

PROPOSED BRANDVALLEY WIND ENERGY FACILITY

IN THE NORTHERN AND WESTERN CAPE PROVINCES SOUTH AFRICA

DEA REFERENCE: 14/12/16/3/3/2/900

SPECIALIST STUDY ON NOISE IMPACTS

HW592A1000508

Northern Office: PO Box 80171, Doornpoort, Pretoria, 0017 Tel: +27 (0)82 411 1571 Fax: +27 (0)86 6579864

Southern Office: PO Box 27607, Greenacres, Port Elizabeth 6057 Tel: +27 (0)41 3656846 / Fax: +27 (0)41 3652123 info@safetech.co.za / www.safetech.co.za Safetrain cc T/A Safetech Reg. No CK/92/34818/23 VAT No. 4180135461 Directors: B Williams, C Williams

DoL Approved Inspection Authority (OH0049-CI-09)

Report No.	Page - Of - Pages		Amendments	Survey Date
26/7587	2	65	Version 4 as on 27/04/2016	23/03/2016

TABLE OF CONTENTS

INFORM	IATION PAGE	5
EXECUT	IVE SUMMARY	7
ABBREV	IATIONS AND DEFINITIONS	8
1. INT	RODUCTION	10
1 1	BACKGROUND TO THE STUDY	10
1.2.	TECHNICAL OBJECTIVES/SCOPE OF THE NOISE IMPACT ASSESSMENT	10
1.3.	STRUCTURE OF THE REPORT.	
1.4.	Assumptions and Limitations	12
2. PR(OJECT DESCRIPTION	12
2.1.	LOCATION AND SITE DESCRIPTION OF THE PROPOSED DEVELOPMENT	12
2.2.	Sensitive Receptors	16
2	2.1 Human Noise Sensitive Areas	16
2	2.2 Natural Environment Receptors	17
3. INT	RODUCTION TO NOISE	17
3.1.	Sound Propagation	17
3.2.	Sources of Wind Turbine Noise	19
3.3.	MECHANICAL SOUNDS	19
3.4.	Aerodynamic Sound	20
3.5.	Ambient Sound & Wind Speed	21
3.6.	LOW FREQUENCY NOISE AND INFRASOUND	22
4. ME	THODOLOGY & APPROACH	25
4.1.	DESKTOP STUDY METHODOLOGY	25
4.2.	FIELD STUDY	26
5. API	PLICABLE LEGISLATION AND STANDARDS	29
5.1.	NATIONAL & PROVINCIAL LEGISLATION	30
5.2.	NATIONAL STANDARDS	31
5.3.	INTERNATIONAL STANDARDS	32
6. IMI	PACTS DURING THE CONSTRUCTION PHASE	34
6.1.	POTENTIAL CONSTRUCTION NOISE SOURCES (GENERAL EQUIPMENT AND VEHICLES)	34
6.2.	Predicted Noise Levels for the Construction Phase	35
6.3.	SIGNIFICANCE STATEMENT – CONSTRUCTION ACTIVITIES	37

Report N	0.	Page -	Of - Pages	Amendments	Survey Date
26/7587	,	3	65	Version 4 as on 27/04/2016	23/03/2016
7. IMPACT	S DURING	THE OPERATIO	NAL PHASE		
7.1. Prei	DICTED NOISE	E LEVELS FOR THE $\sf V$	VIND TURBINES GENE	erators (Brandvalley)	
7.2. Prei	DICTED NOISE	E LEVELS FOR THE $\sf V$	VIND TURBINES GENI	ERATORS (CUMULATIVE EFFEC	T OF BRANDVALLEY &
Rietkloof)					45
7.3. Disc	CUSSION OF P	REDICTED NOISE LI	EVELS		51
7.3.1	All Brand	valley NSA's			51
7.3.2	Cumulati	ve Effect (Brand	lvalley and Rietkla	oof)	51
8. CONCLU	SION AND	RECOMMEND	ATIONS		
8 1 Con					50
0.1. CON	Construct	tion Dhaso			
8.1.1	Construct	uon Phase			
8.1.2	Operation	nai Phase 			
8.1.3	Decomm	issioning			
8.2. REC	OMMENDATI	ONS			
8.2.1	Construct	tion Activities			
8.2.2	Operatio	nal Activities			54
9. REFEREN	ICES				
APPENDICES					57
APPENDIX	A - AIA CER	TIFICATE			57
APPENDIX	B – Calibra	TION CERTIFICATE			
APPENDIX	C – TYPICAL	Sound Power A	ND SOUND PRESSURE	LEVELS	
APPENDIX	APPENDIX D – Brandvalley Detailed Project Description61				
APPENDIX	E – NSA's D	DESCRIPTIONS			63
APPENDIX	APPENDIX F – Field Study Weather Conditions				

Report No.	Page - Of - Pages		Amendments	Survey Date
26/7587	4	65	Version 4 as on 27/04/2016	23/03/2016

LIST OF TABLES

TABLE 1 - WTG CO-ORDINATES
TABLE 2 - LOCATION OF NSA'S
TABLE 3 - PROPOSED TURBINE SPECIFICATIONS 26
TABLE 4 – AMBIENT MONITORING RESULTS - DAY 27
TABLE 5 – AMBIENT MONITORING RESULTS - NIGHT
TABLE 6 - TYPICAL RATING LEVELS FOR NOISE IN VARIOUS TYPES OF DISTRICTS 31
TABLE 7 - CATEGORIES OF ENVIRONMENTAL COMMUNITY / GROUP RESPONSE (SANS 10103:2008)
TABLE 8 - TYPICAL TYPES OF VEHICLES AND EQUIPMENT TO BE USED ON SITE (CONSTRUCTION PHASE)
TABLE 9 - TYPICAL CONSTRUCTION NOISE
TABLE 10 - COMBINING DIFFERENT CONSTRUCTION NOISE SOURCES – HIGH IMPACTS (EQUIPMENT WITH THE
HIGHEST SOUND POWER EMISSIONS I.E. WORST CASE)
TABLE 11 - COMBINING DIFFERENT CONSTRUCTION NOISE SOURCES – LOW IMPACTS - EQUIPMENT WITH THE
LOWEST SOUND POWER EMISSIONS
TABLE 12 – ATTENUATION BY DISTANCE FOR THE CONSTRUCTION PHASE (WORST CASE)
TABLE 13 – CONSTRUCTION IMPACT SIGNIFICANCE STATEMENT TABLE
TABLE 14 - PREDICTED NOISE LEVELS AT THE NSA'S DURING THE OPERATIONAL PHASE
TABLE $15 - C$ umulative predicted noise levels at the NSA's during the operational phase
(BRANDVALLEY AND RIETKLOOF)
TABLE 16 – CONSTRUCTION IMPACT SIGNIFICANCE STATEMENT TABLE

LIST OF FIGURES

FIGURE 1 - WTG POSITIONS	. 15
FIGURE 2 - TYPICAL SOUND POWER LEVELS OF A 2MW TURBINE	. 20
FIGURE 3 - SOURCES OF AERODYNAMIC NOISE	. 21
FIGURE 4 - LOW FREQUENCY HEARING THRESHOLD LEVELS	. 23

Amendment History

Version 1	Original	23/03/2016
Version 2	Minor changes to Discussion and Legislation	31/03/2016
Version 3	Revisions due to reviewer's comments. Overall impact rating not changed.	22/04/2016
Version 4	Modelled the removal of several turbines to reduce noise emissions to meet the SANS 10103:2008 night limit. Only the discussion was updated	27/04/2016

Report No.	Page - Of - Pages		Amendments	Survey Date
26/7587	5	65	Version 4 as on 27/04/2016	23/03/2016

INFORMATION PAGE

CLIENT NAME	EOH Coastal & Environmental Services
PROJECT	Brandvalley Wind Energy Facility Northern and Western Cape Provinces
CONTACT PERSON	Ms. B. Huddy
TYPE OF SURVEY	Noise Specialist Study as part of the Environmental Impact Assessment
DATE OF FIELD SURVEY	15 th & 16 th February 2016 (Conducted by Tarryn Lombard)
REPORT PREPARED BY	Dr Brett Williams

This report only pertains to the conditions found at the above site at the time of the survey. This report may not be copied electronically, physically or otherwise, except in its entirety. If sections of the report are to be copied the approval of the author, in writing, is required.

.....

Dr B WILLIAMS

Report No.	Page - Of - Pages		Amendments	Survey Date
26/7587	6	65	Version 4 as on 27/04/2016	23/03/2016

DECLARATION OF INDEPENDENCE				
Noise Impact Assessment	I Brett Williams, declare that I am an independent consultant and have no business, financial, personal or other interest in the proposed Brandvalley Wind Energy Facility, application or appeal in respect of which I was appointed other than fair remuneration for work performed in connection with the activity, application or appeal. There are no circumstances that compromise the objectivity of my performing such work. SIGNATURE:			

Report No.	Page - Of - Pages		Amendments	Survey Date
26/7587	7	65	Version 4 as on 27/04/2016	23/03/2016

EXECUTIVE SUMMARY

Safetech were appointed to conduct a specialist study for an environmental noise impact assessment for the construction of the Brandvalley Wind Energy Facility in the Northern and Western Cape Provinces. The facility will generate approximately 140MW of electricity.

The noise assessment study considered the site location as described in the Final Scoping Report (EOH Coastal & Environmental Services, March 2016). A literature review and desktop modelling was conducted. Baseline monitoring was done of the ambient noise levels at the site.

The results of the study indicate that the following conclusions can be drawn:

- a) There will be a short term increase in noise in the vicinity of the site during the construction phase as the ambient noise level will be exceeded by vehicle operations.
- b) The SANS 10103:2008 night limit of 35dB(A) will be exceeded at Noise Sensitive Area 1, although it is highly likely that the wind noise will provide a masking effect. The impact is likely to be very low. Further modelling indicates that if two turbines are removed (WTG 52 & 53), the SANS 10103:2008 night limit will not be exceeded (based on the Vestas V126 turbine).
- c) The cumulative effect of both the Brandvalley and Rietkloof projects will only have a marginal effect on two noise sensitive receptors.

The following is recommended:

- a) The noise impacts are re-modelled when the final turbine layout and type is determined is determined.
- b) Periodic noise measurements are taken during the construction and operational phases.

Dr Brett Williams

Report No.	Page - Of - Pages		Amendments	Survey Date
26/7587	8	65	Version 4 as on 27/04/2016	23/03/2016

ABBREVIATIONS AND DEFINITIONS

Ambient Noise (General meaning)	Means the reading on an integrating impulse sound level meter taken at a measuring point, in the absence of any alleged disturbing noise, at the end of a total period of at least 10 minutes after such meter was put into operation <i>Authors Note:</i> Ambient noise in layman's terms generally <u>excludes</u> the noise alleged to be causing a noise nuisance or disturbing noise. Ambient noise in this definition is equivalent to <u>Residual Noise</u> as defined in the SANS 10103:2008				
Ambient Noise (SANS 10103:2008)	Totally encompassing sound in a given situation at a given time, and usually composed of sound from many sources, both near and far <i>NOTE: Ambient noise</i> <u>includes</u> the noise from the noise source under investigation.				
Annoyance	General negative reaction of the community or person to a condition creating displeasure or interference with specific activities.				
dB(A)	Decibels weighted A scale – Value of the sound pressure level in decibels, determined using a frequency weighting network A (with reference to 20 μ Pa unless otherwise indicated).				
Disturbing Noise (Western Cape Noise Control Regulations June 2013)	 A noise, excluding the unamplified human voice, which: a) Exceeds the rating level by 7 dBA; b) Exceeds the residual noise level where the residual noise level is higher than the rating level; c) Exceeds the residual noise level by 3 dBA where the residual noise level is lower than the rating level; or d) In the case of a low-frequency noise, exceeds the level specified in Annex B of SANS 10103. 				
Equivalent Continuous Rating Level (L _{Req,T})	The equivalent continuous A-weighted sound pressure level ($L_{Aeq,T}$) during a specified time interval, plus specified adjustments for tonal character and impulsiveness of the sound, and derived from the applicable equation. $L_{Aeq,T} + Ci + C_t + kn$ where $L_{aeq,T}$ is the equivalent A-weighted sound pressure level in decibels Ci is the impulse correction Ct is the correction for tonal character				
	Kn is the adjustment for day or night (0dB for day and +10dB for night measurements				
L _{Aeq,T}	The equivalent continuous A-weighted sound pressure level.				
Low Frequency Noise	Means sound which contains sound energy at frequencies predominantly below 100 Hz.				
L ₉₀	Sound pressure level exceeded for 90 percent of the measurement time				
m	metres				
m/s	metres per second				
Noise Nuisance	Means any sound which impairs or may impair the convenience or peace of a reasonable person.				
Noise Rating Level	Means the applicable outdoor equivalent continuous rating level indicated in Table 2 of SANS 10103.				
Residual Noise (SANS 10103)	Means the all-encompassing sound in a given situation at a given time, measured as the reading on an integrated impulse sound level meter for a total period of at least 10 minutes, <u>excluding</u> noise alleged to be causing a noise nuisance or disturbing noise.				

Report No.	Page - Of - Pages		Amendments	Survey Date
26/7587	9	65	Version 4 as on 27/04/2016	23/03/2016

SANS 10103:2008	The South African national standards code of practice for the measurement and rating of environmental noise with respect to annoyance and to speech communication.
Sound Level	Means the equivalent continuous rating level as defined in SANS 10103, taking into account impulse, tone and night-time corrections.
Western Cape Noise Control Regulations	Department of Environmental Affairs and Development Planning Environment Conservation Act, 1989 - Western Cape Noise Control Regulations. PN 200/2013. 20th June 2013.

Report No.	Page - Of - Pages		Amendments	Survey Date
26/7587	10	65	Version 4 as on 27/04/2016	23/03/2016

1. Introduction

1.1. Background to the Study

Brandvalley Wind Farm (Pty) Ltd proposes to construct a Wind Energy Facility (WEF) of up to 140 Megawatts (MW) installed capacity on a number of farms situated near Laingsburg in the Western Cape and Northern Cape. The project is situated on the border of the Northern Cape Province and the Western Cape Province. The wind farm will host up to 70 turbines, each with a capacity of between 1.5MW and 4MW. Safetech was appointed to undertake the Noise Impact Assessment (NIA) to inform the Environmental Impact Assessment (EIA) process for the proposed WEF.

1.2. Technical Objectives/Scope of the Noise Impact Assessment

The NIA for the EIA phase is to be conducted in accordance with Section 8 of SANS 10328: Methods for environmental noise impact assessments. The scope of the project is described below:

- Determine the land use zoning on surrounding land and identify noise sensitive receptors that could be impacted upon by activities relating to the construction, operation and decommissioning of the wind farm.
- Determine the existing ambient levels of noise within the study area.
- Determine the typical rating level for noise on surrounding land at identified noise sensitive receptors.
- Identify all noise sources, relating to the establishment and operation of the proposed wind farm that could potentially result in a noise impact on surrounding land and at the identified noise sensitive receptors.
- Determine the sound power emission levels and nature of the sound emission from the identified noise sources.
- Calculate the expected rating level of noise on surrounding land and at the identified noise sensitive receptors from the combined sound power levels emanating from identified noise sources in accordance with procedures contained in SANS 10357 or similar.
- Calculate and assess the noise impact on surrounding land and at the identified noise sensitive receptors in terms of SANS 10103; the Environment Conservation Act: National Noise Control Regulations (GNR 154 - 1992; and the Western Cape Noise Control Regulations. There are no noise control provincial regulations for the Northern Cape.

