

LEADERS IN ENVIRONMENTAL MONITORING

Wesizwe Platinum

Bakubung Mine Quarterly Water Monitoring Report December 2020 Prepared by Aquatico Scientific (Pty) Ltd Office: (012) 450 3800

Prepared by: Aquatico Scientific

P.O. Box 905008 GARSFONTEIN 0042

Tel: (012) 450 3800

Wesizwe Platinum Limited

Bakubung Mine

Quarterly Water Quality Assessment Report

December 2020

Attention:

Keneilwe Mntambo Thendo Matovheke

Report:

Wesizwe Platinum Bakubung Mine Quarterly Surface water and Groundwater Quality Report December 2020

Report Number: WPBM/WQR/Q2/2020/IF

Prepared by:

Aquatico Scientific

Compiled by:

Immaculata Famah

Copyright reserved

No part of this document may be produced in any manner without full acknowledgement of the source

leaders in enuironmental monitoring address: 89 Regency drive, R21 Corporate Park, Centurion postal: P.O. Box 905008, Garsfontein, 0042 web: www.aquatico.co.za office: 012 450 3800 • fax: 012 450 3851

Wesizwe Platinum Limited,

5 Ronbex Road, Activia park, Elandsfontein, 1406, Environmental department

Attention: Thendo Matovheke Keneilwe Mntambo

December 2020

WESIZWE BAKUBUNG PLATINUM MINE SURFACE WATER AND GROUNDWATER MONITORING QUARTERLY REPORT

DECEMBER 2020 MONITORING PERIOD

1. Introduction

Aquatico was commissioned by Wesizwe Platinum for the monitoring of ten (10) groundwater localities and four (4) surface water localities on the Frischgewaagd and Mimosa farms at their Bakubung Mine (Referred to in the rest of the report as "Wesizwe Bakubung").

Monitoring of surface and groundwater will take place on a monthly basis; on a quarterly basis monitoring will include a broader suite of chemical and bacteriological analysis.

directors: R. Erdmann (CEO) • B.J. de Klerk • 1 H. Holtzhausen • P.J. Naudé • L.A. Shezi • T.B. Sefolo company registration number: 2006/028605/07 uat no: 4360195723

2. Fieldwork:

All fieldwork is conducted based on the protocols and specifications, and code of practice contained in the SABS ISO 5667:1-15. These international standards address all aspects from the program design, sampling methods as well as sample preservation and many other aspects. Applicable standards include:

- ISO 5667-1: 2008 Part 1: Guidance on the design of sampling programs and sampling techniques
- ISO 5667-3: 2018 Part 3: Guidance on preservation and handling of samples
- ISO 5667-11: 2015 Part 11: Guidance on sampling of groundwater
- DWAF Best Practice Guidelines Series G3: General Guidelines for Water Monitoring Systems

Observations during sampling are of critical importance during the evaluation of the water quality results. Aquatico therefore employs highly qualified personnel to conduct the fieldwork as well as the evaluation component of the program.

Aquatico developed a custom-made data input system in accordance with SABS ISO guidelines 5667-1 to 5667-3, to assist the field technician in recording the physical and environmental information of the sampling locality. This information is needed to interpret water quality especially if the water quality results obtained by the laboratory indicate sudden changes at a specific locality.

The field data typically include the following information:

- Location, name and details of the sample site
- Method of collection
- Name of collector
- Nature of pre-treatment, if any
- Preservative or stabilizer added, if any
- Flow status or dam level
- GPS Coordinates
- Photographic evidence
- Water level of boreholes
- Other data gathered at this point

All of the above information is recorded on a handheld PDA device deployed to the field complete with GPS, bar-code scanner, camera and database-linked MONLIMS software. The water quality database is electronically updated with this information when the field technician returns from the field trip.

3. Laboratory analysis:

- This analytical laboratory takes part in the:
 - **SABS commercial** (PTS0003) SANAS accredited proficiency testing by inter-laboratory comparisons Water Chemical Analyses
 - National Laboratory Association (NLA) of South Africa (PTS0009) SANAS accredited Proficiency testing by inter-laboratory comparisons – Microbiology.
 - The Laboratory has also been registered in terms of the **Blue Drop** requirements of the National Certification Program by the Department of Water Affairs.

Bakubung Mine - Monthly laboratory analysis package							
Method	SANAS	Variable/Description					
ALM 20	Α	рН					
ALM 20	Α	Electrical conductivity (EC)					
ALM 20	Α	Temperature					
ALM 21	Α	Turbidity (NTU)					
ALM 24	Α	Total Dissolved Solids (TDS) - gravimetric					
	Baku	bung Mine - Quarterly laboratory analysis package					
Method	SANAS	Variable/Description					
ALM 20	Α	рН					
ALM 20	Α	Electrical conductivity (EC)					
ALM 20	Α	Temperature					
ALM 21	Α	Turbidity (NTU)					
ALM 24	Α	Total Dissolved Solids (TDS) - gravimetric					
ALM 01	Α	Total Alkalinity					
ALM 26	Α	Bicarbonate alkalinity * Requires pH & Alkalinity					
ALM 26	Α	Carbonate alkalinity * Requires pH & Alkalinity					
ALM 02	Α	Chloride (CI)					
ALM 03	Α	Sulphate (SO ₄)					
ALM 06	Α	Nitrate (NO ₃) as N					
ALM 08	A	Fluoride (F)					
ALM 30	A	Ca Mg Na K					
ALM 31	A	Al Fe Mn Cr Cu Ni Pb Zn Cd Co					
ALM 32	NA	Ag, Bi, Li					
ALM 33	Α	B, Ba, Mo, Si, Sr, V					
ALM 34	Α	As & Se					
ALM 36	NA	(3) Sb, Sn, Ti					
ALM 12	NA	Total Phosphorus (TP)					
ALM 40	Α	Total Coliforms & <i>E. coli</i> (<1 to > 100 000 CFU/100ml)					

Table 1: Laboratory analytical packages for Bakubung Platinum Mine

4. Data interpretation

Water quality is discussed focussing on various properties of the water such as physical, chemical and bacteriological quality.

Physical water quality refers to the water quality properties such as temperature, electrical conductivity, pH and oxygen content that may be determined by physical methods. When referring to the physical quality of water, we refer to the three parameters namely pH, EC or TDS. The physical quality affects the aesthetic as well as chemical quality of the water.

Physical quality							
Parameter	Relevance to domestic user						
рН	Affects the corrosive effect and taste of water						
EC/TDS	Serves as a general indicator of change in water quality and affects the "freshness" taste of the water. Indicates the salinity and quantity of dissolved substances						

The chemical quality of the water refers to the nature and concentrations of dissolved substances such as organic or inorganic compounds, including metals, in the water body. Many chemicals in water are essential for the biotic community and may form an integral part of the nutritional requirements. However, elevated levels may be limiting (affecting palatability and potentially result in illnesses) for some of the downstream water users.

Chemical quality	
Parameter	Relevance to domestic user
Alkalinity	Indicative of intrinsic buffering capacity against acidification
Major anions	Influence the salinity levels and may pose health effects in high concentrations
Hardness	Affects the scaling and foaming quality of the water
Major cations	Elevated levels could affect the taste of water and may pose health effects in high concentrations
Heavy metals	Toxic at low concentrations

Bacteriological water quality refers to the presence of a specific group of microscopic organisms that may be found naturally in many water bodies and play an integral part in the ecosystem. Depending on the species and amount of these organisms found in the water they may have limiting effects and cause unfavourable conditions in surface waters.

