Traffic Highlights of Site: Coega I/C (1448)	
Site No	1448
Site Name	Coega I/C
Site Description	Eastern Side of Neptune Rd/Ngcura Harbour I/C
Road Description	Route: N002 Section: 11E Distance: 48.716 km
GPS Position	Latitude: -33.792488 Longitude: 25.659491
Number of Lanes	8
Station Type	Permanent Piezo
D (101 D : 1	04 L 0040 04 D 0040
Requested Data Period	01 Jan 2019 - 31 Dec 2019
First and Last Data Dates	01 Jan 2019 - 31 Oct 2019
Data Available for Requested Period as Percentage	83%
Last Full Day Count for ADT and ADTT	31 Oct 2019
Number of Full Days in Requested Period	304

Hig	hlights per Stream	Str 1: On-ramp from Coega IDZ	Str 2: CD Road from Ngcura Harbour	Str 3: To Grahamstown	Str 4: To Port Elizabeth	
1.1	Total Number of Vehicles	29,479	24,497	1,634,367	1,611,619	26,488
1.2	Average Daily Traffic	97	81	5,376	5,301	87
1.3	Average Daily Truck Traffic (ADTT)	26	55	1,051	1,007	23
1.4	Percentage of Trucks	26.9 %	67.9 %	19.5 %	19.0 %	26.6 %
1.5	Truck Split % (Short : Medium : Long)	11 : 6 : 83	11 : 20 : 69	23 : 12 : 65	24 : 13 : 63	24 : 11 : 65
1.6	Percentage of Night Traffic [20h00 - 6h00)	13.8 %	28.9 %	14.1 %	13.1 %	17.1 %
2.1	Speed Limit					
2.2	Average Speed (km/hr)	75.4	75.7	108.0	108.4	88.5
2.3	Average Speed - Light Vehicles (km/hr	78.0	85.0	112.7	113.1	93.2
2.4	Average Speed - Heavy Vehicles (km/hr)	68.6	70.9	89.8	87.9	76.7
2.5	Average Night Speed (km/hr)	75.4	72.2	104.5	103.1	82.8
2.6	15th Centile Speed (km/hr)	59.8	60.5	85.4	83.5	67.8
2.7	85th Centile Speed (km/hr)	92.9	89.7	125.6	126.8	113.2
2.8	Percentage of Vehicles in Excess of Speed Limit	31.5 %	31.5 %	42.4 %	42.8 %	36.6 %
3.1	Percentage Vehicles in Flows Over 600 (vehs/hr)	0 %	0 %	3.0 %	3.1 %	0 %
3.2	Percentage of Vehicles less than 2s behind vehicle ahead	0 %	0 %	0 %	0 %	0 %

Station Information

Site Identifier	1448	Site Number	1448
Site Name	Coega I/C		
Site Description	Eastern Side of Neptune Rd/Ngcura Harbour I/C		
Site Type	Permanent Piezo	Owner	SANRAL
Physical Lanes	8	Responsibility	NON-TOLL
Logical Lanes	8	Installation Date	2012-06-15
GPS Longitude	25.659491	Termination Date	
GPS Lattitude	-33.792488	Status	In Use
Region	South	Companion Site	
Road	N002	Speed Limit	120
Route	N002	Count Type	Normal Traffic Counting Station
Section	11	Distance	48.7160

Lane No	Lane Description	Stream No	Stream Description	Direction	Reverse Lane No	Pos
1	On Ramp from Coega IDZ	1	To Grahamstown	East	0	1
2	CD Road from Ngcura Harbour	1	To Grahamstown	East	0	2
3	Slow to Grahamstown	1	To Grahamstown	East	0	3
4	Fast to Grahamstown	1	To Grahamstown	East	0	4
5	Fast to Port Elizabeth	2	To Port Elizabeth	West	0	4
6	Slow to Port Elizabeth	2	To Port Elizabeth	West	0	3
7	CD Road to Ngcura Harbour	2	To Port Elizabeth	West	0	2
8	Off Ramp from Coega IDZ	2	To Port Elizabeth	West	0	1

Station Traffic Highlights Traffic Highlights of Site 1448 Site Identifier 1448 1.1 1.2 Site Name Coega I/C 1.3 Site Description Eastern Side of Neptune Rd/Ngcura Harbour I/C 1.4 Road Description Route: N002 Section: 11 Distance: 48.7160 km **GPS** Position -33.792488 25.659491 1.5 1.6 Number of Lanes Permanent Piezo 1.7 Station Type 1.8 Requested Period 01 Jan 2014 - 31 Dec 2014 Length of Records Requested (hours) 8.760 1.9 1.10 Actual First & Last Dates 01 Jan 2014 - 31 Dec 2014 1.11 Actual Available Data (hours) 8,554 1.12 Percentage Data Available for Requested Period 97.6% To Port Elizabeth To Grahamstown Total 2.1 Total Number of Vehicles 1,784,374 1,790,819 3,575,193 2.2 Average Daily Traffic (ADT) 5.006 5.024 10.030 2.3 Average Daily Truck Traffic (ADTT) 845 870 1,714 2.4 Percentage of Trucks 16.9% 17.3% 17.1% Truck Split % (short:medium:long) 29:18:53 29:19:52 2.5 30:19:51 2.6 Percentage of Night Traffic [20h00 - 6h00) 12.7% 13.2% 12.9% Speed Limit (km/hr) 120 3.1 3.2 Average Speed (km/hr) 97.5 96.3 96.9 101.4 Average Speed - Light Vehicles (km/hr) 102.8 102.1 3.3 Average Speed - Heavy Vehcles (km/hr) 3.4 84.8 86.5 85.6 3.5 Average Night Speed (km/hr) 98.7 99.7 99.2 15th Centile Speed (km/hr) 86.4 85.3 85.9 3.6 3.7 85th Centile Speed (km/hr) 108.9 107.7 108.3 13.8% 13.3% 13.6% 3.8 Percentage of Vehicles in Excess of Speed Limit 4.1 Percentage Vehicles in Flows Over 600 (vehs/hr) 2.1% 2.0% 55.9% 4.2 Highest Volume on the Road (vehs/hr) 17 Apr 2014 (15:00 - 16:00) 1439 13 Jul 2014 (17:00 - 18:00) 4.3 Highest Volume in the West (vehs/hr) 848 4.4 Highest Volume in the East (vehs/hr) 17 Apr 2014 (15:00 - 16:00) 795 4.5 Highest Volume in a Lane (vehs/hr) 13 Jul 2014 (17:00 - 18:00) 488 4.6 15th Highest Volume on the Road (vehs/hr) 13 Jun 2014 (15:00 - 16:00) 1.229 4.7 15th Highest Volume in the West Direction (vehs/hr) 17 Apr 2014 (17:00 - 18:00) 680 4.8 15th Highest Volume in the East Direction (vehs/hr) 03 Oct 2014 (14:00 - 15:00) 655 4.9 30th Highest Volume on the Road (vehs/hr) 05 Dec 2014 (15:00 - 16:00) 1,168 11 Dec 2014 (17:00 - 18:00) 652 4.10 30th Highest Volume in the West Direction (vehs/hr) 13 Jun 2014 (16:00 - 17:00) 4.11 30th Highest Volume in the East Direction (vehs/hr) 626 5.1 Percentage of Vehicles less than 2s behind vehicle ahead 6.2% 4.8% 5.5% Total Number of Heavy Vehicles 301.040 309.989 611.029 6.1 6.2 Estimated Average Number of axles per Truck 5.1 5.2 5.2 30.0 6.3 Estimated Truck Mass (Ton/Truck) 29.6 29.8

