

EKURHULENI METROPOLITAN MUNICIPALITY

GEOTECHNICAL,

PAVEMENT MATERIALS INVESTIGATION, REHABILITATION AND

PAVEMENT DESIGN,

FOR

CONSTANTIA STREET, POMONA, EKURHULENI,

GAUTENG PROVINCE

FINAL REPORT

June 2018

Prepared for: Calliper Consulting Engineers 114 Main Street, Bordeaux , Randburg , 2194 Tel: 011 326 1680 On behalf of EKURHULENI METROPOLITAN MUNICIPALITY

Prepared by: Ndlovu Engineering Techniks 25 Mesolite Crescent Ennerdale Ext. 5 Ennerdale 1830 Tel: 011 211 0149

FUNCTION OF REPORT	PREPARED BY:	DATE	SIGNATURE
Geotechnical, Materials Investigation and Pavement Design- Final Report	S Ndlovu (Pr. Eng)	12/06/2018	AUS

Revision Grid

Revision No	Date	Description	Reason for revision
00	12/06/2018	Final report	First submission

EXECUTIVE SUMMARY

The report forms a final geotechnical and materials investigation that has been carried out with Roadlab laboratory who undertook the testing of materials under the supervision of Ndlovu Engineering Techniks on behalf of Calliper Consulting Engineers. The project is in the province of Gauteng, Ekurhuleni Metropolitan Municipality, Constantia Street between Pomona Road and West Street in Pomona. About six intersections are located along the road.

The road carries significant numbers of trucks and it is therefore also an objective to provide an adequate surfaced width for these trucks in terms of safety and to minimise road edge maintenance requirements. The objectives of the upgrade are to implement remedial works through widening, strengthening, pre-treat the road and to prepare improvements to drainage elements.

The report explores founding conditions for possible rehabilitation and widening. According to the trial pit data, the pavement material encountered varies for each segment of the road as defined by the intersections. The existing road for all the segments under investigation consists of asphalt surfacing with an average thickness of 40mm. This is supported by moderate to very dense base and subbase consisting of either asphalt base, slurry bound mecadam, stabilised gravel material and crushed stone base material of moderate to high shear strength.

The proposed upgrade is underlain by sediments of the Karoo Sequence and Witwatersrand Supergroup as well as by andesitic lava of the Ventersdorp Supergroup with granite of the Basement Complex emerging in the south. The road reserve is covered by an average 800mm thick layer of sandy and silty colluvium. Diamictite residuals were encountered that overlain the bedrock, which is a matrix supported gravel, that is, gravel of mixed origin within clayey, silty and sandy matrix. Sandstone and shale underlain the site. In general, the bedrock is overlain by residual and transported soils and present potentially slightly collapsible and highly compressible colluvium.

Perched underground water table was encountered during trial pit excavations. Following heavy or sustained rainfall periods, water levels may rise substantially from the small stream and overlying the underlying rock that may occur on the site.

The existing storm water drainage structures are generally in a poor state and are affecting the performance of the existing pavement.

A detailed pavement analysis was conducted to ascertain the current condition of the road. The investigation included a visual assessment which aided in the identification of distinct sections along the road with similar distress types. From the visual assessment, the road can be said to be in a poor to fairly good condition with surface defects ranging from transverse, block, crocodile and longitudinal cracks to bleeding, pumping and surface deformation.

From the traffic information provided, various pavement design alternatives have been provided at varying loading conditions and contact tyre pressures and the pavement solutions can be summarised as follows:

- Section 1 between Pomona Road and Maple Street can be said to be in a good condition and would require rehabilitation in the form of surfacing along the roadway. The two intersections would require re-working of the base layer and resurfacing.
- Section 2 to 4 between Maple Street and Deodar Street can be said to be in a poor state and would require rehabilitation in the form of reworking the base layer and resurfacing.
 - Section 5 between Deodar Street and West Street have defects manifesting in the form of block cracking which requires crack seal and rejuvenation, however we recommend that this section undergo proper rehabilitation due to ageing base layer (slurry bound mecadam) in the form of reworking the base layer and resurfacing.

From a geotechnical and pavement engineering point of view, the proposed upgrade is feasible with no geotechnical hazards identified. Beside constraints that may be identified by other disciplines, the upgrade is supported from an engineering perspective posit by this report scope, context and domain.

TABLE OF CONTENTS

EXECUTIVE SUMMARY 2			
LIST OF FIGURES			
LIST C	LIST OF TABLES		
LIST C	OF PHOTOS		
1	INTRODUCTION9		
1.1	Scope of Investigation9		
1.2	Scope limits and exclusions9		
1.2.1	Inundation (flooding)9		
1.2.2	Erodible soils 10		
1.2.3	Foundation indicators for superstructures 10		
1.3	Locality 10		
1.4	General Description 11		
1.4.1	Climate 11		
1.4.2	Topography 12		
1.4.3	General geology 12		
2	INVESTIGATION PROCEDURE 13		
2.1	Introduction13		
2.2	Site Walkabout 13		
2.3	Visual Assessment 13		
2.4	Field Work Undertaken 13		
3	CONDITION VISUAL ASSESSMENT 14		
3.1	Introduction14		
3.2	Pavement Assessment 15		
3.2.1	Transverse cracking 15		
3.2.2	Block cracks 16		
3.2.3	Crocodile cracks 17		
3.2.4	Longitudinal cracks 17		

3.2.5	Pumping	18
3.2.6	Surface failure (roadway)	19
3.2.7	Rutting2	20
3.2.8	Bleeding2	21
3.2.9	Patching2	22
3.2.10	Edge break2	22
3.2.11	Edge drops2	23
3.3	Drainage Aspects	24
3.3.1	Drainage inlets2	24
3.3.2	Culverts	25
3.3.3	Road prism drainage	26
4 T	RIAL PITS INFORMATION	28
4.1	Road Reserve2	29
4.2	Pavement Materials and Uniform Sections	33
4.2.1	Uniform Section 1: Pomona Road - Maple Street	34
4.2.2	Uniform Section 2: Maple Street - EP Malan Street	35
4.2.3	Uniform Section 3: EP Malan Street - Elgin Street	36
4.2.4	Uniform Section 4: Elgin Street - Deodar Street	37
4.2.5	Uniform Section 5: Deodar Street - West Street	38
4.3	Groundwater	39
5 G	GEOTECHNICAL, MATERIALS EVALUATION, PAVEMENT DESIGN AND	
RECOM	IMENDATIONS	40
5.1	Road Widenings and Mass Earthworks	40
5.2	Pavement Layer Works Foundation for the Widenings	42
5.3	Upgrade and Construction of Structural Layer Works	42
5.3.1	Pavement design for the structural layers	42
5.3.2	Traffic loading	43
5.3.3	Recommended design traffic	44
5.3.4	Recommended pavement layer works for reconstruction	45

5.3.5	Recommended pavement layer works for rehabilitation	47
5.4	Storm Water Upgrade	48
5.4.1	Founding conditions.	48
5.4.2	Soil loading	48
5.4.3	Trench stability for storm water excavations	49
6	CONCLUSION	50
7	LIMITATIONS	51
8	REFERENCES	52
9	APPENDICES	54
9.1	Appendix A: Test Pits Location	54
9.2	Appendix B: Design Parameters	55
9.3	Appendix C: Visual Assessment	60
9.4	Appendix D: Pavement Design Calculations- Granular Base	66
9.5	Appendix E: Pavement Design Calculations for Bitumen Treated Base (BTB)	84
9.6	Appendix F: Test Pits - Summary of Results	86
9.7	Appendix G: Test Pits Profile	99
9.7.1	Roadway Trial Logs (Test Pit 01 to Test Pit 05)	99
9.7.2	Test Pit Profile Photos for TP6 to TP 16 (Road Reserve)	104

LIST OF FIGURES

Figure 1: Project locality	. 11
Figure 2: Site topography	. 12
Figure 3: Visual Condition Index for constantia street according to draft TMH9	. 15
Figure 4: Position of test pit on the road reserve	. 31

LIST OF TABLES

Table 1: Road Condition in terms of Visual Condition Index (VCI) as described in TMH9	
(1992) Visual Assessment Manual for Flexible Pavements	14
Table 2: Summary of test pit information on the road reserve.	32
Table 3: Test pit information on the roadway	33

Table 4: Description of material encountered on the road reserve	41
Table 5: 20-year traffic loading for single carriage way of Constantia Road	43
Table 6: 20-year traffic loading with dualization of Constantia Road	44
Table 7: Recommended design traffic for the single carriageway scenario	44
Table 8: Proposed pavement options	46
Table 9: Pavement options for the single carriage way for the section along Constantia	
Street (refer to Table 4 for selected options)	46
Table 10: Pavement options for the dual carriage way for the section along Constantia St	treet
with reference to Table 4 for selected options	47

LIST OF PHOTOS

Photo 1: Transverse crack between Deodar Street and West Street	16
Photo 2: Block cracks between Deodar Street and West Street	16
Photo 3: Crocodile cracking between Pomona Road - Maple Street	17
Photo 4: Advanced crocodile cracking between EP Malan Street - Elgin Street	17
Photo 5: Longitudinal cracks between Deodar Street and West Street	18
Photo 6: Pumping on the wheel path between Maple Street - EP Malan Street	18
Photo 7: Surface failure between EP Malan Street and Elgin Street	19
Photo 8: Potholing between Maple Street - EP Malan Street	19
Photo 9: Shoving of surfacing at Maple Street	20
Photo 10: Rutting at the approach to EP Malan Street	20
Photo 11: Rut measurement between Maple Street and EP Malani	21
Photo 12: Slight bleeding on the wheel path	21
Photo 13: Patchwork on the wheel path where rutting and crocodile cracking have adva	anced
between Maple Street - EP Malan Street	22
Photo 14: Edge breaks between Maple Street - EP Malan Street	23
Photo 15: Edge drops between Maple Street - EP Malan Street	23
Photo 16: Edge drop resulting from scouring of the gravel shoulder	24
Photo 17: Blocked kerb inlet between Pomona Road - Maple Street	25
Photo 18: Blocked kerb inlet between Pomona Road - Maple Street	25
Photo 19: blocked culvert pipes at the small stream	26
Photo 20: Road prism between Pomona Road - Maple Street	26
Photo 21: Road prism between Maple Street and EP Malan Street	27
Photo 22: Road prism between EP Malan Street and Elgin Street	27
Photo 23: Road prism between Elgin Street and Deodar Street	28
Photo 24: Road prism between Deodar Street - West Street	28

Photo 25: Typical road reserve material encountered during hand and TLB excavations 2	9
Photo 26: Residual material consisting of diamictite , nodules of a matrix supported gravel 3	0
Photo 27: Cemented Diamictite encountered at a depth of 1500mm	0
Photo 28: Pavement materials: Test Pit 1 between Pomona Road and Maple Street 3	5
Photo 29: Pavement materials: Test Pit 2 between Maple Street and EP Malan Street 3	6
Photo 32: Pavement materials: Test Pit 3 between EP Malan Street and Elgin Street 3	7
Photo 33: Test Pit 4 profile and pavement materials 3	8
Photo 34: Test Pit 05 profile and pavement materials	8
Photo 35: 100mm slurry bound mecadam base 3	9
Photo 34: Underground water 4	0

1 INTRODUCTION

1.1 Scope of Investigation

An upgrade to the Constantia Street between Pomona Road and West Street in Pomona, Ekurhuleni is being proposed. As part of this upgrade the approach and exit to the existing intersections of the road way might be widened, and the roadway strengthened to meet expected traffic conditions.

In collaboration with the proposed upgrades, an investigation evaluating the geological and existing pavement materials and founding conditions has been undertaken forming the subject of this report.

The objectives of this geotechnical and pavement materials investigation may be summarised as follows:

- To characterize the underlying subgrade soils and rock that may be influenced by the proposed upgrade and storm water management.
- To establish the nature and engineering properties of the existing pavement materials.
- \circ $\,$ To evaluate excavation conditions that may be expected.
- \circ To determine the likelihood of subsurface water at the depth of the subgrade.
- To present appropriate usage of insitu materials based on the laboratory results and evaluation.
- To present appropriate pavement and rehabilitation design options that may be adopted during construction

The report forms a final geotechnical and materials investigation that has been carried out with Roadlab laboratory who undertook the testing of materials under the supervision of Ndlovu Engineering Techniks on behalf of Calliper Consulting Engineers.

1.2 Scope limits and exclusions

The geotechnical and materials investigation report is only concerned about founding conditions for the purposes of upgrading existing road and laying of pipes for storm water. The following critical geotechnical factors were not considered and are beyond the scope of this report.

1.2.1 Inundation (flooding)

The implications of the proposed construction on flooding is not considered in this report. Floods are natural events that have to be taken into account where development encroaches on or close to stream channels. Upgrading roads may have significant effects on the flood behaviour of a river system. Factors such as changed hydrology, sediment loads and river diversions can have significant impacts to the extent that areas before development with a low risk of flooding can become high risk areas after development.

1.2.2 Erodible soils

Normally, erosion is exacerbated with road upgrades on erosion prone soils for example by storm water discharge from roads, and the use of erodible soils as fill material around culverts. This investigation did not cover the erodibility of the soils that will be used in the permanent works.

1.2.3 Foundation indicators for superstructures

The investigation did not make detailed studies and exploration to establish the founding condition and design parameters of any superstructure that might be widened such as bridges.

1.3 Locality

The investigation was conducted in the month of May 2018 in Pomona, Ekurhuleni, Gauteng Province along Constantia Street, Figure 1 (26° 5'44.54"S, 28°15'35.99"E). The project starts at an intersection between Pomona Road and ends at West Street along Constantia Street. The streets encountered along Constantia Street are Pomona Road, Maple Street, EP Malani Street, Elgin Street, and Deodar Street.

Figure 1: Project locality

1.4 General Description

This report places attention to geotechnical and materials investigation for the purposes of rehabilitation and pavement designs, roadway and storm water upgrades. Climate, and proposed scope of upgrades and detailed site-specific information are covered in detail elsewhere in relevant project design reports available from Calliper Consulting Engineers.

1.4.1 Climate

The rainfall of the region is known to be typical to the Highveld summer rainfall, which occurs from October to April. The average annual rainfall varies from 650 mm to 750 mm. Frost does occur frequently from mid-May to mid-August, which makes temperatures below freezing common during winter times.

The site is home to mild summers with temperatures seldom above 30°C. During spring and winter, northerly and north-westerly winds occur and during summer north-easterly to north-north-easterly winds occur.

The climate would affect the selection of materials for road construction and the design of buried pipes (storm water) as the performance of road infrastructure is greatly influenced by temperature, moisture regimes, weathering and the water table.

1.4.2 Topography

In general, the topography of the site is significantly influenced by resistance to weathering of the sandstone and shale bedrock that underlain the site. As can be seen from the topography, the site is shaped by a small stream that does not seem perennial and flows North Easterly and is crossed by the road under investigation. The elevation has an average slope varying between 0.5% to 2%, Figure 2, and the site may be considered to exist in environment where chemical weathering may dominate over mechanical weathering.

1.4.3 General geology

According to the 1:250 000 Map obtained from the Council of Geoscience, the site is underlain by several geological formations:

- Sandstone and shale with coal beds of the Vryheid Formation, Karoo Sequence
- Tillite and shale of the Dwyka Formation, Karoo Sequence
- Breccia, andesitic lava, shale, conglomerate and greywacke, Ventersdorp Supergroup
- Quartzite and shale of the West Rand Group, Witwatersrand Supergroup
- Granite and gneiss of the Basement Complex

Sandstone and shale underlain the site. The bedrock is overlain by residual and transported soils and present potentially slightly collapsible and highly compressible colluvium.

2 INVESTIGATION PROCEDURE

2.1 Introduction

A desktop study was conducted in the month of May 2018, to assess the extent of investigation required during fieldwork. This included work conducted by Geoscience that describes the risk associated with geotechnical work for the area under investigation. The desktop study was focused on Dolomitic presences that cause surface movements manifesting as collapse, (sink hole) and slow compaction settlement.

Based on the desktop study, the presence of dolomitic conditions was improbable, and the extent of the investigation was limited to the pavement material properties, mass earthworks, bedrock formation, ground water and slope stability.

2.2 Site Walkabout

Initially a walk over of the site was undertaken in May 2018. The visit was undertaken to provide more detailed information on the surface conditions and characteristics of the project and the approach to the upgrade.

2.3 Visual Assessment

Following a walk over of the site, a detailed visual condition assessment was done according to the requirement of TMH9, and TRH12 in appendix C. The distress on the road was documented together with the most probable cause and mechanism of failure as well as gathering valuable information pertaining to the site:

- Shear strength of the existing base layer and moisture situation
- Determination of the type of surfacing and material re-utilisation
- Visual demarcation of uniform sections according to type and severity of distress and associate with probable causes
- Assessment of lanes and shoulders
- Assessment of subgrade materials according to the adjacent erosion
- Road prism and drainage

2.4 Field Work Undertaken

Fieldwork consisted of Dynamic Cone Penetration to determine uniform sections and position of test pits followed by the excavation by hand and re-instatement of test pits. On existing roads, test pits were excavated to a maximum depth varying between 600mm to 1000mm and excavation up to 2000mm or TLB refusal was the maximum depth on the road reserve. The test pit excavations were then profiled, representative, disturbed soil samples were collected to Roadlab for testing.

3 CONDITION VISUAL ASSESSMENT

3.1 Introduction

A condition visual assessment was conducted in the month of May 2018 to ascertain the level of road distress and advance developments towards the logical steps required as a point of departure to facilitate rehabilitation of designs, Appendix C.

The visual assessment of the road was assessed in terms of TH12 through subjective reflection and interpretation of observed distress and TMH9 uniform section in Appendix C.

Visual Condition Indices (VCI's) were determined based on the criteria in Table 1 below, (TMH 9: 1992) and details are in Appendix C, *Table 1*.

	VCI	
Condition	Range	Condition Description
V Good	85 - 100	Road is well constructed and maintained. It will have a
		residual life of around 15 years with no further maintenance,
		or an indefinite life with proper maintenance
Good	70 - 85	Road is well constructed and maintained. It will have a
		life of around 8 years with no further maintenance, or
		an indefinite life with proper maintenance
Fair	50 - 70	Road shows some signs of deterioration but can be returned
		to a "Good" condition if proper maintenance is done
		immediately
Poor	35 - 50	Road has failed and extensive maintenance is immediately
		necessary to salvage a road in this state, Road will
		deteriorate
		to "Very Poor" quickly if maintenance is delayed
V Poor	0 - 35	This group of roads can no longer be maintained, but will
		require major reconstruction to return them to a "Good" state

Table 1: Road Condition in terms of Visual Condition Index (VCI) as described in TMH9 (1992) Visual Assessment Manual for Flexible Pavements

The road can be said to be in a poor to fairly good condition with surface defects ranging from transverse, block, crocodile and longitudinal cracks to bleeding, pumping and surface deformation, Figure 3. The general visual observations of the entire section from km 0.00 to

km 2.49 indicates that the upper layers require rehabilitation in terms of base repairs and patching or a reworking of the base.

Figure 3: Visual Condition Index for constantia street according to draft TMH9

The narrative of the visual assessment presented in the succeeding section articulates a detailed response to the principal body of evidence that is required to action a rehabilitation design and upgrade of a road.

3.2 Pavement Assessment

3.2.1 Transverse cracking

These cracks occur sporadically along most of the Constantia Street and are early indications of forming block cracks, Photo 1.

Photo 1: Transverse crack between Deodar Street and West Street

3.2.2 Block cracks

Block cracks occur sporadically throughout the entire section of the street but most notably from km 2.00 to km 2.24 (Deodar Street and West Street), Photo 2.

Photo 2: Block cracks between Deodar Street and West Street

3.2.3 Crocodile cracks

Crocodile cracks occur frequently throughout this section of Constantia Street. This is an indication of structural problems, Photo 3 and Photo 4.

Photo 3: Crocodile cracking between Pomona Road - Maple Street

Photo 4: Advanced crocodile cracking between EP Malan Street - Elgin Street

3.2.4 Longitudinal cracks

Longitudinal cracks predominate the section between Deodar Street and West Street, Photo 5.

Photo 5: Longitudinal cracks between Deodar Street and West Street

3.2.5 Pumping

Pumping is present intermittently mostly in the wheel tracks where crocodile and block cracking occurs and this is frequent between Maple Street and EP Malan Street, Photo 6.

Photo 6: Pumping on the wheel path between Maple Street - EP Malan Street

3.2.6 Surface failure (roadway)

Surface failures are predominantly located in the wheel tracks and mostly due to the severity of crocodile cracking combined with rutting allowing water ingress into the base, Photo 7 and Photo 8. At intersections, surface defects manifests as shoving of an overlay due to turning heavy vehicles, Photo 9.

Photo 7: Surface failure between EP Malan Street and Elgin Street

Photo 8: Potholing between Maple Street - EP Malan Street

Photo 9: Shoving of surfacing at Maple Street

3.2.7 Rutting

Rutting is prevalent over most of the road, but notably from Maple Street and just before Elgin Street in the outer wheel track of both westbound and eastbound directions Photo 10. Photo 11.

Photo 10: Rutting at the approach to EP Malan Street

Photo 11: Rut measurement between Maple Street and EP Malani

3.2.8 Bleeding

The bleeding is not severe but will have to be taken into consideration when designing a subsequent resurfacing overlay especially between Pomona Road and Maple Street, Photo 12.

Photo 12: Slight bleeding on the wheel path

3.2.9 Patching

The current condition of the patches varies from fair to very poor, with some patches already failing, Photo 13. Almost the entire Constantia Street has underwent an asphalt overlay in some form on the full roadway.

Photo 13: Patchwork on the wheel path where rutting and crocodile cracking have advanced between Maple Street - EP Malan Street

3.2.10 Edge break

Isolated occurrences of edge breaks are present along the road, most notably from Maple Street to West Street, Photo 14. This is also the case at certain accesses along the street. Edge beams or kerbs will be required during the upgrade to minimise future damage and consideration be made for the access at the informal settlement.

Photo 14: Edge breaks between Maple Street - EP Malan Street

3.2.11 Edge drops

Edge drops were noticed where drainage was not properly done resulting in the scouring of the gravel shoulder during a storm, Photo 15.

Photo 15: Edge drops between Maple Street - EP Malan Street

Photo 16: Edge drop resulting from scouring of the gravel shoulder

3.3 Drainage Aspects

Pavement behaviour is influenced by storm water drainage. Proper drainage is important to ensure a high quality long lived pavement. Moisture accumulation in any pavement structural layer can cause problems. Moisture in the subgrade and aggregate base layer can weaken these materials by increasing pore pressure and reducing the materials' resistance to shear. Additionally, potentially collapsible soils encountered on site expand when moist, causing differential heaving. Moisture in the hot mix asphalt layers can cause stripping.

3.3.1 Drainage inlets

The existing storm water drainage structures are generally in a poor state with blocked kerb inlets and damaged covers, Photo 17 and Photo 18.

