. https://doi.Org/10.3957/056.045.0112
- Shaw, J.M. 2013. Power line collisions in the Karoo: Conserving Ludwig's Bustard. Unpublished PhD thesis. Percy FitzPatrick Institute of African Ornithology, Department of Biological Sciences, Faculty of Science University of Cape Town May 2013.
- Shaw, J.M., Jenkins, A.R., Ryan, P.G. And Smallie, J.J. 2010b. A preliminary survey of avian mortality on power lines in the Overberg, South Africa. Ostrich 81: 109-113.

- Shaw, J.M., Jenkins, A.R., Smallie, J.J. And Ryan, P.G. 2010a. Modelling power-line collision risk for the Blue Crane Anthropoides paradiseus in South Africa. Ibis 152: 590-599.
- Shaw, J.M., Pretorius, M.D., Gibbons, B., Mohale, O., Visagie, R., Leeuwner, J.L.& Ryan, P.G. 2017. The effectiveness of line markers in reducing powerline collisions of large terrestrial birds at De Aar, Northern Cape. Eskom Research, Testing and Development. Research Report. RES/RR/17/1939422.
- South African National Biodiversity Institute. (2018). The Vegetation Map of South Africa, Lesotho and Swaziland (L. Mucina, M. C. Rutherford, & L. W. Powrie (Eds.); Version 20). <u>http://bgis.sanbi.org/Projects/Detail/186</u>.
- South African National Biodiversity Institute (SANBI). 2020. Species Environmental Assessment Guideline. Guidelines for the implementation of the Terrestrial Fauna and Terrestrial Flora Species Protocols for environmental impact assessments in South Africa. South African National Biodiversity Institute, Pretoria. Version 1.2020.
- Sporer, M.K., Dwyer, J.F., Gerber, B.D, Harness, R.E, Pandey, A.K. 2013. Marking Power Lines to Reduce Avian Collisions Near the Audubon National Wildlife Refuge, North Dakota. Wildlife Society Bulletin 37(4):796–804; 2013; DOI: 10.1002/wsb.329
- Taylor, M.R., Peacock F, & Wanless R.W (eds.) 2015. The Eskom Red Data Book of Birds of South Africa, Lesotho and Swaziland. BirdLife South Africa, Johannesburg, South Africa.
- Thompson, M. (2019). South African national land-cover (SANLC) 2018. Department of Environmental Affairs, and Department of Rural Development and Land Reform, Pretoria, South

https://www.environment.gov.za/projectsprogrammes/egis_landcover_datasets

- Van Rooyen, C. S. (2000). An overview of vulture electrocutions in South Africa. Vulture News, 43, 5–22.
- van Rooyen, C. S. (2004). The Management of Wildlife Interactions with overhead lines. In The fundamentals and practice of Overhead Line Maintenance (132kV and above), (pp. 217–245). Eskom Technology, Services International, Johannesburg.
- Van Rooyen, C.S. & Ledger, J.A. 1999. Birds and utility structures: Developments in southern Africa. Pp 205-230, in Ferrer, M. & G.F.M. Janns. (eds.). Birds and Power lines. Quercus, Madrid (Spain). Pp 238.
- Van Rooyen, C.S. & Taylor, P.V. 1999. Bird Streamers as probable cause of electrocutions in South Africa. EPRI Workshop on Avian Interactions with Utility Structures 2-3 December 1999. Charleston, South Carolina.
- Van Rooyen, C.S. 1998. Raptor mortality on power lines in South Africa. Proceedings of the 5th World Conference on Birds of Prey and Owls. Midrand (South Africa), Aug.4 8, 1998.
- Van Rooyen, C.S. 1999. An overview of the Eskom-EWT Strategic Partnership in South Africa. EPRI Workshop on Avian Interactions with Utility Structures Charleston (South Carolina), Dec. 2-3 1999.
- Van Rooyen, C.S. 2007. Eskom-EWT Strategic Partnership: Progress Report April-September 2007. Endangered Wildlife Trust, Johannesburg.
- Van Rooyen, C.S. Vosloo, H.F. & R.E. Harness. 2002. Eliminating bird streamers as a cause of faulting on transmission lines in South Africa. Proceedings of the IEEE 46th Rural Electric Power Conference. Colorado Springs (Colorado), May. 2002.
- Verdoorn, G.H. 1996. Mortality of Cape Griffons *Gyps coprotheres* and African Whitebacked Vultures *Pseudogyps africanus* on 88kV and 132kV power lines in Western Transvaal, South Africa, and mitigation measures to prevent future problems. Proceedings of the 2nd International Conference on Raptors: Urbino (Italy), Oct. 2-5, 1996.

APPENDIX 1: SPECIES LISTS

Species list for the broader area	Taxonomic name	SABAP2 full protocol reporting rate	SABAP2 Ad hoc protocol reporting rate	Global status	Regional status
Species name	A	10.0	0.0		
African Black Duck	Anas sparsa	10.9	0.0	-	-
African Black Swift	Apus barbatus Anhinga rufa	3.0	0.4	-	-
African Darter	Haliaeetus vocifer	16.4 12.1	0.9	-	-
African Fish Eagle African Grass Owl		2.4	0.9	-	- VU
African Harrier-Hawk	Tyto capensis	2.4	1.8	-	-
	Polyboroides typus			-	
African Hoopoe African Jacana	Upupa africana	12.7 1.8	0.9 1.3	-	-
	Actophilornis africanus			-	-
African Marsh Harrier	Circus ranivorus	0.6	0.0	-	EN
African Palm Swift	Cypsiurus parvus	1.2	1.3	-	-
African Paradise Flycatcher	Terpsiphone viridis	4.8	0.0	-	-
African Pipit	Anthus cinnamomeus	74.5	8.4	-	-
African Rail	Rallus caerulescens	5.5	0.0	-	-
African Reed Warbler	Acrocephalus baeticatus	3.0	0.4	-	-
African Sacred Ibis	Threskiornis aethiopicus	47.9	6.2	-	-
African Snipe	Gallinago nigripennis	20.0	0.9	-	-
African Spoonbill	Platalea alba	16.4	2.2	-	-
African Stonechat	Saxicola torquatus	87.9	10.6	-	-
African Swamphen	Porphyrio madagascariensis	6.1	2.2	-	-
African Wattled Lapwing	Vanellus senegallus	23.0	0.4	-	-
African Yellow Warbler	Iduna natalensis	3.0	0.0	-	-
Amethyst Sunbird	Chalcomitra amethystina	11.5	0.4	-	-
Amur Falcon	Falco amurensis	29.1	6.6	-	-
Ant-eating Chat	Myrmecocichla formicivora	89.7	12.3	-	-
Banded Martin	Riparia cincta	42.4	3.1	-	-
Barn Swallow	Hirundo rustica	41.8	7.9	-	-
Bar-throated Apalis	Apalis thoracica	5.5	0.0	-	-
Black Crake	Zapornia flavirostra	9.1	0.0	-	-
Black Harrier	Circus maurus	0.0	0.9	EN	EN
Black Heron	Egretta ardesiaca	0.6	0.0	-	-
Black Sparrowhawk	Accipiter melanoleucus	12.1	0.9	-	-
Black-bellied Bustard	Lissotis melanogaster	0.6	0.0	-	-
Black-chested Prinia	Prinia flavicans	16.4	0.0	-	-
Black-chested Snake Eagle	Circaetus pectoralis	3.0	0.4	-	-
Black-collared Barbet	Lybius torquatus	28.5	0.9	-	-
Black-crowned Night Heron	Nycticorax nycticorax	0.6	0.0	-	-
Black-headed Heron	Ardea melanocephala	52.1	4.0	-	-
Black-headed Oriole	Oriolus larvatus	13.9	1.8	-	-
Black-necked Grebe	Podiceps nigricollis	0.6	0.4	-	-
Blacksmith Lapwing	Vanellus armatus	67.9	7.0	-	-
Black-throated Canary	Crithagra atrogularis	67.9	2.2	-	-
Black-winged Kite	Elanus caeruleus	60.6	12.8	-	-
Black-winged Lapwing	Vanellus melanopterus	14.5	0.0	-	-
Black-winged Stilt	Himantopus himantopus	9.1	0.0	-	-
Blue Crane	Grus paradisea	11.5	0.4	VU	NT
Blue Korhaan	Eupodotis caerulescens	6.1	0.0	NT	

