

TERRESTRIAL BIODIVERSITY IMPACT ASSESSMENT FOR THE PROPOSED PROSPECTING RIGHT ON SELECTED FARMS WITHIN MADIBENG LOCAL MUNICIPALITY IN NORTH WEST PROVINCE

DOCUMENT CONTROL

Report Name	MOLEPO, M. 2021. TERRESTRIAL BIODIVERSITY IMPACT ASSESSMENT FOR THE PROPOSED PROSPECTING RIGHT ON SELECTED FARMS WITHIN MADIBENG LOCAL MUNICIPALITY IN NORTH WEST PROVINCE
Reference	BIA-AR2212
Submitted to	Archean Resources (Pty) Ltd
Authors	Mokgatla Molepo Pr.Sci.Nat: 009509

TABLE OF CONTENTS

List of figures	ii
List of tables	ii
DECLARATION OF INDEPENDENCE i	ii
INDEMNITYi	ii
BACKGROUND AND EXECUTIVE SUMMARY	1
1. INTRODUCTION AND PROJECT LOCATION AND DESCRIPTION	2
2. TERMS OF REFERENCES	3
2.1. Objectives of this study	3
2.2. Assumptions, Limitations, Uncertainties, and Gap analysis	3
3. SURVEY METHODS AND REPORTING	4
Climate	4
Biophysical Environment	6
Vegetation of the study site	6
4. LEGAL REQUIREMENTS1	0
5. METHODOLOGY1	6
Ecological function1	8
Sensitivity scale1	8
Conservation status of the vegetation1	9
6. RESULTS	1
Plants2	1
Weeds and Invasive Plants2	2
Birds	2
Mammals2	3
Reptiles2	3
7. IMPACT ASSESSMENT AND MITIGATIONS2	3
8. REHABILITATION	6
9. CONCLUSION AND RECOMMENDATIONS	6
10. REFERENCES	7

MORA Ecological Services (Pty) Ltd 2021

i

11.	APPENDICES	29
Арр	endix 1: Historical Faunal Records	29

List of figures

Figure 1: Location of the study site.	5
Figure 2: Vegetation map of the study site	7
Figure 3: View of the site.	9
Figure 4: North West Biodiversity Sector Plan Map	14
Figure 5: Site Sensitivity Map	20

List of tables

Table 1: Red Data Status definitions (SANBI, 2010)	17
Table 2: List of plant species recorded at the study site	21
Table 3: List of weeds and invasive species for the study area	22
Table 4: List of bird species recorded at the study site	22

DECLARATION OF INDEPENDENCE

I, Mokgatla Molepo, in my capacity as a lead specialist consultant, hereby declare that I:

- Act/acted as an independent specialist to Archean Resources (Pty) Ltd for this project.
- Do not have any personal, business or financial interest in the project expect for financial remuneration for specialist investigations completed in a professional capacity as specified by the Environmental Impact Assessment Regulations, 2017.
- Will not be affected by the outcome of the environmental process, of which this report forms part of.
- Do not have any influence over the decisions made by the governing authorities.
- Do not object to or endorse the proposed developments but aim to present facts and my best scientific and professional opinion regarding the impacts of the development.
- Undertake to disclose to the relevant authorities any information that has or may have the potential to influence its decision or the objectivity of any report, plan or document required in terms of the Environmental Impact Assessment Regulations, 2017.

INDEMNITY

- This report is based on survey and assessment techniques which are limited by time and budgetary constraints relevant to the type and level of investigation undertaken.
- This report is based on a desktop investigation using available information and data related to the site to be affected, *in situ* fieldwork, surveys and assessments and the specialists best scientific and professional knowledge.
- The Precautionary Principle has been applied throughout this investigation.
- The findings, results, observations, conclusions and recommendations given in this report are based on the specialist's best scientific and professional knowledge as well as information available at the time of study.
- Additional information may become known or available during a later stage of the process for which no allowance could have been made at the time of this report.
- The specialist reserves the right to modify this report, recommendations and conclusions at any stage should additional information become available.
- Information and recommendations in this report cannot be applied to any other area without proper investigation.
- This report, in its entirety or any portion thereof, may not be altered in any manner or form or for any purpose without the specific and written consent of the specialist as specified above.
- Acceptance of this report, in any physical or digital form, serves to confirm acknowledgement of these terms and liabilities.

Mokgatla Molepo Pr. Nat. Sci (009509)

20 December 2021

BACKGROUND AND EXECUTIVE SUMMARY

MORA Ecological Services (Pty) Ltd was appointed by Archean Resources (Pty) Ltd to conduct a terrestrial biodiversity impact assessment for the proposed prospecting right on selected portions Farm Mamagalieskraal and Bokfontein within Madibeng Local Municipality in the North West Province.

The site, which is referred to as the study site was investigated to determine potential impacts on the immediate natural environment. Survey methodology included a comprehensive desktop review, utilising available provincial ecological data, relevant literature, SANBI BGIS databases, topographical maps and aerial photography. This was then supplemented through a ground-truthing phase, where the site was visited during a field survey in December 2021. This allowed for the assessment of the habitat integrity and status of the vegetation units that were identified during the desktop review.

Floral features:

The vegetation type found within the proposed area is Marikana Thornveld. The vegetation is dominated by woody species, and it has been transformed in some of the sections within and around the proposed site.

Faunal features:

Due to the current scope of work and limited time spent on site, mammals were surveyed through indirect methods. From the short survey, no Species of Conservation Concern were observed.

Conclusions and Recommendations:

The site project site is of low sensitivity due to the existing Bushveld Vametco mine, human settlements and farming activities. Majority of the habitats within the site have been transformed as a result. During the exploration phase, all watercourses should be treated as no go areas, these include the drainage lines and the concrete canal. As a result, the proposed prospecting activities do not pose any high risk to the ecological integrity of the site. It is therefore the opinion of the specialist that the proposed prospecting right application be considered provided that all mitigations and recommendations are strictly followed.

1. INTRODUCTION AND PROJECT LOCATION AND DESCRIPTION

Humans alter their environment to suit their needs, to improve their quality of life, and to encourage economic growth. Generally, it is now accepted that development should be planned to make the best possible use of natural resources and to avoid degradation of the environment. Hence the need to pay explicit attention to environmental factors in the decision-making process. This should entail an accurate prediction and assessment of the impact of any development on the environment. It is essential for such assessment procedures to be developed alongside development planning, with the necessary mitigation that could inform development projects to conserve the natural environment.

Mora Ecological (Pty) Ltd has been appointed by Archean Resources (Pty) Ltd to undertake the required Environmental Authorization process for the proposed coal prospecting rights on selected portions Farm Mamagaileskraal and Bokfontein within Madibeng Local Municipality in the North West Province (Fig. 1). The study site/proposed area lies approximately 11 km north east of Brits Town. Land uses include low density residential, mining and mixed farming.

No	Farm/Portion	Form Nomo	Area	I Pl Codo
NO.	INO.		(па)	LPICode
1	RE/14/420	Mamagalieskraal	11.88	T0JQ0000000042000014
2	839/420	Mamagalieskraal	31.34	T0JQ0000000042000839
3	840/420	Mamagalieskraal	24.83	T0JQ0000000042000840
4	841/420	Mamagalieskraal	19.45	T0JQ0000000042000841
5	842/420	Mamagalieskraal	18.90	T0JQ0000000042000842
6	RE/843/420	Mamagalieskraal	30.21	T0JQ0000000042000843
7	844/420	Mamagalieskraal	52.73	T0JQ0000000042000844
8	845/420	Mamagalieskraal	46.01	T0JQ0000000042000845
9	846/420	Mamagalieskraal	24.44	T0JQ0000000042000846
10	847/420	Mamagalieskraal	7.66	T0JQ0000000042000847
11	848/420	Mamagalieskraal	10.36	T0JQ0000000042000848
12	849/420	Mamagalieskraal	24.46	T0JQ0000000042000849
13	RE/850/420	Mamagalieskraal	13.53	T0JQ0000000042000850
14	851/420	Mamagalieskraal	42.82	T0JQ0000000042000851
15	852/420	Mamagalieskraal	55.68	T0JQ0000000042000852
16	896/420	Mamagalieskraal	2.50	T0JQ0000000042000896
17	897/420	Mamagalieskraal	2.50	T0JQ0000000042000897
18	898/420	Mamagalieskraal	2.50	T0JQ0000000042000898

Affected farms are displayed below:

19	899/420	Mamagalieskraal	2.55	T0JQ0000000042000899
20	900/420	Mamagalieskraal	2.50	T0JQ0000000042000900
21	421	Bokfontein	21.43	T0JQ0000000042100000
22	1/426	Bokfontein	770.70	T0JQ0000000042600001
23	3/426	Bokfontein	1.55	T0JQ0000000042600003
24	4/426	Bokfontein	0.40	T0JQ0000000042600004

2. TERMS OF REFERENCES

The study included the following activities:

- Provide a broad-scale map of the vegetation of the proposed site;
- A description of the dominant and characteristic species within the broad-scale plant communities;
- Provide a list of Red data plant and animal species previously recorded within the study site, and information obtained from the relevant authorities and literature reviews;
- Identification of sensitive habitats and plant communities;
- Preliminary investigation of the impacts of the project and the provision of recommended mitigation measures; and
- Recommend practical mitigation measures to minimize or eliminate negative impacts and or enhance potential project benefits.

