Rational Method DWA

Return	Time of	Point	ARF	Average	Factor	Runoff	Peak
Period	concentration	rainfall		intensity	Ft	coefficient	flow
(years)	(hours)	(mm)	(\%)	(mm/h)		(\%)	$\left(\mathrm{m}^{3} / \mathrm{s}\right)$
1:2	0.88	19.9	98.8	22.2	0.75	41.5	37.66
1:5	0.88	27.1	98.4	30.2	0.80	44.3	54.47
1:10	0.88	34.2	98.0	38.0	0.85	47.0	72.93
1:20	0.88	42.3	97.5	46.7	0.90	49.8	94.88
1:50	0.88	54.9	96.8	60.3	0.95	52.6	129.21
1:100	0.88	67.6	96.1	73.6	1.00	55.4	166.12

Run-off coefficient percentage includes adjustment saturation factors (Ft) for steep and impermeable catchments

Alternative Rational Method

Project
 = DE WILDT PV PROJECT

```
Analysed by
Name of river
Description of site
Date
Area of catchment
Dolomitic area
Length of longest watercourse
Flow of water
Height difference along 10-85 slope
Area distribution
```

 = CAS COETZER
 = DE WILDT PV PROJECT
= DE WILDT PV PROJECT
$=4 / 25 / 2016$
$=14.68 \mathrm{~km}^{2}$
$=0.0$ \%
$=3.5 \mathrm{~km}$
= Defined water course
$=38.7 \mathrm{~m}$
= Rural: 100 \%, Urban: 0 \%, Lakes: 0 \%

Catchment description - Urban area (\%)

Lawns		Residential and	industry	Business			
Sandy, flat (<2\%)	0	Houses	0	City centre	0		
Sandy, steep (>7\%)	0	Flats	0	Suburban	0		
Heavy soil, flat (<2\%)	0	Light industry	0	Streets	0		
Heavy soil, steep (>7\%)	0	Heavy industry	0	Maximum flood	d		
Catchment description -	Rural	area (\%)					
Surface slopes		Permeability		Vegetation			
Lakes and pans	0	Very permeable	0	Thick bush \&	forests		0
Flat area	0	Permeable	0	Light bush \&	cultivated	land	0
Hilly	85	Semi-permeable	95	Grasslands			95
Steep areas	15	Impermeable	5	Bare			5

Days on which thunder was heard
$=60$ days/year
Weather Services station number
Weather Services station location
= 512613
= HARTEBEESPOORT DAM

| Mean annual precipitation | (MAP) | | $=$ | 664 | mm | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Duration | 2 | 5 | 10 | 20 | 50 | 100 | 200 |
| 1 day | 58 | 82 | 100 | 120 | 150 | 175 | 203 |
| 2 days | 73 | 105 | 129 | 156 | 196 | 230 | 268 |
| 3 days | 82 | 117 | 145 | 176 | 220 | 259 | 301 |
| 7 days | 105 | 152 | 188 | 227 | 284 | 332 | 384 |

The modified recalibrated Hershfield relationship was used to determine point rainfall.

Run-off coefficient percentage includes adjustment saturation factors (Ft) for steep and impermeable catchments

Standard Design Flood method

Project name

= DE WILDT PV PROJECT

```
Analysed by
Name of river
Description of site
```

Date
Catchment characteristics:
Area of catchment
$=14.68 \mathrm{~km}^{2}$
Length of longest watercourse
$=3.5 \mathrm{~km}$
1085 height difference
$=38.7 \mathrm{~m}$
Average slope
$=0.0147 \mathrm{~m} / \mathrm{m}$
Drainage basin characteristics:
Drainage basin number $=1$
Mean annual daily max rain
$=56 \mathrm{~mm}$
Days on which thunder was heard
$=30$ days
Runoff coefficient C2
$=10 \%$
Runoff coefficient C100
Basin mean annual precipitation
$=40 \%$
$=550 \mathrm{~mm}$
Basin mean annual evaporation
$=1800 \mathrm{~mm}$
Basin evaporation index MAE/MAP
= CAS COETZER
= DE WILDT PV PROJECT
= DE WILDT PV PROJECT
$=4 / 25 / 2016$
$=3.27$

RAINFALL DATA
The rainfall data in the table below are derived from two sources. The daily rainfall is from the Department of Water Affair's publication TR102 for the representative site. The modified Hershfield equation is used for durations up to four hours. Linear interpolation is used for values between 4 hours and one day.

