

DOCUMENT APPROVAL RECORD

Report No.: JW103/19/G535 - Rev 0

ACTION	FUNCTION	NAME	DATE	SIGNATURE
Prepared	Natural Scientist	Marius van Zyl	18 April 2019	Mranff
Reviewed	Geochemist	Louis Naudé	29 April 2019	Ande'
Approved	Natural Scientist	Tolmay Hopkins	29 April 2019	etteptius

LOCATION:	Lat:	-26.07
(Decimal Degrees)	Long:	29.29

RECORD OF REVISIONS AND ISSUES REGISTER

Date	Revision	Description	Issued to	Issue Format	No. Copies
25/04/2019	A	Draft for internal review	L. Naudé	Electronic	NA
29/04/2019	0	Draft for client review	Goodness Bopape	Electronic	NA

SOUTH32 SOUTH AFRICA COAL HOLDINGS (PTY) LTD

WOLVEKRANS COLLIERY: VANDYKSDRIFT CENTRAL MINING INFRASTRUCTURE DEVELOPMENT COAL SLURRY <u>GEOCHEMICAL ASSESSMENT AND WASTE CLASSIFICATION REPORT</u>

REPORT NO: JW103/19/G535 - Rev 0

CONTENTS

PAGE

1. 1.1 1.2	INTRODUCTION Background Objectives	1 1 2
2. 2.1 2.2	ANALYSES CONDUCTED Samples Analyses conducted	2 2 3
3. 3.1	GEOCHEMICAL ASSESSMENT Minerology	3 3
4. 4.1 4.2 4.3 4.4	ACID BASE ACCOUNTING AND NETT ACID GENERATION Introduction	6 6
5. 5.1 5.2 5.3	SANS 10234 CLASSIFICATION Physical hazards classification Human health hazard classification	9
6. 6.1 6.2 6.3 6.4	OTHER REGULATORY REQUIREMENTS 1 Occupational Health and Safety Act 1 Hazardous Substance Act 1 SANS 10228 1 International Maritime Solid Bulk Cargoes Code 1	1 1
7. STOCKPIL	MEASURES TO BE IMPLEMENTED AT THE MIXED ROM COAL AND SLURR E AREAS	Y 1
8.	CONCLUSIONS 1	2
9.	RECOMMENDATIONS 1	3
10.	REFERENCES 1	3

APPENDIXES

Appendix A	WATERLAB LABORATORY CERTIFICATES
Appendix B	INFOTOX WASTE CLASSIFICATION REPORT
Appendix C	SAFETY DATA SHEET

LIST OF TABLES

Table 3-1: XRD Analysis Results	4
Table 3-2: Total concentrations and Alloway Abundance Ratios	
Table 4-1: Acid Generation Potential Results	7

ACRONYMS AND ABBREVIATIONS				
АВА	Acid base accounting			
ATSDR	Agency for Toxic Substances and Disease Registry, U.S. Department of Health and Human Services			
°C	Degrees Celsius			
CAS	Chemical Abstract Service Number			
DEA	Department of Environmental Affairs			
DWA	Department of Water Affairs			
DWAF	Department of Water Affairs and Forestry			
DWS	Department of Water and Sanitation			
e	Litres			
LC	Leach concentration in mg/l			
LCT	Leach concentration threshold in mg/ł			
LC ₅₀	The atmospheric or aquatic concentration of substance that is lethal to 50% of the exposed population.			
LD ₅₀	The amount of a toxic agent (as a poison, virus, or radiation) that is sufficient to kill 50 percent of a population of animals usually within a certain time.			
LOAEL	Lowest observed adverse effect level			
mg/kg	Milligram per kilogram			
mg/ℓ	Milligram per litre			
min	minute			
mm	millimetre			
NAG	Nett acid generation			
рН	A sign used for indicating the acidity or alkalinity of a solution on a logarithmic scale on which 7 (pH 7) is neutral, lower values are more acid and higher values more alkaline. The pH is equal to $-\log_{10}c$, where c is the hydrogen ion concentration in moles per litre			
SANS	South African National Standard			
SDS	Safety Data Sheet			
STOT-RE	Specific target organ toxicity – repeat exposure			
тс	Total concentration in mg/kg			

	ACRONYMS AND ABBREVIATIONS			
тст	Total concentration threshold in mg/kg			
TDS	Total dissolved solids			
TWA-OEL- RL	Time weighted average: Occupational Exposure Limit – Recommended Limit			
XRD	X-Ray Diffraction			

SOUTH32 SOUTH AFRICA COAL HOLDINGS (PTY) LTD

WOLVEKRANS COLLIERY: VANDYKSDRIFT CENTRAL MINING INFRASTRUCTURE DEVELOPMENT COAL SLURRY <u>GEOCHEMICAL ASSESSMENT AND WASTE CLASSIFICATION REPORT</u>

REPORT NO: JW103/19/G535 - Rev 0

1. INTRODUCTION

1.1 Background

South32 SA Coal Holdings (Pty) Ltd (SAEC), is the holder of an amended mining right for coal granted by the Minister of Mineral Resources in terms of the Mineral and Petroleum Resources Development Act (MPRDA) and notarially executed on the 21st of May 2015 under Department of Mineral Resources (DMR) reference MP30/5/1/2/2/379MR in respect of SAEC's Wolvekrans Colliery.

Wolvekrans Colliery comprises of the following sections:

- Wolvekrans North Section (now referred to as Ifalethu Colliery) consisting of the Hartbeestfontein, Bankfontein (mining now ceased), Goedehoop, Klipfontein sections and the North Processing Plant. This was previously known as Middelburg Colliery; and
- Wolvekrans South Section (now referred to as Wolvekrans Colliery) consisting of the Wolvekrans, Vlaklaagte (mining ceased), Driefontein, Boschmanskrans, Vandyksdrift, Albion, Steenkoolspruit sections and South Processing Plants (Eskom and Export). This was previously known as Douglas Colliery.

The Vandyksdrift Central (VDDC) area falls within the footprint of historic underground mining operations at the old Douglas Colliery. In 2007, an amendment of the Environmental Management Programme Report (EMPR) for the Douglas Colliery operations was approved to allow the opencast mining of the remaining No. 5, No. 4, No. 2 and No. 1 seams. The opencast mining operations include the extraction of the remaining pillars, as well as roof and floor extraction.

Historically fine coal slurry was disposed of in the No. 2 seam mine workings. During the opencast mining process, therefore, the fine coal slurry will be removed together with the coal recovered from the remaining pillars, roof and floor extraction. The fine coal will be in a wet state, due to the historical flooding of the mine and, hence, the mixed Run of Mine (ROM coal) and slurry will be firstly stored on mixed ROM and coal slurry stockpile areas where it will be allowed to dry. The mixed ROM coal and coal slurry will be transported to the existing processing plant.

JONES & WAGENER (PTY) LTD REG NO. 1993/002655/07 VAT No. 4410136685

DIRECTORS: GR Wardle (Chairman) PrEng MSc(Eng) FSAICE JP van der Berg (CEO) PrEng PhD MEng FSAICE JE Glendinning PSciNat MSc(Env Geochem) MSAIEG M Rust PrEng PhD MSAICE TM Ramabulana BA(Social Sciences) JS Msiza PrEng BEng(Hons) MBA MSAICE FMIWMSA A Oosthuizen (Alternate) PrEng BEng(Hons) MSAICE MR MSAICE TECHNICAL DIRECTORS: D Brink PrEng BEng(Hons) MSAICE MY Vermeulen PrEng PhD MEng MSAICE HA SAChet HA SAchenborn PrEng BEng(Hons) MSAICE MW Palmer PrEng MSc(Eng) MSAICE TG Le Roux PrEng MEng MSAICE GB Simpson PrEng MEng FSAIAE G Harti PrEng MEng MSAICE JS Hex PrSciNat MSc(Env Man) PJJ Smit PrEng BEng(Hons) MSAICE C cilliers PrEng BEng(Hons) MSAICE NW Naumalo Preng MSc(Eng) MSAICE F Hörtkorn PrEng Dr.-Ing MSAICE C J Liebetrau PrEng MEng MSAICE C Silliers PrEng BEng(Hons) MSAICE MW Naumalo Preng MSc(Eng) MSAICE F Hörtkorn Preng Dr.-Ing MSAICE C J Liebetrau PrEng BEng(Hons) MSAICE C Silliers PrEng BEng(Hons) MSAICE MW Naumalo Preng MSc(Eng) MSAICE F Hörtkorn Preng Dr.-Ing MSAICE C J Liebetrau PrEng BSc(Hons) GDE FSAICE ASSOCIATES: RA Nortje PrEng MSc(Eng) MSAICE MIWMSA J Breyl PrEng BEng(Hons) MSAICE N Malepfana PrEng BSc(Eng) GDE MSAICE C J Liebetrau PrEng MEng SACPCMP CONSULTANTS: PW Day PrEng DEng HonFSAICE JA Kempe PrEng BSc(Eng) GDE MSAICE AIStructE BR Antrobus PSciNat BSc(Hons) MSAICE GG Bage PrEng CEng BSc(Eng) GDE MSAICE AIStructE M van Zyl PrSciNat BSc(Hons) MIWMSA FINANCIAL MANAGER: CJ Ford BCompt ACMA CGMA

2

South32 requested Jones & Wagener Engineering and Environmental Consultants, (Pty) Ltd (J&W) to classify the fine coal slurry as required in terms of the "*Waste Classification and Management Regulations*", Government Notice Regulations (GNR) 634 of August 2013 (DEA, 2013). In addition, a geochemical assessment of the fine coal slurry is also required.

