

• Site Investigations

- Slope Stability
 - Rock Mechanics
- Soil Mechanics
- Foundations
- Roads Groundwater
- NHBRC

٠

• Geotechnical Instrumentation

Borrow Pits and Materials

Results of a Shallow Geotechnical Investigation for the Proposed Filling Station on Portion 36 Olifantsvlei 327-IQ, Gauteng

Client: Great Site Investments (Pty) Ltd

Reference: 16-0730R03

Dated: 27 February 2017

GCS Geotechnical 63 Wessels Street

Rivonia Cell: +27 (0)82 567 1561 ninow@gcs-sa.biz www.gcs-sa.biz

Reference: 16-0730R03

Date: 27 February 2017

TABLE OF CONTENTS

EXECU	TIVE SUMMARY	3
1.	INTRODUCTION & TERMS OF REFERENCE	5
2.	AVAILABLE INFORMATION	5
3.	SITE DESCRIPTION	6
4.	GEOLOGY	6
5.	FIELDWORK	7
5.1	TLB-Excavated Trial Pits	7
5.2	DCP Penetrometer	9
6.	GROUNDWATER	9
7.	LABORATORY TESTING	9
8.	DEVELOPMENT RECOMMENDATIONS 1	0
8.1	Materials Usage	0
8.2	Foundations	1
8.3	Excavatability & Earthworks	1
8.4	Drainage	.1
9.	CONCLUSIONS & RECOMMENDATIONS 1	1

Appendix A	TLB-excavated Trial Pit Profiles
Appendix B	Laboratory Test Results
Appendix C	DCP Profiles
Figure 1	Site Plan
Figure 2	Geological Plan

Reference: 16-0730R03

Date: 27 February 2017

EXECUTIVE SUMMARY

This report presents the results of a shallow geotechnical investigation for a proposed new filling station on Portion 36 of the farm Olifantsvlei 327-IQ, Gauteng, and presents the conclusions and recommendations for the proposed excavations, foundations and earthworks.

The most critical aspect of these two sites in relation to the proposed development is the presence of a steep boulder talus slope at the western site and a deeply incised drainage channel at the eastern site. The uppermost topsoil horizon should prove excavatable using soft excavation (SABS 1200 D) to depths of around 0.2 m. The potentially collapsible hillwash and residuum should also prove excavatable using soft excavation to around 2 m, and possibly intermediate to hard excavation below this depth, if required.

Soft and Boulder Class A excavation in terms of SABS 1200 D is generally anticipated to an average of 2 m below natural ground level over the site, and possibly intermediate to hard excavation below this depth, if required for the fuel tanks. The talus boulder materials excavated as part of the earthworks at the western site can be stockpiled on site for use in pioneer or dumprock layer backfilling, especially in the deep drainage trench on the eastern site.

Semi-conventional reinforced strip/pad footings can be designed for a maximum safe allowable bearing capacity of around 150 kPa, provided these are placed on at least stiff residual lava at depths of 1.5 m or more.

It is recommended that once excavations have been opened, blinding of the exposed geology takes place as soon as possible, so as to prevent water ingress as this may result in material deterioration, if not controlled.

Finally, the ground conditions described in this report refer specifically to those encountered at the test positions advanced on site. It is therefore possible that conditions at variance with those discussed above may be encountered elsewhere on the site. In this regard it is critical that materials management be maintained continuously on site and that GCS Geotechnical carry out periodic inspections of the site during construction to ensure that any variation in the anticipated ground conditions can be assessed and revised recommendations subsequently provided in order to avoid unnecessary delays and expense. Furthermore it is important that the construction phase of the project be treated as an augmentation of the geotechnical investigation.

Reference:	16-0730R03	Date: 27 February 2017
		Definitions and Abbreviations
<u>Commercial:</u>		
GCS Geotechni	ical	GCS Geotechnical (Pty.) Ltd.
<u>Technical:</u>		
СН		Chainage (metres)
mbgl		metres below ground level
masl		metres above sea level
NGL		Natural Ground Level
FL		Foundation Level
BH		Borehole
SPT		Standard Penetration Test
Ν		SPT N value (blows per 300 mm)
TLB		Tractor-mounted Loader Backhoe
TP		Test Pit
DCP		Dynamic Cone Penetrometer
EABC		Estimated Allowable Bearing Capacity
G1-G10		Standard classification of natural road building materials (TRH 14)
CBR		California Bearing Ratio
MDD		Maximum Dry Density (kg/m3)
MADD		Modified AASHTO Dry Density
OMC		Optimum moisture Content (%)
PI		Plasticity Index
LL		Liquid Limit
LS		Linear Shrinkage
RMR		Rock Mass Rating
GSI		Geological Strength Index
mi		Hoek-Brown Constant (origin & texture dependent)
RQD		Rock Quality Designation (%)
FF		Fracture frequency
UCS		Unconfined Compressive Strength (MPa)
C (c')		Cohesion (kPa) – total stress and (effective stress)
$\Phi(\Phi')$		Friction Angle (degrees) – total stress and (effective stress)
Kv		Modulus of Subgrade Reaction (MN/mm or kPa/mm)
CFA		Continuous Flight Auger (pile type)
DCI		Driven Cast In situ (pile type)
Cv		Coefficient of Consolidation (m2/yr)
Mv		Modulus of Compressibility (m2/MN)
MC1		Moisture Content Before Test (%)
MC2		Moisture Content After Test (%)
ρ		Dry Density (kg/m3)
VSR		Very soft rock
SR		Soft rock
MHR		Medium hard rock
HR		Hard rock
VHR		Very hard rock

Reference: 16-0730R03

Date: 27 February 2017

1. INTRODUCTION & TERMS OF REFERENCE

At the request of Mr. Farhat Shaik and on behalf of Great Site Investments (Pty) Ltd (hereafter referred to as GSI), *GCS Geotechnical* (hereafter referred to as GCS) was asked to provide a proposal and cost estimate quotation for the undertaking of a shallow geotechnical investigation for the proposed filling station on Portion 36 of Olifantsvlei 327-IQ. The appointment accepted and finalized and the fieldwork was completed on 31 January 2017.

