ADDENDUM A

Flood Frequency Analysis: Rational Method Department of Water Affairs application

Flood Frequency Analysis: Rational Method

Project = BOKAMOSO ENEGY PV DEVELOPMENT

Analysed by = CAS COETZER

Name of river = BOKAMOSO ENEGY PV DEVELOPMENT

Description of site = MATJESSPRUIT 145: LEEUDORINGSTAD

Date = 5/30/2016

Area of catchment = 3.622 km^2

Dolomitic area = 0.0 %

Mean annual rainfall (MAR) = 520.00 mm

Length of longest watercourse = 3.12 km

Flow of water = Overland flow

Height difference = 30.0 m

Value of r for over land flow = Sparse grass (r=0,3)

Rainfall region = Coastal

Area distribution = Rural: 50 %, Urban: 50 %, Lakes: 0 %

Catchment description - Urban area (%)

Lawns Residential and industry Business

Sandy, flat (<2%) Houses City centre Sandy, steep (>7%) Flats 0 Suburban 0 Heavy soil, flat (<2%) 1 Light industry Streets 80 Heavy soil, steep (>7%) 9 0 Maximum flood Heavy industry

Catchment description - Rural area (%)

Surface slopes Permeability Vegetation

Lakes and pans	0	Very permeable	0	Thick bush & forests	0
Flat area	100	Permeable	0	Light bush & cultivated land	0
Hilly	0	Semi-permeable	55	Grasslands	55
Steep areas	0	Impermeable	45	Bare	45

Average slope = 0.00962 m/m

Time of concentration = 1.73 h

Run-off factor

Rural - C1 = 0.431 Urban - C2 = 0.812 Lakes - C3 = 0.000 Combined - C = 0.622

The HRU, Report 2/78, Depth-Duration-Frequency diagram was used to determine the point rainfall.

Return	Time of	Point	ARF	Average	Factor	Runoff	Peak
Period	concentration	rainfall		intensity	Ft	coefficient	flow
(years)	(hours)	(mm)	(%)	(mm/h)		(%)	(m^3/s)
1:2	1.73	20.8	99.9	12.0	0.75	56.8	6.840
1:5	1.73	28.3	99.8	16.3	0.80	57.9	9.487
1:10	1.73	35.8	99.8	20.6	0.85	58.9	12.22
1:20	1.73	44.2	99.7	25.4	0.90	60.0	15.36
1:50	1.73	57.4	99.7	33.1	0.95	61.1	20.31
1:100	1.73	70.7	99.6	40.6	1.00	62.2	25.42

Run-off coefficient percentage includes adjustment saturation factors (Ft) for steep and impermeable catchments

Flood Frequency Analysis: Alternative Rational Method

Days on which thunder was heard

Weather Services station number

Weather Services station location

Project = BOKAMOSO ENEGY PV DEVELOPMENT Analysed by = CAS COETZER Name of river = BOKAMOSO ENEGY PV DEVELOPMENT Description of site = MATJESSPRUIT 145: LEEUDORINGSTAD = 5/30/2016Date Area of catchment $= 3.622 \text{ km}^2$ Dolomitic area = 0.0 % = 3.12 kmLength of longest watercourse = Overland flow Flow of water = 30.0 mHeight difference Value of r for over land flow = Sparse grass (r=0,3) Area distribution = Rural: 50 %, Urban: 50 %, Lakes: 0 % Catchment description - Urban area (%) Lawns Residential and industry Business Sandy, flat (<2%) 1 0 0 Houses City centre Sandy, steep (>7%) Flats Suburban Streets Heavy soil, flat (<2%) 1 Light industry 0 80 Heavy soil, steep (>7%) 9 Heavy industry Maximum flood Catchment description - Rural area (%) Surface slopes Permeability Vegetation Lakes and pans 0 Very permeable Thick bush & forests Flat area 100 Permeable Light bush & cultivated land 0 Hilly Ω Semi-permeable 55 Grasslands 5.5 Steep areas Impermeable 45 Bare

= 60 days/year

= 399241

= LEEUKOP

Mean annu	al pr	ecipita	ation	(MAP)		=	520	mm
Duration	2	5	10	20	50	100	200	
1 day	54	73	88	103	125	143	163	
2 days	67	95	116	138	170	198	228	
3 days	74	105	128	153	190	220	253	
7 days	95	139	173	210	263	308	358	

The modified recalibrated Hershfield relationship was used to determine point rainfall.