Report No.	Page - (Of - Pages	Amendments	Survey Date
26/7587	11	65	Version 4 as on 27/04/2016	23/03/2016

- Investigate alternative noise mitigation procedures, if required, in collaboration with the design engineers of the facility and estimate the impact of noise upon implementation of such procedures.
- Prepare and submit an environmental noise impact report containing the procedures and findings of the investigation.
- Prepare and submit recommended noise mitigation procedures as part of a separate environmental noise management plan, if relevant.

1.3. Structure of the report

This volume presents the findings of the noise impact assessment specialist study undertaken to inform the detailed EIA phase of the proposed development and the structure of the report is therefore as follows:

Chapter 1- Introduction: Provides brief background information on the proposed project as well as the objectives of thies specialist study. This Chapter also provides details on the structure of this report and list the assumptions and limitations of the assessment.

Chapter 2 – Project Description: Provides a detailed description of the proposed project based on the latest project plans provided by EOH Coastal and Environmental Services.

Chapter 3 – Introduction to Noise: Provides a primer in order to understand the technical aspects of the report.

Chapter 4 – Methodology and Approach: The methodology to conduct the field study as well as the desktop study is discussed.

Chapter 5 – Applicable Legislation and Standards: The noise rating limits and the minimum setback distances are discussed.

Chapter 6 – Impacts during the Construction Phase: The noise impacts for the construction phase are suggested and calculated.

Report No.	Page - Of - Pages		Amendments	Survey Date
26/7587	12	65	Version 4 as on 27/04/2016	23/03/2016

Chapter 7 – Impacts during the Operational Phase: The noise impacts for the operational phase are modelled.

Chapter 8 – Conclusion and Recommendation: The conclusion and recommendations are presented.

1.4. Assumptions and Limitations

The following assumptions and limitations are applicable to this study:

- The turbine positions were supplied by the developer and are accepted as an accurate layout for the purposes of the environmental impact assessment.
- The worst case scenario impacts were modelled i.e. wind from any direction, not only the prevailing wind, maximum turbine size as required for the site and the worst case meteorological conditions.
- No wind noise masking effect is taken into account. The noise levels at the identified noise sensitive areas could thus be lower if the wind noise masks the turbine noise emissions.

2. PROJECT DESCRIPTION

2.1. Location and Site Description of the Proposed Development

The location and position of the various wind turbine generators (WTG) are contained in the table and figures below. The project is located in a rural area and is situated on farmland. A total of 70 WTG's were modelled in the report, although this may be reduced in the final layout, depending on the outcomes of the EIA and other specialists' recommendations for impact mitigation . A full project description of the planned infrastructure is contained in Appendix D to this report.

Report No.	Page - Of - Pages		Amendments	Survey Date
26/7587	13	65	Version 4 as on 27/04/2016	23/03/2016

Table 1 - WTG Co-Ordinates

Turbine Number	East	South
1	20°25'44.81"	33°00'55.98"
2	20°25'33.16"	33°01'04.82"
3	20°25'19.73"	33°01'12.66"
4	20°24'36.78"	33°00'53.25"
5	20°24'24.80"	33°01'01.30"
6	20°24'11.92"	33°01'09.10"
7	20°23'36.21"	33°01'11.15"
8	20°23'37.78"	33°00'58.28"
9	20°23'45.80"	33°00'47.18"
10	20°27'01.77"	32°57'47.47"
11	20°27'11.57"	32°57'37.56"
12	20°23'48.04"	32°59'42.95"
13	20°24'00.40"	32°59'35.41"
14	20°24'06.84"	32°59'23.74"
15	20°24'24.72"	32°59'41.14"
16	20°24'29.36"	32°59'28.88"
17	20°24'41.90"	32°59'21.58"
18	20°24'53.55"	32°59'11.12"
19	20°25'17.85"	32°59'04.76"
20	20°25'44.09"	32°59'03.37"
21	20°25'17.71"	32°59'19.59"
22	20°25'42.36"	32°59'16.72"
23	20°26'07.88"	32°58'55.52"
24	20°25'19.88"	32°58'21.09"
25	20°24'25.29"	32°58'16.83"
26	20°23'50.43"	32°58'20.62"
27	20°24'59.14"	32°57'58.22"
28	20°24'33.35"	32°57'59.97"
29	20°24'33.89"	32°57'47.07"
30	20°24'37.06"	32°57'34.45"
31	20°24'35.09"	32°57'21.62"
32	20°24'42.24"	32°57'10.21"
33	20°25'08.51"	32°57'14.93"
34	20°26'03.30"	32°56'42.76"
35	20°26'15.75"	32°56'24.47"
36	20°26'21.84"	32°56'10.31"
37	20°26'46.11"	32°56'11.33"
38	Removed	Removed
39	20°26'40.99"	32°55'56.94"
40	20°27'06.35"	32°55'54.68"
41	20°26'43.06"	32°55'44.03"
42	Removed	Removed
43	20°25'04.48"	32°56'05.22"
44	20°24'58.24"	32°55'49.02"
45	20°24'57.22"	32°55'29.63"
46	20°25'23.27"	32°55'31.53"

Report No.	Page - Of - Pages		Amendments	Survey Date
26/7587	14	65	Version 4 as on 27/04/2016	23/03/2016

Turbine Number	East	South
47	20°32'08.82"	32°57'39.50"
48	20°31'56.30"	32°57'46.88"
49	20°31'44.47"	32°57'55.11"
50	20°30'54.17"	32°58'03.60"
51	20°30'41.47"	32°58'10.74"
52	20°30'20.45"	32°57'48.82"
53	20°29'32.89"	32°57'53.95"
54	20°29'06.70"	32°57'54.32"
55	20°28'54.42"	32°58'01.94"
56	20°28'46.68"	32°58'13.03"
57	20°28'21.74"	32°58'17.36"
58	20°29'27.68"	32°58'08.38"
59	20°29'11.38"	32°58'17.92"
60	20°28'51.76"	32°58'29.68"
61	20°28'39.12"	32°58'36.92"
62	20°28'30.56"	32°58'47.68"
63	20°28'03.52"	32°58'48.59"
64	20°27'50.94"	32°58'56.00"
65	20°27'24.86"	32°59'06.19"
66	20°29'05.59"	32°58'50.49"
67	20°28'36.43"	32°59'06.61"
68	20°28'50.00"	32°59'24.75"
69	20°28'24.32"	32°59'27.90"
70	20°28'24.13"	32°59'49.79"

(Note: Turbines WTG56 and WTG57 have been removed due to ecological impacts.)

Report No.	Page - Of - Pages		Amendments	Survey Date
26/7587	15	65	Version 4 as on 27/04/2016	23/03/2016

Figure 1 - WTG Positions

WTG = Red dot Noise Sensitive Area = Purple Dot (outside Project Area) and Yellow Dot (Inside Project Area)

Report No.	Page - Of - Pages		Amendments	Survey Date
26/7587	16	65	Version 4 as on 27/04/2016	23/03/2016

The project site is zoned for agricultural land use. The site is hilly with sparse vegetation. A full description of the project is contained in the Final Scoping Report as well as Appendix D to this report. The potential sensitive receptors are discussed below. The main noise sensitive receptors that could be impacted by noise pollution are the terrestrial fauna, the avifauna and human receptors. This report only deals with the human receptors as separate ecology and avifauna impact assessments will be undertaken.

2.2. Sensitive Receptors

2.2.1 Human Noise Sensitive Areas

Northern Portion – Operational Phase

The project area is situated in a rural farming community. Twenty-nine homesteads are located in the vicinity where the turbines will be erected. The locations of the various noise sensitive areas (NSA's) are indicated in the table below and the figure above. The NSA's were identified through a site visit and Google Earth images.

The NSA's to the south are located on and around the proposed Rietkloof Wind Energy Project and are included here for cumulative effect purposes.

The location of the noise sensitive areas is shown in Table 2 below. A detailed description of the NSA's is contained in Appendix E.

Description	East	South	Within Project Boundary	Туре
NSA 1	20°30'17.97"	32°57'10.38"	Yes	Farmhouse
NSA 2	20°32'52.95"	32°59'17.08"	Yes	Farmhouse
NSA 3	20°33'46.34"	32°59'14.38"	Yes	Farmhouse
NSA 4	20°32'50.34"	32°57'02.30"	Yes	Farmhouse
NSA 5	20°35'33.01"	33°04'25.20"	Yes	Farmhouse
NSA 6	20°36'03.35"	32°58'22.40"	No	Farmhouse
NSA 7	20°32'05.40"	33°06'21.24"	Yes	Farmhouse
NSA 8	20°28'42.36"	33°05'39.20"	Yes	Farmhouse
NSA 9	20°23'38.49"	33°10'03.50"	No	Farmhouse
NSA 10	20°21'09.92"	33°08'30.25"	No	Farmhouse
NSA 11	20°23'36.36"	33°04'12.19"	No	Farmhouse
NSA 12	20°25'16.19"	33°04'42.76"	Yes	Farmhouse
NSA 13	20°25'12.35"	33°04'05.63"	Yes	Farmhouse
NSA 14	20°27'42.38"	33°02'14.53"	Yes	Farmhouse

Table 2 - Location of NSA's

Report No.	Page - Of - Pages		Amendments	Survey Date
26/7587	17	65	Version 4 as on 27/04/2016	23/03/2016

Description	East	South	Within Project Boundary	Туре
NSA 15	20°33'09.67"	32°54'52.62"	No	Farmhouse
NSA 16	20°22'49.18"	33°07'02.68"	No	Farmhouse
NSA 17	20°23'36.67"	33°05'09.53"	No	Farmhouse
NSA 18	20°29'22.71"	33°03'29.96"	Yes	Farmhouse
NSA 19	20°25'51.24"	33°06'16.52"	Yes	Farmhouse
NSA 20	20°28'51.51"	33°10'20.42"	No	Farmhouse
NSA 21	20°25'54.65"	33°10'25.14"	No	Farmhouse
NSA 22	20°21'25.27"	32°57'21.98"	Yes	Farmhouse
NSA 23	20°22'07.76"	32°58'30.41"	Yes	Farmhouse
NSA 24	20°16'15.80"	32°57'29.92"	No	Farmhouse
NSA 25	20°19'48.45"	32°53'44.68"	No	Farmhouse
NSA 26	20°27'23.34"	32°52'42.16"	Yes	Farmhouse
NSA 27	20°28'03.60"	32°49'35.62"	No	Farmhouse
NSA 28	20°26'46.16"	33°00'14.10"	Yes	Farmhouse
NSA 29	20°19'04.31"	33°00'15.87"	No	Farmhouse

2.2.2 Natural Environment Receptors

The fauna on the site includes bats, birds, commercial livestock and a variety of buck, leopard, reptiles etc. The noise impacts on the natural environment receptors are dealt with in separate specialist studies of this EIA (Ecological Impact Assessment – Flora and Fauna).

3. Introduction to Noise

3.1. Sound Propagation

Noise is defined as any unwanted sound and is measured in decibels. Sounds are characterized by their magnitude (loudness) and frequency. There can be loud low frequency sounds, soft high frequency sounds and loud sounds that include a range of frequencies. The human ear can detect a very wide range of both sound levels and frequencies, but it is more sensitive to some frequencies than others.

Sound frequency denotes the "pitch" of the sound and, in many cases, corresponds to notes on the musical scale (Middle C is 262 Hz). An octave is a frequency range between a sound with one frequency and one with twice that frequency, a concept often used to define ranges of sound frequency values. The frequency range of human hearing is quite wide, generally ranging from about 20 Hz to 20 kHz (about 10 octaves). Sounds experienced in daily life are usually not a single frequency, but are

Report No.	Page - Of - Pages		Amendments	Survey Date
26/7587	18	65	Version 4 as on 27/04/2016	23/03/2016

formed from a mixture of numerous frequencies, from numerous sources (See Appendix C).

Concerns about environmental noise depend on:

- The level of intensity, frequency, frequency distribution and patterns of the noise source;
- Background sound levels;
- The terrain between the emitter and receptor;
- The nature of the receptor; and
- The attitude of the receptor about the emitter.

In general, the effects of noise on people can be classified into three general categories:

- Subjective effects including annoyance, nuisance, dissatisfaction
- Interference with activities such as speech, sleep, and learning
- Physiological effects such as anxiety, tinnitus, or hearing loss.

It is important to distinguish between the various measures of the magnitude of sounds, namely sound power level and sound pressure level. Sound power level is the power per unit area of the sound pressure wave; it is a property of the source of the sound and it gives the total acoustic power emitted by the source. Sound pressure is a property of sound at a given observer location and can be measured there by a microphone.

In order to predict the sound pressure level at a distance from source with a known power level, one must determine how the sound waves propagate. In general, as sound propagates without obstruction from a point source, the sound pressure level decreases. The initial energy in the sound is distributed over a larger and larger area as the distance from the source increases. Thus, assuming spherical propagation, the same energy that is distributed over a square meter at a distance of one meter from a source is distributed over 10,000 m² at a distance of 100 meters away from the source. With spherical propagation, the sound pressure level is reduced by 6 dB per doubling of distance.

This simple model of spherical propagation must be modified in the presence of reflective surfaces and other disruptive effects. For example, if the source is on a

Report No.	Page - Of - Pages		Amendments	Survey Date
26/7587	19	65	Version 4 as on 27/04/2016	23/03/2016

perfectly flat and reflecting surface, then hemispherical spreading has to be assumed, which also leads to a 6 dB reduction per doubling of distance, but the sound level would be 3 dB higher at a given distance than with spherical spreading.

Sound propagation is generally influenced by the following factors:

- Source characteristics (e.g., directivity, height, etc.)
- Distance of the source from the observer
- Air absorption, which depends on frequency
- Ground effects (i.e., reflection and absorption of sound on the ground, dependent on source height, terrain cover, ground properties, frequency, etc.)
- Blocking of sound by obstructions and uneven terrain
- Weather effects (i.e., wind speed, change of wind speed or temperature with height). The prevailing wind direction can cause differences in sound pressure levels between upwind and downwind positions.
- Shape of the land; certain land forms can also focus sound

3.2. Sources of Wind Turbine Noise

The sources of sounds emitted from operating wind turbines can be divided into two categories, firstly mechanical sounds, from the interaction of turbine components, and secondly aerodynamic sounds, produced by the flow of air over the blades.

3.3. Mechanical Sounds

Mechanical sounds originate from the relative motion of mechanical components and the dynamic response among them. Sources of such sounds include:

- Gearbox
- Generator
- Yaw Drives
- Cooling Fans
- Auxiliary Equipment (e.g. hydraulic systems, transformers etc.)

Since the emitted sound is associated with the rotation of mechanical and electrical equipment, it tends to be tonal (of a common frequency), although it may have a broadband component. For example, pure tones can be emitted at the rotational frequencies of shafts and generators, and the meshing frequencies of the gears.