2.1. Objectives of this study

- To provide a description of the flora and fauna occurring around the proposed project area.
- To provide description of any threatened species occurring or likely to occur within the study area.
- To describe the available habitats on the study site including areas of important conservation value.

The investigation determined how the habitats and biota may be affected by the proposed activities on the site. The ratings of the anticipated impacts were evaluated, and recommendations and deductions were made.

2.2. Assumptions, Limitations, Uncertainties, and Gap analysis

• The findings, results, observations, conclusions and recommendations provided in this report are based on the author's best scientific and professional knowledge as

well as available information regarding the perceived impacts on terrestrial environment.

- A description of vegetation was based on the physical field surveys and site walkthrough and investigations as performed on site. Limited time was a constraint during field surveys.
- Results presented in this report are based on a snapshot investigation of the study site and not on detailed and long-term investigations of all environmental attributes and the varying degrees of biological diversity that may be present in the study site.
- The assessment of impacts and recommendation of mitigation measures were informed by the site-specific ecological issues arising from the field survey and based on the assessor's working knowledge and experience with similar projects.

3. SURVEY METHODS AND REPORTING

Climate

The climate in Brits is a local steppe climate. There is little rainfall throughout the year. According to Köppen and Geiger, this climate is classified as BSh. The average annual temperature in Brits is 19.4 °C with rainfall about 629 mm annually.

Figure 1: Location of the study site.

Biophysical Environment Vegetation of the study site

The vegetation units of Mucina and Rutherford (2006) were used as references but where necessary communities are named according to the recommendations of a standardised South African Syntaxonomic nomenclature system. By combining the available literature with the survey results, stratification of vegetation communities was possible.

Selected sites within the area were also searched for important species and the potential for Red Data Listed (RDL) and other important species were established, and cross referenced with New Plants of South Africa (POSA) database. The aim was to identify distinct vegetation types and to establish their integrity and representation in the study area. The veld types are described on a local level. The study site is covered, predominantly by graminoids and woody species (mostly alien), with few shrubs. This type of vegetation has the potential to support a variety of faunal species including birds, but due to farming and human settlements, very few animals remain.

Vegetation types and biophysical descriptions

Vegetation units are broadly classed and may include several distinct vegetation communities within a unit. Vegetation type found within the study site is Marikana Thornveld (Fig. 2).

Distribution

This vegetation type is found in North West and Gauteng. It occurs on plains from Rustenburg area in the west through Marikana and Brits to the Pretoria area in the east. It occurs on a varying altitude ranging between 1050 -1450 m a.s.l.

Vegetation & Landscape Features

Open *Vachellia karroo* woodland, occurring in valleys and slightly undulating plains, and some lowland hills. Shrubs are more dense along drainage lines, on termitaria and rocky outcrops or in other habitat protected from fire.

Figure 2: Vegetation map of the study site.

MORA Ecological Services (Pty) Ltd 2021

Concrete canal within the site

Natural vegetation near low density farmhouses

Aerial view of the canal

Crop fields located west of the site

Ntsopile village

Figure 3: View of the site.

Rubble dumping

4. LEGAL REQUIREMENTS 5.1. RELEVANT LEGISLATION

The Constitution of the Republic of South Africa Act (Act No. 108 of 1996) - Section 24.

The Constitution is South Africa's overarching law. It prescribes minimum standards with which existing and new laws must comply. Chapter 2 of the Constitution contains the Bill of Rights in which basic human rights are enshrined. Government's commitment to give effect to the environmental rights enshrined in the Constitution is evident from the enactment of various pieces of environmental legislation since 1996, including the National Water Act, the National Environmental Management Act, etc.

National Environmental Management Act (Act No. 107 of 1998) (NEMA), as amended.

NEMA replaces a number of the provisions of the Environment Conservation Act, 1989 (Act No. 73 of 1989). The Act provides for cooperative environmental governance by establishing principles for decision-making on matters affecting the environment, institutions that will promote cooperative governance and procedures for coordinating environmental functions. The principles enshrined in NEMA guide the interpretation, administration and implementation of the Act with regards to the protection and / or management of the environment. These principles serve as a framework within which environmental management must be formulated. Section 2(4) specifies that "sustainable development requires the consideration of all relevant factors including aspects specifically relevant to biodiversity":

National Environmental Management: Biodiversity Act (Act No. 10 of 2004) (NEMBA).

NEMBA provides for the management and conservation of biological diversity and components thereof; the use of indigenous biological resources in a sustainable manner; the fair and equitable sharing of benefits rising from bio-prospecting of biological resources; and cooperative governance in biodiversity management and conservation within the framework of NEMA.

National Water Act (Act No. 36 of 1998) (NWA).

The National Water Act (NWA) is a legal framework for the effective and sustainable management of water resources in South Africa. Central to the NWA is recognition that water is a scarce resource in the country which belongs to all the people of South Africa and needs to be managed in a sustainable manner to benefit all members of society. The NWA places a strong emphasis on the protection of water resources in South Africa, especially against its exploitation, and the insurance that there is water for social and economic development in the country for present and future generations.

The National Water Act, requires any development to secure Water Use Licences with the following activities:

Section 21 (a), abstractive use of water for construction (if possible and required).

Section 21 (c) and (i) use, i.e. river or wetland crossings, which includes any drainage lines by any infrastructure.

In terms of the definitions provided, activities included under Sections 21(c) and 21(i) are (amongst others) the construction of roads, bridges, pipelines, culverts and structures for slope stabilisation and erosion protection. DWS will however need to be approached to provide guidance on whether approval for Section 21 (c) and (i) water uses would be required.

GENERAL AUTHORISATION IN TERMS OF SECTION 39 OF THE NWA

According to the preamble to Part 6 of the NWA, "This Part established a procedure to enable a responsible authority, after public consultation, to permit the use of water by publishing general authorisations in the Gazette..." "The use of water under a general authorisation does not require a licence until the general authorisation is revoked, in which case licensing will be necessary..."

The General Authorisations for Section 21 (c) and (i) water uses (impeding or diverting flow or changing the bed, banks or characteristics of a watercourse) as defined under the NWA have recently been revised (Government Notice R509 of 2016). Determining if a water use licence is required for these water uses is now associated with the risk of degrading the ecological status of a watercourse. A low risk of impact could be authorised in terms of a General Authorisations (GA).

Provincial legislation

In addition to national legislation such as Protected Areas Act No. 57 of 2003, National Environmental Management: Biodiversity Act No. of 2004 and Conservation of Agricultural Resources Act No. 43 of 1983, some of South Africa's nine provinces have their own provincial biodiversity legislation, as nature conservation is a concurrent function of national and provincial government in terms of the Constitution (Act 108 of 1996).

5.2.1. North West Biodiversity Sector Plan (2015)

This Biodiversity Plan delineates on a map, commonly known as a Critical Biodiversity Areas (CBA), biodiversity priority areas called Critical Biodiversity Areas, Ecological Support Areas and Protected Areas. These areas are the portfolio of sites that are required to meet the region's biodiversity targets and need to be maintained in the appropriate condition for their category. It is highly recommended that this Conservation Plan be a primary biodiversity consideration in Environmental Impact Assessments.

Critical Biodiversity Areas (CBAs) are terrestrial and aquatic areas of the landscape that need to be maintained in a natural or near-natural state in order to ensure the continued existence and functioning of species and ecosystems and the delivery of ecosystem services. In other words, if these areas are not maintained in a natural or near-natural state then biodiversity targets cannot be met. Maintaining an area in a natural state can include a variety of biodiversity compatible land uses and resource uses.

