## CITY OF TSHWANE METROPOLITAN MUNICIPALITY

# NEW RESIDENTIAL DEVELOPMENT ON ERF 1211 PIERRE VAN RYNEVELD EXTENSION 2

(REVISION 1)



# TRAFFIC IMPACT ASSESSMENT APRIL 2018

#### **PREPARED FOR:**

PJJ Van Vuuren Beleggings P.O. Box 555 **WAPADRAND** 0050

Tel: 082 337 9567 Email: rinalab@mweb.co.za

#### **PREPARED BY:**

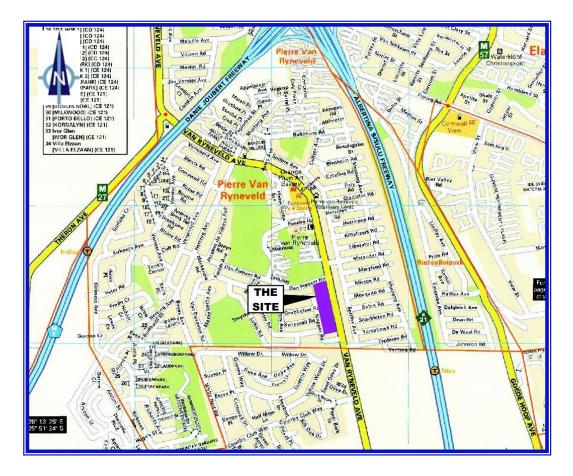
Mariteng Consulting Engineers P.O. Box 8864 VERWOERD PARK 1453

Tel: 082 854 7358 Fax: (086) 547 8882

#### EXECUTIVE SUMMARY

This report contains a Traffic Impact Assessment undertaken for the following:

- > New residential development on Erf 1211 Pierre van Ryneveld Extension 2.
- The site is situated at 21 Klopper Road in Pierre van Ryneveld and is situated in the area of jurisdiction of the City of Tshwane Metropolitan Municipality.


The development controls are summarised as follows:

- ➢ Zoning : "Res 3"
- ➢ Height restriction : 3 storeys
- Density : 49 units/ha (maximum 165 dwelling units)

A concept site development plan has been prepared for the applicant site.

The proposed development will generate approximately 140 trips, during the weekday morning and weekday afternoon peak hour respectively.

Access is from Klopper Road.



### **MARITENG INFORMATION PAGE**

| TITLE OF REPORT:                                |                                              |                                                                                              |                     |                    |  |  |  |  |  |  |
|-------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------|---------------------|--------------------|--|--|--|--|--|--|
| Traffic Impact Assessment: New residential deve | elopment                                     | on Erf 1211 Pi                                                                               | erre van Ryneveld I | Extension 2        |  |  |  |  |  |  |
| DATE : April 2018                               |                                              | STATUS OF REPORT : Revision 1                                                                |                     |                    |  |  |  |  |  |  |
| MARITENG PROJECT NUMBER: 185/86                 |                                              | MARITENG REPORT NUMBER: 185-86-07 APRIL 2018 Rev 1 traffic report pierre van ryneveld X2.doc |                     |                    |  |  |  |  |  |  |
| P.O.<br>VEF<br>1453<br>Tel<br>Fax               | . Box 886<br>RWOERI<br>3<br>: (082<br>: (086 |                                                                                              |                     |                    |  |  |  |  |  |  |
| AUTHOR/S OF REPORT                              |                                              | Name<br>: L J du Toit                                                                        | Signature           | Date<br>01-12-2017 |  |  |  |  |  |  |
| TECHNICAL SUPPORT                               |                                              | : Me. E Mulle<br>: Me. L du To<br>: Me. M.E. N                                               | pit                 |                    |  |  |  |  |  |  |
|                                                 |                                              |                                                                                              |                     |                    |  |  |  |  |  |  |

| Revision<br>No. | Date          | Comments                                                                |
|-----------------|---------------|-------------------------------------------------------------------------|
| 1               | 17 April 2018 | Add additional intersections for assessment as per Tshwane requirement. |
|                 |               |                                                                         |
|                 |               |                                                                         |
|                 |               |                                                                         |

#### **TRAFFIC IMPACT ASSESSMENT:**

#### NEW RESIDENTIAL DEVELOPMENT ON

#### **ERF 1211PIERRE VAN RYNEVELD EXTENSION 2**

#### (REVISION 1)

#### **TABLE OF CONTENTS**

| 1.  | INTRODUCTION                                    |
|-----|-------------------------------------------------|
| 2.  | STUDY METHODOLOGY                               |
| 3.  | PROPOSED DEVELOPMENT                            |
| 3.1 | DESCRIPTION OF PROPOSED DEVELOPMENT             |
| 3.2 | EXISTING ZONING AND LAND USE RIGHTS             |
| 3.3 | APPLICATION                                     |
| 3.4 | TIME FRAME OF DEVELOPMENT                       |
| 4.  | STUDY AREA                                      |
| 4.1 | EXTENT OF STUDY AREA                            |
| 4.2 | LATENT LAND-USES AND DEVELOPMENTS IN STUDY AREA |
| 4.3 | EXISTING ROAD AND STREET NETWORK                |
| 4.4 | INTERSECTIONS EVALUATED                         |
| 5.  | SCENARIOS                                       |
| 6.  | DESIGN PEAK HOURS AND PEAK-HOUR FACTORS         |
| 6.1 | DESIGN PEAK HOURS                               |
| 6.2 | PEAK HOUR FACTORS                               |
| 7.  | GAUTENG TRANSPORT INFRASTRUCTURE ACT EVALUATION |

-*iv*-

| 8.   | BACKGROUND TRAFFIC DEMAND                                         | 7  |
|------|-------------------------------------------------------------------|----|
| 8.1  | BASE YEAR BACKGROUND TRAFFIC DEMAND                               | 7  |
| 8.2  | IMPACT OF CHANGES TO ROAD NETWORK PLANNED BY THE ROAD AUTHORITIES | 7  |
| 8.3  | FUTURE YEAR BACKGROUND TRAFFIC DUE TO TRAFFIC GROWTH              | 7  |
| 8.4  | FUTURE TRAFFIC VOLUMES DEMAND DUE TO LATENT LAND USES             | 7  |
| 9.   | PROPOSED DEVELOPMENT TRAFFIC                                      | 8  |
| 9.1  | INTRODUCTION                                                      | 8  |
| 9.2  | TRIP GENERATION BY PROPOSED DEVELOPMENT                           | 8  |
| 9.3  | SUMMARY OF TRIP GENERATION BY PROPOSED DEVELOPMENT                | 8  |
| 10.  | TRIP DISTRIBUTION AND ASSIGNMENT – PROPOSED DEVELOPMENT           | 9  |
| 10.1 | TRIP DISTRIBUTION                                                 | 9  |
| 10.2 | TRIP ASSIGNMENT                                                   | 9  |
| 11.  | TOTAL TRAFFIC DEMAND                                              | 9  |
| 12.  | CAPACITY ANALYSIS OF INTERSECTIONS                                | 10 |
| 12.1 | INTRODUCTION                                                      | 10 |
| 12.2 | MEASURE OF EFFECTIVENESS                                          | 10 |
| 12.3 | EXISTING INTERSECTION CONFIGURATIONS                              | 12 |
| 12.4 | DISPLAY OF CAPACITY ANALYSIS                                      | 15 |
| 13.  | ACCESS REQUIREMENTS                                               | 21 |
| 13.1 | INTRODUCTION                                                      | 21 |
| 13.2 | EVALUATION OF THE SITE ACCESS CONTROL SYSTEM                      | 21 |
| 14.  | PUBLIC TRANSPORT & NON-MOTORIZED TRANSPORT REQUIREMENTS           | 22 |
| 14.1 | INTRODUCTION                                                      | 22 |

| 14.2 | ESTIMATED NUMBER OF PUBLIC TRANSPORT USERS      |
|------|-------------------------------------------------|
| 14.3 | EXISTING PUBLIC TRANSPORT INFRASTRUCTURE        |
| 14.4 | PROPOSED PUBLIC TRANSPORT INFRASTRUCTURE        |
| 14.5 | EXISTING NON-MOTORIZED TRANSPORT INFRASTRUCTURE |
| 14.6 | PROPOSED NON-MOTORIZED TRANSPORT FACILITIES     |
| 15.  | EVALUATION OF THE SITE DEVELOPMENT PLAN         |
| 15.1 | PARKING REQUIREMENTS                            |
| 15.2 | INTERNAL CIRCULATION                            |
| 15.3 | REFUSE COLLECTION                               |
| 16.  | CONCLUSIONS AND RECOMMENDATIONS                 |
| 16.1 | CONCLUSIONS                                     |
| 16.2 | RECOMMENDATIONS                                 |

#### ANNEXURE

| ANNEXURE A:                | SUMMARY OF DEVELOPMENT CONTROL FOR APPLICANT SITE                                |
|----------------------------|----------------------------------------------------------------------------------|
| ANNEXURE B:                | CONCEPT SITE DEVELOPMENT PLAN                                                    |
| ANNEXURE C:                | EXTRACT FROM TSHWANE ROAD MASTER PLAN                                            |
| ANNEXURE D:                | TRIP CALCULATION DETAILS - PROPOSED DEVELOPMENT                                  |
| ANNEXURE E:                | CAPACITY ANALYSIS RESULTS                                                        |
| ANNEXURE F:                | CONCEPT SIGNAL PHASING DIAGRAM FOR VAN RYNEVELD & THERON                         |
|                            |                                                                                  |
|                            | INTERSECTION                                                                     |
| ANNEXURE G:                | INTERSECTION<br>PROPOSED ACCESS ARRANGEMENTS & INTERNAL LAYOUT -                 |
| ANNEXURE G:                |                                                                                  |
| ANNEXURE G:<br>ANNEXURE H: | PROPOSED ACCESS ARRANGEMENTS & INTERNAL LAYOUT -                                 |
|                            | PROPOSED ACCESS ARRANGEMENTS & INTERNAL LAYOUT -<br>MARITENG PLAN NO.: 185-86-01 |

# LIST OF TABLES Table 1: Total Number of Development Trips -8 Table 2: Level of Service Results: Intersection 1 – Dan Pienaar Road & Les Beyers Avenue -15 Table 3: Level of Service Results: Intersection 2 – Van Ryneveld Avenue & Klopper Road -16 Table 4: Level of Service Results: Intersection 3 – Van Ryneveld Avenue & Dan Pienaar Road -16

| Table 5:  | Level of Service Results: Intersection 4 - Van Ryneveld Avenue & Canberra Road                        | -17  |
|-----------|-------------------------------------------------------------------------------------------------------|------|
| Table 6:  | Proposed Road Network Improvements: Intersection 4 – Van Ryneveld Avenue & Canberra Road              | -17- |
| Table 7:  | Level of Service Results With Road Improvements: Intersection 4 - Van Ryneveld Avenue & Canberra Road | -18- |
| Table 8:  | Level of Service Results: Intersection 5 - Van Ryneveld Avenue & Theron Street                        | -19  |
| Table 9:  | Proposed Road Network Improvements: Intersection 5 - Van Ryneveld Avenue & Theron Street              | -20- |
| Table 10: | Level of Service Results With Road Improvements: Intersection 5 – Van Ryneveld Avenue & Theron Street | -20- |
| Table 11: | Level of Service Results: Intersection 6 - Klopper Road & Grobbelaar Road/Site Access                 | -21  |
| Table 12: | Expected Queuing and Stacking Requirements at the Security Control Point                              | -22- |
|           |                                                                                                       |      |

#### LIST OF FIGURES

- Figure 1: Locality Plan
- Figure 2: Aerial View of Study Area
- Figure 3: Gauteng Strategic Road Network
- Figure 4: Existing Weekday Peak Hour Traffic Volumes Background Traffic
- Figure 5: Estimated (2022) Weekday Peak Hour Traffic Volumes Background Traffic
- Figure 6: Trip Distribution (%) Proposed Development
- Figure 7: Trip Assignment (Veh's/Hr) Proposed Development
- Figure 8: Estimated (2017) Weekday Peak Hour Traffic Volumes With Development Traffic
- Figure 9: Estimated (2022) Weekday Peak Hour Traffic Volumes With Development Traffic

#### 1. INTRODUCTION

This report contains a Traffic Impact Assessment undertaken for the following development:

- New residential development on Erf 1211 Pierre van Ryneveld Extension 2.
- The site is situated at 21 Klopper Road in Pierre van Ryneveld and is situated in the area of jurisdiction of the City of Tshwane Metropolitan Municipality.

The details of the developer involved with the development are:

PJJ van Vuuren Beleggings

P.O. Box 555

#### WAPADRAND

0050

Contact Person: Mr. R Van Vuuren

Tel No.: 082 337 9567

Email: rinalab@mweb.co.za

This study was undertaken by traffic engineer:

Mr. Louis du Toit, P.O. Box 8864, Verwoerd Park, 1453

The traffic engineer has the following qualifications for undertaking Traffic Impact Studies:

- Registered as a professional engineering technologist (Registration No. 200270072);
- Baccalaureus Technologiae Engineering Civil (Transportation) (1997); and
- > Experienced in the field of evaluating the traffic impact of developments.

"I Louis du Toit, author if this traffic impact study, hereby certify that I am a professional traffic engineer (ECSA Registration No.: 200270072) and that I have the required experience and training in the field of traffic and transportation engineering, as required by the Engineering Council of South Africa (ECSA), to compile this traffic impact study/statement and I take full responsibility for the content, including all calculations, conclusions and recommendations made therein".

a Signature:

#### 2. STUDY METHODOLOGY

The traffic impact assessment was executed in accordance with the following guideline documents:

- Committee of Transportation Officials (COTO), TMH 16, August 2012, South African Traffic Impact and Site Traffic Assessment Manual (Volume 1).
- > Department of Transport, 1995, Manual for Traffic Impact Studies.
- Committee of Transportation Officials (COTO), TMH 17, September 2012, South African Trip Data Manual (Draft).

The proposed development will generate more than 50 peak hour trips and the following procedure was followed in the execution of the study:

- The extent of the study was determined by identifying the intersections in the vicinity of the development on which the traffic generated by the development may have a significant impact. The target years and peak scenarios to be analysed were also determined, based on the land-use and extent of the development.
- The existing traffic flow patterns were surveyed, where after the functioning of the intersections was analysed. Recommendations were made on the need for road upgrades, without the development.
- In the study, future traffic flow conditions were also taken into consideration, namely one target year, i.e. 5 years beyond the base year. Given the existing traffic, volumes and assuming a growth rate, the expected target year were determined, where after the intersections were again analysed and recommendations were made on the future road upgrades required.
- In addition to the proposed development, the study also took into consideration the impact of other developments (latent rights) already approved or submitted to the local road authority for approval. For ease of reference, these developments will jointly be referred to as the <u>other development or latent rights scenario</u>.
- > The study also assessed the applicant site in terms of the Gauteng Transport Infrastructure Act.
- Given the extent of the development and using the applicable trip generation rates, the expected number of trips that will be generated was determined.
- The trip distribution of the traffic that will be generated by the proposed development was derived from the existing traffic flow patterns, the location as well as the potential market area of the development in relation to the road network. For ease of reference the proposed development will be referred to as <u>with</u> <u>or proposed development scenario</u>.

- Given the trip distribution, the generated traffic was assigned to the road network together with the existing and estimated target year traffic volumes. The functioning of the intersections were again analysed and recommendations were made on the need for additional road upgrading necessary, due to the proposed development.
- As part of the study, the existing public transport infrastructure was also evaluated and where required upgrading to the existing infrastructure was recommended.

The following documentations were also used as part of this study:

- > Institute of Transportation, 2<sup>nd</sup> Edition, <u>Transportation and Traffic Engineering Handbook</u>.
- Akcelik and Associates (Pty) Ltd, 2011, Sidra Version 7.0.
- > Transport Research Board, 1994, Highway Capacity Manual.
- Dr J Sampson, November 2015, <u>AutoJ</u>.
- Committee of Transportation Officials (COTO), October 2005, <u>National Guidelines for Road Access</u> <u>Management in South Africa (RAM) (Draft)</u>.
- Committee of Transportation Officials (COTO), July 2011, South African Road Classification and Access Management Manual (Version 0.0).
- City of Tshwane, July 2015, <u>Road Master Plan</u>.
- City of Tshwane, Road and Stormwater Division, July 2015, <u>Standard Construction Details and</u> <u>Design Standards for Roads and Stormwater Drainage Infrastructure</u>.

#### 3. PROPOSED DEVELOPMENT

#### 3.1 DESCRIPTION OF PROPOSED DEVELOPMENT

This traffic impact assessment was undertaken for the new residential development on Erf 1211 Pierre van Ryneveld Extension 2.

The location of the proposed development is shown in Figure 1.

#### 3.2 EXISTING ZONING AND LAND USE RIGHTS

The site is currently zoned "Res 3" in terms of the Tshwane Land Use Management By-Law, 2016. Refer to details appended in **Annexure A**.

#### 3.3 APPLICATION

The development controls for the applicant site is summarised as follows (also refer to Annexure A):

- ➤ Zoning : "Res 3"
- ➢ Height restriction : 3 storeys
- Density : 49 units/ha (maximum 165 dwelling units)

A site development plan is appended in Annexure B.

#### 3.4 TIME FRAME OF DEVELOPMENT

The development will be undertaken in a single phase, and it is anticipated that the full development will be completed within the next 5 years.

#### 4. STUDY AREA

#### 4.1 EXTENT OF STUDY AREA

The study area for this application is shown in Figures 1 and 2, and is surrounded by the following streets:

- > To the north the site abuts Pienaar Road.
- > To the east the site abuts Van Ryneveld Avenue.
- > To the south and west the site abuts Klopper Road.

#### 4.2 LATENT LAND-USES AND DEVELOPMENTS IN STUDY AREA

Given the low impact the development traffic will have on the adjacent road network, no latent rights were identified that could affect the outcome of this report.

#### 4.3 EXISTING ROAD AND STREET NETWORK

The existing surrounding road network is briefly discussed hereafter (also refer to **Figure 1 and 2**). Also refer to an extract of the Tshwane Road Master Plan appended in **Annexure C**.

- Klopper Road is a single lane residential road. The road is a Class 5 and falls under the jurisdiction of the City of Tshwane Metropolitan Municipality.
- Dan Pienaar Road is a single lane road running in an east-west direction. The road is a Class U4(b)\_Collector (typical road reserve width = 20m) and falls under the jurisdiction of the City of Tshwane Metropolitan Municipality. The City to confirm whether any road reserve widening is required along the northern boundary of the applicant site.

- Van Ryneveld Avenue is a single lane road running in a north-south direction. The road is a Class U3\_District distributor (typical road reserve width between 32 and 40m) and falls under the jurisdiction of the City of Tshwane Metropolitan Municipality. The City to confirm whether any road reserve widening is required along the eastern boundary of the applicant site.
- Canberra Road is a lane residential road and serves residential and a crèche to the east of Van Ryneveld Avenue and a shopping centre to the west of Van Ryneveld Avenue. The road is a Class 5 and falls under the jurisdiction of the City of Tshwane Metropolitan Municipality.
- Theron Street is a single lane road and is a main feeder route, between Van Ryneveld Avenue and Centurion. The road falls under the jurisdiction of the City of Tshwane Metropolitan Municipality.

#### 4.4 INTERSECTIONS EVALUATED

For the purposes of this study, the following intersections were analyzed (also refer to Figure 1):

- Intersection 1: Dan Pienaar Road & Beyers Avenue Stop controlled with priority on Dan Pienaar Road.
- Intersection 2: Van Ryneveld Avenue & Klopper Road Stop controlled with priority on Van Ryneveld Avenue.
- Intersection 3: Van Ryneveld Avenue & Dan Pienaar Road Stop controlled with priority on Van Ryneveld Avenue.
- > Intersection 4: Van Ryneveld Avenue & Canberra Road 4-way stop control.
- > Intersection 5: Van Ryneveld Avenue & Theron Street Traffic light controlled intersection.

The above intersections were selected as it provides the main access to the study area and the additional development traffic will have the highest impact on these intersections. In addition to the above intersections, the following new intersection is also evaluated as part of the study:

Intersection 6: Klopper Road & Grobbelaar Road/Site Access - Stop controlled with priority on Klopper Road.

#### 5. SCENARIOS

It is expected, that the development will generate more than 50 peak hour trips and the following traffic assessment scenarios were analyzed:

- Scenario 1: Base year AM peak background traffic;
- Scenario 2: Base year AM peak with development traffic;
- Scenario 3: Target year AM peak background traffic;
- Scenario 4: Target year AM peak with development traffic;
- Scenario 5: Base year PM peak background traffic;
- Scenario 6: Base year PM peak with development traffic;
- Scenario 7: Target year PM peak background traffic; and
- Scenario 8: Target year PM peak with development traffic.

#### 6. DESIGN PEAK HOURS AND PEAK-HOUR FACTORS

#### 6.1 DESIGN PEAK HOURS

Given the trip generation characteristics of the proposed development, the peak demand is during the weekday morning and weekday afternoon peak hours of the adjacent road network. The peak hours selected for this application is as follows:

- Weekday morning peak hour (use critical demand for each intersection).
- > Weekday afternoon peak hour (use critical demand for each intersection).

#### 6.2 PEAK HOUR FACTORS

The following peak hour factors (PHF) were used in the capacity analysis and level-of-service (LOS) calculations:

- ➢ Base year − peak hour factors obtained from the existing traffic counts.
- For the future horizon, a PHF of 0.95 or LOS E was considered for a signalized controlled intersection. For unsignalized intersections a PHF of 0.85 was used.

#### 7. GAUTENG TRANSPORT INFRASTRUCTURE ACT EVALUATION

The application was also evaluated in terms of the Gauteng Transport Infrastructure Act of 2001. Based on the provincial Gauteng Strategic Road Master Plan (refer to **Figure 3**) the applicant site is not affected by any existing or future provincial roads.

#### 8. BACKGROUND TRAFFIC DEMAND

#### 8.1 BASE YEAR BACKGROUND TRAFFIC DEMAND

Detailed traffic counts were carried out on Wednesday the 8<sup>th</sup> of November 2017. Additional traffic counts were also carried out on the Monday the 16<sup>th</sup> of April 2018 at the following intersections:

- > Intersection 3: Van Ryneveld Avenue & Dan Pienaar Road
- > Intersection 4: Van Ryneveld Avenue & Canberra Road
- > Intersection 5: Van Ryneveld Avenue & Theron Street

The peak hour background traffic volumes are shown in Figure 4.

# 8.2 IMPACT OF CHANGES TO ROAD NETWORK PLANNED BY THE ROAD AUTHORITIES

No roads are currently under construction that could affect the findings of this report.

#### 8.3 FUTURE YEAR BACKGROUND TRAFFIC DUE TO TRAFFIC GROWTH

For the purpose of this study, an annual growth rate of 3.0% was considered reasonable for the study area. The growth rate was used to determine the expected future target year through traffic volumes from the base year volumes. Therefore, the annual growth rate compounded over 5 years yield an expected increase of 15.9% in the traffic volumes between base year and target year.

Given the existing weekday morning peak hour traffic volumes, refer to **Figure 4** and the projected growth rate, the expected future target year peak hour traffic volumes were calculated – refer to **Figure 5**.

#### 8.4 FUTURE TRAFFIC VOLUMES DEMAND DUE TO LATENT LAND USES

No latent rights traffic assigned to the road network.

#### 9. PROPOSED DEVELOPMENT TRAFFIC

#### 9.1 INTRODUCTION

Erf 1211 Pierre van Ryneveld Extension 2 is earmarked for 165 dwelling units (maximum 3 storey buildings).

#### 9.2 TRIP GENERATION BY PROPOSED DEVELOPMENT

The trip generation rates for the land uses were obtained from the guideline document of the Department of Transport entitled *"South African Trip Data Manual"*, and can be summarised as follows:

- Weekday morning peak hour: 0.85 trips/unit, with a directional split of 25:75 (in:out)
- Weekday afternoon peak hour: 0.85 trips/unit, with a directional split of 70:30 (in:out)

In terms of the "*guideline document''* the certain trip generation adjustment factors can be applied, provided the site meet the necessary requirements. The factors are summarised as follows:

- ➢ Mixed-use development : 15%
- ► Low vehicle ownership : 30%
- ➢ Very low vehicle ownership : 50%
- ► Transit nodes or corridors : 15%

The proposed development is planned in an area where private vehicle use is the main mode of transport. In light of this no trip reduction factor was applied.

#### 9.3 SUMMARY OF TRIP GENERATION BY PROPOSED DEVELOPMENT

Based on the above, the total trip generation for the development is summarised in **Table 1**. The detailed calculation is appended in **Annexure D**.

| DESCRIPTION | EXTENT OF<br>LAND USE | MOR | NING PEAK H | IOUR  | AFTERNOON PEAK HOUR |     |       |  |  |  |
|-------------|-----------------------|-----|-------------|-------|---------------------|-----|-------|--|--|--|
|             |                       | IN  | OUT         | TOTAL | IN                  | OUT | TOTAL |  |  |  |
| Res 3       | 165 units             | 35  | 105         | 140   | 98                  | 42  | 140   |  |  |  |

**Table 1: Total Number of Development Trips** 

NOTE: Trip calculations roundup for purpose of this study.

It can be concluded that the proposed development will generate 140 trips, during the weekday morning and weekday afternoon peak hours respectively.

#### 10. TRIP DISTRIBUTION AND ASSIGNMENT – PROPOSED DEVELOPMENT

#### **10.1 TRIP DISTRIBUTION**

The most likely direction from which the generated traffic will approach and leave the study area was determined by taking the following in consideration:

- > The location of the development in relation to main central business districts/residential areas; and
- > The existing traffic flows on the adjacent road network during the respective peak hours.

For the purpose of this application, the following distribution was accepted, (refer to Figure 6 for details):

#### a) AM Peak

- ▶ Dan Pienaar Road West: Inbound = 33% and Outbound = 28%
- > Dan Pienaar Road East: Inbound = 11% and Outbound = 8%
- > Van Ryneveld Avenue North: Inbound = 17% and Outbound = 11%
- ▶ Van Ryneveld Avenue South: Inbound = 39% and Outbound = 53%

#### b) PM Peak

- ▶ Dan Pienaar Road West: Inbound = 19% and Outbound = 38%
- ▶ Dan Pienaar Road East: Inbound = 13% and Outbound = 14%
- > Van Ryneveld Avenue North: Inbound = 24% and Outbound = 17%
- > Van Ryneveld Avenue South: Inbound = 44% and Outbound = 31%

#### **10.2 TRIP ASSIGNMENT**

Given the trip distributions, the expected traffic volumes that will be generated by the proposed development traffic were assigned to the road network. The details are shown in **Figure 7**.

#### 11. TOTAL TRAFFIC DEMAND

The total traffic volumes were determined by adding the development traffic (refer to **Figure 7**) to the base year and target year background traffic. The total traffic demand is shown in **Figures 8** and **9**.

#### 12. CAPACITY ANALYSIS OF INTERSECTIONS

#### **12.1 INTRODUCTION**

The following methodology was adopted in evaluating the intersections included as part of this study:

- > Analyse the existing and future background traffic demand, using the existing intersection layout.
- > Determine the road upgrades required to accommodate the background traffic scenarios.
- Analyse the expected base year scenario, taking the additional traffic that will be generated by the approved latent rights applicant site into consideration.
- Determine the road upgrades required to accommodate the background traffic and the development trips. It was assumed, as part of this application, that the upgrades required to accommodate the background traffic will be implemented.
- Analyse the expected base year and future year scenarios, taking the traffic that will be generated by the latent rights plus proposed development into consideration.
- In order to determine the required road upgrading, a level-of-service E or worse on any approach at an intersection was accepted at the stage when road upgrading will be implemented.

#### 12.2 MEASURE OF EFFECTIVENESS

The capacity analysis was done according the method as contained in the *Highway Capacity Manual* (4-way stop scenario) and *SIDRA* intersection software program. The operation of an intersection is defined in terms of levels-of-service (LOS).

The LOS for a traffic light controlled intersection is defined in terms of average total vehicle delay (not average stop delay), where delay is a measure of driver discomfort, frustration, fuel consumption and lost travel time. However, for an unsignalized intersection the average delay for any particular minor movement is a function of the service rate or capacity of the approach and the degree of saturation.

The LOS for an approach values are based on the worst delay for any vehicle movements. The average intersection delay is not a good LOS measure for two-way control intersection, as the major through movements normally have a zero delay. The average intersection LOS is therefore recorded as "NOT APPLICABLE".

The thresholds for signalized intersection and stop-controlled intersection can be summarised as follows:

#### Signalized intersections

*LOS A* describes operations with very low delays, up to 10 sec/vehicle. The LOS occurs when progression is extremely favorable and most vehicles arrive during the green phase. Most vehicles do not stop at all.

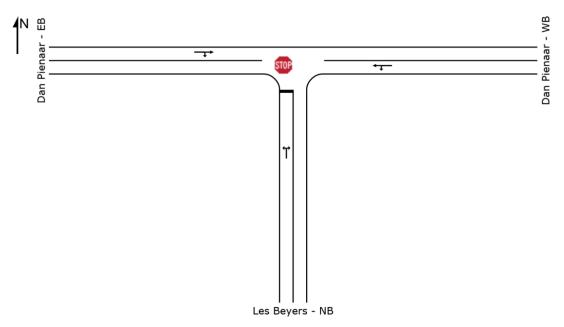
LOS B describes operations with delays greater than 10 sec and up to 20 sec per vehicle. This level generally occurs with good progression, short cycle lengths or both. More vehicles stop than with LOS A, causing higher levels of average delay.

LOS C describes operations with delays greater than 20 sec and up to 35 sec per vehicle. These higher delays may result from fair progression, longer cycle lengths, or both. Individual cycle failures may begin to appear at this level. The number of vehicles stopping is significant at this level, though many vehicles still pass through the intersection without stopping.

LOS *D* describes operations with delays greater than 35 sec and up to 55 sec per vehicle. This level, the influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavorable progression, long cycle lengths, or high volume over capacity ratios. Many vehicles stop, and the proportion of vehicles not stopping decline considerable. Individual cycle failures are noticeable.

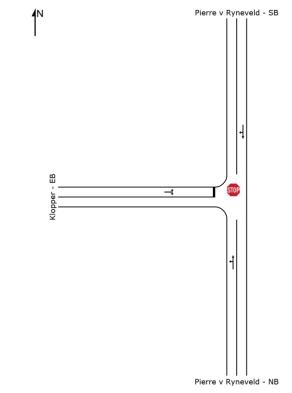
LOS *E* describes operations with delays greater than 55 sec and up to 80 sec per vehicle. This level is considered by many road agencies to be the limit of acceptable delay. These high delay values generally indicate poor progression, long cycle lengths, or high volume over capacity ratios. Individual cycle failures are frequent occurrences.

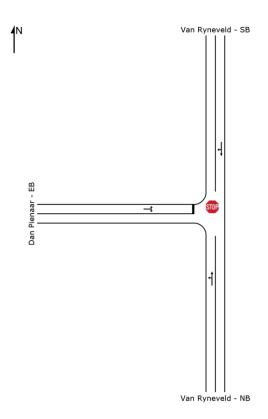
LOS F describes operations with delays in excess of 80 sec per vehicle. This level, considered to be unacceptable to most drivers, often occurs with oversaturation, that is, when arrival flow rates exceed the capacity of the intersection.


#### Unsignalised intersections

LOS A describes operations with very low delays, up to 10 sec per vehicle.

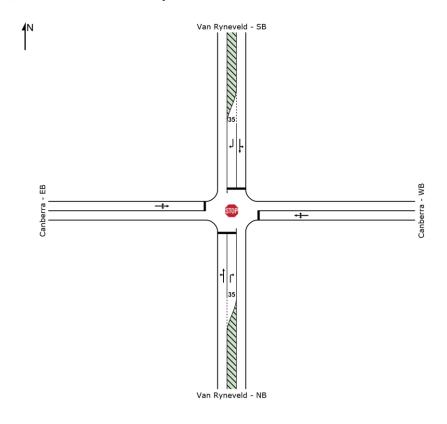
- LOS B describes operations with delays greater than 10 sec and up to 15 sec per vehicle.
- LOS C describes operations with delays greater than 15 sec and up to 25 sec per vehicle.
- LOS D describes operations with delays greater than 25 sec and up to 35 sec per vehicle.
- LOS E describes operations with delays greater than 35 sec and up to 50 sec per vehicle.
- LOS F describes operations with delays in excess of 50 sec per vehicle.

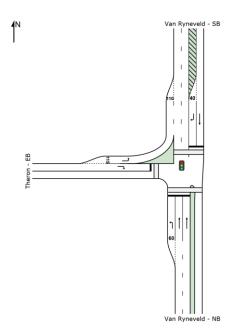

#### 12.3 EXISTING INTERSECTION CONFIGURATIONS


**Sidra 7.0** and **AUTOJ** were as used to assess the capacity for each intersection. The conceptual intersection layout for each intersection evaluated as part of this application is illustrated below:



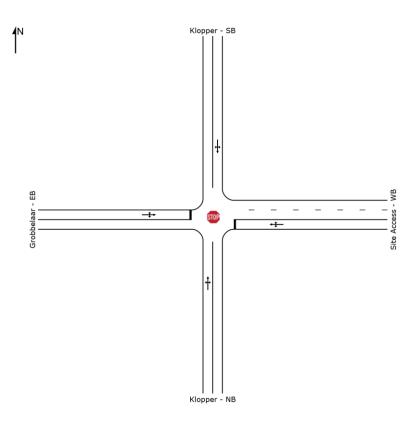
#### a) Intersection 1 – Dan Pienaar Road & Les Beyers Avenue


b) Intersection 2 – Van Ryneveld Avenue & Klopper Road






c) Intersection 3 – Van Ryneveld Avenue & Dan Pienaar Road


d) Intersection 4 – Van Ryneveld Avenue & Canberra Road





e) Intersection 5 – Van Ryneveld Avenue & Theron Street

f) Intersection 6 – Klopper Road & Grobbelaar Road/Site Access



#### 12.4 DISPLAY OF CAPACITY ANALYSIS

The following figures should be read in conjunction with the capacity analysis:

- > Figure 4: Existing Weekday Peak Hour Traffic Volumes Background Traffic
- Figure 5: Estimated (2022) Weekday Peak Hour Traffic Volumes Background Traffic
- Figure 8: Estimated (2018) Weekday Peak Hour Traffic Volumes With Development Traffic
- Figure 9: Estimated (2022) Weekday Peak Hour Traffic Volumes With Development Traffic

SIDRA results are summarised hereafter, with detailed results appended in Annexure E.