Species list for the broader area	Taxonomic name	SABAP2 full protocol reporting rate	SABAP2 Ad hoc protocol reporting rate	Global status	Regional status
Blue-billed Teal	Spatula hottentota	1.2	0.0	-	-
Bokmakierie	Telophorus zeylonus	64.8	4.4	-	-
Brown Snake Eagle	Circaetus cinereus	1.8	0.0	-	-
Brown-throated Martin	Riparia paludicola	46.7	4.0	-	-
Buff-streaked Chat	Campicoloides bifasciatus	5.5	0.4	-	-
Cape Batis	Batis capensis	0.6	0.0	-	-
Cape Bunting	Emberiza capensis	13.9	0.4	-	-
Cape Canary	Serinus canicollis	75.2	7.0	-	-
Cape Crow	Corvus capensis	17.6	0.4	-	-
Cape Grassbird	Sphenoeacus afer	24.8	0.9	-	-
Cape Longclaw	Macronyx capensis	86.7	10.1	-	-
Cape Robin-Chat	Cossypha caffra	60.0	3.5	_	-
Cape Shoveler	Spatula smithii	18.8	0.0	-	-
Cape Sparrow	Passer melanurus	81.8	6.6	-	-
Cape Starling	Lamprotornis nitens	6.1	0.0	-	-
Cape Teal	Anas capensis	3.0	0.0	-	-
Cape Turtle Dove		92.1	23.8	-	-
Cape Vulture	Streptopelia capicola	92.1	23.8	- EN	- EN
•	Gyps coprotheres	1		-	
Cape Wagtail	Motacilla capensis	78.2 33.9	3.5 2.2	-	-
Cape Weaver	Ploceus capensis	35.9		-	-
Cape White-eye	Zosterops virens		1.3	-	
Capped Wheatear	Oenanthe pileata	10.3	0.0	-	-
Cardinal Woodpecker Chorister Robin-Chat Robin-	Dendropicos fuscescens	9.1	1.3	-	-
Chat	Cossypha dichroa	1.2	0.0	-	-
Cinnamon-breasted Bunting	Emberiza tahapisi	1.8	0.0	-	-
Cloud Cisticola	Cisticola textrix	7.9	0.9	-	-
Common Buttonguail	Turnix sylvaticus	0.6	0.0	-	-
Common Buzzard	Buteo buteo	27.9	9.3	-	-
Common Greenshank	Tringa nebularia	5.5	0.0	-	-
Common House Martin	Delichon urbicum	6.1	0.0	-	-
Common Moorhen	Gallinula chloropus	32.7	1.8	-	-
Common Myna	Acridotheres tristis	21.2	10.1	-	-
Common Ostrich	Struthio camelus	21.8	1.3	-	-
Common Quail	Coturnix coturnix	29.1	0.4	-	-
Common Sandpiper	Actitis hypoleucos	1.2	0.0	-	-
Common Waxbill	Estrilda astrild	52.7	3.5	-	-
Crested Barbet	Trachyphonus vaillantii	3.0	0.0	-	-
Crowned Lapwing	Vanellus coronatus	61.2	3.1	-	-
Cuckoo Finch	Anomalospiza imberbis	1.2	0.0	-	-
Dark-capped Bulbul	Pycnonotus tricolor	50.3	4.0	-	-
Denham's Bustard	Neotis denhami	1.8	0.0	NT	VU
Diederik Cuckoo	Chrysococcyx caprius	24.2	0.9	-	-
Domestic Duck	Anas platyrhynchos domestica	0.6	0.0	-	-
Drakensberg Prinia	Prinia hypoxantha	18.8	0.0	-	-
Eastern Clapper Lark	Mirafra fasciolata	6.7	0.0	-	-
Eastern Long-billed Lark	Certhilauda semitorquata	4.8	0.0	-	-
		78.2	6.2		1

Species list for the broader area	Taxonomic name	SABAP2 full protocol reporting rate	SABAP2 Ad hoc protocol reporting rate	Global status	Regional status
European Bee-eater	Merops apiaster	0.6	0.0	-	-
Familiar Chat	Oenanthe familiaris	0.6	0.0	-	-
Fan-tailed Widowbird	Euplectes axillaris	39.4	3.1	-	-
Fiscal Flycatcher	Melaenornis silens	17.0	0.9	-	-
Fork-tailed Drongo	Dicrurus adsimilis	10.3	0.4	-	-
Fulvous Whistling Duck	Dendrocygna bicolor	0.0	0.4	-	-
Giant Kingfisher	Megaceryle maxima	4.8	0.0	-	-
Glossy Ibis	Plegadis falcinellus	4.2	1.8	-	-
Golden-breasted Bunting	Emberiza flaviventris	5.5	0.4	-	-
Goliath Heron	Ardea goliath	2.4	0.0	-	-
Great Egret	Ardea alba	7.9	1.3	-	-
Greater Flamingo	Phoenicopterus roseus	3.6	4.4	-	NT
Greater Striped Swallow	Cecropis cucullata	55.8	7.9	-	-
Green Wood Hoopoe	Phoeniculus purpureus	7.9	0.4	-	-
Grey Crowned Crane	Balearica regulorum	5.5	0.0	EN	EN
Grey Heron	Ardea cinerea	24.8	3.5	-	-
	Chroicocephalus				
Grey-headed Gull	cirrocephalus	3.6	0.4	-	-
Grey-winged Francolin	Scleroptila afra	27.3	2.2	-	-
Groundscraper Thrush	Turdus litsitsirupa	0.6	0.0	-	-
Hadada Ibis	Bostrychia hagedash	89.7	13.7	-	-
Hamerkop	Scopus umbretta	11.5	0.0	-	-
Helmeted Guineafowl	Numida meleagris	49.1	3.1	-	-
Horus Swift	Apus horus	1.2	0.0	-	-
House Sparrow	Passer domesticus	20.0	9.3	-	-
Intermediate Egret	Ardea intermedia	13.9	1.8	-	-
Jackal Buzzard	Buteo rufofuscus	19.4	2.2	-	-
Karoo Thrush	Turdus smithi	5.5	0.0	-	-
Kittlitz's Plover	Charadrius pecuarius	7.3	0.4	-	-
Kurrichane Thrush	Turdus libonyana	8.5	0.4	-	-
Lanner Falcon	Falco biarmicus	7.3	0.0	-	VU
Laughing Dove	Spilopelia senegalensis	45.5	7.5	-	-
Lazy Cisticola	Cisticola aberrans	4.8	0.0	-	-
Lesser Flamingo	Phoeniconaias minor	3.6	1.3	NT	NT
Lesser Grey Shrike	Lanius minor	0.6	0.0	-	-
Lesser Honeyguide	Indicator minor	0.6	0.0	-	-
Lesser Moorhen	Paragallinula angulata	0.6	0.4	-	-
Lesser Striped Swallow	Cecropis abyssinica	0.6	1.3	-	-
Lesser Swamp Warbler	Acrocephalus gracilirostris	12.7	0.4	-	-
Levaillant's Cisticola	Cisticola tinniens	73.9	5.7	-	-
Little Egret	Egretta garzetta	4.2	1.3	-	-
Little Grebe	Tachybaptus ruficollis	38.8	3.1	-	-
Little Rush Warbler	Bradypterus baboecala	6.7	0.9	-	-
Little Stint	Calidris minuta	1.8	0.0	-	-
Little Swift	Apus affinis	16.4	4.8	-	-
Long-crested Eagle	Lophaetus occipitalis	6.7	9.3	-	-
Long-tailed Widowbird	Euplectes progne	84.8	15.4	-	-
Malachite Kingfisher	Corythornis cristatus	7.3	0.0	-	-
Malachite Sunbird	Nectarinia famosa	11.5	0.4	-	-

