

GEOHYDROLOGICAL STUDY FOR THE KIMCRUSH VOORUITZICHT DOLERITE MINE

for

WADALA MINING AND CONSULTING

Ву

GHT CONSULTING

PROJECT TEAM

L.J van Niekerk D.C. Moolman

Project No.: Report No.: 369-26-GHD.804 RVN804.1/1794 Start Date: Report Date:

October 2017 October 2017

Bloemfontein PO Box 32998 | Fichardt Park | 9317

ox 32998 | Fichardt Park | 9317 ghtfs@ghtglobal.com C: 082 652 2992

Port Elizabeth

PO Box 28536 | Sunridge Park | 6008 ghtec@ghtglobal.com C: 082 656 6996

Amersfoort

PO Box 26 | Amersfoort | 2490 ghtmp@ghtglobal.com C: 082 468 2750

www.ghtglobal.com | Tel: 086 143 6724 | Fax: 086 679 9806

26 October 2017 Our Reference No.: RVN804.1/1794

WADALA MINING AND CONSULTING (PTY) LTD

4 Millin Road Kimberley 8301

Northern Cape Province, South Africa

Tel No.: +27(0)53 832-0029 Cell No.: +27(0)84 208-9088

FOR ATTENTION: MS. R. OOSTHUIZEN

Dear Miss,

GEOHYDROLOGICAL STUDY FOR THE KIMCRUSH VOORUITZICHT DOLERITE MINE

It is our pleasures to enclose two copies of report RVN804.1/1794: "GEOHYDROLOGICAL STUDY FOR KIMCRUSH VOORUITZICHT DOLERITE MINE".

We trust that the report will fulfil the expectations of Wadala Mining and Consulting, Kimcrush dolerite mine and the Department of Water and Sanitation and we will supply any additional information if required.

Yours sincerely,

Dirk Moolman (Pri.Sci.Nat)
Geohydrologist

dirkm@ghtglobal.com

Louis Van Nieherk (Pri.Sci.Nat)
Managing Director
louisvn@ghtglobal.com

Copies: Two copies to Wadala mining and Consulting.

Although Geo-Hydro Technologies (Pty) Ltd exercise due care and diligence in rendering services and preparing documents, Geo-Hydro Technologies (Pty) Ltd accepts no liability, and the client, by receiving this document, indemnifies Geo-Hydro Technologies (Pty) Ltd and its directors, managers, agents and employees against all action, claims, demands, losses, liabilities, costs, damages and expenses arising from or in connection with services rendered, directly or indirectly by Geo-Hydro Technologies (Pty) Ltd and by the use of the information contained in this document.

This document contains confidential and proprietary information of Geo-Hydro Technologies (Pty) Ltd, and is protected by copyright in favour of Geo-Hydro Technologies (Pty) Ltd, and may not be reproduced or used without the written consent of Geo-Hydro Technologies (Pty) Ltd, which has been obtained beforehand. This document is prepared exclusively for WADALA MINING AND CONSULTING, KIMCRUSH DOLERITE MINE AND THE DEPARTMENT OF WATER AND SANITATION and is subject to all confidentiality, copyright and trade secrets, intellectual property law and practices of SOUTH AFRICA

- TABLE OF CONTENTS -

1	I INTRODUCTION	1
2	PHYSICAL GEOGRAPHY	3
	2.1 EXTENT OF THE INVESTIGATION	3
	2.2 TOPOGRAPHY AND SURFACE DRAINAGE	3
	2.2.1 Climate	6
	2.2.1.1 General Climatic Information	6
	2.2.2 Vegetation	
3	SUBSURFACE FEATURES	13
	3.1 GEOHYDROLOGICAL BACKGROUND INFORMATION	13
	3.1.1 Catchment and Groundwater Management Unit	
	3.1.2 General Aquifer Information of the Kimberly District	
	3.1.2.1 Groundwater Table Depth	13
	3.1.2.2 Aquifer Classification	13
	3.1.2.3 Recharge to Aquifer	13
	3.1.3 Drilling Depths and Success Rates	
	3.2 GEOPHYSICS AND MAP INTERPRETATIONS	17
	3.2.1 Map Interpretations	
	3.2.2 Aerial Magnetic Intensity Map Interpretation	
	3.2.3 The Magnetic Method	20
	3.2.3.1 Results of the Field Geophysical Survey and Borehole Siting	20
	3.3 GEOLOGY	25
	3.3.1 Stratigraphy and Lithology	25
	3.3.1.1 Ecca Group Geology	28
	3.3.1.2 In the Intrusive Karoo Dolerite	
	3.3.1.3 Geometry, Structure and Mechanism of Emplacement of Dolerite Dykes.	
	3.3.1.4 Geohydrological Implications of Geology	
	3.3.1.5 Sediments	
	3.3.1.6 Dolerite Intrusions	
	3.3.2 Hydrostratigraphy	
	3.3.2.1 Hydrostratigraphy of the Ecca Group	33
4	HYDROCENSUS AND SAMPLING OF ONSITE EXCAVATION PITS	35
	4.1.1.1 Inorganic Water Quality	38
5	CONCLUSIONS AND RECOMMENDATIONS	40
6	S REFERENCES	Δ1

- LIST OF TABLES -

TABLE 1.	THE YEARLY RAINFALL / PRECIPITATION RECORDS FOR THE KIMBERLY DISTRICT	7
TABLE 2.	THE YEARLY EVAPORATION RECORDS FOR THE KIMBERLY DISTRICT.	8
TABLE 3.	GENERAL INFORMATION REGARDING SAMPLED SITES DURING HYDROCENSUS AND SITE VISIT	. 36
TABLE 4.	WATER QUALITY CLASS RANGES	. 38
TABLE 5.	INORGANIC GROUNDWATER QUALITY CLASS OF THE SURFACE WATER SITES AS WELL AS THE HYDROCENSUS BOREHOLE AT THE	
Forr	ESTDALE ABATTOIR (ACCORDING TO THE SANS241-1:20011 AND SANS241:2006 STANDARDS).	. 39

- TABLE OF FIGURES -

FIGURE 1.	LOCALITY MAP OF THE KIMCRUSH DOLERITE MINE SITE (MAP SCALE 1:50 000).
FIGURE 2.	SURFACE DRAINAGE MAP OF THE KIMCRUSH DOLERITE MINE. NOTE THE BLUE DRAINAGE VECTOR ARROWS, WHICH INDICATE THE
DRAIN	AGE PATTERNS4
FIGURE 3.	GEOLOGICAL MAP OF THE KIMCRUSH DOLERITE MINE SITE
FIGURE 4.	YEARLY RAINFALL AND EVAPORATION RECORDS FOR KIMBERLY. NOTE THAT THE EVAPORATION EXCEEDS THE RAINFALL AND
THERE	FORE INDICATE WATER DEFICIT AND A NEGATIVE WATER BALANCE
FIGURE 5.	WIND ROSES FOR SOUTH AFRICA FOR THE MONTH OF JANUARY. NOTE THAT THE WIND ROSE FOR KIMBERLY. THE
PREDC	OMINANT WIND DIRECTION IS FROM THE NORTH AND THE MINOR WIND DIRECTIONS IS FROM THE WEST AND NORTH EAST 10
FIGURE 6.	WIND ROSES FOR SOUTH AFRICA FOR THE MONTH OF APRIL. NOTE THAT THE WIND ROSE FOR KIMBERLY. THE PREDOMINANT
WIND	DIRECTION IS FROM THE NORTH AND THE MINOR WIND DIRECTIONS IS FROM THE NORTH EAST AND NORTH WEST 10
FIGURE 7.	WIND ROSES FOR SOUTH AFRICA FOR THE MONTH OF JULY. NOTE THAT THE WIND ROSE FOR KIMBERLY. THE PREDOMINANT
WIND	DIRECTION IS FROM THE NORTH AND THE MINOR WIND DIRECTIONS IS FROM THE NORTH EAST AND NORTH WEST11
FIGURE 8.	WIND ROSES FOR SOUTH AFRICA FOR THE MONTH OF OCTOBER. NOTE THAT THE WIND ROSE FOR KIMBERLY. THE
PREDC	MINANT WIND DIRECTION IS FROM THE NORTH AND THE MINOR WIND DIRECTIONS IS FROM THE SOUTH WEST AND NORTH EAST.
	11
Figure 9.	Depth of groundwater level (adapted from the Groundwater Resources of South Africa Map, DWA, 1995) . 14
FIGURE 10.	SOUTH AFRICAN AQUIFER CLASSIFICATION MAP. KIMBERLY IS SITUATED ON A MINOR CLASSIFIED AQUIFER15
FIGURE 11.	MEAN ANNUAL RECHARGE (ADAPTED FROM THE GROUNDWATER RESOURCES OF SOUTH AFRICA MAP, DWA, 1995) 16
FIGURE 12.	GROUNDWATER RECHARGE ESTIMATION MAP (VEGTER, 1995)
FIGURE 13.	THE LOCALITY MAP OF THE AERIAL MAGNETIC INTENSITY DATA FOR THE KIMBERLY DISTRICT. NOTE THAT THE AERIAL
MAGN	ETIC DATA AND CONTOURS ARE TOO ROUGH IN NATURE FOR LOCAL INTERPRETATION AT THE KIMCRUSH DOLERITE MINE 19
FIGURE 14.	THE LOCALITY MAP OF THE GEOPHYSICAL SURVEY CONDUCTED AROUND THE KIMCRUSH DOLERITE MINE SITE21
FIGURE 15.	MAGNETIC INTENSITY GRAPH OF TRAVERSE 01
FIGURE 16.	MAGNETIC INTENSITY GRAPH OF TRAVERSE 02
FIGURE 17.	Magnetic intensity graph of traverse 03
FIGURE 18.	SCHEMATIC AREAL DISTRIBUTION OF LITHOSTRATIGRAPHIC UNITS IN THE MAIN KAROO BASIN (AFTER JOHNSON ET AL.,
1997	
FIGURE 19.	GENERALISED STRATIGRAPHY AND LITHOLOGY OF THE KAROO SUPERGROUP OF THE MAIN KAROO BASIN (JOHNSON ET AL.,
1997	
FIGURE 20.	GEOLOGICAL MAP OF THE IMMEDIATE AREA OF THE KIMCRUSH DOLERITE MINE SITE
FIGURE 21.	(A) SOURCE AREAS FOR THE SOUTHERN AND WESTERN ECCA FORMATIONS, (B) AND THE NORTHERN PIETERMARITZBURG,
	EID AND VOLKSRUST FORMATIONS (AFTER COLE, 1992). (C) DEPOSITIONAL ENVIRONMENT OF THE ECCA GROUP IN THE
	iern Karoo trough (after Smith et al., 1993 and Wickens, 1994).
FIGURE 22.	GROUNDWATER FLOW VECTOR MAP OF THE IMMEDIATE AREA OF THE KIMCRUSH DOLERITE MINE SITE. THE GENERAL
	NDWATER FLOW DIRECTION FROM THE DISPOSAL AREA IS TOWARDS THE NORTH, NORTH WEST DIRECTION
FIGURE 23.	LOCALITY OF SAMPLED SITES AT THE MINE AND HYDROCENSUS SITES

- GLOSSARY OF GEOHYDROLOGICAL TERMS & ABBREVIATIONS -

Geohydrological Term	Definition
Aquifer	A water-bearing geological formation.
•	An aquitard is a geological unit that is permeable enough to transmit water in significant
Ait1	quantities when viewed over large and long periods, but its permeability is not sufficient
Aquitard	to justify production boreholes being placed in it. Clays, loams and shale are typical
	aquitards.
	A confined aquifer is bounded above and below by an aquiclude. In a confined Aquifer,
Confined Aquifer	the pressure of the water is usually higher than that of the atmosphere. So that if a
Confined Aquiler	borehole taps the aquifer, the water in it stands above the top of the aquifer, or even
	above the ground surface. We then speak of a free-flowing or artesian borehole.
Contamination	The introduction of any substance into the environment by the action of man.
	The hydraulic diffusivity is the ratio of the transmissivity and the storativity of a
Diffusivity (KD/S)	saturated aquifer, it governs the propagation of the chances a hydraulic head in the
	aquifer. Diffusivity has the dimension of lenght ² /Time.
	Groundwater occurring in within fractures and fissures in hard-rock formations.
Fractured-rock aquifer	Groundwater: Refers to water filling the pores and voids in geological formations below
	the water table.
	The movement of water though openings and pore spaces in rock below the water
Groundwater Flow	table i.e. in the saturated zone. Groundwater naturally drains from higher lying areas to
	low lying areas such as river, lakes and oceans. The rate of flow depends on the slope of
	the water table and the stransmissivity of the geological formations. Refers to the portion of rainfall that infiltrates the soil, percolates under gravity through
Groundwater Recharge	the unsaturated zone (also called the Vadose zone) down to the saturated zone below
Gloundwater Recharge	the water table (also called the Phreatic zone).
	All ground water available for the beneficial use, including by man, aquatic ecosystems
Groundwater Resource	and the grater environment.
	Represent provisional zones defined for the purpose of assessing and managing the
	groundwater resources of a region, in terms of large-scale abstraction from relatively
Constitution Description Line (CDI II-)	shallow (depth<300m) production boreholes. They represent areas where the broad
Groundwater Resource Units (GRU's)	geohydrological characteristics (i.e. water occurrence and quality, hydraulic properties,
	flow regime, aquifer boundary conditions etc.) are anticipated to be similar. Sometimes
	also called ground water management units (GMU's).
	The hydraulic conductivity is the constant of proportionality in Darcy's law. It is
Hydraulic Conductivity (K)	defined as the volume of water that will move through a porous medium in a unit time
	under a unit hydraulic gradient through a unit area measured at right angles to the
	direction of flow
II. d	A field survey by which all relevant information regarding groundwater is amassed. This typically includes yields, borehole equipment, groundwater levels, casing height /
Hydrocensus	diameter, WGS84 coordinates, potential pollution risks, photos etc.
	Groundwater contained intergranular interstices of sedimentary and weathered
Intergranular Aquifer	formations.
	A leaky aquifer, also known as a semi-confined aquifer, is an aquifer who's upper and
	lower boundaries is aquitards, or one boundary is an aquitard and the other is an
Leaky Aquifer	aquiclude. Water is free to move through the aquitards, either upwards or downwards. If
	a leaky aquifer is in hydrological equilibrium, the water level in a borehole tapping it may
	coincide with the water table.
	Highly permeable formations, usually with a known or probable presence pf significant
Major Aquifer System	fracturing and/or intergranular porosity; may be highly productive and able to support
J 1 J	large abstractions for public supply and other purposes; water quality is generally very
	good.
	Fractured or potentially fractured rocks that do not have a high primary permeability, or
Minor Aquifer System	other formations of variable permeability; aquifer extent may be limited and water quality
	variable. Although these aquifers seldom produce large quantities of water, they are important for local supplies and in supplying base flow of rivers.
	A groundwater body that is essentially impermeable, does not readily transmit water

Geohydrological Term	Definition
Non-Aquifer System	Formations with negligible permeability that are generally regarded as not containing groundwater in exploitable quantities; water quality may also be such that it renders the aquifer unusable; groundwater flow through such rocks does take place and needs to be considered when assessing the risk associated with persistent pollutants.
Permeability	The ease with which a fluid can pass through a porous medium and is defined as the volume of fluid discharged from a unit area of a aquifer under unit hydraulic gradient in unit time (expressed as m³/m².d or m/d). It is an intrinsic property of the porous medium and is independent of the properties of the saturating fluid; not to be confused with hydraulic conductivity, which relates specifically to the movement of water.
Pollution	The introduction into the environment of any substance by the action of man that is, or results in, significant harmful effects to man or the environment.
Porosity	The porosity of a rock is its property of containing pores or voids. With consolidated rocks and hard rocks, a distinction is usually made between primary porosity, which is present when the rock is formed and secondary porosity, which develops later as a result of solution or fracturing.
Recharge	Groundwater recharge or deep drainage or deep percolation is a hydrologic process where water moves downward from surface water to groundwater. This process usually occurs in the vadose zone below plant roots and is often expressed as a flux to the water table surface. Recharge occurs both naturally (through the water cycle) and anthropologically (i.e. "artificial ground water recharge"), where rainwater and or reclaimed water is touted to the subsurface.
Saline Water	Water that is generally considered unsuitable for human consumption or for irrigation because of it's high content of dissolved solids.
Saturated Zone	The subsurface zone below the water table where interstices are filled with water under pressure greater than that of the atmosphere.
Specific Yield (S _y)	The specific yield is the volume of water that an unconfined aquifer releases from storage per unit surface area of aquifer per unit decline of the water table. The values of the specific yield range from 0.01 to 0.3 and are much higher that the storativities of confined aquifers.
Storativity Ratio	The storativity ratio is a parameter that controls the flow from the aquifer matrix blocks into the fractures of a confined fractured aquifer of the double-porosity type. Sustainable Yield: This usually refers to a yield calculated from aquifer test pumping by a professional geohydrologist. The yield refers to the recommended abstraction rate and pumping schedule for continued use.
Storativity (S)	The storativity of a saturated confines aquifer of thickness D is the volume of water released from storage per unit are of the aquifer per unit decline in the component of hydraulic head normal to that surface.
Transmissivity (KD & T)	Transmissivity is the product of the average hydraulic conductivity K and the saturated thickness of the aquifer D. Consequently, transmissivity is the rate of flow under a unit hydraulic gradient through a cross-section of unit width over the whole saturated thickness of the aquifer.
Unconfined Aquifer	An unconfined aquifer, also known as a water table aquifer, is bounded below by an aquiclude, but is not restricted by any confining layer above it. Its upper boundary is the water table and is free to rise and fall.
Unsaturated Zone	That part of the geological stratum above the water table where interstices and voids contain a combination of air and water; synonymous with zone of aeration or vadose
Water Table	The upper surface of the saturated zone of an unconfined aquifer at which pore pressure is at atmospheric pressure, the depth to which may fluctuate seasonally.