#### a) Intersection 1 – Dan Pienaar Road & Les Beyers Avenue

#### Table 2: Level of Service Results: Intersection 1 – Dan Pienaar Road & Les Beyers Avenue

|          |                                                                                         | TOTAL AVERAGE VEHICLE DELAY & LEVEL OF SERVICE (LOS)                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|----------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| SCENARIO | SCENARIO APPROACH                                                                       |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                        | WESTBOUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SOUTHBOUND<br>APPROACH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EASTBOUND<br>APPROACH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | INTERSECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|          | s                                                                                       | D                                                                                                                                                                                                                 | L                                                                                                                                                                                                                                                                                                                                | S                                                                                                                                                                                                                                                                                                                                                                                                                                      | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| SC1      | 0.03                                                                                    | 8.3                                                                                                                                                                                                               | А                                                                                                                                                                                                                                                                                                                                | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| SC2      | 0.06                                                                                    | 8.3                                                                                                                                                                                                               | А                                                                                                                                                                                                                                                                                                                                | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| SC3      | 0.04                                                                                    | 8.4                                                                                                                                                                                                               | А                                                                                                                                                                                                                                                                                                                                | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| SC4      | 0.07                                                                                    | 8.5                                                                                                                                                                                                               | А                                                                                                                                                                                                                                                                                                                                | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| SC5      | 0.01                                                                                    | 8.6                                                                                                                                                                                                               | А                                                                                                                                                                                                                                                                                                                                | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| SC6      | 0.04                                                                                    | 8.6                                                                                                                                                                                                               | А                                                                                                                                                                                                                                                                                                                                | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| SC7      | 0.02                                                                                    | 8.7                                                                                                                                                                                                               | А                                                                                                                                                                                                                                                                                                                                | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| SC8      | 0.04                                                                                    | 8.8                                                                                                                                                                                                               | A                                                                                                                                                                                                                                                                                                                                | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|          | SC1           SC2           SC3           SC4           SC5           SC6           SC7 | SCENARIO         APP           SC1         0.03           SC2         0.06           SC3         0.04           SC4         0.07           SC5         0.01           SC6         0.04           SC7         0.02 | SCENARIO         APPROACH           S         D           SC1         0.03         8.3           SC2         0.06         8.3           SC3         0.04         8.4           SC4         0.07         8.5           SC5         0.01         8.6           SC6         0.04         8.6           SC7         0.02         8.7 | NORTHBOUND           SCENARIO         APPROACH           SC         D         L           SC1         0.03         8.3         A           SC2         0.06         8.3         A           SC3         0.04         8.4         A           SC4         0.07         8.5         A           SC5         0.01         8.6         A           SC6         0.04         8.6         A           SC7         0.02         8.7         A | NORTHBOUND         WES           APPROACH         APP           S         D         L         S           SC1         0.03         8.3         A         0.02           SC2         0.06         8.3         A         0.03           SC3         0.04         8.4         A         0.03           SC4         0.07         8.5         A         0.03           SC5         0.01         8.6         A         0.08           SC6         0.04         8.6         A         0.09           SC7         0.02         8.7         A         0.10 | NORTHBOUND         WESTBOUND           APPROACH         APPROACH           S         D         L         S         D           SC1         0.03         8.3         A         0.02         0.3           SC2         0.06         8.3         A         0.03         0.8           SC2         0.06         8.3         A         0.03         0.8           SC3         0.04         8.4         A         0.03         0.6           SC4         0.07         8.5         A         0.03         0.9           SC5         0.01         8.6         A         0.08         0.3           SC6         0.04         8.6         A         0.09         0.7           SC7         0.02         8.7         A         0.10         0.3 | NORTHBOUND         WESTBOUND           APPROACH         APPROACH           S         D         L         S         D         L           SC1         0.03         8.3         A         0.02         0.3         A           SC2         0.06         8.3         A         0.03         0.8         A           SC2         0.06         8.3         A         0.03         0.8         A           SC3         0.04         8.4         A         0.03         0.6         A           SC4         0.07         8.5         A         0.03         0.9         A           SC5         0.01         8.6         A         0.03         0.9         A           SC5         0.01         8.6         A         0.03         0.9         A           SC5         0.01         8.6         A         0.09         0.7         A           SC6         0.02         8.7         A         0.10         0.3         A | NORTHBOUND         WESTBOUND         SOUT           APPROACH         APPROACH         APPROACH         APPROACH         APP           S         D         L         S         D         L         S         D         L         S         APP         < | NORTHBOUND         WESTBOUND         SOUTHBOUN           APPROACH         APPROACH         APPROACH         APPROACH         APPROACH           S         D         L         S         D         L         S         D         I         S         D         I         S         D         I         S         D         I         S         D         I         S         D         I         S         D         I         S         D         I         S         D         I         S         D         I         S         D         I         S         D         I         S         D         I         S         D         I         S         D         I         S         D         I         S         D         I         S         D         I         S         D         I         S         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I <td>NORTHBOUND         WESTBOUND         SOUTHBOUND           APPROACH         APPROACH         APPROACH         APPROACH           SC         D         L         S         D         L         SOUTHBOUND           SC         D         L         SOUTHBOUND         APPROACH         APPROACH         APPROACH           SC1         0.03         8.3         A         0.02         0.3         A           -           SC1         0.03         8.3         A         0.02         0.3         A           -           SC2         0.06         8.3         A         0.03         0.8         A           -           SC3         0.04         8.4         A         0.03         0.6         A          -         -           SC4         0.07         8.5         A         0.03         0.9         A          -         -           SC5         0.01         8.6         A         0.08         0.3         A          -         -           SC6         0.04         8.6         A         0.10         0.3</td> <td>NORTHBOUND         WESTBOUND         SOUTHBOUND         EAST           APPROACH         A         O         O         O         A         A         A         A         A         A</td> <td>SCENARIO         NORTHBOUND         WESTBOUND         SOUTHBOUND         SOUTHBOUND         EASTBOUND           APPROACH         <th< td=""><td>NORTHBOUND         WESTBOUND         SOUTHBOUND         EASTBOUND           APPROACH         <th< td=""><td>SCENARIO         NORTHBOUND         WESTBOUND         SOUTHBOUND         SOUTHBOUND         SOUTHBOUND         EASTBOUND         INTE           APPROACH         APPROACH</td><td>SCENARIO         NORTHBOUND         WESTBOUND         SOUTHBOUND         EASTBOUND         INTERSECTION           SCENARIO         APPROACH         A         A         A         A         A         C         C         C         D         A         D         D         D         D</td></th<></td></th<></td> | NORTHBOUND         WESTBOUND         SOUTHBOUND           APPROACH         APPROACH         APPROACH         APPROACH           SC         D         L         S         D         L         SOUTHBOUND           SC         D         L         SOUTHBOUND         APPROACH         APPROACH         APPROACH           SC1         0.03         8.3         A         0.02         0.3         A           -           SC1         0.03         8.3         A         0.02         0.3         A           -           SC2         0.06         8.3         A         0.03         0.8         A           -           SC3         0.04         8.4         A         0.03         0.6         A          -         -           SC4         0.07         8.5         A         0.03         0.9         A          -         -           SC5         0.01         8.6         A         0.08         0.3         A          -         -           SC6         0.04         8.6         A         0.10         0.3 | NORTHBOUND         WESTBOUND         SOUTHBOUND         EAST           APPROACH         A         O         O         O         A         A         A         A         A         A | SCENARIO         NORTHBOUND         WESTBOUND         SOUTHBOUND         SOUTHBOUND         EASTBOUND           APPROACH         APPROACH <th< td=""><td>NORTHBOUND         WESTBOUND         SOUTHBOUND         EASTBOUND           APPROACH         <th< td=""><td>SCENARIO         NORTHBOUND         WESTBOUND         SOUTHBOUND         SOUTHBOUND         SOUTHBOUND         EASTBOUND         INTE           APPROACH         APPROACH</td><td>SCENARIO         NORTHBOUND         WESTBOUND         SOUTHBOUND         EASTBOUND         INTERSECTION           SCENARIO         APPROACH         A         A         A         A         A         C         C         C         D         A         D         D         D         D</td></th<></td></th<> | NORTHBOUND         WESTBOUND         SOUTHBOUND         EASTBOUND           APPROACH         APPROACH <th< td=""><td>SCENARIO         NORTHBOUND         WESTBOUND         SOUTHBOUND         SOUTHBOUND         SOUTHBOUND         EASTBOUND         INTE           APPROACH         APPROACH</td><td>SCENARIO         NORTHBOUND         WESTBOUND         SOUTHBOUND         EASTBOUND         INTERSECTION           SCENARIO         APPROACH         A         A         A         A         A         C         C         C         D         A         D         D         D         D</td></th<> | SCENARIO         NORTHBOUND         WESTBOUND         SOUTHBOUND         SOUTHBOUND         SOUTHBOUND         EASTBOUND         INTE           APPROACH         APPROACH | SCENARIO         NORTHBOUND         WESTBOUND         SOUTHBOUND         EASTBOUND         INTERSECTION           SCENARIO         APPROACH         A         A         A         A         A         C         C         C         D         A         D         D         D         D |  |  |

Note: S = Degree of Saturation (v/c); D = Delay (sec/veh); L = Level of service (LOS)

Based on the results it can be concluded that the intersection operate at acceptable LOS during all traffic flow scenarios.

#### b) Intersection 2 - Van Ryneveld Avenue & Klopper Road

|      |          |      |                 | Т         | OTAL A | VERAGE | VE                     | HICLE D | ELAY & | LE                    | VEL OF S | SERVICI | E (LO        | DS)  |     |   |
|------|----------|------|-----------------|-----------|--------|--------|------------------------|---------|--------|-----------------------|----------|---------|--------------|------|-----|---|
| PEAK | SCENARIO |      | THBOUN<br>ROACH | WESTBOUND |        |        | SOUTHBOUND<br>APPROACH |         |        | EASTBOUND<br>APPROACH |          |         | INTERSECTION |      |     |   |
|      |          | s    | D               | L         | s      | D      | L                      | s       | D      | L                     | S        | D       | L            | s    | D   | L |
|      | SC1      | 0.11 | 0.2             | А         | -      | -      | -                      | 0.27    | 0.1    | А                     | 0.10     | 12.3    | в            | 0.27 | 0.9 | А |
|      | SC2      | 0.12 | 0.6             | А         | -      | -      | -                      | 0.28    | 0.2    | А                     | 0.26     | 13.4    | в            | 0.28 | 2.2 | А |
| AM   | SC3      | 0.13 | 0.3             | А         | -      | -      | -                      | 0.32    | 0.1    | А                     | 0.15     | 14.0    | в            | 0.32 | 1.1 | А |
|      | SC4      | 0.14 | 06              | А         | -      | -      | -                      | 0.33    | 0.2    | А                     | 0.34     | 16.0    | С            | 0.34 | 2.5 | А |
|      | SC5      | 0.18 | 0.5             | А         | -      | -      | -                      | 0.21    | 0.4    | А                     | 0.02     | 11.2    | в            | 0.21 | 0.6 | А |
|      | SC6      | 0.21 | 1.0             | А         | -      | -      | -                      | 0.23    | 1.0    | А                     | 0.06     | 11.8    | в            | 0.23 | 1.5 | А |
| РМ   | SC7      | 0.21 | 0.5             | А         | -      | -      | -                      | 0.24    | 0.5    | А                     | 0.04     | 11.8    | в            | 0.24 | 0.8 | А |
|      | SC8      | 0.24 | 1.0             | А         | -      | -      | -                      | 0.27    | 1.1    | A                     | 0.08     | 12.7    | В            | 0.27 | 1.6 | А |

#### Table 3: Level of Service Results: Intersection 2 – Van Ryneveld Avenue & Klopper Road

Note: S = Degree of Saturation (v/c); D = Delay (sec/veh); L = Level of service (LOS)

Based on the results it can be concluded that the intersection operate at acceptable LOS during all traffic flow scenarios.

#### c) Intersection 3 - Van Ryneveld Avenue & Dan Pienaar Road

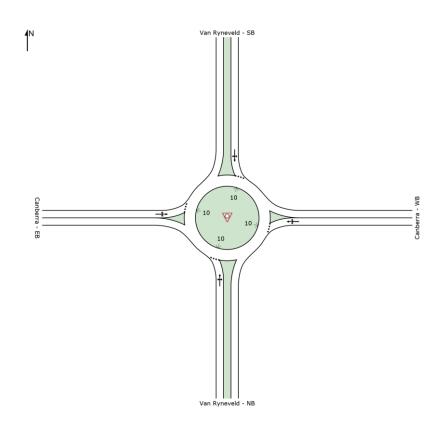
#### Table 4: Level of Service Results: Intersection 3 - Van Ryneveld Avenue & Dan Pienaar Road

|      | SCENARIO |                        |     | Т | TOTAL A               | VERAGE | VE | HICLE D                | ELAY 8 | z LE' | VEL OF :              | SERVIC | E (LO | DS)          |     |   |
|------|----------|------------------------|-----|---|-----------------------|--------|----|------------------------|--------|-------|-----------------------|--------|-------|--------------|-----|---|
| PEAK |          | NORTHBOUND<br>APPROACH |     |   | WESTBOUND<br>APPROACH |        |    | SOUTHBOUND<br>APPROACH |        |       | EASTBOUND<br>APPROACH |        |       | INTERSECTION |     |   |
|      |          | s                      | D   | L | s                     | D      | L  | s                      | D      | L     | s                     | D      | L     | s            | D   | L |
|      | SC1      | 0.20                   | 0.9 | A | -                     | -      | -  | 0.11                   | 0.1    | А     | 0.34                  | 12.0   | В     | 0.34         | 3.6 | А |
|      | SC2      | 0.20                   | 0.8 | A | -                     | -      | -  | 0.12                   | 0.3    | А     | 0.36                  | 12.4   | В     | 0.36         | 3.8 | А |
| AM   | SC3      | 0.23                   | 0.8 | А | -                     | -      | -  | 0.14                   | 0.2    | А     | 0.5                   | 14.1   | В     | 0.45         | 4.2 | А |
|      | SC4      | 0.23                   | 0.8 | A | -                     | -      | -  | 0.14                   | 0.4    | А     | 0.47                  | 14.5   | В     | 0.47         | 4.4 | А |
|      | SC5      | 0.37                   | 1.0 | А | -                     | -      | -  | 0.15                   | 1.4    | А     | 0.10                  | 14.2   | В     | 0.37         | 1.7 | А |
|      | SC6      | 0.37                   | 1.0 | А | -                     | -      | -  | 0.19                   | 2.1    | А     | 0.12                  | 14.4   | В     | 0.37         | 2.0 | А |
| PM   | SC7      | 0.43                   | 1.1 | А | -                     | -      | -  | 0.19                   | 2.1    | А     | 0.17                  | 17.0   | С     | 0.43         | 2.1 | А |
|      | SC8      | 0.43                   | 1.1 | А | -                     | -      | -  | 0.23                   | 3.0    | А     | 0.20                  | 17.6   | С     | 0.43         | 2.5 | А |

Based on the results it can be concluded that the intersection operate at acceptable LOS during all traffic flow scenarios.

#### d) Intersection 4 - Van Ryneveld Avenue & Canberra Road

|      |              |      |                        | Т | 'OTAL A' | VERAGE                | VE | HICLE I                | ELAY & | LE' | VEL OF                | SERVIC | E (L | OS)          |     |   |
|------|--------------|------|------------------------|---|----------|-----------------------|----|------------------------|--------|-----|-----------------------|--------|------|--------------|-----|---|
| PEAK | CAK SCENARIO |      | NORTHBOUND<br>APPROACH |   |          | WESTBOUND<br>APPROACH |    | SOUTHBOUND<br>APPROACH |        |     | EASTBOUND<br>APPROACH |        |      | INTERSECTION |     |   |
|      |              | s    | D                      | L | s        | D                     | L  | s                      | D      | L   | s                     | D      | L    | S            | D   | L |
|      | SC1          | 0.98 | >50                    | F | 0.411    | 20.7                  | С  | 0.57                   | 21.4   | С   | 0.83                  | >50    | F    | 0.98         | >50 | F |
|      | SC2          | 0.38 | 6.6                    | A | 0.18     | 9.1                   | A  | 0.20                   | 5.5    | A   | 0.12                  | 9.1    | А    | 0.38         | 6.9 | А |
| AM   | SC3          | 0.44 | 7.1                    | А | 0.22     | 9.4                   | А  | 0.23                   | 5.6    | А   | 0.15                  | 9.8    | А    | 0.44         | 7.3 | А |
|      | SC4          | 0.46 | 7.1                    | А | 0.22     | 9.5                   | А  | 0.24                   | 5.6    | А   | 0.15                  | 10.0   | А    | 0.46         | 7.4 | А |
|      | SC5          | 0.84 | 44.6                   | Е | 0.28     | 24.6                  | С  | 0.86                   | 36.2   | Е   | 0.97                  | >50    | F    | 0.97         | >50 | F |
|      | SC6          | 0.41 | 7.3                    | А | 0.12     | 10.6                  | В  | 0.57                   | 7.2    | А   | 0.28                  | 8.4    | А    | 0.57         | 7.6 | А |
| РМ   | SC7          | 0.49 | 8.0                    | А | 0.16     | 11.6                  | В  | 0.66                   | 7.9    | А   | 0.35                  | 9.0    | А    | 0.66         | 8.3 | А |
|      | SC8          | 0.51 | 8.0                    | A | 0.17     | 12.1                  | В  | 0.69                   | 7.9    | A   |                       | 9.1    | A    |              | 8.4 | Α |


Note: S = Degree of Saturation (v/c); D = Delay (sec/veh); L = Level of service (LOS)

It can be concluded the intersection will operate at LOS E or worst or a V/C exceeding 1.0 for certain traffic flow scenarios. The road network upgrades required to improve the LOS is discussed in **Table 6**.

| Table 6: Proposed Road Network Improvements: Intersection 4 – Van Ryneveld Avenue & Canberra |
|----------------------------------------------------------------------------------------------|
| Road                                                                                         |

| Description     | Road Improvement Summary                                                                                                                  | Responsibility | Comments                                                        |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------|
| Scenarios 1 & 5 | Convert the 4-stop controlled intersection to a single lane traffic circle. Minimum inner diameter of 10m and a circulation lane of 5.0m. | Road authority | Sufficient road reserve<br>available to<br>accommodate upgrade. |

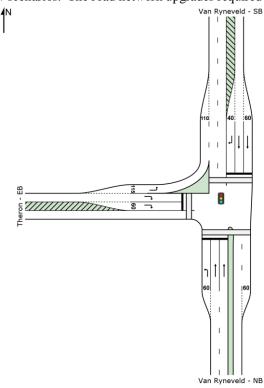
The proposed road upgrade is illustrated below and the LOS for the respective traffic flow scenarios is shown in **Table 7**.



# Table 7: Level of Service Results With Road Improvements: Intersection 4 – Van Ryneveld Avenue & Canberra Road

|                |                    |              |            | Т     | 'OTAL A'              | VERAGE     | VE   | HICLE I                | ELAY & | : LE | VEL OF S  | SERVIC | E (L( | DS)          |     |   |  |
|----------------|--------------------|--------------|------------|-------|-----------------------|------------|------|------------------------|--------|------|-----------|--------|-------|--------------|-----|---|--|
| PEAK           | SCENARIO           |              |            |       | WESTBOUND<br>APPROACH |            |      | SOUTHBOUND<br>APPROACH |        |      | EASTBOUND |        |       | INTERSECTION |     |   |  |
|                |                    | s            | D          | L     | s                     | D          | L    | S                      | D      | L    | S         | D      | L     | S            | D   | L |  |
| AM             | SC1                | 0.36         | 6.5        | A     | 0.17                  | 9.0        | А    | 0.19                   | 5.5    | A    | 0.11      | 9.0    | A     | 0.36         | 6.9 | А |  |
| PM             | SC5                | 0.40         | 7.3        | A     | 0.11                  | 10.2       | В    | 0.54                   | 7.2    | A    | 0.27      | 8.3    | A     | 0.54         | 7.6 | А |  |
| Note: $S = De$ | gree of Saturation | n (v/c); D = | = Delay (s | ec/ve | h); L = Le            | vel of ser | vice | (LOS)                  |        |      |           |        |       |              |     |   |  |

Based on the results it can be concluded that the intersection will operate at acceptable LOS with the implementation of the road upgrades.


|      |          |                        |      | T | OTAL A                | VERAGE | E VE | HICLE D                | ELAY & | : LE | VEL OF :  | SERVICI | E (LO | OS)          |      |   |
|------|----------|------------------------|------|---|-----------------------|--------|------|------------------------|--------|------|-----------|---------|-------|--------------|------|---|
| PEAK | SCENARIO | NORTHBOUND<br>APPROACH |      |   | WESTBOUND<br>APPROACH |        |      | SOUTHBOUND<br>APPROACH |        |      | EASTBOUND |         |       | INTERSECTION |      |   |
|      |          | S                      | D    | L | s                     | D      | L    | s                      | D      | L    | s         | D       | L     | S            | D    | L |
|      | SC1      | 0.52                   | 9.6  | А | -                     | -      | -    | >1.0                   | >80    | F    | 0.49      | 21.4    | С     | >1.0         | 54.5 | D |
|      | SC2      | 0.61                   | 14.7 | В | -                     | -      | -    | 0.79                   | 16.8   | В    | 0.37      | 20.9    | С     | 0.79         | 15.9 | в |
| AM   | SC3      | 0.92                   | 24.6 | С | -                     | -      | -    | 0.94                   | 31.2   | С    | 0.48      | 22.1    | С     | 0.94         | 25.9 | С |
|      | SC4      | 0.93                   | 28.4 | С | -                     | -      | -    | 0.95                   | 31.0   | С    | 0.46      | 21.7    | С     | 0.95         | 28.2 | С |
|      | SC5      | 0.22                   | 9.8  | А | -                     | -      | -    | >1.0                   | >80    | F    | >1.0      | >80     | F     | >1.0         | >80  | F |
|      | SC6      | 0.34                   | 16.2 | В | -                     | -      | -    | 0.96                   | 41.4   | D    | 0.93      | 29.4    | С     | 0.96         | 30.7 | С |
| РМ   | SC7      | 0.40                   | 17.2 | В | -                     | -      | -    | >1.0                   | >80    | F    | >1.0      | 68.2    | Е     | >1.0         | 72.7 | Е |
|      | SC8      | 0.45                   | 18.2 | В | -                     | -      | -    | 0.95                   | 34.0   | С    | 0.96      | 31.5    | С     | 0.96         | 29.4 | С |

#### Table 8: Level of Service Results: Intersection 5 – Van Ryneveld Avenue & Theron Street

-19-

Note: S = Degree of Saturation (v/c); D = Delay (sec/veh); L = Level of service (LOS)

It can be concluded the intersection will operate at LOS E or worst or a V/C exceeding 1.0 for certain traffic flow scenarios. The road network upgrades required to improve the LOS is discussed in **Table 8**.



NOTE: Concept signal phasing diagrams appended in Annexure F.

#### <u>Table 9: Proposed Road Network Improvements: Intersection 5 – Van Ryneveld Avenue & Theron</u> <u>Street</u>

| Description              | Road Improvement Summary                                                                                       | Responsibility | Comments                                   |
|--------------------------|----------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------|
| Scenarios 1, 3, 5<br>& 7 | Provide a $2^{nd}$ exclusive right-turn lane (storage length = 60m) on the eastbound approach of Theron Street | Road authority | Sufficient<br>road reserve<br>available to |
|                          | Provide a $2^{nd}$ through lane (storage length = 60) on the southbound approach of Van Ryneveld Avenue.       |                | accommodate<br>upgrade.                    |
|                          | Provide an exit lane (storage length = 60m) on the southern leg of Van Ryneveld Avenue.                        |                |                                            |
|                          | Optimise signal settings.                                                                                      |                |                                            |

The proposed road upgrade is illustrated below and the LOS for the respective traffic flow scenarios is shown in **Table 10**.

#### <u>Table 10: Level of Service Results With Road Improvements: Intersection 5 – Van Ryneveld Avenue &</u> <u>Theron Street</u>

|      |          |      |                        | 1 | OTAL A                | VERAGE | VE | HICLE I    | DELAY & | LE | VEL OF S              | SERVICI | E (L | DS)          |      |   |
|------|----------|------|------------------------|---|-----------------------|--------|----|------------|---------|----|-----------------------|---------|------|--------------|------|---|
| PEAK | SCENARIO |      | NORTHBOUND<br>APPROACH |   | WESTBOUND<br>APPROACH |        |    | SOUTHBOUND |         |    | EASTBOUND<br>APPROACH |         |      | INTERSECTION |      |   |
|      |          | S    | D                      | L | S                     | D      | L  | S          | D       | L  | s                     | D       | L    | s            | D    | L |
|      | SC1      | 0.61 | 15.4                   | В | -                     | -      | -  | 0.75       | 15.4    | В  | 0.36                  | 20.7    | С    | 0.75         | 16.0 | В |
| AM   | SC3      | 0.92 | 24.6                   | С | -                     | -      | -  | 0.94       | 31.0    | С  | 0.48                  | 22.1    | С    | 0.94         | 25.9 | С |
|      | SC5      | 0.33 | 16.2                   | В | -                     | -      | -  | 0.94       | 35.3    | D  | 0.91                  | 26.9    | С    | 0.94         | 27.5 | С |
| РМ   | SC7      | 0.44 | 18.2                   | В | -                     | -      | -  | 0.95       | 32.2    | С  | 0.93                  | 27.5    | С    | 0.95         | 27.1 | С |

Note: S = Degree of Saturation (v/c); D = Delay (sec/veh); L = Level of service (LOS)

Based on the results it can be concluded that the intersection will operate at acceptable LOS with the implementation of the road upgrades.

#### f) Intersection 6 – Klopper Road & Grobbelaar Road/Site Access

|      |          |      |                        | Т | 'OTAL A'              | VERAGE | VE                     | HICLE D | ELAY & | : LE                  | VEL OF S | SERVICI | E (LC        | DS)  |     |   |
|------|----------|------|------------------------|---|-----------------------|--------|------------------------|---------|--------|-----------------------|----------|---------|--------------|------|-----|---|
| PEAK | SCENARIO |      | NORTHBOUND<br>APPROACH |   | WESTBOUND<br>APPROACH |        | SOUTHBOUND<br>APPROACH |         |        | EASTBOUND<br>APPROACH |          |         | INTERSECTION |      |     |   |
|      |          | s    | D                      | L | s                     | D      | L                      | S       | D      | L                     | S        | D       | L            | S    | D   | L |
| AM   | SC4      | 0.02 | 4.6                    | А | 0.10                  | 4.9    | А                      | 0.01    | 2.6    | А                     | 0.02     | 8.1     | А            | 0.10 | 4.8 | А |
| PM   | SC8      | 0.06 | 4.6                    | A | 0.04                  | 5.1    | A                      | 0.02    | 3.5    | A                     | 0.03     | 8.2     | A            | 0.06 | 5.0 | А |

#### Table 11: Level of Service Results: Intersection 6 – Klopper Road & Grobbelaar Road/Site Access

Note: S = Degree of Saturation (v/c); D = Delay (sec/veh); L = Level of service (LOS)

Based on the results it can be concluded that the intersection operate at acceptable LOS during all traffic flow scenarios.

#### 13. ACCESS REQUIREMENTS

#### **13.1 INTRODUCTION**

The proposed SDP prepared by the architect was superimposed in **Mariteng Plan No.: 185-86-01**, appended in **Annexure G**, as well as per Tshwane access standards (refer to extract appended in **Annexure H**) the access arrangements are summarised as follows:

- Access from Klopper Park, directly opposite Grobbelaar Road.
- Provide two inbound lanes, one with a paved width of 3.0m and the second lane with a paved width of 3.5m.
- > One outbound lane with a paved width of 3.5m and a clearance of 4.5m.
- A throat length of 24m distance measured from edge of road to centre of access control boom/gate.
- > 3.0m x 3.0m splays at access on Klopper Road.
- Bellmouth radius on Klopper Road to be a minimum of 5.0m.
- No vertical structures are currently proposed at the site access. However, should the need arise later in the design phase provision should be made for a minimum vertical clearance of 5.2m.

#### 13.2 EVALUATION OF THE SITE ACCESS CONTROL SYSTEM

The queue theory as described in the *"Transportation and Engineering Handbook"* was used to determine the queuing of vehicles at the access point. The analysis are based on a 90<sup>th</sup> percentile probability that the operation at the access control point will have no negative impact on the traffic movements on the adjacent

road system. The operational characteristics for the access arrangements, discussed in Section 13.1, are summarised in Table 12, with detailed results appended in Annexure I.

| DESCRIPTION                              | ANALYSIS RESULTS |
|------------------------------------------|------------------|
| Average arrival rate inbound (vph)       | 98               |
| Average service rate (sec/veh)           | 14.00            |
| Average service rate (services/hour)     | 250              |
| Number of lane (gates)                   | 2                |
| Traffic intensity per lane               | 0.20             |
| 90 <sup>th</sup> percentile queue length | 0.04             |
| Average number of vehicles in system     | 0.0              |
| Average delay (sec)                      | 0.9              |
| Average number of vehicles per gate      | 0.0              |

Table 12: Operational Characteristics of the proposed Access Security Control System

It can be concluded that the access arrangements assumed for the development will have sufficient capacity to accommodate the development traffic.

#### 14. PUBLIC TRANSPORT & NON-MOTORIZED TRANSPORT REQUIREMENTS

#### 14.1 INTRODUCTION

In terms of the National Land Transport Transition Act, Act 5 of 2009 (Section 38), it is also necessary to carry out a public transport assessment for all new developments. The assessment need to address aspects such as the additional transport trips that will be generated, the expected traveling pattern of these users, as well as the impact it may have on the existing public transport network.

#### 14.2 ESTIMATED NUMBER OF PUBLIC TRANSPORT USERS

The propose site is earmarked for approximately 165 "Residential 3" dwelling units. It can therefore be assumed that the development will provide employment opportunities for domestic workers. The expected domestic worker trips were calculated, assuming the following. 50% of all households will employ a part-time domestic worker for an average of one (1) weekday per week. This equates to an estimated 17 domestic workers (i.e. 165\*0.50\*0.2) per weekday. It was also assumed that the development would employ 2 persons for gardening and general maintenance of the property as a whole. The total expected workforce equates to 19 workers per any weekday.

#### 14.3 EXISTING PUBLIC TRANSPORT INFRASTRUCTURE

The following public transport services are provided in the study area:

Taxi operates along Van Ryneveld Avenue, approximately 350m south-east from the proposed access on Klopper Road. No formal lay-bys are provided and taxis make unscheduled stops as and when required.

#### 14.4 PROPOSED PUBLIC TRANSPORT INFRASTRUCTURE

The proposed development will generate some public transport trips. The existing public transport network has sufficient capacity to accommodate the expected increase in demand.

#### 14.5 EXISTING NON-MOTORIZED TRANSPORT INFRASTRUCTURE

No paved walkways are provided in the study area.

#### 14.6 PROPOSED NON-MOTORIZED TRANSPORT FACILITIES

The proposed development is located along a Class 5 road and no paved walkways are proposed as part of the approval of this application.

#### 15. EVALUATION OF THE SITE DEVELOPMENT PLAN

#### **15.1 PARKING REQUIREMENTS**

All parking is provided on the property, as shown in the SDP appended in **Annexure B**. The parking bay dimensions are 5.0m x 2.5m with an aisle width of 7.5m.

#### **15.2 INTERNAL CIRCULATION**

The design allows for a circulation route with a width of 7.5m serving the applicant site. From a traffic engineering view point the design is supported and will accommodate the normal traffic circulation on the site.

The final design and layout is subject to the approval by the Fire Department.

#### **15.3 REFUSE COLLECTION**

A refuse collection point is provided at the site access and will be accessible from Klopper Road.

#### 16. CONCLUSIONS AND RECOMMENDATIONS

#### **16.1 CONCLUSIONS**

The following conclusion can be reached from the study:

- i. The applicant site is earmarked for 165 "Res 3" dwelling units.
- ii. Latent rights: No latent rights were identified in the study area.
- iii. The intersections listed in **Section 4.4**, forms part of the study area.
- iv. <u>Gauteng Infrastructure Act</u>: The applicant site is not affected by any existing or future provincial roads.
- v. The proposed development will generate an additional 140 peak hour trips.
- vi. **Proposed road network upgrade background traffic:** No external road upgrade required.
- vii. <u>Proposed road network upgrade new developments</u>: No external road upgrade required.
- viii. Access arrangements: The access requirements are discussed under the "Recommendations".
- ix. <u>Public transport assessments:</u> The area is well served by frequent public transport throughout the day. No additional facilities are recommended to serve the applicant site.
- x. **Non-motorized public transport assessments:** No additional facilities are recommended to serve the applicant site.

#### **16.2 RECOMMENDATIONS**

Based on the traffic impact study, it is recommended that the new residential development on Erf 1211 Pierre van Ryneveld Extension 2, be approved for:

- ➢ Zoning : "Res 3"
- ➢ Height restriction : 3 storeys
- Density : 49 units/ha (maximum 165 dwelling units)

A concept site development plan has been prepared for the applicant site.

The approval is subject to the following:

- i. The City to confirm whether any road reserve widening is required:
  - Along Van Ryneveld Avenue.

