wsp

Our Reference : Your Reference : 24721 L01 N11/4/3-4/5X-1

November 27, 2018

SOUTH AFRICAN NATIONAL ROADS AGENCY LIMITED

Northern Region 38 Ida Street Menlo Park 0081

Attention: Mr. Izak van der Linde

BY COURIER

PROPOSED MIXED-USE DEVELOPMENT ON REMAINDER OF PORTION 12 OF THE FARM WEMMERHUIS 379-JT AND REMAINDER OF FARM BERGENDAL 981-JT, BELFAST – ADDENDUM TO TRAFFIC IMPACT ASSESSMENT

1. BACKGROUND

Our traffic impact assessment (TIA) reports dated December 2015 and September 2016 as well as response letters from SANRAL dated 13 May 2016, 18 May 2016, 26 June 2017 and 8 May 2018 (copies of letters attached hereto as **Annexure A**) and various meetings with SANRAL and Emakhazeni Local Municipality refers.

The relevant outstanding matters, as pointed at a meeting held between SANRAL, Apil & Associates and WSP on 21 November 2018 are addressed in this addendum report. This addendum report must be read in conjunction with the original reports.

2. PROPOSED ACCESS

It was agreed that access to the proposed development will be granted directly opposite the R33. The access is situated approximately 350m from the southern terminal of the N4 and R33/Road D1477 interchange. It was requested that the intersection layout be a "butterfly" configuration with free flow movement on R33/Road D1477. In addition, it was agreed that the southern leg of R33/Road D1477 (gravel road) will be closed. The proposed intersection layout is indicated on **Drawing 24721 SKC001 Rev C**.

The proposed access will be the only access to the development. The amended traffic volumes for 2020 background plus Phase 1 to 4 development traffic are shown on **Figure 1**. Capacity analysis was undertaken and the results indicate that double right turning lanes will be required on the site access. Safety aspects of the proposed double right turning lanes will be investigated during the detail design stage.

Capacity analysis results are indicated on **Table 1** below. Detailed Sidra results are attached in **Annexure B**.

314 Glenwood Road Lynnwood Park Pretoria 0081

T: 012 762 1200 F: 012 762 1301

vsp

		AM	І РЕАК НО	UR	PM	РЕАК НО	UR	
APP	ROACH	v/c	DELAYS (SEC)	LOS	v/c	DELAYS (SEC)	LOS	COMMENTS
HT								
SOUTH								
								AM Peak Hour
	LEFT							Acceptable operating
ST	THROUGH	0.041	12.8	В	0.121	12.8	В	conditions expected with overall v/c ratio
EAST	RIGHT	0.545	19.2	С	1.470	292.0	F	of below 1 and acceptable delays.
	APPROACH	0.545	18.8	С	1.470	272.5	F	
	LEFT	0.218	5.8	А	0.279	6.2	А	<u>PM Peak Hour</u> Acceptable operating
НТЯ	THROUGH							conditions expected on the northern and
NORTH	RIGHT	0.097	5.8	А	0.045	5.8	А	western approaches with overall v/c ratio
	APPROACH	0.218	5.8	A	0.279	6.2	Α	of below 1 and acceptable delays. LOS
	LEFT	0.046	5 . 8	А	0.001	5.8	А	F expected on the
WEST	THROUGH	0.045	10.9	В	0.137	10.5	В	eastern approach (site access).
WE	RIGHT							
	APPROACH	0.046	7.6	Α	0.137	10.5	В	
ALL	VEHICLES	0.545	9.9	NA	1.470	148.6	NA	

Table 1: Capacity Analysis – Road D1477/R33 and Site Access – 2020 Peak Hour Background Plus Phase 1 to 4 Development Traffic

Note: NA = Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movement.

3. R33/ROAD D1477 AND N4 OFF-RAMP (NORTHERN TERMINAL)

Capacity analysis was undertaken at this intersection considering a few geometric layouts as indicated on **Table 2** below.

wsp

Table 2: Capacity Analysis – Road D1477 and N4 Off-Ramp (Northern Terminal) – 2020 Peak Hour Background Plus Phase 1 to 4 Development Traffic

					OVERALL INTERSECTION OPERATING CONDITIONS							
FIC ARIO	LAYOUT	oach	AM PEAK HOUR						PM PE	EAK HOUR		
TRAFFIC SCENARIO		Approach	LOS	v/c	Delay(s)	COMMENTS	LOS	v/c	Delay(s)	COMMENTS		
1	With Existing	South	NA	0.289	1.6	Intersection operating at	NA	0.579	3.5	Intersection operating at		
	Intersection Layout	East	-	-	-	unacceptable overall v/c ratios and delays. Road upgrades are	-	-	-	unacceptable overall v/c ratios and delays. Road upgrades are		
		North	NA	0.494	0.4	required.	NA	0.533	0.7	required.		
		West	F	5.365	818.3		F	23.860	3009.9			
		OVERALL	NA	5.365	120.7		NA	23.860	673.5			
2	With All-Way Stop Layout	vout East and delays. Road upgrades		F	2.052	444.6	Intersection operating at unacceptable overall v/c ratios					
	Layout		and delays. Road upgrades are	-	-	-	and delays. Road upgrades are					
		North	F	1.772	352.9	required.	F	1.902	390.3	required.		
		West	D	0.564	27.7		F	1.535	223.7			
		OVERALL	F	1.772	220.7		F	2.052	357.2			
3	With Traffic Signals	South	Α	0.413	5.4	Intersection operating below	С	0.946	28.8	Intersection operating below		
		East	-	-	-	capacity with acceptable overall v/c ratios and delays.	-	-	-	capacity with acceptable overall v/c ratios and delays.		
		North	Α	0.733	6.2		А	0.713	4.8			

314 Glenwood Road Lynnwood Park

Pretoria 0081

T: 012 762 1200 F: 012 762 1301

wsp.com An ISO 9001, ISO 14001 and OHSAS 18001 Certified Company

	West	В	0.601	17.9	В	0.867	15.6
	OVERALL	Α	0.733	7.7	В	0.946	17.0

Note: NA = Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movement.

4. ROAD D1477 AND N4 OFF-RAMP (SOUTHERN TERMINAL)

Т

Capacity analysis was undertaken at this intersection considering a few geometric layouts as indicated on **Table 3** below.

Table 3: Capacity Analysis - Road D1477 and N4 Off-Ramp (Southern Terminal) - 2020 Peak Hour Background Plus Phase 1 to 4 Development Traffic

	GEOMETRIC		OVERALL INTERSECTION OPERATING CONDITIONS										
FIC ARIO	LAYOUT	oach	AM PEAK HOUR						PM PE	EAK HOUR			
TRAFFIC SCENARIO		Approach	LOS	v/c	Delay(s)	COMMENTS	LOS	v/c	Delay(s)	COMMENTS			
1	With Existing	South	NA	0.268	1.2	Intersection operating at	NA	0.583	1.6	Intersection operating at			
	Intersection Layout	East	F	6.067	4658.8	unacceptable overall v/c ratios- and delays. Road upgrades are	F	25.513	22165.6	unacceptable overall v/c ratios and delays. Road upgrades are			
		North	NA	0.418	2.1	required.	NA	0.935	26.4	required.			
		West	F	3.932	2740.8		F	15.269	12929.3				
	OVERALL	OVERALL	NA	6.067	510.3		NA	25.513	2466.4				
2	With Existing Intersection Layout	South	NA	0.268	1.2	Intersection operating at unacceptable overall v/c ratios	NA	0.583	1.6	Intersection operating at unacceptable overall v/c ratios			
	Plus Slip Lane	East	F	6.067	4658.8	and delays. Road upgrades are	F	25.513	22165.6	and delays. Road upgrades are			
		North	NA	0.418	2.1	required.	NA	0.935	26.4	required.			
		West	F	3.817	1212.8		F	14.035	5908.6				
		OVERALL	NA	6.067	400.4		NA	25.513	1981.1				

3	With All-Way Stop Layout	South East	F	1.269 0.676	271.6 68.8	Intersection operating at unacceptable overall v/c ratios and delays. Road upgrades are	F	2.730 1.083	1420.0 220.1	Intersection operating at unacceptable overall v/c ratios and delays. Road upgrades are
		North	F	1.966	683.3	required.	F	2.176	815.2	required.
		West	F	1.329	458.8		F	1.862	900.0	
	C	OVERALL	F	1.966	507.4		F	2.730	1045.9	
4	With Traffic Signal Plus Slip Lane	South	А	0.390	4.9	Intersection operating at acceptable overall v/c ratios and	С	0.904	26.1	Intersection operating at acceptable overall v/c ratios and
		East	С	0.595	33.0	delays.	Е	0.867	70.2	delays.
		North	А	0.657	7.2		В	0.805	12.6	
		West	В	0.334	18.9		D	0.711	37.3	
		OVERALL	Α	0.657	9.1		С	0.904	24.3	

Note: NA = Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movement.