2. AVAILABLE INFORMATION

The following information was drawn upon for the purposes of the investigation:

- The 1:250 000 Geological Map titled "2626 West Rand" as compiled by the South African Geological Survey, 1986.
- The 1:50 000 Geotechnical Map 2627BD Lenasia, CGS, 2003
- Google Earth
- SABS 1200 D Earthworks

The table below shows the available published physiographical data pertaining to the site.

Parameter	Value	Reference
Development	Filling station	Box Ways
Site coordinates	26°17'32"S / 27°59'40"E	Box Ways
Weinerts N-value	2-5	Weinert (1974)
Climatic Region	Moderate	TRH 2 (1978)
Rainfall	550-600 mm	www.saexplorer.co.za
Temperature	17.5-26 °C	after DWAF (1986)
Evaporation	1625 mm	After DWAF (1986)
Water Balance	Deficit	Schulze (1985)
Weathering Type	Slight disintegration, moderate	Fookes et al (1971)
	decomposition, very slight	
	weathering	
Geology	Predominantly Adesite lava of	2626 West Rand (1986) 1:250 000 scale
	the Hekpoort Group	
Soil Cover	Sand	Brink (1985)
Origin	Transported & residual	Brink (1985)
Topography	1:50	Garmap SA Topo & Rec 2012.1
Drainage	None	Garmap SA Topo & Rec 2012.1
Drainage Region	Quaternary Catchment: C22	DWAF (1999)
Hydrogeology	Intergranular and fractured; 0.5-	2526 Johannesburg (1999) 1:500 000
	1 l/s	scale
Groundwater depth	Unknown	DWAF-WRC (1995)
Erodibility Index	16-20 (Low)	WRC (1992)
Seismic Intensity	VI (MMS)	Fernandez et al (1972)
Liquefaction	Unlikely (<50 cm/s2)	Welland (2002)

Table 2-1: Summary of Available Desk Study Information

3. SITE DESCRIPTION

The site is located on portion 36 of Olifantsvlei 327-IQ which is bisected by the Johannesburg-Vereeniging highway (route K57 – Road P1/1).

The total site area comprises two individual sites (west and east) on either side of the abovementioned highway.

No known sub-surface or overhead services were observed on site except for a Rand Water servitude on the east site.

Topographically, both sites fall steeply towards the highway and a deeply incised drainage path that affects the site to the east.

4. **GEOLOGY**

Based on the 1:250 000 Geological Map titled "2627 – West Rand", the site is underlain by Andesite lava of the Hekpoort Group, Ventersdorp Supergroup.

5. FIELDWORK

TLB-excavated trial pits (hereafter referred to as TP's) were conducted on site, in order to better understand the general engineering properties of the subsurface materials in relation to the proposed filling station development. In addition, hand-held DCP penetrometers were completed along the centreline of the access roads and apron courtyard of the two sites.

5.1 TLB-Excavated Trial Pits

Five TP's were excavated on the western site and one TP on the eastern site, in order to better understand the properties of the subsurface soils.

The results of the TP's indicated refusal by the TLB at depths ranging between 1.3 and 2.3 m at an average of 1.7 m below existing ground level, refusing, in all instances, on saprolite or boulders.

The detailed profiles are provided in Appendix A and a summary is provided below.

De	Depth I		Excavatibility	EABC	Kv	E
From	То	Description	(SABS	(kPa)	(kPa/mm)	(MPa)
(m)	(m)		1200D)	``´´	· · · ·	· · ·
Talus						
0	1.0	Hard BOULDERS of lava in a silty matrix.	Boulder A	N/A	N/A	N/A
Residu	al Lava					
1.0	1.6	Slightly moist, red-pink, STIFF, SILT with scattered cobbles and boulders.	Soft	150-200	50-100	15-25
Weathered Lava						
1.6	1.6+	As above but becoming VERY DENSE BOULDERS, to weathered SOFT ROCK LAVA.	Soft	200-250	100-200	25-35

Table 5-1a: Summary of Soil Profile (West Site - Structures)

EABC = estimated allowable bearing capacity (ignoring collapse potential)

Kv = modulus of subgrade reaction

E = elastic modulus

NB. Tabulated depths are an average across the site. For more detailed Pit specific depths, refer to the TP Logs

De	pth		Excavatibility	EABC	Kv	E
From	To	Description	(SABS 1200D)	(kPa)	(kPa/mm)	(MPa)
(m)	(m)		1200D)			
Fill						
0	0.4	Slightly moist, grey to yellow brown, LOOSE/SOFT, clayey SILT with scattered gravel.	Soft	N/A	N/A	N/A
Hillwa	sh					
0.4	1.0	Slightly moist, dark grey brown, STIFF/DENSE, pin-holed, clayey sandy SILT.	Soft	150-200	50-100	15-25
Saprol	ite					
1.0	1.1	Slightly moist, pink-red, STIFF, SILT.	Soft	200-250	100-200	25-35

Table 5-1b: Summary of Soil Profile (West Site – Access Roads/Apron)

EABC = estimated allowable bearing capacity (ignoring collapse potential)

Kv = modulus of subgrade reaction

E = elastic modulus

NB. Tabulated depths are an average across the site. For more detailed Pit specific depths, refer to the TP Logs