ANNEXURE D
Employment and
Person Trips
Expected per
Development
Scenario

Employment and Person Trips expected per Development Scenario

		50% CDA			100% CDA			100%IDZ	
ZONES	Net Land Area (m²)	Employment Opportunities	Person Trips	Net Land Area (m²)	Employment Opportunities	Person trips	Net Land Area (m²)	Employment Opportunities	Person trips
Zone 1 A	17,292	954	804	365,769	4461	3676	365,769	4461	3676
Zone 1 B	206,698	1928	1620	238,782	1928	1620	238,782	1928	1620
Zone 1 C	127,757	760	617	258,200	1520	1238	258,200	1520	1238
Zone 1 D	12,532	269	218	350,828	2112	1843	350,828	2112	1843
Zone 1 E	58,263	353	282	205,322	1244	995	205,322	1244	995
Zone 1 F	80,352	1507	1223	352,899	2034	1667	352,899	2034	1667
Zone 1 G	209,029	1341	1083	367,891	2477	2040	367,891	2477	2040
Zone 1 H	178,053	2356	1886	285,190	3447	2433	285,190	3447	2433
Zone 2 A	317,836	100	60	399,172	1118	930	399,172	1118	930
Zone 2 B	0	0	0	271,522	1988	1632	271,522	1988	1632
Zone 2 C	363,364	1436	1196	363,364	1436	1196	363,364	1436	1196
Zone 2 D	258,307	989	826	319,975	2748	2309	319,975	2748	2309
Zone 2 E	0	100	100	533,363	1853	1152	533,363	1853	1152
Zone 3 A	288,614	1894	1161	527,750	3649	2417	527,750	3649	2417
Zone 3 B	392,644	1303	785	392,644	1222	785	392,644	1222	785
Zone 3 C	232,811	681	453	383,054	1678	1407	383,054	1678	1407
Zone 4 A	0	0	0	417,834	1263	3494	417,834	1263	3494
Zone 4 B	0	0	0	138,744	1258	1412	138,744	1258	1412
Zone 4 C	0	0	0	362,485	1847	3825	362,485	1847	3825
Zone 4 D	0	0	0	127,819	579	349	127,819	579	349
Zone 5 A	2,000,372	800	480	2,000,372	800	480	2,000,372	800	480
Zone 5 B	496,706	700	420	892,273	2145	1476	892,273	2145	1476
Zone 5 C	0	0	0	185,486	840	506	185,486	840	506
Zone 5 D	55,205	417	251	325,112	1355	816	325,112	1355	816
Zone 5 E	28,614	130	78	327,116	1702	1086	327,116	1702	1086
Zone 6 A	1,711,825	720	432	1,711,825	760	456	1,711,825	760	456
Zone 6 B	1,439,765	1931	1495	1,439,765	1931	1495	1,439,765	1931	1495
Zone 6 C	3,011,052	800	480	3,011,052	800	480	3,011,052	800	480
Zone 6 D	2,549,792	2000	1200	2,549,792	2000	1200	2,549,792	2000	1200
Zone 6 E	862,614	2412	1830	862,614	2412	1830	862,614	2412	1830
Zone 7 A	0	0	0	0	0	0	3,457,983	20955	16764
Zone 7 B	0	0	0	0	0	0	3,303,535	20019	16016
Zone 8 Port	8,333,431	4467	2482	8,333,431	3896	2482	8,333,431	3896	2482
Zone 9 A	1,489,703	9078	7262	1,489,703	9078	7272	1,489,703	9078	7272
Zone 10 A	0	0	0	0	0	0	1,585,416	9608	7686
Zone 10 B	0	0	0	0	0	0	966,485	5857	4686
Zone 11 A	0	0	0	0	0	0	2,501,176	8577	6862
Zone 11 B	0	0	0	0	0	0	5,521,972	20728	16582
Zone 11 C	0	0	0	0	0	0	2,631,119	8946	7157
Zone 12 A	0	0	0	0	0	0	1,853,586	6302	5042
Zone 12 B	0	0	0	0	0	0	4,815,857	16374	13099
Zone 13 A	0	0	0	0	0	0	539,831	1835	1468
Zone 13 B	0	0	0	0	0	0	321,107	1455	877
Zone 13 C	0	0	0	0	0	0	753,611	3414	2057
Zone 14 A	0	0	0	0	0	0	6,592,691	1735	1066
Totals	24,722,632	39,426	28,723	29,791,147	67,581	55,999	64,635,517	193,386	155,360

ANNEXURE E 2030 Link Peak Hour Traffic Volumes ANNEXURE F
SIDRA Output
Sheets – 2020
Existing

o Site: 01 [[01] 01 AM ND (Site Folder: [01] 2020 Before Development)]

■■ Network: N101 [2020 AM Before Development (Network Folder: Before Development)]

Traffic Impact Assessment for the Proposed Gas Distribution Facility - Coega SEZ Zone 10 2020 Before Development Site Category: (None) Stop (Two-Way)

Vehic	cle Mo	vement	Perfor	manc	е									
Mov ID	Turn	DEM/ FLO\ [Total veh/h		ARR FLO [Tota veh/h	WS I HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service		E BACK OF EUE Dist] m	Prop. Que	Effective A Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Coeg	a Ring Ro	oad											
2	T1	18	29.4	18	29.4	0.011	0.0	LOS A	0.0	0.0	0.02	0.04	0.02	59.3
3	R2	11	0.0	1	0.0	0.011	5.8	LOS A	0.0	0.0	0.02	0.04	0.02	56.2
Appro	oach	19	27.8	19	27.8	0.011	0.3	NA	0.0	0.0	0.02	0.04	0.02	59.2
North	: Coega	a Ring Ro	ad											
7	L2	29	17.9	29	17.9	0.031	5.8	LOS A	0.0	0.0	0.00	0.35	0.00	54.3
8	T1	20	36.8	20	36.8	0.031	0.0	LOS A	0.0	0.0	0.00	0.35	0.00	53.6
Appro	oach	49	25.5	49	25.5	0.031	3.4	NA	0.0	0.0	0.00	0.35	0.00	54.2
West	N2 Ea	stbound (Offramp											
10	L2	24	8.7	24	8.7	0.048	8.5	LOS A	0.1	0.5	0.09	0.95	0.09	51.6
12	R2	27	15.4	27	15.4	0.048	8.3	LOS A	0.1	0.5	0.09	0.95	0.09	47.9
Appro	oach	52	12.2	52	12.2	0.048	8.4	LOS A	0.1	0.5	0.09	0.95	0.09	50.2
All Ve	hicles	120	20.2	120	20.2	0.048	5.1	NA	0.1	0.5	0.04	0.56	0.04	53.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ENGINEERING ADVICE & SERVICES | Licence: NETWORK / 1PC | Processed: Wednesday, 05 August 2020 16:57:28

Project: F:\1700-1799\1768\Design\SIDRA\Zone 10 - Vehicle Distribution\SIDRA.sip9

Site: 01 [[01] 01 PM ND (Site Folder: [01] 2020 Before

Development)]

■■ Network: N101 [2020 PM Before Development (Network Folder: Before Development)]

Traffic Impact Assessment for the Proposed Gas Distribution Facility - Coega SEZ Zone 10 2020 Before Development Site Category: (None) Stop (Two-Way)

Vehic	cle Mo	vement l	Perfor	mance)									
Mov ID	Turn	DEMA FLO\ [Total veh/h		ARRI FLO [Total veh/h	WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service		E BACK OF EUE Dist] m	Prop. Que	Effective A Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	: Coeg	a Ring Ro	ad											
2	T1	26	0.0	26	0.0	0.014	0.0	LOS A	0.0	0.0	0.01	0.03	0.01	59.7
3	R2	1	0.0	1	0.0	0.014	5.7	LOS A	0.0	0.0	0.01	0.03	0.01	56.5
Appro	ach	27	0.0	27	0.0	0.014	0.2	NA	0.0	0.0	0.01	0.03	0.01	59.5
North	: Coega	a Ring Ro	ad											
7	L2	13	0.0	13	0.0	0.014	5.5	LOS A	0.0	0.0	0.00	0.27	0.00	56.1
8	T1	15	0.0	15	0.0	0.014	0.0	LOS A	0.0	0.0	0.00	0.27	0.00	55.4
Appro	ach	27	0.0	27	0.0	0.014	2.6	NA	0.0	0.0	0.00	0.27	0.00	55.8
West:	N2 Ea	stbound C	Offramp											
10	L2	5	0.0	5	0.0	0.016	8.1	LOS A	0.0	0.1	0.10	0.92	0.10	52.0
12	R2	12	0.0	12	0.0	0.016	7.7	LOS A	0.0	0.1	0.10	0.92	0.10	48.0
Appro	ach	17	0.0	17	0.0	0.016	7.8	LOSA	0.0	0.1	0.10	0.92	0.10	49.8
All Ve	hicles	72	0.0	72	0.0	0.016	2.9	NA	0.0	0.1	0.03	0.33	0.03	55.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ENGINEERING ADVICE & SERVICES | Licence: NETWORK / 1PC | Processed: Wednesday, 05 August 2020 16:57:33

Project: F:\1700-1799\1768\Design\SIDRA\Zone 10 - Vehicle Distribution\SIDRA.sip9

o Site: 02 [[01] 02 AM ND (Site Folder: [01] 2020 Before

Development)]

■■ Network: N101 [2020 AM Before Development (Network Folder: Before Development)]

Traffic Impact Assessment for the Proposed Gas Distribution Facility - Coega SEZ Zone 10 2020 Before Development Site Category: (None) Stop (Two-Way)