314 Glenwood Road Lynnwood Park Pretoria 0081

T: 012 762 1200 F: 012 762 1301

wsp.com An ISO 9001, ISO 14001 and OHSAS 18001 Certified Company

5. PROPOSED NON-MOTORIZED TRANSPORT (NMT) FACILITIES

Due to the expected higher reliance on public transport and higher volumes of pedestrians to the proposed development, the following public transport and non-motorized transport (NMT) facilities are proposed:

- An on-site multi-modal public transport facility
- Paved sidewalks along R33/Road D1477 and pedestrian crossings at the N4/R33/Road D1477 and N4/Belfast One-Stop interchange as indicated on **Drawing 24721 SKC001 Rev C.**

The design and capacity of the proposed on-site multi-modal public transport facility will be dealt with during the SDP submission stage.

6. AMENDED ROAD MASTER PLAN

The amended road master plan is indicated on Drawing 20744 SKC002 Rev C.

7. OTHER ITEMS DISCUSSED DURING THE MEETING OF 21 NOVEMBER 2018

The following additional items were discussed during the meeting:

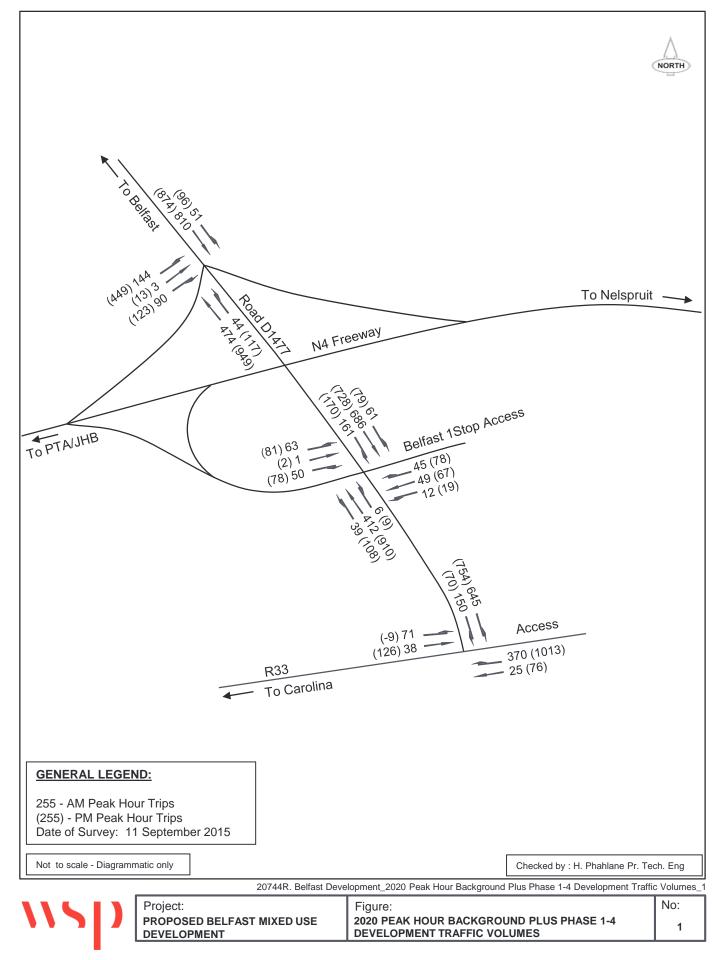
- No interaction will be allowed between the proposed development and the existing Belfast One-Stop Filling Station. Noted and agreed.
- Availability of power supply and maintenance of traffic signals at the terminals and street lights from town to the proposed access to be discussed with Applicant. Noted and agreed.
- Building lines to be adhered to as prescribed (20m from site boundary line) also taking into consideration a portion of land to be sold to SANRAL by Mlangeni Family Trust (the Applicant) along the N4. Noted and agreed.
- The act regulating the advertisements visible from the highway were discussed. Noted and agreed.
- A preliminary storm water plan to be undertaken. Noted and agreed.
- Boundary wall/physical barrier to be built prior to any construction. Noted and agreed.
- Proposed access to be constructed first with possibility of constructing services and/or the first phase of the mall concurrently. Noted and agreed.
- The approval of the access detailed design drawings will be dealt with according to rules and regulations of SANRAL. Noted and agreed
- Approval (with conditions) to be in place before 14 December 2018. Noted and agreed.

8. CONCLUSIONS

The subject development is supported from a traffic engineering viewpoint, provided that the recommendations made in this addendum report are implemented.

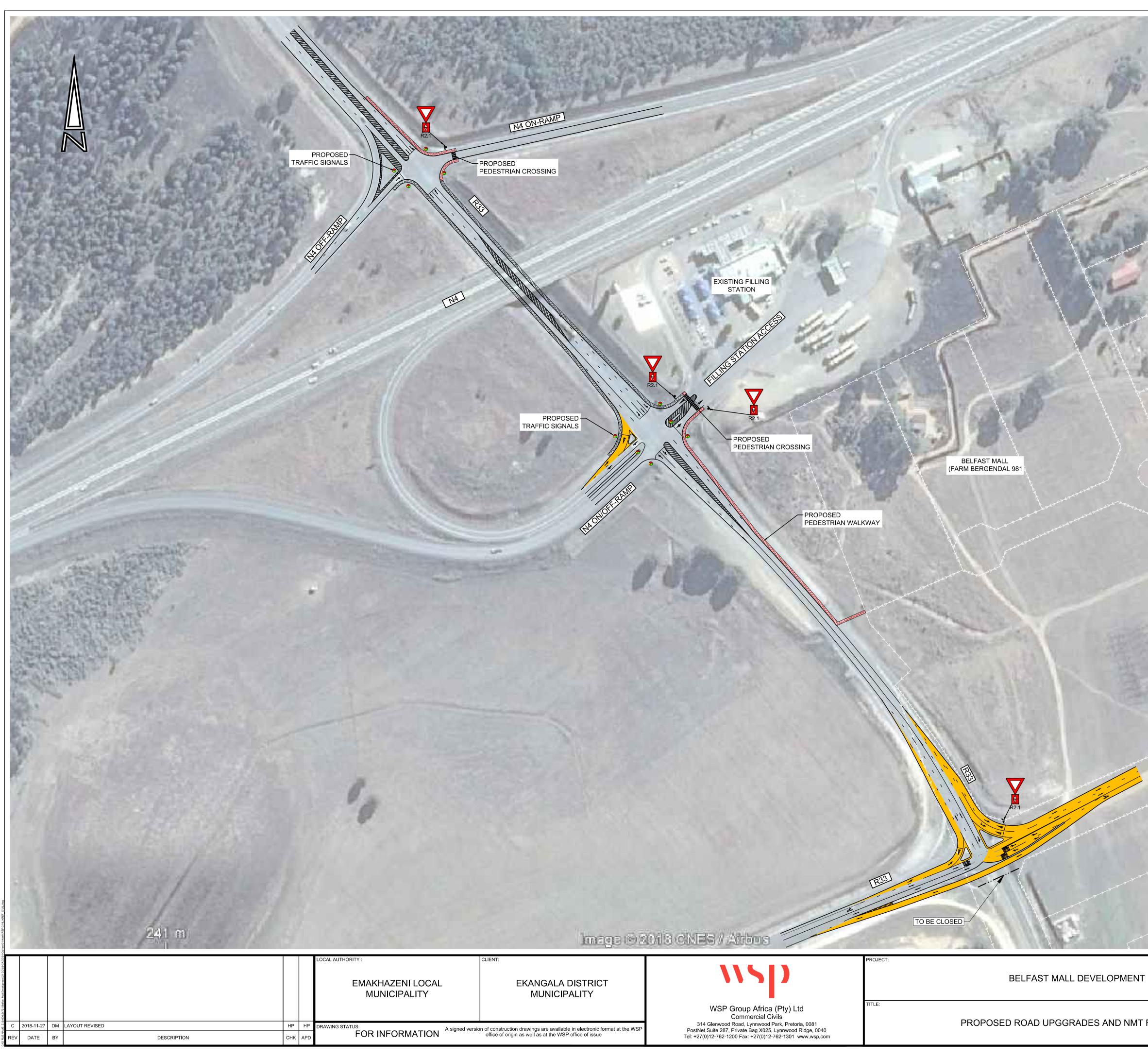
Should you need more information please do not hesitate to contact the undersigned.

