REVEGETATION AND REHABILITATION PLAN

1. PURPOSE

The purpose of the Revegetation and Rehabilitation Plan is to ensure that areas cleared or impacted during construction activities within the site for Allepad PV Four, and that are not required for operation are rehabilitated to their original state before the operation phase commences, and that the risk of erosion from these areas is reduced. The purpose of the Rehabilitation Plan for the site can be summarised as follows:

- » Achieve long-term stabilisation of all disturbed areas.
- » Re-vegetate all disturbed areas with suitable local plant species.
- » Minimise visual impact of disturbed areas.
- » Ensure that disturbed areas are rehabilitated to a condition similar to that found prior to disturbance.

This Revegetation and Rehabilitation Plan should be read in conjunction with other site-specific plans, including the Erosion Management Plan, Soil Management Plan, Alien Invasive Management Plan and Plant Rescue and Protection Plan. Prior to the commencement of construction, a detailed Revegetation and Rehabilitation Plan and Method Statement for the site should be compiled with the aid of a suitably qualified, professionally registered specialist (with a botanical or equivalent qualification).

2. RELEVANT ASPECTS OF THE SITE

Two vegetation types have been identified within the project site namely Kalahari Karroid Shrubland in the eastern extent of the project site, and Gordonia Duneveld in the western extent of the project site (Mucina & Rutherford 2006). Both Kalahari Karroid Shrubland and Gordonia Duneveld are classified as Least Threatened and have been impacted little by transformation, with more than 99% of their original extent is still intact. Kalahari Karroid Shrubland is considered Hardly Protected within formal conservation areas, while Gordonia Duneveld is Moderately Protected. The biogeographically important and endemic species known from these vegetation types tend to be widespread within the vegetation type itself and local-level impacts are not likely to be of significance for any of these vegetation types in South Africa while Kalahari Karroid Shrubland is less extensive, but represents a transitional vegetation type between the northern Nama Karoo and Kalahari (Savannah) vegetation types.

Species commonly observed within the areas of Kalahari Karroid Shrubland on nearby sites include shrubs such as Leucosphaera bainesii, Hermannia spinosa, Monoechma genistifoilium, Salsola rabieana, Aptosimum albomarginatum, A.spinecens, Kleinia longiflora, Limeum argute-carinatum, Phyllanthus maderaspatensis, Zygophyllum dregeanum and grasses such as Stipagrostis anomala, S.ciliata, S.uniplumis, S.hochstetteriana and Schmidtia kalariensis. The proportion of shrubs in this vegetation type is usually related to soil depth and texture, with the proportion of grass increasing as the soils become deeper or more sandy. Species of conservation concern that are often present include Adenium oleifolium, Aloe claviflora and Hoodia gordonii.

The areas of Gordonia Duneveld consists of several different habitats. The most obvious of which are the dunes and the inter-dune areas. The dunes and areas of deep sand are usually dominated by species

such as Crotalaria orientalis, Stipagrostis amabilis, Centropodia glauca, Acacia haematoxylon (A. haematoxylon) and various forbs. The interdune slacks are usually dominated by grasses or Rhigozum trichotomum depending on the substrate conditions as well as the history of land use. Other common species associated with the areas of Gordonia Duneveld include trees such as Parkinsonia africana, Boscia foetida, Boscia albitrunca and Acacia erioloba, shrubs such as Phaeoptilum spinosum, Rhigozum trichotomum, and Lycium bosciifolium, grasses such as Stipagrostis ciliata, S.uniplumis, S.amabilis, Schmidtia kalahariensis, and forbs such as Senna italica, Tribulis pterophorus, Hermannia tomentosa and Requienia sphaerosperma. Species of conservation concern associated with this habitat include the nationally protected trees Acacia erioloba (A. erioloba), A. haematoxylon and Boscia albitrunca.

In terms of the project site, the areas of Kalahari Karroid Shrubland in the east of the site are considered moderate sensitivity due to their higher diversity, and the potential presence of several species of conservation concern. The flatter areas of Gordonia Duneveld dominated by *Rhigozum trichotomum* are considered relatively low sensitivity, while the more extensive area of contiguous dunes in the west of the site, are considered to be medium high sensitivity due to the vulnerability of this habitat to disturbance.