Photo 17: Blocked kerb inlet between Pomona Road - Maple Street

Photo 18: Blocked kerb inlet between Pomona Road - Maple Street

3.3.2 Culverts

At the small stream, the pipe culverts were blocked which could result in flooding during flush rainy periods, Photo 19.

Photo 19: blocked culvert pipes at the small stream

3.3.3 Road prism drainage

Road prism drainage along Constantia Street seem problematic especially after EP Malan Street due absence of proper channelling of storm water and to the topography of the area. The road reserve vertical grade varies between 0,5% to 2.0% This result in storm water ponding along the road reserve or scouring the shoulder towards the stream.

Special attention should be given to the drainage in this area and it is proposed that the possibility be investigated to construct proper storm water drainage or gravel side drains on grade and levels separate from the road to try and resolve standing water in road prism and erosion of the shoulder. The road prisms are shown in the photos that follow.

Photo 20: Road prism between Pomona Road - Maple Street

Photo 21: Road prism between Maple Street and EP Malan Street

Photo 22: Road prism between EP Malan Street and Elgin Street

Photo 23: Road prism between Elgin Street and Deodar Street

Photo 24: Road prism between Deodar Street - West Street

4 TRIAL PITS INFORMATION

A total of 15 test pits were done for the entire project with 5 test pits on the roadway and 10 test pits on the road reserve to assess the condition and quality of the existing pavement and subgrade materials. On the roadway, the test pits were generally excavated in the outer wheel path in either the east or westbound direction. Full details of the test pits information and test are in Appendix F and G.

4.1 Road Reserve

The road reserve is covered by an average 800mm thick layer of sandy and silty colluvium. No rock outcrop was observed, Photo 25. Diamictite residuals were encountered that overlain the bedrock, which is a matrix supported gravel, that is, gravel of mixed origin within clayey, silty or sandy matrix, Photo 26. From the TLB excavations, the lower portion of diamictite is cemented and would present intermediate to hard excavation.

Photo 25: Typical road reserve material encountered during hand and TLB excavations

Photo 26: Residual material consisting of diamictite , nodules of a matrix supported gravel

Photo 27: Cemented Diamictite encountered at a depth of 1500mm

The position of test pits done on the road reserve are shown in Figure 4 and Appendix A. The summary of test pit information is in Table 2.

Figure 4: Position of test pit on the road reserve

Test	Position	Description
Pit		
TP06	26° 5'54.58"S	Between Pomona Road and Maple Street. TLB refusal at
	28°15'43.41"E	1700mm. Underground water encountered on the bedrock.
TP07	26° 5'58.49"S	Intersection at Maple Street. No underground water. TLB refusal
	28°15'47.33"E	at 1300mm.
TP08	26° 6'9.27"S	Intersection at EP Malan at the West Bound reserve. TLB refusal
	28°15'54.75"E	at 1200mm. Very moist conditions and no underground water
		encountered.
TP09	26° 6'8.50"S	Intersection at EP Malan at the East Bound reserve. TLB refusal
	28°15'55.26"E	at 1000mm. Moist conditions and no underground water
		encountered.
TP10	26° 6'11.19"S	Intersection at EP Malan at the West Bound reserve. TLB refusal
	28°15'56.48"E	at 1300mm. Perched water encountered. Roots and building
		rumble.
TP11	26° 6'13.41"S	Between EP Malan and Elgin Street. TLB refusal at 900mm.
	28°15'58.97"E	Perched water encountered. Roots and building rumble.
TP12	26° 6'18.35"S	Between EP Malan and Elgin Street. TLB refusal at 900mm. No
	28°16'2.84"E	underground water encountered.
TP13	26° 6'30.49"S	Between Elgin Street and Deodar Street. TLB refusal at 500mm.
	28°16'11.60"E	No underground water encountered. Building rumble
		encountered.
TP 14	26° 6'37.64"S	Between Deodar Street and West Street. TLB refusal at 1600mm.
	28°16'17.25"E	No underground water.
TP 15	26° 6'46.26"S	Between Deodar Street and West Street. Hand refusal at
	28°16'24.29"E	100mm.TLB refusal at 1600mm. No underground water.
TP16	26° 6'45.63"S	Excavation inside private property done by owner of the property
	28°16'25.22"E	along West Street. Excavation depth of 1300mm and not TLB
		refusal. No underground water encountered.

Table 2: Summary of test pit information on the road reserve.

4.2 Pavement Materials and Uniform Sections

Test Pit	Position	Position Description				
TP01	26° 5'48.49"S	Between Pomona Road and Maple Street.				
	28°15'39.09"E					
TP02	26° 6'4.63"S	Between Maple Street and EP Malan Street				
	28°15'51.82"E					
TP03	26° 6'12.52"S	Between EP Malan Street and Elgin Street.				
	28°15'57.89"E					
TP04	26° 6'27.14"S	Between Elgin Street and Deodar Street				
	28°16'9.37"E					
TP05	26° 6'38.24"S	Between Deodar Street and West Street				
	28°16'18.27"E					

A total of 5 tests pits were done along Constantia Street on the roadway, Table 3.

Table 3: Test pit information on the roadway

The pavement structure in the test pits was profiled, photographed and representative samples taken for laboratory testing. Laboratory tests included moisture content, particle size distribution, Atterberg Limits and California Bearing Ratio (CBR). The laboratory test results would be provided in the detailed final report. The material encountered together with the surfacing made is varying along Constantia Street as defined by the crossing streets resulting in the following uniform sections.

The test pit geotechnical information can be summarised in Table 4:

Test Pit	Layer		yer	Layer Thickness	Material Classification						Moisture	
No.	mm			mm	COLTO	TRH14	PI	CBR @97%	MDD	OMC	Field Moisture	
1	0	-	40	40	Asphalt Surfacing							
	40	-	110	70	Asphalt Surfacing							
	110	-	360	250	G5	G5	SP	111	2392	6,1	4,1	
	360	-	610	250	G7	G7	NP	39	2191	7,2	8,8	
	660	-	800	140	G6	G6	SP	57	2286	8,3	7,3	
2	0	-	40	40	Asphalt surfacing							
	40	-	190	150	G6	G6	SP	49	2221	8,1	5,4	
	190	-	320	130	G8	G8	15	14	2011	13,7	14,9	
	320	-	550	230	G8	G8	3	25	2103	11,2	11,3	
3	0	-	40	40	Asphalt surfacing							
	40	-	100	60	Asphalt surfacing							
	100	-	220	120	G8	G8	15	14	2011	13,7	14,9	
	220	-	520	300	G8	G8	3	25	2103	11,2	11,3	
4	0	-	50	50	Asphalt overlay							
	50	-	100	50	Asphalt surfacing							
	100	-	250	150	G7	G7	NP	39	2191	7,2	8,8	
	250	-	500	250	G8	G8	15	14	2011	13,7	14,9	
	500	-	650	150	<g9< td=""><td><g10< td=""><td>25</td><td>10</td><td>1621</td><td>23,5</td><td></td></g10<></td></g9<>	<g10< td=""><td>25</td><td>10</td><td>1621</td><td>23,5</td><td></td></g10<>	25	10	1621	23,5		
5	0	-	60	60	Asphalt surfacing							
	60	-	160	100	Slurry bound mecadam							
	160	-	310	150	G7	G7	NP	39	2191	7,2	8,8	
	310	-	460	150	<g9< td=""><td>G10</td><td>15</td><td>9</td><td>2062</td><td>10</td><td>15,9</td></g9<>	G10	15	9	2062	10	15,9	
	460	-	760	300	<g9< td=""><td><g10< td=""><td>25</td><td>10</td><td>1621</td><td>23,5</td><td></td></g10<></td></g9<>	<g10< td=""><td>25</td><td>10</td><td>1621</td><td>23,5</td><td></td></g10<>	25	10	1621	23,5		

Table 4: Summary of laboratory results for roadway test pits

4.2.1 Uniform Section 1: Pomona Road - Maple Street

The section consists of 30 to 40mm surfacing and 70mm BTB as upper layer. The BTB is supported by a 200mm to 250mm crusher run subbase, grey olive silty sandy gravel with the following properties:

- PI: SP
- CBR @ 97%: 111
- GM: 2.48
- Classification (COLTO): G5
- MDD: 2392 kg/m³
- DN layer: 2.18mm/blow

An upper selected layer of 200mm to 250mm G7 yellow orange brown silty sandy gravel, non-plastic supports the subbase, and has a CBR at 97% compaction of 39 and a GM 2.38 and an MDD of 2191 kg/m³. The layer is supported by 50mm crusher run of 26mm stone size possible used to provide a stable founding horizon during construction. Subgrade

materials were obtained at a depth of 700mm below surfacing and it's a G8 natural soil with a P.I of 7 and a CBR at 97% of 19 and a GM of 2.53. The Maximum Dry Density is 2126kg/m³. The materials recovered between Pomona Road and Maple Street are shown in Photo 28.

The section between Pomona Road and Maple Street can be said to be in a good condition and would require rehabilitation in the form of base repair, milling and re-surfacing along the roadway. The two intersections would require re-working of the base layer and resurfacing.

Photo 28: Pavement materials: Test Pit 1 between Pomona Road and Maple Street

4.2.2 Uniform Section 2: Maple Street - EP Malan Street

The section of the road consists mainly of 30mm asphalt overlay over a 13.2mm single seal with slurry making a 40mm surfacing. The base material consists of 150mm light Brown Sandy Gravel with the following properties:

- P.I : SP
- CBR at 97%: 49
- GM: 2.51
- Classification (COLTO): G6
- MDD: 2221kg/m3
- DN layer: 2.36mm/blow

The subbase is dark drown clayey sandy gravel with a P.I of 15 and CBR at 97% of 14 and a grading modulus 2.13. In terms of the COLTO classification, the material is a G8 natural soil with a maximum density of 2011 kg/m³. The subgrade material is supported by residual material encountered at a depth of 650mm beneath the surfacing and consist of dark red orange clayey sandy gravel (diamictite) .

The materials recovered between Maple Street and EP Malan Street are shown in Photo 29. This section would require rehabilitation in the form of reworking the base layer and resurfacing.

Photo 29: Pavement materials: Test Pit 2 between Maple Street and EP Malan Street

4.2.3 Uniform Section 3: EP Malan Street - Elgin Street

The surfacing consists of an old asphalt and failed asphalt overlay. The combined thicknesses of the two layers is 100mm. Supporting the surfacing is a 120mm base, dark drown clayey sandy gravel with a P.I of 15 and CBR at 97% of 14 and a grading modulus 2.13. In terms of the COLTO classification, the material is a G8 natural soil with a maximum density of 2011 kg/m³.

Residual subgrade material consisting of dark red orange clayey sandy gravel (diamictite) were encountered at 520mm below the top of surfacing. The subgrade material is similar to

the material encountered in Test Pit 2 subgrade material. The materials recovered between EP Malan Street and Elgin Street are shown in Photo 30.

This section would require rehabilitation in the form of reworking the base layer and resurfacing.

Photo 30: Pavement materials: Test Pit 3 between EP Malan Street and Elgin Street

4.2.4 Uniform Section 4: Elgin Street - Deodar Street

Like section 3 above, the combined thickness of surfacing is 100mm indicating that an overlay was done to the existing surfacing as a repair method. The base later consists material that is non-plastic with a CBR at 97% of 39 and a grading modulus 2.39. In terms of the COLTO classification, the material is a G7 natural soil with a maximum density of 2191kg/m³.

Subgrade material is reached at a depth of 650mm from top of surfacing. The profile of test pit 4 and material recovered is shown in Photo 31.

This section would require rehabilitation in the form of reworking the base layer and resurfacing.

Photo 31: Test Pit 4 profile and pavement materials

4.2.5 Uniform Section 5: Deodar Street - West Street

The section from Deodar Street to West Street consists of 30mm medium asphalt surfacing and 100mm slurry bound mecadam, Photo 33. Subgrade material is reached at a depth of 650mm from top of surfacing. Material recovered in Test pit 5 is shown in Photo 32.

The defects in this section manifest in the form of block cracking which requires crack seal and rejuvination with fogspray, howver, this section would require proper rehabilitation in the form of reworking the base layer and surfacing.

Photo 32: Test Pit 05 profile and pavement materials

Photo 33: 100mm slurry bound mecadam base

4.3 Groundwater

The material obtained on the road shoulder was generally wet from the topsoil possibly due to recent rains during excavations. At some point in the study, there was light rainfall that took place during excavation and sampling of materials were to be abandoned and test pits reprofiled after the rainfall subsided.

Perched underground water table was encountered at Test Pit 06, 10 and 11 at a depth of 1700mm, 1300mm and 900mm respectively, for example Photo 32. Underground water is expected to correlate directly with the water level in the small stream and correspond congruently with the surrounding topography.

Groundwater and moisture conditions may change from each season and time and these perched water tables may readily increase (or decrease) over short periods of time. Following heavy or sustained rainfall periods, water levels may rise substantially from the small stream and overlying the underlying rock that may occur on the site.

Photo 34: Underground water

5 GEOTECHNICAL, MATERIALS EVALUATION, PAVEMENT DESIGN AND RECOMMENDATIONS

5.1 Road Widenings and Mass Earthworks

The road reserve is covered by an average 500mm to 1700 thick layer of sandy and silty colluvium with properties varying between a G8 to less than G10 and this material will not be suitable as road construction materials for the upper layers but can be used for fills and storm water bedding and blanket material . Generally, the transported and residual soils were observed and may also be unconsolidated and owing to this potential loose state and their limited extent should also be disregarded as a direct founding horizon without treatment or compaction.

Any fill encountered on the reserve, may be expected to impact negatively on founding conditions as it may be expected to be variable, unconsolidated and loose in nature and should therefore be disregarded as a founding medium where encountered. The presence of building rumble on the shoulder adds to the variability of the founding materials which requires a competent person for selection and stockpiling for re-utilisation of material in the pavement layers for road widening. Table 5 contains a descriptive summary of the materials encountered.

Test Pit No.	Profile	Material description
TP06	0-900	Yellow orange brown, silty sandy gravel
TP06	900-1700	Dark red speckled black, silty clayey gravel (diamictite)
TP7	0-600	Yellow orange brown silty sandy gravel
TP7	600-1300	Dark red orange speckled white, clayey sandy gravel with weathered sandstone
TP8	0-500	Yellow orange brown silty sandy gravel
TP8	500-1300	Dark red orange speckled white, clayey sandy gravel with weathered sandstone.
TP9	0-1000	Dark red speckled black, silty clayey gravel (diamictite)
TP10	0-1300	Slightly moist, reddish brown, loose, intact, silty sand with roots. Topsoil.
TP11	0-300	Slightly moist, reddish brown, loose, intact, silty sand with roots. Topsoil.
TP11	300-900	Moist, brownish blue, stiff to very stiff, intact, sandy clay. Reworked residual.
TP12	0-300	Slightly moist, dark brown, loose, intact, silty sand with minor gravels and roots. Topsoil.
TP12	300-900	Slightly moist, dark brown, stiff to very stiff, intact, sandy clay. Reworked residual.
TP13	0-500	Dark red orange speckled white, clayey sandy gravel with weathered sandstone.
TP14	0-1600	Yellow orange brown, silty sandy gravel
TP15	0-1000	Slightly moist, reddish brown, loose, intact, silty sand. Topsoil.
TP16	0-300	Yellow orange brown silty sandy gravel
TP16	300-1300	Dark red speckled black, silty clayey gravel (diamictite)

Table 5: Description of material encountered on the road reserve

Conventional earthmoving equipment may be utilized for excavating in the transported and upper residual soils. Intermediate to hard excavation conditions will be encountered on the diamictite residual layer. Hard excavation would present itself in the sandstone rock and pneumatic tools will be required in those instances as well as the possibility of limited blasting.

Depending on construction levels, all loose and unconsolidated soil must be removed, and appropriate founding material utilized. The possibility of encountering boulders exist especially from EP Malan Street to Deodar Street and difficult excavating conditions will be presented where encountered.

When construction starts, site preparation should include the stripping and removal of existing vegetation, organic topsoil trees, existing foundations, abandoned underground utilities, debris and other deleterious materials from the areas to be excavated.

In general, the near surface soils encountered on site have a significant amount of silt and slightly collapsible in nature are therefore anticipated to be moisture sensitive. These conditions could hamper equipment manoeuvrability and efforts to compact site soils to the recommended densities during rainy season. In these instances, dump rock would have to be utilised to achieve insitu compaction of layer works as a pioneer layer.

5.2 Pavement Layer Works Foundation for the Widenings

The proposed foundation of pavement layer works for road widening are as follows:

- Selected layers and fill consisting of at least G7 gravel compacted to 93% MOD AASHTO
- Roadbed compacted to 90% MOD AASHTO

It is expected that the widening would be constructed with similar structural layers (surfacing, base and subbase) like the upgrade layer works of the existing roadway.

5.3 Upgrade and Construction of Structural Layer Works

The test pits indicate that the existing road for all the streets under investigation consists of asphalt surfacing with an average thickness of 40mm. This is supported by moderate to very dense base and subbase consisting of either asphalt base, slurry bound mecadam, stabilised gravel material and crushed stone base material of moderate to high shear strength.

Appropriate plant would be required in the rehabilitation of these roads. Any upgrade should consider the re-use of asphalt surfacing, base and subbase materials of which either chemical and mechanical stabilization should be done to modify insitu material for re-use in pavement layers.

5.3.1 Pavement design for the structural layers

The first objective of the pavement and rehabilitation design would be to provide a pavement structure that can sustain the structural and functional requirements for a period required by the Client. In this report, a period of 20 years is used for the selection of pavement materials and pavement layer works for capacity analysis. In terms of functional requirements, it is essential that a bituminous surfaced road be provided.

The second objective is to utilise local material as far as possible. This would require mechanical blending of existing pavement layers and surfacing, selection and stockpiling of suitable insitu material for re-use.

The pavement design for the structural layers utilised the South African Mechanistic Design Method (SAMDM) which uses linear elastic theory to determine theoretical stresses and strains at different positions in the pavement layers.

The Mechanistic design method starts with the load and material characterization. The standard design load for South Africa is a 40 kN dual wheel load at 350 mm spacing between centres and a uniform contact pressure of 520 kPa to 900kPa due to the legal axle load of 80 kN allowed on public roads. The material characterization includes layer thickness and elastic material properties for each layer in the pavement structure under consideration. The structural analysis involves a linear elastic, static analysis of the multi-layer system, resulting in the pavement response to the loading condition expressed in terms of stresses and strains at critical positions in the pavement structure determined by the material type used in each layer of the pavement structure.

5.3.2 Traffic loading

The 20-year traffic loading in terms if million E80s is shown in Table 6 and Table 7 for single carriageway and dual carriageway respectively as obtained from the Traffic loading analysis provided by Calliper Consulting Engineers.

Section	Design Horizon (Years)	20				
No.	Million E80s	Low	Medium	High		
	Growth Rate per Annum	1.51%	3.02%	5.56%		
1	Pomona Road - Maple Street	27.48	32.46	43.35		
2	Maple Street - EP Malan Street	21.26	25.12	33.54		
3	EP Malan Street - Elgin Street	19.85	23.45	31.31		
4	Elgin Street - Deodar Street	18.55	21.92	29.27		
5	Deodar Street - West Street	8.99	10.62	14.18		

Table 6: 20-year traffic loading for single carriage way of Constantia Road

	Design Horizon (Years)		20	
Section	Million E80s	Low	Medium	High
NO.	Growth Rate	1.51%	3.02%	5.56%
1	Pomona Road - Maple Street	19.24	22.72	30.34
2	Maple Street - EP Malan Street	14.88	17.58	23.48
3	EP Malan Street - Elgin Street	13.90	16.41	21.92
4	Elgin Street - Deodar Street	12.99	15.34	20.49
5	Deodar Street - West Street	6.29	7.43	9.92

Table 7: 20-year traffic loading with dualization of Constantia Road

5.3.3 Recommended design traffic

The recommended design traffic for the medium growth rate for a 20 year design scenario is presented in the tables that follow. The presentation indicates a situation where the upgrades results in single carriageway or a dual carriageway.

Quality	Design Horizon (Years)		Design		
Section	Million E80s	Low	Medium	High	Traffic
NO.	Growth Rate per Annum	1.51%	3.02%	5.56%	(Million E80s)
1	Pomona Road - Maple Street	27.48	32.46	43.35	30
2	Maple Street - EP Malan Street	21.26	25.12	33.54	25
3	EP Malan Street - Elgin Street	19.85	23.45	31.31	25
4	Elgin Street - Deodar Street	18.55	21.92	29.27	20
5	Deodar Street - West Street	8.99	10.62	14.18	10

Table 8: Recommended design traffic for the single carriageway scenario

Section	Design Horizon (Years)		Design Traffic		
No.	Million E80s	Low	Medium	High	(Million
	Growth Rate	1.51%	3.02%	5.56%	E80s)
1	Pomona Road - Maple Street	19.24	22.72	30.34	25
2	Maple Street - EP Malan Street	14.88	17.58	23.48	20
3	EP Malan Street - Elgin Street	13.90	16.41	21.92	20
4	Elgin Street - Deodar Street	12.99	15.34	20.49	15
5	Deodar Street - West Street	6.29	7.43	9.92	10

5.3.4 Recommended pavement layer works for reconstruction

Pavement options are presented in Table 9. The options were derived from a design philosophy that aims at utilising insitu materials as far as possible in the reconstruction of the stabilised subbase layers. The insitu material to be utilised for stabilised subbase shall consists of a mechanical blended asphalt surfacing millings and existing base and subbase depending on the final finished road levels.

Table 10 and Table 11 presents two options for pavement layer works for each section of Constantia Street. Table 10 indicates two options in a situation where the road remains as a single carriageway while Table 11 presents proposed options in case of a dual carriageway.

Option	Surfacing (mm)	Base (mm)	Subbase (mm)
	40	150	400
1	AC A-E2	G1	C3
	40	100	400
2	AC A-E2	BTB A-P1	C3
	40	150	350
3	AC A-E2	G1	C3
	40	90	350
4	AC A-E2	BTB A-P1	C3
	40	150	300
5	AC A-E2	G1	C3
	40	90	300
6	AC A-E2	BTB A-P1	C3
	40	150	200
7	AC 50/70	G1	C3
	40	80	200
8	AC 50/70	BTB A-P1	C3

Table 9: Proposed pavement options

	Section	Design Traffic (million E80s)	Selected Pa Options See	vement Table 9
1	Pomona Road - Maple Street (EB)	25	1	2
2	Maple Street - EP Malan Street (EB)	20	3	4
3	EP Malan Street - Elgin Street (EB)	20	3	4
4	Elgin Street - Deodar Street (EB)	15	5	6
5	Deodar Street - West Street (EB)	10	7	8

Table 10: Pavement options for the single carriage way for the section along Constantia Street (refer to Table 9 for selected options)

	Section No.	Design Traffic (million E80s)	Selected Pav See ⁻	ement Options Table 9
1	Pomona Road - Maple Street (EB)	25	3	4
2	Maple Street - EP Malan Street (EB)	20	5	6
3	EP Malan Street - Elgin Street (EB)	20	5	6
4	Elgin Street - Deodar Street (EB)	15	7	8
5	Deodar Street - West Street (EB)	10	7	8

Table 11: Pavement options for the dual carriage way for the section along Constantia Street with reference to Table 9 for selected options

5.3.5 Recommended pavement layer works for rehabilitation

The reconstruction of pavement described in the preceding section may be considered expensive and an alternative option would be a rehabilitation of the existing structural layers. Rehabilitation design are normally informed by stiffness measurements in the form of Falling Weight Deflectometer (FWDs) to establish the remaining life of the pavement and provide measures to meet futuristic traffic loading spectrum. This can be done at a detailed design stage of the project.