Dej	pth		Excavatibility	FARC	Kv	F
From (m)	To (m)	Description	(SABS 1200D)	(kPa)	(kPa/mm)	(MPa)
Topsoil	l (III)	L	,			
0	0.2	Slightly moist, grey to yellow brown, LOOSE/SOFT, clayey SILT with scattered gravel.	Soft	N/A	N/A	N/A
Hillwas	sh					
0.2	1.0	Slightly moist, dark grey brown, STIFF/DENSE, pin-holed, clayey sandy SILT.	Soft	150-200	50-100	15-25
Saprolite						
1.0	2.0	Slightly moist, pink-red, STIFF, clayey SILT with scattered boulders of hard lava.	Soft	200-250	100-200	25-35

Table 5-1c: Summary of Soil Profile (East Site – Structure)

EABC = estimated allowable bearing capacity (ignoring collapse potential)

Kv = modulus of subgrade reaction

 $E = elastic \ modulus$

NB. Tabulated depths are an average across the site. For more detailed Pit specific depths, refer to the TP Logs

5.2 DCP Penetrometer

5.2.1 West Site

Table 5.2.1: Summary of DCP Results (West Site					
Depth (m-m)	Consistency	CBR (%)			
0-0.2	Loose	3 to 5			
0.2-0.6	Med dense	7 to 15			
0.6-1.0	Dense	>15			

5.2.2 East Site

Table 5.2.2: Summary of DCP Results (East Site)

Depth (m-m)	Consistency	CBR (%)
0-0.35	V loose to loose	2 to 5
0.35-1.0	Med dense	7 to 17

6. **GROUNDWATER**

Groundwater seepage was not encountered in any of the test pits. A portion of the eastern site may be affected by the 1:100 year floodline.

The site is situated in the C22 Tertiary Catchment area.

7. LABORATORY TESTING

Laboratory tests were scheduled on soil samples recovered from the site.

The following tests were carried out:

- 3 No. Foundation indicator tests (PSD, hydrometer and Atterberg Limits),
- 2 No. Collapse Potential

Detailed laboratory test results are provided in Appendix B and a summary of the results are provided in tabular format below:

ТР	Depth	LL	Ы	GM	CBR*	С	lassificatio	ons
	(m-m)	LL	••	Givi	(%)	TRH14	PRA	USCS
Hillwash								
E1	0.5	36	15	0.37	8	A.6	G10	CL-OL
W5	0.5	30	14	0.26	9	A.6	G10	CL-OL
Residual lava								
W1	1.0-1.7	51	16	0.70	10	A.7.5	G10	OH-MH

Table 7-1: Summary of Foundation Indicators

*CBR estimated from PI-GM relationship.

The hillwash is borderline medium expansive.

Table 7-2: Collapse Potential Results							
ТР	Depth	MCa*	MCb**	Dry density	eO	CP200***	Settlement
	(m-m)	(%)	(%)	(kg/m3)		(%)	(mm)
Hillwa	ısh						
E1	0.5	16.84	23.87	1062	1.51	7.1	50-60
W5	0.5	8.09	12.83	1574	0.67	0.5	<5
Residual lava							
W1	1.0-1.7	25.25	30.94	1256	1.11	0.4	<5

Table 7-3: Materials Classification and Recommended Usage

Tuble ? et muterials classification and Recommended couge						
Material	Classification	Recommended Usage				
Description						
Talus	Not tested	Cut to spoil or as dump rock				
Hillwash	PI = 14-15 GM = 0.26-0.37 Classification: A.6, G10, CL-OL, CP = 0.5 to 7.1%, medium expansive	Cut to spoil				
Residual	PI = 16 GM = 0.70 Classification: A.7.5, G10, OH-MH,	Cut to spoil				

8. DEVELOPMENT RECOMMENDATIONS

8.1 Materials Usage

The soils encountered on site range from silty clayey sand to silt, and finally to a boulder talus. Topsoil may be stockpiled for re-use at a later stage in landscaping, while the hillwash, residuum and talus cannot be used for any construction application except for the boulder talus which may be considered for a pioneer layer or dump rock fill. This may be required to backfill the deep drainage path on the eastern site.

8.2 Foundations

8.2.1 West Site

The west site is situated against a steep, talus slope and will require extensive excavation within this material. The boulders could be placed and compacted as a dump rock fill at the base of the proposed fill area or transported to the eastern site to backfill the deep drainage trench. Alternatively, the main structure and forecourt area could be levelled in cut as one platform.

Semi-conventional reinforced strip/pad foundations could be considered on the stiff residuum or saprolite with an allowable bearing pressure of 150 kPa.

8.2.2 East Site

The eastern side of the site is compromised by an incisive drainage path that cuts the access roads from the main structure. Test pit E1 shows competent foundation conditions within stiff residual silt which occurs below the potentially collapsible hillwash horizon at about 1 m depth. Semi-conventional reinforced strip/pad foundations could be placed at this level.

8.3 Excavatability & Earthworks

Soft excavation (SABS 1200 D) and Boulder Class A is anticipated to a depth of around 2.5 m below ground level at both sites, below which intermediate to hard excavation should be encountered.

8.4 Drainage

For the promotion of a stable site, it is important that adequate drainage, both surface and subsurface, be constructed so that no water ingress into the subsurface soils in and around the foundation base is possible. Drainage should be such that any rainfall is diverted to the nearest stormwater drainage system. Areas of potential pooling or damming of rainfall on site should be carefully designed and sloped so as the remove this water from the site. Once excavations have been opened, they are to be blinded with mass concrete as soon as possible, so as to prevent any rainfall occurring having an impact on the founding subsurface.

A particular constraint has been identified on the eastern site where an incisive drainage path will require a culvert crossing for both the entrance and exit ramps. The backfill of this trench could be achieved by using the boulder talus from the bulk earthworks excavation on the western site. This would provide a pervious yet stable backfill horizon around the culvert.