- Along Dan Pienaar Road.
- ii. Construct the following access arrangements (also refer to Mariteng Plan No.: 185-86-01):
  - > Access from Klopper Park, directly opposite Grobbelaar Road.
  - Provide two inbound lanes, one with a paved width of 3.0m and the second lane with a paved width of 3.5m.
  - > One outbound lane with a paved width of 3.5m and a clearance of 4.5m.
  - A throat length of 24m distance measured from edge of road to centre of access control boom/gate.
  - > 3.0m x 3.0m splays at access on Klopper Road.
  - Bellmouth radius on Klopper Road to be a minimum of 5.0m.
  - No vertical structures are currently proposed at the site access. However, should the need arise later in the design phase provision should be made for a minimum vertical clearance of 5.2m.
- iii. All parking provided on site, with a 5.0m x 2.5m dimension.
- iv. The internal layout and access arrangements are supported from a traffic engineering view point, but will also require the approval from the Fire Department.
- v. Refuse collection area to be provided on Klopper Road, at the entrance to the development

#### **FIGURES**

- FIGURE 1: LOCALITY PLAN
- FIGURE 2: AERIAL VIEW OF STUDY AREA
- FIGURE 3: GAUTENG STRATEGIC ROAD NETWORK
- FIGURE 4: EXISTING WEEKDAY PEAK HOUR TRAFFIC VOLUMES BACKGROUND TRAFFIC
- FIGURE 5: ESTIMATED (2022) WEEKDAY PEAK HOUR TRAFFIC VOLUMES BACKGROUND TRAFFIC
- FIGURE 6: TRIP DISTRIBUTION (%) PROPOSED DEVELOPMENT
- FIGURE 7: TRIP ASSIGNMENT (VEH'S/HR) PROPOSED DEVELOPMENT
- FIGURE 8: ESTIMATED (2017) WEEKDAY PEAK HOUR TRAFFIC VOLUMES WITH DEVELOPMENT TRAFFIC
- FIGURE 9: ESTIMATED (2022) WEEKDAY PEAK HOUR TRAFFIC VOLUMES WITH DEVELOPMENT TRAFFIC

## **ANNEXURE A:**

## SUMMARY OF DEVELOPMENT CONTROL FOR APPLICANT SITE

|       |                                                      | COT: F/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |                                                      | URE AND DRAFT AMENDMENT SCHEME MAP READ WITH<br>DF TSHWANE LAND USE MANAGEMENT BY-LAW, 2016                                                                                                                                                                                                                                                                                                                                                                                       |
| PRO   | OPERTY DESCRIPTION: ERF 121                          | 1, PIERRE VAN RYNEVELD UITBREIDING 2                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1     | Use Zone                                             | 3: Residential 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2     | Uses permitted                                       | Duplex dwellings and Dwelling Units                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3     | Uses with consent                                    | Use Zone 3: Column 4                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4     | Uses not permitted                                   | All other uses                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5     | Definitions                                          | Clause 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6     | Density                                              | 49 dwelling units per hectare (maximum of 165 dwelling units)                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 7     | Coverage                                             | 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 8     | Height                                               | 3 storeys                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 9     | Floor area ratio                                     | 0,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10    | Site development plan and landscape development plan | <ol> <li>A site development plan and a landscape development<br/>plan, unless otherwise determined by the City of<br/>Tshwane Metropolitan Municipality, compiled by a<br/>person suitably qualified to the satisfaction of the<br/>Municipality, shall be submitted to the Municipality for<br/>approval prior to the submission of building plans.</li> <li>The landscaping, in terms of the landscape development<br/>plan, shall be completed by completion of the</li> </ol> |
| 2012- |                                                      | development or any phase thereof. The continued<br>maintenance of the landscape development shall be to<br>the satisfaction of the Municipality.                                                                                                                                                                                                                                                                                                                                  |
| 11    | Street building lines                                | 2,0m                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12    | Building restriction areas                           | Clause 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 13    | Parking requirements                                 | Demarcated parking spaces, together with the necessary paved<br>manoeuvring space, shall be provided on the erf to the<br>satisfaction of Municipality, in accordance with Table G                                                                                                                                                                                                                                                                                                |
| 14    | Paving of traffic areas                              | All parts of the erf upon which motor vehicles may move or park<br>shall be provided with a permanent dust-free surface, which<br>surface shall be paved, drained and maintained to the<br>satisfaction of the Municipality                                                                                                                                                                                                                                                       |
| 15    | Access to the erf                                    | Entrances to and exits from the erf shall be sited, constructed<br>and maintained to the satisfaction of the Municipality.                                                                                                                                                                                                                                                                                                                                                        |
| 16    | Loading and off-loading activities                   | All loading and off-loading activities shall take place on the erf.                                                                                                                                                                                                                                                                                                                                                                                                               |
| 17    | Turning facilities                                   | Turning facilities shall be provided on the Erf to the satisfaction of the Municipality.                                                                                                                                                                                                                                                                                                                                                                                          |
| 18    | Physical barriers                                    | A non- removable physical barrier, preventing any vehicle and pedestrian movement, must be implemented on all erf boundaries, the approved access excluded.                                                                                                                                                                                                                                                                                                                       |
| 19    | Health measures                                      | <ol> <li>Any requirements for air pollution-, noise abatement- or<br/>health measures set by City of Tshwane Metropolitan<br/>Municipality shall be complied with to the satisfaction of<br/>the Municipality without any costs to the Municipality.</li> <li>Air-conditioning units or compressors shall not be<br/>mounted to the exterior walls of buildings without the prior<br/>consent of the City of Tshwane Metropolitan<br/>Municipality.</li> </ol>                    |

| 20 | Outdoor advertising         | Advertisements and/or signboards shall not be erected or<br>displayed on the erf without the written consent of the Municipality<br>first being obtained in terms of municipal by-laws for outdoor<br>advertising.                                                                                                          |
|----|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21 | Detrimental soil conditions | No structures shall be erected on this erf prior to the appointment<br>of a professional Structural or Geo-technical engineer, who shall<br>design, specify and supervise structural measures to be<br>implemented according to the structure type to the satisfaction of<br>the City of Tshwane Metropolitan Municipality. |
| 22 | Open space                  | Not applicable                                                                                                                                                                                                                                                                                                              |
| 23 |                             | tions the erf and buildings thereon are further subject to the general<br>n Planning Scheme, 2008 (revised in 2014).                                                                                                                                                                                                        |



City Planning & Development Department

Room 1-010 I Isivuno Building I 143 Lilian Ngoyi (Van der Walt) Street I Pretoria I 0002 PO Box 3242 I Pretoria I 0001 Tel: 012 358 7987/8

Email: geoinfoservices@tshwane.gov.za | www.tshwane.gov.za.| www.facebook.com/CityOf Tshwane Contact Person: GeoWeb

Contact Ferson. Geo

#### TO WHOM IT MAY CONCERN

Date 2014/10/15

#### ZONING SUMMARY IN TERMS OF TSHWANE TOWN-PLANNING SCHEME, 2008

#### PROPERTY KEY: 012701211 PROPERTY DESCRIPTION: 1211 PIERRE VAN RYNEVELD X02 (21 KLOPPER ROAD)

- 1. USE ZONE 20: PUBLIC OPEN SPACE
- 2. PURPOSES FOR WHICH BUILDINGS MAY BE ERECTED AND USED IN TERMS OF TABLE B (COLUMN 3):

Public Open Space Sports Ground

3. PURPOSES FOR WHICH BUILDINGS MAY BE ERECTED AND USED ONLY WITH THE CONSENT OF THE MUNICIPALITY IN TERMS OF TABLE B (COLUMN 4):

Agriculture Market Garden Picnic Place Place of Refreshment Recreation Resort Special Use Sport and Recreation Club Telecommunication Mast

 PURPOSES FOR WHICH BUILDINGS MAY NOT BE ERECTED OR USED IN TERMS OF TABLE B (COLUMN 5):

Uses not in Columns 3 and 4, that is uses not specified in the above-mentioned Paragraphs 2 and 3.

- 5. TEMPORARY USES MAY BE PERMITTED IN TERMS OF CLAUSE 14(8).
- 6. DENSITY:
- 7. HEIGHT: Table D, Site Development Plan, subject to Clause 26
- 8. FLOOR AREA RATIO: Table C, Site Development Plan, subject to Clause 25.
- 9. COVERAGE: Table E, Site Development Plan, subject to Clause 27

12

Kgoro ya Peakanyo le Tihabollo ya Toropokgolo \* Departement Stadabeplanning en - ontwikkeling Lefspha la Thalaganyo le Tihabolao ya Toropo \* Ndaavalo ya Nituvukiso wa Vupukani bya Dorobankatu UMnyango Wezentuthuko Yakuhlelwa Kwedolobha \* City Planning and Development Department UmNyango wokuhlelwa kweDorobha neTuthuko

Document Ref: bd3e3e1d-ca94-4766-b427-227b1fff206b

10. BUILDING LINES:

Streets : Subject Clause 9(a),(b),(d) and (e) Other : Subject to Clause 12

11. CONSENT USES: N/A

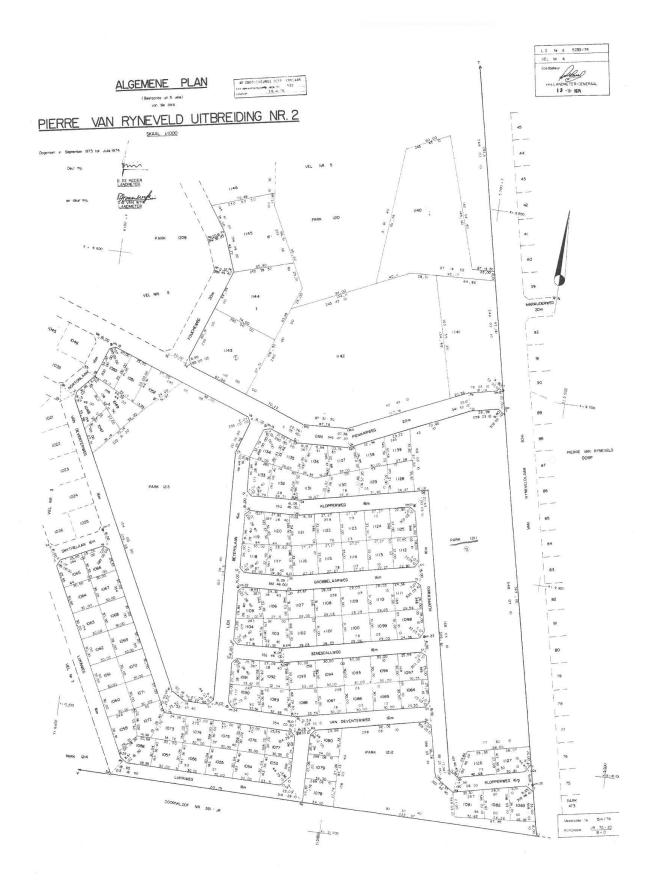
Disclaimer: Please note that the validity of the Consent Use cannot be verified as the rights may have elapsed in terms of the conditions of the Consent Use approval. The validity will have to be proven by the owner of the property.

12. ATTACHED DOCUMENTS:

#### NOTE:

The above zoning information must be read in conjunction with the relevant Annexure T, if any, and the rest of the Clauses of the Tshwane Town-Planning Scheme 2008. Where an Annexure T does not specify or stipulate a land use or development control (for e.g. Height, F.A.R. etc.) the stipulations of the said Scheme clauses and the above Zoning Certificate shall prevail.

Kind regards

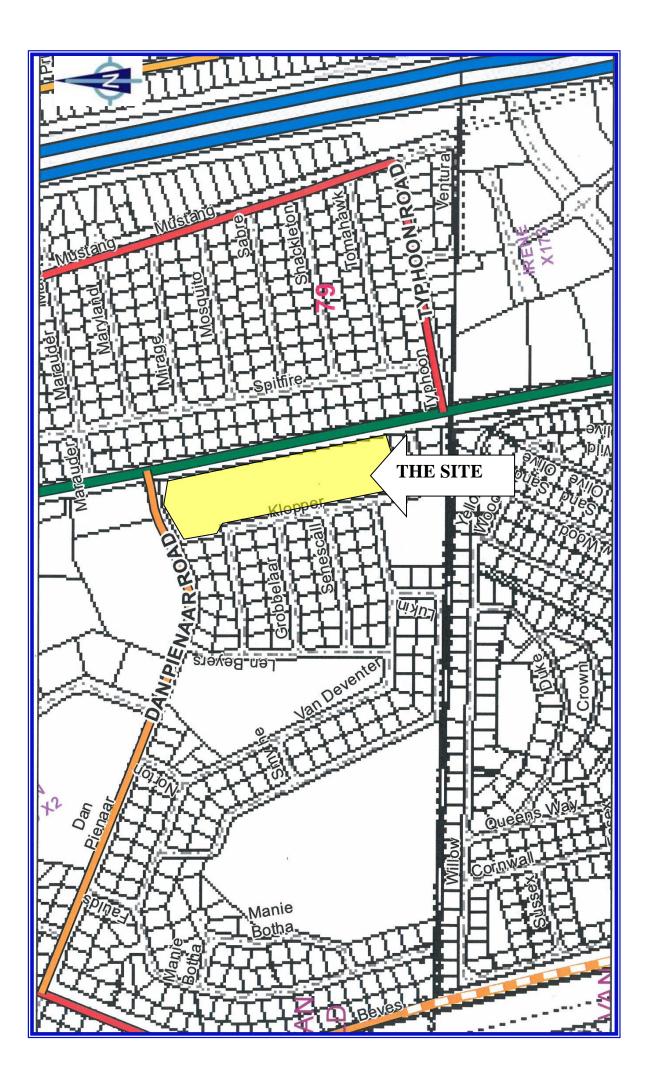

#### MA Makgata

f: STRATEGIC EXECUTIVE DIRECTOR: CITY PLANNING & DEVELOPMENT

On request, this document can be provided in another official language...

Kgoro ya Peakanyo le Tihabollo ya Toropokgolo + Departement Stadubeplarming en – ontwikkeling piha la Thulaganyo le Tihabollo ya Toropo + Ndaawalo ya Mihuvukiao wa Yupulami bya Dorobankuku UMnyango Wezentuthuka Yokuhlekwa Kwedolobha + City Planning and Dewelopment Department Umhyango wakufifekwa kweDorobha neThuthuko Document Ref: bd3e3e1d-ca94-4766-b427-227b1fff206b

2




## **ANNEXURE B:**

# **CONCEPT SITE DEVELOPMENT PLAN**

# **ANNEXURE C:**

# EXTRACT FROM TSHWANE ROAD MASTER PLAN



## **ANNEXURE D:**

## TRIP GENERATION CHARACTERISTICS – PROPOSED DEVELOPMENT

Residential Development - Erf 1211 Pierre van Ryneveld X2

Mariteng Project: 185/86 <u>Trip Generation Calculations</u> Description

| Description           | NO.         | Dev                           | Zoning | Density   | Height        | Dwelling | Trip Rate/ | No. of | Trip           | Final  |     | Directional Split | al Split |     |
|-----------------------|-------------|-------------------------------|--------|-----------|---------------|----------|------------|--------|----------------|--------|-----|-------------------|----------|-----|
|                       | of          | Area                          |        | (No. of   | Restriction   | Units    | Unit       | Trips  | Reduction.     | No. of | AM  |                   | PM       |     |
|                       | Res         | (m²)                          |        | units/ha) | (No. Storeys) |          |            |        | (No. of trips) | Trips  | N   | OUT               | N        | OUT |
|                       | Erven       |                               |        |           |               |          |            |        |                |        | 25% | 75%               | 70%      | 30% |
| Applicant site        | ,           | 1                             | Res 3  |           | 9             | 165      | 0.85       | 140    | 0              | 140    | 35  | 105               | 86       | 42  |
| Total                 | 1           | -                             | 1      | -         |               | 165 -    |            | 140    | 0              | 140    | 35  | 105               | 98       | 42  |
|                       |             |                               |        |           |               |          |            |        |                |        |     | 140               |          | 140 |
| Tuin under the factor | 1 101 TTTTT | Latter (0/ ) Faster (1- 6- 5. |        |           |               |          |            |        |                |        | 1   |                   | 1        |     |

Date: 1 December 2017

| Trip reduction factor           | Factors (%) | Factors Use for Pc |
|---------------------------------|-------------|--------------------|
| Mixed use development (Pm)      | 15%         | %0                 |
| Low vehicle ownership (Pv)      | 30%         | %0                 |
| Very low vehicle ownership (Pv) | 20%         | %0                 |
| Transit nodes or Corridors (Pt) | 15%         | %0                 |
| Total reduction factor          |             | %00.0              |

Combined factor:  $Pc = 1 - (1-Pm)^{*}(1-Pv)^{*}(1-Pt)$ 

۱

**Combined reduction factor** 

## **ANNEXURE E:**

# **CAPACITY ANALYSIS RESULTS**

## **Intersection 1: Dan Pienaar & Les Beyers**

#### **MOVEMENT SUMMARY**

#### Site: 101 [SC1 2017 AM Background]

Erf 1211 Pierre van Ryneveld X2 Dan Pienaar & Les Beyers SC1 - 2017 AM Peak - Background traffic Stop (Two-Way)

| ement Pe   | rformance                                                                                                | - Vehic                                                                                                                                                                                                                                    | les                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11/2 2200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 123 2 2 1 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OD<br>Mov  | Demand<br>Total<br>veh/h                                                                                 | Flows<br>HV<br>%                                                                                                                                                                                                                           | Deg.<br>Satn<br>v/c                                                                                                                                                                                                                                                                                                                                                                                                           | Average<br>Delay<br>sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Level of<br>Service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Vehicles                                                                                                                                                                                                                                                                                                                                                                                                | Distance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Prop.<br>Queued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Effective<br>Stop Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Average<br>Speed<br>km/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| : Les Beye | ers - NB                                                                                                 |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| L2         | 24                                                                                                       | 0.0                                                                                                                                                                                                                                        | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LOS A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.1                                                                                                                                                                                                                                                                                                                                                                                                     | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 51.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| R2         | 7                                                                                                        | 0.0                                                                                                                                                                                                                                        | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LOS A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.1                                                                                                                                                                                                                                                                                                                                                                                                     | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 51.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ach        | 31                                                                                                       | 0.0                                                                                                                                                                                                                                        | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LOS A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.1                                                                                                                                                                                                                                                                                                                                                                                                     | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 51.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Dan Piena  | ar - WB                                                                                                  |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| L2         | 2                                                                                                        | 0.0                                                                                                                                                                                                                                        | 0.023                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LOS A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 58.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| T1         | 43                                                                                                       | 0.0                                                                                                                                                                                                                                        | 0.023                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LOS A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 59.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ach        | 45                                                                                                       | 0.0                                                                                                                                                                                                                                        | 0.023                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 59.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Dan Piena  | aar - EB                                                                                                 |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| T1         | 212                                                                                                      | 0.0                                                                                                                                                                                                                                        | 0.112                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LOS A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0                                                                                                                                                                                                                                                                                                                                                                                                     | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 59.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| R2         | 7                                                                                                        | 0.0                                                                                                                                                                                                                                        | 0.112                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LOS A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0                                                                                                                                                                                                                                                                                                                                                                                                     | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 57.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ach        | 219                                                                                                      | 0.0                                                                                                                                                                                                                                        | 0.112                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                     | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 59.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| hicles     | 295                                                                                                      | 0.0                                                                                                                                                                                                                                        | 0.112                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.1                                                                                                                                                                                                                                                                                                                                                                                                     | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 58.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | OD<br>Mov<br>Les Beye<br>L2<br>R2<br>ach<br>Dan Piena<br>L2<br>T1<br>ach<br>Dan Piena<br>T1<br>R2<br>ach | OD<br>MovDemand<br>Total<br>veh/hI: Les Beyers - NB<br>L224<br>R2R27nach31Dan Pienaar - WB<br>L22<br>R2T143<br>43<br>hachDan Pienaar - EB<br>T1212<br>R2T1212<br>R2R27<br>hachDan Pienaar - EB<br>T1212<br>R2T1212<br>R2R27<br>hachPach219 | OD<br>Mov         Demand<br>Total<br>veh/h         Hv<br>HV<br>%           12         24         0.0           R2         7         0.0           rach         31         0.0           Dan Pienaar - WB         12         2           L2         2         0.0           T1         43         0.0           Dan Pienaar - EB         1         212           T1         212         0.0           R2         7         0.0 | Mov         Total veh/h         HV %         Sati v/c           xeh/h         %         V/c         v/c           L2         24         0.0         0.025           R2         7         0.0         0.025           pach         31         0.0         0.025           Dan Pienaar - WB         L2         2         0.0         0.023           T1         43         0.0         0.023         0.023           Dan Pienaar - EB         T1         212         0.0         0.112           R2         7         0.0         0.112         pach         219         0.0         0.112 | OD<br>Mov         Demand Flows<br>Total<br>veh/h         Deg.<br>HV         Average<br>Delay<br>v/c           L2         24         0.0         0.025         8.2           R2         7         0.0         0.025         8.3           Dan Pienaar - WB         U2         2         0.0         0.023         5.5           T1         43         0.0         0.023         0.0           Dan Pienaar - EB         U2         0.0         0.123         0.3           Dan Pienaar - EB         U2         0.0         0.112         0.0           Rach         45         0.0         0.112         0.0           Rach         219         0.0         0.112         0.2 | OD<br>Mov         Demand Flows<br>Total<br>veh/h         Deg.<br>HV<br>%         Average<br>Satn<br>v/c         Level of<br>Delay<br>Sec           L2         24         0.0         0.025         8.2         LOS A           R2         7         0.0         0.025         8.2         LOS A           ach         31         0.0         0.025         8.3         LOS A           Dan Pienaar - WB | OD<br>Mov         Demand Flows<br>Total<br>veh/h         Deg.<br>%         Average<br>Delay<br>v/c         Level of<br>Service         95% Back<br>Vehicles<br>veh           L2         24         0.0         0.025         8.2         LOS A         0.1           R2         7         0.0         0.025         8.2         LOS A         0.1           ach         31         0.0         0.025         8.3         LOS A         0.1           Dan Pienaar - WB         U         U         Delay         Delay         Sec         No         0.0           L2         2         0.0         0.025         8.3         LOS A         0.1           Dan Pienaar - WB         U         U         2         0.0         0.023         0.5         LOS A         0.0           T1         43         0.0         0.023         0.3         NA         0.0           Dan Pienaar - EB         U         U         0.0         LOS A         0.0           R2         7         0.0         0.112         0.0         LOS A         0.0           mach         219         0.0         0.112         0.2         NA         0.0 | OD<br>Mov         Demand Flows<br>Total<br>veh/h         Deg.<br>HV         Average<br>Satu         Level of<br>Delay<br>Sec         Strivice         95% Back of Queue<br>Vehicles         Distance<br>Distance<br>veh           L2         24         0.0         0.025         8.2         LOS A         0.1         0.7           R2         7         0.0         0.025         8.7         LOS A         0.1         0.7           pach         31         0.0         0.025         8.3         LOS A         0.1         0.7           pach         31         0.0         0.025         8.3         LOS A         0.1         0.7           Dan Pienaar - WB         Image: Comparison of the pace of | OD<br>Mov         Demand Flows<br>Total<br>veh/h         Deg.<br>HV         Average<br>Delay<br>v/c         Level of<br>Service         95% Back of Queue<br>Vehicles         Prop.<br>Distance<br>Vehicles         Prop.<br>Queued           L2         24         0.0         0.025         8.2         LOS A         0.1         0.7         0.11           R2         7         0.0         0.025         8.7         LOS A         0.1         0.7         0.11           pach         31         0.0         0.025         8.3         LOS A         0.1         0.7         0.11           pach         31         0.0         0.023         5.5         LOS A         0.0         0.00         0.00           Dan Pienaar - WB | OD<br>Mov         Demand Flows<br>Total<br>veh/h         Deg.<br>HV<br>%         Average<br>Satn<br>v/c         Level of<br>Service         95% Back of Queue<br>Vehicles         Prop.<br>Distance<br>veh         Effective<br>Stop Rate<br>per veh           L2         24         0.0         0.025         8.2         LOS A         0.1         0.7         0.11         0.93           R2         7         0.0         0.025         8.7         LOS A         0.1         0.7         0.11         0.93           pach         31         0.0         0.025         8.3         LOS A         0.1         0.7         0.11         0.93           pach         31         0.0         0.023         5.5         LOS A         0.1         0.7         0.11         0.93           Dan Pienaar - WB             0.00         0.023         0.0         LOS A         0.0         0.00         0.03           T1         43         0.0         0.023         0.3         NA         0.0         0.00         0.03           pach         45         0.0         0.023         0.3         NA         0.0         0.00         0.03           pach         45         0.0         0.112 <t< td=""></t<> |

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Minor Road Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

# SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MARITENG MANAGEMENT SOLUTIONS CC | Processed: 07 December 2017 08:35:42 AM Project: C:\Data\000\_projects\185-Numbers\185-86-erf 1211 pierre van ryneveld X2\Data & Calculations\Int 1 Dan Pienaar Les Beyers.sip7

With dev]

Erf 1211 Pierre van Ryneveld X2 Dan Pienaar & Les Beyers SC2 - 2017 AM Peak - With dev traffic Stop (Two-Way)

| Mov    | OD         | Demand   | Flows | Deg.  | Average |         | 95% Back | of Queue | Prop.      | Effective | Average |
|--------|------------|----------|-------|-------|---------|---------|----------|----------|------------|-----------|---------|
| ID     | Mov        | Total    | HV    | Satn  | Delay   | Service | Vehicles | Distance | Queued     | Stop Rate | Speed   |
| South  | : Les Beye | veh/h    | %     | v/c   | sec     |         | veh      | m        | 1000000000 | per veh   | km/h    |
|        |            |          |       |       |         |         |          |          |            |           |         |
| 1      | L2         | 60       | 0.0   | 0.062 | 8.2     | LOS A   | 0.2      | 1.7      | 0.11       | 0.93      | 51.7    |
| 3      | R2         | 17       | 0.0   | 0.062 | 8.9     | LOS A   | 0.2      | 1.7      | 0.11       | 0.93      | 51.3    |
| Appro  | ach        | 76       | 0.0   | 0.062 | 8.3     | LOS A   | 0.2      | 1.7      | 0.11       | 0.93      | 51.6    |
| East:  | Dan Piena  | ar - WB  |       |       |         |         |          |          |            |           |         |
| 4      | L2         | 7        | 0.0   | 0.026 | 5.5     | LOSA    | 0.0      | 0.0      | 0.00       | 0.09      | 57.6    |
| 5      | T1         | 43       | 0.0   | 0.026 | 0.0     | LOS A   | 0.0      | 0.0      | 0.00       | 0.09      | 59.2    |
| Appro  | ach        | 50       | 0.0   | 0.026 | 0.8     | NA      | 0.0      | 0.0      | 0.00       | 0.09      | 59.0    |
| West:  | Dan Piena  | aar - EB |       |       |         |         |          |          |            |           |         |
| 11     | T1         | 212      | 0.0   | 0.120 | 0.0     | LOS A   | 0.1      | 0.9      | 0.03       | 0.05      | 59.4    |
| 12     | R2         | 20       | 0.0   | 0.120 | 5.6     | LOS A   | 0.1      | 0.9      | 0.03       | 0.05      | 57.3    |
| Appro  | ach        | 232      | 0.0   | 0.120 | 0.5     | NA      | 0.1      | 0.9      | 0.03       | 0.05      | 59.2    |
| All Ve | hicles     | 358      | 0.0   | 0.120 | 2.2     | NA      | 0.2      | 1.7      | 0.04       | 0.24      | 57.4    |

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Minor Road Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MARITENG MANAGEMENT SOLUTIONS CC | Processed: 07 December 2017 08:37:26 AM Project: C:\Data\000\_projects\185-Numbers\185-86-erf 1211 pierre van ryneveld X2\Data & Calculations\Int 1 Dan Pienaar Les Beyers.sip7

Site: 101 [SC3 2022 AM Background] Erf 1211 Pierre van Ryneveld X2 Dan Pienaar & Les Beyers SC3 - 2022 AM Peak - Background traffic Stop (Two-Way)

| Mov    | OD         | Demand         | Flows   | Deq.        | Average      | Level of | 95% Back        | of Queue      | Prop.  | Effective            | Average       |
|--------|------------|----------------|---------|-------------|--------------|----------|-----------------|---------------|--------|----------------------|---------------|
| ID     | Mov        | Total<br>veh/h | HV<br>% | Satn<br>v/c | Delay<br>sec | Service  | Vehicles<br>veh | Distance<br>m | Queued | Stop Rate<br>per veh | Speed<br>km/h |
| South  | : Les Beye |                | 70      | 10          | 500          |          | Ven             |               |        | per ven              | KIUITI        |
| 1      | L2         | 30             | 0.0     | 0.036       | 8.2          | LOS A    | 0.1             | 0.9           | 0.13   | 0.92                 | 51.6          |
| 3      | R2         | 12             | 0.0     | 0.036       | 9.1          | LOS A    | 0.1             | 0.9           | 0.13   | 0.92                 | 51.2          |
| Appro  | bach       | 42             | 0.0     | 0.036       | 8.4          | LOS A    | 0.1             | 0.9           | 0.13   | 0.92                 | 51.5          |
| East:  | Dan Piena  | ar - WB        |         |             |              |          |                 |               |        |                      |               |
| 4      | L2         | 6              | 0.0     | 0.030       | 5.5          | LOS A    | 0.0             | 0.0           | 0.00   | 0.06                 | 57.8          |
| 5      | T1         | 54             | 0.0     | 0.030       | 0.0          | LOS A    | 0.0             | 0.0           | 0.00   | 0.06                 | 59.5          |
| Appro  | bach       | 60             | 0.0     | 0.030       | 0.6          | NA       | 0.0             | 0.0           | 0.00   | 0.06                 | 59.3          |
| West:  | Dan Piena  | aar - EB       |         |             |              |          |                 |               |        |                      |               |
| 11     | T1         | 250            | 0.0     | 0.134       | 0.0          | LOS A    | 0.1             | 0.6           | 0.02   | 0.03                 | 59.7          |
| 12     | R2         | 12             | 0.0     | 0.134       | 5.7          | LOS A    | 0.1             | 0.6           | 0.02   | 0.03                 | 57.5          |
| Appro  | bach       | 262            | 0.0     | 0.134       | 0.3          | NA       | 0.1             | 0.6           | 0.02   | 0.03                 | 59.6          |
| All Ve | hicles     | 363            | 0.0     | 0.134       | 1.3          | NA       | 0.1             | 0.9           | 0.03   | 0.14                 | 58.5          |

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Minor Road Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MARITENG MANAGEMENT SOLUTIONS CC | Processed: 07 December 2017 08:39:05 AM Project: C:\Data\000\_projects\185-Numbers\185-86-erf 1211 pierre van ryneveld X2\Data & Calculations\Int 1 Dan Pienaar Les Beyers.sip7

With dev]

Erf 1211 Pierre van Ryneveld X2 Dan Pienaar & Les Beyers SC4 - 2022 AM Peak - With dev traffic Stop (Two-Way)

| Mov    | OD         | Demand         | Flaws   | Deg.        | Average      | Level of | 95% Back        | of Queue      | Prop.  | Effective            | Average       |
|--------|------------|----------------|---------|-------------|--------------|----------|-----------------|---------------|--------|----------------------|---------------|
| ID     | Mov        | Total<br>veh/h | HV<br>% | Satn<br>v/c | Delay<br>sec | Service  | Vehicles<br>veh | Distance<br>m | Queued | Stop Rate<br>per veh | Speed<br>km/h |
| South  | : Les Beye | ers - NB       |         |             |              |          |                 |               | 90.000 |                      |               |
| 1      | L2         | 65             | 0.0     | 0.074       | 8.2          | LOS A    | 0.3             | 2.0           | 0.13   | 0.93                 | 51.6          |
| 3      | R2         | 21             | 0.0     | 0.074       | 9.2          | LOS A    | 0.3             | 2.0           | 0.13   | 0.93                 | 51.2          |
| Appro  | ach        | 87             | 0.0     | 0.074       | 8.5          | LOS A    | 0.3             | 2.0           | 0.13   | 0.93                 | 51.5          |
| East:  | Dan Piena  | ar - WB        |         |             |              |          |                 |               |        |                      |               |
| 4      | L2         | 11             | 0.0     | 0.033       | 5.5          | LOS A    | 0.0             | 0.0           | 0.00   | 0.10                 | 57.5          |
| 5      | T1         | 54             | 0.0     | 0.033       | 0.0          | LOS A    | 0.0             | 0.0           | 0.00   | 0.10                 | 59.1          |
| Appro  | ach        | 64             | 0.0     | 0.033       | 0.9          | NA       | 0.0             | 0.0           | 0.00   | 0.10                 | 58.8          |
| West:  | Dan Piena  | aar - EB       |         |             |              |          |                 |               |        |                      |               |
| 11     | T1         | 250            | 0.0     | 0.142       | 0.0          | LOS A    | 0.2             | 1.2           | 0.04   | 0.05                 | 59.4          |
| 12     | R2         | 25             | 0.0     | 0.142       | 5.7          | LOS A    | 0.2             | 1.2           | 0.04   | 0.05                 | 57.2          |
| Appro  | ach        | 275            | 0.0     | 0.142       | 0.5          | NA       | 0.2             | 1.2           | 0.04   | 0.05                 | 59.2          |
| All Ve | hicles     | 426            | 0.0     | 0.142       | 2.2          | NA       | 0.3             | 2.0           | 0.05   | 0.24                 | 57.4          |

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Minor Road Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MARITENG MANAGEMENT SOLUTIONS CC | Processed: 07 December 2017 08:40:48 AM Project: C:\Data\000\_projects\185-Numbers\185-86-erf 1211 pierre van ryneveld X2\Data & Calculations\Int 1 Dan Pienaar Les Beyers.sip7

Site: 101 [SC5 2017 PM Background] Erf 1211 Pierre van Ryneveld X2 Dan Pienaar & Les Beyers SC5 - 2017 PM Peak - Background traffic Stop (Two-Way)

| Mov    | OD         | Demand   | Flows | Deg.  |       | Level of              | 95% Back | of Queue | Prop.  | Effective | Average |
|--------|------------|----------|-------|-------|-------|-----------------------|----------|----------|--------|-----------|---------|
| ID     | Mov        | Total    | HV    | Satn  | Delay | Service               | Vehicles | Distance | Queued | Stop Rate | Speed   |
| South  | : Les Beye | veh/h    | %     | v/c   | sec   | CO. R. C. C. C. C. C. | veh      | m        |        | per veh   | km/h    |
| Journ  |            |          |       | 0.011 |       | 100.4                 | 0.4      |          |        |           |         |
| 1      | L2         | 12       | 0.0   | 0.014 | 8.6   | LOS A                 | 0.1      | 0.4      | 0.26   | 0.86      | 51.7    |
| 3      | R2         | 4        | 0.0   | 0.014 | 8.6   | LOS A                 | 0.1      | 0.4      | 0.26   | 0.86      | 51.3    |
| Appro  | ach        | 16       | 0.0   | 0.014 | 8.6   | LOS A                 | 0.1      | 0.4      | 0.26   | 0.86      | 51.6    |
| East:  | Dan Piena  | ar - WB  |       |       |       |                       |          |          |        |           |         |
| 4      | L2         | 9        | 0.0   | 0.083 | 5.5   | LOS A                 | 0.0      | 0.0      | 0.00   | 0.03      | 58.1    |
| 5      | T1         | 154      | 0.0   | 0.083 | 0.0   | LOS A                 | 0.0      | 0.0      | 0.00   | 0.03      | 59.7    |
| Appro  | ach        | 163      | 0.0   | 0.083 | 0.3   | NA                    | 0.0      | 0.0      | 0.00   | 0.03      | 59.6    |
| West:  | Dan Piena  | aar - EB |       |       |       |                       |          |          |        |           |         |
| 11     | T1         | 71       | 0.0   | 0.045 | 0.1   | LOS A                 | 0.1      | 0.6      | 0.10   | 0.09      | 58.8    |
| 12     | R2         | 13       | 0.0   | 0.045 | 5.9   | LOS A                 | 0.1      | 0.6      | 0.10   | 0.09      | 56.7    |
| Appro  | ach        | 84       | 0.0   | 0.045 | 1.0   | NA                    | 0.1      | 0.6      | 0.10   | 0.09      | 58.4    |
| All Ve | hicles     | 263      | 0.0   | 0.083 | 1.0   | NA                    | 0.1      | 0.6      | 0.05   | 0.10      | 58.7    |