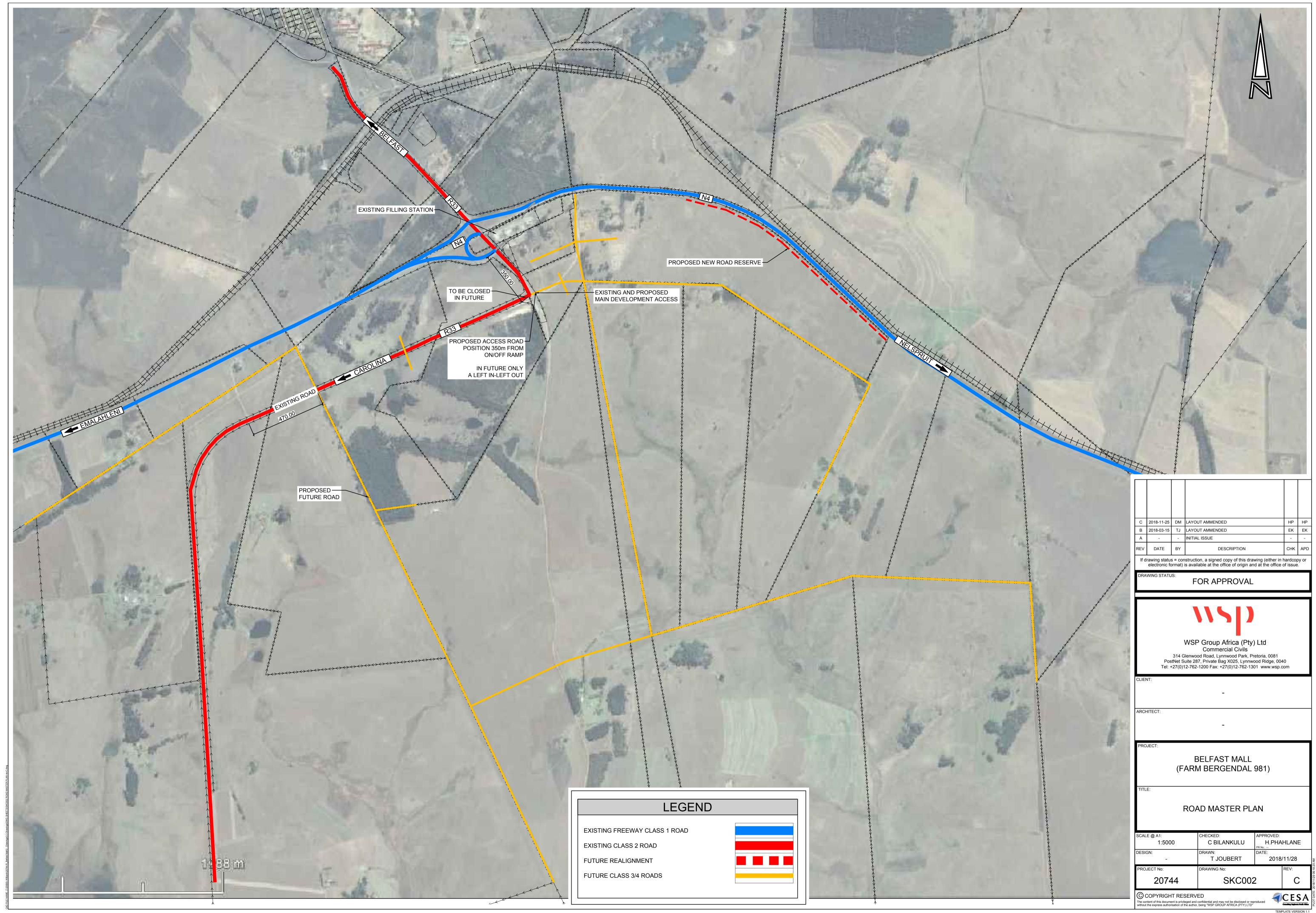
Yours sincerely,


Manfanc

Herbert Phahlane (*Pr. Tech. Eng*) Director: Traffic and Transportation E-mail Address: Herbert.Phahlane@wspgroup.co.za Mobile Number: 083 445 6907

Figures


Figure 1: 2020 Peak Hour Background Plus Phase 1 to 4 Traffic Volumes



Drawings

Drawing 24721 SKC001 Rev C: Proposed Road Upgrades and NMT Facilities Drawing 20744 SKC002 Rev C: Road Master Plan

		$\begin{array}{c} & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	
			000000
A proposition of the second se	John Carlos Carl	A A A A	A A A A A A A A A A A A A A A A A A A
A A A A A A A A A A A A A A A A A A A			
A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A	And the fort of the second	
	- a a a a a a a a a a a a a a a a a a a		a a a a a a a a a
and the second of the second o	A A A A A A A A A A A A A A A A A A A		
	PROPOSED SIDEWALK PROPOSED ROAD WID EXISTING SIDEWALKS		
	SCALE @ A1: 1:1250 DESIGN:	CHECKED: H PHAHLANE DRAWN:	APPROVED: H PHAHLANE PR No: DATE:
FACILITIES	- PROJECT No: 24721	T JOUBERT	
	COPYRIGHT RESERV The content of this document is privileged an without the express authorisation of the authority	/ED d confidential and may not be disclosed or rep r, being "WSP GROUP AFRICA (PTY) LTD"	roduced TEMPLATE VERSION MAY 2017

Annexure A

SANRAL Letters dated 13 May 2016, 18 May 2016, 26 June 2017 and 8 May 2018

Northern Region 38 Ida Street, Menlo Park, Pretoria Private Bag X17, Lynnwood Ridge, 0040, South Africa Tel +27 (0) 12 426 6200 Fax +27 (0) 12 348 1680/ 0883/ 1512 Offices in Val de Grace – Pretoria (Head Office), Cape Town, Pietermaritzburg, Port Elizabeth

Reference:	N11/4/3-4/5X-1	Fax Number:	+27 (0) 12 348 1512
Date:	13 May 2016	Direct Line:	+27 (0) 12 426 6213
Contact Person:	Izak van der Linde	Website:	www.nra.co.za
Email:	vdlindei@nra.co.za		

Creating

wealth through

infrastructure.

WSP / Parsons Brinckerhoff Development, Transportation and Infrastructure, Africa Postnet Suite 287 Private Bag X025 Lynnwood Ridge 0040

Attention: Eben Kotze

PROPSED MIXED USE DEVELOPMENT IN BELFAST - TRAFFIC IMPACT STUDY (REMAINDER OF PORTION 12 WEMMERHUIS 379 JT AND REMAINDER OF BERGENDAL 981JT)

Your letter 20744 L01-CB dated 30 November 2015 together with the Traffic Impact Study (TIS) dated November 2015, refers.

The South African National Roads Agency SOC Limited hereby comments as follows:

- The COTO manual, TMH 16 Vol 1, states that traffic assessments cannot be undertaken in isolation without reference to the greater development and transportation planning of the relevant Municipality. In order to enable SANRAL to consider this application it must be provided with the roads master plan for the area. Such master planning must make provision for an alternative crossing of the N4 other than the existing interchange.
- SANRAL, furthermore, requires a copy of the Emakhazeni Municipality SDF for this area and written confirmation by the Municipality that the proposed development aligns therewith. In SANRAL's opinion this development constitutes urban sprawl due to its location being south of the N4 and some 3km removed from the existing town of Belfast. This makes the provision of services and the movement of people and goods problematic and expensive.

Board of Directors: Mr R Morar (Chairperson), Mr N Alli (CEO), Mr C Hlabisa, Ms Z Kganyago, Dr A Lawless, Ms D Mashile-Nkosi, Mr M Matete, Company Secretary: Ms AA Mathew

- This development will generate a significant number of trips, in the order of 1900 plus in the PM peak hour. This is substantially higher that the existing traffic volumes through the interchange. (SANRAL is not in agreement with the application of the low vehicle ownership reduction factor in this case. This is not a low cost housing development nor are there a high level of transit services present)
- It is a common principle that the full traffic impact of a development must be mitigated by providing additional capacity. It must be noted that the spare capacity that might currently exist on the surrounding road network should be reserved for background traffic growth and is thus not available to accommodate this development traffic. The Traffic study only proposes localised road upgrades which are not deemed sufficient for this purpose.
- It is expected that there are a large percentage of heavy vehicles on the road network surrounding this development. This has to be investigated and the traffic split between heavy vehicles and light vehicles needs to be analysed. Heavy vehicles require more time to turn into traffic (gap acceptance) and this will influence the capacity and operations of the affected intersections.

The above comments relates to the Traffic Impact Study as submitted. Approval in terms of Section 49 of Act 7 of 1998 of the town planning application will only be considered once the above comments are addressed to SANRAL's satisfaction.

I trust you will find the above in order.

Yours faithfully

GIONAL MANAGER: NORTHERN REGION

Northern Region 38 Ida Street, Menlo Park, Pretoria Private Bag X17, Lynnwood Ridge, 0040, South Africa Tel +27 (0) 12 426 6200 Fax +27 (0) 12 348 1680/ 0883/ 1512 Offices in Val de Grace – Pretoria (Head Office), Cape Town, Pietermaritzburg, Port Elizabeth

Reference:	N11/4/3-4/5X-1	Fax Number:	+27 (0) 12 348 0883
Date:	18 May 2016	Direct Line:	+27 (0) 12 426 6269
Contact Person:	Tiyiselani Mashele	Website:	www.nra.co.za
Email:	mashelet@nra.co.za		

Creating wealth through infrastructure KORSMAN & ASSOCIATES TOWN PLANNERS Private Bag X 7294 Suite 295 WITBANK 1035

For attention: Ms Laurette Swarts

Dear Madam

N4/5X: PROPOSED TOWNSHIP ESTABLISHMENT ON REMAINDER OF THE FARM BERGENDAL 981 & REMAINDER OF PORTION 12 OF THE FARM WEMMERHUIS 379; MIXED USE DEVELOPMENT IN BELFAST

Your application dated 4 December 2015 and the motivating memorandum in support together with the traffic impact study by WSP Parsons Brinckerhoff dated November 2015 have reference.

The South African National Roads Agency SOC Limited (SANRAL) cannot comment on the above-mentioned application prior to access requirements being addressed. Please see the attached letter from SANRAL dated 13 May 2016.

