

- Site Investigations
- Slope Stability
- Rock Mechanics
- Soil Mechanics
- Foundations
- Borrow Pits and Materials
- Roads
- Groundwater
- NHBRC
- Geotechnical Instrumentation

Client: Glad Africa & GDHS

Reference: 19-0866.02R03

Dated: 7 November 2019

GCS Geotechnical (Pty) Ltd

63 Wessels Street Rivonia Cell: +27 (0)82 567 1561 ninow@gcs-sa.biz www.gcs-sa.biz

Reference: 19-0866.02R03 Date: 7 November 2019

TABLE OF CONTENTS

1.	INTRODUCTION & TERMS OF REFERENCE	6
2.	AVAILABLE INFORMATION	6
3.	SITE DESCRIPTION	7
4.	GEOLOGY	8
5.	FIELDWORK	8
5.1	TLB-Excavated Trial Pits	8
6.	GROUNDWATER	10
7.	LABORATORY TESTING	11
8.	DEVELOPMENT RECOMMENDATIONS	
8.1	Materials Usage	12
8.2	NHBRC Classification (Provisional)	13
8.3	Foundations	14
8.4	Excavatability & Earthworks	14
8.5	Excavatability & Earthworks	14
9.	CONCLUSIONS & RECOMMENDATIONS	15

Appendix A TLB-excavated Trial Pit Profiles

Appendix B Laboratory Test Results

Figure 1 Site Plan

Figure 2 Geological Plan

Reference: 19-0866.02R03 Date: 7 November 2019

DOCUMENT ISSUE STATUS

Report Issue	Final						
GCS Reference Number	GCS Ref - 19-0866.02R03						
Client Reference	Glad Africa						
Title	Rapid Land Release Program: NHBRC Phase 1 Geotechnical Investigation for Ennerdale Extension 9, Gauteng: Final Report						
	Name Signature Date						
	Mairie	Signature	Date				
Author	Nino Welland	Signature	7 November 2019				
Author Document Reviewer							

LEGAL NOTICE

This report or any proportion thereof and any associated documentation remain the property of GCS Geotechnical until the mandator effects payment of all fees and disbursements due to GCS Geotechnical in terms of the GCS Conditions of Contract and Project Acceptance Form. Notwithstanding the aforesaid, any reproduction, duplication, copying, adaptation, editing, change, disclosure, publication, distribution, incorporation, modification, lending, transfer, sending, delivering, serving or broadcasting must be authorised in writing by GCS Geotechnical.

Reference: 19-0866.02R03 Date: 7 November 2019

EXECUTIVE SUMMARY

This report presents the findings of a NHBRC Phase 1 geotechnical investigation for the proposed housing development to be located at Ennerdale Extension 9, Ennerdale, and provides the conclusions and recommendations for excavations, foundations and earthworks.

Based on the 1:250 000 Geological Map titled "2626 West Rand (1986)", the site can be seen to be underlain by Andesite lava and conglomerate of the Pretoria Group, Transvaal Supergroup.

The site was confirmed to be underlain by conglomerate in the south western portion of the site which is underlain by Andesite lava and across the remainder of the site during the site investigation.

All materials on site classify as <u>SOFT</u> excavation (SABS 1200 D) to depths ranging between 1.2 m and 3.1 m with an average depth of around 2.6 m. Below this depth, intermediate excavation is to be anticipated due to weathered saprolitic Andesite lava bedrock which has been identified across the site.

The site has been classified as $\underline{H1-H2}$ (with an isolated zone of H) according to NHBRC guidelines. The following foundation recommendations are proposed for the site:

- *Modified normal (for H1 only)*
- *Soil raft (for H1 and H2)*
- Stiffened RC raft (for H2 only)
- *Split construction (for H2 only)*
- *Piled construction (for H2 only)*

Finally, the ground conditions described in this report refer specifically to those encountered at the test positions advanced on site. It is therefore possible that conditions at variance with those discussed above may be encountered elsewhere on the site. In this regard it is critical that the NHBRC Phase 2 investigation be commissioned and completed to assist the subsidy variation process.

Reference: 19-0866.02R03 Date: 7 November 2019

Definitions and Abbreviations

Commercial:

GCS Geotechnical GCS Geotechnical (Pty.) Ltd.

Technical:

CH Chainage (metres)
mbgl metres below ground level
masl metres above sea level
NGL Natural Ground Level
FL Foundation Level

BH Borehole

SPT Standard Penetration Test

N SPT N value (blows per 300 mm)

TLB Tractor-mounted Loader Backhoe

TP Test Pit

DCP Dynamic Cone Penetrometer

EABC Estimated Allowable Bearing Capacity

G1-G10 Standard classification of natural road building materials (TRH 14)

CBR California Bearing Ratio
MDD Maximum Dry Density (kg/m3)
MADD Modified AASHTO Dry Density
OMC Optimum moisture Content (%)

PI Plasticity Index
LL Liquid Limit
LS Linear Shrinkage
RMR Rock Mass Rating
GSI Geological Strength Index

mi Hoek-Brown Constant (origin & texture dependent)

RQD Rock Quality Designation (%)

FF Fracture frequency

UCS Unconfined Compressive Strength (MPa)
C (c') Cohesion (kPa) – total stress and (effective stress)

Φ (Φ')
 Kv
 Friction Angle (degrees) – total stress and (effective stress)
 Modulus of Subgrade Reaction (MN/mm or kPa/mm)

CFA Continuous Flight Auger (pile type)
DCI Driven Cast In situ (pile type)
Cv Coefficient of Consolidation (m2/yr)
Mv Modulus of Compressibility (m2/MN)
MC1 Moisture Content Before Test (%)
MC2 Moisture Content After Test (%)

ρ Dry Density (kg/m3)
 VSR Very soft rock
 SR Soft rock

MHR Medium hard rock

HR Hard rock VHR Very hard rock

Reference: 19-0866.02R03 Date: 7 November 2019

1. INTRODUCTION & TERMS OF REFERENCE

At the request of Nivendra Moodley of Glad Africa (and on behalf of the Gauteng Department of Human Settlements), *GCS Geotechnical* (hereafter referred to as GCS) was asked to provide a proposal and cost estimate quotation for the undertaking of a Phase 1 NHBRC geotechnical investigation for the proposed housing development to be located at Ennerdale Extension 9, Ennerdale, Gauteng.

2. AVAILABLE INFORMATION

The following information was drawn upon for the purposes of the investigation:

- The 1:250 000 Geological Map titled "2626 West Rand" as compiled by the South African Geological Survey, 1986,
- Google Earth Imagery,
- The 1:500 000 Hydrogeological Map titled "2628 Johannesburg" as compiled by DWAF, 1998,
- Anhaesseur, 1973: Geology of Johannesburg,
- SABS 1200 D Earthworks, and
- Report titled "RLRP: Desk Study Geotechnical Report for Ennerdale Ext 9", referenced 19-0866.02R01, written by GCS in 2019.

Table 2 below shows the available published physiographical information on the site.

Table 2: Summary of Available Physiographical Information

Parameter	Value	Reference
Development	Rapid Land Release Project	Glad Africa
Site coordinates	26°24'20.98"S/ 27°49'39.78"E	Google Earth and Garmaps
Weinerts N-value	2-5	Weinert (1974)
Climatic Region	Moderate	TRH 2 (1978)
Rainfall	850-900 mm	
Temperature	5.8-26.2°C	After DWAF (1986)
Evaporation	1200 mm	Barnard (2000)
Water Balance	Deficit	Schulze (1985)
Weathering Type	Moderate decomposition with	Fookes et al (1971) & Embleton et al
	frost	(1979)
General geology	Andesite Lava	1:250 000 Geological Map titled "2526
		– West Rand (1981)
Soil cover	Clayey residual soils	Brink (1985)
Topography	Gently sloping towards the	Google Earth
	east.	
Drainage region	C22	DWAF (1999)
Hydrogeology	Intergranular & Fractured 0.5	Hydrogeological Map – Johannesburg
	to 2.0 l/s	(1998)
Groundwater	5 to 40 mbgl	Barnard (2000)
Harvest potential	-	DWAF (2003)
Erodibility Index	9-15 (medium)	WRC (1992)
Seismic Intensity	VI (MMS)	Fernandez et al (1972)
Liquefaction	Likely (100-200 m2/s) <0.2g	Welland (2002)

3. SITE DESCRIPTION

The site is located on a vacant plot of land in the western portion of the town of Ennerdale. The northern portion of site is bounded by Katz Road, with Street B/ Smith Street along the eastern boundary, Samuel Road along the southern boundary, and an unnamed blacktop road along the western boundary.

The total site area is approximately 35.2 Ha in size.

Topographically, the site is fairly flat at 1:30 or 4% towards the south and drains into an unnamed tributary 1 km to the south. The site is sparsely vegetated with small trees, shrubs and scattered grasses.

No drainage paths were noted on site.

Portions of the site have been used as a dumping site with piles of domestic waste and builder's rubble.

4. **GEOLOGY**

Based on the 1:250 000 Geological Map titled "2626 Wes Rand (1986)", the site can be seen to be underlain by Andesite lava and conglomerate of the Pretoria Group, Transvaal Supergroup.

The site was confirmed to be underlain by conglomerate in the south western portion of the site which is underlain by Andesite lava and across the remainder of the site during the site investigation.

5. FIELDWORK

TLB-excavated test pits were conducted on site, in order to ascertain and better understand the general engineering properties and parameters of the subsurface materials.

5.1 TLB-Excavated Trial Pits

Twenty-nine test pits were excavated over the 35.2 Ha site (according to guidelines of GFSH-2 of 2002), in order to better understand the engineering properties of the subsurface soil / rock conditions.

The results of the test pits indicated refusal depths ranging between 1.1 m and 3.1 m below existing ground level, refusing at an average depth of 2.4 m. Typically the ground conditions comprised a thin veneer of fill, underlain by residual conglomerate that is underlain by residual andesite or hardpan ferricrete in the south western portion of site. The remainder of the site is underlain by fill, which is underlain by colluvium, which in turn is underlain by colluvium, residual ferriginised andesite, and residual andesite.

Detailed test pit profiles are given in appendix A of this report with a summary of the soil profiles across the site below in Table 5.1a to 5.1b.

Table 5.1a: Summary of Soil Layers in Test Pits

TP No.	Fill	Colluvium	Residual Conglomerate	Hardpan Ferricrete	Residual Ferriginised Andesite	Residual Andesite	Saprolitic Andesite
1		0.0-0.3	0.3-1.1	1.1-1.2			
2		0.0-0.5	0.5-0.9			0.9-1.9	1.9-2.8
3		0.0-0.3	0.3-1.0			1.0-2.8	
4		0.0-0.2	0.2-0.7			0.7-2.3	
5		0.0-0.2	0.2-1.1			1.1-2.8	
6		0.0-0.4	0.4-1.0			1.0-2.3	2.3-2.7
7		0.0-0.3			0.3-1.5	1.5-2.3	2.3-2.8
8		0.0-0.3			0.3-1.5	1.5-2.0	2.0-2.5
9		0.0-0.4	0.4-1.0	1.0-1.1			
10		0.0-0.4	0.4-1.1			1.1-3.1	
11		0.0-0.2	0.2-0.8		0.8-2.7		
12		0.0-0.3			0.3-1.0	1.0-2.0	2.0-2.7
13		0.00-0.3			0.3-0.8	0.8-2.2	2.2-2.8
14	0.0-0.4				0.4-1.0	1.0-1.8	1.8-2.5
15		0.0-0.4			0.4-1.5	1.5-2.2	2.2-2.7
16		0.0-0.4			0.4-1.2		1.2-1.6
17		0.0-0.4				0.4-1.3	1.3-2.1
18		0.0-0.4			0.4-1.0	1.0-1.6	1.6-2.0
19		0.0-0.4			0.4-1.0	1.0-2.0	2.0-2.8
20		0.0-0.3			0.3-0.9	0.9-1.7	1.7-2.6
21		0.0-0.4			0.4-1.3		1.3-2.1
22		0.0-0.7			0.7-1.2	1.2-1.6	1.6-2.0
23		0.0-0.6			0.6-1.2	1.2-2.0	2.0-2.7
24		0.0-0.4			0.4-1.1	1.1-1.7	1.7-2.5
25	0.0-0.7				0.7-1.4	1.4-1.8	1.8-2.5
26		0.0-0.3				0.3-1.1	1.1-1.2
27		0.0-0.5			0.5-1.0	1.0-1.7	1.7-2.5
28		0.0-0.4				0.4-2.2	2.2-2.7
29		0.0-0.3				0.3-2.0	2.0-2.5
Ave Depth	0.6	0.4	0.6	0.1	0.8	1.0	1.8+

Table 5.1b: Summary of Soil Profile

-	.7	Tuble 2:15: Summary of Son 11one							
Dej	pth		EABC	Kv	E	c			
From To		Description		(kPa/mm)					
(m)	(m)	•	(kPa)		(MPa)	(kPa)			
Fill	(111)								
I'ttt				1					
0.0	0.4	Dry to slightly moist, medium brown, MEDIUM DENSE, clayey GRAVEL .	N/A	N/A	N/A	N/A			
Colluviur	n								
0.0	0.4	Dry to slightly moist, medium brown, FIRM/MEDIUM DENSE, slightly sandy gravelly <u>CLAY</u> to clayey sandy GRAVEL .	150-300	55-100	15-25	36-72			
Residual	Conglom	erate							
0.4	1.0	Slightly moist, yellowish brown mottled dark grey & red to light red brown mottled dark grey and red, MEDIUM DENSE to DENSE/FIRM, slightly sandy clayey GRAVEL to gravelly CLAY .	150-500	55-180	15-35	36-72			
Hardpan	Ferricret	e							
1.2	2+	Dry to slightly moist, yellowish brown mottled red and dark grey, DENSE to VERY DENSE, GRAVEL .	500+	180+	25-35+	-			
Residual	Ferrigini,	sed Andesite							
0.4	1.3	Slightly moist, yellowish brown mottled red and dark grey, STIFF, gravelly CLAY .	200-300	70-100	-	36-72			
Residual	Andesite								
1.3	2.0	Slightly moist, red brown mottled dark grey and yellow and medium grey streaked dark grey, STIFF, clayey <u>SILT</u> to slightly gravelly silty <u>CLAY</u> .	200-300	70-100	-	72-144			
Weathere	ed Saproli	tic Andesite							
2.4	4+	Light red brown mottled light brown and light red brown streaked dark grey stained dark red, completely weathered, highly fractured, very fine to medium grained, very soft rock.	500+	180+	-	-			
	EADO 4		4 4 1						

EABC = estimated allowable bearing capacity (ignoring collapse potential)

 $\mathbf{K}\mathbf{v} = \mathbf{modulus}$ of subgrade reaction

E = elastic modulus

6. GROUNDWATER

No groundwater seepage occurred on site in any of the test pits, although during summer months and during times of prolonged or heavy rainfall, it may be assumed that a perched groundwater table may be present at relatively shallow depths over the site.

7. LABORATORY TESTING

Laboratory tests were scheduled on soil samples recovered from the site. The following tests were carried out:

- Ten foundation indicator tests (particle size distribution, hydrometer, moisture content, and Atterberg Limits);
- Five Mod AASHTO compaction tests; and
- Five chemical tests (pH and conductivity).

The detailed laboratory test results are provided in Appendix B, while summaries of these results are presented below as in Tables 7a to 7d:

Table 7a: Summary of Foundation Indicators

Depth	TT	ΡΙ	CM	DE*	CBR* (%)	Classifications			
(m-m)	LL	11	GM	1 12.		TRH14	PRA	USCS	
n									
0.0-0.3	NP	NP	0.92	Low	16	G7	A.4	SM	
0.0-0.4	24	10	1.55	Low	27*	G5-G6	A.2.4	SC	
Conglomera	te								
0.3-1.1	29	11	1.45	Low	46	G6	A.2.6	SC	
Ferriginised	Andes	ite							
0.4-1.1	38	17	0.75	Med	17	G8	A.6	CL/OL	
0.7-1.4	36	18	1.09	Med	12-15*	G8	A.6	SC	
Andesite									
0.7-2.3	42	18	0.27	Med	4-5*	G10	A.7.6	CL/OL	
1.0-2.3	46	16	0.22	Med	4-5*	G10	A.7.6	ML/O	
1.1-3.1	49	24	0.21	Med	2	G10	A.7.6	CL/OL	
0.4-1.1	39	15	1.14	Low	15-16*	G7-G8	A.6	SC	
ed Saprolitic	Andesi	ite					•		
1.9-2.8	NP	NP	0.51	Low	4	G8	A.2.4	SM	
	(m-m) n 0.0-0.3 0.0-0.4 Conglomera 0.3-1.1 Ferriginised 0.4-1.1 0.7-1.4 Andesite 0.7-2.3 1.0-2.3 1.1-3.1 0.4-1.1 2d Saprolitic	NP 0.0-0.3 NP 0.0-0.4 24	N	Marcon M	Conglomerate	m O.0-0.3 NP NP 0.92 Low 16 0.0-0.4 24 10 1.55 Low 27* Conglomerate O.3-1.1 29 11 1.45 Low 46 Ferriginised Andesite 0.4-1.1 38 17 0.75 Med 17 0.7-1.4 36 18 1.09 Med 12-15* Andesite 0.7-2.3 42 18 0.27 Med 4-5* 1.0-2.3 46 16 0.22 Med 4-5* 1.1-3.1 49 24 0.21 Med 2 0.4-1.1 39 15 1.14 Low 15-16*	CBK CBK CBK CBK CBK CM CBK CM CM CM CM CM CM CM C	CBK CBK CBK CBK CBK CBK CW CBK CW CW CW CW CW CW CW C	

^{*}CBR estimated from PI-GM relationship.