Report No.	Page - Of - Pages		Amendments	Survey Date
26/7587	20	65	Version 4 as on 27/04/2016	23/03/2016

In addition, the hub, rotor, and tower may act as loudspeakers, transmitting the mechanical sound and radiating it. The transmission path of the sound can be airborne or structure-borne. Air-borne means that the sound is directly propagated from the component surface or interior into the air. Structure-borne sound is transmitted along other structural components before it is radiated into the air.

The figure below shows the type of transmission path and the sound power levels for the individual components for a typical 2 MW wind turbine. The important information in the picture is not the sound power levels, but rather the various sources of noise from the whole assembly. The highest <u>sound power</u> level that was modelled for this project is 107.5 dB using the 3.6MW turbine.

Figure 2 - Typical Sound Power Levels of a 2MW Turbine

3.4. Aerodynamic Sound

Aerodynamic broadband sound is typically the largest component of wind turbine acoustic emissions. It originates from the flow of air around the blades. As shown in Figure 3, a large number of complex flow phenomena occur, each of which might generate some sound. Aerodynamic sound generally increases with rotor speed. The various aerodynamic sound generation mechanisms that have to be considered are divided into three groups:

• Low Frequency Sound: Sound in the low frequency part of the sound spectrum is generated when the rotating blade encounters localized flow deficiencies due to the flow around a tower, wind speed changes, or wakes shed from other blades.

Report No.	Page - Of - Pages		Amendments	Survey Date
26/7587	21	65	Version 4 as on 27/04/2016	23/03/2016

- Inflow Turbulence Sound: Depends on the amount of atmospheric turbulence. The atmospheric turbulence results in local force or local pressure fluctuations around the blade.
- Airfoil Self Noise: This group includes the sound generated by the air flow right along the surface of the airfoil. This type of sound is typically of a broadband nature, but tonal components may occur due to blunt trailing edges, or flow over slits and holes.

Modern airfoil design takes all of the above factors into account and is generally much quieter than the first generation of bade design.

3.5. Ambient Sound & Wind Speed

The ability to hear a wind turbine in a given installation depends on the ambient sound level. When the background sounds and wind turbine sounds are of the same magnitude, the wind turbine sound gets lost in the background. Both the wind turbine sound power level and the ambient sound pressure level will be functions of wind speed. Thus whether a wind turbine exceeds the background sound level will depend on how each of these varies with wind speed.

The most likely sources of wind-generated sounds are interactions between wind and vegetation. A number of factors affect the sound generated by wind flowing over

Report No.	Page - Of - Pages		Amendments	Survey Date
26/7587	22	65	Version 4 as on 27/04/2016	23/03/2016

vegetation. For example, the total magnitude of wind-generated sound depends more on the size of the windward surface of the vegetation than the foliage density or volume.

The sound level and frequency content of wind generated sound also depends on the type of vegetation. For example, sounds from deciduous trees tend to be slightly lower and more broadband than that from conifers, which generate more sounds at specific frequencies. The equivalent A-weighted broadband sound pressure generated by wind in foliage has been shown to be approximately proportional to the base 10 logarithm of wind speed.

Sound levels from large modern wind turbines during constant speed operation tend to increase more slowly with increasing wind speed than ambient wind generated sound. As a result, wind turbine noise is more commonly a concern at lower wind speeds and it is often difficult to measure sound from modern wind turbines above wind speeds of 8 m/s because the background wind-generated sound generally masks the wind turbine sound above 8 m/s.

It should be remembered that average sound pressure measurements might not indicate when a sound is detectable by a listener. Just as a dog's barking can be heard through other sounds, sounds with particular frequencies or an identifiable pattern may be heard through background sounds that is otherwise loud enough to mask those sounds. Sound emissions from wind turbines will also vary as the turbulence in the wind through the rotor changes. Turbulence in the ground level winds will also affect a listener's ability to hear other sounds. Because fluctuations in ground level wind speeds will not exactly correlate with those at the height of the turbine, a listener might find moments when the wind turbine could be heard over the ambient sound.

3.6. Low Frequency Noise and Infrasound

Infrasound was a characteristic of some wind turbine models that has been attributed to early designs in which turbine blades were downwind of the main tower. The effect was generated as the blades cut through the turbulence generated around the downwind side of the tower. Modern designs generally have the blades upwind of the

Report No.	Page - Of - Pages		Amendments	Survey Date
26/7587	23	65	Version 4 as on 27/04/2016	23/03/2016

tower. Wind conditions around the blades and improved blade design minimize the generation of the effect.

Low frequency pressure vibrations are typically categorized as low frequency sound when they can be heard near the bottom of human perception (10-200 Hz), and infrasound when they are below the common limit of human perception. Sound below 20 Hz is generally considered infrasound, even though there may be some human perception in that range. Because these ranges overlap in these ranges, it is important to understand how the terms are intended in a given context.

Figure 4 - Low frequency Hearing Threshold Levels

Infrasound is always present in the environment and stems from many sources including ambient air turbulence, ventilation units, waves on the seashore, distant explosions, traffic, aircraft, and other machinery. Infrasound propagates farther (i.e. with lower levels of dissipation) than higher frequencies. To place infrasound in perspective, when a child is swinging high on a swing, the pressure change on its ears, from top to bottom of the swing, is nearly 120 dB at a frequency of around 1 Hz. Some characteristics of the human perception of infrasound and low frequency sound are:

Report No.	Page - Of - Pages		Amendments	Survey Date
26/7587	24	65	Version 4 as on 27/04/2016	23/03/2016

- Low frequency sound and infrasound (2-100 Hz) are perceived as a mixture of auditory and tactile sensations.
- Lower frequencies must be of a higher magnitude (dB) to be perceived, e.g. the threshold of hearing at 10 Hz is around 100 dB; see Figure 4 above.
- Tonality cannot be perceived below around 18 Hz
- Infrasound may not appear to be coming from a specific location, because of its long wavelengths.

The primary human response to perceived infrasound is annoyance, with resulting secondary effects. Annoyance levels typically depend on other characteristics of the infrasound, including intensity, variations with time, such as impulses, loudest sound, periodicity, etc. Infrasound has three annoyance mechanisms:

- A feeling of static pressure
- Periodic masking effects in medium and higher frequencies
- Rattling of doors, windows, etc. from strong low frequency components

Human effects vary by the intensity of the perceived infrasound, which can be grouped into these approximate ranges:

- 90 dB and below: No evidence of adverse effects
- 115 dB: Fatigue, apathy, abdominal symptoms, hypertension in some humans
- 120 dB: Approximate threshold of pain at 10 Hz
- 120 130 dB and above: Exposure for 24 hours causes physiological damage

There is no reliable evidence that infrasound below the perception threshold produces physiological or psychological effects.

The typical range of sound power level for wind turbine generators is in the range of 100 to 105dBA – a much lower sound power level (10dB or more) than the majority of construction machinery such as dozers. In order for infrasound to be audible even to a person with the most sensitive hearing at a distance of, say, 300m would require a sound power level of at least 140dB at 10Hz and even higher emission levels than this at lower frequencies and at greater distances. There is no information available to indicate that wind turbine generators emit infrasound anywhere near this intensity⁽²⁾.

Report No.	Page - Of - Pages		Amendments	Survey Date
26/7587	25	65	Version 4 as on 27/04/2016	23/03/2016

Several studies have confirmed that there are no physiological effects from low frequency or infrasound from wind turbines $^{(2),(4),(5),(9),(15),(16),(17)}$.

4. METHODOLOGY & APPROACH

The methodology used in the study consisted of two approaches to determine the noise impact from the proposed project and associated infrastructure:

- A desktop study to model the likely noise emissions from the site;
- Field measurements of the existing ambient noise at different locations in the vicinity of the project.

4.1. Desktop study methodology

The desktop study was conducted using the available literature on noise impacts as well as numerical calculations using EMD WindPro Software Version 2.9 which is specifically developed for modelling wind turbine noise. The method described in SANS 10357:2004 version 2.1 (The calculation of sound propagation by the Concawe method) was used as a reference for further calculations where required. WindPro uses the methods described in ISO 9613-2 (Acoustics – Attenuation of sound during propagation outdoors. Part 2 – General method of calculation). This method is very comparable to SANS 10357:2004.

The numerical results were then used to produce a noise map that visually indicates the extent of the noise emissions from the site. The noise emissions were modelled for various wind speeds. The direction of the wind is <u>not</u> taken into consideration as the wind could blow from any direction at the speeds that were modelled.

The following data was used for the WTG's that were modeled:

Brandvalley Wind Farm (Pty) Ltd have not yet fully committed to a specific turbine model due to earliness of the development. The noise impact assessment was therefore based on a selection of four possible turbine models that were suggested by the client. The author is limited to the turbines in the officially released wind turbine catalogue in WindPro 2.9. The details of the turbines that were modelled are described in Table 3 below.

Report No.	Page - Of - Pages		Amendments	Survey Date
26/7587	26	65	Version 4 as on 27/04/2016	23/03/2016

Manufacturer	Acciona	Siemens	Vestas	Vestas
Type / Version	AW 132/3000	SWT – 3.3	V117	V126
Rated Power	3.0 MW	3.3 MW	3.3 MW	3.3 MW
Rotor Diameter	132m	130m	117m	126m
Tower	Tubular	Tubular	Tubular	Tubular
Grid Connection	50 Hz	50 Hz	50 Hz	50 Hz
Maximum Sound Power Level	107.1 dB	106 dB	107.0 dB	107.5 db
Hub Height	85m	110m	116.5m	117m

Table 3 - Proposed Turbine Specifications

Sound Power Level dB(A) reference to 1pW from WindPro 2.9 Catalogue

4.2. Field Study

A field study to the project area was conducted on the 15th & 16th February 2016. The field study was conducted by Miss T. Lombard. The ambient monitoring points were chosen based on their proximity to the location of the proposed wind turbines. Ambient noise measurements were taken at the noise sensitive areas that would be impacted during the operational phase. Three NSA's were selected as monitoring points namely, NSA 2, 5 and 18 (see Figure1). These were identified in Section 2.2.1 above. The results are presented in Table 4 & 5 below. The weather conditions during the field study are contained in Appendix F taken from Laingsburg, the nearest town.

Report No.	Page - Of - Pages		Amendments	Survey Date
26/7587	27	65	Version 4 as on 27/04/2016	23/03/2016

Table 4 – Ambient Monitoring Results - Day

Daytime -	Commencing	at 09:51	on 16 th	February	2016
-----------	------------	----------	---------------------	----------	------

NO	AREA	Leq (dBA)	L ₉₀ (dBA)	Noise Source
Position 1	NSA 18	56.3	50.7	 Noise from trees blowing in wind (main noise source). Tapping noise from windmill. Noise from leaves blowing across the ground. Faint noise from activity inside the house. Noise from birds chirping. Noise from wind chimes.
Position 2	NSA 5	48.9	42.0	 Noise from dogs barking / growling (main noise source). Noise from trees blowing in the wind. Noise from people talking nearby. Noise from people working on farm in distance. Noise from vehicle activity on R354. Noise from birds chirping. Noise from leaves blowing on ground.
Position 3	NSA 2	46.4	39.1	 Noise from trees blowing in the wind (main noise source). Noise from birds chirping. Noise from people speaking inside house. Tapping noise from decoration on house. Noise from rooster crowing. Noise from gate tapping on wall.

Report No.	Page - Of - Pages		Amendments	Survey Date
26/7587	28	65	Version 4 as on 27/04/2016	23/03/2016

Table 5 – Ambient Monitoring Results - Night

Night-time - Commencing at 22:16 15th February and 19:01 on the 16th February 2016

NO	AREA	Leq (dBA)	L ₉₀ (dBA)	Noise Source
Commencing a	at 22:16 on 15 F	ebruary	2016	
Position 1	NSA 18 (°'"S °'"E)	54.5	50.4	 Noise from trees blowing in the wind (main noise source). Noise from wind chimes. Noise from leaves blowing across the ground. Noise from birds chirping. Tapping noise from windmill.
Position 2	NSA 5	57.3	34.5	 Noise from dogs barking (main noise source). Noise from leaves blowing across the ground. Noise from crickets. Noise from vehicles driving on the R354.
Position 3	NSA 2	36.8	33.5	 Noise from trees blowing in the wind (main noise source). Noise from vehicle activity in the distance. Noise from animal rustling the bushes. Noise from crickets.
Commending a	at 19:01 on 16 F	ebruary	2016 (E	arly evening)
Position 4	NSA 18	33.8	30.7	 Noise from running water (main noise source). Noise from trees blowing in breeze. Tapping noise from windmill. Noise from animals rustling the bushes.
Position 5	NSA 5	34.7	31.1	 Noise from trees blowing in breeze (main noise source). Noise from dogs barking in the distanced. Noise from plane flying over. Noise from crickets. Noise from 2x vehicles driving by on R354. Loud banging noise in the distance.
Position 6	NSA 2	31.2	28.2	 Noise from trees blowing in breeze (main noise source). Noise from vehicles driving by in the distance. Noise from crickets. Faint tapping noise from decoration on house.

Report No.	Page - Of - Pages		Amendments	Survey Date
26/7587	29	65	Version 4 as on 27/04/2016	23/03/2016

The measurements were taken by placing the noise meter on a tripod and ensuring that it was at least 1.2 m from ground level and 3.5 m from any large flat reflecting surface. All measurement periods were at least over 10 minutes, except where indicated. The noise meter was calibrated before and after the survey. At no time was the difference more than one decibel (If the difference is more than 1 decibel the meter is not calibrated properly and the measurement is discarded). The weighting used was on the A scale and the meter placed on impulse correction, which is the preferred method as per Section 5 of SANS 10103:2008. No tonal correction was added to the data. Measurements were taken during the day and night-time. The meter was fitted with a windscreen, which is supplied by the manufacturer. The screen is designed so as to reduce wind noise around the microphone and not bias the measurements.

The instrumentation that was used to conduct the study is as follows:

- Rion Precision Sound Level Meter (NL32) with 1/3 Octave Band Analyzer.
- Serial No. 00151075
- Microphone (UC-53A) Serial No. 307806
- Preamplifier (NH-21) Serial No. 13814

All equipment was calibrated by M & N Acoustic Services in November 2015. The sound level meter was calibrated before and after use with a sound level calibrator. Equipment complied with the specifications of Section 8.1 of SANS Code of Practice 10083:2004 Ed 5. Equipment complied with the specifications of Section 8.1 of SANS Code of Practice 10083:2004 Ed 5.

5. APPLICABLE LEGISLATION AND STANDARDS

South Africa has noise legislation or standards that could be applicable to the project. The final scoping report has identified that the applicable environmental legislation places a general onus on the developer to ensure that the environment is not affected negatively by the development.

The following legislation and standards have been used to aid the study and guide the decision making process with regards to noise pollution:

Report No.	Page - Of - Pages		Amendments	Survey Date
26/7587	30	65	Version 4 as on 27/04/2016	23/03/2016

National

- South Africa GNR.154 of January 1992: Noise control regulations in terms of section 25 of the Environment Conservation Act (ECA), 1989 (Act No. 73 of 1989).
- South Africa GNR.155 of 10 January 1992: Application of noise control regulations made under section 25 of the Environment Conservation Act, 1989 (Act No. 73 of 1989).

Provincial

 Provincial Government of the Western Cape – PN 200 (2013) Noise Control Regulations

Local

• No local legislation identified as applicable to the noise impact study.