Based on subsurface materials observation and condition visual assessment, the following are the proposed rehabilitation measures:

- Section 1 between Pomona Road and Maple Street can be said to be in a good condition and would require rehabilitation in the form of surfacing along the roadway. The two intersections would require re-working of the base layer and resurfacing.
- Section 2 to 4 between Maple Street and Deodar Street can be said to be in a poor state and would require rehabilitation in the form of reworking the base layer and resurfacing.
- Section 5 between Deodar Street and West Street have defects manifesting in the form of block cracking which requires crack seal and rejuvenation, however we recommend that this section undergo proper rehabilitation due to ageing base layer (slurry bound mecadam) in the form of reworking the base layer and resurfacing.

5.4 Storm Water Upgrade

5.4.1 Founding conditions.

The topsoil and upper residual have been described in Section 5.1. Excavating for storm water pipes might encounter sandstone and shale bedrock rock beneath the cemented diamictite and is expected from 2 000mm to 3 000mm below original ground surface. This material has weathered to a degree insitu into a highly fractured rock but remains as a medium hard rock presenting a good founding material, especially for any structural work that might be done.

Perched waters occur, and will dominate if construction is done during rainy season requiring excavations to be dewatered. Allowance be made for dump rock fill as a pioneer layer. Obviously, any excavations within the stream itself will be problematic should the river be flowing.

Excavations were done at the small stream and the existing culverts are founded on mass concrete. Detailed geotechnical drilling will have to be undertaken should any superstructure be designed at stream.

Special precautions such as shoring and battering back excavations will be required to keep the working areas dry whilst construction is in progress.

5.4.2 Soil loading

The soil in which drainage structures such as pipes are installed has its own stiffness or resistance to vertical deflection under a surface load. The designer should assume that the soil surrounding the pipe has a density and therefore stiffness at least as great as the undisturbed adjacent soil. The most important factors for establishing earth loads on buried conduits are:

- the installation method
- fill height over conduit
- backfill density
- trench or external conduit width

In the determination of soil loading, the geostatic load has a value between the trench and embankment load. It is calculated from the equation below, which is the basis of earth loading equations.

$$W_E = \gamma H B$$

Where:

W_E - load of fill material in kN per meter.

 γ – maximum density (=MDD) unit load of fill material in kN/m³, provided in Appendix F.

B - trench width on top of conduit, or the outside diameter of pipe in m (trench or embankment condition respectively)

H - is fill height over pipe in m

When the fill height over a pipe exceeds 10 times its outside diameter full arching will take place and any further increases in fill will not increase the load. This maximum load can be calculated from:

 $W_E = 2.63\gamma B$ for sandy conditions

 $W_{\text{E}}~=3.84\gamma B~$ in clayey conditions

Design parameters such as unit weights have been provided in Appendix F.

Various pipes are available in the market to be used in storm water. These include flexible pipe and rigid pipes. Flexible pipes are ordinarily less stiff (more flexible) than the soil in which it is embedded. Thus, the tendency is for the pipe to be deflected vertically (i.e. top and bottom flattened), more than the adjacent soil. This, in turn, tends to cause an increase in horizontal diameter of the pipe, which can only occur through compression of the soil beside the pipe. Good compaction beside the pipe during installation will minimize the effect.

Flexible pipe, while easily deformed by bending, is quite rigid with respect to retaining the length of its circumference. Given good side support, it is capable of sustaining great vertical loads. Rigid pipes are ordinarily stiffer than the soil in which it is embedded. The tendency is for the pipe to be deflected vertically less than the adjacent soil. This, in severe cases, leads to a hump over the pipe or low places on either side of it, and also results in the pipe carrying more than its proper share of the load from above. A good compaction beside the pipe during installation will minimize the effect.

Rigid pipe, while capable of carrying larger loads without side support, it is limited by its inherent strength. The addition of side support increases its vertical load-carrying capacity. The need for side support, while more obvious and extremely important for flexible pipe, can be quite important for rigid pipe.

5.4.3 Trench stability for storm water excavations

Trenches not exceeding 1300mm depth can remain open for periods of up to 2 days without significant collapse provided no significant rainfall and associated rise in groundwater

seepage occurs during this period. If saturation of the trench occurs, sidewalls of trenches deeper than 1500mm should either be battered to a safe angle of 1V:2H (cohesionless) or supported laterally. In this respect it is recommended that the length of trenches likely to be left open for any sustained period be limited to prevent deterioration in the trench stability.

For excavation greater than 1500mm, all surface run-off or overland flows should be diverted by earth berms or other methods to prevent water entering the excavations. All runoff water and /or ground water entered within the excavation should be collected and disposed outside the construction limits.

Construction equipment, construction material, excavated soil, and vehicular traffic should not be allowed within 1/3 the slope height from the top of the excavation. Where the stability of adjoining buildings, walls, pavements, or other improvements is endangered by excavations operations, support systems, such as shoring, bracing, or underpinning may be required to provide structural stability and to protect personnel working within the excavation.

6 CONCLUSION

The proposed upgrade is underlain by sediments of the Karoo Sequence and Witwatersrand Supergroup as well as by andesitic lava of the Ventersdorp Supergroup with granite of the Basement Complex emerging in the south. From the geotechnical investigation, sandstone and probably shale rock predominately underlain the site and the proposed establishment is therefore supported from a geotechnical and perspective.

Owing to their consolidated state, residual soils should be classified as intermediate excavation. Excavations deeper than 2000mm may be classified as hard requiring pneumatic tools.

Various pavement options have been presented for each section of the road. These would be confirmed in detailed design of the project. Due to heavy trucks utilising the route, stiffness measurements shall be undertaken to produce an informed pavement design. For the road to perform optimally, drainage would require to be addressed and upgraded.

From a geotechnical and pavement engineering point of view, the proposed upgrade is feasible with no geotechnical hazards identified. Beside constraints that may be identified by other disciplines, the upgrade is supported from an engineering perspective posit by this report scope, context and domain.

7 LIMITATIONS

The recommendations contained in this report are based on our views, field observations, sub surface explorations, and our present knowledge of the proposed construction and laboratory results. It is possible that ground conditions could vary between or beyond the points explored. If soil conditions are encountered during construction that differ from those described herein, we should be notified immediately in order that a review may be made, and any supplementary recommendations be provided. If the scope of the proposed construction changes from that described in this report, our recommendation should be reviewed.

We have prepared this report in substantial accordance with the generally accepted geotechnical and pavement engineering practise as it exists in the site at the time of our study. The recommendations are based on the assumptions that the Design Engineer will apply his mind and incorporate adequate supervision during construction phase to evaluate compliance with our recommendations.

8 **REFERENCES**

Asphalt Academy, 2007. The use of Modified Bituminous Binders in Road Construction. Technical Guidline Volume 1 (TG1), Pretoria: Asphalt Academy c/o CSIR Built Environment.

Asphalt Academy, 2009. Bitumen Stabilised Materials - A Guideline for the Design and Construction of Bitumen Emulsion and Foamed Bitumen Stabilised Materials: Technical Guidline Volume 2 (TG2), Pretoria: Asphalt Academy c\o CSIR Built Environment.

Committe of Land and Transport Officials (COLTO), South Africa, 1996. Structural Design of Flexible Pavements For Interuban and Rural Roads. Draft Technical Recommendations for Highways Volume 4 (Draft TRH4). Pretoria: Department of Transport for the Committe of Land and Transport Officials (COLTO).

Committe Of Land Transport Officials (COLTO), 1997. Flexible Pavement Rehabilitation and Design. Draft Technical Recommendation for Highways Volume 12 (Draft TRH12), Pretoria: Department of Transport for Committe Of Land and Transport Officials (COLTO).

Committe of Road Authorities, Republic of South Africa, 1986. Standard Methods of Testing Road Construction Materials. Technical Methods for Highways Volume 1, Pretoria: Department of Transport.

Committe of Road Authorities, 1986. Draft Technical Recommendation Volume 13 (Draft TRH13) for Cementitious Stabilisers in Road Construction, Pretoria: Department of Transport for the Committe of Road Authorities.

Committe of State Road Authorities , South Africa, 1985. Guidline for Road Construction Materials , Technical Recommendation for Highways Volume 14 (TRH14), Pretoria: Department of Transport.

Committe of State Road Authorities, 1991. Traffic Loading for Pavement and Rehabilitation Design. Draft Technical Recommendation Volume 16 (Draft TRH16), Pretoria: Department of Transport for Committe of State Road Authorities, Republic of South Africa.

Committe of State Roads Authorities, South Africa (CSRA), 1992. Pavement Management Systems - Standard Visual Assessment Manual for Flexible Pavements. Technical Methods for Highways Volume 9 (TMH 9), Pretoria: Department of Transport.

Committe of State Roads Authority, 1994. The Use of Bitumen Emulsion in the Construction and Maintenance of Roads (Draft TRH7). Pretoria: Committe of State Roads Authority South Africa.

Committe of Transport Officials, Republic of South Africa, 1984. Special methods for testing methods. Draft Technical Methods for Highways Volume 6 (Draft TM6), Pretoria: Department of Transport.

Committee of Land Transport Officials (COLTO) Republic of South Africa, 1998. Standard Specifications for Road and Bridge Works for State Authorities 1998 (Green Book), Johannesburg: SAICE.

Jordaan, G. J., 2006. Practical Approach to Pavement Rehabilitation Investigations and Design, Pretoria: s.n.

Jennings, J.E., Brink, A.B.A. and Williams, A.A.B. (1973). Revised Guide to Soil Profiling for Civil Engineering Purposes in Southern Africa. Transactions of the South African Institution of Civil Engineers, Vol. 15.

Marston, M. G., and A. O. Anderson (1913), "The Theory of Loads on Pipes in Ditches and Tests of Cement and Clay Drain Tile and Sewer Pipe," Iowa State University Engineering Experiment Station, Bulletin 31, Ames, Iowa

SANS 1200 LB (1983). Standardised Specifications for Civil Engineering Construction: Bedding (Pipes).

SANS 1200 LB (1988). Standardised Specifications for Civil Engineering

SANS 10160-5 (2009): Basis of Structural Design and Actions for Buildings and Industrial Structures — Part 5: Basis of Geotechnical Design and Actions

9 APPENDICES

9.1 Appendix A: Test Pits Location

54 Geotechnical, Pavement Materials Investigation, Rehabilitation and Pavement Design for Constantia Street, Pomona, Ekurhuleni

9.2 Appendix B: Design Parameters

1.1 Action

a) set of forces (loads) applied to the structure (direct actions);

b) set of imposed deformations or accelerations caused for example, by temperature changes, moisture variation, uneven settlement or earthquakes (indirect actions).

1.2 Active earth pressure

Minimum value of earth pressure exerted on a structure where the movement of the structure away from the retained earth is sufficient to fully mobilise the shear strength of the retained earth

1.3 Bulk weight density

Density of ground including the weight of moisture in the voids and pores

1.4 Design value

Value obtained by multiplying or dividing the representative value of an action or material property by a partial factor

1.5 **Earth**

Ground all earth materials (soil, gravel, rock, etc.) including fill or natural ground

1.6 Earth pressure

Lateral pressure exerted by earth and ground water on the structure

1.7 Earth pressure at rest

Pressure exerted by earth on an un-yielding structure where there is no movement of the structure relative to the ground

1.8 Effect of action

Effect of actions (or action effect) on structural members, (for example internal force, moment, stress, strain) or on the whole structure (for example deflection, rotation)

1.9 **Fill**

Imported soil or rock material placed on site with or without compaction

1.10 Geotechnical action

Action exerted on the structure by the ground or ground water

1.11 Irreversible serviceability limit states

Serviceability limit states where some consequences of actions exceeding the specified service requirements will remain when the actions are removed

1.12 Load case

Compatible arrangement of loads, sets of deformations and imperfections considered simultaneously with fixed variable actions and permanent actions for a particular verification

1.13 Limit states

States beyond which the structure no longer fulfils the relevant design criteria

1.14 Natural ground

In situ soil or rock in its natural undisturbed state

1.15 Nominal value

Value fixed on non-statistical bases, for instance on acquired experience or on physical conditions

1.16 Passive earth pressure

Maximum value of earth pressure exerted on a structure where the movement of the structure towards the retained earth is sufficient to fully mobilise the strength of the retained earth

1.17 Ultimate limit states

States associated with collapse or with other similar forms of structural failure

1.18 Unfavourable actions

Actions that have a destabilizing effect

Recommended Angle of Friction Range

Description		rictior	angle [°]
Description	min	max	Specific value
Well graded gravel, sandy gravel, with little or no fines	33	40	
Poorly graded gravel, sandy gravel, with little or no fines	32	44	
Sandy gravels - Loose			35
Sandy gravels - Dense			50
Silty gravels, silty sandy gravels	30	40	
Clayey gravels, clayey sandy gravels	28	35	
Well graded sands, gravelly sands, with little or no fines	33	43	
Well-graded clean sand, gravelly sands - Compacted	-	-	38
Well-graded sand, angular grains - Loose			33
Well-graded sand, angular grains - Dense			45
Poorly graded sands, gravelly sands, with little or no fines	30	39	
Poorly-graded clean sand - Compacted	-	-	37
Uniform sand, round grains - Loose			27
Uniform sand, round grains - Dense			34
Sand	37	38	
Loose sand	29	30	
Medium sand	30	36	
Dense sand	36	41	
Silty sands	32	35	
Silty clays, sand-silt mix - Compacted	-	-	34
Silty sand - Loose	27	33	
Silty sand - Dense	30	34	
Clayey sands	30	40	
Calyey sands, sandy-clay mix - compacted			31
Loamy sand, sandy clay Loam	31	34	

Inorganic silts, silty or clayey fine sands, with slight plasticity	27	41	
Inorganic silt - Loose	27	30	
Inorganic silt - Dense	30	35	
Inorganic clays, silty clays, sandy clays of low plasticity	27	35	
Clays of low plasticity - compacted			28
Organic silts and organic silty clays of low plasticity	22	32	
Inorganic silts of high plasticity	23	33	
Clayey silts - compacted			25
Silts and clayey silts - compacted			32
Inorganic clays of high plasticity	17	31	
Clays of high plasticity - compacted			19
Organic clays of high plasticity	17	35	
Loam	28	32	
Silt Loam	25	32	
Clay Loam, Silty Clay Loam	18	32	
Silty clay	18	32	
Clay	18	28	
Peat and other highly organic soils	0	10	

Slope Stability Analysis for Excavations

ANALYSIS

Calculate factor of safety (FS) for multiple slip planes by using various horizontal heights of sliding mass (H) and angles of potential failure surface (α) until the lowest factor of safety is determined. Acceptable factor of safety for static slope conditions is usually equal to or greater than 1.5.

Calculate factor of safety (FS) for multiple slip surfaces by using various circle locations and radii until the lowest factor of safety is determined. The potential sliding mass is divided into slices, usually 10 slices. The above equations account for the summation (Σ) of all individual slice weights and slice angles (α). Acceptable factor of safety for static slope conditions is usually equal to or greater than 1.5.

9.3 Appendix C: Visual Assessment

CONSTANTIA STREET - VCI DATA

CONSTANTIA STREET CUM VCI

ANALYSIS OF VCI

From	to	VCI	Ave VCI	CUM VCI	Average	Stdev	CoV
0,00	0,10	70	70	3			
0,10	0,20	80	75	16			
0,20	0,30	84	82	33			
0,30	0,40	74	79	39			
0,40	0,50	47	61	19			
0,50	0,60	59	53	11			
0,60	0,70	49	54	-8			
0,70	0,80	63	56	-12			
0,80	0,90	78	70	-1			
0,90	1,00	49	63	-20			
1,00	1,10	41	45	-46			
1,10	1,20	45	43	-68			
1,20	1,30	45	45	-91			
1,30	1,40	58	51	-100			
1,40	1,50	67	63	-101			
1,50	1,60	100	83	-68			
1,60	1,70	100	100	-35			
1,70	1,80	74	87	-29			
1,80	1,90	76	75	-20			
1,90	2,00	72	74	-16			
2,00	2,10	67	69	-16			
2,10	2,20	72	70	-11			
2,20	2,30	79	76	0			
	Sum	1550					
	Average	67					

Constantia Street

STRUCTURAL ASSESSMENT SECTION SURFACE ASSESSMENT CRACKS Pumping Rutting Undulation Surf Crack Bleed/Flush Trans START END Aggr Loss Binder Cond Surf Fail Block Croc Long D E D D D E Е D E D E D D E D E Е D D Е D Е Е Е km km 3 0,10 3 4 3 0,00 4 3 0,20 4 3 0,10 1 3 0,20 0,30 3 3 0,30 0,40 3 4 3 0,50 3 3 4 3 4 0,40 3 3 3 0,50 0,60 3 3 3 3 0,70 0,60 5 3 3 0,80 3 0,70 1 5 4 3 3 0,80 0,90 1 5 3 3 1 3 4 4 4 0,90 1,00 5 3 3 3 4 3 3 4 4 1,00 1,10 4 5 4 3 1,20 2 1,10 -5 3 3 3 1,30 1,20 5 3 3 1,40 1,30 5 -5 3 1,50 3 3 3 3 3 1,40 -5 -5 1,60 1,50 1,60 1,70 3 1,80 1,70 3 4 1,80 1,90 1 3 3 3 1,90 2,00 2 5 3 3 3 3 2,00 2,10 4 3 3 3 2,20 2,10 2 2,30 3 3 2,20 4 3 Average VCI **Comments:** Legend: A = adequate; I = inadequate; Up = unpaved; U = unsafe; S = safe; W = warning; P = poor; F = fair; HR = heavy rehab; LR = light rehab; RS = reseal.

Lane: L&R

		FUNCTIONAL													
n	Patc	hing	Pot	noles	Dat	rainage	Edge	Drop	Shoul	ders	Edge	Break	Overall	VCI	Condition categories
	1	Е 3	D		Deg	Cause	Deg	EXI	Туре	Cond	Deg	EXI	Condition	70	Good
	4	1												80	Good
	1	3												84	Good
	3	2												74	Good
							5	3			5	5		47	Poor
							5	5			5	5		59	Fair
							3	5			5	5		49	Poor
											5	3		63	Fair
	3	1												78	Good
							5	3			5	5		49	Poor
	3	1					5	4			5	5		41	Poor
	5	3									3	3		45	Poor
	3	2					5	5			5	3		45	Poor
	4	1					5	5			5	3		58	Fair
														67	Fair
														100	Very Good
														100	Very Good
							5	3			5	3		74	Good
							5	2			3	2		76	Good
	3	1												72	Good
														67	Fair
							3	2						72	Good
														79	Good
														67	Fair
													IECEN		
											SHO	OULDE	R TYPE:	D3.	RAINAGE
											G		Gravel	S	Sandy
											K+G		Kerb + Grav	В	Blocked
G/G						Grass	+Gravel	0	Overgrown						

4

DEFECTS LIST: KM 1.000 TO KM 2.000

DEFECTS LIST: KM 2.000 TO KM 2.5

	SURVEYED BY			NDLOVU ENGINEERING TECHNIKS		S. NDLOVU	PROJECT CONSTANTIA ROAD UPGRADE		EKURHULENI METROPOLITAN MUNICIPALITY ROADS AND STORM WATER		REVISION No	STAGE DETAILED	TYPE OF DESIGN
			ириочи Вырансенных		CHECKED BY S. NDLOVU		DESCRIPTION			N.T.S		DESIGN (DD)	ī
		DEP DIR: TECH. SERVICES	_		DRAWN BY X MCUBE		DEFECTS LIST: TRH12	16					DRG. No
No DATE AMENDMENTS for HEAD OF D	EPT. DATE SIGNTR. DAT	TE DATE	_		CHECKED BY S. NDLOVU	DATE: DATE:				JUNE 2018			NET0044-RT-DD-01-00

DWG.No. NET0044-RT-DD-01-0
•

9.4 Appendix D: Pavement Design Calculations- Granular Base

For Granual Base Under Heavy Traffic Loading (from Pomona Road to Elgin Street)

Pavement Structure A:

- 40mm Asphalt (AC)
- 150mm G2 (import)
- 150mm C3 upper subbase
- 150mm C3 lower subbase
- The layers beneath the existing subbase will remain untouched.

• Inflation pressure = 520 kPa.

	A	SPHALT			CEMENT	ED				GRANULA	3		SUBGRAD	E
Layer No	Material Code	Horizont Tensile Strain	al	Vertical Compressive Stress	Horizontal Tensile Strain	Stress Ratio	Strain Ratio		Major Principal Stress	Minor Principal Stress	Stress Ratio		Subgrade Elastic Deflection	
1	AC 2	254.406	•					•						-
2	G2								-284.6	-52.0	0.344			
3	C3			-191	31.793	0.167	0.167							
4	C3			-68	76.433	0.402	0.402					_		
5	Subg		-					-				-	0.2010411	-
						PHA	SE 2							
1	AC 2	253.605	•									•		
2	G2								-281.7	-51.2	0.343			
3	C3		_		64.328		0.339	_						
4	G4								-38.7	52.3	0.448			
5	Subg		•					-				-	0.2157422	-
			_	,				_	,		1	_	,	
						PHA	SE 3							
1	AC 3	346.248	•					•				-		
2	G2								-315.1	-48.9	0.407			
3	G4		_						-117.6	16.9	0.662			
4	G4								-47.0	26.0	0.360			
5	Subg		-					•				-	0.2595928	•

Laver	Phase Life	Residual After Phase 1	Phase Life	Equivale nce Factor	Residual before Phase	Residual after Phase 2	Phase 3 Life	Equivale nce Factor	Residual before Phase	Laver Life
AC	356191	0	362073	1	0	0	71826.2	1	0	7.48E+06
G2	2.09E+07	1.56E+07	2.09E+07	1	1.56E+07	1.34E+07	1.78E+07	1.17448	1.14E+07	1.89E+07
C3	8.38E+06	3.12E+06	5.96E+06	1.40532	2.22E+06	0	5.85E+06	1	5.85E+06	1.33E+07
C3	5.25E+06	0	1.09E+07	1	1.09E+07	8.69E+06	1.41E+07	1	8.69E+06	1.62E+07
Subgrade	2.31E+07	1.78E+07	2.06E+07	1.12191	1.59E+07	1.37E+07	1.52E+07	1.51685	9.02E+06	1.65E+07

• Inflation pressure = 750 kPa

	ASPHALT	(CEMENTED			GRANULAR	}	SUBGRADE
Layer No	Horizontal Material Tensile Code Strain	Vertical Hori: Compressive Ten: Stress Strai	zontal sile Stress in Ratio	Strain Ratio	Major Principal Stress	Minor Principal Stress	Stress Ratio	Subgrade Elastic Deflection
1	AC 377.764 🔺						-	
2	G2				-321.5	-49.2	0.415	
3	C3	-206 32.78	30 0.173	0.173				
4	C3	-71 77.50	0.408	0.408				
5	Subg 🗸			-			-	0.2015076 💌
			DUA	CE 2				
			- Tha	.56.2				
1	AC 376.960 🔺			<u> </u>			-	<u> </u>
2	G2				-318.5	-48.4	0.415	
3	C3	66.13	30	0.348				
4	G4				-39.3	53.0	0.455	
5	Subg 🗸			-				0.2163073 🗸
			PHA	SE 3				
1					_			
1 2	AC 582.629				000.4		A 500	≜
2	G2				-368.4	-43.2	0.532	
3	64				-123.7	18.7	0.701	
4	G4				-47.8	26.6	0.366	
э	Subg			•				0.2604439

Laver	Phase Life	Residual After Phase 1	Phase Life	Equivalence Factor	Residual before Phase	Residual after Phase 2	Phase 3 Life	Equivale nce Factor	Residual before Phase	Layer Life
AC	45681.7	0	46189.7	1	0	0	4810.48	1	0	7.38E+06
G2	1.74E+07	1.22E+07	1.74E+07	1.00038	1.22E+07	1.01E+07	1.30E+07	1.34319	7.48E+06	1.49E+07
C3	8.29E+06	3.10E+06	5.85E+06	1.41736	2.19E+06	0	5.23E+06	1	5.23E+06	1.26E+07
C3	5.19E+06	0	1.07E+07	1	1.07E+07	8.51E+06	1.38E+07	1	8.51E+06	1.59E+07
Subgrade	2.30E+07	1.78E+07	2.05E+07	1.12246	1.59E+07	1.37E+07	1.51E+07	1.51921	9.01E+06	1.64E+07

• Inflation pressure = 900 kPa.