Vehic	cle Mo	vement	Perfor	manc	е									
Mov ID	Turn	DEM/ FLO\ [Total veh/h		ARR FLC [Tota veh/h	WS I HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service		E BACK OF EUE Dist] m	Prop. Que	Effective A Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	: Coeg	a Ring Ro	ad											
7	L2	15	78.6	15	78.6	0.015	6.5	LOS A	0.0	0.0	0.00	0.44	0.00	52.4
8	T1	4	25.0	4	25.0	0.015	0.0	LOS A	0.0	0.0	0.00	0.44	0.00	55.0
Appro	ach	19	66.7	19	66.7	0.015	5.0	NA	0.0	0.0	0.00	0.44	0.00	52.7
East:	N2 We	stbound (Offramp											
10	L2	1	100.0	1	100. 0	0.017	12.6	LOS B	0.0	0.2	0.16	0.93	0.16	47.9
12	R2	13	33.3	13	33.3	0.017	9.0	LOS A	0.0	0.2	0.16	0.93	0.16	47.5
Appro	ach	14	38.5	14	38.5	0.017	9.3	LOS A	0.0	0.2	0.16	0.93	0.16	47.5
North	: Coega	a Ring Ro	ad											
2	T1	40	28.9	40	28.9	0.030	0.0	LOS A	0.0	0.2	0.04	0.11	0.04	58.5
3	R2	8	25.0	8	25.0	0.030	6.1	LOS A	0.0	0.2	0.04	0.11	0.04	53.8
Appro	ach	48	28.3	48	28.3	0.030	1.1	NA	0.0	0.2	0.04	0.11	0.04	57.6
All Ve	hicles	81	39.0	81	39.0	0.030	3.4	NA	0.0	0.2	0.05	0.33	0.05	54.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ENGINEERING ADVICE & SERVICES | Licence: NETWORK / 1PC | Processed: Wednesday, 05 August 2020 16:57:28

Project: F:\1700-1799\1768\Design\SIDRA\Zone 10 - Vehicle Distribution\SIDRA.sip9

o Site: 02 [[01] 02 PM ND (Site Folder: [01] 2020 Before

Development)]

■■ Network: N101 [2020 PM Before Development (Network Folder: Before Development)]

Traffic Impact Assessment for the Proposed Gas Distribution Facility - Coega SEZ Zone 10 2020 Before Development Site Category: (None) Stop (Two-Way)

Vehic	cle Mo	vement	Perfor	mance)									
Mov ID	Turn	DEMA FLO\ [Total veh/h		ARRI FLO [Total veh/h	WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service		E BACK OF EUE Dist] m	Prop. Que	Effective A Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	: Coega	a Ring Ro	ad											
7	L2	31	0.0	31	0.0	0.025	5.5	LOS A	0.0	0.0	0.00	0.38	0.00	55.2
8	T1	17	0.0	17	0.0	0.025	0.0	LOS A	0.0	0.0	0.00	0.38	0.00	53.8
Appro	ach	47	0.0	47	0.0	0.025	3.6	NA	0.0	0.0	0.00	0.38	0.00	54.9
East:	N2 We	stbound C	Offramp											
10	L2	1	0.0	1	0.0	0.039	8.1	LOS A	0.1	0.4	0.14	0.91	0.14	52.1
12	R2	37	0.0	37	0.0	0.039	7.8	LOS A	0.1	0.4	0.14	0.91	0.14	48.1
Appro	ach	38	0.0	38	0.0	0.039	7.8	LOSA	0.1	0.4	0.14	0.91	0.14	48.3
North	: Coega	a Ring Ro	ad											
2	T1	19	0.0	19	0.0	0.022	0.1	LOS A	0.0	0.3	0.11	0.31	0.11	56.0
3	R2	20	0.0	20	0.0	0.022	5.8	LOS A	0.0	0.3	0.11	0.31	0.11	53.2
Appro	ach	39	0.0	39	0.0	0.022	3.0	NA	0.0	0.3	0.11	0.31	0.11	54.5
All Ve	hicles	124	0.0	124	0.0	0.039	4.7	NA	0.1	0.4	0.08	0.52	0.08	53.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ENGINEERING ADVICE & SERVICES | Licence: NETWORK / 1PC | Processed: Wednesday, 05 August 2020 16:57:33

Project: F:\1700-1799\1768\Design\SIDRA\Zone 10 - Vehicle Distribution\SIDRA.sip9

ANNEXURE G
SIDRA Output
Sheets – 2020
Construction

© Site: 01 [[02] 01 AM CON (Site Folder: [02] 2020 Construction

Phase)]

■■ Network: N101 [2020 AM Construction Traffic (Network Folder: Construction)]

Traffic Impact Assessment for the Proposed Gas Distribution Facility - Coega SEZ Zone 10 2020 Construction Site Category: (None) Stop (Two-Way)

Vehic	cle Mo	vement l	Perfor	mance)									
Mov ID	Turn	DEMA FLO\ [Total veh/h		ARRI FLO [Total veh/h	WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service		BACK OF EUE Dist] m	Prop. Que	Effective A Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	: Coega	a Ring Ro	ad											
2	T1	18	0.0	18	0.0	0.016	0.1	LOS A	0.0	0.2	0.10	0.24	0.10	56.8
3	R2	12	0.0	12	0.0	0.016	5.8	LOS A	0.0	0.2	0.10	0.24	0.10	53.9
Appro	ach	29	0.0	29	0.0	0.016	2.3	NA	0.0	0.2	0.10	0.24	0.10	55.6
North	: Coega	a Ring Ro	ad											
7	L2	29	0.0	29	0.0	0.026	5.5	LOS A	0.0	0.0	0.00	0.35	0.00	55.4
8	T1	20	0.0	20	0.0	0.026	0.0	LOS A	0.0	0.0	0.00	0.35	0.00	54.2
Appro	ach	49	0.0	49	0.0	0.026	3.3	NA	0.0	0.0	0.00	0.35	0.00	55.1
West:	N2 Ea	stbound C	Offramp											
10	L2	24	0.0	24	0.0	0.280	8.1	LOS A	0.5	3.4	0.15	0.91	0.15	52.0
12	R2	257	0.0	257	0.0	0.280	7.8	LOS A	0.5	3.4	0.15	0.91	0.15	48.1
Appro	ach	281	0.0	281	0.0	0.280	7.8	LOSA	0.5	3.4	0.15	0.91	0.15	48.7
All Ve	hicles	360	0.0	360	0.0	0.280	6.8	NA	0.5	3.4	0.13	0.78	0.13	50.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ENGINEERING ADVICE & SERVICES | Licence: NETWORK / 1PC | Processed: Wednesday, 05 August 2020 16:57:37

Project: F:\1700-1799\1768\Design\SIDRA\Zone 10 - Vehicle Distribution\SIDRA.sip9

Site: 01 [[02] 01 PM CON (Site Folder: [02] 2020 Construction

Phase)]

■■ Network: N101 [2020 PM Construction Traffic (Network Folder: Construction)]

Traffic Impact Assessment for the Proposed Gas Distribution Facility - Coega SEZ Zone 10 2020 Construction Site Category: (None) Stop (Two-Way)

Vehic	cle Mo	vement l	Perfor	mance)									
Mov ID	Turn	DEMA FLO\ [Total veh/h		ARRI FLO [Total veh/h	WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service		BACK OF EUE Dist] m	Prop. Que	Effective A Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	: Coeg	a Ring Ro	ad											
2	T1	26	0.0	26	0.0	0.047	0.1	LOS A	0.1	0.6	0.09	0.42	0.09	54.9
3	R2	59	0.0	59	0.0	0.047	5.7	LOS A	0.1	0.6	0.09	0.42	0.09	52.3
Appro	ach	85	0.0	85	0.0	0.047	4.0	NA	0.1	0.6	0.09	0.42	0.09	53.1
North	: Coega	a Ring Ro	ad											
7	L2	13	0.0	13	0.0	0.014	5.5	LOS A	0.0	0.0	0.00	0.27	0.00	56.1
8	T1	15	0.0	15	0.0	0.014	0.0	LOS A	0.0	0.0	0.00	0.27	0.00	55.4
Appro	ach	27	0.0	27	0.0	0.014	2.6	NA	0.0	0.0	0.00	0.27	0.00	55.8
West:	N2 Ea	stbound C	Offramp											
10	L2	5	0.0	5	0.0	0.062	8.1	LOS A	0.1	0.6	0.17	0.91	0.17	51.9
12	R2	54	0.0	54	0.0	0.062	8.0	LOS A	0.1	0.6	0.17	0.91	0.17	47.9
Appro	ach	59	0.0	59	0.0	0.062	8.0	LOS A	0.1	0.6	0.17	0.91	0.17	48.5
All Ve	hicles	172	0.0	172	0.0	0.062	5.2	NA	0.1	0.6	0.10	0.56	0.10	52.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ENGINEERING ADVICE & SERVICES | Licence: NETWORK / 1PC | Processed: Wednesday, 05 August 2020 16:57:42

Project: F:\1700-1799\1768\Design\SIDRA\Zone 10 - Vehicle Distribution\SIDRA.sip9

Site: 02 [[02] 02 AM CON (Site Folder: [02] 2020 Construction

Phase)]

■■ Network: N101 [2020 AM Construction Traffic (Network Folder: Construction)]

Traffic Impact Assessment for the Proposed Gas Distribution Facility - Coega SEZ Zone 10 2020 Construction Site Category: (None) Stop (Two-Way)