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Minor Road Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MARITENG MANAGEMENT SOLUTIONS CC | Processed: 07 December 2017 08:36:30 AM Project: C:\Data\000\_projects\185-Numbers\185-86-erf 1211 pierre van ryneveld X2\Data & Calculations\int 1 Dan Pienaar Les Beyers.sip7

#### Site: 101 [SC6 2017 PM With dev]

Erf 1211 Pierre van Ryneveld X2 Dan Pienaar & Les Beyers SC6 - 2017 PM Peak - With dev traffic Stop (Two-Way)

| Mov    | OD         | Demand         | Flows   | Deg.        | Average      | Level of | 95% Back        | of Queue      | Prop.  | Effective            | Average       |
|--------|------------|----------------|---------|-------------|--------------|----------|-----------------|---------------|--------|----------------------|---------------|
| ID     | Mov        | Total<br>veh/h | HV<br>% | Satn<br>v/c | Delay<br>sec | Service  | Vehicles<br>veh | Distance<br>m | Queued | Stop Rate<br>ber veh | Speed<br>km/h |
| South  | : Les Beye |                |         |             |              |          |                 |               |        |                      |               |
| 1      | L2         | 29             | 0.0     | 0.036       | 8.6          | LOS A    | 0.1             | 0.9           | 0.27   | 0.87                 | 51.7          |
| 3      | R2         | 11             | 0.0     | 0.036       | 8.8          | LOS A    | 0.1             | 0.9           | 0.27   | 0.87                 | 51.3          |
| Appro  | ach        | 40             | 0.0     | 0.036       | 8.6          | LOS A    | 0.1             | 0.9           | 0.27   | 0.87                 | 51.6          |
| East:  | Dan Piena  | ar - WB        |         |             |              |          |                 |               |        |                      |               |
| 4      | L2         | 23             | 0.0     | 0.091       | 5.5          | LOS A    | 0.0             | 0.0           | 0.00   | 0.08                 | 57.7          |
| 5      | T1         | 154            | 0.0     | 0.091       | 0.0          | LOS A    | 0.0             | 0.0           | 0.00   | 0.08                 | 59.3          |
| Appro  | ach        | 177            | 0.0     | 0.091       | 0.7          | NA       | 0.0             | 0.0           | 0.00   | 0.08                 | 59.1          |
| West:  | Dan Piena  | aar - EB       |         |             |              |          |                 |               |        |                      |               |
| 11     | T1         | 71             | 0.0     | 0.058       | 0.3          | LOS A    | 0.2             | 1.4           | 0.19   | 0.19                 | 57.6          |
| 12     | R2         | 34             | 0.0     | 0.058       | 6.0          | LOS A    | 0.2             | 1.4           | 0.19   | 0.19                 | 55.6          |
| Appro  | ach        | 104            | 0.0     | 0.058       | 2.1          | NA       | 0.2             | 1.4           | 0.19   | 0.19                 | 56.9          |
| All Ve | hicles     | 322            | 0.0     | 0.091       | 2.2          | NA       | 0.2             | 1.4           | 0.09   | 0.21                 | 57.3          |

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Minor Road Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MARITENG MANAGEMENT SOLUTIONS CC | Processed: 07 December 2017 08:38:12 AM Project: C:\Data\000\_projects\185-Numbers\185-86-erf 1211 pierre van ryneveld X2\Data & Calculations\Int 1 Dan Pienaar Les Beyers.sip7

#### Site: 101 [SC7 2022 PM Background]

Erf 1211 Pierre van Ryneveld X2 Dan Pienaar & Les Beyers SC7 - 2022 PM Peak - Background traffic Stop (Two-Way)

| Move      | ement Pe   | rformance                | - Vehic          | les                 | 1 selection             |                     |                             |                           | Tre The         |                                   |                          |
|-----------|------------|--------------------------|------------------|---------------------|-------------------------|---------------------|-----------------------------|---------------------------|-----------------|-----------------------------------|--------------------------|
| Mov<br>ID | OD<br>Mov  | Demand<br>Total<br>veh/h | Flows<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Back<br>Vehicles<br>veh | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate<br>per veh | Average<br>Speed<br>km/h |
| South     | : Les Beye | ers - NB                 |                  |                     |                         |                     |                             |                           |                 |                                   |                          |
| 1         | L2         | 16                       | 0.0              | 0.020               | 8.7                     | LOS A               | 0.1                         | 0.5                       | 0.29            | 0.86                              | 51.7                     |
| 3         | R2         | 5                        | 0.0              | 0.020               | 8.8                     | LOS A               | 0.1                         | 0.5                       | 0.29            | 0.86                              | 51.2                     |
| Appro     | ach        | 22                       | 0.0              | 0.020               | 8.7                     | LOS A               | 0.1                         | 0.5                       | 0.29            | 0.86                              | 51.6                     |
| East:     | Dan Piena  | ar - WB                  |                  |                     |                         |                     |                             |                           |                 |                                   |                          |
| 4         | L2         | 11                       | 0.0              | 0.097               | 5.5                     | LOS A               | 0.0                         | 0.0                       | 0.00            | 0.03                              | 58.1                     |
| 5         | T1         | 179                      | 0.0              | 0.097               | 0.0                     | LOS A               | 0.0                         | 0.0                       | 0.00            | 0.03                              | 59.7                     |
| Appro     | ach        | 190                      | 0.0              | 0.097               | 0.3                     | NA                  | 0.0                         | 0.0                       | 0.00            | 0.03                              | 59.6                     |
| West:     | Dan Piena  | aar - EB                 |                  |                     |                         |                     |                             |                           |                 |                                   |                          |
| 11        | T1         | 82                       | 0.0              | 0.052               | 0.1                     | LOS A               | 0.1                         | 0.8                       | 0.11            | 0.10                              | 58.6                     |
| 12        | R2         | 16                       | 0.0              | 0.052               | 6.0                     | LOS A               | 0.1                         | 0.8                       | 0.11            | 0.10                              | 56.6                     |
| Appro     | ach        | 98                       | 0.0              | 0.052               | 1.1                     | NA                  | 0.1                         | 0.8                       | 0.11            | 0.10                              | 58.3                     |
| All Ve    | hicles     | 310                      | 0.0              | 0.097               | 1.2                     | NA                  | 0.1                         | 0.8                       | 0.06            | 0.11                              | 58.5                     |

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection). Minor Road Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MARITENG MANAGEMENT SOLUTIONS CC | Processed: 07 December 2017 08:39:55 AM Project: C:Data\000\_projects\185-Numbers\185-86-erf 1211 pierre van ryneveld X2\Data & Calculations\Int 1 Dan Pienaar Les Beyers.sip7

With dev]

Erf 1211 Pierre van Ryneveld X2 Dan Pienaar & Les Beyers SC8 - 2022 PM Peak - With dev traffic Stop (Two-Way)

| Mov    | OD         | Demand         | Flows   | Deg.        | Average      | Level of | 95% Back        | of Queue      | Prop.  | Effective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Average       |
|--------|------------|----------------|---------|-------------|--------------|----------|-----------------|---------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| ID     | Mov        | Total<br>veh/h | HV<br>% | Satn<br>v/c | Delay<br>sec | Service  | Vehicles<br>veh | Distance<br>m | Queued | Stop Rate<br>per veh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Speed<br>km/h |
| South  | : Les Beye | ers - NB       | 144     |             |              |          |                 |               |        | and the second se |               |
| 1      | L2         | 34             | 0.0     | 0.042       | 8.7          | LOS A    | 0.2             | 1.1           | 0.29   | 0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 51.6          |
| 3      | R2         | 12             | 0.0     | 0.042       | 9.0          | LOS A    | 0.2             | 1.1           | 0.29   | 0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 51.2          |
| Appro  | ach        | 46             | 0.0     | 0.042       | 8.8          | LOS A    | 0.2             | 1.1           | 0.29   | 0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 51.5          |
| East:  | Dan Piena  | ar - WB        |         |             |              |          |                 |               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |
| 4      | L2         | 25             | 0.0     | 0.104       | 5.6          | LOS A    | 0.0             | 0.0           | 0.00   | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 57.7          |
| 5      | T1         | 179            | 0.0     | 0.104       | 0.0          | LOS A    | 0.0             | 0.0           | 0.00   | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 59.3          |
| Appro  | ach        | 204            | 0.0     | 0.104       | 0.7          | NA       | 0.0             | 0.0           | 0.00   | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 59.1          |
| West:  | Dan Pien   | aar - EB       |         |             |              |          |                 |               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |
| 11     | T1         | 82             | 0.0     | 0.067       | 0.3          | LOS A    | 0.2             | 1.6           | 0.20   | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 57.6          |
| 12     | R2         | 37             | 0.0     | 0.067       | 6.1          | LOS A    | 0.2             | 1.6           | 0.20   | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 55.6          |
| Appro  | ach        | 118            | 0.0     | 0.067       | 2.1          | NA       | 0.2             | 1.6           | 0.20   | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 56.9          |
| All Ve | hicles     | 368            | 0.0     | 0.104       | 2.2          | NA       | 0.2             | 1.6           | 0.10   | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 57.4          |

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Minor Road Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MARITENG MANAGEMENT SOLUTIONS CC | Processed: 07 December 2017 08:41:34 AM Project: C:\Data\000\_projects\185-Numbers\185-86-erf 1211 pierre van ryneveld X2\Data & Calculations\Int 1 Dan Pienaar Les Beyers.sip7

## Intersection 2: Van Ryneveld & Klopper

#### **MOVEMENT SUMMARY**

Site: 102 [SC1 2017 AM Background]

Erf 1211 Van Ryneveld X2 Pierre van Ryneveld & Klopper SC1 - 2017 AM Peak - Background traffic Stop (Two-Way)

| ID         Mov         Total veh/h         HV %         Sain v/c         Delay sec         Service         Vehicles veh         Distance m         Queued Stop Raper veh           South: Pierre v Ryneveld - NB         1         L2         8         0.0         0.111         5.6         LOS A         0.0         0.00         0.0         0.0           2         T1         210         0.0         0.111         0.0         LOS A         0.0         0.00         0.0         0.0           Approach         218         0.0         0.111         0.2         NA         0.0         0.00         0.0         0.0           North: Pierre v Ryneveld - SB         5         5         0.0         0.274         0.0         LOS A         0.0         0.2         0.01         0.0           9         R2         4         0.0         0.274         6.4         LOS A         0.0         0.2         0.01         0.0           Approach         539         0.0         0.274         0.1         NA         0.0         0.2         0.01         0.0           West: Klopper - EB         539         0.0         0.104         8.9         LOS A         0.3         2.4         0. |         |                                   | Contraction of the second | 100000   |          |       | 1 2 1 2 2 2 | les      | - Vehicl | rformance    | ment Pe      | Move   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------|---------------------------|----------|----------|-------|-------------|----------|----------|--------------|--------------|--------|
| 1       L2       8       0.0       0.111       5.6       LOS A       0.0       0.0       0.00       0.0         2       T1       210       0.0       0.111       0.0       LOS A       0.0       0.0       0.0       0.0         Approach       218       0.0       0.111       0.2       NA       0.0       0.0       0.0       0.0         North: Pierre v Ryneveld - SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e Speed | Effective<br>Stop Rate<br>per veh |                           | Distance | Vehicles |       | Delay       | Satn     | ΗV       | Total        |              |        |
| 2         T1         210         0.0         0.111         0.0         LOS A         0.0         0.0         0.00         0.0           Approach         218         0.0         0.111         0.2         NA         0.0         0.0         0.00         0.0           North: Pierre v Ryneveld - SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                   |                           | 10.07.03 | 121227   |       |             | Loge The | NB       | Ryneveld - N | : Pierre v F | South  |
| Approach         218         0.0         0.111         0.2         NA         0.0         0.0         0.00         0.0           North: Pierre v Ryneveld - SB         -         -         -         -         -         -         -         -         -         -         -         0.0         0.00         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         <   | 2 58.1  | 0.02                              | 0.00                      | 0.0      | 0.0      | LOS A | 5.6         | 0.111    | 0.0      | 8            | L2           | 1      |
| North: Pierre v Ryneveld - SB           8         T1         535         0.0         0.274         0.0         LOS A         0.0         0.2         0.01         0.0           9         R2         4         0.0         0.274         6.4         LOS A         0.0         0.2         0.01         0.0           Approach         539         0.0         0.274         0.1         NA         0.0         0.2         0.01         0.0           West: Klopper - EB         10         L2         10         0.0         0.104         8.9         LOS A         0.3         2.4         0.51         0.1           12         R2         46         0.0         0.104         13.0         LOS B         0.3         2.4         0.51         0.5                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 59.8  | 0.02                              | 0.00                      | 0.0      | 0.0      | LOS A | 0.0         | 0.111    | 0.0      | 210          | T1           | 2      |
| 8         T1         535         0.0         0.274         0.0         LOS A         0.0         0.2         0.01         0.0           9         R2         4         0.0         0.274         6.4         LOS A         0.0         0.2         0.01         0.0           Approach         539         0.0         0.274         0.1         NA         0.0         0.2         0.01         0.0           West: Klopper - EB         I         I         I         I         I           10         L2         10         0.0         0.104         8.9         LOS A         0.3         2.4         0.51         0.1           12         R2         46         0.0         0.104         13.0         LOS B         0.3         2.4         0.51         0.1                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 59.7  | 0.02                              | 0.00                      | 0.0      | 0.0      | NA    | 0.2         | 0.111    | 0.0      | 218          | ach          | Appro  |
| 9         R2         4         0.0         0.274         6.4         LOS A         0.0         0.2         0.01         0.           Approach         539         0.0         0.274         0.1         NA         0.0         0.2         0.01         0.           West: Klopper - EB         10         L2         10         0.0         0.104         8.9         LOS A         0.3         2.4         0.51         0.           12         R2         46         0.0         0.104         13.0         LOS B         0.3         2.4         0.51         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |                                   |                           |          |          |       |             |          | B        | Ryneveld - S | Pierre v F   | North  |
| Approach         539         0.0         0.274         0.1         NA         0.0         0.2         0.01         0.           West: Klopper - EB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 59.9  | 0.00                              | 0.01                      | 0.2      | 0.0      | LOS A | 0.0         | 0.274    | 0.0      | 535          | T1           | 8      |
| West: Klopper - EB           10         L2         10         0.0         0.104         8.9         LOS A         0.3         2.4         0.51         0.           12         R2         46         0.0         0.104         13.0         LOS B         0.3         2.4         0.51         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 57.8  | 0.00                              | 0.01                      | 0.2      | 0.0      | LOS A | 6.4         | 0.274    | 0.0      | 4            | R2           | 9      |
| 10         L2         10         0.0         0.104         8.9         LOS A         0.3         2.4         0.51         0.           12         R2         46         0.0         0.104         13.0         LOS B         0.3         2.4         0.51         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 59.9  | 0.00                              | 0.01                      | 0.2      | 0.0      | NA    | 0.1         | 0.274    | 0.0      | 539          | ach          | Appro  |
| 12 R2 46 0.0 0.104 13.0 LOS B 0.3 2.4 0.51 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                   |                           |          |          |       |             |          |          | EB           | Klopper -    | West:  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7 49.4  | 0.97                              | 0.51                      | 2.4      | 0.3      | LOS A | 8.9         | 0.104    | 0.0      | 10           | L2           | 10     |
| Approach 55 0.0 0.104 12.3 LOS B 0.3 2.4 0.51 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7 49.0  | 0.97                              | 0.51                      | 2.4      | 0.3      | LOS B | 13.0        | 0.104    | 0.0      | 46           | R2           | 12     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7 49.1  | 0.97                              | 0.51                      | 2.4      | 0.3      | LOS B | 12.3        | 0.104    | 0.0      | 55           | ach          | Appro  |
| All Vehicles 812 0.0 0.274 0.9 NA 0.3 2.4 0.04 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7 59.0  | 0.07                              | 0.04                      | 2.4      | 0.3      | NA    | 0.9         | 0.274    | 0.0      | 812          | hicles       | All Ve |

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Minor Road Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MARITENG MANAGEMENT SOLUTIONS CC | Processed: 07 December 2017 08:08:26 AM Project: C:\Data\000\_projects\185-Numbers\185-86-erf 1211 pierre van ryneveld X2\Data & Calculations\Int 2 Pierre van Ryneveld Klopper.sip7

102 [SC2 2017 AM With dev]

Erf 1211 Van Ryneveld X2 Pierre van Ryneveld & Klopper SC2 - 2017 AM Peak - With dev traffic Stop (Two-Way)

|           |              | rformance       | C De la competition de contrata | Statistics of the second second |              | A DE CONTRACTOR |                 |               | 1 April 1 | and the second       | 12. 12. 11.   |
|-----------|--------------|-----------------|---------------------------------|---------------------------------|--------------|-----------------|-----------------|---------------|-----------|----------------------|---------------|
| Mov<br>ID | OD<br>Mov    | Demand<br>Total | Hows                            | Deg.                            | Average      | Level of        | 95% Back        |               | Prop.     | Effective            | Average       |
|           |              | veh/h           | HV<br>%                         | Satn<br>v/c                     | Delay<br>sec | Service         | Vehicles<br>veh | Distance<br>m | Queued    | Stop Rate<br>per veh | Speed<br>km/h |
| South     | : Pierre v I | Ryneveld - N    |                                 |                                 | 000          |                 | Ven             |               |           | perven               | NUTION .      |
| 1         | L2           | 25              | 0.0                             | 0.120                           | 5.6          | LOS A           | 0.0             | 0.0           | 0.00      | 0.06                 | 57.8          |
| 2         | T1           | 210             | 0.0                             | 0.120                           | 0.0          | LOS A           | 0.0             | 0.0           | 0.00      | 0.06                 | 59.4          |
| Appro     | ach          | 235             | 0.0                             | 0.120                           | 0.6          | NA              | 0.0             | 0.0           | 0.00      | 0.06                 | 59.2          |
| North     | Pierre v F   | Ryneveld - S    | В                               |                                 |              |                 |                 |               |           |                      |               |
| 8         | T1           | 535             | 0.0                             | 0.279                           | 0.0          | LOS A           | 0.1             | 0.7           | 0.02      | 0.01                 | 59.8          |
| 9         | R2           | 11              | 0.0                             | 0.279                           | 6.5          | LOS A           | 0.1             | 0.7           | 0.02      | 0.01                 | 57.6          |
| Appro     | ach          | 546             | 0.0                             | 0.279                           | 0.2          | NA              | 0.1             | 0.7           | 0.02      | 0.01                 | 59.8          |
| West:     | Klopper -    | EB              |                                 |                                 |              |                 |                 |               |           |                      |               |
| 10        | L2           | 23              | 0.0                             | 0.262                           | 9.3          | LOS A           | 1.0             | 6.8           | 0.56      | 0.99                 | 48.8          |
| 12        | R2           | 113             | 0.0                             | 0.262                           | 14.2         | LOS B           | 1.0             | 6.8           | 0.56      | 0.99                 | 48.4          |
| Appro     | ach          | 136             | 0.0                             | 0.262                           | 13.4         | LOS B           | 1.0             | 6.8           | 0.56      | 0.99                 | 48.4          |
| All Ve    | hicles       | 917             | 0.0                             | 0.279                           | 2.2          | NA              | 1.0             | 6.8           | 0.10      | 0.17                 | 57.6          |

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement. LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection). Minor Road Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MARITENG MANAGEMENT SOLUTIONS CC | Processed: 07 December 2017 08:10:49 AM Project: C:\Data\000\_projects\185-Numbers\185-86-erf 1211 pierre van ryneveld X2\Data & Calculations\Int 2 Pierre van Ryneveld Klopper.sip7

#### Site: 102 [SC3 2022 AM Background]

Erf 1211 Van Ryneveld X2 Pierre van Ryneveld & Klopper SC3 - 2022 AM Peak - Background traffic Stop (Two-Way)

| Move      | ement Pe     | rformance                | - Vehic          | les                 | 1. 13Kg 2               |                     |                             | 2015281                   | 1 all and       |                                   | A CONTRACTOR             |
|-----------|--------------|--------------------------|------------------|---------------------|-------------------------|---------------------|-----------------------------|---------------------------|-----------------|-----------------------------------|--------------------------|
| Mov<br>ID | OD<br>Mov    | Demand<br>Total<br>veh/h | Flows<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Back<br>Vehicles<br>veh | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate<br>per veh | Average<br>Speed<br>km/h |
| South     | : Pierre v   | Ryneveld - N             | В                | 12 12 22 23         |                         | 1.1.1               | Statute of                  |                           |                 |                                   |                          |
| 1         | L2           | 12                       | 0.0              | 0.132               | 5.6                     | LOS A               | 0.0                         | 0.0                       | 0.00            | 0.03                              | 58.1                     |
| 2         | T1           | 247                      | 0.0              | 0.132               | 0.0                     | LOS A               | 0.0                         | 0.0                       | 0.00            | 0.03                              | 59.7                     |
| Appro     | bach         | 259                      | 0.0              | 0.132               | 0.3                     | NA                  | 0.0                         | 0.0                       | 0.00            | 0.03                              | 59.6                     |
| North     | : Pierre v I | Ryneveld - Si            | В                |                     |                         |                     |                             |                           |                 |                                   |                          |
| 8         | T1           | 620                      | 0.0              | 0.319               | 0.0                     | LOS A               | 0.1                         | 0.4                       | 0.01            | 0.01                              | 59.9                     |
| 9         | R2           | 6                        | 0.0              | 0.319               | 6.7                     | LOS A               | 0.1                         | 0.4                       | 0.01            | 0.01                              | 57.7                     |
| Appro     | bach         | 627                      | 0.0              | 0.319               | 0.1                     | NA                  | 0.1                         | 0.4                       | 0.01            | 0.01                              | 59.9                     |
| West:     | Klopper -    | EB                       |                  |                     |                         |                     |                             |                           |                 |                                   |                          |
| 10        | L2           | 12                       | 0.0              | 0.149               | 9.1                     | LOS A               | 0.5                         | 3.4                       | 0.60            | 0.96                              | 48.4                     |
| 12        | R2           | 54                       | 0.0              | 0.149               | 15.1                    | LOS C               | 0.5                         | 3.4                       | 0.60            | 0.96                              | 48.0                     |
| Appro     | bach         | 66                       | 0.0              | 0.149               | 14.0                    | LOS B               | 0.5                         | 3.4                       | 0.60            | 0.96                              | 48.1                     |
| All Ve    | hicles       | 952                      | 0.0              | 0.319               | 1.1                     | NA                  | 0.5                         | 3.4                       | 0.05            | 0.08                              | 58.8                     |

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement. LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection). Minor Road Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MARITENG MANAGEMENT SOLUTIONS CC | Processed: 07 December 2017 08:12:48 AM Project: C:\Data\000\_projects\185-Numbers\185-86-erf 1211 pierre van ryneveld X2\Data & Calculations\Int 2 Pierre van Ryneveld Klopper.sip7

With dev]

Erf 1211 Van Ryneveld X2 Pierre van Ryneveld & Klopper SC4 - 2022 AM Peak - With dev traffic Stop (Two-Way)

| Move      | ement Pe     | rformance                | - Vehic          | les                 |                         |                     |                             |                           | 10 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | The Surge                         | a faith                  |
|-----------|--------------|--------------------------|------------------|---------------------|-------------------------|---------------------|-----------------------------|---------------------------|-----------------------------------------|-----------------------------------|--------------------------|
| Mov<br>ID | OD<br>Mov    | Demand<br>Total<br>veh/h | Flows<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Back<br>Vehicles<br>veh | of Queue<br>Distance<br>m | Prop.<br>Queued                         | Effective<br>Stop Rate<br>per veh | Average<br>Speed<br>km/h |
| South     | : Pierre v I | Ryneveld - N             | IB               |                     |                         |                     |                             |                           |                                         |                                   |                          |
| 1         | L2           | 29                       | 0.0              | 0.141               | 5.6                     | LOS A               | 0.0                         | 0.0                       | 0.00                                    | 0.06                              | 57.8                     |
| 2         | T1           | 247                      | 0.0              | 0.141               | 0.0                     | LOS A               | 0.0                         | 0.0                       | 0.00                                    | 0.06                              | 59.4                     |
| Appro     | bach         | 276                      | 0.0              | 0.141               | 0.6                     | NA                  | 0.0                         | 0.0                       | 0.00                                    | 0.06                              | 59.2                     |
| North     | : Pierre v F | Ryneveld - Si            | В                |                     |                         |                     |                             |                           |                                         |                                   |                          |
| 8         | T1           | 620                      | 0.0              | 0.325               | 0.0                     | LOS A               | 0.1                         | 1.0                       | 0.02                                    | 0.01                              | 59.8                     |
| 9         | R2           | 13                       | 0.0              | 0.325               | 6.8                     | LOS A               | 0.1                         | 1.0                       | 0.02                                    | 0.01                              | 57.6                     |
| Appro     | bach         | 634                      | 0.0              | 0.325               | 0.2                     | NA                  | 0.1                         | 1.0                       | 0.02                                    | 0.01                              | 59.7                     |
| West:     | Klopper -    | EB                       |                  |                     |                         |                     |                             |                           |                                         |                                   |                          |
| 10        | L2           | 25                       | 0.0              | 0.341               | 10.2                    | LOS B               | 1.3                         | 9.4                       | 0.65                                    | 1.02                              | 47.2                     |
| 12        | R2           | 122                      | 0.0              | 0.341               | 17.2                    | LOS C               | 1.3                         | 9.4                       | 0.65                                    | 1.02                              | 46.9                     |
| Appro     | bach         | 147                      | 0.0              | 0.341               | 16.0                    | LOS C               | 1.3                         | 9,4                       | 0.65                                    | 1.02                              | 46.9                     |
| All Ve    | hicles       | 1057                     | 0.0              | 0.341               | 2.5                     | NA                  | 1.3                         | 9.4                       | 0.11                                    | 0.17                              | 57.4                     |

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Minor Road Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MARITENG MANAGEMENT SOLUTIONS CC | Processed: 07 December 2017 08:14:36 AM Project: C:\Data\000\_projects\185-Numbers\185-86-erf 1211 pierre van ryneveld X2\Data & Calculations\Int 2 Pierre van Ryneveld Klopper.sip7

### Site: 102 [SC5 2017 PM Background]

Erf 1211 Van Ryneveld X2 Pierre van Ryneveld & Klopper SC5 - 2017 PM Peak - Background traffic Stop (Two-Way)

| Mov     | OD         | Demand         |         | Deg.        | Average      | Level of | 95% Back        | of Queue      | Prop.  |                      | Average       |
|---------|------------|----------------|---------|-------------|--------------|----------|-----------------|---------------|--------|----------------------|---------------|
| ID      | Mov        | Total<br>veh/h | HV<br>% | Satn<br>v/c | Delay<br>sec | Service  | Vehicles<br>veh | Distance<br>m | Queued | Stop Rate<br>per veh | Speed<br>km/h |
| South   | Pierre v I | Ryneveld - N   |         | 10          | 000          |          | Ven             |               |        | perven               | MITT          |
| 1       | L2         | 29             | 0.0     | 0.183       | 5.6          | LOS A    | 0.0             | 0.0           | 0.00   | 0.05                 | 57.9          |
| 2       | T1         | 330            | 0.0     | 0.183       | 0.0          | LOS A    | 0.0             | 0.0           | 0.00   | 0.05                 | 59.5          |
| Appro   | ach        | 359            | 0.0     | 0.183       | 0.5          | NA       | 0.0             | 0.0           | 0.00   | 0.05                 | 59.4          |
| North:  | Pierre v F | Ryneveld - S   | В       |             |              |          |                 |               |        |                      |               |
| 8       | T1         | 380            | 0.0     | 0.206       | 0.1          | LOS A    | 0.2             | 1.1           | 0.05   | 0.03                 | 59.6          |
| 9       | R2         | 16             | 0.0     | 0.206       | 7.0          | LOS A    | 0.2             | 1.1           | 0.05   | 0.03                 | 57.4          |
| Appro   | ach        | 396            | 0.0     | 0.206       | 0.4          | NA       | 0.2             | 1.1           | 0.05   | 0.03                 | 59.5          |
| West:   | Klopper -  | EB             |         |             |              |          |                 |               |        |                      |               |
| 10      | L2         | 5              | 0.0     | 0.024       | 9.4          | LOS A    | 0.1             | 0.6           | 0.48   | 0.90                 | 50.1          |
| 12      | R2         | 10             | 0.0     | 0.024       | 12.3         | LOS B    | 0.1             | 0.6           | 0.48   | 0.90                 | 49.7          |
| Appro   | ach        | 15             | 0.0     | 0.024       | 11.2         | LOS B    | 0.1             | 0.6           | 0.48   | 0.90                 | 49.8          |
| All Vel | hicles     | 770            | 0.0     | 0.206       | 0.6          | NA       | 0.2             | 1.1           | 0.04   | 0.05                 | 59.2          |

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Minor Road Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MARITENG MANAGEMENT SOLUTIONS CC | Processed: 07 December 2017 08:09:31 AM Project: C:\Data\000\_projects\185-Numbers\185-86-erf 1211 pierre van ryneveld X2\Data & Calculations\Int 2 Pierre van Ryneveld Klopper.sip7

With dev]

Erf 1211 Van Ryneveld X2 Pierre van Ryneveld & Klopper SC6 - 2017 PM Peak - With dev traffic Stop (Two-Way)

| Mov    | OD           | Demand         |         | Deg.        | Average      |         | 95% Back        | of Queue      | Prop.  | Effective            | Average       |
|--------|--------------|----------------|---------|-------------|--------------|---------|-----------------|---------------|--------|----------------------|---------------|
| ID     | Mov          | Total<br>veh/h | HV<br>% | Satn<br>v/c | Delay<br>sec | Service | Vehicles<br>veh | Distance<br>m | Queued | Stop Rate<br>per veh | Speed<br>km/h |
| South  | : Pierre v I | Ryneveld - N   | IB      |             |              |         |                 |               |        |                      | C.A.M.        |
| 1      | L2           | 75             | 0.0     | 0.208       | 5.6          | LOS A   | 0.0             | 0.0           | 0.00   | 0.11                 | 57.4          |
| 2      | T1           | 330            | 0.0     | 0.208       | 0.0          | LOS A   | 0.0             | 0.0           | 0.00   | 0.11                 | 59.0          |
| Appro  | ach          | 405            | 0.0     | 0.208       | 1.0          | NA      | 0.0             | 0.0           | 0.00   | 0.11                 | 58.7          |
| North  | Pierre v F   | Ryneveld - S   | В       |             |              |         |                 |               |        |                      |               |
| 8      | T1           | 380            | 0.0     | 0.227       | 0.3          | LOSA    | 0.4             | 3.0           | 0.13   | 0.06                 | 58.9          |
| 9      | R2           | 41             | 0.0     | 0.227       | 7.3          | LOS A   | 0.4             | 3.0           | 0.13   | 0.06                 | 56.8          |
| Appro  | ach          | 420            | 0.0     | 0.227       | 1.0          | NA      | 0.4             | 3.0           | 0.13   | 0.06                 | 58.7          |
| West:  | Klopper -    | EB             |         |             |              |         |                 |               |        |                      |               |
| 10     | L2           | 13             | 0.0     | 0.063       | 9.4          | LOS A   | 0.2             | 1.4           | 0.50   | 0.95                 | 49.8          |
| 12     | R2           | 24             | 0.0     | 0.063       | 13.0         | LOS B   | 0.2             | 1.4           | 0.50   | 0.95                 | 49.4          |
| Appro  | ach          | 37             | 0.0     | 0.063       | 11.8         | LOS B   | 0.2             | 1.4           | 0.50   | 0.95                 | 49.5          |
| All Ve | hicles       | 862            | 0.0     | 0.227       | 1.5          | NA      | 0.4             | 3.0           | 0.08   | 0.12                 | 58.2          |

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Minor Road Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MARITENG MANAGEMENT SOLUTIONS CC | Processed: 07 December 2017 08:11:51 AM Project: C:\Data\000\_projects\185-Numbers\185-86-erf 1211 pierre van ryneveld X2\Data & Calculations\Int 2 Pierre van Ryneveld Klopper.sip7