Bacteriological quality							
Parameter	Relevance to domestic user						
E. coli	Indicator of possible faecal contamination						
Total coliforms	Serves as a general indicator of the presence of microorganisms in water as well as the effectiveness of disinfection						

The WRC (1998) Quality of Domestic Water Supplies guidelines (QDWSG) are used for classification of the water qualities observed. The WRC has developed a useful colour coding system for evaluating the prevailing water quality of water used for domestic purposes (see Table 2).

The system is based on the principle of assigning a colour to a specific concentration range of variables commonly found in water and that has a major effect on the suitability of water for domestic use.

Due to the frequent use of water for domestic purposes and the importance of effective water quality evaluation for that specific use, efficient data for a wide variety of variables are available. When comparing data with the guidelines for domestic use, the worst substance class will determine the overall class of the water supply. Data can be interpreted as follows:

- Water testing within the **Blue** or **Green** colour class 0 or class 1 may be used without reservation and is considered safe for all users.
- Water testing within the Yellow colour class 2 is generally regarded as safe; however sensitive users should be identified and warned to take personal consumption precautions.
- Water testing within the **Red** colour class 3 can be used as a short-term emergency supply, approximately seven days only, when other sources are unavailable.
- When water tests within the **Purple** colour class 4 the public must be warned not to use the water, or to use emergency home treatment where possible. If this is not possible, alternative water supplies must be considered and made available.

Please note that although the above information indicates that water when classified as Class 3 quality for domestic use can be used as a short-term emergency it is highly recommended that water in this class together with water classified as Class 4 not be consumed as it may potentially pose clinical infections in users.

Table 2: Structure of the classification system describing the effects of the different classes of water on the various domestic uses of water (Quality of Domestic Water Supplies, Vol. 1: Assessment Guide)

CLASS / COLOUR	DESCRIPTION	EFFECTS				
		Drinking health: No effects, suitable for many generations				
		Drinking aesthetic: Water is pleasing				
Class 0 (Blue)	Ideal water quality	Food preparation: No effects				
		Bathing: No effects				
		Laundry: No effects				
		Drinking health: Suitable for lifetime use. Rare instances of sub clinical effects				
		Drinking aesthetic: Some aesthetic effects may be present				
Class 1 (Green)	Good water quality	Food preparation: Suitable for lifetime use				
		Bathing: Minor effects on bathing or on bath fixtures				
		Laundry: Minor effects on laundry or on fixtures				
		Drinking health : May be used without health effects by majority of individuals of all ages, but may cause effects in some individuals in sensitive groups. Some effects possible after lifetime use.				
		Drinking aesthetic: Poor taste and appearance are noticeable				
Class 2 (Yellow)	Marginal water quality	Food preparation : May be used without health or aesthetic effects by the majority of individuals.				
		Bathing: Slight effects on bathing or on bath fixtures				
		Laundry: Slight effects on laundry or on fixtures				
		Drinking health : Poses a risk of chronic health effects, especially in babies, children and the elderly				
	P	Drinking aesthetic: Bad taste and appearance may lead t rejection of water				
Class 3 (Red)	Poor water quality	Food preparation : Poses a risk of chronic health effects, especially in babies, children and the elderly				
		Bathing: Significant effects on bathing or on bath fixtures				
		Laundry: Significant effects on laundry or on fixtures				
		Drinking health : Severe acute health effects, even with short-term use				
	Unacceptable water	Drinking aesthetic : Taste and appearance will lead to rejection of water				
Class 4 (Purple)	quality	Food preparation: Severe acute health effects, even with short-term use				
		Bathing: Serious effects on bathing or on bath fixtures				
		Laundry: Serious effects on laundry or on fixtures				

The Wesizwe Platinum Bakubung Mine is currently in possession of a water use licence (WUL) No. 26064730. The WUL indicates water quality limits for waste water to be disposed of onto a pollution control dam and is stipulated in table 3.

Limits as stipulated in the RQO for Mokolo-Crocodile West Catchments are also used in assessing the surface water quality as the Wesizwe Platinum mine is located in Unit 5_7 of this catchment.

No limits are provided for groundwater quality or receiving environment quality, as such the SANS241-1:2015 drinking water standards will be applied to the analysed water quality recorded in this report. The General Limit [Section 21 (f) and (h)] of the General Authorisation (General Authorisation in terms of Section 39 of the National Water Act, 1998 (Act 36 of 1998) in Government notice 665, as published in the Government Gazette no 36820 dated 6 December 2013) will be applied to the analysed water quality in this report as a secondary guideline. These limits may be viewed in Table 3 below.

It should be noted that the water is also classified according to the WRC (1998) Quality of Domestic Water Supplies Assessment Guide and that the classification **only serves as reference** for the recorded water quality (based on the analysed variables).

Further testing would however be required before this water can be considered safe or should be used for domestic purposes.

The General Limit indicates various water qualities to which the discharging of waste or water containing waste **into a non-listed water resource** through a pipe, canal, sewer or other conduit; and disposing in any manner of water which contains waste from, or which has been heated in, any industrial or power generation process must comply. Please note that various exclusion of water users to this act exists (please see Section 21(1)(e) and 22(2)(e)) and as such should only serve as a general indication of water quality and not for compliance purposes.

VARIABLE	UNITS	SANS 241- 1:2015 Drinking Water Limits	General Authorisation Limit, Section 21f and h, 2013	WUL Water Quality Limits	RQO Mokolo- Crocodile West Catchments
Electrical conductivity (EC) @ 25°C	mS/m	170	150	70 – 150	≤85
pH @ 25°C	pН	5.0/9.7	5.5/9.5	5 - 6 and 9 - 9.5	6 – 9
Total Dissolved solids @ 180°C	mg/l	1200	-	-	-
Chloride (Cl)	mg/l	300	-	100 – 200	≤120
Sulphate (SO ₄)	mg/l	500	-	200 - 400	≤120
Fluoride (F)	mg/l	1.5	1	0.7 – 1.0	-
Nitrate (NO ₃) as N	mg/l	11	15	6 – 10	4.5
Aluminium (Al)	mg/l	0.3	-	-	≤0.1
Arsenic (As)	mg/l	0.01	0.02	-	-
Boron (B)	mg/l	2.4	1	-	-
Barium (Ba)	mg/l	0.7	-	-	-
Cadmium (Cd)	mg/l	0.003	0.005	-	-
Chromium (Cr)	mg/l	0.05	-	-	-
Copper (Cu)	mg/l	2	0.01	-	-
Iron (Fe)	mg/l	0.3	0.3	-	≤0.3
Manganese (Mn)	mg/l	0.1	0.1	-	≤0.15
Calcium (Ca)	mg/l	-	-	80 – 150	-
Sodium (Na)	mg/l	200	-	100 – 200	≤100
Nickel (Ni)	mg/l	0.07	-	-	-
Orthophosphate (PO ₄) as P	mg/l	-	10	-	-
Lead (Pb)	mg/l	0.01	0.01	-	≤0.0095
Antimony (Sb)	mg/l	0.02	-	-	-
Selenium (Se)	mg/l	0.04	0.02	-	-
Zinc (Zn)	mg/l	5	0.1	-	≤0.002
E. coli	CFU/100ml	0	1000	-	130
Total coliform	CFU/100ml	10	-	-	-
Turbidity	Mg/I	≤1	-	-	10% variation

Table 3: Compliance criteria used for assessing water quality at Wesizwe Bakubung Mine

5. Site background information and water monitoring plan

Wesizwe Bakubung Platinum Mine is an underground operation in the Boshoek area situated approximately 32 km north-west of Rustenburg in the A22F quaternary catchment. The site is situated north of the non-perennial Elands River. The Elands River in turn flows into the Limpopo River. **Table 4** represents the current surface water and groundwater monitoring programme conducted by Aquatico.