Average slope = 0.00962 m/mTime of concentration = 1.73 h

Run-off factor

Rural - C1 = 0.431Urban - C2 = 0.812Lakes - C3 = 0.000Combined - C = 0.622

Return Time of Point ARF Average Factor Runoff Peak period concentration rainfall intensity Ft coefficient flow (years) (hours) (mm) (응) (mm/h) (m^3/s) 31.00 1:2 1.73 100.0 17.89 0.75 56.8 10.22 1.73 52.29 57.9 1:5 100.0 30.19 0.80 17.57 1:10 1.73 68.40 100.0 39.49 0.85 58.9 23.41 1:20 1.73 84.51 100.0 48.79 0.90 60.0 29.45 1:50 1.73 105.80 100.0 61.08 0.95 61.1 37.54 100.0 1:100 1.73 121.91 70.38 1.00 62.2 44.01 1:200 1.73 138.02 100.0 79.68 1.00 62.2 49.83

Run-off coefficient percentage includes adjustment saturation factors (Ft) for steep and impermeable catchments

Flood frequency analysis: Standard Design Flood method

Project name = BOKAMOSO ENEGY PV DEVELOPMENT

Analysed by = CAS COETZER

Name of river = BOKAMOSO ENEGY PV DEVELOPMENT

Description of site = MATJESSPRUIT 145: LEEUDORINGSTAD

Date = 5/30/2016

Catchment characteristics:

Area of catchment $= 3.622 \text{ km}^2$ Length of longest watercourse = 3.12 km

1085 height difference = 30 m $\,$

Average slope = 0.0128 m/m

Drainage basin characteristics:

Drainage basin number = 7

Mean annual daily max rain = 49 mm

Days on which thunder was heard = 39 days

Runoff coefficient C2 = 15 %

Runoff coefficient C100 = 60 %

Basin mean annual precipitation = 510 mm

Basin mean annual evaporation = 1700 mm

Basin evaporation index MAE/MAP = 3.33

RAINFALL DATA

The rainfall data in the table below are derived from two sources. The daily rainfall is from the Department of Water Affair's publication TR102 for the representative site. The modified Hershfield equation is used for durations up to four hours. Linear interpolation is used for values between 4 hours and one day.

Weather Services station ex TR102 = 328726 @ OLIVINE Point mean annual precipitation = 510 mm

Dur:	RP =2	5	10	20	50	100	200
.25 h	14	24	32	39	49	57	64
.50 h	19	32	41	51	64	74	84
1 h	23	39	51	63	79	91	103
2 h	27	46	61	75	94	108	122
4 h	32	54	70	87	109	125	142
1 day	49	68	82	96	118	137	157
2 days	62	87	107	128	158	184	213
3 days	68	94	115	136	167	193	221
7 days	84	118	144	172	211	243	279

CAUTION. The time of concentration is less than one hour.

Runoff coefficients C2 = 15 % C100 = 60 %

Return period (years)	Time of concentration (hours)	Point precipitation (mm)	ARF	Catchment precipitation (mm)	Runoff coefficient (%)	Peak flow (m³/s)
1:2	0.85	22.1	100.0	22.1	15.0	3.923
1:5	0.85	37.4	100.0	37.4	31.2	13.78
1:10	0.85	48.9	100.0	48.9	39.7	22.92
1:20	0.85	60.4	100.0	60.4	46.7	33.28
1:50	0.85	75.6	100.0	75.6	54.6	48.74
1:100	0.85	87.1	100.0	87.1	60.0	61.72
1:200	0.85	98.6	100.0	98.6	64.8	75.50

Empirical methods Midgley and Pitman as well as Kovács Method

Project = BOKAMOSO ENEGY PV DEVELOPMENT

Analysed by = CAS COETZER

Name of river = BOKAMOSO ENEGY PV DEVELOPMENT

Description of site = MATJESSPRUIT 145: LEEUDORINGSTAD

Date = 5/30/2016

Area of catchment = 3.622 km^2 Length of longest watercourse = 3.12 kmHeight difference along equal-area slope = 25.0 mDistance to catchment centroid = 1.6 kmDolomitic area = 0.0 %Mean annual rainfall = 520.0 mm

Veld type = 1

Kovács region = K4(K = 4.6)

Catchment parameter with regard to

reaction time = 0.065

Peak discharges by means of an empirical method developed by Midgley and Pitman

Return	KT	Peak
period	constant	flow
(years)		(m^3/s)
1:10	0.17	4.175
1:20	0.23	5.649
1:50	0.32	7.859
1:100	0.40	9.824

This RMF calculation includes a transition zone adjustment in the case of small catchments.

