BRANDVALLEY WIND FARM EIA

AGRICULTURAL AND SOIL ASSESSMENT

Prepared for:

Brandvalley Wind Farm (Pty) Ltd.

Prepared by:

EAST LONDON

25 Tecoma street Berea, East London, 5201 043 726 7809

Also in Cape Town, Johannesburg, Grahamstown, Port Elizabeth and Maputo (Mozambique)

www.cesnet.co.za or www.eoh.co.za

REVISIONS TRACKING TABLE

EOH Coastal and Environmental Services

Report Title: Brandvalley Wind Farm EIA: Agricultural and Soil Assessment

Report Version: Draft for Client review

Project Number: 1299

Name	Responsibility	Signature	Date
Roy de Kock	Specialist author	ac.	7 March 2016

Copyright

This document contains intellectual property and proprietary information that is protected by copyright in favour of Coastal & Environmental Services (Pty) Ltd. (and the specialist consultants). The document may therefore not be reproduced, used or distributed to any third party without the prior written consent of Coastal & Environmental Services. Although this document is prepared exclusively for submission to the Department of Environmental Affairs, Coastal & Environmental Services (Pty) Ltd retains ownership of the intellectual property and proprietary information contained herein, which is subject to all confidentiality, copyright and trade secrets, rules intellectual property law and practices of South Africa.

INFORMATION REQUIRED BY THE COMPETENT AUTHORITY

In terms of Appendix 6 of the Environmental Impact Assessment Regulations (G. NR. 982) as regulated by the National Environmental Management Act (Act nr. 107 of 1998 and amended in 2014; NEMA), a Specialist Report must contain all the information necessary for a proper understanding of the nature of issues identified, and must include—

Legislated information required	Location in report
(1) A specialist report prepared in terms of the NEMA 2014 Regulations must contain- (a) details of- (i) the specialist who prepared the report; and	Section 1
(ii) the expertise of that specialist to compile a specialist report including a curriculum vitae;	
(b) a declaration that the specialist is independent in a form as may be specified by the competent authority;	Section 1
(c) an indication of the scope of, and the purpose for which, the report was prepared;	Section 4
(d) the date and season of the site investigation and the relevance of the season to the outcome of the assessment;	Section 4
(e) a description of the methodology adopted in preparing the report or carrying out the specialised process;	Section 4
(f) the specific identified sensitivity of the site related to the activity and its associated structures and infrastructure;	Section 6
(g) an identification of any areas to be avoided, including buffers;(h) a map superimposing the activity including the associated structures and	Section 8
infrastructure on the environmental sensitivities of the site including areas to be avoided, including buffers;	Section 8
(i) a description of any assumptions made and any uncertainties or gaps in knowledge;	Section 4
 (j) a description of the findings and potential implications of such findings on the impact of the proposed activity, including identified alternatives on the environment; 	Section 9
(k) any mitigation measures for inclusion in the EMPr;	
(I) any conditions for inclusion in the environmental authorisation;	Section 9
(m) any monitoring requirements for inclusion in the EMPr or	Section 10
environmental authorisation;	Section 10
(n) a reasoned opinion-	

Legislated information required	Location in report
(i) as to whether the proposed activity or portions thereof should be authorised; and	Section 10
(ii) if the opinion is that the proposed activity or portions thereof should be authorised, any avoidance, management and mitigation measures that should be included in the EMPr, and where applicable, the closure plan;	
(o) a description of any consultation process that was undertaken during the course of preparing the specialist report;	Section 3
(p) a summary and copies of any comments received during any consultation process and where applicable all responses thereto; and	Section 3
(q) any other information requested by the competent authority.	Section 3

TABLE OF CONTENTS

1		PROJECT TEAM	
	1.1	Details of specialist	1
		Expertise	
	1.3	Declaration	2
2		RODUCTION	
	2.1	Location and Site Description of the Proposed Development	3
3		KGROUND	
•	3.1	Purpose of the report	
	-	Technology description	
	3.3	Brandvalley alternatives	
		Consultation	
4		ROACH TO STUDY	
•		Terms of reference	
		Approach	
		1 Desktop analysis	
		2 Field survey	
	4.2.3	•	C
		Limitations	
	4.4	Assessment methodology	0
	4.5	Sensitivity assessment	u
5		EVANT LEGISLATION	
6		ELINE DESCRIPTION	
U	6.1	Climate	
	6.3	Geology	
		Soils	
		Topography	
		Vegetation	
	6.5.1		
		P. Koedoesberge-Moordenaars Karoo	
		Surface hydrology	
		Rivers, streams and drainage systems	
		2 Wetlands	
		Current land use	
		1 Livestock	
	6.7.2		
_	0.7.3		16
7		-S	
	7.1	Soil classification	
	7.1.1		
		P. Glenrosa foil form	
	7.2	Suitability for agriculture	
	7.2.1	· · · · · · · · · · · · · · · · · · ·	
		? Glenrosa form	
	7.2.3	9	
		Laboratory results	
	7.3.1	1	
		? Glenrosa soils	
_		Conclusion on agricultural suitability	
8	SEN	SITIVITY ASSESSMENT	24
9		ACT IDENTIFICATION AND ASSESSMENT	
	9.1	Introduction	
		Impacts on soils and agriculture	
_		Impact Assessment	
10		ACT STATEMENT, CONCLUSION AND RECOMMENDATIONS	
	10.1	Environmental management programme	41

Agricultural & Soil Assessment – March 2016	
10.2 Recommendations for the proposed Brandvalley Wind Farm	41
10.2.1 Alternatives	
10.2.2 Mitigation measures	
10.3 Conclusions	
11 REFERENCES	
12 APPENDIX A – SOIL LABORATORY RESULTS	
13 APPENDIX B – SIGNED SPECIALIST DECLARATION FORM	
LIST OF FIGURES	
EIST OF FIGURES	
Figure 2.1: Proposed Location for the Brandvalley Wind Energy Facility.	1
Figure 3.1: Layout map of the proposed Brandvalley Wind Farm	
Figure 6.1: Topography map of the Brandvalley Wind Farm area	
Figure 6.2: North-south transect profile along line T1 as shown in Figure 6.1	
Figure 6.3: An east-west transect profile along line T2 as shown in Figure 6.1	
Figure 6.4: Vegetation map of the Brandvalley Wind Farm area	
Figure 6.5: Surface water map of the Brandvalley Wind Farm area	
Figure 6.6: Infrastructure located close to or within water bodies.	
Figure 8.1: Irrigation map of the Brendvalley Wind Farm area	
Figure 7.1: Soil distribution map for the Brandvalley Wind Farm	19
Figure 8.1: Agricultural sensitivity map of the Brandvalley Wind farm area	
LIST OF TABLES	
Table 2.1: Farm Portions on which the Proposed Development is Located	3
Table 3.1: Various alternatives proposed for the Brandvalley Wind Farm	
Table 7.3: Total Exchange Capacity (TEC) for the different soil types (Moore <i>et al</i> , 1998)	
Table 4.1: Ranking of Evaluation Criteria	
Table 4.2: Description of Environmental Significance Ratings	
Table 4.3: Criteria used for the analysis of the agricultural sensitivity of the area.	
Table 5.1: Legislation and other regulatory instruments considered in the preparation of the Bran	
Wind farm Soil and Agricultural Report.	-
Table 6.1: Generalised soil status for the Brandvalley Wind Farm (Source: www.agis.agric.za)	
Table 7.1: Coordinated of the 4 x soil sample sites	17
Table 7.2: Visual description of the 4 sites sampled within the Brandvalley Wind Farm	17
Table 7.4: Average soil conditions within the Brandvalley Wind Farm site	22
Table 9.1: Impacts to soil and agriculture associated with different phases of the proposed Brandvalle	y Wind
Farm	
Table 9.2: Assessment and mitigation of impacts identified in the Planning & Design Phase	
Table 9.3: Assessment and mitigation of impacts identified in the Construction Phase	
Table 9.4: Assessment and mitigation of impacts identified in the Operation Phase	
Table 9.5: Assessment and mitigation of impacts identified in the Decommissioning Phase	
Table 9.6: Assessment and mitigation of impacts identified in the NO-GO alternative	
Table 10.1. Assessment of pre- and post-mitigation impact significance.	
Agricultural statement and Opinion of the Specialist	44
LIST OF PLATES	
	2.5
Plate 7.1: Photos of Mispah soil forms found onsite	
Plate 7.2: Photos of Glenrosa soil forms found onsite	21

LIST OF ACRONYMS AND GLOSSARY

	-
AGIS	Agricultural Geo-Referenced Information System
CARA	Conservation of Agricultural Resources Act
DAFF	Department of Agriculture, Forestry & Fisheries
DEA	Department of Environmental Affairs
DWS	Department of Water and Sanitation
EC	Eastern Cape
EIA	Environmental Impact Assessment
GDP	Gross Domestic Product
ha	hectare
kV	kilovolt
KZN	Kwazulu-Natal
Ma	Million years
masl	Meters above sea level
MW	Mega Watt
NEMA	National Environmental Management Act
NEMBA	National Environmental Management Biodiversity Act
SDF	Spatial Development Framework

EXECUTIVE SUMMARY

Brandvalley Wind Farm (Pty) Ltd proposes to develop a Wind Energy Facility (WEF) on the border of the Northern Cape and Western Cape Provinces of South Africa. The proposed Brandvalley Wind Farm falls across eleven (11) farm portions, collectively referred to as the project area for the Brandvalley Wind Farm, that are currently used for animal husbandry, game farming and agriculture including grazing of sheep. EOH Coastal & Environmental Services (CES) was approached to conduct an Agricultural and Soil Assessment of all the properties impacted by the proposed Brandvalley Wind Farm

Laingsburg, the closest town to the Brandvalley Wind Farm site with a weather station, normally receives about 61mm of rain per year, with most rainfall occurring during mid-summer. The dominant geological feature consists of sedimentary deposits of the Abrahamskraal Formation, which forms part of the Adelaide Subgroup of rocks which is part of the Beaufort Group of rocks which in turn makes up part of Karoo Supergroup of geological formations. Soils consist mostly of rocks with limited soils grading in steep areas grading to soils with minimal development that are usually shallow, overlying rock of weathering rock, with or without intermittent diverse soils southwards. Lime may be present in parts of the landscape. Water holding capacity are considered as very low (<20mm) while the potential for water erosion is moderate throughout the site. The landscape is described as high hills and ridges in the north and central areas grading into open hills and ridges southwards. Vegetation consists of Central Mountain Shale Renosterveld and Koedoesberge-Moordenaars Karoo (both vegetation types classified as Least Threatened by SANBI). Various surface hydrology systems (streams, wetlands etc.) will be impacted by the proposed Brandvalley Wind Farm development but the levels of impact must be confirmed with the Aquatic Specialist.

The main land use within the Brandvalley Wind Farm is agriculture and includes:

- Rural agriculture consisting of extensive small stock grazing (Dorper and Dohne Merino)
- Recreational Hunting
- Concentrated irrigation for various cash crops is practised along rivers and streams in small areas.

Although various farmsteads are located onsite, none will be impacted by the proposed Brandvalley Wind Farm infrastructure.

The dominant soil forms were identified as:

- Mispah soil form (14 000ha)
- Glenrosa soil form (16 600ha)

The total final permanent footprint for the Brandvalley Wind Farm will be approx. 40ha. The construction footprint (including temporary footprints) should be approx. 55ha in size. The bulk of infrastructure (approx. 90%) will be located on Mispah soils (hard rock of shallow soils overlying rock). Only 2 turbines and approximately 10% of access roads will be located on Glenrosa soils (undifferentiated top soil layer overlying subsoil that merges into rock).

Mispah soils are not suitable for dryland cropping or irrigation and accommodate a limited variety of vegetation. Grazing capacity is considered as low (26-30 ha/Animal Unit according to AGIS).

Glenrosa soils are also not suitable for dryland cropping. Irrigation of cash crops is only possible along riverbeds, provided that irrigation dams are constructed to aid water availability. Less than 10% of the Brandvalley Wind Farm site is suitable for this. Glenrosa soils accommodate a variety of vegetation ranging from a variety of scrublands, savannah and succulents. Small stock farming (Dorper and Dohne Merino sheep) are practised, grazing capacity is considered as low to moderate (18-25 ha/Animal Unit according to AGIS).

The Brandvalley Wind Farm area is classified into the following agricultural potential classes:

- Non-arable land with a low potential for grazing
- Land capability classification class 7 and 8 only
- Land unsuitable for crops unless under irrigation.

Grazing capacity are between 18-25 hectare per large stock unit (ha/LSU) on low undulating landscapes and 26-30 ha/LSU on steep mountainous areas. Grazing capacity potential are between 41-80 ha/LSU increasing to 26-30 ha/LSU towards the eastern sections.

Soil pH is considered as optimum between 6.5 and 7 for the highest plant nutrient availability for most crops. Both soil types (Mispah & Glenrosa) falls within this range and are considered as suitable for most crops.

Soil samples collected on Glenrosa soil form (S1 & S2) occur mostly on sand with a low organic content. Calcium (Ca), Potassium (K) and Sodium (Na) all fall within the optimal rate for fertile soils (60-75% for Ca, 3-5% for K and 0.5-5% for Na), while magnesium (Mg) content is considered to high (10-20%)

Soil samples collected on Mispah soil form (S5) has a low organic content. Potassium (K), Calcium (Ca) and Sodium (Na) all fall within the optimal rate for fertile soils (3-5% for K, 60-75% for Ca and 0.5-5% for Na), while magnesium (Mg) content is considered too high (10-20%).

Soils within the Brandvalley Wind Farm may be considered as optimum for a wide variety of crops under minimal soil management. Glenrosa soils are considered as more optimal when compared to Mispah soils. However, due to the limiting factor being water availability (for both soil types) and soil depth (especially for Mispah soils), such crops can only be grown under irrigation in deeper alluviums next to river systems.