	ASPHALT		CEMENTE	ED			GRANULAP	}		SUBGRAD	E
Layer No	Horizontal Material Tensile Code Strain	Vertical Compressive Stress	Horizontal Tensile Strain	Stress Ratio	Strain Ratio	Major Principal Stress	Minor Principal Stress	Stress Ratio		Subgrade Elastic Deflection	
1	AC 377.764 🔺				▲				•		
2	G2					-321.5	-49.2	0.415		L	
3	<u>C3</u>	-206	32.780	0.173	0.173					L	_
4	C3	-71	77.501	0.408	0.408						
5	Subg				_	ļ		_	-	0.2015076	-
				PHAS	SE 2						
1	AC 376,960 A								•		
2	G2					-318.5	-48.4	0.415	-		
3	C3		66.130		0.348						
4	G4					-39.3	53.0	0.455			
5	Subg 🗸				•				-	0.2163073	•
				PHAS	SE 3						
1	AC 582.629								•		
2	G2					-368.4	-43.2	0.532	-		
3	G4					-123.7	18.7	0.701			
4	G4					-47.8	26.6	0.366			
5	Subg 🗸				-				-	0.2604439	-
		I		1						10.2004400	

		Residual			Residual	Residual		Equivale	Residual	
	Phase	After	Phase	Equivalence	before	after	Phase 3	nce	before	
Layer	Life	Phase 1	Life	Factor	Phase	Phase 2	Life	Factor	Phase	Layer Life
AC	45681.7	0	46189.7	1	0	0	4810.48	1	0	7.38E+06
G2	1.74E+07	1.22E+07	1.74E+07	1.00038	1.22E+07	1.01E+07	1.30E+07	1.34319	7.48E+06	1.49E+07
C3	8.29E+06	3.10E+06	5.85E+06	1.41736	2.19E+06	0	5.23E+06	1	5.23E+06	1.26E+07
C3	5.19E+06	0	1.07E+07	1	1.07E+07	8.51E+06	1.38E+07	1	8.51E+06	1.59E+07
Subgrade	2.30E+07	1.78E+07	2.05E+07	1.12246	1.59E+07	1.37E+07	1.51E+07	1.51921	9.01E+06	1.64E+07

• Inflation pressure = 1200kPa

	AS	PHALT		CEMENT	ED			GRANULA	R		SUBGRAD	E
Layer No	Material Code	Horizontal Tensile Strain	Vertical Compressive Stress	Horizontal Tensile Strain	Stress Ratio	Strain Ratio	Major Principal Stress	Minor Principal Stress	Stress Ratio		Subgrade Elastic Deflection	
1	AC 5	76.976 🔺				▲				-		
2	G2						-361.0	-45.1	0.505			
3	C3		-221	33.666	0.177	0.177				_		_
4	C3		-73	78.430	0.413	0.413						_
5	Subg	_				-				-	0.2019077	-
					PHA	SE 2						
1	AC 5	76.171 🔺				A						
2	G2						-357.9	-44.3	0.506			_
3	C3			67.740		0.357						
4	G4						-39.9	53.7	0.461			-
5	Subg	-				-				-	0.2167922	-
			,		·		, 					
					PHA	SE 3						
1	AC 1	017.575 🔺								-		
2	G2						-429.1	-34.9	0.717			
3	G4						-129.4	20.3	0.737			
4	G4						-48.5	27.0	0.372			
5	Subg	•				-				-	0.2611756	-

		Residual			Residual	Residual		Equivale	Residual	
	Phase	After	Phase	Equivalence	before	after	Phase 3	nce	before	
Layer	Life	Phase 1	Life	Factor	Phase	Phase 2	Life	Factor	Phase	Layer Life
AC	5060.4	0	5097.25	1	0	0	265.518	1	0	7.29E+06
G2	1.39E+07	8.74E+06	1.39E+07	1.00191	8.72E+06	6.57E+06	8.11E+06	1.71037	3.84E+06	1.11E+07
C3	8.21E+06	3.07E+06	5.75E+06	1.42813	2.15E+06	0	4.71E+06	1	4.71E+06	1.20E+07
C3	5.14E+06	0	1.05E+07	1	1.05E+07	8.35E+06	1.36E+07	1	8.35E+06	1.56E+07
Subgrade	2.29E+07	1.78E+07	2.04E+07	1.12293	1.58E+07	1.37E+07	1.51E+07	1.52125	9.00E+06	1.63E+07

Pavement Structure B

- 40mm Asphalt (AC)
- 150mm G1 (import)
- 150mm C3,
- 150mm C4
- The layers beneath the existing subbase will remain untouched
- 520 kPa

	AS	PHALT	_		CEMENT	ED				GRANULA	R		SUBGRAD	E
Layer No	Material Code	Horizontal Tensile Strain		Vertical Compressive Stress	Horizontal Tensile Strain	Stress Ratio	Strain Ratio		Major Principal Stress	Minor Principal Stress	Stress Ratio		Subgrade Elastic Deflection	
1	AC 1	05.030 🔺]					-						
2	G1]						-299.3	-49.2	0.278			
3	C3			-180	48.042	0.253	0.253					_		
4	C4			-56	78.640	0.357	0.357					_		_
5	Subg	-						-				-	0.1932908	-
			_			PHA	.SE 2							
1	AC 2	15.737 🔺	1					•				-		-
2	G1		1						-285.2	-50.3	0.259			
3	C3		-		78.969		0.416							
4	EGC								-37.0	39.0	0.095			
5	Subg	-						-				-	0.2177578	-
				· · · · · · · · · · · · · · · · · · ·										
						PHA	SE 3							
1	AC 1	96.984 🔺	1					•						
2	G1		1						-314.1	-48.7	0.297			
3	EGC		-					_	-105.0	37.3	0.179			
4	EGC								-43.3	14.5	0.073			
5	Subg	-						-				-	0.2571867	-
			-	,					,				,	7

		Residual			Residual	Residual			Residual	
	Phase	After	Phase	Equivalence	before	after	Phase 3	Equivalence	before	
Layer	Life	Phase 1	Life	Factor	Phase	Phase 2	Life	Factor	Phase	Layer Life
AC	3.53E+07	2.96E+07	838806	42.0738	702346	0	1.35E+06	1	0	6.70E+06
G1	2.46E+07	1.89E+07	2.59E+07	1	1.89E+07	1.79E+07	2.35E+07	1.04701	1.71E+07	2.38E+07
C3	7.07E+06	1.33E+06	5.11E+06	1.38188	959871	0	2.43E+07	1	2.43E+07	3.10E+07
C4	5.74E+06	0	2.49E+07	1	2.49E+07	2.40E+07	2.50E+07	1	2.40E+07	3.07E+07
Subgrade	2.46E+07	1.89E+07	2.03E+07	1.21443	1.56E+07	1.46E+07	1.55E+07	1.59287	9.16E+06	1.59E+07

• 750 kPa

	ļ ļ	ASPHALT			CEMENT	ED				GRANULA	R		SUBGRAD	E
Layer No	Materi Code	Horizon al Tensile Strain	tal	Vertical Compressive Stress	Horizontal Tensile Strain	Stress Ratio	Strain Ratio		Major Principal Stress	Minor Principal Stress	Stress Ratio		Subgrade Elastic Deflection	
1	AC	178.338												
2	G1								-347.8	-44.0	0.355			
3	C3		_	-196	49.393	0.260	0.260							_
4	C4			-57	79.715	0.362	0.362							
5	Subg		-					•				-	0.1937151	-
						DUA	CE 2							
						- FRA	JE Z							
1	AC	328.258	_									A		-
2	G1								-324.5	-47.1	0.315			
3	C3		_		81.149		0.427							
4	EGC								-37.6	39.6	0.097			
5	Subg		-					-				-	0.2183364	-
						PHA	SE 3							
1		204.570	_		1			_		1				_
2	AL C1	364.570	4					4	071.4	40.1	0.001	-		-
2	500								-3/1.4	-42.1	0.391			
4	EUL		-						-110.6	33.3	0.188	-		-
5	EGU								-43.9	14.8	0.074		0.0570040	-
0	Subg		-	I				_				-	0.2579943	-

		Residual			Residual	Residual			Residual	
	Phase	After	Phase	Equivalence	before	after	Phase 3	Equivalence	before	
Layer	Life	Phase 1	Life	Factor	Phase	Phase 2	Life	Factor	Phase	Layer Life
AC	2.26E+06	0	94767.9	1	0	0	54947.7	1	0	6.61E+06
G1	2.03E+07	1.46E+07	2.25E+07	1	1.46E+07	1.37E+07	1.85E+07	1.09731	1.25E+07	1.91E+07
C3	6.97E+06	1.28E+06	5.00E+06	1.39393	920282	0	2.42E+07	1	2.42E+07	3.08E+07
C4	5.69E+06	0	2.49E+07	1	2.49E+07	2.40E+07	2.50E+07	1	2.40E+07	3.06E+07
Subgrade	2.45E+07	1.89E+07	2.02E+07	1.21534	1.55E+07	1.46E+07	1.54E+07	1.59532	9.15E+06	1.58E+07

900kPa

•

	4	SPHALT			CEMENT	ED				GRANULA	3		SUBGRAD	E
Layer No	Materia Code	Horizon al Tensile Strain	al	Vertical Compressive Stress	Horizontal Tensile Strain	Stress Ratio	Strain Ratio		Major Principal Stress	Minor Principal Stress	Stress Ratio		Subgrade Elastic Deflection	
1	AC	223.836						•						
2	G1								-370.1	-41.1	0.395			
3	C3			-203	49.924	0.263	0.263						L	_
4	C4			-58	80.128	0.364	0.364						L	_
5	Subg		-					-				-	0.1938765	-
						DUA	с г о							
			_			PHA	5E 2	_						
1	AC	394.603	•					•				•		*
2	G1								-342.2	-45.3	0.342			
3	C3		_		82.003		0.432							_
4	EGC								-37.8	39.8	0.098			
5	Subg		-					•				-	0.2185565	-
													·	
						PHA	SE 3							
1	AC	474.547	•					•						-
2	G1								-398.5	-38.3	0.444			
3	EGC								-112.8	40.2	0.192			
4	EGC								-44.2	15.0	0.074			
5	Subg		-					-				-	0.2583016	-

		Residual			Residual	Residual			Residual	
	Phase	After	Phase	Equivalence	before	after	Phase 3	Equivalence	before	
Layer	Life	Phase 1	Life	Factor	Phase	Phase 2	Life	Factor	Phase	Layer Life
AC	692646	0	36420.7	1	0	0	13967.9	1	0	6.57E+06
G1	1.84E+07	1.27E+07	2.10E+07	1	1.27E+07	1.18E+07	1.62E+07	1.13239	1.04E+07	1.70E+07
C3	6.93E+06	1.27E+06	4.95E+06	1.39864	904709	0	2.41E+07	1	2.41E+07	3.07E+07
C4	5.66E+06	0	2.49E+07	1	2.49E+07	2.40E+07	2.50E+07	1	2.40E+07	3.06E+07
Subgrade	2.45E+07	1.88E+07	2.02E+07	1.21569	1.55E+07	1.46E+07	1.54E+07	1.59625	9.14E+06	1.57E+07

<u>1200kPa</u>

•

	A	SPHALT			CEMENT	ED				GRANULA	R		SUBGRAD	E
Layer No	Materia Code	Horizon al Tensile Strain	tal	Vertical Compressive Stress	Horizontal Tensile Strain	Stress Ratio	Strain Ratio		Major Principal Stress	Minor Principal Stress	Stress Ratio		Subgrade Elastic Deflection	
1	AC	308.612						-						
2	G1								-402.2	-36.4	0.459			
3	C3			-213	50.607	0.266	0.266							
4	C4			-59	80.651	0.367	0.367							
5	Subg		-					-				-	0.1940793	-
				·					·					
						PHA	SE 2							
1	AC	513.290	-					-				•		
2	G1								-367.1	-42.3	0.385			
3	C3				83.097		0.437							
4	EGC								-38.1	40.1	0.098			
5	Subg		-					-				-	0.2188330	-
													-	
						PHA	SE 3							
1	AC	689.206	•					-				•		
2	G1								-438.2	-32.2	0.532			
3	EGC								-115.8	41.3	0.197			
4	EGC								-44.5	15.2	0.075			
5	Subg		-					-				-	0.2586881	-
				-									-	

		Residual			Residual	Residual			Residual	
	Phase	After	Phase	Equivalence	before	after	Phase 3	Equivalence	before	
Layer	Life	Phase 1	Life	Factor	Phase	Phase 2	Life	Factor	Phase	Layer Life
AC	130587	0	9291.07	1	0	0	2009.91	1	0	6.52E+06
G1	1.56E+07	9.97E+06	1.88E+07	1	9.97E+06	9.08E+06	1.30E+07	1.20365	7.55E+06	1.41E+07
C3	6.88E+06	1.24E+06	4.90E+06	1.40466	884722	0	2.40E+07	1	2.40E+07	3.06E+07
C4	5.64E+06	0	2.49E+07	1	2.49E+07	2.40E+07	2.50E+07	1	2.40E+07	3.06E+07
Subgrade	2.45E+07	1.88E+07	2.01E+07	1.21612	1.55E+07	1.46E+07	1.53E+07	1.59742	9.14E+06	1.57E+07

Pavement Structure C

- 40mm Asphalt (AC)
- 150mm G1 (import)
- 150mm C3
- 150mm C3
- The layers beneath the existing subbase will remain untouched
- 520 kPa

	ļ A	SPHALT			CEMENT	ED				GRANULAR	3		SUBGRAD	Е
Layer No	Materia Code	Horizon al Tensile Strain	tal	Vertical Compressive Stress	Horizontal Tensile Strain	Stress Ratio	Strain Ratio		Major Principal Stress	Minor Principal Stress	Stress Ratio		Subgrade Elastic Deflection	
1	AC	106.400	•				-	-				-		
2	G1								-301.2	-50.0	0.278			
3	C3		_	-184	33.227	0.175	0.175					_		
4	C3			-60	67.566	0.356	0.356	_						
5	Subg		-					•				•	0.1863573	-
						PHA	SE 2							
1	AC	164.125	•									•		
2	G1							1	-292.7	-49.8	0.269			
3	C3				63.305		0.333	_						
4	EGC								-35.4	50.4	0.108			
5	Subg		-					•				-	0.2064031	-
						PHA	SE 3	_		·				_
1	AC	196.984	•				4	-				-		
2	G1								-314.1	-48.7	0.297			
3	EGC							_	-105.0	37.3	0.179			
4	EGC								-43.3	14.5	0.073			
5	Subg		-					•				-	0.2571867	•

		Residual			Residual	Residual			Residual	
	Phase	After	Phase	Equivalence	before	after	Phase 3	Equivalence	before	
Layer	Life	Phase 1	Life	Factor	Phase	Phase 2	Life	Factor	Phase	Layer Life
AC	3.30E+07	2.72E+07	3.47E+06	9.50324	2.87E+06	1.05E+06	1.35E+06	24.5251	42719.4	7.62E+06
G1	2.47E+07	1.89E+07	2.52E+07	1	1.89E+07	1.71E+07	2.35E+07	1.04872	1.63E+07	2.39E+07
C3	8.25E+06	2.49E+06	6.03E+06	1.36967	1.82E+06	0	2.43E+07	1	2.43E+07	3.19E+07
C3	5.76E+06	0	2.49E+07	1	2.49E+07	2.31E+07	2.50E+07	1	2.31E+07	3.07E+07
Subgrade	2.61E+07	2.04E+07	2.21E+07	1.1812	1.73E+07	1.54E+07	1.55E+07	1.6906	9.13E+06	1.67E+07

• 750 kPa

	AS	SPHALT			CEMENT	ED				GRANULA	R		SUBGRAD	E
Layer No	Material Code	Horizor Tensile Strain	ital	Vertical Compressive Stress	Horizontal Tensile Strain	Stress Ratio	Strain Ratio		Major Principal Stress	Minor Principal Stress	Stress Ratio		Subgrade Elastic Deflection	
1	AC 1	179.729												
2	G1								-349.8	-44.7	0.353			
3	C3			-200	34.206	0.180	0.180							
4	C3			-62	68.486	0.360	0.360							
5	Subg		-					-				-	0.1867436	-
1			_		1	PHA	SE 2	_						
2	AC 2	259.807	_			_		4		45.0	0.000			-
2	61				CE 000		0.242		-336.0	-45.8	0.333			
4	500		-		65.080	_	0.343	-	20.0	E1 1	0.110	-		-
5	Suba		_						-30.0	51.1	0.110	_	0.2069090	_
-	Loand		<u> </u>	ļ			_	<u> </u>	J	_		<u> </u>	0.2003030	•
						PHA	SE 3							
1	AC 3	364.570	-					-				-		
2	G1								-371.4	-42.1	0.391			
3	EGC		_						-110.6	39.3	0.188			
4	EGC								-43.9	14.8	0.074			
5	Subg		-					-				-	0.2579943	-

		Residual			Residual	Residual			Residual	
	Phase	After	Phase	Equivalence	before	after	Phase 3	Equivalence	before	
Layer	Life	Phase 1	Life	Factor	Phase	Phase 2	Life	Factor	Phase	Layer Life
AC	2.17E+06	0.00E+00	3.19E+05	1	0.00E+00	0.00E+00	5.49E+04	1	0	7.49E+06
G1	2.04E+07	1.47E+07	2.15E+07	1	1.47E+07	1.29E+07	1.85E+07	1.10031	1.17E+07	1.92E+07
C3	8.17E+06	2.46E+06	5.91E+06	1.38112	1.78E+06	0	2.42E+07	1	2.42E+07	3.17E+07
C3	5.71E+06	0	2.49E+07	1	2.49E+07	2.31E+07	2.50E+07	1	2.31E+07	3.06E+07
Subgrade	2.61E+07	2.03E+07	2.20E+07	1.18193	1.72E+07	1.54E+07	1.54E+07	1.69353	9.11E+06	1.66E+07

<u>900 kPa</u>

٠

	1	ASPHALT			CEMENT	ED				GRANULA	R		SUBGRAD	E
Layer No	Materia Code	Horizon al Tensile Strain	tal	Vertical Compressive Stress	Horizontal Tensile Strain	Stress Ratio	Strain Ratio		Major Principal Stress	Minor Principal Stress	Stress Ratio		Subgrade Elastic Deflection	
1	AC	225.236						•				-		
2	G1								-372.1	-41.8	0.393			
3	C3			-208	34.592	0.182	0.182							
4	C3			-63	68.839	0.362	0.362							
5	Subg		-					-				•	0.1868905	-
							с г р							_
						FHA	5E Z	_						
1	AC	317.382	-					•						
2	G1								-355.6	-43.5	0.366			
3	C3				65.776		0.346							
4	EGC								-36.2	51.4	0.110			
5	Subg		-					-				-	0.2071014	-
				-		DUA	05.0							
						PHA	5E 3	_						
1	AC	474.547						•						
2	G1								-398.5	-38.3	0.444			
3	EGC								-112.8	40.2	0.192			
4	EGC								-44.2	15.0	0.074			
5	Subg		-					-				-	0.2583016	-

		Residual			Residual	Residual			Residual	
	Phase	After	Phase	Equivalence	before	after	Phase 3	Equivalence	before	
Layer	Life	Phase 1	Life	Factor	Phase	Phase 2	Life	Factor	Phase	Layer Life
AC	6.71E+05	0.00E+00	1.13E+05	1	0.00E+00	0.00E+00	1.40E+04	1	0	7.45E+06
G1	1.84E+07	1.27E+07	1.98E+07	1	1.27E+07	1.10E+07	1.62E+07	1.13624	9.66E+06	1.71E+07
C3	8.14E+06	2.45E+06	5.87E+06	1.38561	1.77E+06	0	2.41E+07	1	2.41E+07	3.16E+07
C3	5.69E+06	0	2.49E+07	1	2.49E+07	2.31E+07	2.50E+07	1	2.31E+07	3.06E+07
Subgrade	2.60E+07	2.03E+07	2.20E+07	1.1822	1.72E+07	1.54E+07	1.54E+07	1.69465	9.11E+06	1.66E+07

1200 kPa

٠

	4	SPHALT			CEMENT	ED				GRANULA	R		SUBGRAD)E
Layer No	Materia Code	Horizon al Tensile Strain	ital	Vertical Compressive Stress	Horizontal Tensile Strain	Stress Ratio	Strain Ratio		Major Principal Stress	Minor Principal Stress	Stress Ratio		Subgrade Elastic Deflection	
1 2	AC G1	310.023							-404.3	-37.2	0.457			
3 4	C3 C3			-217 -64	35.089 69.286	0.185	0.185		L				L	-
5	Subg		-					-				•	0.1870751	-
						PHA	SE 2							
1 2 3	AC G1	422.036			CC C70		0.051		-383.6	-39.9	0.417			
4 5	EGC Subg		-		66.67U		0.351	•	-36.6	51.8	0.111	•	0.2073433	-
						PHA	SE 3						-	
1	AC G1	689.206	-					-	420.2	22.2	0.522			-
3	EGC							_	-438.2	41.3	0.032			
4 5	EGC Subg		-					-	-44.5	15.2	0.075	-	0.2586881	•