Table 7b: Summary of Corrosivity Tests

	Tuble 184 Bulling of Collogi, 103 Tests								
TP No.	Depth (m-m)	pН	EC (μS/cm)	Resistivity (Ohm/cm)	Degree of Corrosivity				
Colluvi	Colluvium								
7	0.0-0.3	4.9	309	3236	Very				
Residu	al Conglomerate								
1	0.3-1.1	5.5	157	6382	Mildly				
Residu	al Ferriginised A	ndesite							
24	0.4-1.1	4.7	189	5291	Mildly				
Residu	al Andesite								
10	1.1-3.1	5.6	313	3195	Very				
Weath	Weathered Saprolitic Andesite								
2	1.9-2.8	5.0	219	4566	Corrosive				

^{*}PE - Potential Expansiveness

Table 7c: Summary of Compaction Test Result

	Tuble 700 Summary of Computation Test Result									
TP	Donth (m m)	MDD	OMC (%)	Swell (%)		CBR (%)		b)		
No.	Depth (m-m)	(kg/m3)	OMC (%)	Swell (%)	90	93	95	98	100	
Colluv	ium									
7	0.0-0.3	2049	10.6	0.35	8	12	16	24	32	
Residu	al Conglomerate									
1	0.3-1.1	2026	9.7	0.13	23	35	46	68	88	
Residu	al Ferriginised A	ndesite								
24	0.4-1.1	1740	17.6	0.13	8	12	17	27	37	
Residu	al Andesite									
10	1.1-3.1	1730	16.4	0.44	1	1	2	3	4	
Weath	Weathered Saprolitic Andesite									
2	1.9-2.8	1709	17.5	0.79	2	3	4	7	9	

Table 7d: Materials Classification and Recommended Usage

Table 7d: Waterials Classification and Recommended Usage								
Material Description	Clas	ssification	Anticipated Recommended Usage					
Fill	PI = GM = Classification:	- -	Assumed G10->G10 (cart to spoil)					
Colluvium	PI = GM = Classification:	NP-10 0.93-1.55 A.4; SM; G5-G7	G5-G7 (select layers and general fill)					
Residual Conglomerate	PI = GM = Classification:	11 1.45 A.2.6; SC; G6	G6(lower subbase layers and select layers)					
Hardpan Ferricrete	PI = GM = Classification:	-	Assumed G5-G8 (upper to lower subbase layers and select layers)					
Residual Ferriginised Andesite	PI = GM = Classification:	17-18 0.75-1.09 A.6; SC-CL; G8	G8 (general fill and select layers)					
Residual Andesite	PI = GM = Classification:	15-24 0.21-1.14 A.7.6; CL; G10	G10 (cart to spoil)					
Weathered Saprolitic Andesite	PI = GM = Classification:	NP 0.51 A.2.4; SM; G8	G8 (select layers and general fill)					

8. DEVELOPMENT RECOMMENDATIONS

8.1 Materials Usage

The soils in the south western corner of the site include a thin fill layer underlain by colluvium, underlain by residual conglomerate, underlain by hardpan ferricrete, underlain by residual ferriginised andesite and residual andesite, underlain by weathered saprolitic andesite. The soils over the remainder of the site include a thin fill layer underlain by colluvium, underlain by residual ferriginised andesite and residual andesite, underlain by weathered saprolitic andesite.

Based on visual and tactile means with limited laboratory results, the materials on site may be assumed to be used as follows:

• Fill

This layer is assumed to qualify as between G10->G10 and is to be cut and carted off site.

• Colluvium

This layer is assumed to qualify as between G5-G7 (select layers and general fill) and can potentially be used in select layers and as select and general fill across the site.

• Residual Conglomerate

This layer qualifies as G6 and can potentially be used as lower subbase layers and may thus be re-used as such.

• Hardpan Ferricrete

This layer qualifies as G5-G8 and can potentially be used as upper to lower subbase layers and may thus be re-used as such, although this material is sparse on site and may not be available in practical volumes.

• Residual Ferriginised Andesite

This layer may qualify as G8 and should be carted to spoil

• Residual Andesite

This layer is assumed to qualify as G10 and should be carted to spoil.

• Weathered Saprolitic Andesite

This layer is assumed to qualify as between G8 (general fill) and can potentially be used as general fill across the site, although this material is quite deep on site and may be impractical to obtain.

8.2 NHBRC Classification (Provisional)

Prior to obtaining laboratory results in order to quantify the effects of soil movement beneath the site, *GCS Geotechnical* has classified the site based on general experience in similar geological environments.

The site is underlain by transported and residual soils with a low to medium potential expansiveness. These assumptions coupled with the layer thickness have led to the suggestion that this site can be represented by NHBRC classification: <u>H1-H2</u>. This signifies a cumulative potential heave of between 7.5 mm and 30 mm and possible boulder excavation within 1.5 m depth in the south western corner. A summary of the NHBRC classification can be seen in Table 8.2 below:

Table 8.2: Residential Site Class Designations (from NHBRC, Part 1, Section 2, Table 1)

Typical founding material	Character of founding material	Expected range of total soil movements	Assumed differential movement (% of total)	Site class
Fine grained soils with moderate to very high plasticity (clays, silty clays, clayey silts, and sandy clays)	EXPANSIVE SOILS	7.5-30mm	50%	<u>H1-H2</u>
Contaminated soils, controlled fill, dolomite land, landfill, uncontrolled fill	VARIABLE	VARIABLE	-	<u>P</u>

8.3 Foundations

The NHBRC Site Classification based on test pit logs excavated over the site can be mitigated by the following foundation options:

- Modified normal (for H1 only)
- Soil raft (for H1 and H2)
- Stiffened RC raft (for H2 only)
- Split construction (for H2 only)
- Piled construction (for H2 only)

8.4 Excavatability & Earthworks

All materials on site classify as <u>SOFT</u> excavation (SABS 1200 D) to depths ranging between 1.2 m and 3.1 m with an average depth of around 2.6 m. Below this depth, intermediate excavation is to be anticipated due to weathered saprolitic andesite bedrock which has been identified across the site. Restricted boulder excavation may also be encountered in the south western corner in the vicinity of TP 1, 2 and 3.

8.5 Drainage

For the promotion of a stable site, with no soil movement-related issues (settlement and/or heave), it is extremely important that adequate drainage, both surface and subsurface, be constructed so that no water ingress into the subsurface soils in and around foundation bases is possible. Drainage should be such that any rainfall is diverted to the nearest stormwater drainage system. Areas of potential pooling or damming of rainfall on site should be carefully designed and sloped so as the remove this water away from the foundations.

9. CONCLUSIONS & RECOMMENDATIONS

General

• This report presents the findings of a NHBRC Phase 1 geotechnical investigation for the proposed housing development to be located at Ennerdale Extension 9, Ennerdale, and provides the conclusions and recommendations for excavations, foundations and earthworks.

Geology & Ground Conditions

• Based on the 1:250 000 Geological Map titled "2626 West Rand (1986)", the site can be seen to be underlain by Andesite lava and conglomerate of the Pretoria Group, Transvaal Supergroup.

The site was confirmed to be underlain by conglomerate in the south western portion of the site which is underlain by Andesite lava and across the remainder of the site during the site investigation.

Excavatability

• All materials on site classify as <u>SOFT</u> excavation (SABS 1200 D) to depths ranging between 1.2 m and 3.1 m with an average depth of around 2.6 m. Below this depth, intermediate excavation is to be anticipated due to weathered saprolitic andesite bedrock which has been identified across the site. Restricted boulder excavation may also be encountered in the south western corner in the vicinity of TP 1, 2 and 3.

Foundations

- The site has provisionally been classified as <u>H1-H2</u> according to NHBRC guidelines. The following foundation recommendations are proposed for the site:
 - Modified normal (for H1 only)
 - Soil raft (for H1 and H2)
 - Stiffened RC raft (for H2 only)
 - Split construction (for H2 only)
 - Piled construction (for H2 only)

Further Investigations

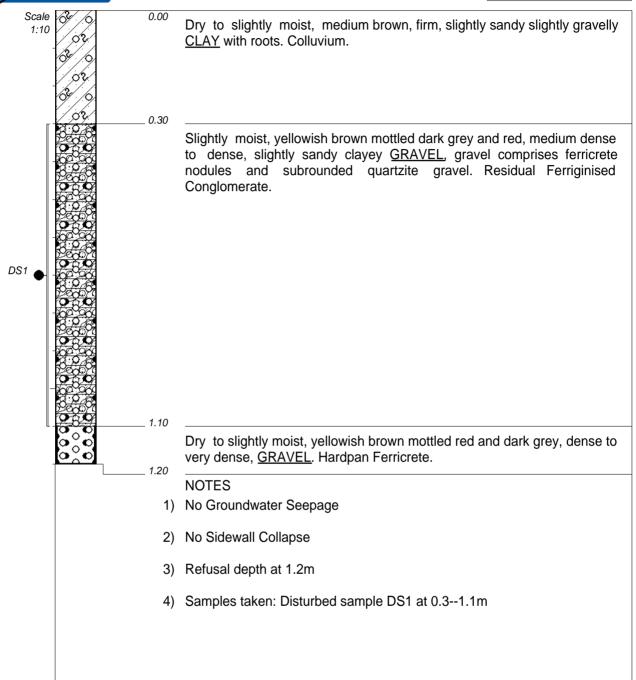
AMM

• Finally, the ground conditions described in this report refer specifically to those encountered at the test positions advanced on site. It is therefore possible that conditions at variance with those discussed above may be encountered elsewhere on the site. In this regard it is critical that the NHBRC Phase 2 investigation be commissioned and completed to assist in the subsidy variation process.

N Welland: Pr.Eng. / Pr.Sci.Nat

<u>Dale Franklin</u> 7 November 2019

For GCS Geotechnical (Pty) Ltd


ninow@gcs-sa.biz www.gcs-sa.biz

APPENDIX A TLB-Excavated Trial Pit Profiles

HOLE No: TP01 Sheet 1 of 1

JOB NUMBER: 19.0866.02

CONTRACTOR: N/A **ELEVATION: N/A** INCLINATION: -

MACHINE: Cukorova DIAM : N/A DATE:-DRILLED BY: -

PROFILED BY: Dale Franklin

DATE: 18/09/2019

TYPE SET BY: Dale Franklin DATE: 26/09/2019 17:50 SETUP FILE: STANDARD.SET TEXT: ..66.02EnnerdaleTPLogs.TXT

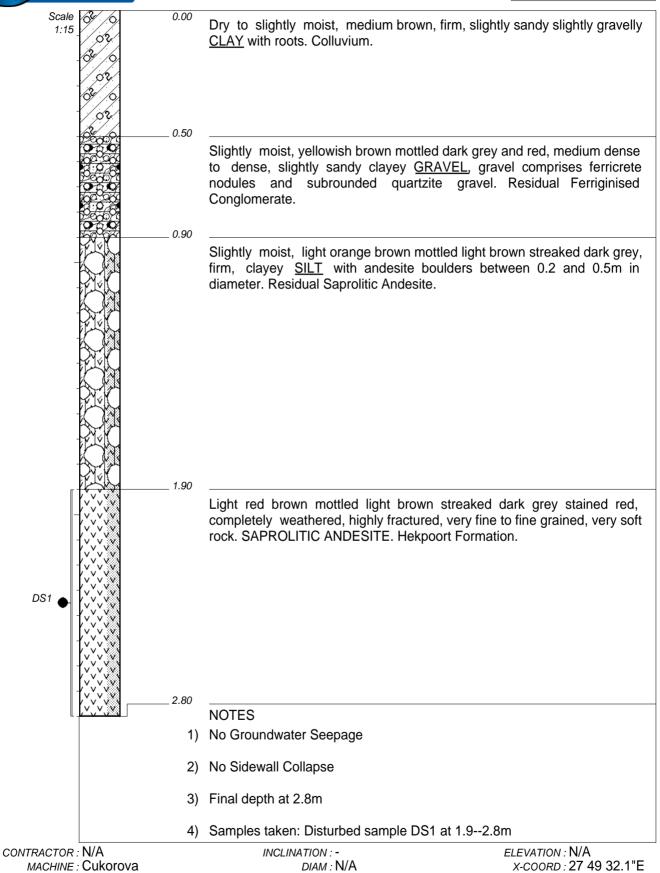
DOCE GCS Geotechnical dotPLOT 7022 PBpH67

x-coord: 27 49 29.0"E Y-COORD: 26 24 22.0"S

PROFILED BY: Dale Franklin

SETUP FILE: STANDARD.SET

TYPE SET BY: Dale Franklin


Glad Africa Ennerdale Ext 9

HOLE No: TP02 Sheet 1 of 1

JOB NUMBER: 19.0866.02

Y-COORD: 26 24 19.3"S

HOLE No: TP02

DATE: 18/09/2019

DATE: 26/09/2019 17:50

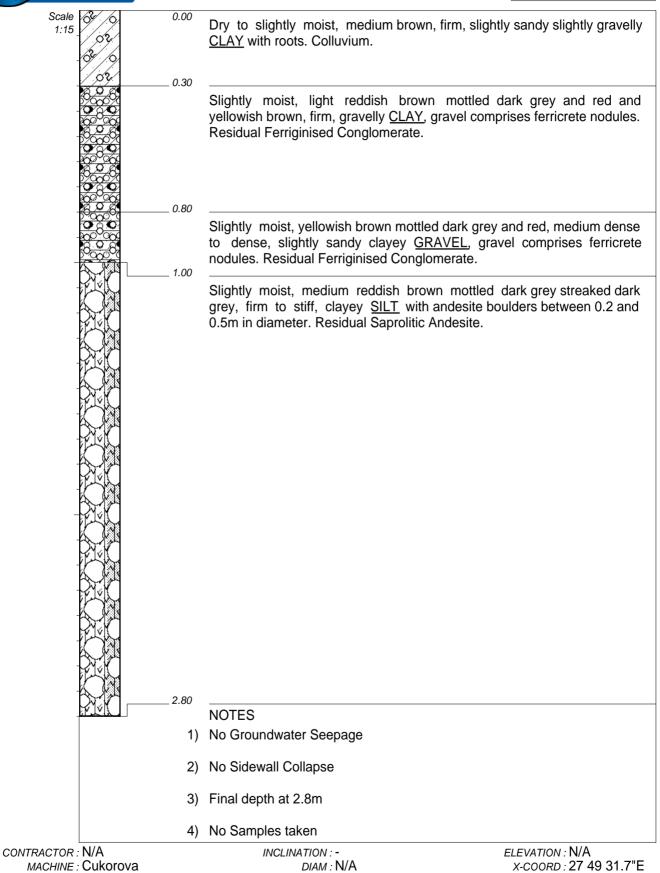
TEXT: ..66.02EnnerdaleTPLogs.TXT

DATE: -

PROFILED BY: Dale Franklin

SETUP FILE: STANDARD.SET

TYPE SET BY: Dale Franklin


Glad Africa Ennerdale Ext 9

HOLE No: TP03 Sheet 1 of 1

JOB NUMBER: 19.0866.02

Y-COORD: 26 24 22.2"S

HOLE No: TP03

DOCE GCS Geotechnical dotPLOT 7022 PBpH67

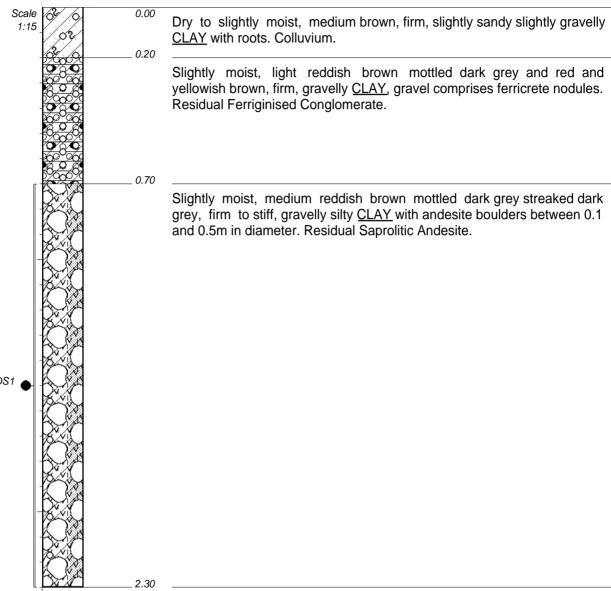
DATE: 18/09/2019

DATE: 26/09/2019 17:50

TEXT: ..66.02EnnerdaleTPLogs.TXT

DIAM : N/A

DATE: -


TYPE SET BY: Dale Franklin

SETUP FILE: STANDARD.SET

Glad Africa Ennerdale Ext 9

HOLE No: TP04 Sheet 1 of 1

JOB NUMBER: 19.0866.02

NOTES

- 1) No Groundwater Seepage
- 2) No Sidewall Collapse
- 3) Refusal depth at 2.3m on boulders
- 4) Samples taken: Disturbed sample DS1 at 0.7--2.3m