Abbreviation	Definition
CRD	Cumulative Rainfall Departure
DWA	Department of Water Affairs
DWAE	Department of Water Affairs and Environment
DWAF	Department of Water Affairs and Forestry
EC	Electric Conductivity
GA	General Authorisation
GHT	GHT Consulting
m	Metres
m ³ /a	Cubic metres per annum
m ³ /d	Cubic metres per day
magl	Metres above ground level
mams1	Metres above mean sea level
MAP	Mean annual precipitation
mbgl	Metres below ground level
mm	Millimetres
mS/cm	Milli-siemens per centimetre
mS/m	Milli-siemens per metre
SANS	South African National Standard
SVF	Saturated Volume Fluctuation
TOR	Terms of Reference
WRC	Water Research Commission

1 INTRODUCTION

GHT Consulting was appointed by Wadala Mining and Consulting on behalf of Kimcrush to perform a geohydrological study for the current Kimcrush Dolerite mine. The phases of the project include the following:

Phase 1: Gathering existing information and site assessment

- Perform a desktop study and gather all the project reports and data.
- Natural topography and groundwater flow directions.

Phase 2: Geophysical Survey

The geophysical survey component of the project will encompass the following:

- A GIS aerial magnetic data interpretation will be performed to identify possible dolerite dykes and sills.
- The Kimcrush Dolerite Mine will be geophysical surveyed surrounding the premises by a proton magnetometer (G5)
- Compilation of a Geophysical Report and GIS Locality Maps.

Phase 3: Hydrocensus Study

This section summarises the findings of a Hydrocensus that was conducted during October 2017 to identify the water users and usage within the possible impact zone of the Kimcrush Dolerite Mine. The hydrocensus was therefore divided into three phases, namely:

- A fieldwork investigation;
- Data processing comprising the compilation of GIS MAPS and the capturing of the field information and chemical analyses into the database; and
- Chemical analysis will be done at an Accredited laboratory.

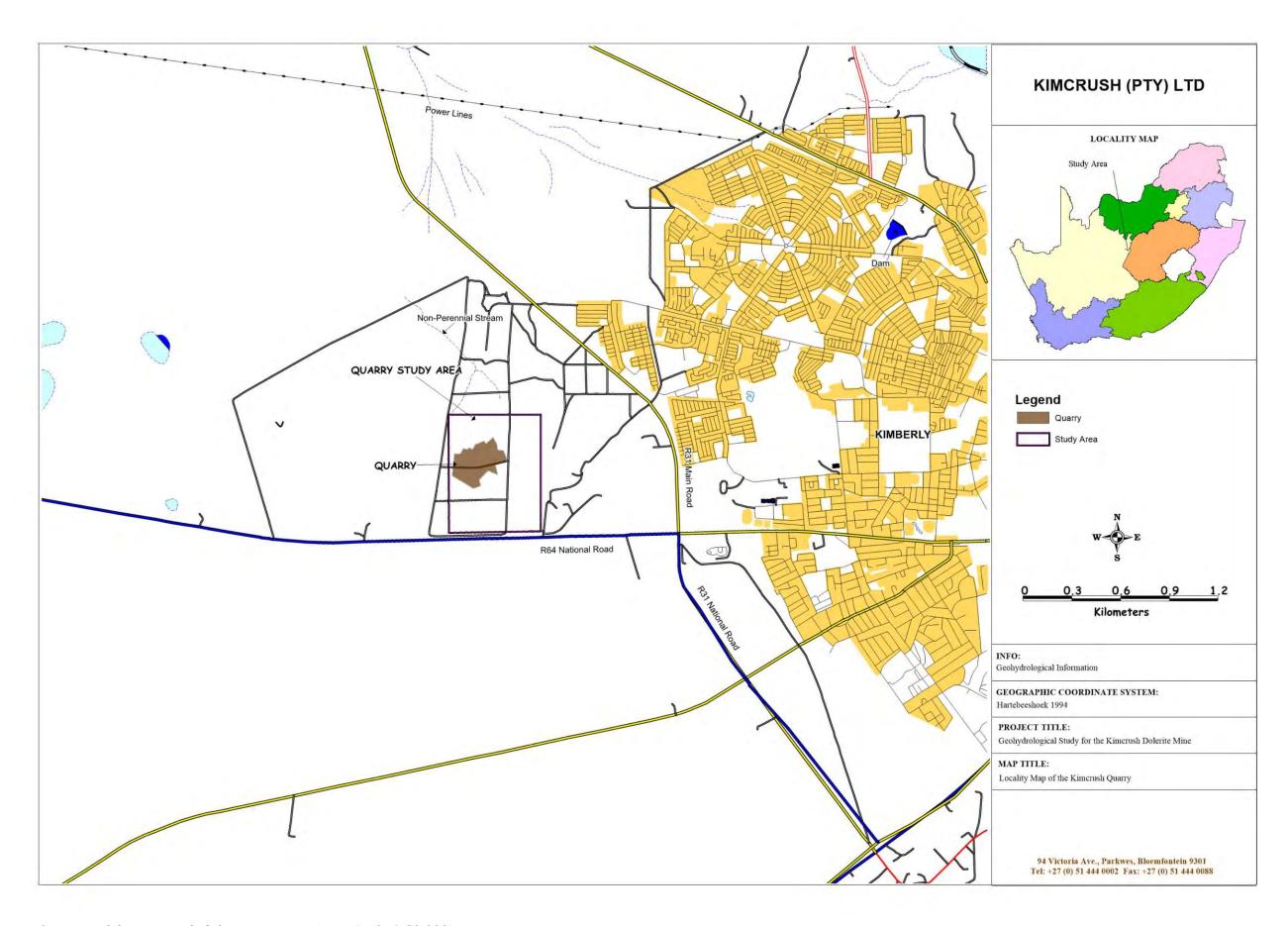


Figure 1. Locality map of the Kimcrush dolerite mine site (Map Scale 1:50 000).

2 PHYSICAL GEOGRAPHY

This section contains the basic information and physical geography of the kimcrush dolerite mine.

2.1 EXTENT OF THE INVESTIGATION

The study area of the Kimcrush dolerite mine site is located in eastern part of the Northern Cape Province on the border between the Northern Cape and the Free State Province approximately 170 km to the west of Bloemfontein. The study area is located in Drainage Area C, Quaternary sub-catchment C91E (Surface Water Resources of South Africa, First Edition, 1994).

The dolerite mine site is situated to the immediate west of Kimberly, approximately 1.5 km from the nearest urban areas.

The extent of the investigation is a comprehensive geohydrological study with surface water components included if applicable to the dolerite mine, which is not the case as the no important or minor surface water sources exist in the vicinity of the dolerite mine site, upstream or down-stream (refer to Figure 1).

2.2 TOPOGRAPHY AND SURFACE DRAINAGE

The topocadastral data and maps can be perused in, Figure 1 and Figure 2. The surface water drainage direction from the dolerite mine is primarily into a north and north westerly direction (refer Figure 2). No important water course is located in the immediate vicinity of the Dolerite mine. The nearest down-gradient non-perennial stream is situated approximately 0.7 km and 3.7 km from the site. The streams are not utilised as a water source for human domestic uses.

The surface geology of the dolerite mine in general consist of Quaternary Deposits (Red Aeolian Dune Sand) and dolerite sills. The surface geology map of the area can be perused in Figure 3.

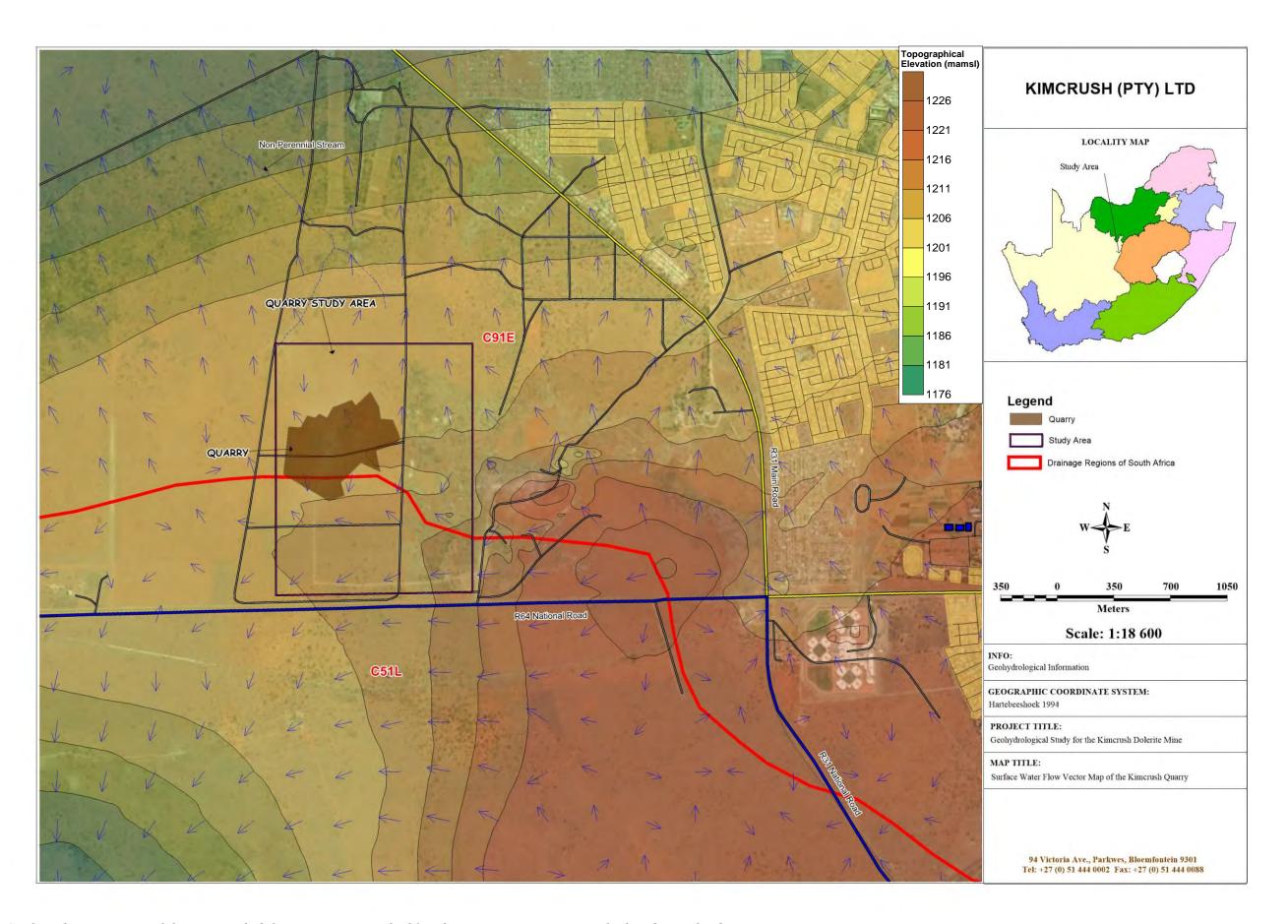


Figure 2. Surface drainage map of the Kimcrush dolerite mine. Note the blue drainage vector arrows, which indicate the drainage patterns.

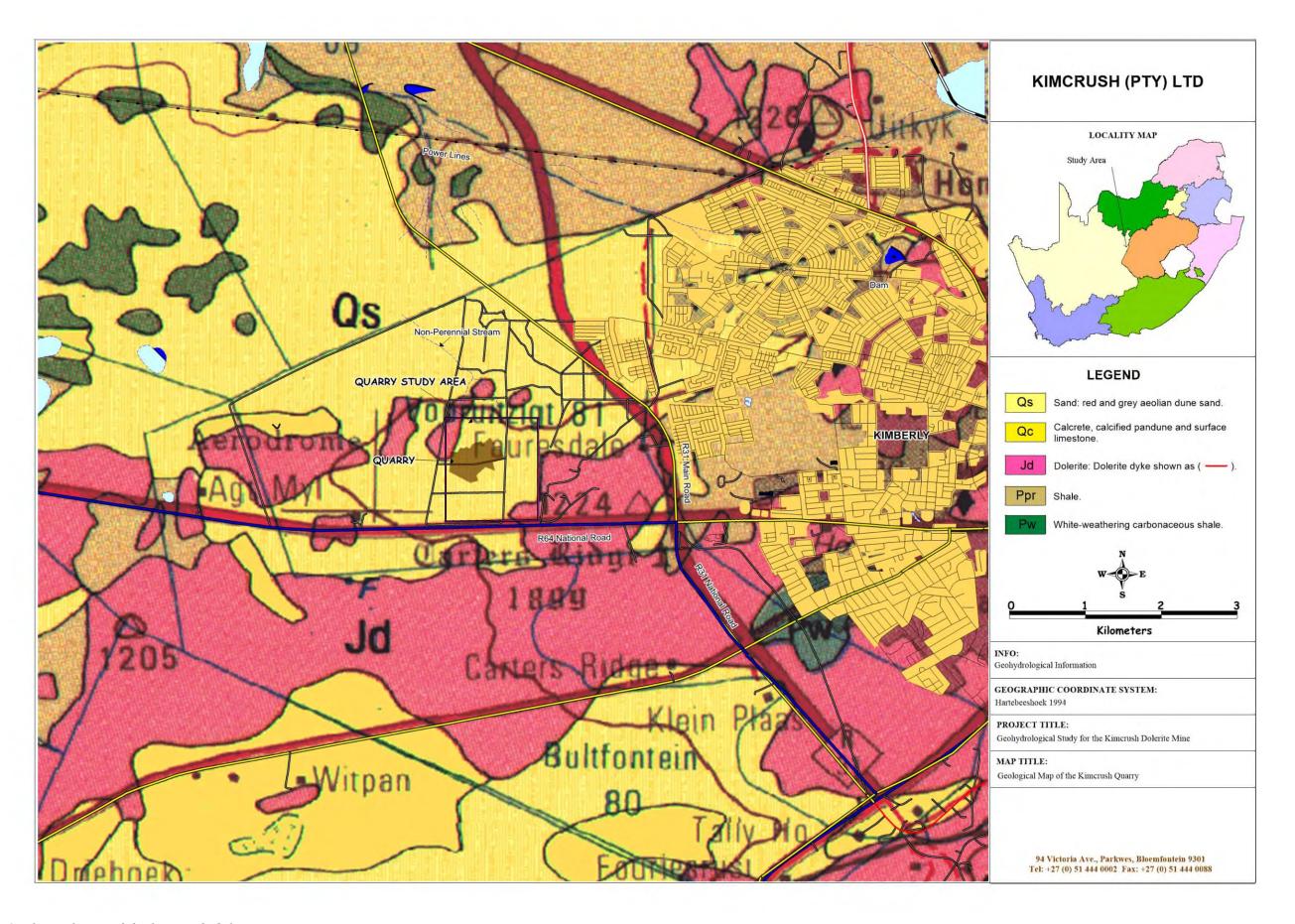


Figure 3. Geological map of the kimcrush dolerite mine site.

2.2.1 Climate

The followings section includes general information regarding the climate of Kimberly, which includes temperatures, wind direction information, rainfall and evaporation records.

2.2.1.1 General Climatic Information

The Kimberly area has a climate characterized by hot summers and cold winters, and has a predominantly summer rainfall. Air temperature ranges from an average maximum of 32 to 34 °C in January to an average minimum of 0 to 2 °C in July (South African Atlas of Agro hydrology and – Climatology, 1997).

The predominant wind directions for Kimberly is as follows (Climate of South Africa, Surface Winds, WS43, 2002):

- Wind direction for January (refer to Figure 5 on page 10): The predominant wind direction is from the north and the minor wind directions is from the north east and north west.
- Wind direction for April (refer to Figure 6 on page 10): The predominant wind direction is from the north and the minor wind directions is from the north east and north west.
- Wind direction for July (refer to Figure 7 on page 11): The predominant wind direction is from the north and the minor wind directions is from the north east and north west.
- Wind direction for October (refer to Figure 8 on page 11): The predominant wind direction is from the north and the minor wind directions is from the south west and north east.

The dominant wind direction for Kimberly is from the north during the year and the minor wind directions depends on the time of the year.