Vehic	cle Mo	vement	Perfor	mance)									
Mov ID	Turn	DEMA FLO\ [Total veh/h		ARRI FLO [Total veh/h	WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service		E BACK OF EUE Dist] m	Prop. Que	Effective A Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	: Coeg	a Ring Ro	ad											
7	L2	57	0.0	57	0.0	0.038	5.5	LOS A	0.0	0.0	0.00	0.46	0.00	54.5
8	T1	15	0.0	15	0.0	0.038	0.0	LOS A	0.0	0.0	0.00	0.46	0.00	52.5
Appro	ach	72	0.0	72	0.0	0.038	4.4	NA	0.0	0.0	0.00	0.46	0.00	54.3
East:	N2 We	stbound C	Offramp											
10	L2	59	0.0	59	0.0	0.071	9.2	LOS A	0.1	0.8	0.37	0.88	0.37	51.4
12	R2	13	0.0	13	0.0	0.071	9.4	LOS A	0.1	0.8	0.37	0.88	0.37	47.1
Appro	ach	72	0.0	72	0.0	0.071	9.2	LOS A	0.1	8.0	0.37	0.88	0.37	51.0
North	: Coega	a Ring Ro	ad											
2	T1	269	0.0	269	0.0	0.143	0.0	LOS A	0.0	0.2	0.01	0.02	0.01	59.7
3	R2	8	0.0	8	0.0	0.143	5.9	LOS A	0.0	0.2	0.01	0.02	0.01	56.6
Appro	ach	278	0.0	278	0.0	0.143	0.2	NA	0.0	0.2	0.01	0.02	0.01	59.6
All Ve	hicles	421	0.0	421	0.0	0.143	2.4	NA	0.1	0.8	0.07	0.24	0.07	56.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ENGINEERING ADVICE & SERVICES | Licence: NETWORK / 1PC | Processed: Wednesday, 05 August 2020 16:57:37

Project: F:\1700-1799\1768\Design\SIDRA\Zone 10 - Vehicle Distribution\SIDRA.sip9

© Site: 02 [[02] 02 PM CON (Site Folder: [02] 2020 Construction

Phase)]

■■ Network: N101 [2020 PM Construction Traffic (Network Folder: Construction)]

Traffic Impact Assessment for the Proposed Gas Distribution Facility - Coega SEZ Zone 10 2020 Construction Site Category: (None) Stop (Two-Way)

Vehic	cle Mo	vement l	Perfor	mance)									
Mov ID	Turn	DEMA FLO\ [Total veh/h		ARRI FLO' [Total veh/h	WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service		BACK OF EUE Dist] m	Prop. Que	Effective A Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	: Coega	a Ring Ro	ad											
7	L2	260	0.0	260	0.0	0.178	5.6	LOS A	0.0	0.0	0.00	0.45	0.00	54.5
8	T1	75	0.0	75	0.0	0.178	0.0	LOS A	0.0	0.0	0.00	0.45	0.00	52.6
Appro	ach	335	0.0	335	0.0	0.178	4.3	NA	0.0	0.0	0.00	0.45	0.00	54.3
East:	N2 Wes	stbound C	Offramp											
10	L2	11	0.0	11	0.0	0.050	8.2	LOS A	0.1	0.5	0.21	0.90	0.21	51.8
12	R2	37	0.0	37	0.0	0.050	8.4	LOS A	0.1	0.5	0.21	0.90	0.21	47.6
Appro	ach	47	0.0	47	0.0	0.050	8.3	LOS A	0.1	0.5	0.21	0.90	0.21	49.1
North	: Coega	Ring Ro	ad											
2	T1	61	0.0	61	0.0	0.047	0.5	LOS A	0.1	0.4	0.22	0.16	0.22	57.1
3	R2	20	0.0	20	0.0	0.047	6.8	LOS A	0.1	0.4	0.22	0.16	0.22	54.2
Appro	ach	81	0.0	81	0.0	0.047	2.0	NA	0.1	0.4	0.22	0.16	0.22	56.4
All Ve	hicles	463	0.0	463	0.0	0.178	4.3	NA	0.1	0.5	0.06	0.45	0.06	54.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ENGINEERING ADVICE & SERVICES | Licence: NETWORK / 1PC | Processed: Wednesday, 05 August 2020 16:57:42

Project: F:\1700-1799\1768\Design\SIDRA\Zone 10 - Vehicle Distribution\SIDRA.sip9

ANNEXURE H
SIDRA Output
Sheets – 2030
Operations
Combined

Site: 01 [[03] 01 AM AD (Site Folder: [03] 2030 After Development)]

■■ Network: N101 [2030 AM After Development (Network Folder: After Development)]

Traffic Impact Assessment for the Proposed Liquid Natural Gas Power Station - Coega SEZ Zone 10 2030 After Development Site Category: (None) Stop (Two-Way)

Vehi	cle Mo	vement l	Perfor	mance)									
Mov ID	Turn	DEMA FLO\ [Total veh/h		ARRI FLO [Total veh/h	WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service		E BACK OF EUE Dist] m	Prop. Que	Effective A Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Coega	a Ring Ro	ad											
2	T1	224	0.0	224	0.0	0.120	0.0	LOSA	0.0	0.2	0.03	0.02	0.03	59.6
3	R2	7	0.0	7	0.0	0.120	6.6	LOSA	0.0	0.2	0.03	0.02	0.03	56.5
Appro	oach	232	0.0	232	0.0	0.120	0.3	NA	0.0	0.2	0.03	0.02	0.03	59.5
North	: Coega	Ring Ro	ad											
7	L2	37	0.0	37	0.0	0.129	5.6	LOSA	0.0	0.0	0.00	0.09	0.00	57.6
8	T1	214	0.0	214	0.0	0.129	0.0	LOSA	0.0	0.0	0.00	0.09	0.00	58.4
Appro	ach	251	0.0	251	0.0	0.129	0.8	NA	0.0	0.0	0.00	0.09	0.00	58.2
West	N2 Eas	stbound C	Offramp	1										
10	L2	120	0.0	120	0.0	0.323	9.4	LOS A	0.6	4.1	0.46	0.95	0.50	50.5
12	R2	133	0.0	133	0.0	0.323	11.8	LOS B	0.6	4.1	0.46	0.95	0.50	45.5
Appro	ach	253	0.0	253	0.0	0.323	10.6	LOS B	0.6	4.1	0.46	0.95	0.50	48.6
All Ve	hicles	735	0.0	735	0.0	0.323	4.0	NA	0.6	4.1	0.17	0.36	0.18	54.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ENGINEERING ADVICE & SERVICES | Licence: NETWORK / 1PC | Processed: Wednesday, 17 February 2021 12:32:04

Site: 01 [[03] 01 PM AD (Site Folder: [03] 2030 After Development)]

■■ Network: N101 [2030 PM After Development (Network Folder: After Development)]

Traffic Impact Assessment for the Proposed Liquid Natural Gas Power Station - Coega SEZ Zone 10 2030 After Development Site Category: (None) Stop (Two-Way)

Vehic	cle Mo	vement l	Perfor	mance)									
Mov ID	Turn	DEMA FLO\ [Total veh/h		ARRI FLO' [Total veh/h	WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service		BACK OF EUE Dist] m	Prop. Que	Effective A Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South: Coega Ring Road														
2	T1	238	0.0	238	0.0	0.132	0.1	LOSA	0.0	0.3	0.06	0.04	0.06	59.3
3	R2	14	0.0	14	0.0	0.132	6.8	LOSA	0.0	0.3	0.06	0.04	0.06	56.2
Appro	ach	252	0.0	252	0.0	0.132	0.5	NA	0.0	0.3	0.06	0.04	0.06	59.1
North	: Coega	Ring Ro	ad											
7	L2	23	0.0	23	0.0	0.158	5.6	LOSA	0.0	0.0	0.00	0.05	0.00	57.9
8	T1	284	0.0	284	0.0	0.158	0.0	LOSA	0.0	0.0	0.00	0.05	0.00	59.1
Appro	ach	307	0.0	307	0.0	0.158	0.5	NA	0.0	0.0	0.00	0.05	0.00	58.9
West:	N2 Eas	stbound C	Offramp											
10	L2	19	0.0	19	0.0	0.112	9.0	LOS A	0.2	1.1	0.46	0.94	0.46	50.2
12	R2	51	0.0	51	0.0	0.112	11.8	LOS B	0.2	1.1	0.46	0.94	0.46	45.0
Appro	oach	69	0.0	69	0.0	0.112	11.0	LOS B	0.2	1.1	0.46	0.94	0.46	47.1
All Ve	hicles	628	0.0	628	0.0	0.158	1.6	NA	0.2	1.1	0.07	0.14	0.07	57.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ENGINEERING ADVICE & SERVICES | Licence: NETWORK / 1PC | Processed: Wednesday, 17 February 2021 12:32:08

Site: 02 [[03] 02 AM AD (Site Folder: [03] 2030 After Development)]

■■ Network: N101 [2030 AM After Development (Network Folder: After Development)]

Traffic Impact Assessment for the Proposed Liquid Natural Gas Power Station - Coega SEZ Zone 10 2030 After Development Site Category: (None) Stop (Two-Way)