		Residual			Residual	Residual			Residual	
	Phase	After	Phase	Equivalence	before	after	Phase 3	Equivalence	before	
Layer	Life	Phase 1	Life	Factor	Phase	Phase 2	Life	Factor	Phase	Layer Life
AC	1.28E+05	0.00E+00	2.57E+04	1	0.00E+00	0.00E+00	2.01E+03	1	0	7.41E+06
G1	1.57E+07	1.00E+07	1.74E+07	1	1.00E+07	8.27E+06	1.30E+07	1.20918	6.84E+06	1.42E+07
C3	8.09E+06	2.43E+06	5.82E+06	1.39137	1.75E+06	0	2.40E+07	1	2.40E+07	3.14E+07
C3	5.66E+06	0	2.49E+07	1	2.49E+07	2.31E+07	2.50E+07	1	2.31E+07	3.05E+07
Subgrade	2.60E+07	2.03E+07	2.20E+07	1.18255	1.72E+07	1.54E+07	1.53E+07	1.69605	9.10E+06	1.65E+07

Pavement Structure D

- 40mm Asphalt (AC)
- 150mm G1 (import)

520 kPa

•

- 300mm C3 upper subbase
- 150mm C4 lower subbase
- The layers beneath the existing subbase will remain untouched

AC G1 C3 C4 Subgrade Layer

		Residual			Residual	Residual			Residual	
	Phase	After	Phase	Equivalence	before	after	Phase 3	Equivalence	before	
Layer	Life	Phase 1	Life	Factor	Phase	Phase 2	Life	Factor	Phase	Layer Life
AC	2.61E+07	1.81E+07	3.12E+06	8.38028	2.16E+06	2.16E+06	1.14E+06	22.9814	94143.2	8.11E+06
G1	2.40E+07	1.60E+07	2.49E+07	1	1.60E+07	1.60E+07	2.32E+07	1.03458	1.55E+07	2.35E+07
C3	8.02E+06	0.00E+00	5.93E+06	1	0.00E+00	0	2.43E+07	1	2.43E+07	3.24E+07
C4	1.98E+07	1.18E+07	2.50E+07	1	2.50E+07	2.50E+07	2.50E+07	1	2.50E+07	3.30E+07
Subgrade	3.58E+07	2.78E+07	2.97E+07	1.20529	2.30E+07	2.30E+07	2.10E+07	1.7007	1.35E+07	2.16E+07

<u>750 kPa</u>

•

	ASPHALT		CEMENT	TED			GRANULA	R		SUBGRAD	Ε
Layer No	Horizontal Material Tensile Code Strain	Vertical Compressive Stress	Horizontal Tensile Strain	Stress Ratio	Strain Ratio	Major Principal Stress	Minor Principal Stress	Stress Ratio		Subgrade Elastic Deflection	
1	AC 185.589 -				▲						
2	G1					-352.7	-42.7	0.366			
3	C3	-207	32.875	0.173	0.173						_
4	L4	-28	48.641	0.221	0.221					0.1500077	
5	Subg				-				-	0.1506877	-
				PHA	SE 2						
1	AC 265.378				_						
2	G1	1				-341.2	-45.8	0.339			
3	C3	-	48.676		0.256						
4	EGC					-18.9	26.1	0.057			
5	Subg 🔹	r			-				-	0.1618624	-
				PUA	CE 3				_		_
1									_		_
2	AC 386.024 4	<u> </u>			_	077.0	40.0	0.404	4	L	-
2	61	┛ ┝────				-3/7.3	-40.9	0.404			
1	FCC					-81.9	17.2	0.125	-		_
5	Euc Cuba					-20.0	10.4	0.045	-1	0.1000004	
3	Subg								-	0.1333234	-

		Residual			Residual	Residual			Residual	
	Phase	After	Phase	Equivalence	before	after	Phase 3	Equivalence	before	
Layer	Life	Phase 1	Life	Factor	Phase	Phase 2	Life	Factor	Phase	Layer Life
AC	1.83E+06	0.00E+00	2.86E+05	1	0.00E+00	0.00E+00	4.08E+04	1	0	1.97E+07
G1	1.97E+07	1.22E+07	2.11E+07	1	1.22E+07	0.00E+00	1.79E+07	1	0.00E+00	1.97E+07
C3	2.22E+07	1.46E+07	1.88E+07	1.1797	1.24E+07	205511	2.48E+07	1	2.48E+07	4.45E+07
C4	7.53E+06	0.00E+00	2.50E+07	1	2.50E+07	1.28E+07	2.50E+07	1	1.28E+07	3.26E+07
Subgrade	3.70E+07	2.94E+07	3.29E+07	1.12368	2.62E+07	1.40E+07	2.34E+07	1.57774	8.87E+06	2.86E+07

• <u>900 kPa</u>

Subgrade Elastic Deflection
0.1507654 💌
-
0.1619546 💌
1
-
0.1994739 💌

		Residual			Residual	Residual			Residual	
	Phase	After	Phase	Equivalence	before	after	Phase 3	Equivalence	before	
Layer	Life	Phase 1	Life	Factor	Phase	Phase 2	Life	Factor	Phase	Layer Life
AC	5.87E+05	0.00E+00	1.03E+05	1	0.00E+00	0.00E+00	1.11E+04	1	0	1.78E+07
G1	1.78E+07	1.03E+07	1.94E+07	1	1.03E+07	0.00E+00	1.56E+07	1	0.00E+00	1.78E+07
C3	2.21E+07	1.46E+07	1.87E+07	1.18083	1.24E+07	2.10E+06	2.48E+07	1	2.48E+07	4.26E+07
C4	7.52E+06	0.00E+00	2.50E+07	1	2.50E+07	1.48E+07	2.50E+07	1	1.48E+07	3.26E+07
Subgrade	3.69E+07	2.94E+07	3.29E+07	1.12378	2.62E+07	1.59E+07	2.34E+07	1.57827	1.01E+07	2.79E+07

<u>1200kPa</u>

	AS	PHALT			CEMENT	ED		_		GRANULA	3		SUBGRAD)E
Layer No	Material Code	Horizon Tensile Strain	tal	Vertical Compressive Stress	Horizontal Tensile Strain	Stress Ratio	Strain Ratio		Major Principal Stress	Minor Principal Stress	Stress Ratio		Subgrade Elastic Deflection	
1	AC 3	15.918												
2	G1								-407.3	-35.1	0.473			
3	C3			-223	33.249	0.175	0.175	_						_
4	C4			-28	48.998	0.223	0.223							
5	Subg		-					-				-	0.1508629	-
						PHA	SE 2							
1	AC 4	27.648												
2	G1								-389.0	-39.9	0.423			
3	C3		_		49.257		0.259	_						_
4	EGC								-19.1	26.3	0.057			
5	Subg		•					-				-	0.1620704	-
						PHA	SE 3							
1	AC 7	10.962												
2	G1								-444.4	-30.9	0.549			
3	EGC								-84.2	18.0	0.128			
4	EGC								-25.2	10.6	0.045			
5	Subg		•					-				•	0.1996551	•

		Residual			Residual	Residual			Residual	
	Phase	After	Phase	Equivalence	before	after	Phase 3	Equivalence	before	
Layer	Life	Phase 1	Life	Factor	Phase	Phase 2	Life	Factor	Phase	Layer Life
AC	1.16E+05	0.00E+00	2.40E+04	1	0.00E+00	0.00E+00	1.71E+03	1	0	1.51E+07
G1	1.51E+07	7.55E+06	1.71E+07	1	7.55E+06	0.00E+00	1.24E+07	1	0.00E+00	1.51E+07
C3	2.21E+07	1.46E+07	1.87E+07	1.18225	1.23E+07	4.78E+06	2.48E+07	1	2.48E+07	3.98E+07
C4	7.50E+06	0.00E+00	2.50E+07	1	2.50E+07	1.75E+07	2.50E+07	1	1.75E+07	3.25E+07
Subgrade	3.69E+07	2.94E+07	3.28E+07	1.1239	2.61E+07	1.86E+07	2.34E+07	1.57895	1.18E+07	2.68E+07

9.5 Appendix E: Pavement Design Calculations for Bitumen Treated Base (BTB)

Under Heavy Traffic Loads (From Pomona Road to Elgin Street)

700MPa BTB ,0km/h - 700kPa Inflation Pressure

			Residual			Residual	Residual			Residual		
	Thickness		After		Equivalence	before	after Phase	Phase 3	Equivalence	before		Layer Life (
Layer	(mm)	Phase Life	Phase 1	Phase Life	Factor	Phase	2	Life	Factor	Phase	Layer Life	Million E80s)
AC	40	2,28E+06	0,00E+00	3,04E+06	1,00E+00	0,00E+00	0,00E+00	1,24E+07	1,00E+00	0	1,75E+07	17,51
BC	100	7,59E+09	7,58E+09	1,18E+10	1,00E+00	7,58E+09	7,57E+09	2,67E+05	2,84E+04	2,67E+05	1,78E+07	17,78
C3	300	2,21E+07	1,46E+07	1,51E+07	1,46E+00	9,99E+06	0,00E+00	2,50E+07	1,00E+00	2,50E+07	4,25E+07	42,53
C4	150	7,52E+06	0,00E+00	2,51E+07	1,00E+00	2,51E+07	1,51E+07	2,51E+07	1,00E+00	1,51E+07	3,26E+07	32,57
Subgrade		3,57E+07	2,82E+07	3,07E+07	1,16E+00	2,42E+07	1,42E+07	1,87E+07	1,90E+00	7,48E+06	2,50E+07	24,99
-											Pavement life	17,78

700MPa BTB ,0km/h - 1400kPa Inflation Pressure

				Residual			Residual	Residual			Residual		
	Thicknes	S		After		Equivalence	before	after Phase	Phase 3	Equivalence	before		Layer Life (
Layer	(mm)		Phase Life	Phase 1	Phase Life	Factor	Phase	2	Life	Factor	Phase	Layer Life	Million E80s)
AC		40	2,54E+04	0,00E+00	2,87E+04	1,00E+00	0,00E+00	0,00E+00	5,00E+04	1,00E+00	0,00E+00	1,73E+07	17,35
BC		100	2,86E+09	2,86E+09	4,15E+09	1,00E+00	2,86E+09	2,85E+09	1,64E+05	1,75E+04	1,63E+05	1,75E+07	17,51
C3		300	2,20E+07	1,45E+07	1,50E+07	1,47E+00	9,86E+06	0,00E+00	2,50E+07	1,00E+00	2,50E+07	4,24E+07	42,36
C4		150	7,48E+06	0,00E+00	2,51E+07	1,00E+00	2,51E+07	1,52E+07	2,51E+07	1,00E+00	1,52E+07	3,25E+07	32,54
Subgrade			3,56E+07	2,81E+07	3,06E+07	1,16E+00	2,42E+07	1,43E+07	1,87E+07	1,91E+00	7,51E+06	2,49E+07	24,86
												Pavement life	17,51

1200MPa BTB, 10km/h - 700kPa Inflation Pressure

				Residual			Residual	Residual			Residual		
	Thicknes	S		After		Equivalence	before	after Phase	Phase 3	Equivalence	before		Layer Life (
Layer	(mm)		Phase Life	Phase 1	Phase Life	Factor	Phase	2	Life	Factor	Phase	Layer Life	Million E80s)
AC		40	6,44E+07	5,66E+07	8,53E+07	1,00E+00	5,66E+07	4,53E+07	2,70E+08	1,00E+00	4,53E+07	6,44E+07	
BC		100	4,91E+09	4,90E+09	5,17E+09	1,00E+00	4,90E+09	4,89E+09	3,73E+06	1,31E+03	3,72E+06	2,28E+07	22,81
C3		300	2,25E+07	1,47E+07	1,73E+07	1,30E+00	1,13E+07	0,00E+00	2,50E+07	1,00E+00	2,50E+07	4,41E+07	44,10
C4		150	7,78E+06	0,00E+00	2,51E+07	1,00E+00	2,51E+07	1,37E+07	2,50E+07	1,00E+00	1,37E+07	3,28E+07	32,82
Subgrade			3,96E+07	3,18E+07	3,49E+07	1,13E+00	2,81E+07	1,67E+07	2,32E+07	1,70E+00	9,83E+06	2,89E+07	28,92
												Pavement life	22,81

	1200MPa BTB ,10km/h - 1400kPa Inflation Pressure												
Residual Residual Residual Residual Residual													
	Thickness	S		After		Equivalence	before	after Phase	Phase 3	Equivalence	before		Layer Life (
Layer	(mm)		Phase Life	Phase 1	Phase Life	Factor	Phase	2	Life	Factor	Phase	Layer Life	Million E80s)
AC		40	5,25E+05	0,00E+00	5,87E+05	1,00E+00	0,00E+00	0,00E+00	9,05E+05	1,00E+00	0,00E+00	1,89E+07	18,95
BC		100	2,14E+09	2,13E+09	2,24E+09	1,00E+00	2,13E+09	2,12E+09	2,29E+06	9,35E+02	2,27E+06	2,12E+07	21,21
C3	:	300	2,23E+07	1,46E+07	1,71E+07	1,30E+00	1,12E+07	0,00E+00	2,50E+07	1,00E+00	2,50E+07	4,40E+07	43,95
C4		150	7,74E+06	0,00E+00	2,51E+07	1,00E+00	2,51E+07	1,39E+07	2,50E+07	1,00E+00	1,38E+07	3,28E+07	32,79
Subgrade			3,95E+07	3,17E+07	3,48E+07	1,13E+00	2,80E+07	1,68E+07	2,32E+07	1,70E+00	9,85E+06	2,88E+07 Pavement life	28,80 21,21

1800MPa BTB ,30km/h - 700kPa Inflation Pressure

				Residual			Residual	Residual			Residual		
	Thicknes	s		After		Equivalence	before	after Phase	Phase 3	Equivalence	before		Layer Life (
Layer	(mm)		Phase Life	Phase 1	Phase Life	Factor	Phase	2	Life	Factor	Phase	Layer Life	Million E80s)
AC		40	9,07E+08	8,99E+08	1,29E+09	1,00E+00	8,99E+08	8,87E+08	4,57E+09	1,00E+00	8,87E+08	9,07E+08	
BC		100	3,80E+09	3,80E+09	3,52E+09	1,08E+00	3,51E+09	3,50E+09	8,28E+06	4,60E+02	7,62E+06	2,73E+07	27,30
C3		300	2,28E+07	1,48E+07	1,80E+07	1,26E+00	1,17E+07	0,00E+00	2,50E+07	1,00E+00	2,50E+07	4,47E+07	44,70
C4		150	7,98E+06	0,00E+00	2,51E+07	1,00E+00	2,51E+07	1,34E+07	2,50E+07	1,00E+00	1,34E+07	3,30E+07	33,03
Subgrade			4,29E+07	3,49E+07	3,80E+07	1,13E+00	3,09E+07	1,92E+07	2,49E+07	1,72E+00	1,12E+07	3,08E+07	30,85
												Pavement life	27,30

1800MPa BTB ,30km/h - 1400kPa Inflation Pressure

				Residual			Residual	Residual			Residual		
	Thickness	5		After		Equivalence	before	after Phase	Phase 3	Equivalence	before		Layer Life (
Layer	(mm)		Phase Life	Phase 1	Phase Life	Factor	Phase	2	Life	Factor	Phase	Layer Life	Million E80s)
AC		40	5,35E+06	0,00E+00	6,08E+06	1,00E+00	0,00E+00	0,00E+00	9,41E+06	1,00E+00	0,00E+00	1,95E+07	19,54
BC		100	1,83E+09	1,82E+09	1,71E+09	1,07E+00	1,71E+09	1,70E+09	5,32E+06	3,44E+02	4,93E+06	2,45E+07	24,48
C3	3	300	2,27E+07	1,47E+07	1,79E+07	1,27E+00	1,16E+07	0,00E+00	2,50E+07	1,00E+00	2,50E+07	4,46E+07	44,57
C4		150	7,95E+06	0,00E+00	2,51E+07	1,00E+00	2,51E+07	1,35E+07	2,50E+07	1,00E+00	1,35E+07	3,30E+07	33,00
Subgrade			4,28E+07	3,49E+07	3,79E+07	1,13E+00	3,09E+07	1,93E+07	2,48E+07	1,72E+00	1,12E+07	3,07E+07	30,73
												Pavement life	24,48

2200MPa BTB ,50km/h - 700kPa Inflation Pressure

			Residual			Residual	Residual			Residual		
	Thickness		After		Equivalence	before	after Phase	Phase 3	Equivalence	before		Layer Life (
Layer	(mm)	Phase Life	Phase 1	Phase Life	Factor	Phase	2	Life	Factor	Phase	Layer Life	Million E80s)
AC	4) 3,54E+09	3,54E+09	4,93E+09	1,00E+00	3,54E+09	3,52E+09	2,01E+10	1,00E+00	3,52E+09	3,54E+09	
BC	10) 3,38E+09	3,37E+09	2,98E+09	1,13E+00	2,98E+09	2,97E+09	1,20E+07	2,82E+02	1,05E+07	3,05E+07	30,49
C3	30) 2,29E+07	1,49E+07	1,84E+07	1,25E+00	1,19E+07	0,00E+00	2,50E+07	1,00E+00	2,50E+07	4,50E+07	45,01
C4	15) 8,08E+06	0,00E+00	2,51E+07	1,00E+00	2,51E+07	1,32E+07	2,50E+07	1,00E+00	1,32E+07	3,31E+07	33,13
Subgrade		4,47E+07	3,66E+07	3,96E+07	1,13E+00	3,24E+07	2,05E+07	2,59E+07	1,73E+00	1,19E+07	3,19E+07	31,87
											Pavement life	30,49

2200MPa BTB ,50km/h - 1400kPa Inflation Pressure

				Residual			Residual	Residual			Residual		
	Thickness	5		After		Equivalence	before	after Phase	Phase 3	Equivalence	before		Layer Life (
Layer	(mm)		Phase Life	Phase 1	Phase Life	Factor	Phase	2	Life	Factor	Phase	Layer Life	Million E80s)
AC		40	1,71E+07	9,07E+06	1,91E+07	1,00E+00	9,07E+06	0,00E+00	3,04E+07	1,00E+00	0,00E+00	1,99E+07	19,86
BC		100	1,70E+09	1,69E+09	1,53E+09	1,11E+00	1,52E+09	1,51E+09	7,89E+06	2,16E+02	7,00E+06	2,69E+07	26,85
C3	3	300	2,28E+07	1,48E+07	1,82E+07	1,25E+00	1,18E+07	0,00E+00	2,50E+07	1,00E+00	2,50E+07	4,49E+07	44,89
C4		150	8,05E+06	0,00E+00	2,51E+07	1,00E+00	2,51E+07	1,33E+07	2,50E+07	1,00E+00	1,32E+07	3,31E+07	33,10
Subgrade			4,46E+07	3,65E+07	3 <i>,</i> 95E+07	1,13E+00	3,24E+07	2,06E+07	2,58E+07	1,73E+00	1,19E+07	3,18E+07	31,75
												Pavement life	26,85

2600MPa BTB, 80km/h - 700kPa Inflation Pressure

				Residual			Residual	Residual			Residual		
	Thickne	SS		After		Equivalence	before	after Phase	Phase 3	Equivalence	before		Layer Life (
Layer	(mm)		Phase Life	Phase 1	Phase Life	Factor	Phase	2	Life	Factor	Phase	Layer Life	Million E80s)
AC		40	1,07E+10	1,07E+10	1,49E+10	1,00E+00	1,07E+10	1,07E+10	7,26E+10	1,00E+00	1,07E+10	1,07E+10	
BC		100	3,05E+09	3,04E+09	2,60E+09	1,17E+00	2,59E+09	2,58E+09	1,59E+07	1,92E+02	1,35E+07	3,37E+07	33,70
C3		300	2,31E+07	1,49E+07	1,87E+07	1,24E+00	1,21E+07	0,00E+00	2,50E+07	1,00E+00	2,50E+07	4,53E+07	45,28
C4		150	8,16E+06	0,00E+00	2,51E+07	1,00E+00	2,51E+07	1,30E+07	2,50E+07	1,00E+00	1,30E+07	3,32E+07	33,22
Subgrade			4,62E+07	3,80E+07	4,10E+07	1,13E+00	3,37E+07	2,16E+07	2,67E+07	1,73E+00	1,25E+07	3,28E+07	32,76
												Pavement life	32,76

2600MPa BTB, 80km/h - 1400kPa Inflation Pressure

				Residual			Residual	Residual			Residual		
	Thicknes	SS		After		Equivalence	before	after Phase	Phase 3	Equivalence	before		Layer Life (
Layer	(mm)		Phase Life	Phase 1	Phase Life	Factor	Phase	2	Life	Factor	Phase	Layer Life	Million E80s)
AC		40	4,41E+07	3,60E+07	4,94E+07	1,00E+00	3,60E+07	2,40E+07	8,15E+07	1,00E+00	2,40E+07	4,41E+07	44,10
BC		100	1,59E+09	1,58E+09	1,38E+09	1,15E+00	1,38E+09	1,36E+09	1,06E+07	1,49E+02	9,14E+06	2,93E+07	29,27
C3		300	2,30E+07	1,49E+07	1,86E+07	1,24E+00	1,20E+07	0,00E+00	2,50E+07	1,00E+00	2,50E+07	4,52E+07	45,16
C4		150	8,14E+06	0,00E+00	2,51E+07	1,00E+00	2,51E+07	1,31E+07	2,50E+07	1,00E+00	1,31E+07	3,32E+07	33,19
Subgrade			4,61E+07	3,79E+07	4,09E+07	1,13E+00	3,36E+07	2,17E+07	2,66E+07	1,73E+00	1,25E+07	3,26E+07	32,65
												Pavement life	29,27

9.6 Appendix F: Test Pits - Summary of Results

None

(1MITA/)		2392	2191		
	COMP MC	5.8	7.0		
C.B.R.	% SWELL	0.10	0.15		
	100%	209	70		
U.C.S.	98%	137	48		
(TMH A13T)	97%	111	39		
C.B.R.	95%	73	27		
(TMH A8)	93%	48	18		
	90%	25	10		
MOD ITS : DRY (kPa) (A16T)	N/A	N/A		
PROCTOR ITS :	DRY (kPa)	N/A	N/A		
STABILISED	IN LAB				
WITH	ON SITE	Neat	Neat		
TEST T	YPE	IND - CBR	IND - CBR		
SAMPLE	D BY	Roadlab	Roadlab		
DELIVERI	ED BY	Roadlab	Roadlab		
SAMPLED ACCORDING TO		Clients Requirements	Clients Requirements		
ENVIRONMENTAL CONDITION					
WHEN SAMPLED		Sunny	Sunny		
WITEN SAMI LED			1	1	1