Yours faithfully

Mashele

For REGIONAL MANAGER : NORTHERN REGION

Northern Region 38 Ida Street, Menlo Park, Pretoria Private Bag X17, Lynnwood Ridge, 0040, South Africa Tel +27 (0) 12 426 6200 Fax +27 (0) 12 348 1680/ 0883/ 1512 Offices in Val de Grace – Pretoria (Head Office), Cape Town, Pietermaritzburg, Port Elizabeth

Reference:	N11/4/3-4/5X-1	Fax Number:	+27 (0) 12 348 1512
Date:	26 June 2017	Direct Line:	+27 (0) 12 426 6213
Contact Person:	Izak van der Linde	Website:	www.nra.co.za
Email:	vdlindei@nra.co.za		

WSP Group Africa (Pty) Ltd Commercial Civils Postnet Suite 287 Private Bag X025 Lynnwood Ridge 0040

Attention: Eben Kotze

PROPOSED BELFAST MIXED USE DEVELOPMENT, TRAFFIC IMPACT ASSESSMENT (REMAINDER OF PORTION 12 WEMMERHUIS 379 JT AND REMAINDER OF BERGENDAL 981JT)

Your letter 20744 EDK_L02 dated 29 September 2016 together with the Traffic Impact Assessment (TIA) dated September 2016, refers.

Please note that the N4 and the R33 are proclaimed national roads under the jurisdiction of the South African National Roads Agency SOC Limited to which the following statutory building restriction areas apply in terms of the South African National Roads Agency Limited and National Roads Act, Act 7 of 1998:

- 60m measured form the road reserve boundary of any national road.
- 500m radius from any point of intersection on any national road.

After perusal of the TIA and due consideration of the proposed development the South African National Roads Agency SOC Limited has no other option but to object to the development based on the following reasons:

 SANRAL has, in its earlier response dated 13 May 2016, requested a copy of the Emakhazeni Municipality SDF for this area as well as written confirmation by the Municipality that the proposed development aligns therewith. This has not been received yet.

Board of Directors: Mr R Morar (Chairperson), Mr S Macozoma (CEO), Mr C Hlabisa, Ms Z Kganyago, Dr A Lawless, Ms D Mashile-Nkosi, Mr M Matete, Ms A Halstead, Company Secretary: Ms AA Mathew SANRAL furthermore requires confirmation that services (water, electricity, sewerage etc.) are available for this development (including public transport and pedestrian facilities).

 At present the town of Belfast is located only on the northern side of the N4, north of the railway line. The proposed development is located approximately 3 kilometres south of the existing CBD, south of the N4. In SANRAL's opinion this development constitutes urban sprawl and should not be allowed.

All interaction (vehicular and pedestrian) between the CBD and the proposed development will have to cross the N4 through the N4/R33 interchange. This will place unnecessary strain on the surrounding road network and will result in unsafe conditions for pedestrians.

 According to the traffic assessment it is expected that the proposed development will generate approximately 2000 additional Friday peak hour trips. All this additional traffic will have to make use of the N4/R33 interchange as the proposed link road towards the north across the N4 is only proposed to be implemented in phase 3 or 4. This is unacceptable and SANRAL requires all road upgrades (once agreed upon) to be implemented prior to commencement with the development.

The assessment furthermore applied a low vehicle ownership reduction factor in calculating the expected traffic volumes. This by implication means higher reliance on public transport and higher volumes of pedestrians. The assessment is silent on how pedestrian movements will be managed, especially across the N4. In terms of public transport the assessment proposes lay-byes only at one location, this will not be sufficient. SANRAL requires a pedestrian management plan as well as a public transport plan if this development is to be considered any further.

As was mentioned above the N4 and R33 resorts under SANRAL's jurisdiction (please see image "A" attached hereto depicting same in red). The approval of the access on the R33 by the Mpumalanga Department of Public Works, Roads and Transport dated 21 January 2016 is therefore *ultra-virus* and not valid. Due to the close proximity of the 90 degree bend on the R33 to the N4 southern ramp terminal an access at this location will not be allowed. In the road master planning for the area (also requested in SANRAL's earlier response dated 13 May 2016) realignment of the R33 to eliminate the 90 degree bend should be considered where after an intersection position on the R33 located approximately 800m south of the N4 southern ramp terminal could be identified.

The above relates to the Traffic Impact Study as submitted only and SANRAL's response to the town planning application will follow separately.

Yours faithfully

GONAL MANAGER: NORTHERN REGION

INAGE "A"

Reference:N11/4/3-4/5X-1Date:08 May 2018Email:vdlindei@nra.co.za

Direct Line: +27 (0) 12 426 6213 Contact Person: Izak van der Linde Website: www.nra.co.za

WSP Group Africa (Pty) Ltd Commercial Civils Postnet Suite 287 Private Bag X025 Lynnwood Ridge 0040

Attention: Herbert Phahlane

Dear Sir

PROPOSED BELFAST MIXED USE DEVELOPMENT (REMAINDER OF PORTION 12 WEMMERHUIS 379 JT AND REMAINDER OF BERGENDAL 981JT)

Your letter 24721 CB_L101 dated 10 April 2018 together with the drawings SKC002 Rev. B and SKC001 Rev. A as well as SANRAL's previous response with regard to this application, refers.

SANRAL hereby confirms receipt of the following documents in this regard to date:

- Traffic Impact Assessment dated November 2015 (WSP).
- Township establishment application dated 4 December 2015 (Korsman & Associates Town Planners).
- Revised Traffic impact Assessment dated September 2016 (WSP).
 - Above mentioned letter with drawings:
 - SKC002 Rev. B (Roads master plan)
 - SKC001 Rev. A (Proposed pedestrian walkway layout)

Please note that the "Roads master plan" drawing SKC002 Rev. B does not comply with COTO-TRH 26 in that it indicates an access position to the R33 approximately 350m south of the N4/R33 southern terminal and another access a further 290m to the south. COTO-TRH 26 prescribes intersection spacing of \pm 800m along a road such as the R33. COTO-TMH 16 Vol 1 further requires master planning to be approved by the municipality and/or relevant authority.

SANRAL's suggestion, in order to comply with COTO-TRH 26 and achieve the required 800m intersection spacing, namely to consider the realignment of the R33 to eliminate the 90 degree bend where after an intersection position on the R33 located approximately 800m south of the N4 southern ramp terminal could be identified, seems to have been ignored.

Northern Region 38 Ida Street, Menlo Park, 0081 | Postal Address: Private Bag X17, Lynwood Ridge, 0040 | Tel +27 (0) 12 426 6200 Fax +27 (0) 12 348 1680 Email info@sanral.co.za | Visit us at www.sanral.co.za

In terms of SANRAL's previous letters dated 13 May 2016, 26 June 2017 and 8 February 2018 the following information/documentation were requested and are still outstanding:

- Approved Emakhazeni Municipality Strategic Development Framework (SDF).
- Written confirmation by the Municipality that the proposed development complies with the SDF and that services can be provided (including public transport and pedestrian facilities).
- Pedestrian management plan.
- Public transport plan.
- Updated traffic impact assessment based on acceptable and compliant roads master planning.

As mentioned before, SANRAL will only be able to further consider this application if it is presented with the information/documentation as requested.

I trust that you will find the above in order.

Yours faithfully

W. J. v. d. Morrow

REGIONAL MANAGER: SANRAL NORTHERN REGION

Annexure B

Capacity Analysis Results

9 Site: [Road D1477 & Site Access_2020 AM Peak Hour Background Plus Phase 1 to 4 Development1

2020 AM Peak Hour Background Plus Phase 1 to 4 Development Traffic Stop (Two-Way)

Mov	ement Pe	rformance	e - Vehic	les				North State	and a fair		
Mov ID	OD Mov	Demand Total veh/h	l Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/t
East:	Site Acces	s									
5	T1	26	3.0	0.041	12.8	LOS B	0.2	1.2	0.55	0.89	49.5
6	R2	389	3.0	0.545	19.2	LOS C	3.4	24.1	0.73	1.12	45.8
Appro	bach	416	3.0	0.545	18.8	LOS C	3.4	24.1	0.72	1.10	46.0
North	: Road D14	477									
7	L2	679	3.0	0.218	5.8	LOS A	1.0	7.5	0.14	0.52	53.7
9	R2	158	20.0	0.097	5.8	LOS A	0.0	0.0	0.00	0.56	53.0
Appro	bach	837	6.2	0.218	5.8	LOS A	1.0	7.5	0.11	0.53	53.6
West:	R33										
10	L2	75	20.0	0.046	5.8	LOSA	0.0	0.0	0.00	0.52	54.2
11	T1	40	20.0	0.045	10.9	LOS B	0.2	1.6	0.35	0.85	50.3
Appro	bach	115	20.0	0.046	7.6	LOS A	0.2	1.6	0.12	0.63	52.8
All Ve	hicles	1367	6.4	0.545	9.9	NA	3.4	24.1	0.30	0.71	51.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: WSP GROUP AFRICA (PTY) LTD | Processed: 27 November 2018 12:04:27 PM Project: Z:\20000\-Witbank\20744.R_Belfast Mall\11 - Reports\11.1 Traffic Reports\Traffic Impact Study\Phasing TIA_Sep 2016\Sidras Nov 2018\Road D1477 & Site Access.sip7