Vehic	Vehicle Movement Performance													
Mov ID	Turn	DEMA FLOV [Total veh/h		ARRI FLO	WS HV]	Deg. Satn	Aver. Delay	Level of Service	QU [Veh.	E BACK OF EUE Dist]	Prop. Que	Effective A Stop Rate	Aver. No. Cycles	Aver. Speed
veh/h % veh/h % v/c sec veh m km/h South: Coega Ring Road										km/h				
7	L2	57	0.0	57	0.0	0.037	5.5	LOSA	0.0	0.0	0.00	0.48	0.00	54.4
8	T1	12	0.0	12	0.0	0.037	0.0	LOSA	0.0	0.0	0.00	0.48	0.00	52.2
Appro	ach	68	0.0	68	0.0	0.037	4.6	NA	0.0	0.0	0.00	0.48	0.00	54.2
East:	N2 Wes	stbound C	Offramp											
10	L2	14	0.0	14	0.0	0.039	8.6	LOSA	0.1	0.4	0.27	0.88	0.27	51.7
12	R2	23	0.0	23	0.0	0.039	8.5	LOSA	0.1	0.4	0.27	0.88	0.27	47.6
Appro	ach	37	0.0	37	0.0	0.039	8.5	LOSA	0.1	0.4	0.27	0.88	0.27	49.7
North	: Coega	Ring Ro	ad											
2	T1	147	0.0	147	0.0	0.090	0.0	LOSA	0.1	0.4	0.05	0.09	0.05	58.7
3	R2	23	0.0	23	0.0	0.090	5.9	LOSA	0.1	0.4	0.05	0.09	0.05	55.7
Appro	ach	171	0.0	171	0.0	0.090	0.8	NA	0.1	0.4	0.05	0.09	0.05	58.3
All Ve	hicles	276	0.0	276	0.0	0.090	2.8	NA	0.1	0.4	0.07	0.29	0.07	55.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ENGINEERING ADVICE & SERVICES | Licence: NETWORK / 1PC | Processed: Wednesday, 17 February 2021 12:32:04

Site: 02 [[03] 02 PM AD (Site Folder: [03] 2030 After Development)]

■■ Network: N101 [2030 PM After Development (Network Folder: After Development)]

Traffic Impact Assessment for the Proposed Liquid Natural Gas Power Station - Coega SEZ Zone 10 2030 After Development Site Category: (None) Stop (Two-Way)

Vehi	Vehicle Movement Performance													
Mov ID	Turn	DEMA FLO\ [Total veh/h		ARRI FLO' [Total veh/h	WS HV]	Deg. Satn v/c	Aver. Delay sec	Level of Service		BACK OF EUE Dist] m	Prop. Que	Effective A Stop Rate	ver. No. Cycles	Aver. Speed km/h
South: Coega Ring Road														
7	L2	134	0.0	134	0.0	0.089	5.6	LOS A	0.0	0.0	0.00	0.47	0.00	54.5
8	T1	34	0.0	34	0.0	0.089	0.0	LOSA	0.0	0.0	0.00	0.47	0.00	52.4
Appro	ach	167	0.0	167	0.0	0.089	4.4	NA	0.0	0.0	0.00	0.47	0.00	54.2
East:	N2 Wes	stbound C	Offramp											
10	L2	6	0.0	6	0.0	0.062	8.2	LOS A	0.1	0.6	0.26	0.90	0.26	51.6
12	R2	46	0.0	46	0.0	0.062	8.7	LOSA	0.1	0.6	0.26	0.90	0.26	47.3
Appro	ach	53	0.0	53	0.0	0.062	8.7	LOSA	0.1	0.6	0.26	0.90	0.26	48.2
North	: Coega	Ring Ro	ad											
2	T1	60	0.0	60	0.0	0.106	0.5	LOS A	0.2	1.4	0.28	0.40	0.28	54.4
3	R2	115	0.0	115	0.0	0.106	6.2	LOSA	0.2	1.4	0.28	0.40	0.28	51.8
Appro	ach	175	0.0	175	0.0	0.106	4.3	NA	0.2	1.4	0.28	0.40	0.28	52.7
All Ve	hicles	395	0.0	395	0.0	0.106	4.9	NA	0.2	1.4	0.16	0.49	0.16	52.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Network Data dialog (Network tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ENGINEERING ADVICE & SERVICES | Licence: NETWORK / 1PC | Processed: Wednesday, 17 February 2021 12:32:08

ANNEXURE I Impact Rating Methodology

Impact Rating Methodology

The assessment of impacts will be based on the professional judgement of specialists at Engineering Advice & Services (Pty) Ltd according to the SRK impact assessment methodology presented below. The impact ratings will be informed by the findings of specialist assessments conducted, fieldwork, and desk-top analysis. The significance of potential impacts that may result from the proposed development will be determined in order to assist DEDEAT in making a decision.

The significance of an impact is defined as a combination of the consequence of the impact occurring and the probability that the impact will occur. The criteria that are used to determine impact consequences are presented in **Table 1** below.

Table 1: Criteria used to determine the Consequence of the Impact

Rating	Definition of Rating	Score
A. Extent – the are	ea over which the impact will be experienced	
None		0
Local	Confined to project or study area or part thereof (e.g. site)	1
Regional	The region, which may be defined in various ways, e.g. cadastral, catchment, topographic	2
(Inter) national	Nationally or beyond	3
B. Intensity – the	magnitude of the impact in relation to the sensitivity of the receiving environment	
None	0	0
Low	Site-specific and wider natural and/or social functions and processes are negligibly altered	1
Medium	Site-specific and wider natural and/or social functions and processes continue albeit in a modified way	2
High	Site-specific and wider natural and/or social functions or processes are severely altered	3
C. Duration – the t	ime frame for which the impact will be experienced	
None		0
Short-term	Up to 2 years	1
Medium-term	2 to 15 years	2
Long-term	More than 15 years	3

The combined score of these three criteria corresponds to a Consequence Rating, as follows:

Table 2: Method used to determine the Consequence Score

Combined Score (A+B+C)	0-2	3 – 4	5	6	7	8 – 9
Consequence Rating	Not significant	Very low	Low	Medium	High	Very high

Once the consequence has been derived, the probability of the impact occurring will be considered using the probability classifications presented in **Table 3**.

Table 3: Probability Classification

Probability-the	Probability- the likelihood of the impact occurring							
Improbable < 40% chance of occurring								
Possible	40% - 70% chance of occurring							
Probable	>70% - 90% chance of occurring							
Definite > 90% chance of occurring								

The overall significance of impacts will be determined by considering consequence and probability using the rating system prescribed in the table below.

Table 4: Impact Significance Ratings

Significance Rating	Possible Impact Com	binations	
	Consequence		Probability
Insignificant	Very Low	&	Improbable
	Very Low	&	Possible
Very Low	Very Low	&	Probable
	Very Low	&	Definite
	Low	&	Improbable
	Low	&	Possible
Low	Low	&	Probable
	Low	&	Definite
	Medium	&	Improbable
	Medium	&	Possible
Medium	Medium	&	Probable
	Medium	&	Definite
	High	&	Improbable
	High	&	Possible
High	High	&	Probable
	High	&	Definite
	Very High	&	Improbable
	Very High	&	Possible
Very High	Very High	&	Probable
	Very High	&	Definite

Finally, the impacts will also be considered in terms of their status (positive or negative impact) and the confidence in the ascribed impact significance rating. The system for considering impact status and confidence (in assessment) is laid out in the table below

Table 5: Impact status and confidence classification

Status of impact	
Indication whether the impact is adverse	+ ve (positive – a 'benefit')
(negative) or beneficial (positive	- ve (negative - a 'cost')
Confidence of assessment	
The degree of confidence in predictions based on	Low
available information, EAS's judgment and/or	Medium
specialist knowledge.	High

The impact significance rating should be considered by authorities in their decision-making process based on the implications of ratings as described below:

- Insignificant: the potential impact is negligible and will not have an influence on the decision regarding the proposed activity/development.
- Very Low: the potential impact is very small and should not have any meaningful influence on the decision regarding the proposed activity/development;
- Low: the potential impact may not have any meaningful influence on the decision regarding the proposed activity/development.
- Medium: the potential impact should influence the decision regarding the proposed activity/development.
- High: the potential impact will affect the decision regarding the proposed activity/development.
- Very High: The proposed activity should only be approved under special circumstances

Practicable mitigation measures will be recommended and impacts will be rated in the prescribed way both with and without the assumed effective implementation of mitigation measures. Mitigation measures will be classified as either:

- Essential: must be implemented and are non-negotiable; or
- Optional: must be shown to have been considered, and sound reasons provided by the proponent, if not implemented

ANNEXURE J Impact Significance Ratings

Construction Phase – Additional traffic Volumes (Table 11)

Before Management

Table 1: Criteria used to determine the Consequence of the Impact

Rating	Definition of Rating	Score
A. Extent – the ar	ea over which the impact will be experienced	
None		0
Local	Confined to project or study area or part thereof (e.g. site)	1
Regional	The region, which may be defined in various ways, e.g. cadastral, catchment, topographic	2
(Inter) national	Nationally or beyond	3
B. Intensity – the	magnitude of the impact in relation to the sensitivity of the receiving environment	
None	0	0
Low	Site-specific and wider natural and/or social functions and processes are negligibly altered	1
Medium	Site-specific and wider natural and/or social functions and processes continue albeit in a modified way	2
High	Site-specific and wider natural and/or social functions or processes are severely altered	3
C. Duration – the t	ime frame for which the impact will be experienced	
None		0
Short-term	Up to 2 years	1
Medium-term	2 to 15 years	2
Long-term	More than 15 years	3

The combined score of these three criteria corresponds to a Consequence Rating, as follows:

Table 2: Method used to determine the Consequence Score

Combined Score (A+B+C)	0-2	3 – 4	5	6	7	8 – 9
Consequence Rating	Not significant	Very low	Low	Medium	High	Very high

Once the consequence has been derived, the probability of the impact occurring will be considered using the probability classifications presented in **Table 3**.