National Standards

- South Africa SANS 10103:2008 Version 6 The measurement and rating of environmental noise with respect to annoyance and to speech communication.
- South Africa SANS 10210:2004 Edition 2.2 Calculating and predicting road traffic noise.
- South Africa SANS 10357:2004 Version 2.1 The calculation of sound propagation by the Concawe method.

5.1. National & Provincial Legislation

The South African Noise Control Regulations (National) describe a *disturbing noise* as **any** noise that exceeds the ambient noise by more than 7dB. This difference is usually measured at the complainant's location should a noise complaint arise. Therefore, if a new noise source is introduced into the environment, irrespective of the current noise levels, and the new source is louder than the existing ambient environmental noise by more than 7dB, the complainant will have a legitimate complaint. A noise *disturbance or nuisance* as defined in the national legislation means any sound which disturbs or impairs the convenience of any person. The Western Cape Noise Control Regulations are similar to the National Noise Control Regulations in that the definition of a disturbing noise also refers to **any** noise that exceeds the ambient noise by more than 7dB.

Report No.	Page - Of - Pages		Amendments	Survey Date
26/7587	31	65	Version 4 as on 27/04/2016	23/03/2016

The Western Cape Strategic Wind Initiative Document (May 2006) can be used for guidance. The Western Cape does not prescribe any <u>specific</u> noise limits for wind turbines other than to recommend a setback distance of 400m from residences (including rural dwellings). It is recommended that a setback distance of 500m be used for this project. This is based on this authors experience on similar projects. **The closest turbine to the occupied NSA's is approximately 1180m from NSA 1.**

The Western Cape Noise Control Regulations define a disturbing noise as:

a noise, excluding the unamplified human voice, which:

a) exceeds the rating level by 7 dBA;

b) exceeds the residual noise level where the residual noise level is higher than the rating level;

c) exceeds the residual noise level by 3 dBA where the residual noise level is lower than the rating level; or

d) in the case of a low-frequency noise, exceeds the level specified in Annex B of SANS 10103.

5.2. National Standards

The most applicable standard for planning purposes used in this study is SANS 10103:2008 which provides typical rating levels for noise in various types of districts, as described in Table 6 below. Ideally, in such areas one does not want to experience any anthropogenic noise pollution.

	Equivalent Continuous Rating Level, LAeq,T for Noise						
Type of District	Ou	tdoors (dB((A))	Indoors, with open windows (dB(A))			
	Day- night	Daytime	Night- time	Day- night	Daytime	Night- time	
Rural Districts	45	45	35	35	35	25	
Suburban districts with little road traffic	50	50	40	40	40	30	
Urban districts	55	55	45	45	45	35	
Urban districts with one or more of the following: Workshops; business premises and main roads	60	60	50	50	50	40	
Central business districts	65	65	55	55	55	45	

Table 6 - Typical rating levels for noise in various types of districts

Report No.	Page - Of - Pages		Amendments	Survey Date
26/7587	32	65	Version 4 as on 27/04/2016	23/03/2016

	Equivalent Continuous Rating Level, LAeq,T for Noise					
Type of District	Outdoors (dB(A)) Day- night Daytime Night- time			Indoors, with open windows (dB(A))		
				Day- night	Daytime	Night- time
Industrial districts	70	70	60	60	60	50

SANS 10103:2008 defines Daytime as 06:00 to 22:00 hours and night time as 22:00 to 06:00 hours. The rating levels in the table above indicate that in rural districts the ambient noise should not exceed the **guideline** 35 dB(A) (outdoors) and 25 dB (A) (indoors) at night and 45 dB(A) (outdoors) and 35 dB(A) (indoors) during the day. The day / night (24hour) rating limit is 45 dB(A) (outdoors) and 35 dB(A) (indoors). These levels can thus be seen as the maximum target levels for any noise pollution sources. If the current ambient (residual) noise exceeds the rating limit, then actual ambient (residual) limit will be used when a noise complaint arises in terms of the Environment Conservation Act - Noise Control Regulations and the Western Cape Noise Control Regulations.

SANS 10103: 2004 also provides a guideline for expected community responses to excess environmental noise <u>above</u> the ambient (residual) noise. These are reflected in the table below.

Table 7 - Categories of environmental community / group response (SANS
10103:2008)	

EXCESS Lr	ESTIMATED COMMUNITY/GROUP RESPONSE				ESTIMATED COMMUNITY/GROUP RESPONSE		
dB (A)	CATEGORY	DESCRIPTION					
0 - 10	Little	Sporadic complaints					
5 - 15	Medium	Widespread complaints					
10 - 20	Strong	Threats of community / group action					
> 15	Very Strong	Vigorous community / group action					

5.3. International Standards

There are various international criteria levels for ambient sound from wind turbines. These are listed below:

- New Zealand 40dB(A)
- Denmark 42dB(A) (dwellings in open country)

Report No.	Page - (Of - Pages	Amendments	Survey Date
26/7587	33	65	Version 4 as on 27/04/2016	23/03/2016

• United Kingdom (L_{A90}) 35 - 40dB(A)

Australia has set the following limits that wind turbine noise should not exceed:

- 35dB(A) at relevant receivers in localities which are primarily intended for rural living, or
- 40dB(A) at relevant receivers in localities in other zones, or the background noise (*LA90*) by more than 5dB(A)

Germany has set the following standards

- Purely residential areas with no commercial developments 50 dBA (Day) and 35 dBA (Night)
- Areas with hospitals, health resorts, etc. 45 dBA (Day) 35 dBA (Night)

The rationale behind the criteria levels is that the design limit should be 5 dB below the ambient (residual) limit. This corresponds well with the South African guideline limit of 45 dB(A) (day/night limit) for rural districts.

Report No.	Page - (Of - Pages	Amendments	Survey Date
26/7587	34	65	Version 4 as on 27/04/2016	23/03/2016

6. IMPACTS DURING THE CONSTRUCTION PHASE

6.1. Potential Construction Noise Sources (General Equipment and Vehicles)

Noise pollution will be generated during the construction phase as well as the operational phase and decommissioning phase. The decommissioning noise impacts will be the same as for the construction phase.

The construction phase could generate noise during different activities such as:

- Site preparation and earthworks to gain access using bulldozers, trucks etc.
- Foundation construction using mobile equipment, cranes, concrete mixing and pile driving equipment (if needed).
- Limited blasting.
- Heavy vehicle used to deliver construction material and the turbines.
- Operating of a batch plant

The number and frequency of use of the various types of vehicles has not been determined but an indication of the type and level of noise generated is presented below.

Туре	Description	Typical Sound Power Level (dB)
Passenger Vehicle	Passenger vehicle or light delivery vehicle such as bakkies	85
Trucks	10 ton capacity	95
Cranes	Overhead and mobile	109
Mobile Construction Vehicles	Front end loaders	100
Mobile Construction Vehicles	Excavators	108
Mobile Construction Vehicles	Bull Dozer	111
Mobile Construction Vehicles	Dump Truck	107
Mobile Construction Vehicles	Grader	98
Mobile Construction Vehicles	Water Tanker	95
Stationary Construction Equipment	Concrete mixers	110
Compressor	Air compressor	100
Compactor	Vibratory compactor	110

Table 8 – Typical types of vehicles and equipment to be used on site (Construction Phase)

Report No.	Page - (Of - Pages	Amendments	Survey Date
26/7587	35	65	Version 4 as on 27/04/2016	23/03/2016

Туре	Description	Typical Sound Power Level (dB)
Pile Driver	Piling machine (mobile)	115
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		

Source: GCDA 2006

6.2. Predicted Noise Levels for the Construction Phase

The construction noise at the various sites will have a local impact. Safetech has conducted noise tests at various construction sites in South Africa and have recorded the noise emissions of various pieces of construction equipment. The results are presented in the Table below.

Table 9 - Typical Construction Noise

Type of Equipment	L _{Aeq,T} dB(A)
CAT 320D Excavator measured at approximately 50 m.	67.9
Mobile crane measured at approximately 70 m	69.6
Drilling rig measured at approximately 70 m	72.6

The impact of the construction noise that can be expected at the proposed site can be extrapolated from Table 8. As an example, if a number of pieces of equipment are used simultaneously, the noise levels can be added logarithmically and then calculated at various distances from the site to determine the distance at which the ambient level will be reached.

Table 10 - Combining Different Construction Noise Sources – High Impacts (Equipment with the highest sound power emissions i.e. worst case)

Description	Typical Sound Power Level (dB)
Overhead and mobile cranes	109
Front end loaders	100
Excavators	108
Bull Dozer	111
Piling machine (mobile)	115
Total*	117

*The total is a logarithmic total and not a sum of the values.

Report No.	Page - 0	Of - Pages	Amendments	Survey Date
26/7587	36	65	Version 4 as on 27/04/2016	23/03/2016

Table 11 - Combining Different Construction Noise Sources – Low Impacts - Equipment with the lowest sound power emissions

Description	Typical Sound Power Level (dB)
Front end loaders	100
Excavators	108
Truck	95
Total	111

The information in the tables above can now be used to calculate the attenuation by distance. Noise will also be attenuated by topography and atmospheric conditions such as temperature, humidity, wind speed and direction etc. but this is ignored for this purpose. Therefore, the distance calculated below would be representative of maximum distances to reach ambient noise levels.

The table below gives an illustration of attenuation by distance from a noise of 117dB measured from the source.

Distance from noise source (metres)	Sound Pressure Level dB(A)
10	89
20	83
40	77
80	71
160	65
320	59
640	53
1280	47

Table 12 – Attenuation by distance for the construction phase (worst case)

What can be inferred from the above table is that if the ambient noise level is at 45dB(A) during the day, the construction noise will be similar to the ambient level at approximately 1280m from the noise source, if the noise characteristics are similar. Beyond this distance, the noise level will be below the ambient noise and will therefore have little impact. The above only applies to the construction noise and light wind conditions. High wind conditions will have a masking effect on the construction

Report No.	Page - Of - Pages		Amendments	Survey Date
26/7587	37	65	Version 4 as on 27/04/2016	23/03/2016

noise. In all likelihood, the construction noise will have little impact on the surrounding community as it will most likely occur during the day when the ambient noise is louder and there are unstable atmospheric conditions. Furthermore, none of the turbines are located closer than 1200m from the receptors. The construction of the access roads is a linear activity and will be of a short duration at each receptor. The construction of the roads is thus not significant as it is conducted mostly with mobile plant and equipment.

6.3. Significance Statement – Construction Activities

The EOH

EOH Coastal & Environmental Services

impact rating methodology as described in the Final Scoping Report is used to determine the construction significance ratings.

Construction Impact Mitigation Measures

- Construction operations should occur during daylight hours as far as possible.
- No construction piling should occur at night where possible. Piling should only occur during the day to take advantage of unstable atmospheric conditions.
- Construction staff should receive "noise sensitivity" training such as switching off vehicles when not in use, location of NSA's etc.
- One ambient noise survey should be conducted at the noise sensitive receptors during the construction phase

Nature of impact	Temporal Scale	Spatial Scale	Severity of Impact	Risk or Likelihood	Overall Significance			
	WITHOUT MITIGATION							
Impact of the construction noise on the surrounding environment	Short Term (1)	Local (1)	Moderate (2)	Probable (3)	Low (7)			
WITH MITIGATION								
Impact of the construction noise on the surrounding environment	Short Term (1)	Local (1)	Moderate (2)	Probable (3)	Low (7)			

Table 13 – Construction Impact Significance Statement Table

Report No.	Page - Of - Pages		Amendments	Survey Date	
26/7587	38	65	Version 4 as on 27/04/2016	23/03/2016	

7. IMPACTS DURING THE OPERATIONAL PHASE

The potential effects of low frequency noise on humans include sleep disturbance, nausea, vertigo etc. These effects are unlikely to impact upon residents due to the distance between the turbines and the nearest communities. Sources of low frequency noise also include wind noise and vehicular traffic, which are all sources that currently also impact on the receptors.

7.1. Predicted noise levels for the Wind Turbines Generators (Brandvalley)

The tables and figures below indicate the noise generated by the turbines at wind speeds from 3m/s to 12m/s. The predicted noise levels in the Table 14 and 15 are <u>ONLY</u> the noise generated by the turbines and do not take any masking effect of the ambient noise into account. The wind speeds where the night time SANS 10103:2008 limit of 35dB(A) is exceeded is indicated in red font in Tables 14 and 15.

SANS Night L	S10103:2008 imit = 35dB(A)	Vestas V117	Vestas V126	Acciona	Siemens	Vestas V126
Name	Wind speed	From WTGs	From WTGs	From WTGs	From WTGs	WTG 52
	[m/s]	[dB(A)]	[dB(A)]	[dB(A)]	[dB(A)]	& 53 Removed
NSA1	3	23.2	22.2	37.2	22.2	21.6
	4	27.5	26.5	37.0	26.5	25.5
	5	32.0	31.7	36.8	31.7	29.9
	6	35.5	35.0	36.6	35.0	33.6
	7	36.4	35.8	36.4	35.8	34.3
	8	36.8	34.8	36.0	34.8	34.4
	9	36.8	35.8	35.9	35.8	34.4
	10	36.8	35.8	36.2	35.8	34.4
	11	36.8	35.8	36.5	35.8	34.4
	12	36.8	35.8	36.8	35.8	34.4
NSA 2	3	12.7	11.7	26.9	11.7	13.8
	4	17.0	16.0	26.7	16.0	17.7
	5	21.5	21.2	26.5	21.2	22.1
	6	25.0	25.8	26.3	25.8	25.8
	7	25.9	25.3	26.1	25.3	26.5
	8	26.3	25.4	25.7	25.4	26.6
	9	26.3	25.3	25.6	25.3	26.6
	10	26.3	25.3	25.9	25.3	26.6
	11	26.3	25.3	26.2	25.3	26.6
	12	26.3	25.3	26.5	25.3	26.6
NSA 3	3	8.8	7.8	23.0	7.8	9.9
	4	13.1	12.1	22.8	12.1	13.8
	5	17.6	17.3	22.6	17.3	18.2

Table 14 Dradiated	naina lavala at th	ANCA'A during the	anarational phase
Table 14 - Predicied	noise ieveis al li	ie insa s durina trie	operational phase

Report No.	Page - Of - Pages		Amendments	Survey Date
26/7587	39	65	Version 4 as on 27/04/2016	23/03/2016