CONTRACTOR: N/A **ELEVATION: N/A** INCLINATION: -

MACHINE: Cukorova DIAM : N/A

X-COORD: 27 49 29.2"E Y-COORD: 26 24 24.7"S DATE:-DRILLED BY: -

PROFILED BY: Dale Franklin DATE: 18/09/2019 HOLE No: TP04

DATE: 26/09/2019 17:50

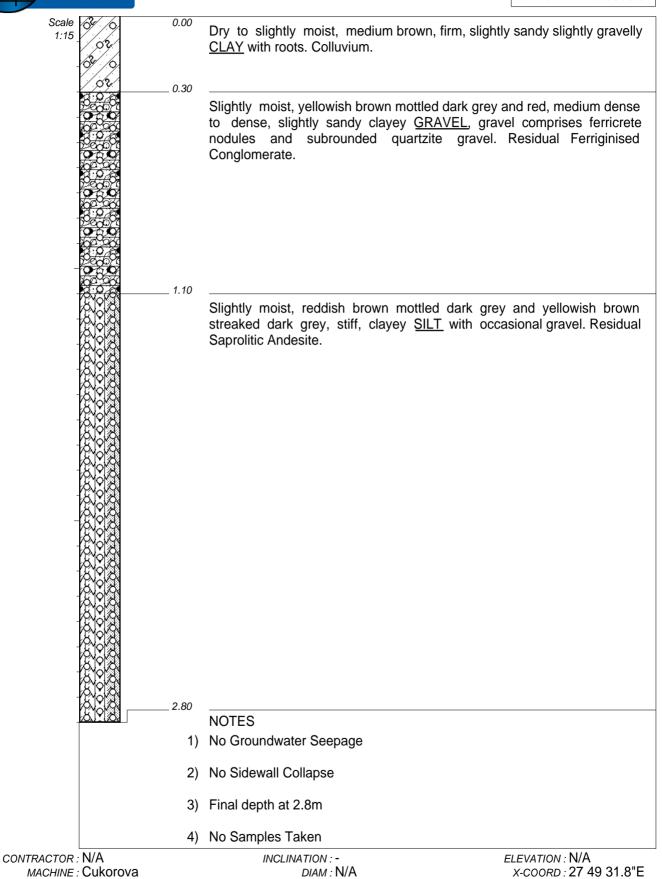
TEXT: ..66.02EnnerdaleTPLogs.TXT

DOCE GCS Geotechnical dotPLOT 7022 PBpH67

PROFILED BY: Dale Franklin

SETUP FILE: STANDARD.SET

TYPE SET BY: Dale Franklin


Glad Africa Ennerdale Ext 9

HOLE No: TP05 Sheet 1 of 1

JOB NUMBER: 19.0866.02

Y-COORD: 26 24 26.9"S

HOLE No: TP05

DOCE GCS Geotechnical dotPLOT 7022 PBpH67

DATE: 18/09/2019

DATE: 26/09/2019 17:50

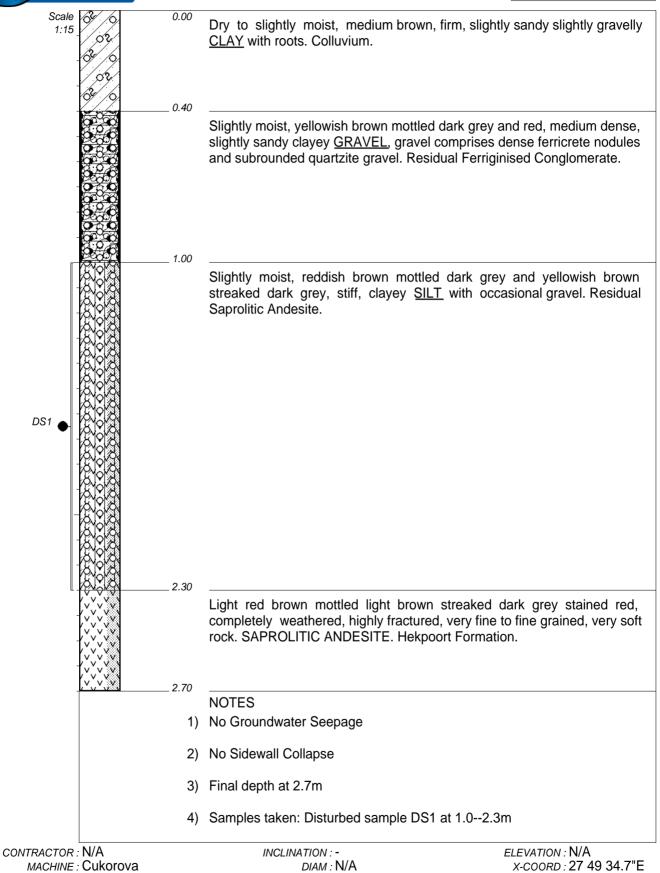
TEXT: ..66.02EnnerdaleTPLogs.TXT

DATE:-

PROFILED BY: Dale Franklin

SETUP FILE: STANDARD.SET

TYPE SET BY: Dale Franklin


Glad Africa Ennerdale Ext 9

HOLE No: TP06 Sheet 1 of 1

JOB NUMBER: 19.0866.02

Y-COORD: 26 24 24.4"S

HOLE No: TP06

DOCE GCS Geotechnical dotPLOT 7022 PBpH67

DATE: 18/09/2019

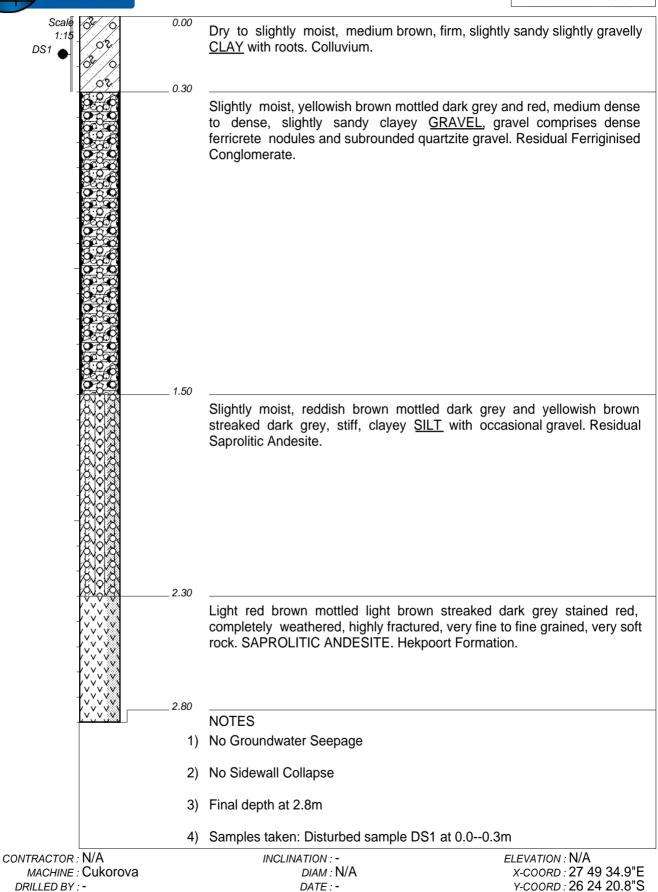
DATE: 26/09/2019 17:50

TEXT: ..66.02EnnerdaleTPLogs.TXT

DATE:-

PROFILED BY: Dale Franklin

SETUP FILE: STANDARD.SET


TYPE SET BY: Dale Franklin

Glad Africa Ennerdale Ext 9

HOLE No: TP07 Sheet 1 of 1

JOB NUMBER: 19.0866.02

HOLE No: TP07

DOCE GCS Geotechnical dotPLOT 7022 PBpH67

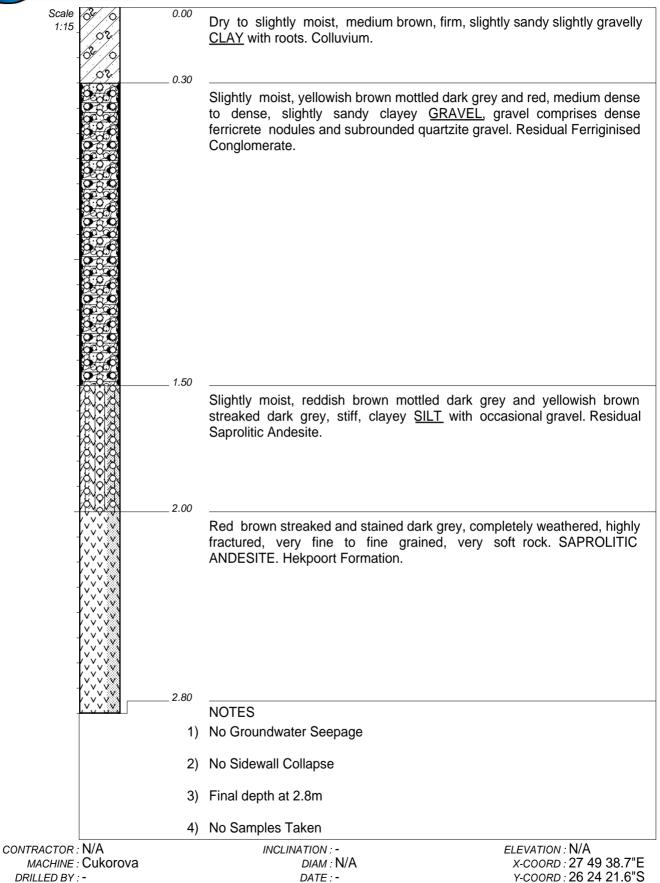
DATE: 18/09/2019

DATE: 26/09/2019 17:50

TEXT: ..66.02EnnerdaleTPLogs.TXT

PROFILED BY: Dale Franklin

SETUP FILE: STANDARD.SET


TYPE SET BY: Dale Franklin

Glad Africa Ennerdale Ext 9

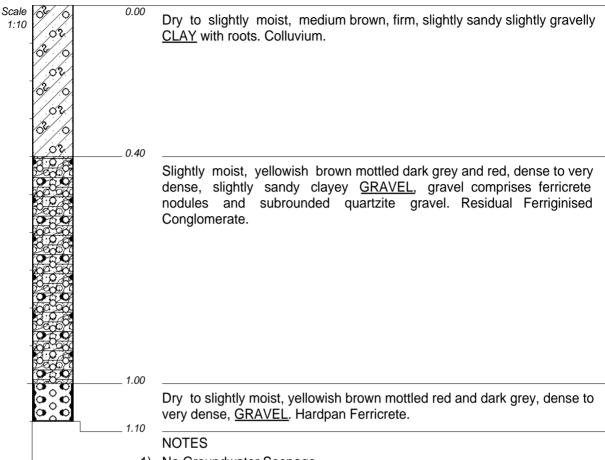
HOLE No: TP08 Sheet 1 of 1

JOB NUMBER: 19.0866.02

HOLE No: TP08

DOCE GCS Geotechnical dotPLOT 7022 PBpH67

DATE: 18/09/2019


DATE: 26/09/2019 17:50

TEXT: ..66.02EnnerdaleTPLogs.TXT

HOLE No: TP09 Sheet 1 of 1

JOB NUMBER: 19.0866.02

- 1) No Groundwater Seepage
- 2) No Sidewall Collapse
- 3) Refusal depth at 1.1m
- 4) No Samples Taken

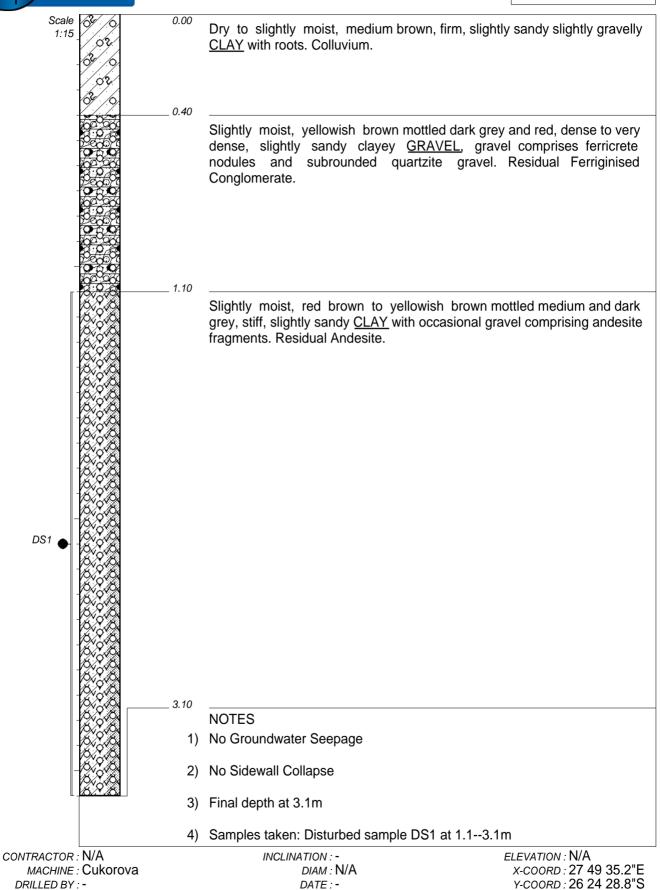
CONTRACTOR: N/A INCLINATION: -

MACHINE: Cukorova DIAM : N/A DATE:-

DRILLED BY: -PROFILED BY: Dale Franklin DATE: 18/09/2019

TYPE SET BY: Dale Franklin DATE: 26/09/2019 17:50 SETUP FILE: STANDARD.SET TEXT: ..66.02EnnerdaleTPLogs.TXT

DOCE GCS Geotechnical dotPLOT 7022 PBpH67


ELEVATION: N/A

x-coord: 27 49 37.8"E Y-COORD: 26 24 26.4"S

HOLE No: TP10 Sheet 1 of 1

JOB NUMBER: 19.0866.02

DATE:-

DATE: 18/09/2019

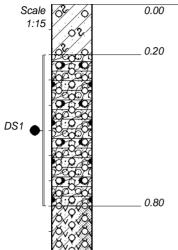
DATE: 26/09/2019 17:50

TEXT: ..66.02EnnerdaleTPLogs.TXT

DOCE GCS Geotechnical

DRILLED BY: -

PROFILED BY: Dale Franklin


SETUP FILE: STANDARD.SET

TYPE SET BY: Dale Franklin

HOLE No: TP11 Sheet 1 of 1

JOB NUMBER: 19.0866.02

Dry to slightly moist, medium brown, firm, slightly sandy slightly gravelly CLAY with roots. Colluvium.

Slightly moist, yellowish brown mottled dark grey and red, dense to very dense, slightly sandy clayey <u>GRAVEL</u>, gravel comprises ferricrete nodules and subrounded quartzite gravel. Residual Ferriginised Conglomerate.

Slightly moist, red brown to yellowish brown mottled medium and dark grey, stiff, slightly sandy <u>CLAY</u> with occasional gravel comprising andesite fragments. Residual Andesite.