Table 3: Probability Classification

Table of Fredaminty Glacomodulon					
Probability-the l	ikelihood of the impact occurring				
Improbable	< 40% chance of occurring				
Possible	40% - 70% chance of occurring				
Probable	>70% - 90% chance of occurring				
Definite	> 90% chance of occurring				

The overall significance of impacts will be determined by considering consequence and probability using the rating system prescribed in the table overleaf.

Significance Rating	Possible Impact Combi	nations			
	Consequence		Probability		
Insignificant	Very Low	&	Improbable		
	Very Low	&	Possible		
Very Low	Very Low	&	Probable		
	Very Low	&	Definite		
	Low	&	Improbable		
	Low	&	Possible		
Low	Low	&	Probable		
	Low	&	Definite		
	Medium	&	Improbable		
	Medium	&	Possible		
Medium	Medium	&	Probable		
	Medium	&	Definite		
	High	&	Improbable		
	High	&	Possible		
High	High	&	Probable		
	High	&	Definite		
	Very High	&	Improbable		
	Very High	&	Possible		
Very High	Very High	&	Probable		
	Very High	&	Definite		

Finally, the impacts will also be considered in terms of their status (positive or negative impact) and the confidence in the ascribed impact significance rating. The system for considering impact status and confidence (in assessment) is laid out in the table below

Table 5: Impact status and confidence classification

Status of impact		
Indication whether the impact is adverse (negative) or	+ ve (positive – a 'benefit')	
beneficial (positive)	- ve (negative - a 'cost')	
Confidence of assessment		
The degree of confidence in predictions based on	Low	
available information, EAS's judgment and/or specialist	Medium	
knowledge.	High	

Mitigation Measures

Provide suitable traffic accommodation measures as part of construction contract to inform other road users of presence of construction related traffic

After Management

After	Local	Low	Short-	Very Low	Definite	Very Low	-	High	High
Management			term						

Construction Phase – Additional Axle Loading (Table 12)

Table 1: Criteria used to determine the Consequence of the Impact

Rating	Definition of Rating	Score				
A. Extent – the ar	ea over which the impact will be experienced					
None		0				
Local	Confined to project or study area or part thereof (e.g. site)	1				
Regional	The region, which may be defined in various ways, e.g. cadastral, catchment, topographic					
(Inter) national	Nationally or beyond					
B. Intensity – the	magnitude of the impact in relation to the sensitivity of the receiving environment					
None	0	0				
Low	Site-specific and wider natural and/or social functions and processes are negligibly altered	1				
Medium	Site-specific and wider natural and/or social functions and processes continue albeit in a modified way	2				
High	Site-specific and wider natural and/or social functions or processes are severely altered					
C. Duration – the t	ime frame for which the impact will be experienced					
None		0				
Short-term	Up to 2 years	1				
Medium-term	2 to 15 years	2				
Long-term	More than 15 years	3				

The combined score of these three criteria corresponds to a Consequence Rating, as follows:

Table 2: Method used to determine the Consequence Score

Table E. Motilea acc	a to actorn	IIIIO CIIO OOIIC	oquonico coc	<i>7</i> 1 0		
Combined Score (A+B+C)	0-2	3 – 4	5	6	7	8 – 9
Consequence Rating	Not significant	Very low	Low	Medium	High	Very high

Once the consequence has been derived, the probability of the impact occurring will be considered using the probability classifications presented in **Table 3**.

Table 3: Probability Classification

Probability-the I	ikelihood of the impact occurring
Improbable	< 40% chance of occurring
Possible	40% - 70% chance of occurring
Probable	>70% - 90% chance of occurring
Definite	> 90% chance of occurring

The overall significance of impacts will be determined by considering consequence and probability using the rating system prescribed in the table overleaf.

Significance Rating	Possible Impact Com	binations	
	Consequence		Probability
Insignificant	Very Low	&	Improbable
	Very Low	&	Possible
Very Low	Very Low	&	Probable
	Very Low	&	Definite
	Low	&	Improbable
	Low	&	Possible
Low	Low	&	Probable
	Low	&	Definite
	Medium	&	Improbable
	Medium	&	Possible
Medium	Medium	&	Probable
	Medium	&	Definite
	High	&	Improbable
	High	&	Possible
High	High	&	Probable
	High	&	Definite
	Very High	&	Improbable
	Very High	&	Possible
Very High	Very High	&	Probable
	Very High	&	Definite

Finally, the impacts will also be considered in terms of their status (positive or negative impact) and the confidence in the ascribed impact significance rating. The system for considering impact status and confidence (in assessment) is laid out in the table below.

Table 5: Impact status and confidence classification

Status of impact					
Indication whether the impact is adverse	+ ve (positive – a 'benefit')				
(negative) or beneficial (positive)	- ve (negative - a 'cost')				
Confidence of assessment					
The degree of confidence in predictions based on	Low				
available information, EAS's judgment and/or	Medium				
specialist knowledge.	High				

Mitigation Measures

- Minimise need for continuous construction traffic on Ring Road by confining construction traffic to the site;
- Ensure that vehicle loads are within legislated limits, i.e. Gross vehicle mass of 56 000kg;
- Should abnormal loads be required for transport of components, relevant permits must be sourced from the ECDoT

After Management

After	Local	Low	Medium	Very Low	Definite	Very Low	-	High	Medium
Management			-term						

Construction Phase – Safety Impact High Speed Traffic (Table 13)

Table 1: Criteria used to determine the Consequence of the Impact

Rating	Definition of Rating	Score			
A. Extent – the ar	ea over which the impact will be experienced				
None		0			
Local	Confined to project or study area or part thereof (e.g. site)	1			
Regional	The region, which may be defined in various ways, e.g. cadastral, catchment, topographic				
(Inter) national	Nationally or beyond				
B. Intensity – the	magnitude of the impact in relation to the sensitivity of the receiving environment				
None	0	0			
Low	Site-specific and wider natural and/or social functions and processes are negligibly altered	1			
Medium	Site-specific and wider natural and/or social functions and processes continue albeit in a modified way				
High	Site-specific and wider natural and/or social functions or processes are severely altered	3			
C. Duration – the time frame for which the impact will be experienced					
None		0			
Short-term	Up to 2 years	1			
Medium-term	2 to 15 years	2			
Long-term	More than 15 years	3			

The combined score of these three criteria corresponds to a Consequence Rating, as follows:

Table 2: Method used to determine the Consequence Score

Table E. Motilea acc	a to actorn	IIIIO CIIO OOIIC	oquonico coc	<i>7</i> 1 0		
Combined Score (A+B+C)	0-2	3 – 4	5	6	7	8 – 9
Consequence Rating	Not significant	Very low	Low	Medium	High	Very high

Once the consequence has been derived, the probability of the impact occurring will be considered using the probability classifications presented in **Table 3**.

Table 3: Probability Classification

Table 3. Fibba	able 5. Frobability Classification					
Probability-th	e likelihood of the impact occurring					
Improbable	< 40% chance of occurring					
Possible	40% - 70% chance of occurring					
Probable	>70% - 90% chance of occurring					
Definite	> 90% chance of occurring					

The overall significance of impacts will be determined by considering consequence and probability using the rating system prescribed in the table overleaf.

Significance Rating	Possible Impact Com	Possible Impact Combinations					
	Consequence		Probability				
Insignificant	Very Low	&	Improbable				
	Very Low	&	Possible				
Very Low	Very Low	&	Probable				
	Very Low	&	Definite				
	Low	&	Improbable				
	Low	&	Possible				
Low	Low	&	Probable				
	Low	&	Definite				
	Medium	&	Improbable				
	Medium	&	Possible				
Medium	Medium	&	Probable				
	Medium	&	Definite				
	High	&	Improbable				
	High	&	Possible				
High	High	&	Probable				
	High	&	Definite				
	Very High	&	Improbable				
	Very High	&	Possible				
Very High	Very High	&	Probable				
	Very High	&	Definite				

Finally, the impacts will also be considered in terms of their status (positive or negative impact) and the confidence in the ascribed impact significance rating. The system for considering impact status and confidence (in assessment) is laid out in the table below.

Table 5: Impact status and confidence classification

Status of impact	tatus of impact				
Indication whether the impact is adverse	+ ve (positive – a 'benefit')				
(negative) or beneficial (positive)	- ve (negative - a 'cost')				
Confidence of assessment	onfidence of assessment				
The degree of confidence in predictions based on	Low				
available information, EAS's judgment and/or	Medium				
specialist knowledge.	High				

Mitigation Measures

- Provide suitable traffic accommodation measures as part of construction contract to inform other road users of presence of construction related traffic, including speed restriction signage; and
- Increased law enforcement protocols.