The mean annual precipitation (MAP) for the Kimberly district is 427.3 mm/a (1933 to 2014), which occurs mainly as thunderstorms but soft rains also do occur (Gauging Station Numbers: C9E002 – Newton, Kimberly, C5E007 – Kimberly Airport and C9E005 - Atherton). The yearly rainfall records for Kimberly can be viewed in Table 1 on page 7.

The annual average evaporation (MAE) is approximately 2193.2 mm/a, S-Pan (1933 to 2014), (Gauging Station Numbers: C9E002 – Newton, Kimberly, C5E007 – Kimberly Airport and C9E005 - Atherton). The water balance in the area plays a major role in the possible impacts on especially surface water but also groundwater. It is evident that the evaporation exceeds the precipitation for every month of the year (refer to Figure 4 on page 9). The area thus has a water deficit and a negative water balance. The yearly evaporation records for Kimberly can be viewed in Table 2.

 ${\it Table 1.} \quad {\it The yearly rainfall/precipitation records for the Kimberly district.}$

Vacan							Monthl	y Rainfall	(mm)					Wet Season Total	Wat Cassan
Year 1932	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total Rainfall (mm/a)	Rainfall (mm)	Wet Season
1932	11.9	6.6	26.2	22.4	6.1	1.0	0.0	1.3	0.0	2.3	76.2	35.8 114.3	268.3	102.9	1932 / 1933
1934	111.0	75.9	79.3	85.9	28.7	0.3	6.9	0.0	0.0	51.3	122.4	45.0	606.7	542.6	1933 / 1934
1935	35.6	56.7	62.5	81.0	76.4	15.5	0.0	6.4	9.9	21.6	39.9	67.6	473.1	403.2	1934 / 1935
1936	78.0 101.9	61.5 98.6	103.9 52.1	48.3 13.7	61.0	4.1 0.0	0.8	2.3	40.1 0.0	18.3	160.3 15.2	45.7 73.4	622.0 392.2	399.2 472.3	1935 / 1936
1938	55.6	93.0	29.0	16.0	3.1	10.7	4.3	9.1	3.3	35.1	24.6	57.2	341.0	282.2	1937 / 1938
1939	146.3	93.0	72.1	7.4	15.2	0.5	38.9	31.0	2.3	58.7	53.6	20.3	539.3	400.6	1938 / 1939
1940	56.2	23.1	130.6	15.8	13.7	5.1	5.8	0.0	39.9	45.0	34.8	91.2	461.2	299.6	1939 / 1940
1941	115.6 77.7	203.2 81.5	31.0 131.8	54.9 30.7	16.8	1.5	0.0	2.0	20.8	53.9	21.3	18.8	503.2 603.7	530.7 340.5	1940 / 1941 1941 / 1942
1943	39.1	54.1	67.8	168.4	45.2	0.0	32.8	121.4	0.0	18.3	135.1	113.3	795.5	456.6	1942 / 1943
1944	43.7	23.9	69.1	6.4	14.2	51.6	0.0	0.0	5.1	26.9	38.6	31.5	311.0	391.5	1943 / 1944
1945	48.8	14.7	48.3	11.4	7.4	0.0	17.3	0.0	0.0	5.8	25.9	16.5	196.1	193.3	1944 / 1945
1946	105.4 23.1	74.9	65.5 41.1	45.0 74.4	57.2 21.1	0.8	2.0	3.6	20.3 35.1	31.8 15.8	39.1	28.7 87.6	469.7 371.4	333.2 232.6	1945 / 1946 1946 / 1947
1947	64.8	55.4	205.2	59.4	11.2	0.0	1.0	0.0	0.0	21.6	11.2	8.9	438.7	495.3	1940 / 1947
1949	29.2	6.9	62.7	20.3	8.6	14.7	6.1	7.6	3.8	8.1	28.7	71.9	268.6	139.2	1948 / 1949
1950	51.1	99.6	68.6	133.4	34.5	1.8	0.0	53.9	12.7	7.4	35.8	102.6	601.4	453.3	1949 / 1950
1951	59.2	52.1	139.7	58.2	22.9	3.6	2.3	0.0	7.9	40.1	1.3	41.9	429.2	447.6	1950 / 1951
1952 1953	57.9 16.0	140.5 62.2	34.5 54.4	33.8	10.7	0.0	39.9	4.6 2.8	3.1	23.4 39.9	42.9 59.7	25.2 115.1	423.8 424.9	309.9 261.7	1951 / 1952 1952 / 1953
1954	63.0	113.0	100.6	39.6	18.5	0.0	1.8	0.0	0.5	0.0	27.4	66.8	431.2	491.0	1953 / 1954
1955	114.8	77.0	40.1	71.4	8.1	16.5	4.8	0.0	0.0	21.6	70.1	127.3	551.7	397.5	1954 / 1955
1956	36.1	75.7	167.1	14.2	26.2	0.0	0.0	0.0	16.8	51.8	58.9	69.6	516.4	490.5	1955 / 1956
1957	41.9 116.3	33.6 48.7	30.4	5.1	11.8	0.3	9.3	41.9 0.0	63.3	71.6	55.8 64.8	56.1 90.2	489.1 379.3	312.4 312.4	1956 / 1957 1957 / 1958
1959	100.8	80.4	17.7	47.4	62.9	0.0	12.7	0.3	0.0	32.2	44.4	136.7	535.5	401.3	1958 / 1959
1960	53.6	31.6	79.7	68.7	12.1	6.3	5.9	32.6	0.9	78.1	57.0	26.7	453.2	414.7	1959 / 1960
1961	34.7	9.5	87.1	60.0	23.9	25.8	43.7	6.2	3.6	0.0	125.7	10.9	431.1	275.0	1960 / 1961
1962 1963	51.5 172.1	141.1	83.1 89.6	98.7 81.0	5.0	0.3 4.2	0.6 8.1	0.6	0.9	1.6 27.6	47.4 55.8	34.1 9.9	459.9 475.0	511.0 444.1	1961 / 1962 1962 / 1963
1964	1.2	32.8	61.1	4.2	8.4	25.2	0.0	0.3	5.4	42.8	18.9	32.9	233.2	165.0	1962 / 1963
1965	74.1	7.0	19.8	33.0	0.6	0.9	32.9	3.4	4.2	0.6	12.9	24.8	214.2	185.7	1964 / 1965
1966	139.8	66.4	3.1	11.7	0.3	6.6	0.0	0.0	0.3	4.3	12.3	71.6	316.4	258.7	1965 / 1966
1967	73.5	46.8	73.5	158.7	73.5	2.4	0.0	1.9	2.7	101.7	97.2	35.3	667.2	436.4	1966 / 1967
1968	19.2	5.2 64.1	55.5 45.9	93.3	34.4 16.1	0.6	0.3	0.9 4.3	0.0	30.1	5.4 15.9	30.1	265.7 299.6	305.7 218.2	1967 / 1968 1968 / 1969
1970	12.4	39.8	35.3	27.6	51.2	19.5	20.2	0.9	11.7	46.8	15.6	85.3	366.3	161.1	1969 / 1970
1971	37.2	58.2	66.0	24.0	38.4	15.0	0.0	1.2	0.0	0.0	18.9	15.5	274.4	286.3	1970 / 1971
1972	100.8	18.6	89.9	14.7	0.0	0.0	0.0	0.0	0.0	7.4	19.2	0.0	250.6	258.4	1971 / 1972
1973 1974	22.9 164.9	114.0 223.7	47.4 219.8	33.6 100.8	5.9	0.0	0.0	5.3	0.0	6.2	24.3 15.9	59.5 16.7	470.1 859.7	237.1 793.0	1972 / 1973 1973 / 1974
1975	14.0	9.0	109.7	39.0	17.4	0.0	17.4	0.0	0.0	5.3	50.4	104.5	366.7	204.3	1974 / 1975
1976	148.8	179.8	178.3	60.9	15.5	12.6	0.0	0.0	34.2	151.0	151.0	151.0	1083.1	722.7	1975 / 1976
1977	151.0	151.0	151.0	151.0	151.0	151.0	151.0	151.0	10.8	19.2	40.2	46.2	1324.4	906.0	1976 / 1977
1978	27.3 0.0	56.0 58.2	92.1 37.5	50.1	0.0	0.0	9.9 5.0	13.6 45.0	0.0	0.0 60.5	15.9 45.6	21.1	312.1 385.6	311.9 199.0	1977 / 1978 1978 / 1979
1980	36.0	89.0	91.1	5.0	0.0	0.0	0.0	9.0	10.0	3.0	42.0	14.5	299.6	289.6	1978 / 1979
1981	50.0	159.5	46.5	12.0	2.0	0.0	0.0	38.7	0.0	21.0	28.5	58.0	416.2	324.5	1980 / 1981
1982	0.0	46.0	81.0	47.0	0.0	0.0	33.0	0.0	0.0	50.0	18.0	35.5	310.5	260.5	1981 / 1982
1983	19.0	6.0 32.0	8.0 66.5	25.0 38.5	30.0	6.0	0.0	6.0 28.0	8.0	24.0	26.0 12.0	37.0 0.0	195.0	111.5	1982 / 1983
1984	0.0	29.5	56.0	0.0	2.0	0.0	0.0	0.0	4.0	39.0	37.0	127.0	182.0 294.5	200.0 97.5	1983 / 1984 1984 / 1985
1986	41.2	5.0	34.5	15.0	0.0	4.0	0.0	4.5	24.0	21.0	15.0	13.0	177.2	259.7	1985 / 1986
1987	1.0	87.0	42.0	19.0	0.0	0.0	16.0	0.0	33.0	7.0	85.0	37.0	327.0	177.0	1986 / 1987
1988	3.0	310.0	113.0	112.0	0.0	0.0	0.0	0.0	22.0	12.0	40.0	112.0	724.0	660.0	1987 / 1988
1989	73.0	89.0 58.0	41.0 89.0	40.0 57.0	3.0 15.0	1.0	0.0	2.0	0.0	0.0	27.0 10.4	39.0	287.0 308.9	395.0 253.0	1988 / 1989 1989 / 1990
1991	112.0	121.0	122.0	0.0	0.0	44.0	0.0	0.0	24.0	86.0	26.0	30.0	565.0	404.4	1990 / 1991
1992	2.0	0.0	73.0	3.0	0.0	0.0	0.0	11.0	0.0	4.0	18.0	5.0	116.0	134.0	1991 / 1992
1993	9.0	94.0	49.0	21.0	0.0	2.0	2.0	1.0	0.0	65.0	26.0	31.0	300.0	196.0	1992 / 1993
1994	127.0 99.8	99.2	23.0	0.0	35.0	0.0	0.0	0.0	7.0	0.0 4.0	49.2 93.0	78.0	322.4 431.8	329.2 264.0	1993 / 1994 1994 / 1995
1995	0.0	45.0	6.0	36.0	0.0	0.0	22.0	0.0	6.0	0.0	60.0	73.0	248.0	258.0	1994 / 1993
1997	36.0	38.0	133.0	43.0	46.0	16.0	8.0	0.0	0.0	8.0	0.0	16.0	344.0	383.0	1996 / 1997
1998	51.0	8.0	94.0	13.0	0.0	0.0	13.0	10.0	9.0	40.0	48.0	18.0	304.0	182.0	1997 / 1998
1999	35.0 268.0	0.0 61.0	13.0 230.0	48.0 185.0	84.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	302.0 0.0	546.0 744.0	162.0	1998 / 1999 1999 / 2000
2000	0.0	0.0	0.0	185.0	0.0	0.0	8.0	6.0	59.0	52.0	126.0	61.0	312.0	0.0	2000 / 2001
2002	108.0	10.0	84.0	34.0	39.0	45.0	0.0	53.0	8.0	0.0	59.0	76.0	516.0	423.0	2001 / 2002
2003	22.0	60.0	39.0	34.0	3.0	0.0	0.0	0.0	12.0	13.0	49.0	0.0	232.0	290.0	2002 / 2003
2004	79.0	52.0	62.0	69.0	0.0	0.0	0.0	4.0	37.0	58.0	0.0	55.0	416.0	311.0	2003 / 2004
2005	141.0 126.0	109.0 157.0	42.0 52.0	18.0 53.0	10.0 45.0	8.0 26.0	0.0	26.0	0.0	43.0	26.0 17.0	14.0 33.0	411.0 557.0	365.0 428.0	2004 / 2005
2007	43.0	17.0	15.0	63.0	0.0	12.0	0.0	0.0	2.0	18.0	8.0	93.0	271.0	188.0	2006 / 2007
2008	40.0	48.0	17.0	6.0	84.0	48.0	0.0	0.5	0.0	1.0	0.0	63.0	307.5	212.0	2007 / 2008
2009	126.0	114.0	41.0	1.0	65.0	33.0	27.5	0.5	4.0	22.0	7.0	34.0	475.0	345.0	2008 / 2009
2010	98.0	74.0 36.6	98.0 39.0	39.0	6.0	0.0	9.0	0.0	0.0	5.0	255.0 15.0	255.0 14.5	819.0 168.1	350.0	2009 / 2010
	12.0			0.0	0.0	0.0	9.0	0.0	0.0	3.0	13.0	14.3	100.1	168.1	2012 / 2013
2013	43.0	69.0	31.0	18.0	0.0	2.0	0.0	27.0	0.0	10.0	104.0	3.0	305.0	188.5	2013 / 2014
2013				18.0 40.0	0.0	2.0	0.0	27.0	0.0	10.0	104.0	3.0	305.0 133.0	188.5 120.0	2013 / 2014 2014 / 2015

Table 2. The yearly evaporation records for the Kimberly district.