2.70

NOTES

- 1) No Groundwater Seepage
- 2) No Sidewall Collapse
- 3) Final depth at 2.7m
- 4) Samples taken: Disturbed sample DS1 at 0.2--0.8m

CONTRACTOR: N/A

MACHINE: Cukorova

DRILLED BY:PROFILED BY: Dale Franklin

PROFILED BY : Dale Franklin

TYPE SET BY : Dale Franklin

SETUP FILE : STANDARD.SET

INCLINATION: DIAM: N/A
DATE: DATE: 18/09/2019

DATE: 18/09/2019

DATE: 26/09/2019 17:50

TEXT: ..66.02EnnerdaleTPLogs.TXT

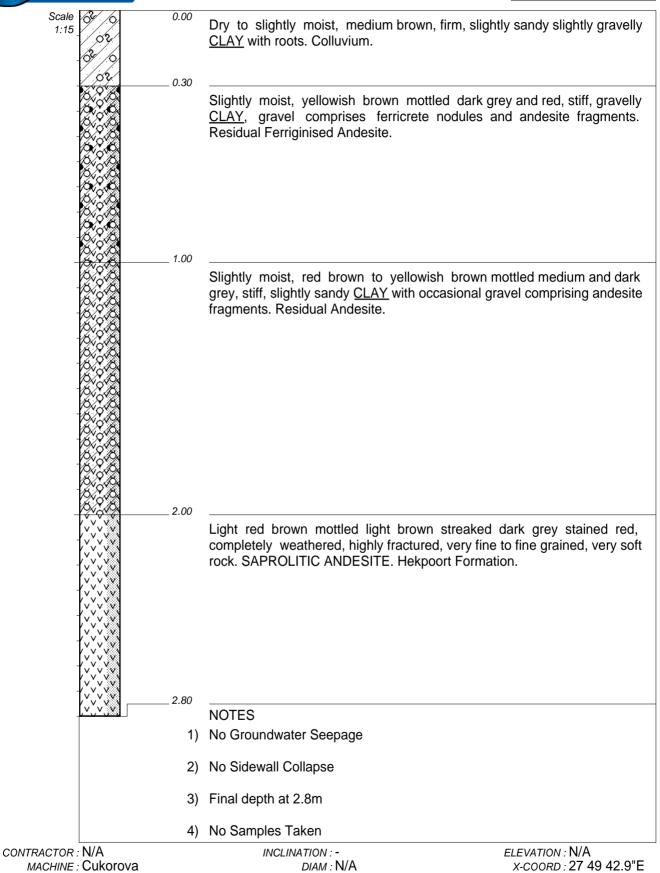
ELEVATION: N/A

x-coord : 27 49 38.3"E y-coord : 26 24 31.1"S

PROFILED BY: Dale Franklin

SETUP FILE: STANDARD.SET

TYPE SET BY: Dale Franklin


Glad Africa Ennerdale Ext 9

HOLE No: TP12 Sheet 1 of 1

JOB NUMBER: 19.0866.02

Y-COORD: 26 24 28.1"S

HOLE No: TP12

DOCE GCS Geotechnical dotPLOT 7022 PBpH67

DATE: 18/09/2019

DATE: 26/09/2019 17:50

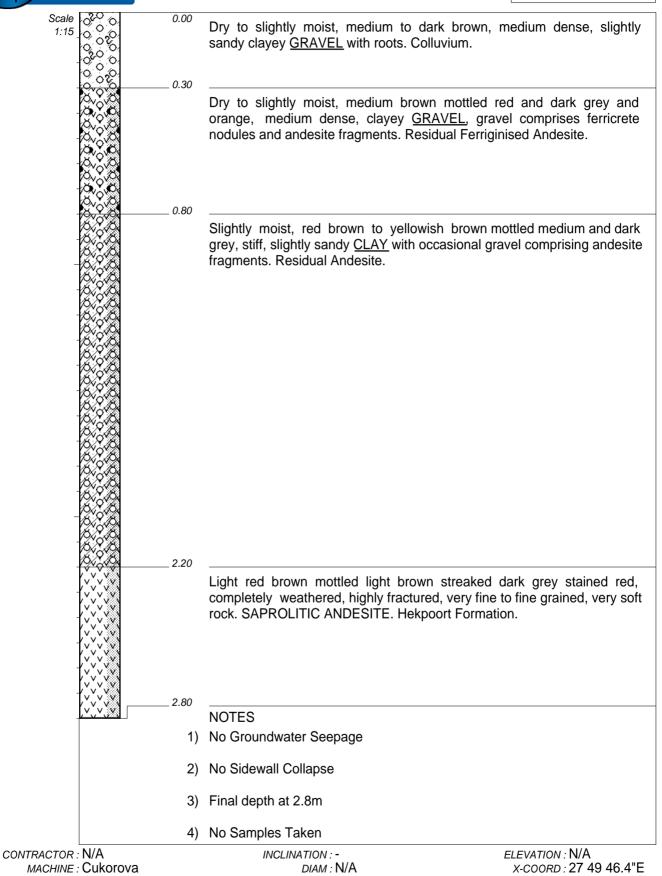
TEXT: ..66.02EnnerdaleTPLogs.TXT

DATE:-

PROFILED BY: Dale Franklin

SETUP FILE: STANDARD.SET

TYPE SET BY: Dale Franklin


Glad Africa Ennerdale Ext 9

HOLE No: TP13
Sheet 1 of 1

JOB NUMBER: 19.0866.02

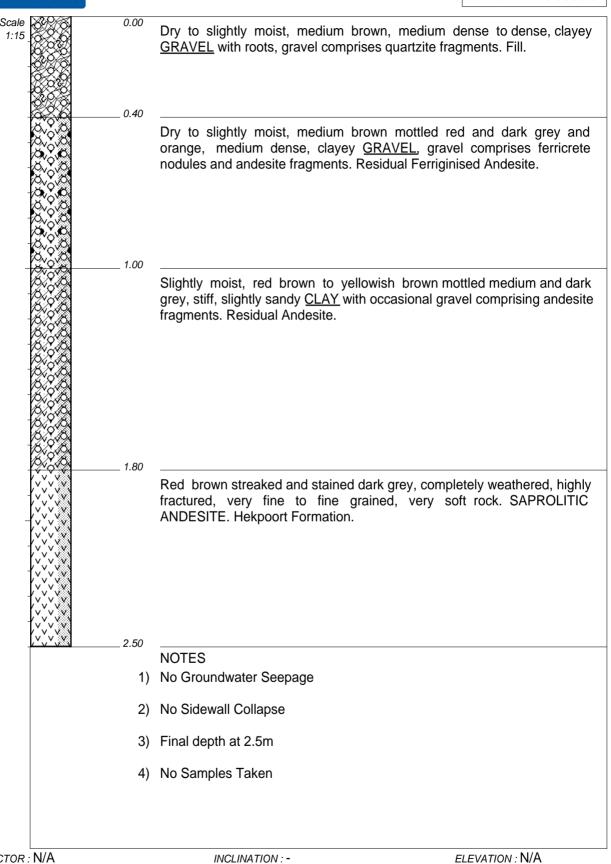
Y-COORD: 26 24 28.1"S

HOLE No: TP13

DOCE GCS Geotechnical dotPLOT 7022 PBpH67

DATE: 18/09/2019

DATE: 26/09/2019 17:50


TEXT: ..66.02EnnerdaleTPLogs.TXT

DATE:-

HOLE No: TP14 Sheet 1 of 1

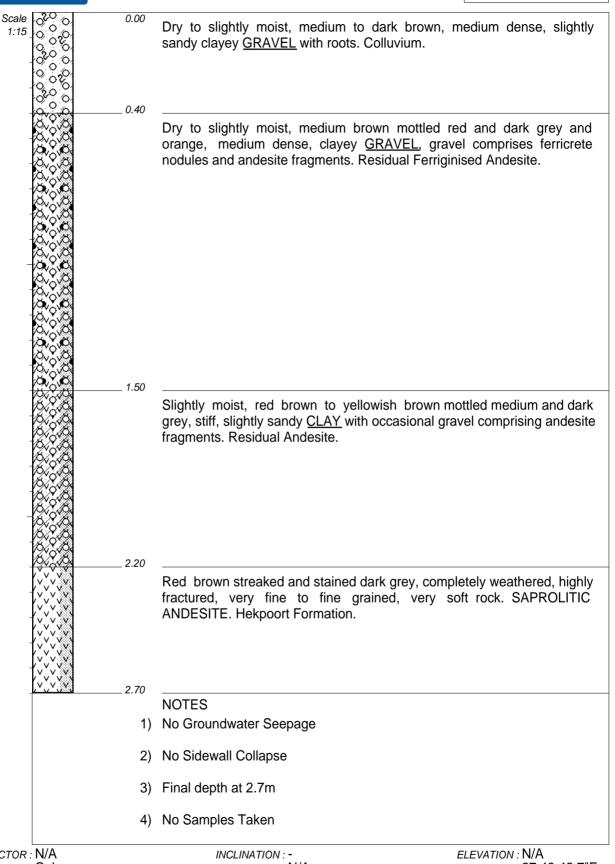
JOB NUMBER: 19.0866.02

CONTRACTOR: N/A

MACHINE: Cukorova DIAM : N/A DATE:-DRILLED BY: -

PROFILED BY: Dale Franklin DATE: 18/09/2019

TYPE SET BY: Dale Franklin DATE: 26/09/2019 17:50 SETUP FILE: STANDARD.SET TEXT: ..66.02EnnerdaleTPLogs.TXT


DOCE GCS Geotechnical dotPLOT 7022 PBpH67

X-COORD: 27 49 45.5"E Y-COORD: 26 24 25.0"S

HOLE No: TP15 Sheet 1 of 1

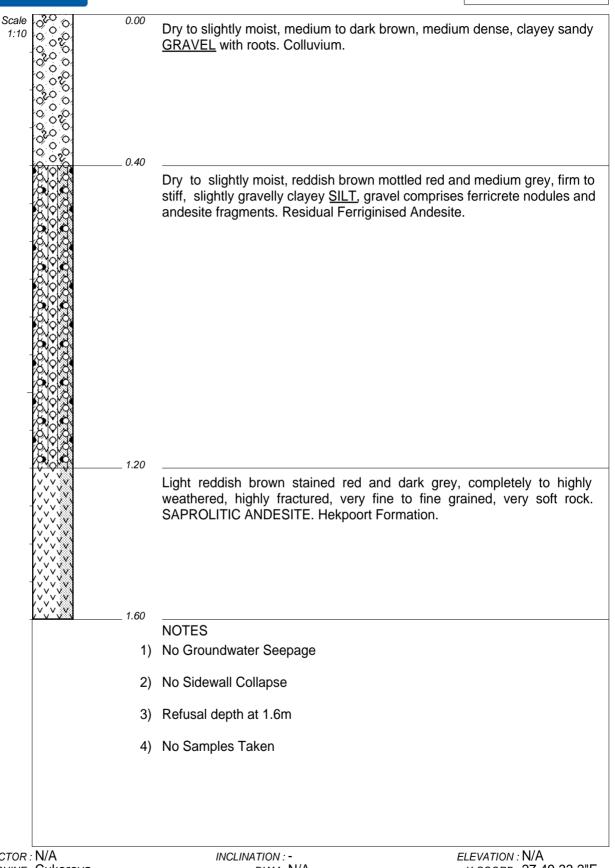
JOB NUMBER: 19.0866.02

CONTRACTOR: N/A

MACHINE: Cukorova DIAM : N/A DATE:-DRILLED BY: -

PROFILED BY: Dale Franklin DATE: 18/09/2019 TYPE SET BY: Dale Franklin DATE: 26/09/2019 17:50

SETUP FILE: STANDARD.SET TEXT: ..66.02EnnerdaleTPLogs.TXT


DOCE GCS Geotechnical dotPLOT 7022 PBpH67

X-COORD: 27 49 42.7"E Y-COORD: 26 24 23.8"S

HOLE No: TP16 Sheet 1 of 1

JOB NUMBER: 19.0866.02

CONTRACTOR: N/A DIAM : N/A

MACHINE: Cukorova DRILLED BY: -

DATE:-PROFILED BY: Dale Franklin DATE: 18/09/2019 TYPE SET BY: Dale Franklin DATE: 26/09/2019 17:50

SETUP FILE: STANDARD.SET TEXT: ..66.02EnnerdaleTPLogs.TXT

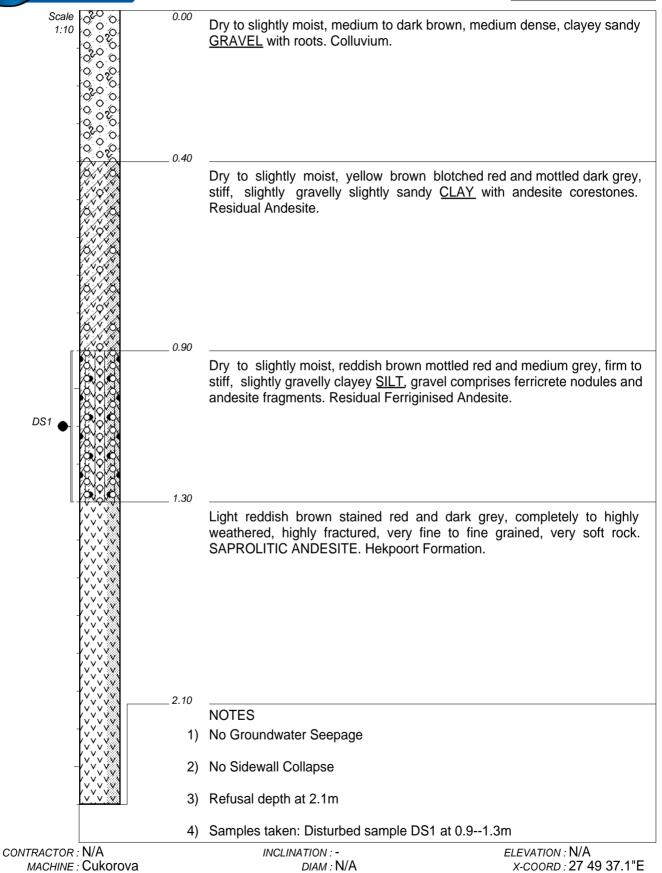
DOCE GCS Geotechnical dotPLOT 7022 PBpH67