Site: [Road D1477 & Site Access_2020 PM Peak Hour Background Plus Phase 1 to 4 Development1

2020 PM Peak Hour Background Plus Phase 1 to 4 Development Traffic Stop (Two-Way)

Move	ement Pe	rformance	- Vehic	les							
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
East:	Site Acces	s									
5	T1	80	3.0	0.121	12.8	LOS B	0.5	3.6	0.55	0.93	49.5
6	R2	1066	3.0	1.470	292.0	LOS F	140.4	1008.2	0.99	4.90	10.3
Appro	bach	1146	3.0	1.470	272.5	LOS F	140.4	1008.2	0.96	4.63	10.9
North	Road D14	477									
7	L2	794	3.0	0.279	6.2	LOS A	1.4	9.9	0.29	0.55	53.1
9	R2	74	20.0	0.045	5.8	LOS A	0.0	0.0	0.00	0.56	53.0
Appro	ach	867	4.4	0.279	6.2	LOS A	1.4	9.9	0.27	0.55	53.1
West:	R33										
10	L2	1	20.0	0.001	5.8	LOS A	0.0	0.0	0.00	0.52	54.2
11	T1	133	20.0	0.137	10.5	LOS B	0.6	5.2	0.30	0.87	50.5
Appro	ach	134	20.0	0.137	10.5	LOS B	0.6	5.2	0.30	0.86	50.5
All Ve	hicles	2147	4.6	1.470	148.6	NA	140.4	1008.2	0.64	2.75	17.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP GROUP AFRICA (PTY) LTD | Processed: 27 November 2018 12:04:58 PM Project: Z:\20000\-Witbank\20744.R_Belfast Mall\11 - Reports\11.1 Traffic Reports\Traffic Impact Study\Phasing TIA_Sep 2016\Sidras Nov 2018\Road D1477 & Site Access.sip7

ł

Site: [Road D1477 & N4 Northern Terminal_2020 AM Background Plus Phase 1-4 Development Traffic]

2020 AM Background Plus Phase 1-4 Development Traffic Stop (Two-Way)

Move	ment Pe	rformance	e - Vehic	les						A. States	Age Davis
Mov ID	OD Mov	Demano Total veh/h	l Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South	: Road D1	477 NB		21.31	Carling - Articles						
2	T1	499	20.0	0.289	0.0	LOS A	0.0	0.0	0.00	0.00	59.9
3	R2	46	20.0	0.161	18.0	LOS C	0.5	4.4	0.81	0.93	44.3
Appro	ach	545	20.0	0.289	1.6	NA	0.5	4.4	0.07	0.08	58.2
North:	Road D14	477 SB									
7	L2	54	20.0	0.033	5.8	LOS A	0.0	0.0	0.00	0.57	52.8
8	T1	853	20.0	0.494	0.1	LOS A	0.0	0.0	0.00	0.00	59.8
Appro	ach	906	20.0	0.494	0.4	NA	0.0	0.0	0.00	0.03	59.4
West:	N4 Off-ran	mp									
10	L2	152	20.0	0.247	10.3	LOS B	1.0	7.8	0.57	0.82	50.3
11	T1	3	20.0	5.365	2064.8	LOS F	39.0	320.1	1.00	1.50	1.6
12	R2	95	20.0	5.365	2069.7	LOS F	39.0	320.1	1.00	1.50	1.6
Appro	ach	249	20.0	5.365	818.3	LOS F	39.0	320.1	0.74	1.09	3.9
All Vel	hicles	1701	20.0	5.365	120.7	NA	39.0	320.1	0.13	0.20	19.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: WSP GROUP AFRICA (PTY) LTD | Processed: 26 November 2018 12:48:10 PM

Project: Z:\20000\-Witbank\20744.R_Belfast Mall\11 - Reports\11.1 Traffic Reports\Traffic Impact Study\Phasing TIA_Sep 2016\Sidras Nov 2018\Road D1477 & N4 Northern Terminal.sip7

Site: [Road D1477 & N4 Northern Terminal_2020 PM Background Plus Phase 1-4 **Development Traffic1**

2020 PM Background Plus Phase 1-4 Development Traffic Stop (Two-Way)

Mov	ement Pe	rformance	e - Vehic	les		Ser Frankler					S. Stall
Mov ID	OD Mov	Demano Total veh/h	l Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South	n: Road D1	477 NB		San Andrews			SPACE OF STREET	North Party	Second Second		a la casa
2	T1	999	20.0	0.579	0.1	LOS A	0.0	0.0	0.00	0.00	59.8
3	R2	123	20.0	0.561	31.0	LOS D	2.4	19.5	0.92	1.09	38.2
Appro	bach	1122	20.0	0.579	3.5	NA	2.4	19.5	0.10	0.12	56.3
North	Road D14	477 SB									
7	L2	101	20.0	0.062	5.8	LOS A	0.0	0.0	0.00	0.57	52.8
8	T1	920	20.0	0.533	0.1	LOS A	0.0	0.0	0.00	0.00	59.8
Appro	bach	1021	20.0	0.533	0.7	NA	0.0	0.0	0.00	0.06	59.0
West	N4 Off-ran	np									
10	L2	473	20.0	2.660	768.0	LOS F	101.4	831.5	1.00	4.24	4.4
11	T1	14	20.0	23.860	10412.3	LOS F	94.8	777.0	1.00	1.21	0.3
12	R2	129	20.0	23.860	10411.4	LOS F	94.8	777.0	1.00	1.21	0.3
Appro	bach	616	20.0	23.860	3009.9	LOS F	101.4	831.5	1.00	3.54	1.2
All Ve	hicles	2759	20.0	23.860	673.5	NA	101.4	831.5	0.26	0.86	4.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: WSP GROUP AFRICA (PTY) LTD | Processed: 27 November 2018 12:17:56 PM Project: Z:\20000\-Witbank\20744.R_Belfast Mall\11 - Reports\11.1 Traffic Reports\Traffic Impact Study\Phasing TIA_Sep 2016\Sidras Nov 2018\Road D1477 & N4 Northern Terminal.sip7

Site: [Road D1477 & N4 Northern Terminal_2020 AM Background Plus Phase 1-4 Development Traffic_All-way Stop]

2020 AM Background Plus Phase 1-4 Development Traffic Stop (All-Way)

Move	ement Pe	rformance	e - Vehic	les							Children and the second
Mov ID	OD Mov	Demano Total veh/h	l Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South	: Road D1	477 NB		Course I and	The second second	an San Serva	a Mariana	Supervise St	Sector Sector		
2	T1	499	20.0	1.090	96.4	LOS F	20.2	165.7	1.00	3.43	23.2
3	R2	46	20.0	0.113	11.4	LOS B	0.4	3.1	0.87	1.28	49.4
Appro	ach	545	20.0	1.090	89.2	LOS F	20.2	165.7	0.99	3.25	24.3
North	Road D14	477 SB				Contraction of					
7	L2	54	20.0	0.120	11.8	LOS B	0.4	3.3	0.85	1.28	50.1
8	T1	853	20.0	1.772	374.4	LOS F	84.6	693.5	1.00	7.68	8.4
Appro	ach	906	20.0	1.772	352.9	LOS F	84.6	693.5	0.99	7.30	8.8
West:	N4 Off-ran	mp									
10	L2	152	20.0	0.564	30.0	LOS D	3.0	24.3	1.00	1.52	40.3
11	T1	3	20.0	0.417	24.3	LOS C	1.9	15.2	1.00	1.40	42.8
12	R2	95	20.0	0.417	24.1	LOS C	1.9	15.2	1.00	1.40	42.6
Appro	ach	249	20.0	0.564	27.7	LOS D	3.0	24.3	1.00	1.47	41.2
All Ve	hicles	1701	20.0	1.772	220.7	LOS F	84.6	693.5	0.99	5.15	12.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP GROUP AFRICA (PTY) LTD | Processed: 27 November 2018 12:19:07 PM

Project: Z:\20000\-Witbank\20744.R_Belfast Mall\11 - Reports\11.1 Traffic Reports\Traffic Impact Study\Phasing TIA_Sep 2016\Sidras Nov 2018\Road D1477 & N4 Northern Terminal.sip7

Site: [Road D1477 & N4 Northern Terminal 2020 PM Background Plus Phase 1-4 Development Traffic All-way Stop]