Criteria of Identifying CBA

A CBA is an area that must remain in good ecological condition in order to meet biodiversity targets for ecosystem types, species of special concern or ecological processes. CBAs can meet biodiversity targets for terrestrial or aquatic features, or both. Together with protected areas, the portfolio of CBAs identified in a biodiversity plan must collectively meet biodiversity targets for representation of ecosystem types and species of special concern, and may also meet biodiversity targets for some ecological processes Ecological Support Areas (ESAs) are terrestrial and aquatic areas that are not essential for meeting biodiversity representation targets (thresholds), but which nevertheless play an important role in supporting the ecological functioning of critical biodiversity areas and/or in delivering ecosystem services that support socio-economic development, such as water provision, flood mitigation or carbon sequestration. The degree or extent of restriction on land use and resource use in these areas may be lower than that recommended for CBAs.

Criteria for Identifying ESAs

An ESA is an area that must remain in at least fair ecological condition in order to: meet biodiversity targets for ecological processes that have not been met in CBAs or protected areas; meet biodiversity targets for representation of ecosystem types or species of special concern when it is not possible to meet them in CBAs; support ecological functioning of a protected area or CBA (e.g. protected area buffers); or a combination of these. ESAs can meet biodiversity targets for terrestrial or aquatic features, or both. All ecological processes important for the long-term persistence of ecosystems and species should be adequately included in the portfolio of protected areas, CBAs and ESAs. Sites selected to form part of ESAs could include sites in good, fair or even severely modified ecological condition, as long as the current ecological condition is compatible with fulfilling the purpose for which the ESA has been selected. The desired state/management objective for most ESAs is to maintain them in at least fair ecological condition. For ESAs that are severely modified, the management objective is no further deterioration in the current ecological condition.

Sensitivity Analysis

In terms of North West Biodiversity Sector Plan 2015, only a small fraction within the proposed project falls within Terrestrial Critical Biodiversity Area 2 (Fig. 4). Ground truthing revealed that the site has been exposed to some levels of disturbance.

Figure 4: North West Biodiversity Sector Plan Map.

MORA Ecological Services (Pty) Ltd 2021

Important Bird and Biodiversity Area

BirdLife's Important Bird and Biodiversity Area concept has been developed and applied for over 30 years. Considerable effort has been devoted to refining and agreeing a set of simple but robust criteria that can be applied worldwide.

Initially, IBAs were identified only for terrestrial and freshwater environments, but over the past decade, the IBA process and method has been adapted and applied in the marine realm. In 2012, BirdLife published the first Marine IBA "e-atlas", with details of 3,000 IBAs in coastal and territorial waters as well as on the high seas.

Important Bird and Biodiversity Areas (IBAs) are:

- Places of international significance for the conservation of birds and other biodiversity;
- Recognised world-wide as practical tools for conservation;
- Distinct areas amenable to practical conservation action;
- Identified using robust, standardised criteria; and
- Sites that together form part of a wider integrated approach to the conservation and sustainable use of the natural environment

Desktop and groundtruthing revealed that the site does not fall within any Important Bird Areas. The nearest IBA is approximately 6 km south of the site.

Mining and Biodiversity Guideline

The mining industry plays a vital role in the growth and development of South Africa and its economy. Since the earliest discoveries of minerals in the region, this rich endowment of mineral resources has been a key driver of South Africa's social and economic development. Furthermore, mining continues to be one of the most significant sectors of our economy, providing jobs, growing our GDP and building relations with international trading partners (Mining Biodiversity Guideline, 2013).

The guideline also provides a four-hierarchy mitigation to help developers in avoiding impacts. The steps are as follow:

- Avoid or prevent
- Minimise
- Rehabilitate
- Offset

Critical Biodiversity Areas are also considered under these guidelines and special attention should be given to these biodiversity areas during prospecting or mining phase.

Although mining industry plays a vital role, it can also impact the biodiversity negatively if environmental laws are disregarded and not enforced. It is imperative for mining industries to adhere to these guidelines.

5. METHODOLOGY

Our methodology included both background information search (Desktop) and field survey. Below is the method used in our study for each of the subfields of biodiversity and the limitations encountered:

6.1. Flora Study

Transect walk method was used to identify the plants and vegetation structure occurring on the study site. Plants that could not be identified on site were photographed for later identification.

Limitations:

- Duration of the field survey. Not all sections were covered during this phase as this is a prospecting phase.
- Plants that were not flowering at the time of the survey
- Sampling frequency

Recommendations:

• Majority of the habitats have been transformed. Exploration within these disturbed sites will not pose major risk.

6.2. Fauna Study

Visual observations stand counts and indirect counts method were used to assess the animals occurring on the study site. Observations were made while walking through the site and while driving in some instances. The stand counts involved two observers who would sit quietly and wait for the animals to pass. Whereas the indirect counts included the searching of faecal matter/ pellets. Active search for reptiles and other small mammals was conducted by turning rocks and dead logs.

Limitations:

• Duration of the field survey

- Sampling frequency
- Circadian rhythm of animals (diurnal animals could not be detected)

Red Data Analysis and Floral Assessment

SANBI NEW POSA was compared to relevant literature detailing Protected and Red Data plant species lists in order to compile a list of Red Data plant species that may potentially occur within the study area. There are no historical floral records around the study area. The status is determined in table 1 below.

p- protected Species					
M- Me	M- Medicinal species				
EX	Extinct	A taxon is Extinct when there is no reasonable doubt that the last individual has died. Taxa should be listed as extinct only once exhaustive surveys throughout the historic range have failed to record an individual.			
EW	Extinct in the Wild	A taxon is Extinct in the Wild when it is known to survive only in cultivation or as a naturalized population (or populations) well outside the past range.			
CR PE	Critically Endangered (Possibly Extinct	Critically Endangered (Possibly Extinct) taxa are those that are, on the balance of evidence, likely to be extinct, but for which there is a small chance that they may be extant. Hence, they should not be listed as Extinct until adequate surveys have failed to record the taxon.			
CR	Critically Endangered	A taxon is Critically Endangered when the best available evidence indicates that it meets any of the five IUCN criteria for Critically Endangered and is therefore facing an extremely high risk of extinction in the wild.			
EN	Endangered	A taxon is Endangered when the best available evidence indicates that it meets any of the five IUCN criteria for Endangered and is therefore facing a very high risk of extinction in the wild.			
VU	Vulnerable	A taxon is Vulnerable when the best available evidence indicates that it meets any of the five IUCN criteria for Vulnerable and is therefore facing a high risk of extinction in the wild.			
NT	Near Threatened	A taxon is Near Threatened when available evidence indicates that it nearly meets any of the five IUCN criteria for Vulnerable and is therefore likely to qualify for a threatened category in the near future.			
CRITIC	CALLY RARE	A taxon is Critically Rare when it is known to occur only at a single site but is not exposed to any direct or plausible potential threat and does not qualify for a category of threat according to the five IUCN criteria.			

Table 1: Red Data Status definitions (SANBI, 2010).

RARE		A taxon is Rare when it meets any of the four South African criteria for rarity but is not exposed to any direct or plausible potential threat and does not qualify for a category of threat according to the five IUCN criteria.	
DECLINING		A taxon is Declining when it does not meet any of the five IUCN criteria and does not qualify for the categories Critically Endangered, Endangered, Vulnerable or Near Threatened, but there are threatening processes causing a continuing decline in the population.	
DDD	Data Deficient— Insufficient Information	A taxon is DDD when there is inadequate information to make an assessment of its risk of extinction, but the taxon is well defined. Data Deficient is not a category of threat. However, listing of taxa in this category indicates that more information is required, and that future research could show that a threatened classification is appropriate.	
LC	Least Concern	A taxon is Least Concern when it has been evaluated against the five IUCN criteria and does not qualify for the categories Critically Endangered, Endangered, Vulnerable or Near Threatened, and it is not rare, and the population is not declining.	

Ecological function

Ecological function relates to the degree of ecological connectivity between systems within a landscape matrix. Therefore, systems with a high degree of landscape connectivity amongst one another are perceived to be more sensitive and will be those contributing to ecosystem service (for example wetlands for water and food) or overall preservation of biodiversity. Conservation importance relates to species diversity, endemism (unique species or unique processes) and the high occurrence of threatened and protected species or ecosystems protected by legislation.

Sensitivity scale

- *High ecological function*: Sensitive ecosystems with either low inherent resistance or resilience towards disturbance factors or highly dynamic systems considered to be stable and important for the maintenance of ecosystems integrity for example pristine grasslands, pristine wetlands and pristine ridges.
- **Medium ecological function**: Relatively important ecosystems at gradients of intermediate disturbances. An area may be considered of medium ecological function if it is directly adjacent to sensitive/pristine ecosystem.
- Low ecological function: Degraded and highly disturbed systems with little or no ecological function.
- **No Go Areas**: Areas that have irreplaceable biodiversity or important ecosystem function values which may be lost permanently if these ecosystems are transformed,

with a high potential of also affecting adjacent and/or downstream ecosystems negatively.