X-COORD: 27 49 33.2"E Y-COORD: 26 24 16.0"S

PROFILED BY: Dale Franklin

SETUP FILE: STANDARD.SET

TYPE SET BY: Dale Franklin


Glad Africa Ennerdale Ext 9

HOLE No: TP17 Sheet 1 of 1

JOB NUMBER: 19.0866.02

Y-COORD: 26 24 17.7"S

HOLE No: TP17

DOCE GCS Geotechnical dotPLOT 7022 PBpH67

DATE:-

DATE: 18/09/2019

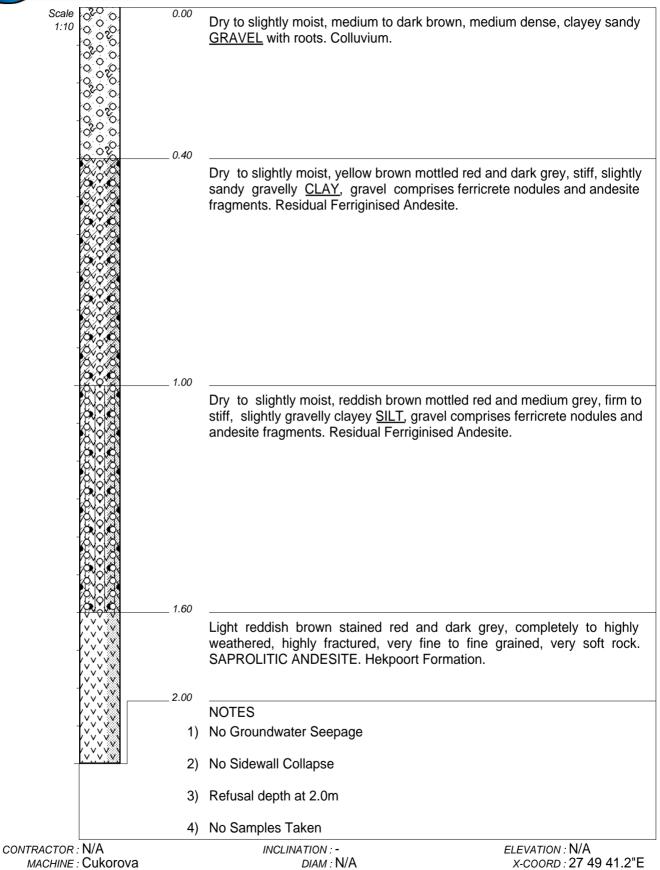
DATE: 26/09/2019 17:50

TEXT: ..66.02EnnerdaleTPLogs.TXT

PROFILED BY: Dale Franklin

SETUP FILE: STANDARD.SET

TYPE SET BY: Dale Franklin


Glad Africa Ennerdale Ext 9

HOLE No: TP18
Sheet 1 of 1

JOB NUMBER: 19.0866.02

Y-COORD: 26 24 19.7"S

HOLE No: TP18

DOCE GCS Geotechnical dotPLOT 7022 PBpH67

DATE: 18/09/2019

DATE: 26/09/2019 17:50

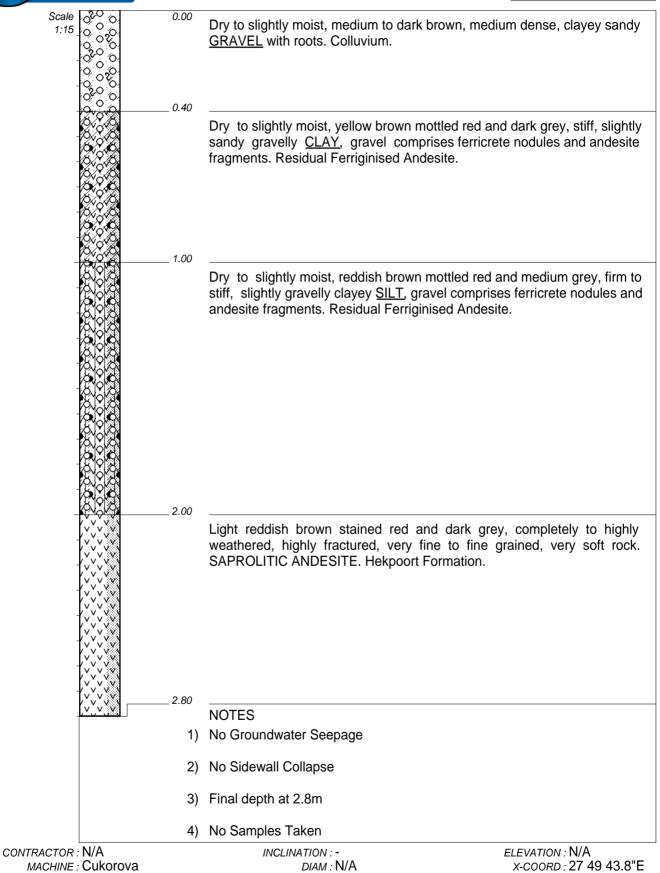
TEXT: ..66.02EnnerdaleTPLogs.TXT

DATE:-

PROFILED BY: Dale Franklin

SETUP FILE: STANDARD.SET

TYPE SET BY: Dale Franklin


Glad Africa Ennerdale Ext 9

HOLE No: TP19 Sheet 1 of 1

JOB NUMBER: 19.0866.02

Y-COORD: 26 24 19.1"S

HOLE No: TP19

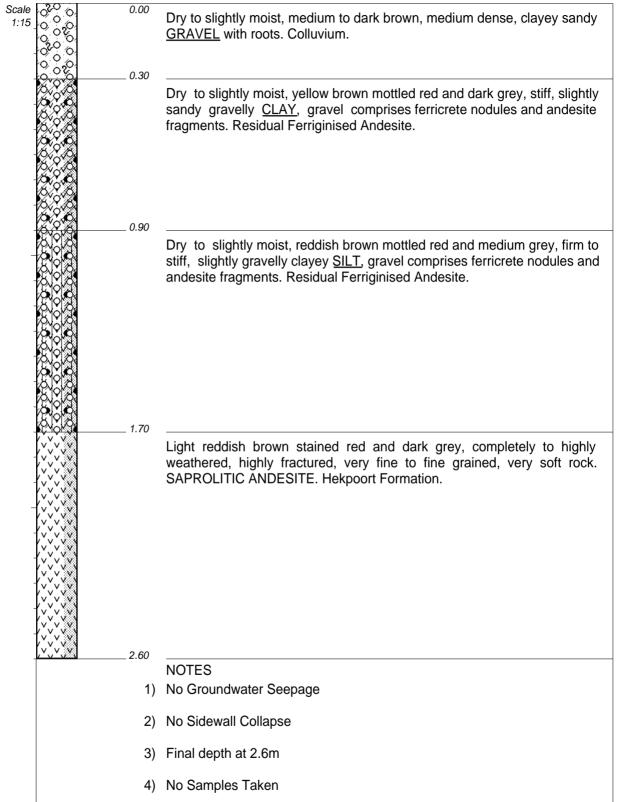
DOCE GCS Geotechnical dotPLOT 7022 PBpH67

DATE: 18/09/2019

DATE: 26/09/2019 17:50

TEXT: ..66.02EnnerdaleTPLogs.TXT

DATE:-



HOLE No: TP20 Sheet 1 of 1

JOB NUMBER: 19.0866.02

Y-COORD: 26 24 15.6"S

HOLE No: TP20

CONTRACTOR: N/A **ELEVATION: N/A** INCLINATION: -X-COORD: 27 49 44.3"E

MACHINE: Cukorova DIAM : N/A DATE:-

DRILLED BY: -PROFILED BY: Dale Franklin DATE: 18/09/2019

TYPE SET BY: Dale Franklin DATE: 26/09/2019 17:50 SETUP FILE: STANDARD.SET TEXT: ..66.02EnnerdaleTPLogs.TXT

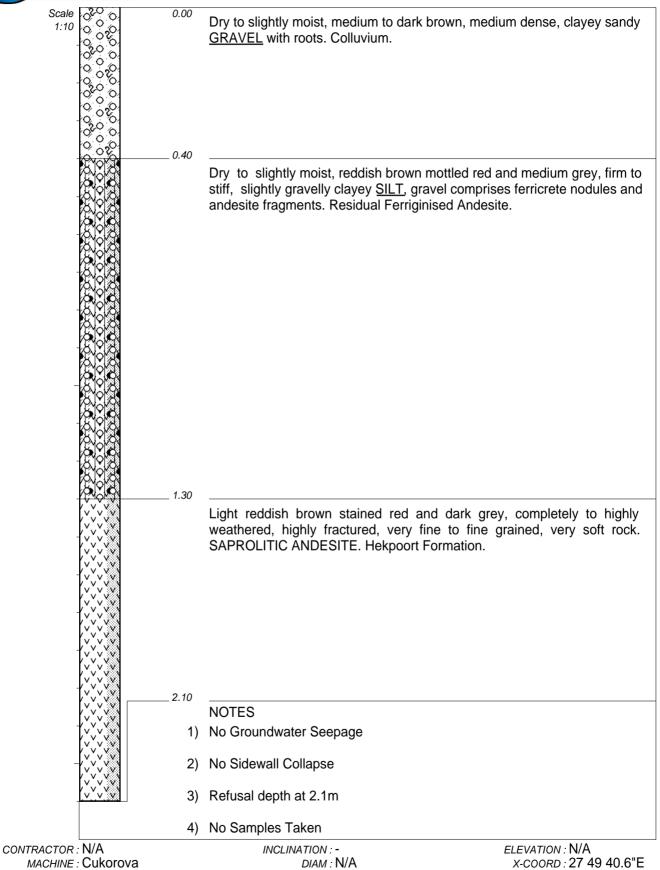
DOCE GCS Geotechnical dotPLOT 7022 PBpH67

DRILLED BY: -

PROFILED BY: Dale Franklin

SETUP FILE: STANDARD.SET

TYPE SET BY: Dale Franklin


Glad Africa Ennerdale Ext 9

HOLE No: TP21 Sheet 1 of 1

JOB NUMBER: 19.0866.02

Y-COORD: 26 24 15.8"S

HOLE No: TP21

DOCE GCS Geotechnical dotPLOT 7022 PBpH67

DATE: 18/09/2019

DATE: 26/09/2019 17:50

TEXT: ..66.02EnnerdaleTPLogs.TXT

DATE:-

PROFILED BY: Dale Franklin

SETUP FILE: STANDARD.SET

TYPE SET BY : Dale Franklin

Glad Africa Ennerdale Ext 9

HOLE No: TP22 Sheet 1 of 1

JOB NUMBER: 19.0866.02

HOLE No: TP22

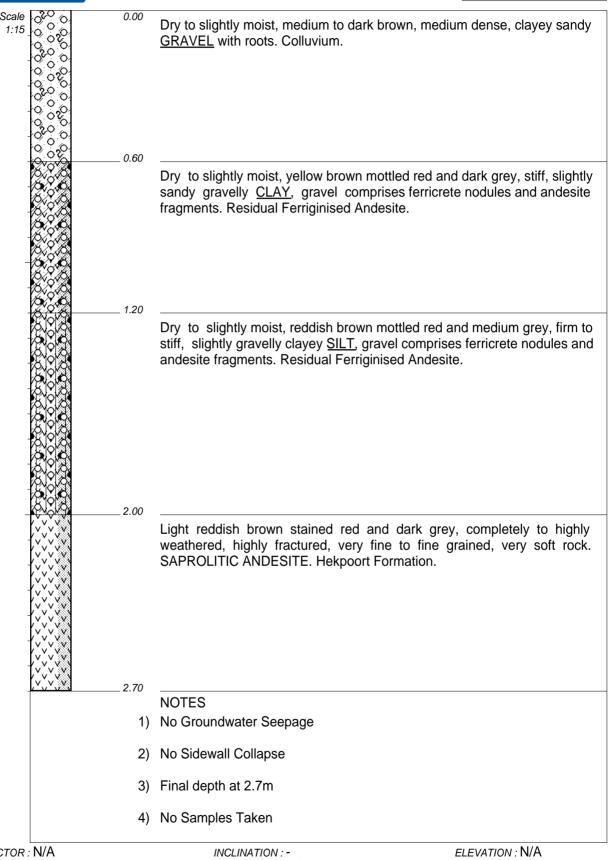
1:10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Dry to slightly moist, medium to dark brown, medium dense, clayey sandy GRAVEL with roots. Colluvium.
0.	70	
	20	Dry to slightly moist, yellow brown mottled red and dark grey, stiff, slightly sandy gravelly <u>CLAY</u> , gravel comprises ferricrete nodules and andesite fragments. Residual Ferriginised Andesite.
1.3	20	
		Slightly moist, yellowish brown to reddish brown mottled dark grey, stiff, slightly sandy gravelly <u>CLAY</u> , gravel comprises andesite fragments. Residual Andesite.
1.	60	
		Yellowish brown stained black, completely to highly weathered, highly fractured, very fine to fine grained, very soft rock. SAPROLITIC ANDESITE. Hekpoort Formation.
2.	00	
[****\		NOTES
 	1)	No Groundwater Seepage
<u>/ </u>	2)	No Sidewall Collapse
	3)	Refusal depth at 2.0m
	4)	No Samples Taken
CONTRACTOR : N/A	,	INCLINATION: - ELEVATION: N/A
MACHINE: Cukorova		DIAM : N/A X-COORD : 27 49 35.9"E
DRILLED BY : - PROFILED BY : Dale Franklin		DATE:- Y-COORD: 26 24 13.4"S DATE: 18/09/2019
ENVELLED DT. DAIS LIAUNIII		UAIE. 1010314013

DOCE GCS Geotechnical dotPLOT 7022 PBpH67

DATE: 18/09/2019

DATE: 26/09/2019 17:50

TEXT: ..66.02EnnerdaleTPLogs.TXT



HOLE No: TP23 Sheet 1 of 1

JOB NUMBER: 19.0866.02

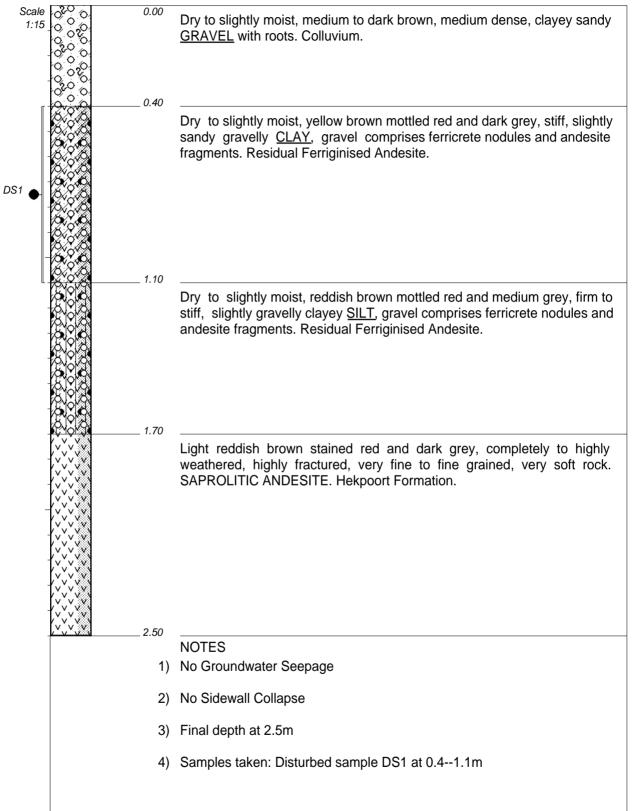
Y-COORD: 26 24 11.0"S

HOLE No: TP23

CONTRACTOR: N/A X-COORD: 27 49 34.8"E

MACHINE: Cukorova DIAM : N/A

DATE:-DRILLED BY: -PROFILED BY: Dale Franklin DATE: 18/09/2019


TYPE SET BY: Dale Franklin DATE: 26/09/2019 17:50 SETUP FILE: STANDARD.SET TEXT: ..66.02EnnerdaleTPLogs.TXT

DOCE GCS Geotechnical dotPLOT 7022 PBpH67

HOLE No: TP24 Sheet 1 of 1

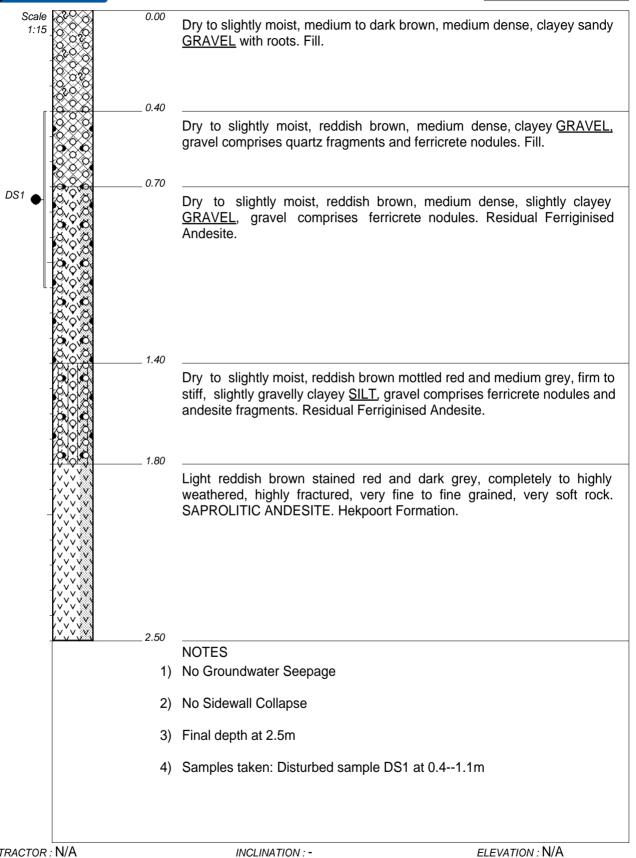
JOB NUMBER: 19.0866.02

CONTRACTOR: N/A **ELEVATION: N/A** INCLINATION: -

MACHINE: Cukorova DIAM : N/A

DATE:-DRILLED BY: -PROFILED BY: Dale Franklin DATE: 18/09/2019

TYPE SET BY: Dale Franklin DATE: 26/09/2019 17:50 SETUP FILE: STANDARD.SET TEXT: ..66.02EnnerdaleTPLogs.TXT


DOCE GCS Geotechnical dotPLOT 7022 PBpH67

X-COORD: 27 49 38.9"E Y-COORD: 26 24 12.0"S

HOLE No: TP25 Sheet 1 of 1

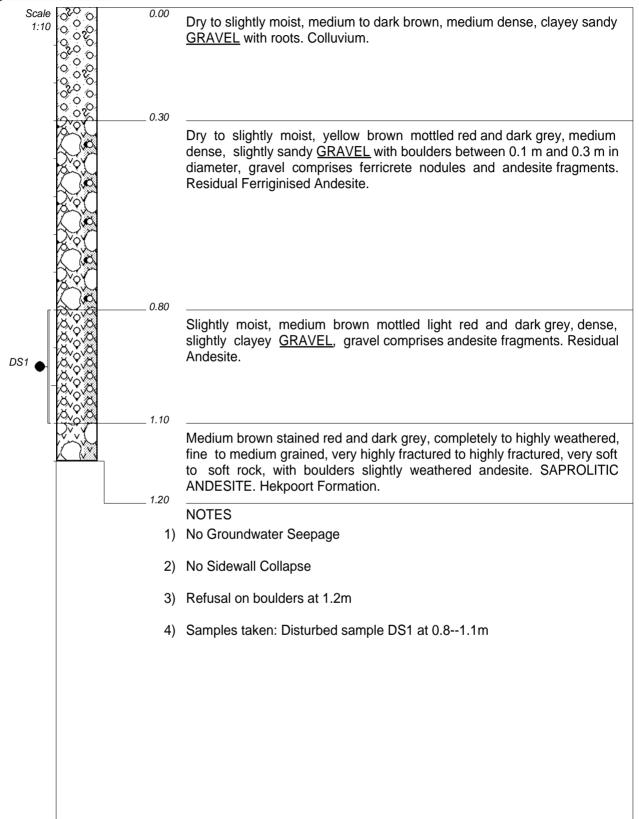
JOB NUMBER: 19.0866.02

CONTRACTOR: N/A

MACHINE: Cukorova DIAM : N/A DRILLED BY: -DATE: -

PROFILED BY: Dale Franklin DATE: 18/09/2019 TYPE SET BY: Dale Franklin DATE: 26/09/2019 17:50