The following impacts were identified:

Planning & Design Phase.

IMPACTS	SIGNIFICANCE PRE- MITIGATION	SIGNIFICANCE POST- MITIGATION
Issue 1: Increase in erosion potential		
During the planning and design phase inappropriate storm water design may lead to an increase in surface soil erosion.	MODERATE	LOW
Issue 2: Increase in renewable energy development in th	e local area	
During the planning and design phase the increase in renewable energy development in the local area will result in a gradual reduction of available agricultural land over time.	MODERATE	LOW

Construction Phase.

IMPACTS	SIGNIFICANCE PRE-MITIGATION	SIGNIFICANCE POST- MITIGATION
Issue 3: Management of hazardous chemicals		
During the construction phase hazardous chemical spills and leakages could lead to soil contamination and a loss of fertile soils if not managed appropriately.	MODERATE	LOW
Issue 4: Increased risk of fires from construction activities		
During construction phase fires originating from the construction site could lead to the loss of grazing and game.	нідн	LOW
During the construction phase incorrect stockpiling of soil could result in a decrease of agricultural viability/potential.	MODERATE	LOW
Issue 6: Soil profile disturbance and resultant decrease in	soil agricultural capability	
During the construction phase excavations for the	VERY HIGH	LOW

IMPACTS	SIGNIFICANCE PRE-MITIGATION	SIGNIFICANCE POST- MITIGATION
construction of the turbines and associated		
infrastructure will disturb the soil profile. If topsoil		
becomes buried, or subsoil rock, that is less suitable for		
root growth, remains at the surface, the agricultural		
suitability of the soil, that will become available for		
agriculture again after decommissioning of the WEF, will		
be reduced.		
Issue 7: Establishment of renewable energy infrastructure	on agricultural land	
During the construction phase the WEF infrastructure	MODERATE	LOW
(permanent and temporary)will result in the loss of up to		
5 ha of low agricultural land		
Issue 8: Increase in erosion potential		
During the construction phase the increase in impacted	MODERATE	LOW
areas and hard surfaces will increase run-off and		
potentially lead to soil erosion		

Operation Phase.

Operation Filase.				
IMPACTS	SIGNIFICANCE PRE- MITIGATION	SIGNIFICANCE POST- MITIGATION		
Issue 9: Increase in erosion potential	Issue 9: Increase in erosion potential			
During the operational phase an increase in hard surfaces (hardstands and roads) will increase run-off and potentially lead to soil erosion.	MODERATE	LOW		
Issue 10: Establishment of renewable energy infrastructure on agricultural land				
During the operational phase the WEF infrastructure	MODERATE	LOW		
will result in the loss of up to 5 ha of low agricultural				
land				
Issue 11: Establishment of new access roads				
During the operational phase the new access roads will	HIGHLY BENEFICIAL	HIGHLY BENEFICIAL		
allow for an easier access to farm areas previously				
inaccessible or difficult to access.				

Decommissioning Phase.

IMPACTS	SIGNIFICANCE PRE- MITIGATION	SIGNIFICANCE POST- MITIGATION	
Issue 12: Decommissioning and removal of renewable energy infrastructure on agricultural land			
During the decommissioning phase the decrease in renewable energy development in the local area will result in an increase of available agricultural land.	BENEFICIAL	BENEFICIAL	

NO-GO alternative.

IMPACTS	SIGNIFICANCE PRE-MITIGATION	SIGNIFICANCE POST- MITIGATION
Issue 13: Not constructing the WEF		
Not constructing the WEF will have no impact of agricultural	BENEFICIAL	BENEFICIAL
land.		

Cumulative Impacts

IMPACTS	SIGNIFICANCE PRE- MITIGATION	SIGNIFICANCE POST-MITIGATION
Issue 12: Change in local land use (for all phases)		
An increase wind farms in the local area may result in a shift in the local land use from agriculture to renewable	MODERATE	MODERATE
energy.		

The two (2) access route alternatives are considered equally preferred as both the alternatives are existing gravel roads and none of them will directly or indirectly impact on agricultural activities onsite. Although Access route alternative 1 transects 2 high agricultural areas (irrigated cropland), the footprint is existing and the new route will follow existing farm roads through these areas. None of the access routes alternatives (1 or 2) are considered as "fatally flawed" and therefore either one can be constructed.

Agricultural & Soil Assessment - March 2016

Site camp alternative 1 is considered as the preferred alternative. Site camp alternatives 2 & 3 are both either located within a non-perennial stream or are immediately (less than 100m) surrounded on two (2) and more sides by a stream. This must be confirmed by the appointed aquatic specialist.

Substation site alternatives 1-3 are considered as equally preferred. Substation site alternative 4 is considered as least preferred as the site appears to be surrounded on three sides by a non-perennial streams. As water is a limiting factor onsite for agriculture, this increases the risk significantly. This must be confirmed by the appointed aquatic specialist.

The No-Go option will not impact on any agricultural land but construction of new access roads to turbines located in currently inaccessible farm areas will result in easy/easier access by the farmer into these areas. Not constructing the WEF will result in these areas remaining inaccessible to the farmer.

The agricultural impacts of all the aspects of the proposed Brandvalley Wind Farm were considered and deemed to be acceptable, provided that the mitigation measures provided in this report are implemented.

Although limited agricultural output (livestock, crop irrigation and game) within the affected area will be impacted by the proposed development, no problematic areas or fatal flaws were identified for the site. The proposed impacts on cultivated land are limited in that only access areas will transect cultivated land in existing impacted areas (existing farm roads through cultivated land). No new development must impact on cultivated land.

All the identified impacts on agriculture are considered to have high reversibility because the land will be able to be returned to agriculture after closure, with very little change in agricultural potential. Impacts on agriculture are also considered to have low irreplaceability of resource loss because:

- 1. of the small area of land involved,
- 2. low suitability for crops outside small areas along dry riverbeds that are currently under irrigation,
- 3. it is highly unlikely to be irreplaceably lost to agriculture,
- 4. of a low agricultural potential for livestock,
- 5. the proportion of surface area likely to be affected is minimal and therefore the overall impact on the carrying capacity/agricultural potential of the site will be minimal.

1 THE PROJECT TEAM

In terms of Appendix 6 of the EIA Regulations (2014) a specialist report must contain-

- (a) details of-
 - (iii) the specialist who prepared the report; and
 - (iv) the expertise of that specialist to compile a specialist report including a curriculum vitae;
- (b) a declaration that the specialist is independent in a form as may be specified by the competent authority;

1.1 Details of specialist

Mr Roy de Kock M.Sc., Cand. Nat. Sci. (Agricultural and Soil Specialist)

Roy is a Senior Consultant holding a BSc Honours in Geology and an MSc in Botany from the Nelson Mandela Metropolitan University in Port Elizabeth. His MSc thesis focused on Rehabilitation Ecology using an open-cast mine as a case study. He has been working for CES since 2010, and is based at the East London branch where he focuses on Ecological and Agricultural Assessments, Geological and Geotechnical analysis, Environmental Management Plans, mining applications and various environmental impact studies. Roy has worked on numerous projects in South Africa, Mozambique and Malawi. Roy is registered with the South African Council for Natural Scientific Professional (SACNASP).

Dr Alan Carter *Pri. Nat Sci.* (Report reviewer)

As Director of the East London Office Alan has extensive training and experience in both financial accounting and environmental science disciplines with international accounting firms in South Africa and the USA. He is a member of the American Institute of Certified Public Accountants and holds a PhD in Plant Sciences. He is also a certified ISO14001 EMS auditor with the American National Standards Institute. Alan is registered with both the South African Council for Natural Scientific Professional (SACNASP).

1.2 Expertise

Projects Roy and Alan have worked on include:

Name of project	Description of responsibility	Date completed
Triton ESHIA (Pemba, Mozambique)	Agricultural & Soil Assessment	October 2015
Umsobomvu WEF EIA (EC)	Agricultural & Soil Assessment	March 2015
Mainstream Waaihoek WEF EIA (KZN)	Agricultural, Soil & Land use Assessment	October 2014
Ecofarm Sugarcane ESHIA (Zambezi,	Agricultural & Soil Assessment	June 2014
Mozambique)		
Innowind Dassiesridge WEF EIA (EC)	Agricultural & Soil Assessment	November 2014
Zirco Minerals Mining EIA (NC)	Agricultural, Soil & Land use Assessment	February 2014
Baobab Iron Ore Mining ESHIA (Tete, Mozambique)	Agricultural, Soil & Land use Assessment	May 2014
Middelton WEF EIA (EC)	Agricultural & Soil Assessment	November 2013
Syrah Graphite Mining ESHIA (Montepuez, Mozambique)	Agricultural, Soil & Land use Assessment	August 2013

1.3 Declaration

I, Roy de Kock, declare that, in terms of the National Environmental Management Act, 1998 (Act No. 107 of 1998), as amended and the Environmental Impact Assessment Regulations, 2014;

- I act as the independent specialist in this application;
- I will perform the work relating to the application in an objective manner, even if this results in views and findings that are not favourable to the applicant;
- I declare that there are no circumstances that may compromise my objectivity in performing such work;
- I have expertise in conducting the specialist report relevant to this application, including knowledge of the Act, Regulations and any guidelines that have relevance to the proposed activity;
- I will comply with the Act, Regulations and all other applicable legislation;
- I have no, and will not engage in, conflicting interests in the undertaking of the activity;
- I undertake to disclose to the applicant and the competent authority all material information in my possession that reasonably has or may have the potential of influencing any decision to be taken with respect to the application by the competent authority; and the objectivity of any report, plan or document to be prepared by myself for submission to the competent authority;
- all the particulars furnished by me in this report are true and correct; and
- I realise that a false declaration is an offence in terms of regulation 48 and is punishable in terms of section 24F of the Act.

Refer to Appendix B for a signed DEA declaration of independence

2 INTRODUCTION

2.1 Location and Site Description of the Proposed Development

Brandvalley Wind Farm (Pty) Ltd proposes to develop a Wind Energy Facility (WEF) on the border of the Northern Cape and Western Cape Provinces of South Africa. In the Northern Cape, the proposed project falls within the Karoo Hoogland Local Municipality and within the Namakwa District Municipality. In the Western Cape, the WEF falls within the Witzenburg Local Municipality and the Laingsburg Local Municipality and within the Cape Winelands and the Central Karoo District Municipalities, respectively.

Sutherland is the closest town within the Northern Cape Province and is situated approximately 60km north of the project area. The closest town within the Western Cape Province is Matjiesfontein, situated 30km south of the project area. Laingsburg is a further 30km east of Matjiesfontein, along the N1 national road in the Western Cape Province.

The project area can be accessed via the R354 that connects to the N1 between Matjiesfontein and Laingsburg. The R354 is the main arterial road providing access to the project area, where there are a number of existing local, untarred roads providing access within the project area.

The proposed Brandvalley Wind Farm falls across eleven (11) farm portions, provided in Table 2.1 below. These land portions, collectively referred to as the project area for the Brandvalley Wind Farm, are currently used for animal husbandry, game farming and agriculture including grazing of sheep.

Table 2.1: Farm Portions on which the Proposed Development is Located.

Description of affected farm portions			
Farm Name and Number	21 digit SG Code	Municipality/ Province	Farm size (ha)
The Remainder of Barendskraal 76	C04300000000007600000	Laingsburg LM / Central Karoo DM / Western Cape	1,523.7
Portion 1 of Barendskraal 76	C04300000000007600001	Laingsburg LM / Central Karoo DM / Western Cape	2,828.6
The Remainder of Brandvalley 75	C04300000000007500000	Laingsburg LM / Central Karoo DM / Western Cape	1,981.9
Portion 1 of Brandvalley 75	C04300000000007500001	Laingsburg LM / Central Karoo DM / Western Cape	56.3
The Remainder of Fortuin 74	C04300000000007400000	Laingsburg LM / Central Karoo DM / Western Cape	2,454.98
Portion 3 Fortuin 74	C04300000000007400003	Laingsburg LM / Central Karoo DM / Western Cape	1,868.4
The Remainder of Kabeltouw 160	C0190000000016000000	Witzenberg (Ceres) LM/ Cape Winelands DM/ Western Cape	1,082.8
The Remainder of Muishond Rivier 161	C0190000000016100000	Witzenberg (Ceres) LM/ Cape Winelands DM/ Western Cape	4,051.8
Portion 1 of Muishond Rivier 161	C0190000000016100001	Witzenberg (Ceres) LM/ Cape Winelands	3391

Agricultural & Soil Assessment - March 2016

Description of affected farm portions			
Farm Name and Number	21 digit SG Code	Municipality/	Farm size (ha)
railli Naille allu Nullibei		Province	
		DM/ Western Cape	
Portion 1 of Fortuin 74 (Ou Mure)		Laingsburg LM /	
Portion 1 of Portuin 74 (Ou Mure)	C04300000000007400001	Central Karoo DM /	408.9
		Western Cape	
The Farm Rietfontein 197		Karoo Hoogland LM/	
The Farm Kietrontein 197	C07200000000019700000	Namakwa DM/	5,873.6
		Northern Cape	
Total hectares 25,521.98			

The location of the proposed land properties is provided in Figure 2.1 below.