1.2 Objectives

The objectives of this project and, hence this report are as follows:

- Conduct a geochemical assessment of the fine coal slurry;
- Conduct a SANS 10234 classification of the fine coal slurry as required in terms of GNR 634;
- Develop a Safety Data Sheet (SDS) for the fine coal slurry based on the SANS 10234 classification results.

The fine coal slurry classification took the wet and dry states of the fine coal into account.

2. ANALYSES CONDUCTED

2.1 Samples

South32 collected the samples for the geochemical assessment and waste classification by pumping two VDDC boreholes that extends into the mine workings where slurry was historically disposed of, boreholes WBH 2510 and UB 110. During the pumping process significant amounts of water were abstracted together with the fine coal slurry as shown in **Plate 2-1** below.

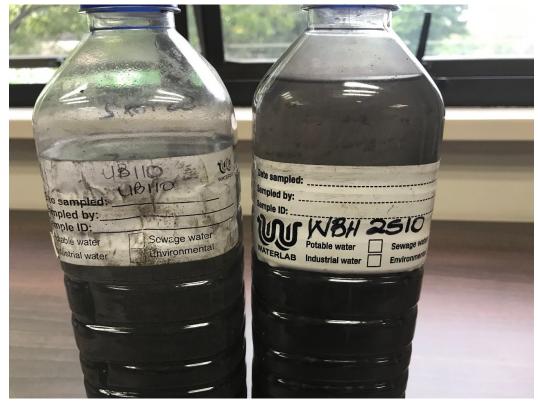


Plate 2-1: Water samples collected from VDDC boreholes

2.2 Analyses conducted

The samples containing the fine coal was submitted to Waterlab, a SANAS accredited laboratory located in Pretoria on 19 February 2019, for the required analyses. Due to the very limited amounts of fine coal in the water samples, the solid fractions were combined after the filtering process of the two water samples in order to ensure sufficient availability of sample for the various tests.

The following analyses were conducted on the fine coal recovered from the samples after drying:

- XRD analysis, including the determination of the amorphous percentage (coal); •
- TCLP (pH 5.0) leach test to determine the leachable concentrations (LCs) of the metals, anions and organics of concern;
- Bio-elution, including gastric, intestinal, alveolar and sweat tests, of the metals and • anions of interest. These tests are required for the SANS 10234 health classification. The tests were not performed on the;
- Transformation dissolution testing of the metals and anions of interest, This tests are required for the SANS 10234 aquatic environment classification. These tests were not performed on the;
- Total concentration (TC) analyses of the fine coal: .
- Sulfur speciation, Nett Acid Generation (NAG) and Acid Base Accounting (ABA).

A paste pH could not be conducted due to the limited fine coal slurry recovered from the two water samples.

Physical hazard tests, such as flammability, could not be performed on the coal slurry due to the limited amount of sample recovered, i.e., 16 grams

The two water fractions from which the fine coal was removed, was also analysed as this information may augment available information for the geohydrological studies undertaken at VDDC.

The laboratory certificates are attached as **Appendix A**.

3. **GEOCHEMICAL ASSESSMENT**

3.1 Minerology

The results from the XRD analysis of the fine coal are presented in Table 3-1. The major minerals in the fine coal sample in descending order are kaolinite, quartz, muscovite, microcline, goethite and dolomite. The amorphous (graphite) percentage in the sample was 54.45%. It is noted the XRD results did not indicate any pyrite (FeS) or siderite (FeCO₃), which can result in the generation of Acid Mine Drainage (AMD)¹.

Table 3-2 shows the total concentrations of various heavy metals in the coal slurry sample collected. Also indicated in the table are the Alloway Crustal Abundance concentrations of the particular elements, which is simply an indication of the average abundance of an element in the earth's crust (Alloway et al., 1995). By calculating the ratio of the elemental concentrations to the average composition of the earth's crust (Crustal abundances) an

Jones & Wagener (Pty) Ltd Engineering & Environmental Consultants

¹ Although initially adding to alkalinity, the eventual oxidation of the ferrous iron of the siderite, and the precipitation of iron hydroxide consumes base ions thereby reducing the ability of siderite to off-set acid generation (Skousen et al.). This means there is potential for over estimate on of neutralising potential in the laboratory ABA testing.

indication can be obtained whether the concentration of a particular element is raised above the average crustal abundance due to natural processes.

The comparison to the average Crustal Abundance is geochemically accepted as a means of highlighting elements, which may possibly be enriched in the various lithologies. Although enrichment does not necessarily indicate that the element is likely to be an environmental risk, it does, however, indicate where attention should be focussed when assessing metal mobility/solubility.

Based on the information obtained, the coal slurry has concentrations of arsenic, barium, iron, molybdenum and zinc which are elevated above the average Alloway Crustal Abundance- see Table 3-2.

Fine Coal Slurry Sample from No 2 Seam				
Mineral	Chemical Formula	Amount (weight %)		
Quartz	SiO ₂	14.18		
Goethite	FeO(OH)	0.51		
Kaolinite	Al ₂ Si ₂ O ₅ (OH) ₄	21.13		
Dolomite	Ca/Mg (CO ₃) ₂	0.41		
Microcline	KAISi₃O ₈	4.52		
Muscovite	KAI2((OH)2AISi3O10	4.8		
Amorphous (likely to be organic carbon)		54.45		

Table 3-1: XRD Analysis Results

Table 3-2: Total concentrations and Alloway Abundance Ratios

	Fine Coal Slurry		Alloway Crystal Abundance
Element	mg/kg	Ratio	mg/kg
Antimony (Sn)	2.00	0.9	2.2
Arsenic (As)	6.00	4.0	1.5
Barium (Ba)	548	1.3	425
Cadmium (Cd)	<0.400	NA	0.1
Cobalt (Co)	13	0.7	20
Chromium (Cr)	66	0.7	100
Copper (Cu)	26	0.5	50
Iron (Fe)	3.8%	1.2	3.2%
Lead (Pb)	1.6	0.1	14
Mercury (Hg)	<0.400	NA	0.05
Manganese (Mn)	412	0.4	950
Molybdenum (Mo)	2	1.3	1.5
Nickel (Ni)	36	0.5	80
Selenium (Se)	<4.0	NA	0.05
Vanadium (V)	64	0.4	160

Jones & Wagener (Pty) Ltd

	Fine Coal Slurry		Alloway Crystal Abundance	
Element	mg/kg	Ratio	mg/kg	
Zinc (Zn)	94	1.3	75	

4. ACID BASE ACCOUNTING AND NETT ACID GENERATION

4.1 Introduction

Coal deposits and the associated carbonaceous shales are associated with the sulfide mineral pyrite (FeS₂). Sulfide minerals are geochemically unstable and will spontaneously begin to oxidise to produce undesirable effects such as a low pH, high sulfate concentrations and significant increases in the concentrations of certain other elements, such as aluminium, iron and manganese, when exposed to both oxygen and water.

The chemical reactions governing pyrite oxidation (Evangelou and Zhang, 1995) are as follows:

$$\begin{split} & \text{FeS}_2 + 7/2O_2 + 2H_2O \rightarrow 2\text{Fe}^{2+} + 2\text{SO}_4^{2-} + 2\text{H}^+ \\ & \text{Fe}^{2+} + 1/4O_2 + \text{H}^+ \rightarrow \text{Fe}^{3+} + 1/2H_2O \\ & \text{Fe}^{3+} + 3H_2O \rightarrow \text{Fe}(OH)_3(\text{s}) + 3\text{H}^+ \\ & \text{FeS}_2 + 14\text{Fe}^{3+} + 8H_2O \rightarrow 15\text{Fe}^{2+} + 2\text{SO}_4^{2-} + 16\text{H}^+ \end{split}$$

Reactions 1 and 4 indicate that Fe^{3+} and O_2 are the major oxidants of pyrite given rise to a weak sulfuric acid (H₂SO₄), which lowers the pH of the associated water. The low pH then results in the mobilisation of heavy metals, such as manganese. Reaction 1 shows the direct reaction of O_2 with pyrite to produce Fe^{2+} which is then oxidised to Fe^{3+} by O_2 as shown in Reaction 2. Finally, Reaction 3 shows $Fe(OH)_3$ precipitate formation. (Evangelou and Zhang, 1995).

At low pH (< 4.5), Fe³⁺ oxidises pyrite much more rapidly than O₂, and O₂ oxidises dissolved Fe²⁺ to Fe³⁺. For this reason, Reaction 2 is known to be the rate-limiting step in abiotic pyrite oxidation. However, iron-oxidising bacteria, especially *Thiobacillus ferrooxidans* and *Thiobacillus thiooxidans*, can accelerate the rate of Fe2+ oxidation by a factor of 106. *T. ferrooxidans* is an acidophilic chemolithotrophic organism that is abundant in geologic environments containing pyrite. Thus, in the presence of *T. ferrooxidans* and under low pH conditions, pyrite oxidation can be described by Reactions 2 and 4 (Evangelou and Zhang, 1995).

At neutral to alkaline pH values, the abiotic rate of Fe²⁺ oxidation rises rapidly, but the Fe³⁺ concentration also decreases greatly due to the precipitation of ferric hydroxide as described by Reaction 3. Because there is probably very little bacterial participation in pyrite oxidation at neutral to alkaline pH, some researchers suggested that in such environments, O_2 is a more important pyrite oxidant than Fe³⁺. This suggestion, however, is contradicted by the finding that that Fe³⁺ is the preferred pyrite oxidant at circum-neutral pH, and the principle role played by O_2 is to oxidise Fe²⁺ and thereby sustain the pyrite oxidation cycle (Evangelou and Zhang, 1995).