Conservation status of the vegetation

- *High conservation importance*: Ecosystems with high species richness which usually provide suitable habitat for several threatened species. Usually termed 'no-go' areas and unsuitable for development and should be conserved.
- *Medium conservation importance*: Ecosystems with intermediate levels of species diversity without any threatened species. Low-density development may be accommodated, provided the current species diversity is conserved.
- Low conservation importance: Areas with little or no conservation potential and usually species poor (most species are usually exotic).

Cognisance was taken of the following environmental attributes and general information:

- Regional and local vegetation
- Current status of habitats
- Red Data habitat suitability, and
- Digital photographs

The site was observed to be of **Low-Medium Ecological Function**. Most of the habitats were transformed by crop farming. Sensitive areas are associated with watercourses which are tributaries of Rosespruit river. In addition, there is also a concrete canal traversing the site, which is used for irrigation purposes. These watercourses should be avoided during all phases of the project (Fig 5).

Figure 5: Site Sensitivity Map.

6. RESULTS

Biological diversity everywhere is at great risk as a direct result of an ever-expanding human population and its associated needs for energy, water, food and minerals. Landscape transformation that is needed to accommodate these activities inevitably leads to habitat loss and habitat fragmentation, resulting in the mosaical appearance of undisturbed habitat within a matrix of transformed areas. These remaining areas of natural habitat are frequently too small to support the biodiversity that previously occupied the area, and the region loses its ecological integrity (Kamffer 2004). Conservation of the remaining ecosystem is vital and beneficial in the long run.

The assessment results half of the site has been severely transformed due to agricultural activities, human settlements and alien invasion. Areas that have been moderately modified are mainly associated with watercourses. Historical records of flora and faunal species previously recorded around the study area is listed in the appendices.

Species	Common Name	Growth Form	IUCN Conservation Status
Ziziphus mucronata	Buffalo Thorn Tree	Tree	LC
Vachellia karroo	Sweet thorn	Tree	LC
Asparagus laricinus	Bergkatbos	Shrub	LC
Aloe greatheadii var davyana	Spotted aloe	Succulent	LC
Gomphocarpus fruticosus	Milkweed	Shrub	LC
Cynodon dactylon	Bermuda Grass	Grass	LC
Eragrostis curvula	Weeping Love Grass	Grass	LC
Hyparrhenia hirta	Common Thatching Grass	Grass	LC
Setaria sphacelata	Common Bristle Grass	Grass	LC
Aristida congesta subsp. Congesta	Tassel Three-awn	Grass	LC

Table 2: List of plant species recorded at the study site.

Weeds and Invasive Plants

The presence of several weeds and poor-quality species strongly reflects the transformed and degraded nature of the study site. The infestation of the listed invasive plants is high and require intervention. The following weeds and invasive plant taxa were recorded within the study site.

Species	Common Name	Growth Form	IUCN Conservation Status
Acacia mearnsii	Black Wattle	Tree	Declared Category 2
Eucalyptus camaldulensis	River red gum	Tree	Declared Category 1b
Verbena bonariensis	Tall Verbena	Herb	Declared Category 1b
Solanum mauritianum	Bug Weed	Herb	Declared Category 1b
Morus alba	Mulberry	Tree	Declared Category 3
Argemone mexicana	Yellow-flowered Mexican poppy	Herb	Declared Category 1b
Opuntia ficus-indica	Sweet prickly pear	Tree	Declared Category 1b
Agave americana	Century plant	Succulent	Category in Western Cape. Not listed elsewhere.
Robinia pseudoacacia	Black Locust	Tree	Declared Category 1b

Table 3: List of weeds and invasive species for the study area

Birds

Birds are regarded as one of the most useful bioindicators, and they have been used extensively as models to determine ecosystem function (see review Koskimies 1989; Potts et al. 2014; Bregman et al. 2016). High levels of human disturbance as well as habitat transformation and degradation on the study site and adjacent areas would result in the disappearance of the more elusive bird species. Majority of the birds recorded around the study site are generalists.

|--|

Species	Common Name	IUCN Conservation Status
Vanellus armatus	Blacksmith Lapwing	LC
Ardea melanocephala	Black-headed Heron	LC
Spilopelia senegalensis	Laughing Dove	LC
Bostrychia hagedash	Hadeda Ibis	LC
Streptopelia capicola	Cape Turtle-Dove	LC
Passer domesticus	House Sparrow	LC

Passer melanurus	Cape Sparrow	LC
Corvus albus	Pied Crow	LC
Numida meleagris	Hlemeted Guineafowl	LC
Cinnyris talatala	White-bellied Sunbird	LC
Trachybhonus vainnantii	Crested barbet	LC
Tockus leucomelas	Southern Yellow-billed Hornbill	LC
Dicrurus adsimilis	Fork-tailed Drongo	LC
Spilopelia senegalensis	Laughing dove	LC

Mammals

No mammal species were observed during the survey. The area is near an existing mine, farming area and villages.

Reptiles

Herpetofauna do occur in human modified landscapes, so encouraging appropriate matrix land uses could contribute to their conservation. No reptiles were recorded during the survey.

7. IMPACT ASSESSMENT AND MITIGATIONS

Vegetation disturbance through compaction and trampling;

Increased dust;

Noise pollution during exploration: and

Introduction and spread of declared weeds and alien invasive plants: This may occur in disturbed areas and/or where propagules of these plants are readily available.

Impact Pha	ase: Explo	oration					
Potential in	mpact des	cription: Intro	oduction of a	lien invasive	e plants		
Cleared are	Cleared areas which are not rehabilitated are likely to be invaded by aliens and pioneer plants.						
	Extent	Duration	Intensity	Status	Significance	Probability	Confidence
Without	L	Н	М	Negative	Μ	Н	Н
Mitigation							
With	L	L	L	Negative	L	L	Н
Mitigation							
Can the im	pact be	This impact	t can be prev	ented throug	gh appropriate n	nitigation meas	sures such as
reversed?		eradication.					
Will impact	cause	No. If this impact is correctly addressed, then no loss of resources will occur.					
irreplaceab	le loss of						
resources?							
Can impact	t be	Yes. This impact can be avoided if appropriate mitigation measures are					
avoided,		followed.					
managed o	or						
mitigated?							
Mitigation n	neasures:						
• Ang	y cleared a	reas that are	no longer or	not required	I for drilling activ	vities should be	e re-seeded
wit	h locally so	urced seed o	f suitable spe	ecies. Bare a	areas can also b	e packed with	brush
ren	noved from	other parts c	of the site to e	encourage n	atural vegetation	n regeneration	and limit
ero	sion.	-		-	-		

Impact Pha	Impact Phase: Exploration						
Potential in	mpact dese	cription: Imp	acts on wate	ercourses			
The major i	mpact durir	ng this phase	may result f	rom infilling	and impediment	t of watercours	es if drilling
occurs nea	r the water	course and ca	anal that trav	erse the site).		
	Extent	Duration	Intensity	Status	Significance	Probability	Confidence
Without	Μ	Н	М	Negative	Μ	Н	Н
Mitigation							
With	L	М	L	Negative	Μ	Μ	Н
Mitigation							
Can the impact be		Yes, Watercourses can be rehabilitated.					
reversed?							
Will impact	cause	No.					
irreplaceab	le loss of						
resources?							
Can impact	t be	Yes. All watercourses should be avoided.					
avoided, managed or							
mitigated?							
Mitigation n	neasures:						
• No	drilling is to	be allowed	within 100 m	of all water	courses.		

Impact Pha	Impact Phase: Exploration						
Potential in	npact deso	cription: Imp	acts on vege	etation			
The major i	mpact durir	ng this phase	will result fro	om vegetatio	on clearance for	drilling purpos	es
	Extent	Duration	Intensity	Status	Significance	Probability	Confidence
Without	L	Н	М	Negative	Μ	Н	Н
Mitigation							
With	L	Н	М	Negative	M	М	Н
Mitigation							
Can the impact be		No, once vegetation is cleared, it would not be possible to return it to its					
reversed?		previous state.					
Will impact	cause	No. No Red Data plants were encountered.					
irreplaceab	le loss of						
resources?							
Can impact	be	Yes. Although mitigations will be provided, vegetation loss would be inevitable.					
avoided, managed or							
mitigated?							
Mitigation n	neasures:						
• All	natural veg	etation not re	equired to be	removed sh	ould be protecte	ed against dan	nage.