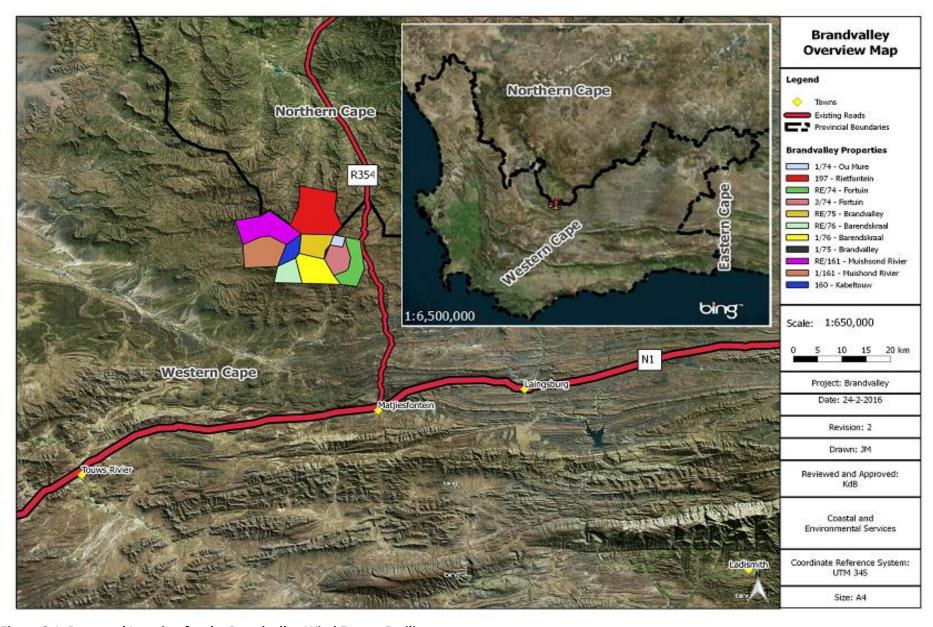


Figure 2.1: Proposed Location for the Brandvalley Wind Energy Facility.

3 BACKGROUND

In terms of Appendix 6 of the EIA Regulations (2014) a specialist report must contain-

- (c) an indication of the scope of, and the purpose for which, the report was prepared;
- (o) a description of any consultation process that was undertaken during the course of preparing the specialist report;
- (p) a summary and copies of any comments received during any consultation process and where applicable all responses thereto; and
- (q) any other information requested by the competent authority.

3.1 Purpose of the report

EOH Coastal & Environmental Services (CES) was approached to conduct an Agricultural and Soil Assessment of all the properties impacted by the proposed Brandvalley Wind Farm in order to determine the impact of the proposed development on the existing agricultural environment and recommend suitable mitigation measures to reduce or avoid negative impacts and or enhance positive impacts.

3.2 Technology description

The Brandvalley Wind Farm will have an energy generation capacity (at point of grid feed-in) of up to 140 megawatt (MW), and will include the following:

- Up to 70 potential wind turbine positions (between 1.5MW and 4MW in capacity each), each with a foundation of 25m in diameter and 4m in depth.
- The hub height of each turbine will be up to 120m, and the rotor diameter up to 140m.
- Permanent compacted hard-standing laydown areas for each wind turbine (70mx50m, total 24.5ha) will be required during construction and for on-going maintenance purposes.
- Electrical turbine transformers (690V/33kV) adjacent to each turbine (typical footprint of 2m x 2m, but can be up to 10m x 10m at certain locations) would be required to increase the voltage to 33kV.
- Underground 33kV cabling between turbines buried along access roads, where feasible.
- Internal access roads up to 12m wide, including structures for storm-water control would be required to access each turbine location and turning circles. Where possible, existing roads will be upgraded.
- 33kV overhead power lines linking groups of wind turbines to onsite 33/132kV substation(s). A number of potential electrical 33kV powerlines will be required in order to connect wind turbines to the preferred onsite substation. The layout of the 33kV powerlines will be informed by sensitive features identified. The facility will consist of both above and below ground 33kV electrical infrastructure depending on what will require the shortest distance and result in the least amount of impacts to the environment.
- A number of potential 33/132kV onsite substation location(s) will be assessed. The footprint of these 33/132kV substation(s) will need to be assessed in both this EIA and the Basic Assessment process for electrical infrastructure as the applicant will remain in control of the low voltage components of the 33/132kV substation (including isolators, control room, cabling, transformers etc.) (assessed in this EIA), whereas the high voltage components of this substation (assessed in BA) will likely be ceded to Eskom. The total footprint of this onsite substation will be approximately 200m x 200m. The exact coordinates of the low voltage components footprint (to be assessed in this EIA) and high voltage components footprint (to be assessed in the EIA phase.
- Up to 4 x 120m tall wind measuring lattice masts strategically placed within the wind farm development footprint to collect data on wind conditions during the operational phase.

- Temporary infrastructure including a large construction camp (~10ha) and an on-site concrete batching plant (~1ha) for use during the construction phase.
- Borrow pits and quarries for locally sourcing aggregates required for construction (~4.5ha), in addition to onsite turbine excavations where required. All materials excavated will eventually be used on the compacting of the roads and hard-standing areas and no material will be sold to any third parties. The number and size of the borrow pits depends on suitability of the subsurface soils and the requirement for granular material for access road construction and other earthworks. Alternative borrow pit locations will be assessed in a separate Basic Assessment process.
- Fencing will be limited around the construction camp and the entire facility would not necessarily need to be fenced off. The height of fences around the construction camp is anticipated to be up to 4m.
- Temporary infrastructure to obtain water from available local sources/ new or existing boreholes. Water will potentially be stored in temporary water storage tanks. The necessary approvals from the DWS will be applied for separately to this EIA process.

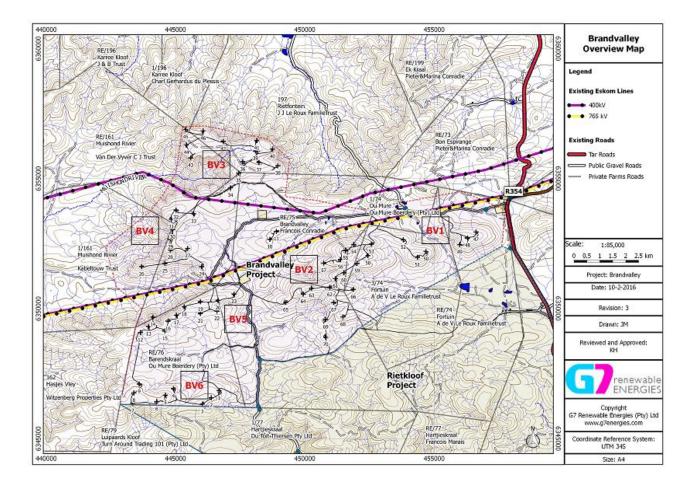


Figure 3.1: Layout map of the proposed Brandvalley Wind Farm

3.3 Brandvalley alternatives

Table 3.1 below shows the various alternatives that are assessed in this study.

Table 3.1: Various alternatives proposed for the Brandvallev Wind Farm.

Table 3.1.	rable 3.1. Various afternatives proposed for the brandvariey viria ratin.		
Alternative			Description
Fundamen	tal alterna	tives:	
Project	area	location	One project location alternative namely Brandvalley Wind Farm are
alternatives:			assessed. See Figure 2.1
Access road alternatives:		ves:	Two access road alternatives namely access road alternative 1 and access
			road alternative 2. A 200m buffer was placed on all access roads to allow

Alternative	Description	
	the road to move within that buffer in areas that may be identified as	
	sensitive in the specialist assessment. All internal access routes are	
	assessed as part of the access route alternatives. Both alternatives will	
	access form the R354. At the following GPS coordinates:	
	Alternative 1 : 32°57'4.14"S; 20°32'55.84"E	
	<i>Alternative 2:</i> 32°59'27.40"S; 20°33'59.61"E	
Construction camp	Three alternative construction camp & batching plant sites are assessed	
alternatives:	namely construction camp 1, 2, and 3. Each camp will be approximately	
	10ha in size and will be located at the following points onsite:	
	Construction camp 1: 32°57'8.10"S; 20°32'32.55"E	
	Construction camp 2: 32°57'21.74"S; 20°26'52.44"E	
	Construction camp 3: 32°58'38.98"S: 20°26'18.64"E	
Onsite substation location	Four onsite substation location alternatives namely:	
alternatives:	Substation alternative 1 : 32°57'12.99"S; 20°31'30.63"E	
	Substation alternative 2 : 32°57'21.20"S; 20°28'48.22"E	
	Substation alternative 3 : 32°58′5.03″S; 20°25′51.61″E	
	Substation alternative 4 : 32°58'31.87"S; 20°26'12.13"E	
Incremental alternatives:		
Turbine layout alternatives	The outcome of the specialist assessment will recommend alternative	
	turbine locations.	
No-Go alternative:		
It is mandatory to consider the n	o-go (no development) alternative in the EIA process. The no development	

It is mandatory to consider the no-go (no development) alternative in the EIA process. The no development option assumes the site remains in its current state, i.e. agricultural land. The no-go alternative will be used as a baseline throughout the assessment process against which potential impacts will be compared in an objective manner.

3.4 Consultation

No consultation was undertaken during this specialist study as all consultation was addressed in the Socio-economic Impact Assessment.

No issues were raised during both the EIA Public Participation Process (PPP) and the Socio-economic Impact Assessment that required input form an agricultural specialist.

To date, no issues were raised or additional agricultural information required by the competent authority.

4 APPROACH TO STUDY

In terms of Appendix 6 of the EIA Regulations (2014) a specialist report must contain-

- (d) the date and season of the site investigation and the relevance of the season to the outcome of the assessment;
- (e) a description of the methodology adopted in preparing the report or carrying out the specialised process;
- (i) a description of any assumptions made and any uncertainties or gaps in knowledge;

4.1 Terms of reference

An Agricultural Impact Assessment will be undertaken based on the following Terms of Reference:

- The status quo will be investigated to determine the agricultural potential based on:
 - o The extent and quality of arable land (less than 12% slope) within the project area
 - The extent and quality of existing crops
 - o The extent and quality of commercially unused land
 - The availability of irrigation water
 - The condition of the veld and other natural vegetation
 - o Climate conditions
 - The percentage of usable land that will be utilised during construction
 - o The percentage of usable land that will be utilised after construction.
- Status Quo of soils will also be informed by any identified erosion hazards, current and previous land use, surface and ground water resources and the vegetation. Specifically, the following will be investigated:
 - o Compile a detailed desktop assessment for the proposed WEF and associated infrastructure;
 - The soil assessment must include the following as per DEAs requirements:
 - o Identification of the soil forms present on site;
 - The size of the area where a particular soil form is found;
 - GPS reading of soil survey points;
 - The depth of the soil at each survey point;
 - Soil colour;
 - Limiting factors;
 - Clay content; and
 - Slope of the site.
- Provide shape files containing the soil forms and relevant attribute data as depicted on the maps.
- Undertake field verification which includes a soil survey. During this survey each soil sample point will be described to form and family level according to Soil Classification Working Group's Soil Classification"
- Combine the information in order to provide a spatial classification of the site based on its soil characteristics and associated agricultural potential.
- Compile a detailed soil and land use impact assessment based on the predicted impacts.
- Investigate direct and indirect impacts as well as the effect of cumulative impacts.
- Detailed mitigation measures will be proposed in order to reduce the soil and land use impacts identified.
- The report will meet the Department of Agriculture's requirements.

4.2 Approach

A desktop analysis and a field survey were undertaken. The methodology used is described below.

4.2.1 Desktop analysis

The desktop analysis was based on existing published data on soil and agricultural potential for the site. The source of data was the AGIS online database, produced by the Institute of Soil, Climate and Water of the Agricultural Research Council of South Africa (AGIS, 2007). This information was largely compiled from a nationwide survey of land types conducted since the 1970s. Satellite imagery of the site available on Google EarthTM was also used for evaluation.

The following specialist reports have been prepared as part of the EIA process and should also be read in conjunction with this report:

- Ecological Impact Assessment
- Socio-economic Impact Assessment

Where relevant, summary content sourced from these documents is provided in this report.

4.2.2 Field survey

A field survey was conducted from 15 to 18 February 2016 in order to assess land-use, current soil conditions and agricultural use onsite.

Soil samples were collected to a depth of 30-40 cm (where possible) and sent to Brookside Laboratories Inc. in Heidelberg, Mpumalanga for analysis (see Appendix A for results). Sample site were randomly chosen based on accessibility of the site.

The Soil Classification Working Group's Soil Classification: a Taxonomic System for South Africa was used to assess the soils data

4.2.3 Laboratory analysis

See Appendix A for laboratory results. The following correlation between sample numbering in this report and the laboratory results must be taken in consideration:

Laboratory sample #	Report sample #
S11	S1
S18	S2
S19	S 3
S22	S4

The Total Exchange Capacity (TEC) measured in ME/100g (see Laboratory results) was used to compare soil characteristics of the different soil samples. This was done as TEC is an inherent soil characteristic and is difficult to alter.

TEC refers to the total capacity of a soil to hold exchangeable cations. It influences the soil's ability to hold onto essential nutrients and to provide a buffer against soil acidification therefore influencing soil structure stability, nutrient availability and soil pH. Soils with a higher clay and organic material content will have a higher TEC when compared to sandy soils. The following table reflects the TEC for different soil types.

Table 7.3: Total Exchange Capacity (TEC) for the different soil types (Moore et al, 1998).

Soil type	TEC (ME/100g)
Sand with low organic content	3-5
Sand with high organic content	10-20
Loam	10-15
Silty loam	15-25
Clay & clay loams	20-50
Peat	50-100

4.3 Limitations

This report is based only on currently available information and, as a result, the following limitations and assumptions are implicit –

- The report is based on a project description taken from design specifications for the proposed Brandvalley WEF project that have not yet been finalised, and which are likely to undergo a number of iterations and refinements before they can be regarded as definitive;
- Descriptions of the surrounding environment are based on limited fieldwork and available literature.
- The assessment was limited to a summer season observation only (February) as timelines are restricted by the Environmental Impact Assessment (EIA) process.