Species list for the broader area	Taxonomic name	SABAP2 full protocol reporting rate	SABAP2 Ad hoc protocol reporting rate	Global status	Regional status
Mallard	Anas platyrhynchos	0.6	0.4	-	-
Marsh Owl	Asio capensis	5.5	0.4	-	-
Martial Eagle	Polemaetus bellicosus	2.4	0.0	EN	EN
Montagu's Harrier	Circus pygargus	1.2	0.0	-	-
Mountain Wheatear	Myrmecocichla monticola	4.8	0.9	-	-
Namaqua Dove	Oena capensis	1.8	0.0	-	-
Neddicky	Cisticola fulvicapilla	7.9	0.0	-	-
Nicholson's Pipit	Anthus nicholsoni	1.8	0.4	-	-
Northern Black Korhaan	Afrotis afraoides	0.6	0.0	-	-
Olive Thrush	Turdus olivaceus	6.1	0.4	-	-
Olive Woodpecker	Dendropicos griseocephalus	3.0	0.0	-	-
Orange-breasted Waxbill	Amandava subflava	9.7	0.0	-	-
Pale-crowned Cisticola	Cisticola cinnamomeus	21.2	0.0	-	-
Peregrine Falcon	Falco peregrinus	1.2	0.0	-	-
Pied Avocet	Recurvirostra avosetta	4.8	0.0	-	-
Pied Crow	Corvus albus	4.0	3.5	_	-
	Ceryle rudis	11.5	0.4	-	-
Pied Kingfisher		55.2	11.5	-	-
Pied Starling	Lamprotornis bicolor Vidua macroura	44.8		-	
Pin-tailed Whydah Plain-backed Pipit		1.2	2.6 0.0	-	-
	Anthus leucophrys			-	-
Purple Heron	Ardea purpurea	4.2 47.9	0.0 1.8	-	-
Quailfinch Red-backed Shrike	Ortygospiza atricollis Lanius collurio	47.9	0.0	-	-
		38.8	1.8	-	-
Red-billed Quelea	Quelea quelea			-	-
Red-billed Teal	Anas erythrorhyncha Calandrella cinerea	17.0 56.4	1.3 2.2	-	-
Red-capped Lark		4.8	0.4	-	-
Red-chested Cuckoo	Cuculus solitarius Sarothrura rufa				
Red-chested Flufftail Red-collared Widowbird		0.6 12.1	0.0 1.3	-	-
	Euplectes ardens Streptopelia semitorquata	64.2	1.3	-	-
Red-eyed Dove Red-faced Mousebird				-	-
	Urocolius indicus	4.2	0.4	-	-
Red-headed Finch	Amadina erythrocephala	1.8	0.0	-	-
Red-knobbed Coot	Fulica cristata	58.2	4.8	-	-
Red-throated Wryneck	Jynx ruficollis	29.7	2.2	-	-
Red-winged Francolin	Scleroptila levaillantii Onychognathus morio	24.8 8.5	1.3 3.1	-	-
Red-winged Starling				-	-
Reed Cormorant	Microcarbo africanus	63.6	4.8	-	-
Rock Dove	Columba livia	6.1	4.4	-	-
Rock Kestrel	Falco rupicolus	5.5	0.9	-	-
Rock Martin	Ptyonoprogne fuligula	13.9	1.8	-	-
Ruff	Calidris pugnax	1.8	0.4	-	-
Rufous-naped Lark	Mirafra africana	1.2	0.9	-	-
Sand Martin	Riparia riparia	1.2	0.4	-	-
Secretarybird	Sagittarius serpentarius Acrocephalus	13.3	0.0	EN	VU
Sedge Warbler	schoenobaenus	0.6	0.0	-	-
Sentinel Rock Thrush	Monticola explorator	2.4	0.0	NT	
South African Cliff Swallow	Petrochelidon spilodera	38.2	3.5	-	-
South African Shelduck	Tadorna cana	30.3	3.5	-	-

Species list for the broader area	Taxonomic name	SABAP2 full protocol reporting rate	SABAP2 Ad hoc protocol reporting rate	Global status	Regional status
Southern Bald Ibis	Corontigue column	23.0	3.1	VU	VU
	Geronticus calvus		0.9	VU	
Southern Boubou Southern Fiscal	Laniarius ferrugineus	15.2 92.1	15.4	-	-
	Lanius collaris Passer diffusus	92.1 57.6	4.4	-	-
Southern Grey-headed Sparrow Southern Masked Weaver	Ploceus velatus	90.9	9.7	-	-
Southern Pochard				-	
	Netta erythrophthalma	9.1	0.0	-	-
Southern Red Bishop	Euplectes orix	84.2	12.3	-	-
Speckled Mousebird	Colius striatus	25.5	0.9	-	-
Speckled Pigeon	Columba guinea	67.3	13.2	-	-
Spike-heeled Lark	Chersomanes albofasciata	48.5	1.3	-	-
Spotted Eagle-Owl	Bubo africanus	9.1	0.9	-	-
Spotted Flycatcher	Muscicapa striata	4.2	0.4	-	-
Spotted Thick-knee	Burhinus capensis	9.1	0.0	-	-
Spur-winged Goose	Plectropterus gambensis	44.2	1.8	-	-
Squacco Heron	Ardeola ralloides	1.2	0.0	-	-
Streaky-headed Seedeater	Crithagra gularis	9.1	0.4	-	-
Swainson's Spurfowl	Pternistis swainsonii	61.2	2.6	-	-
Tawny-flanked Prinia	Prinia subflava	0.6	0.4	-	-
Temminck's Courser	Cursorius temminckii	1.8	0.0	-	-
Three-banded Plover	Charadrius tricollaris	35.2	0.9	-	-
Village Weaver	Ploceus cucullatus	4.2	0.0	-	-
Wailing Cisticola	Cisticola lais	9.1	0.0	-	-
Wattled Crane	Grus carunculata	0.6	0.0	VU	CR
Wattled Starling	Creatophora cinerea	0.6	0.0	-	-
Western Barn Owl	Tyto alba	3.0	0.4	-	-
Western Cattle Egret	Bubulcus ibis	44.8	12.3	-	-
Western Osprey	Pandion haliaetus	0.6	0.0	-	-
Whiskered Tern	Chlidonias hybrida	12.1	5.3	-	-
White Stork	Ciconia ciconia	7.3	1.3	-	-
White-backed Duck	Thalassornis leuconotus	6.7	0.0	-	-
White-bellied Bustard	Eupodotis senegalensis	7.9	0.0	-	VU
White-breasted Cormorant	Phalacrocorax lucidus	11.5	0.9	-	-
White-faced Whistling Duck	Dendrocygna viduata	0.6	0.0	-	-
White-rumped Swift	Apus caffer	30.3	4.0	-	-
White-throated Swallow	Hirundo albigularis	37.6	1.8	-	-
White-winged Tern	Chlidonias leucopterus	3.6	0.9	-	-
Willow Warbler	Phylloscopus trochilus	4.2	0.0	-	-
Wing-snapping Cisticola	Cisticola ayresii	45.5	6.2	-	-
Wood Sandpiper	Tringa glareola	6.1	0.0	-	-
Yellow Canary	Crithagra flaviventris	15.8	0.4	-	-
Yellow-billed Duck	Anas undulata	61.8	4.4	-	-
Yellow-billed Kite	Milvus aegyptius	2.4	0.0	-	-
Yellow-crowned Bishop	Euplectes afer	34.5	4.0	-	-
Yellow-fronted Canary	Crithagra mozambica	9.1	0.9	-	-
Zitting Cisticola	Cisticola juncidis	41.2	2.6	-	-