Impact Pha	Impact Phase: Exploration						
Potential in	mpact dese	cription: Dire	ect and indire	ect avifauna	and faunal Impa	acts	
The explora	ation phase	will result in	habitat loss,	noise and d	isturbance on		
site. This w	ill lead to di	irect and indi	rect disturba	nce of fauna	. Slow-moving s	species	
such as the	tortoises a	re likely to be	e killed by ma	achinery.			
	Extent	Duration	Intensity	Status	Significance	Probability	Confidence
Without	L	L	М	Negative	Μ	Н	Н
Mitigation							
With	L	L	М	Negative	Μ	М	Н
Mitigation							
Can the im	pact be	Yes, This impact can be prevented through appropriate mitigation measures.					
reversed?							
Will impact	cause	No. No Spe	cies of Cons	ervation Co	ncern are likely	to be impacted	l by the
irreplaceab	le loss of	activities.					
resources?							
Can impact	be	Yes. Contractors should be informed about slow moving species that are likely					
avoided, m	anaged or	to be crushed by construction vehicles.					
mitigated?	mitigated?						
Mitigation measures:							
 No 	animal may	y be hunted,	trapped, sna	red or captu	red for any purp	ose whatsoev	er.
• Sp	eed of vehic	Speed of vehicles should be limited to allow for sufficient safety margins					

8. REHABILITATION

The traditional definition of rehabilitation aims at returning the land in a given area to some degree of its former state after a particular process has resulted in its damage.

Rehabilitation requires that there is an attempt to imitate natural processes and reinstate natural ecological driving forces in such a way that it aids the recovery (or maintenance) of dynamic systems so that, although they are unlikely to be identical to their natural counterparts, they will be comparable in critical ways so as to function similarly (Jordan et al.1987). Rehabilitation should be based on an understanding of both the ecological starting point and on a defined goal endpoint and should accept that it is not possible to predict exactly how the disturbed vegetation is likely to respond to the rehabilitation interventions.

During this exploration phase, all disturbed areas should be rehabilitated. This should be done using indigenous vegetation.

9. CONCLUSION AND RECOMMENDATIONS

There are several habitats within the proposed site that have been exposed to high levels of disturbance resulting from farming activities and human settlements. The following are recommended:

- Watercourses must be avoided at all times expect when moving across the sites. This should be done on existing crossings.
- All temporary stockpile areas including litter and dumped material and rubble must be removed on completion of exploration.
- No painting or marking of vegetation shall be allowed. Marking shall be done by steel stakes with tags, if required.
- Only necessary damage must be caused: for example, unnecessary driving around in the site should not take place.

The impacts associated with the proposed prospecting activities are likely to be from Low to Very Low after implementation of mitigation measures. As a result, it is the opinion of the specialist that this proposed prospecting application be considered provided that the recommendations stipulated in this study are adhered to.

It should be noted that should the applicant reach the mining right stage, a full terrestrial biodiversity and aquatic studies are recommended.

10. REFERENCES

- Bregman T. P., Lees, A. C., MacGregor, H. E. A., Darski, B., de Moura, N. G., Aleixo, A., Barlow, J. & Tobias, J. A. 2016 Using avian functional traits to assess the impact of land-cover change on ecosystem processes linked to resilience in tropical forests. *Proceedings of the Royal Society B* 283: 1-10.
- Branch, B. 1998. Field guide to snakes and other reptiles of southern Africa. Struik Nature, Cape Town.
- Bredenkamp, G., Granger, J.E. & van Rooyen, N. 1996. Moist Sandy Highveld Grassland. In: Low, A.B. &Robelo, A.G. (eds) *Vegetation of South Africa, Lesotho and Swaziland*. Department of Environmental Affairs and Tourism, Pretoria.
- Gelderblom, C.M. & Bronner, G.N. 1995. Patterns of distribution and protection status of the endemic mammals in South Africa, *South African Journal of Zoology*, 30:3, 127-135.
- Koskimies, P. Birds as a tool in environmental monitoring. *Annales Zoologici Fennici*, 26: 153-166.
- Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. 2006. World Map of Köppe Geiger Climate Classification updated. *Meteorology. Z.* **15**. 259-263.
- Kotze, D.C., Marneweck, G.C., Batchelor, A.L., Lindley, D.S. & Collins, N.B. 2007. Wet EcoServices: A technique for rapidly assessing ecosystem services supplied by wetlands, WRC Report No. TT 339/09, Water Research Commission, Pretoria.

Manning, J. 2009. Field guide to the wild flowers of South Africa. Struik, Cape Town.

- Mucina, L., Hoare, D.B., Lötter, M.C., Du Preez, P.J., Rutherford, M.C., Scott Shaw, C.R., Bredenkamp, G.J., Powrie, L.W., Scott, L., Camp, K.G.T., Cilliers, S.S.Bezuidenhout, H., Mostert, T.H., Siebert, S.J., Winter, P.J.D., Burrows, J.E., Dobson, L., Ward, R.A., Stalmans, M., Oliver, E.G.H., Siebert, F., Schmidt, E.,Kobisi, K., Kose, L. 2006. Grassland Biome. In: Mucina, L. & Rutherford, M.C. (eds.). Vegetation map of South Africa, Lesotho and Swaziland: an illustrated guide. Strelitzia 19. South African National Biodiversity Institute, Pretoria.
- Nieto, M., Hortal, J., Martínez-Maza, C., Morales, J., Ortiz-Jaureguizar, E., Pelaez Campomanes, P., Pickford, M., Prado, J.L., Rodríguez, J., Senut, B., Soria, D. & Varela, S. 2005. Historical Determinants of Mammal Diversity in Africa: Evolution of Mammalian Body Mass Distribution in Africa and South America During Neogene and Quarternary Times. *African Biodiversity*.

- Ollis, D., Snaddon, K., Job, N., & Mbona, N. 2013. Classification Systems for Wetlands and other Aquatic Ecosystems in South Africa. User Manual: Inland Systems. SANBI Biodiversity Series 22. Pretoria: South African National Biodiversity Institute.
- Potts, J. R., Mokross, K., Stouffer, P. C. & Lewis, M. A. 2014. Step selection techniques uncover the environmental predictors of space use patterns in flocks of Amazonian birds. *Ecology and Evolution*,4(24): 4578-4588.
- Raimondo, D., von Staden, L., Foden, W., Victor, J.E., Helme, N.A., Turner, R.C., Kamundi, D.A. and Manyama, P.A. 2009. Red List of South African Plants. Strelitzia 25. South African National Biodiversity Institute, Pretoria
- Sinclair, I., Hockey, P., Tarboton, W. & Ryan, R. 2011. Birds of Southern Africa. Struik Nature, Cape Town.

11.APPENDICES

Appendix 1: Historical Faunal Records A, Mammal Records. Animal Demographic Unit.

No	Family	Scientific name	Common name	Red list category	Number of records	Last recorded
1	Bathyergidae	Cryptomys hottentotus	Southern African Mole-rat	Least Concern (2016)	2	1979-06-29
2	Bathyergidae	Cryptomys mahali	Mahali's Mole-rat	Data Deficient (IUCN, 2019)	4	2019-12-29
3	Bovidae	Aepyceros melampus	Impala	Least Concern	6	2011-07-26
4	Bovidae	Alcelaphus buselaphus	Hartebeest		3	2010-09-28
5	Bovidae	Connochaetes taurinus	Blue Wildebeest	Least Concern (ver 3.1, 2017)	1	2021-07-04
6	Bovidae	Connochaetes taurinus taurinus		Least Concern (2016)	4	2010-09-28
7	Bovidae	Damaliscus pygargus phillipsi	Blesbok	Least Concern (2016)	5	2017-05-01
8	Bovidae	Kobus ellipsiprymnus ellipsiprymnus		Least Concern (2016)	3	2010-09-28
9	Bovidae	Raphicerus campestris	Steenbok	Least Concern (2016)	1	
10	Bovidae	Sylvicapra grimmia	Bush Duiker	Least Concern (2016)	2	
11	Bovidae	Taurotragus oryx	Common Eland	Least Concern (2016)	2	2011-07-28
12	Bovidae	Tragelaphus strepsiceros	Greater Kudu	Least Concern (2016)	5	2010-09-28
13	Canidae	Canis mesomelas	Black-backed Jackal	Least Concern (2016)	5	2011-07-30
14	Canidae	Lycaon pictus	African wild dog	Endangered (2016)	1	2021-07-04
15	Cercopithecidae	Chlorocebus pygerythrus	Vervet Monkey	Least Concern (2016)	2	2017-02-28
16	Cercopithecidae	Papio ursinus	Chacma Baboon	Least Concern (2016)	2	2011-07-28
17	Equidae	Equus quagga	Plains Zebra	Least Concern (2016)	5	2021-07-04
18	Erinaceidae	Atelerix frontalis	Southern African Hedgehog	Near Threatened (2016)	3	2014-11-21
19	Felidae	Acinonyx jubatus	Cheetah	Vulnerable (2016)	1	2021-07-04
20	Felidae	Caracal caracal	Caracal	Least Concern (2016)	1	
21	Felidae	Felis silvestris	Wildcat	Least Concern (2016)	3	1915-03-16
22	Felidae	Leptailurus serval	Serval	Near Threatened (2016)	1	2021-07-04
23	Giraffidae	Giraffa giraffa giraffa	South African Giraffe	Least Concern (2016)	2	2010-09-28
24	Gliridae	Graphiurus (Graphiurus) murinus	Forest African Dormouse	Least Concern	5	2003-02-26
25	Herpestidae	Atilax paludinosus	Marsh Mongoose	Least Concern (2016)	1	2011-07-28