None

100 100 100 92 90 100 100 100 94 75.0 63.0 53.0 37.5 26.5 19.0 13.2 4.75 2.00 0.425 0.075 78 76 62 38 69 65 LYSIS (mm) (TMH A1a) 17 18 ATTERBERG LIMITS ANALYSIS (TMH1 1986 : METHOD A2 & A3 ; TMH1 1986, TMHA4 1974) ATTERBERG LIMITS (TMH A2&A3) LL% P.I. NP SF 0.7 LS% 2.38 GM H.R.B.* CLASSIFI A-1-a(0) A-1-a(0) COLTO* T.R.H. 14³ G5 G5 G7 G7 CATION CALIFORNIA BEARING RATIO (TMH1 1986 : METHOD A7, A8) / UNCONFINED COMPRESSIVE STRENGTH (TMH1 1986 : METHOD A7, A14) (ITS A16T) MOD AASHTO

DATE REPORTED :

13503 13503 Black Sampling Bags ±70kg's Slightly Moist

TP01 110-360mm 2018/05/11

2018/05/11 Nono

Grey Olive Silty Sandy Gravel

SAMPLE INFORMATION & PROPERTIES

GRADING ANALYSIS - % PASSING SIEVES (TMH1 1986 : METHOD A1 (a)

TESTED BY :	Jabulani &	Rabelani			SAMPLING METHOD :	AS PER CLIENT	
ROAD / AREA TESTED :	Constantia	Street			TEST METHOD :		TMH A10b-Troxler 66993
LAYER TESTED :	Two Layer:	S			DATE TESTED :		2018-05-11
TRACK NO:	280845				WEATHER CONDITIONS:		Hot
TEST	DEPTH	FIELD DENS	SITY(kg/m3)	FIELD	AASHTO	TMH A7	*RELATIVE
POSITION	TESTED	WET DENSITY	DRY DENSITY	MOISTURE(%)	MDD(kg/m ²)	OMC(%)	COMPACTION(%)
110 - 360 mm	0-150mm	2474	2377	4.1	2392	6.1	99.4
360 - 610 mm	0-150mm	2104	1934	8.8	2191	7.2	88.3
					AVERAGE CO	OMPACTION:	92.8
				MOISTURE	CONTENT		
SAMPLE NO	HOLE	LA	YER	% MOISTURE	TIN	NO	
# MOD SAMPLE TAKEN	AT THIS POI	NT/ PREVIOUS	LAYER TESTED F	FOR MOD			6

N

REMARKS & NOTES

GEOTECHNICAL INVESTIGATION FOR : CONSTANTIA STREET - CBR TEST RESULTS

Please find the attached test results for the sample/s as submitted to and tested by Roadlab (Pty)Ltd in Primrose. The unambiguous description of the sample/s as received are as follows :

I3504 Black Sampling Bags ±70kg's

Slightly Moist

TP01 360-610mm 2018/05/11 2018/05/11 None

Yellow Orange Brown Silty Sandy Gravel

ROADLAB Established 1965

HEAD OFFICE www.roadlab.co.za

207 Rietfontein Rd Primrose Germiston 1401 P O Bax 1476 Germiston 1400 Tel: 011 828 0279 Fax: 011 828 0273 E-mail: info@roadlab.co.za

Accreditation No.: T0296

RL-S-150-01

SIEVE ANA ·

15274

SAMPLE No. CONTAINER USED FOR SAMPLING SIZE / WEIGHT OF SAMPLE MOISTURE CONDITION OF SAMPLE ON ARRIVAL HOLE NO. / Km. / CHAINAGE LAYER TESTED / SAMPLED FROM DATE SAMPLED DATE RECIVED CLIENTS MARKING DESCRIPTION OF SAMPLE

(COLOUR & TYPE)

JOB NO:

TEST REPORT :

MOD SAMPLE TAKEN AT THIS POINT/ PREVIOUS LAYER TESTED FOR MOD

JOB NO:	15274

DATE REPORTED :

2018/06/07

TEST REPORT : GEOTECHNICAL INVESTIGATION FOR : CONSTANTIA STREET- CBR TEST RESULTS

Please find the attached test results for the sample/s as submitted to and tested by Roadlab (Pty)Ltd in Primrose. The unambiguous description of the sample/s as received are as follows :

Accreditation No.: T0296

RL-S-150-01

HEAD OFFICE 207 Rietfontein Rd Primroze Germiston 1401 P O Box 1476 Germiston 1400 Tel: 011 828 0279 Fax: 011 828 0273 E-mail: info@roadlob.co.za www.roadlab.co.za

SAMPLE NO HOLE % MOISTURE 40-190mm 6.6

MOD SAMPLE TAKEN AT THIS POINT/ PREVIOUS LAYER TESTED FOR MOD

		SAMPLE INFORMATI	ION & PROPERTIES		
SAMPLE	No.	13828			
CONTAINER USED	FOR SAMPLING	Black Sampling Bags			
SIZE / WEIGHT	OF SAMPLE	±70kg's			
MOISTURE CON	IDITION OF				
SAMPLE ON A	ARRIVAL	Slightly Moist			
HOLE No. / Km.	/ CHAINAGE	TP2			
LAYER TESTED / S.	AMPLED FROM	40-190mm			
DATE SAM	IPLED	2018/05/11			
DATE REC	EIVED	2018/05/11			
CLIENTS MA	ARKING	None			
DESCRIP	TION				
OF		Light Brown			
SAMPI	LE	Sandy Gravel			
(COLOUR &	TYPE)				
	GR	ADING ANALYSIS - % PASSING SI	EVES (TMH1 1986 : METHOD A1	(a)	
	75.0	100			
SIEVE	63.0	100			
	53.0	89			
	37.5	79			
ANA -	26.5	69			
	19.0	62			
	13.2	56			
LYSIS	4.75	35			
(mm)	2.00	27			
(TMH A1a)	0.425	16			
()	0.075	6			
	ATTERBERG	LIMITS ANALYSIS (TMH1 1986 : M	METHOD A2 & A3 ; TMH1 1986,	ГМНА4 1974)	
ATTERBERG	LL%		1		
LIMITS	P.I.	SP			
(TMH A2&A3)	LS%	1.0			
GM		2.51			
CLASSIEL	H.R.B.*	A-1-a(0)			1
CLASSIFI -	COLTO*	G6			
CATION	T.R.H. 14*	G6			
CALIFORN	IA BEARING RATIO (TMH1 198	6 : METHOD A7, A8) / UNCONFINE	ED COMPRESSIVE STRENGTH (T	MH1 1986 : METHOD A7, A14) (IT	'S A16T)

8.1 2221 7.9

0.13

59 52 49

43 38 31

N/A N/A

Neat

IND - CBR Roadlab oadlab Clients Requirements Sunny

None

FIELD

MOISTURE(%)

54

Please find the attached test results for the sample/s as submitted to and tested by Roadlab (Pty)Ltd in Primrose.

GEOTECHNICAL INVESTIGATION FOR : CONSTANTIA STREET- CBR TEST RESULTS

The unambiguous description of the sample/s as received are as follows :

OMC% MDD(KG/M3) COMP MC % SWELL

100%

98% 97% 95% 93% 90%

IN LAB

ON SITE

FIELD DENSITY(kg/m3)

LAYER

2179

TESTED WET DENSITY DRY DENSITY

2295

15274

JOB NO:

TEST REPORT :

MOD AASHTC

(TMH A7) C.B.R.

U.C.S. (TMH A13T) C.B.R. (TMH A8)

STABILISED

WITH

TESTED BY :

TRACK NO:

TP02

LAYER TESTED :

ROAD / AREA TESTED :

TEST

POSITION

MOD ITS : DRY (kPa) (A16T) PROCTOR ITS : DRY (kPa)

TEST TYPE SAMPLED BY DELIVERED BY SAMPLED ACCORDING TO ENVIRONMENTAL CONDITION

WHEN SAMPLED REMARKS & NOTES

Jabulani & Rabelani

Constantia Street

All Layers

DEPTH

0-150mm

290852

SAMPLE INFORMATION & PROPERTIES

2018/06/07

HEAD OFFICE 207 Rietfontein Rd Primrose Germiston 1401 P O Box 1476 Germiston 1400 Tel: 011 828 0279 Fax: 011 828 0273 E-mail: info@roadlab.co.za www.roadlab.co.za

sanas

AS PER CLIENT

2018-05-11

Hot

TMH A10b-Troxler 16248

*RELATIVE

COMPACTION(%)

98.1

93.6

Accreditation No.: T0296

RL-S-150-01

SAMPLING METHOD :

WEATHER CONDITIONS:

MDD(kg/m³)

2221

AASHTO TMH A7

AVERAGE COMPACTION:

TIN NO

182

OMC(%)

8.1

TEST METHOD :

DATE TESTED :

MOISTURE CONTENT

RSISOILICBR,UCS

JOB NO:	15274
---------	-------

DATE REPORTED :

2018/06/07

TEST REPORT : GEOTECHNICAL INVESTIGATION FOR : CONSTANTIA- CBR TEST RESULTS

Please find the attached test results for the sample/s as submitted to and tested by Roadlab (Pty)Ltd in Primrose. The unambiguous description of the sample/s as received are as follows :

				SAMPLE INFORMATI	ION & PROPERTIES		1
CONTAL	SAMPLE NER LISED	ENO.			13518 Black Sampling Bags		
SIZE	/ WEIGHT	OF SAMPLE			±70kg's		
MOI	STURE CON	DITION OF			Slightly Mojet		
S	AMPLE ON	ARRIVAL			Signay Moise		
HULI	E NO. / KM.	/ CHAINAGE			190-320mm		
LATEN	DATE SAM	APLED PROM			2018/05/11		
	DATE REC	EIVED			2018/05/11		
	CLIENTS M.	ARKING			None		
	OF	TION					
	SAMP	LE			Dark Brown		
		(TVDE)			Clayey Salidy Gravel		
	(COLOUK &	LIPEJ	CPA	DINC ANALYSIS 04 DASSING SIE	VES (TMH1 1096 - METHOD A1 (
		7	5.0	DING ANALISIS - 76 FASSING SIE	100		
SIEVE		6	3.0		100		
		5	3.0		100		
ANA -		3	/.5 5 5		100		
AINA -		1	9.0		87		
		1	3.2		74		
LYSIS		4.	75		46		
(TMH 41a)		0.4	425		28		
(Initial)		0.0	075		24		
			ATTERBERG L	IMITS ANALYSIS (TMH1 1986 : M	1ETHOD A2 & A3 ; TMH1 1986, T	MHA4 1974)	
ATTERBERG		LI	_%		34.0		
LIMITS (TMH A28 A2)		1	.1.		15.0		
[1MH A2&A3]	GM	L	570		2.13		
CLASSIEL-	ci.i	H.F	R.B.*		A-2-6(0)		
CATION		COL	LTO*		G8		
	CALIFORN		1. 14 ⁻ TIO (TMU1 1096	METHOD A7 AQ / UNCONFINE	UO ED COMPRESSIVE ETRENCTIL (TA	111 1096 - METHOD A7 A14) (17	C A1(T)
MOD AASHTO	CALIFURN	IIA DEAKING KA	110 (1MH1 1986 IC%	: METHOD A7, A8J / UNCONFINE	13.7	INI 1966 : METHOD A7, A14) (II	SA101J
(TMH A7)		MDD(KG/M ³)		2011		
		COM	P MC		13.6		
C.B.R.		% S 10	NELL 0%		0.94		
U.C.S.		98	3%		15		
(TMH A13T)		9	7%		14		
C.B.R.		9	5%		13		
(TMH A8)		9	3%		9		
MOD	ITS : DRY (kPa) (A16T)	570		N/A		
PRO	OCTOR ITS :	DRY (kPa)			N/A		
STABILISED		IN	LAB				
WITH		ON	SITE		Neat		
	TEST T	YPE			IND - CBR Roadlab		
	DELIVER	ED BY			Roadlab		
SAM	APLED ACC	ORDING TO			Clients Requirements		
ENVIE	RONMENTA	L CONDITION			Suppy		
	WHEN SAI	MPLED			Sunny		
1	REMARKS 8	NOTES			None		
1						1	
TESTED BY :	Jabulani &	Rabelani			SAMPLING METHOD :		AS PER CLIENT
ROAD / AREA TESTED :	Constantia	Street			TEST METHOD :		TMH A10b-Troxler 66993
LAYER TESTED :	All Lavers				DATE TESTED :		2018-05-11
TRACK NO:	280838				WEATHER CONDITIONS:		Hot
TEST	DEPTH	FIELD DEN	SITY(kg/m3)	FIELD	AASHTO	TMH A7	*RELATIVE
POSITION	TESTED	WFT DENSITY	DRY DENSITY	MOISTURE(%)	MDD(kg/m ²)	OMC(%)	COMPACTION(%)
10311101	TESTED	WEI DENSITI	DITI DENSITI	MolSTotal(/0)	MDD(Rg/III)	0000(70)	commerion(///
190-320mm	0.150mm	2021	1769	14.0	2011	12.7	97.0
190 9201111	0-15011111	2031	1700	14.9	2011	15.7	07.5
	I	I	I		AVERAGE CO	JMPACTION:	87.9
	1			MOISTURE	CONTENT		
SAMPLE NO	HOLE	LA	YER	% MOISTURE	TIN	NO	
		190-3	20mm	2.1	3:	36	
# MOD SAMPLE TAKEN A	T THIS PO	INT/ PREVIOUS	LAYER TESTED F	OR MOD			

Sanas Testing Laboratory

Accreditation No.: T0296

RL-S-150-01

HEAD OFFICE 207 Rietfontein Rd Primrose Germiston 1401 P O Box 1476 Germiston 1400 Tel: 011 828 0279 Fax: 011 828 0273 E-mait: info@iroodab.co.za www.roodlab.co.za

MASTERS(SOIL)CBR,UCS

JOB NO:	15274
---------	-------

DATE REPORTED :

2018/06/07

TEST REPORT : GEOTECHNICAL INVESTIGATION FOR : CONSTANTIA STREET- CBR TEST RESULTS

Please find the attached test results for the sample/s as submitted to and tested by Roadlab (Pty)Ltd in Primrose. The unambiguous description of the sample/s as received are as follows :

				SAMPLE INFORMATI	ON & PROPERTIE	S		
	SAMPLE	No.			1383	29		
CONTAI	NER USED I	FOR SAMPLING			Black Samp	ling Bags		
SIZE	/ WEIGHT	OF SAMPLE			±70k	:g's		l .
MOI	STURE CON	DITION OF			Cli -l-ul-	Malat		
SA	MPLE ON A	ARRIVAL			Slightly	MOIST		l .
HOLE	No. / Km.	/ CHAINAGE			TP	2		
LAYER 1	ESTED / S	AMPLED FROM			320-520	mm		1
	DATE SAM	IPLED			2018/0	5/11		1
	DATE REC	EIVED			2018/0	5/11		1
(LIENTS MA	ARKING			Nor	ne		1
	DESCRIP	LION			Dark Red Oran	ae .		1
	OF				Claure Can da C			l .
	SAMPI	E			Clayey Sandy G	ravei		l .
					(diamictite)			I
	COLOUR &	TYPE)						l .
	(CDA	DINC ANALVEIS - 04 DASSING SIE	VEC (TMU1 1006	METHOD A1 (a)	
		75	UKA	DING ANAL 1313 - 76 FA33ING 31E	VE3 (1MIII 1900	METHODAL	aj	
CIEVE		/5	5.0		10	0		
SIEVE		63	3.0		88			h
		53	3.0		84			h
		37	/.5		80			L
ANA -		26	5.5		75			
		19	9.0		67			
		13	3.2		48			I
LYSIS		4.1	75		33			1
(mm)		2.0	00		26			I
(TMH A1a)		0.4	125		18			1
		0.0)75		7			I
			ATTERBERG L	IMITS ANALYSIS (TMH1 1986 : M	IETHOD A2 & A3	TMH1 1986, T	MHA4 1974)	
ATTERBERG		LL	.%		20.	0	-	
LIMITS		P	.I.		3.0)		
(TMH 42& 43)		LS	5%		13	7		
(TMIT M2&M3)	CM	10	770		2.4	9		
	din	H.R	.B.*		A-1-6	0		
CLASSIFI -		COL	.TO*		GE	{		
CATION		T.R.H	1.14*		GE			
	CALIFORN	IA DEADINC DAT	TIO (TMU1 1006	METHOD A7 A9) / UNCONEINE	D COMPRESSIVE	СТДЕМСТЦ (ТА	111 1096 - METHOD 47 A14) (IT	S A16T)
MOD AACUTO	CALIFURN	IA DEAKING KA		: METHOD A7, A8J / UNCONFINE		31KENUTII (18	IIII 1980 : METHOD A7, A14) (11	SAIOIJ
(TMH A7)		MDD(k	(C/M2)		210	2		
(IMIIA/)		COM	D MC		210	0		
CPP		04 51			11.	4		
C.D.K.		70.31	004		0.0	4		
UCC		10	0 /0		40			
(TMIL A12T)		90	0%0 70/		25			
(IMITAISI)		97	· %		23			h
U.B.K.		95	5% 20/		18			h
(TMH A8)		93	3%		1:			h
		90)%		8			
MOD	ITS : DRY (kPa) (A16T)			N/	A		
PRC	CTOR ITS :	DRY (kPa)			N/	A		1
STABILISED		IN I	LAB					
WITH		ON 9	SITE		Ne	at		
	TEST T	/PE			IND -	CBR		
	SAMPLE	DBY			Road	lah		ſ
	DELIVERI	ED BY			Road	lah		ſ
SAM	PLED ACCO	DRDING TO			Clients Reg	lirements		1
ENVID	ONMENTA	CONDITION			chemes need	an emento		1
ENVIK	MULENIA				Sun	ny		I
	WHEN SAM	IPLED						h
R	EMARKS &	NOTES			Nor	ne		l .
_								L
TESTED BY :	Jabulani &	Rabelani			SAMPLING METH	IOD :		AS PER CLIENT
ROAD / AREA TESTED -	Constantia	Street			TEST METHOD ·			TMH A10b-Troxler 16248
	Constantia	oncer			TEST METHOD.			2018 05 11
LAYER TESTED :	All Layers				DATE TESTED :			2018-03-11
TRACK NO:	290852				WEATHER COND	ITIONS:		Hot
TEST	DEPTH	FIELD DENS	SITY(kg/m3)	FIELD		AASHTO	TMH A7	*RELATIVE
n an	maamaa					. 3.		
POSITION	TESTED	WET DENSITY	DRY DENSITY	MOISTURE(%)	MDD(k	g/m°)	OMC(%)	COMPACTION(%)
								l .
TP03	0-300mm	2087	1876	11.3	210	13	11.2	89.2
	0 00011111	2007	10/0	11.0	210		1112	0,12
								l .
								1
								1
						11mm - or -		00.1
						AVERAGE C	JMPACTION:	93.6
				MOICTURE	CONTENT			-
<u> </u>				MUISTURE	CONTENT			
SAMPLE NO	HOLE	LAY	YER	% MOISTURE		TIN	NO	l
								1
		600.0	40mm	0.1		24	6.0	1
		600-9	40111M	8.1		26	0.0	1
								1
								1
								1
								1
1				1				1

MOD SAMPLE TAKEN AT THIS POINT/ PREVIOUS LAYER TESTED FOR MOD

Accreditation No.: T0296

RL-S-150-01

HEAD OFFICE 207 Rietfonlein Rd Primrose Germiston 1401 P O Box 1476 Germiston 1400 Tel: 011 828 0279 Fox: 011 828 0273 E-mail: Info@roadab.co.za www.roadlab.co.za

SISOILICBR,UCS

SIZE / WEIGHT OF SAMPLE			
MOISTURE CONDITION OF			
SAMPLE ON ARRIVAL			
HOLE No. / Km. / CHAINAGE			
LAYER TESTED / SAMPLED FROM			
DATE SAMPLED			
DATE RECEIVED			
CLIENTS MARKING			
DESCRIPTION			
OF			
SAMPLE			
(COLOUR & TYPE)			
(consolide title)	CDA	DING ANALVEIG 0/ DACCING CIE	VEC
	GKA	ADING ANALYSIS - % PASSING SIE	VES

IN LAB ON SITE

Please find the attached test results for the sample/s as submitted to and tested by Roadlab (Pty)Ltd in Primrose.