Groundwater in the areas surrounding the mines is mainly used for domestic supply, watering of gardens and livestock. Groundwater is the sole source of water for many of the surrounding households on farms. It is for this reason that an accurate monitoring program is essential so that a potential groundwater quality impact can be identified and managed or mitigated in time.

Wesizw e - Bakubung Mine Water Monitoring Plan								
	Description	Coordinates						
Locality	Description	Latitude	Longitude					
Groundwater localities								
FBH01D	Borehole on Frischgew aagd, dow ngradient	S25.38673	E27.07585					
FBH02D	Borehole on Frischgw aagd, dow ngradient	S25.38498	E27.07824					
FBH04D	Borehole on Frischgew aagd, dow ngradient	S25.38625	E27.08576					
FBH05S	Borehole on Frischgew aagd, dow ngradient	S25.38098	E27.07233					
FDB1	Borehole on Mimosa farm, upgradient	S25.39648	E27.07429					
MBH01D	Borehole on Mimosa farm, dow ngradient	S25.40059	E27.03159					
MBH03D	Borehole on Mimosa farm, dow ngradient	S25.39686	E27.04689					
MBH04	Borehole on Mimosa farm, dow ngradient	S25.39277	E27.03087					
MBH05	Borehole on Mimosa farm, dow ngradient	S25.39201	E27.04928					
MBH06	Borehole on Mimosa farm, dow ngradient	S25.40556	E27.05078					
	Surface water localitie	es						
SW1	Elands River upstream of mine	S25.41648	E27.03318					
SW2	Elands River midstream along mine	S25.39313	E27.07504					
SW3	Elands River dow nstream from mine	S25.39337	E27.09493					
SW4	Mine water pond (PCD)	S25.38927	E27.08720					

Table 4: Active monitoring localities at Wesizwe Bakubung Mine

An aerial view of the monitoring programme is presented in Figure 1 below. This report will discuss the ten (10) groundwater and four (4) surface localities monitored on a monthly basis. On a quarterly basis (March, June, September and December) a broader range of variables are analysed for.

Figure 1: Wesizwe Bakubung Water Monitoring Map

6. Sampling register

 Table 5: Sampling register as per the December 2020.

SAMPLING REGISTER : MONTHLY											
PROJECT NAME:	Wesizw e Bakubung Environmental										
MONTH:	December 2020										
SAMPLER NAME:	Lubabalo Gobile										
		We	sizw e Bakubun	ig Environmental							
	Description	Coord	inates		Ctotus		Demortes	Labina			
Locality	Description	Latitude	Longitude	Sample nime	Status	FIOW/Level	Remarks	Lap no			
			Boreh	iole							
FBH01D	Borehole on Frischgew aagd, dow ngradient	S25.38670	E27.07586	2020-12-11 12:04	Yes	22.79 m	CLEAR	71967			
FBH02D	Borehole on Frischgw aagd, dow ngradient	S25.38499	E27.07824	2020-12-11 12:11	Yes	39. m	CLEAR	71968			
FBH04D	Borehole on Frischgew aagd, dow ngradient	S25.38620	E27.08572	2020-12-11 12:57	Yes	21.41 m	CLEAR	71969			
FBH05S	Borehole on Frischgew aagd, dow ngradient	S25.38102	E27.07231	2020-12-11 10:00	Yes	8.34 m	SLIGHTLY TURBID	71970			
FDB1	Borehole on Mimosa farm, upgradient	S25.39647	E27.07429	2020-12-11 09:36	Demolished	-	DEMOLISHED	-			
MBH01D	Borehole on Mimosa farm, dow ngradient	S25.38670	E27.07585	2020-12-11 12:04	Dry	-	DRY	-			
MBH03D	Borehole on Mimosa farm, dow ngradient	S25.39685	E27.04691	2020-12-11 10:57	Yes	20.66 m	CLEAR	71971			
MBH04	Borehole on Mimosa farm, dow ngradient	S25.39279	E27.03084	2020-12-11 10:28	Blocked	-	BLOCKED	-			
MBH05	Borehole on Mimosa farm, dow ngradient	S25.39202	E27.04930	2020-12-11 10:46	Yes	21.48 m	CLEAR	71972			
MBH06	Borehole on Mimosa farm, dow ngradient	S25.40557	E27.05074	2020-12-11 11:17	Yes	20.94 m	CLEAR SUSPENDED SOLIDS	71973			
			River or s	stream							
SW1	Elands River upstream of mine	S25.38426	E27.05313	2020-12-11 10:20	Dry	Dry	DRY	-			
SW2	Elands River midstream along mine	S25.39335	E27.07416	2020-12-11 09:42	Dry	Dry	DRY	-			
SW3	Elands River downstream from mine	S25.39154	E27.03769	2020-12-11 10:24	Dry	Dry	DRY	-			
			Pollution Co	ntrol Dam							
SW4	Mine water pond (PCD)	S25.38902	E27.08698	2020-12-11 12:51	Yes	High	CLEAR	71974			

7. Water quality results

7.1. Groundwater monitoring

7.1.1. Field measurements

Table 6: Groundwater measurements as taken in situ during December 2020 sampling

Locality	Field EC measurement	Field pH measurement	Field temperature measurement			
	mS/m	рН	°C			
FBH01D	91.2	7.31	28.6			
FBH02D	89.9	6.93	29.2			
FBH04D	96.5	7.9	27.6			
FBH05S	187.8	7.8	27.9			
FDB1						
MBH01D						
MBH03D	143.7	7.01	27.4			
MBH04						
MBH05	79.2	7.21	26.8			
MBH06	95.1	7.09	28.1			

7.1.2. Frischgewaagd groundwater quality results and discussions

FBH01D

Physical water quality may be described as neutral, very hard and saline with bicarbonate alkalinity the dominant contributing anion and Mg the dominant cation (Figure 3). Most of the analysed variables complied with the SANS 241-1:2015 drinking water standards except total coliform counts which were high (Table 7). Water quality, as analysed, may be classified as **Unacceptable water quality (Class 04)** according to the WRC QDWS (1998) guidelines due to total coliform counts detected. The water quality at this locality deteriorated in terms of total coliforms but improved in terms of turbidity and *E. coli* when compared to last quarterly results.