26 Hyaenidae	Crocuta crocuta	Spotted Hyaena	Near Threatened (2016)	1	2021-07-04
27 Hyaenidae	Proteles cristata	Aardwolf	Least Concern (2016)	3	2011-07-29
28 Hystricidae	Hystrix africaeaustralis	Cape Porcupine	Least Concern	1	2016-11-24
29 Leporidae	Lepus saxatilis	Scrub Hare	Least Concern	5	2017-03-11
30 Leporidae	Pronolagus sp.	Rock-hares		2	2011-07-28
31 Macroscelididae	Elephantulus myurus	Eastern Rock Elephant Shrew	Least Concern (2016)	2	2011-07-28
32 Manidae	Smutsia temminckii	Ground Pangolin	Vulnerable (2016)	1	
33 Molossidae	Sauromys petrophilus	Roberts's Flat-headed Bat	Least Concern (2016)	3	1978-04-18
34 Muridae	Aethomys ineptus	Tete Veld Aethomys	Least Concern (2016)	8	2011-07-28
35 Muridae	Aethomys namaquensis	Namaqua Rock Mouse	Least Concern	5	2011-07-29
36 Muridae	Gerbilliscus leucogaster	Bushveld Gerbil	Least Concern (2016)	1	1950-04-07
37 Muridae	Mus (Nannomys) minutoides	Southern African Pygmy Mouse	Least Concern	1	1987-03-26
38 Muridae	Rattus rattus	Roof Rat	Least Concern	1	1934-10-16
39 Procaviidae	Procavia capensis	Cape Rock Hyrax	Least Concern (2016)	1	2011-07-26
40 Pteropodidae	Epomophorus wahlbergi	Wahlberg's Epauletted Fruit Bat	Least Concern (2016)	3	2020-04-23
41 Rhinolophidae	Rhinolophus darlingi	Darling's Horseshoe Bat	Least Concern (2016)	6	1973-06-10
42 Sciuridae	Paraxerus cepapi	Smith's Bush Squirrel	Least Concern (2016)	5	2021-07-04
43 Soricidae	Crocidura fuscomurina	Bicolored Musk Shrew	Least Concern (2016)	5	1987-03-26
44 Soricidae	Suncus infinitesimus	Least Dwarf Shrew	Least Concern (2016)	1	1987-03-26
45 Suidae	Phacochoerus aethiopicus	Desert Warthog		1	
46 Vespertilionidae	Myotis tricolor	Temminck's Myotis	Least Concern (2016)	2	
47 Vespertilionidae	Scotophilus dinganii	Yellow-bellied House Bat	Least Concern (2016)	2	1973-02-24
48 Viveridae	Genetta maculata	Common Large-spotted Genet	Least Concern	1	2011-07-29
49 Viverridae	Genetta genetta	Common Genet	Least Concern (2016)	1	
50 Viverridae	Genetta tigrina	Cape Genet (Cape Large-spotted Genet)	Least Concern (2016)	2	2011-07-29

B, Reptile Records. Animal Demographic Unit.

No	Family	Scientific name	Common name	Red list category	Number of records	Last recorded
1	Agamidae	Acanthocercus atricollis	Southern Tree Agama	Least Concern (SARCA 2014)	3	2017-10-22
2	Agamidae	Agama aculeata distanti	Distant's Ground Agama	Least Concern (SARCA 2014)	3	1900-06-15
3	Agamidae	Agama atra	Southern Rock Agama	Least Concern (SARCA 2014)	17	2019-10-16
4	Chamaeleonidae	Chamaeleo dilepis	Common Flap-neck Chameleon	Least Concern (SARCA 2014)	6	2015-12-26
5	Colubridae	Crotaphopeltis hotamboeia	Red-lipped Snake	Least Concern (SARCA 2014)	2	1900-06-15
6	Colubridae	Dasypeltis scabra	Rhombic Egg-eater	Least Concern (SARCA 2014)	5	2017-12-23
7	Colubridae	Dispholidus typus viridis	Northern Boomslang	Not evaluated	1	1900-06-15
8	Colubridae	Philothamnus hoplogaster	South Eastern Green Snake	Least Concern (SARCA 2014)	1	1900-06-15
9	Colubridae	Philothamnus semivariegatus	Spotted Bush Snake	Least Concern (SARCA 2014)	5	2017-09-24
10	Colubridae	Telescopus semiannulatus semiannulatus	Eastern Tiger Snake	Least Concern (SARCA 2014)	6	1982-09-23
11	Cordylidae	Cordylus jonesii	Jones' Girdled Lizard	Least Concern (SARCA 2014)	1	1986-01-29
12	Cordylidae	Cordylus vittifer	Common Girdled Lizard	Least Concern (SARCA 2014)	4	2015-12-12
13	Elapidae	Elapsoidea sundevallii media	Highveld Garter Snake		1	1900-06-15
14	Elapidae	Naja annulifera	Snouted Cobra	Least Concern (SARCA 2014)	11	2016-11-23
15	Elapidae	Naja mossambica	Mozambique Spitting Cobra	Least Concern (SARCA 2014)	2	2021-04-03
16	Gekkonidae	Chondrodactylus turneri	Turner's Gecko	Least Concern (SARCA 2014)	1	1900-06-15
17	Gekkonidae	Hemidactylus mabouia	Common Tropical House Gecko	Least Concern (SARCA 2014)	8	2021-04-05
18	Gekkonidae	Lygodactylus capensis	Common Dwarf Gecko	Least Concern (SARCA 2014)	7	2020-04-30
19	Gekkonidae	Pachydactylus affinis	Transvaal Gecko	Least Concern (SARCA 2014)	5	2016-07-10
20	Gekkonidae	Pachydactylus capensis	Cape Gecko	Least Concern (SARCA 2014)	2	1913-10-03
21	Gerrhosauridae	Gerrhosaurus flavigularis	Yellow-throated Plated Lizard	Least Concern (SARCA 2014)	4	2019-11-24
22	Lamprophiidae	Aparallactus capensis	Black-headed Centipede-eater	Least Concern (SARCA 2014)	1	1918-11-18
23	Lamprophiidae	Boaedon capensis	Brown House Snake	Least Concern (SARCA 2014)	4	2015-01-02
24	Lamprophiidae	Duberria lutrix lutrix	South African Slug-eater	Least Concern (SARCA 2014)	1	1900-06-15
25	Lamprophiidae	Homoroselaps dorsalis	Striped Harlequin Snake	Near Threatened (SARCA 2014)	1	1900-06-15
26	Lamprophiidae	Lamprophis aurora	Aurora House Snake	Least Concern (SARCA 2014)	2	1900-06-15
27	Lamprophiidae	Lycodonomorphus rufulus	Brown Water Snake	Least Concern (SARCA 2014)	2	1900-06-15
28	Lamprophiidae	Lycophidion capense capense	Cape Wolf Snake	Least Concern (SARCA 2014)	3	1982-09-25