Reaction 3, taking place at pH values as low as 3, is a readily reversible dissolution / precipitation reaction that serves as a source, as well as a sink of solution Fe3+, and is a major step in the release of acid to the environment (Evangelou and Zhang, 1995).

Jones & Wagener (Pty) Ltd Engineering & Environmental Consultants

4.2 Methodology

Acid Base Accounting methods were used to determine the likelihood of acid generation occurring at some time in the future. In order to do this, a series of analytical tests were undertaken according to the modified Sobek method described in the Mine Environment Neutral Drainage (MEND) Manual 1.16.1b (Coastech Research Inc, 1991). The following procedures and tests were undertaken on the coal slurry sample:

- Drying of the samples at 40°C;
- Grinding of the samples to < 0.075 mm;
- Total sulfur: determined by the LECO method and sulfate-sulfur determined by pyrolysis at 550°C reported as % sulfur;
- Sulfide-sulfur: calculated by subtracting sulfate-sulfur from sulfide -sulfur;
- The Acid Generating Potential (AP): calculated from the total sulfur and sulfide sulfur; AP (kg/t CaCO₃) = 31.5 x % Sulfur;
- Neutralising Potential (NP): determined by titration of the sample with sulfuric acid and reported as kg/t CaCO₃;
- Nett Acid Generation (NAG): determined by complete oxidation of sulfide in the sample using 15% H₂O₂. Two results from the NAG test are reported the final pH of the solution and mass of acid in kg CaCO₃/t of required to titrate the solution back to pH 4.5 and 7.

4.3 ABA Assessment Methods

In this ABA study two assessment methods have been used to determine the potential for AMD (also referred to as Acid Rock Drainage [ARD]) from the fine coal slurry, namely the MEND (Price, 1997) method and the AMIRA (2002) method. Both of these methods are widely used in the industry and are internationally accepted.

MEND

The methodology for determining AMD potential according to the MEND method is as follows.

The Neutralising Potential Ratio (NPR) was calculated (NPR = NP/AP) and the sample classified according to the following:

- NPR < 1 : Potentially acid-generating (PAG);
- 1 < NPR < 2 : Uncertain potential for acid-generation; and
- NPR > 2: Non-acid-generating (NAG).

AMIRA

The AMIRA method uses the final NAG pH and Net Acid Producing Potential (NAPP) calculated by:

NAPP = AP - NP (note the AMIRA method uses units of kg H_2SO_4/t)

The criteria for assessment is as follows:

- If NAG pH < 4.5 and NAPP > 0 then the sample is potentially acid generating (PAG),
- If the NAG pH > 4.5 and the NAPP is < 0 then the sample is non-acid generating; otherwise,
- It is uncertain if the sample will be acid generating.

Jones & Wagener (Pty) Ltd

4.4 Coal Slurry

The coal slurry sample was subjected to Acid Base Accounting (ABA) and Net Acid Generation (NAG) potential testing. The results are indicated in Table 4-1.

The NPR results of the coal slurry is below one, the Net Acid Producing Potential is positive at NAG pH below 7.0 and the sample is therefore classified as Potentially Acid Generating (PAG) according to both the AMIRA and MEND systems - see Table 4-1.

Parameter	VDDC COAL SLURRY		
Paste pH	Not determined		
Total Sulfur (%) (LECO)	0.50		
Sulfate sulfur	0.43		
Sulphide sulfuer	0.07		
AMIRA			
Acid Potential (AP) (kg/t)	16		
Neutralization Potential (NP)	12		
Nett Neutralization Potential (NNP)	-3.64		
Neutralising Potential Ratio (NP/AP)	0.766		
MEND			
рН 4.5			
NAG pH	6.2		
Nett Acid Producing Potential (kg H ₂ SO ₄ /t) TS	<0.01		
рН 7			
NAG pH	6.2		
Nett Acid Producing Potential (kg H ₂ SO ₄ /t) TS	0.02		
ARD Assessment			
MEND - Based on total sulfur	Potentially Acid Generating		
AMIRA - Based on total sulfur	Potentially Acid Generating		
Overall	Potentially Acid Generating		

Table 4-1: Acid Generation Potential Results

5. SANS 10234 CLASSIFICATION

The results from the various analyses were used to classify the coal slurry in terms of SANS 10234 (SABS, 2008). SANS 10234 is similar to the Globally Harmonized System of Classification and Labelling of Chemicals (GHS), except that, as per South African legislation, non-general waste also has to be classified using SANS 10234 (DEA, 2013).

Physical hazards classification 5.1

5.1.1 Explosives

The coal slurry is assumed not to be explosive. Coal in general may, however, generate flammable volatiles, which may lead to explosions in a confined space.

5.1.2 Flammable gases

In terms of SANS 10234, flammable gases are:

- 1. Gases that, at 20°C and a standard pressure of 101.3 kPa:
 - a. are ignitable when in a mixture of 13 % or less, by volume, in air; or
 - b. have a flammable range with air of at least 12 percentage points regardless of the lower flammable limit.

2. Gases that, at 20°C and a standard pressure of 101.3 kPa, are flammable while mixed in air.

The coal slurry, which is in a wet state, is not a gas.

5.1.3 Oxidizing gases

The coal slurry is unlikely to generate and or contain any oxidising gases, such as excessive oxygen concentrations or chlorine.

5.1.4 <u>Gases under pressure</u>

The coal slurry is not a gas.

5.1.5 Flammable liquids

SANS 10234 lists four categories for flammable liquids, namely:

1: Closed-cup flash point < 23 °C and initial boiling point < 35 °C

2: Closed-cup flash point < 23 °C and initial boiling point > 35 °C

3: Closed-cup flash point > 23 °C and < 60 °C

4: Closed-cup flash point > 60 °C < 93 °C

It is unlikely that the coal slurry will contain any flammable liquids as it is in a wet state.

5.1.6 Flammable solids

Two categories are distinguished:

Category 1: Substances or mixtures other than metal powders:

- a. Burning time < 45 seconds or burning rate > 2.2 mm/s, and the wetted zone does not stop flame propagation for at least 4 min.
- b. Metal powders with a burning time < 5 min.

Category 2: Substances or mixtures other than metal powders:

- a. Burning time < 45 seconds or burning rate > 2.2 mm/s, and the wetted zone stops flame propagation for at least 4 min.
- b. Metal powders with a burning time > 5 min and < 10 min.

It is highly unlikely that the coal slurry will exhibit any of the above characteristics, therefore it falls outside this category. The flammability of the coal slurry was discussed verbally with Mr Kobie Strydom of the CSIR's Firelab and he indicated that it is highly unlikely that the coal slurry will meet the flammability test criteria as stated above.

It is known that coal may contain flammable volatiles that may lead to spontaneous combustion – see **Section 6.4** in this regard.

5.2 Human health hazard classification

5.2.1 Introduction

Infotox conducted the SANS 10234 classification in terms human health hazards, which includes acute toxicity, skin and eye corrosion and irritation, skin and respiratory sensitisation, germ cell mutagenicity, carcinogenicity, reproductive toxicity, specific target organ toxicity and aspiration hazards.

The Infotox report for the coal slurry is attached as **Appendix B**.

5.2.2 <u>Acute toxicity</u>

In terms of SANS 10234 substances are allocated to one of five acute toxicity hazard categories based on acute toxicity (lethal dose data) by the oral, dermal or inhalation route of exposure. Acute toxicity values, namely, the 50 per cent lethal dose (LD_{50}) for oral or dermal exposure and the 50 per cent lethal concentration (LC_{50}) for inhalation exposure, are used for classification purposes.

The bio-elution - and the deionised water leach results conducted by Waterlab were used by Infotox to establish the oral, dermal and inhalation acute toxicity of the coal slurry. Based on the results obtained the slurry is not classified as acutely toxic by the oral, dermal or inhalation routes of exposure – see **Appendix B**.

5.2.3 Skin and eye corrosion and irritation

In terms of SANS 10234, substances may be classified as skin corrosives or skin irritants, depending on the results of animal toxicity studies, or based on the hazard classifications of constituents of the coal slurry. In addition, if the pH of the substance is less than 2.0 or more than 11.5, the substance is classified as a skin corrosive. If none of the criteria are met, the substance is classified as non-hazardous with regard to corrosive or irritant effects on the skin.

For this hazard assessment, Infotox used the sweat bio-elution results for the calculations.

The slurry is not classified as hazardous to the skin or eyes. Although SANS 10234:2008 does not include a specific hazard class for mechanical irritation, it is noted that dust and grit from dry coal slurry may cause mechanical abrasion, and thus irritation in case of prolonged exposure of the unprotected skin and eyes.

5.2.4 Skin and respiratory sensitisation

SANS 10234 defines a respiratory sensitiser as a substance that will cause hypersensitivity of the airways following inhalation of the substance and a skin sensitiser is a substance that will cause an allergic response following skin contact.

Based on the laboratory results evaluated, Infotox concluded that the coal slurry is not classified as a skin or respiratory sensitiser.

5.2.5 <u>Germ cell mutagenicity</u>

In terms of SANS 10234, germ cell mutagenicity entails chemicals that cause mutations in germ cells of humans and that can be transmitted to the progeny. Germ cells are cells in the reproductive tract that develop into sperm and ova.