FBH02D

Physical water quality may be described as neutral, slightly hard and saline with bicarbonate alkalinity as the dominant contributing anion and sodium + potassium the dominant contributing cation (Figure 3). Most of the analysed chemical variables, except total coliform counts, complied with the SANS 241-1:2015 drinking water standards; no *E. coli* detected. Water quality, as analysed, may be classified as Marginal water quality (Class 02) according to the WRC QDWS (1998) guidelines due to total coliform counts detected. The water quality at this locality deteriorated in terms of total coliforms but improved in terms of turbidity when compared to last quarterly results.

<u>FBH04D</u>

Physical water quality may be described as neutral, very hard and saline with bicarbonate alkalinity and magnesium the dominant contributing anion and cation respectively (Figure 3). All the analysed variables complied with the SANS 241-1:2015 drinking water standards. Water quality, as analysed, may be classified as Marginal water quality (Class 02) according to the WRC QDWS (1998) due to the concentration of hardness measured. The water quality at this locality improved in terms of turbidity and *E. coli* when compared to last quarterly results.

<u>FBH05S</u>

Physical water quality may be described as neutral, very hard and saline with bicarbonate alkalinity and magnesium the dominant contributing anion and cation respectively (Figure 3). The SANS 241-1:2015 drinking water standards was exceeded by turbidity; no *E. coli* detected or total coliforms counts were detected (Table 7). Water quality as analysed, may be classified as Marginal water quality (Class 02) according to the WRC QDWS (1998) due turbidity recorded. The water quality at this locality improved in terms of Fe and total coliform when compared to last quarterly results.

7.1.3. <u>Mimosa groundwater quality results and discussions</u>

MBH03D

Physical water quality may be described as neutral, very hard and saline with bicarbonate alkalinity the dominant contributing anion and magnesium the dominant cation (Figure 3). The concentrations of Fe and Mn as well as turbidity exceeded the SANS 241-1:2015 drinking water standards; no *E. coli* or total coliforms detected (Table 7). Water quality, as analysed, may be classified as **Unacceptable water quality (Class 04)** according to the WRC QDWS (1998) guidelines due to turbidity measured. The water quality at this locality deteriorated in terms of Fe when compared to last quarterly results.

<u>MBH05</u>

Physical water quality may be described as neutral, hard and non-saline with bicarbonate alkalinity the dominant contributing anion and magnesium the dominant cation (Figure 3). The Mn concentration and turbidity exceeded the SANS 241-1:2015 drinking water standards; no *E. coli* detected or total coliforms counts were detected (Table 7). Water quality, as analysed, may be classified as Marginal water quality (Class 02) according to the WRC QDWS (1998) guidelines due to turbidity and Mn concentration measured. The water quality at this locality improved in terms of total coliforms when compared to last quarterly results.

<u>MBH06</u>

Physical water quality may be described as neutral, very hard and saline with bicarbonate alkalinity the dominant contributing anion and magnesium the dominant cation (Figure 3). The Mn concentration and turbidity exceeded the SANS 241-1:2015 drinking water standards; no *E. coli* and total coliform detected (Table 7). Water quality, as analysed, may be classified as Marginal water quality (Class 02) according to the WRC QDWS (1998) guidelines due to turbidity and total hardness concentration measured. The water quality at this locality deteriorated in terms of Mn when compared to last quarterly results.

7.1.4. STIFF diagram

Table 7: Recorded groundwater quality data for December 2020.

DATA TABLE:													
PROJECT NAME	Wesizwe Bak	Wesizwe Bakubung Environmental DATE COMPILED								24 December 2020			
ASSESSMENT SET 1	SANS 241-1:2	SANS 241-1:2015 Drinking Water Standard (SABS, 2015) SELECTED DATE									07 December 2020		
ASSESSMENT SET 2	SAWQG Volu	me 5, Agricultural	Use, Livestock Wa	tering, Cattl	е				COMPILE	D BY		Immacula	ata Famah
										Valu	e exceeds	the assess	ment set 1
		ASSESSMENT	ASSESSMENT				MC	NITORIN	G LOCALITI	COCALITIES			
VARIABLE	UNITS	1	2	FBH01D	FBH02D	FBH04D	FBH05S	FDB1	MBH01D	MBH03D	MBH04	MBH05	MBH06
pH @ 25°C	рН	5.0/9.7	-	7.53	7.2	7.4	8			7.12		7.33	7.4
Electrical conductivity (EC) @ 25°C	mS/m	170		95.2	92.5	105	111			133		67.4	91.5
Total Dissolved solids @ 180°C	mg/l	1200	1000	526	616	664	614			674		554	612
Total hardness	mg CaCO3/I	-		350	132	482	475			428		267	483
Calcium (Ca)	mg/l	-	1000	54.1	42.8	71.4	43.9			77.7		58.9	72.2
Magnesium (Mg)	mg/l	-	500	52.2	6.17	73.7	88.6			56.8		29	73.5
Sodium (Na)	mg/l	200	2000	95.9	177	62.4	55.1			66		52.4	31.1
Potassium (K)	mg/l	-	-	1.69	2.84	2.44	8.45			7.34		2.13	1.45
Total alkalinity	mg CaCO3/I	-	-	416	431	458	410			468		379	492
Bicarbonate alkalinity	mg CaCO3/I	-		415	430	456	406			467		378	491
Carbonate alkalinity	mg CaCO3/I	-		1.33	0.636	1.08	3.84	D		0.573		0.756	1.17
Chloride (Cl)	mg/l	300	1500	56.2	19.5	56.3	146	ome	Draw	83.2	Displand	4.79	7.34
Sulphate (SO ₄)	mg/l	500	1000	32.4	13.4	17.1	<0.141	lishe	Diy	1.14	DIUCKEU	3.03	15.2
Fluoride (F)	mg/l	1.5	2	0.55	0.632	0.991	0.458	pa		<0.263		<0.263	<0.263
Nitrate (NO ₃) as N	mg/l	11	22.6	1.22	<0.194	6.53	<0.194			<0.194		<0.194	<0.194
Orthophosphate (PO ₄) as P	mg/l	-	-	<0.005	<0.005	<0.005	<0.005			<0.005		<0.005	<0.005
Total phosphorus	mg/l	-	-	<0.010	<0.010	<0.010	<0.010			<0.010		<0.010	<0.010
Aluminium (Al)	mg/l	0.3	5	<0.002	<0.002	< 0.002	<0.002			<0.002		<0.002	<0.002
Iron (Fe)	mg/l	0.3	10	<0.004	<0.004	<0.004	<0.004			1.51		<0.004	<0.004
Manganese (Mn)	mg/l	0.1		<0.001	0.003	<0.001	0.047			0.494		0.695	0.211
Chromium (Cr)	mg/l	0.05		<0.003	< 0.003	<0.003	<0.003			<0.003		<0.003	<0.003
Copper (Cu)	mg/l	2		<0.002	<0.002	<0.002	<0.002			<0.002		<0.002	<0.002
Cobalt (Co)	mg/l	-	1	<0.003	<0.003	<0.003	<0.003			<0.003		< 0.003	<0.003
Cadmium (Cd)	mg/l	0.003		< 0.002	< 0.002	< 0.002	< 0.002			< 0.002		< 0.002	< 0.002