After Management

After	Local	Low	Medium	Very Low	Probable	Very Low	+	High	High
Management			-term						

Operational Phase – Road and Intersection capacity (additional traffic loading) (Table 14)

Table 1: Criteria used to determine the Consequence of the Impact

Rating	Definition of Rating	Score			
A. Extent – the ar	ea over which the impact will be experienced				
None		0			
Local	Confined to project or study area or part thereof (e.g. site)	1			
Regional	The region, which may be defined in various ways, e.g. cadastral, catchment, topographic	2			
(Inter) national	Nationally or beyond	3			
B. Intensity – the	magnitude of the impact in relation to the sensitivity of the receiving environment				
None	0	0			
Low	Site-specific and wider natural and/or social functions and processes are negligibly altered	1			
Medium	Site-specific and wider natural and/or social functions and processes continue albeit in a modified way	2			
High	Site-specific and wider natural and/or social functions or processes are severely altered	3			
C. Duration – the time frame for which the impact will be experienced					
None		0			
Short-term	Up to 2 years	1			
Medium-term	2 to 15 years	2			
Long-term	More than 15 years	3			

The combined score of these three criteria corresponds to a Consequence Rating, as follows:

Table 2: Method used to determine the Consequence Score

i abio zi inotiloa acot	abie 2: mothed does to determine the concequence coord								
Combined Score (A+B+C)	0-2	3 – 4	5	6	7	8 – 9			
Consequence Rating	Not significant	Very low	Low	Medium	High	Very high			

Once the consequence has been derived, the probability of the impact occurring will be considered using the probability classifications presented in **Table 3**.

Table 3: Probability Classification

Table 3. Floba	Table 3. Frobability Classification					
Probability-th	e likelihood of the impact occurring					
Improbable	< 40% chance of occurring					
Possible	40% - 70% chance of occurring					
Probable	>70% - 90% chance of occurring					
Definite	> 90% chance of occurring					

The overall significance of impacts will be determined by considering consequence and probability using the rating system prescribed in the table overleaf.

Significance Rating	Possible Impact Com	binations	
	Consequence		Probability
Insignificant	Very Low	&	Improbable
	Very Low	&	Possible
Very Low	Very Low	&	Probable
	Very Low	&	Definite
	Low	&	Improbable
	Low	&	Possible
Low	Low	&	Probable
	Low	&	Definite
	Medium	&	Improbable
	Medium	&	Possible
Medium	Medium	&	Probable
	Medium	&	Definite
	High	&	Improbable
	High	&	Possible
High	High	&	Probable
	High	&	Definite
	Very High	&	Improbable
	Very High	&	Possible
Very High	Very High	&	Probable
	Very High	&	Definite

Finally, the impacts will also be considered in terms of their status (positive or negative impact) and the confidence in the ascribed impact significance rating. The system for considering impact status and confidence (in assessment) is laid out in the table below.

Table 5: Impact status and confidence classification

Status of impact	atus of impact				
Indication whether the impact is adverse	+ ve (positive – a 'benefit')				
(negative) or beneficial (positive)	- ve (negative - a 'cost')				
Confidence of assessment					
The degree of confidence in predictions based on	Low				
available information, EAS's judgment and/or	Medium				
specialist knowledge.	High				

Mitigation Measures

No capacity or upgrade measures required.

After Management

After	Local	Low	Long-	Very Low	Definite	Very Low	-	High	Low
Management			term						

Operational Phase – Traffic Safety Impact due to additional traffic (Table 15)

Table 1: Criteria used to determine the Consequence of the Impact

Rating	Definition of Rating	Score				
A. Extent – the arc	ea over which the impact will be experienced					
None		0				
Local	Confined to project or study area or part thereof (e.g. site)	1				
Regional The region, which may be defined in various ways, e.g. cadastral, catchment, topographic		2				
(Inter) national Nationally or beyond		3				
B. Intensity – the	magnitude of the impact in relation to the sensitivity of the receiving environment					
None	0	0				
Low	Site-specific and wider natural and/or social functions and processes are negligibly altered	1				
Medium	Site-specific and wider natural and/or social functions and processes continue albeit in a modified way	2				
High	Site-specific and wider natural and/or social functions or processes are severely altered	3				
C. Duration – the t	ime frame for which the impact will be experienced					
None		0				
Short-term	Up to 2 years	1				
Medium-term	2 to 15 years	2				
Long-term	·					

The combined score of these three criteria corresponds to a Consequence Rating, as follows:

Table 2: Method used to determine the Consequence Score

i abio zi inotiloa acot	able 2: mothed acca to actornimo the concequence coord								
Combined Score (A+B+C)	0-2	3 – 4	5	6	7	8 – 9			
Consequence Rating	Not significant	Very low	Low	Medium	High	Very high			

Once the consequence has been derived, the probability of the impact occurring will be considered using the probability classifications presented in **Table 3**.

Table 3: Probability Classification

Table 3. I Tobal	Table 3. I Tobability Glassification					
Probability-the	e likelihood of the impact occurring					
Improbable	< 40% chance of occurring					
Possible	40% - 70% chance of occurring					
Probable	>70% - 90% chance of occurring					
Definite	> 90% chance of occurring					

The overall significance of impacts will be determined by considering consequence and probability using the rating system prescribed in the table overleaf.

Significance Rating	Possible Impact Com	binations	
	Consequence	Probability	
Insignificant	Very Low	&	Improbable
	Very Low	&	Possible
Very Low	Very Low	&	Probable
	Very Low	&	Definite
	Low	&	Improbable
	Low	&	Possible
Low	Low	&	Probable
	Low	&	Definite
	Medium	&	Improbable
	Medium	&	Possible
Medium	Medium	&	Probable
	Medium	&	Definite
	High	&	Improbable
	High	&	Possible
High	High	&	Probable
	High	&	Definite
	Very High	&	Improbable
	Very High	&	Possible
Very High	Very High	&	Probable
	Very High	&	Definite

Finally, the impacts will also be considered in terms of their status (positive or negative impact) and the confidence in the ascribed impact significance rating. The system for considering impact status and confidence (in assessment) is laid out in the table below.

Table 5: Impact status and confidence classification

Status of impact						
Indication whether the impact is adverse	+ ve (positive – a 'benefit')					
(negative) or beneficial (positive)	- ve (negative - a 'cost')					
Confidence of assessment						
The degree of confidence in predictions based on available information, EAS's judgment and/or	Low					
	Medium					
specialist knowledge.	High					

Mitigation Measures

No capacity or upgrade measures required.

After Management

After	Local	Low	Long-	Very Low	Definite	Very Low	-	High	Medium
Management			term						

Cumulative Operational Phase – Road and Intersection capacity (additional traffic loading) (Table 16)

Table 1: Criteria used to determine the Consequence of the Impact

Rating	Definition of Rating	Score
A. Extent – the ar	ea over which the impact will be experienced	
None		0
Local	Confined to project or study area or part thereof (e.g. site)	1
Regional	The region, which may be defined in various ways, e.g. cadastral, catchment, topographic	2
(Inter) national	Nationally or beyond	3
B. Intensity – the	magnitude of the impact in relation to the sensitivity of the receiving environment	
None	0	0
Low	Site-specific and wider natural and/or social functions and processes are negligibly altered	1
Medium	Site-specific and wider natural and/or social functions and processes continue albeit in a modified way	2
High	Site-specific and wider natural and/or social functions or processes are severely altered	3
C. Duration – the	time frame for which the impact will be experienced	
None		0
Short-term	Up to 2 years	1
Medium-term	2 to 15 years	2
Long-term	More than 15 years	3

The combined score of these three criteria corresponds to a Consequence Rating, as follows:

Table 2: Method used to determine the Consequence Score

abie 2: metrica acca to actornimo trio concequence coord									
Combined Score (A+B+C)	0-2	3 – 4	5	6	7	8 – 9			
Consequence Rating	Not significant	Very low	Low	Medium	High	Very high			

Once the consequence has been derived, the probability of the impact occurring will be considered using the probability classifications presented in **Table 3**.

Table 3: Probability Classification

Table 5. Frobability Classification					
Probability- the likelihood of the impact occurring					
Improbable	< 40% chance of occurring				
Possible	40% - 70% chance of occurring				
Probable	>70% - 90% chance of occurring				
Definite	> 90% chance of occurring				

The overall significance of impacts will be determined by considering consequence and probability using the rating system prescribed in the table overleaf.