Priority Species	Taxonomic name	Solar site
Amur Falcon	Falco amurensis	*
Black Sparrowhawk	Accipiter melanoleucus	*
Black-headed Heron	Ardea melanocephala	*
Blacksmith Lapwing	Vanellus armatus	*
Black-winged Kite	Elanus caeruleus	*
Cape Vulture	Gyps coprotheres	*
Cape Weaver	Ploceus capensis	*
Cape White-eye	Zosterops virens	*
Common Buzzard	Buteo buteo	*
Drakensberg Prinia	Prinia hypoxantha	*
Egyptian Goose	Alopochen aegyptiaca	*
Fiscal Flycatcher	Melaenornis silens	*
Grey Heron	Ardea cinerea	*
Grey-winged Francolin	Scleroptila afra	*
Little Grebe	Tachybaptus ruficollis	*
Long-crested Eagle	Lophaetus occipitalis	*
Pied Starling	Lamprotornis bicolor	*
Reed Cormorant	Microcarbo africanus	*
South African Cliff Swallow	Petrochelidon spilodera	*
South African Shelduck	Tadorna cana	*
	Bubulcus ibis	*
Western Cattle Egret Yellow-billed Duck	Anas undulata	*
22		22
Non-Priority Species	Taxonomic name	Solar site
Non-Priority Species African Pipit	Taxonomic name Anthus cinnamomeus	Solar site
African Pipit	Anthus cinnamomeus	*
African Pipit African Quail-Finch	Anthus cinnamomeus Ortygospiza atricollis	*
African Pipit African Quail-Finch African Reed Warbler	Anthus cinnamomeus Ortygospiza atricollis Acrocephalus baeticatus	* * *
African Pipit African Quail-Finch African Reed Warbler African Stonechat	Anthus cinnamomeus Ortygospiza atricollis Acrocephalus baeticatus Saxicola torquatus	* * *
African Pipit African Quail-Finch African Reed Warbler African Stonechat Ant-eating Chat	Anthus cinnamomeus Ortygospiza atricollis Acrocephalus baeticatus Saxicola torquatus Myrmecocichla formicivora	* * * * * * *
African Pipit African Quail-Finch African Reed Warbler African Stonechat Ant-eating Chat Banded Martin	Anthus cinnamomeus Ortygospiza atricollis Acrocephalus baeticatus Saxicola torquatus Myrmecocichla formicivora Riparia cincta	* * * * * * * *
African Pipit African Quail-Finch African Reed Warbler African Stonechat Ant-eating Chat Banded Martin Barn Swallow	Anthus cinnamomeus Ortygospiza atricollis Acrocephalus baeticatus Saxicola torquatus Myrmecocichla formicivora Riparia cincta Hirundo rustica Prinia flavicans	* * * * * * * * * * * * *
African Pipit African Quail-Finch African Reed Warbler African Stonechat Ant-eating Chat Banded Martin Barn Swallow Black-chested Prinia	Anthus cinnamomeus Ortygospiza atricollis Acrocephalus baeticatus Saxicola torquatus Myrmecocichla formicivora Riparia cincta Hirundo rustica	* * * * * * * * * * * * * * * * * * *
African Pipit African Quail-Finch African Reed Warbler African Stonechat Ant-eating Chat Banded Martin Barn Swallow Black-chested Prinia Black-throated Canary	Anthus cinnamomeusOrtygospiza atricollisAcrocephalus baeticatusSaxicola torquatusMyrmecocichla formicivoraRiparia cinctaHirundo rusticaPrinia flavicansCrithagra atrogularis	* * * * * * * * * * * * * * * * * * *
African Pipit African Quail-Finch African Reed Warbler African Stonechat Ant-eating Chat Banded Martin Barn Swallow Black-chested Prinia Black-throated Canary Bokmakierie	Anthus cinnamomeus Ortygospiza atricollis Acrocephalus baeticatus Saxicola torquatus Myrmecocichla formicivora Riparia cincta Hirundo rustica Prinia flavicans Crithagra atrogularis Telophorus zeylonus	* * * * * * * * * * * * * * * * * * *
African Pipit African Quail-Finch African Reed Warbler African Stonechat Ant-eating Chat Banded Martin Barn Swallow Black-chested Prinia Black-throated Canary Bokmakierie Brown-throated Martin	Anthus cinnamomeusOrtygospiza atricollisAcrocephalus baeticatusSaxicola torquatusMyrmecocichla formicivoraRiparia cinctaHirundo rusticaPrinia flavicansCrithagra atrogularisTelophorus zeylonusRiparia paludicola	* * * * * * * * * * * * * * * * * * *
African Pipit African Quail-Finch African Reed Warbler African Stonechat Ant-eating Chat Banded Martin Barn Swallow Black-chested Prinia Black-throated Canary Bokmakierie Brown-throated Martin Cape Canary	Anthus cinnamomeusOrtygospiza atricollisAcrocephalus baeticatusSaxicola torquatusMyrmecocichla formicivoraRiparia cinctaHirundo rusticaPrinia flavicansCrithagra atrogularisTelophorus zeylonusRiparia paludicolaSerinus canicollis	* * * * * * * * * * * * * * * * * * *
African Pipit African Quail-Finch African Reed Warbler African Stonechat Ant-eating Chat Banded Martin Barn Swallow Black-chested Prinia Black-throated Canary Bokmakierie Brown-throated Martin Cape Canary Cape Longclaw	Anthus cinnamomeusOrtygospiza atricollisAcrocephalus baeticatusSaxicola torquatusMyrmecocichla formicivoraRiparia cinctaHirundo rusticaPrinia flavicansCrithagra atrogularisTelophorus zeylonusRiparia paludicolaSerinus canicollisMacronyx capensis	* * * * * * * * * * * * * * * * * * *
African Pipit African Quail-Finch African Reed Warbler African Stonechat Ant-eating Chat Banded Martin Barn Swallow Black-chested Prinia Black-throated Canary Bokmakierie Brown-throated Martin Cape Canary Cape Robin-Chat Cape Sparrow	Anthus cinnamomeusOrtygospiza atricollisAcrocephalus baeticatusSaxicola torquatusMyrmecocichla formicivoraRiparia cinctaHirundo rusticaPrinia flavicansCrithagra atrogularisTelophorus zeylonusRiparia paludicolaSerinus canicollisMacronyx capensisCossypha caffraPasser melanurus	* * * * * * * * * * * * * * * * * * *
African Pipit African Quail-Finch African Reed Warbler African Stonechat Ant-eating Chat Banded Martin Barn Swallow Black-chested Prinia Black-throated Canary Bokmakierie Brown-throated Martin Cape Canary Cape Robin-Chat	Anthus cinnamomeusOrtygospiza atricollisAcrocephalus baeticatusSaxicola torquatusMyrmecocichla formicivoraRiparia cinctaHirundo rusticaPrinia flavicansCrithagra atrogularisTelophorus zeylonusRiparia paludicolaSerinus canicollisMacronyx capensisCossypha caffra	<pre> * * * * * * * * *</pre>
African PipitAfrican Quail-FinchAfrican Reed WarblerAfrican StonechatAnt-eating ChatBanded MartinBarn SwallowBlack-chested PriniaBlack-throated CanaryBokmakierieBrown-throated MartinCape CanaryCape LongclawCape Robin-ChatCape Turtle DoveCape Wagtail	Anthus cinnamomeusOrtygospiza atricollisAcrocephalus baeticatusSaxicola torquatusMyrmecocichla formicivoraRiparia cinctaHirundo rusticaPrinia flavicansCrithagra atrogularisTelophorus zeylonusRiparia paludicolaSerinus canicollisMacronyx capensisCossypha caffraPasser melanurusStreptopelia capicola	* * * * * * * * * * * * * * * * * * *
African PipitAfrican Quail-FinchAfrican Reed WarblerAfrican StonechatAnt-eating ChatBanded MartinBarn SwallowBlack-chested PriniaBlack-throated CanaryBokmakierieBrown-throated MartinCape CanaryCape LongclawCape Turtle Dove	Anthus cinnamomeusOrtygospiza atricollisAcrocephalus baeticatusSaxicola torquatusMyrmecocichla formicivoraRiparia cinctaHirundo rusticaPrinia flavicansCrithagra atrogularisTelophorus zeylonusRiparia paludicolaSerinus canicollisMacronyx capensisCossypha caffraPasser melanurusStreptopelia capicolaMotacilla capensis	<pre> * * * * * * * * * * * * *</pre>