A germ cell mutagen can be classified in one of two hazard categories according to the weight of evidence available. Test results obtained by animal testing for mutagenic and/or genotoxic effects in germ cells and/or somatic cells are considered.

The slurry is not classified as hazardous with regard to germ cell mutagenicity based on the laboratory results obtained – see **Appendix B**.

5.2.6 Carcinogenicity

SANS 10234 states that the classification of a substance as a carcinogen is based on the inherent properties of a substance and does not provide information on the level of the human cancer risk, which the use of the substance may present. Classification of a chemical or product as a carcinogen identifies a hazard but does not involve or imply any classification of the potential risks associated with exposure in terms of dose.

In terms of SANS 10234, substances with a concentration of 0.1% and above must be considered in terms of carcinogenicity.

Infotox did not classify the coal slurry as hazardous with regard to carcinogenicity - see Appendix B.

5.2.7 Reproductive toxicity

In terms of SANS 10234, reproductive toxicity includes the assessment of sexual function, fertility and developmental effects. Adverse effects on sexual function and fertility include alterations to the female and male reproductive system, adverse effects on gamete production and transport, fertility or pregnancy outcomes. Developmental toxicity includes any effect which interferes with normal development of the offspring, either before or after birth.

Infotox could not find any evidence the coal slurry is classifiable as a known or presumed human reproductive toxicant.

5.2.8 Specific target organ toxicity

In terms of SANS 10234 2008, the classification of a substance or mixture as a specific target organ toxicant can be assessed in terms of a single exposure or dose (STOT-S) or prolonged or repeated exposure (STOT-RE).

Based on the presence of quartz in the slurry, the coal slurry is classified as a Category 2 STOT-RE, which may cause damage to the lungs through prolonged or repeated inhalation in the case of dry slurry. As indicated by Infotox, the result of repeated exposure is not necessarily silicosis, but suitable respiratory equipment is recommended if dust is generated during use or handling.

The applicable SANS Hazard Code is:

H373: May cause damage to lungs through prolonged or repeated inhalation.

5.2.9 Aspiration hazards

None of the constituents of the slurry are specifically classified as aspiration hazards and it is not classified as corrosive. However, the slurry is muddy; therefore, it was classified as a Category 2 aspiration hazard by Infotox.

The applicable SANS Hazard Code is:

H305: May be harmful if swallowed and enters airways.

5.3 Aquatic environment hazards

In terms of SANS 10234, the primary objective for the classification of substances and mixtures as hazardous to the environment is to alert the user to the hazards these substances and mixtures present to ecosystems. It is known that certain substances and mixtures simultaneously, or alternatively, affect ecosystems that range from soil microflora to primates.

The GHS recommends the transformation/dissolution test for metals and metal compounds in aqueous media, and therefore Infotox used the results obtained from this test in order to determine whether or not the coal slurry poses an aquatic hazard.

Jones & Wagener (Pty) Ltd

Engineering & Environmental Consultants

Infotox concluded that the coal slurry is not hazardous to aquatic life, whether during or after short- or long-term exposure in the aquatic environment – see Appendix B.

6. **OTHER REGULATORY REQUIREMENTS**

6.1 **Occupational Health and Safety Act**

In terms of the South African Occupational Health and Safety Act's hazardous chemical substances regulations, as amended, the time weighted average occupational exposure recommended limit (TWA-OEL-RL) for coal dust is 2 mg/m³ (Department of Labour, 1995).

6.2 Hazardous Substance Act

Not classified as hazardous.

6.3 SANS 10228

Coal is not listed in SANS 10228 (2012) as a hazardous substance.

International Maritime Solid Bulk Cargoes Code 6.4

The primary aim of the International Maritime Solid Bulk Cargoes Code (IMSBC Code) is to facilitate the safe stowage and shipment of solid bulk cargoes by providing information on the dangers associated with the shipment of certain types of solid bulk cargoes (e.g. structural damage due to improper cargo distribution, loss or reduction of stability during a voyage, chemical reactions of cargoes, such as spontaneous combustion, emission of toxic or explosive gases, corrosion, etc.), and instructions on the procedures to be adopted when the shipment of solid bulk cargoes is contemplated.

The IMSBC Code classifies solid cargoes into three categories:

- Group A bulk materials that may liquefy;
- Group B bulk materials possessing chemical hazards;
- Group C bulk materials that are neither liable to liquefy nor possess chemical hazards.

Coal and anthracite are subject to a schedule under the IMSBC Code and have been assigned to Cargo B since they may create flammable atmospheres, may heat spontaneously, may deplete the oxygen concentration and may corrode metal structures (ARCHE, 2014).

Although not specifically tested for in this project, but based on the above, the coal slurry has been assigned to the IMSBC Code Cargo B shipping requirements.

MEASURES TO BE IMPLEMENTED AT THE MIXED ROM COAL AND SLURRY 7. STOCKPILE AREAS

Based on the SANS 10234 classification conducted, the following measures should be implemented at the mixed ROM and coal slurry stockpile areas as specified in the SDS see Appendix C.

The applicable hazard pictogram and hazard labels must appear at the entrances of the mixed ROM coal and coal slurry storage and processing areas, as well as transport vehicles. Signage indicating the required personal protective equipment that must be worn. must also be displayed at the entrances.

Jones & Wagener (Pty) Ltd Engineering & Environmental Consultants

The following personal protective equipment must be worn in relation to the fine coal slurry:

- Protective clothing and eye protection;
- Protective gloves when handling the coal slurry by hand;
- Respiratory protection (manufacturer/supplier to specify equipment) in case of repeated exposure to fine coal dust, i.e., employees exposed during working hours on a continuous daily basis.

In addition, air quality monitoring should be conducted to ensure the required Time Weighted Average Occupation Exposure Limit Recommended Limit (TWA-OEL-RL) of 2.0 mg/m³ is not exceeded as stipulated in the Occupational Health and Safety Act's hazardous chemical substance regulations of August 1995, as amended (Department of Labour, 1995).

As coal dust may cause explosions, all electrical equipment used at the mixed ROM coal and coal slurry storage and processing areas must be earthed, while confined spaces must be well ventilated.

During fire-fighting, full body protective clothing and positive pressure, self-contained breathing apparatus with a full-face piece should be worn.

8. <u>CONCLUSIONS</u>

Based on the assessments conducted, the coal slurry may pose two Category 2 health risks based on the SANS 10234 2008 classification, namely:

- May cause damage to lungs through prolonged or repeated inhalation (SANS 10234 hazard code H373).
- May be harmful if swallowed and enters airways (SANS 10234 hazard code H305).

Based on the two health risks identified and the Category 2 assignment, the following pictogram needs to be displayed at the coal slurry handling and storage facilities:

Although SANS 10234:2008 does not include a specific hazard class for mechanical irritation, dust and grit from the coal slurry may cause mechanical abrasion, and thus irritation in case of prolonged exposure of the unprotected skin and eyes, therefore protective clothing should be worn.

In general, it is well known that coal may:

- Create flammable atmospheres,
- Heat spontaneously,
- Deplete the oxygen concentration, and
- Corrode metal structures.

Based on the geochemical tests conducted on the limited coal slurry sample, the VDDC coal slurry may generate acid mine drainage (AMD).

9. RECOMMENDATIONS

The following is recommended:

- The fine coal slurry SDS must be approved by South32 SA Coal Holdings once reviewed, and the contents of the SDS then brought under the attention of all the employees and contractors working at VDDC.
- The hazard pictogram and hazard labels must appear at the entrances of mixed ROM coal and coal slurry storage and processing areas, as well as transport vehicles. Signage indicating the required personal protective equipment that must be worn, must also be displayed at the entrances.
- Air quality monitoring should be conducted to ensure the required TWA-OEL-RL of 2.0 mg/m³ for coal dust is not exceeded.
- All electrical equipment used at the mixed ROM coal and coal slurry storage and processing areas must be earthed, while confined spaces must be well ventilated to prevent.
- During fire-fighting, full body protective clothing and positive pressure, self-contained breathing apparatus with a full-face piece should be worn.

10. <u>REFERENCES</u>

- (i) Alloway, B. J. 1995. *Heavy metals in soils* Second Edition. Blackie Academic & Professional.
- (ii) ARCHE, 2014. Coal Classification Industry approach to hazard classification under the revised MARPOL Convention and the IMSBC Code: Report 1. New Compliance Requirements of the Marpol Convention and the IMSBC Code. World Coal Association, London.
- (iii) Department of Environmental Affairs, 2013a. *Waste classification and management regulations.* R634 of 23 August 2013. Government Gazette 36784, Government Printer, Pretoria.
- (iv) Department of Health, 1994. *Group 1 Hazardous Substances. Government Notice R1381, Government Gazette 15907 of 12 August 1994*, Government Printer, Pretoria.
- (v) Department of Labour, 1995. *Hazardous chemical substances regulations, GN* 1179 of 25 August 1995. Government Gazette.
- (vi) Evangelou, V.P. and Zhang, Y.L. (1995). *A Review: Pyrite Oxidation Mechanisms and Acid Mine Drainage Prevention*, Critical Reviews in Environmental Science and Technology, Vol 25, p141-199.
- (vii) Kobie Strydom, 2019. *Verbal communication*. CSIR, Firelab, Pretoria.
- (viii) Skousen, J., et al. Effect of Digestion Method, Siderite Content, and Fizz Rating on Neutralization Potential of Overburden Samples. <u>http://anr.ext.wvu.edu/land_reclamation/acid-mine-drainage</u>. West Virginia University.