9. CONCLUSIONS & RECOMMENDATIONS

<u>General</u>

This report presents the results of a shallow geotechnical investigation for the proposed new filling station on Portion 36 of Olifantsvlei 357-IQ, Gauteng, and presents the conclusions and recommendations for the proposed excavations, foundations and earthworks.

• The most critical aspect of these sites in relation to the proposed development is the presence of a steep talus slope at the west site and a deep incised drainage channel at the east site. Construction materials are scarce but the adjacent Readymix quarry can supply materials.

Geology & Ground Conditions

The sites are underlain by Andesite lava of the Hekpoort Formation. Potentially collapsible sand was encountered at both sites and was also discovered to be borderline medium expansive. Boulder talus affects the wet site and a deep drainage path affects the east site.

<u>Excavatability</u>

Soft and Boulder Class A excavation in terms of SABS 1200 D is generally anticipated to an average of 2.5 m below natural ground level over the site, and possibly intermediate to hard excavation below this depth. The boulder talus excavated as part of the earthworks on the western site could be re-used as a dump rock or pioneer layer or backfill of the drainage channel to facilitate access to the eastern site.

Foundations

Semi-conventional reinforced strip and pad footings can be designed for a maximum safe allowable bearing capacity of around 150 kPa at nominal depth on the stiff residual to saprolitic lava and light reinforcement is introduced into the footings and masonry. It is recommended that once excavations have been opened, blinding of the exposed geology takes place as soon as possible, so as to prevent water ingress as this may result in material deterioration, if not controlled.

Further Investigations

Finally, the ground conditions described in this report refer specifically to those encountered at the test positions advanced on site. It is therefore possible that conditions at variance with those discussed above may be encountered elsewhere on the site. In this regard it is critical that materials management be maintained continuously on site and that *GCS Geotechnical* carry out periodic inspections of the site during construction to ensure that any variation in the anticipated ground conditions can be assessed and revised recommendations subsequently provided in order to avoid unnecessary delays and expense. Furthermore it is important that the construction phase of the project be treated as an augmentation of the geotechnical investigation.

For GCS Geotechnical

21 February 2017

ninow@gcs-sa.biz www.gcs-sa.biz

APPENDIX A TLB-Excavated Trial Pit Profiles

Job Description:	portion 36 Olifantsvlei					
Job No.:	16-0730					
Client:	Boxways					
Machine:	Cat 422E					
Location:	Olifantsvlei					
Logged by:	AMW					
Date:	31-Jan-17	Sheet:	1	of	1	

-

Test Pit No.

TP W1

63 Wessels St, Rivonia

Tel: +27 (0)82 567 1561 e-mail: ninow@gcs-sa.biz

Co-ordinates:	Job Description:	portion 36 Olifantsvlei
x	16-0730	
у	Boxways	
Elevation:	Machine:	Cat 422DE
Co-ord System:	Logged by:	AMW
	Date:	31-Jan-17 Sheet: 1 of 1

From:	То:	Thickness (m)	Description
0.00	0.45	0.45	Slightly moist, yellow grey brown, LOOSE to V LOOSE, silty <u>SAND</u> <u>with roots</u> . FILL.
0.45	0.50	0.10	Tar layer. Old road surface.
0.50	1.00	0.50	Slightly moist, red brown, DENSE-STIFF, silty clayey GRAVEL & cobble grave; of hard weathered lava with minor roots. Subbase FILL.
1.00	1.70	0.70	Slightly moist to moist, red brown, V STIFF, micro-shattered, CLAY/SILT. RESIDUAL LAVA.
1.70	1.80	0.10	Slightly moist, pale yellow grey brown, STIFF, reworked, SILT. SAPROLITE.

Notes:

1) No groundwater seepage encountered

2) Partial refusal of TLB at 1.8 m

3) No visible sidewall collapse

4) U/D sample at 1.0-1.7m

	Test Pit Profile		Test Pit No.	
GCS			TP W4	
Geotechnical Engineering	Tel: +27 ((inow@gcs-sa.biz		
Co-ordinates:	Job Description:	portion 36 Olifantsvle	ei	
x	Job No.:	16-0730		
У	Client:	Boxways		
Elevation:	Machine:	Cat 422DE		
Co-ord System:	Logged by:	AMW		
	Date:	31-Jan-17	Sheet: 1 of 1	

From:	To:	Thickness (m)	Description
0.00	0.20	0.20	
0.20	1.00	0.80	Slightly moist, grey brown, FIRM (pp=35mm), pin-holed, clayey SILT with roots. HILLWASH.
1.00	2.00	1.00	Slightly moist, red orange brown, STIFF (pp=10mm), intact, clayey SILT with mnor roots and occassional scattered boulders of hard lava (<250mm). RESIDUAL LAVA.
2.00	2.20	0.20	Refusal on BOULDERS or weathered lava bedrock.

Notes:

1) No groundwater seepage encountered

2) Refusal of TLB at 2.2 m

3) No visible sidewall collapse

4) Small U/D samples at 0.5 m5) Approach lane

Test Pit No.

TP W2

Tel: +27 (0)82 567 1561 e-mail: ninow@gcs-sa.biz

Co-ordinates:	Job Description:	portion 36 Olifantsvlei		
x	Job No.: 16-0730			
У	Client:	Boxways		
Elevation:	Cat 422DE			
Co-ord System:	Logged by:	AMW		
	Date:	31-Jan-17 Sheet: 1 of 1		

From:	To:	Thickness	Description
0.00	0.20	0.20	Moist, dark grey brown, SOFT, organic, clayey SILT with abundant roots. TOPSOIL.
0.20	0.60	0.40	Slightly moist to moist, grey brown, SOFT to FIRM (pp=25mm), clayey SILT. ALLUVIUM?
0.60	1.00	0.40	Slightly moist to moist, red grey brown, SOFT (pp=30mm), intact, clayey SILT. RESIDUAL LAVA.
1.00	2.30	1.30	Slightly moist, red brown speckled black, STIFF to FIRM, partially ferruginised, intact, clayey SILT with scattered ferricrete nodules and core-stones. SAPROLITE.