Nickel (Ni)	mg/l	0.07	1	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002
Lead (Pb)	mg/l	0.01	0.1	<0.004	< 0.004	< 0.004	<0.004		<0.004	< 0.004	< 0.004
Zinc (Zn)	mg/l	5	20	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002
Silver (Ag)	mg/l	-	-	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001	<0.001
Arsenic (As)	mg/l	0.01	1	<0.006	<0.006	<0.006	<0.006		<0.006	<0.006	<0.006
Boron (B)	mg/l	2.4	5	<0.013	<0.013	<0.013	<0.013		<0.013	<0.013	<0.013
Barium (Ba)	mg/l	0.7	-	0.006	0.002	0.081	0.062		0.028	0.038	0.033
Bismuth (Bi)	mg/l	-	-	<0.004	<0.004	<0.004	<0.004		<0.004	<0.004	< 0.004
Lithium (Li)	mg/l	-	-	<0.001	<0.001	<0.001	<0.001		0.001	<0.001	0.003
Molybdenum (Mo)	mg/l	-	0.01	0.033	0.027	0.038	0.034		0.039	0.03	0.039
Antimony (Sb)	mg/l	0.02	-	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001	<0.001
Selenium (Se)	mg/l	0.04	0.05	<0.002	<0.002	<0.002	<0.002		<0.002	<0.002	<0.002
Silicon (Si)	mg/l	-	-	26.7	21.6	27.2	3.26		28.3	21.7	36.1
Tin (Sn)	mg/l	-	-	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001	<0.001
Strontium (Sr)	mg/l	-	-	0.537	0.25	1.4	0.802		0.222	0.248	0.3
Titanium (Ti)	mg/l	-	-	<0.001	<0.001	<0.001	<0.001		<0.001	<0.001	<0.001
Vanadium (V)	mg/l	-	1	0.019	<0.001	0.016	<0.001		<0.001	<0.001	0.002
Turbidity	NTU	1	-	0.29	0.748	0.39	13.6		127	3.74	2.58
E.coli	CFU/100ml	0	1000	0	0	0	0		0	0	0
Total coliform	CFU/100ml	10	-	1120	14	0	0		0	0	0
Temperature	°C	-	-	22.3	22.2	22.2	22.1		22.2	22.2	22.2

7.1.5. Expanded Durov diagram

One of the most appropriate ways to characterize groundwater is to assess the plot position of the water quality on an Expanded Durov diagram. As with STIFF diagrams, the plot positions are determined on the basis of milli-equivalent per litre (meq/L). The characteristics of the different fields will be discussed briefly:

<u>Field 1</u>: Fresh, very clean recently recharged groundwater with HCO_{3-} and CO_{3} dominated ions.

<u>Field 2</u>: Field 2 represents fresh, clean, relatively young groundwater that has started to undergo Mg ion exchange, often found in dolomitic terrain.

<u>Field 3</u>: This field indicates fresh, clean, relatively young groundwater that has undergone Na ion exchange (sometimes in Na-rich granites or other felsic rocks), or because of contamination effects from a source rich in Na.

<u>Field 4</u>: Fresh, recently recharged groundwater with HCO_{3-} and CO_3 dominated ions that has been in contact with a source of SO_4 contamination, or that has moved through SO_4 enriched bedrock.

<u>Field 5</u>: Groundwater that is usually a mix of different types – either clean water from Fields 1 and 2 that has undergone SO_4 and NaCl mixing / contamination, or old stagnant NaCl dominated water that has mixed with clean water.

<u>Field 6</u>: Groundwater from Field 5 that has been in contact with a source rich in Na, or old stagnant NaCl dominated water that resides in Na-rich host rock / material.

Field 7: Water rarely plots in this field that indicates NO₃ or Cl enrichment, or dissolution.

<u>Field 8</u>: Groundwater that is usually a mix of different types - either clean water from Fields 1 and 2 that has undergone SO₄, but especially CI mixing / contamination, or old stagnant NaCI dominated water that has mixed with water richer in Mg.

<u>Field 9</u>: Very old, stagnant water that has reached the end of the geohydrological cycle (deserts, salty pans, etc.) or water that has moved a long time and / or distance through the aquifer and has undergone significant ion exchange.

Figure 3: Expanded Durov diagram of the groundwater monitoring localities at Wesizwe Bakubung

All the analysed groundwater monitoring localities at Wesizwe Bakubung, with the exception of locality **FBH02D**, plotted in Field 2 of the expanded Durov diagram (Figure 3). Field 2 represents fresh, clean, relatively young groundwater that has started to undergo Mg ion exchange, often found in dolomitic terrain. Locality **FBH02D** plotted in Field 3 which represents fresh, clean, relatively young groundwater that has undergone Na ion exchange (sometimes in Na-rich granites or other felsic rocks), or because of contamination effects from a source rich in Na.

7.2. Surface water monitoring

7.2.1. Field measurements

Table 8: Surface water measurements as taken in situ during sampling

Locality	Field EC measurement	Field pH measurement	Field temperature measurement		
	mS/m	рН	O °		
SW1					
SW2					
SW3					
SW4	109.6	8.06	28.9		

7.2.2. Surface water quality results and discussions

SW1, SW2 and **SW3** are monitoring localities situated upstream, midstream and downstream, respectively, of the Bakubung Mine on the Elands River. When flow occurs a spatial assessment, table is added to the report to calculate any changes that may be seen between the upstream locality and the downstream locality. **SW1, SW2** and **SW3** were dry as observed on the day of sampling.

<u>SW4</u>

Physical water quality may be described as alkaline, moderately soft and non-saline. Most analysed variables complied with the Wesizwe Bakubung WUL (2010) guidelines for wastewater to be discharged as well as the General Authorisation limits with the exception of pH. The RQO limits were also exceeded in terms of pH and Na. Water quality, as analysed, may be classified as Marginal water quality (Class 02) according to the WRC QDWS (1998) classification system due to turbidity and total coliform counts detected in the sample.

The classification of the PCD (**SW4**) by the WRC (1998) only serves as a reference for the recorded water quality and it is not recommended that the water from this locality be used for domestic purposes without further testing.

DATA TABLE:								
PROJECT NAME	Wesizwe Bak	ubung Environmen	tal		DATE C	OMPILED	24 Decer	nber 2020
ASSESSMENT SET 1	Wesizwe Plati	num, WUL 2010			SELEC	TED DATE	07 Decer	nber 2020
ASSESSMENT SET 2	General Autho	orisation Limit, Sec	tion 21f and h, 201	3	COMPU		Immoould	to Fomob
ASSESSMENT SET 3	RQO guideline	es Unit 5_7			COMPI		Innacula	lla Falliali
					•	Value excee	ds the asse	ssment set 1
		ASSESSMENT	ASSESSMENT	ASSESSMENT		MONITORIN	NG LOCALI	TIES
VARIADEL	UNITS	1	2	3	SW1	SW2	SW3	SW4
pH @ 25°C	pН	5.0/9.5	5.5/9.5	6/9				9.9
Electrical conductivity (EC) @ 25°C	mS/m	150	150	85				72.9
Total Dissolved solids @ 180°C	mg/l	-						394
Total hardness	mg CaCO3/I	-				DBV		93
Total alkalinity	mg CaCO3/I	-				DRT		75
Bicarbonate alkalinity	mg CaCO3/I	-						40.8
Carbonate alkalinity	mg CaCO3/I	-						30.3
Calcium (Ca)	mg/l	150	-					15.5

Table 9: Surface water quality data for December 2020.