SANS Night L	610103:2008 imit = 35dB(A)	Vestas V117	Vestas V126	Acciona	Siemens	Vestas V126
Name	Wind speed	From WTGs	From WTGs	From WTGs	From WTGs	WTG 52
	[m/s]	[dB(A)]	[dB(A)]	[dB(A)]	[dB(A)]	& 53 Removed
	6	21.1	22.8	22.4	22.8	21.9
	7	22.0	21.4	22.2	21.4	22.6
	8	22.4	22.3	21.8	22.3	22.7
	9	22.4	21.4	21.7	21.4	22.7
	10	22.4	21.4	22.0	21.4	22.7
	11	22.4	21.4	22.3	21.4	22.7
	12	22.4	21.4	22.6	21.4	22.7
NSA 4	3	18.4	17.3	32.4	17.3	19.6
	4	22.7	21.6	32.2	21.6	23.5
	5	27.2	26.8	32.0	26.8	27.9
	6	30.7	30.3	31.8	30.3	31.6
	7	31.6	30.9	31.6	30.9	32.3
	8	32.0	30.1	31.2	30.1	32.4
	9	32.0	30.9	31.1	30.9	32.4
	10	32.0	30.9	31.4	30.9	32.4
	11	32.0	30.9	31.7	30.9	32.4
	12	32.0	30.9	32.0	30.9	32.4
NSA 5	3	0.0	0.0	0.0	0.0	0.0
	4	0.0	0.0	0.0	0.0	0.0
	5	0.0	0.0	0.0	0.0	0.0
	6	0.0	10.5	0.0	10.5	0.0
	7	0.0	0.0	0.0	0.0	0.0
	8	0.0	10.7	0.0	10.7	0.0
	9	0.0	0.0	0.0	0.0	0.0
	10	0.0	0.0	0.0	0.0	0.0
	11	0.0	0.0	0.0	0.0	0.0
	12	0.0	0.0	0.0	0.0	0.0
NSA 6	3	0.0	0.0	12.9	0.0	0.0
	4	2.9	1.9	12.7	1.9	3.6
	5	7.4	7.1	12.5	7.1	8.0
	6	10.9	16.1	12.3	16.1	11.7
	7	11.8	11.2	12.1	11.2	12.4
	8	12.2	15.9	11.7	15.9	12.5
	9	12.2	11.2	11.6	11.2	12.5
	10	12.2	11.2	11.9	11.2	12.5
	11	12.2	11.2	12.2	11.2	12.5
	12	12.2	11.2	12.5	11.2	12.5
NSA 7	3	0.0	0.0	0.0	0.0	0.0
	4	0.0	0.0	0.0	0.0	0.0
	5	0.0	0.0	0.0	0.0	0.0
	6	0.0	10.9	0.0	10.9	0.0
	7	0.0	0.0	0.0	0.0	0.0
	8	0.0	11.1	0.0	11.1	0.0
	9	0.0	0.0	0.0	0.0	0.0
	10	0.0	0.0	0.0	0.0	0.0
	11	0.0	0.0	0.0	0.0	0.0

Report No.	Page - Of - Pages		Amendments	Survey Date
26/7587	40	65	Version 4 as on 27/04/2016	23/03/2016

SANS Night Li	310103:2008 imit = 35dB(A)	Vestas V117	Vestas V126	Acciona	Siemens	Vestas V126
Name	Wind speed	From WTGs	From WTGs	From WTGs	From WTGs	WTG 52
	[m/s]	[dB(A)]	[dB(A)]	[dB(A)]	[dB(A)]	& 53 Removed
	12	0.0	0.0	0.0	0.0	0.0
NSA 8	3	0.0	0.0	6.9	0.0	0.0
	4	0.0	0.0	6.7	0.0	0.0
	5	1.4	1.1	6.5	1.1	2.1
	6	4.9	14.4	6.3	14.4	5.8
	7	5.8	5.2	6.1	5.2	6.5
	8	6.2	14.3	5.7	14.3	6.6
	9	6.2	5.2	5.6	5.2	6.6
	10	6.2	5.2	5.9	5.2	6.6
	11	6.2	5.2	6.2	5.2	6.6
	12	6.2	5.2	6.5	5.2	6.6
NSA 9	3	0.0	0.0	0.0	0.0	0.0
	4	0.0	0.0	0.0	0.0	0.0
	5	0.0	0.0	0.0	0.0	0.0
	6	0.0	7.2	0.0	7.2	0.0
	7	0.0	0.0	0.0	0.0	0.0
	8	0.0	7.5	0.0	7.5	0.0
	9	0.0	0.0	0.0	0.0	0.0
	10	0.0	0.0	0.0	0.0	0.0
	11	0.0	0.0	0.0	0.0	0.0
	12	0.0	0.0	0.0	0.0	0.0
NSA 10	3	0.0	0.0	0.0	0.0	0.0
	4	0.0	0.0	0.0	0.0	0.0
	5	0.0	0.0	0.0	0.0	0.0
	6	0.0	8.5	0.0	8.5	0.0
	7	0.0	0.0	0.0	0.0	0.0
	8	0.0	8.8	0.0	8.8	0.0
	9	0.0	0.0	0.0	0.0	0.0
	10	0.0	0.0	0.0	0.0	0.0
	10	0.0	0.0	0.0	0.0	0.0
NSA 11	12	0.0	0.0	0.0	0.0	0.0
NGA TI	3	3.0	2.0	10.0	2.0	4.9
	5	12.4	0.9	17.0	0.9	0.0
	6	12.4	12.1	17.0	12.1	16.0
	7	16.8	16.2	17.4	16.2	17.6
	8	17.2	19.2	16.8	10.2	17.0
	9	17.2	16.2	16.7	16.2	17.7
	10	17.2	16.2	17.0	16.2	17.7
	11	17.2	16.2	17.3	16.2	17.7
	12	17.2	16.2	17.6	16.2	17.7
NSA 12	3	1.1	0.1	15.4	0.1	2.4
	4	5.4	4.4	15.2	4.4	6.3
	5	9.9	9.6	15.0	9.6	10.7
	6	13.4	18.3	14.8	18.3	14.4

Report No.	Page - Of - Pages		Amendments	Survey Date
26/7587	41	65	Version 4 as on 27/04/2016	23/03/2016

SANS Night Li	310103:2008 imit = 35dB(A)	Vestas V117	Vestas V126	Acciona	Siemens	Vestas V126
Name	Wind speed	From WTGs	From WTGs	From WTGs	From WTGs	WTG 52
	[m/s]	[dB(A)]	[dB(A)]	[dB(A)]	[dB(A)]	& 53 Removed
	7	14.3	13.7	14.6	13.7	15.1
	8	14.7	18.0	14.2	18.0	15.2
	9	14.7	13.7	14.1	13.7	15.2
	10	14.7	13.7	14.4	13.7	15.2
	11	14.7	13.7	14.7	13.7	15.2
	12	14.7	13.7	15.0	13.7	15.2
NSA 13	3	4.7	3.7	19.0	3.7	6.0
	4	9.0	8.0	18.8	8.0	9.9
	5	13.5	13.2	18.6	13.2	14.3
	6	17.0	20.4	18.4	20.4	18.0
	7	17.9	17.3	18.2	17.3	18.7
	8	18.3	20.0	17.8	20.0	18.8
	9	18.3	17.3	17.7	17.3	18.8
	10	18.3	17.3	18.0	17.3	18.8
	11	18.3	17.3	18.3	17.3	18.8
	12	18.3	17.3	18.6	17.3	18.8
NSA 14	3	10.0	9.0	24.4	9.0	11.3
	4	14.3	13.3	24.2	13.3	15.2
	5	18.8	18.5	24.0	18.5	19.6
	6	22.3	24.5	23.8	24.5	23.3
	7	23.2	22.6	23.6	22.6	24.0
	8	23.6	24.0	23.2	24.0	24.1
	9	23.6	22.6	23.1	22.6	24.1
	10	23.6	22.6	23.4	22.6	24.1
	11	23.6	22.6	23.7	22.6	24.1
	12	23.6	22.6	24.0	22.6	24.1
NSA 15	3	2.3	1.3	16.6	1.3	3.2
	4	6.6	5.6	16.4	5.6	7.1
	5	11.1	10.8	16.2	10.8	11.5
	6	14.6	18.8	16.0	18.8	15.2
	7	15.5	14.9	15.8	14.9	15.9
	8	15.9	18.4	15.4	18.4	16.0
	9	15.9	14.9	15.3	14.9	16.0
	10	15.9	14.9	15.6	14.9	16.0
	11	15.9	14.9	15.9	14.9	16.0
	12	15.9	14.9	16.2	14.9	16.0
NSA 16	3	0.0	0.0	2.9	0.0	0.0
	4	0.0	0.0	2.7	0.0	0.0
	5	0.0	0.0	2.5	0.0	0.0
	6	1.0	12.0	2.3	12.0	1.9
	7	1.9	1.2	2.1	1.2	2.6
	8	2.3	12.0	1.7	12.0	2.7
	9	2.3	1.2	1.6	1.2	2.7
	10	2.3	1.2	1.9	1.2	2.7
	11	2.3	1.2	2.2	1.2	2.7
	12	2.3	1.2	2.5	1.2	2.7

Report No.	Page - Of - Pages		Amendments	Survey Date
26/7587	42	65	Version 4 as on 27/04/2016	23/03/2016

SANS Night Li	310103:2008 imit = 35dB(A)	Vestas V117	Vestas V126	Acciona	Siemens	Vestas V126
Name	Wind speed	From WTGs	From WTGs	From WTGs	From WTGs	WTG 52
	[m/s]	[dB(A)]	[dB(A)]	[dB(A)]	[dB(A)]	& 53 Removed
NSA 17	3	0.0	0.0	12.7	0.0	0.0
	4	2.7	1.7	12.5	1.7	3.6
	5	7.2	6.9	12.3	6.9	8.0
	6	10.7	16.6	12.1	16.6	11.7
	7	11.6	11.0	11.9	11.0	12.4
	8	12.0	16.4	11.5	16.4	12.5
	9	12.0	11.0	11.4	11.0	12.5
	10	12.0	11.0	11.7	11.0	12.5
	11	12.0	11.0	12.0	11.0	12.5
	12	12.0	11.0	12.3	11.0	12.5
NSA 18	3	0.8	0.0	15.2	0.0	2.1
	4	5.1	4.1	15.0	4.1	6.0
	5	9.6	9.3	14.8	9.3	10.4
	6	13.1	18.8	14.6	18.8	14.1
	7	14.0	13.4	14.4	13.4	14.8
	8	14.4	18.5	14.0	18.5	14.9
	9	14.4	13.4	13.9	13.4	14.9
	10	14.4	13.4	14.2	13.4	14.9
	11	14.4	13.4	14.5	13.4	14.9
	12	14.4	13.4	14.8	13.4	14.9
NSA 19	3	0.0	0.0	7.2	0.0	0.0
	4	0.0	0.0	7.0	0.0	0.0
	5	1.7	1.4	6.8	1.4	2.5
	6	5.2	14.2	6.6	14.2	6.2
	7	6.1	5.5	6.4	5.5	6.9
	8	6.5	14.1	6.0	14.1	7.0
	9	6.5	5.5	5.9	5.5	7.0
	10	6.5	5.5	6.2	5.5	7.0
	11	6.5	5.5	6.5	5.5	7.0
	12	6.5	5.5	6.8	5.5	7.0
NSA 20	3	0.0	0.0	0.0	0.0	0.0
	4	0.0	0.0	0.0	0.0	0.0
	5	0.0	0.0	0.0	0.0	0.0
	6	0.0	6.7	0.0	6.7	0.0
	7	0.0	0.0	0.0	0.0	0.0
	8	0.0	7.0	0.0	7.0	0.0
	9	0.0	0.0	0.0	0.0	0.0
	10	0.0	0.0	0.0	0.0	0.0
	11	0.0	0.0	0.0	0.0	0.0
	12	0.0	0.0	0.0	0.0	0.0
NSA 21	3	0.0	0.0	0.0	0.0	0.0
	4	0.0	0.0	0.0	0.0	0.0
	5	0.0	0.0	0.0	0.0	0.0
	6	0.0	6.8	0.0	6.8	0.0
	7	0.0	0.0	0.0	0.0	0.0
	8	0.0	7.1	0.0	7.1	0.0

Report No.	Page - Of - Pages		Amendments	Survey Date
26/7587	43	65	Version 4 as on 27/04/2016	23/03/2016

SANS Night Li	310103:2008 imit = 35dB(A)	Vestas V117	Vestas V126	Acciona	Siemens	Vestas V126
Name	Wind speed	From WTGs	From WTGs	From WTGs	From WTGs	WTG 52
	[m/s]	[dB(A)]	[dB(A)]	[dB(A)]	[dB(A)]	& 53 Removed
	9	0.0	0.0	0.0	0.0	0.0
	10	0.0	0.0	0.0	0.0	0.0
	11	0.0	0.0	0.0	0.0	0.0
	12	0.0	0.0	0.0	0.0	0.0
NSA 22	3	10.0	9.0	24.2	9.0	11.3
	4	14.3	13.3	24.0	13.3	15.2
	5	18.8	18.5	23.8	18.5	19.6
	6	22.3	24.5	23.6	24.5	23.3
	7	23.2	22.6	23.4	22.6	24.0
	8	23.6	24.0	23.0	24.0	24.1
	9	23.6	22.6	22.9	22.6	24.1
	10	23.6	22.6	23.2	22.6	24.1
	11	23.6	22.6	23.5	22.6	24.1
	12	23.6	22.6	23.8	22.6	24.1
NSA 23	3	15.4	14.4	29.5	14.4	16.7
	4	19.7	18.7	29.3	18.7	20.6
	5	24.2	23.9	29.1	23.9	25.0
	6	27.7	28.4	28.9	28.4	28.7
	7	28.6	28.0	28.7	28.0	29.4
	8	29.0	27.9	28.3	27.9	29.5
	9	29.0	28.0	28.2	28.0	29.5
	10	29.0	28.0	28.5	28.0	29.5
	11	29.0	28.0	28.8	28.0	29.5
	12	29.0	28.0	29.1	28.0	29.5
NSA 24	3	0.0	0.0	2.5	0.0	0.0
	4	0.0	0.0	2.3	0.0	0.0
	5	0.0	0.0	2.1	0.0	0.0
	6	0.6	12.5	1.9	12.5	1.6
	7	1.5	0.9	1.7	0.9	2.3
	8	1.9	12.6	1.3	12.6	2.4
	9	1.9	0.9	1.2	0.9	2.4
	10	1.9	0.9	1.5	0.9	2.4
	11	1.9	0.9	1.8	0.9	2.4
	12	1.9	0.9	2.1	0.9	2.4
NSA 25	3	0.0	0.0	9.0	0.0	0.0
	4	0.0	0.0	8.8	0.0	0.0
	5	3.5	3.2	8.6	3.2	4.2
	6	7.0	15.1	8.4	15.1	7.9
	7	7.9	7.3	8.2	7.3	8.6
	8	8.3	15.0	7.8	15.0	8.7
	9	8.3	7.3	7.7	7.3	8.7
	10	8.3	7.3	8.0	7.3	8.7
	11	8.3	7.3	8.3	7.3	8.7
	12	8.3	7.3	8.6	7.3	8.7
NSA 26	3	4.0	3.0	18.2	3.0	5.3
	4	8.3	7.3	18.0	7.3	9.2

Report No.	Page - Of - Pages		Amendments	Survey Date
26/7587	44	65	Version 4 as on 27/04/2016	23/03/2016

SANS Night L	S10103:2008 imit = 35dB(A)	Vestas V117	Vestas V126	Acciona	Siemens	Vestas V126
Name	Wind speed	From WTGs	From WTGs	From WTGs	From WTGs	WTG 52
	[m/s]	[dB(A)]	[dB(A)]	[dB(A)]	[dB(A)]	& 53 Removed
	5	12.8	12.5	17.8	12.5	13.6
	6	16.3	20.2	17.6	20.2	17.3
	7	17.2	16.6	17.4	16.6	18.0
	8	17.6	19.8	17.0	19.8	18.1
	9	17.6	16.6	16.9	16.6	18.1
	10	17.6	16.6	17.2	16.6	18.1
	11	17.6	16.6	17.5	16.6	18.1
	12	17.6	16.6	17.8	16.6	18.1
NSA 27	3	0.0	0.0	2.0	0.0	0.0
	4	0.0	0.0	1.8	0.0	0.0
	5	0.0	0.0	1.6	0.0	0.0
	6	0.0	11.9	1.4	11.9	0.9
	7	0.9	0.3	1.2	0.3	1.6
	8	1.3	12.0	0.8	12.0	1.7
	9	1.3	0.3	0.7	0.3	1.7
	10	1.3	0.3	1.0	0.3	1.7
	11	1.3	0.3	1.3	0.3	1.7
	12	1.3	0.3	1.6	0.3	1.7
NSA 28	3	20.7	19.7	34.8	19.7	22.0
	4	25.0	24.0	34.6	24.0	25.9
	5	29.5	29.2	34.4	29.2	30.3
	6	33.0	33.0	34.2	33.0	34.0
	7	33.9	33.3	34.0	33.3	34.7
	8	34.3	32.6	33.6	32.6	34.8
	9	34.3	33.3	33.5	33.3	34.8
	10	34.3	33.3	33.8	33.3	34.8
	11	34.3	33.3	34.1	33.3	34.8
	12	34.3	33.3	34.4	33.3	34.8
NSA 29	3	0.3	0.0	14.6	0.0	1.6
	4	4.6	3.6	14.4	3.6	5.5
	5	9.1	8.8	14.2	8.8	9.9
	6	12.6	18.1	14.0	18.1	13.6
	7	13.5	12.9	13.8	12.9	14.3
	8	13.9	17.8	13.4	17.8	14.4
	9	13.9	12.9	13.3	12.9	14.4
	10	13.9	12.9	13.6	12.9	14.4
	11	13.9	12.9	13.9	12.9	14.4
	12	13.9	12.9	14.2	12.9	14.4

Report No.	Page - Of - Pages		Amendments	Survey Date
26/7587	45	65	Version 4 as on 27/04/2016	23/03/2016

7.2. Predicted noise levels for the Wind Turbines Generators (Cumulative effect of Brandvalley & Rietkloof)

The cumulative effect of developing both the Brandvalley and Rietkloof Wind Energy Projects was modeled using the Vestas V117 turbine. The results are presented in Table 15 below.