Year						Mo	nthly Evap	poration, S	S-Pan (mm					Wet Season Total	Wet Season	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total Evaporation (mm/a)	Evaporation (mm)		
1932 1933	298.0	260.1	225.8	150.9	142 0	08.6	109.7	153.2	197.9	277.6	221.3	301.0 252.5	2388.4	1235.8	1932 / 1933	
1933	298.0	178.3	162.0	117.1	142.8	98.6 82.0	86.4	136.9	197.9	277.6	192.3	232.3	1908.3	1139.0	1932 / 1933	
1935	297.2	209.3	169.2	118.1	81.5	67.8	96.0	113.1	161.8	247.1	256.6	282.5	2100.2	1216.5	1934 / 1935	
1936	264.4	216.5	145.5	129.8	86.9	64.0	87.4	116.3	159.5	205.8	235.5	267.2	1978.8	1295.3	1935 / 1936	
1937	222.8	167.1	189.8	124.5	101.6	86.9	91.0	130.1	172.2	253.0	290.8	279.2	2109.0	1206.9	1936 / 1937	
1938	255.3	193.5	182.4	135.9	109.5	81.3	81.5	119.2	186.7	224.8	237.5	257.3	2064.9	1337.1	1937 / 1938	
1939	247.4 254.3	155.9	155.2	134.4	93.0	69.8 71.9	60.7	86.9 120.9	138.2	168.4	194.3	270.8	1775.0	1187.7	1938 / 1939	
1940 1941	243.3	211.1 150.9	165.6 176.3	121.4	85.4 103.4	78.5	86.1 92.7	141.8	130.8 178.8	220.2	239.5 272.1	258.8 306.3	1966.0 2076.6	1217.5 1197.3	1939 / 1940 1940 / 1941	
1942	281.2	196.1	146.6	120.1	89.9	74.2	81.5	116.6	149.9	152.7	215.7	207.3	1831.8	1322.4	1941 / 1942	
1943	233.7	209.8	163.3	111.2	81.3	70.6	65.5	89.7	122.4	194.3	173.3	212.3	1727.4	1304.3	1942 / 1943	
1944	236.0	189.2	172.7	141.2	93.5	69.3	82.1	138.2	160.5	221.0	273.8	305.3	2082.8	1350.6	1943 / 1944	
1945	260.1	214.4	156.0	141.0	102.3	77.7	86.9	125.0	174.3	232.4	260.1	299.0	2129.2	1350.6	1944 / 1945	
1946	237.8	190.8	168.1	110.0	84.1	63.2	80.8	109.9	152.3	192.3	247.4	287.8	1924.5	1265.8	1945 / 1946	
1947	271.5	231.1	177.3	133.4	91.2	69.8	75.1	118.4	129.5	208.5	235.2	231.9	1972.9	1348.5	1946 / 1947	
1948	246.1	193.5 234.4	130.6	106.7 126.5	83.8 96.5	74.2 76.7	82.3 79.7	118.4	156.8 160.8	195.8 215.4	230.6	269.2 251.7	1888.0 2066.5	1144.0 1312.9	1947 / 1948 1948 / 1949	
1950	264.4	200.1	133.8	96.3	81.8	77.0	90.9	91.9	136.1	205.0	245.6	278.2	1901.1	1212.0	1949 / 1950	
1951	263.9	227.3	184.4	132.3	103.1	86.4	93.2	140.7	190.8	249.0	331.0	360.5	2362.6	1595.6	1950 / 1951	
1952	374.4	206.5	214.9	161.3	122.7	86.1	90.7	136.2	180.6	254.5	263.4	321.6	2412.9	1648.6	1951 / 1952	
1953	350.8	209.6	205.8	113.3	108.5	85.4	95.0	121.7	177.8	238.0	262.4	228.8	2197.1	1464.5	1952 / 1953	
1954	272.3	227.3	158.5	141.2	105.4	92.5	108.0	146.8	197.6	279.4	297.2	323.4	2349.6	1290.5	1953 / 1954	
1955	275.8	175.8	189.5	130.3	98.1	71.4	97.0	124.5	193.0	224.3	267.2	252.8	2099.7	1392.0	1954 / 1955	
1956	261.1	197.6	160.6	119.9	98.8	84.3	96.5	145.3	179.1	242.1	238.2	247.4	2070.9	1259.2	1955 / 1956	
1957 1958	280.7 217.0	210.8	205.2	148.5 165.6	125.2 95.2	76.8 77.1	79.1 104.5	124.6 138.6	133.2 176.4	199.0 281.5	288.3 272.7	295.7 304.7	1961.9 2251.3	1125.6 1384.6	1956 / 1957 1957 / 1958	
1958	292.6	176.4	203.2	141.3	86.8	69.0	87.1	126.2	188.4	255.1	261.3	235.0	2121.3	1566.2	1957 / 1958	
1960	289.5	223.9	177.6	122.7	92.1	68.7	85.6	139.2	187.8	230.0	244.2	287.1	2148.4	1310.0	1959 / 1960	
1961	270.9	265.2	169.3	119.7	82.2	64.5	82.8	116.3	194.1	275.3	233.7	303.2	2177.2	1356.4	1960 / 1961	
1962	294.2	161.6	184.8	126.0	98.0	65.4	100.1	150.4	217.5	312.2	289.2	329.8	2329.2	1303.5	1961 / 1962	
1963	206.5	265.4	189.4	132.9	112.8	75.9	79.1	146.9	213.9	218.6	208.2	308.8	2158.4	1413.2	1962 / 1963	
1964	355.0	271.7	213.6	153.3	111.6	80.7	92.1	136.7	198.3	226.0	279.3	261.6	2379.9	1510.6	1963 / 1964	
1965	258.2 276.5	238.0	204.0	124.2 140.4	120.3	69.3	81.5	133.9	170.4 180.6	236.2	237.9	335.1 294.5	2209.0	1365.3	1964 / 1965 1965 / 1966	
1966 1967	240.9	182.6 189.3	236.2 175.2	100.2	93.3	85.2 78.3	107.3 86.5	160.0 127.7	184.8	239.9	288.0	306.6	2305.3 2026.1	1408.7 1288.1	1965 / 1966	
1968	306.0	281.0	150.0	121.2	84.6	72.3	86.5	129.6	193.2	227.9	269.1	297.6	2219.0	1440.7	1967 / 1968	
1969	322.7	226.0	163.1	129.9	88.7	101.7	101.7	131.8	180.3	220.7	288.9	291.7	2247.2	1408.4	1968 / 1969	
1970	315.0	237.4	223.5	153.9	119.0	78.3	90.8	126.5	186.0	225.7	285.6	251.1	2292.8	1510.4	1969 / 1970	
1971	258.2	200.5	210.8	132.6	81.8	78.6	85.3	121.8	193.8	222.6	270.6	306.0	2162.6	1338.8	1970 / 1971	
1972	302.9	241.0	161.5	126.6	96.1	93.0	93.0	127.4	189.9	268.5	288.3	381.0	2369.2	1408.6	1971 / 1972	
1973	351.9	281.1	185.1	129.6	113.2	90.3	98.9	120.9	151.0	243.0	284.4	279.0	2328.4	1617.0	1972 / 1973	
1974 1975	189.7 323.3	159.3 208.9	144.2	100.2	97.7 96.7	66.9	80.9 79.7	96.1 117.2	155.1	227.9 255.4	234.9	315.9 229.7	1868.8 2078.3	1156.8	1973 / 1974 1974 / 1975	
1976	189.1	171.4	137.0	103.5	55.2	54.9	74.7	105.7	136.8	151.0	151.0	151.0	1481.3	1074.9	1974 / 1975	
1977	151.0	151.0	151.0	151.0	151.0	151.0	151.0	151.0	174.0	240.6	335.4	332.6	2290.6	906.0	1976 / 1977	
1978	312.2	255.9	211.1	113.4	115.3	81.9	114.1	131.4	155.4	251.7	302.1	336.7	2381.2	1560.6	1977 / 1978	
1979	342.6	255.1	178.9	147.0	107.9	78.9	81.5	96.4	172.5	219.5	234.6	322.7	2237.6	1562.4	1978 / 1979	
1980	373.9	271.4	160.6	154.1	127.5	88.5	95.5	131.0	163.5	255.0	268.5	338.0	2427.5	1517.3	1979 / 1980	
1981	331.0	206.0	180.5	139.3	102.0	87.0	110.0	119.2	174.5	222.0	282.5	279.5	2233.5	1463.3	1980 / 1981	
1982	330.0 350.0	249.0 238.0	235.5	144.5	223.0 177.5	109.0	78.5 89.5	132.0 128.0	176.4 229.0	229.0	286.5 259.5	315.0	2508.4	1582.1	1981 / 1982	
1983 1984	303.5	272.3	270.9	177.8	164.0	120.5	104.0	153.5	213.0	151.0	292.5	340.0	2547.2 2563.0	1621.6 1588.8	1982 / 1983 1983 / 1984	
1985	307.0	181.5	197.0	153.0	123.0	93.0	105.0	156.5	198.0	239.0	283.0	298.0	2334.0	1471.0	1984 / 1985	
1986	309.2	266.5	219.5	174.0	137.0	107.0	97.0	130.5	175.0	227.0	261.0	388.0	2491.7	1550.2	1985 / 1986	
1987	403.0	224.0	220.5	144.0	136.0	97.0	93.0	128.0	126.0	194.0	234.0	329.0	2328.5	1640.5	1986 / 1987	
1988	310.0	235.8	184.6	179.0	117.0	76.0	90.0	119.0	170.0	205.0	247.0	244.0	2177.4	1472.4	1987 / 1988	
1989	251.5	187.5	211.0	117.0	103.0	79.0	103.0	145.0	165.0	257.3	276.0	268.0	2163.3	1258.0	1988 / 1989	
1990	309.0	226.3	214.0	121.0	90.0	70.5	78.0	111.0	178.0	216.0	207.4	232.5	2053.7	1414.3	1989 / 1990	
1991 1992	208.5 356.5	186.0 330.0	193.0 126.0	118.0 156.0	147.0	76.0 80.0	89.0 103.0	114.0 125.0	143.0 192.0	182.0 236.0	221.0 292.0	249.0 381.0	1926.5 2500.5	1145.4 1438.5	1990 / 1991 1991 / 1992	
1992	391.0	207.0	201.0	150.0	110.0	97.0	100.0	139.0	207.0	226.0	276.0	318.0	2422.0	1438.5	1991 / 1992	
1994	236.0	199.2	190.0	162.0	123.0	96.0	95.0	138.0	198.0	244.0	287.2	355.0	2323.4	1381.2	1993 / 1994	
1995	333.0	295.0	241.5	163.0	90.3	82.5	93.5	149.0	188.0	254.0	301.7	281.5	2473.0	1674.7	1994 / 1995	
1996	284.5	255.5	246.0	161.0	121.0	96.0	88.0	123.5	185.5	243.5	260.0	328.0	2392.5	1530.2	1995 / 1996	
1997	275.5	262.0	181.1	138.7	93.5	77.0	84.0	124.5	176.0	233.5	283.5	318.5	2247.8	1445.3	1996 / 1997	
1998	265.8	194.9	233.0	146.5	111.0	87.5	96.0	114.7	183.0	246.5	282.9	319.5	2281.3	1442.2	1997 / 1998	
1999	277.0	249.5	258.0	191.5	110.3	79.0	103.0	121.0	182.0	236.5	290.0	255.9	2353.7	1578.4	1998 / 1999	
2000	272.5 151.0	228.8 151.0	183.3 151.0	134.0	96.5 151.0	75.0 151.0	85.5 87.0	115.0 105.5	151.0 119.5	151.0 211.0	151.0 234.5	151.0 270.5	1794.6 1934.0	1364.5 906.0	1999 / 2000 2000 / 2001	
2001	304.5	224.0	210.5	151.0	116.0	65.0	73.5	113.5	151.0	227.5	245.5	262.5	2151.5	1402.0	2000 / 2001	
2003	294.0	216.5	209.0	135.5	101.5	78.5	101.5	121.5	195.5	225.0	245.0	330.4	2253.9	1363.0	2002 / 2003	
2004	267.0	224.0	235.0	139.0	117.5	92.5	90.5	111.0	175.5	235.0	272.5	380.0	2339.5	1440.4	2003 / 2004	
2005	255.0	255.0	255.0	255.0	255.0	81.0	92.5	138.0	190.0	233.0	291.2	329.0	2629.7	1672.5	2004 / 2005	
2006	228.7	177.3	184.5	132.9	77.3	82.5	81.0	116.8	171.0	221.0	257.0	321.0	2051.0	1343.6	2005 / 2006	
2007	276.0	257.0	211.6	156.0	97.3	87.0	89.5	128.0	176.9	193.6	225.0	260.4	2158.3	1478.6	2006 / 2007	
2008	270.5	248.5	166.5	130.8	104.5	69.3	81.5	126.5	170.5	226.0	151.0	236.5	1982.1	1301.7	2007 / 2008	
2009	244.5	151.0 210.3	175.5 178.8	141.5 115.5	151.0 95.5	61.5 105.5	66.5 85.5	108.5 116.0	174.8 255.0	228.2	272.5 151.0	318.0 255.0	2093.5 2028.4	1100.0 1323.4	2008 / 2009 2009 / 2010	
2010	255.0	255.0	255.0	255.0	255.0	255.0	255.0	255.0	255.0	255.0	255.0	255.0	3060.0	1323.4	2009 / 2010	
2011	255.0	255.0	255.0	255.0	255.0	255.0	255.0	124.5	177.5	151.0	151.0	233.0	2622.0	1530.0	2010 / 2011	
2013	151.0	271.1	208.0	139.0	125.0	95.5	105.5	151.0	173.5	241.5	296.5	261.5	2219.1	1014.1	2012 / 2013	
2014	269.5	226.0	255.0	135.5	255.0	79.0	96.0	119.5	162.5	238.0	230.0	303.0	2369.0	1444.0	2013 / 2014	
2015	317.0	266.5	210.5	128.5	112.0	78.0	0.0						1112.5	922.5	2014 2015	
	277.1	220.1	191.2	141.0	115.4	86.7	93.5	127.5	175.7	226.7	253.3	287.4	2195.6		1	

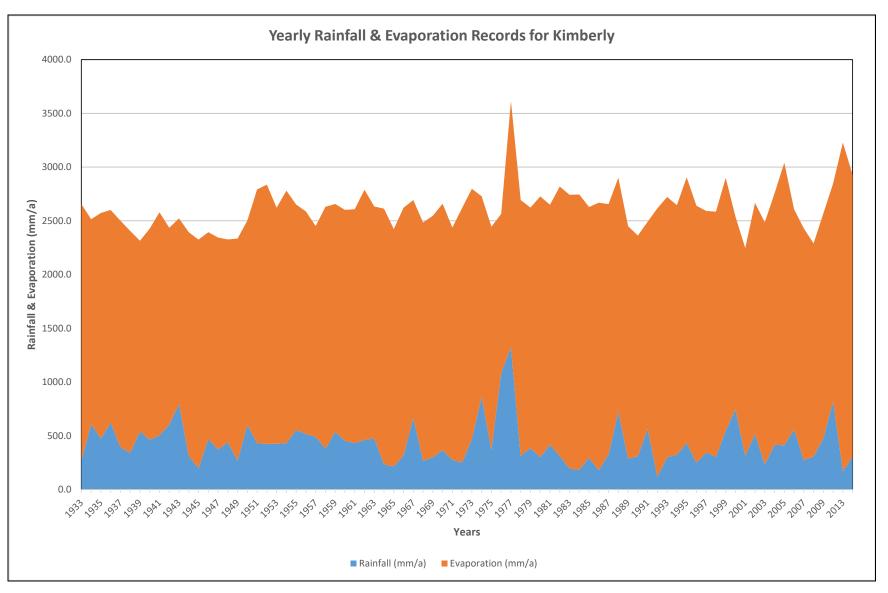


Figure 4. Yearly rainfall and evaporation records for Kimberly. Note that the evaporation exceeds the rainfall and therefore indicate water deficit and a negative water balance.

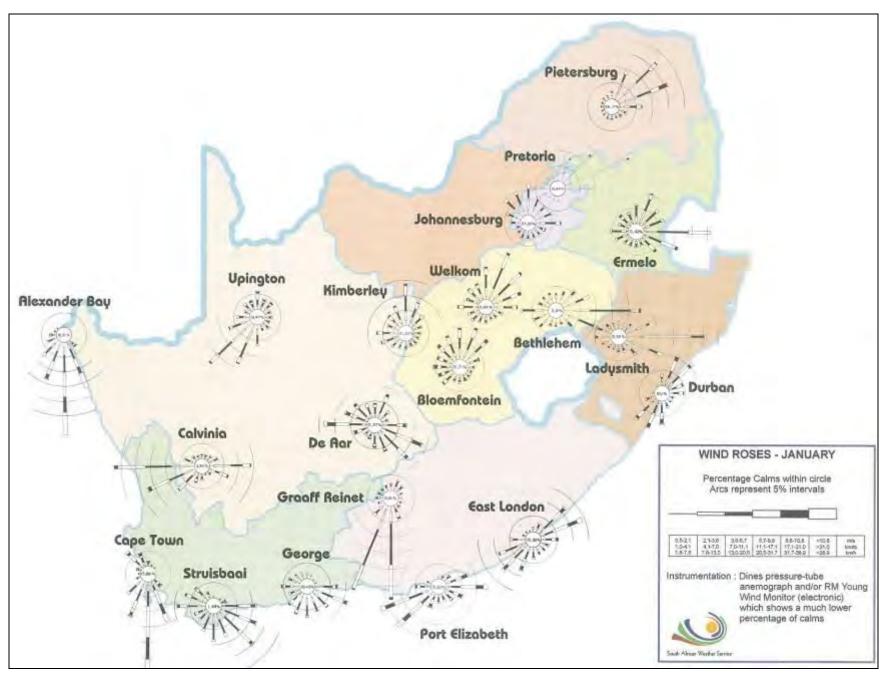


Figure 5. Wind roses for South Africa for the month of January. Note that the wind rose for Kimberly. The predominant wind direction is from the north and the minor wind directions is from the west and north east.

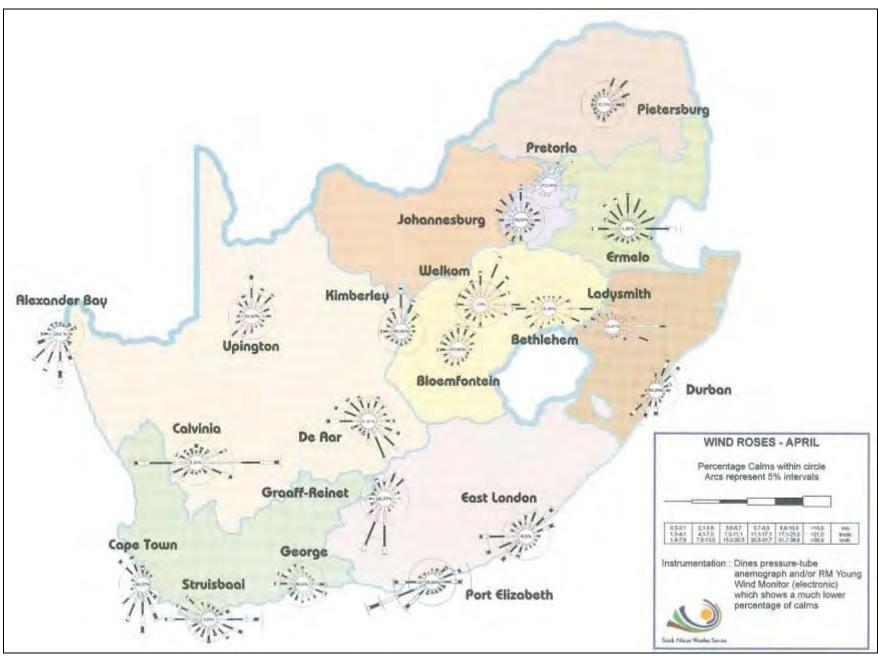


Figure 6. Wind roses for South Africa for the month of April. Note that the wind rose for Kimberly. The predominant wind direction is from the north and the minor wind directions is from the north east and north west.