Jones & Wagener (Pty) Ltd

- (ix) South African Bureau of Standards, Standards Division, 2008. *South African National Standard: Globally Harmonized System of classification and labelling of chemicals (GHS), SANS 10234.* South African Bureau of Standards, Standards Division, Groenkloof, Pretoria.
- (x) South African Bureau of Standards, Standards Division, 2012. South African National Standard: The identification and classification of dangerous goods for transport by road and rail modes. SANS 10228. South African Bureau of Standards, Standards Division, Groenkloof, Pretoria.

Manff

Ade

Marius van Zyl Pr Sci Nat

Louis Naudé

Tolmay Hopkins Pr Sci Nat Project Director for Jones & Wagener

18 April 2019

Document source: https://joneswagener.sharepoint.com/JonesWagenerProjects/G535VDDCIRP/Shared Documents/PRJ/REP/Slurry Classification/G535_27_REP_Rev0_MvZthln_VDDC_29April2019.docx Document template: repGen_19r0.dotx

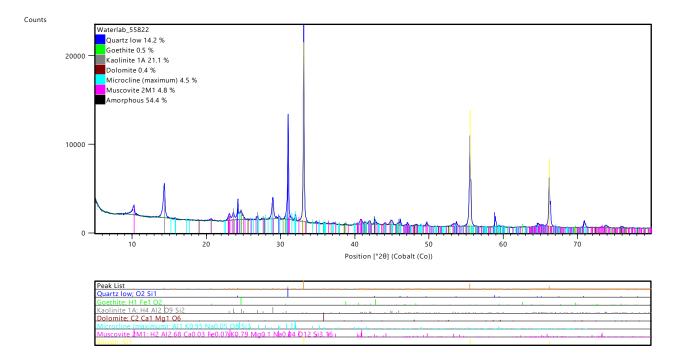
SOUTH32 SOUTH AFRICA COAL HOLDINGS (PTY) LTD

WOLVEKRANS COLLIERY: VANDYKSDRIFT CENTRAL MINING INFRASTRUCTURE DEVELOPMENT COAL SLURRY <u>GEOCHEMICAL ASSESSMENT AND WASTE CLASSIFICATION REPORT</u>

Report: JW103/19/G535 - Rev 0

APPENDIX A

WATERLAB LABORATORY CERTIFICATES


23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020 Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES X-RAY DIFFRACTION

Date received: 2019-02-20 Project number: 132		
Client name: Jones & Wagener Address: PO Box 1434, Rivonia, 2128 Telephone: 011 519 0200	Facsimile: 011 519 0201	Contact person: Marius van Zyl Email: vanzyl@jaws.co.za Cell: 082 880 1250
	Composition (%) [s]	
	Coal Slurry	
	55822	
Mineral		Amount

Coal Slurry				
55	55822			
Mineral Amount (weight %)				
Quartz	14.18			
Goethite	0.51			
Kaolinite	21.13			
Dolomite	0.41			
Microcline	4.52			
Muscovite	4.8			
Amorphous	54.45			

[s] Results obtained from sub-contracted laboratory

E. Botha

Geochemistry Project manager

The information contained in this report is relevant only to the sample/samples supplied to WATERLAB (Pty) Ltd. Any further use of the above information is not the responsibility or liability of WATERLAB (Pty) Ltd. Except for the full report, parts of this report may not be reproduced without written approval of WATERLAB (Pty) Ltd.

23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020 Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES X-RAY DIFFRACTION

Date received: 2019-02-20 Project number: 132	Report number: 81060a	Date completed: 2019-04-12 Order number: PO19-09925
Client name: Jones & Wagener Address: PO Box 1434, Rivonia, 2128 Telephone: 011 519 0200	Facsimile: 011 519 0201	Contact person: Marius van Zyl Email: vanzyl@jaws.co.za Cell: 082 880 1250

Note:

The material was prepared for XRD analysis using a back loading preparation method. Additionally the material was scanned after addition of 20 % Si for quantitative determination of amorphous content and micronizing in a McCrone micronizing mill. It was analysed with a Malvern Panalytical Aeris diffractometer with PIXcel detector and fixed slits with Fe filtered Co-K α radiation. The phases were identified using X'Pert Highscore plus software. The relative phase amounts (weight %) were estimated using the Rietveld method.

Comment:

- In case the results do not correspond to results of other analytical techniques, please let me know for further fine tuning of XRD results results may have to be verified.
- Mineral names may not reflect the actual compositions of minerals identified, but rather the mineral group.
- Due to preferred orientation and crystallite size effects, results may not be as accurate as shown.
- Traces of additional phases may be present.
- Sample may contain organic carbon.
- Amorphous phases, if present, were not taken into consideration during quantification.
- Determination of amorphous content can carry an error of +- 15 weight per cent

Ideal Mineral compositions:

Compound Name	Ideal Chemical Formula
Quartz	SiO2
Goethite	Fe O OH
Kaolinite	Al2 Si2 O5 (OH)4
Dolomite	Ca Mg (C O3)2
Muscovite	K Al2 ((OH)2 Al Si3 O10)
Microcline	K AI Si3 O8

E. Botha

Geochemistry Project manager

23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020 Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES

SULPHUR SPECIATION

Methods from: Prediction Manual For Drainage Chemistry from Sulphidic Geological Materials MEND Report 1.20.1

Date received: 2019-02-20 Project number: 132

Report number: 81060

Date completed: 2019-03-22 Order number: PO19-09925

Client name: Jones & Wagener Address: PO Box 1434, Rivonia, 2128 Telephone: 011 519 0200

Facsimile: 011 519 0201

Contact person: Marius van Zyl Email: vanzyl@jaws.co.za Cell: 082 880 1250

Sulphur Speciation*	Sample Identification			
Sulphur Speciation*	Coal Slurry	Coal Slurry		
Sample Number	55822	55822 D		
Total Sulphur (%) (LECO)	0.50	0.50		
Sulphate Sulphur as S (%)	0.43	0.44		
Sulphide Sulphur (%)	0.07 0.06			

Notes:

- Samples analysed with Pyrolysis at 550°C as per Prediction Manual For Drainage Chemistry from Sulphidic Geological Materials MEND Report 1.20.1. Multiply Sulphate Sulphur to calculate SO4 % by 2.996. Please see the method for interferences.
- Organic Sulphur is not taken into account and may be included in the results.
- · Please let me know if results do not correspond to other data.

E. Botha

Geochemistry Project Manager

23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020 Telephone: +2712 – 349 – 1066 Facsimile: +2712 – 349 – 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES ACID – BASE ACCOUNTING EPA-600 MODIFIED SOBEK METHOD

Date received: 2019-02-20	
Project number: 132	

Report number: 81060

Date completed: 2019-03-22 Order number: PO19-09925

Client name: Jones & Wagener Address: PO Box 1434, Rivonia, 2128 Telephone: 011 519 0200

Facsimile: 011 519 0201

Contact person: Marius van Zyl Email: vanzyl@jaws.co.za Cell: 082 880 1250

Acid – Base Accounting	Sample Identification	
Modified Sobek (EPA-600)	Coal Slurry	
Sample Number	55822	
Paste pH	Insufficient sample	
Total Sulphur (%) (LECO)	0.50	
Acid Potential (AP) (kg/t)	16	
Neutralization Potential (NP)	12	
Nett Neutralization Potential (NNP)	-3.64	
Neutralising Potential Ratio (NPR) (NP : AP)	0.766	
Rock Type	I	

* Negative NP values are obtained when the volume of NaOH (0.1N) titrated (pH: 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5 Any negative NP values are corrected to 0.00.

Please refer to Appendix (p.2) for a Terminology of terms and guidelines for rock classification

E. Botha Geochemistry Project Manager

23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020 Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES ACID – BASE ACCOUNTING EPA-600 MODIFIED SOBEK METHOD

Date received: 2019-02-20 Project number: 132

Report number: 81060

Date completed: 2019-03-22 Order number: PO19-09925

Client name: Jones & Wagener Address: PO Box 1434, Rivonia, 2128 Telephone: 011 519 0200

Facsimile: 011 519 0201

Contact person: Marius van Zyl Email: vanzyl@jaws.co.za Cell: 082 880 1250

APPENDIX: TERMINOLOGY AND ROCK CLASSIFICATION

TERMINOLOGY (SYNONYMS)

- Acid Potential (AP) ; Synonyms: Maximum Potential Acidity (MPA) Method: Total S(%) (Leco Analyzer) x 31.25
- Neutralization Potential (NP) ; Synonyms: Gross Neutralization Potential (GNP) ; Syn: Acid Neutralization Capacity (ANC) (The capacity of a sample to consume acid) Method: Fizz Test ; Acid-Base Titration (Sobek & Modified Sobek (Lawrence) Methods)
- Nett Neutralization Potential (NNP); Synonyms: Nett Acid Production Potential (NAPP) Calculation: NNP = NP – AP ; NAPP = ANC – MPA
- Neutralising Potential Ratio (NPR) Calculation: NPR = NP : AP

CLASSIFICATION ACCORDING TO NETT NEUTRALISING POTENTIAL (NNP)

If NNP (NP – AP) < 0, the sample has the potential to generate acid If NNP (NP – AP) > 0, the sample has the potential to neutralise acid produced

Any sample with NNP < 20 is potentiall acid-generating, and any sample with NNP > -20 might not generate acid (Usher *et al.*, 2003)