SETUP FILE: STANDARD.SET TEXT: ..66.02EnnerdaleTPLogs.TXT


DOCE GCS Geotechnical dotPLOT 7022 PBpH67

x-coord: 27 49 43.1"E Y-COORD: 26 24 11.5"S

HOLE No: TP26 Sheet 1 of 1

JOB NUMBER: 19.0866.02

CONTRACTOR: N/A **ELEVATION: N/A** INCLINATION: -

MACHINE: Cukorova DIAM : N/A DRILLED BY: -

PROFILED BY: Dale Franklin

SETUP FILE: STANDARD.SET

TYPE SET BY: Dale Franklin

DOCE GCS Geotechnical

DATE: -DATE: 18/09/2019

DATE: 26/09/2019 17:50 TEXT: ..66.02EnnerdaleTPLogs.TXT

dotPLOT 7022 PBpH67

x-coord: 27 49 46.2"E Y-COORD: 26 24 09.6"S

HOLE No: TP27 Sheet 1 of 1

JOB NUMBER: 19.0866.02

	0.00	Dry to slightly moist, medium to dark be GRAVEL with roots. Colluvium.	orown, medium dense, clayey sandy
	0.50	Dry to slightly moist, yellow brown mosandy gravelly <u>CLAY</u> , gravel comprifragments. Residual Ferriginised Ande	ises ferricrete nodules and andesite
	1.00	Dry to slightly moist, reddish brown me stiff, slightly gravelly clayey SILT, gravandesite fragments. Residual Ferrigini	vel comprises ferricrete nodules and
	1.70	Light reddish brown stained red and weathered, highly fractured, very fin SAPROLITIC ANDESITE. Hekpoort Fo	ne to fine grained, very soft rock.
/ <u>```</u> ``	2.50	NOTES No Groundwater Seepage	
	2)	No Sidewall Collapse	
	3)	Final depth at 2.5m	
	4)	No Samples Taken	
R:N/A		INCLINATION : -	ELEVATION : N/A

CONTRACTOR:

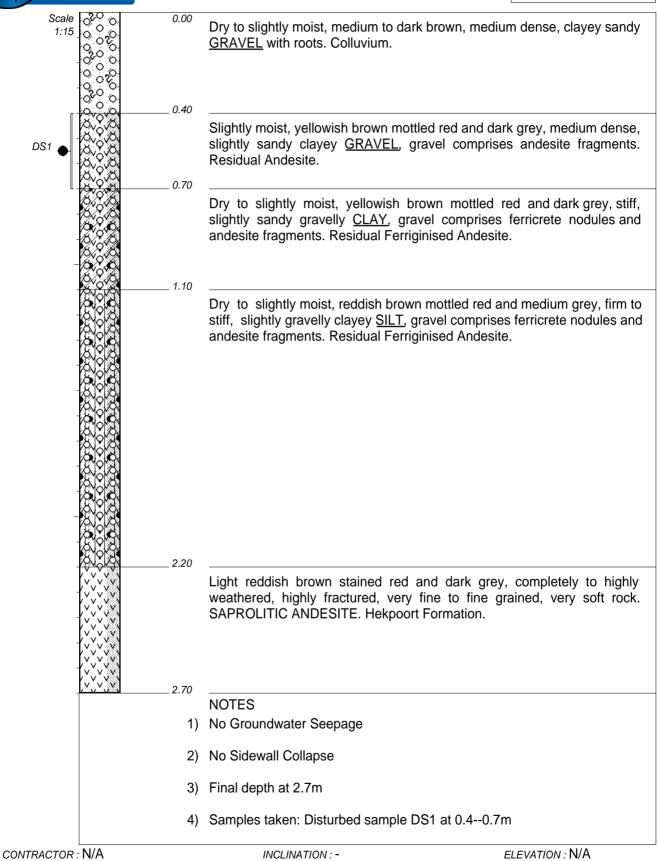
MACHINE: Cukorova DIAM: N/A

DRILLED BY:-PROFILED BY: Dale Franklin DATE:-DATE: 18/09/2019

TYPE SET BY : Dale Franklin DATE: 26/09/2019 17:50 SETUP FILE: STANDARD.SET TEXT: ..66.02EnnerdaleTPLogs.TXT

DOCE GCS Geotechnical dotPLOT 7022 PBpH67

X-COORD: 27 49 43.6"E Y-COORD: 26 24 07.4"S



HOLE No: TP28 Sheet 1 of 1

JOB NUMBER: 19.0866.02

Y-COORD: 26 24 08.4"S

HOLE No: TP28

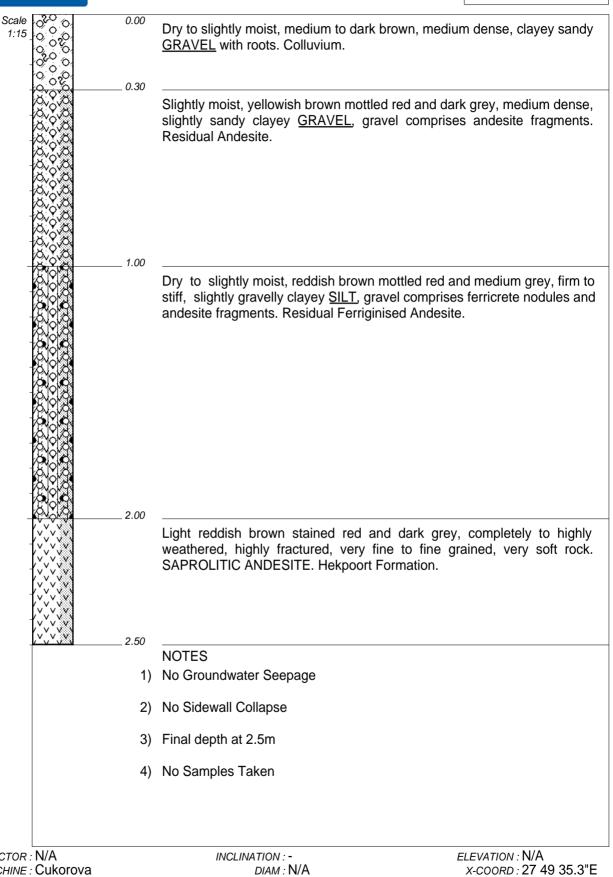
x-coord: 27 49 39.8"E

MACHINE: Cukorova DIAM : N/A

DATE:-DRILLED BY: -PROFILED BY: Dale Franklin DATE: 18/09/2019 TYPE SET BY: Dale Franklin

DATE: 26/09/2019 17:50 TEXT: ..66.02EnnerdaleTPLogs.TXT SETUP FILE: STANDARD.SET

DOCE GCS Geotechnical dotPLOT 7022 PBpH67



HOLE No: TP29 Sheet 1 of 1

JOB NUMBER: 19.0866.02

Y-COORD: 26 24 08.9"S

HOLE No: TP29

CONTRACTOR: N/A

MACHINE: Cukorova DIAM : N/A DATE:-DRILLED BY: -

PROFILED BY: Dale Franklin DATE: 18/09/2019 TYPE SET BY: Dale Franklin DATE: 26/09/2019 17:50

SETUP FILE: STANDARD.SET TEXT: ..66.02EnnerdaleTPLogs.TXT

DOCE GCS Geotechnical dotPLOT 7022 PBpH67

LEGEND Sheet 1 of 1

JOB NUMBER: 19.0866.02

	BOULDERS	{SA01}
000	GRAVEL	{SA02}
0 0	GRAVELLY	{SA03}
	SANDY	{SA05}
	SILT	{SA06}
	SILTY	{SA07}
	CLAY	{SA08}
	CLAYEY	{SA09}
000	CONGLOMERATE	{SA10}
	QUARTZITE	{SA15}
****** ******	ANDESITE	{SA19}{SA41}
	HARDPAN FERRICRETE/dense ferricrete	{SA23}{SA29}
	FERRICRETE NODULES	{SA24}
	FILL	{SA32}
, , , , , , , , , , , , , , , , , , ,	DISTURBED SAMPLE	{SA38}
2	ROOTS	{SA40}

CONTRACTOR:

INCLINATION:

ELEVATION:

MACHINE: DRILLED BY: PROFILED BY:

Name _

DIAM: DATE: X-COORD:

DATE:

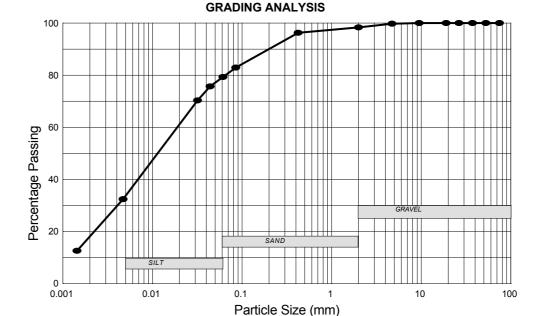
Y-COORD:

TYPE SET BY : Dale Franklin SETUP FILE: STANDARD.SET

DATE: 26/09/2019 17:50 TEXT: ..66.02EnnerdaleTPLogs.TXT

LEGEND SUMMARY OF SYMBOLS

APPENDIX B Laboratory Test Results


FOUNDATION INDICATOR

Client	GCS GEOTECHNICAL ENGI	NEERING		
Location	ENNERDALE	TP 6 @ 1,0 - 2,3m		
Date	18 OCTOBER 2019	Test No	3116	
Job No	19286	Checked By	EB	

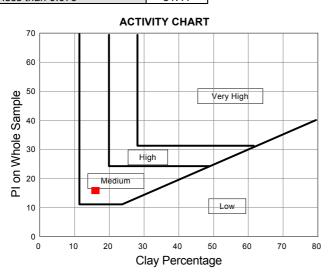
SIEVE ANALYSIS

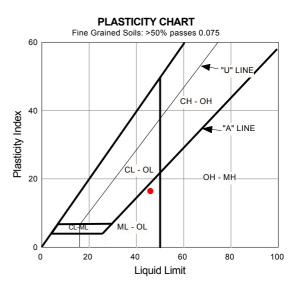
Values are expressed as a percentage of total sample

Sieve	Total
Size	Passing
(mm)	(%)
75.00	100.00
53.00	100.00
37.50	100.00
26.50	100.00
19.00	100.00
9.50	100.00
4.75	99.77
2.00	98.40
0.425	96.31

HYDROMETER ANALYSIS

Values are expressed as a percentage of total sample


Sieve	Total
Size	Passing
(mm)	(%)
0.0854	82.97
0.0613	79.36
0.0441	75.75
0.0319	70.34
0.0047	32.47
0.0014	12.63


ATTERBERG LIMITS & OTHER VALUES

Liquid Limit	46	
Plastic Limit	29	
Plastic Index	16	
Linear Shrinkage	8	
Grading Modulus	0.22	
Moisture Content	26.95	
PI on Whole Sample	16	
PRA Classification	A.7.6	
Unified Classification	See Plasticity Char	

ESTIMATED COMPOSITION (As BS 1377)

201111111122 201111 20111211 ()	,
Clay (<0.002)	16.03
0.002 < Silt < 0.06	63.05
0.06 < Sand < 2.0	19.32
Gravel > 2.0	1.60
% less than 0.075	81.41

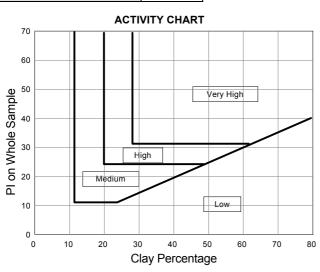
FOUNDATION INDICATOR

Client	GCS GEOTECHNICAL ENGIN	GCS GEOTECHNICAL ENGINEERING		
Location	ENNERDALE	TP 2 @ 1,9 - 2,8m		
Date	18 OCTOBER 2019	Test No	3113	
Job No	19286	Checked By	EB	

SIEVE ANALYSIS

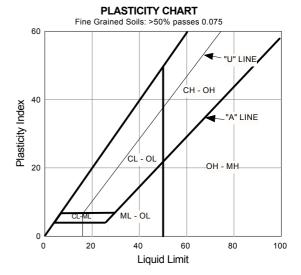
Values are expressed as a percentage of total sample

Sieve	Total
Size	Passing
(mm)	(%)
75.00	100.00
53.00	100.00
37.50	100.00
26.50	100.00
19.00	100.00
9.50	99.67
4.75	98.98
2.00	97.62
0.425	94.75



Values are expressed as a percentage of total sample

Sieve	Total
Size	Passing
(mm)	(%)
0.0946	56.78
0.0687	49.68
0.0495	44.36
0.0354	40.81
0.0049	19.52
0.0015	8.87


ESTIMATED COMPOSITION (As BS 1377)

LOTTING CONFOSITION (F	43 DO 1311)
Clay (<0.002)	10.57
0.002 < Silt < 0.06	36.70
0.06 < Sand < 2.0	50.34
Gravel > 2.0	2.38
% less than 0.075	51.41

Liquid Limit	Non Plastic
Plastic Limit	Non Plastic
Plastic Index	Non Plastic
Linear Shrinkage	0
Grading Modulus	0.51
Moisture Content	8.46
PI on Whole Sample	Non Plastic
PRA Classification	A.2.4
Unified Classification	SM

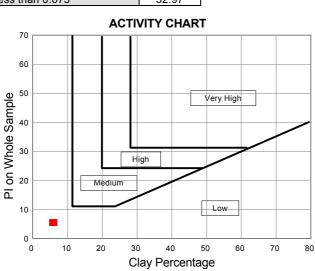
FOUNDATION INDICATOR

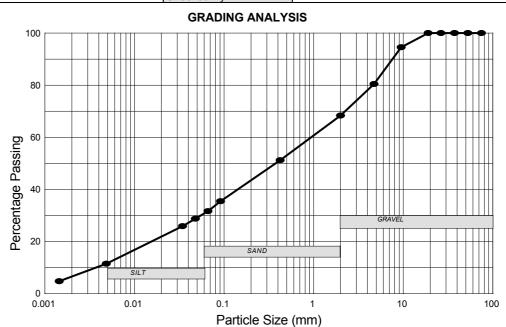
Client	GCS GEOTECHNICAL ENGINEERING		
Location	ENNERDALE. TF	P 1 @ 0,3 - 1,1m	
Date	18 OCTOBER 2019	Test No	3111
Job No	19286	Checked By	EB

SIEVE ANALYSIS

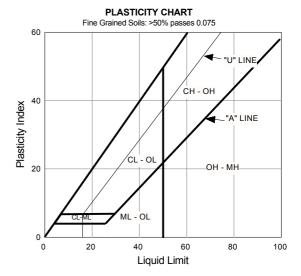
Values are expressed as a percentage of total sample

Sieve	Total
Size	Passing
(mm)	(%)
75.00	100.00
53.00	100.00
37.50	100.00
26.50	100.00
19.00	100.00
9.50	94.56
4.75	80.45
2.00	68.38
0.425	51.23




Values are expressed as a percentage of total sample

Sieve	Total
Size	Passing
(mm)	(%)
0.0914	35.50
0.0665	31.66
0.0479	28.78
0.0346	25.90
0.0049	11.51
0.0015	4.80


ESTIMATED COMPOSITION (As BS 1377)

LOTTING CONFOSITION (F	43 DO 1311)
Clay (<0.002)	5.88
0.002 < Silt < 0.06	24.77
0.06 < Sand < 2.0	37.72
Gravel > 2.0	31.62
% less than 0.075	32.97

Liquid Limit	29
Plastic Limit	18
Plastic Index	11
Linear Shrinkage	5
Grading Modulus	1.45
Moisture Content	3.91
PI on Whole Sample	6
PRA Classification	A.2.6
Unified Classification	SC

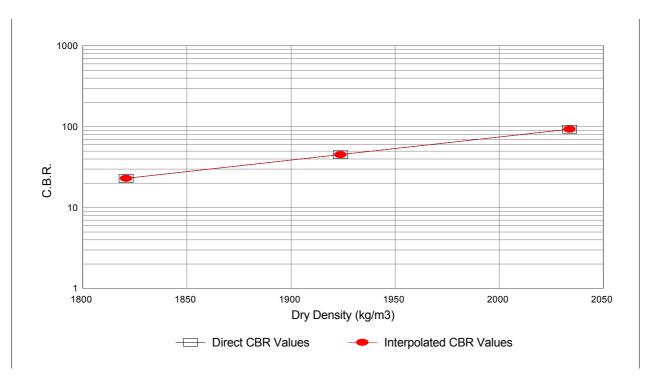
TEL: (011) 674 1325 FAX: (011) 674 4513

e mail: lab@geopractica.co.za

C.B.R. DETERMINATION

Client	GCS GEOTECHNICAL ENGIN	GCS GEOTECHNICAL ENGINEERING		
Location	ENNERDALE	TP 1 @ 0,3 - 1,1m		
Date	18 OCTOBER 2019	Test No	3112	
Job No	19287	Checked By	EB	
Calibration Date	15 May 2018	Calibration Certificate	9475	

Direct Results from Test Procedure


Maximum Dry Density (kg/m3) 2026

Optimum	Moisture Content	(%)	97
Optimium	Moisture Content	(/0 /	9.1

Percentage Mod AASHTO	100.4	94.9	89.9
CBR @ 2.54mm	93	45	23
CBR @ 5.08mm	10	44	22
CBR@ 7.62mm	89	43	21
Average Moisture Content (%)	83	9.6	
Percentage Swell	0.13	0.17	0.20