4.4 Assessment methodology

To ensure a direct comparison between various specialist studies, a standard rating scale has been defined and will be used to assess and quantify the identified impacts. This is necessary since impacts have a number of parameters that need to be assessed. Five factors need to be considered when assessing the significance of impacts, namely:

- 1. Relationship of the impact to **temporal scales** the temporal scale defines the significance of the impact at various time scales, as an indication of the duration of the impact.
- 2. Relationship of the impact to **spatial scales** the spatial scale defines the physical extent of the impact.
- 3. The severity of the impact the **severity/beneficial scale** is used in order to scientifically evaluate how severe negative impacts would be, or how beneficial positive impacts would be on a particular affected system (for ecological impacts) or a particular affected party.
- 4. The **severity** of impacts can be evaluated with and without mitigation in order to demonstrate how serious the impact is when nothing is done about it. The word 'mitigation' does not just mean 'compensation', but also the ideas of containment and remedy. For beneficial impacts, optimization means anything that can enhance the benefits. However, mitigation or optimization must be practical, technically feasible and economically viable.
- 5. The **likelihood** of the impact occurring the likelihood of impacts taking place as a result of project actions differs between potential impacts. There is no doubt that some impacts would occur (e.g. loss of vegetation), but other impacts are not as likely to occur (e.g. vehicle accident), and may or may not result from the proposed development. Although some impacts may have a severe effect, the likelihood of them occurring may affect their overall significance.

Each criterion is ranked with scores assigned as presented in Table 4.1 to determine the overall significance of an activity. The criterion is then considered in two categories, viz. effect of the activity and the likelihood of the impact. The total scores recorded for the effect and likelihood are then read off the matrix presented in Table 4.1, to determine the overall significance of the impact. The overall significance is either negative or positive.

Table 4.1: Ranking of Evaluation Criteria

	Temporal Scale				
	Short term	Less than 5 years			
	Medium term	Between 5-20 years			
		Between 20 and 40 years (a generatio	n) and from a human perspective also		
	Long term	permanent			
		Over 40 years and resulting in a perma	anent and lasting change that will		
	Permanent	always be there			
	Spatial Scale				
	Localised	At localised scale and a few hectares in	n extent		
	Study Area	The proposed site and its immediate e	environs		
EFFECT	Regional	District and Provincial level			
	National	Country	Country		
	International	Internationally			
	Severity	Severity Benefit			
		Slight impacts on the affected	Slightly beneficial to the affected		
	Slight	system(s) or party(ies)	system(s) and party(ies)		
		Moderate impacts on the affected	Moderately beneficial to the		
	Moderate	system(s) or party(ies)	affected system(s) and party(ies)		
	Severe/	Severe impacts on the affected	A substantial benefit to the affected		
	Beneficial	system(s) or party(ies)	system(s) and party(ies)		
	Very Severe/	Very severe change to the affected	A very substantial benefit to the		
	Beneficial	system(s) or party(ies)	affected system(s) and party(ies)		
LIKELIHOOD	Likelihood				
	Unlikely	The likelihood of these impacts occurring is slight			
<u> </u>	May Occur	The likelihood of these impacts occurring is possible			
XE	Probable	The likelihood of these impacts occurring is probable			
	Definite	The likelihood is that this impact will definitely occur			

^{*} In certain cases it may not be possible to determine the severity of an impact thus it may be determined: Don't know/Can't know

Table 4.2: Description of Environmental Significance Ratings

Significance	Description		
Rate			
Low	An acceptable impact for which mitigation is desirable but not essential. The impact		
	by itself is insufficient even in combination with other low impacts to prevent the		
	development being approved.		
	These impacts will result in either positive or negative medium to short term effects		
	on the social and/or natural environment.		
Moderate	An important impact which requires mitigation. The impact is insufficient by itself to		
	prevent the implementation of the project but which in conjunction with other		
	impacts may prevent its implementation.		
	These impacts will usually result in either a positive or negative medium to long-term		
	effect on the social and/or natural environment.		
High A serious impact, if not mitigated, may prevent the implementation of			
	it is a negative impact).		
	These impacts would be considered by society as constituting a major and usually a		
	long-term change to the (natural &/or social) environment and result in severe effects		
	or beneficial effects.		
Very High	A very serious impact which, if negative, may be sufficient by itself to prevent		
	implementation of the project. The impact may result in permanent change. Very		
	often these impacts are unmitigable and usually result in very severe effects, or very		
	beneficial effects.		

The environmental significance scale is an attempt to evaluate the importance of a particular impact. This evaluation needs to be undertaken in the relevant context, as an impact can either be ecological or social, or both. The evaluation of the significance of an impact relies heavily on the values of the person making the judgment. For this reason, impacts of especially a social nature need to reflect the values of the affected society.

4.5 Sensitivity assessment

This section of the report explains the approach to determining the ecological sensitivity of the study area on a broad scale. The approach identifies zones of high, moderate and low sensitivity according to a system developed by EOH and used in numerous agricultural studies. It must be noted that the sensitivity zonings in this study are based solely on agricultural characteristics and social and economic factors have not been taken into consideration. The sensitivity analysis described here is based on 6 criteria which are considered to be of importance in determining agricultural sensitivity. The method predominantly involves identifying agricultural use, topography and land use (Table 4.3).

Although very simple, this method of analysis provides a good, yet conservative and precautionary assessment of the agricultural sensitivity.

Table 4.3: Criteria used for the analysis of the agricultural sensitivity of the area.

	CRITERIA	LOW SENSITIVITY	MODERATE SENSITIVITY	HIGH SENSITIVITY
1	Topography – Lay of the land	Level or even	Undulating; fairly steep slopes	Complex and uneven with steep slopes
2	Soil – Suitability of soils for crops	Low suitability (shallow soils, low/high pH, etc.)	Moderate suitability (area limited, input required, etc.)	Optimal soils
3	Land use – Current use of the land	Non-agricultural use, Natural veld (no grazing & browsing), urban areas etc.	Minimal agricultural use	All farmland
4	Agricultural use - leading to loss of viable land	No agricultural practices	Subsistence and informal farming (occasional farming)	Commercial farming & irrigation
5	Erosion potential or instability of the region	Very stable and an area not subjected to erosion	Some possibility of erosion or change due to episodic events	Large possibility of erosion, change to the site or destruction due to climatic or other factors
6	Water use – Availability of surface water for agricultural use	No surface water onsite	NA	Surface water onsite

A sensitivity map was drawn up with the aid of a satellite image so that the sensitive regions and agricultural types could be plotted (see Section 8).

RELEVANT LEGISLATION

The following legislation and other regulatory instruments are directly relevant when considering impacts on the existing soil and agricultural uses identified for the Brandvalley Wind Farm project.

Table 5.1: Legislation and other regulatory instruments considered in the preparation of the Brandvalley Wind farm Soil and Agricultural Report.

Title of relevant			
legislation, policy or guideline	Date	Implications for proposed Brandvalley Wind Farm project	
The National Environmental Management Act (NEMA) (107 of 1998)	1998	The developer must apply the NEMA principles, the fair decision-making and conflict management procedures that are provided for in NEMA. The developer must apply the principles of Integrated Environmental Management and the consideration, investigation and assessment of the potential impact of existing and planned activities on the environment, socio-economic conditions; and the cultural heritage.	
Conservation of Agricultural Resources Act (CARA)(No. 43 of 1983) and Regulations 15 & 16	1983	 environment, socio-economic conditions; and the cultural heritage. The proposed project must conserve natural agricultural resources; Must assess the impacts of the proposed development on the existing agricultural environment; Must maintain the production potential of the land by: Combating and preventing erosion; Preventing the weakening or destruction of water sources; Protecting vegetation; Combating weeds and invader plants. Cultivation of virgin soil. Protection of cultivated land. Utilisation and protection of the veld. Control of weed and invader plants. Prevention and control of veld fires and the restoration and reclamation of eroded land. 	
National Environmental Management Biodiversity Act (NEMBA)(No. 10 of 2004); Aliens & Invasive Species (AIS) Regulations National Water Act (No. 36 of 1998)	1998	Lists invasive species that are: Restricted activities and are prohibited in terms of Section 71A(1) Exempted in terms of Section 71(3) Require a permit in terms of Section 71(1) Provides details of measures intended to ensure the comprehensive	
The Subdivision of Agricultural Land Act (No. 70 of 1970)	1970	protection of all water resources, including the ecological reserve (quantity and quality) for surface and underground water. This Act controls the subdivision of all agricultural land in South Africa and prohibits certain actions relating to agricultural land. In terms of the Act, the owner of agricultural land is required to obtain consent from the Minister of Agriculture in order to subdivide agricultural land. The purpose of the Act is to prevent uneconomic farming units from being created and degradation of prime agricultural land. The Act also regulates leasing and selling of agricultural land as well as registration of servitudes.	

6 BASELINE DESCRIPTION

In terms of Appendix 6 of the EIA Regulations (2014) a specialist report must contain-

(f) the specific identified sensitivity of the site related to the activity and its associated structures and infrastructure;

This section provides a brief of the current state of the natural environment of the proposed Brandvalley Wind Farm project.

6.1 Climate

Laingsburg, the closest town to the Brandvalley Wind Farm site with a weather station, normally receives about 61mm of rain per year, with most rainfall occurring during mid-summer. Laingsburg receives its lowest annual rainfall (0mm) in December and the highest (9mm) in March. The average midday temperatures for Laingsburg range from 16.6°C in July to 30.1°C in January. The region is the coldest during July when the temperature drops to 2.9°C on average during the night (www.saexplorer.co.za).

6.2 Geology

The dominant geological feature within the affected farm portions of the proposed Brandvalley Wind Farm consists of sedimentary deposits of the Abrahamskraal Formation, which forms part of the Adelaide Subgroup of rocks which is part of the Beaufort Group of rocks which in turn makes up part of Karoo Supergroup of geological formations (Johnson *et al*, 2006).

The Abrahamskraal Formation consists of alternating bluish-grey, greenish-grey, or greyish-red mudrock and grey, very fine to medium grained, lithofeldspathic sandstones. Sandstones usually constitute 20-30% of the total thickness but may vary locally. Individual sandstones average a thickness of 6m with a maximum of 60m. Calcareous concretions 20-100cm in diameter are present in some sandstone layers.

Sandstone units usually form fining upwards cycles. These cycles vary from a few meters to tens of meters in thickness and were probably formed by the lateral migration of meandering rivers during the second major tectonic paroxysm of the Cape Fold Belt approx. 258Ma. The mudstones represent depositions in a flood plain and lacustrine environment.

6.3 Soils

Soils consist mostly of rocks with limited soils grading in steep areas grading to soils with minimal development that are usually shallow, overlying rock of weathering rock, with or without intermittent diverse soils southwards. Lime may be present in parts of the landscape.

Water holding capacity are considered as very low (<20mm) while the potential for water erosion is moderate throughout the site.

Below is a table of generalised soil status for the Brandvalley Wind Farm. This information will be compared to the laboratory analysis of soil samples collected onsite during the site visit (Section 7).

Table 6.1: Generalised soil status for the Brandvalley Wind Farm (Source: www.agis.agric.za)

Soil condition	Classification
Potential for soil regeneration	Very low potential
Natural soil organic carbon content	<5 % C

Soil condition	Classification
рН	7.5 – 8.4 (alkaline)
Acidification	Not susceptible to acidification
Cation exchange capacity	6.1 – 10 cmolc.kg ⁻¹ of soil
Soil zinc status	6.1 mg.kg ⁻¹
Soil copper status	1 – 2 mg.kg ⁻¹
Soil cobalt status	2 – 10 mg.kg ⁻¹

6.4 Topography

The Brandvalley Wind Farm site is described as high hills and ridges in the north and central areas grading into open hills and ridges southwards (Figure 6.1).

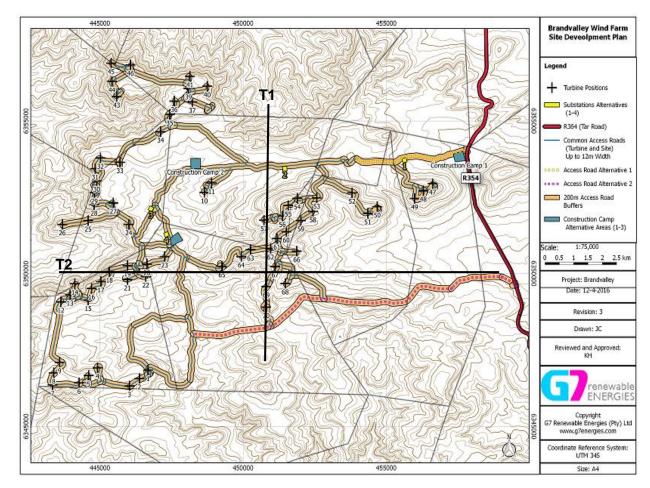


Figure 6.1: Topography map of the Brandvalley Wind Farm area

This can be seen in the profile transects (Figures 6.2 & 6.3) below where Figure 6.2 shows a north to south profile along line T1 (seen in Figure 6.1) and Figure 6.2 represents an east to west profile along line T2 (seen in Figure 6.1).

The profiles along the north to south transect (Figure 6.2) shows that the overall landscape decreases in height from 1 073 meters above sea level (masl) in the north to 885masl in the southern sections of the Brandvalley Wind farm. The highest point is in the central area of the Brandvalley Wind farm at 1 313masl and the lowest at the southernmost point at 885 masl. The landscape changes from undulating hills in the north to a flat, open valley in the south.



Figure 6.2: North-south transect profile along line T1 as shown in Figure 6.1

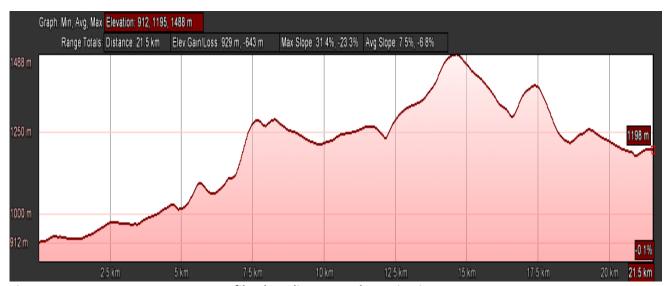


Figure 6.3: An east-west transect profile along line T2 as shown in Figure 6.1

The east to west profile (Figure 6.3) illustrates a similar landscape change as the north to south profile where the undulating hill landscape changes in the east to open valley plains in the west. The overall landscape decreases westward form 1 158 masl in the east to 912 masl in the west with the highest point at 1 488 masl in the central area.