Notes:

1) No groundwater seepage encountered

2) No refusal of TLB at 2.3 m

3) No visible sidewall collapse

4) Access road

Test Pit No.

TP W3

Tel: +27 (0)82 567 1561 e-mail: ninow@gcs-sa.biz

Co-ordinates:	Job Description:	portion 36 Olifantsvlei		
x	Job No.:	16-0730		
У	Client:	Boxways		
Elevation:	Cat 422DE			
Co-ord System:	Logged by:	AMW		
	Date:	31-Jan-16 Sheet: 1 of 1		

From:	То:	Thickness (m)	Description
0.00	1.00	1.00	Slightly moist, BOULDERS of hard lava in a matrix of red-pink, STIFF, SILT. TALUS.
1.00	1.60	0.60	Slightly moist, red-pink, STIFF, SILT with scattered rounded boulders (250mm max) of hand lava. TALUS.
1.60	1.65	0.05	Refusal on DENSE BOULDERS. TALUS.
1.60	1.65	0.05	Refusal on DENSE BOULDERS. TALUS.

Notes:

1) No groundwater seepage encountered

2) Refusal of TLB at 1.65 m

3) No visible sidewall collapse

4) Main filling station

Test Pit No.

TP W4

Tel: +27 (0)82 567 1561 e-mail: ninow@gcs-sa.biz

Co-ordinates:	Job Description:	portion 36 Olifantsvlei		
x	Job No.:	16-0730		
у	Client:	Boxways		
Elevation:	Machine:	Cat 422DE		
Co-ord System:	Logged by:	AMW		
	Date:	31-Jan-17 Sheet: 1 of 1		

From:	То:	Thickness (m)	Description
0.00	0.40	0.40	Slightly moist, grey brown, LOOSE, fine GRAVEL of platy shale. FILL.
0.40	1.10	0.70	Slightly moist, dark grey brown, STIFF-DENSE, pin-holed, clayey sandy SILT. RESIDUL LAVA.
1.10	1.20	0.10	Refusal on BOULDERS or weathered lava bedrock.

Notes:

1) No groundwater seepage encountered

2) Refusal of TLB at 1.2 m

3) No visible sidewall collapse

5) Approach lane

GCS	Test Pit Profile		Test Pit No. TP W5
Geotechnical Engineering	Tel: +27 ((inow@gcs-sa.biz	
Co-ordinates:	Job Description: portion 36 Olifantsvlei		
x	Job No.:	16-0730	
У	Client:	Boxways	
Elevation:	Machine:	Cat 422DE	
Co-ord System:	Logged by:	AMW	
	Date:	31-Jan-17	Sheet: 1 of 1

From:	To:	Thickness	Description
		(m)	
0.00	0.40	0.40	Slightly moist, grey to yellow brown, LOOSE to SOFT, clayey SILT with fine shattered gravel. FILL.
0.40	1.00	0.60	Slightly moist, dark grey brown, STIFF-DENSE, pin-holed, clayey sandy SILT. HILLWASH.
1.10	1.20	0.10	Becoming STIFF SILT. SAPROLITE.

Notes:

1) No groundwater seepage encountered

2) No refusal of TLB at 1.2 m

3) No visible sidewall collapse

4) Small U/D sample at 0.5 m

5) Exit lane

APPENDIX B Laboratory Test Results

TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

FOUNDATION INDICATOR

Client	GCS GEOTECHNICAL ENGINEERING		
Location	OLIFANTSVLEI FS W 5 @ 0,5m		
Date	06 FEBRUARY 2017	Test No	136
Job No	17025	Checked By	EB

SIEVE ANALYSIS

Values are expressed as a percentage of total sample

Sieve	Total	
Size	Passing	
(mm)	(%)	
75.00	100.00	
53.00	100.00	
37.50	100.00	
26.50	100.00	
19.00	100.00	
9.50	100.00	
4.75	99.92	
2.00	99.32	
0.425	94.54	

HYDROMETER ANALYSIS

Values are expressed as a percentage of total sample

Sieve	Total	
Size	Passing	
(mm)	(%)	
0.0861	79.67	
0.0633	70.82	
0.0464	61.97	
0.0343	49.58	
0.0048	26.56	
0.0015	8.85	

ESTIMATED COMPOSITION (As BS 1377)

Clay (<0.002)	11.78
0.002 < Silt < 0.06	57.34
0.06 < Sand < 2.0	30.21
Gravel > 2.0	0.68
% less than 0.075	75.38

ATTERBERG LIMITS & OTHER VALUES

Liquid Limit	30	
Plastic Limit	16	
Plastic Index	14	
Linear Shrinkage	7	
Grading Modulus	0.26	
Moisture Content	14.50	
PI on Whole Sample	13	
PRA Classification	A.6	
Unified Classification	See Plastici	ty Chart

Revision No 5 (06/07/2016)

TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

FOUNDATION INDICATOR

Client	GCS GEOTECHNICAL ENGINEERING		
Location	OLIFANTSVLEI FS E 1	1 @ 0,5m	
Date	06 FEBRUARY 2017	Test No	138
Job No	17025	Checked By	EB

SIEVE ANALYSIS

Values are expressed as a percentage of total sample

Sieve	Total	
Size	Passing	
(mm)	(%)	
75.00	100.00	
53.00	100.00	
37.50	100.00	
26.50	100.00	
19.00	100.00	
9.50	100.00	
4.75	99.43	
2.00	95.67	
0.425	89.18	