30 LamprophiidaePsammophis brevirostrisShort-snouted Grass SnakeLeast Concern (SARCA 2014)72019-	-12-01 -06-15
	-06-15
31 Lamprophiidae <i>Psammophylax tritaeniatus</i> Striped Grass Snake Least Concern (SARCA 2014) 1 1900-	
32 Leptotyphlopidae Leptotyphlops incognitus Incognito Thread Snake Least Concern (SARCA 2014) 1 1900-	-06-15
33 Pelomedusidae <i>Pelomedusa galeata</i> South African Marsh Terrapin Not evaluated 1 1900-	-06-15
34 Pythonidae Python natalensis Southern African Python Least Concern (SARCA 2014) 2 1900-	-06-15
35 Scincidae Acontias occidentalis Western Legless Skink Least Concern (SARCA 2014) 2 1926-	-12-18
36 Scincidae Mochlus sundevallii Sundevall's Writhing Skink Least Concern (SARCA 2014) 2 1993-	-10-03
37 ScincidaePanaspis wahlbergiiWahlberg's Snake-eyed SkinkLeast Concern (SARCA 2014)21900-	-06-15
38 ScincidaeTrachylepis damaranaDamara Variable Skink22021-	-01-03
39 ScincidaeTrachylepis punctatissimaSpeckled Rock SkinkLeast Concern (SARCA 2014)52020-	-04-13
40 ScincidaeTrachylepis sp. (Transvaal varia)Skink sp. 111900-	-06-15
41 Scincidae Trachylepis varia sensu lato Common Variable Skink Complex Least Concern (SARCA 2014) 5 2016-	-07-10
42 Typhlopidae Afrotyphlops bibronii Bibron's Blind Snake Least Concern (SARCA 2014) 2 1900-	-06-15
43 Typhlopidae Rhinotyphlops lalandei Delalande's Beaked Blind Snake Least Concern (SARCA 2014) 2 1900-	-06-15
44 VaranidaeVaranus niloticusWater MonitorLeast Concern (SARCA 2014)42017-	-09-21
45 Viperidae Bitis arietans arietans Puff Adder Least Concern (SARCA 2014) 15 2013-	-01-12
46 Viperidae Causus rhombeatus Rhombic Night Adder Least Concern (SARCA 2014) 2 1963-	-11-30

C, Frog Records, Animal Demographic Unit.

No	Family	Scientific name	Common name	Red list category	Number of records	Last recorded
1	Brevicepitidae	Breviceps adspersus	Bushveld Rain Frog	Least Concern	1	1999-11-18
2	Bufonidae	Schismaderma carens	Red Toad	Least Concern	10	2020-07-17
3	Bufonidae	Sclerophrys garmani	Olive Toad	Least Concern (IUCN, 2016)	4	2000-01-06
4	Bufonidae	Sclerophrys gutturalis	Guttural Toad	Least Concern (IUCN, 2016)	5	2000-01-06
5	Bufonidae	Sclerophrys poweri	Power's Toad	Least Concern	1	1999-11-18
6	Hyperoliidae	Kassina senegalensis	Bubbling Kassina	Least Concern	4	2000-01-06
7	Microhylidae	Phrynomantis bifasciatus	Banded Rubber Frog	Least Concern	2	2000-01-05
8	Phrynobatrachidae	Phrynobatrachus natalensis	Snoring Puddle Frog	Least Concern (IUCN, 2013)	1	1913-10-03
9	Pipidae	Xenopus laevis	Common Platanna	Least Concern	1	1970-04-22
10	Ptychadenidae	Ptychadena anchietae	Plain Grass Frog	Least Concern	1	2000-01-05
11	Pyxicephalidae	Amietia delalandii	Delalande's River Frog	Least Concern (2017)	7	2019-06-15
12	Pyxicephalidae	Cacosternum boettgeri	Common Caco	Least Concern (2013)	1	2000-01-05
13	Pyxicephalidae	Pyxicephalus adspersus	Giant Bull Frog	Near Threatened	2	2017-03-03
14	Pyxicephalidae	Tomopterna cryptotis	Tremelo Sand Frog	Least Concern	3	2016-11-18
15	Pyxicephalidae	Tomopterna natalensis	Natal Sand Frog	Least Concern	2	2000-01-05

No	Common group	Common species	Genus	Species
1		Bokmakierie	Telophorus	zeylonus
2		Brubru	Nilaus	afer
3		Hamerkop	Scopus	umbretta
4		Neddicky	Cisticola	fulvicapilla
5		Quailfinch	Ortygospiza	atricollis
6		Ruff	Calidris	pugnax
7	Babbler	Arrow-marked	Turdoides	jardineii
8	Babbler	Southern Pied	Turdoides	bicolor
9	Barbet	Acacia Pied	Tricholaema	leucomelas
10	Barbet	Black-collared	Lybius	torquatus
11	Barbet	Crested	Trachyphonus	vaillantii
12	Batis	Chinspot	Batis	molitor
13	Bee-eater	European	Merops	apiaster
14	Bee-eater	White-fronted	Merops	bullockoides
15	Bishop	Southern Red	Euplectes	orix
16	Bishop	Yellow-crowned	Euplectes	afer
17	Boubou	Southern	Laniarius	ferrugineus
18	Bulbul	Dark-capped	Pycnonotus	tricolor
19	Bunting	Cinnamon-breasted	Emberiza	tahapisi
20	Bunting	Golden-breasted	Emberiza	flaviventris
21	Bunting	Lark-like	Emberiza	impetuani
22	Bushshrike	Orange-breasted	Chlorophoneus	sulfureopectus
23	Buzzard	Common	Buteo	buteo
24	Camaroptera	Grey-backed	Camaroptera	brevicaudata
25	Canary	Black-throated	Crithagra	atrogularis
26	Canary	Yellow	Crithagra	flaviventris
27	Canary	Yellow-fronted	Crithagra	mozambica
28	Chat	Familiar	Oenanthe	familiaris
29	Cisticola	Desert	Cisticola	aridulus
30	Cisticola	Levaillant's	Cisticola	tinniens
31	Cisticola	Rattling	Cisticola	chiniana
32	Cisticola	Zitting	Cisticola	juncidis
33	Coot	Red-knobbed	Fulica	cristata
34	Cormorant	Reed	Microcarbo	africanus
35	Cormorant	White-breasted	Phalacrocorax	lucidus
36	Coucal	Burchell's	Centropus	burchellii
37	Courser	Temminck's	Cursorius	temminckii

E, Avifaunal Records. SABAP2, Animal Demographic Unit.

No	Common group	Common species	Genus	Species
38	Crake	Black	Zapornia	flavirostra
39	Crombec	Long-billed	Sylvietta	rufescens
40	Crow	Pied	Corvus	albus
41	Cuckoo	Black	Cuculus	clamosus
42	Cuckoo	Diederik	Chrysococcyx	caprius
43	Cuckoo	Jacobin	Clamator	jacobinus
44	Cuckoo	Red-chested	Cuculus	solitarius
45	Dove	Cape Turtle	Streptopelia	capicola
46	Dove	Laughing	Spilopelia	senegalensis
47	Dove	Namaqua	Oena	capensis
48	Dove	Red-eyed	Streptopelia	semitorquata
49	Dove	Rock	Columba	livia
50	Drongo	Fork-tailed	Dicrurus	adsimilis
51	Duck	African Black	Anas	sparsa
52	Duck	Knob-billed	Sarkidiornis	melanotos
53	Duck	White-backed	Thalassornis	leuconotus
54	Duck	White-faced Whistling	Dendrocygna	viduata
55	Duck	Yellow-billed	Anas	undulata
56	Eagle	Black-chested Snake	Circaetus	pectoralis
57	Egret	Great	Ardea	alba
58	Egret	Intermediate	Ardea	intermedia
59	Egret	Little	Egretta	garzetta
60	Egret	Western Cattle	Bubulcus	ibis
61	Eremomela	Burnt-necked	Eremomela	usticollis
62	Falcon	Amur	Falco	amurensis
63	Falcon	Lanner	Falco	biarmicus
64	Finch	Cut-throat	Amadina	fasciata
65	Finch	Red-headed	Amadina	erythrocephala
66	Firefinch	Jameson's	Lagonosticta	rhodopareia
67	Firefinch	Red-billed	Lagonosticta	senegala
68	Fiscal	Southern	Lanius	collaris
69	Flycatcher	African Paradise	Terpsiphone	viridis
70	Flycatcher	Fiscal	Melaenornis	silens
71	Flycatcher	Marico	Melaenornis	mariquensis
72	Flycatcher	Southern Black	Melaenornis	pammelaina
73	Flycatcher	Spotted	Muscicapa	striata
74	Francolin	Coqui	Peliperdix	coqui
75	Francolin	Crested	Dendroperdix	sephaena