The unambiguous description of the sample/s as received are as follows :	
	SAMPLE INFORMATION & PROPERTIES
SAMPLE No.	13518
CONTAINER USED FOR SAMPLING	Black Sampling Bags
SIZE / WEIGHT OF SAMPLE	±70kg's
MOISTURE CONDITION OF	Clinholm Mariat
SAMPLE ON ARRIVAL	Slightly Moist
HOLE No. / Km. / CHAINAGE	TP3
LAYER TESTED / SAMPLED FROM	100-220mm
DATE SAMPLED	2018/105/11

SIZE / WEIGHT OF SAMPLE			±70kg s				
MOISTURE CONDITION OF			Slightly Moiet				
SAMPLE ON ARRIVAL			Slightly Moist				
HOLE No. / Km. / CHAINAGE			TP3				
LAYER TESTED / S	AMPLED FROM		100-220mm				
DATE SAMPLED			2018/105/11				
DATE REC	EIVED		2018/05/11				
CLIENTS M	ARKING		None				
DESCRIP	TION						
OF			Dark Brown Clayey				
SAMP	LE		Sandy Gravel				
(COLOUR 8	a TYPE)						
(GR	ADING ANALYSIS - % PASSING SIE	VES (TMH1 1986 : METHOD A1 (a)			
	75.0		100				
SIEVE	63.0		100				
	53.0		100				
	37.5		100				
ANA -	26.5		93				
	19.0		87				
	13.2		74				
LYSIS	4.75		46				
(mm)	2.00		35				
(TMH A1a)	0.425		28				
	0.075		24				
	ATTERBERG	LIMITS ANALYSIS (TMH1 1986 : M	IETHOD A2 & A3 ; TMH1 1986, T	MHA4 1974)			
ATTERBERG	LL%		34.0				
LIMITS	P.I.		15.0				
(TMH A2&A3)	LS%		7.4				
GM			2.13				
CLASSIEL-	H.R.B.*		A-2-6(0)				
CATION	COLTO*		G8				
CATION	T.R.H. 14*		G8				
CALIFORN	CALIFORNIA BEARING RATIO (TMH1 1986 : METHOD A7, A8) / UNCONFINED COMPRESSIVE STRENGTH (TMH1 1986 : METHOD A7, A14) (ITS A16T)						
MOD AASHTO	OMC%		13.7				
(TMH A7)	MDD(KG/M ³)		2011				
	COMP MC		13.6				
C.B.R.	% SWELL		0.94				
	100%		18				
U.C.S.	98%		15				
(TMH A13T)	97%		14				
C.B.R.	95%		13				
(TMH A8)	93%		11				
	90%		9				
MOD ITS · DDV (LUGIIATET)	1	N/A		1		

N/A N/A

Neat IND - CBR Roadlab Roadlab Clients Requirements

Sunny

	REMARKS &	NOTES			None		
TESTED BY : ROAD / AREA TESTED : LAYER TESTED : TRACK NO:	Jabulani & Rabelani ED : Constantia Street All Layers 290838			SAMPLING METHOD : TEST METHOD : DATE TESTED : WEATHER CONDITIONS:			AS PER CLIENT TMH A10b-Troxler 66993 2018-05-11 Hot
TEST	DEPTH	FIELD DENS	SITY(kg/m3)	FIELD	AASHTO	TMH A7	*RELATIVE
POSITION	TESTED	WET DENSITY	DRY DENSITY	MOISTURE(%)	MDD(kg/m ²)	OMC(%)	COMPACTION(%)
100-220mm	0-150mm	2031	1768	14.9	2011	13.7	87.9
					AVERAGE COMPACTION:		87.9
				MOISTURE	CONTENT		1
SAMPLE NO	HOLE	LA	YER	% MOISTURE	TIN		
		100-22	200mm	16.5	244	5.0	

REF 0

MOD SAMPLE TAKEN AT THIS POINT/ PREVIOUS LAYER TESTED FOR MOD

Accreditation No.: T0296 RL-S-150-01

34/01/28

tsanas

HEAD OFFICE HEAD OFFICE 207 Rietfontein Rd Primrose Gerniston 1401 P O Box 1476 Gerniston 1400 Tel: 011 828 0279 Fox: 011 828 0273 E-mail: info®roadlab.co.za www.roadlab.co.za

15274 GEOTECHNICAL INVESTIGATION FOR : CONSTANTIA- CBR TEST RESULTS

JOB NO:

TEST REPORT :

MOD ITS : DRY (kPa) (A16T) PROCTOR ITS : DRY (kPa) STABILISED WITH

TH CARACTER SAMPLED BY SAMPLED BY SAMPLED ACCORDING TO ENVIRONMENTAL CONDITION WHEN SAMPLED

RSISOILICBR,UCS

5274

DATE REPORTED :

2018/06/07

TEST REPORT : GEOTECHNICAL INVESTIGATION FOR : CONSTANTIA STREET- CBR TEST RESULTS

Please find the attached test results for the sample/s as submitted to and tested by Roadlab (Pty)Ltd in Primrose. The unambiguous description of the sample/s as received are as follows :

				SAMPLE INFORMATI	ON & PROPERTIES		
	SAMPLE	No.			I3829A		
CONTAI	NER LISED	FOR SAMPLING			Black Sampling Bags		
SIZE	/ WEIGHT	OF SAMPLE			+70kg/s		
MOL	STURE CON	IDITION OF			17 0 Kg 3		
MOI	STOKE CON				Slightly Moist		
5.	AMPLE ON A	ARRIVAL					
HOLE	E No. / Km.	/ CHAINAGE			TP3		
LAYER '	FESTED / S	AMPLED FROM			220-520mm		
Litter	DATE SAN	IPLED			2018/05/11		
	DATE DEC	FIVED			2010/05/11		
	CLIENTS M	ADVINC			2018/05/11 None		
	CLIEN IS MA	AKKING			None		
	DESCRIP	TION			Dark Red Orange,		
	OF				Clavey Sandy Gravel		
	SAMP	LE			(diamistita)		
					(diamicute)		
	(COLOUR 8	2 TYPE)					
	(CDA	DINC ANALVEIC 0/ DACCINC CIE	VEC (TMUI 1006 METHOD A1 ((a)	
			GRA	DING ANAL 1515 - % PA55ING 51E	WES (IMHI 1960 : METHOD AT)	aj	
		75	5.0		100		
SIEVE		63	3.0		88		
		53	3.0		82		
		37	7.5		80		
ΔΝΔ -		26	5		75		
		10	2.0		67		
		13	2.2		49		
LVCIC		1.	7.2		40		
LISIS		4.	/5		33		
(mm)		2.	00		26		
(TMH A1a)		0.4	25		18		<u> </u>
		0.0	175		7		
			ATTERREPC I	IMITS ANALYSIS (TMH1 1986 - M	IFTHOD 42 & 43 · TMH1 1096 T	MH44 1974)	
Amminipasso			ATTENDENG L	10113 AUAL1313 (10111 1300 : M	20.0		
ATTERBERG		LI LI	·70		20.0		
LIMITS		Р	.I.		3.0		
(TMH A2&A3)		LS	5%		1.7		
	GM				2.49		
01 I 00177	u.,	H.R	B.*		A-1-a(0)		
CLASSIFI -		COL	ΤΟ*		68		
CATION		TRE	11/1		68		
		1.K.I	1. 14		68		
	CALIFORN	IA BEARING RA	ГІО (ТМН1 1986	: METHOD A7, A8) / UNCONFINE	ED COMPRESSIVE STRENGTH (TM	1H1 1986 : METHOD A7, A14) (IT	S A16T)
MOD AASHTO		OM	C%		11.2		
(TMH A7)		MDD(k	(G/M3)		2103		
(COM	D MC		11.0		
CDD		COM 0/ CL			11.0		
L.B.R.		% SV	VELL		0.84		
		10	0%		40		
U.C.S.		98	3%		29		
(TMH A13T)		97	'%		25		
C.B.R.		95	5%		18		
(TMH 48)		03	10/0		13		
(Iminio)		00	0/		0		
MOD	ITC DDV	7U	70		0		
MOD	115 : DKI (KPaj (A161)			N/A		
PRO	DCTOR ITS :	DRY (kPa)			N/A		
STABILISED		IN	ΔB				
51115115125		011			N		
WITH		UN :	SITE		Neat		
	TEST T	YPE			IND - CBR		
	SAMPLE	D BY			Roadlab		
	DELIVER	ED BY			Roadlab		
SAN	IPLED ACCO	ORDING TO			Clients Requirements		
ENUIS	II BED HCC				enents requirements		
ENVIR	CONMENTA	LCONDITION			Sunny		
L	WHEN SAM	MPLED			Canny		
		NOTES			N		
1	ALMARKS &	INUTES			None	1	
L					1		I
TECTED DV	1.1.1.1.1.2	Dalastan?			CAMPLING METHOD		AS DED CLIENT
TESTED BY :	Jabulani &	Rabelani			SAMPLING METHOD :		AS PER ULIEN I
ROAD / AREA TESTED	Constantia	Street			TEST METHOD :		TMH A10b-Troxler 16248
Rond / main rested .	constantia	oncer					2019 05 11
LAYER TESTED :	All Layers				DATE TESTED :		2010-03-11
TRACK NO:	290852				WEATHER CONDITIONS:		Hot
mpom	DEDENI	FIFI D DEVI	$M_{M} = (-2)$	PIPI P		TMU A7	*DEL AMUTE
TEST	DEPTH	FIELD DENS	511Y(Kg/m3)	FIELD	AASHTO	IMH A/	*RELATIVE
POSITION	TESTED	WET DENSITY	DRY DENSITY	MOISTURE(%)	$MDD(kg/m^3)$	OMC(%)	COMPACTION(%)
1.00111011			2			00(70)	001111011011(70)
1						1	
TP03	0-300mm	2087	1876	113	2103	11.2	89.2
1 -							
1							
1						1	
1						1	
1							
1					AVEDACE C	OMPACTION	93.6
	1	1		1	AVENAUE U		73.0
1							
				Notoria	CONTENT		
	1	1		MOISTURE	CONTENT		I
SAMPLE NO	HOLE	LAY	YER	% MOISTURE	TIN	I NO	
1							
1		220-52	0mm	8.1	26	6.0	
1		220 52			20		
1							
1							
1							

H MOD SAMPLE TAKEN AT THIS POINT/ PREVIOUS LAYER TESTED FOR MOD

Accreditation No.: T0296

RL-S-150-01

HEAD OFFICE 207 Retfontein Rd Pirmose Germiston 1401 P O Box 1476 Germiston 1400 Tel: 011 828 0279 fax: 011 828 0273 E-mail: Info@roadab.co.za www.roadab.co.za

SOIL/CBR,UCS

TEST DEPODT -	CENTECHNICAL INVESTIGATION FOD · CONSTANTIA STREET - CRD TEST DESILITS
TEST REFORT.	deorectivitical investigation for Constrainty Street - Contest Resources

15274

JOB NO:

Please find the attached test results for the sample/s as submitted to and tested by Roadlab (Pty)Ltd in Primrose. The unambiguous description of the sample/s as received are as follows :

CONTAL	SAMPLE NED LICED	EOD SAMDUNC			ISSU4A Plack Campling Page		
SIZE	SIZE / WEICHT OF SAMPLE			+70kg's			
MOI	MOISTURE CONDITION OF			±70kg 5			
S	AMPLE ON	ARRIVAL.			Slightly Moist		
HOLE	No / Km	/ CHAINAGE			TD04		
LAVER	FESTED / S	AMPLED FROM			150-250mm (base laver)		
LAIEK	DATE SAN	IPLED FROM			2018/05/11		
	DATE REC	EIVED			2018/05/11		
	CLIENTS M	ARKING			None		
	DESCRIP	TION			Hone		
	OF				Dark Brown		
	SAMP	LE			Silty Sandy Gravel		
	(COLOUR 8	2 TYPE)					
				GRADING ANALYSIS - % PASSING	G SIEVES (TMH1 1986 : METHOD	A1 (a)	
		7.5	5.0		100		
SIEVE		63	3.0		100		
		53	3.0		100		
		37	7.5		94		
ANA -		26	5.5		78		
		19	9.0		69		
		13	3.2		65		
LYSIS		4.	75		51		
(mm)		2.	00		35		
(TMH A1a)		0.4	125		18		
		0.0	175		9		
			ATTERBERG L	IMITS ANALYSIS (TMH1 1986 : M	IETHOD A2 & A3 ; TMH1 1986, TI	MHA4 1974)	
ATTERBERG		LI	.%				
LIMITS		P	.I.		NP		
(TMH A2&A3)		LS	5%				
	GM				2.38		
CLASSIFL-		H.R	L.B.*		A-1-a(0)		
CATION		COL	.TO*		G7		
CATION		T.R.F	1.14*		G7		
	CALIFORN	IA BEARING RA	ГІО (ТМН1 1986	: METHOD A7, A8) / UNCONFINE	ED COMPRESSIVE STRENGTH (TM	IH1 1986 : METHOD A7, A14) (I1	'S A16T)
MOD AASHTO		OM	IC%		7.2		
(TMH A7)		MDD(F	KG/M ³)		2191		
6 P P		COM	PMC		7.0		
L.B.R.		% SV	VELL		0.15		
11.6.6		10	0%		70		
U.L.S. (TMU A12T)		98	3% 70/		48		
		97	- %0 - 0.4		27		
(TMU A9)		9.	204		10		
(IMII A0)		93	0/2		10		
MOD	ITS · DRY ((A16T)	70		N/A		
DPC	OCTOP ITS	DRV (hPa)			N/A		
CTADU ICED	JCTOKTI3		LAD		N/A		
STABILISED		IN	LAB				
WITH		ON S	SITE		Neat		
	TEST T	YPE			IND - CBR		
	SAMPLE	DBY			Roadlab		
CAN	DELIVER	ED BY			Roadlab		
SAM	IPLED ACC	JKDING TO			chefits Requirements		
ENVIR	ONMENTA	L CONDITION			Sunny		
	WHEN SAI	MPLED			j		
F	REMARKS &	NOTES			None		
TROPPO DV					CANDING METHOD		AC DED CLIENT
IESTED BY :	Jabulani &	Kabelani			SAMPLING METHOD :		AS FER ULIEN I
ROAD / AREA TESTED :	Constantia	Street			TEST METHOD :		TMH A10b-Troxler 66993
LAYER TESTED					DATE TESTED :		2018-05-11
TRACKNO	200045				WEATHER CONDITIONS		Hot
I KAUK NU:	200045 DEFE	-			WEATHER CONDITIONS:	m /// 4.7	4000
TEST	DEPTH	FIELD DENS	SITY(kg/m3)	FIELD	AASHTO	TMH A7	*RELATIVE
POSITION	TESTED	WET DENSITY	DRY DENSITY	MOISTURE(%)	MDD(kg/m ³)	OMC(%)	COMPACTION(%)
					2101	7 0	
150- 250mm	1				2171	1.2	
1							
1					AVEDACE CO	MPACTION	
	1	1	I	1	AVERAGE CU	MI ACTION.	I
	1	1		MOISTURE	CONTENT		
SAMPLE NO	HOLE	LA	YER	MOISTURE % MOISTURE	CONTENT TIN	NO	
SAMPLE NO	HOLE	LAY	YER	MOISTURE % MOISTURE	CONTENT	NO	
SAMPLE NO	HOLE	LA	YER	MOISTURE % MOISTURE	CONTENT TIN	NO	

MOD SAMPLE TAKEN AT THIS POINT/ PREVIOUS LAYER TESTED FOR MOD

207 Rietfonte Tel: I

HEAD OFFICE 207 Rietfontein Rd Primrose Germiston 1401 P O Box 1476 Germiston 1400 Tel: 011 828 0279 Fox: 011 828 0273 E-mail: info®roadlab.co.za www.roadlab.co.za

SAMPLE INFORMATION & PROPERTIES

Accreditation No.: T0296

RL-S-150-01

SOIL/CBR,UCS

TESTED BY :

ROAD / AREA TESTED : LAYER TESTED :

	SAMPLE INFORMATION & PROPERTIES
SAMPLE No.	13518
CONTAINER USED FOR SAMPLING	Black Sampli
SIZE / WEIGHT OF SAMPLE	±70kg
MOISTURE CONDITION OF	
SAMPLE ON ARRIVAL	Slightly M
HOLE No. / Km. / CHAINAGE	TP4
LAYER TESTED / SAMPLED FROM	250-25001
DATE SAMPLED	
DATE RECEIVED	2018/05/
CLIENTS MARKING	None
DESCRIPTION	

The unambiguous description of the sample/s as received are as follows :

OF	-		Yellow Orange Brown		
SAMPL	E		Silty Sandy Gravel		
(COLOUR &	TYPE)				
(· · · · · ·	GR	ADING ANALYSIS - % PASSING SIE	VES (TMH1 1986 : METHOD A1 (a)	!
	75.0		100		
SIEVE	63.0		100		
	53.0		100		
	37.5		100		
ANA -	26.5		93		
	19.0		87		
	13.2		74		
LYSIS	4.75		46		
(mm)	2.00		35		
(TMH A1a)	0.425		28		
	0.075		24		
	ATTERBERG	IMITS ANALYSIS (TMH1 1986 : M	ETHOD A2 & A3 ; TMH1 1986, T	MHA4 1974)	
ATTERBERG	LL%		34.0		
LIMITS	P.I.		15.0		
(TMH A2&A3)	LS%		7.4		
GM			2.13		
CLASSIEL -	H.R.B.*		A-2-6(0)		
CATION	COLTO*		G8		
CATION	T.R.H. 14*		G8		
CALIFORNI	A BEARING RATIO (TMH1 1980	5 : METHOD A7, A8) / UNCONFINE	D COMPRESSIVE STRENGTH (TM	IH1 1986 : METHOD A7, A14) (IT	'S A16T)
MOD AASHTO	OMC%		13.7		
(TMH A7)	MDD(KG/M ³)		2011		
	COMP MC		13.6		
C.B.R.	% SWELL		0.94		
	100%		18		
U.C.S.	98%		15		
(TMH A13T)	97%		14		
C.B.R.	95%		13		
(TMH A8)	93%		11		
	90%		9		
MOD ITS : DRY (k	Pa) (A16T)		N/A		
PROCTOR ITS :	DRY (kPa)		N/A		
STABILISED	IN LAB				
WITH	ON SITE		Neat		
TEST TY	PE		IND - CBR		
SAMPLEL	BY		Roadlab		
DELIVERE	D BY D BY		Roadlab Roadlab		
DELIVERE SAMPLED ACCO	D BY D BY RDING TO		Roadlab Roadlab Clients Requirements		
SAMPLEL DELIVERE SAMPLED ACCO ENVIRONMENTAL WHEN SAM	BY D BY RDING TO CONDITION PI FD		Roadlab Roadlab Clients Requirements Sunny		
SAMPLEI DELIVERE SAMPLED ACCO ENVIRONMENTAL WHEN SAM	BY D BY RDING TO CONDITION PLED		Roadlab Roadlab Clients Requirements Sunny		

SAMPLING METHOD :

TEST METHOD :

LAYER TESTED :	All Layers				DATE TESTED :		2018-05-11
TRACK NO:	290838				WEATHER CONDITIONS:		Hot
TEST	DEPTH	FIELD DENS	SITY(kg/m3)	FIELD	AASHTO	TMH A7	*RELATIVE
POSITION	TESTED	WET DENSITY	DRY DENSITY	MOISTURE(%)	MDD(kg/m ²)	OMC(%)	COMPACTION(%)
250-500mm	0-150mm	2031	1768	14.9	2011	13.7	87.9
					AVERAGE CC	MPACTION:	87.9
				MOISTURE	CONTENT		
SAMPLE NO	HOLE	LA	YER	% MOISTURE	TIN	NO	
		100-25	50mm	16.5	244	5.0	

MOD SAMPLE TAKEN AT THIS POINT/ PREVIOUS LAYER TESTED FOR MOD

Jabulani & Rabelani

Constantia Street

15274

Please find the attached test results for the sample/s as submitted to and tested by Roadlab (Pty)Ltd in Primrose.

GEOTECHNICAL INVESTIGATION FOR : CONSTANTIA- CBR TEST RESULTS

JOB NO:

TEST REPORT :

DATE REPORTED : 2018/06/05

> I3518E Black Sampling Bags ±70kg's Slightly Moist TP4 250-2500m 2018/05/11 None

HEAD OFFICE HEAD OFFICE 207 Rietfontein Rd Primrose Gerniston 1401 P O Box 1476 Gerniston 1400 Tel: 011 828 0279 Fox: 011 828 0273 E-mail: info®roadlab.co.za www.roadlab.co.za

AS PER CLIENT

2018-05-11

TMH A10b-Troxler 66993

Accreditation No.: T0296

RL-S-150-01

SISOILICBR,UCS

JOB NO:	15274
---------	-------

Ē

DATE REPORTED :

2018/06/07

GEOTECHNICAL INVESTIGATION FOR : CONSTANTIA STREET- CBR TEST RESULTS TEST REPORT :

Please find the attached test results for the sample/s as submitted to and tested by Roadlab (Pty)Ltd in Primrose. The unambiguous description of the sample/s as received are as follows :

		SAMPLE INFORMAT	ION & PROPERTIES		
SAMPLE	No.		13538		
CONTAINER USED I	FOR SAMPLING		Black Sampling Bags		
SIZE / WEIGHT	OF SAMPLE		±70kg's		
MOISTURE CON	DITION OF				
SAMPLE ON A	ARRIVAL		Slightly Moist		
HOLE No. / Km	/ CHAINAGE		TD4 Colored Colored		
HOLE NO. / KIII.			1P4 - Sulected+Subgrade		
LAYER TESTED / SA	AMPLED FROM		500-650mm		
DATE SAM	IPLED		2018/05/12		
DATE REC	EIVED		N.		
CLIENIS MA	AKKING		None		
DESCRIP	TION		Dark Rad Specklad Plack Silty		
OF	-		Dark Red Speckled Black, Silly		
SAMPI	-E		Clayey Gravel (diamictite)		
(COLOUR A	(T) (D) (D)				
(COLOUR &	TYPE)				
	GF	ADING ANALYSIS - % PASSING SI	EVES (TMH1 1986 : METHOD A1 (a)	
	75.0	100	100		
SIEVE	63.0		100		
	53.0		100		
	37.5		100		
ANA -	26.5		100		
	19.0		100		
	13.2		100		
LYSIS	4.75		97		
(mm)	2.00		89		
(TMH A1a)	0.425		81		
(IMITAIA)	0.075		73		
	ATTERREDC	LIMITE ANALVEIC (TMUI 1006	4FTHOD 42 8 42 TMUI 1006 TH		
	ATTERDERG	LIMITS ANAL1515 (TMHT 1900 : M	METHOD A2 & A5 ; IMHT 1966, I	мпа4 1974)	1
ATTERBERG	LL%		50.0		
LIMITS	P.I.		25.0		
(TMH A2&A3)	LS%		12.4		
GM			0.57		
CLASSIFI -	H.R.B.*		A-7-6(15)		
CATION	COLTO*		<69		
CATION	T.R.H. 14*		<610		
CALIFORN	IA BEARING RATIO (TMH1 198	6 : METHOD A7, A8) / UNCONFIN	ED COMPRESSIVE STRENGTH (TM	1H1 1986 : METHOD A7, A14) (I7	(SA16T)
MOD AASHTO	OMC%		23.5		
(TMH A7)	MDD(KG/M ³)		1621		
	COMP MC		23.2		
C.B.R.	% SWELL		2.13		
	100%		15		
UCS	98%		14		
(TMH A13T)	97%		10		
C.B.R.	95%		3		
(TMH 48)	93%		Š		
(IMII NO)	90%		1		
MOD ITS · DRV ((A16T)		N/A		
DDOCTOD ITC.	DRV (InDe)		N/A		
PROCIORIIS:	DRI (KPa)		N/A		
STABILISED	IN LAB				
WITH	ON SITE		Neat		
TEST TY	/PE		IND - CBR		
SAMPLE	D BY		Roadlab		
DELIVER	ED BY		Roadlab		
SAMPLED ACCO	ORDING TO		Clients Requirements		
ENVIRONMENTAL	CONDITION		•		
MILEN CAN	ADI ED		Sunny		
WHEN SAM	11 660				
REMARKS &	NOTES		None		
				1	
TESTED BY :			SAMPLING METHOD :		
ROAD / AREA TESTED			TEST METHOD :		

LAYER TESTED :					DATE TESTED :		
TRACK NO:					WEATHER CONDITIONS:		
TEST	DEPTH	FIELD DENS	SITY(kg/m3)	FIELD	AASHTO	TMH A7	*RELATIVE
POSITION	TESTED	WET DENSITY	DRY DENSITY	MOISTURE(%)	MDD(kg/m ²)	OMC(%)	COMPACTION(%)
					AVERAGE CO	OMPACTION:	
				MOISTURE	CONTENT		
SAMPLE NO	HOLE	LA	YER	% MOISTURE	TIN	NO	
1							

MOD SAMPLE TAKEN AT THIS POINT/ PREVIOUS LAYER TESTED FOR MOD

Accreditation No.: T0296

RL-S-150-01

HEAD OFFICE

HEAD OFFICE 207 Rietfontein Rd Primrose Germiston 1401 P O Box 1476 Germiston 1400 Tel: 011 828 0279 Fox: 011 828 0273 E-mail: info@roadab.co.za www.soadab.co.za

MASTERSISOILICBR,UCS

JOB NO:	1 5 274
---------	-----------------------

DATE REPORTED :

GEOTECHNICAL INVESTIGATION FOR : CONSTANTIA STREET- CBR TEST RESULTS TEST REPORT :