HYDROMETER ANALYSIS

Values are expressed as a percentage of total sample

Sieve	Total	
Size	Passing	
(mm)	(%)	
0.0847	78.49	
0.0613	73.48	
0.0454	63.46	
0.0332	55.11	
0.0047	31.73	
0.0014	11.69	

ESTIMATED COMPOSITION (As BS 1377)

Clay (<0.002)	15.15
0.002 < Silt < 0.06	57.49
0.06 < Sand < 2.0	23.02
Gravel > 2.0	4.33
% less than 0.075	76.42

ATTERBERG LIMITS & OTHER VALUES

Liquid Limit	36	
Plastic Limit	21	
Plastic Index	15	
Linear Shrinkage	8	
Grading Modulus	0.37	
Moisture Content	20.47	
PI on Whole Sample	13	
PRA Classification	A.6	
Unified Classification	See Plastici	ty Chart

Revision No 5 (06/07/2016)

TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

FOUNDATION INDICATOR

Client	GCS GEOTECHNICAL ENGINEERING		
Location	OLIFANTSVLEI FS W	1 @ 1.0 - 1,7m	
Date	06 FEBRUARY 2017	Test No	140
Job No	17025	Checked By	EB

SIEVE ANALYSIS

Values are expressed as a percentage of total sample

Sieve	Total
Size	Passing
(mm)	(%)
75.00	100.00
53.00	100.00
37.50	100.00
26.50	100.00
19.00	100.00
9.50	100.00
4.75	99.56
2.00	91.12
0.425	78.50

HYDROMETER ANALYSIS

Values are expressed as a percentage of total sample

Sieve	Total
Size	Passing
(mm)	(%)
0.0888	60.27
0.0642	55.86
0.0467	49.98
0.0341	42.63
0.0048	20.58
0.0015	7.35

ESTIMATED COMPOSITION (As BS 1377)

Clay (<0.002)	9.52
0.002 < Silt < 0.06	44.94
0.06 < Sand < 2.0	36.67
Gravel > 2.0	8.88
% less than 0.075	57.80

ATTERBERG LIMITS & OTHER VALUES

Liquid Limit	51	
Plastic Limit	35	
Plastic Index	16	
Linear Shrinkage	11	
Grading Modulus	0.70	
Moisture Content	12.76	
PI on Whole Sample	13	
PRA Classification	A.7.5	
Unified Classification	See Plastici	ty Chart

Revision No 5 (06/07/2016)

TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

COLLAPSE POTENTIAL at 200 kPa

Client	GCS GEOTECHNICAL ENGINEERING			
Location	OLIFANTSVLEI FS V	V5 @ 0,5m		
Date	06 FEBRUARY 2017	Test No	135	
Job No	17025	Checked By	EB	

Sample Height (mm) 20	Sample Diameter (mm)	64	Sample Specific Gravity	2.624
-----------------------	----------------------	----	-------------------------	-------

Sample Preparation

NMC

Effective	Time	Consolidation	Voids	Strain
Stress		Reading	Ratio	(%)
(kPa)	(mins)			
10	60	1295	0.667	0.00
10	90	1296	0.666	0.05
33	130	1312	0.652	0.85
65	190	1328	0.639	1.65
127	310	1340	0.629	2.25
200	1750	1357	0.615	3.10
200	3190	1367	0.607	3.60
498	3430	1398	0.581	5.15
993	3670	1434	0.551	6.95
1868	5110	1488	0.506	9.65
743	5230	1484	0.509	9.45
118	5350	1470	0.521	8.75
10	5470	1444	0.542	7.45

Moisture Content Calculations

Mass wet sample plus ring before test (gms)	323.90
Mass wet sample plus ring after test (gms)	328.70
Mass dry sample plus ring (gms)	315.70
Mass ring (gms)	214.40
Moisture content before test (%)	8.09
Moisture content after test (%)	12.83

Other Data

Initial Dry Density (kg/m3)	1574
Initial Void Ratio	0.67

Programe Data Revision No 2 (19/03/2001)

VOIDS RATIO v EFFECTIVE STRESS

STRAIN v EFFECTIVE STRESS

TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

COLLAPSE POTENTIAL at 200 kPa

Client	GCS GEOTECHNICAL ENGINEERING			
Location	OLIFANTSVLEI FS E	E1 @ 0,5m		
Date	06 FEBRUARY 2017	Test No	137	
Job No	17025	Checked By	EB	

Sample Height (mm) 20	Sample Diameter (mm)	64	Sample Specific Gravity	2.663
-----------------------	----------------------	----	-------------------------	-------

Sample Preparation

NMC

•				
Effective	Time	Consolidation	Voids	Strain
Stress		Reading	Ratio	(%)
(kPa)	(mins)			
10	60	654	1.509	0.00
10	90	654	1.509	0.00
33	130	671	1.487	0.85
65	190	690	1.463	1.80
127	310	708	1.441	2.70
200	1750	720	1.426	3.30
200	3190	862	1.248	10.40
498	3430	954	1.132	15.00
993	3670	1015	1.056	18.05
1868	5110	1073	0.983	20.95
743	5230	1058	1.002	20.20
118	5350	1045	1.018	19.55
10	5470	1021	1.048	18.35

Moisture Content Calculations

Mass wet sample plus ring before test (gms)	292.20
Mass wet sample plus ring after test (gms)	297.00
Mass dry sample plus ring (gms)	280.70
Mass ring (gms)	212.40
Moisture content before test (%)	16.84
Moisture content after test (%)	23.87

Other Data

Initial Dry Density (kg/m3)	1062
Initial Void Ratio	1.51

Programe Data Revision No 2 (19/03/2001)