Non-Priority Species cont.	Taxonomic name	Solar site
Crowned Lapwing	Vanellus coronatus	*
Dark-capped Bulbul	Pycnonotus tricolor	*
Fan-tailed Widowbird	Euplectes axillaris	*
Greater Striped Swallow	Cecropis cucullata	*
Hadeda	Bostrychia hagedash	*
Helmeted Guineafowl	Numida meleagris	*
House Sparrow	Passer domesticus	*
Laughing Dove	Spilopelia senegalensis	*
Levaillant's Cisticola	Cisticola tinniens	*
Long-tailed Widowbird	Euplectes progne	*
Olive Woodpecker	Dendropicos griseocephalus	*
Orange-breasted Waxbill	Amandava subflava	*
Pale-crowned Cisticola	Cisticola cinnamomeus	*
Pin-tailed Whydah	Lamprotornis nitens	*
Red-billed Quelea	Quelea quelea	*
Red-capped Lark	Calandrella cinerea	*
Red-collared Widowbird	Euplectes ardens	*
Red-eyed Dove	Streptopelia semitorquata	*
Red-winged Francolin	Scleroptila levaillantii	*
Southern Fiscal	Lanius collaris	*
Southern Grey-headed Sparrow	Passer diffusus	*
Southern Masked Weaver	Ploceus velatus	*
Southern Red Bishop	Euplectes orix	*
Speckled Pigeon	Columba guinea	*
Spike-heeled Lark	Chersomanes albofasciata	*
Spotted Flycatcher	Muscicapa striata	*
Swainson's Spurfowl	Pternistis swainsonii	*
White-throated Swallow	Hirundo albigularis	*
Wing-snapping Cisticola	Cisticola ayresii	*
Yellow Canary	Crithagra flaviventris	*
Yellow-crowned Bishop	Euplectes afer	*
Zitting Cisticola	Cisticola juncidis	*
52	Subtotal	52
	Grand total	74

APPENDIX 2: HABITAT FEATURES AT THE PROJECT AREA

Figure 1: High sensitivity natural grassland in the project site.

Figure 3: An example of an earth dam in the broader area.

Figure 4: Agriculture in the study area.

Figure 5: Drainage line and associated wetland in the broader area.

Figure 6: Alien trees in the project site.

APPENDIX 3: PRE-CONSTRUCTION MONITORING

1. Objectives

The objective of the pre-construction monitoring at the proposed Camden I Solar Energy Facility (SEF) was to gather baseline data over a period of six months, including the high season, on the variety and abundance of avifauna at the project area.

2. Methods

The following sources were consulted to compile the monitoring protocol:

- The BirdLife South Africa (BLSA) Guidelines for assessing and monitoring the impact of solar power generating facilities on birds in southern Africa. BirdLife South Africa by Jenkins, A.R., Ralston-Patton, Smit- Robinson, A.H. 2017
- Guidelines for the Implementation of the Terrestrial Flora (3c) & Terrestrial Fauna (3d) Species Protocols for EIAs in South Africa produced by the South African National Biodiversity Institute on behalf of the Department of Environment, Forestry and Fisheries (2020).

Monitoring surveys were conducted during the following periods:

- Survey 1: 10 11, 20 26 February 2021
- Survey 2: 20 21 March,12 and 14 April, 5 and 12 May 2021

Monitoring was conducted in the following manner:

- One drive transect was identified totalling 10.2km that traversed the development site.
- One monitor travelling slowly (± 10km/h) in a vehicle recorded all birds on both sides of the transect. The observer stopped at regular intervals (every 500m) to scan the environment with binoculars. Drive transects were counted three times per sampling session.
- In addition, two walk transects of 1km and 2km respectively were identified at the development site and counted 4 times per sampling survey. All birds were recorded during walk transects.
- The following variables were recorded:
 - Species
 - Number of birds
 - o Date
 - o Start time and end time
 - o Estimated distance from transect
 - $\circ \quad \text{Wind direction} \quad$
 - Wind strength (estimated Beaufort scale)
 - Weather (sunny; cloudy; partly cloudy; rain; mist)
 - Temperature (cold; mild; warm; hot)
 - Behaviour (flushed; flying-display; perched; perched-calling; perched-hunting; flyingforaging; flying-commute; foraging on the ground) and
 - Co-ordinates (priority species only)

The aim with drive transects is primarily to record large priority species (i.e. raptors and large terrestrial species), while walk transects are primarily aimed at recording small passerines.

See Figure 1 for the location of the transects at the project site.

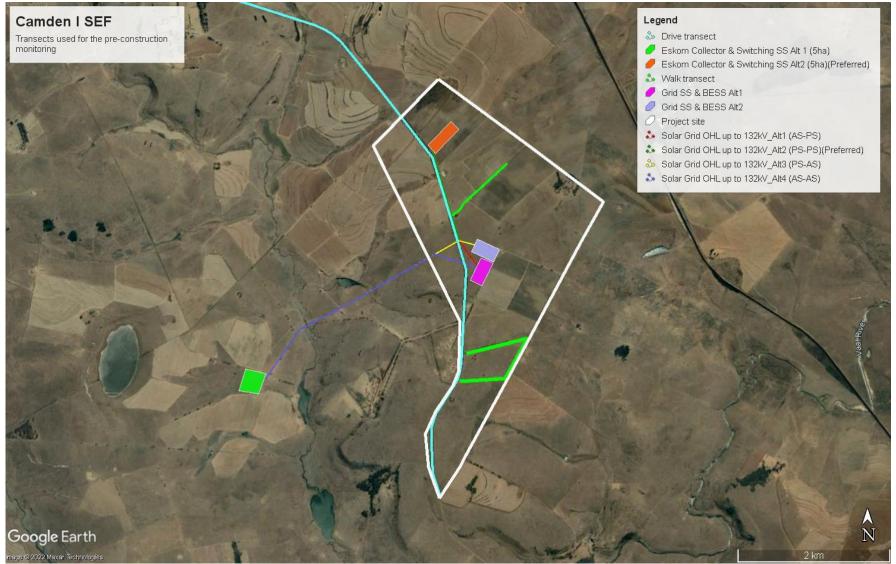


Figure 1: Area where monitoring was performed, with position of drive transects and walk transects.