Weather Services station ex TR102 = 546204 @ STRUAN

Point mean annual precipitation $=550 \mathrm{~mm}$

Dur:	$R P=2$	5	10	20	50	100	200
.25 h	15	25	33	41	51	59	67
. 50 h	20	33	43	53	67	77	87
1 h	24	41	53	66	82	95	107
2 h	29	48	63	78	98	113	127
4 h	33	56	73	90	113	130	148
1 day	56	80	99	119	150	177	206
2 days	71	105	132	161	205	243	286
3 days	80	117	146	177	224	263	308
7 days	102	154	196	242	310	369	435

CAUTION. The time of concentration is less than one hour.
Runoff coefficients $\mathrm{C} 2=10 \% \mathrm{C} 100=40 \%$

Return	Time of	Point	ARF	Catchment	Runoff	Peak
period (years)	concentration (hours)	```precipitation (mm)```	(\%)	$\begin{aligned} & \text { precipitation } \\ & \text { (mm) } \end{aligned}$	coefficient (\%)	$\begin{aligned} & \text { flow } \\ & \left(m^{3} / s\right) \end{aligned}$
1:2	0.88	23.3	97.8	22.8	10.0	10.52
1:5	0.88	39.2	97.8	38.4	20.8	36.95
1:10	0.88	51.3	97.8	50.2	26.5	61.49
1:20	0.88	63.4	97.8	62.0	31.1	89.27
1:50	0.88	79.4	97.8	77.7	36.4	130.73
1:100	0.88	91.5	97.8	89.5	40.0	165.55
1:200	0.88	103.6	97.8	101.3	43.2	202.51

ADDENDUM 5

HERBST ALGORITHM DEVELOPED AT THE DEPARTMENT OF WATER AFFAIRS
$Q_{T}=C_{\text {HERBST }} A^{0,46} P^{0,93}\left(1+\left(K_{T}{ }^{*} C_{V}\right) / 100\right)$
With:
$\mathrm{C}_{\text {HEBST }}=$ Coefficent of variation
A $=$ Catchment area in km^{2}
$\mathrm{P} \quad=$ Mean annual precipitation
$\mathrm{K}_{\mathrm{T}} \quad=$ Frequency factor
For this situation:

Coefficent of variation	$=$	153.6
Catchment area	$=$	$14.68 \mathrm{~km}^{2}$
Mean annual precipitatio	$=$	664 mm
Frequency factor	$=$	4.3
Recurrance interval	$=$	100 year

$Q_{T}: 146 \mathrm{~m}^{3} / \mathrm{s}$

ADDENDUM 6

HRU ALGORITHM DEVELOPED AT THE THE WITS UNIVERSITY
$Q_{T}=0,0377 K_{T} P^{0,8}\left(S^{0,5} /\left(L_{C}\right)\right)^{0,2}$
With:
$\mathrm{K}_{\mathrm{T}} \quad=\quad$ Constant dependant on veld zone and T
A $=$ Catchment area in km^{2}
$\mathrm{P}=$ Mean annual precipitation mm
$\mathrm{S}=$ Slope of the longest water course in m / m
$\mathrm{L} \quad=$ Length of the longest stream in km
$\mathrm{L}_{\mathrm{c}} \quad=$ Distance to the centroid of the catchment in km

For this situation:

K_{T}	$=1.200$	
A	$=14.68 \mathrm{~km}^{2}$	
P	$=664 \mathrm{~mm}$	
S	$=0.0140$	
L	$=3.5 \mathrm{~km}$	
$\mathrm{~L}_{\mathrm{c}}$	$=5$	km
Recurrance interval	$=$	100 year
$\mathbf{Q}_{\mathbf{T}}$	$=95 \mathrm{~m}^{3} / \mathrm{s}$	