Magnesium (Mg)	mg/l	-	-		
Sodium (Na)	mg/l	200	-	100	
Potassium (K)	mg/l	-	-		
Chloride (Cl)	mg/l	200	-		
Sulphate (SO ₄)	mg/l	400	-	120	
Fluoride (F)	mg/l	1	1		
Nitrate (NO ₃) as N	mg/l	10	15	4.5	
Orthophosphate (PO ₄) as P	mg/l	-	10		
Total phosphorus	mg/l	-	-		
Aluminium (Al)	mg/l	-	-	0.1	
Iron (Fe)	mg/l	-	0.3	0.3	
Manganese (Mn)	mg/l	-	0.1	0.15	
Cadmium (Cd)	mg/l	-	0.005		
Cobalt (Co)	mg/l	-	-		
Chromium (Cr)	mg/l	-	-		
Copper (Cu)	mg/l	-	0.01		
Nickel (Ni)	mg/l	-	-		
Lead (Pb)	mg/l	-	0.01	0.0095	
Zinc (Zn)	mg/l	-	0.1	0.002	
Silver (Ag)	mg/l	-	-		
Arsenic (As)	mg/l	-	0.02		
Boron (B)	mg/l	-	1		
Barium (Ba)	mg/l	-	-		
Bismuth (Bi)	mg/l	-	-		
Lithium (Li)	mg/l	-	-		
Molybdenum (Mo)	mg/l	-	-		
Antimony (Sb)	mg/l	-	-		
Selenium (Se)	mg/l	-	0.02		
Silicon (Si)	mg/l	-	-		
Tin (Sn)	mg/l	-	-		
Strontium (Sr)	mg/l	-	-		
Titanium (Ti)	mg/l	-	-		
Vanadium (V)	mg/l	-	-		
Turbidity	NTU	-	-		
E. coli	CFU/100ml	-	1000	130	
Total coliform	CFU/100ml	-	-		

*The RQO stipulates that the limit for Turbidity must be derived and a 10% variation from background concentration is allowed.

Table 10: Turbidity Variation

	SW1	SW2	SW3	SW4
Baseline - Average turbidity concentrations from October 2016 to December 2017	619.2	416.4	311.8	18.3
Dec-20	-	-	-	38
Variation	-	-	-	-88%

Spatial Assessment

No monthly spatial assessment on the Eland River could be calculated because all the Eland River localities were observed as dry.

8. Summary

8.1. Groundwater

- The Physical water quality for most of the groundwater localities could be described as neutral, saline and very hard.
- All the groundwater localities exceeded the SANS 241-1:2015 drinking water standards in terms of at least one variable; the most being turbidity.
- Analysed nutrients were low and were within acceptable limits.
- All sampled localities were dominated by the bicarbonate anion while most were dominated by the magnesium cation.
- Total coliforms counts were detected at **FBH01D** and **FBH02D**.

8.2. Surface water

- The Elands River localities (SW1, SW2 and SW3) were recorded as dry on the day of sampling.
- For the pollution control dam (**SW4**), the Wesizwe Bakubung WUL (2010) guidelines as well as the General Authorization Limits were complied with in terms of the majority of variables measured with the exception of pH.
- Water quality of the PCD could be classified as marginal for domestic use according to the WRC (1998) QDWS classification system.
- Nutrients were low and were within acceptable limits.
- The RQO limits were exceeded in terms of pH and Na at SW4.
- Turbidity change at **SW4** was below 10%, hence, complying with the RQO stipulations.

9. Recommendations

- Correct sampling localities should be stipulated (e.g., incorrect surface water monitoring coordinates as per the WUL).
- If boreholes are to be used for specific purposes other than monitoring, these uses should be explained as to conduct the correct compliance monitoring.

10. Groundwater hydrograph

A groundwater hydrograph is included in **Appendix A** to relay groundwater levels per monitoring locality versus the monitoring time period. Readings are displayed in metres below ground level (mbgl). Groundwater levels have remained relatively stable over long and short period of time.

11. Time series graphs

The main purpose with a time-series plot is not to show exact concentrations for each monitoring point and each parameter, but rather to present an overall impression of the trends over the evaluation period. Short terms trends are available in **Appendix B**.

For all groundwater localities the pH values fluctuated somewhat, although remaining mostly within the neutral range. All localities are also seen to variate in unison. As compared to last quarter, pH values increased at most of the groundwater localities except at **FBH04D** that

remained increased and **MBH03D** that remained relatively constant. TDS concentrations in the groundwater for most localities show a long-term trend with a gradual increase. As compared to last quarter, there was an increase in TDS concentration at **FBH02D**, **FBH04D** and **MBH05** while TDS decreased at **FBH05S** and **MBH03D**.

Increasing trends for TDS concentrations for the past quarterly periods at surface water localities can be observed. pH values at **SW1** decrease reveals a decreasing trend for the past quarterly periods but increased in September 2020 while **SW3** and **SW4** show increasing trends with **SW3** dropping in September 2020.

12. Photographic Sampling Register

A photographic sampling register of the monitoring event is presented in **Appendix C** of this report. The photographic sampling register will provide a locality photo for each monitored locality along with the coordinates, date and time of each sample taken and the name of the field technician that conducted the sampling.

13. Test Report

A test report of the chemical and bacteriological analysis done by Aquatico Laboratories is attached to this report under **Appendix D**. The test report from the outsource laboratory is also attached under this appendix.

Immaculata Famah B.Sc. (Hons) M.Sc Aquatico Scientific <u>imma@aquatico.co.za</u>

14. References

- Department of Water Affairs and Forestry (DWAF). Act N. 36 of 1998: National Water Act, 1998
- South Africa, General Authorisations in terms of Section 39 of the National Water Act, 1998 (Act NO. 36 of 1998). *Government Gazette*, 36820, 6 December 2013.
- The South African Bureau of Standards (SABS), ISO 5667-1 to 5667-15, First Edition, 1999

Appendix A

Groundwater hydrograph

0 FBH01D -FBH02D 5 FBH04D FBH05S \times \sim 10 FDB1 MBH01D 15 -MBH03D -MBH04 Groundwater Level (mbgl) MBH05 20 4 1 - -25 30 35 40 45 50 AUE-18 SEP-18 OCT-18 NOV-18 DEC-18 Jan-19 ED-19 APT-19 APT-19 JUN-19 JUN-19 JUN-29 OCT-19 OCT-19 JUN-20 JUN Date