APPENDIX 4: IMPACT TABLES

Project Name: Camden I SEF

Impact Assessment

CONSTRUCTION

Impact number	Aspect	Description	Stage	Character	Ease of			Pre-	Mitigati	on					Ρ	ost-Mi	tigatio	on	
impact number	Aspeci	Description	Staye	Character	Mitigation	(M+	E+	R+	D)x	P=	S	Rating	(M+	E+	R+	D)x	P=	S	Rating
Impact 1:	Displacement	Displacement of priority species due to disturbance associated with the construction of the solar panels and associated infrastructure.	Construction	Negative	Moderate	4	2	4	2	5	60	N3	3	2	3	2	4	40	N3
					Significance		N3	- Mod	erate					N	3 - Mo	oderate	•		
Impact 2:	Displacement	Displacement of priority species due to habitat transformation associated with the construction of the solar panels and associated infrastructure.	Construction	Negative	Moderate	3	2	4	4	4	52	N3	3	2	3	4	3	36	N3
					Significance		N3	- Mod	erate					N	3 - Mo	oderate	•		

Project Name: Camden I SEF

Impact Assessment

OPERATIONAL

Impact	A	Description	01.000	0	Ease of								Post	-Mitig	ation				
number	Aspect	Description	Stage	Character	Mitigation	(M+	E+	R+	D)x	P=	S	Rating	(M+	E+	R+	D)x	P=	S	Rating
Impact 1:	Mortality: Collision	Mortality of priority species due to collisions with the solar panels	Operational	Negative	Low	2	1	1	4	2	16	N2	2	1	1	4	2	16	N2
					Significance			N2 -	Low					N	2 - Lo	w			
Impact 2:	Mortality: Entrapment in perimeter fence	Entrapment of large- bodied birds in the double perimeter fence	Operational	Negative	High	3	2	1	4	3	30	N2	3	2	1	4	1	10	N1
					Significance			N2 -	Low					N1 -	Very	Low			
Impact 3:	Mortality: Collision	Mortality of priority species due to collisions with the medium voltage overhead power lines	Operational	Negative	Moderate	4	3	4	4	3	45	N3	3	3	3	4	2	26	N2
					Significance		I	N3 - Ma	derate					N	2 - Lo	w			
Impact 4:	Mortality: Electrocution	Electrocution of priority species on the medium voltage infrastructure	Operational	Negative	High	4	3	4	4	4	60	N3	1	3	2	4	2	20	N2
					Significance		I	N3 - Mo	derate					N	<mark>2 - L</mark> o	w			

Project Name: Camden I SEF

Impact Assessment

DECOMISSIONING

line of such as	Annat	Description	Channa	Chanastan	Ease of			Pre-Mit	igation					Po	ost-Mi	tigatio	n		
Impact number	Aspect	Description	Stage	Character	Mitigation	(M+	E+	R+	D)x	P=	s		(M+	E+	R+	D)x	P=	S	
Impact 1:	Displacement	Displacement of priority species due to disturbance associated with the dismantling of the solar panels and associated infrastructure.	Construction	Negative	Moderate	4	2	3	2	4	44	N3	3	2	2	2	3	27	N2
					Significance			N3 - M	oderate						N2 -	Low			

Project Name: Camden I SEF

Impact Assessment

CUMULATIVE

Impact number	Aspect	Description	Stage	Character	Ease of Mitigation			Pre-Mit	-							tigatio			
						(M+	E+	R+	D)x	P=	S	Rating	(M+	E+	R+	D)x	P=	S	Rating
Impact 1:	Displacement	Displacement of priority species due to disturbance associated with the construction of the solar panels and associated infrastructure.	Construction	Negative	Moderate	4	3	3	3	4	52	N3	3	3	3	2	3	33	N3
					Significance		l	N3 - Mo	oderate					N	3 - Mo	oderate	•		
Impact 2:	Displacement	Displacement of priority species due to habitat transformation associated with the construction of the solar panels and associated infrastructure.	Construction	Negative	Moderate	3	3	4	4	4	56	N3	3	3	3	4	3	39	N3
					Significance			N3 - Mo	derate					N	3 - Mo	oderate	;		
Impact 3:	Mortality: Collision	Mortality of priority species due to collisions with the solar panels	Operational	Negative	Low	2	1	1	4	2	16	N2	2	1	1	4	2	16	N2
		L			Significance			N2 -	Low						N2 -	Low			
Impact 4:	Mortality: Collision	Mortality of priority species due to collisions with the medium voltage overhead power lines	Operational	Negative	Moderate	4	3	4	4	4	60	N3	3	3	3	4	4	52	N3
					Significance			N3 - Mo	oderate					N	3 - Mo	oderate	•		

Impact 5:	Mortality: Electrocution	Electrocution of priority species on the medium voltage infrastructure	Operational	Negative	High	5	3	4	4	4	64	N4	2	3	2	4	3	33	N3
					Significance			N4 - I	High					N	3 - Mo	oderate	•		

Project Name: Camden I SEF BESS

Impact Assessment

CONSTRUCTION

Impact	Acrost	Description	Store	Character	Ease of			F	Pre-Mitig	gation					Р	ost-Mi	tigatio	on	
number	Aspect	Description	Stage	Character	Mitigation	(M+	E+	R+	D)x	P=	S	Rating	(M+	E+	R+	D)x	P=	S	Rating
Impact 1:	Displacement	Displacement of priority species due to disturbance associated with the construction of the BESS	Construction	Negative	Moderate	2	1	1	2	3	18	N2	2	1	1	2	2	12	N1
					Significance			N2 -	Low					Ν	1 - Ve	ry Low	,		
Impact 2:	Displacement	Displacement of priority species due to habitat transformation associated with the construction of the BESS	Construction	Negative	Moderate	2	1	5	4	2	24	N2	2	1	5	4	2	24	N2
	•	·			Significance			N2 -	Low						N2 -	Low			

DECOMISSIONING

Impact	•	Description	01	0	Ease of		I	Pre-Mit	igation					Pe	ost-Mi	tigatio	n		
number	Aspect	Description	Stage	Character	Mitigation	(M+	E+	R+	D)x	P=	s		(M+	E+	R+	D)x	P=	S	
Impact 1:	Displacement	Displacement of priority species due to disturbance associated with the dismantling of the BESS	Construction	Negative	Moderate	2	1	1	2	3	18	N2	2	1	1	2	2	12	N1
			Significance			N2 -	Low					N	1 - Ve	ery Lov	v				

Project Name: Camden I SEF BESS

Impact Assessment

CUMULATIVE

Impact	Annast	Description	Channa	Chanastan	Ease of			Pre-Mi	itigation	1				P	ost-Mi	itigatio	on		
number	Aspect	Description	Stage	Character	Mitigation	(M+	E+	R+	D)x	P=	s		(M+	E+	R+	D)x	P=	S	
Impact 1:	Displacement	Displacement of priority species due to disturbance associated with the construction of the BESS	Construction	Negative	Moderate	2	1	1	2	4	24	N2	2	1	1	2	3	18	N2
					Significance			N2 -	- Low						N2 -	Low			
Impact 2:	Displacement	Displacement of priority species due to habitat transformation associated with the construction of the BESS	Construction	Negative	Moderate	3	1	5	4	2	26	N2	3	1	5	4	2	26	N2
					Significance			N2 -	- Low						N2 -	Low			