Interpolated Results

Percentage Mod AASHTO	90	93	95	98	100
CBR	23	35	46	68	88

Programed Data
Revision No 5 (1/11/2017)

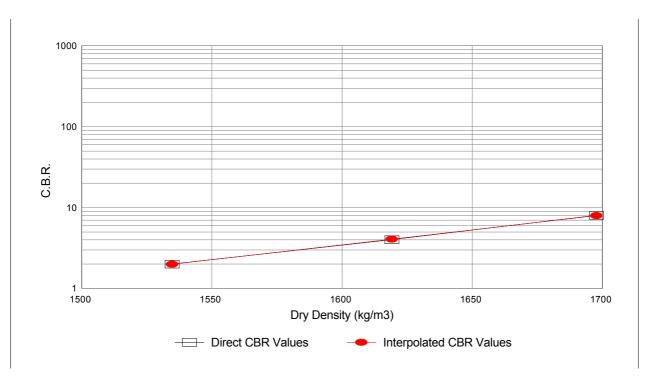
TEL: (011) 674 1325 FAX: (011) 674 4513

e mail: lab@geopractica.co.za

C.B.R. DETERMINATION

Client	GCS GEOTECHNICAL ENGINEERING			
Location	ENNERDALE.	TP 2 @ 1,9 - 2,8m		
Date	18 OCTOBER 2019	Test No	3114	
Job No	19287	Checked By	EB	
Calibration Date	15 May 2018	Calibration Certificate	9475	

Direct Results from Test Procedure


Maximum Dry Density (kg/m3) 1709

Ontimum	Moisture	Content ((%)	17.5
Ophilliulli	Moisture	CONTENT	/0)	17.5

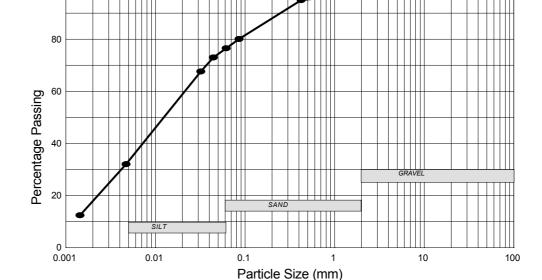
Percentage Mod AASHTO	99.4	94.8	89.8
CBR @ 2.54mm	8	4	2
CBR @ 5.08mm	10	5	3
CBR@ 7.62mm	12	7	4
Average Moisture Content (%)	17.6		
Percentage Swell	0.79	0.88	0.98

Interpolated Results

Percentage Mod AASHTO	90	93	95	98	100
CBR	2	3	4	7	9

Programed Data
Revision No 5 (1/11/2017)

FOUNDATION INDICATOR


100

Client	GCS GEOTECHNICAL ENGINEERIN	IG	
Location	ENNERDALE	TP 4 @ 0,7 - 2,3m	
Date	18 OCTOBER 2019	Test No	3115
Job No	19286	Checked By	EB

SIEVE ANALYSIS

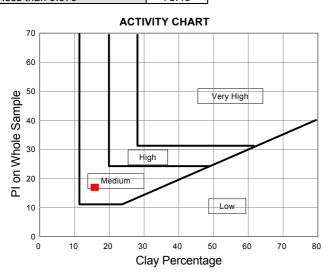
Values are expressed as a percentage of total sample

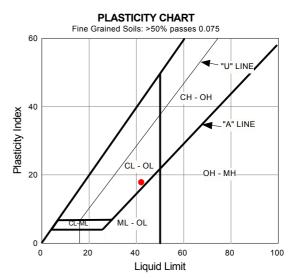
Sieve	Total
Size	Passing
(mm)	(%)
75.00	100.00
53.00	100.00
37.50	100.00
26.50	100.00
19.00	100.00
9.50	100.00
4.75	99.86
2.00	97.59
0.425	95.05

GRADING ANALYSIS

HYDROMETER ANALYSIS

Values are expressed as a percentage of total sample

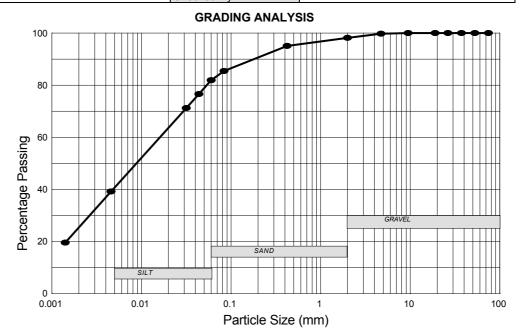

Sieve	Total
Size	Passing
(mm)	(%)
0.0861	80.10
0.0618	76.54
0.0444	72.98
0.0321	67.64
0.0047	32.04
0.0014	12.46


ATTERBERG LIMITS & OTHER VALUES

Liquid Limit	42	
Plastic Limit	24	
Plastic Index	18	
Linear Shrinkage	9	
Grading Modulus	0.27	
Moisture Content	23.93	
PI on Whole Sample	17	
PRA Classification	A.7.6	
Unified Classification	See Plasticity Chart	

ESTIMATED COMPOSITION (As BS 1377)

Clay (<0.002)	15.82
0.002 < Silt < 0.06	60.35
0.06 < Sand < 2.0	21.42
Gravel > 2.0	2.41
% less than 0 075	78 48


FOUNDATION INDICATOR

Client	GCS GEOTECHNICAL ENGINEERING		
Location	ENNERDALE TP	10 @ 1,1 - 3,1m	
Date	18 OCTOBER 2019	Test No	3119
Job No	19286	Checked By	EB

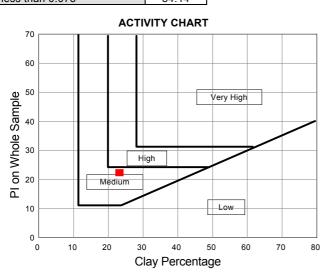
SIEVE ANALYSIS

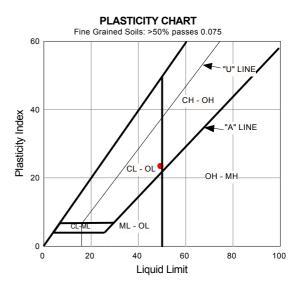
Values are expressed as a percentage of total sample

Sieve	Total
Size	Passing
(mm)	(%)
75.00	100.00
53.00	100.00
37.50	100.00
26.50	100.00
19.00	100.00
9.50	100.00
4.75	99.79
2.00	98.17
0.425	95.10

HYDROMETER ANALYSIS

Values are expressed as a percentage of total sample


Sieve	Total
Size	Passing
(mm)	(%)
0.0840	85.49
0.0604	81.93
0.0437	76.59
0.0316	71.24
0.0046	39.18
0.0014	19.59


ATTERBERG LIMITS & OTHER VALUES

Liquid Limit	49	
Plastic Limit	26	
Plastic Index	24	
Linear Shrinkage	12	
Grading Modulus	0.21	
Moisture Content	6.35	
PI on Whole Sample	22	
PRA Classification	A.7.6	
Unified Classification	See Plasticity Chart	

ESTIMATED COMPOSITION (As BS 1377)

Clay (<0.002)	23.22
0.002 < Silt < 0.06	58.60
0.06 < Sand < 2.0	16.36
Gravel > 2.0	1.83
% less than 0 075	84 14

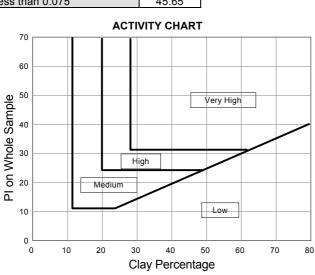
FOUNDATION INDICATOR

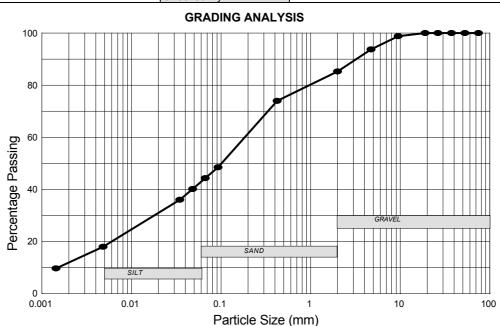
Client	GCS GEOTECHNICAL ENGINEERING		
Location	ENNERDALE. TF	7 @ 0,0 - 0,3m	
Date	18 OCTOBER 2019	Test No	3117
Job No	19286	Checked By	EB

SIEVE ANALYSIS

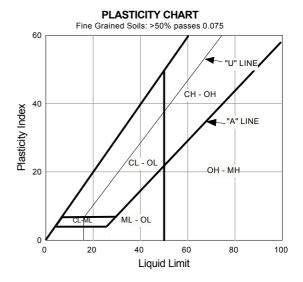
Values are expressed as a percentage of total sample

Sieve	Total
Size	Passing
(mm)	(%)
75.00	100.00
53.00	100.00
37.50	100.00
26.50	100.00
19.00	100.00
9.50	98.82
4.75	93.74
2.00	85.25
0.425	73.99




Values are expressed as a percentage of total sample

Sieve	Total
Size	Passing
(mm)	(%)
0.0927	48.50
0.0669	44.34
0.0482	40.19
0.0348	36.03
0.0048	18.01
0.0014	9.70


ESTIMATED COMPOSITION (As BS 1377)

ESTIMATED COMPOSITION (A	43 DO 13/1/
Clay (<0.002)	11.07
0.002 < Silt < 0.06	31.73
0.06 < Sand < 2.0	42.45
Gravel > 2.0	14.75
% less than 0.075	45.65

Liquid Limit	Non Plastic
Plastic Limit	Non Plastic
Plastic Index	Non Plastic
Linear Shrinkage	0
Grading Modulus	0.92
Moisture Content	3.03
PI on Whole Sample	Non Plastic
PRA Classification	A.4
Unified Classification	SM

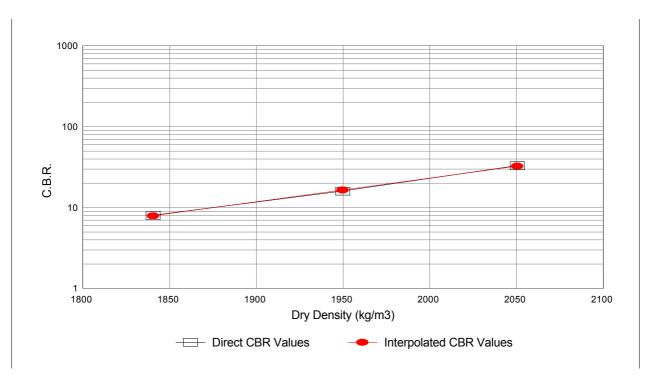
TEL: (011) 674 1325 FAX: (011) 674 4513

e mail: lab@geopractica.co.za

C.B.R. DETERMINATION

Client	GCS GEOTECHNICAL ENGIN	EERING		
Location	ENNERDALE.	TP 7 @ 0,0 - 0,3m		
Date	18 OCTOBER 2019	Test No	3118	
Job No	19287	Checked By	EB	
Calibration Date	15 May 2018	Calibration Certificate	9475	

Direct Results from Test Procedure


Maximum Dry Density (kg/m3) 2049

Optimum	Moisture Content (%)	10.6
Optillialli	Widistare Content (/0/	10.0

Percentage Mod AASHTO	100.1	95.1	89.8
CBR @ 2.54mm	33	16	8
CBR @ 5.08mm	43	20	11
CBR@ 7.62mm	45	23	13
Average Moisture Content (%)	%) 10.6		
Percentage Swell	0.35	0.44	0.54

Interpolated Results

Percentage Mod AASHTO	90	93	95	98	100
CBR	8	12	16	24	32

Programed Data
Revision No 5 (1/11/2017)

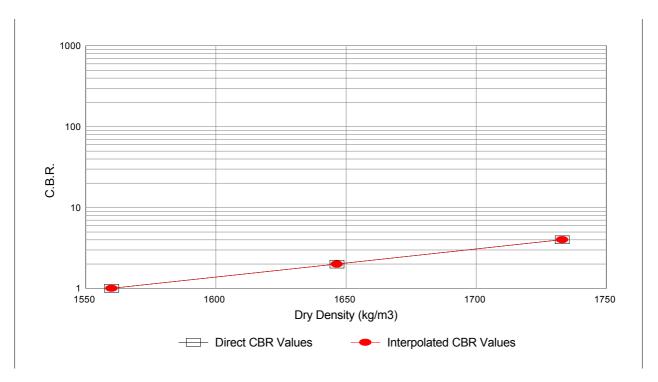
TEL: (011) 674 1325 FAX: (011) 674 4513

e mail: lab@geopractica.co.za

C.B.R. DETERMINATION

Client	GCS GEOTECHNICAL ENGIN	EERING		
Location	ENNERDALE.	TP 10 @ 1,1 - 3,1m		
Date	18 OCTOBER 2019	Test No	3120	
Job No	19287	Checked By	EB	
Calibration Date	15 May 2018	Calibration Certificate	9475	

Direct Results from Test Procedure


Maximum Dry Density (kg/m3) 1730

Ontimum	Moisture	Content ((%)	16.4
Optilliulli	IVIOI3 LUI C	CONTENT	/0/	10.7

Percentage Mod AASHTO	100.2	95.2	90.2
CBR @ 2.54mm	4	2	1
CBR @ 5.08mm	4	2	1
CBR@ 7.62mm	4	2	1
Average Moisture Content (%)	%) 16.3		
Percentage Swell	0.44	0.56	0.70

Interpolated Results

Percentage Mod AASHTO	90	93	95	98	100
CBR	1	1	2	3	4

Programed Data
Revision No 5 (1/11/2017)

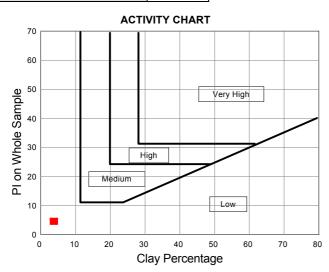
FOUNDATION INDICATOR

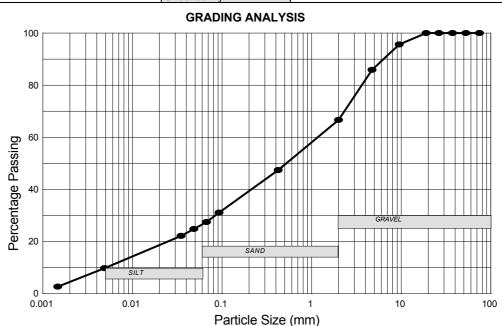
Client	GCS GEOTECHNICAL ENGINEERING		
Location	ENNERDALE TP	17 @ 0,0 - 0,4m	
Date	18 OCTOBER 2019	Test No	3121
Job No	19286	Checked By	EB

SIEVE ANALYSIS

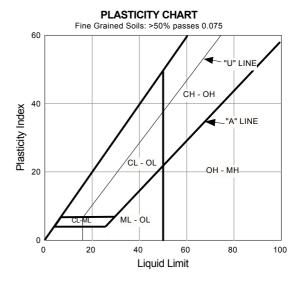
Values are expressed as a percentage of total sample

Sieve	Total
Size	Passing
(mm)	(%)
75.00	100.00
53.00	100.00
37.50	100.00
26.50	100.00
19.00	100.00
9.50	95.68
4.75	85.93
2.00	66.70
0.425	47.42




Values are expressed as a percentage of total sample

Sieve	Total
Size	Passing
(mm)	(%)
0.0927	31.08
0.0674	27.53
0.0486	24.86
0.0350	22.20
0.0049	9.77
0.0015	2.66


ESTIMATED COMPOSITION (As BS 1377)

LOTTING CONFOSITION (F	43 DO 1311)
Clay (<0.002)	3.76
0.002 < Silt < 0.06	22.72
0.06 < Sand < 2.0	40.22
Gravel > 2.0	33.30
% less than 0.075	28.60

Liquid Limit	24
Plastic Limit	14
Plastic Index	10
Linear Shrinkage	5
Grading Modulus	1.55
Moisture Content	7.16
PI on Whole Sample	5
PRA Classification	A.2.4
Unified Classification	SC

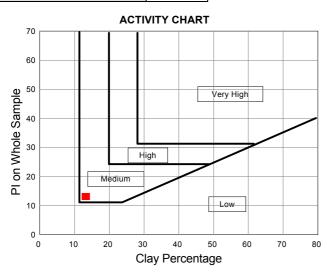
FOUNDATION INDICATOR

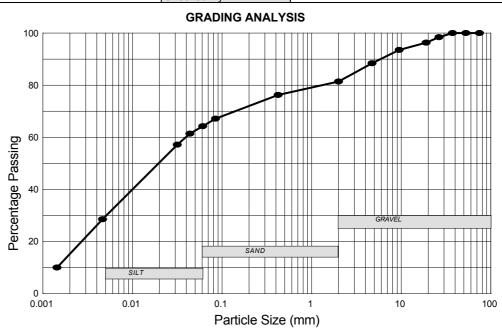
Client	GCS GEOTECHNICAL ENGINEERING		
Location	ENNERDALE TP	24 @ 0,4 - 1,1m	
Date	18 OCTOBER 2019	Test No	3122
Job No	19286	Checked By	EB