Wesizwe Bakubung Groundwater Hydrograph - Short term trends

Appendix B

Time series graphs

Appendix C

Photographic Sampling Register

LEADERS IN ENVIRONMENTAL MONITORING

	WESIZ	WE BAKUBUNG ENVIRONMENTAL - F	PHOTOGRAPHIC MONITORING CATA	LOGUE	
Locality	FBH01D	Locality	FBH02D	Locality	FBH04D
Locality Coordinates	S25.38670 E27.07586	Locality Coordinates	S25.38499 E27.07824	Locality Coordinates	S25.38620 E27.08572
Sample Date	2020-12-11 12:04	Sample Date	2020-12-11 12:11	Sample Date	2020-12-11 12:57
Sample By	Lubabalo Gobile	Sample By	Lubabalo Gobile	Sample By	Lubabalo Gobile
Borehole on Frisch	egewaagd, downgradient	Borehole on Frischg	waagd, downgradient	Borehole on Frischge	ewaagd, downgradient
Locality	FBH05S	Locality	MBH01D	Locality	MBH03D
Locality Coordinates	S25.38102 E27.07231	Locality Coordinates	S25.38670 E27.07585	Locality Coordinates	S25.39685 E27.04691
Sample Date	2020-12-11 10:00	Sample Date	2020-12-11 12:04	Sample Date	2020-12-11 10:57
Sample By	Lubabalo Gobile	Sample By	Lubabalo Gobile	Sample By	Lubabalo Gobile
Porcholo on Ericoh	acwood downgradiant	Parahala an Mimos	a form downgradiant	Poroholo on Mimoo	a form downgradiant

Borehole on Mimosa farm, downgradient

LEADERS IN ENVIRONMENTAL MONITORING

WESIZWE BAKUBUNG ENVIRONMENTAL - PHOTOGRAPHIC MONITORING CATALOGUE Locality MBH05 Locality MBH06 Locality SW1 Locality Coordinates S25.39202 E27.04930 Locality Coordinates S25.40557 E27.05074 Locality Coordinates S25.38426 E27.05313 Sample Date Sample Date 2020-12-11 11:17 Sample Date 2020-12-11 10:46 2020-12-11 10:20 Lubabalo Gobile Sample By Lubabalo Gobile Sample By Sample By Lubabalo Gobile Borehole on Mimosa farm, downgradient Borehole on Mimosa farm, downgradient Elands River upstream of mine Locality SW2 Locality Coordinates S25.39335 E27.07416

cality	SW3	Locality	SW4
cality Coordinates	S25.39154 E27.03769	Locality Coordinates	S25.38902 E27.08698
mple Date	2020-12-11 10:24	Sample Date	2020-12-11 12:51
mple By	Lubabalo Gobile	Sample By	Lubabalo Gobile
Elands River dow	nstream from mine	Mine water	pond (PCD)

Appendix D

Test report

Test Report

Page 1 of 4

Client:Wesizwe PlatinumAddress:5 Ronbex Road, ActiviReport no:97241Project:Wesizwe Bakubung Er	a Park, Elandsfo nvironmental	ontein, 14	06			Date of Date ac Date co Date re	f report: ccepted: ompleted: cceived:	21 Decen 11 Decen 21 Decen 11 Decen	nber 2020 nber 2020 nber 2020 nber 2020
Lab no:			71967	71968	71969	71970	71971	71972	71973
Date sampled:			11-Dec-20	11-Dec-20	11-Dec-20	11-Dec-20	11-Dec-20	11-Dec-20	11-Dec-20
Aquatico sampled:			Yes	Yes	Yes	Yes	Yes	Yes	Yes
Sample type:			Water	Water	Water	Water	Water	Water	Water
Locality description: Analyses	Unit	Method	FBH01D	FBH02D	FBH04D	FBH05S	MBH03D	MBH05	MBH06
A nH @ 25°C	рН	ALM 20	7.53	7.20	7.40	8.00	7.12	7.33	7.40
A Electrical conductivity (EC) @ 25°C	mS/m	ALM 20	95.2	92.5	105	111	133	67.4	91.5
A Total Dissolved solids @ 180°C	mg/l	ALM 24	526	616	664	614	674	554	612
A Total alkalinity	mg CaCO3/I	ALM 01	416	431	458	410	468	379	492
A Chloride (Cl)	mg/l	ALM 02	56.2	19.5	56.3	146	83.2	4.79	7.34
A Sulphate (SO ₄)	mg/l	ALM 03	32.4	13.4	17.1	<0.141	1.14	3.03	15.2
A Nitrate (NO ₃) as N	mg/l	ALM 06	1.22	<0.194	6.53	<0.194	<0.194	<0.194	<0.194
N Total phosphorus	mg/l	ALM 12	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
A Orthophosphate (PO₄) as P	mg/l	ALM 04	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
A Fluoride (F)	mg/l	ALM 08	0.550	0.632	0.991	0.458	<0.263	<0.263	<0.263
A Calcium (Ca)	mg/l	ALM 30	54.1	42.8	71.4	43.9	77.7	58.9	72.2
A Magnesium (Mg)	mg/l	ALM 30	52.2	6.17	73.7	88.6	56.8	29.0	73.5
A Sodium (Na)	mg/l	ALM 30	95.9	177	62.4	55.1	66.0	52.4	31.1
A Potassium (K)	mg/l	ALM 30	1.69	2.84	2.44	8.45	7.34	2.13	1.45
A Aluminium (Al)	mg/l	ALM 31	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
A Iron (Fe)	mg/l	ALM 31	<0.004	<0.004	< 0.004	< 0.004	1.51	< 0.004	< 0.004
A Manganese (Mn)	mg/l	ALM 31	<0.001	0.003	<0.001	0.047	0.494	0.695	0.211
A Chromium (Cr)	mg/l	ALM 31	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
A Copper (Cu)	mg/l	ALM 31	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
A Nickel (Ni)	mg/l	ALM 31	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
A Zinc (Zn)	mg/l	ALM 31	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
A Cobalt (Co)	mg/l	ALM 31	<0.003	<0.003	< 0.003	<0.003	<0.003	<0.003	<0.003
A Cadmium (Cd)	mg/l	ALM 31	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
A Lead (Pb)	mg/l	ALM 31	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
A E.coli	CFU/100ml	ALM 40	<1	<1	<1	<1	<1	<1	<1
A Total coliform	CFU/100ml	ALM 40	1120	14	<1	<1	<1	<1	<1
A Turbidity	NTU	ALM 21	0.290	0.748	0.390	13.6	127	3.74	2.58
A Arsenic (As)	mg/l	ALM 34	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006	<0.006

A = Accredited N = Non accredited Out = Outsourced Sub = Sub-contracted NR = Not requested RTF = Results to follow NATD = Not able to determine ATR = Alternative test report ; Results only apply to the samples as received and tested; Results reported against the limit of detection; Results marked 'Non SANAS Accredited' in thi are not included in the SANAS Schedule of Accreditation for this laboratory; Uncertainty of measurement available on request for all methods included in the SANAS Schedule of Accreditation; The report shall not be reproduced except in full without approval of the laboratory