Impact Assessment

CONSTRUCTION

Impact	Acrest	Description	Store	Character	Ease of			Pr	e-Mitig	ation					Po	ost-Mitiga	ation		
number	Aspect	Description	Stage	Character	Mitigation	(M+	E+	R+	D)x	P=	S	Rating	(M+	E+	R+	D)x	P=	S	Rating
Impact 1:	Displacement	Displacement of priority species due to disturbance associated with construction of the on-site substation and up to 132kV overhead power line	Construction	Negative	Moderate	4	2	3	2	4	44	N3	3	2	3	2	3	30	N2
					Significance		N	13 - Mo	oderate	;					N2 -	Low			
Impact 2:	Displacement	Displacement of priority species due to habitat transformation associated with construction of the on-site substation and up to 132kV overhead power line	Construction	Negative	Moderate	2	2	3	2	4	36	N3	2	2	3	2	3	27	N2
	Signi						N	<mark>13 - M</mark> o	oderate	•					N2 -	Low	•	•	

Impact Assessment

OPERATION

Impact	Annat	Description	Ctown	Chanastan	Ease of		Pre-N	/litiga	tion				Post-Mitiga	tion					
number	Aspect	Description	Stage	Character	Mitigation	(M+	E+	R+	D)x	P=	s		(M+	E+	R+	D)x	P=	S	
Impact 1:	Mortality: Collision	Mortality of priority species due to collisions with the up to 132kV overhead power line	Operational	Negative	Moderate	5	3	3	4	4	60	N3	3	3	3	4	2	26	N2
					Significance		N	3 - Mo	oderat	e				-	N2 - L	ow			
Impact 2:	Mortality: Electrocution	Electrocution of priority species on the on-site substation infrastructure	Operational	Negative	High	5	3	3	4	2	30	N2	1	2	3	4	2	20	N2
					Significance			N2 -	Low						N2 - L	ow			
Impact 3:	Mortality: Electrocution	Electrocution of priority species on the up to 132kV OHL	Operational	Negative	High	5	3	3	4	3	45	N3	1	2	3	4	2	20	N2
	Signif				Significance		N	3 - Mo	oderate	e				•	N2 - L	ow			

Impact Assessment

DECOMISSIONING

Impact number	Aspect	Description	Stage	Character	Ease of Mitigation	(M+	E+	Pre-Mi R+	tigation D)x	P=	S		(M+	E+	Post-Mi R+	tigation D)x	P=	S	
Impact 1:	Displacement	Displacement of priority species due to disturbance associated with decommissioning of the on-site substation and up to 132kV overhead power line	Decommissioning	Negative	Moderate	4	2	3	2	4	44	N3	3	2	3	2	2	20	N2
				:	Significance			N3 - M	oderate						N2 -	Low			

Impact Assessment

CUMULATIVE

lmpact number	Aspect	Description	Stage	Character	Ease of Mitigation			Pre-Mi	_						ost-M	_			
						(M+	E+	R•	D)z	P=	S		(M•	E+	R•	D)z	P=	S	
Impact 1:	Mortality: Collision	Powerline collision mortality of priority avifauna due to the construction of the overhead power line.	Cumulative	Negative	Moderate	2	2	2	4	3	30	N2	2	3	3	4	2	24	N2
					Significance			N2 -	Low						N2 -	Low			
Impact 2:	Displacement	Displacement of priority avifauna due to disturbance and habitat transformation	Cumulative	Negative	Moderate	3	2	3	2	3	30	N2	3	2	3	2	2	20	N2
	•	•		•	Significance			N2 -	Low						N2 -	Low			
Impact 3:	Mortality: Electrocution	Mortality (electrocution) of priority avifauna due to the construction of the on-site substation	Cumulative	Negative	High	3	3	3	4	2	26	N2	1	2	3	4	2	20	N2
		substation Sign						N2 -	Low						N2 -	Low			

APPENDIX 5: ENVIRONMENTAL MANAGEMENT PROGRAMME (EMPr)

Environmental Management Programme (EMPr): SEF

Management Plan for the Planning and Design Phase

	Mitigation/Management	Mitigation/Management		Monitoring	
Impact	Objectives and Outcomes	Actions	Methodology	Frequency	Responsibility
Avifauna: Entra	pment				
Entrapment of birds in the perimeter fences, leading to mortality.	Prevent mortality of avifauna	 Increase the spacing between at least the top two wires (to a minimum of 30cm) and ensure they are correctly tensioned. Use a single perimeter fence if possible. 	 Design the facility with a bird-friendly perimeter fence. Use a single perimeter fence if possible. 	Once-off during the planning phase.	Project Developer
Avifauna: Displa	acement due to habitat trans	sformation		1	
Total or partial displacement of avifauna due to habitat transformation associated with the vegetation clearance and the presence of the solar PV plants and associated infrastructure.	Prevent unnecessary displacement of avifauna by ensuring that sensitive habitat is protected.	 Maintain 100m solar panel buffer zones around drainage lines, wetlands and pans. Limit construction of infrastructure in high sensitivity grassland as much as possible. 	 Design facility with a 100m buffer around drainage lines, wetlands, and pans – all infrastructure except essential roads and grid crossings. Development in the remaining high sensitivity grassland must be limited as far as possible. Where possible, infrastructure must be located near margins, with shortest routes taken from the existing roads. 	Once-off during the planning phase.	Project Developer
Avifauna: Electr	ocution on the 33kV mediu	m voltage reticulation lines			
Electrocution of priority species on the 33kV medium voltage reticulation lines		 Bury cables as far as possible. In instances where the medium voltage cables cannot be buried due to technical constraints, a bird- friendly pole design must be used for the overhead lines. The avifaunal specialist must approve the pole design. 	Ensure that a bird friendly design is used for the 33kV medium voltage lines. Final design to be approved by the avifaunal specialist.	Once-off during the planning phase.	Project Developer

		wiPr for the Const			
Impact	Mitigation/Management Objectives and	Mitigation/Management	N	Monitoring	
Impuor	Outcomes	Actions	Methodology	Frequency	Responsibility
Avifauna: Distu	urbance				
The noise and movement associated with the construction activities at the development footprint will be a source of disturbance which would lead to the displacement of avifauna from the area.	Prevent unnecessary displacement of avifauna by ensuring that contractors are aware of the requirements of the Construction Environmental Management Programme (CEMPr.)	 A site-specific CEMPr must be implemented, which gives appropriate and detailed description of how construction activities must be conducted. All contractors are to adhere to the CEMPr and should apply good environmental practice during construction. The CEMPr must specifically include the following: 1. No off-road driving; 2. Maximum use of existing roads, where possible; 3. Measures to control noise and dust according to latest best practice; 4. Restricted access to the rest of the property; 	 Implementation of the CEMPr. Oversee activities to ensure that the CEMPr is implemented and enforced via site audits and inspections. Report and record any non- compliance. Ensure that construction personnel are made aware of the impacts relating to off-road driving. Construction access roads must be demarcated clearly. Undertake site inspections to verify. Monitor the implementation of noise control mechanisms via site inspections and record and report non-compliance. Ensure that the construction personnel are made aware of these demarcations. Monitor via site inspections and report non- compliance. 	1. Monthly 2. Monthly 3. Monthly 4. Monthly	 Contractor and ECO Contractor and ECO Contractor and ECO Contracto r and ECO
	Avif	auna: Displacement due to	habitat transformation		
Total or partial displacement of avifauna due to habitat transformation associated with the vegetation clearance and the presence of the solar PV plants and associated infrastructure.	Prevent unnecessary displacement of avifauna by ensuring that the rehabilitation of transformed areas is implemented by an appropriately qualified rehabilitation specialist, according to the recommendations of the biodiversity specialist study.	 Monitor rehabilitation via site audits and site inspections to ensure compliance. Record and report any non- compliance. 	All biodiversity recommendations regarding rehabilitation must be followed	1. Frequency as stated by the biodiversity specialist	 Project Developer Facility Environme ntal Manager Project Developer and Facility Operational Manager