ROCK CLASSIFICATION

ΤΥΡΕ Ι	Potentially Acid Forming	Total S(%) > 0.25% and NP:AP ratio 1:1 or less
ТҮРЕ ІІ	Intermediate	Total S(%) > 0.25% and NP:AP ratio 1:3 or less
TYPE III	Non-Acid Forming	Total S(%) < 0.25% and NP:AP ratio 1:3 or greater

23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020 Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES ACID – BASE ACCOUNTING EPA-600 MODIFIED SOBEK METHOD

Date received: 2019-02-20 Project number: 132

Report number: 81060

Date completed: 2019-03-22 Order number: PO19-09925

Client name: Jones & Wagener Address: PO Box 1434, Rivonia, 2128 Telephone: 011 519 0200

Facsimile: 011 519 0201

Contact person: Marius van Zyl Email: vanzyl@jaws.co.za Cell: 082 880 1250

CLASSIFICATION ACCORDING TO NEUTRALISING POTENTIAL RATIO (NPR)

Initial NPR Screening Potential for ARD Comments Criteria Likely < 1:1 Likely AMD generating Possibly 1:1 - 2:1Possibly AMD generating if NP is insufficiently reactive or is depleted at a faster rate than sulphides Low 2:1 - 4:1 Not potentially AMD generating unless significant preferential exposure of sulphides along fracture planes, or extremely reactive sulphides in combination with insufficiently reactive NP None >4:1 No further AMD testing required unless materials are to be used as a source of alkalinity

Guidelines for screening criteria based on ABA (Price et al., 1997; Usher et al., 2003)

CLASSIFICATION ACCORDING TO SULPHUR CONTENT (%S) AND NEUTRALISING POTENTIAL RATIO (NPR)

For sustainable long-term acid generation, at least 0.3% Sulphide-S is needed. Values below this can yield acidity but it is likely to be only of short-term significance. From these facts, and using the NPR values, a number of rules can be derived:

- 1) Samples with less than 0.3% Sulphide-S are regarded as having insufficient oxidisable Sulphide-S to sustain acid generation.
- 2) NPR ratios of >4:1 are considered to have enough neutralising capacity.
- 3) NPR ratios of 3:1 to 1:1 are consider inconclusive.
- A) NPR ratios below 1:1 with Sulphide-S above 3% are potentially acid-generating. (Soregaroli & Lawrence, 1998; Usher *et al.*, 2003)

23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020 Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES ACID – BASE ACCOUNTING EPA-600 MODIFIED SOBEK METHOD

Date received: 2019-02-20 Project number: 132	Report number: 81060	Date completed: 2019-03-22 Order number: PO19-09925
Client name: Jones & Wagener		Contact person: Marius van Zyl

Client name: Jones & Wagener Address: PO Box 1434, Rivonia, 2128 Telephone: 011 519 0200

Facsimile: 011 519 0201

Contact person: Marius van Zyl Email: vanzyl@jaws.co.za Cell: 082 880 1250

REFERENCES

LAWRENCE, R.W & WANG, Y. 1997. Determination of Neutralization Potential in the Prediction of Acid Rock Drainage. Proc. 4th International Conference on Acid Rock Drainage. Vancouver. BC. pp. 449 – 464.

PRICE, W.A., MORIN, K. & HUTT, N. 1997. Guidelines for the prediction of Acid Rock Drainage and Metal leaching for mines in British Columbia: Part 11. Recommended procedures for static and kinetic testing. In: Proceedings of the Fourth International Conference on Acid Rock Drainage. Vol 1. May 31 – June 6. Vancouver, BC., pp. 15 – 30.

SOBEK, A.A., SCHULLER, W.A., FREEMAN, J.R. & SMITH, R.M. 1978. Field and laboratory methods applicable to overburdens and minesoils. EPA-600/2-78-054. USEPA. Cincinnati. Ohio.

SOREGAROLI, B.A. & LAWRENCE, R.W. 1998. Update on waste Characterisation Studies. Proc. Mine Design, Operations and Closure Conference. Polson, Montana.

USHER, B.H., CRUYWAGEN, L-M., DE NECKER, E. & HODGSON, F.D.I. 2003. Acid-Base : Accounting, Techniques and Evaluation (ABATE): Recommended Methods for Conducting and Interpreting Analytical Geochemical Assessments at Opencast Collieries in South Africa. Water Research Commission Report No 1055/2/03. Pretoria.

ENVIRONMENT AUSTRALIA. 1997. Managing Sulphidic Mine Wastes and Acid Drainage.

23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020 Telephone: +2712 – 349 – 1066 Facsimile: +2712 – 349 – 2064 Email: accounts@waterlab.co.za

6.2

< 0.01

CERTIFICATE OF ANALYSES NET ACID GENERATION

Date received: 2019-02-20 Project number: 132	Report number: 81060	Date completed: 2019-03-22 Order number: PO19-09925
Client name: Jones & Wagener Address: PO Box 1434, Rivonia, 2128 Telephone: 011 519 0200	Facsimile: 011 519 0201	Contact person: Marius van Zyl Email: vanzyl@jaws.co.za Cell: 082 880 1250
	Sample Identification: pH 4.5	
Net Acid Generation	Coal Slurry	
Sample Number	55822	

 Net Acid Generation
 Sample Identification: pH 7

 Coal Slurry

 Sample Number

 Sample Number

 NAG pH: (H2O2)

 NAG (kg H2SO4/t)

Notes:

NAG pH: (H₂O₂)

NAG (kg H₂SO₄ / t)

- Samples analysed with Single Addition NAG test as per Prediction Manual For Drainage Chemistry from Sulphidic Geological Materials MEND Report 1.20.1.
- · Please let me know if results do not correspond to other data.

E. Botha Geochemistry Project Manager

WATERLAB (Pty) Ltd

Reg. No.: 1983/009165/07 23B De Havilland Crescent Persequor Techno Park Meiring Naudé Drive Pretoria v.A.T. No.: 4130107891 P.O. Box 283 Persequor Park, 0020 Tel: +2712 - 349 - 1066 Fax: +2712 - 349 - 2064 e-mail: admin@waterlab.co.za

CERTIFICATE OF ANALYSES GENERAL WATER QUALITY PARAMETERS

Date received: 2019 - 02 - 21 Date completed: 2019 - 03 - 07				
Project number: 132	Report number: 81065		Order number: PO19-09925	
_	Client name: Jones & Wagener Consulting Civil Engineers		Contact person:	•
Address: P.O. Box 1434, Rivonia,			e-mail: <u>vanzyl@jaws.co.za</u>	
Telephone: 011 519 0217	Facsimile: 011	519 0201	Mobile: 082 880 1250	
Analyses in mg/ℓ		Sample Identification		
(Unless specified otherwise)		Method Identification	UB110	WBH2510
Sample Number			55842	55843
pH – Value at 25°C		WLAB065	7.4	6.7
Electrical Conductivity in mS/m at 25°	С	WLAB002	50.4	14.5
Total Alkalinity as CaCO₃		WLAB007	204	80
Chloride as Cl		WLAB046	26	5
Sulphate as SO ₄		WLAB046	24	<2
Fluoride as F		WLAB014	1.4	0.3
Nitrate as N		WLAB046	<0.1	0.4
Ortho Phosphate as P		WLAB046	<0.1	<0.1
Hexavalent Chromium as Cr6+ *		WLAB032	<0.010	<0.010
Full Quantitative ICP-MS/OES Analysis	s (Dissolved)*	WLAB050	See Attached Report: 81065-A	
% Balancing *			98.1	94.2

* = Not SANAS Accredited

Tests marked "Not SANAS Accredited" in this report are not included in the SANAS Schedule of Accreditation for this Laboratory.

Ard van de Wetering

Technical Signatory

The information contained in this report is relevant only to the sample/samples supplied to **WATERLAB (Pty) Ltd**. Any further use of the above information is not the responsibility of **WATERLAB (Pty) Ltd**. Except for the full report, part of this report may not be reproduced without written approval of **WATERLAB (Pty) Ltd**. Details of sample conducted by Waterlab (PTY) Ltd according to WLAB/Sampling Plan and Procedures/SOP are available on request.

23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020 Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES

TCLP / ACID RAIN / DISTILLED WATER EXTRACTIONS

Date received: Project number:	20/02/2019 132	Report number: 81060	Date completed: Order number:	22/03/2019 PO19-09925
Client name:	Jones & Wagener		Contact person:	Marius van Zyl
Address:	PO Box 1434, Rivonia, 2128		Email:	vanzyl@jaws.co.za
Telephone:	0115190200		Cell:	082 880 1250

Analysis				
Analyses	Coal Slurry			
Sample Number	55	322		
TCLP / Acid Rain / Distilled Water / H ₂ O ₂	Distille	d Water		
Dry Mass Used (g)	2	.5		
Volume Used (mℓ)	5	0		
Inorganic Anions	mg/ℓ	mg/kg		
Chloride as Cl	28	560		
Sulphate as SO4	48	960		
Nitrate as N	<0.1	<2.0		
Fluoride as F	1.0	20		
Ortho-Phosphate as P	0.2 4.0			
Hexavalent Chromium as Cr6+	<0.010 <0.200			
ICP-MS full Quant	See ICP	DW tab		
Acid Base Accounting	See attached report 81060 ABA			
Net Acid Generation	See attached report 81060 NAG			
Sulphur Speciation	See attached report 81060 SS			
Bio elution	See attached 8	1060 Bio-elution		
Transformation / Dissolution Test	See attached	181060 TDT		
X-ray Diffraction [s]	See attached re	port 81060 XRD		

Please note:

- The blank is subtracted from all leach results, except pH and Electrical Conductivity.