SIEVE ANALYSIS

Values are expressed as a percentage of total sample

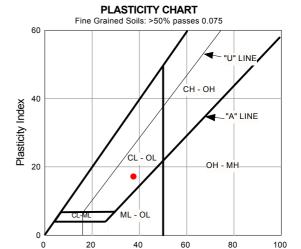
Sieve	Total
Size	Passing
(mm)	(%)
75.00	100.00
53.00	100.00
37.50	100.00
26.50	98.43
19.00	96.38
9.50	93.58
4.75	88.44
2.00	81.40
0.425	76.30




Values are expressed as a percentage of total sample

Sieve	Total	
Size	Passing	
(mm)	(%)	
0.0847	67.16	
0.0609	64.30	
0.0437	61.44	
0.0316	57.16	
0.0047	28.58	
0.0014	10.00	

ESTIMATED COMPOSITION (As BS 1377)


LOTTING CONFOSITION (F	43 DO 1311)
Clay (<0.002)	13.24
0.002 < Silt < 0.06	50.92
0.06 < Sand < 2.0	17.24
Gravel > 2.0	18.60
% less than 0.075	66.00

ATTERBERG LIMITS & OTHER VALUES

Liquid Limit	38	
Plastic Limit	20	
Plastic Index	17	
Linear Shrinkage	9	
Grading Modulus	0.75	
Moisture Content	3.42	
PI on Whole Sample	13	
PRA Classification	A.6	
Unified Classification	See Plastici	ty Chart

Liquid Limit

TEL: (011) 674 1325 FAX: (011) 674 4513

e mail: lab@geopractica.co.za

C.B.R. DETERMINATION

Client	GCS GEOTECHNICAL ENGIN	EERING		
Location	ENNERDALE	TP 24 @ 0,4 - 1,1m		
Date	18 OCTOBER 2019	Test No	3123	
Job No	19287	Checked By	EB	
Calibration Date	15 May 2018	Calibration Certifica	te 9475	

Direct Results from Test Procedure

Maximum Dr	Deneity	(ka/m3)	1740
I IVIAXIIIIUIII DI	y Density	(Kg/III3)	1740

Optimum	Moisture Conf	tent (%)	17.6
Optimiani	Moistare Com	LC11L (/U /	17.0

Percentage Mod AASHTO	97.6	93.1	88.2
CBR @ 2.54mm	26	12	6
CBR @ 5.08mm	22	12	6
CBR@ 7.62mm	19	12	5
Average Moisture Content (%)	17.6		
Percentage Swell	0.13	0.16	0.31

Interpolated Results

Percentage Mod AASHTO	90	93	95	98	100
CBR	8	12	17	27	37

Programed Data
Revision No 5 (1/11/2017)

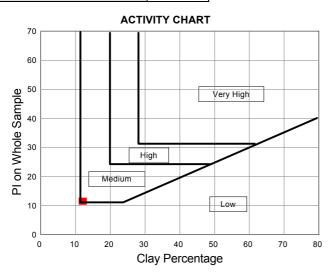
FOUNDATION INDICATOR

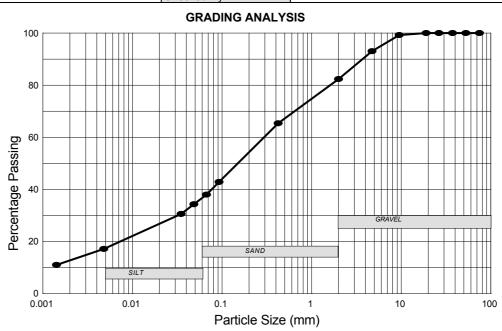
Client	GCS GEOTECHNICAL ENGINEERING		
Location	ENNERDALE TP	25 @ 0,7 - 1,4m	
Date	18 OCTOBER 2019	Test No	3124
Job No	19286	Checked By	EB

SIEVE ANALYSIS

Values are expressed as a percentage of total sample

Sieve	Total
Size	Passing
(mm)	(%)
75.00	100.00
53.00	100.00
37.50	100.00
26.50	100.00
19.00	100.00
9.50	99.25
4.75	93.06
2.00	82.37
0.425	65.43




Values are expressed as a percentage of total sample

Sieve	Total
Size	Passing
(mm)	(%)
0.0927	42.88
0.0674	37.98
0.0486	34.31
0.0350	30.63
0.0048	17.15
0.0014	11.03

ESTIMATED COMPOSITION (As BS 1377)

LOTTING CONFOSITION (F	43 DO 1311)
Clay (<0.002)	12.08
0.002 < Silt < 0.06	24.47
0.06 < Sand < 2.0	45.82
Gravel > 2.0	17.63
% less than 0.075	39.46

Liquid Limit	36
Plastic Limit	19
Plastic Index	18
Linear Shrinkage	9
Grading Modulus	1.09
Moisture Content	15.68
PI on Whole Sample	12
PRA Classification	A.6
Unified Classification	SC

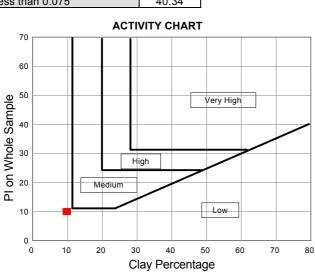
FOUNDATION INDICATOR

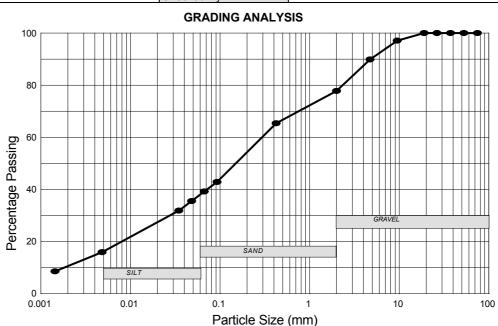
Client	GCS GEOTECHNICAL ENGINEERING		
Location	ENNERDALE. TF	28 @ 0,4 - 0,7m	
Date	18 OCTOBER 2019	Test No	3125
Job No	19286	Checked By	EB

SIEVE ANALYSIS

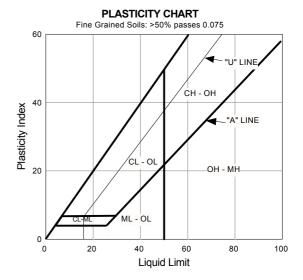
Values are expressed as a percentage of total sample

Sieve	Total
Sieve	Total
Size	Passing
(mm)	(%)
75.00	100.00
53.00	100.00
37.50	100.00
26.50	100.00
19.00	100.00
9.50	97.14
4.75	89.90
2.00	77.83
0.425	65.40




Values are expressed as a percentage of total sample

Sieve	Total
Size	Passing
(mm)	(%)
0.0927	42.87
0.0669	39.19
0.0482	35.52
0.0348	31.84
0.0048	15.92
0.0014	8.57


ESTIMATED COMPOSITION (As BS 1377)

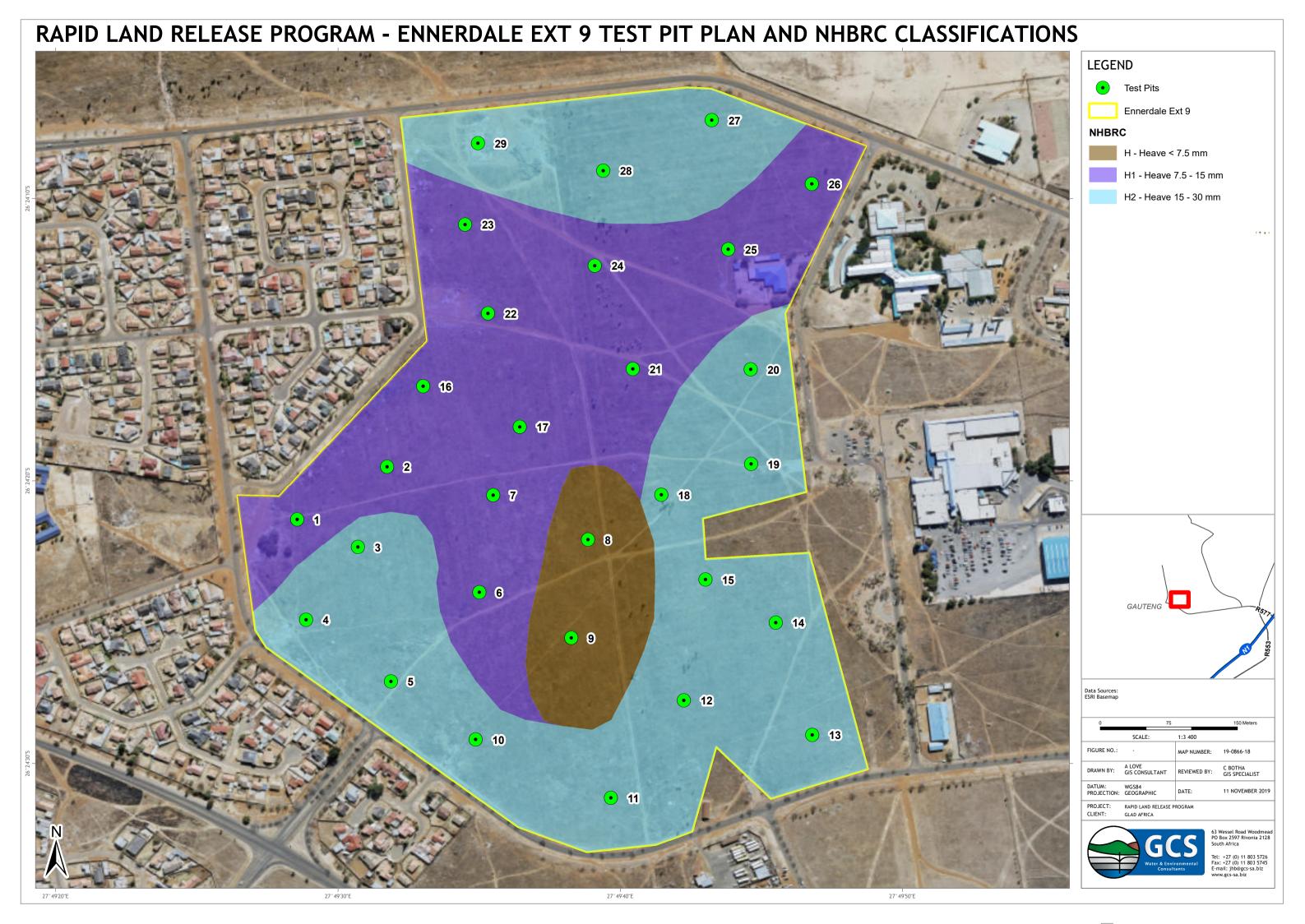
ESTIMATED COMPOSITION (A	43 DO 13/1/
Clay (<0.002)	9.79
0.002 < Silt < 0.06	28.04
0.06 < Sand < 2.0	40.00
Gravel > 2.0	22.17
% less than 0.075	40.34

Liquid Limit	39
Plastic Limit	23
Plastic Index	15
Linear Shrinkage	7
Grading Modulus	1.14
Moisture Content	16.85
PI on Whole Sample	10
PRA Classification	A.6
Unified Classification	SC

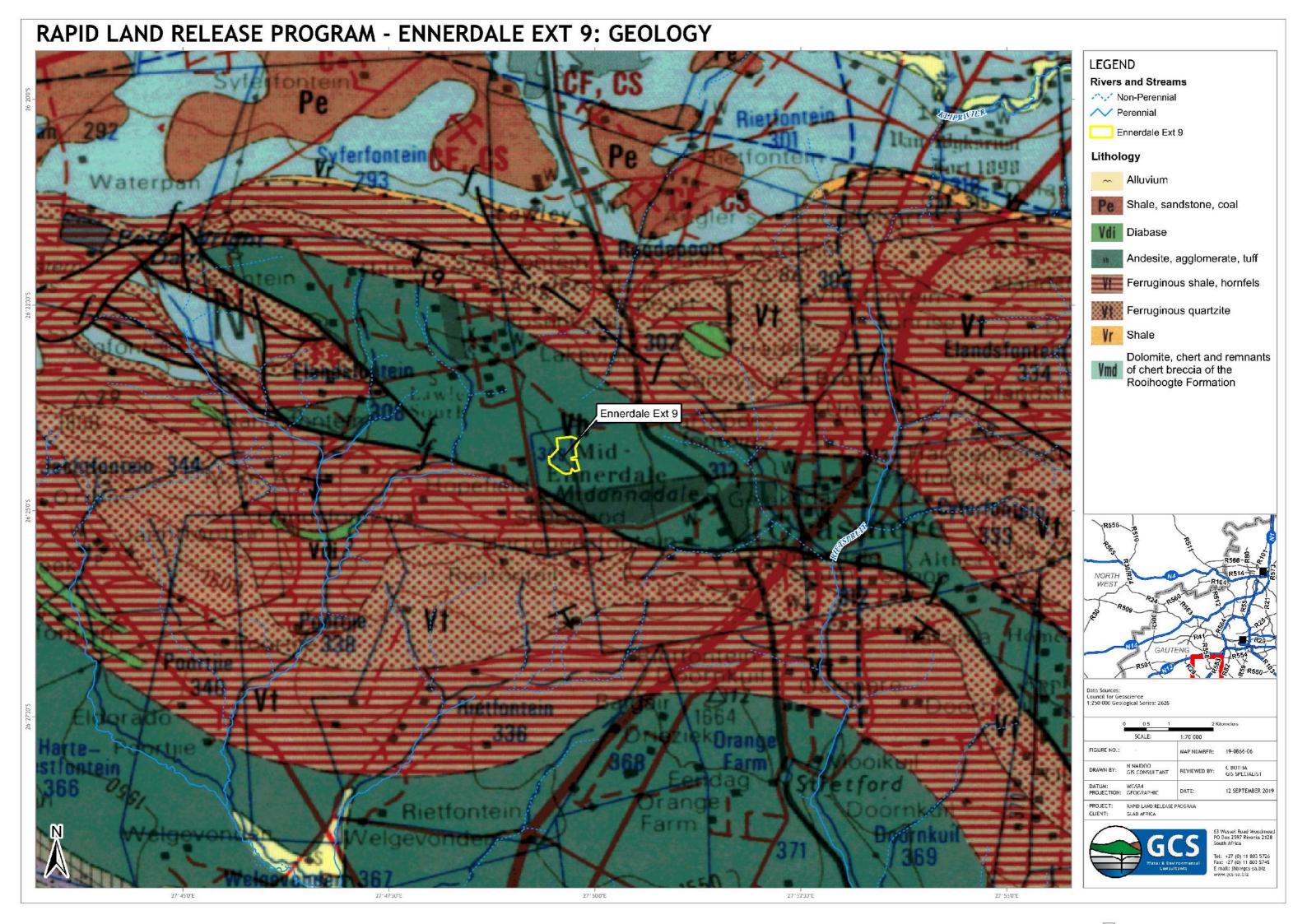
SOIL and MATERIAL TESTING P.O. BOX 227 MARAISBURG 1700 TEL: (011) 674 1325 FAX: (011) 674 4513

e mail: satisfied@geopractica.co.za

SOIL pH and CONDUCTIVITY TEST RESULT


Client	GCS GEOTECHNICAL ENGINEERING		
Location	ENNERDALE.		
Date	18 OCTOBER 2019	Test No	
Job No	19287	Checked By	MM

Sample Description	рН	Electrical Conductivity EC (µS/cm)	Total Dissolved Salts TDS (ppm)	Resistivity R (Ohms/cm)
TP 1 @ 0.3 - 1.1	5.5	157	78	6382
TP 2 @ 1.9 - 2.8	5.0	219	110	4566
TP 7 @ 0.0 - 0.3	4.9	309	155	3236
TP 10 @ 1.1 - 3.1	5.6	313	157	3195
TP 24 @ 0.4 - 1.1	4.7	189	94	5291
				ERR


pН	Degree of Acidity
<4	Extremely Acidic
4.0 - 5.4	Strongly Acidic
5.5 - 6.4	Moderately Acidic
6.5 - 7.0	Slightly Acidic
7.1 - 7.4	Slightly Alkaline
7.5 - 8.4	Moderately Alkaline
>8.4	Strongly Alkaline

Resistivity (Ohmn/cm)	Degree of Corrosivity
0 - 2 000	Extremely Corrosive
2 000 - 4 000	Very Corrosive
4 000 - 5 000	Corrosive
5 000 - 6 000	Mildly Corrosive
>10 000	Not Generally Corrosive

FIGURE 1 Site Plan

FIGURE 2 Geological Plan