EMPr for the Construction Phase

EMPr for the Operational Phase

	Mitigation/Management	Mitigation/Management		Monitoring	
Impact	Objectives and Outcomes	Actions	Methodology	Frequency	Responsibility
Avifauna: Elect	trocution pf Red Data spec	ies in the onsite substation	S		
Electrocution of Red Data species in the onsite substations	Prevent the mortality of Red Data species	Inspections of the substation yard to look for carcasses of electrocuted birds.	Implement appropriate mitigation by insulating the hardware, if need be.	Monthly	Facility Operational Manager

	Mitigation/Management		Monitoring		
Impact	Objectives and Outcomes	Mitigation/Management Actions	Methodology	Frequency	Responsibility
Avifauna: Disp	acement due to disturband	ce associated with the disn	nantling activities		
The noise and movement associated with the de- commissioning activities at the SEF footprint will be a source of disturbance which would lead to the displacement of avifauna from the area	Prevent unnecessary displacement of avifauna by ensuring that contractors are aware of the requirements of the EMPr.	 A site-specific EMPr must be implemented, which gives appropriate and detailed description of how construction activities must be conducted. All contractors are to adhere to the EMPr and must apply good environmental practice during construction. The EMPr must specifically include the following: No off-road driving. Maximum use of existing roads. Measures to control noise and dust according to latest best practice. Restricted access to the rest of the property. Strict application of all recommendations in the botanical specialist report pertaining to the limitation of the footprint. 	 Implementation of the EMPr. Oversee activities to ensure that the EMPr is implemented and enforced via site audits and inspections. Report and record any non- compliance. Ensure that construction personnel are made aware of the impacts relating to off- road driving. Access roads must be demarcated clearly. Undertake site inspections to verify. Monitor the implementation n of noise control mechanisms via site inspections and record and report non- compliance. Ensure that the footprint area is demarcated and that construction personnel are made aware of these demarcations. Monitor via site inspections and report non- compliance. 	 Monthly Monthly Monthly Monthly monthly 	 O&M Contracto r and ECO Contractor and ECO Contractor and ECO Contractor and ECO Contractor and ECO

EMPr for the Decommissioning Phase

Impact	Mitigation/Management Objectives and Outcomes	Mitigation/Management Actions	Monitoring		
			Methodology	Frequency	Responsibility
Mortality of avifauna, specifically Cape Vulture, due to electrocutions on the overhead powerline poles/towers	Reduction of avian electrocution mortality	If a steel monopole pole design is used, the approved vulture friendly pole/tower design D-DT- 7649 in accordance with the Eskom Distribution Technical Bulletin titled Refurbishment of 66/88kV line kite type frames with D-DT-7649 type top configuration - Reference Number 240- 170000467 relating to bird friendly structures, must be used. If lattice type structures are used, it is imperative that a minimum vertical clearance of 1.8m is maintained between the jumper cables and/or insulator live ends, and the horizontal earthed components. Additional mitigation in the form of insulating sleeves on jumper cables present on strain poles is also recommended (if suitable insulation material is readily available), alternatively all jumper cables must be suspended below the crossarms.	1. Construct the powerline using a minimum vertical clearance of 1.8m between the jumper cables and/or insulators and the horizontal earthed component on the lattice structure.	Once-off	Contractor and ECO

Management Plan for the Construction Phase

Impact	Mitigation/Management Objectives and Outcomes	Mitigation/Managem ent Actions	Monitoring			
			Methodology	Frequency	Responsibilit y	
					 Avifaunal Specialis t Contract or and ECO Contract or and ECO 	
The noise and movement associated with the construction activities at the development footprint will be a source of disturbance which would lead to the displacement of avifauna from the area	Prevent unnecessary displacement of avifauna by ensuring that contractors are aware of the requirements of the Construction Environmental Management Programme (CEMPr.)	 appropriate and detailed description of how construction activities must be conducted. All contractors are to adhere to the CEMPr and should apply good environmental practice during construction. The CEMPr must specifically include the following: No off-road driving; Maximum use of existing roads, where possible; Measures to control noise and dust according to latest best practice; Restricted access to the rest of the property; Strict application of all recommendation s in the biodiversity specialist report pertaining to the limitation of the footprint. 	 construction on personnel are made aware of the impacts relating to off-road driving. 4. Construction on access roads must be demarcat ed clearly. Undertake site inspection s to verify. 5. Monitor the implement ation of noise control mechanis ms via site inspection s and record and report non- construction on area is demarcat ed clearly 	 Once-off Monthly Monthly Monthly Monthly 	 Contract or and ECO Contract or and ECO Contract or and ECO 	

	Mitigation/Management Objectives and Outcomes	Mitigation/Managem ent Actions	Monitoring				
Impact			Methodology	Frequency	Responsibilit y		
			and that constructi on personnel are made aware of these demarcati ons. Monitor via site inspection s and report non- complianc e.				
Avifauna: Mortality d	Avifauna: Mortality due to collision with the overhead powerline						
Mortality of avifauna due to collisions with the overhead powerline.	Reduction of avian collision mortality	Bird Flight Diverters must be fitted to the entire OHL according to the applicable Eskom Engineering Instruction (Eskom Unique Identifier 240 – 93563150: The utilisation of Bird Flight Diverters on Eskom Overhead Lines). These devices must be installed as soon as the conductors and earthwires are strung.	1. Fit Eskom approved Bird Flight Diverters on the entire length of line		1. Contract or and ECO		

Management Plan for the Decommissioning Phase

	Mitigation/Management Objectives and Outcomes	Mitigation/Management Actions	Monitoring				
Impact			Methodology	Frequency	Responsibility		
Avifauna: Displacement due to disturbance							
The noise and movement associated with the decommissioning activities will be a source of disturbance which would lead to the displacement of avifauna from the area	Prevent unnecessary displacement of avifauna by ensuring that contractors are aware of the requirements of the Decommissioning EMPr.	Conduct an avifaunal inspection of the OHL prior to its decommissioning to identify nests on the poles/towers. A site- specific Decommissioning EMPr (DEMPr) must be implemented, which gives appropriate and detailed description of how construction activities must be conducted. All contractors are to adhere to the DEMPr and should apply good environmental practice during decommissioning. The DEMPr must	 Implementation of the DEMPr. Oversee activities to ensure that the DEMPr is implemented and enforced via site audits and inspections. Report and record any non compliance. Ensure that decommissio ning personnel are made aware of the impacts relating to off-road 	 Once- off Monthly Monthly Monthly 	 Contractor and ECO Contractor and ECO Contractor and ECO Contractor and ECO Contractor and ECO Contractor and ECO 		

	Mitigation/Management Objectives and Outcomes	Mitigation/Management Actions	Monitoring		
Impact			Methodology	Frequency	Responsibility
		 specifically include the following: No off-road driving; Maximum use of existing roads during the decommissioning phase and the construction of new roads should be kept to a minimum as far as practical; Measures to control noise and dust according to latest best practice; Restricted access to the rest of the property; Strict application of all recommendations in the botanical specialist report pertaining to the limitation of the footprint. 	 driving. Access roads must be demarcated clearly. Undertake site inspections to verify. Monitor the implementati on of noise control mechanisms via site inspections and record and report non- compliance. Ensure that the decommissio ning area is demarcated clearly and that personnel are made aware of these demarcation s. Monitor via site inspections and report non- compliance. 		