6.5 Vegetation

Mucina and Rutherford (2006) define the following vegetation types that occur within the Brandvalley Wind Farm site and associated infrastructure:

6.5.1 Central Mountain Shale Renosterveld

This vegetation type forms part of the Fynbos Biome and is found in both the Western and Northern Cape Provinces. Its range extend from the southern and south-eastern slopes of the Klein-Roggeveldberge and Komsberg below the Roggeveld section of the Great Escarpment (facing the Moordenaars Karoo) as well as farther east below Besemgoedberg and Suurkop west of Merweville and in the west in the Karookop area between Losper-se-Berg and high points around Thyshoogte. All wind farm infrastructure will be located on this vegetation type.

The site is dominated by renosterbos and larges suites of mainly non-succulent Karoo scrubs with a rich geophytic flora in the undergrowth in more open, wetter or rocky habitats. SANBI classified this vegetation type as **Least Threatened** although none is conserved in statutory or private conservation areas while only about 1% is currently transformed.

6.5.2 Koedoesberge-Moordenaars Karoo

This vegetation type forms part of the Succulent Karoo Biome and occurs in the Western and Northern Cape Provinces. Koedoesberge-Moordenaars Karoo occurs in the broader Laingsburg and Merweville area between the Koedoesberge and Pienaar-se-Berg low mountain ranges and the southern Tankwa Karoo. It is separated by the Moordenaars Karoo by the Klein Roggeveld Mountains. The unit also includes the Doesberg region east of Laingsburg as well as the piedmonts of the Elandsberg and beyond the Gamkapoort Dam at Excelsior (west of Prince Albert).

This vegetation unit occurs on slightly undulating to hilly landscapes that is covered by low succulent scrub and dotted by scattered tall scrubs. Patched of lighter coloured grasses are visible on the plains with *Pteronia, Drosanthemums and Galenia* spp. being most dominant. This vegetation unit is classified as **Least Threatened** although only a small portion (>5%) is conserved in the Gankapoort Nature Reserve with only a small portion considered as transformed. No wind farm infrastructure will be located on Koedoesberge-Moordenaars Karoo.

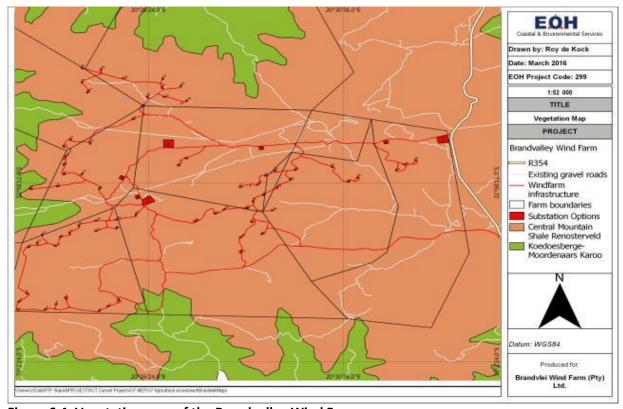


Figure 6.4: Vegetation map of the Brandvalley Wind Farm area

6.6 Surface hydrology

Surface hydrology refers to all surface waters found onsite and includes overland flows, rivers, lakes, wetlands, estuaries and oceans, excluding atmospheric and groundwater (NFEPA).

The rivers, streams and drainage systems as well as wetlands are described below.

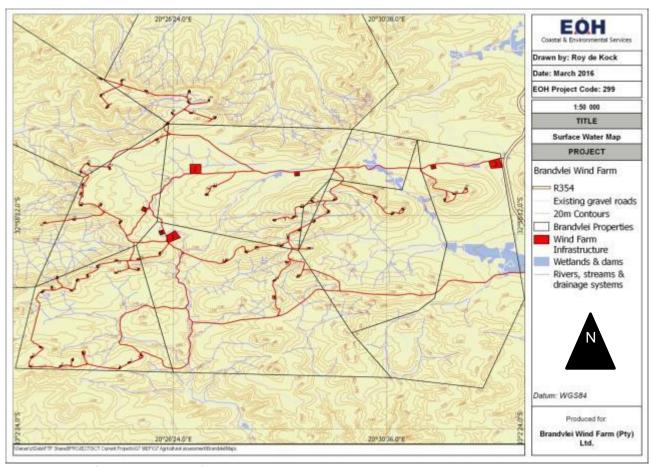


Figure 6.5: Surface water map of the Brandvalley Wind Farm area

6.6.1 Rivers, streams and drainage systems

Various systems will be impacted by the proposed Brandvalley Wind Farm development. Various access roads transect streams and drainage systems at various points within the proposed site. Most of these crossings are existing road crossings. Both site camp alternative 3 and substation alternative 4 sites will be surrounded at two or more sides by streams while site camp alternative 2 will be located within two drainages systems (Figure 6.6). This will however be confirmed by the aquatic specialist.

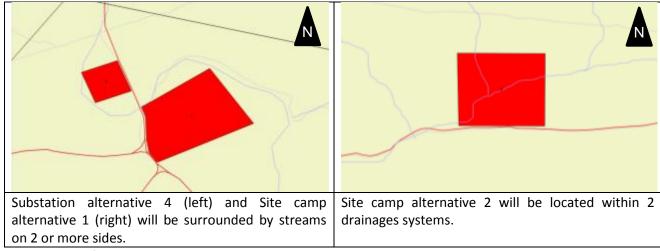


Figure 6.6: Infrastructure located close to or within water bodies.

6.6.2 Wetlands

No turbine sites will be located within 500m of any priority wetland or artificial farm or irrigation dam. Some access roads however appears to transect dry Karoo wetland systems as defined by the National Freshwater Ecosystem Priority Area (NFEPA) and might require authorisation from the Department of Water & Sanitation (DWS). This will be confirmed by the aquatic specialist.

6.7 Current land use

The main land use within the Brandvalley Wind Farm is agriculture.

Agricultural land uses in the landscape within and adjacent to the proposed Brandvalley Wind Farm includes:

- Rural agriculture consisting of extensive small stock grazing (Dorper and Dohne Merino)
- Hunting
- Concentrated irrigation for various cash crops is practised along rivers and streams in small areas.

Although various farmsteads are located onsite, none will be impacted by the proposed Brandvalley Wind Farm infrastructure.

Various existing farm roads exists onsite and are in good condition (good surface with little or no erosion). Some of these roads will be upgraded to accommodate construction vehicles as well as the large trucks transporting turbine components.

The natural veld is considered to be in good condition with little or no evidence of erosion and overgrazing.

6.7.1 Livestock

Agricultural practices in the area consist mainly of small stock farming (Dorper and Dohne Merino sheep). Small amounts of wool are also produced. No other livestock were observed.

Rangeland within the Brandvalley Wind Farm area requires low input costs and are located of large area farms (2000-3000 ha) with low population density, resulting in productive livestock farming, mostly with sheep. Although goats and cattle are also viable options, they were not observed in any of the affected farms. Rotational grazing camps are practised allowing grazed land to "rest" for periods of time.

As rangelands are vast with low carrying capacity, developing a Wind Farm in the area will have minimal impact on livestock farming.

6.7.2 Hunting

Game is now also considered to be an agricultural product as defined in the Marketing of Agricultural Products Act, 1996 (Act 47 of 1996). Game ranching (and hunting) in South Africa is one of the fastest-growing sectors of the agricultural industry. Since the 1970's, there has been a huge shift from cattle & sheep farming to game ranching. Provided they observe approved game-fencing rules, registered game ranches have permission to hunt throughout the year.

Lange game occurring within the Brandvalley Wind Farm site includes:

- Kudu (not observed)
- Springbok

Recreational hunting occurs on all Brandvalley properties. As game is scattered over large areas, construction and operation of the proposed new Brandvalley Wind Farm will not impact on hunting in the area.

6.7.3 Irrigation & crops

As the area only receives about 61mm of rainfall per year, dryland cropping is not viable. Irrigation is intensively practiced in areas along dry riverbeds where irrigation dams can be erected and soils are suitable (Figure 8.1). Approximately 5% of all the farm areas affected by the proposed Brandvalley Wind Farm is currently under irrigation

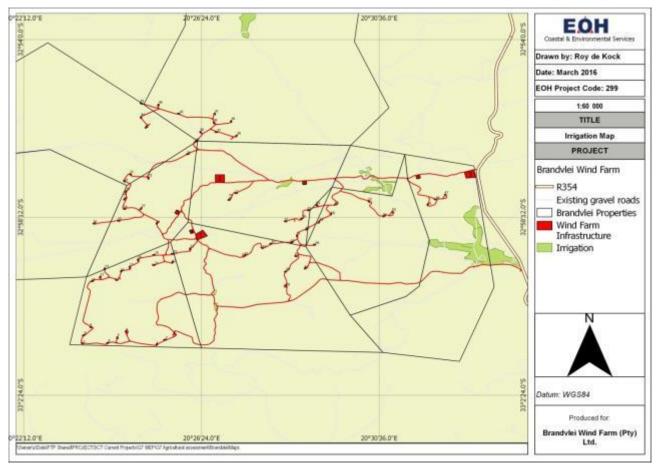


Figure 8.1: Irrigation map of the Brendvalley Wind Farm area

Various cash crops like apricots, dried yellow peaches, pears, plums, quinces and tomatoes are produced under irrigation (Laingsburg LM SDF) but are restricted to small areas along dry riverbeds. At the time of the site assessment, most of the identified irrigation areas were growing winterfeed.

7 SOILS

This section presents the procedure to describe the different morphological and other characteristics of soils found within the Brandvalley Wind Farm site. Four random points (shown in Figure 7.1 and Table 7.1) were identified within the Brandvalley Wind Farm area. These site selections were based on accessibility to the site.

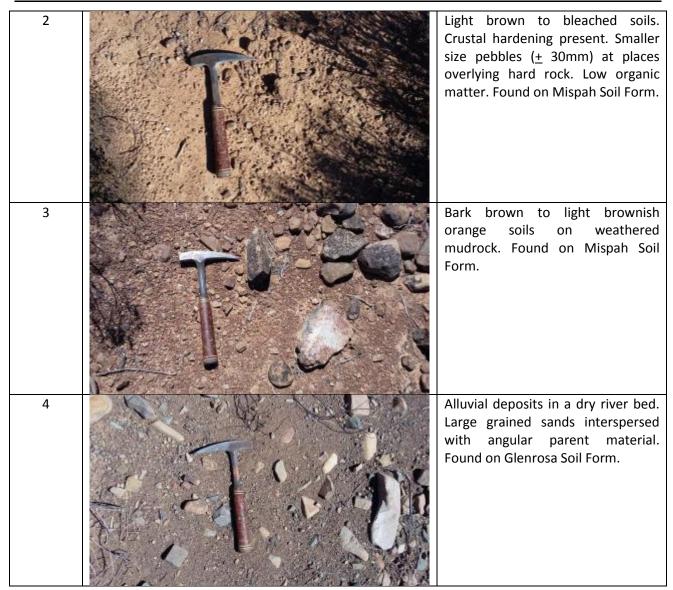
Soil samples were collected from each of these sites for laboratory assessment while the sites were visually assessed. The following procedure was followed during the field assessment:

- 1. Soil families were identified as per the Soil Classification workbook, 1991.
- 2. The master horizons present in the profile were demarcated.
- 3. Diagnostic horizons or materials were identified.
- 4. The texture class of the A horizons were determined and added to the name or code of the soil family as per the Soil Classification workbook, 1991.

Table 7.1: Coordinated of the 4 x soil sample sites

Site #	GPS coordinates	
	Latitude	Longitude
S1	32°58'29.29"S	20°21'50.80"E
S2	32°57'21.66"S	20°30'41.00"E
S 3	32°57'23.73"S	20°28'16.89"E
S4	32°54'55.26"S	20°28'18.05"E

7.1 Soil classification


Based on a visual survey conducted during the site visit (Table 7.2) as well as soil samples collected from each area that was visually classified, the dominant soil forms (as per the Soil Classification workbook, 1991) were identified within the Brandvalley Wind Farm site (Figure 7.2) as:

- Mispah soil form (14 000ha)
- Glenrosa soil form (16 600ha)

It has been calculated that the total final permanent footprint for the Brandvalley Wind Farm will be approx. 5ha. The construction footprint (including temporary footprints) should be approx. 10-15ha in size. The bulk of infrastructure (approx. 90%) will be located on Mispah soils. The remainder which includes only 2 turbines and associated access roads will be located on Glenrosa soils.

Table 7.2: Visual description of the 4 sites sampled within the Brandvalley Wind Farm

Sample #	Photo	Description
1		Thick (>0.5m) reddish-brown orthic surface horizon overlying partly weathered rock. Soils have a hard consistency. Very low organic matter. Found on Glenrosa Soil Form.

As indicated in Figure 7.1, the majority of the project area consists of Mispah soil form.

Agricultural & Soil Assessment - March 2016

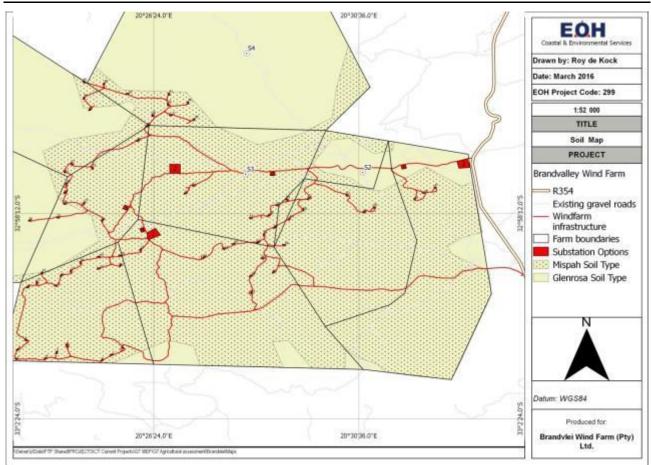


Figure 7.1: Soil distribution map for the Brandvalley Wind Farm

7.1.1 Mispah soil form

This soil form consists of a shallow orthic A horizon overlying hard rock, or surface bare rock with no soil horizon.