### Site: 102 [SC7 2022 PM Background]

Erf 1211 Van Ryneveld X2 Pierre van Ryneveld & Klopper SC7 - 2022 PM Peak - Background traffic Stop (Two-Way)

| Move      | ement Pe   | rformance                | - Vehic          | les                 |                         |                     |                             |                           |                 | Contraction of the                |                          |
|-----------|------------|--------------------------|------------------|---------------------|-------------------------|---------------------|-----------------------------|---------------------------|-----------------|-----------------------------------|--------------------------|
| Mov<br>ID | OD<br>Mov  | Demand<br>Total<br>veh/h | Flows<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Back<br>Vehicles<br>veh | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate<br>per veh | Average<br>Speed<br>km/h |
| South     | : Pierre v | Ryneveld - N             | IB               |                     |                         |                     |                             |                           |                 |                                   |                          |
| 1         | L2         | 38                       | 0.0              | 0.214               | 5.6                     | LOS A               | 0.0                         | 0.0                       | 0.00            | 0.05                              | 57.9                     |
| 2         | T1         | 382                      | 0.0              | 0.214               | 0.0                     | LOS A               | 0.0                         | 0.0                       | 0.00            | 0.05                              | 59.5                     |
| Appro     | bach       | 419                      | 0.0              | 0.214               | 0.5                     | NA                  | 0.0                         | 0.0                       | 0.00            | 0.05                              | 59.3                     |
| North     | Pierre v F | Ryneveld - S             | В                |                     |                         |                     |                             |                           |                 |                                   |                          |
| 8         | T1         | 441                      | 0.0              | 0.242               | 0.2                     | LOS A               | 0.2                         | 1.7                       | 0.07            | 0.03                              | 59.5                     |
| 9         | R2         | 22                       | 0.0              | 0.242               | 7.5                     | LOS A               | 0.2                         | 1.7                       | 0.07            | 0.03                              | 57.3                     |
| Appro     | ach        | 462                      | 0.0              | 0.242               | 0.5                     | NA                  | 0.2                         | 1.7                       | 0.07            | 0.03                              | 59.4                     |
| West:     | Klopper -  | EB                       |                  |                     |                         |                     |                             |                           |                 |                                   |                          |
| 10        | L2         | 11                       | 0.0              | 0.037               | 9.7                     | LOS A               | 0.1                         | 0.8                       | 0.51            | 0.92                              | 49.8                     |
| 12        | R2         | 11                       | 0.0              | 0.037               | 13.9                    | LOS B               | 0.1                         | 0.8                       | 0.51            | 0.92                              | 49.4                     |
| Appro     | ach        | 22                       | 0.0              | 0.037               | 11.8                    | LOS B               | 0.1                         | 0.8                       | 0.51            | 0.92                              | 49.6                     |
| All Ve    | hicles     | 903                      | 0.0              | 0.242               | 0.8                     | NA                  | 0.2                         | 1.7                       | 0.05            | 0.06                              | 59.1                     |

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Minor Road Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MARITENG MANAGEMENT SOLUTIONS CC | Processed: 07 December 2017 08:13:33 AM Project: C:Data\000\_projects\185-Numbers\185-86-erf 1211 pierre van ryneveld X2\Data & Calculations\Int 2 Pierre van Ryneveld Klopper.sip7

With dev]

Erf 1211 Van Ryneveld X2 Pierre van Ryneveld & Klopper SC8 - 2022 PM Peak - With dev traffic Stop (Two-Way)

| Move      | ement Pe     | rformance                | - Vehic          | les                 |                         |                                              |                             |                           |                 |                                   |                          |
|-----------|--------------|--------------------------|------------------|---------------------|-------------------------|----------------------------------------------|-----------------------------|---------------------------|-----------------|-----------------------------------|--------------------------|
| Mov<br>ID | OD<br>Mov    | Demand<br>Total<br>veh/h | Flows<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service                          | 95% Back<br>Vehicles<br>veh | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate<br>per veh | Average<br>Speed<br>km/h |
| South     | : Pierre v I | Ryneveld - N             |                  |                     | 000                     | (1997) (1997) (1997)<br>(1997) (1997) (1997) |                             |                           |                 | perven                            | (COLUCT)                 |
| 1         | L2           | 84                       | 0.0              | 0.238               | 5.6                     | LOS A                                        | 0.0                         | 0.0                       | 0.00            | 0.11                              | 57.4                     |
| 2         | T1           | 382                      | 0.0              | 0.238               | 0.0                     | LOS A                                        | 0.0                         | 0.0                       | 0.00            | 0.11                              | 59.0                     |
| Appro     | bach         | 466                      | 0.0              | 0.238               | 1.0                     | NA                                           | 0.0                         | 0.0                       | 0.00            | 0.11                              | 58.7                     |
| North     | Pierre v F   | Ryneveld - S             | В                |                     |                         |                                              |                             |                           |                 |                                   |                          |
| 8         | T1           | 441                      | 0.0              | 0.266               | 0.4                     | LOS A                                        | 0.5                         | 3.8                       | 0.14            | 0.06                              | 58.9                     |
| 9         | R2           | 46                       | 0.0              | 0.266               | 7.9                     | LOS A                                        | 0.5                         | 3.8                       | 0.14            | 0.06                              | 56.8                     |
| Appro     | bach         | 487                      | 0.0              | 0.266               | 1.1                     | NA                                           | 0.5                         | 3.8                       | 0.14            | 0.06                              | 58.7                     |
| West:     | Klopper -    | EB                       |                  |                     |                         |                                              |                             |                           |                 |                                   |                          |
| 10        | L2           | 18                       | 0.0              | 0.082               | 9.8                     | LOS A                                        | 0.3                         | 1.9                       | 0.54            | 0.94                              | 49.2                     |
| 12        | R2           | 25                       | 0.0              | 0.082               | 14.8                    | LOS B                                        | 0.3                         | 1.9                       | 0.54            | 0.94                              | 48.8                     |
| Appro     | bach         | 43                       | 0.0              | 0.082               | 12.7                    | LOS B                                        | 0.3                         | 1.9                       | 0.54            | 0.94                              | 49.0                     |
| All Ve    | hicles       | 996                      | 0.0              | 0.266               | 1.6                     | NA                                           | 0.5                         | 3.8                       | 0.09            | 0.12                              | 58.2                     |

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Minor Road Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MARITENG MANAGEMENT SOLUTIONS CC | Processed: 07 December 2017 08:15:37 AM Project: C:\Data\000\_projects\185-Numbers\185-86-erf 1211 pierre van ryneveld X2\Data & Calculations\Int 2 Pierre van Ryneveld Klopper.sip7

## Intersection 3: Van Ryneveld & Dan Pienaar

#### **MOVEMENT SUMMARY**

W Site: 103 [SC1 2017 AM Background]

Erf 1211 Pierre van Ryneveld X2 Van Ryneveld & Dan Pienaar SC1 - 2017 AM Peak - Background traffic Stop (Two-Way)

| Mov     | OD         | Domond                     | Flower  | Dee                 | A                       | 1 minutes f         | OCO/ Deal                   | 10                        | -               | <b>F</b> (1)                      |                          |
|---------|------------|----------------------------|---------|---------------------|-------------------------|---------------------|-----------------------------|---------------------------|-----------------|-----------------------------------|--------------------------|
| ID      | Mov        | Demand I<br>Total<br>veh/h | HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Back<br>Vehicles<br>veh | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate<br>per veh | Average<br>Speed<br>km/h |
| South   | : Van Ryne | eveld - NB                 | 710000  | No. Constant        |                         |                     |                             |                           | 10.20           |                                   |                          |
| 1       | L2         | 56                         | 0.0     | 0.195               | 5.6                     | LOS A               | 0.0                         | 0.0                       | 0.00            | 0.09                              | 57.6                     |
| 2       | T1         | 320                        | 0.0     | 0.195               | 0.0                     | LOS A               | 0.0                         | 0.0                       | 0.00            | 0.09                              | 59.2                     |
| Appro   | ach        | 376                        | 0.0     | 0.195               | 0.9                     | NA                  | 0.0                         | 0.0                       | 0.00            | 0.09                              | 58.9                     |
| North:  | Van Ryne   | eveld - SB                 |         |                     |                         |                     |                             |                           |                 |                                   |                          |
| 8       | T1         | 215                        | 0.0     | 0.113               | 0.0                     | LOSA                | 0.0                         | 0.2                       | 0.02            | 0.01                              | 59.8                     |
| 9       | R2         | 4                          | 0.0     | 0.113               | 6.9                     | LOS A               | 0.0                         | 0.2                       | 0.02            | 0.01                              | 57.6                     |
| Appro   | ach        | 219                        | 0.0     | 0.113               | 0.1                     | NA                  | 0.0                         | 0.2                       | 0.02            | 0.01                              | 59.8                     |
| West:   | Dan Piena  | aar - EB                   |         |                     |                         |                     |                             |                           |                 |                                   |                          |
| 10      | L2         | 9                          | 0.0     | 0.338               | 10.2                    | LOS B               | 1.5                         | 10.3                      | 0.57            | 1.04                              | 49.6                     |
| 12      | R2         | 207                        | 0.0     | 0.338               | 12.1                    | LOS B               | 1.5                         | 10.3                      | 0.57            | 1.04                              | 49.2                     |
| Appro   | ach        | 216                        | 0.0     | 0.338               | 12.0                    | LOS B               | 1.5                         | 10.3                      | 0.57            | 1.04                              | 49.2                     |
| All Vel | hicles     | 812                        | 0.0     | 0.338               | 3.6                     | NA                  | 1.5                         | 10.3                      | 0.16            | 0.32                              | 56.2                     |

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Minor Road Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D). HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MARITENG MANAGEMENT SOLUTIONS CC | Processed: 28 May 2018 02:36:30 PM Project: C:Data\000\_projects\185-Numbers\185-86-erf 1211 pierre van ryneveld X2\Data & Calculations\Int 3 Pierre van Ryneveld Dan Pienaar.sip7

### With dev]

Erf 1211 Pierre van Ryneveld X2 Van Ryneveld & Dan Pienaar SC2 - 2017 AM Peak - With dev traffic Stop (Two-Way)

| Move      | ement Pe   | rformance                | - Vehic          | les                 |                         |                     |                             | A STREET                  | Carlos Maria    | The state                         | C.C.S.                   |
|-----------|------------|--------------------------|------------------|---------------------|-------------------------|---------------------|-----------------------------|---------------------------|-----------------|-----------------------------------|--------------------------|
| Mov<br>ID | OD<br>Mov  | Demand<br>Total<br>veh/h | Flows<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Back<br>Vehicles<br>veh | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate<br>per veh | Average<br>Speed<br>km/h |
| South     | : Van Ryn  | eveld - NB               | C. M. G.         |                     |                         | APA STATES          |                             | 7.2.10                    |                 |                                   |                          |
| 1         | L2         | 56                       | 0.0              | 0.201               | 5.6                     | LOS A               | 0.0                         | 0.0                       | 0.00            | 0.09                              | 57.6                     |
| 2         | T1         | 333                      | 0.0              | 0.201               | 0.0                     | LOS A               | 0.0                         | 0.0                       | 0.00            | 0.09                              | 59.2                     |
| Appro     | bach       | 389                      | 0.0              | 0.201               | 0.8                     | NA                  | 0.0                         | 0.0                       | 0.00            | 0.09                              | 58.9                     |
| North     | : Van Ryne | eveld - SB               |                  |                     |                         |                     |                             |                           |                 |                                   |                          |
| 8         | T1         | 222                      | 0.0              | 0.121               | 0.1                     | LOS A               | 0.1                         | 0.5                       | 0.04            | 0.02                              | 59.6                     |
| 9         | R2         | 8                        | 0.0              | 0.121               | 7.0                     | LOS A               | 0.1                         | 0.5                       | 0.04            | 0.02                              | 57.4                     |
| Appro     | bach       | 231                      | 0.0              | 0.121               | 0.3                     | NA                  | 0.1                         | 0.5                       | 0.04            | 0.02                              | 59.5                     |
| West:     | Dan Pien   | aar - EB                 |                  |                     |                         |                     |                             |                           |                 |                                   |                          |
| 10        | L2         | 19                       | 0.0              | 0.358               | 10.5                    | LOS B               | 1.6                         | 11.2                      | 0.58            | 1.04                              | 49.4                     |
| 12        | R2         | 207                      | 0.0              | 0.358               | 12.5                    | LOS B               | 1.6                         | 11.2                      | 0.58            | 1.04                              | 49.0                     |
| Appro     | bach       | 226                      | 0.0              | 0.358               | 12.4                    | LOS B               | 1.6                         | 11.2                      | 0.58            | 1.04                              | 49.0                     |
| All Ve    | hicles     | 846                      | 0.0              | 0.358               | 3.8                     | NA                  | 1.6                         | 11.2                      | 0.17            | 0.32                              | 56.1                     |

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Minor Road Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MARITENG MANAGEMENT SOLUTIONS CC | Processed: 28 May 2018 02:38:59 PM Project: C:\Data\000\_projects\185-Numbers\185-86-erf 1211 pierre van ryneveld X2\Data & Calculations\Int 3 Pierre van Ryneveld Dan Pienaar:sip7

### W Site: 103 [SC3 2022 AM Background]

Erf 1211 Pierre van Ryneveld X2 Van Ryneveld & Dan Pienaar SC3 - 2022 AM Peak - Background traffic Stop (Two-Way)

| Move      | ement Pe   | rformance                | - Vehic          | les                 | 1                       |                     |                             | Contraction of the second | and the second  | C. There                          |                          |
|-----------|------------|--------------------------|------------------|---------------------|-------------------------|---------------------|-----------------------------|---------------------------|-----------------|-----------------------------------|--------------------------|
| Mov<br>ID | OD<br>Mov  | Demand<br>Total<br>veh/h | Flows<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Back<br>Vehicles<br>veh | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate<br>per veh | Average<br>Speed<br>km/h |
| South     | : Van Ryn  | eveld - NB               |                  |                     |                         |                     |                             |                           | 12553175        |                                   |                          |
| 1         | L2         | 65                       | 0.0              | 0.225               | 5.6                     | LOS A               | 0.0                         | 0.0                       | 0.00            | 0.09                              | 57.6                     |
| 2         | T1         | 371                      | 0.0              | 0.225               | 0.0                     | LOS A               | 0.0                         | 0.0                       | 0.00            | 0.09                              | 59.2                     |
| Appro     | bach       | 435                      | 0.0              | 0.225               | 0.8                     | NA                  | 0.0                         | 0.0                       | 0.00            | 0.09                              | 58.9                     |
| North     | : Van Ryne | eveld - SB               |                  |                     |                         |                     |                             |                           |                 |                                   |                          |
| 8         | T1         | 253                      | 0.0              | 0.135               | 0.1                     | LOS A               | 0.1                         | 0.4                       | 0.03            | 0.01                              | 59.7                     |
| 9         | R2         | 6                        | 0.0              | 0.135               | 7.3                     | LOS A               | 0.1                         | 0.4                       | 0.03            | 0.01                              | 57.5                     |
| Appro     | bach       | 259                      | 0.0              | 0.135               | 0.2                     | NA                  | 0.1                         | 0.4                       | 0.03            | 0.01                              | 59.7                     |
| West:     | Dan Pien   | aar - EB                 |                  |                     |                         |                     |                             |                           |                 |                                   |                          |
| 10        | L2         | 12                       | 0.0              | 0.447               | 11.4                    | LOS B               | 2.2                         | 15.3                      | 0.65            | 1.08                              | 48.4                     |
| 12        | R2         | 241                      | 0.0              | 0.447               | 14.2                    | LOS B               | 2.2                         | 15.3                      | 0.65            | 1.08                              | 48.0                     |
| Appro     | bach       | 253                      | 0.0              | 0.447               | 14.1                    | LOS B               | 2.2                         | 15.3                      | 0.65            | 1.08                              | 48.0                     |
| All Ve    | hicles     | 947                      | 0.0              | 0.447               | 4.2                     | NA                  | 2.2                         | 15.3                      | 0.18            | 0.33                              | 55.7                     |

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Minor Road Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MARITENG MANAGEMENT SOLUTIONS CC | Processed: 28 May 2018 02:40:50 PM Project: C:\Data\000\_projects\185-Numbers\185-86-erf 1211 pierre van ryneveld X2\Data & Calculations\Int 3 Pierre van Ryneveld Dan Pienaar.sip7

#### With dev]

Erf 1211 Pierre van Ryneveld X2 Van Ryneveld & Dan Pienaar SC4 - 2022 AM Peak - With dev traffic Stop (Two-Way)

| Mov    | OD         | Demand         |         | Deg.        | Average      | Level of | 95% Back        | of Queue | Prop.  | Effective | Average       |
|--------|------------|----------------|---------|-------------|--------------|----------|-----------------|----------|--------|-----------|---------------|
| ID     | Mov        | Total<br>veh/h | HV<br>% | Satn<br>v/c | Delay<br>sec | Service  | Vehicles<br>veh | Distance | Queued | Stop Rate | Speed<br>km/h |
| South  | : Van Ryne |                | 70      | V/C         | Sec          |          | Ven             | m        |        | per veh   | KIII/II       |
| 1      | L2         | 65             | 0.0     | 0.232       | 5.6          | LOS A    | 0.0             | 0.0      | 0.00   | 0.09      | 57.6          |
| 2      | T1         | 384            | 0.0     | 0.232       | 0.0          | LOS A    | 0.0             | 0.0      | 0.00   | 0.09      | 59.2          |
| Appro  | ach        | 448            | 0.0     | 0.232       | 0.8          | NA       | 0.0             | 0.0      | 0.00   | 0.09      | 58.9          |
| North  | Van Ryne   | eveld - SB     |         |             |              |          |                 |          |        |           |               |
| 8      | T1         | 260            | 0.0     | 0.143       | 0.1          | LOS A    | 0.1             | 0.8      | 0.05   | 0.02      | 59.6          |
| 9      | R2         | 11             | 0.0     | 0.143       | 7.4          | LOS A    | 0.1             | 0.8      | 0.05   | 0.02      | 57.3          |
| Appro  | ach        | 271            | 0.0     | 0.143       | 0.4          | NA       | 0.1             | 0.8      | 0.05   | 0.02      | 59.5          |
| West:  | Dan Piena  | aar - EB       |         |             |              |          |                 |          |        |           |               |
| 10     | L2         | 21             | 0.0     | 0.472       | 11.7         | LOS B    | 2.4             | 16.7     | 0.67   | 1.09      | 48.1          |
| 12     | R2         | 241            | 0.0     | 0.472       | 14.8         | LOS B    | 2.4             | 16.7     | 0.67   | 1.09      | 47.7          |
| Appro  | ach        | 262            | 0.0     | 0.472       | 14.5         | LOS B    | 2.4             | 16.7     | 0.67   | 1.09      | 47.7          |
| All Ve | hicles     | 981            | 0.0     | 0.472       | 4.4          | NA       | 2.4             | 16.7     | 0.19   | 0.34      | 55.6          |

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Minor Road Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MARITENG MANAGEMENT SOLUTIONS CC | Processed: 28 May 2018 02:43:06 PM Project: C:\Data\000\_projects\185-Numbers\185-86-erf 1211 pierre van ryneveld X2\Data & Calculations\Int 3 Pierre van Ryneveld Dan Pienaar.sip7

#### Site: 103 [SC5 2017 PM Background]

Erf 1211 Pierre van Ryneveld X2 Van Ryneveld & Dan Pienaar SC5 - 2017 PM Peak - Background traffic Stop (Two-Way)

| Mov    | OD         | Demand         | Flows   | Deg.        | Average      | Level of | 95% Back        | of Queue | Prop.  | Effective            | Average       |
|--------|------------|----------------|---------|-------------|--------------|----------|-----------------|----------|--------|----------------------|---------------|
| ID     | Mov        | Total<br>veh/h | HV<br>% | Satn<br>v/c | Delay<br>sec | Service  | Vehicles<br>veh | Distance | Queued | Stop Rate<br>per veh | Speed<br>km/h |
| South  | : Van Ryne | eveld - NB     |         |             |              |          |                 |          |        |                      |               |
| 1      | L2         | 128            | 0.0     | 0.367       | 5.6          | LOS A    | 0.0             | 0.0      | 0.00   | 0.11                 | 57.4          |
| 2      | T1         | 581            | 0.0     | 0.367       | 0.0          | LOS A    | 0.0             | 0.0      | 0.00   | 0.11                 | 58.9          |
| Appro  | ach        | 709            | 0.0     | 0.367       | 1.0          | NA       | 0.0             | 0.0      | 0.00   | 0.11                 | 58.6          |
| North  | Van Ryne   | veld - SB      |         |             |              |          |                 |          |        |                      |               |
| 8      | T1         | 240            | 0.0     | 0.151       | 0.7          | LOS A    | 0.3             | 2.4      | 0.16   | 0.06                 | 58.6          |
| 9      | R2         | 22             | 0.0     | 0.151       | 9.4          | LOS A    | 0.3             | 2.4      | 0.16   | 0.06                 | 56.4          |
| Appro  | ach        | 262            | 0.0     | 0.151       | 1.4          | NA       | 0.3             | 2.4      | 0.16   | 0.06                 | 58.4          |
| West:  | Dan Piena  | aar - EB       |         |             |              |          |                 |          |        |                      |               |
| 10     | L2         | 12             | 0.0     | 0.104       | 11.3         | LOS B    | 0.3             | 2.3      | 0.66   | 0.99                 | 48.3          |
| 12     | R2         | 33             | 0.0     | 0.104       | 15.3         | LOS C    | 0.3             | 2.3      | 0.66   | 0.99                 | 47.9          |
| Appro  | ach        | 45             | 0.0     | 0.104       | 14.2         | LOS B    | 0.3             | 2.3      | 0.66   | 0.99                 | 48.0          |
| All Ve | hicles     | 1016           | 0.0     | 0.367       | 1.7          | NA       | 0.3             | 2.4      | 0.07   | 0.13                 | 58.0          |

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Minor Road Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MARITENG MANAGEMENT SOLUTIONS CC | Processed: 28 May 2018 02:37:59 PM Project: C:\Data\000\_projects\185-Numbers\185-86-erf 1211 pierre van ryneveld X2\Data & Calculations\int 3 Pierre van Ryneveld Dan Pienaar.sip7

With dev]

Erf 1211 Pierre van Ryneveld X2 Van Ryneveld & Dan Pienaar SC6 - 2017 PM Peak - With dev traffic Stop (Two-Way)

| Mov    | OD         | Demand         | Flows   | Deg.        | Average      | Level of | 95% Back        | of Queue      | Prop.  | Effective            | Average       |
|--------|------------|----------------|---------|-------------|--------------|----------|-----------------|---------------|--------|----------------------|---------------|
| ID     | Μον        | Total<br>veh/h | HV<br>% | Satn<br>v/c | Delay<br>sec | Service  | Vehicles<br>veh | Distance<br>m | Queued | Stop Rate<br>per veh | Speed<br>km/h |
| South  | : Van Ryne | veld - NB      |         |             |              |          |                 |               |        | perven               |               |
| 1      | L2         | 128            | 0.0     | 0.371       | 5.6          | LOS A    | 0.0             | 0.0           | 0.00   | 0.11                 | 57.4          |
| 2      | T1         | 589            | 0.0     | 0.371       | 0.0          | LOS A    | 0.0             | 0.0           | 0.00   | 0.11                 | 58.9          |
| Appro  | ach        | 718            | 0.0     | 0.371       | 1.0          | NA       | 0.0             | 0.0           | 0.00   | 0.11                 | 58.7          |
| North  | Van Ryne   | veld - SB      |         |             |              |          |                 |               |        |                      |               |
| 8      | T1         | 267            | 0.0     | 0.185       | 1.1          | LOS A    | 0.6             | 4.0           | 0.23   | 0.09                 | 58.0          |
| 9      | R2         | 38             | 0.0     | 0.185       | 9.7          | LOS A    | 0.6             | 4.0           | 0.23   | 0.09                 | 55.8          |
| Appro  | ach        | 305            | 0.0     | 0.185       | 2.1          | NA       | 0.6             | 4.0           | 0.23   | 0.09                 | 57.7          |
| West:  | Dan Piena  | ar - EB        |         |             |              |          |                 |               |        |                      |               |
| 10     | L2         | 19             | 0.0     | 0.121       | 11.4         | LOS B    | 0.4             | 2.7           | 0.67   | 0.99                 | 48.2          |
| 12     | R2         | 33             | 0.0     | 0.121       | 16.2         | LOS C    | 0.4             | 2.7           | 0.67   | 0.99                 | 47.8          |
| Appro  | ach        | 52             | 0.0     | 0.121       | 14.4         | LOS B    | 0.4             | 2.7           | 0.67   | 0.99                 | 47.9          |
| All Ve | hicles     | 1074           | 0.0     | 0.371       | 2.0          | NA       | 0.6             | 4.0           | 0.10   | 0.14                 | 57.8          |

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Minor Road Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MARITENG MANAGEMENT SOLUTIONS CC | Processed: 28 May 2018 02:39:50 PM Project: C:Data\000\_projects\185-Numbers\185-86-erf 1211 pierre van ryneveld X2\Data & Calculations\Int 3 Pierre van Ryneveld Dan Pienaar.sip7

#### Site: 103 [SC7 2022 PM Background]

Erf 1211 Pierre van Ryneveld X2 Van Ryneveld & Dan Pienaar SC7 - 2022 PM Peak - Background traffic Stop (Two-Way)

| Mov              | OD         | Demand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | Deg.        | Average      | Level of | 95% Back        | of Queue | Prop.  | Effective | Average |
|------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------|--------------|----------|-----------------|----------|--------|-----------|---------|
| ID               | Mov        | Total<br>veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HV<br>% | Satn<br>v/c | Delay<br>sec | Service  | Vehicles<br>veh | Distance | Queued | Stop Rate | Speed   |
| South            | : Van Ryne | and the second se | 70      | VIC         | Sec          |          | ven             | m        |        | per veh   | km/h    |
| 1                | L2         | 153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0     | 0.429       | 5.6          | LOS A    | 0.0             | 0.0      | 0.00   | 0.11      | 57.3    |
| 2                | T1         | 676                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0     | 0.429       | 0.1          | LOS A    | 0.0             | 0.0      | 0.00   | 0.11      | 58.9    |
| Appro            | ach        | 829                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0     | 0.429       | 1.1          | NA       | 0.0             | 0.0      | 0.00   | 0.11      | 58.6    |
| North:           | Van Ryne   | veld - SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |             |              |          |                 |          |        |           |         |
| 8                | T1         | 282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0     | 0.190       | 1.2          | LOS A    | 0.6             | 4.0      | 0.22   | 0.07      | 58.0    |
| 9                | R2         | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0     | 0.190       | 11.1         | LOS B    | 0.6             | 4.0      | 0.22   | 0.07      | 55.8    |
| 9 R2<br>Approach |            | 312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0     | 0.190       | 2.1          | NA       | 0.6             | 4.0      | 0.22   | 0.07      | 57.7    |
| West:            | Dan Piena  | ar - EB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |             |              |          |                 |          |        |           |         |
| 10               | L2         | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0     | 0.174       | 12.4         | LOS B    | 0.5             | 3.8      | 0.75   | 1.00      | 46.7    |
| 12               | R2         | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0     | 0.174       | 18.9         | LOS C    | 0.5             | 3.8      | 0.75   | 1.00      | 46.3    |
| Approach         |            | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0     | 0.174       | 17.0         | LOS C    | 0.5             | 3.8      | 0.75   | 1.00      | 46.5    |
| All Ve           | hicles     | 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0     | 0.429       | 2.1          | NA       | 0.6             | 4.0      | 0.09   | 0.14      | 57.6    |

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Minor Road Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MARITENG MANAGEMENT SOLUTIONS CC | Processed: 28 May 2018 02:42:10 PM Project: C:\Data\000\_projects\185-Numbers\185-86-erf 1211 pierre van ryneveld X2\Data & Calculations\Int 3 Pierre van Ryneveld Dan Pienaar.sip7

With dev]

Erf 1211 Pierre van Ryneveld X2 Van Ryneveld & Dan Pienaar SC8 - 2022 PM Peak - With dev traffic Stop (Two-Way)

| Mov              | OD         | Demand              |     | Deg.  | Average | Level of | 95% Back | of Queue | Prop.  | Effective | Average |
|------------------|------------|---------------------|-----|-------|---------|----------|----------|----------|--------|-----------|---------|
| ID               | Mov        | Total               | HV  | Satn  | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Speed   |
| South            | : Van Ryne | veh/h<br>eveld - NB | %   | v/c   | sec     |          | veh      | m        |        | per veh   | km/h    |
| 1                | L2         | 153                 | 0.0 | 0.433 | 5.6     | LOSA     | 0.0      | 0.0      | 0.00   | 0.11      | 57.3    |
| 2                | T1         | 685                 | 0.0 | 0.433 | 0.1     | LOS A    | 0.0      | 0.0      | 0.00   | 0.11      | 58.9    |
| Appro            | ach        | 838                 | 0.0 | 0.433 | 1.1     | NA       | 0.0      | 0.0      | 0.00   | 0.11      | 58.6    |
| North:           | Van Ryne   | veld - SB           |     |       |         |          |          |          |        |           |         |
| 8                | T1         | 309                 | 0.0 | 0.228 | 1.7     | LOS A    | 0.9      | 6.5      | 0.29   | 0.09      | 57.2    |
| 9                | R2         | 45                  | 0.0 | 0.228 | 11.4    | LOS B    | 0.9      | 6.5      | 0.29   | 0.09      | 55.1    |
| 9 R2<br>Approach |            | 354                 | 0.0 | 0.228 | 3.0     | NA       | 0.9      | 6.5      | 0.29   | 0.09      | 56.9    |
| West:            | Dan Piena  | aar - EB            |     |       |         |          |          |          |        |           |         |
| 10               | L2         | 25                  | 0.0 | 0.199 | 12.7    | LOS B    | 0.6      | 4.5      | 0.76   | 1.01      | 46.4    |
| 12               | R2         | 41                  | 0.0 | 0.199 | 20.5    | LOS C    | 0.6      | 4.5      | 0.76   | 1.01      | 46.0    |
| Approach         |            | 66                  | 0.0 | 0.199 | 17.6    | LOS C    | 0.6      | 4.5      | 0.76   | 1.01      | 46.1    |
| All Ve           | hicles     | 1258                | 0.0 | 0.433 | 2.5     | NA       | 0.9      | 6.5      | 0.12   | 0.15      | 57.3    |

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Minor Road Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MARITENG MANAGEMENT SOLUTIONS CC | Processed: 28 May 2018 02:43:51 PM Project: C:\Data\000\_projects\185-Numbers\185-86-erf 1211 pierre van ryneveld X2\Data & Calculations\Int 3 Pierre van Ryneveld Dan Pienaar.sip7

## Intersection 4: Van Ryneveld & Canberra

#### **MOVEMENT SUMMARY**

Site: 104 [SC1 2017 AM Background]

Erf 1211 Pierre van Ryneveld X2 Van Ryneveld & Canberra SC1 - 2017 AM Peak - Background traffic Stop (All-Way)

| Mov      | OD         | Demand    |     | Deg.  | Average | Level of | 95% Back | of Queue | Prop.  | Effective | Average |
|----------|------------|-----------|-----|-------|---------|----------|----------|----------|--------|-----------|---------|
| ID       | Mov        | Total     | HV  | Satn  | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Speed   |
| South    | : Van Ryne | veh/h     | %   | v/c   | sec     |          | veh      | m        |        | per veh   | km/l    |
| 1        | L2         | 6         | 0.0 | 0.980 | 95.8    | LOS F    | 16.2     | 113.3    | 1.00   | 2.99      | 23.4    |
| 2        | T1         | 353       | 0.0 | 0.980 | 95.4    | LOS F    | 16.2     | 113.3    | 1.00   | 2.99      | 23.4    |
| 3        | R2         | 16        | 0.0 | 0.047 | 11.1    | LOS B    | 0.2      | 1.1      | 0.90   | 1.24      | 50.3    |
| Appro    | ach        | 375       | 0.0 | 0.980 | 91.9    | LOS F    | 16.2     | 113.3    | 1.00   | 2.92      | 23.9    |
| East:    | Canberra - | WB        |     |       |         |          |          |          |        |           |         |
| 4        | L2         | 17        | 0.0 | 0.411 | 20.9    | LOS C    | 1.8      | 12.6     | 0.94   | 1.38      | 44.9    |
| 5        | T1         | 24        | 0.0 | 0.411 | 20.6    | LOS C    | 1.8      | 12.6     | 0.94   | 1.38      | 44.     |
| 6        | R2         | 127       | 0.0 | 0.411 | 20.6    | LOS C    | 1.8      | 12.6     | 0.94   | 1.38      | 44.     |
| Approach |            | 168       | 0.0 | 0.411 | 20.7    | LOS C    | 1.8      | 12.6     | 0.94   | 1.38      | 44.     |
| North    | Van Ryne   | veid - SB |     |       |         |          |          |          |        |           |         |
| 7        | L2         | 22        | 0.0 | 0.571 | 23.8    | LOS C    | 3.1      | 21.7     | 0.99   | 1.51      | 43.0    |
| 8        | T1         | 187       | 0.0 | 0.571 | 23.5    | LOS C    | 3.1      | 21.7     | 0.99   | 1.51      | 43.4    |
| 9        | R2         | 52        | 0.0 | 0.157 | 12.7    | LOS B    | 0.6      | 3.9      | 0.93   | 1.27      | 49.2    |
| Appro    | ach        | 261       | 0.0 | 0.571 | 21.4    | LOS C    | 3.1      | 21.7     | 0.98   | 1.46      | 44.4    |
| West:    | Canberra   | - EB      |     |       |         |          |          |          |        |           |         |
| 10       | L2         | 59        | 0.0 | 0.829 | 142.0   | LOS F    | 6.4      | 44.9     | 1.00   | 1.80      | 18.1    |
| 11       | T1         | 8         | 0.0 | 0.829 | 141.7   | LOS F    | 6.4      | 44.9     | 1.00   | 1.80      | 18.0    |
| 12       | R2         | 19        | 0.0 | 0.829 | 141.7   | LOS F    | 6.4      | 44.9     | 1.00   | 1.80      | 18.0    |
| Approach |            | 86        | 0.0 | 0.829 | 141.9   | LOS F    | 6.4      | 44.9     | 1.00   | 1.80      | 18.0    |
| All Ve   | hicles     | 891       | 0.0 | 0.980 | 62.6    | LOS F    | 16.2     | 113.3    | 0.98   | 2.09      | 29.6    |

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MARITENG MANAGEMENT SOLUTIONS CC | Processed: 28 May 2018 02:51:02 PM Project: C:\Data\000\_projects\185-Numbers\185-86-erf 1211 pierre van ryneveld X2\Data & Calculations\Int 4 Pierre van Ryneveld Canberra.sip7