Table 15 – Cumulative predicted noise levels at the NSA's during the operational phase (Brandvalley and Rietkloof)

		Cumulative Effect Brandvalley and Rietkloof
Name	Wind speed	From WTGs
	[m/s]	[dB(A)]
NSA1	3	23.3
	4	27.6
	5	32.1
	6	35.6
	7	36.5
	8	36.9
	9	36.9
	10	36.9
	11	36.9
	12	36.9
NSA 2	3	18.9
	4	23.2
	5	27.7
	6	31.2
	7	32.1
	8	32.5
	9	32.5
	10	32.5
	11	32.5
	12	32.5
NSA 3	3	16.2
	4	20.5
	5	25.0
	6	28.5
	7	29.4
	8	29.8
	9	29.8
	10	29.8
	11	29.8
	12	29.8
NSA 4	3	18.5
	4	22.8
	5	27.3
	6	30.8

Report No.	Page - Of - Pages		Amendments	Survey Date
26/7587	46	65	Version 4 as on 27/04/2016	23/03/2016

		Cumulative Effect Brandvalley and Rietkloof
Name	Wind speed	From WTGs
	[m/s]	[dB(A)]
	7	31.7
	8	32.1
	9	32.1
	10	32.1
	11	32.1
	12	32.1
NSA 5	3	9.0
	4	13.3
	5	17.8
	6	21.3
	7	22.2
	8	22.6
	9	22.6
	10	22.6
	11	22.6
	12	22.6
NSA 6	3	5.1
	4	9.4
	5	13.9
	6	17.4
	7	18.3
	8	18.7
	9	18.7
	10	18.7
	11	18.7
	12	18.7
NSA 7	3	13.7
_	4	18.0
	5	22.5
	6	26.0
	7	26.9
	8	27.3
	9	27.3
	10	27.3
	11	27.3
	12	27.3
NSA 8	3	20.0
	4	24.3
	5	28.8
	6	32.3
	7	33.2
	8	33.6
	9	33.6
	10	33.6
	11	33.6
	12	33.6
NSA 9	3	0.0
	4	0.0

Report No.	Page - Of - Pages		Amendments	Survey Date
26/7587	47	65	Version 4 as on 27/04/2016	23/03/2016

		Cumulative Effect Brandvalley and Rietkloof
Name	Wind speed	From WTGs
	[m/s]	[dB(A)]
	5	0.0
	6	1.7
	7	2.6
	8	3.0
	9	3.0
	10	3.0
	11	3.0
	12	3.0
NSA 10	3	0.0
	4	0.0
	5	0.0
	6	0.9
	7	1.8
	8	2.2
	9	2.2
	10	2.2
	11	2.2
	12	2.2
NSA 11	3	9.3
	4	13.6
	5	18.1
	6	21.6
	7	22.5
	8	22.9
	9	22.9
	10	22.9
	11	22.9
	12	22.9
NSA 12	3	18.8
	4	23.1
	5	27.6
	6	31.1
	7	32.0
	8	32.4
	9	32.4
	10	32.4
	11	32.4
	12	32.4
NSA 13	3	19.3
	4	23.6
	5	28.1
	6	31.6
	7	32.5
	8	32.9
	9	32.9
	10	32.9
	11	32.9
	12	32.9

Report No.	Page - Of - Pages		Amendments	Survey Date
26/7587	48	65	Version 4 as on 27/04/2016	23/03/2016

		Cumulative Effect Brandvalley and Rietkloof
Name	Wind speed	From WTGs
	[m/s]	[dB(A)]
NSA 14	3	20.7
	4	25.0
	5	29.5
	6	33.0
	7	33.9
	8	34.3
	9	34.3
	10	34.3
	11	34.3
	12	34.3
NSA 15	3	2.8
	4	7.1
	5	11.6
	6	15.1
	7	16.0
	8	16.4
	9	16.4
	10	16.4
	11	16.4
	12	16.4
NSA 16	3	0.0
	4	3.4
	5	7.9
	6	11.4
	7	12.3
	8	12.7
	9	12.7
	10	12.7
	11	12.7
	12	12.7
NSA 17	3	7.3
	4	11.6
	5	16.1
	6	19.6
	7	20.5
	8	20.9
	9	20.9
	10	20.9
	11	20.9
	12	20.9
NSA 18	3	21.4
	4	25.7
	5	30.2
	6	33.7
	7	34.6
	8	35.0
	9	35.0
	10	35.0

Report No.	Page - Of - Pages		Amendments	Survey Date
26/7587	49	65	Version 4 as on 27/04/2016	23/03/2016

		Cumulative Effect Brandvalley and Rietkloof
Name	Wind speed	From WTGs
	[m/s]	[dB(A)]
	11	35.0
	12	35.0
NSA 19	3	14.1
	4	18.4
	5	22.9
	6	26.4
	7	27.3
	8	27.7
	9	27.7
	10	27.7
	11	27.7
	12	27.7
NSA 20	3	0.0
	4	0.0
	5	2.1
	6	5.6
	7	6.5
	8	6.9
	9	6.9
	10	6.9
	11	6.9
	12	6.9
NSA 21	3	0.0
	4	0.0
	5	0.0
	6	3.0
	7	3.9
	8	4.3
	9	4.3
	10	4.3
	11	4.3
	12	4.3
NSA 22	3	10.0
	4	14.3
	5	18.8
	6	22.3
	7	23.2
	8	23.6
	9	23.6
	10	23.6
	11	23.6
	12	23.6
NSA 23	3	15.4
	4	19.7
	5	24.2
	6	27.7
	7	28.6
	8	29.0
L		

Report No.	Page - Of - Pages		Amendments	Survey Date
26/7587	50	65	Version 4 as on 27/04/2016	23/03/2016

		Cumulative Effect Brandvalley and Rietkloof
Name	Wind speed	From WTGs
	[m/s]	[dB(A)]
	9	29.0
	10	29.0
	11	29.0
	12	29.0
NSA 24	3	0.0
	4	0.0
	5	0.0
	6	0.6
	7	1.5
	8	1.9
	9	1.9
	10	1.9
	11	1.9
	12	1.9
NSA 25	3	0.0
	4	0.0
	5	3.5
	6	7.0
	7	7.9
	8	8.3
	9	8.3
	10	8.3
	11	8.3
	12	8.3
NSA 26	3	4.0
	4	8.3
	5	12.8
	6	16.3
	7	17.2
	8	17.6
	9	17.6
	10	17.6
	11	17.6
	12	17.6
NSA 27	3	0.0
	4	0.0
	5	0.0
	6	0.1
	7	1.0
	8	1.4
	9	1.4
	10	1.4
	11	1.4
	12	1.4
NSA 28	3	21.9
	4	26.2
	5	30.7
	6	34.2

Report No.	Page - Of - Pages		Amendments	Survey Date
26/7587	51	65	Version 4 as on 27/04/2016	23/03/2016

		Cumulative Effect Brandvalley and Rietkloof
Name	Wind speed	From WTGs
	[m/s]	[dB(A)]
	7	35.1
	8	35.5
	9	35.5
	10	35.5
	11	35.5
	12	35.5
NSA 29	3	0.4
	4	4.7
	5	9.2
	6	12.7
	7	13.6
	8	14.0
	9	14.0
	10	14.0
	11	14.0
	12	14.0

7.3. Discussion of predicted noise levels

7.3.1 All Brandvalley NSA's

The results above indicate that the $\underline{24 \text{ hour}}$ 45 dB(A) limit for **day/night** operations will not be exceeded at any of the noise sensitive areas.

The results above indicate that the 35 dB(A) limit for **night** operations will be exceeded at NSA 1 from 6m/s wind speed for the Vestas and Siemens turbines. The Acciona turbine will exceed the night limit from 3m/s. It is highly likely that the wind noise will provide a masking effect at NSA 1 as the rating limit is only exceeded at 6m/s. The WTG noise emissions are thus unlikely to impact the receptors at NSA 1.

Table 14 shows the modelling results in the last column when two turbines (WTG 52 & 53) are removed that are in close proximity to NSA 1. The results indicate that with the removal of these two turbines, the 35dB(A) night limit is not exceeded. The additional modelling was based on the Vestas V126 turbine.

7.3.2 Cumulative Effect (Brandvalley and Rietkloof)

The 35 dB(A) **night** guideline limit will be exceeded at NSA 18 and NSA 28 if both the Brandvalley and Rietkloof Wind Energy Farms are developed. It is highly likely

Report No.	Page - Of - Pages		Amendments	Survey Date
26/7587	52	65	Version 4 as on 27/04/2016	23/03/2016

that the wind noise will provide a masking effect at NSA 18 as the rating limit is only exceeded at 8m/s and 7m/s at NSA 28. The WTG noise emissions are thus unlikely to impact the receptors at NSA 18 and 28.

If a noise impact survey during operations indicates that a noise disturbance is present i.e. (the turbine noise exceeds the actual ambient (residual) noise by more than 7dB(A), then the turbines can be placed in a lower operational noise mode, when the surface wind speeds are low and the hub height wind speed has reached the cut-in speed (3m/s).

The cumulative impact table (Table 15) indicated that the night rating limit of 35dB(A) is also exceeded at NSA 1. These exceedances can be ignored as they are not due to the cumulative effect, but rather from the individual effect of the Brandvalley project.

7.2.3 Significance Statement Operational Phase

The EOH Coastal & Environmental Services impact rating methodology as described in the Final Scoping Report is used to determine the operational phase significance ratings.

Operational Phase Impact Mitigation Measures

- The noise impact from the wind turbine generators should be measured during the operational phase, to ensure that the impact is within the required legal limit.
- Wind turbine generators should be maintained to ensure the noise emissions are within the legal and design specifications.
- An ambient noise survey should be conducted at the noise sensitive receptors closest to the turbines during the operational phase

Nature of impact	Temporal Scale	Spatial Scale	Severity of Impact	Risk or Likelihood	Overall Significance		
	WITHOUT MITIGATION						
Impact of the operational noise on the surrounding environment	Short Term (1)	Local (1)	Moderate (2)	Probable (3)	Low (7)		
		WITH	MITIGATION				

Table 16 – Construction Impact Significance Statement Table

Report No.	Page - Of - Pages		Amendments	Survey Date
26/7587	53	65	Version 4 as on 27/04/2016	23/03/2016

Nature of	Temporal	Spatial	Severity of	Risk or	Overall
impact	Scale	Scale	Impact	Likelihood	Significance
Impact of the operational noise on the surrounding environment	Short Term (1)	Local (1)	Moderate (2)	Probable (3)	Low (7)

8. CONCLUSION AND RECOMMENDATIONS

8.1. Conclusion

The impact of the noise pollution that can be expected from the site during the construction and operational phase will largely depend on the climatic conditions at the site. The ambient (residual) noise increases as the wind speed increases. The above modeling does not take into account any masking effect of the wind at the receiver, therefore it is a worst case scenario with respect to noise pollution.

8.1.1 Construction Phase

There will be a low impact on the residents at the noise sensitive areas from the construction activities, especially if pile driving is to be done. This however will only occur if the underlying geological structure requires this.

- a) The area surrounding the construction sites will be affected for short periods of time in all directions, should numerous construction equipment be used simultaneously.
- b) The number of construction vehicles that will be used in the project will add to the existing ambient levels and will most likely cause a disturbing noise for a limited time. The exact number of construction vehicles is not known at present. The duration of impact will however be of short duration.

8.1.2 Operational Phase

The impacts from the operational phase are summarized as follows:

- a) The day/night time SANS 10103:2008 noise limit of 45dBA will be not be exceeded at any of the noise sensitive areas.
- b) The night time guideline noise limit of 35dBA will only be exceeded at NSA 1 (a maximum of 2.3dB, although this is unlikely due to the wind masking effect.

Report No.	Page - Of - Pages		Amendments	Survey Date
26/7587	54	65	Version 4 as on 27/04/2016	23/03/2016

c) If a complaint is received it should be evaluated against the actual ambient (residual) noise at the complainants location. If the increase is more than 7dB(A) above the ambient noise, a noise disturbance will be present in terms of the Environment Conservation Act – Noise Control Regulations and the Western Cape Noise Control Regulations. This is however unlikely due to the masking effect of the wind.

8.1.3 Decommissioning

The decommissioning noise impacts will be the same as for the construction phase.

8.2. Recommendations

The following is recommended:

- 8.2.1 Construction Activities
 - Construction operations should only occur during daylight hours as far as possible.
 - No construction piling should occur at night where possible. Piling should only occur during the day to take advantage of unstable atmospheric conditions.
 - Construction staff should receive "noise sensitivity" training.
 - An ambient noise survey should be conducted during the construction phase.
- 8.2.2 Operational Activities

The following general recommendation is made for the operational phase:

- Re-modelling of the noise impacts will need to conducted on the final layout (when the final turbine is selected should the layout change).
- The noise impact from the wind turbine generators should be measured during the operational phase, to ensure that the impact is within the required legal limits.

Based on the information that has been supplied to me, the turbine locations, access road alternatives, construction camp alternatives and substation alternatives can

Report No.	Page - (Of - Pages	Amendments	Survey Date
26/7587	55	65	Version 4 as on 27/04/2016	23/03/2016

proceed as the facility as a whole will result in low (-) noise impacts throughout the project lifecycle regardless of where infrastructure is located.