VOIDS RATIO v EFFECTIVE STRESS

STRAIN v EFFECTIVE STRESS

TEL: (011) 674 1325 FAX: (011) 674 4513 e mail: lab@geopractica.co.za

COLLAPSE POTENTIAL at 200 kPa

Client	GCS GEOTECHNICAL ENGINEERING		
Location	OLIFANTSVLEI FS V	V1 @ 1,0 - 1,7m	
Date	06 FEBRUARY 2017	Test No	139
Job No	17025	Checked By	EB

Sample Height (mm) 20	Sample Diameter (mm)	64	Sample Specific Gravity	2.648
-----------------------	----------------------	----	-------------------------	-------

Sample Preparation

NMC

·			-	
Effective	Time	Consolidation	Voids	Strain
Stress		Reading	Ratio	(%)
(kPa)	(mins)			
10	60	458	1.109	0.00
10	90	460	1.106	0.10
33	130	464	1.102	0.30
65	190	470	1.096	0.60
127	310	480	1.085	1.10
200	1750	490	1.075	1.60
200	3190	497	1.067	1.95
498	3430	547	1.015	4.45
993	3670	597	0.962	6.95
1868	5110	647	0.909	9.45
743	5230	633	0.924	8.75
118	5350	612	0.946	7.70
10	5470	582	0.978	6.20

Moisture Content Calculations

Mass wet sample plus ring before test (gms)	315.10
Mass wet sample plus ring after test (gms)	319.70
Mass dry sample plus ring (gms)	294.70
Mass ring (gms)	213.90
Moisture content before test (%)	25.25
Moisture content after test (%)	30.94

Other Data

Initial Dry Density (kg/m3)	1256
Initial Void Ratio	1.11

Programe Data Revision No 2 (19/03/2001)

VOIDS RATIO v EFFECTIVE STRESS

STRAIN v EFFECTIVE STRESS

APPENDIX C DCP Profiles

Olifantsvlei Filling Station Foundations

> **TEST No** DCP 1

Operator:

Warren

CBR DYNAMIC CONE PENETROMETER PROBE

Section:

THE STRENGTH AND CBR VALUES ARE EMPIRICAL AND DEPEND ON FACTORS SUCH AS MOISTURE CONTENT WHICH HAVE NOT BEEN DETERMINED. THEY ARE THEREFORE INDICATIVE AND SHOULD BE VERIFIED BY TEST OR OBSERVATION.

Depth	Blows/	Inferred	Shear	CBR	1		Blowe pr	ar 100mm		
(m)	100mm	Consistency	Strength	%] .	0 40	DIOWS PE		40	F 0
0.0	0					0 10	20	30	40	50
0.1	2	Loose	<30 deg	3	0.0 -					
0.2	3	Loose	<30 deg	5						
0.3	2	Loose	<30 deg	3						
0.5	15	Dense	37 deg	27	0.5					
0.6	11	Dense	36 deg	19	0.5		-			
0.7	12	Dense	36 deg	21						
0.8	24	Dense	38 deg	47						
0.9	30 19	Dense	>30 deg 37 deg	>00	10					
1.1					1.0		_			
1.2										
1.3										
1.4					15					
1.6					1.0					
1.7										
1.8										
1.9					2.0 -					
2.0					-					
					2.5 -					
					Ê					
					Ē					
					ੂ ਦੂ 3.0 -					
					Dep					
					25					
					3.5 -					
					40-					
					4.5					
					5.0					
					5.5 -					
					60					
					0.0					

Project: Olifantsvlei Filling Station
Section: Foundations

TEST No DCP 2

Operator:

Warren

CBR DYNAMIC CONE PENETROMETER PROBE

THE STRENGTH AND CBR VALUES ARE EMPIRICAL AND DEPEND ON FACTORS SUCH AS MOISTURE CONTENT WHICH HAVE NOT BEEN DETERMINED. THEY ARE THEREFORE INDICATIVE AND SHOULD BE VERIFIED BY TEST OR OBSERVATION.

Depth	Blows/	Inferred	Shear	CBR				Blows po	100mm		
(m)	100mm	Consistency	Strength	%		`	40	Biows per		40	F ^
0.0	0			•	(J	10	20	30	40	50
0.1	5	Med.Dense	32 deg	8	0.0 -						
0.2	7	Med.Dense	34 deg	12							
0.3	4	Med.Dense	30 deg	7							
0.4	4	Med Dense	30 deg	/ 8							
0.5	5	Med Dense	32 deg	8	0.5 -						
0.7	5	Med.Dense	32 deg	8							
0.8	4	Med.Dense	30 deg	7							
0.9	4	Med.Dense	30 deg	7							
1.0	5	Med.Dense	32 deg	8	1.0 -	·····					
1.1											
1.2											
1.4											
1.5					1.5 -						
1.6											
1.7											
1.0											
2.0					2.0 -						
					2.5 -						
					Ê						
					ta 3.0 -						
					De						
					_						
					35-						
					0.0						
					4.0 -						
					-						
					4.5 -						
					5.0 -						
					5.5 -						
					6.0 -				1	1	
1					1						

Project:Olifantsvlei Filling StationSection:Foundations

TEST No DCP 3

Warren

CBR DYNAMIC CONE PENETROMETER PROBE

THE STRENGTH AND CBR VALUES ARE EMPIRICAL AND DEPEND ON FACTORS SUCH AS MOISTURE CONTENT WHICH HAVE NOT BEEN DETERMINED. THEY ARE THEREFORE INDICATIVE AND SHOULD BE VERIFIED BY TEST OR OBSERVATION.