2020 PM Background Plus Phase 1-4 Development Traffic Stop (All-Way)

Move	ement Pe	rformance	- Vehic	les					No.		
Mov ID	OD Mov	Demand Total veh/h	l Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South	: Road D1	477 NB					Service Back	S. Alessan	and share	and the state	
2	T1	999	20.0	2.052	497.8	LOS F	114.0	934.5	1.00	8.82	6.5
3	R2	123	20.0	0.278	13.1	LOS B	1.1	8.6	0.89	1.34	48.3
Appro	bach	1122	20.0	2.052	444.6	LOS F	114.0	934.5	0.99	8.00	7.2
North	Road D14	477 SB									
7	L2	101	20.0	0.231	13.2	LOS B	0.8	6.9	0.88	1.32	49.2
8	T1	920	20.0	1.902	431.7	LOS F	98.1	804.4	1.00	8.24	7.4
Appro	bach	1021	20.0	1.902	390.3	LOS F	98.1	804.4	0.99	7.55	8.1
West:	N4 Off-ran	mp									
10	L2	473	20.0	1.535	283.5	LOS F	41.5	340.4	1.00	4.67	10.6
11	T1	14	20.0	0.525	26.5	LOS D	2.6	21.5	1.00	1.48	41.7
12	R2	129	20.0	0.525	26.3	LOS D	2.6	21.5	1.00	1.48	41.5
Appro	ach	616	20.0	1.535	223.7	LOS F	41.5	340.4	1.00	3.93	12.8
All Ve	hicles	2759	20.0	2.052	375.2	LOS F	114.0	934.5	0.99	6.93	8.4
		2100	20.0	2.002	010.2						

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: WSP GROUP AFRICA (PTY) LTD | Processed: 27 November 2018 12:19:56 PM Project: Z:\20000\-Witbank\20744.R_Belfast Mall\11 - Reports\11.1 Traffic Reports\Traffic Impact Study\Phasing TIA_Sep 2016\Sidras Nov 2018\Road D1477 & N4 Northern Terminal.sip7

Site: [Road D1477 & N4 Northern Terminal_2020 AM Background Plus Phase 1-4 **Development Traffic**]

2020 AM Background Plus Phase 1-4 Development Traffic Signals - Fixed Time Isolated Cycle Time = 60 seconds (User-Given Cycle Time)

Mov	ement Pe	rformance	e - Vehic	les							
Mov ID	OD Mov	Demano Total veh/h	l Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South	: Road D1	477 NB							Sand Depart		
2	T1	499	20.0	0.413	4.1	LOS A	6.2	50.7	0.45	0.40	56.2
3	R2	46	20.0	0.207	18.9	LOS B	0.9	7.7	0.67	0.74	43.8
Appro	bach	545	20.0	0.413	5.4	LOS A	6.2	50.7	0.47	0.43	54.9
North	: Road D14	477 SB									
7	L2	54	20.0	0.047	8.7	LOS A	0.5	4.0	0.32	0.64	50.6
8	T1	853	20.0	0.733	6.1	LOS A	15.1	124.1	0.64	0.59	54.5
Appro	bach	906	20.0	0.733	6.2	LOS A	15.1	124.1	0.62	0.60	54.3
West	N4 Off-ran	mp									
10	L2	152	20.0	0.093	5.8	LOS A	0.0	0.0	0.00	0.52	54.2
11	T1	3	20.0	0.601	31.0	LOS C	3.1	25.0	1.00	0.82	37.5
12	R2	95	20.0	0.601	36.7	LOS D	3.1	25.0	1.00	0.82	36.3
Appro	bach	249	20.0	0.601	17.9	LOS B	3.1	25.0	0.39	0.63	45.5
All Ve	hicles	1701	20.0	0.733	7.7	LOS A	15.1	124.1	0.54	0.55	53.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: WSP GROUP AFRICA (PTY) LTD | Processed: 28 November 2018 09:17:53 AM Project: Z:\20000\-Witbank\20744.R_Belfast Mall\11 - Reports\11.1 Traffic Reports\Traffic Impact Study\Phasing TIA_Sep 2016\Sidras Nov 2018\Road D1477 & N4 Northern Terminal.sip7

Site: [Road D1477 & N4 Northern Terminal 2020 PM Background Plus Phase 1-4 Development Traffic]

2020 PM Background Plus Phase 1-4 Development Traffic Signals - Fixed Time Isolated Cycle Time = 70 seconds (Optimum Cycle Time - Minimum Delay)

Move	ement Pe	rformance	- Vehic	les							
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/ł
South	: Road D1	477 NB		in the second							
2	T1	999	20.0	0.946	30.1	LOS C	34.3	281.6	0.58	0.82	40.1
3	R2	123	20.0	0.437	18.1	LOS B	2.8	23.0	0.67	0.77	44.2
Appro	bach	1122	20.0	0.946	28.8	LOS C	34.3	281.6	0.59	0.81	40.5
North	Road D1	477 SB									
7	L2	101	20.0	0.081	8.1	LOS A	0.9	7.2	0.27	0.64	51.1
8	T1	920	20.0	0.713	4.4	LOS A	15.3	125.1	0.53	0.49	55.9
Appro	ach	1021	20.0	0.713	4.8	LOS A	15.3	125.1	0.50	0.50	55.4
West	N4 Off-rai	mp									
10	L2	473	20.0	0.288	5.8	LOS A	0.0	0.0	0.00	0.52	54.2
11	T1	14	20.0	0.867	42.6	LOS D	5.8	47.5	1.00	0.99	33.7
12	R2	129	20.0	0.867	48.3	LOS D	5.8	47.5	1.00	0.99	32.7
Appro	ach	616	20.0	0.867	15.6	LOS B	5.8	47.5	0.23	0.63	47.1
All Ve	hicles	2759	20.0	0.946	17.0	LOS B	34.3	281.6	0.48	0.66	46.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: WSP GROUP AFRICA (PTY) LTD | Processed: 28 November 2018 09:26:10 AM Project: Z:\20000\-Witbank\20744.R_Belfast Mall\11 - Reports\11.1 Traffic Reports\Traffic Impact Study\Phasing TIA_Sep 2016\Sidras Nov 2018\Road D1477 & N4 Northern Terminal.sip7

Site: [Road D1477 & N4 Offramp Southern Terminal 2020 AM Background Plus Phase 1-4 **Development Traffic1**

2020 AM Background Plus Phase 1-4 Development Traffic Stop (Two-Way)

		rformance					050/ D	10	D		•
Mov ID	OD Mov	Demand Total veh/h	Hows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/
South	Road D1	and the second	10	vic	300		Ven				
1	L2	41	20.0	0.025	5.8	LOS A	0.0	0.0	0.00	0.57	52.8
2	T1	434	20.0	0.268	0.5	LOS A	0.3	2.5	0.05	0.01	59.3
3	R2	6	20.0	0.268	17.3	LOS C	0.3	2.5	0.05	0.01	56.4
Appro	ach	481	20.0	0.268	1.2	NA	0.3	2.5	0.05	0.06	58.6
East:	Belfast Or	e Stop Acce	ess								
4	L2	13	20.0	6.067	4629.7	LOS F	73.8	605.5	1.00	2.06	0.8
5	T1	52	20.0	6.067	4655.5	LOS F	73.8	605.5	1.00	2.06	0.8
6	R2	47	20.0	6.067	4670.3	LOS F	73.8	605.5	1.00	2.06	0.8
Appro	ach	112	20.0	6.067	4658.8	LOS F	73.8	605.5	1.00	2.06	0.8
North:	Road D1	477 NB									
7	L2	64	20.0	0.040	5.8	LOS A	0.0	0.0	0.00	0.57	52.8
8	T1	722	20.0	0.418	0.1	LOS A	0.0	0.0	0.00	0.00	59.9
9	R2	169	20.0	0.243	9.6	LOS A	1.0	8.3	0.58	0.82	49.8
Appro	ach	956	20.0	0.418	2.1	NA	1.0	8.3	0.10	0.18	57.3
West:	N4 Offram	η									
10	L2	66	20.0	3.932	2712.7	LOS F	66.7	547.2	1.00	2.95	1.3
11	T1	1	20.0	3.932	2757.8	LOS F	66.7	547.2	1.00	2.95	1.3
12	R2	53	20.0	3.932	2775.8	LOS F	66.7	547.2	1.00	2.95	1.3
Appro	ach	120	20.0	3.932	2740.8	LOS F	66.7	547.2	1.00	2.95	1.3
All Vel	nicles	1668	20.0	6.067	510.3	NA	73.8	605.5	0.21	0.47	6.2

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: WSP GROUP AFRICA (PTY) LTD | Processed: 27 November 2018 02:41:15 PM Project: Z:\2000\-Witbank\20744.R_Belfast Mall\11 - Reports\11.1 Traffic Reports\Traffic Impact Study\Phasing TIA_Sep 2016\Sidras Nov 2018\Road D1477 & N4 Southern Terminal.sip7

Site: [Road D1477 & N4 Offramp Southern Terminal_2020 PM Background Plus Phase 1-4 Development Traffic]