3. REHABILITATION METHODS AND PRACTISES

The following general management practices should be encouraged or strived for:

- » Clearing of invaded areas should be conducted as per the Alien Management Plan, included in the EMPr.
- » No harvesting of vegetation may be undertaken outside the area to be disturbed by construction activities.
- » Indigenous plant material must be kept separate from alien material.
- » Indigenous seeds may be harvested for purposes of revegetation in areas that are free of alien invasive vegetation, either at the site prior to clearance or from suitable neighbouring sites.
- » Topsoil should be reserved wherever possible on site, to be utilised during rehabilitation.
- » Sods used for revegetation should be obtained directly from the site, but not from the sensitive areas. Sods should contain at least a 50 mm topsoil layer and be minimally disturbed, in particular to existing root systems. Sods must ideally be obtained from areas as close as possible to the region that is to be rehabilitated.
- » Water used for the irrigation of re-vegetated areas should be free of chlorine and other pollutants that might have a detrimental effect on the plants.
- » All seeded, planted or sodded grass areas and all shrubs or trees planted are to be irrigated at regular intervals.
- » On steep slopes and areas where seed and organic matter retention is low, it is recommended that soil savers are used to stabilise the soil surface. Soil savers are man-made materials, usually constructed of organic material such as hemp or jute and are usually applied in areas where traditional rehabilitation techniques are not likely to succeed.
- » In areas where soil saver is used, it should be pegged down to ensure that it captures soil and organic matter flowing over the surface.
- » The final rehabilitated area should resemble the current composition and structure of the soil as far as practicably possible.
- » Progressive rehabilitation is an important element of the rehabilitation strategy and should be implemented where feasible.

- » No construction equipment, vehicles or unauthorised personnel should be allowed onto areas that have been rehabilitated.
- » Where rehabilitation sites are located within actively grazed areas, they should be fenced off, this must be undertaken in consultation with the landowner.
- » Any runnels, erosion channels or wash-aways developing after revegetation should be backfilled and consolidated and the areas restored to a proper stable condition.
- » Re-vegetated areas should be monitored frequently and prepared and revegetation from scratch should inadequate signs of surface coverage or grown be evident after two growth seasons. Adequate recovery must be assessed by a qualified botanist or rehabilitation specialist.
- » The stockpiled vegetation from the clearing operations should be reduced to mulch where possible, and retained along with topsoil to encourage seedbank regrowth and soil fertility.
- » Mulches must be collected in such a manner as to restrict the loss of seed.
- » Mulch must be stored for as short a period as possible.
- » Mulch is to be harvested from areas that are to be denuded of vegetation during construction activities, provided that they are free of seed-bearing alien invasive plants.
- » Where herbicides are used to clear vegetation, species-specific chemicals should be applied to individual plants only. General spraying should be strictly prohibited, and only the correct herbicide type should be applied.
- » Once rehabilitated, areas should be protected to prevent trampling and erosion.
- » Fencing should be removed once a sound vegetative cover has been achieved.

4. MONITORING AND FOLLOW-UP ACTION

Throughout the lifecycle of the development, regular monitoring and adaptive management must be in place to detect any new degradation of rehabilitated areas. During the construction phase, the Environmental Officer (EO) and EPC Contractor will be responsible for initiating and maintaining a suitable monitoring system. Once the development is operational, the Developer will need to identify a suitable entity that will be able to take over and maintain the monitoring cycle and initiate adaptive management as soon as it is required. Monitoring personnel must be adequately trained.

The following are the minimum criteria that should be monitored:

- » Associated nature and stability of surface soils.
- » Re-emergence of alien and invasive plant species. If noted, remedial action must be taken immediately, as per the alien management plan and mitigation measures contained within the EMPr.

Rehabilitation success, monitoring and follow-up actions are important to achieve the desired cover and soil protection. The following monitoring protocol is recommended:

- » Rehabilitation areas should be monitored every 4 months for the first 12 months following construction, or as per the recommendations of specialist.
- » Ensure that steep slopes are not de-vegetated unnecessarily and subsequently become hydrophobic (i.e. have increased runoff and a decreased infiltration rate) increasing the erosion potential.
- » Soil loss is related to the length of time that soils are exposed prior to rehabilitation or stabilisation. Therefore, the timeframe between construction activities and rehabilitation should be minimised. Phased construction and progressive rehabilitation, where practically possible, are therefore important elements of the erosion control and rehabilitation strategy.

» Any areas showing erosion, should be adaptively managed with particular erosion control measures, depending on the situation.

If the current state of the environment prior to construction (which will be disturbed during the construction phase) is not achieved post impact, within the specified rehabilitation period, maintenance of these areas must continue until an acceptable state is achieved (excluding alien plant species or weeds). Additional rehabilitation methods may be necessary to achieve the current state before construction commenced.

Monitoring of the rehabilitation success, as well as follow-up adaptive management, combined with the clearing of emerging alien plant species should all continue for as long as is considered necessary, depending on regrowth rates.