Depth	Blows/	Inferred	Shear	CBR	ſ		Blows n	or 100mm		
(m)	100mm	Consistency	Strength	%		n 10	20	20	40	E0
0.0	0				0.0	J 10	20	30	40	50
0.1	5	Med.Dense	32 deg	8	0.0 -					
0.2	4	Med.Dense	30 deg	7						
0.3	/ 0	Med Donso	34 deg	12						
0.4	9	Med Dense	35 deg	14						
0.6	15	Dense	37 deg	27	0.5 -					
0.7	12	Dense	36 deg	21			>			
0.8	15	Dense	37 deg	27						
0.9	16	Dense	37 deg	29						
1.0	15	Dense	37 deg	27	1.0 -					
1.1										
1.3										
1.4										
1.5					1.5 -					
1.6										
1.7										
1.9					0.0					
2.0					2.0 -					
					25 -					
					2.0					
					-					
					Ē					
					<u>с</u> 3.0 -					
					đ,					
					Ď					
					3.5 -					
					4.0 -					
					4.5 -					
					5.0					
					5.0 -					
					55 -					
					0.0					
					6.0 -					

Olifantsvlei Filling Station Foundations

TEST No DCP 4

Warren

CBR DYNAMIC CONE PENETROMETER PROBE

Section:

THE STRENGTH AND CBR VALUES ARE EMPIRICAL AND DEPEND ON FACTORS SUCH AS MOISTURE CONTENT WHICH HAVE NOT BEEN DETERMINED. THEY ARE THEREFORE INDICATIVE AND SHOULD BE VERIFIED BY TEST OR OBSERVATION.

Depth	Blows/	Inferred	Shear	CBR			Blow	ve nor 100	nm	
(m)	100mm	Consistency	Strength	%		0 40			^ ^	40 50
0.0	0		-	-		u 10	2	υ 3	U ·	40 50
0.1	1	V.Loose	<29 deg	2	0.0 -					
0.2	2	Loose	<30 deg	3						
0.3	3	Loose Med Depee	<30 deg	5						
0.4	4	Neu.Dense	30 deg	10						
0.5	12	Dense	36 deg	21	0.5 -					
0.0	4	Med.Dense	30 deg	7			^			
0.8	8	Med.Dense	35 deg	14						
0.9	7	Med.Dense	34 deg	12						
1.0	10	Med.Dense	36 deg	17	1.0 -					
1.1										
1.2										
1.4										
1.5					1.5 -					
1.6										
1.7										
1.8										
2.0					2.0 -					
					2.5 -					
					Î					
					5					
					5 3.0 -					
					Jel					
					25					
					5.5					
					40-					
					4.5 -					
					5.0 -					
					5.5 -					
					6.0 -			I	1	
1										

Foundations Section:

Date:

TEST No

Warren Operator: DCP 5

CBR DYNAMIC CONE PENETROMETER PROBE

THE STRENGTH AND CBR VALUES ARE EMPIRICAL AND DEPEND ON FACTORS SUCH AS MOISTURE CONTENT WHICH HAVE NOT BEEN DETERMINED. THEY ARE THEREFORE INDICATIVE AND SHOULD BE VERIFIED BY TEST OR OBSERVATION.

Depth	Blows/	Inferred	Shear	CBR				Blows no	r 100mm		
(m)	100mm	Consistency	Strength	%		`	40	Blows pe		10	50
0.0	0					J	10	20	30	40	50
0.1	1	V.Loose	<29 deg	2	0.0 -						
0.2	1	V.Loose	<29 deg	2							
0.3	2	Loose	<30 deg	3							
0.4	6	Med Dense	<30 deg	10							
0.6	4	Med.Dense	30 deg	7	0.5 -						
0.7	3	Loose	<30 deg	5							
0.8	7	Med.Dense	34 deg	12							
0.9	6	Med.Dense	33 deg	10							
1.0	5	Med.Dense	32 deg	8	1.0 -						
1.1											
1.3											
1.4											
1.5					1.5 -						
1.6											
1.7											
1.9											
2.0					2.0 -						
					0 E						
					2.5 -						
					ε Έ						
					- 30 -						
					t 3.0						
					De						
					_						
					3.5 -						
					0.0						
					4.0 -						
					4.5 -						
					5.0 -						
					E E						
					5.5 -						
					60-						
					0.0						

Olifantsvlei Filling Station

Operator: **TEST No** DCP 6

Warren

CBR DYNAMIC CONE PENETROMETER PROBE

Foundations

Section:

THE STRENGTH AND CBR VALUES ARE EMPIRICAL AND DEPEND ON FACTORS SUCH AS MOISTURE CONTENT WHICH HAVE NOT BEEN DETERMINED. THEY ARE THEREFORE INDICATIVE AND SHOULD BE VERIFIED BY TEST OR OBSERVATION.

Depth	Blows/	Inferred	Shear	CBR	1		DI	we nor	100mm		
(m)	100mm	Consistency	Strength	%		· ·	BIC	ws her		40	= -
0.0	0				1	U 1	0	20	30	40	50
0.1	1	V.Loose	<29 deg	2	0.0 -						
0.2	1	V.Loose	<29 deg	2		II III					
0.3	3	Loose	<30 deg	5							
0.4	3	Loose Mod Dopoo	<30 deg	5							
0.5	6	Med Dense	33 deg	10	0.5 -						
0.0	3	Loose	<30 deg	5							
0.8	3	Loose	<30 deg	5							
0.9	5	Med.Dense	32 deg	8							
1.0	5	Med.Dense	32 deg	8	1.0	 					
1.1											
1.2											
1.3											
1.5					1.5 -						
1.6											
1.7											
1.8											
1.9					2.0 -						
2.0					-						
					2.5						
					~						
					E						
					<u> </u>						
					eb						
					Õ						
					3.5 -						
					4.0 -						
					4.5						
					FO						
					5.0						
					5 5						
					5.5						
					60						
					0.0						
-					•						

Figure 1 Site Plan

OLIFANTSVLEI FILLING STATION - SITE PLAN

Figure 2 Geological Plan

OLIFANTSVLEI FILLING STATION - GEOLOGY