Dr Brett Williams

Report No.	Page - (Of - Pages	Amendments	Survey Date
26/7587	56	65	Version 4 as on 27/04/2016	23/03/2016

9. REFERENCES

	Australia Environmental Protect Agency - Wind farms - environmental noise
1)	guidelines. July 2009.
	Bell Acoustic Consulting. Low frequency noise and infrasound from
2)	Wind turbine generators: A literature review. George Bellhouse. June 2004.
3)	EOH Coastal & Environmental Services, March 2016: Proposed Brandvalley Wind Energy Facility, Northern and Western Cape Provinces, South Africa, Final Scoping Report. EOH CES, Cape Town
	DEFRA – United Kingdom A Review of Published Research on
4)	Low Frequency Noise and its Effects. Geoff Leventhall. 2003
	DTI - United Kingdom The measurement of low frequency noise at 3 UK Wind
5)	Farms. Hayes Mackenzie. 2006
6)	Gold Coast Desalination Alliance (GCDA) – 2006 Environmental Impact Assessment Queensland Desalination Plant (Chapter 11).
7)	International Finance Corporation – 2007 General EHS Guidelines: Environmental Noise.
8)	ISO 9613-2 - Acoustics – Attenuation of sound during propagation outdoors. Part 2 – General method of calculation.
9)	Renewable Energy Research Laboratory - Department of Mechanical and Industrial Engineering. University of Massachusetts at Amherst. A White Paper on Wind Turbine Acoustic Noise. Authors: Anthony L. Rogers, Ph.D. James F. Manwell, Ph.D. Sally Wright. Amended January 2006
10)	South Africa - GNR.154 of January 1992: Noise control regulations in terms of section 25 of the Environment Conservation Act (ECA), 1989 (Act No. 73 of 1989)
11)	South Africa - GNR.155 of 10 January 1992: Application of noise control regulations made under section 25 of the Environment Conservation Act, 1989 (Act No. 73 of 1989)
12)	South Africa - SANS 10210:2004 Edition 2.2 – Calculating and predicting road traffic noise
13)	South Africa - SANS 10357:2004 Version 2.1 - The calculation of sound propagation by the Concawe method
14)	South Africa - SANS 10103:2008 Version 6 - The measurement and rating of environmental noise with respect to annoyance and to speech communication.
15)	Swedish Environmental Protection Agency – Noise Annoyance from Wind Turbines – a Review. Authors: Eja Pedersen, Högskolan i Halmstad. August 2003.
	University of Groningen - 11 th International Meeting on Low Frequency Noise and
16)	Vibration and its Control. Do wind turbines produce significant low frequency sound
	levels? GP. van den Berg. September 2003.
17)	World Health Organization – Guidelines for Community Noise. 1999

Report No.	Page - (Of - Pages	Amendments	Survey Date
26/7587	57	65	Version 4 as on 27/04/2016	23/03/2016

APPENDICES

APPENDIX A - AIA Certificate

DEPARTMENT DEPART		
DEPARTMENT DEPARTMENT		(See
DEPARTMENT OF LABOUR		((()))
DEPARTMENT OF LABOUR		
Certificate This is to certify that SAFETRAIN CC TRADING AS TA SAFETECH has been approved as an APPROVED INSPECTION AUTHORITY In terms of the Occupational Health and Safety Act, 1993, for the monitoring of Physical Stress Factors and Chemical Stress Factors (including Lead and Asbestos, Ergonomic hazards and Ventilation Installation) and Biological Factors (including Lead and Asbestos, Ergonomic hazards and Ventilation Installation) and Biological Factors (including Lead and Asbestos, Ergonomic hazards and Ventilation Installation) and Biological Factors		DEPARTMENT
Certificate This is to certify that SAFETRAIN CC TRADING AS T\A SAFETECH has been approved as an APPROVED INSPECTION AUTHORITY In terms of the Occupational Health and Safety Act, 1993, for the monitoring of Physical Stress Factors and Chemical Stress Factors (including Lead and Asbestos, Ergonomic hazards and Ventilation Installation) and Biological Factors (including Lead and Asbestos, Ergonomic hazards and Ventilation Installation) and Biological Factors		
This is to certify that SAFETRAIN CC TRADING AS T\A SAFETECH has been approved as an APPROVED INSPECTION AUTHORITY In terms of the Occupational Health and Safety Act, 1993, for the monitoring of Physical Stress Factors and Chemical Stress Factors (including Lead and Asbestos, Ergonomic hazards and Ventilation Installation) and Biological Factors (including Lead and Asbestos, Ergonomic hazards and Ventilation Installation) and Biological Factors		Certíficate
SAFETRAIN CC TRADING AS TA SAFETECH has been approved as an APPROVED INSPECTION AUTHORITY n terms of the Occupational Health and Safety Act, 1993, for the monitoring of Physical Stress Factors and Chemical Stress Factors (including Lead and Asbestos, Ergonomic hazards and Ventilation Installation) and Biological Factors		This is to certify that
TRADING AS T\A SAFETECH has been approved as an APPROVED INSPECTION AUTHORITY n terms of the Occupational Health and Safety Act, 1993, for the monitoring of Physical Stress Factors and Chemical Stress Factors (including Lead and Asbestos, Ergonomic hazards and Ventilation Installation) and Biological Factors 209-08-27 ATE 1049 OH ERTIFICATE NUMBER		SAFETRAIN CC
has been approved as an APPROVED INSPECTION AUTHORITY In terms of the Occupational Health and Safety Act, 1993, for the monitoring of Physical Stress Factors and Chemical Stress Factors (including Lead and Asbestos, Ergonomic hazards and Ventilation Installation) and Biological Factors	TRA	DING AS T\A SAFETECH
APPROVED INSPECTION AUTHORITY In terms of the Occupational Health and Safety Act, 1993, for the monitoring of Physical Stress Factors and Chemical Stress Factors (including Lead and Asbestos, Ergonomic hazards and Ventilation Installation) and Biological Factors 209-08-27 ATE 1049 OH ERTIFICATE NUMBER	h	as been approved as an
n terms of the Occupational Health and Safety Act, 1993, for the monitoring of Physical Stress Factors and Chemical Stress Factors (including Lead and Asbestos, Ergonomic hazards and Ventilation Installation) and Biological Factors	APPI	ROVED INSPECTION AUTHORITY
Act, 1993, for the monitoring of Physical Stress Factors and Chemical Stress Factors (including Lead and Asbestos, Ergonomic hazards and Ventilation Installation) and Biological Factors 209-08-27 ATE 1049 OH ERTIFICATE NUMBER	in terms of th	he Occupational Health and Safety
for the monitoring of Physical Stress Factors and Chemical Stress Factors (including Lead and Asbestos, Ergonomic hazards and Ventilation Installation) and Biological Factors 209-08-27 ATE COMPONE ERTIFICATE NUMBER		Act, 1993,
Physical Stress Factors and Chemical Stress Factors (including Lead and Asbestos, Ergonomic hazards and Ventilation Installation) and Biological Factors		for the monitoring of
209-08-27 ATE CO49 OH ERTIFICATE NUMBER	Physical Stre (including Lea Ventilatio	ess Factors and Chemical Stress Factors ad and Asbestos, Ergonomic hazards and n Installation) and Biological Factors
ATE 1 049 OH ERTIFICATE NUMBER	2009-08-27	
ERTIFICATE NUMBER	DATE	-
ERTIFICATE NUMBER	CI 049 OH	
Chine and Chine	CERTIFICATE NUMBER	
HIEF INSPECTOR	CHIEF INSPECTOR	Re- 1

Report No.	Page - 0	Of - Pages	Amendments	Survey Date
26/7587	58	65	Version 4 as on 27/04/2016	23/03/2016

Sanas	MAND NACOUSTIC SERVICES (Pty) on two ten protocols (Pty) P.O. Doc 01712, Pierre with Ryneweld, 0045	
148 1302	Shop 13, Riyaandd Comer Shopping Centre, onr Fouche & Vite Provincial Sto, Paune van Ryneveld, 0045	
	Tel: 012 689 2007/8 • Fax: 688 211 4690 E-mail: calservice@mweb.co.ze	
CERTIFICATE	OF CALIBRATION	
CERTIFICATE NUMBER	2015-2431	
ORGANISATION	SAFETRAIN T/A SAFETECH	
ORGANISATION ADDRESS	P.O. BOX 27697, GREENACRES, 6057	
CALIBRATION OF	INTEGRATING SOUND LEVEL METER complete with %" MICROPHONES and %- OCTAVE/OCTAVE RTA CARE	
CALIBRATED BY	ELECTRICAL TESTS: C. DE CLERCQ %" MICROPHONE: W.S. SIBANYONI	
MANUFACTURERS	RION	
MODEL NUMBERS	NL-32, UC-53A and NX-22RT	
SERIAL NUMBERS	00151075, 319366 and 00150957 V2.2	
DATE OF CALIBRATION	24 NOVEMBER 2015	
RECOMMENDED DUE DATE	NOVEMBER 2016	
PAGE NUMBER	PAGE 1 OF 4	
The measurement results recorded subsequent accuracy will depend or different users. It is recommended th that the instrument remains within th The South African National Accrea Accreditation Cooperation (ILAC) M mutual recognition of technical test mare information or the anti-	(NAS). This Certificate may not be reproduced without the writte oustic Services. I in this certificate were correct at the time of calibration. The a factors such as care, handling, frequency of use and the amount of at re-calibration should be performed at an interval, which will ensure be desired limits and/or manufacturer's specifications. Bitation System (SANAS) is member of the International Laborator futual Recognition Arrangement (MRA). This arrangement allows for and calibration data by member accreditation bodies worldwide. For the calibration data by member accreditation bodies worldwide.	
Electrical Tests Calibrated b	5 Si Microphone Calibrated by	
CAREN	er l	
C. DE CLERCQ	WL WS. SIBANYONI	
	(CALIBRATION TECHNICIAN)	
Authorized Checked by:	Date of Issue:	

APPENDIX B – Calibration Certificate

Report No.	Page - (Of - Pages	Amendments	Survey Date
26/7587	59	65	Version 4 as on 27/04/2016	23/03/2016