In this case, hard rock is classified as horizontally orientated, hard, fractured sediments which do not have any distinct vertical channels containing soil material, and bedrock.

The A horizon is mostly non-calcareous and not bleached and are therefore classified as Myhill soil family. Localised areas however reflect calcareous a horizons and therefore are classified as Carnarvon soil family.

Up to 90% of infrastructure (turbines and access roads) will be located on this soil type.

Plate 7.1 below illustrates typical Mispah soil forms observed onsite.

Plate 7.1: Photos of Mispah soil forms found onsite

7.1.2 Glenrosa foil form

This soil form consists of a surface horizon that cannot be classified as organic, humic, vertic or melanic although it is sometimes darkened by organic matter. It is therefore classified as an orthic A horizon.

Subsoil directly underlies the orthic A horizon and merges into the underlying rock. This layer consists mostly of fresh or weathered parent rock and therefore is classified as a lithocutanic B horizon.

The A horizon is bleached most of the time while the B horizon are hard, non-calcareous with no sign of wetness, and therefore are classified as Bergsig soil family.

Only 2 turbines and approximately 10% of access roads will be located on this soil type.

Plate 7.2 below illustrates typical Glenrosa soil form observed onsite.

Bleached soils with a well-defined plant root layer over a meter thick.

Redish-orange soil up to 90cm thick.

Plate 7.2: Photos of Glenrosa soil forms found onsite

7.2 Suitability for agriculture

7.2.1 Mispah form

Cropping: due to limited soil profiles, Mispah soils are not suitable for dryland cropping or irrigation.

Natural veld: Mispah soils accommodate a limited variety of vegetation and only range between Karoo scrub and succulent vegetation. Although small stock farming (Dorper and Dohne Merino sheep) are practised, grazing capacity is considered as low (26-30 ha/Animal Unit according to AGIS).

Water capacity: Due to the low rainfall soils contribute to hydrology only by overland flow and evapotranspiration.

7.2.2 Glenrosa form

Cropping: due to limited water availability, Glenrosa soils are not suitable for dryland cropping. Irrigation of cash crops is only possible along riverbeds, provided that irrigation dams are constructed to aid water availability. Less than 10% of the Brandvalley Wind Farm site is suitable for this.

Natural veld: Glenrosa soils accommodate a variety of vegetation ranging from a variety of scrublands, savannah and succulents. Small stock farming (Dorper and Dohne Merino sheep) are practised, grazing capacity is considered as low to moderate (18-25 ha/Animal Unit according to AGIS).

Water capacity: Due to the low rainfall soils contribute to hydrology only by overland flow and evapotranspiration.

7.2.3 Agricultural potential

Agricultural potential in the Brandvalley Wind Farm area is classified according to the land potential classification system of the Department of Agriculture (part of the Department of Agriculture, Forestry and Fisheries). This classification system takes factors such as climate, soil and slope into consideration to determine agricultural potential. Although it provides only a macro perception of the agricultural potential in the region, it is still a fair indication of what the broader agricultural potential of the area is.

DAFF (Agriculture) has classified the Brandvalley Wind Farm area into the following agricultural potential classes:

- Non-arable land with a low potential for grazing
- Land capability classification class 7 and 8 only
- Land unsuitable for crops unless under irrigation.

Based on the agricultural potential onsite, DAFF (Agriculture) has determined the grazing capacity to be between 18-25 hectare per large stock unit (ha/LSU) on low undulating landscapes and 26-30 ha/LSU on steep mountainous areas. Grazing capacity potential was determined in 1995 by DAFF (Agriculture) to be:

Between 41-80 ha/LSU increasing to 26-30 ha/LSU towards the eastern sections.

This indicates that, grazing onsite is not utilised to its fullest potential capacity, but this is as a result of water availability. The area is currently also in a drought cycle.

7.3 Laboratory results

Soil samples S1 & S4 (See Figure 7.1) were collected on Glenrosa soil form which contains a hard orthic A horizon occurring on a fine lithocutanic B horizon while soil samples S2 & S3 were collected from a shallow orthic A horizon overlying hard rock (called Mispah soil form).

All soils within the Brandvalley Wind Farm site occur on sand with a low organic content (When only considering S1-S3). Soils to the west of the site (S4) have higher TEC reflecting clay & clay loams.

Table 7.4 summarises average conditions of soils found onsite:

Table 7.4: Average soil conditions within the Brandvalley Wind Farm site

Measured condition	Mispah Soils	Glenrosa Soils
рН	6.2	6.9
Organic content	1.94%	1.29%
Ca	47.75%	61.73%

Agricultural & Soil Assessment - March 2016

Measured condition	Mispah Soils	Glenrosa Soils	
Mg	27.16%	27.34%	
K	3.89%	4.55%	
Na	2.42%	1.82	

Soil pH is considered as optimum between 6.5 and 7 (very slightly acidic) for the highest plant nutrient availability for most crops. Mispah soils falls within this range while Glenrosa soils are slightly more acidic and may require lime addition for certain crops like asparagus, onion, sweet clover and afalfa. Most other crops are considered as tolerant for both soil pH rates.

7.3.1 Mispah soils

Potassium (K) and Sodium (Na) falls within the optimal rate for fertile soils (3-5% for K and 0.5-5% for Na), while Ca content is considered too low (60-75%) and Mg too high (10-20%).

7.3.2 Glenrosa soils

Potassium (K), Sodium (Na) and Ca falls within the optimal rate for fertile soils (3-5% for K; 0.5-5% for Na and 60-75% for Ca), while Mg too high (10-20%).

7.3.3 Conclusion on agricultural suitability

Based on these levels, soils within the Brandvalley Wind Farm may be considered as optimum for a wide variety of crops under minimal soil management. Glenrosa soils are considered as more optimal when compared to Mispah soils. However, due to the limiting factor being water availability (for both soil types) and soil depth (especially for Mispah soils), such crops can only be grown under irrigation in deeper alluviums next to river systems.

SENSITIVITY ASSESSMENT

In terms of Appendix 6 of the EIA Regulations (2014) a specialist report must contain-

- (g) an identification of any areas to be avoided, including buffers;
- (h) a map superimposing the activity including the associated structures and infrastructure on the environmental sensitivities of the site including areas to be avoided, including buffers;

A sensitivity map was developed based on the allocations made in Section 4.5, for the Brandvalley Wind farm (Figure 8.1).

The following sensitive areas were identified:

Area type	Sensitivity allocation
Crop areas under irrigation	High
Water bodies	High
Drainage systems	High
Shallow soils on sloped areas	Moderate

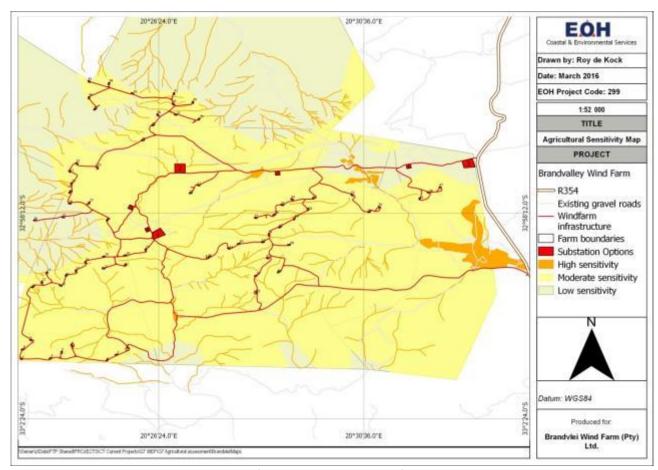


Figure 8.1: Agricultural sensitivity map of the Brandvalley Wind farm area

9 IMPACT IDENTIFICATION AND ASSESSMENT

In terms of Appendix 6 of the EIA Regulations (2014) a specialist report must contain-

- (j) a description of the findings and potential implications of such findings on the impact of the proposed activity, including identified alternatives on the environment;
- (k) any mitigation measures for inclusion in the EMPr;

9.1 Introduction

This chapter details the potential soils and agricultural impacts identified. For each issue identified, details are provided, followed by the mitigation measures required to minimise the negative impacts associated with the issue.

9.2 Impacts on soils and agriculture

Impacts on the agricultural potential of the affected land are anticipated to occur during the Planning & Design, Construction, Operational and Decommissioning Phase of the proposed Brandvalley Wind Farm project and are described below (Table 9.1). These included the consideration of direct, indirect and cumulative impacts that may occur for all alternatives as well as the No-Go alternative.

Table 9.1: Impacts to soil and agriculture associated with different phases of the proposed Brandvalley Wind Farm

Development Phase	Issue	Nature of Impact	Description of Impact	
Planning & Design (for all project	Issue 1: Increase in erosion potential	Direct Indirect Cumulative (Negative impact)	During the planning and design phase inappropriate stormwater design may lead to an increase in surface soil erosion.	
components and all alternatives)	Issue 2: Increase in renewable energy development in the local area	Cumulative (Negative impact)	During the planning and design phase increase in renewable energy development the local area will result in a gradual reduct of available agricultural land over time.	
		Direct (Negative impact)	During the construction phase hazardous chemical spills and leakages could lead to soil contamination and a loss of fertile soils if not managed appropriately.	
Construction (for all project components and all alternatives)		Direct Cumulative (Negative impact)	During construction phase fires originating from the construction site could lead to the loss of grazing and game.	
	Issue 5: Soil stockpiling management	Direct Indirect Cumulative (Negative impact)	During the construction phase incorrect stockpiling of soil could result in a decrease of agricultural viability/potential.	

Development Phase	Issue	Nature of Impact	Description of Impact
		Direct Cumulative (Negative impact)	During the construction phase excavations for the construction of the turbines and associated infrastructure will disturb the soil profile. If topsoil becomes buried, or subsoil rock, that is less suitable for root growth, remains at the surface, the agricultural suitability of the soil, that will become available for agriculture again after decommissioning of the WEF, will be reduced
	Issue 7: Establishment of renewable energy infrastructure on agricultural land	Direct Cumulative (Negative impact)	During the construction phase the WEF infrastructure (permanent and temporary)will result in the loss of up to 5 ha of low agricultural land
	Issue 8: Increase in erosion potential	Direct Indirect Cumulative (Negative impact)	During the construction phase the increase in impacted areas and hard surfaces will increase run-off and potentially lead to soil erosion
	Issue 9: Increase in erosion potential	Direct Indirect Cumulative (Negative impact)	During the operational phase an increase in hard surfaces (hardstands and roads) will increase run-off and potentially lead to soil erosion.
Operation (for all project components and all alternatives)	Issue 10: Establishment of renewable energy infrastructure on agricultural land	Direct Cumulative (Negative impact)	During the operational phase the WEF infrastructure will result in the loss of up to 5 ha of low agricultural land
	Issue 11: Establishment of new access roads	Direct Indirect Cumulative (Positive impact)	During the operational phase the new access roads will allow for an easier access to farm areas previously inaccessible or difficult to access.
Decommissioning (for all project components and all alternatives)	Issue 12: Decommissioning and removal of renewable energy infrastructure on agricultural land	Cumulative (Positive impact)	During the decommissioning phase the decrease in renewable energy development in the local area will result in an increase of available agricultural land.
No-Go option	Issue 13: Not constructing the WEF	Direct Cumulative (Positive impact)	Not constructing the WEF will result in no change in the current agricultural landscape.

9.3 Impact Assessment

The impacts identified in Section 9.2 are assessed in terms of the criteria described in Section 4.4 and are summarised below.

Table 9.2: Assessment and mitigation of impacts identified in the Planning & Design Phase.

IMPACTS	SPATIAL SCALE	TEMPORAL SCALE (DURATION)	CERTAINTY SCALE (LIKELIHOOD)	SEVERITY/ BENEFICIAL SCALE	SIGNIFICANCE PRE- MITIGATION	MITIGATION MEASURES	SIGNIFICANCE POST- MITIGATION					
Issue 1: Increase in e	Issue 1: Increase in erosion potential											
During the planning and design phase inappropriate storm water design may lead to an increase in surface soil erosion.	Localised	Medium-term	Definite	Moderately negative	MODERATE	 Appropriate stormwater structures must be designed and implemented for all new infrastructure (e.g. roads, turbine bases etc.). All roads situated on slopes must incorporate stormwater diversions. 	LOW					
Issue 2: Increase in r	enewable energy	development in the	local area									
During the planning and design phase the increase in renewable energy development in the local area will result in a gradual reduction of available agricultural land over time.	Regional	Long-term	Probable	Moderately negative	MODERATE	 Avoid developing on high potential agricultural land (like irrigated areas, croplands, etc.). If unavoidable, ensure that all development footprints are kept at a minimum. 	LOW					

Table 9.3: Assessment and mitigation of impacts identified in the Construction Phase.