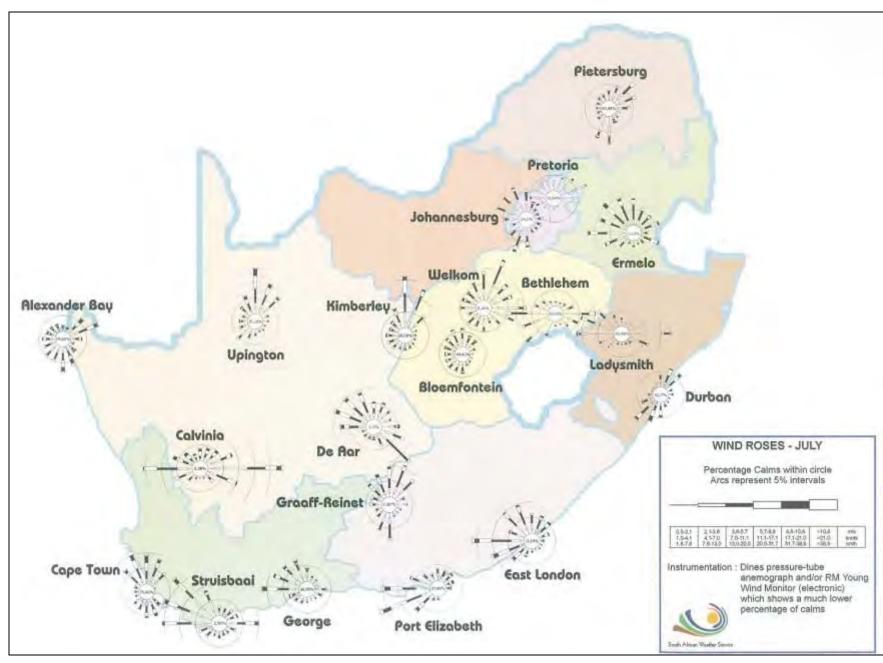


Figure 7. Wind roses for South Africa for the month of July. Note that the wind rose for Kimberly. The predominant wind direction is from the north and the minor wind directions is from the north east and north west.

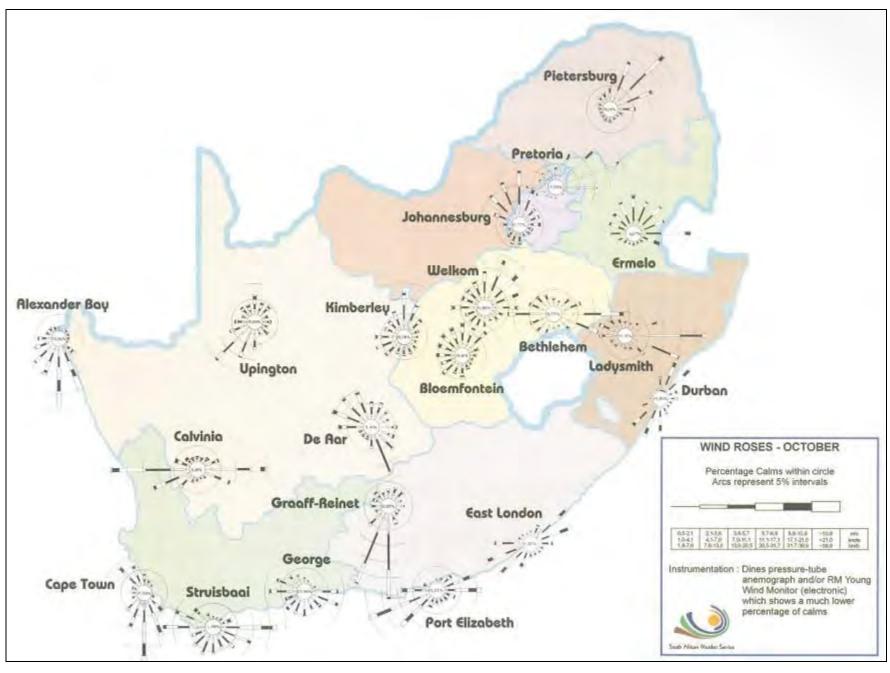


Figure 8. Wind roses for South Africa for the month of October. Note that the wind rose for Kimberly. The predominant wind direction is from the north and the minor wind directions is from the south west and north east.

2.2.2 Vegetation

The existing vegetation description and investigation will be discussed in the EIA section of the application.

3 SUBSURFACE FEATURES

3.1 GEOHYDROLOGICAL BACKGROUND INFORMATION

The geohydrological background information are as follows.

3.1.1 Catchment and Groundwater Management Unit

The Kimcrush dolerite mine site of is located in western part of the Northern Cape Province approximately 160 kilometres to the north west of Bloemfontein. The study area is located in Drainage Area C, Quaternary sub-catchment C91E (Surface Water Resources of South Africa, First Edition, 1994).

3.1.2 General Aquifer Information of the Kimberly District

The following section is based on the Groundwater Resources of South Africa Maps, DWA, 1995 as well as existing information gathered from varies geohydrological-, hydrological- and civil engineering reports when available.

3.1.2.1 Groundwater Table Depth

The groundwater depth in the study area is approximately 10 - 20 mbgl according to the DWA map, refer to Figure 9. However actual measured values by GHT consulting during a geohydrological investigation at the Kimberley landfill site suggests that static water level is between 6.43 – 16.14 mbgl (GHT Consulting Scientists Report no RVN730.1/1570)

3.1.2.2 Aquifer Classification

The aquifer of the dolerite mine site area is classified as a minor aquifer according to the Aquifer Classification Map of South Africa (refer to Figure 10 on page 15).

3.1.2.3 Recharge to Aquifer

The mean annual recharge of the area is between 15 - 25 mm/a and on average 20 mm/a (refer to Figure 11 on page 16). The Vegter recharge maps estimates the recharge as 20 mm/a (Vegter, 1995, refer to Figure 12 on page 17). The DWA and Vegter data estimates the recharge percentage as 4.68% of MAP for the Kimberly district.

3.1.3 Drilling Depths and Success Rates

In general the recommended drilling depths below water level are < 20 meters for the study area. Fractures restricted principally to a zone directly below groundwater level that consist of compacted sedimentary rocks intruded by Jurassic Jura age intrusive dolerite sills and to a lesser extent dykes structure. Storage coefficient in order of magnitude for the study area is < 0.001 for the sedimentary rocks. The qualitative indication of spatial distribution of storage media based on drilling success rate for the area is 40 - 60%. (Groundwater Resources of South Africa Maps, DWA, 1995).

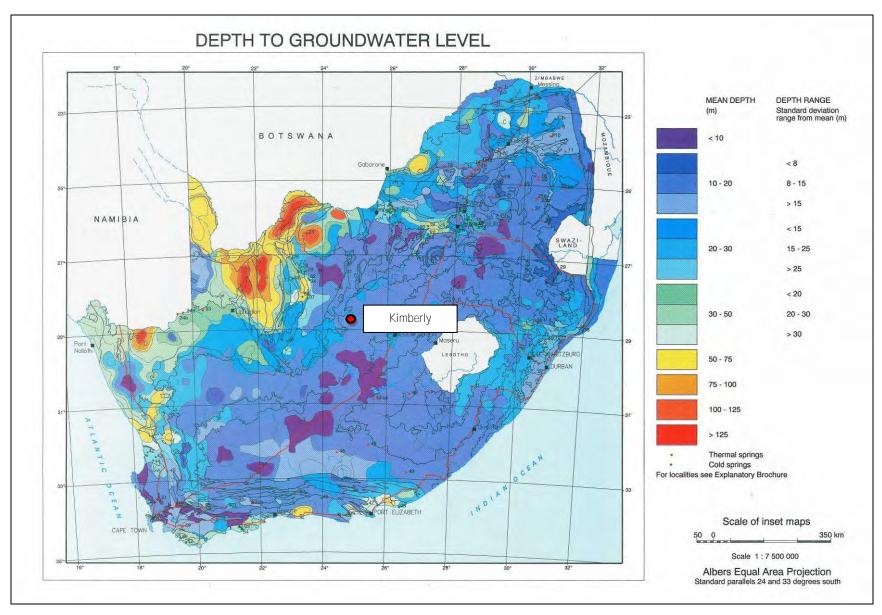


Figure 9. Depth of groundwater level (adapted from the Groundwater Resources of South Africa Map, DWA, 1995)

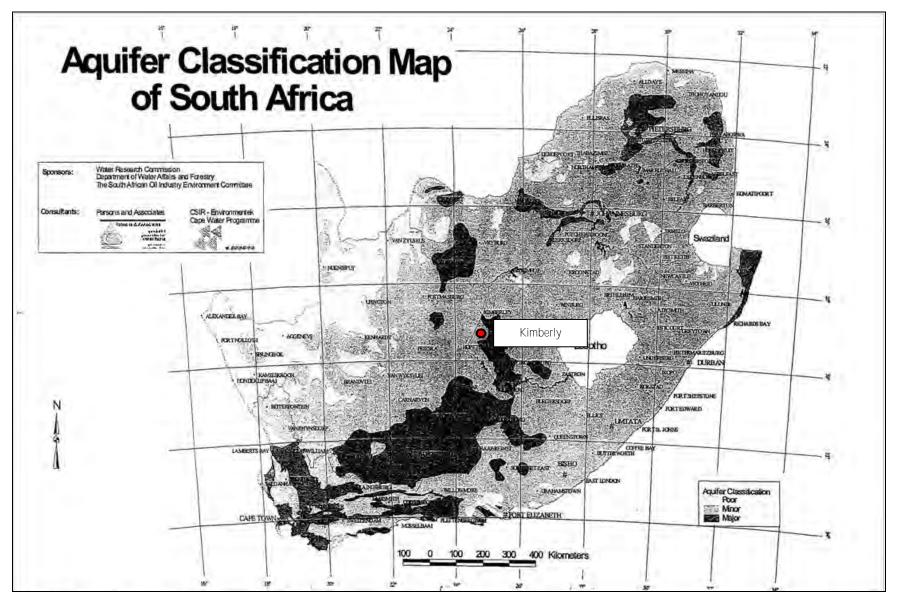


Figure 10. South African Aquifer Classification Map. Kimberly is situated on a minor classified aquifer.

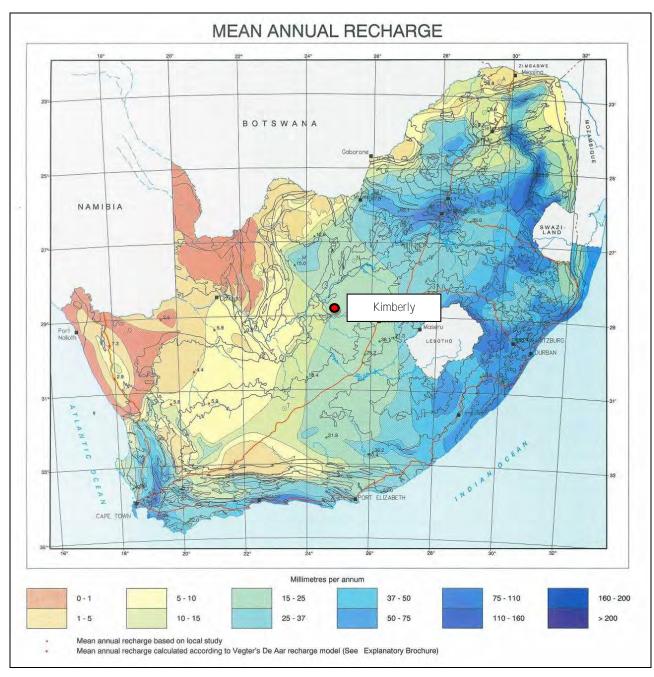


Figure 11. Mean annual recharge (adapted from the Groundwater Resources of South Africa Map, DWA, 1995).

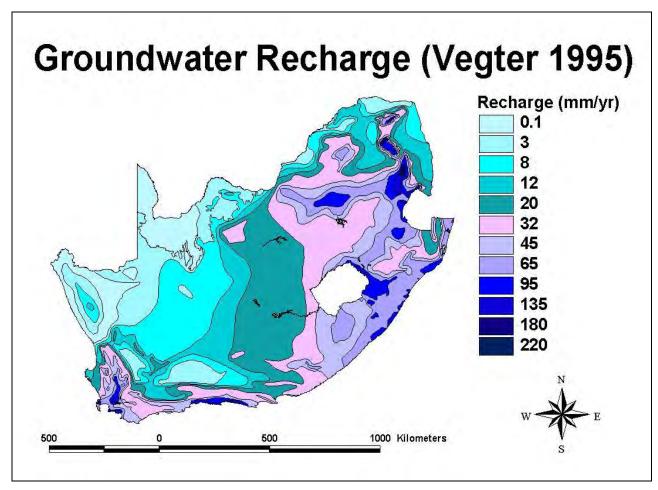


Figure 12. Groundwater recharge estimation map (Vegter, 1995).

3.2 GEOPHYSICS AND MAP INTERPRETATIONS

This section includes the results of geophysical investigation for the Kimberly General landfill Site.

3.2.1 Map Interpretations

The following section includes the interpretation of the aerial photo map, geological map and the aerial magnetic intensity map.

3.2.2 Aerial Magnetic Intensity Map Interpretation

Airborne magnetic surveys can encompass large areas in a relatively short period of time, using helicopters or low flying aircraft trailing a magnetometer. Although these surveys do not have the same spatial resolution of ground surveys, they are invaluable for tracing larger structural features, and especially major dyke intrusions into the Karoo sediments. The entire Karoo basin has been covered by aeromagnetic surveys, which were carried out on behalf of the Council for Geoscience and are available on digital format.

Airborne magnetometers all measure the total magnetic field and are of two main types, fluxgate magnetometers and proton magnetometers. The fluxgate magnetometer which measures the field relative to a selected datum uses two systems of coils, one, much as in ground magnetometers, measures the relative field, while the second system of coils together with associate electronics and motor driven gimbals maintains the measuring coil in the

direction of the total magnetic field irrespective of aircraft heading and attitude. The proton magnetometer measures the absolute value of the total field and needs no sophisticated orient mechanism. Proton magnetometers are favoured in most recent installations. There are other more sensitive magnetometers used in petroleum surveys. The sensing head of the magnetometer is either carried in an extended "stinger" on the tail, mounted on the wingtip or is towed in a "bird" to keep the measuring elements away from the magnetic influence of the aircraft.

Magnetic data is recorded continuously during flight on a paper recorder, magnetic tape or electronically. The flight path of the aircraft is recorded by photographing the ground traversed with a special 35 mm camera. Numbered timing marks, known as fiducials, are recorded on both the film and on the paper record (or magnetic tape) on which the magnetic data appears. A radio altimeter records the aircraft height above ground and feeds height information to the pilot. The aircraft is navigated with the aid of existing aerial photographs, large scale maps or by using electronic navigational aids. The sensitivity of the airborne magnetometers is in the order of 0.5 to 1 nT.

The available aerial magnetic data available for the study area is of a low resolution (refer to Figure 13). No dolerite sill or dyke structures could be discerned directly from the aerial magnetics data.

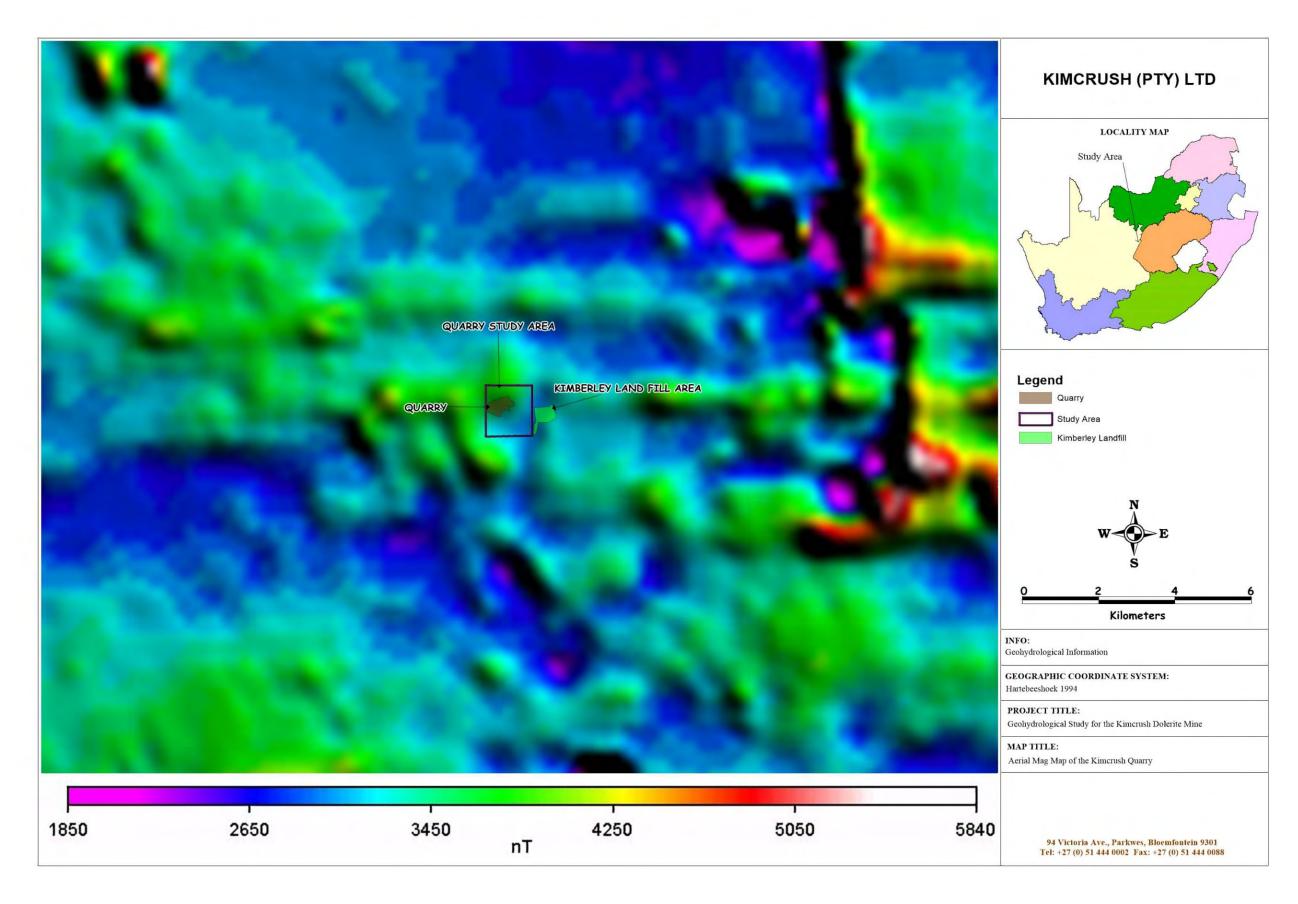


Figure 13. The locality map of the aerial magnetic intensity data for the Kimberly district. Note that the aerial magnetic data and contours are too rough in nature for local interpretation at the Kimcrush dolerite mine.