No	Common group	Common species	Genus	Species
76	Go-away-bird	Grey	Crinifer	concolor
77	Goose	Egyptian	Alopochen	aegyptiaca
78	Goose	Spur-winged	Plectropterus	gambensis
79	Goshawk	Gabar	Micronisus	gabar
80	Goshawk	Pale Chanting	Melierax	canorus
81	Grebe	Little	Tachybaptus	ruficollis
82	Greenshank	Common	Tringa	nebularia
83	Guineafowl	Helmeted	Numida	meleagris
84	Heron	Black-headed	Ardea	melanocephala
85	Heron	Grey	Ardea	cinerea
86	Heron	Purple	Ardea	purpurea
87	Heron	Squacco	Ardeola	ralloides
88	Heron	Striated	Butorides	striata
89	Honeyguide	Lesser	Indicator	minor
90	Ноорое	African	Upupa	africana
91	Hornbill	African Grey	Lophoceros	nasutus
92	Hornbill	Southern Red-billed	Tockus	rufirostris
93	Hornbill	Southern Yellow-billed	Tockus	leucomelas
94	Ibis	African Sacred	Threskiornis	aethiopicus
95	Ibis	Glossy	Plegadis	falcinellus
96	Ibis	Hadada	Bostrychia	hagedash
97	Indigobird	Purple	Vidua	purpurascens
98	Indigobird	Village	Vidua	chalybeata
99	Kestrel	Lesser	Falco	naumanni
100	Kingfisher	Brown-hooded	Halcyon	albiventris
101	Kingfisher	Giant	Megaceryle	maxima
102	Kingfisher	Malachite	Corythornis	cristatus
103	Kingfisher	Pied	Ceryle	rudis
104	Kingfisher	Woodland	Halcyon	senegalensis
105	Kite	Black-winged	Elanus	caeruleus
106	Korhaan	Northern Black	Afrotis	afraoides
107	Lapwing	African Wattled	Vanellus	senegallus
108	Lapwing	Blacksmith	Vanellus	armatus
109	Lapwing	Crowned	Vanellus	coronatus
110	Lark	Monotonous	Mirafra	passerina
111	Lark	Rufous-naped	Mirafra	africana
112	Lark	Sabota	Calendulauda	sabota
113	Longclaw	Саре	Macronyx	capensis

No	Common group	Common species	Genus	Species
114	Mannikin	Bronze	Spermestes	cucullata
115	Martin	Banded	Riparia	cincta
116	Martin	Brown-throated	Riparia	paludicola
117	Martin	Rock	Ptyonoprogne	fuligula
118	Moorhen	Common	Gallinula	chloropus
119	Moorhen	Lesser	Paragallinula	angulata
120	Mousebird	Red-faced	Urocolius	indicus
121	Mousebird	Speckled	Colius	striatus
122	Mousebird	White-backed	Colius	colius
123	Myna	Common	Acridotheres	tristis
124	Oriole	Black-headed	Oriolus	larvatus
125	Owl	Marsh	Asio	capensis
126	Owlet	Pearl-spotted	Glaucidium	perlatum
127	Oxpecker	Red-billed	Buphagus	erythrorynchus
128	Painted-snipe	Greater	Rostratula	benghalensis
129	Pigeon	Speckled	Columba	guinea
130	Pipit	African	Anthus	cinnamomeus
131	Pipit	Buffy	Anthus	vaalensis
132	Plover	Three-banded	Charadrius	tricollaris
133	Pochard	Southern	Netta	erythrophthalma
134	Prinia	Black-chested	Prinia	flavicans
135	Prinia	Tawny-flanked	Prinia	subflava
136	Pytilia	Green-winged	Pytilia	melba
137	Quail	Harlequin	Coturnix	delegorguei
138	Quelea	Red-billed	Quelea	quelea
139	Robin-Chat	Cape	Cossypha	caffra
140	Robin-Chat	White-throated	Cossypha	humeralis
141	Roller	European	Coracias	garrulus
142	Roller	Lilac-breasted	Coracias	caudatus
143	Sandpiper	Common	Actitis	hypoleucos
144	Sandpiper	Marsh	Tringa	stagnatilis
145	Sandpiper	Wood	Tringa	glareola
146	Scrub Robin	Kalahari	Cercotrichas	paena
147	Scrub Robin	White-browed	Cercotrichas	leucophrys
148	Seedeater	Streaky-headed	Crithagra	gularis
149	Shoveler	Саре	Spatula	smithii
150	Shrike	Crimson-breasted	Laniarius	atrococcineus
151	Shrike	Lesser Grey	Lanius	minor

No	Common group	Common species	Genus	Species
152	Shrike	Magpie	Urolestes	melanoleucus
153	Shrike	Red-backed	Lanius	collurio
154	Shrike	Southern White-crowned	Eurocephalus	anguitimens
155	Snipe	African	Gallinago	nigripennis
156	Sparrow	Саре	Passer	melanurus
157	Sparrow	Great	Passer	motitensis
158	Sparrow	House	Passer	domesticus
159	Sparrow	Southern Grey-headed	Passer	diffusus
160	Sparrow-Weaver	White-browed	Plocepasser	mahali
161	Spoonbill	African	Platalea	alba
162	Spurfowl	Natal	Pternistis	natalensis
163	Spurfowl	Swainson's	Pternistis	swainsonii
164	Starling	Саре	Lamprotornis	nitens
165	Starling	Red-winged	Onychognathus	morio
166	Starling	Wattled	Creatophora	cinerea
167	Stilt	Black-winged	Himantopus	himantopus
168	Stonechat	African	Saxicola	torquatus
169	Stork	White	Ciconia	ciconia
170	Sunbird	Amethyst	Chalcomitra	amethystina
171	Sunbird	Marico	Cinnyris	mariquensis
172	Sunbird	White-bellied	Cinnyris	talatala
173	Swallow	Barn	Hirundo	rustica
174	Swallow	Greater Striped	Cecropis	cucullata
175	Swallow	Lesser Striped	Cecropis	abyssinica
176	Swallow	Pearl-breasted	Hirundo	dimidiata
177	Swallow	Red-breasted	Cecropis	semirufa
178	Swallow	South African Cliff	Petrochelidon	spilodera
179	Swallow	White-throated	Hirundo	albigularis
180	Swamphen	African	Porphyrio	madagascariensis
181	Swift	African Palm	Cypsiurus	parvus
182	Swift	Little	Apus	affinis
183	Swift	White-rumped	Apus	caffer
184	Tchagra	Black-crowned	Tchagra	senegalus
185	Tchagra	Brown-crowned	Tchagra	australis
186	Teal	Red-billed	Anas	erythrorhyncha
187	Thick-knee	Spotted	Burhinus	capensis
188	Thrush	Groundscraper	Turdus	litsitsirupa
189	Thrush	Karoo	Turdus	smithi

No	Common group	Common species	Genus	Species
190	Thrush	Kurrichane	Turdus	libonyana
191	Tinkerbird	Yellow-fronted	Pogoniulus	chrysoconus
192	Tit	Ashy	Melaniparus	cinerascens
193	Tit	Southern Black	Melaniparus	niger
194	Tit-Flycatcher	Grey	Myioparus	plumbeus
195	Wagtail	Саре	Motacilla	capensis
196	Warbler	African Reed	Acrocephalus	baeticatus
197	Warbler	Chestnut-vented	Curruca	subcoerulea
198	Warbler	Great Reed	Acrocephalus	arundinaceus
199	Warbler	Lesser Swamp	Acrocephalus	gracilirostris
200	Warbler	Little Rush	Bradypterus	baboecala
201	Warbler	Willow	Phylloscopus	trochilus
202	Waxbill	Black-faced	Brunhilda	erythronotos
203	Waxbill	Blue	Uraeginthus	angolensis
204	Waxbill	Common	Estrilda	astrild
205	Waxbill	Violet-eared	Granatina	granatina
206	Weaver	Red-billed Buffalo	Bubalornis	niger
207	Weaver	Scaly-feathered	Sporopipes	squamifrons
208	Weaver	Southern Masked	Ploceus	velatus
209	Weaver	Thick-billed	Amblyospiza	albifrons
210	Weaver	Village	Ploceus	cucullatus
211	White-eye	Саре	Zosterops	virens
212	Whydah	Long-tailed Paradise	Vidua	paradisaea
213	Whydah	Pin-tailed	Vidua	macroura
214	Whydah	Shaft-tailed	Vidua	regia
215	Widowbird	Long-tailed	Euplectes	progne
216	Widowbird	Red-collared	Euplectes	ardens
217	Widowbird	White-winged	Euplectes	albonotatus
218	Wood Hoopoe	Green	Phoeniculus	purpureus
219	Woodpecker	Cardinal	Dendropicos	fuscescens
220	Woodpecker	Golden-tailed	Campethera	abingoni

Mokgatla Molepo (MSc. Zoology) Email: <u>info@moraecological.co.za</u> Contact: (+27) 76 559 7692 350 Johan St, Arcadia, Pretoria 0083 mora

 \bigcirc