- [s] = Subcontracted

- The water with coal slurry sample were decanted to split the water. We took care not to lose any of the coal slurry. Therefore the sample was dried with some of the water.

E. Botha

Geochemistry Project Manager

WATERLAB (PTY) LTD CERTIFICATE OF ANALYSES **ICP-MS QUANTITATIVE ANALYSIS**

20/02/2019 Date received:

Project number: 132

Client name: Jones & Wagener Address: PO Box 1434, Rivonia, 2128 Date completed: 22/03/2019 81060

Report number:

Email:

Contact person: Marius van Zyl vanzyl@jaws.co.za

Extract	Sample Mass (g)	Volume (ml)	Factor	1			
Distilled Water	2.5	50	20				
Diotiliou Water				<u>I</u>			
Sample Id	Sample Number	Ag	Ag	AI	AI	As	As
oumpie iu		 mg/l		mg/l	-	mg/l	mg/kg
Det Limit		<0.001	mg/kg <0.020	<0.100	mg/kg <2.00	<0.001	<0.020
	55822						
Coal Slurry	55822	<0.001	<0.020	3.35	67	0.002	0.044
O constructed	O	•				D.	D
Sample Id	Sample Number	Au	Au	В	B	Ba	Ba
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.001	<0.020	<0.001	<0.020	<0.001	<0.020
Coal Slurry	55822	<0.001	<0.020	0.078	1.55	0.248	4.96
			-			_	-
Sample Id	Sample Number	Be	Be	Bi	Bi	Ca	Са
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.001	<0.020	<0.001	<0.020	<1	<20
Coal Slurry	55822	0.001	0.020	<0.001	<0.020	9	180
Sample Id	Sample Number	Cd	Cd	Ce	Се	Co	Со
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.001	<0.020	<0.001	<0.020	<0.001	<0.020
Coal Slurry	55822	<0.001	<0.020	0.023	0.450	0.006	0.120
Sample Id	Sample Number	Cr	Cr	Cs	Cs	Cu	Cu
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.001	<0.020	<0.001	<0.020	<0.001	<0.020
Coal Slurry	55822	0.031	0.620	0.001	0.020	0.018	0.355
						•	
Sample Id	Sample Number	Dy	Dy	Er	Er	Eu	Eu
-	-	mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.001	<0.020	<0.001	<0.020	<0.001	<0.020
Coal Slurry	55822	0.001	0.029	0.001	0.020	0.001	0.020
Sample Id	Sample Number	Fe	Fe	Ga	Ga	Gd	Gd
-	-	mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.025	<0.500	<0.001	<0.020	<0.001	<0.020
Coal Slurry	55822	9.63	193	0.008	0.164	0.002	0.048
Sample Id	Sample Number	Ge	Ge	Hf	Hf	Hg	Hg
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.001	<0.020	<0.001	<0.020	<0.001	<0.020
Coal Slurry	55822	<0.001	<0.020	0.002	0.046	<0.001	<0.020
Sample Id	Sample Number	Но	Но	In	In	lr	Ir
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.001	<0.020	<0.001	<0.020	<0.001	<0.020
Coal Slurry	55822	<0.001	<0.020	<0.001	<0.020	<0.001	<0.020
Sample Id	Sample Number	к	К	La	La	Li	Li
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.5	<10.0	<0.001	<0.020	<0.001	<0.020
Coal Slurry	55822	6.5	130	0.010	0.196	0.011	0.215
	00022	0.0	100	0.010	0.100	0.011	0.213
Sample Id	Sample Number	Lu	Lu	Mg	Mg	Mn	Mn
	Sample Number						
Dot Limit		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit	55822	<0.001	<0.020	<1	<20	<0.025	<0.500
Coal Slurry	33022	<0.001	<0.020	4	80	0.228	4.56