Test Report

Page 2 of 4

Client: Address: Report no: Project:	Wesizwe Platinum 5 Ronbex Road, Activia 97241 Wesizwe Bakubung Er	a Park, Elandsfo nvironmental	ontein, 14	06			Date of Date ac Date co Date re	report: ccepted: ompleted: cceived:	21 Decem 11 Decem 21 Decem 11 Decem	nber 2020 nber 2020 nber 2020 nber 2020
Lab no:				71967	71968	71969	71970	71971	71972	71973
Date sampled:				11-Dec-20	11-Dec-20	11-Dec-20	11-Dec-20	11-Dec-20	11-Dec-20	11-Dec-20
Aquatico sample	ed:			Yes	Yes	Yes	Yes	Yes	Yes	Yes
Sample type:				Water	Water	Water	Water	Water	Water	Water
Locality descript	ion: Analyses			FBH01D	FBH02D	FBH04D	FBH05S	MBH03D	MBH05	MBH06
		Unit	Method							
A Selenium (Se		mg/l	ALM 34	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
A Silicon (Si)		mg/l	ALM 33	26.7	21.6	27.2	3.26	28.3	21.7	36.1
N Silver (Ag)		mg/l	ALM 32	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
A Boron (B)		mg/l	ALM 33	<0.013	<0.013	<0.013	<0.013	<0.013	<0.013	<0.013
A Barium (Ba)		mg/l	ALM 33	0.006	0.002	0.081	0.062	0.028	0.038	0.033
N Bismuth (Bi)		mg/l	ALM 32	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004
N Lithium (Li)		mg/l	ALM 32	<0.001	<0.001	<0.001	<0.001	0.001	<0.001	0.003
A Molybdenum	(Mo)	mg/l	ALM 33	0.033	0.027	0.038	0.034	0.039	0.030	0.039
A Strontium (Sr)	mg/l	ALM 33	0.537	0.250	1.40	0.802	0.222	0.248	0.300
A Vanadium (V)		mg/l	ALM 33	0.019	<0.001	0.016	<0.001	<0.001	<0.001	0.002
A Bicarbonate a	alkalinity	mg CaCO3/l	ALM 26	415	430	456	406	467	378	491
A Carbonate all	calinity	mg CaCO3/l	ALM 26	1.33	0.636	1.08	3.84	0.573	0.756	1.17
N Antimony (Sb)	mg/l	ALM 36	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
N Tin (Sn)		mg/l	ALM 36	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
N Titanium (Ti)		mg/l	ALM 36	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
N Temperature		°C	ALM 20	22.3	22.2	22.2	22.1	22.2	22.2	22.2

A = Accredited N = Non accredited Out = Outsourced Sub = Sub-contracted NR = Not requested RTF = Results to follow NATD = Not able to determine ATR = Alternative test report ; Results only apply to the samples as received and tested; Results reported against the limit of detection; Results marked 'Non SANAS Accredited' in thi are not included in the SANAS Schedule of Accreditation for this laboratory; Uncertainty of measurement available on request for all methods included in the SANAS Schedule of Accreditation; The report shall not be reproduced except in full without approval of the laboratory

Authenticated signature on first page

Page 3 of 4

Test Report

Client:Wesizwe PlatinumAddress:5 Ronbex Road, ActivReport no:97241Project:Wesizwe Bakubung I	via Park, Elandsf Environmental	ontein, 14	.06
ab no:			71974
Date sampled:			11-Dec-20
quatico sampled:			Yes
ample type:			Water
ocality description: Analyses			SW4
	Unit	Method	
А рН @ 25°С	рН	ALM 20	9.90
Electrical conductivity (EC) @ 25°C	mS/m	ALM 20	72.9
Total Dissolved solids @ 180°C	mg/l	ALM 24	394
Total alkalinity	mg CaCO3/l	ALM 01	75.0
Chloride (Cl)	mg/l	ALM 02	108
Sulphate (SO₄)	mg/l	ALM 03	70.6
Nitrate (NO₃) as N	mg/l	ALM 06	2.47
Total phosphorus	mg/l	ALM 12	0.053
Orthophosphate (PO₄) as P	mg/l	ALM 04	0.049
A Fluoride (F)	mg/l	ALM 08	0.455
Calcium (Ca)	mg/l	ALM 30	15.5
Magnesium (Mg)	mg/l	ALM 30	13.1
A Sodium (Na)	mg/l	ALM 30	106
Potassium (K)	mg/l	ALM 30	7.10
A Aluminium (Al)	mg/l	ALM 31	<0.002
Iron (Fe)	mg/l	ALM 31	<0.004
Manganese (Mn)	mg/l	ALM 31	0.004
Chromium (Cr)	mg/l	ALM 31	<0.003
Copper (Cu)	mg/l	ALM 31	<0.002
Nickel (Ni)	mg/l	ALM 31	<0.002
Zinc (Zn)	mg/l	ALM 31	<0.002
A Cobalt (Co)	mg/l	ALM 31	<0.003
Cadmium (Cd)	mg/l	ALM 31	<0.002
A Lead (Pb)	mg/l	ALM 31	<0.004
A E.coli	CFU/100ml	ALM 40	1
Total coliform	CFU/100ml	ALM 40	28
Turbidity	NTU	ALM 21	2.19
Arsenic (As)	mg/l	ALM 34	<0.006

A = Accredited N = Non accredited Out = Outsourced Sub = Sub-contracted NR = Not requested RTF = Results to follow NATD = Not able to determine ATR = Alternative test report ; Results only apply to the samples as received and tested; Results reported against the limit of detection; Results marked 'Non SANAS Accredited' in thi are not included in the SANAS Schedule of Accreditation for this laboratory; Uncertainty of measurement available on request for all methods included in the SANAS Schedule of Accreditation; The report shall not be reproduced except in full without approval of the laboratory

Authenticated signature on first page

Page 4 of 4

Test Report

Client: Address: Report no: Project:	Wesizwe Platinum 5 Ronbex Road, Activ 97241 Wesizwe Bakubung E	ia Park, Elandsfo nvironmental	ontein, 14	.06
Lab no:				71974
Date sampled:				11-Dec-20
Aquatico sample	ed:			Yes
Sample type:				Water
Locality descript	tion: Analyses			SW4
		Unit	Method	
A Selenium (Se	2)	mg/l	ALM 34	<0.002
A Silicon (Si)		mg/l	ALM 33	1.81
N Silver (Ag)		mg/l	ALM 32	<0.001
A Boron (B)		mg/l	ALM 33	<0.013
A Barium (Ba)		mg/l	ALM 33	0.045
N Bismuth (Bi)		mg/l	ALM 32	<0.004
N Lithium (Li)		mg/l	ALM 32	<0.001
A Molybdenum	n (Mo)	mg/l	ALM 33	0.014
A Strontium (Sr	r)	mg/l	ALM 33	0.319
A Vanadium (V	()	mg/l	ALM 33	0.002
A Bicarbonate a	alkalinity	mg CaCO3/I	ALM 26	40.8
A Carbonate all	kalinity	mg CaCO3/l	ALM 26	30.3
N Antimony (Sb	b)	mg/l	ALM 36	<0.001

ALM 36

ALM 36

ALM 20

mg/l

mg/l

°C

< 0.001

< 0.001

22.3

A = Accredited N = Non accredited Out = Outsourced Sub = Sub-contracted NR = Not requested RTF = Results to follow NATD = Not able to determine ATR = Alternative test report ; Results only apply to the samples as received and tested; Results reported against the limit of detection; Results marked 'Non SANAS Accredited' in thi are not included in the SANAS Schedule of Accreditation for this laboratory; Uncertainty of measurement available on request for all methods included in the SANAS Schedule of Accreditation; The report shall not be reproduced except in full without approval of the laboratory

Authenticated signature on first page

N Tin (Sn)

N Titanium (Ti)

N Temperature