IMPACTS	SPATIAL SCALE	TEMPORAL SCALE (DURATION)	CERTAINTY SCALE (LIKELIHOOD)	SEVERITY/ BENEFICIAL SCALE	SIGNIFICANCE PRE-MITIGATION	MITIGATION MEASURES	SIGNIFICANCE POST- MITIGATION					
Issue 3: Management of hazardous chemicals												
Issue 3: Manageme During the construction phase hazardous chemical spills and leakages could lead to soil contamination and a loss of fertile soils if not managed appropriately.	nt of hazardous o	hemicals Long-term	Probable	Moderately negative	MODERATE	 Machinery must be properly maintained to keep oil leaks in check. If a spill occurs on a permeable surface (e.g. Soil), a spill kit must be used to immediately reduce the potential spread of the spill. If a spill occurs on an impermeable surface such as cement or concrete, the surface spill must be contained. Contaminated remediation 	LOW					
						materials must be carefully removed from the area of the spill so as to prevent further release of hazardous chemicals to the environment, and stored in adequate containers until appropriate disposal in a licenced						

IMPACTS	SPATIAL SCALE	TEMPORAL SCALE (DURATION)	CERTAINTY SCALE (LIKELIHOOD)	SEVERITY/ BENEFICIAL SCALE	SIGNIFICANCE PRE-MITIGATION	MITIGATION MEASURES	SIGNIFICANCE POST- MITIGATION
						landfill site.	
Issue 4: Increased r	isk of fires from c	l construction activities	<u> </u> S				
During construction phase fires originating from the construction site could lead to the loss of grazing and game.	Regional	Long-term	May Occur	Very severe	HIGH	 Ensure that all personnel are aware of the fire risk and the need to extinguish cigarettes before disposal, in appropriate waste disposal containers. Smoking will only be allowed in demarcated areas with easy access to firefighting equipment. Welding and other construction activities requiring open flames shall be done in a designated area containing firefighting equipment. The risk of fire is highest in the late summer and autumn months, during high wind velocities and dry periods. To avoid and manage fire risk 	LOW

IMPACTS	SPATIAL SCALE	TEMPORAL SCALE (DURATION)	CERTAINTY SCALE (LIKELIHOOD)	SEVERITY/ BENEFICIAL SCALE	SIGNIFICANCE PRE-MITIGATION	MITIGATION MEASURES	SIGNIFICANCE POST- MITIGATION
						the following steps	
						should be	
						implemented:	
						 Have on site 	
						fire-fighting	
						equipment	
						and ensure	
						that all	
						personnel are	
						educated	
						how to use it	
						and	
						procedures	
						to be	
						followed in	
						the event of	
						a fire.	
						o Identify the	
						relevant	
						authorities	
						and	
						structures	
						responsible	
						for fighting	
						fires in the	
						area and	
						shall liaise	
						with them	
						regarding	
						procedures	
						should a fire	
						commence.	
						o Ensure that	

IMPACTS	SPATIAL SCALE	TEMPORAL SCALE (DURATION)	CERTAINTY SCALE (LIKELIHOOD)	SEVERITY/ BENEFICIAL SCALE	SIGNIFICANCE PRE-MITIGATION	MITIGATION MEASURES	SIGNIFICANCE POST- MITIGATION
						all the	
						necessary	
						telephone	
						numbers	
						(including	
						local Farmers	
						Association	
						Fire Marshall)	
						to use in a	
						case of an	
						emergency	
						are displayed	
						at	
						conspicuous	
						and relevant	
						locations.	
						 No open fires 	
						shall be	
						allowed on	
						site for the	
						purpose of	
						cooking or	
						warmth.	
						Cooking fires	
						must only be	
						lit in	
						designated	
						cooking	
						areas.	
						The contractor shall	
						take all reasonable	
						steps to prevent the	
						accidental	

IMPACTS	SPATIAL SCALE	TEMPORAL SCALE (DURATION)	CERTAINTY SCALE (LIKELIHOOD)	SEVERITY/ BENEFICIAL SCALE	SIGNIFICANCE PRE-MITIGATION	MITIGATION MEASURES	SIGNIFICANCE POST- MITIGATION
						occurrence or spread of fire. The contractor shall appoint a fire officer who shall be responsible for ensuring immediate and appropriate action in the event of a fire. The contractor shall ensure that all site personnel are aware of the procedure to be followed in the event of a fire. The appointed fire officer shall notify the Fire and Emergency Services in the event of a fire and shall not delay doing so until such time as the fire is beyond his / her control. The contractor shall ensure that there is basic fire-fighting equipment on site at all times. This	MITIGATION
						equipment shall include fire	

IMPACTS	SPATIAL SCALE	TEMPORAL SCALE (DURATION)	CERTAINTY SCALE (LIKELIHOOD)	SEVERITY/ BENEFICIAL SCALE	SIGNIFICANCE PRE-MITIGATION	MITIGATION MEASURES	SIGNIFICANCE POST- MITIGATION
						extinguishers and beaters. • Any work that requires the use of fire may only take place within designated areas. Fire-fighting equipment shall be available in these	
						areas.	
Issue 5: Soil stockpi							
During the construction phase incorrect stockpiling of soil could result in a decrease of agricultural viability/potential.	Localised	Medium-term	Probable	Severe	MODERATE	 Develop and implement a Rehabilitation and Monitoring Plan to monitor rehabilitated areas. Ensure that topsoil does not get buried by subsoil during stockpiling. Failure to comply may result in topsoil sterilisation. Implement measures such as wind-breaks, swales and watering as required aiding the initial grown of primary vegetation. Fertile topsoil must not be stockpiled for 	LOW

IMPACTS	SPATIAL SCALE	TEMPORAL SCALE (DURATION)	CERTAINTY SCALE (LIKELIHOOD)	SEVERITY/ BENEFICIAL SCALE	SIGNIFICANCE PRE-MITIGATION	MITIGATION MEASURES	SIGNIFICANCE POST- MITIGATION
						periods exceeding 12 months or exceeding	
						2m in height to avoid	
						topsoil sterilization. If	
						unavoidable, the	
						appointed ECO must	
						monitor topsoil	
						stockpile fertility to	
						avoid sterility of soils.	
						• Topsoil may be	
						supplemented with	
						an indigenous seed mix.	
Issue 6: Soil profile	disturbance and i	resultant decrease in	 soil agricultural cap	 ahility		IIIIX.	
During the	Study area	Permanent	Definite	Very severe	VERY HIGH	• The upper 15-20 cm	LOW
construction	, , , , , , ,			,		of top soil must be	
phase excavations						stripped and	
for the						stockpiled as topsoil	
construction of						where possible. It	
the turbines and						should be retained	
associated						for re-spreading over	
infrastructure will						disturbed surfaces	
disturb the soil profile. If topsoil						during rehabilitation.	
becomes buried,						 All other soil excavated will be 	
or subsoil rock,						stockpiled separately	
that is less						from topsoil as	
suitable for root						subsoil.	
growth, remains						• Ensure that topsoil	
at the surface, the						does not get buried	
agricultural						by subsoil during	
suitability of the						backfilling. Failure to	

IMPACTS	SPATIAL SCALE	TEMPORAL SCALE (DURATION)	CERTAINTY SCALE (LIKELIHOOD)	SEVERITY/ BENEFICIAL SCALE	SIGNIFICANCE PRE-MITIGATION	MITIGATION MEASURES	SIGNIFICANCE POST- MITIGATION
soil, that will become available for agriculture again after decommissioning of the WEF, will be reduced.	SPATIAL SCALE	(DURATION)	(LIKELIHOOD)	BENEFICIAL SCALE	PRE-MITIGATION	comply may result in topsoil sterilisation. An ECO must monitor all excavations to ensure backfilling with subsoil first and then topsoil afterwards takes place. An ECO must monitor depth and cover of topsoil spreading during rehabilitation to ensure a 20cm depth in valleys. Rocky areas do not require topsoil but must be monitored by the ECO during rehabilitation. Topsoil allocated for rehabilitation must not be mixed with other materials, such as building rubble, rock, subsoil, etc.	
						 Topsoil stockpiles are to be handled only twice – once during clearing and stockpiling and once during 	

IMPACTS	SPATIAL SCALE	TEMPORAL SCALE (DURATION)	CERTAINTY SCALE (LIKELIHOOD)	SEVERITY/ BENEFICIAL SCALE	SIGNIFICANCE PRE-MITIGATION	MITIGATION MEASURES	SIGNIFICANCE POST- MITIGATION
						rehabilitation/backfill ing unless input is required as advised by the ECO.	
Issue 7: Establishm	ent of renewable	energy infrastructu	re on agricultural lan	d			
During the construction phase the WEF infrastructure (permanent and temporary)will result in the loss of up to 5 ha of low agricultural land	Study area	Medium term	Definite	Slight	MODERATE	 Construction activities must only occur within the demarcated construction footprint. The construction footprint must be approved by the landowner/occupier prior to commencement of construction activities. 	LOW
Issue 8: Increase in	erosion potentia	il					
During the construction phase the increase in impacted areas and hard surfaces will increase runoff and potentially lead to soil erosion	Study area	Long term	Definite	Severe	MODERATE	 All run-off water from hard surface areas (e.g. roads, hardstands etc.) and construction impacted areas must be collected, channelled and disposed of in an appropriate manner to prevent erosion. Anti-erosion features 	LOW

IMPACTS	SPATIAL SCALE	TEMPORAL SCALE (DURATION)	CERTAINTY SCALE (LIKELIHOOD)	SEVERITY/ BENEFICIAL SCALE	SIGNIFICANCE PRE-MITIGATION	MITIGATION MEASURES	SIGNIFICANCE POST- MITIGATION
						must be installed where required. • Ensure that all cleared and impacted land is rehabilitated and re-vegetated.	

Table 9.4: Assessment and mitigation of impacts identified in the Operation Phase.

IMPACTS	SPATIAL SCALE	TEMPORAL SCALE (DURATION)	CERTAINTY SCALE (LIKELIHOOD)	SEVERITY/ BENEFICIAL SCALE	SIGNIFICANCE PRE-MITIGATION	MITIGATION MEASURES	SIGNIFICANCE POST- MITIGATION
Issue 9: Increase in	n erosion potentia	al					
During the operational phase an increase in hard surfaces (hardstands and roads) will increase run-off and potentially lead to soil erosion.	Study area	Long term	Definite	Severe	MODERATE	 Stormwater runoff must be controlled to manage erosion through appropriate measures Anti-erosion features must be installed where required. Ensure that all cleared and impacted land is rehabilitated and re-vegetated. 	LOW
Issue 10: Establish	ment of renewab	le energy infrastruct	ture on agricultural la	and			
During the operational phase the WEF infrastructure will result in the loss of up to 5 ha of low	Localised	Long-term	Definite	Slight	MODERATE	 Fencing of WEF infrastructure should be limited as far as possible to allow for maximum grazing and movement of livestock and game 	LOW

IMPACTS	SPATIAL SCALE	TEMPORAL SCALE (DURATION)	CERTAINTY SCALE (LIKELIHOOD)	SEVERITY/ BENEFICIAL SCALE	SIGNIFICANCE PRE-MITIGATION	MITIGATION MEASURES	SIGNIFICANCE POST- MITIGATION
agricultural land						within the site.	
Issue 11: Establish	ment of new acco	ess roads					
During the operational phase the new access roads will allow for an easier access to farm areas previously inaccessible or difficult to access.	Study area	Long-term	Definite	Beneficial	HIGHLY BENEFICIAL	• None	HIGHLY BENEFICIAL

Table 9.5: Assessment and mitigation of impacts identified in the Decommissioning Phase.

IMPACTS	SPATIAL SCALE	TEMPORAL SCALE (DURATION)	CERTAINTY SCALE (LIKELIHOOD)	SEVERITY/ BENEFICIAL SCALE	SIGNIFICANCE PRE-MITIGATION	MITIGATION MEASURES	SIGNIFICANCE POST- MITIGATION
Issue 12: Decomm	nissioning and rem	oval of renewable e	nergy infrastructure	on agricultural land			
During the decommissioning phase the decrease in renewable energy development in the local area will result in an increase of available agricultural land.		Long term	Probable	Beneficial	BENEFICIAL	All impacted agricultural land should be rehabilitated for future agricultural use.	BENEFICIAL

Table 9.6: Assessment and mitigation of impacts identified in the NO-GO alternative.

IMPACTS	SPATIAL SCALE			SEVERITY/ BENEFICIAL SCALE	SIGNIFICANCE PRE-MITIGATION	MITIGATION MEASURES	SIGNIFICANCE POST- MITIGATION
Issue 13: Not cons	tructing the WEF						
Not constructing the WEF will have no impact of agricultural land.	Study area	Permanent	Definite	Beneficial	BENEFICIAL	• None	BENEFICIAL

Table 9.7: Change in local land use (for all phases).

SPATIAL SCALE	TEMPORAL SCALE (DURATION)	CERTAINTY SCALE (LIKELIHOOD)	SEVERITY/ BENEFICIAL SCALE	SIGNIFICANCE PRE-MITIGATION	MITIGATION MEASURES	SIGNIFICANCE POST- MITIGATION
ucting the WEF						
Regional	Long-term	May Occur	Severe	MODERATE	 Development of renewable energy projects on agricultural land in the region should be limited to ensure that agriculture remains the main land use. It is unclear how this will be accomplished at this stage. Renewable energy designs for current & potential future projects must limit its impact on local agriculture, especially the potential loss of 	MODERATE
	cting the WEF	Cting the WEF	Cting the WEF	cting the WEF	Cting the WEF (DURATION) (LIKELIHOOD) BENEFICIAL SCALE PRE-MITIGATION	Cting the WEF Regional Long-term May Occur Severe MODERATE Development of renewable energy projects on agricultural land in the region should be limited to ensure that agriculture remains the main land use. It is unclear how this will be accomplished at this stage. Renewable energy designs for current & potential future projects must limit its impact on local agriculture, especially

Agricultural & Soil Assessment - March 2016

IMPACTS	SPATIAL SCALE	TEMPORAL SCALE (DURATION)	CERTAINTY SCALE (LIKELIHOOD)	SEVERITY/ BENEFICIAL SCALE	SIGNIFICANCE PRE-MITIGATION	MITIGATION MEASURES	SIGNIFICANCE POST- MITIGATION
						potential agricultural land	

10 IMPACT STATEMENT, CONCLUSION AND RECOMMENDATIONS

In terms of Appendix 6 of the EIA Regulations (2014) a specialist report must contain-

- (I) any conditions for inclusion in the environmental authorisation;
- (m) any monitoring requirements for inclusion in the EMPr or environmental authorisation;
- (n) a reasoned opinion-
 - (i) as to whether the proposed activity or portions thereof should be authorised; and
 - (ii) if the opinion is that the proposed activity or portions thereof should be authorised, any avoidance, management and mitigation measures that should be included in the EMPr, and where applicable, the closure plan;

10.1 Environmental management programme

The following actions must be included in the Construction and Operational EMPr:

- All mitigations identified and listed in Section 10.2 below
- The site must be monitored by a qualified Environmental Control Office (ECO) at least once a month for the duration of the construction phase.