2020 PM Background Plus Phase 1-4 Development Traffic Stop (Two-Way)

Move	ement Pe	rformance	- Vehi	cles				State of the	1. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Mov ID	OD Mov	Demand Total veh/h	l Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/ł
South	: Road D1	477 NB			and shares	1.11.11.11.15	Service and service		Server and	Pre States &	
1	L2	114	20.0	0.070	5.8	LOS A	0.0	0.0	0.00	0.57	52.8
2	T1	958	20.0	0.583	0.9	LOS A	1.0	8.3	0.07	0.01	58.9
3	R2	9	20.0	0.583	29.9	LOS D	1.0	8.3	0.07	0.01	56.0
Appro	ach	1081	20.0	0.583	1.6	NA	1.0	8.3	0.06	0.07	58.1
East:	Belfast Or	ne Stop Acce	ess								
4	L2	20	20.0	25.513	22149.6	LOS F	157.6	1291.9	1.00	1.50	0.2
5	T1	71	20.0	25.513	22168.2	LOS F	157.6	1291.9	1.00	1.50	0.2
6	R2	82	20.0	25.513	22167.4	LOS F	157.6	1291.9	1.00	1.50	0.2
Appro	ach	173	20.0	25.513	22165.6	LOS F	157.6	1291.9	1.00	1.50	0.2
North:	Road D1	477 NB									
7	L2	83	20.0	0.051	5.8	LOS A	0.0	0.0	0.00	0.57	52.8
8	T1	766	20.0	0.915	16.7	LOS C	25.6	210.1	1.00	0.00	47.0
9	R2	179	20.0	0.935	77.1	LOS F	7.6	62.4	0.99	1.62	25.9
Appro	ach	1028	20.0	0.935	26.4	NA	25.6	210.1	0.92	0.33	41.5
West:	N4 Offran	np									
10	L2	85	20.0	15.269	12914.1	LOS F	131.3	1076.6	1.00	1.84	0.3
11	T1	2	20.0	15.269	13005.1	LOS F	131.3	1076.6	1.00	1.84	0.3
12	R2	82	20.0	15.269	12943.1	LOS F	131.3	1076.6	1.00	1.84	0.3
Appro	ach	169	20.0	15.269	12929.3	LOS F	131.3	1076.6	1.00	1.84	0.3
All Vel	hicles	2452	20.0	25.513	2466.4	NA	157.6	1291.9	0.55	0.40	1.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP GROUP AFRICA (PTY) LTD | Processed: 27 November 2018 02:41:39 PM

Project: Z:\20000\-Witbank\20744.R_Belfast Mall\11 - Reports\11.1 Traffic Reports\Traffic Impact Study\Phasing TIA_Sep 2016\Sidras Nov 2018\Road D1477 & N4 Southern Terminal.sip7

Site: [Road D1477 & N4 Offramp Southern Terminal_2020 AM Background Plus Phase 1-4 Development Traffic Plus]

2020 AM Background Plus Phase 1-4 Development Traffic Plus Slip Lane Stop (Two-Way)

Move	ment Pe	rformance	- Vehic	les							
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South	Road D1	477 NB	Sec. Parent						III States		
1	L2	41	20.0	0.025	5.8	LOS A	0.0	0.0	0.00	0.57	52.8
2	T1	434	20.0	0.268	0.5	LOS A	0.3	2.5	0.05	0.01	59.3
3	R2	6	20.0	0.268	17.3	LOS C	0.3	2.5	0.05	0.01	56.4
Appro	ach	481	20.0	0.268	1.2	NA	0.3	2.5	0.05	0.06	58.6
East:	Belfast Or	ne Stop Acce	ess								
4	L2	13	20.0	6.067	4629.7	LOS F	73.8	605.5	1.00	2.06	0.8
5	T1	52	20.0	6.067	4655.5	LOS F	73.8	605.5	1.00	2.06	0.8
6	R2	47	20.0	6.067	4670.3	LOS F	73.8	605.5	1.00	2.06	0.8
Appro	ach	112	20.0	6.067	4658.9	LOS F	73.8	605.5	1.00	2.06	0.8
North:	Road D1	477 NB									
7	L2	64	20.0	0.040	5.8	LOS A	0.0	0.0	0.00	0.57	52.8
8	T1	722	20.0	0.418	0.1	LOS A	0.0	0.0	0.00	0.00	59.9
9	R2	169	20.0	0.243	9.6	LOS A	1.0	8.3	0.58	0.81	50.0
Appro	ach	956	20.0	0.418	2.1	NA	1.0	8.3	0.10	0.18	57.3
West:	N4 Offram	np									
10	L2	66	20.0	0.041	5.8	LOS A	0.0	0.0	0.00	0.52	54.2
11	T1	1	20.0	3.817	2686.7	LOS F	34.5	282.8	1.00	1.71	1.2
12	R2	53	20.0	3.817	2704.2	LOS F	34.5	282.8	1.00	1.71	1.2
Appro	ach	120	20.0	3.817	1212.8	LOS F	34.5	282.8	0.45	1.05	2.7
All Vet	nicles	1668	20.0	6.067	400.4	NA	73.8	605.5	0.17	0.33	7.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP GROUP AFRICA (PTY) LTD | Processed: 27 November 2018 02:44:17 PM

Project: Z:\20000\-Witbank\20744.R_Belfast Mal\11 - Reports\11.1 Traffic Reports\Traffic Impact Study\Phasing TIA_Sep 2016\Sidras Nov 2018\Road D1477 & N4 Southern Terminal.sip7

Site: [Road D1477 & N4 Offramp Southern Terminal_2020 PM Background Plus Phase 1-4 Development Traffic Plus]

2020 PM Background Plus Phase 1-4 Development Traffic Plus Slip Lane Stop (Two-Way)

Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/l
South	: Road D1	477 NB									
1	L2	114	20.0	0.070	5.8	LOS A	0.0	0.0	0.00	0.57	52.8
2	T1	958	20.0	0.583	0.9	LOS A	1.0	8.3	0.07	0.01	58.9
3	R2	9	20.0	0.583	29.9	LOS D	1.0	8.3	0.07	0.01	56.0
Appro	ach	1081	20.0	0.583	1.6	NA	1.0	8.3	0.06	0.07	58.1
East:	Belfast On	e Stop Acce	ess								
4	L2	20	20.0	25.513	22149.6	LOS F	157.6	1291.9	1.00	1.50	0.2
5	T1	71	20.0	25.513	22168.2	LOS F	157.6	1291.9	1.00	1.50	0.2
6	R2	82	20.0	25.513	22167.4	LOS F	157.6	1291.9	1.00	1.50	0.2
Appro	ach	173	20.0	25.513	22165.6	LOS F	157.6	1291.9	1.00	1.50	0.2
North:	Road D14	477 NB									
7	L2	83	20.0	0.051	5.8	LOS A	0.0	0.0	0.00	0.57	52.8
8	T1	766	20.0	0.915	16.7	LOS C	25.6	210.1	1.00	0.00	47.0
9	R2	179	20.0	0.935	77.1	LOS F	7.6	62.4	0.99	1.62	26.0
Appro	ach	1028	20.0	0.935	26.4	NA	25.6	210.1	0.92	0.33	41.5
West:	N4 Offram	р									
10	L2	85	20.0	0.052	5.8	LOS A	0.0	0.0	0.00	0.52	54.2
11	T1	2	20.0	14.035	11949.8	LOS F	79.5	651.6	1.00	1.40	0.3
12	R2	82	20.0	14.035	11883.4	LOS F	79.5	651.6	1.00	1.40	0.3
Appro	ach	169	20.0	14.035	5908.6	LOS F	79.5	651.6	0.50	0.96	0.6
All Vel	nicles	2452	20.0	25.513	1981.1	NA	157.6	1291.9	0.52	0.34	1.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP GROUP AFRICA (PTY) LTD | Processed: 27 November 2018 02:44:45 PM

Project: Z:\20000\-Witbank\20744.R_Belfast Mall\11 - Reports\11.1 Traffic Reports\Traffic Impact Study\Phasing TIA_Sep 2016\Sidras Nov 2018\Road D1477 & N4 Southern Terminal.sip7

Site: [Road D1477 & N4 Offramp Southern Terminal_2020 AM Background Plus Development Traffic All-]

2020 AM Background Plus Development Traffic Plus All-Way Stop Stop (All-Way)

Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
0 11	B 1.54	veh/h	%	v/c	sec		veh	m		per veh	km/l
	: Road D1	a transfer to the test of the second								4.00	
1	L2	41	20.0	0.133	14.1	LOS B	0.5	3.8	0.93	1.28	48.7
2	T1	434	20.0	1.269	295.7	LOS F	48.0	393.7	1.00	6.24	10.2
3	R2	6	20.0	1.269	295.6	LOS F	48.0	393.7	1.00	6.24	10.2
Appro	ach	481	20.0	1.269	271.6	LOS F	48.0	393.7	0.99	5.82	11.(
East:	Belfast On	e Stop Acce	ess								
4	L2	13	20.0	0.676	68.8	LOS F	4.3	35.1	1.00	1.66	28.2
5	T1	52	20.0	0.676	68.8	LOS F	4.3	35.1	1.00	1.66	28.2
6	R2	47	20.0	0.676	68.9	LOS F	4.3	35.1	1.00	1.66	28.2
Appro	ach	112	20.0	0.676	68.8	LOS F	4.3	35.1	1.00	1.66	28.2
North:	Road D14	77 NB									
7	L2	64	20.0	0.187	12.7	LOS B	0.7	5.5	0.92	1.30	49.7
8	T1	722	20.0	1.966	898.6	LOS F	155.2	1272.8	1.00	12.23	3.8
9	R2	169	20.0	0.493	20.0	LOS C	2.4	19.7	0.98	1.47	45.0
Appro	ach	956	20.0	1.966	683.3	LOS F	155.2	1272.8	0.99	9.59	4.9
West:	N4 Offram	ip									
10	L2	66	20.0	1.329	458.9	LOS F	19.7	161.8	1.00	2.89	7.0
11	T1	1	20.0	1.329	459.0	LOS F	19.7	161.8	1.00	2.89	7.0
12	R2	53	20.0	1.329	458.7	LOS F	19.7	161.8	1.00	2.89	7.0
Appro	ach	120	20.0	1.329	458.8	LOS F	19.7	161.8	1.00	2.89	7.0
All Ve	nicles	1668	20.0	1.966	507.4	LOS F	155.2	1272.8	0.99	7.49	6.4