Regional maximum flood: 163.1 m³/s

Kovács Method

Q50(RMF): 67.84 m³/s (based on QT/QRMF relationship for **Kovács** regions)

Q100(RMF): $85.45 \text{ m}^3/\text{s}$ (based on QT/QRMF relationship for Kovács regions)

Q200(RMF): 102.58 m³/s (based on QT/QRMF relationship for Kovács regions)

The following equivalent maxima make no transition zone adjustments for small catchments.

Equivalent southern African maximum

K-factor 5.6: $532 \text{ m}^3/\text{s}$

Equivalent world maxima

K-factor 6.0: $1056 \text{ m}^3/\text{s}$

K-factor 6.3: $1765 \text{ m}^3/\text{s}$

HERBST ALGORITHM DEVELOPED AT THE DEPARTMENT OF WATER AFFAIRS

 $Q_T = C_{HERBST} A^{0,46} P^{0,93} (1 + (K_T * C_V)/100)$

With:

 C_{HEBST} = Coefficent of variation

A = Catchment area in km²

P = Mean annual precipitation

 K_T = Frequency factor

For this situation:

Coefficent of variation = 170.1

Catchment area = 3.62 km²

Mean annual precipitatio = 520 mm

Frequency factor = 4.3

Recurrance interval = 100 year

 $Q_T : 67 \text{ m}^3/\text{s}$

HRU ALGORITHM DEVELOPED AT THE THE WITS UNIVERSITY

 $Q_T = 0.0377 K_T PA^{0.8} (S^{0.5}/(LL_C))^{0.2}$

With:

 K_T = Constant dependant on veld zone and T

A = Catchment area in km^2

P = Mean annual precipitation mm

S = Slope of the longest water course in m/m

L = Length of the longest stream in km

L_c = Distance to the centroid of the catchment in km

For this situation:

 $K_T = 1.200$

A = 3.62 km^2

P = 520 mm

S = 0.0096

L = 3.12 km

 $L_c = 3.6 \text{ km}$

Recurrance interval = 100 year

 $Q_T = 26 m^3/s$

TEN NOORT STEPHENSON ALGORITHM DEVELOPED AT WITS UNIVERSITY

 $Q_T = (a_3P + b_3)T^{b2}A^{b1}$

With:

T = Recurrence interval in years

A = Catchment area in km²

P = Mean annual precipitation mm

b₁ = Coefficient dependant on veld zone, region and P

b₂ = Coefficient dependant on veld zone, region and P

b₃ = Coefficient dependant on veld zone, region and P

a₃ = Coefficient dependant on veld zone, region and P

For this situation:

T = 100 year

A = 3.62 km^2

P = 520 mm

 $a_3 = 0.0012$

 $b_1 = 0.69$

 $b_2 = 0.49$

 $b_3 = -0.18$

 $Q_T = 19 \text{ m}^3/\text{s}$

UNIT HYDROGRAPH METHOD

 $Q = Q_P x d_e x F_m = Peak flood in m³/s$

With:

 Q_P = Peak flood of the 1 hour synthetic hydrograph = $K_U \times (A / T_L)$

A = Catchment area in km^2

 $T_L = C_T [L \times L_C / (S^{0.5})]^{0.36} = Basin lag in hour$

 C_T = Constant depending on the sone

L = Length of the longest stream in km

L_C = Distance to catchment centroid in km

S = Average slope along longest stream

P = Mean annual precipitation

 K_U = Constant depending on the sone

d_e = Percentage of storm run-off x d_g

 $d_g = d x a in mm$

d = Design raifall depth in mm

a = Area reduction factor

i = Rainfall intensity mm/hour

and,

F_m = Highest ordinate obtained with the S-curve transformation

For this situation:

A = 3.62 km^2

 $T_L = 1.76 \text{ hour}$

 $C_{T} = 0.32$

L = 3.12 km

 L_C = 3.6 km

S = 0.0096 m/m

P = 520 mm

 $K_{U} = 0.386$

 d_g = 90 mm

d = 55.8 mm

a = 1

i = 94.508 mm/hour

 $F_{m} = 1$

T = 100 year

 $Q_P = 0.7923 \text{ m}^3/\text{s}$

 d_e = 55.8 mm

 $Q = 44.21 \text{ m}^3/\text{s}$