Site: 104v [SC1 2017 AM Background UPGR] Erf 1211 Pierre van Ryneveld X2 Van Ryneveld & Canberra SC1 - 2017 AM Peak - Background traffic, with upgrade Roundabout

| Mov      | OD                          | Demand              | Flows | Deg.  | Average | Level of     | 95% Back | of Queue | Prop.                                    | Effective | Average |
|----------|-----------------------------|---------------------|-------|-------|---------|--------------|----------|----------|------------------------------------------|-----------|---------|
| ID       | Mov                         | Total               | HV    | Satn  | Delay   | Service      | Vehicles | Distance | Queued                                   | Stop Rate | Speed   |
| South    | Van Dun                     | veh/h<br>eveld - NB | %     | v/c   | sec     | COLUMN STATE | veh      | m        | CT C | per veh   | km/t    |
|          | Charles and a second second |                     |       | 0.050 |         |              |          |          |                                          |           |         |
| 1        | L2                          | 6                   | 0.0   | 0.359 | 6.4     | LOS A        | 2.6      | 18.3     | 0.54                                     | 0.60      | 52.2    |
| 2        | T1                          | 353                 | 0.0   | 0.359 | 6.4     | LOS A        | 2.6      | 18.3     | 0.54                                     | 0.60      | 52.9    |
| 3        | R2                          | 16                  | 0.0   | 0.359 | 9.6     | LOS A        | 2.6      | 18.3     | 0.54                                     | 0.60      | 52.6    |
| Appro    | ach                         | 375                 | 0.0   | 0.359 | 6.5     | LOS A        | 2.6      | 18.3     | 0.54                                     | 0.60      | 52.9    |
| East:    | Canberra                    | - WB                |       |       |         |              |          |          |                                          |           |         |
| 4        | L2                          | 17                  | 0.0   | 0.174 | 6.5     | LOS A        | 1.0      | 7.2      | 0.50                                     | 0.67      | 51.0    |
| 5        | T1                          | 24                  | 0.0   | 0.174 | 6.6     | LOS A        | 1.0      | 7.2      | 0.50                                     | 0.67      | 51.7    |
| 6        | R2                          | 127                 | 0.0   | 0.174 | 9.8     | LOS A        | 1.0      | 7.2      | 0.50                                     | 0.67      | 51.3    |
| Approach |                             | 168                 | 0.0   | 0.174 | 9.0     | LOS A        | 1.0      | 7.2      | 0.50                                     | 0.67      | 51.4    |
| North    | Van Ryne                    | eveld - SB          |       |       |         |              |          |          |                                          |           |         |
| 7        | L2                          | 22                  | 0.0   | 0.194 | 4.9     | LOS A        | 1.3      | 9.2      | 0.21                                     | 0.51      | 53.1    |
| 8        | T1                          | 187                 | 0.0   | 0.194 | 4.9     | LOSA         | 1.3      | 9.2      | 0.21                                     | 0.51      | 53.8    |
| 9        | R2                          | 52                  | 0.0   | 0.194 | 8.1     | LOSA         | 1.3      | 9.2      | 0.21                                     | 0.51      | 53.5    |
| Appro    | ach                         | 261                 | 0.0   | 0.194 | 5.5     | LOS A        | 1.3      | 9.2      | 0.21                                     | 0.51      | 53.7    |
| West:    | Canberra                    | - EB                |       |       |         |              |          |          |                                          |           |         |
| 10       | L2                          | 59                  | 0.0   | 0.114 | 8.3     | LOS A        | 0.7      | 4.7      | 0.66                                     | 0.71      | 50.9    |
| 11       | T1                          | 8                   | 0.0   | 0.114 | 8.3     | LOS A        | 0.7      | 4.7      | 0.66                                     | 0.71      | 51.7    |
| 12       | R2                          | 19                  | 0.0   | 0.114 | 11.5    | LOS B        | 0.7      | 4.7      | 0.66                                     | 0.71      | 51.3    |
| Approach |                             | 86                  | 0.0   | 0.114 | 9.0     | LOS A        | 0.7      | 4.7      | 0.66                                     | 0.71      | 51.1    |
| All Ve   | hicles                      | 891                 | 0.0   | 0.359 | 6.9     | LOSA         | 2.6      | 18.3     | 0.45                                     | 0.60      | 52.7    |

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MARITENG MANAGEMENT SOLUTIONS CC | Processed: 28 May 2018 02:53:54 PM Project: C:\Data\000\_projects\185-Numbers\185-86-erf 1211 pierre van ryneveld X2\Data & Calculations\Int 4 Pierre van Ryneveld Canberra.sip7

## ₩ Site: 104v [SC2 2017 AM With dev]

Erf 1211 Pierre van Ryneveld X2 Van Ryneveld & Canberra SC2 - 2017 AM Peak - With dev traffic, with Background upgrade Roundabout

| Mov      | OD                                    | Demand     |     | Deg.  | Average | Level of       | 95% Back | of Queue | Prop.  | Effective | Average |
|----------|---------------------------------------|------------|-----|-------|---------|----------------|----------|----------|--------|-----------|---------|
| ID       | Mov                                   | Total      | HV  | Satn  | Delay   | Service        | Vehicles | Distance | Queued | Stop Rate | Speed   |
| 0        |                                       | veh/h      | %   | v/c   | Sec     | Section States | veh      | m        | 457    | per veh   | km/t    |
|          | Comment of States of States of States | eveld - NB |     |       |         |                |          |          |        |           |         |
| 1        | L2                                    | 6          | 0.0 | 0.377 | 6.4     | LOS A          | 2.8      | 19.6     | 0.55   | 0.60      | 52.2    |
| 2        | T1                                    | 373        | 0.0 | 0.377 | 6.4     | LOS A          | 2.8      | 19.6     | 0.55   | 0.60      | 52.9    |
| 3        | R2                                    | 16         | 0.0 | 0.377 | 9.7     | LOS A          | 2.8      | 19.6     | 0.55   | 0.60      | 52.6    |
| Appro    | ach                                   | 395        | 0.0 | 0.377 | 6.6     | LOS A          | 2.8      | 19.6     | 0.55   | 0.60      | 52.9    |
| East:    | Canberra                              | - WB       |     |       |         |                |          |          |        |           |         |
| 4        | L2                                    | 17         | 0.0 | 0.176 | 6.6     | LOS A          | 1.0      | 7.3      | 0.51   | 0.67      | 50.9    |
| 5        | T1                                    | 24         | 0.0 | 0.176 | 6.6     | LOS A          | 1.0      | 7.3      | 0.51   | 0.67      | 51.6    |
| 6        | R2                                    | 127        | 0.0 | 0.176 | 9.9     | LOS A          | 1.0      | 7.3      | 0.51   | 0.67      | 51.3    |
| Approach |                                       | 168        | 0.0 | 0.176 | 9.1     | LOS A          | 1.0      | 7.3      | 0.51   | 0.67      | 51.3    |
| North:   | Van Ryne                              | eveld - SB |     |       |         |                |          |          |        |           | 2       |
| 7        | L2                                    | 22         | 0.0 | 0.201 | 4.9     | LOS A          | 1.4      | 9.6      | 0.21   | 0.51      | 53.1    |
| 8        | T1                                    | 198        | 0.0 | 0.201 | 4.9     | LOS A          | 1.4      | 9.6      | 0.21   | 0.51      | 53.8    |
| 9        | R2                                    | 52         | 0.0 | 0.201 | 8.1     | LOS A          | 1.4      | 9.6      | 0.21   | 0.51      | 53.5    |
| Appro    | ach                                   | 272        | 0.0 | 0.201 | 5.5     | LOS A          | 1.4      | 9.6      | 0.21   | 0.51      | 53.7    |
| West:    | Canberra                              | - EB       |     |       |         |                |          |          |        |           |         |
| 10       | L2                                    | 59         | 0.0 | 0.117 | 8.4     | LOS A          | 0.7      | 4.9      | 0.67   | 0.72      | 50.8    |
| 11       | T1                                    | 8          | 0.0 | 0.117 | 8.4     | LOS A          | 0.7      | 4.9      | 0.67   | 0.72      | 51.5    |
| 12       | R2                                    | 19         | 0.0 | 0.117 | 11.7    | LOS B          | 0.7      | 4.9      | 0.67   | 0.72      | 51.2    |
| Approach |                                       | 86         | 0.0 | 0.117 | 9.1     | LOS A          | 0.7      | 4.9      | 0.67   | 0.72      | 51.0    |
| All Vel  | hicles                                | 921        | 0.0 | 0.377 | 6.9     | LOSA           | 2.8      | 19.6     | 0.45   | 0.60      | 52.6    |

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MARITENG MANAGEMENT SOLUTIONS CC | Processed: 28 May 2018 03:05:49 PM Project: C:\Data\000\_projects\185-Numbers\185-86-erf 1211 pierre van ryneveld X2\Data & Calculations\Int 4 Pierre van Ryneveld Canberra.sip7

# V Site: 104v [SC3 2022 AM Background]

Erf 1211 Pierre van Ryneveld X2 Van Ryneveld & Canberra SC3 - 2022 AM Peak - Background traffic, with 2017 upgrade Roundabout

| Move    | ement Pe  | rformance           | - Vehic | les   | 123     | C in the second | and the second |          |        |           |         |
|---------|-----------|---------------------|---------|-------|---------|-----------------|----------------|----------|--------|-----------|---------|
| Mov     | OD        | Demand              |         | Deg.  | Average | Level of        | 95% Back       | of Queue | Prop.  | Effective | Average |
| ID      | Mov       | Total               | HV      | Satn  | Delay   | Service         | Vehicles       | Distance | Queued | Stop Rate | Speed   |
| South   | · Van Ryn | veh/h<br>eveld - NB | %       | v/c   | sec     |                 | veh            | m        |        | per veh   | km/h    |
| 1       | L2        | 11                  | 0.0     | 0.442 | 6.9     | LOS A           | 3.5            | 24.2     | 0.63   | 0.65      | 51.9    |
| 2       | T1        | 411                 | 0.0     | 0.442 | 6.9     | LOSA            | 3.5            | 24.2     | 0.63   | 0.65      | 52.6    |
| 3       | R2        | 21                  | 0.0     | 0.442 | 10.2    | LOS B           | 3.5            | 24.2     | 0.63   | 0.65      | 52.3    |
| Appro   |           | 442                 | 0.0     | 0.442 | 7.1     | LOSA            | 3.5            | 24.2     | 0.63   | 0.65      | 52.6    |
| East:   | Canberra  | - WB                |         |       |         |                 |                |          |        |           |         |
| 4       | L2        | 21                  | 0.0     | 0.217 | 7.0     | LOS A           | 1.3            | 9.3      | 0.56   | 0.70      | 50.7    |
| 5       | T1        | 32                  | 0.0     | 0.217 | 7.0     | LOS A           | 1.3            | 9.3      | 0.56   | 0.70      | 51.4    |
| 6       | R2        | 147                 | 0.0     | 0.217 | 10.2    | LOS B           | 1.3            | 9.3      | 0.56   | 0.70      | 51.1    |
| Appro   | ach       | 200                 | 0.0     | 0.217 | 9.4     | LOS A           | 1.3            | 9.3      | 0.56   | 0.70      | 51.1    |
| North:  | Van Ryne  | eveld - SB          |         |       |         |                 |                |          |        |           |         |
| 7       | L2        | 26                  | 0.0     | 0.234 | 5.0     | LOS A           | 1.6            | 11.5     | 0.25   | 0.51      | 52.9    |
| 8       | T1        | 221                 | 0.0     | 0.234 | 5.0     | LOS A           | 1.6            | 11.5     | 0.25   | 0.51      | 53.7    |
| 9       | R2        | 63                  | 0.0     | 0.234 | 8.2     | LOS A           | 1.6            | 11.5     | 0.25   | 0.51      | 53.4    |
| Appro   | ach       | 311                 | 0.0     | 0.234 | 5.6     | LOS A           | 1.6            | 11.5     | 0.25   | 0.51      | 53.6    |
| West:   | Canberra  | - EB                |         |       |         |                 |                |          |        |           |         |
| 10      | L2        | 68                  | 0.0     | 0.146 | 9.1     | LOS A           | 0.9            | 6.3      | 0.72   | 0.76      | 50.4    |
| 11      | T1        | 11                  | 0.0     | 0.146 | 9.1     | LOS A           | 0.9            | 6.3      | 0.72   | 0.76      | 51.1    |
| 12      | R2        | 21                  | 0.0     | 0.146 | 12.3    | LOS B           | 0.9            | 6.3      | 0.72   | 0.76      | 50.8    |
| Appro   | ach       | 100                 | 0.0     | 0.146 | 9.8     | LOS A           | 0.9            | 6.3      | 0.72   | 0.76      | 50.5    |
| All Vel | hicles    | 1053                | 0.0     | 0.442 | 7.3     | LOSA            | 3.5            | 24.2     | 0.51   | 0.63      | 52.4    |
|         |           |                     |         |       |         |                 |                |          |        |           |         |

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D). HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MARITENG MANAGEMENT SOLUTIONS CC | Processed: 28 May 2018 02:59:51 PM Project: C:\Data\000\_projects\185-Numbers\185-86-erf 1211 pierre van ryneveld X2\Data & Calculations\Int 4 Pierre van Ryneveld Canberra.sip7

∀ Site: 104v [SC4 2022 AM With dev]

Erf 1211 Pierre van Ryneveld X2 Van Ryneveld & Canberra SC4 - 2022 AM Peak - With dev traffic Roundabout

| Mov     | OD         | Demand     | Flows | Deg.  | Average | Level of      | 95% Back | of Queue | Prop.  | Effective | Average |
|---------|------------|------------|-------|-------|---------|---------------|----------|----------|--------|-----------|---------|
| ID      | Mov        | Total      | HV    | Satn  | Delay   | Service       | Vehicles | Distance | Queued | Stop Rate | Speed   |
| 0       |            | veh/h      | %     | v/c   | sec     | COLUMN STREET | veh      | m        |        | per veh   | km/h    |
|         | : Van Ryne |            |       |       |         |               |          |          |        |           |         |
| 1       | L2         | 11         | 0.0   | 0.461 | 7.0     | LOS A         | 3.7      | 25.7     | 0.64   | 0.65      | 51.8    |
| 2       | T1         | 431        | 0.0   | 0.461 | 7.0     | LOS A         | 3.7      | 25.7     | 0.64   | 0.65      | 52.6    |
| 3       | R2         | 21         | 0.0   | 0.461 | 10.2    | LOS B         | 3.7      | 25.7     | 0.64   | 0.65      | 52.2    |
| Appro   | bach       | 462        | 0.0   | 0.461 | 7.1     | LOS A         | 3.7      | 25.7     | 0.64   | 0.65      | 52.6    |
| East:   | Canberra - | - WB       |       |       |         |               |          |          |        |           |         |
| 4       | L2         | 21         | 0.0   | 0.219 | 7.1     | LOS A         | 1.3      | 9.4      | 0.57   | 0.70      | 50.6    |
| 5       | T1         | 32         | 0.0   | 0.219 | 7.1     | LOS A         | 1.3      | 9.4      | 0.57   | 0.70      | 51.3    |
| 6       | R2         | 147        | 0.0   | 0.219 | 10.3    | LOS B         | 1.3      | 9.4      | 0.57   | 0.70      | 51.0    |
| Appro   | ach        | 200        | 0.0   | 0.219 | 9.5     | LOS A         | 1.3      | 9.4      | 0.57   | 0.70      | 51.0    |
| North:  | : Van Ryne | eveld - SB |       |       |         |               |          |          |        |           |         |
| 7       | L2         | 26         | 0.0   | 0.241 | 5.0     | LOS A         | 1.7      | 12.0     | 0.25   | 0.51      | 52.9    |
| 8       | T1         | 232        | 0.0   | 0.241 | 5.0     | LOSA          | 1.7      | 12.0     | 0.25   | 0.51      | 53.7    |
| 9       | R2         | 63         | 0.0   | 0.241 | 8.2     | LOS A         | 1.7      | 12.0     | 0.25   | 0.51      | 53.4    |
| Appro   | ach        | 321        | 0.0   | 0.241 | 5.6     | LOS A         | 1.7      | 12.0     | 0.25   | 0.51      | 53.6    |
| West:   | Canberra   | - EB       |       |       |         |               |          |          |        |           |         |
| 10      | L2         | 68         | 0.0   | 0.149 | 9.3     | LOSA          | 0.9      | 6.5      | 0.73   | 0.77      | 50.2    |
| 11      | T1         | 11         | 0.0   | 0.149 | 9.3     | LOS A         | 0.9      | 6.5      | 0.73   | 0.77      | 50.9    |
| 12      | R2         | 21         | 0.0   | 0.149 | 12.5    | LOS B         | 0.9      | 6.5      | 0.73   | 0.77      | 50.6    |
| Appro   | ach        | 100        | 0.0   | 0.149 | 10.0    | LOS A         | 0.9      | 6.5      | 0.73   | 0.77      | 50.4    |
| All Vel | hicles     | 1083       | 0.0   | 0.461 | 7.4     | LOSA          | 3.7      | 25.7     | 0.52   | 0.63      | 52.4    |

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MARITENG MANAGEMENT SOLUTIONS CC | Processed: 28 May 2018 03:03:20 PM Project: C:\Data\000\_projects\185-Numbers\185-86-erf 1211 pierre van ryneveld X2\Data & Calculations\Int 4 Pierre van Ryneveld Canberra.sip7

### Site: 104 [SC5 2017 PM Background]

Erf 1211 Pierre van Ryneveld X2 Van Ryneveld & Canberra SC5 - 2017 PM Peak - Background traffic Stop (All-Way)

| Move      | ement Pe  | rformance                | - Vehic          | les                 | E MERCE                 |                     |                             | Ren al                    |                 |                                   | The south                |
|-----------|-----------|--------------------------|------------------|---------------------|-------------------------|---------------------|-----------------------------|---------------------------|-----------------|-----------------------------------|--------------------------|
| Mov<br>ID | OD<br>Mov | Demand<br>Total<br>veh/h | Flows<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Back<br>Vehicles<br>veh | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate<br>per veh | Average<br>Speed<br>km/h |
| South     | : Van Ryn | eveld - NB               |                  |                     | 000                     |                     | Ven                         |                           | 100000          | perven                            | KITT                     |
| 1         | L2        | 56                       | 0.0              | 0.843               | 47.4                    | LOS E               | 8.6                         | 60.2                      | 1.00            | 2.15                              | 34.0                     |
| 2         | T1        | 295                      | 0.0              | 0.843               | 47.1                    | LOS E               | 8.6                         | 60.2                      | 1.00            | 2.15                              | 33.9                     |
| 3         | R2        | 26                       | 0.0              | 0.071               | 10.8                    | LOS B               | 0.2                         | 1.6                       | 0.89            | 1.24                              | 50.4                     |
| Appro     | ach       | 377                      | 0.0              | 0.843               | 44.6                    | LOS E               | 8.6                         | 60.2                      | 0.99            | 2.08                              | 34.7                     |
| East:     | Canberra  | - WB                     |                  |                     |                         |                     |                             |                           |                 |                                   |                          |
| 4         | L2        | 14                       | 0.0              | 0.275               | 24.8                    | LOS C               | 1.1                         | 7.6                       | 0.98            | 1.31                              | 42.9                     |
| 5         | T1        | 39                       | 0.0              | 0.275               | 24.5                    | LOS C               | 1.1                         | 7.6                       | 0.98            | 1.31                              | 42.8                     |
| 6         | R2        | 20                       | 0.0              | 0.275               | 24.5                    | LOS C               | 1.1                         | 7.6                       | 0.98            | 1.31                              | 42.7                     |
| Appro     | ach       | 73                       | 0.0              | 0.275               | 24.6                    | LOS C               | 1.1                         | 7.6                       | 0.98            | 1.31                              | 42.8                     |
| North     | Van Ryne  | eveld - SB               |                  |                     |                         |                     |                             |                           |                 |                                   |                          |
| 7         | L2        | 74                       | 0.0              | 0.864               | 46.4                    | LOS E               | 9.7                         | 67.9                      | 1.00            | 2.29                              | 34.3                     |
| 8         | T1        | 344                      | 0.0              | 0.864               | 46.0                    | LOS E               | 9.7                         | 67.9                      | 1.00            | 2.29                              | 34.2                     |
| 9         | R2        | 208                      | 0.0              | 0.468               | 16.3                    | LOS C               | 2.2                         | 15.3                      | 0.94            | 1.42                              | 46.9                     |
| Appro     | ach       | 626                      | 0.0              | 0.864               | 36.2                    | LOS E               | 9.7                         | 67.9                      | 0.98            | 2.00                              | 37.6                     |
| West:     | Canberra  | - EB                     |                  |                     |                         |                     |                             |                           |                 |                                   |                          |
| 10        | L2        | 115                      | 0.0              | 0.974               | 123.9                   | LOS F               | 13.4                        | 93.5                      | 1.00            | 2.61                              | 19.8                     |
| 11        | T1        | 56                       | 0.0              | 0.974               | 123.6                   | LOS F               | 13.4                        | 93.5                      | 1.00            | 2.61                              | 19.8                     |
| 12        | R2        | 65                       | 0.0              | 0.974               | 123.6                   | LOS F               | 13.4                        | 93.5                      | 1.00            | 2.61                              | 19.8                     |
| Appro     | ach       | 236                      | 0.0              | 0.974               | 123.7                   | LOS F               | 13.4                        | 93.5                      | 1.00            | 2.61                              | 19.8                     |
| All Ve    | hicles    | 1312                     | 0.0              | 0.974               | 53.7                    | LOS F               | 13.4                        | 93.5                      | 0.99            | 2.10                              | 31.9                     |

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MARITENG MANAGEMENT SOLUTIONS CC | Processed: 28 May 2018 02:52:04 PM Project: C:\Data\000\_projects\185-Numbers\185-86-erf 1211 pierre van ryneveld X2\Data & Calculations\Int 4 Pierre van Ryneveld Canberra.sip7

V Site: 104v [SC5 2017 PM Background UPGR] Erf 1211 Pierre van Ryneveld X2 Van Ryneveld & Canberra SC5 - 2017 PM Peak - Background traffic, with upgrade Roundabout

| Mov     | OD         | rformance<br>Demand |     | Deq.  | Average | Level of | 95% Back | of Queue | Prop.  | Effective | Average |
|---------|------------|---------------------|-----|-------|---------|----------|----------|----------|--------|-----------|---------|
| ID      | Mov        | Total               | HV  | Satn  | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Speed   |
|         |            | veh/h               |     | v/c   | sec     | Gervice  | ven      | m        | Queueu | per veh   | km/t    |
| South   | : Van Ryne | eveld - NB          |     |       |         |          |          |          |        |           |         |
| 1       | L2         | 56                  | 0.0 | 0.395 | 7.1     | LOS A    | 2.9      | 20.5     | 0.63   | 0.66      | 51.9    |
| 2       | T1         | 295                 | 0.0 | 0.395 | 7.1     | LOS A    | 2.9      | 20.5     | 0.63   | 0.66      | 52.6    |
| 3       | R2         | 26                  | 0.0 | 0.395 | 10.3    | LOS B    | 2.9      | 20.5     | 0.63   | 0.66      | 52.3    |
| Appro   | ach        | 377                 | 0.0 | 0.395 | 7.3     | LOS A    | 2.9      | 20.5     | 0.63   | 0.66      | 52.5    |
| East:   | Canberra   | - WB                |     |       |         |          |          |          |        |           |         |
| 4       | L2         | 14                  | 0.0 | 0.112 | 9.4     | LOS A    | 0.7      | 4.8      | 0.73   | 0.75      | 50.1    |
| 5       | T1         | 39                  | 0.0 | 0.112 | 9.4     | LOS A    | 0.7      | 4.8      | 0.73   | 0.75      | 50.8    |
| 6       | R2         | 20                  | 0.0 | 0.112 | 12.6    | LOS B    | 0.7      | 4.8      | 0.73   | 0.75      | 50.5    |
| Appro   | ach        | 73                  | 0.0 | 0.112 | 10.2    | LOS B    | 0.7      | 4.8      | 0.73   | 0.75      | 50.6    |
| North:  | Van Ryne   | eveld - SB          |     |       |         |          |          |          |        |           |         |
| 7       | L2         | 74                  | 0.0 | 0.538 | 6.2     | LOS A    | 5.1      | 36.0     | 0.58   | 0.60      | 51.7    |
| 8       | T1         | 344                 | 0.0 | 0.538 | 6.2     | LOS A    | 5.1      | 36.0     | 0.58   | 0.60      | 52.4    |
| 9       | R2         | 208                 | 0.0 | 0.538 | 9.4     | LOSA     | 5.1      | 36.0     | 0.58   | 0.60      | 52.1    |
| Appro   | ach        | 626                 | 0.0 | 0.538 | 7.2     | LOS A    | 5.1      | 36.0     | 0.58   | 0.60      | 52.2    |
| West:   | Canberra   | - EB                |     |       |         |          |          |          |        |           |         |
| 10      | L2         | 115                 | 0.0 | 0.273 | 7.4     | LOS A    | 1.8      | 12.9     | 0.64   | 0.71      | 51.4    |
| 11      | T1         | 56                  | 0.0 | 0.273 | 7.4     | LOS A    | 1.8      | 12.9     | 0.64   | 0.71      | 52.1    |
| 12      | R2         | 65                  | 0.0 | 0.273 | 10.6    | LOS B    | 1.8      | 12.9     | 0.64   | 0.71      | 51.8    |
| Appro   | ach        | 236                 | 0.0 | 0.273 | 8.3     | LOS A    | 1.8      | 12.9     | 0.64   | 0.71      | 51.7    |
| All Vel | hicles     | 1312                | 0.0 | 0.538 | 7.6     | LOSA     | 5.1      | 36.0     | 0.61   | 0.65      | 52.1    |

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MARITENG MANAGEMENT SOLUTIONS CC | Processed: 28 May 2018 02:56:11 PM Project: C:\Data\000\_projects\185-Numbers\185-86-erf 1211 pierre van ryneveld X2\Data & Calculations\Int 4 Pierre van Ryneveld Canberra.sip7

𝒱 Site: 104v [SC6 2017 PM With dev.]

Erf 1211 Pierre van Ryneveld X2 Van Ryneveld & Canberra SC6 - 2017 PM Peak - With dev traffic, with Background upgrade Roundabout

| Move      | ement Pe  | erformance               | - Vehic | les          | A STREET         |                     |                      |          |                 |                        |                  |
|-----------|-----------|--------------------------|---------|--------------|------------------|---------------------|----------------------|----------|-----------------|------------------------|------------------|
| Mov<br>ID | OD<br>Mov | Demand<br>Total<br>veh/h | ΗV      | Deg.<br>Satn | Average<br>Delay | Level of<br>Service | 95% Back<br>Vehicles | Distance | Prop.<br>Queued | Effective<br>Stop Rate | Average<br>Speed |
| South     | : Van Rvn | eveld - NB               | %       | v/c          | sec              |                     | veh                  | m        |                 | per veh                | km/h             |
| 1         | L2        | 56                       | 0.0     | 0.409        | 7.1              | LOS A               | 3.1                  | 21.5     | 0.64            | 0.66                   | 51.8             |
| 2         | T1        | 308                      | 0.0     | 0.409        | 7.1              | LOSA                | 3.1                  | 21.5     | 0.64            | 0.66                   | 52.6             |
| 3         | R2        | 26                       | 0.0     | 0.409        | 10.3             | LOS B               | 3.1                  | 21.5     | 0.64            | 0.66                   | 52.2             |
| Appro     | ach       | 391                      | 0.0     | 0.409        | 7.3              | LOS A               | 3.1                  | 21.5     | 0.64            | 0.66                   | 52.5             |
| East:     | Canberra  | - WB                     |         |              |                  |                     |                      |          |                 |                        |                  |
| 4         | L2        | 14                       | 0.0     | 0.117        | 9.8              | LOS A               | 0.7                  | 5.1      | 0.76            | 0.77                   | 49.8             |
| 5         | T1        | 39                       | 0.0     | 0.117        | 9.8              | LOS A               | 0.7                  | 5.1      | 0.76            | 0.77                   | 50.5             |
| 6         | R2        | 20                       | 0.0     | 0.117        | 13.0             | LOS B               | 0.7                  | 5.1      | 0.76            | 0.77                   | 50.2             |
| Appro     | ach       | 73                       | 0.0     | 0.117        | 10.6             | LOS B               | 0.7                  | 5.1      | 0.76            | 0.77                   | 50.3             |
| North:    | Van Ryne  | eveld - SB               |         |              |                  |                     |                      |          |                 |                        |                  |
| 7         | L2        | 74                       | 0.0     | 0.569        | 6.2              | LOS A               | 5.7                  | 39.7     | 0.61            | 0.60                   | 51.6             |
| 8         | T1        | 382                      | 0.0     | 0.569        | 6.2              | LOSA                | 5.7                  | 39.7     | 0.61            | 0.60                   | 52.4             |
| 9         | R2        | 208                      | 0.0     | 0.569        | 9.5              | LOS A               | 5.7                  | 39.7     | 0.61            | 0.60                   | 52.0             |
| Appro     | ach       | 664                      | 0.0     | 0.569        | 7.2              | LOS A               | 5.7                  | 39.7     | 0.61            | 0.60                   | 52.2             |
| West:     | Canberra  | - EB                     |         |              |                  |                     |                      |          |                 |                        |                  |
| 10        | L2        | 115                      | 0.0     | 0.277        | 7.5              | LOS A               | 1.9                  | 13.1     | 0.65            | 0.72                   | 51.3             |
| 11        | T1        | 56                       | 0.0     | 0.277        | 7.5              | LOS A               | 1.9                  | 13.1     | 0.65            | 0.72                   | 52.0             |
| 12        | R2        | 65                       | 0.0     | 0.277        | 10.8             | LOS B               | 1.9                  | 13.1     | 0.65            | 0.72                   | 51.7             |
| Appro     | ach       | 236                      | 0.0     | 0.277        | 8.4              | LOS A               | 1.9                  | 13.1     | 0.65            | 0.72                   | 51.6             |
| All Vel   | hicles    | 1363                     | 0.0     | 0.569        | 7.6              | LOSA                | 5.7                  | 39.7     | 0.63            | 0.65                   | 52.1             |

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MARITENG MANAGEMENT SOLUTIONS CC | Processed: 28 May 2018 02:58:07 PM Project: C:\Data\000\_projects\185-Numbers\185-86-erf 1211 pierre van ryneveld X2\Data & Calculations\Int 4 Pierre van Ryneveld Canberra.sip7

# Site: 104v [SC7 2022 PM Background]

Erf 1211 Pierre van Ryneveld X2 Van Ryneveld & Canberra SC7 - 2022 PM Peak - Background traffic, with 2017 upgrade Roundabout

| Mov     | oD         | Demand         | Flows   | Deg.        | Average | Level of | 95% Back        | of Queue | Prop.  | Effective | Average |
|---------|------------|----------------|---------|-------------|---------|----------|-----------------|----------|--------|-----------|---------|
| ID      | Mov        | Total<br>veh/h | HV<br>% | Satn<br>v/c | Delay   | Service  | Vehicles<br>veh | Distance | Queued | Stop Rate | Speed   |
| South   | : Van Ryne | eveld - NB     | 70      | VIC         | 360     |          | Ven             | m        |        | perven    | km/t    |
| 1       | L2         | 68             | 0.0     | 0.492       | 7.8     | LOS A    | 3.9             | 27.6     | 0.73   | 0.73      | 51.5    |
| 2       | T1         | 342            | 0.0     | 0.492       | 7.8     | LOS A    | 3.9             | 27.6     | 0.73   | 0.73      | 52.2    |
| 3       | R2         | 32             | 0.0     | 0.492       | 11.0    | LOS B    | 3.9             | 27.6     | 0.73   | 0.73      | 51.9    |
| Appro   | ach        | 442            | 0.0     | 0.492       | 8.0     | LOS A    | 3.9             | 27.6     | 0.73   | 0.73      | 52.1    |
| East:   | Canberra   | - WB           |         |             |         |          |                 |          |        |           |         |
| 4       | L2         | 16             | 0.0     | 0.160       | 10.6    | LOS B    | 1.0             | 7.3      | 0.82   | 0.82      | 49.2    |
| 5       | Τ1         | 47             | 0.0     | 0.160       | 10.6    | LOS B    | 1.0             | 7.3      | 0.82   | 0.82      | 49.9    |
| 6       | R2         | 26             | 0.0     | 0.160       | 13.8    | LOS B    | 1.0             | 7.3      | 0.82   | 0.82      | 49.6    |
| Appro   | ach        | 89             | 0.0     | 0.160       | 11.6    | LOS B    | 1.0             | 7.3      | 0.82   | 0.82      | 49.7    |
| North:  | Van Ryne   | eveld - SB     |         |             |         |          |                 |          |        |           |         |
| 7       | L2         | 89             | 0.0     | 0.655       | 6.8     | LOS A    | 7.2             | 50.2     | 0.73   | 0.65      | 51.2    |
| 8       | T1         | 400            | 0.0     | 0.655       | 6.8     | LOSA     | 7.2             | 50.2     | 0.73   | 0.65      | 51.9    |
| 9       | R2         | 242            | 0.0     | 0.655       | 10.0    | LOS B    | 7.2             | 50.2     | 0.73   | 0.65      | 51.6    |
| Appro   | ach        | 732            | 0.0     | 0.655       | 7.9     | LOS A    | 7.2             | 50.2     | 0.73   | 0.65      | 51.7    |
| West:   | Canberra   | - EB           |         |             |         |          |                 |          |        |           |         |
| 10      | L2         | 137            | 0.0     | 0.354       | 8.1     | LOS A    | 2.5             | 17.7     | 0.72   | 0.76      | 50.9    |
| 11      | T1         | 68             | 0.0     | 0.354       | 8.1     | LOS A    | 2.5             | 17.7     | 0.72   | 0.76      | 51.7    |
| 12      | R2         | 79             | 0.0     | 0.354       | 11.3    | LOS B    | 2.5             | 17.7     | 0.72   | 0.76      | 51.3    |
| Appro   | ach        | 284            | 0.0     | 0.354       | 9.0     | LOS A    | 2.5             | 17.7     | 0.72   | 0.76      | 51.2    |
| All Vel | nicles     | 1547           | 0.0     | 0.655       | 8.3     | LOS A    | 7.2             | 50.2     | 0.74   | 0.70      | 51.6    |

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MARITENG MANAGEMENT SOLUTIONS CC | Processed: 28 May 2018 03:02:22 PM Project: C:\Data\000\_projects\185-Numbers\185-86-erf 1211 pierre van ryneveld X2\Data & Calculations\Int 4 Pierre van Ryneveld Canberra.sip7

₩ Site: 104v [SC8 2022 PM With dev]