Please find the attached test results for the sample/s as submitted to and tested by Roadlab (Pty)Ltd in Primrose. The unambiguous description of the sample/s as received are as follows :

				SAMPLE INFORMATI	ION & PROPERTIES		
	SAMPLE	E No.			13530		
CONTAI	NER USED	FOR SAMPLING			Black Sampling Bags		
MOL	STURE CON	OF SAMPLE			±70kg s		
S	AMPLE ON	ARRIVAL			Slightly Moist		
HOLI	E No. / Km.	/ CHAINAGE			TP15		
LAYER	TESTED / S	AMPLED FROM			160-310mm (subbase)		
	DATE SAR	EIVED			2018/05/11		
	CLIENTS M	ARKING			None		
	DESCRIP	TION			Slightly Moist, Dark Olive, Medium		
	SAMP	LE			Dense, Intact, Clayey Sandy		
					Gravel with		
	(COLOUR &	a TYPE)			Cobbles (Sandstone)		
			GRA	DING ANALYSIS - % PASSING SIE	EVES (TMH1 1986 : METHOD A1 (a)	
SIEVE		15	5.0 8.0		100		
JILVL		53	3.0		67		
		32	7.5		61		
ANA -		26	5.5		59		
		19	9.0		58		
LYSIS		1.	75				
(mm)		2.	00		36		
(TMH A1a)		0.4	25		30		
		0.0	075		19		
1			ATTERBERG L	IMITS ANALYSIS (TMH1 1986 : M	1ETHOD A2 & A3 ; TMH1 1986, T	MHA4 1974)	
ATTERBERG			1%0 I		35.0		
(TMH 428-42)		P I.S			75		
[Imit A20(A3)	GM	L.			2.15		
CLASSIFL-		H.R	B.*		A-2-6(0)		
CATION		COL	TO*		<69		
GITTON	CALIFORN	T.K.F	1. 14*		G10		10 A4 (77)
MOD AASHTO	CALIFORM	IIA BEARING RA	110 (1MH1 1986	: METHOD A7, A8) / UNCONFINE	LD COMPRESSIVE STRENGTH (TM	IH1 1986 : METHOD A7, A14) (II	SA161)
(TMH A7)		MDD(H	(G/M3)		2062		
(COM	P MC		9.7		
C.B.R.		% SV	VELL		0.73		
		10	0%		20		
(TMH A13T)		98	5% 7%		9		
C.B.R.		95	5%		5		
(TMH A8)		93	3%		3		
		9(1%		1		
MOD	TIS: DRY	kPaj (A161)			N/A		
PRO	JUTURITS	DRY (RPa)			N/A		
STABILISED		IN	LAB				
WITH		ON	SITE		Neat		
	TEST T	YPE			IND - CBR		
	SAMPLE	D BY			Roadlab		
641	DELIVER	ED BY			Roadlab		
ENVIE	IPLED ACC	L CONDITION			chefits Requirements		
LIVVII	WHEN SAI	MPLED			Sunny		
	DEMADING O	NOTES			Nene		
	VEMAKINO C	2 NOTES			None		
TESTED BY :	Jabulani &	Rabelani			SAMPLING METHOD :		AS PER CLIEN I
ROAD / AREA TESTED :	Constantia	Street			TEST METHOD :		I MH A10D-1F0XIEF 66993
LAYER TESTED :					DATE TESTED :		
TRACK NO:					WEATHER CONDITIONS:		
TEST	DEPTH	FIELD DENS	SITY(kg/m3)	FIELD	AASHTO	TMH A7	*RELATIVE
POSITION	TESTED	WET DENSITY	DRY DENSITY	MOISTURE(%)	MDD(kg/m ²)	OMC(%)	COMPACTION(%)
					2062	10.0	
					41000 4 00 00	MDACTION	
	1	I			AVERAGE CO	JMPACTION:	
		1		MOISTURE	CONTENT		
SAMPLE NO	HOLE	LA	YER	% MOISTURE	TIN	NO	
		160-31	0mm	15.9	10	3.0	
		100 51			10.		
1	1	1					
<u></u>							

REF 0

Accreditation No.: T0296

Sanas Testing Laboratory

RL-S-150-01

2004/01/28

HEAD OFFICE 207 Rietfontein Rcl Primose Germiston 1401 P O Box 1476 Germiston 1400 Tel: 011 828 0279 foc: 011 828 0273 E-mail: info @roadab.co.za www.roadlab.co.za

2018/06/07

MASTERSISOILICBR,UCS

15274

JOB NO:

DATE REPORTED :

: 2018/06/07

TEST REPORT : GEOTECHNICAL INVESTIGATION FOR : CONSTANTIA STREET- CBR TEST RESULTS

Please find the attached test results for the sample/s as submitted to and tested by Roadlab (Pty)Ltd in Primrose. The unambiguous description of the sample/s as received are as follows :

				SAMPLE INFORMAT	ON & PROPERTIES		
	SAMPLE	No.			13535		
CONTAIL	VER USED	FOR SAMPLING			Black Sampling Bags		
MOIS	TURE CON	DITION OF			±70kg s		
SA	MPLE ON	ARRIVAL			Slightly Moist		
HOLE	No. / Km.	/ CHAINAGE			TP16		
LAYER T	'ESTED / S.	AMPLED FROM			310-760mm		
	DATE SAM	IPLED			2018/05/11		
	LIFNTS M	ARKING			2018/05/11 None		
	DESCRIP	TION			Hone		
	OF				Light Orange Brown		
	SAMPI	LE			Clayey Sandy Gravel		
	COLOUR &	TYPE)					
	COLOON &		GRA	DING ANALYSIS - % PASSING SH	VFS (TMH1 1986 · MFTHOD A1 (์ อ)	
		75	5.0		100		
SIEVE		63	3.0		100		
		53	.0		100		
A.N.A.		37	.5		90		
ANA -		20	0.5		/ 5 66		
		13	.2		64		
LYSIS		4.	75		63		
(mm)		2.	00		60		
(TMH A1a)		0.4	25		52		
		0.0	ATTEPPEDC	IMITS ANALYSIS (TMUL 1006 - N	ی IFTHOD A2 & A3 - TMU1 1094 - T	MH 44 1974)	l
ATTERREPC		LI	%	19113 ANAL1313 (1MILL 1986 : N	35.0	mint 17/4j	
LIMITS		P.	.I.		17.0		
(TMH A2&A3)		LS	%		8.7		
	GM		D*		1.49		
CLASSIFI -		H.R	.D." TO*		A-2-6(U)		
CATION		T.R.H	. 14*		<g10< td=""><td></td><td></td></g10<>		
	CALIFORN	IA BEARING RAT	ГІО (ТМН1 1986	: METHOD A7, A8) / UNCONFINE	D COMPRESSIVE STRENGTH (TM	1H1 1986 : METHOD A7, A14) (IT	S A16T)
MOD AASHTO		OM	C%		12.8		
(TMH A7)		MDD(K	(G/M3)		1728		
CPP		COM 06 SV	PMC		12.6		
C.D.R.		10	0%		6		
U.C.S.		98	1%		4		
(TMH A13T)		97	'%		3		
C.B.R.		95	%		2		
(IMH A8)		93	1%		1		
MOD	ITS : DRY (kPa) (A16T)	70		N/A		
PRO	CTOR ITS :	DRY (kPa)			N/A		
STABILISED		IN I	LAB				
WITH		ON S	SITE		Neat		
	TEST T	YPE			IND - CBR		
	SAMPLE	D BY			Roadlab		
SAM	PLED ACCO	D BY			KOadiab Clients Requirements		
ENVIR	ONMENTA	LCONDITION			chents Requirements		
	WHEN SAM	APLED			Sunny		
D	FMAPKC 0	NOTES			None		
K					None		
TECTED DV	T-11 - 1 1	Dahalan?			CAMPING METHOR		AS DED CLIENT
IESTED BY :	jaduiani &	KaDelani			SAMPLING METHUD:		TMU A10h Trovice 66002
RUAD / AREA TESTED :	Constantia	Street			TEST METHOD :		1 MIL ATOD- HOXIEF 66993
LAYER TESTED :					DATE TESTED :		2018-05-11
TRACK NO:					WEATHER CONDITIONS:		Hot
TEST	DEPTH	FIELD DENS	ITY(kg/m3)	FIELD	AASHTC	TMH A7	*RELATIVE
POSITION	TESTED	WET DENSITY	DRY DENSITY	MOISTURE(%)	MDD(kg/m ³)	OMC(%)	COMPACTION(%)
					AVEDACE O	ΟΜΡΑCTION	
					AVERAGE C		I
				MOICTUDE	CONTENT		
CAMPLE NO	HOLD		//PD	MUISTURE	UUNIENI		
SAMPLE NO	HULE	LAY	EK	% MUISTURE	TIN	I NU	
# MOD SAMPLE TAKEN AT	THIS POI	NT / PREVIOUS	AVER TESTED F	OR MOD			

Accreditation No.: T0296

RL-S-150-01

2004/01/28

207 Retfontein 8 dd PO 8 Tek n11 80

3/07 • VAT No. 466011588

Established 1965

HEAD OFFICE 207 Rietfontein Rd Primose Germiston 1401 P O Box 1476 Germiston 1400 Tel: 011 828 0279 Fax: 011 828 0273 E-mail: info@roadab.co.za www.roadlab.co.za

9.7 Appendix G: Test Pits Profile

9.7.1 Roadway Trial Logs (Test Pit 01 to Test Pit 05)

dlov Mes inerd	vu Engineering solite Crescent ,En dale, 1830 nesburg	Tech nerdal	niks e Ext	Pty Ltd 5	PROJEC	T: Con	stantion Street - Up	grad	e						DAT Dril Prej	TE: 20 1: TPO pareo)18/06)1 1 by:	/12 4 Wata				GE Elev Loca	OTEC vation: ation:	HNI 165 Cons	(CAL i4 stantia	BOR	REHC	DLE LO	DG H, Ken	npton	Park	ТР	D1
pth	Technical log & Sampling	le		Soil Description	on	Depth	Standard Penetration Test	Grai	in size	analys	is	At	terber	g lim.	Pł	nysical	Charao	teristics		Vane Te	st	Shea	r Test	Т	riaxial	Compr	ession	Test		1D Cor	solidatio	n Test	De
,		Ground water tab	Stratigraphy		Classification	(m)	Blows N (blows/30cm) per 15cm 0 10 20 30 40 5	Gravel	Sand	Fines < 76 µm	Ciay < 2 µm % Organics	& Liauit limit	A Plastic limit	H Plasticity index	& Water content	Bulk density	© Dry density O Spec. density	e Void ratio	🕉 Saturat. degree	Ca Ca	e Strength (kPa)	phi' deg	c' kPa	Test type	phi deg	c kPa	phi' deg	c' kPa	Cc	Cs	Cv cm²/s	M Po MPa kP	c 2a (I
	1. D 2. D		and the second	Asphalt Surfacing (AC) BTB (19mm stone) Grey Olive Silty Sandy Gravel (Crushed Stone Gravel)	-																		- and		ALL A		Part of		900		3		「
	3. D		1 100					38.0	35.0	10.0 8	.0 0.0	0		0.0										•	Sector .				100				
	4. D		「「「「「「「」」	Yellow Orange Brown S Sandy Gravel	ilty -	_																				A STATE			and and				
	5. D		4 9 6 TOT - 4	Crusher run gravel , im Dark Red Orange, Clay	ported -	_																									A AVA		
	6.0			Sandy Gravei (diamicut	e)	_																											
	6.0					1																											
			-			-																											
B	1.20 m : End o REVIATIONS Visturbed core barel ry core barrel samp	f boreho sample	e	g: gd:	Bulk densit	y (kN/m y (kN/m] }	CU: UU:	Conso	lidated	samp red sar	ole, ur	draine	d load	ing co	nditior	is	.II.		I		ـــــــــــــــــــــــــــــــــــــ	bhi', c': f Cc, Cs: C	Frictio	n angle	e, cohe	sion (e	ffective g, unload	values)	I	II	I	Scale

Ndlov 23 Me Ennero Johan	vu E solite dale, nesbu	ngin Cres 1830 urg	eerin cent ,	ig Te Ennei	e chr rdale	e Ext	Pty Lt 5	d	PR	DJEC	T: Coi	nsta	antio	on S	tree	t - Up	grad	le							0 0 9	DAT Drill Prep	E: 20 : TP(018/0 02 d by	06/1 : M	2 Wata	a				E	GEO Elevat	TECH tion: ion: (INIC 1654 Consta	CAL I	BOR Street	EHO	LE L i	OG	mpton	n Park	(ТР	02	.)
Depth	Te	chnic	al log			1	Soi	l Descrip	otion	T	Depti	h S	Stand	ard I	enet	ation	Gra	in siz	e ana	alysis	•	Att	erbe	rg lin		Ph	ysica	I Cha	racte	ristic	s	Var	ne Tes	t	s	Shear 1	Test	Tria	xial C	ompre	ssion '	Test	1	1D Co	onsolic	lation	Test		Depth
(m)	8	Samı	pling		Ground water table	Stratigraphy	& (lassifica	ation	Classification	(m)	Blor	ws 15cm	N 0 10	(blows/ 20	30cm) 10 40 5	Gravel	Sand	Fines < 76 µm	Clay < 2 µm	% Organics	A Liquit limit	A Plastic limit	E Plasticity index		Water content	o Bulk density	G Dry density	o Spec. density	Noid ratio	Saturat. degree	Cu	C (remoulded)	e Strength (kPa)	, pd	ohi' leg	c' kPa	Test type	phi deg	c kPa	phi' deg	c' kPa	Cc	Cs	C	v 1 ²/s M	M Pa k	Pc	(m)
1			1. D 2. D 3. D 4. D		「「「「「「「「」」」「「」」」「「」」」「「「」」」「「」」」」「「」」」「「」」」「」」」「」」」」		40mm A a 13.2 m Light Brc Base Lay 130mm G Dark Rec Sandy G	sphalt Surfa m Cape See m Cape See Cark Brown avel I Orange, C avel (diami	icing over 3Gravel Gravey Clayey Alayey (clite)	-																																							-
ABE D: C C: D U: U N: S	BREVI Distur Dry co Jndist Split s	ATION bed co re bar urbed poon s	NS ore bar rel sar I static sample	rel sa mple onary e	mple doub	e tul	oe samı	ble C	g: Bulk d gd: Dry d G: Speci Cu - Cu,i qu: Uncc	density density fic der r: Under onfine	/ (kN/n / (kN/n isity (k ained d comp	m ³) m ³) (N/m strer press	n ³) ngth ion si	form	vst (kPa) Ya)	CU UU CU CD phi	Cons Uncc PP: Co Cons , c: Fr	iolida onsol onsol iolida ictior	ited s idate idate ited s n ang	ampl d san d san ampl le, co	e, uno iple, i iple, dra e, dra hesio	drain undra undra ained on (to	ed loa ained ained loadi otal va	ading load load ng co	g con ling c ing c ondit	dition condition conditions	ns tions tions	with	pore	pres	sure i	measu	iremei	nts	phi Cc, Cv: M: Pc:	i', c': Fr , Cs: Co : Conso Compr : Effect	iction mpres lidatio ession ive pre	angle, sion ir n coel modu conso	cohes ndex (l fficient llus lidatio	ion (ef oading n stres	fective , unloa	values ding))				Scale	d to fit

Sechar Lalor Soli Description Depth Solid Accordance Construction Value	TP03	ark	npton I	IG I, Kem	LO AH,	nona A	EHO	BOR Stree	AL antia	NICA 654 Instar	CHN 1: 16 : Cor	DTEC ation tion:	GEC Eleva Loca					ata	5/12 M W	18/00 3 I by:	E: 20	DAT Drill Prep							de	grad	- Up	Street	tion	stan	: Con	JECT	PROJ	ty Ltd	iks F Ext 5	erdale	ering ent ,Enn	Cresce 1830 Irg	dale, 1 nesbu	23 Me Enner Johan
(m) (tion Test	olidatio	1D Con	1		Test	ession	Compre	xial C	Triax		Test	Shear		est	ane Te	V	tics	cteris	Chara	ysica	Ph	lim.	berg	Atte		alysis	ze an	ain siz	Gra	tion	Penetra est	ndard T	Sta	Depth		on	Soil Descriptio		le	log ng	chnical Sampli	Tec &	Depth
Image: Second	M Pc s MPa kPa	Cv cm²/s	Cs	Cc	, Pa	c' kPa	phi' deg	c kPa	phi deg	pl de	Test type	c' kPa	phi' deg	e Strength (kPa)	(remoulded)		10	Saturat. degree	er open unisity	Dry density	o Bulk density	& Water content	E Plasticity index	A Plastic limit	🖌 Liquit limit	% Organics	Clay < 2 µm	Fines < 76 µm	Sand	Gravel	0cm) 40 50	(blows/30 0 20 30	m 0 1	Blows per 15c	(m)	Classification			Stratigraphy	Ground water tab		0.		(m)
							20																												-	-	ry ine	Omm AC surfacing age racked Omm Surfacing or Bitu reated Base 20mm Dark Brown Cla andy Gravel Park Red Orange Clayey andy Gravel (diamictite odules)						
																																			1									1

Ndlov 23 Mes Ennerd Johann	/u Eng solite C lale, 18 nesburg	jineerin rescent ,E 30	g Teo Ennero	:hnik lale Ex	y Ltd	PRO	ROJECT: Constantion Street - Upgrade													DATE: 2018/06/12 Drill: TP04 Prepared by: M Wata										OTE vation ation	CHN n: 16 : Cor	i ICAL 54 nstanti	npton	on Park			1																	
Depth Technical log Soil Description							otion		Depth	h	Standa	ard Pe	netrati	Grain size analysis Atterberg li					lim.	Physical Characteristics						Van	e Test	Test		Shear Test		Triaxial Compression Test					1D Consolidation			Test De														
(m)	& Si	Sampling of & Classificati		& Classificatio		& Classificatio		& Classificati		& Classificati		& Classificati		& Classification		& Classification		Classification	(m)	Bic	ows 15cm	N (b)	t lows/30cn 20 30 4	n) 10 50	Gravel	Sand	Fines < 76 µm	Clay < 2 µm	% Organics	A Liquit limit	E Plastic limit	E Plasticity index	& Water content	a Bulk density	🛱 Dry density	a Spec. density	A Void ratio	Saturat. degree	Cu	C (remoulded)	e Strength (kPa)	phi' deg	c' kPa	Test type	phi deg	c kPa	phi' deg	c' kPa	Cc	Cs	Cv cm²/s	M MPa	Pc kPa	(m)
1					Sor Sor Sor Yell Sar Dat Silt (dia	nm Asphalt Overl	lay Clayey n Silty Slack,																<u>w</u> 70	9	90																													
		1.20 m : End	of bore	hole.			****	l																						l							I						Sci	aled to fit										
ABB D: D C: D U: U N: S	1.20 m : End of borehole. ABBREVIATIONS D: Disturbed core barel sample g: Bulk density (kN/m³) CU: Ci gd: Dry density (kN/m³) C: Dry core barrel sample g: Specific density (kN/m³) UU: U U: Undisturbed stationary double tube sample G: Specific density (kN/m³) CU: Ci CU: Ci gd: Dry density (kN/m³) N: Split spoon sample CU: Ci CU: Ci gu: Unconfined compression strength (kPa) CD: Ci phi, ci													Consolidated sample, undrained loading conditions phi', c': Frict Unconsolidated sample, undrained loading conditions Cc, Cs: Com P: Consolidated sample, undrained loading conditions with pore pressure measurements Consolidated sample, rained loading conditions C: Friction angle, cohesion (total values) Pc: Effective												: Friction angle, cohesion (effective values) : Compression index (loading, unloading) insolidation coefficient mpression modulus ective preconsolidation stress																												

Ndlovu Engineering Techniks Pty Ltd g 23 Mesolite Crescent ,Ennerdale Ext 5 Ennerdale, 1830 Johannesburg Johannesburg									PROJECT: Constantion Street - Upgrade													E: 20	018/0 05 d bv	06/12 : M V	Vata					GE Elev	OTE vation	CHN n: 16 : Cor	i ICAL 54	BOF	og H. Kei)G H. Kempton Park			TP05			
Depth Technical log Soil Descripti							on	-	Depth	Sta	ndard Penetration	rain size analysis Atterberg lim.								Physical Characteristics Vane Test									Shea	r Test		Triaxial Compression Test					1D Consolidati			on Test D		
(m)	& Sampling and the second seco			Andenfasence	& Classificati	on	Classification	(m)	Blows per 15c	Gravel	Sand	Fines < 76 µm	Clay < 2 µm	% Organics	S Liquit limit	Elastic limit	I Discricity index		% Water content	Bulk density	B Dry density	a Spec. density	a Void ratio	Saturat. degree	Cu	c (remoulded)	e Strength (kPa)	phi' deg	c' kPa	Test type	phi	ckPa	phi' dea	c' kPa	Cc	Cs	Cv cm²/s	M	Pc kPa	(m)		
						Somm Asphait surfacin 100mm Slurry Bound Macadam Silghtly Moist, Dark Brr Medium Dense, Intact, Sandy Gravel with few Coblies (Sandstone) - mported Light Orange Brown Cl Sandy Gravel Dark Red Speckled Bla Dark Red Speckled Bla Dark Red Speckled Bla Dark Red Speckled Bla	ng Chayey	-	<u>(m)</u>	per 15c											1%	g	gd	G	ess	ir%o	Cu		qu	deg						kPa					kPa	
1.00 m : End of borehole. ABBREVIATIONS D: Disturbed core barel sample C: Dry core barrel sample U: Undisturbed stationary double tube sample N: Split spoon sample											h form VST (kPa) strength (kPa)	CU UU CU ph	: Con PP: C PP: C : Con i, c: Fi	solida onsol onsol solida rictio	ated s idate idate ated s n ang	sampi d san d san sampi le, co	e, uno iple, i iple, i e, dra hesio	drain undra ined n (to	ained ained ained I load otal vi	adin load load ing c alues	g cor ding c ding c condi s)	ndition condition conditions	ns ions ions	with p	ore p	ress	ure m	easure	ement	s	phi', c' Cc, Cs: Cv: Co M: Cor Pc: Eff	Frict Comp nsolid nprese	ion angl pression ation co sion moo precons	e, cohe index (efficier Julus solidati	sion (el loading it on stres	ffective g, unloa ss	values ding))			Sc	aled to fit

9.7.2 Test Pit Profile Photos for TP6 to TP 16 (Road Reserve)

TP08: 26° 6'9.27"S 28°15'54.75"E

TP09: 26° 6'8.50"S 28°15'55.26"E

TP12: 26° 6'18.35"S 28°16'2.84"E

TP13: 26° 6'30.49"S 28°16'11.60"E

TP10: 26° 6'11.19"S 28°15'56.48"E

TP11: 26° 6'13.41"S 28°15'58.97"E

TP14: 26° 6'37.64"S 28°16'17.25"E

TP15: 26° 6'46.26"S 28°16'24.29"E

TP16: 26° 6'45.63"S 28°16'25.22"E (outside road reserve – in a private property)