Significance Rating	Possible Impact Com	binations	
	Consequence		Probability
Insignificant	Very Low	&	Improbable
	Very Low	&	Possible
Very Low	Very Low	&	Probable
	Very Low	&	Definite
	Low	&	Improbable
	Low	&	Possible
Low	Low	&	Probable
	Low	&	Definite
	Medium	&	Improbable
	Medium	&	Possible
Medium	Medium	&	Probable
	Medium	&	Definite
	High	&	Improbable
	High	&	Possible
High	High	&	Probable
	High	&	Definite
	Very High	&	Improbable
	Very High	&	Possible
Very High	Very High	&	Probable
	Very High	&	Definite

Finally, the impacts will also be considered in terms of their status (positive or negative impact) and the confidence in the ascribed impact significance rating. The system for considering impact status and confidence (in assessment) is laid out in the table below.

Table 5: Impact status and confidence classification

Status of impact	tatus of impact				
Indication whether the impact is adverse	+ ve (positive – a 'benefit')				
(negative) or beneficial (positive)	- ve (negative - a 'cost')				
Confidence of assessment					
The degree of confidence in predictions based on available information, EAS's judgment and/or	Low				
	Medium				
specialist knowledge.	High				

Mitigation Measures

No capacity or upgrade measures required.

After Management

After		Local	Low	Long-	Very Low	Definite	Very Low	-	High	Low
Mana	agement			term						

Cumulative Operational Phase – Traffic Safety Impact due to additional traffic (Table 17)

Table 1: Criteria used to determine the Consequence of the Impact

Rating	Definition of Rating	Score
A. Extent – the arc	ea over which the impact will be experienced	
None		0
Local	Confined to project or study area or part thereof (e.g. site)	1
Regional	The region, which may be defined in various ways, e.g. cadastral, catchment, topographic	2
(Inter) national	Nationally or beyond	3
B. Intensity – the	magnitude of the impact in relation to the sensitivity of the receiving environment	
None	0	0
Low	Site-specific and wider natural and/or social functions and processes are negligibly altered	1
Medium	Site-specific and wider natural and/or social functions and processes continue albeit in a modified way	2
High	Site-specific and wider natural and/or social functions or processes are severely altered	3
C. Duration – the t	ime frame for which the impact will be experienced	
None		0
Short-term	Up to 2 years	1
Medium-term	2 to 15 years	2
Long-term	More than 15 years	3

The combined score of these three criteria corresponds to a Consequence Rating, as follows:

Table 2: Method used to determine the Consequence Score

abie 2: metrica acca to actornimo trio concequence coord									
Combined Score (A+B+C)	0-2	3 – 4	5	6	7	8 – 9			
Consequence Rating	Not significant	Very low	Low	Medium	High	Very high			

Once the consequence has been derived, the probability of the impact occurring will be considered using the probability classifications presented in **Table 3**.

Table 3: Probability Classification

Table 3. Frobability Classification				
Probability- the likelihood of the impact occurring				
Improbable	< 40% chance of occurring			
Possible 40% - 70% chance of occurring				
Probable	>70% - 90% chance of occurring			
Definite	> 90% chance of occurring			

The overall significance of impacts will be determined by considering consequence and probability using the rating system prescribed in the table overleaf.

Table 4: Impact Significance Ratings

Significance Rating	cance Ratings Possible Impact Combinations				
	Consequence		Probability		
Insignificant	Very Low	&	Improbable		
	Very Low	&	Possible		
Very Low	Very Low	&	Probable		
	Very Low	&	Definite		
	Low	&	Improbable		
	Low	&	Possible		
Low	Low	&	Probable		
	Low	&	Definite		
	Medium	&	Improbable		
	Medium	&	Possible		
Medium	Medium	&	Probable		
	Medium	&	Definite		
	High	&	Improbable		
	High	&	Possible		
High	High	&	Probable		
	High	&	Definite		
	Very High	&	Improbable		
	Very High	&	Possible		
Very High	Very High	&	Probable		
	Very High	&	Definite		

Finally, the impacts will also be considered in terms of their status (positive or negative impact) and the confidence in the ascribed impact significance rating. The system for considering impact status and confidence (in assessment) is laid out in the table below.

Table 5: Impact status and confidence classification

Status of impact				
Indication whether the impact is adverse	+ ve (positive – a 'benefit')			
(negative) or beneficial (positive)	- ve (negative - a 'cost')			
Confidence of assessment				
The degree of confidence in predictions based on	Low			
available information, EAS's judgment and/or	Medium			
specialist knowledge.	High			

Mitigation Measures

• No capacity or upgrade measures required.

After Management

After	Lo	ocal	Low	Long-	Very Low	Definite	Very Low	-	High	Medium
Manager	nent			term						

1782

DETAILS OF THE SPECIALIST, DECLARATION OF INTEREST AND UNDERTAKING UNDER OATH

	(For official use only)		
File Reference Number:			
NEAS Reference Number:	DEA/EIA/		
Date Received:			

Application for authorisation in terms of the National Environmental Management Act, Act No. 107 of 1998, as amended and the Environmental Impact Assessment (EIA) Regulations, 2014, as amended (the Regulations)

PROJECT TITLE

Traffic Impact Assessment for a Proposed Liquid Natural Gas Power Station in Zone 10 (North) of the Coega Special Economic Zone

Kindly note the following:

- 1. This form must always be used for applications that must be subjected to Basic Assessment or Scoping & Environmental Impact Reporting where this Department is the Competent Authority.
- 2. This form is current as of 01 September 2018. It is the responsibility of the Applicant / Environmental Assessment Practitioner (EAP) to ascertain whether subsequent versions of the form have been published or produced by the Competent Authority. The latest available Departmental templates are available at https://www.environment.gov.za/documents/forms.
- 3. A copy of this form containing original signatures must be appended to all Draft and Final Reports submitted to the department for consideration.
- 4. All documentation delivered to the physical address contained in this form must be delivered during the official Departmental Officer Hours which is visible on the Departmental gate.
- 5. All EIA related documents (includes application forms, reports or any EIA related submissions) that are faxed; emailed; delivered to Security or placed in the Departmental Tender Box will not be accepted, only hardcopy submissions are accepted.

Departmental Details

Postal address:

Department of Environmental Affairs

Attention: Chief Director: Integrated Environmental Authorisations

Private Bag X447

Pretoria 0001

Physical address:

Department of Environmental Affairs

Attention: Chief Director: Integrated Environmental Authorisations

Environment House 473 Steve Biko Road

Arcadia

Queries must be directed to the Directorate: Coordination, Strategic Planning and Support at:

Email: EIAAdmin@environment.gov.za

1. SPECIALIST INFORMATION

Specialist Company Name:	Engineering Advice & Services	(Pty) Ltd			
B-BBEE	Contribution level (indicate 1	2	Percentage	125%	
	to 8 or non-compliant)		Procurement	t	
			recognition		
Specialist name:	Cary Grant Andrew Hastie				
Specialist Qualifications:	Master Diploma in Technology (Civil Engineering – Transportation)				
Professional	Engineering Council of South Africa				
affiliation/registration:	Professional Technologist - 200070122				
Physical address:	73 Heugh Road, Walmer, Port Elizabeth				
Postal address:	P O Box 13867, HUMEWOOD				
Postal code:	6013	Cell:	08	3 4000 377	
Telephone:	041 581 2421	Fax:	08	6 683 9899	
E-mail:	caryh@easpe.co.za				

2. DECLARATION BY THE SPECIALIST

I, _CARY GRANT ANDREW HASTIE , de	clare	that -
-----------------------------------	-------	--------

- I act as the independent specialist in this application;
- I will perform the work relating to the application in an objective manner, even if this results in views and findings that are not favourable to the applicant;
- I declare that there are no circumstances that may compromise my objectivity in performing such work;
- I have expertise in conducting the specialist report relevant to this application, including knowledge of the Act,
 Regulations and any guidelines that have relevance to the proposed activity;
- I will comply with the Act, Regulations and all other applicable legislation;
- I have no, and will not engage in, conflicting interests in the undertaking of the activity;
- I undertake to disclose to the applicant and the competent authority all material information in my possession that
 reasonably has or may have the potential of influencing any decision to be taken with respect to the application by
 the competent authority; and the objectivity of any report, plan or document to be prepared by myself for
 submission to the competent authority;
- all the particulars furnished by me in this form are true and correct; and
- I realise that a false declaration is an offence in terms of regulation 48 and is punishable in terms of section 24F of the Act.

Signature of the Specialist

Engineering Advice & Services (Pty) Ltd

Name of Company:

19 JANUARY 2021

Date

3. UNDERTAKING UNDER OATH/ AFFIRMATION

I, Cary Grant Andrew Hastie, swear under oath / affirm that all the information	on submitted or to be submitted for the
purposes of this application is true and correct.	
the state of the s	
Signature of the Specialist	
Engineering Advice & Services (Pty) Ltd	
Name of Company	
19/01/2021	
Date (G.G. Mc IN 7 4ht) 00/0 2007-41	•
Myr. Try 0425 097.4	
Signature of the Commissioner of Cains	
Geoffry Mc Tuture 1-3 hea Place Humewood	SUID-AFRIKAANSE POLISIEDIENG
Date	STASIEKOWMISSARIS By HUMEWOOD
	2021-01-19
	1. STATION COMMISSIONER BUMEWOOD
	SOUTH AFRICAN POLICE SERVICE