10.2 Recommendations for the proposed Brandvalley Wind Farm

10.2.1 Alternatives

The two (2) access route alternatives are considered equally preferred as both the alternatives are existing gravel roads and none of them will directly or indirectly impact on agricultural activities onsite. Although Access route alternative 1 transects 2 high agricultural areas (irrigated cropland), the footprint is existing and the new route will follow existing farm roads through these areas. None of the access routes alternatives (1 or 2) are considered as "fatally flawed" and therefore either one can be constructed.

Site camp alternative 1 is considered as the preferred alternative. Site camp alternatives 2 & 3 are both either located within a non-perennial stream or are immediately (less than 100m) surrounded on two (2) and more sides by a stream. This must be confirmed by the appointed aquatic specialist.

Substation site alternatives 1-3 are considered as equally preferred. Substation site alternative 4 is considered as least preferred as the site appears to be surrounded on three sides by a non-perennial streams. As water is a limiting factor onsite for agriculture, this increases the risk significantly. This must be confirmed by the appointed aquatic specialist.

The No-Go option will not impact on any agricultural land but construction of new access roads to turbines located in currently inaccessible farm areas will result in easy/easier access by the farmer into these areas. Not constructing the WEF will result in these areas remaining inaccessible to the farmer.

10.2.2 Mitigation measures

All the mitigation measures provided below are to be implemented in the Planning & Design, Construction and Operation Phases of the proposed Brandvalley Wind Farm.

Planning and Design phase

- Appropriate stormwater structures must be designed and implemented.
- All infrastructure situated on slopes must incorporate stormwater diversions.
- Develop a Rehabilitation and Monitoring Plan to monitor stockpiles.
- Avoid developing on high potential agricultural land (like irrigated areas, croplands, etc.). If unavoidable, ensure that all development footprints are kept at a minimum.

Construction phase

- Machinery must be properly maintained to keep oil leaks in check.
- If a spill occurs on a permeable surface (e.g. Soil), a spill kit must be used to immediately reduce the potential spread of the spill.
- If a spill occurs on an impermeable surface such as cement or concrete, the surface spill must be contained using oil absorbent materials.
- Contaminated remediation materials must be carefully removed from the area of the spill so as to prevent further release of hazardous chemicals to the environment, and stored in adequate containers until appropriate disposal in a licenced landfill site.
- Ensure that all personnel are aware of the fire risk and the need to extinguish cigarettes before disposal, in appropriate waste disposal containers.
- Smoking will only be allowed in demarcated areas with easy access to firefighting equipment.
- Welding and other construction activities requiring open flames shall be done in a designated area containing firefighting equipment.
- The risk of fire is highest in the late summer and autumn months, during high wind velocities and dry periods. To avoid and manage fire risk the following steps should be implemented:
 - Have on site fire-fighting equipment and ensure that all personnel are educated how to use it and procedures to be followed in the event of a fire.
 - o Identify the relevant authorities and structures responsible for fighting fires in the area and shall liaise with them regarding procedures should a fire commence.
 - Ensure that all the necessary telephone numbers (including local Farmers Association Fire Marshall) to use in a case of an emergency are displayed at conspicuous and relevant locations.
 - No open fires shall be allowed on site for the purpose of cooking or warmth. Cooking fires must only be lit in designated cooking areas.
- The contractor shall take all reasonable steps to prevent the accidental occurrence or spread of fire.
- The contractor shall appoint a fire officer who shall be responsible for ensuring immediate and appropriate action in the event of a fire.
- The contractor shall ensure that all site personnel are aware of the procedure to be followed in the event of a fire. The appointed fire officer shall notify the Fire and Emergency Services in the event of a fire and shall not delay doing so until such time as the fire is beyond his / her control.
- The contractor shall ensure that there is basic fire-fighting equipment on site at all times. This equipment shall include fire extinguishers and beaters.
- Any work that requires the use of fire may only take place within designated areas. Fire-fighting equipment shall be available in these areas.
- Develop and implement a Rehabilitation and Monitoring Plan to monitor rehabilitated areas.
- Ensure that topsoil does not get buried by subsoil during stockpiling. Failure to comply may result in topsoil sterilisation.
- Implement measures such as wind-breaks, swales and watering as required aiding the initial grown of primary vegetation.
- Fertile topsoil must not be stockpiled for periods exceeding 12 months or exceeding 2m in height to
 avoid topsoil sterilization. If unavoidable, the appointed ECO must monitor topsoil stockpile fertility to
 avoid sterility of soils.
- Topsoil may be supplemented with an indigenous seed mix.

- The upper 15-20 cm of top soil must be stripped and stockpiled as topsoil where possible. It should be retained for re-spreading over disturbed surfaces during rehabilitation.
- All other soil excavated will be stockpiled separately from topsoil as subsoil.
- Ensure that topsoil does not get buried by subsoil during backfilling. Failure to comply may result in topsoil sterilisation.
- An ECO must monitor all excavations to ensure backfilling with subsoil first and then topsoil afterwards takes place.
- An ECO must monitor depth and cover of topsoil spreading during rehabilitation to ensure a 20cm depth in valleys. Rocky areas do not require topsoil but must be monitored by the ECO during rehabilitation.
- Topsoil allocated for rehabilitation must not be mixed with other materials, such as building rubble, rock, subsoil, etc.
- Topsoil stockpiles are to be handled only twice once during clearing and stockpiling and once during rehabilitation/backfilling unless input is required as advised by the ECO.
- Construction activities must only occur within the demarcated construction footprint.
- The construction footprint must be approved by the landowner/occupier prior to commencement of construction activities.
- All run-off water from hard surface areas (e.g. roads, hardstands etc.) and construction impacted areas must be collected, channelled and disposed of in an appropriate manner.
- Anti-erosion features must be installed where required.
- Ensure that all cleared and impacted land is rehabilitated and re-vegetated.

Operational phase

- Stormwater runoff must be controlled to manage erosion through appropriate measures
- Anti-erosion features must be installed where required.
- Ensure that all cleared and impacted land is rehabilitated and re-vegetated.
- Fencing of WEF infrastructure should be limited as far as possible to allow for maximum grazing and movement of livestock and game within the site.

Decommissioning phase

• All impacted agricultural land should be rehabilitated for future agricultural use.

10.3 Conclusions

The Brandvalley wind farm only receives about 61mm of rainfall per year, and therefore dryland cropping is not viable. Irrigation is intensively practiced in small areas along dry riverbeds where irrigation dams can be erected and soils are suitable. Various cash crops and winterfeed are produced under irrigation, but are restricted to small areas along dry riverbeds. The area supports some hunting practices and livestock farming.

The following table 10.1 summarises the change in impacts from pre- to post- mitigation for the Brandvallei Wind Farm.

Table 10.1. Assessment of pre- and post-mitigation impact significance.

		F	PRE-MITIGAT	ION		POST-MITIGATION				
	POSITIVE	LOW	MODERATE	HIGH	UN- KNOWN	LOW	MODERATE	HIGH	UN- KNOWN	POSITIVE
Planning and Design	0	0	2	0	0	2	0	0	0	0
Construction	0	0	4	2	0	6	0	0	0	0
Operational	1	0	2	0	0	2	0	0	0	1

Agricultural & Soil Assessment - March 2016

		F	PRE-MITIGAT	ION		POST-MITIGATION				
	POSITIVE	LOW	MODERATE	HIGH	UN- KNOWN	LOW	MODERATE	HIGH	UN- KNOWN	POSITIVE
Decommis- sioning	1	0	0	0	0	0	0	0	0	1
NO-GO	1	0	0	0	0	0	0	0	0	1
TOTAL	3	0	8	2	0	10	0	0	0	3

Agricultural statement and Opinion of the Specialist

The agricultural impacts of all the aspects of the proposed Brandvalley Wind Farm were considered and deemed to be acceptable, provided that the mitigation measures provided in this report are implemented.

Although limited agricultural output (livestock, crop irrigation and game) within the affected area will be impacted by the proposed development, no problematic areas or fatal flaws were identified for the site The proposed impacts on cultivated land are limited in that only access areas will transect cultivated land in existing impacted areas (existing farm roads through cultivated land). No new development must impact on cultivated land.

All the identified impacts on agriculture are considered to have high reversibility because the land will be able to be returned to agriculture after closure, with very little change in agricultural potential. Impacts on agriculture are also considered to have low irreplaceability of resource loss because:

- 6. of the small area of land involved,
- 7. low suitability for crops outside small areas along dry riverbeds that are currently under irrigation,
- 8. it is highly unlikely to be irreplaceably lost to agriculture,
- 9. of a low agricultural potential for livestock,
- 10. the proportion of surface area likely to be affected is minimal and therefore the overall impact on the carrying capacity/agricultural potential of the site will be minimal.

11 REFERENCES

Agricultural Research Council. undated. Available at http://www.agis.agric.za/ (last visited on 11 June 2014).

Deckers, J., Driessen, P., Nachtergaele, F., and Spaargaren, O. (2006) World Reference Base for Soil Resources (WRB) – in a nutshell. European Soil Bureau – Research Report no. 7

EKZNW (2010) Terrestrial Systematic Conservation Plan: Minimum Selection Surface (MINSET). Unpublished GIS Coverage [tscp_minset_dist_2010_wll.zip], Biodiversity Conservation Planning Division, Ezemvelo KZN Wildlife, P. O. Box 13053, Cascades, Pietermaritzburg, 3202.

Johnson, M.R., Anhaeusser, C.R., and Thomas, R.J. (Eds.) (2006). The Geology of South Africa. Geological Society of South Africa, Johannesburg/Council for Geoscience, Pretoria, 691 pp.

Moore, G. Dolling, P. Porter, B. and Leonard, L. (1998) Soil Acidity. In Soilguide. A handbook for understanding and managing agricultural soils. (Ed. G Moore) Agriculture Western Australia Bulletin No. 4343.

Munica, L, Scott-Shaw CR, Rutherford MC, Camp KGT, Matthews WS, Powrie LW and Hoare DB (2006) Indian Ocean Coastal Belt In: The vegetation of South Africa, Lesotho and Swaziland, Mucina L and Rutherford (eds). South African National Biodiversity Institute, Pretoria.

National Environmental Management Act (No 107 of 1998), as amended.

National Water Act (No 36 of 1998), as amended.

Soil Classification Working Group. (1991) Soil Classification - A Taxonomic System for South Africa

Mohamed, Najma. 2000. "Greening Land and Agrarian Reform: A Case for Sustainable Agriculture", in At the Crossroads: Land and Agrarian Reform in South Africa into the 21st century, ed. Cousins, Ben. Bellville, School of Government, University of the Western Cape.

12 APPENDIX A – SOIL LABORATORY RESULTS

kg/ha

BROOKSIDE LABORATORIES, INC.

70733-6

SOIL AUDIT AND INVENTORY REPORT

Name_	De Kock Roy	City_Heidelberg			State GP	
Indepe	endent Consultant Vermi Soluti	ons			Date0:	3/03/2016
Sample Location		S1	S 2	s6	s7	S11
Sample Identification						
Lab Number		0348-1	0349-1	0350-1	0351-1	0352-1
Total Exchange Capacity (ME/100 g)		12.61	11.84	15.56	20.15	23.89
pH (H ₂ O 1:1)		a 7.9	a 7.6	a 7.4	a 8.5	5.8
Organic Matter (humus) %		1.03	1.16	0.99	0.95	2.16
Estimated Nitrogen Release kg/ha		46	48	45	43	71
ANIONS	SOLUBLE SULFUR* ppm	6	7	7	12	11
	lette Dec D O	103	400	236	390	169
	Ppm of P BRAY II kg/ha Pas P ₂ O ₅	20 354	78 626	46 349	76 718	33 128
	ppm of P	69	122	68	140	25
	MEHLICH III Kg/na Pas P ₂ O ₅ ppm of P	0,5			2.0	
EXCHANGEABLE CATIONS	CALCIUM* kg/ha	3786	3105	3485	6294	3830
	ppm MAGNESIUM* ko/ha	1690 833	1386 970	1556 1651	2810 1172	1710 2079
	MAGNESIUM* kg/ha ppm	— 8 <u>33</u>	433	737	523	928
	POTASSIUM* kg/ha	206	549	455	847	484
A H	ppm	92	245	203	378	216
Š	SODIUM* kg/ha	199	116	258	99	334
Û	ppm	89	52	115	44	149
BASE SATURATION PERCENT						
	Calcium %	67.01	58.53	50.00	69.73	35.79
	Magnesium %	24.58	30.48	39.47	21.63	32.37
	Potassium % Sodium %	1.87	5.31	3.35	4.81	2.32
	Other Bases %	3.07	1.91	3.21	0.95	2.71
	Hydrogen %	3.50	3.80	4.00	2.90	5.80
Hydrogen % 0.00 0.00 0.00 0.00 21.00 EXTRACTABLE MINORS						
	Boron* (ppm)	0.30	0.43	0.40	0.76	0.32
Iron* (ppm)		61	106	87	78	104
Manganese* (ppm)		111	197	179	223	38
Copper* (ppm)		1.02	2.08	1.64	2.07	1.24
Zinc* (ppm)		0.62		1.17	1.59	0.96
	Aluminum* (ppm)	302	447	484	217	668
a so	Soluble Salts (mmhos/cm)					
OTHER	Chlorides (ppm)					
₽ F						

a - alkaline soil

^{*} Mehlich III Extractable

13 APPENDIX B – SIGNED SPECIALIST DECLARATION FORM