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: WSP GROUP AFRICA (PTY) LTD | Processed: 27 November 2018 02:48:24 PM Project: Z:\20000\-Witbank\20744.R_Belfast Mall\11 - Reports\11.1 Traffic Reports\Traffic Impact Study\Phasing TIA_Sep 2016\Sidras Nov 2018\Road D1477 & N4 Southern Terminal.sip7

Site: v [Road D1477 & N4 Offramp Southern Terminal 2020 PM Background Plus Development Traffic All-]

2020 PM Background Plus Development Traffic Plus All-Way Stop Stop (All-Way)

Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/l
South	: Road D1	477 NB									
1	L2	114	20.0	0.350	18.1	LOS C	1.5	11.9	0.96	1.37	46.3
2	T1	958	20.0	2.730	1584.8	LOS F	263.9	2163.8	1.00	14.80	2.2
3	R2	9	20.0	2.730	1584.8	LOS F	263.9	2163.8	1.00	14.80	2.2
Appro	ach	1081	20.0	2.730	1420.0	LOS F	263.9	2163.8	1.00	13.39	2.5
East:	Belfast On	e Stop Acce	ess								
4	L2	20	20.0	1.083	220.0	LOS F	16.1	132.0	1.00	2.90	13.0
5	T1	71	20.0	1.083	220.1	LOS F	16.1	132.0	1.00	2.90	13.0
6	R2	82	20.0	1.083	220.1	LOS F	16.1	132.0	1.00	2.90	13.0
Appro	ach	173	20.0	1.083	220.1	LOS F	16.1	132.0	1.00	2.90	13.0
North:	Road D14	477 NB									
7	L2	83	20.0	0.259	14.4	LOS B	1.0	8.1	0.95	1.33	48.6
8	T1	766	20.0	2.176	1086.9	LOS F	180.1	1477.1	1.00	12.79	3.2
9	R2	179	20.0	0.557	23.8	LOS C	3.0	24.3	1.00	1.53	42.9
Appro	ach	1028	20.0	2.176	815.2	LOS F	180.1	1477.1	1.00	9.90	4.2
West:	N4 Offram	р									
10	L2	85	20.0	1.862	900.1	LOS F	39.5	324.0	1.00	3.82	3.8
11	T1	2	20.0	1.862	900.2	LOS F	39.5	324.0	1.00	3.82	3.8
12	R2	82	20.0	1.862	899.9	LOS F	39.5	324.0	1.00	3.82	3.8
Appro	ach	169	20.0	1.862	900.0	LOS F	39.5	324.0	1.00	3.82	3.8
All Vel	hicles	2452	20.0	2.730	1045.9	LOS F	263.9	2163.8	1.00	10.53	3.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: WSP GROUP AFRICA (PTY) LTD | Processed: 27 November 2018 02:50:05 PM Project: Z:20000\-Witbank\20744.R_Belfast Mall\11 - Reports\11.1 Traffic Reports\Traffic Impact Study\Phasing TIA_Sep 2016\Sidras Nov 2018\Road D1477 & N4 Southern Terminal.sip7

Site: [Road D1477 & N4 Offramp Southern Terminal 2020 AM Background Plus Phase 1-4 **Development Traffic Plus**

2020 AM Background Plus Phase 1-4 Development Traffic Plus Slip Lane Signals - Fixed Time Isolated Cycle Time = 60 seconds (User-Given Cycle Time)

Mov	OD	rformance Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/l
South	: Road D1	477 NB	S (S MAR)								
1	L2	41	20.0	0.037	9.1	LOS A	0.4	3.2	0.34	0.64	50.4
2	T1	434	20.0	0.390	4.4	LOS A	5.6	45.8	0.46	0.41	55.9
3	R2	6	20.0	0.390	10.2	LOS B	5.6	45.8	0.46	0.41	53.3
Appro	ach	481	20.0	0.390	4.9	LOS A	5.6	45.8	0.45	0.43	55.3
East:	Belfast Or	ne Stop Acce	ess								
4	L2	13	20.0	0.595	35.7	LOS D	3.4	28.0	0.99	0.81	37.9
5	T1	52	20.0	0.595	29.9	LOS C	3.4	28.0	0.99	0.81	39.0
6	R2	47	20.0	0.595	35.7	LOS D	3.4	28.0	0.99	0.81	37.9
Appro	ach	112	20.0	0.595	33.0	LOS C	3.4	28.0	0.99	0.81	38.4
North:	Road D1	477 NB									
7	L2	64	20.0	0.058	9.1	LOS A	0.6	5.0	0.35	0.65	50.3
8	T1	722	20.0	0.657	5.6	LOS A	11.6	95.0	0.59	0.53	54.9
9	R2	169	20.0	0.355	13.1	LOS B	2.7	22.3	0.56	0.73	47.7
Appro	ach	956	20.0	0.657	7.2	LOS A	11.6	95.0	0.57	0.57	53.2
West:	N4 Offran	np									
10	L2	66	20.0	0.041	5.8	LOS A	0.0	0.0	0.00	0.52	54.2
11	T1	1	20.0	0.334	29.5	LOS C	1.6	13.1	0.97	0.74	38.1
12	R2	53	20.0	0.334	35.3	LOS D	1.6	13.1	0.97	0.74	36.9
Appro	ach	120	20.0	0.334	18.9	LOS B	1.6	13.1	0.43	0.62	44.9
All Vel	nicles	1668	20.0	0.657	9.1	LOSA	11.6	95.0	0.55	0.55	51.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP GROUP AFRICA (PTY) LTD | Processed: 27 November 2018 03:08:20 PM Project: Z:\20000\-Witbank\20744.R_Belfast Mall\11 - Reports\11.1 Traffic Reports\Traffic Impact Study\Phasing TIA_Sep 2016\Sidras Nov 2018\Road D1477 & N4 Southern Terminal.sip7

Site: [Road D1477 & N4 Offramp Southern Terminal_2020 PM Background Plus Phase 1-4 Development Traffic Plus]

2020 PM Background Plus Phase 1-4 Development Traffic Plus Slip Lane Signals - Fixed Time Isolated Cycle Time = 120 seconds (Optimum Cycle Time - Minimum Delay)

Mov	OD Mov	Demand Flows		Deg.	Average	Level of	95% Back of Queue		Prop.	Effective	Average
ID		Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
0	Deed D4	veh/h	%	v/c	sec		veh	m		per veh	km/
	: Road D1				10.0	100.0		40.4	0.00	0.00	40
1	L2	114	20.0	0.101	12.6	LOS B	2.2	18.1	0.36	0.66	48.
2	T1	958	20.0	0.904	27.7	LOS C	50.4	413.1	0.79	0.83	41.:
3	R2	9	20.0	0.904	33.4	LOS C	50.4	413.1	0.79	0.83	39.9
Approach		1081	20.0	0.904	26.1	LOS C	50.4	413.1	0.74	0.81	41.
East:	Belfast On	e Stop Acce	ess								
4	L2	20	20.0	0.867	72.5	LOS E	11.4	93.5	1.00	1.01	27.4
5	T1	71	20.0	0.867	66.8	LOS E	11.4	93.5	1.00	1.01	28.
6	R2	82	20.0	0.867	72.6	LOS E	11.4	93.5	1.00	1.01	27.4
Approach		173	20.0	0.867	70.2	LOS E	11.4	93.5	1.00	1.01	27.0
North:	Road D14	477 NB									
7	L2	83	20.0	0.064	8.6	LOS A	1.0	8.5	0.23	0.63	50.7
8	T1	766	20.0	0.645	4.7	LOS A	15.7	128.8	0.39	0.36	55.7
9	R2	179	20.0	0.805	48.3	LOS D	10.0	81.9	1.00	1.00	32.8
Approach		1028	20.0	0.805	12.6	LOS B	15.7	128.8	0.48	0.49	49.3
West:	N4 Offran	ηp									
10	L2	85	20.0	0.052	5.8	LOS A	0.0	0.0	0.00	0.52	54.2
11	T1	2	20.0	0.711	63.5	LOS E	5.3	43.1	1.00	0.85	28.1
12	R2	82	20.0	0.711	69.2	LOS E	5.3	43.1	1.00	0.85	27.5
Approach		169	20.0	0.711	37.3	LOS D	5.3	43.1	0.50	0.68	36.7
All Vehicles		2452	20.0	0.904	24.3	LOS C	50.4	413.1	0.63	0.68	42.6

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: WSP GROUP AFRICA (PTY) LTD | Processed: 27 November 2018 03:24:02 PM Project: Z:\20000\-Witbank\20744.R_Belfast Mall\11 - Reports\11.1 Traffic Reports\Traffic Impact Study\Phasing TIA_Sep 2016\Sidras Nov 2018\Road D1477 & N4 Southern Terminal.sip7