3.2.3 The Magnetic Method

The magnetic geophysical method proved an effective method for the detection of dolerite structures, which includes dykes and sills.

The normal magnetic field of the earth can be visualised as a field of a bar magnet placed at the centre of the earth. Any changes in this "normal" magnetic field superimposed by dykes, for example, can be measured by a magnetometer. These measurements (changes) in magnetism can then, through the process of modelling, be interpreted in terms of the dip, strike, depth and width of the body that causes the anomaly. Since these geological magnetic features might be remnant (i.e. permanently) magnetised, a feature, which is normally not known to the modeller, no unique solution of the model exists. By making certain reasonable assumptions about the geology, restrictions can be placed on some of the geological features of the body. The magnetic method is an extremely useful method to map of dykes, which are good groundwater exploration targets.

3.2.3.1 Results of the Field Geophysical Survey and Borehole Siting

A geophysical field survey was conducted around the Kimcrush Dolerite Mine Site. The survey included three (3) magnetic traverse lines. The geophysical traverse charts can be viewed from Figure 15 to Figure 17.

The description of the geophysical traverses of the field survey around the dolerite mine site are as follows.

- Traverse line 01 (refer to Figure 15): The traverse was conducted from south east to north west. The variability of magnetic intensity data indicate the presence of the underlying dolerite sill.
- Traverse line 02 (refer to Figure 16): The traverse was conducted from south west to north east. The variability of magnetic intensity data indicate the presence of the underlying dolerite sill.
- Traverse line 03 (refer to Figure 17): The traverse was conducted from west to east. The variability of magnetic intensity data indicate the presence of the underlying dolerite sill.
- In the general the geophysical survey and geological field observations confirmed the presence of the underlying Karoo intrusive, which in this case is a magmatic dolerite sill.

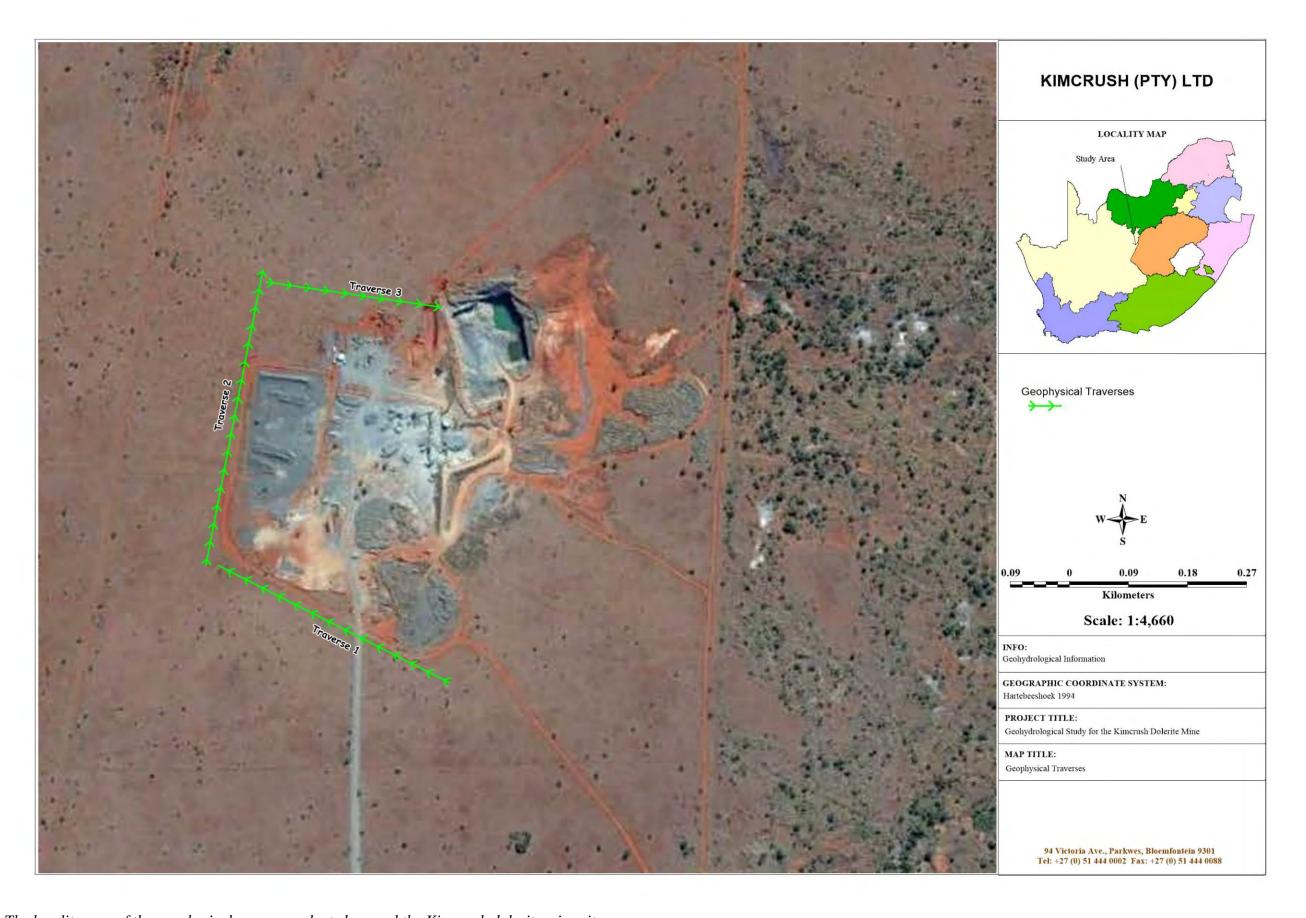


Figure 14. The locality map of the geophysical survey conducted around the Kimcrush dolerite mine site..

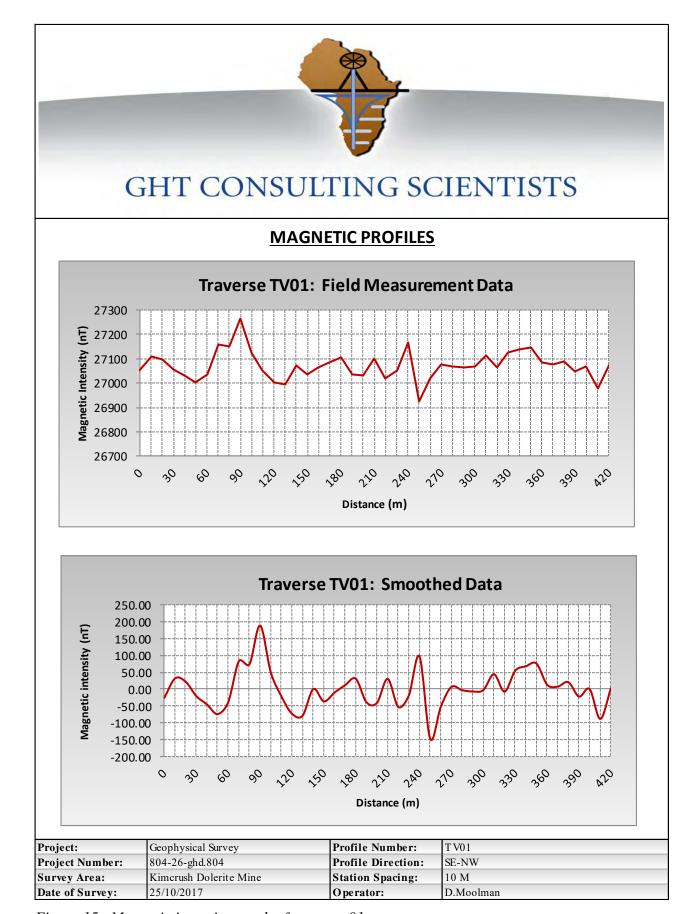


Figure 15. Magnetic intensity graph of traverse 01.

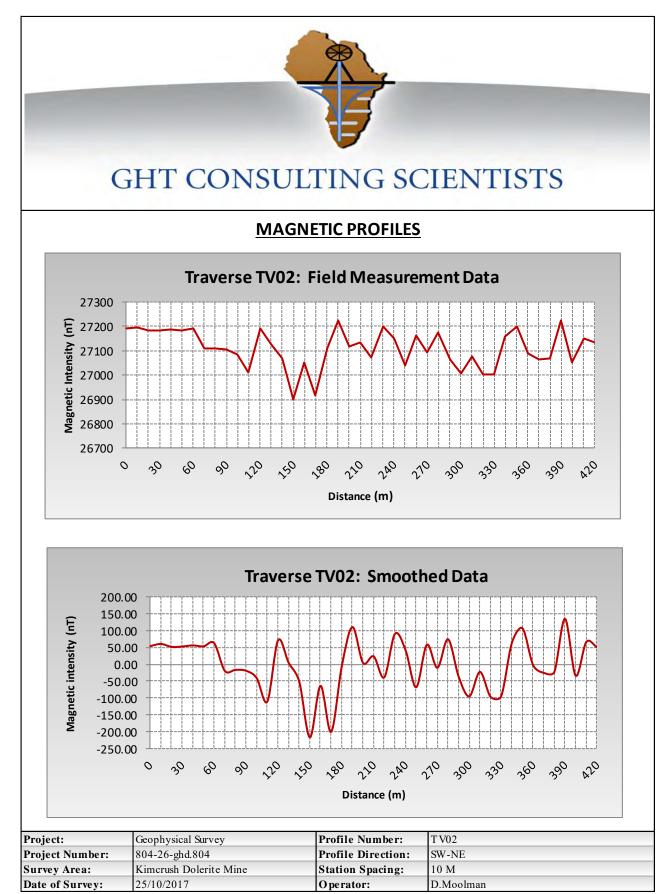
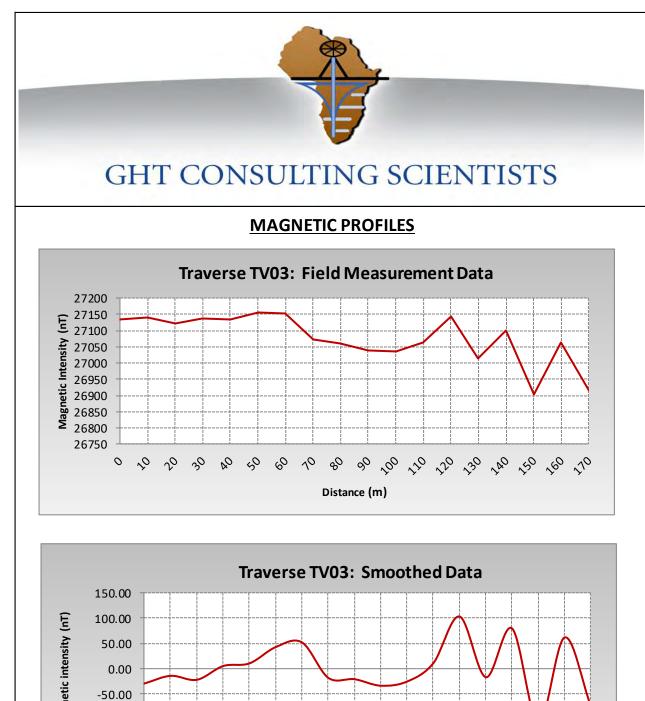



Figure 16. Magnetic intensity graph of traverse 02.

	150.00		T	<u>-</u>	T	T		T T		<u>-</u>	TT	T
(nT)	100.00				 			ļ <u>.</u>		\	-	
Magnetic intensity (nT)	50.00		╂			-		ļļ	/	+	4	$ \wedge$
inter	0.00					$\overline{}$				$-\bigvee$		+
netic	-50.00		 		 							
Mag	-100.00				 			ļļ			\	/
	-150.00	i	.ll.	İ	<u> </u>	İ	İ	İİ	İİ	<u>İ</u>		
	0	20 J	0 30	NO 2	0 60	10	do d	,00,0	20 20	130	NO 150	260 270

Project:	Geophysical Survey	Profile Number:	T V03
Project Number:	804-26-ghd.804	Profile Direction:	W-E
Survey Area:	Kimcrush Dolerite Mine	Station Spacing:	10 M
Date of Survey:	25/10/2017	Operator:	D.Moolman

Figure 17. Magnetic intensity graph of traverse 03.

3.3 GEOLOGY

The following section includes the geological information of the general district geology.

3.3.1 Stratigraphy and Lithology

This section has been adapted from the Hydrogeology of the Main Karoo Basin, WRC Report No. TT179/02 as well as the Geological Survey Map, 2824 Kimberly, 1:250 000 Series.

The lithostratigraphy of the Kimcrush dolerite mine area consists of the Karoo Supergroup Geology Group including Sub-Groups and Formations as well as Surficial or Quaternary Deposits on the surface and Karoo Dolerite Intrusive of the Jurassic Jura age. The lithology can be described as follows:

• Ecca Group:

- Prince Albert Formation: __grey shales (Geological Survey Map, 2824 Kimberly, 1:250 000 Series).
- Late Tertiary Surficial or Quaternary Deposits: Red and grey aeolian dune sand (Geological Survey Map, 2824 Kimberly, 1:250 000 Series).
- **Dolerite Intrusives (Jurassic Jura Age):** The dolerites of the landfill area consist of intrusive sills (Geological Survey Map, 2824 Kimberly, 1:250 000 Series).

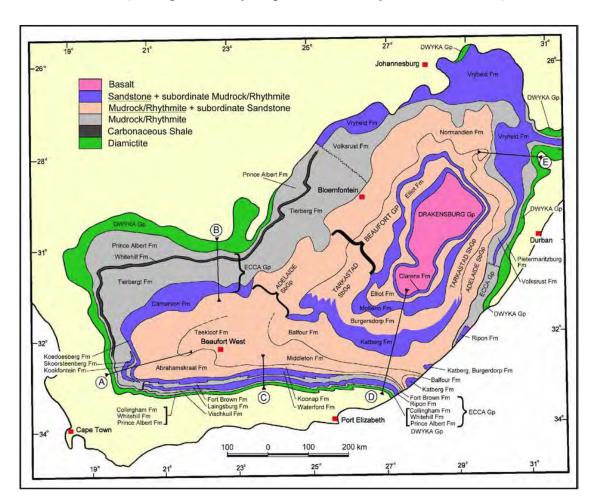


Figure 18. Schematic areal distribution of lithostratigraphic units in the Main Karoo Basin (after Johnson et al., 1997).

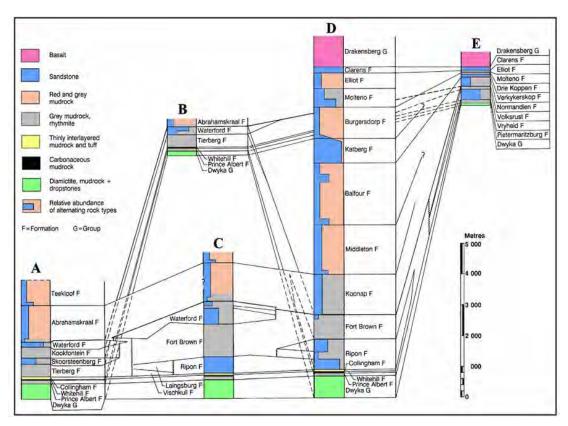


Figure 19. Generalised stratigraphy and lithology of the Karoo Supergroup of the Main Karoo Basin (Johnson et al., 1997).