ADDENDUM 5

TEN NOORT STEPHENSON ALGORITHM DEVELOPED AT WITS UNIVERSITY
$Q_{T}=\left(a_{3} P+b_{3}\right) T^{b 2} A^{b 1}$
With:
T $\quad=$ Recurrence interval in years
A = Catchment area in km^{2}
$\mathrm{P}=$ Mean annual precipitation mm
$b_{1} \quad=$ Coefficient dependant on veld zone, region and P
$\mathrm{b}_{2} \quad=$ Coefficient dependant on veld zone, region and P
$b_{3} \quad=$ Coefficient dependant on veld zone, region and P
$a_{3} \quad=$ Coefficient dependant on veld zone, region and P
For this situation:

| T | $=$ | 100 year |
| :--- | :--- | ---: | :--- |
| A | $=$ | $14.68 \mathrm{~km}^{2}$ |
| P | $=$ | 664 mm |
| a_{3} | $=$ | 0.0012 |
| $\mathrm{~b}_{1}$ | $=$ | 0.69 |
| $\mathrm{~b}_{2}$ | $=$ | 0.49 |
| $\mathrm{~b}_{3}$ | $=$ | -0.18 |
| $\mathbf{Q}_{\mathbf{T}}$ | $=$ | $\mathbf{6 0} \mathbf{~ m}^{3} / \mathrm{s}$ |

ADDENDUM 5

UNIT HYDROGRAPH METHOD

$Q=Q_{p} \times d_{e} \times F_{m}=$ Peak flood in $\mathrm{m}^{3} / \mathrm{s}$
With:
$Q_{P} \quad=$ Peak flood of the 1 hour synthetic hydrograph $=K_{U} \times\left(A / T_{L}\right)$

A = Catchment area in km^{2}
$T_{L}=C_{T}\left[L \times L_{C} /\left(S^{0.5}\right)\right]^{0.36}=$ Basin lag in hour
$\mathrm{C}_{\mathrm{T}}=$ Constant depending on the sone
$\mathrm{L}=$ Length of the longest stream in km
$\mathrm{L}_{\mathrm{C}}=$ Distance to catchment centroid in km
S = Average slope along longest stream
$\mathrm{P}=$ Mean annual precipitation
$\mathrm{K}_{u}=$ Constant depending on the sone
$d_{e}=$ Percentage of storm run-off $\mathbf{x} d_{g}$
$d_{g}=d x a$ in $m m$
$\mathrm{d}=$ Design raifall depth in mm
$\mathrm{a}=$ Area reduction factor
i = Rainfall intensity mm/hour
and,
$F_{m} \quad=\quad$ Highest ordinate obtained with the S-curve transformation

For this situation:

A	$=$	$14.68 \mathrm{~km}^{2}$
$\mathrm{~T}_{\mathrm{L}}$	$=$	2.11 hour
C_{T}	$=$	0.35
L	$=$	3.5 km
$\mathrm{~L}_{\mathrm{C}}$	$=$	5 km
S	$=$	$0.014 \mathrm{~m} / \mathrm{m}$
P	$=$	664 mm
$\mathrm{~K}_{\mathrm{U}}$	$=$	0.277
$\mathrm{~d}_{\mathrm{g}}$	$=$	90.0 mm
d	$=$	28.8 mm
a	$=$	1
i	$=$	$100.0 \mathrm{~mm} /$ hour
F_{m}	$=$	1

$$
\begin{array}{ll}
\mathrm{T} & =100 \text { year } \\
\mathbf{Q}_{\mathbf{P}} & =1.9229 \mathrm{~m}^{3} / \mathrm{s} \\
\mathbf{d}_{\mathbf{e}} & =28.8 \mathrm{~mm} \\
& \\
\mathbf{Q} & =55.38 \mathrm{~m}^{3} / \mathrm{s}
\end{array}
$$