Erf 1211 Pierre van Ryneveld X2 Van Ryneveld & Canberra SC8 - 2022 PM Peak - With dev traffic Roundabout

| Move      | ement Pe  | rformance                | - Vehic          | les                 |                         |                     |                             |          |                 |                        |                  |
|-----------|-----------|--------------------------|------------------|---------------------|-------------------------|---------------------|-----------------------------|----------|-----------------|------------------------|------------------|
| Mov<br>ID | OD<br>Mov | Demand<br>Total<br>veh/h | Flows<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Back<br>Vehicles<br>veh | Distance | Prop.<br>Queued | Effective<br>Stop Rate | Average<br>Speed |
| South     | : Van Ryn | eveld - NB               | 70               | V/C                 | Sec                     |                     | ven                         | m        |                 | per veh                | km/h             |
| 1         | L2        | 68                       | 0.0              | 0.507               | 7.8                     | LOSA                | 4.1                         | 29.0     | 0.74            | 0.73                   | 51.4             |
| 2         | T1        | 356                      | 0.0              | 0.507               | 7.8                     | LOS A               | 4.1                         | 29.0     | 0.74            | 0.73                   | 52.2             |
| 3         | R2        | 32                       | 0.0              | 0.507               | 11.0                    | LOS B               | 4.1                         | 29.0     | 0.74            | 0.73                   | 51.8             |
| Appro     | ach       | 456                      | 0.0              | 0.507               | 8.0                     | LOS A               | 4.1                         | 29.0     | 0.74            | 0.73                   | 52.0             |
| East:     | Canberra  | - WB                     |                  |                     |                         |                     |                             |          |                 |                        |                  |
| 4         | L2        | 16                       | 0.0              | 0.170               | 11.1                    | LOS B               | 1.1                         | 7.9      | 0.84            | 0.84                   | 48.9             |
| 5         | T1        | 47                       | 0.0              | 0.170               | 11.1                    | LOS B               | 1.1                         | 7.9      | 0.84            | 0.84                   | 49.6             |
| 6         | R2        | 26                       | 0.0              | 0.170               | 14.3                    | LOS B               | 1.1                         | 7.9      | 0.84            | 0.84                   | 49.3             |
| Appro     | ach       | 89                       | 0.0              | 0.170               | 12.1                    | LOS B               | 1.1                         | 7.9      | 0.84            | 0.84                   | 49.3             |
| North:    | Van Ryne  | eveld - SB               |                  |                     |                         |                     |                             |          |                 |                        |                  |
| 7         | L2        | 89                       | 0.0              | 0.686               | 6.9                     | LOS A               | 7.9                         | 55.3     | 0.77            | 0.65                   | 51.1             |
| 8         | T1        | 438                      | 0.0              | 0.686               | 6.9                     | LOS A               | 7.9                         | 55.3     | 0.77            | 0.65                   | 51.8             |
| 9         | R2        | 242                      | 0.0              | 0.686               | 10.2                    | LOS B               | 7.9                         | 55.3     | 0.77            | 0.65                   | 51.5             |
| Appro     | ach       | 769                      | 0.0              | 0.686               | 7.9                     | LOS A               | 7.9                         | 55.3     | 0.77            | 0.65                   | 51.7             |
| West:     | Canberra  | - EB                     |                  |                     |                         |                     |                             |          |                 |                        |                  |
| 10        | L2        | 137                      | 0.0              | 0.359               | 8.2                     | LOS A               | 2.6                         | 18.0     | 0.74            | 0.77                   | 50.8             |
| 11        | T1        | 68                       | 0.0              | 0.359               | 8.3                     | LOS A               | 2.6                         | 18.0     | 0.74            | 0.77                   | 51.6             |
| 12        | R2        | 79                       | 0.0              | 0.359               | 11.5                    | LOS B               | 2.6                         | 18.0     | 0.74            | 0.77                   | 51.2             |
| Appro     | ach       | 284                      | 0.0              | 0.359               | 9.1                     | LOS A               | 2.6                         | 18.0     | 0.74            | 0.77                   | 51.1             |
| All Vel   | hicles    | 1599                     | 0.0              | 0.686               | 8.4                     | LOS A               | 7.9                         | 55.3     | 0.76            | 0.71                   | 51.5             |

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Roundabout LOS Method: SIDRA Roundabout LOS.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MARITENG MANAGEMENT SOLUTIONS CC | Processed: 28 May 2018 03:04:30 PM Project: C:\Data\000\_projects\185-Numbers\185-86-erf 1211 pierre van ryneveld X2\Data & Calculations\Int 4 Pierre van Ryneveld Canberra.sip7

# **Intersection 5: Van Ryneveld & Theron**

#### **MOVEMENT SUMMARY**

### Site: 105 [SC1 2017 AM Background]

Erf 1211 Pierre van Ryneveld X2

Van Ryneveld & Theron SC1 2017 AM Peak - Background traffic

Signals - Fixed Time Isolated Cycle Time = 70 seconds (User-Given Phase Times)

| N.S. IN   | ement Pe   |                          |                  | -                   | •                       |                     | 0000                        | 10                        | and the second second |                                   |                          |
|-----------|------------|--------------------------|------------------|---------------------|-------------------------|---------------------|-----------------------------|---------------------------|-----------------------|-----------------------------------|--------------------------|
| Mov<br>ID | OD<br>Mov  | Demand<br>Total<br>veh/h | Flows<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Back<br>Vehicles<br>veh | of Queue<br>Distance<br>m | Prop.<br>Queued       | Effective<br>Stop Rate<br>per veh | Average<br>Speed<br>km/h |
| South     | : Van Ryn  | eveld - NB               |                  |                     |                         |                     |                             |                           |                       |                                   |                          |
| 1         | L2         | 779                      | 0.0              | 0.515               | 7.8                     | LOS A               | 8.4                         | 59.1                      | 0.35                  | 0.69                              | 51.9                     |
| 2         | T1         | 953                      | 0.0              | 0.462               | 11.1                    | LOS B               | 10.2                        | 71.1                      | 0.67                  | 0.59                              | 50.7                     |
| Appro     | ach        | 1732                     | 0.0              | 0.515               | 9.6                     | LOS A               | 10.2                        | 71.1                      | 0.52                  | 0.63                              | 51.3                     |
| North     | Van Ryne   | eveld - SB               |                  |                     |                         |                     |                             |                           |                       |                                   |                          |
| 8         | T1         | 314                      | 0.0              | 0.256               | 6.1                     | LOS A               | 4.7                         | 32.9                      | 0.47                  | 0.41                              | 54.5                     |
| 9         | R2         | 357                      | 0.0              | 1.329               | 344.2                   | LOS F               | 48.7                        | 340.6                     | 1.00                  | 2.13                              | 9.0                      |
| Appro     | ach        | 671                      | 0.0              | 1.329               | 186.1                   | LOS F               | 48.7                        | 340.6                     | 0.75                  | 1.32                              | 14.8                     |
| West:     | Theron - I | EB                       |                  |                     |                         |                     |                             |                           |                       |                                   |                          |
| 10        | L2         | 136                      | 0.0              | 0.073               | 5.6                     | LOS A               | 0.0                         | 0.0                       | 0.00                  | 0.53                              | 54.9                     |
| 12        | R2         | 181                      | 0.0              | 0.487               | 33.3                    | LOS C               | 5.7                         | 39.9                      | 0.93                  | 0.80                              | 38.2                     |
| Appro     | ach        | 317                      | 0.0              | 0.487               | 21.4                    | LOS C               | 5.7                         | 39.9                      | 0.53                  | 0.68                              | 44.0                     |
| All Ve    | hicles     | 2719                     | 0.0              | 1.329               | 54.5                    | LOS D               | 48.7                        | 340.6                     | 0.58                  | 0.81                              | 31.5                     |

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Mov    |                     | Demand        | Average      |         | Average Back      |               | Prop.  | Effective            |
|--------|---------------------|---------------|--------------|---------|-------------------|---------------|--------|----------------------|
| ID     | Description         | Flow<br>ped/h | Delay<br>sec | Service | Pedestrian<br>ped | Distance<br>m | Queued | Stop Rate<br>per ped |
| P1     | South Full Crossing | 53            | 29.3         | LOS C   | 0.1               | 0.1           | 0.92   | 0.92                 |
| P3     | North Full Crossing | 53            | 29.3         | LOS C   | 0.1               | 0.1           | 0.92   | 0.92                 |
| P4     | West Full Crossing  | 53            | 9.8          | LOS A   | 0.1               | 0.1           | 0.53   | 0.53                 |
| All Pe | destrians           | 158           | 22.8         | LOS C   |                   |               | 0.79   | 0.79                 |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MARITENG MANAGEMENT SOLUTIONS CC | Processed: 29 May 2018 05:34:38 AM Project: C:Data\000\_projects\185-Numbers\185-86-erf 1211 pierre van ryneveld X2\Data & Calculations\Int 5 Pierre van Ryneveld Theron.sip7

#### Site: 105 [SC1 2017 AM Background UPGR]

Erf 1211 Pierre van Ryneveld X2

Van Ryneveld & Theron

SC1 2017 AM Peak - Background traffic, with upgrade

Signals - Fixed Time Isolated Cycle Time = 70 seconds (User-Given Cycle Time)

| Move      | ement Pe  | rformance                | - Vehic          | les                 |                         |                     |                             | Real of the               | A Sector        |                                   |                          |
|-----------|-----------|--------------------------|------------------|---------------------|-------------------------|---------------------|-----------------------------|---------------------------|-----------------|-----------------------------------|--------------------------|
| Mov<br>ID | OD<br>Mov | Demand<br>Total<br>veh/h | Flows<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Back<br>Vehicles<br>veh | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate<br>per veh | Average<br>Speed<br>km/h |
| South     | : Van Ryn | eveld - NB               |                  |                     |                         |                     |                             |                           |                 |                                   |                          |
| 1         | L2        | 779                      | 0.0              | 0.612               | 11.9                    | LOS B               | 14.4                        | 100.6                     | 0.59            | 0.77                              | 49.0                     |
| 2         | T1        | 953                      | 0.0              | 0.611               | 18.2                    | LOS B               | 13.1                        | 91.5                      | 0.85            | 0.74                              | 46.2                     |
| Appro     | ach       | 1732                     | 0.0              | 0.612               | 15.4                    | LOS B               | 14.4                        | 100.6                     | 0.73            | 0.76                              | 47.5                     |
| North     | Van Ryne  | eveld - SB               |                  |                     |                         |                     |                             |                           |                 |                                   |                          |
| 8         | T1        | 314                      | 0.0              | 0.256               | 6.1                     | LOS A               | 4.7                         | 32.9                      | 0.47            | 0.41                              | 54.5                     |
| 9         | R2        | 357                      | 0.0              | 0.748               | 23.5                    | LOS C               | 7.9                         | 55.4                      | 0.98            | 0.93                              | 42.8                     |
| Аррго     | ach       | 671                      | 0.0              | 0.748               | 15.4                    | LOS B               | 7.9                         | 55.4                      | 0.74            | 0.68                              | 47.6                     |
| West:     | Theron -  | EB                       |                  |                     |                         |                     |                             |                           |                 |                                   |                          |
| 10        | L2        | 136                      | 0.0              | 0.073               | 5.6                     | LOS A               | 0.0                         | 0.0                       | 0.00            | 0.53                              | 54.9                     |
| 12        | R2        | 181                      | 0.0              | 0.356               | 32.0                    | LOS C               | 4.0                         | 28.2                      | 0.89            | 0.76                              | 38.7                     |
| Appro     | ach       | 317                      | 0.0              | 0.356               | 20.7                    | LOS C               | 4.0                         | 28.2                      | 0.51            | 0.66                              | 44.3                     |
| All Ve    | hicles    | 2719                     | 0.0              | 0.748               | 16.0                    | LOS B               | 14.4                        | 100.6                     | 0.71            | 0.73                              | 47.1                     |

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Mov    |                     | Demand        | Average      | Level of | Average Back      | of Queue      | Prop.  | Effective            |
|--------|---------------------|---------------|--------------|----------|-------------------|---------------|--------|----------------------|
| ID     | Description         | Flow<br>ped/h | Delay<br>sec | Service  | Pedestrian<br>ped | Distance<br>m | Queued | Stop Rate<br>per ped |
| P1     | South Full Crossing | 53            | 29.3         | LOS C    | 0.1               | 0.1           | 0.92   | 0.92                 |
| -3     | North Full Crossing | 53            | 29.3         | LOS C    | 0.1               | 0.1           | 0.92   | 0.92                 |
| P4     | West Full Crossing  | 53            | 16.5         | LOS B    | 0.1               | 0.1           | 0.69   | 0.69                 |
| All Pe | destrians           | 158           | 25.0         | LOS C    |                   |               | 0.84   | 0.84                 |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MARITENG MANAGEMENT SOLUTIONS CC | Processed: 29 May 2018 05:34:38 AM Project: C:\Data\000\_projects\185-Numbers\185-86-erf 1211 pierre van ryneveld X2\Data & Calculations\Int 5 Pierre van Ryneveld Theron.sip7

### Site: 105 [SC2 2017 AM With dev]

Erf 1211 Pierre van Ryneveld X2

Van Ryneveld & Theron

SC2 2017 AM Peak - With dev traffic, with Background upgrade

Signals - Fixed Time Isolated Cycle Time = 70 seconds (User-Given Cycle Time)

| Mov    | OD         | Demand         | Flows   | Deg.        | Average | Level of | 95% Back | of Queue | Prop.    | Effective            | Average       |
|--------|------------|----------------|---------|-------------|---------|----------|----------|----------|----------|----------------------|---------------|
| ID     | Mov        | Total<br>veh/h | HV<br>% | Satn<br>v/c | Delay   | Service  | Vehicles | Distance | Queued   | Stop Rate<br>per veh | Speed<br>km/h |
| South  | : Van Ryn  | eveld - NB     |         |             |         |          |          |          | 05038672 | Land and the second  |               |
| 1      | L2         | 788            | 0.0     | 0.606       | 11.4    | LOS B    | 14.0     | 98.0     | 0.56     | 0.77                 | 49.4          |
| 2      | T1         | 963            | 0.0     | 0.596       | 17.3    | LOS B    | 12.9     | 90.5     | 0.83     | 0.73                 | 46.7          |
| Appro  | ach        | 1752           | 0.0     | 0.606       | 14.7    | LOS B    | 14.0     | 98.0     | 0.71     | 0.74                 | 47.9          |
| North  | Van Ryne   | eveld - SB     |         |             |         |          |          |          |          |                      |               |
| 8      | T1         | 320            | 0.0     | 0.261       | 6.2     | LOS A    | 4.8      | 33.7     | 0.47     | 0.41                 | 54.5          |
| 9      | R2         | 357            | 0.0     | 0.788       | 26.2    | LOS C    | 8.6      | 60.4     | 1.00     | 0.96                 | 41.5          |
| Appro  | ach        | 677            | 0.0     | 0.788       | 16.8    | LOS B    | 8.6      | 60.4     | 0.75     | 0.70                 | 46.7          |
| West:  | Theron - I | EB             |         |             |         |          |          |          |          |                      |               |
| 10     | L2         | 136            | 0.0     | 0.073       | 5.6     | LOS A    | 0.0      | 0.0      | 0.00     | 0.53                 | 54.9          |
| 12     | R2         | 185            | 0.0     | 0.365       | 32.1    | LOS C    | 4.1      | 28.9     | 0.89     | 0.77                 | 38.6          |
| Appro  | ach        | 321            | 0.0     | 0.365       | 20.9    | LOS C    | 4.1      | 28.9     | 0.52     | 0.67                 | 44.2          |
| All Ve | hicles     | 2749           | 0.0     | 0.788       | 15.9    | LOS B    | 14.0     | 98.0     | 0.70     | 0.72                 | 47.1          |

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Mov    |                     | Demand        | Average      | Level of | Average Back      | of Queue      | Prop.  | Effective            |
|--------|---------------------|---------------|--------------|----------|-------------------|---------------|--------|----------------------|
| ID     | Description         | Flow<br>ped/h | Delay<br>sec | Service  | Pedestrian<br>ped | Distance<br>m | Queued | Stop Rate<br>per pec |
| P1     | South Full Crossing | 53            | 29.3         | LOS C    | 0.1               | 0.1           | 0.92   | 0.92                 |
| P3     | North Full Crossing | 53            | 29.3         | LOS C    | 0.1               | 0.1           | 0.92   | 0.92                 |
| P4     | West Full Crossing  | 53            | 15.8         | LOS B    | 0.1               | 0.1           | 0.67   | 0.67                 |
| All Pe | destrians           | 158           | 24.8         | LOS C    |                   |               | 0.84   | 0.84                 |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MARITENG MANAGEMENT SOLUTIONS CC | Processed: 29 May 2018 05:34:39 AM Project: C:\Data\000\_projects\185-Numbers\185-86-erf 1211 pierre van ryneveld X2\Data & Calculations\Int 5 Pierre van Ryneveld Theron.sip7

#### Site: 105 [SC3 2022 AM Background]

Erf 1211 Pierre van Ryneveld X2 Van Ryneveld & Theron SC3 2022 AM Peak - Background traffic, with 2017 upgrade

Signals - Fixed Time Isolated Cycle Time = 70 seconds (User-Given Cycle Time)

|           |            | rformance                |                  | les                 |                         |                     |                             |                           |                 |                                   |                          |
|-----------|------------|--------------------------|------------------|---------------------|-------------------------|---------------------|-----------------------------|---------------------------|-----------------|-----------------------------------|--------------------------|
| Mov<br>ID | OD<br>Mov  | Demand<br>Total<br>veh/h | Flows<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Back<br>Vehicles<br>veh | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate<br>per veh | Average<br>Speed<br>km/h |
| South     | : Van Ryn  | eveld - NB               |                  |                     |                         |                     |                             |                           | 1000            |                                   |                          |
| 1         | L2         | 905                      | 0.0              | 0.920               | 34.5                    | LOS C               | 32.2                        | 225.4                     | 0.63            | 0.93                              | 37.6                     |
| 2         | T1         | 1105                     | 0.0              | 0.640               | 16.5                    | LOS B               | 14.8                        | 103.7                     | 0.83            | 0.74                              | 47.2                     |
| Appro     | ach        | 2011                     | 0.0              | 0.920               | 24.6                    | LOS C               | 32.2                        | 225.4                     | 0.74            | 0.82                              | 42.4                     |
| North     | Van Ryne   | eveld - SB               |                  |                     |                         |                     |                             |                           |                 |                                   |                          |
| 8         | T1         | 363                      | 0.0              | 0.283               | 5.4                     | LOS A               | 5.2                         | 36.3                      | 0.45            | 0.39                              | 55.1                     |
| 9         | R2         | 416                      | 0.0              | 0.942               | 53.8                    | LOS D               | 17.1                        | 120.0                     | 1.00            | 1.20                              | 31.6                     |
| Appro     | ach        | 779                      | 0.0              | 0.942               | 31.2                    | LOS C               | 17.1                        | 120.0                     | 0.74            | 0.82                              | 39.5                     |
| West:     | Theron - I | EB                       |                  |                     |                         |                     |                             |                           |                 |                                   |                          |
| 10        | L2         | 158                      | 0.0              | 0.085               | 5.6                     | LOS A               | 0.0                         | 0.0                       | 0.00            | 0.53                              | 54.9                     |
| 12        | R2         | 211                      | 0.0              | 0.483               | 34.5                    | LOS C               | 5.0                         | 34.7                      | 0.93            | 0.78                              | 37.7                     |
| Appro     | ach        | 368                      | 0.0              | 0.483               | 22.1                    | LOS C               | 5.0                         | 34.7                      | 0.53            | 0.67                              | 43.6                     |
| All Ve    | hicles     | 3158                     | 0.0              | 0.942               | 25.9                    | LOSC                | 32.2                        | 225.4                     | 0.72            | 0.81                              | 41.7                     |

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Mov<br>ID |                     | Demand        | Average      | Level of | Average Back      | of Queue      | Prop.  | Effective            |
|-----------|---------------------|---------------|--------------|----------|-------------------|---------------|--------|----------------------|
| ID        | Description         | Flow<br>ped/h | Delay<br>sec | Service  | Pedestrian<br>ped | Distance<br>m | Queued | Stop Rate<br>per ped |
| P1        | South Full Crossing | 53            | 29.3         | LOS C    | 0.1               | 0.1           | 0.92   | 0.92                 |
| P3        | North Full Crossing | 53            | 29.3         | LOS C    | 0.1               | 0.1           | 0.92   | 0.92                 |
| P4        | West Full Crossing  | 53            | 14.5         | LOS B    | 0.1               | 0.1           | 0.64   | 0.64                 |
| All Pe    | destrians           | 158           | 24.4         | LOS C    |                   |               | 0.83   | 0.83                 |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MARITENG MANAGEMENT SOLUTIONS CC | Processed: 29 May 2018 05:34:40 AM Project: C:\Data\000\_projects\185-Numbers\185-86-erf 1211 pierre van ryneveld X2\Data & Calculations\Int 5 Pierre van Ryneveld Theron.sip7

### Site: 105 [SC3 2022 AM Background UPGR]

Erf 1211 Pierre van Ryneveld X2

Van Ryneveld & Theron

SC3 2022 AM Peak - Background traffic, with upgrade

Signals - Fixed Time Isolated Cycle Time = 70 seconds (User-Given Cycle Time)

| Mov    | OD         | rformance<br>Demand |         | Deg         | Average      | Level of | 95% Back        | of Outputo | Drom            | Effective | Aueroan                  |
|--------|------------|---------------------|---------|-------------|--------------|----------|-----------------|------------|-----------------|-----------|--------------------------|
| ID     | Mov        | Total<br>veh/h      | HV<br>% | Satn<br>v/c | Delay<br>sec | Service  | Vehicles<br>veh | Distance   | Prop.<br>Queued | Stop Rate | Average<br>Speed<br>km/h |
| South  | : Van Ryn  |                     |         | STATES NO.  |              | 1983.000 |                 |            | 1200            |           |                          |
| 1      | L2         | 905                 | 0.0     | 0.920       | 34.5         | LOS C    | 32.2            | 225.4      | 0.63            | 0.93      | 37.6                     |
| 2      | T1         | 1105                | 0.0     | 0.640       | 16.5         | LOS B    | 14.8            | 103.7      | 0.83            | 0.74      | 47.2                     |
| Appro  | bach       | 2011                | 0.0     | 0.920       | 24.6         | LOS C    | 32.2            | 225.4      | 0.74            | 0.82      | 42.4                     |
| North  | : Van Ryne | eveld - SB          |         |             |              |          |                 |            |                 |           |                          |
| 8      | T1         | 363                 | 0.0     | 0.207       | 4.9          | LOS A    | 3.6             | 24.9       | 0.41            | 0.35      | 55.5                     |
| 9      | R2         | 416                 | 0.0     | 0.942       | 53.8         | LOS D    | 17.1            | 120.0      | 1.00            | 1.20      | 31.6                     |
| Appro  | bach       | 779                 | 0.0     | 0.942       | 31.0         | LOS C    | 17.1            | 120.0      | 0.73            | 0.80      | 39.5                     |
| West:  | Theron - I | EB                  |         |             |              |          |                 |            |                 |           |                          |
| 10     | L2         | 158                 | 0.0     | 0.085       | 5.6          | LOS A    | 0.0             | 0.0        | 0.00            | 0.53      | 54.9                     |
| 12     | R2         | 211                 | 0.0     | 0.483       | 34.5         | LOS C    | 5.0             | 34.7       | 0.93            | 0.78      | 37.7                     |
| Appro  | bach       | 368                 | 0.0     | 0.483       | 22.1         | LOS C    | 5.0             | 34.7       | 0.53            | 0.67      | 43.6                     |
| All Ve | hicles     | 3158                | 0.0     | 0.942       | 25.9         | LOSC     | 32.2            | 225.4      | 0.71            | 0.80      | 41.8                     |

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Mov    |                     | Demand        | Average      | Level of | Average Back      | of Queue      | Prop.  | Effective            |
|--------|---------------------|---------------|--------------|----------|-------------------|---------------|--------|----------------------|
| ID     | Description         | Flow<br>ped/h | Delay<br>sec | Service  | Pedestrian<br>ped | Distance<br>m | Queued | Stop Rate<br>per pec |
| P1     | South Full Crossing | 53            | 29.3         | LOS C    | 0.1               | 0.1           | 0.92   | 0.92                 |
| P3     | North Full Crossing | 53            | 29.3         | LOS C    | 0.1               | 0.1           | 0.92   | 0.92                 |
| P4     | West Full Crossing  | 53            | 14.5         | LOS B    | 0.1               | 0.1           | 0.64   | 0.64                 |
| All Pe | destrians           | 158           | 24.4         | LOS C    |                   |               | 0.83   | 0.83                 |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MARITENG MANAGEMENT SOLUTIONS CC | Processed: 29 May 2018 05:34:41 AM Project: C:\Data\000\_projects\185-Numbers\185-86-erf 1211 pierre van ryneveld X2\Data & Calculations\Int 5 Pierre van Ryneveld Theron.sip7

Site: 105 [SC4 2022 AM With dev]

Erf 1211 Pierre van Ryneveld X2

Van Ryneveld & Theron

SC4 2022 AM Peak - With dev traffic, with 2022 Background traffic upgrade Signals - Fixed Time Isolated Cycle Time = 70 seconds (User-Given Cycle Time)

| Mov    | OD         | Demand         | Flows   | Deg.        | Average      | Level of | 95% Back        | of Queue      | Prop.  | Effective            | Average       |
|--------|------------|----------------|---------|-------------|--------------|----------|-----------------|---------------|--------|----------------------|---------------|
| ID     | Mov        | Total<br>veh/h | HV<br>% | Satn<br>v/c | Delay<br>sec | Service  | Vehicles<br>veh | Distance<br>m | Queued | Stop Rate<br>per veh | Speed<br>km/h |
| South  | : Van Ryne | veld - NB      | 100000  | 1000        |              |          | Land Land       |               |        |                      |               |
| 1      | L2         | 915            | 0.0     | 0.929       | 37.4         | LOS D    | 34.1            | 239.0         | 0.64   | 0.95                 | 36.6          |
| 2      | T1         | 1116           | 0.0     | 0.785       | 21.0         | LOS C    | 21.0            | 146.8         | 0.87   | 0.84                 | 44.6          |
| Appro  | ach        | 2031           | 0.0     | 0.929       | 28.4         | LOS C    | 34.1            | 239.0         | 0.77   | 0.89                 | 40.6          |
| North  | Van Ryne   | veld - SB      |         |             |              |          |                 |               |        |                      |               |
| 8      | T1         | 369            | 0.0     | 0.215       | 5.4          | LOS A    | 3.8             | 26.5          | 0.43   | 0.36                 | 55.1          |
| 9      | R2         | 416            | 0.0     | 0.946       | 53.7         | LOS D    | 17.1            | 119.8         | 1.00   | 1.20                 | 31.7          |
| Appro  | ach        | 785            | 0.0     | 0.946       | 31.0         | LOS C    | 17.1            | 119.8         | 0.73   | 0.80                 | 39.6          |
| West:  | Theron - E | В              |         |             |              |          |                 |               |        |                      |               |
| 10     | L2         | 158            | 0.0     | 0.085       | 5.6          | LOS A    | 0.0             | 0.0           | 0.00   | 0.53                 | 54.9          |
| 12     | R2         | 215            | 0.0     | 0.455       | 33.5         | LOS C    | 5.0             | 34.7          | 0.92   | 0.78                 | 38.1          |
| Appro  | ach        | 373            | 0.0     | 0.455       | 21.7         | LOS C    | 5.0             | 34.7          | 0.53   | 0.67                 | 43.8          |
| All Ve | hicles     | 3188           | 0.0     | 0.946       | 28.2         | LOSC     | 34.1            | 239.0         | 0.73   | 0.84                 | 40.7          |

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay. Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Mov<br>ID | Description         | Demand<br>Flow | Average<br>Delav |       | Average Back<br>Pedestrian | of Queue<br>Distance | Prop.<br>Queued | Effective<br>Stop Rate |
|-----------|---------------------|----------------|------------------|-------|----------------------------|----------------------|-----------------|------------------------|
| ANT       |                     | ped/h          | sec              |       | ped                        | m                    | autocc          | per pec                |
| P1        | South Full Crossing | 53             | 29.3             | LOS C | 0.1                        | 0.1                  | 0.92            | 0.92                   |
| P3        | North Full Crossing | 53             | 29.3             | LOS C | 0.1                        | 0.1                  | 0.92            | 0.92                   |
| P4        | West Full Crossing  | 53             | 15.1             | LOS B | 0.1                        | 0.1                  | 0.66            | 0.66                   |
| All Pe    | destrians           | 158            | 24.6             | LOS C |                            |                      | 0.83            | 0.83                   |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MARITENG MANAGEMENT SOLUTIONS CC | Processed: 29 May 2018 05:34:42 AM Project: C:\Data\000\_projects\185-Numbers\185-86-erf 1211 pierre van ryneveld X2\Data & Calculations\Int 5 Pierre van Ryneveld Theron.sip7

### Site: 105 [SC5 2017 PM Background]

Erf 1211 Pierre van Ryneveld X2 Van Ryneveld & Theron SC5 2017 PM Peak - Background traffic Signals - Fixed Time Isolated Cycle Time = 70 seconds (User-Given Phase Times)

| Mov    | OD         | Demand         | Flows   | Deg.        | Average      | Level of | 95% Back        | of Queue      | Prop.  | Effective            | Average       |
|--------|------------|----------------|---------|-------------|--------------|----------|-----------------|---------------|--------|----------------------|---------------|
| ID     | Mov        | Total<br>veh/h | HV<br>% | Satn<br>v/c | Delay<br>sec | Service  | Vehicles<br>veh | Distance<br>m | Queued | Stop Rate<br>per veh | Speed<br>km/h |
| South  | : Van Ryne |                |         |             |              |          |                 |               |        |                      |               |
| 1      | L2         | 207            | 0.0     | 0.135       | 6.2          | LOS A    | 0.7             | 4.8           | 0.20   | 0.63                 | 53.0          |
| 2      | T1         | 402            | 0.0     | 0.219       | 11.7         | LOS B    | 4.0             | 28.3          | 0.62   | 0.52                 | 50.3          |
| Appro  | bach       | 609            | 0.0     | 0.219       | 9.8          | LOS A    | 4.0             | 28.3          | 0.48   | 0.56                 | 51.2          |
| North  | : Van Ryne | eveld - SB     |         |             |              |          |                 |               |        |                      |               |
| 8      | T1         | 793            | 0.0     | 1.095       | 143.9        | LOS F    | 69.9            | 489.5         | 1.00   | 2.03                 | 17.8          |
| 9      | R2         | 175            | 0.0     | 0.447       | 22.1         | LOS C    | 4.5             | 31.3          | 0.76   | 0.78                 | 43.3          |
| Appro  | bach       | 967            | 0.0     | 1.095       | 121.9        | LOS F    | 69.9            | 489.5         | 0.96   | 1.81                 | 19.9          |
| West:  | Theron - E | EB             |         |             |              |          |                 |               |        |                      |               |
| 10     | L2         | 440            | 0.0     | 0.237       | 5.6          | LOS A    | 0.0             | 0.0           | 0.00   | 0.53                 | 54.9          |
| 12     | R2         | 734            | 0.0     | 1.106       | 151.9        | LOS F    | 65.0            | 455.2         | 1.00   | 1.61                 | 17.1          |
| Appro  | ach        | 1174           | 0.0     | 1.106       | 97.1         | LOS F    | 65.0            | 455.2         | 0.63   | 1.20                 | 23.1          |
| All Ve | hicles     | 2751           | 0.0     | 1.106       | 86.5         | LOS F    | 69.9            | 489.5         | 0.71   | 1.27                 | 24.7          |

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Mov    |                     | Demand        | Average      | Level of | Average Back      | of Queue      | Prop.  | Effective            |
|--------|---------------------|---------------|--------------|----------|-------------------|---------------|--------|----------------------|
| ID     | Description         | Flow<br>ped/h | Delay<br>sec | Service  | Pedestrian<br>ped | Distance<br>m | Queued | Stop Rate<br>per ped |
| P1     | South Full Crossing | 53            | 21.7         | LOS C    | 0.1               | 0.1           | 0.79   | 0.79                 |
| P3     | North Full Crossing | 53            | 22.4         | LOS C    | 0.1               | 0.1           | 0.80   | 0.80                 |
| P4     | West Full Crossing  | 53            | 11.5         | LOS B    | 0.1               | 0.1           | 0.57   | 0.57                 |
| All Pe | destrians           | 158           | 18.5         | LOS B    |                   |               | 0.72   | 0.72                 |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MARITENG MANAGEMENT SOLUTIONS CC | Processed: 29 May 2018 05:34:43 AM Project: C:\Data\000\_projects\185-Numbers\185-86-erf 1211 pierre van ryneveld X2\Data & Calculations\Int 5 Pierre van Ryneveld Theron.sip7

Site: 105 [SC5 2017 PM Background UPGR]

Erf 1211 Pierre van Ryneveld X2

Van Ryneveld & Theron

SC5 2017 PM Peak - Background traffic, with upgrade Signals - Fixed Time Isolated Cycle Time = 70 seconds (User-Given Cycle Time)

| Move      | ement Pe   | rformance                | - Vehic          | les                 |                         |                     | ATTEN CONT                  | 1.                        | A. S. S. S. S.  |                                   |                          |
|-----------|------------|--------------------------|------------------|---------------------|-------------------------|---------------------|-----------------------------|---------------------------|-----------------|-----------------------------------|--------------------------|
| Mov<br>ID | OD<br>Mov  | Demand<br>Total<br>veh/h | Flows<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Back<br>Vehicles<br>veh | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate<br>per veh | Average<br>Speed<br>km/h |
| South     | : Van Ryn  | eveld - NB               |                  |                     |                         |                     |                             |                           |                 |                                   |                          |
| 1         | L2         | 207                      | 0.0              | 0.153               | 8.6                     | LOSA                | 2.1                         | 15.0                      | 0.32            | 0.66                              | 51.3                     |
| 2         | T1         | 402                      | 0.0              | 0.328               | 20.0                    | LOS C               | 5.3                         | 37.3                      | 0.81            | 0.67                              | 45.2                     |
| Appro     | ach        | 609                      | 0.0              | 0.328               | 16.2                    | LOS B               | 5.3                         | 37.3                      | 0.64            | 0.67                              | 47.1                     |
| North     | Van Ryne   | eveld - SB               |                  |                     |                         |                     |                             |                           |                 |                                   |                          |
| 8         | T1         | 793                      | 0.0              | 0.936               | 39.3                    | LOS D               | 35.3                        | 247.0                     | 0.91            | 1.15                              | 36.5                     |
| 9         | R2         | 175                      | 0.0              | 0.333               | 17.2                    | LOS B               | 3.5                         | 24.4                      | 0.72            | 0.74                              | 46.2                     |
| Appro     | ach        | 967                      | 0.0              | 0.936               | 35.3                    | LOS D               | 35.3                        | 247.0                     | 0.88            | 1.07                              | 37.9                     |
| West:     | Theron - I | EB                       |                  |                     |                         |                     |                             |                           |                 |                                   |                          |
| 10        | L2         | 440                      | 0.0              | 0.237               | 5.6                     | LOS A               | 0.0                         | 0.0                       | 0.00            | 0.53                              | 54.9                     |
| 12        | R2         | 734                      | 0.0              | 0.911               | 39.6                    | LOS D               | 22.9                        | 160.2                     | 0.94            | 0.98                              | 35.8                     |
| Appro     | ach        | 1174                     | 0.0              | 0.911               | 26.9                    | LOS C               | 22.9                        | 160.2                     | 0.59            | 0.81                              | 41.2                     |
| All Ve    | hicles     | 2751                     | 0.0              | 0.936               | 27.5                    | LOSC                | 35.3                        | 247.0                     | 0.70            | 0.87                              | 41.1                     |