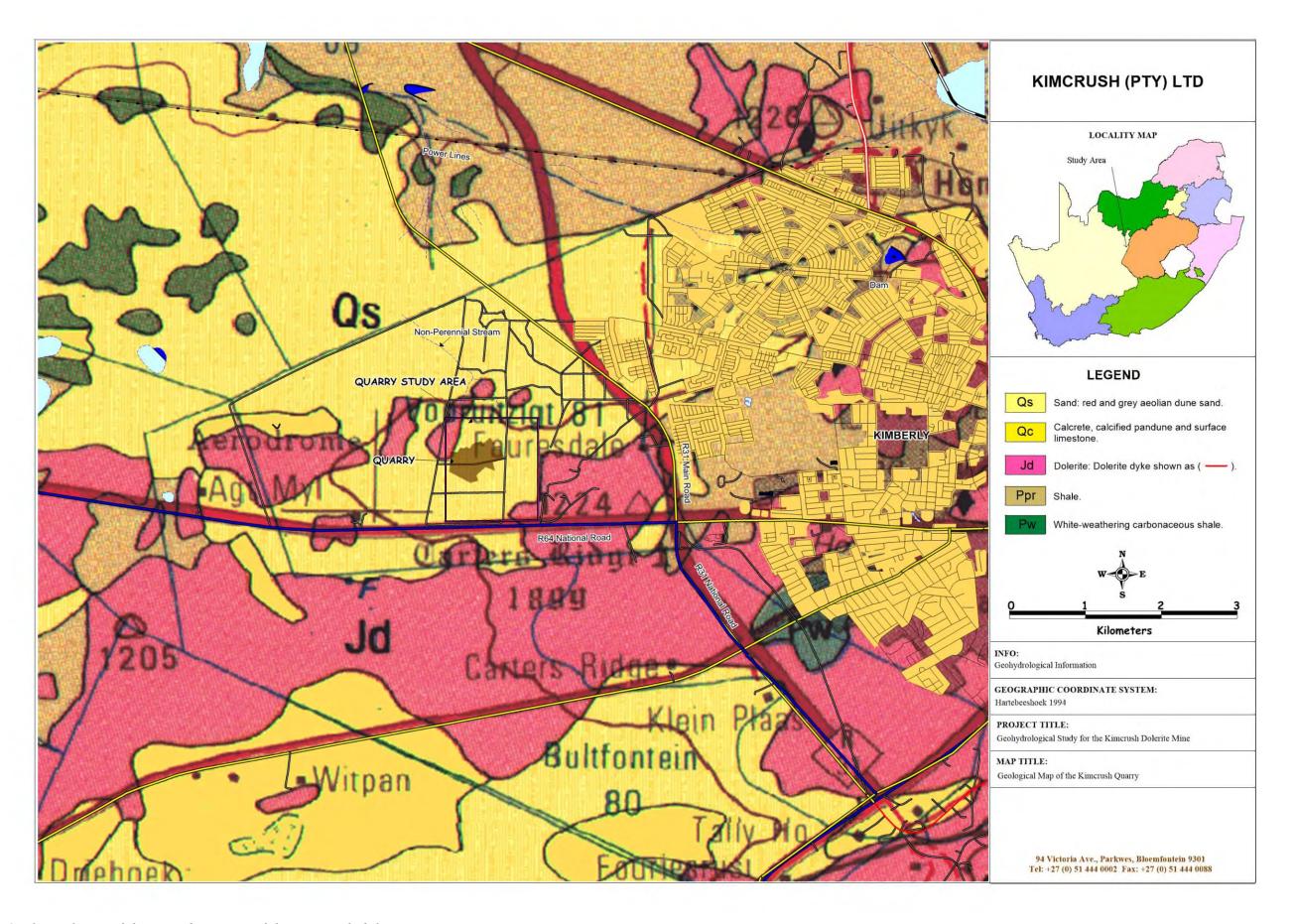


Figure 20. Geological map of the immediate area of the Kimcrush dolerite mine site.

3.3.1.1 Ecca Group Geology

The Permian-aged Ecca Group comprises a total of 16 formations, reflecting the lateral facies changes that characterise this succession. Except for the fairly extensive Prince Albert and Whitehill Formations, the individual formations can be grouped into three geographical zones, the southern, western – north western and north eastern.

The basal sediments in the southern, western and north western zones (Prince Albert and Whitehill Formations) of the basin will first be described, followed by the southern Collingham, Vischkuil, Laingsburg, Ripon, Fort Brown and Waterford Formations. The remaining western and north western sediments of the Tierberg, Skoorsteenberg, Kookfontein and Waterford Formations and the north eastern Pietermaritzburg, Vryheid and Volksrust Formations will then be considered. In addition, a relatively small area along the eastern flank of the Basin, between the southern and north-eastern outcrop areas, contains 600 - 1000 m of undifferentiated Ecca mudrock, which has not yet been studied in detail.

3.3.1.1.1 Prince Albert Formation (Lower Ecca)

The Prince Albert Formation is confined to the south-western half of the Karoo Basin (refer to Figure 18). Towards the northeast it thins and locally pinches out against the basement or merges with the Vryheid and/or Pietermaritzburg Formations. Along the western and southern outcrop belt its thickness is highly variable (40 - 150 m), while borehole data indicate a maximum thickness of up to 300 m (Veevers et al., 1994).

It is possible to recognise a northern and a southern facies in the Formation. The northern facies is characterised by the predominance of greyish to olive-green, micaceous shale and grey, silty shale, as well as a pronounced transition from the underlying glacial deposits. Darkgrey to black carbonaceous shale and fine- to medium-grained feldspathic arenite and wacke are also present. The southern facies is characterised by the predominance of dark-grey, pyrite-bearing, splintery shale, siltstone and the presence of dark-coloured chert and phosphatic nodules and lenses.

The shale represents suspension settling of mud and the siltstone represents turbidites (Visser, 1991), whereas the arenite and wacke in the northern part of the basin are probably the result of deltaic sedimentation (refer to Figure 21), (Cole and McLachlan, 1991). The lower part of the formation was deposited following final melting of the Dwyka ice-sheets (Visser, 1997) and the presence of marine invertebrate fossils and phosphorite are indicative of marine conditions (Visser, 1992) at least in the lower part (Veevers et al., 1994).

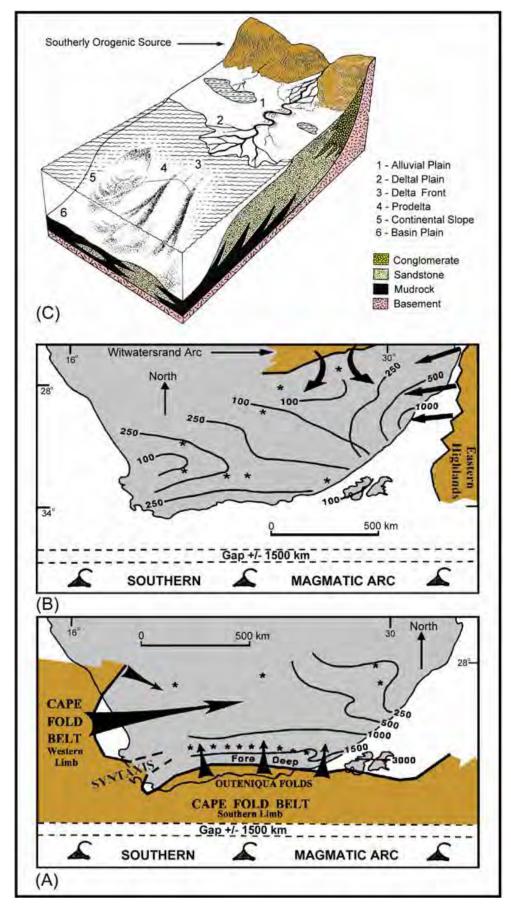


Figure 21. (A) Source areas for the Southern and Western Ecca Formations, (B) and the northern Pietermaritzburg, Vryheid and Volksrust Formations (after Cole, 1992). (C) Depositional environment of the Ecca Group in the southern Karoo trough (after Smith et al., 1993 and Wickens, 1994).

3.3.1.2 In the Intrusive Karoo Dolerite

Towards the end of the Cape Orogeny a thermal dome uplift developed beneath almost the entire South African continent. Dolerite intrusions represent the roots of the volcanic system and are presumed to be of the same age as the extrusive lavas (Fitch and Miller, 1984). Extensive magmatic activity lead to dolerite dykes, inclined sheets and sills to intrude the sedimentary rocks of the Karoo Supergroup during the Jurassic period to the north of the compressional sphere of the Cape Fold Belt. The level of erosion that affected the Main Karoo basin has revealed the deep portions of the intrusive system, which displays a high degree of tectonic complexity. The Karoo intrusives can either occur as dykes (linear features), sills (horizontal or inclined sheets) or ring-complexes. The Karoo dolerite, which includes a wide range of petrological facies, consists of an interconnected network of dykes and sills and it is nearly impossible to single out any particular intrusive or tectonic event. It would, however, appear that a very large number of fractures were intruded simultaneously by magma and that the dolerite intrusive network acted as a shallow stockwork-like reservoir.

Early mapping of the dolerite intrusives was carried out by Rogers and Du Toit (1903) in the Western Cape and Du Toit (1905) in the Eastern Cape. Further contributions on their tectonic and structural aspects include Du Toit (1920), Mask (1966) and Walker and Poldervaart (1949). More recently the Geological Survey has published most of the 1:250 000 maps of the entire Karoo Basin. Detailed mapping of dolerite occurrences at specific localities in the

In the study areas sills are the most abundant dolerite appearance and may be horizontal or slightly inclined. Geophysical data indicated also the presence of dyke structure although very few in number.

3.3.1.3 Geometry, Structure and Mechanism of Emplacement of Dolerite Dykes

Dolerite dykes are the primary targets for groundwater exploration and it is therefore important to understand the geometry, structure and mechanisms of emplacement.

Emplacement Mode: Dolerite dykes, like many other magmatic intrusions, develop by rapid hydraulic fracturing via the propagation of a fluid-filled open fissure, resulting in a massive magmatic intrusion with a neat and transgressive contact with country rock. This fracturing mechanism is in contrast to the slow mode of hydraulic fracturing responsible for breccia-intrusions (i.e. kimberlite). For the intrusion to develop the magma pressure at the tip of the fissure must overcome the tensile strength of the surrounding rock. Dykes can develop vertically upwards or lateral along-strike over very long distances, as long as the magma pressure at the tip of the fissure is maintained. The intrusion of dolerite and basaltic dykes are therefore never accompanied by brecciation, deformation or shearing of the host-rock, at least during their propagation.

Dyke Attitude: All the dykes are sub-vertical with a dip rarely below 70 degrees. Kruger and Kok (1976) reports dips of dykes in the north eastern Free State varying between 65 to 90 degrees. The attitude of dykes often change with depth (i.e. are curved or dislocated), as observed from many detailed borehole logs. This phenomenon can be attributed to vertical offsetting as a result of vertical en-échelon segmentation or due to interconnecting of dykes between sediment layers.

Dyke Width: The average thickness of Karoo dolerite dykes ranges between 2 and 10 m (Woodford and Chevallier, 2001). In general, the width of a dyke is a function of its length. In other words, the wider a dyke is, the longer it will be (this probably also applies to the

vertical extension of the feature). For example, the major E-W dykes of Western Karoo Domain can attain widths of up to 70 m, while the Middelburg dyke is 80 m wide. The radiating E-W dykes of Eastern Karoo have widths of up to 300 m in places. No relationship has been found between trend and thickness (Woodford and Chevallier, 2001).

En-échelon Pattern: Dolerite dykes often exhibit an en-échelon pattern along strike, which are clearly detected by mapping. This is especially the case with the E-W shear dykes and their associated riedel-shears. Displacements in the vertical section also occur, often associated with horizontal, transgressive fracturing. These offsets are often observed, except through drilling.

Dyke Related Fracturing: The country rock is often fractured during and after dyke emplacement. These fractures form a set of master joints parallel to its strike over a distance that does not vary greatly with the thickness of the dyke (between 5 and 15 m). The dolerite dykes are also affected by thermal- or columnar- jointing perpendicular to their margins. These thermal joints also ex tends into the host rock over a distance not exceeding 0.3 to 0.5 m from the contact. Van Wyk (1963) observed two types of jointing associated with dyke intrusions in a number of coal mines in the Vryheid Dundee area, namely:

- Three sets of pervasive-thermal, columnar joints that are approximately 120 degrees apart; and
- Joints parallel to the contact, confined mainly to the host rock alongside the dyke.

Many cases of tectonic reactivation of the dolerite have been observed in the Loxton-Victoria West area (Woodford and Chevallier, 2001), especially on the N-S dykes that have been reactivated by cretaceous kimberlite activity or by more recent master jointing. Reactivation often results in sub-vertical fissures within the country rock and/or dyke itself, which are commonly highly weathered and filled with secondary calcite / calcrete (width of up to 150 mm) uplifting or brecciation of the sediment along the dyke contact. Deformation and Contact Metamorphism of Host Rock: Localised upwarping of the country rock is often observed adjacent to dipping dykes. Hydraulic fissure propagation, as mentioned above, cannot be responsible for this phenomena, as the magma would have to be cool and become viscous in order cause such deformation. This upwarping of the country rock is commonly a near-surface phenomenon related to supergene formation of clays with a high expansion coefficient resulting in the 'swelling' of rock mass. In nearly every case, the dolerite magma shows marked chilling against the sediments into which it has been injected. The chill zone generally exhibits the effects of contact metamorphism, where argillites are altered to hornfels or lydianite and arenaceous units are crystallised to quartzite. Enslin (1951) and Van Wyk (1963) state that the jointed contact zone is less than 30 c wide, irrespectively of dyke thickness.

Petrography and Dyke Weathering: The effect of variable cooling of dykes following intrusion is also apparent in the way which dykes weather in the Western Karoo, namely:

• Thick dykes (>8 m) generally exhibit a prominent chill-margin containing a fine grained, porphyritic, melanocratic dolerite that weathers to produce well-rounded, small, white-speckled boulders (i.e. spheriodal weathering). This zone is normally only 0.5 to 1.5 m wide and exhibits well-developed thermal-shrinkage joints. The central portion of such dykes consist of medium to coarse grained, mesocratic and occasionally leucocratic dolerite that decomposes to a uniform 'gravely' material, which exhibits an exfoliation type of pattern. Sporadic fractures or meta-sedimentary veins are encountered in this zone and they often do not extend into the country rock. Magnetic traverses across these features normally produce two distinctive peaks.

Thin dykes (<3 m) commonly consist of fine-grained, porphyritic, melanocratic dolerite (Vandoolaeghe, 1979). These tend to be more resistant to weathering than the thicker dykes and in outcrop exhibit a uniform pattern of shrinkage-joints. The dyke weathers to produce small rounded, white-speckled boulders set in finer angular groundmass.

3.3.1.4 Geohydrological Implications of Geology

This section describes the general geohydrological implications of Karoo geology in terms of the sedimentary rocks and the younger intrusive dolerites.

3.3.1.5 Sediments

Van Wyk (1963) and Vegter (1992) state that the porosity and permeability of the Karoo sediments appears to be highest in the near-surface (i.e. the upper 30 m), which generally corresponds to the weathered zone. There is no clear relation, however, between the occurrence of groundwater and the weathering of the different Karoo lithologies. In this regard, the following generalisation may be stated:

- Dwyka diamictite may represent potential 'weathered' aquifers due to their low resistance to weathering;
- Weathering of Karoo shale and mudrock produces clays, which often reduces the permeability of the sediments; and
- Karoo sandstone is highly resistant to weathering and thus these processes are unlikely to direct affect the hydraulic properties of these rocks.

Composite alluvial-weathered bedrock aquifers are commonly developed along the major drainage systems.

It must be noted that low to medium yielding boreholes in the order of 0.5 to 3 L/s can be drilled in sedimentary rocks. No proven geophysical technique currently exists that can locate fractures. Therefore these fracture systems in sedimentary rocks are only discovered by coincidence.

3.3.1.6 Dolerite Intrusions

Extensive weathered zones often develop in dolerite sills that are situated in low lying and well drained areas – 'similar to weathered basins' described in other crystalline basement rocks (Enslin, 1943; Wright and Burgess, 1992). These localised, shallow intergranular aquifers are capable of storing large volumes of groundwater. Although abstraction from these dense-massive structures are only possible where extensive weathering has occurred at depth (below the aquifer water table).

Dolerite ring-dykes and inclined sheets seldom form negative features of the landscape, as they are more resistant to weathering. The hydrological properties weathered dolerite rings and inclined sheets seem very variable. Vegter (1995) states that the upper or lower contact sills located within the weathered zone, i.e. 20 to 50 mbgl, are favourable zones for striking groundwater. Recent extensive exploration drilling along dolerite inclined sheets and ring dykes in the Victoria West area (Chevallier et al., 2001), shows that the contact between the sediment and the dolerite within the first 50 m below surface did not yield significant volumes of groundwater.

The contact between dolerite dykes and the host rock, within the weathered zone, remains the most important target for groundwater exploration (Vegter, 1995 & Smart, 1998).

3.3.2 Hydrostratigraphy

This section outlines the general hydrological characteristics of the various lithostratigraphic units, related more to the processes of sedimentation and diagenesis (i.e. the primary hydraulic properties). These properties are more important when considering the longer-term sustainable utilisation of the Karoo aquifers (storativity), rather than individual borehole yields.