APPENDIX C – Typical Sound Power and Sound Pressure Levels

32 GW Deafening 225 dB 12° Cannon @ 12ft in front and below 25 to 40 MW 195 dB Saturn Rocket 100 Kw 170 dB Turbojet engine with afterburner 10 Kw 160 dB Turbojet engine, 7000lb thrust 1 KW 150 dB 4 Propeller Airliner 100 W 140 dB Artillery Fire 100 W 140 dB Artillery Fire 100 W 140 dB Artillery Fire 100 W 1heshold of pain 130 dB Pneumatic Rock Drill 100 W 112° dB Small aircraft engine 130 dB 1.0 W 110 dB Close to train 100 dB Home lawn mower 10 mW Very Loud 100 dB Home lawn mower 100 dB Symphony or a Band 10 mW Very Loud 100 dB Home lawn mower 100 dB 85 dB regularly can cause ear damage 100 uW Loud 80 dB Police whistle 100 dB Average radio 10 uW Loud 80 dB Olice whistle 100 dB Normal conversational voice 10 uW Go dB Quiet stream 10 dB	Acoustic Power	Degree	Pressure Level	Source
25 to 40 MW 195 dB Saturn Rocket 100 Kw 170 dB Turbojet engine with afterburner 10 Kw 160 dB Turbojet engine, 7000b thrust 1 kW 150 dB 4 Propeller Airliner 100 W 140 dB Artillery Fire 10 W Threshold of pain 130 dB Pneumatic Rock Drill 10 W Threshold of pain 125 dB Small aircraft engine 10 W Threshold of pain 120 dB Thunder 100 W 120 dB Thunder 130 dB causes immediate ear damage 3 W 125 dB Small aircraft engine 100 dB 10 MW 100 dB Home lawn mower 100 dB 10 mW Very Loud 100 dB Home lawn mower 1 mW 90 dB Symphony or a Band 85 dB regularly can cause ear damage 100 uW Loud 80 dB Police whistle 10 uW Moderate 60 dB Normal conversational voice 10 nW Faint 40 dB Quiet conversation 1 nW So dB Very soft whisper 10 dB 10 nW Faint <td>32 GW</td> <td>Deafening</td> <td>225 dB</td> <td>12" Cannon @ 12ft in front and below</td>	32 GW	Deafening	225 dB	12" Cannon @ 12ft in front and below
100 Kw 170 dB Turbojet engine with afterburner 10 Kw 160 dB Turbojet engine, 7000lb thrust 1 kW 150 dB 4 Propeller Airliner 100 W 140 dB Artillery Fire 10 W Threshold of pain 130 dB Pneumatic Rock Drill 10 W Threshold of pain 130 dB Pneumatic Rock Drill 10 W Threshold of pain 125 dB Small aircraft engine 10 W 120 dB Thunder 100 dB 10 W 120 dB Thunder 100 Mw 110 dB Close to train 10 mW Very Loud 100 dB Home lawn mower 1 mW 90 dB Symphony or a Band 85 dB regularly can cause ear damage 10 uW Loud 80 dB Police whistle 10 uW Loud 80 dB Police whistle 10 uW Loud 80 dB Quiet stream 1 uW Moderate 60 dB Normal conversational voice 10 nW Faint 40 dB Quiet stream 10 nW Faint 20 dB Ticking of a watch 10 pW Very faint 20 dB Ticking of a watch	25 to 40 MW		195 dB	Saturn Rocket
10 KwImage: Section of the	100 Kw		170 dB	Turbojet engine with afterburner
1 kWImage: scalar s	10 Kw		160 dB	Turbojet engine, 7000lb thrust
100 W140 dBArtillery Fire10 WThreshold of pain130 dBPneumatic Rock Drill10 WThreshold of pain130 dBPneumatic Rock Drill3 W125 dBSmall aircraft engine1.0 W120 dBThunder100 Mw110 dBClose to train10 mWVery Loud100 dBHome lawn mower1 mW90 dBSymphony or a Band85 dB regularly can cause ear damage85 dB regularly can cause ear damage100 uWLoud80 dBPolice whistle10 uWLoud60 dBNormal voice1 uWModerate60 dBNormal 	1 kW		150 dB	4 Propeller Airliner
10 W Threshold of pain 130 dB Pneumatic Rock Drill 130 dB causes immediate ear damage 130 dB causes immediate ear damage 3 W 125 dB Small aircraft engine 1.0 W 120 dB Thunder 100 Mw 110 dB Close to train 10 mW Very Loud 100 dB Home lawn mower 1 mW 90 dB Symphony or a Band 85 dB regularly can cause ear damage 85 dB regularly can cause ear damage 100 uW Loud 80 dB Police whistle 10 uW Moderate 60 dB Normal conversational voice 10 nW Faint 40 dB Quiet stream 10 nW Faint 20 dB Very soft whisper 10 nW Faint 20 dB Very soft whisper 10 nW Faint 20 dB Very soft whisper 10 nW Faint 20 dB Ticking of a watch 10 nW Faint 20 dB Absolute silence	100 W		140 dB	Artillery Fire
3 W 125 dB Small aircraft engine 1.0 W 120 dB Thunder 100 Mw 110 dB Close to train 10 mW Very Loud 100 dB Home lawn mower 1 mW 90 dB Symphony or a Band 85 dB regularly can cause ear damage 100 uW Loud 80 dB Police whistle 10 uW Moderate 60 dB Normal conversational voice 10 nW Faint 40 dB Quiet stream 10 nW Faint 20 dB Very soft whisper 10 nW Faint 40 dB Quiet conversation 10 nW Faint 20 dB Ticking of a watch 10 pW Threshold of hearing 10 dB Louds 10 pW Threshold of hearing 0 dB Absolute silence	10 W	Threshold of pain	130 dB	Pneumatic Rock Drill
3 W $and the text of the text of te$				130 dB causes immediate
3 W125 dBSmall aircraft engine1.0 W120 dBThunder100 Mw110 dBClose to train10 mWVery Loud100 dBHome lawn mower1 mW90 dBSymphony or a Band1 mW90 dBSymphony or a Band10 uWLoud80 dBPolice whistle10 uWLoud80 dBPolice whistle10 uWModerate60 dBNormal conversational voice1 uWModerate50 dBQuiet stream10 nWFaint40 dBQuiet conversation1 nW20 dBTicking of a watch10 pWThreshold of hearing10 dB1 pW0 dBAbsolute silence				ear damage
1.0 W 120 dB Thunder 100 Mw 110 dB Close to train 10 mW Very Loud 100 dB Home lawn mower 1 mW 90 dB Symphony or a Band 10 mW Very Loud 100 dB Home lawn mower 1 mW 90 dB Symphony or a Band 85 dB regularly can cause ear damage 100 uW Loud 80 dB Police whistle 10 uW Loud 80 dB Normal conversational voice 10 uW Moderate 60 dB Normal conversational voice 100 nW Faint 40 dB Quiet stream 10 nW Faint 40 dB Very soft whisper 10 nW Faint 20 dB Ticking of a watch 10 nW Very faint 20 dB Ticking of a watch 10 pW Threshold of hearing 10 dB Ticking of a watch	3 W		125 dB	Small aircraft engine
100 MwImage: Second	1.0 W		120 dB	Thunder
10 mWVery Loud100 dBHome lawn mower1 mW90 dBSymphony or a Band1 mW90 dBSymphony or a Band1 mW85 dB regularly can cause ear damage100 uWLoud80 dBPolice whistle10 uWLoud80 dBPolice whistle10 uWModerate60 dBNormal conversational voice1 uWModerate60 dBQuiet stream10 nWFaint40 dBQuiet conversation1 nWFaint20 dBVery soft whisper10 nWFaint10 dBTicking of a watch10 pWVery faint20 dBAbsolute silence	100 Mw		110 dB	Close to train
10 mWVery Loud100 dBHome lawn mower1 mW90 dBSymphony or a Band1 mW90 dBSymphony or a Band85 dB regularly can cause ear damage85 dB regularly can cause ear damage100 uWLoud80 dBPolice whistle10 uWLoud80 dBPolice whistle10 uWModerate70 dBAverage radio1 uWModerate60 dBNormal conversational voice100 nW50 dBQuiet stream10 nWFaint40 dBQuiet conversation1 nW20 dBTicking of a watch100 pWVery faint20 dBTicking of a watch10 pWThreshold of hearing10 dBAbsolute silence				
1 mW90 dBSymphony or a Band1 mW85 dB regularly can cause ear damage85 dB regularly can cause ear damage100 uWLoud80 dBPolice whistle10 uWLoud70 dBAverage radio10 uW70 dBAverage radio60 dB1 uWModerate60 dBNormal conversational voice100 nW50 dBQuiet stream100 nWFaint40 dBQuiet conversation1 nWFaint40 dBVery soft whisper10 nWFaint20 dBTicking of a watch10 pWVery faint20 dBTicking of a watch10 pWThreshold of hearing10 dBAbsolute silence	10 mW	Very Loud	100 dB	Home lawn mower
100 uWLoud80 dBPolice whistle100 uWLoud80 dBPolice whistle10 uWLoud70 dBAverage radio10 uWModerate60 dBNormal conversational voice1 uWModerate60 dBQuiet stream100 nW50 dBQuiet stream10 nWFaint40 dBQuiet conversation1 nWSo dBVery soft whisper100 pWVery faint20 dBTicking of a watch10 pWThreshold of hearing10 dBAbsolute silence	1 mW		90 dB	Symphony or a Band
ImageImageImage100 uWLoud80 dBPolice whistle10 uW70 dBAverage radio10 uW70 dBAverage radio1 uWModerate60 dBNormal conversational voice100 nW50 dBQuiet stream100 nW50 dBQuiet stream10 nWFaint40 dBQuiet conversation1 nWFaint20 dBVery soft whisper100 pWVery faint20 dBTicking of a watch10 pWThreshold of hearing10 dB10 dB				85 dB regularly can cause
100 uWLoud80 dBPolice whistle10 uW70 dBAverage radio1 uWModerate60 dBNormal conversational voice1 uWModerate60 dBQuiet stream100 nW50 dBQuiet stream100 nWFaint40 dBQuiet conversation1 nW30 dBVery soft whisper100 pWVery faint20 dBTicking of a watch10 pWThreshold of hearing10 dBAbsolute silence				ear damage
10 uWImage: second	100 uW	Loud	80 dB	Police whistle
1 uWModerate60 dBNormal conversational voice100 nW50 dBQuiet stream100 nW50 dBQuiet stream10 nWFaint40 dBQuiet conversation1 nW30 dBVery soft whisper100 pWVery faint20 dBTicking of a watch10 pWThreshold of hearing10 dB10 dB1 pW0 dBAbsolute silence	10 uW		70 dB	Average radio
1 uWModerate60 dBNormal conversational voice100 nW50 dBQuiet stream10 nWFaint40 dBQuiet conversation1 nWFaint30 dBVery soft whisper10 pWVery faint20 dBTicking of a watch10 pWThreshold of hearing10 dBAbsolute silence				
100 nWImage: second	1 uW	Moderate	60 dB	Normal conversational voice
10 nWFaint40 dBQuiet conversation1 nW30 dBVery soft whisper1 nW20 dBTicking of a watch100 pWVery faint20 dB10 pWThreshold of hearing10 dB1 pW0 dBAbsolute silence	100 nW		50 dB	Quiet stream
10 nWFaint40 dBQuiet conversation1 nW30 dBVery soft whisper1 nW20 dBTicking of a watch100 pWVery faint20 dB10 pWThreshold of hearing10 dB1 pW0 dBAbsolute silence				
1 nW30 dBVery soft whisper1 nW30 dBVery soft whisper100 pWVery faint20 dBTicking of a watch10 pWThreshold of hearing10 dB10 dB1 pW0 dBAbsolute silence	10 nW	Faint	40 dB	Quiet conversation
100 pWVery faint20 dBTicking of a watch10 pWThreshold of hearing10 dB10 dB1 pWO dBAbsolute silence	1 nW		30 dB	Very soft whisper
100 pWVery faint20 dBTicking of a watch10 pWThreshold of hearing10 dB10 dB1 pWO dBAbsolute silence				
10 pWThreshold of hearing10 dB1 pW0 dBAbsolute silence	100 pW	Very faint	20 dB	Ticking of a watch
1 pW 0 dB Absolute silence	10 pW	Threshold of hearing	10 dB	
	1 pW		0 dB	Absolute silence

Sound Perception

Report No.	Page - (Of - Pages	Amendments	Survey Date
26/7587	60	65	Version 4 as on 27/04/2016	23/03/2016

Change in Sound Level	Perception
3 dB	Barely perceptible
5 dB	Clearly perceptible
10 dB	Twice as loud

Report No.	Page - 0	Of - Pages	Amendments	Survey Date
26/7587	61	65	Version 4 as on 27/04/2016	23/03/2016

APPENDIX D – Brandvalley Detailed Project Description

Brandvalley WEF will have an energy generation capacity (at point of grid feed-in) of

up to 140 megawatt (MW), and will include the following:

- Up to 70 potential wind turbine positions (between 1.5MW and 4MW in capacity each), each with a foundation of 25m in diameter and 4m in depth.
- The hub height of each turbine will be up to 120m, and the rotor diameter up to 140m.
- Permanent compacted hard-standing laydown areas for each wind turbine (70mx50m, total 24.5ha) will be required during construction and for on-going maintenance purposes.
- Electrical turbine transformers (690V/33kV) adjacent to each turbine (typical footprint of 2m x 2m, but can be up to 10m x 10m at certain locations) would be required to increase the voltage to 33kV.
- Underground 33kV cabling between turbines buried along access roads, where feasible.
- Internal access roads up to 12m wide, including structures for storm-water control would be required to access each turbine location and turning circles. Where possible, existing roads will be upgraded.
- 33kV overhead power lines linking groups of wind turbines to onsite 33/132kV substation(s). A number of potential electrical 33kV powerlines will be required in order to connect wind turbines to the preferred onsite substation. The layout of the 33kV powerlines will be informed by sensitive features identified. The facility will consist of both above and below ground 33kV electrical infrastructure depending on what will require the shortest distance and result in the least amount of impacts to the environment.
- A number of potential 33/132kV onsite substation location(s) will be assessed. The footprint of these 33/132kV substation(s) will need to be assessed in both this EIA and the Basic Assessment process for electrical infrastructure as the applicant will remain in control of the low voltage components of the 33/132kV substation (including isolators, control room, cabling, transformers etc.) (assessed in this EIA), whereas the high voltage components of this substation (assessed in BA) will likely be ceded to Eskom. The total footprint of this onsite substation will be approximately 200m x 200m. The exact coordinates of the low voltage components footprint (to be assessed in this EIA) and high voltage components footprint (to be assessed in the basic assessment process) will be provided in the EIA phase.
- Up to 4 x 120m tall wind measuring lattice masts strategically placed within the wind farm development footprint to collect data on wind conditions during the operational phase.
- Temporary infrastructure including a large construction camp (~10ha) and an on-site concrete batching plant (~1ha) for use during the construction phase.
- Borrow pits and quarries for locally sourcing aggregates required for construction (~4.5ha), in addition to onsite turbine excavations where required. All materials excavated will eventually be used on the compacting of the roads and hard-standing areas and no material will be sold to any third parties. The number and size of the borrow pits depends on suitability of the subsurface soils and the requirement for granular material for access road construction and other earthworks. Alternative borrow pit locations will be assessed in a separate BA process.
- Fencing will be limited around the construction camp and the entire facility would not necessarily need to be fenced off. The height of fences around the

Report No.	Page - (Of - Pages	Amendments	Survey Date
26/7587	62	65	Version 4 as on 27/04/2016	23/03/2016

construction camp are anticipated to be up to 4m.

 Temporary infrastructure to obtain water from available local sources/ new or existing boreholes. Water will potentially be stored in temporary water storage tanks. The necessary approvals from the DWS will be applied for separately to this EIA process.

Brandvalley alternatives

The above sections describe the alternatives considered in the Scoping Phase and the reasons for selecting the following alternatives for consideration in the EIA Phase:

- 1. Fundamental alternatives:
 - 1.1 Project area location alternative: One project location alternative namely Brandvalley Wind Farm
 - 1.2 Access road location alternatives: two access road alternatives namely access road alternative 1 and access road alternative 2
 - 1.3 Construction camp alternatives namely construction camp 1, 2, or 3.
 - 1.4 Four onsite substation location alternatives namely substation alternative 1, 2, 3 or 4.
 - 1.5 Technology alternative: One technology alternative namely a WEF
- 2. Incremental alternatives:
 - 2.1 Turbine layout alternatives
 - 2.2 200m buffer on access roads for sensitivity alternatives
- 3. No-go alternative

Report No.	Page - Of - Pages		Amendments	Survey Date
26/7587	63	65	Version 4 as on 27/04/2016	23/03/2016

APPENDIX E – NSA's Descriptions

NSA Number	Property	Notes		
NSA 1	Ou Mure 1/74	Owner based in Cape Town. 2-3 worker families reside on Ou Mure. Barendskraal not permanently inhabited.		
NSA 2	Fortuin RE/74	Owner permanently resides on farm. 6 farm worker families on Fortuin. 1 farm worker family on Kruispad.		
NSA 3	Nuwerus RE/ 284	Owner resides in Cape Town, but frequently visits farm to monitor operation. Three worker families permanently reside on farm.		
NSA 4	Fortuin RE/74	Owner permanently resides on farm. 6 farm worker families on Fortuin. 1 farm worker family on Kruispad.		
NSA 5	Nuwerus RE/87	Owner resides in Cape Town, but frequently visits farm to monitor operation. Three worker families permanently reside on farm.		
NSA 6	Out of project area	1		
NSA 7	Rietkloof Annexe 1/88	None. Owner resides in Gauteng.		
NSA 8	Vogelstruisfontein 81	Owner on farm during the week, but resides in Boland. Two worker families live permanently on the farm.		
NSA 9	Out of project area	1		
NSA 10	Out of project area	1		
NSA 11	Out of project area	1		
NSA 12	Snyders Kloof RE/80	Owners reside in Cape Town. Two worker families permanently reside on the property.		
NSA 13	Snyders Kloof RE/80	Owners reside in Cape Town. Two worker families permanently reside on the property.		
NSA 14	Hartjieskraal 1/77	Owners reside in Boland. 2 worker families live on property.		
NSA 15	Out of project area	/		
NSA 16	Out of project area	/		
NSA 17	Out of project area	1		
NSA 18	Hartjieskraal RE/77	Owner permanently resides on farm. Two worker families permanently reside on farm.		
NSA 19	Snyders Kloof 1/80	None. Part of Hartebeesfontein farming operation based east of Laingsburg.		
NSA 20	Barendskraal 1/76	None. Part of a larger farming operation based closer to Matjiesfontein. Owner lives in Stellenbosch.		
NSA 21	Out of project area	1		
NSA 22	Muishond Rivier 1/161	None. Owners live in the Cape.		
NSA 23	Muishond Rivier 1/161	None. Owners live in the Cape.		
NSA 24	Out of project area	1		
NSA 25	Out of project area	/		

Report No.	Page - 0	Of - Pages	Amendments	Survey Date
26/7587	64	65	Version 4 as on 27/04/2016	23/03/2016

NSA Number	Property	Notes
NSA 26	Rietfontein 197	None permanently. Owner and most workers reside on Klipfontein to the east. One worker based on farm for 8 months of year to water seed crops.
NSA 27	Out of project area	1
NSA 28	Out of project area	1
NSA 29	Out of project area	/

Report No.	Page - (Of - Pages	Amendments	Survey Date
26/7587	65	65	Version 4 as on 27/04/2016	23/03/2016

APPENDIX F – Field Study Weather Conditions

Laingsburg Weather Data www.wunderground.com	15/02/2016	16/02/2016			
Temperature	Temperature				
Mean Temperature	21 °C	22 °C			
Max Temperature	27 °C	28 °C			
Min Temperature	15 °C	15 °C			
Moisture					
Dew Point	7 °C	9 °C			
Average Humidity	34	36			
Maximum Humidity	49	53			
Minimum Humidity	12 21				
Precipitation					
Precipitation	0.0 mm	0.0 mm			
Wind					
Wind Speed	5 km/h ()	7 km/h ()			
Max Wind Speed	15 km/h	20 km/h			