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Mov    |                     | Demand        | Average      | Level of | Average Back      | of Queue      | Prop.  | Effective            |
|--------|---------------------|---------------|--------------|----------|-------------------|---------------|--------|----------------------|
| ID     | Description         | Flow<br>ped/h | Delay<br>sec | Service  | Pedestrian<br>ped | Distance<br>m | Queued | Stop Rate<br>per ped |
| P1     | South Full Crossing | 53            | 25.8         | LOS C    | 0.1               | 0.1           | 0.86   | 0.86                 |
| P3     | North Full Crossing | 53            | 24.1         | LOS C    | 0.1               | 0.1           | 0.83   | 0.83                 |
| P4     | West Full Crossing  | 53            | 20.9         | LOS C    | 0.1               | 0.1           | 0.77   | 0.77                 |
| All Pe | destrians           | 158           | 23.6         | LOS C    |                   |               | 0.82   | 0.82                 |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MARITENG MANAGEMENT SOLUTIONS CC | Processed: 29 May 2018 05:34:44 AM Project: C:\Data\000\_projects\185-Numbers\185-86-erf 1211 pierre van ryneveld X2\Data & Calculations\Int 5 Pierre van Ryneveld Theron.sip7

Site: 105 [SC6 2017 PM With dev]

Erf 1211 Pierre van Ryneveld X2

Van Ryneveld & Theron

SC6 2017 PM Peak - With dev traffic, with Background upgrade

Signals - Fixed Time Isolated Cycle Time = 70 seconds (User-Given Cycle Time)

| Mov    | OD         | Demand         | Flows    | Deg.        | Average | Level of    | 95% Back | of Queue | Prop.  | Effective            | Average       |
|--------|------------|----------------|----------|-------------|---------|-------------|----------|----------|--------|----------------------|---------------|
| ID     | Mov        | Total<br>veh/h | HV<br>%  | Satn<br>v/c | Delay   | Service     | Vehicles | Distance | Queued | Stop Rate<br>per veh | Speed<br>km/h |
| South  | : Van Ryn  | eveld - NB     | 12.02.20 |             |         | 1. 2. 1. 1. |          |          |        |                      |               |
| 1      | L2         | 213            | 0.0      | 0.157       | 8.6     | LOS A       | 2.2      | 15.4     | 0.33   | 0.66                 | 51.3          |
| 2      | T1         | 411            | 0.0      | 0.335       | 20.1    | LOS C       | 5.5      | 38.2     | 0.81   | 0.67                 | 45.2          |
| Appro  | bach       | 623            | 0.0      | 0.335       | 16.2    | LOS B       | 5.5      | 38.2     | 0.64   | 0.67                 | 47.1          |
| North  | : Van Ryne | eveld - SB     |          |             |         |             |          |          |        |                      |               |
| 8      | T1         | 813            | 0.0      | 0.957       | 46.6    | LOS D       | 39.5     | 276.4    | 0.92   | 1.24                 | 34.1          |
| 9      | R2         | 175            | 0.0      | 0.336       | 17.2    | LOS B       | 3.5      | 24.4     | 0.73   | 0.74                 | 46.2          |
| Appro  | ach        | 987            | 0.0      | 0.957       | 41.4    | LOS D       | 39.5     | 276.4    | 0.89   | 1.15                 | 35.7          |
| West:  | Theron - I | EB             |          |             |         |             |          |          |        |                      |               |
| 10     | L2         | 440            | 0.0      | 0.237       | 5.6     | LOSA        | 0.0      | 0.0      | 0.00   | 0.53                 | 54.9          |
| 12     | R2         | 752            | 0.0      | 0.933       | 43.3    | LOS D       | 24.9     | 174.0    | 0.94   | 1.01                 | 34.6          |
| Appro  | ach        | 1192           | 0.0      | 0.933       | 29.4    | LOS C       | 24.9     | 174.0    | 0.60   | 0.83                 | 40.2          |
| All Ve | hicles     | 2802           | 0.0      | 0.957       | 30.7    | LOSC        | 39.5     | 276.4    | 0.71   | 0.91                 | 39.7          |

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Mov    |                     | Demand        | Average      | Level of | Average Back      | Prop.         | Effective |                      |
|--------|---------------------|---------------|--------------|----------|-------------------|---------------|-----------|----------------------|
| ID     | Description         | Flow<br>ped/h | Delay<br>sec | Service  | Pedestrian<br>ped | Distance<br>m | Queued    | Stop Rate<br>per ped |
| P1     | South Full Crossing | 53            | 25.8         | LOS C    | 0.1               | 0.1           | 0.86      | 0.86                 |
| P3     | North Full Crossing | 53            | 24.1         | LOS C    | 0.1               | 0.1           | 0.83      | 0.83                 |
| P4     | West Full Crossing  | 53            | 23.3         | LOS C    | 0.1               | 0.1           | 0.82      | 0.82                 |
| All Pe | destrians           | 158           | 24.4         | LOS C    |                   |               | 0.84      | 0.84                 |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MARITENG MANAGEMENT SOLUTIONS CC | Processed: 29 May 2018 05:34:45 AM Project: C:\Data\000\_projects\185-Numbers\185-86-erf 1211 pierre van ryneveld X2\Data & Calculations\Int 5 Pierre van Ryneveld Theron.sip7

Site: 105 [SC7 2022 PM Background]

Erf 1211 Pierre van Ryneveld X2

Van Ryneveld & Theron

SC7 2022 PM Peak - Background traffic, with 2017 upgrade

Signals - Fixed Time Isolated Cycle Time = 70 seconds (User-Given Cycle Time)

| Mov    | OD         | Demand              | Flows | Deg.  | Average | Level of        | 95% Back | of Queue | Prop.         | Effective | Average |
|--------|------------|---------------------|-------|-------|---------|-----------------|----------|----------|---------------|-----------|---------|
| ID     | Mov        | Total               | HV    |       | Delay   | Service         | Vehicles | Distance | Queued        | Stop Rate | Speed   |
| South  | · Van Ryn  | veh/h<br>eveld - NB | %     | v/c   | Sec     |                 | veh      | m        | CONTRACTOR OF | per veh   | km/r    |
| 1      | L2         | 242                 | 0.0   | 0.183 | 9.0     | LOSA            | 2.7      | 18.8     | 0.35          | 0.67      | 51.0    |
| 2      | T1         | 468                 | 0.0   |       |         | 121220-02120000 | 08, 104  |          |               |           |         |
| -      |            | 107.27              |       | 0.400 | 21.4    | LOS C           | 6.5      | 45.4     | 0.84          | 0.70      | 44.4    |
| Appro  | bach       | 711                 | 0.0   | 0.400 | 17.2    | LOS B           | 6.5      | 45.4     | 0.67          | 0.69      | 46.5    |
| North  | Van Ryne   | eveld - SB          |       |       |         |                 |          |          |               |           |         |
| 8      | T1         | 921                 | 0.0   | 1.089 | 134.3   | LOS F           | 79.4     | 556.1    | 1.00          | 2.05      | 18.7    |
| 9      | R2         | 205                 | 0.0   | 0.399 | 17.6    | LOS B           | 4.2      | 29.1     | 0.76          | 0.76      | 45.9    |
| Appro  | ach        | 1126                | 0.0   | 1.089 | 113.0   | LOS F           | 79.4     | 556.1    | 0.96          | 1.81      | 21.0    |
| West:  | Theron - I | EB                  |       |       |         |                 |          |          |               |           |         |
| 10     | L2         | 511                 | 0.0   | 0.275 | 5.6     | LOSA            | 0.0      | 0.0      | 0.00          | 0.53      | 54.9    |
| 12     | R2         | 853                 | 0.0   | 1.084 | 105.7   | LOS F           | 50.2     | 351.1    | 0.95          | 1.32      | 21.7    |
| Appro  | ach        | 1363                | 0.0   | 1.084 | 68.2    | LOS E           | 50.2     | 351.1    | 0.59          | 1.02      | 28.2    |
| All Ve | hicles     | 3200                | 0.0   | 1.089 | 72.7    | LOS E           | 79.4     | 556.1    | 0.74          | 1.23      | 27.3    |

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Mov<br>ID |                     | Demand        | Average      | Level of | Average Back      | Prop.         | Effective |                      |
|-----------|---------------------|---------------|--------------|----------|-------------------|---------------|-----------|----------------------|
| ID        | Description         | Flow<br>ped/h | Delay<br>sec | Service  | Pedestrian<br>ped | Distance<br>m | Queued    | Stop Rate<br>per ped |
| P1        | South Full Crossing | 53            | 25.8         | LOS C    | 0.1               | 0.1           | 0.86      | 0.86                 |
| P3        | North Full Crossing | 53            | 24.1         | LOS C    | 0.1               | 0.1           | 0.83      | 0.83                 |
| P4        | West Full Crossing  | 53            | 21.7         | LOS C    | 0.1               | 0.1           | 0.79      | 0.79                 |
|           | destrians           | 158           | 23.8         | LOS C    |                   |               | 0.83      | 0.83                 |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MARITENG MANAGEMENT SOLUTIONS CC | Processed: 29 May 2018 05:34:46 AM Project: C:\Data\000\_projects\185-Numbers\185-86-erf 1211 pierre van ryneveld X2\Data & Calculations\Int 5 Pierre van Ryneveld Theron.sip7

# Site: 105 [SC7 2022 PM Background UPGR]

Erf 1211 Pierre van Ryneveld X2

Van Ryneveld & Theron

SC7 2022 PM Peak - Background traffic, with upgrade

Signals - Fixed Time Isolated Cycle Time = 70 seconds (User-Given Cycle Time)

| Move      | ement Pe   | rformance                  | - Vehic          | les                 | in the second           |                     |                             |                           | Print and       | 11000                             |                          |
|-----------|------------|----------------------------|------------------|---------------------|-------------------------|---------------------|-----------------------------|---------------------------|-----------------|-----------------------------------|--------------------------|
| Mov<br>ID | OD<br>Mov  | Demand I<br>Total<br>veh/h | Flows<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Back<br>Vehicles<br>veh | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate<br>per veh | Average<br>Speed<br>km/h |
| South     | : Van Ryn  | eveld - NB                 |                  |                     |                         |                     |                             |                           |                 |                                   |                          |
| 1         | L2         | 242                        | 0.0              | 0.175               | 8.4                     | LOS A               | 2.4                         | 16.9                      | 0.31            | 0.66                              | 51.5                     |
| 2         | T1         | 468                        | 0.0              | 0.443               | 23.2                    | LOS C               | 6.8                         | 47.4                      | 0.88            | 0.73                              | 43.4                     |
| Appro     | bach       | 711                        | 0.0              | 0.443               | 18.2                    | LOS B               | 6.8                         | 47.4                      | 0.68            | 0.71                              | 45.9                     |
| North     | : Van Ryne | eveld - SB                 |                  |                     |                         |                     |                             |                           |                 |                                   |                          |
| 8         | T1         | 921                        | 0.0              | 0.945               | 34.8                    | LOS C               | 28.3                        | 198.0                     | 0.82            | 0.97                              | 38.2                     |
| 9         | R2         | 205                        | 0.0              | 0.457               | 20.4                    | LOS C               | 4.7                         | 32.8                      | 0.83            | 0.77                              | 44.4                     |
| Appro     | bach       | 1126                       | 0.0              | 0.945               | 32.2                    | LOS C               | 28.3                        | 198.0                     | 0.82            | 0.93                              | 39.2                     |
| West:     | Theron - I | EB                         |                  |                     |                         |                     |                             |                           |                 |                                   |                          |
| 10        | L2         | 511                        | 0.0              | 0.275               | 5.6                     | LOS A               | 0.0                         | 0.0                       | 0.00            | 0.53                              | 54.9                     |
| 12        | R2         | 853                        | 0.0              | 0.931               | 40.6                    | LOS D               | 27.6                        | 193.3                     | 0.91            | 0.99                              | 35.5                     |
| Appro     | ach        | 1363                       | 0.0              | 0.931               | 27.5                    | LOS C               | 27.6                        | 193.3                     | 0.57            | 0.82                              | 40.9                     |
| All Ve    | hicles     | 3200                       | 0.0              | 0.945               | 27.1                    | LOSC                | 28.3                        | 198.0                     | 0.68            | 0.83                              | 41.3                     |

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Mov    |                     | Demand        | Average      | Level of | Average Back      | Prop.         | Effective |                      |
|--------|---------------------|---------------|--------------|----------|-------------------|---------------|-----------|----------------------|
| ID     | Description         | Flow<br>ped/h | Delay<br>sec | Service  | Pedestrian<br>ped | Distance<br>m | Queued    | Stop Rate<br>per pec |
| P1     | South Full Crossing | 53            | 22.4         | LOS C    | 0.1               | 0.1           | 0.80      | 0.80                 |
| P3     | North Full Crossing | 53            | 23.3         | LOS C    | 0.1               | 0.1           | 0.82      | 0.82                 |
| P4     | West Full Crossing  | 53            | 23.3         | LOS C    | 0.1               | 0.1           | 0.82      | 0.82                 |
| All Pe | destrians           | 158           | 23.0         | LOS C    |                   |               | 0.81      | 0.81                 |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MARITENG MANAGEMENT SOLUTIONS CC | Processed: 29 May 2018 05:34:46 AM Project: C:\Data\000\_projects\185-Numbers\185-86-erf 1211 pierre van ryneveld X2\Data & Calculations\Int 5 Pierre van Ryneveld Theron.sip7

Site: 105 [SC8 2022 PM With dev]

Erf 1211 Pierre van Ryneveld X2

Van Ryneveld & Theron

SC8 2022 PM Peak - With dev traffic, with 2022 Background traffic upgrade Signals - Fixed Time Isolated Cycle Time = 70 seconds (User-Given Cycle Time)

| Mov    | OD         | Demand     |         | Deg.        | Average      | Level of | 95% Back        | of Queue      | Prop.  | Effective            | Average       |
|--------|------------|------------|---------|-------------|--------------|----------|-----------------|---------------|--------|----------------------|---------------|
| ID     | Mov        |            | HV<br>% | Satn<br>v/c | Delay<br>sec | Service  | Vehicles<br>veh | Distance<br>m | Queued | Stop Rate<br>per veh | Speed<br>km/h |
| South  | : Van Ryn  | eveld - NB |         |             |              |          |                 | 1.323.299     |        | per ten              |               |
| 1      | L2         | 247        | 0.0     | 0.179       | 8.4          | LOS A    | 2.5             | 17.3          | 0.32   | 0.66                 | 51.5          |
| 2      | T1         | 477        | 0.0     | 0.450       | 23.3         | LOS C    | 6.9             | 48.4          | 0.88   | 0.73                 | 43.4          |
| Appro  | ach        | 724        | 0.0     | 0.450       | 18.2         | LOS B    | 6.9             | 48.4          | 0.69   | 0.71                 | 45.9          |
| North  | Van Ryne   | eveld - SB |         |             |              |          |                 |               |        |                      |               |
| 8      | T1         | 941        | 0.0     | 0.953       | 36.9         | LOS D    | 30.2            | 211.2         | 0.83   | 1.00                 | 37.4          |
| 9      | R2         | 205        | 0.0     | 0.460       | 20.6         | LOS C    | 4.7             | 32.8          | 0.84   | 0.78                 | 44.3          |
| Appro  | ach        | 1146       | 0.0     | 0.953       | 34.0         | LOS C    | 30.2            | 211.2         | 0.83   | 0.96                 | 38.5          |
| West:  | Theron - I | EB         |         |             |              |          |                 |               |        |                      |               |
| 10     | L2         | 511        | 0.0     | 0.275       | 5.6          | LOS A    | 0.0             | 0.0           | 0.00   | 0.53                 | 54.9          |
| 12     | R2         | 871        | 0.0     | 0.957       | 46.6         | LOS D    | 30.9            | 216.4         | 0.92   | 1.03                 | 33.5          |
| Appro  | ach        | 1381       | 0.0     | 0.957       | 31.5         | LOS C    | 30.9            | 216.4         | 0.58   | 0.85                 | 39.2          |
| All Ve | hicles     | 3252       | 0.0     | 0.957       | 29.4         | LOSC     | 30.9            | 216.4         | 0.69   | 0.86                 | 40.2          |

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

| Mov<br>ID | Description         | Demand<br>Flow<br>ped/h | Average<br>Delay<br>sec |       | Average Back<br>Pedestrian<br>ped | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate<br>per pec |
|-----------|---------------------|-------------------------|-------------------------|-------|-----------------------------------|---------------------------|-----------------|-----------------------------------|
| P1        | South Full Crossing | 53                      | 22.4                    | LOS C | 0.1                               | 0.1                       | 0.80            | 0.80                              |
| P3        | North Full Crossing | 53                      | 23.3                    | LOS C | 0.1                               | 0.1                       | 0.82            | 0.82                              |
| P4        | West Full Crossing  | 53                      | 23.3                    | LOS C | 0.1                               | 0.1                       | 0.82            | 0.82                              |
| All Pe    | destrians           | 158                     | 23.0                    | LOS C |                                   |                           | 0.81            | 0.8                               |

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MARITENG MANAGEMENT SOLUTIONS CC | Processed: 29 May 2018 05:34:47 AM Project: C:\Data\000\_projects\185-Numbers\185-86-erf 1211 pierre van ryneveld X2\Data & Calculations\Int 5 Pierre van Ryneveld Theron.sip7

# **Intersection 6: Klopper & Grobbelaar/Site Access**

#### **MOVEMENT SUMMARY**

103 [SC4 2022 AM With dev]

Pierre van Ryneveld Ext 2 Klopper & Grobbelaar/Site Access SC4 - 2022 AM Peak - With dev traffic Stop (Two-Way)

| Move      | ement Pe   | rformance                | - Vehic          | les                 |                         |                     |                             |                           |                 |                                   |                          |
|-----------|------------|--------------------------|------------------|---------------------|-------------------------|---------------------|-----------------------------|---------------------------|-----------------|-----------------------------------|--------------------------|
| Mov<br>ID | OD<br>Mov  | Demand<br>Total<br>veh/h | Flows<br>HV<br>% | Deg.<br>Satn<br>v/c | Average<br>Delay<br>sec | Level of<br>Service | 95% Back<br>Vehicles<br>veh | of Queue<br>Distance<br>m | Prop.<br>Queued | Effective<br>Stop Rate<br>per veh | Average<br>Speed<br>km/h |
| South     | : Klopper  |                          | 70               | 10                  | 300                     |                     | Ven                         |                           |                 | perven                            | KIUA                     |
| 1         | L2         | 6                        | 0.0              | 0.020               | 5.6                     | LOS A               | 0.1                         | 0.6                       | 0.08            | 0.47                              | 54.1                     |
| 2         | T1         | 6                        | 0.0              | 0.020               | 0.1                     | LOS A               | 0.1                         | 0.6                       | 0.08            | 0.47                              | 55.6                     |
| 3         | R2         | 24                       | 0.0              | 0.020               | 5.5                     | LOS A               | 0.1                         | 0.6                       | 0.08            | 0.47                              | 49.8                     |
| Appro     | ach        | 35                       | 0.0              | 0.020               | 4.6                     | NA                  | 0.1                         | 0.6                       | 0.08            | 0.47                              | 52.1                     |
| East:     | Site Acces | ss - WB                  |                  |                     |                         |                     |                             |                           |                 |                                   |                          |
| 4         | L2         | 79                       | 0.0              | 0.098               | 4.9                     | LOS A               | 0.4                         | 2.7                       | 0.06            | 0.98                              | 49.9                     |
| 5         | T1         | 22                       | 0.0              | 0.098               | 4.7                     | LOS A               | 0.4                         | 2.7                       | 0.06            | 0.98                              | 49.5                     |
| 6         | R2         | 22                       | 0.0              | 0.098               | 5.0                     | LOS A               | 0.4                         | 2.7                       | 0.06            | 0.98                              | 49.7                     |
| Appro     | ach        | 124                      | 0.0              | 0.098               | 4.9                     | LOS A               | 0.4                         | 2.7                       | 0.06            | 0.98                              | 49.8                     |
| North     | Klopper -  | SB                       |                  |                     |                         |                     |                             |                           |                 |                                   |                          |
| 7         | L2         | 9                        | 0.0              | 0.012               | 5.5                     | LOSA                | 0.0                         | 0.1                       | 0.01            | 0.28                              | 29.1                     |
| 8         | T1         | 12                       | 0.0              | 0.012               | 0.0                     | LOS A               | 0.0                         | 0.1                       | 0.01            | 0.28                              | 57.5                     |
| 9         | R2         | 1                        | 0.0              | 0.012               | 5.5                     | LOS A               | 0.0                         | 0.1                       | 0.01            | 0.28                              | 55.5                     |
| Appro     | ach        | 22                       | 0.0              | 0.012               | 2.6                     | NA                  | 0.0                         | 0.1                       | 0.01            | 0.28                              | 45.1                     |
| West:     | Grobbela   | ar - EB                  |                  |                     |                         |                     |                             |                           |                 |                                   |                          |
| 10        | L2         | 1                        | 0.0              | 0.015               | 8.0                     | LOS A               | 0.1                         | 0.4                       | 0.09            | 0.98                              | 51.8                     |
| 11        | T1         | 8                        | 0.0              | 0.015               | 7.9                     | LOS A               | 0.1                         | 0.4                       | 0.09            | 0.98                              | 29.3                     |
| 12        | R2         | 6                        | 0.0              | 0.015               | 8.3                     | LOS A               | 0.1                         | 0.4                       | 0.09            | 0.98                              | 51.4                     |
| Appro     | ach        | 15                       | 0.0              | 0.015               | 8.1                     | LOS A               | 0.1                         | 0.4                       | 0.09            | 0.98                              | 40.0                     |
| All Ve    | hicles     | 196                      | 0.0              | 0.098               | 4.8                     | NA                  | 0.4                         | 2.7                       | 0.06            | 0.81                              | 48.3                     |

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Minor Road Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MARITENG MANAGEMENT SOLUTIONS CC | Processed: 07 December 2017 09:05:19 AM Project: C:\Data\000\_projects\185-Numbers\185-86-erf 1211 pierre van ryneveld X2\Data & Calculations\Int 3 Klopper Grobbelaar -Site Access.sip7

With dev]

Pierre van Ryneveld Ext 2 Klopper & Grobbelaar/Site Access SC8 - 2022 PM Peak - With dev traffic Stop (Two-Way)

| Mov    | OD          | Demand         | Flows   | Deg.        | Average | Level of | 95% Back | of Queue | Prop.  | Effective | Average |
|--------|-------------|----------------|---------|-------------|---------|----------|----------|----------|--------|-----------|---------|
| ID     | Mov         | Total<br>veh/h | HV<br>% | Satn<br>v/c | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Speed   |
| South  | : Klopper - |                | 70      | V/G         | sec     |          | veh      | m        |        | per veh   | km/t    |
| 1      | L2          | 6              | 0.0     | 0.057       | 5.6     | LOS A    | 0.3      | 1.9      | 0.10   | 0.47      | 54.1    |
| 2      | T1          | 18             | 0.0     | 0.057       | 0.1     | LOS A    | 0.3      | 1.9      | 0.10   | 0.47      | 55.5    |
| 3      | R2          | 78             | 0.0     | 0.057       | 5.5     | LOS A    | 0.3      | 1.9      | 0.10   | 0.47      | 49.7    |
| Appro  | ach         | 101            | 0.0     | 0.057       | 4.6     | NA       | 0.3      | 1.9      | 0.10   | 0.47      | 51.6    |
| East:  | Site Acces  | s - WB         |         |             |         |          |          |          |        |           |         |
| 4      | L2          | 24             | 0.0     | 0.043       | 4.9     | LOS A    | 0.2      | 1.1      | 0.05   | 1.00      | 49.6    |
| 5      | T1          | 13             | 0.0     | 0.043       | 5.1     | LOS A    | 0.2      | 1.1      | 0.05   | 1.00      | 49.2    |
| 6      | R2          | 13             | 0.0     | 0.043       | 5.5     | LOS A    | 0.2      | 1.1      | 0.05   | 1.00      | 49.4    |
| Appro  | ach         | 49             | 0.0     | 0.043       | 5.1     | LOS A    | 0.2      | 1.1      | 0.05   | 1.00      | 49.5    |
| North  | Klopper -   | SB             |         |             |         |          |          |          |        |           |         |
| 7      | L2          | 19             | 0.0     | 0.017       | 5.5     | LOS A    | 0.0      | 0.1      | 0.01   | 0.37      | 28.7    |
| 8      | T1          | 12             | 0.0     | 0.017       | 0.0     | LOS A    | 0.0      | 0.1      | 0.01   | 0.37      | 56.7    |
| 9      | R2          | 1              | 0.0     | 0.017       | 5.5     | LOS A    | 0.0      | 0.1      | 0.01   | 0.37      | 54.8    |
| Appro  | ach         | 32             | 0.0     | 0.017       | 3.5     | NA       | 0.0      | 0.1      | 0.01   | 0.37      | 39.8    |
| West:  | Grobbelaa   | r - EB         |         |             |         |          |          |          |        |           |         |
| 10     | L2          | 1              | 0.0     | 0.025       | 8.1     | LOS A    | 0.1      | 0.6      | 0.19   | 0.94      | 51.9    |
| 11     | T1          | 19             | 0.0     | 0.025       | 8.2     | LOS A    | 0.1      | 0.6      | 0.19   | 0.94      | 29.4    |
| 12     | R2          | 6              | 0.0     | 0.025       | 8.3     | LOS A    | 0.1      | 0.6      | 0.19   | 0.94      | 51.4    |
| Appro  | ach         | 26             | 0.0     | 0.025       | 8.2     | LOS A    | 0.1      | 0.6      | 0.19   | 0.94      | 35.8    |
| All Ve | hicles      | 208            | 0.0     | 0.057       | 5.0     | NA       | 0.3      | 1.9      | 0.09   | 0.64      | 46.1    |

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement. LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Minor Road Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

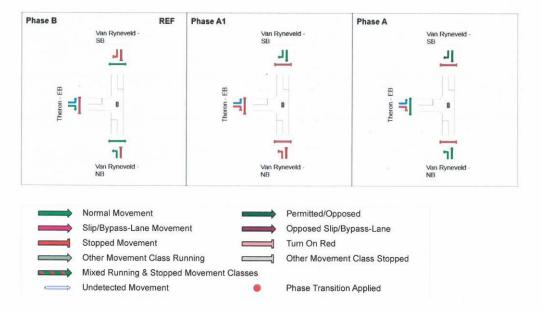
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay. Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D). HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MARITENG MANAGEMENT SOLUTIONS CC | Processed: 07 December 2017 09:05:32 AM Project: C:\Data\000\_projects\185-Numbers\185-86-erf 1211 pierre van ryneveld X2\Data & Calculations\Int 3 Klopper Grobbelaar -Site Access.sip7

# **ANNEXURE F:**

# CONCEPT SIGNAL PHASING DIAGRAM FOR VAN RYNEVELD & THERON INTERSECTION

# PHASING SUMMARY


# Site: 105 [SC4 2022 AM With dev]

Erf 1211 Pierre van Ryneveld X2 Van Ryneveld & Theron SC4 2022 AM Peak - With dev traffic, with 2022 Background traffic upgrade Signals - Fixed Time Isolated Cycle Time = 70 seconds (User-Given Cycle Time)

Phase times determined by the program Sequence: Variable Phasing Movement Class: All Movement Classes Input Sequence: B, A1, A Output Sequence: B, A1, A

#### **Phase Timing Results**

| Phase                   | в   | A1  | A   |
|-------------------------|-----|-----|-----|
| Reference Phase         | Yes | No  | No  |
| Phase Change Time (sec) | 0   | 19  | 37  |
| Green Time (sec)        | 13  | 12  | 30  |
| Yellow Time (sec)       | 3   | 2   | 3   |
| All-Red Time (sec)      | 3   | 1   | 3   |
| Phase Time (sec)        | 19  | 18  | 33  |
| Phase Split             | 27% | 26% | 47% |



SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MARITENG MANAGEMENT SOLUTIONS CC | Processed: 29 May 2018 05:34:42 AM Project: C:\Data\000\_projects\185-Numbers\185-86-erf 1211 pierre van ryneveld X2\Data & Calculations\Int 5 Pierre van Ryneveld Theron.sip7

## PHASING SUMMARY

# Site: 105 [SC8 2022 PM With dev]

Erf 1211 Pierre van Ryneveld X2 Van Ryneveld & Theron SC8 2022 PM Peak - With dev traffic, with 2022 Background traffic upgrade Signals - Fixed Time Isolated Cycle Time = 70 seconds (User-Given Cycle Time)

Phase times determined by the program Sequence: Variable Phasing Movement Class: All Movement Classes Input Sequence: B, A1, A Output Sequence: B, A1, A

#### Phase Timing Results

| Phase                   | B   | A1  | Α   |
|-------------------------|-----|-----|-----|
| Reference Phase         | Yes | No  | No  |
| Phase Change Time (sec) | 0   | 33  | 48  |
| Green Time (sec)        | 27  | 9   | 19  |
| Yellow Time (sec)       | 3   | 2   | 3   |
| All-Red Time (sec)      | 3   | 1   | 3   |
| Phase Time (sec)        | 33  | 15  | 22  |
| Phase Split             | 47% | 21% | 31% |



SIDRA INTERSECTION 7.0 | Copyright © 2000-2016 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: MARITENG MANAGEMENT SOLUTIONS CC | Processed: 29 May 2018 05:34:47 AM Project: C:\Data\000\_projects\185-Numbers\185-86-erf 1211 pierre van ryneveld X2\Data & Calculations\int 5 Pierre van Ryneveld Theron.sip7

# **ANNEXURE G:**

# PROPOSED ACCESS ARRANGEMENTS AND INTERNAL LAYOUT -MARITENG PLAN NO.: 185-86-01

# **ANNEXURE H:**

# EXTRACT FROM TSHWANE STANDARDS -ACCESS ARRANGEMENTS REQUIREMENTS -TSHWANE DRAWING NO.: STD021 (SHEET 1 OF 2)

# **ANNEXURE I:**

DETAILED RESULTS: OPERATIONAL ASSESSMENT OF ACCESS CONTROL

# Residential Dev - Erf 1211 Pierre van Ryneveld X2

# Access from Klopper Road

|                                       |                   |    | - I want the second second |               |         |               |
|---------------------------------------|-------------------|----|----------------------------|---------------|---------|---------------|
|                                       |                   |    | 1 Ga                       | te            | 2 Gat   | es            |
| Peak hour traffic volume              | =                 | =  | 98                         | veh / h       | 98      | veh / h       |
| Peak hour factor                      | =                 | =  | 1                          |               | 1       |               |
| Average arrival rate at peak          | Q =               | =  | 98                         | veh / h       | 98      | veh / h       |
| Average service rate                  |                   |    | 14.40                      | sec / veh     | 14.40   | sec / veh     |
|                                       | <b>C</b> =        | =  | 250                        | services/h    | 250     | services/h    |
|                                       |                   |    |                            |               |         |               |
| Traffic intensity                     | φ =               | =  | 0.39                       |               | 0.39    |               |
| Number of channels                    | N =               | =  | 1                          | gate          | 2       | gates         |
| Traffic intensity per service channel | θ =               | =  | 0.39                       |               | 0.20    |               |
| Probability that n vehicles will      |                   |    |                            |               |         |               |
| be in the system                      | n                 |    | P (x=n)                    | $P(x \leq n)$ | P (x=n) | $P(x \leq n)$ |
|                                       |                   | =  | 0.61                       | 0.39          | 0.67    | 0.33          |
|                                       | P 1 =             | =  | 0.24                       | 0.76          | 0.26    | 0.74          |
|                                       | P <sub>2</sub> =  | =  | 0.09                       | 0.91          | 0.05    | 0.95          |
|                                       | P <sub>3</sub> =  | =  | 0.04                       | 0.96          | 0.01    | 0.99          |
|                                       | P <sub>4</sub> =  | =  | 0.01                       | 0.99          | 0.00    | 1.00          |
|                                       | P <sub>5</sub> =  | =  | 0.01                       | 0.99          | 0.00    | 1.00          |
|                                       | $P_6 =$           | =  | 0.00                       | 1.00          | 0.00    | 1.00          |
|                                       | P <sub>7</sub> =  | =  | 0.00                       | 1.00          | 0.00    | 1.00          |
|                                       | P <sub>8</sub> =  | =  | 0.00                       | 1.00          | 0.00    | 1.00          |
|                                       |                   | =  | 0.00                       | 1.00          | 0.00    | 1.00          |
|                                       | P 10 =            | =  | 0.00                       | 1.00          | 0.00    | 1.00          |
|                                       | P 11 =            | =  | 0.00                       | 1.00          | 0.00    | 1.00          |
|                                       | P <sub>12</sub> = | =  | 0.00                       | 1.00          | 0.00    | 1.00          |
|                                       | P <sub>13</sub> = | =  | 0.00                       | 1.00          | 0.00    | 1.00          |
|                                       | P 14 =            |    | 0.00                       | 1.00          | 0.00    | 1.00          |
|                                       | P <sub>15</sub> = |    | 0.00                       | 1.00          | 0.00    | 1.00          |
|                                       | P 16 =            |    | 0.00                       | 1.00          | 0.00    | 1.00          |
|                                       | P <sub>17</sub> = |    | 0.00                       | 1.00          | 0.00    | 1.00          |
|                                       | P 18 =            | =  | 0.00                       | 1.00          | 0.00    | 1.00          |
| Average number in the system E(n)     | =                 | =  | 0.6                        | vehicles      | 0.0     | vehicles      |
| Average delay                         | . =               | =  | 23.7                       | seconds       | 0.9     | seconds       |
|                                       |                   |    |                            |               |         |               |
| Average Vehicles per gate             | =                 | =[ | 0.6                        | vehicles      | 0.0     | vehicles      |