3.3.2.1 Hydrostratigraphy of the Ecca Group

The Ecca Group consists mainly of shales, with thicknesses varying from 1 500 m in the south, to 600 m in the north. Since the shales are very dense, they are often overlooked as significant sources of groundwater. However, their porosities tend to decrease from ~0.10% north of latitude 28°S to < 0.02% in the southern and south eastern parts of the Basin, while their bulk densities increase from ~2 000 to > 2 650 kg.m-3. The possibility thus exists that economically viable aquifers may exist in the northern parts of the Basin underlain by the Ecca shale. It is therefore rather surprising to find that there are areas, even in the central parts, where large quantities of water are pumped daily from the Ecca formations. For example, some 4 500 ha are irrigated from boreholes drilled into the Ecca shales in the Petrusburg district (central Free State), compared to the 2 000 ha from the Modder River. One should thus not neglect the Ecca rocks as possible sources for groundwater, especially the deltaic sandstone facies. Rowsell and De Swardt (1976) report that the permeabilities of these sandstones are usually very low. The main reason for this is that the sandstones are usually poorly sorted, and that their primary porosities have been lowered considerably by diagenesis.

The deltaic sandstones represent a facies of the Ecca sediments in which one would expect to find high-yielding boreholes. Unfortunately, Rowsell and De Swardt (1976) have found that the permeabilities of these sandstones are also usually very low. The main reason for this is that the sandstones are usually poorly sorted, and that their primary porosities have been lowered considerably by diagenesis. However, the Vryheid Formation sandstones in KwaZulu-Natal (west of Pietermaritzburg) appear to be more permeable, with a median borehole yield of 0.33 L/s and 62% yielding greater than 1 L/s (KwaZulu-Natal project, 1995, unit 8).

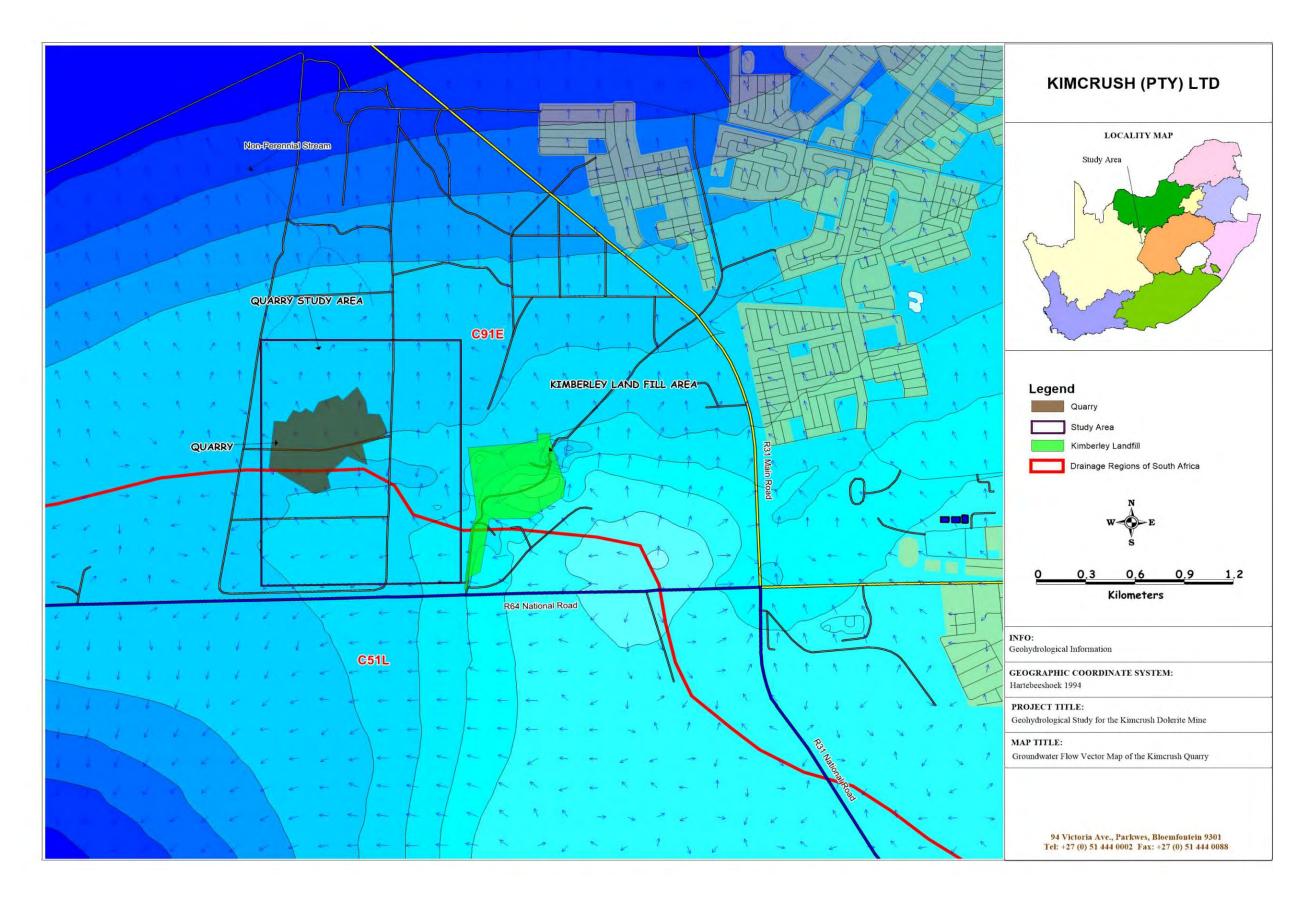


Figure 22. Groundwater flow vector map of the immediate area of the Kimcrush dolerite mine site. The general groundwater flow direction from the disposal area is towards the north, north west direction.

4 HYDROCENSUS AND SAMPLING OF ONSITE EXCAVATION PITS

This section contains the general information of the surface sites identified during the site visits as well as the information of the hydrocensus sites identified. The general borehole information tables can be perused in Table 3. The locality map of sampled sites can be viewed in Figure 22. The photos of the borehole and surface water sites can be viewed below.

Hydrocensus was conducted around the dolerite mine. Only one borehole and 3 surface sites was found in a 1.5 km radius around the mine site boundaries. The borehole is located at the Forrestdale Abattoir about 2,2 km to the north east of the mining site. The borehole is equipped by a submersible pump with a 32 mm outlet pipe. The abstracted groundwater is utilised for washing the abattoir floors. Kimberly city water supply is utilised for human domestic needs.

Sampled sites during hydrocensus and site visit:

Table 3. General information regarding sampled sites during hydrocensus and site visit.

Number on map	Sample Number	Date	Time	Latitude (°S)	Longitude (°E)	Site Description	Sample Depth (m)	Borehole Depth (m)		Casing Diameter (mm)	Pipe Diameter (mm)	Est. YIEL D	WL	Sampled	Equipment	Status (G In Use, U Unused)	Use (Agricultural, Domestic)
B01	B01	23-Oct-17	13:05	24.70466	-28.73344	Forrestdale Abattoir about 2,2km north east from mining area	~	~	~	165	32	~	?	Y	Submersible	G	Domestic Use
S01	S01	23-Oct-17	13:25	24.68183	-28.73340	Surface water sampled in northern pit at Kimerush Dolerite mining site.	~	~	~	~	~	~	~	Y	None	~	~
S02	S02	23-Oct-17	14:45	24.68095	-28.73634	Surface water sampled in southern pit at Kimcrush Dolerite mining site.	~	~	~	~	~	~	~	Y	None	~	~
S03	S03	23-Oct-17	15:10	24.69620	-28.73545	Surface water sampled in abandoned excavated pit at Kimberley landfill site.	2	~	~	~	~	?	~	Y	None	~	~

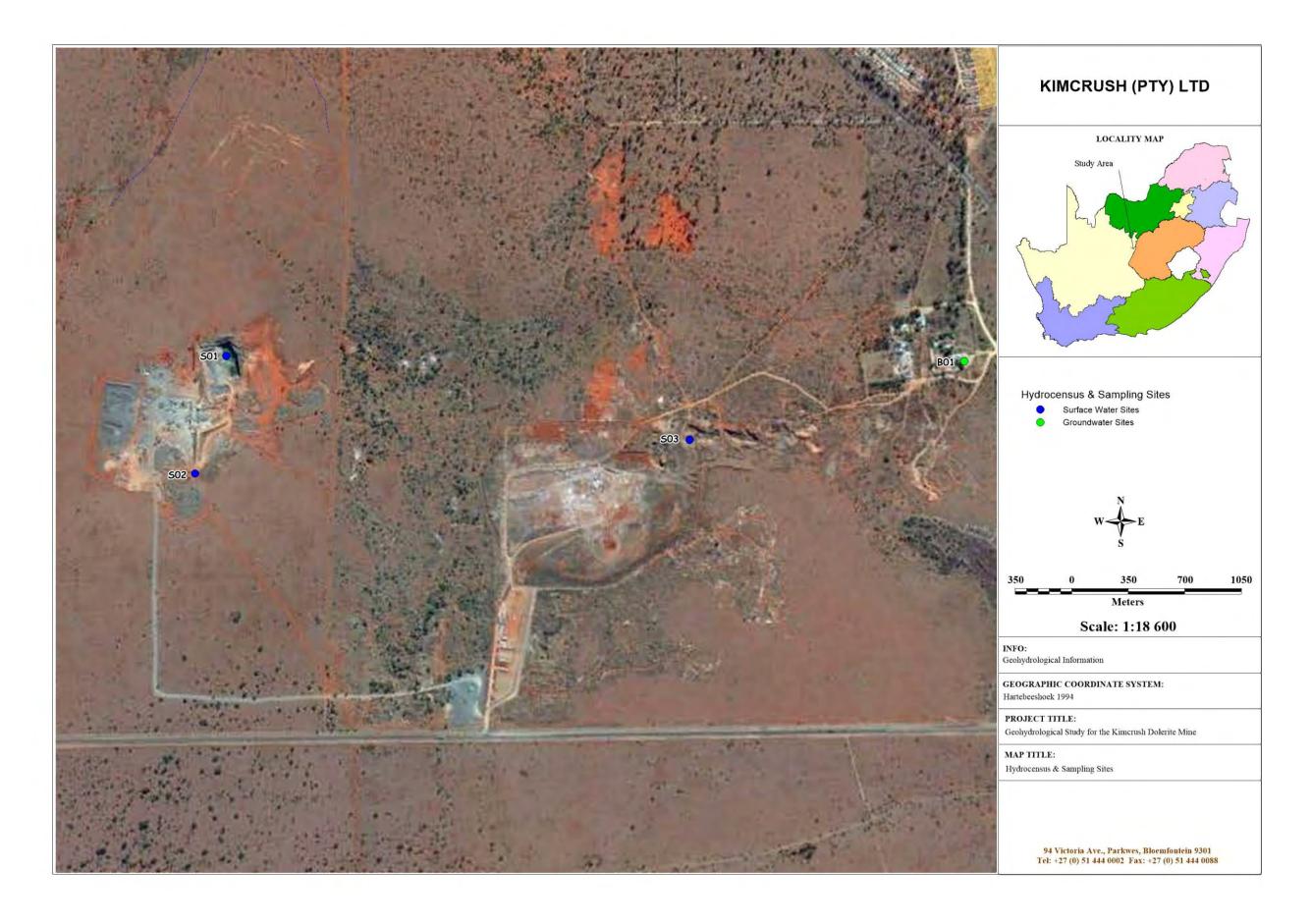
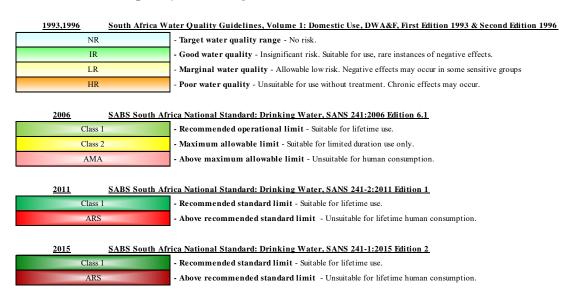



Figure 23. Locality of sampled sites at the mine and hydrocensus sites.

4.1.1.1 Inorganic Water Quality

This section contains the inorganic water quality results for the local aquifer. (refer to Table 5 below). The groundwater qualities are classified according to the "South Africa Water Quality Guidelines, Volume 1: Domestic Use, DWAF, First Edition 1993" and the "South Africa Water Quality Guidelines, Volume 1: Domestic Use, DWAF, Second Edition 1996", as well as according to the publication "Quality of Domestic Water Supplies, DWAF, Second Edition 1998" as well as "The South African National Standard (SANS 241:2006 Edition 6.1, SANS 241-1:2011 Edition 1 and SANS 241-1:2015 Edition 2)"according to the publication a description of the various classes is given in Table 4.

Table 4. Water quality class ranges

I

Table 5. Inorganic groundwater quality class of the surface water sites as well as the hydrocensus borehole at the Forrestdale Abattoir (according to the SANS241-1:20011 and SANS241:2006 standards).

Note: Awaiting results from samples from accredited laboratory and will be included. Table below indicate parameters analysed for.

Site No.	Date	Quality Class		рН					000					_	-	NH4-N mg/L						CN mg/L					Cu mg/L										
Reference Standard	<u>l:</u>	1993,1996	<u>2006</u>	<u>2011</u>	<u>2015</u>	<u>2015</u>	<u>2015</u>	<u>2015</u>	<u>2015</u>	<u>2015</u>	2006 2	006 20	<u> 201</u>	<u> 201</u>	<u>5</u> 2015	2015	<u>2015</u>	<u>2015</u>	<u>2015</u>	<u>2015</u>	<u>2011</u>	<u>2015</u>	<u>2015</u>	<u>2015</u>	<u>2011</u>	<u>2015</u>	<u>2015</u>	<u>2015</u>	<u>2015</u>	2015	<u>2015</u>	2015	<u>2015</u>	<u>2015</u>		-	
B01	23/10/2017	NR	Class 1	Class 1	ARS		8												000000																		
S01	23/10/2017	NR	Class 1	Class 1	ARS																																
S02	23/10/2017	NR	Class 1	Class 1	ARS																																
S03	23/10/2017	NR	Class 1	Class 1	ARS	***************************************																							1		1				1		

GHT Consulting Scientits

Document number: GHT-CON-RDS 002.1

South Africa Water Quality Guidelines, Volume 1: Domestic Use, DWA&F, First Edition 1993 & Second Edition 1996 - Target water quality range - No risk. Good water quality - Insignificant risk. Suitable for use, rare instances of negative effects. LR - Marginal water quality - Allowable low risk. Negative effects may occur in some sensitive group HR - Poor water quality - Unsuitable for use without treatment. Chronic effects may occur. SABS South Africa National Standard: Drinking Water, SANS 241:2006 Edition 6.1 Class 1 - Recommended operational limit - Suitable for lifetime use. - Maximum allowable limit - Suitable for limited duration use only. AMA - Above maximum allowable limit - Unsuitable for human consumption. SABS South Africa National Standard: Drinking Water, SANS 241-2:2011 Edition 1 - Recommended standard limit - Suitable for lifetime use. ARS - Above recommended standard limit - Unsuitable for lifetime human consumption. SABS South Africa National Standard: Drinking Water, SANS 241-1:2016 Edition 2 - Recommended standard limit - Suitable for lifetime use. - Above recommended standard limit - Unsuitable for lifetime human consumption.

5 CONCLUSIONS AND RECOMMENDATIONS

• It can be concluded that the surface water sites S01 and S02 located in the northern and southern pit respectively is groundwater seeping into the pit areas as the groundwater levels are between 6 and 16mbgl. It is recommended that at least 2 monitoring boreholes (upstream and downstream) must be drilled to evaluate the potential yield of the local aquifer, geological permeabilities and the effect the dewatering of the pits may have on the local water level and aquifer. Water quality monitoring can also be done at these boreholes.

6 REFERENCES

Department of Water Affairs and Forestry (1993) South African Water Quality Guidelines (first edition), Volume 1: Domestic Use.

Department of Water Affairs and Forestry (1996) South African Water Quality Guidelines (second edition), Volume 1: Domestic Use.

Department of Water Affairs and Forestry (1998) Quality of Domestic Water Supply, Volume 1: Assessment Guide. WRC Report No.: TT101/98.

Department of Water Affairs and Forestry (2007) Water Monitoring Systems, Best Practice Guidelines G3. ISBN 978-0-9802679-1-4.

Department of Water Affairs and Forestry (2007) Water Monitoring Systems, Best Practice Guidelines G3. ISBN 978-0-9802679-1-4.

Manual on Pump Test Analysis in Fractured-Rock Aquifers (2002) Water Research Commission. WRC Report No.: 1116/1/02.

South African National Standard, SANS241:2006 (2006) Drinking Water, Edition 6.1, ISBN 0-626-18876-8.

South African National Standard, SANS241-1:2011 (2011) Drinking Water - Part 1: Microbiological, physical, aesthetic and chemical determinants, Edition 1, ISBN 978-0-626-26115-3.

South African National Standard, SANS241-2:2011 (2011) Drinking Water - Part 2: Application of SANS241-1, Edition 1, ISBN 978-0-626-26116-0.