Sample Id	Sample Number	Мо	Мо	Na	Na	Nb	Nd
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.001	<0.020	<1	<20	<0.001	<0.020
Coal Slurry	55822	0.002	0.031	54	1080	<0.001	<0.020
Sample Id	Sample Number	Nd	Nd	Ni	Ni	Os	Os
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.001	<0.020	<0.001	<0.020	<0.001	<0.020
Coal Slurry	55822	0.011	0.220	0.017	0.340	<0.001	<0.020
	·		•		•	•	
Sample Id	Sample Number	Р	Р	Pb	Pb	Pd	Pd
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.001	<0.020	<0.001	<0.020	<0.001	<0.020
Coal Slurry	55822	0.346	6.93	0.023	0.465	<0.001	<0.020
			•				
Sample Id	Sample Number	Pr	Pr	Pt	Pt	Rb	Rb
•		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.001	<0.020	<0.001	<0.020	<0.001	<0.020
Coal Slurry	55822	0.003	0.058	<0.001	<0.020	0.014	0.279
Sample Id	Sample Number	Rh	Rh	Ru	Ru	Sb	Sb
oumpiona		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.001	<0.020	<0.001	<0.020	<0.001	<0.020
Coal Slurry	55822	<0.001	<0.020	<0.001	<0.020	<0.001	<0.020
Coar Starry	00022	40.001	40.020	40.001	10.020	40.001	40.020
Sample Id	Sample Number	Sc	Sc	Se	Se	Si	Si
Gample Id	Sample Number	mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.001	<0.020	<0.001	<0.020	<0.2	<4.0
	55822	0.002	0.020	<0.001	<0.020	7.3	146
Coal Slurry	55622	0.002	0.030	\0.001	<0.020	1.5	140
Sample Id	Sample Number	Sm	Sm	Sn	Sn	Sr	Sr
Sample lu	Sample Number					-	
Det Limit		mg/l <0.001	mg/kg <0.020	mg/l <0.001	mg/kg <0.020	mg/l <0.001	mg/kg <0.020
	55822	0.002		<0.001	<0.020	0.149	2.99
Coal Slurry	55622	0.002	0.049	\0.001	<0.020	0.149	2.55
Comula Id	Comple Number	Та	.	Tb	_	Те	То
Sample Id	Sample Number	Ia					
Dat Limit		ma/l	Ta		Tb		Te
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit	55922	<0.001	mg/kg <0.020	mg/l <0.001	mg/kg <0.020	mg/l <0.001	mg/kg <0.020
Coal Slurry	55822	-	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Coal Slurry		<0.001 <0.001	mg/kg <0.020 <0.020	mg/l <0.001 <0.001	mg/kg <0.020 <0.020	mg/l <0.001 <0.001	mg/kg <0.020 <0.020
	55822 Sample Number	<0.001 <0.001 Th	mg/kg <0.020 <0.020 Th	mg/l <0.001 <0.001 Ti	mg/kg <0.020 <0.020 Ti	mg/l <0.001 <0.001 TI	mg/kg <0.020 <0.020 TI
Coal Slurry Sample Id		<0.001 <0.001 Th mg/l	mg/kg <0.020	mg/l <0.001 <0.001 Ti mg/l	mg/kg <0.020 <0.020 Ti mg/kg	mg/l <0.001 <0.001 TI mg/l	mg/kg <0.020 <0.020 TI mg/kg
Coal Slurry Sample Id Det Limit	Sample Number	<0.001 <0.001 Th mg/l <0.001	mg/kg <0.020	mg/l <0.001 <0.001 Ti mg/l <0.001	mg/kg <0.020 <0.020 Ti mg/kg <0.020	mg/l <0.001 <0.001 TI mg/l <0.001	mg/kg <0.020 <0.020 TI mg/kg <0.020
Coal Slurry Sample Id		<0.001 <0.001 Th mg/l	mg/kg <0.020	mg/l <0.001 <0.001 Ti mg/l	mg/kg <0.020 <0.020 Ti mg/kg	mg/l <0.001 <0.001 TI mg/l	mg/kg <0.020 <0.020 TI mg/kg
Coal Slurry Sample Id Det Limit Coal Slurry	Sample Number	<0.001 <0.001 Th mg/l <0.001 <0.001	mg/kg <0.020	mg/l <0.001 <0.001 Ti mg/l <0.001 0.120	mg/kg <0.020 <0.020 Ti mg/kg <0.020 2.40	mg/l <0.001 <0.001 TI mg/l <0.001 <0.001	mg/kg <0.020 <0.020 TI mg/kg <0.020 <0.020
Coal Slurry Sample Id Det Limit	Sample Number	<0.001 <0.001 Th mg/l <0.001 <0.001 Tm	mg/kg <0.020	mg/l <0.001 <0.001 Ti mg/l <0.001 0.120 U	mg/kg <0.020 <0.020 Ti mg/kg <0.020 2.40 U	mg/l <0.001 <0.001 TI mg/l <0.001 <0.001 V	mg/kg <0.020 <0.020 TI mg/kg <0.020 <0.020 V
Coal Slurry Sample Id Det Limit Coal Slurry Sample Id	Sample Number	<0.001 <0.001 Th mg/l <0.001 <0.001 Tm mg/l	mg/kg <0.020	mg/l <0.001 <0.001 Ti mg/l <0.001 0.120 U mg/l	mg/kg <0.020	mg/l <0.001 <0.001 TI mg/l <0.001 <0.001 V mg/l	mg/kg <0.020 <0.020 TI mg/kg <0.020 <0.020 V mg/kg
Coal Slurry Sample Id Det Limit Coal Slurry Sample Id Det Limit	Sample Number 55822 Sample Number	<0.001 <0.001 Th mg/l <0.001 <0.001 Tm mg/l <0.001	mg/kg <0.020	mg/l <0.001 <0.001 Ti mg/l <0.001 0.120 U mg/l <0.001	mg/kg <0.020	mg/l <0.001 <0.001 Tl mg/l <0.001 <0.001 V mg/l <0.001	mg/kg <0.020
Coal Slurry Sample Id Det Limit Coal Slurry Sample Id	Sample Number	<0.001 <0.001 Th mg/l <0.001 <0.001 Tm mg/l	mg/kg <0.020	mg/l <0.001 <0.001 Ti mg/l <0.001 0.120 U mg/l	mg/kg <0.020	mg/l <0.001 <0.001 TI mg/l <0.001 <0.001 V mg/l	mg/kg <0.020 <0.020 TI mg/kg <0.020 <0.020 V mg/kg
Coal Slurry Sample Id Det Limit Coal Slurry Sample Id Det Limit Coal Slurry	Sample Number 55822 Sample Number 55822	<0.001 <0.001 Th mg/l <0.001 <0.001 Tm mg/l <0.001 <0.001	mg/kg <0.020	mg/l <0.001 <0.001 Ti mg/l <0.001 0.120 U mg/l <0.001 0.001	mg/kg <0.020	mg/l <0.001 <0.001 Tl mg/l <0.001 <0.001 V mg/l <0.001 0.023	mg/kg <0.020 <0.020 TI mg/kg <0.020 <0.020 V mg/kg <0.020 0.460
Coal Slurry Sample Id Det Limit Coal Slurry Sample Id Det Limit	Sample Number 55822 Sample Number	<0.001 <0.001 Th mg/l <0.001 <0.001 Tm mg/l <0.001 <0.001 <0.001	mg/kg <0.020	mg/l <0.001 <0.001 Ti mg/l <0.001 0.120 U mg/l <0.001 0.001 V	mg/kg <0.020	mg/l <0.001 <0.001 Tl mg/l <0.001 <0.001 V mg/l <0.001 0.023	mg/kg <0.020 <0.020 Ti mg/kg <0.020 <0.020 V mg/kg <0.020 0.460 Yb
Coal Slurry Sample Id Det Limit Coal Slurry Sample Id Det Limit Coal Slurry Sample Id Sample Id	Sample Number 55822 Sample Number 55822	<0.001 <0.001 Th mg/l <0.001 <0.001 Tm mg/l <0.001 <0.001 <0.001 V mg/l	mg/kg <0.020	mg/l <0.001 <0.001 Ti mg/l <0.001 0.120 U mg/l <0.001 0.001 V mg/l	mg/kg <0.020	mg/l <0.001 <0.001 Tl mg/l <0.001 <0.001 V mg/l <0.001 0.023 Yb mg/l	mg/kg <0.020
Coal Slurry Sample Id Det Limit Coal Slurry Sample Id Det Limit Coal Slurry Sample Id Det Limit Coal Slurry Det Limit	Sample Number 55822 Sample Number 55822 Sample Number Sample Number	<0.001 <0.001 Th mg/l <0.001 <0.001 Tm mg/l <0.001 <0.001 W mg/l <0.001	mg/kg <0.020	mg/l <0.001 <0.001 Ti mg/l <0.001 0.120 U mg/l <0.001 0.001 Y mg/l <0.001	mg/kg <0.020	mg/l <0.001 <0.001 Tl mg/l <0.001 <0.001 V mg/l <0.001 0.023 Yb mg/l <0.001	mg/kg <0.020
Coal Slurry Sample Id Det Limit Coal Slurry Sample Id Det Limit Coal Slurry Sample Id Sample Id	Sample Number 55822 Sample Number 55822	<0.001 <0.001 Th mg/l <0.001 <0.001 Tm mg/l <0.001 <0.001 <0.001 V mg/l	mg/kg <0.020	mg/l <0.001 <0.001 Ti mg/l <0.001 0.120 U mg/l <0.001 0.001 V mg/l	mg/kg <0.020	mg/l <0.001 <0.001 Tl mg/l <0.001 <0.001 V mg/l <0.001 0.023 Yb mg/l	mg/kg <0.020
Coal Slurry Sample Id Det Limit Coal Slurry Sample Id Det Limit Coal Slurry Sample Id Det Limit Coal Slurry Coal Slurry Coal Slurry	Sample Number 55822 Sample Number 55822 Sample Number Sample Number 55822	<0.001 <0.001 Th mg/l <0.001 <0.001 <0.001 <0.001 <0.001 W mg/l <0.001 <0.001 <0.001	mg/kg <0.020	mg/l <0.001 <0.001 Ti mg/l <0.001 0.120 U mg/l <0.001 0.001 V mg/l <0.001 0.001	mg/kg <0.020	mg/l <0.001 <0.001 Tl mg/l <0.001 <0.001 V mg/l <0.001 0.023 Yb mg/l <0.001	mg/kg <0.020
Coal Slurry Sample Id Det Limit Coal Slurry Sample Id Det Limit Coal Slurry Sample Id Det Limit Coal Slurry Det Limit	Sample Number 55822 Sample Number 55822 Sample Number Sample Number	<0.001 <0.001 Th mg/l <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 Zn	mg/kg <0.020	mg/l <0.001	mg/kg <0.020	mg/l <0.001 <0.001 Tl mg/l <0.001 <0.001 V mg/l <0.001 0.023 Yb mg/l <0.001	mg/kg <0.020
Coal Slurry Sample Id Det Limit Coal Slurry Sample Id	Sample Number 55822 Sample Number 55822 Sample Number Sample Number 55822	<0.001 <0.001 Th mg/l <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 Zn mg/l <0.001	mg/kg <0.020	mg/l <0.001	mg/kg <0.020	mg/l <0.001 <0.001 Tl mg/l <0.001 <0.001 V mg/l <0.001 0.023 Yb mg/l <0.001	mg/kg <0.020
Coal Slurry Sample Id Det Limit Coal Slurry Sample Id Det Limit Coal Slurry Sample Id Det Limit Coal Slurry Coal Slurry Coal Slurry	Sample Number 55822 Sample Number 55822 Sample Number Sample Number 55822	<0.001 <0.001 Th mg/l <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 Zn	mg/kg <0.020	mg/l <0.001	mg/kg <0.020	mg/l <0.001 <0.001 Tl mg/l <0.001 <0.001 V mg/l <0.001 0.023 Yb mg/l <0.001	mg/kg <0.020

23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020 Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES

TOTALS

Date received:	20/02/2019	Report number: 81060	Date completed:	22/03/2019
Project number:	132		Order number:	PO19-09925
Client name:	Jones & Wagener		Contact person:	Marius van Zyl
Address:	PO Box 1434, Rivonia, 2128		Email:	vanzyl@jaws.co.za
Telephone:	0115190200		Cell:	082 880 1250

Analyses	Coal Slurry		
Sample Number	55822		
Digestion	HNO3 : HF		
Dry Mass Used (g)	0.25		
Volume Used (mℓ)	100		
Units	mg/ℓ mg/kg		
ICP-MS full Quant	See tab ICP Digestion		

[s] = Subcontracted

<u>E. Botha</u>

Geochemistry Project Manager

WATERLAB (PTY) LTD <u>CERTIFICATE OF ANALYSES</u> ICP-MS QUANTITATIVE ANALYSIS

Date received:	20/02/2019	Date completed:	22/03/2019
Project number:	132	Report number:	81060
Client name:	Jones & Wagener	Contact person:	Marius van Zyl
Address:	PO Box 1434, Rivonia, 2128	Email:	vanzyl@jaws.co.za

Extract	Sample Mass (g)	Volume (ml)	Factor				
HNO3 : HF	0.25	100	400	J			
Sample Id	Sample Number	Ag	Ag	AI	AI	As	As
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.001	<0.400	<0.100	<40	<0.001	<0.400
Coal Slurry	55822	<0.001	<0.400	108	43200	0.015	6.00
Sample Id	Sample Number	Au	Au	В	В	Ва	Ва
Gampie ia	Campie Ramber	mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.001	<0.400	<0.001	<0.400	<0.001	<0.400
Coal Slurry	55822	<0.001	<0.400	<0.001	<0.400	1.37	548
Comple Id	Comula Number	D.	De	D :	D:	0-	0-
Sample Id	Sample Number	Be mg/l	Be mg/kg	Bi mg/l	Bi mg/kg	Ca mg/l	Ca mg/kg
Det Limit		<0.001	<0.400	<0.001	<0.400	<1	<400
Coal Slurry	55822	0.005	2.00	<0.001	<0.400	8	3200
Sample Id	Sample Number	Cd	Cd	Ce	Се	Co	Со
Det Limit		mg/l <0.001	mg/kg <0.400	mg/l <0.001	mg/kg <0.400	mg/l <0.001	mg/kg <0.400
Coal Slurry	55822	<0.001	<0.400	0.044	18	0.033	13
Sample Id	Sample Number	Cr	Cr	Cs	Cs	Cu	Cu
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit	<i>EE</i> 000	<0.001	<0.400	<0.001	<0.400	<0.001	<0.400
Coal Slurry	55822	0.164	66	0.011	4.40	0.064	26
Sample Id	Sample Number	Dy	Dy	Er	Er	Eu	Eu
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.001	<0.400	<0.001	<0.400	<0.001	<0.400
Coal Slurry	55822	0.004	1.60	0.003	1.20	0.001	0.400
Sample Id	Sample Number	Fe	Fe	Ga	Ga	Gd	Gd
Sample lu	Sample Number	mg/l	Fe mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.025	<10	<0.001	<0.400	<0.001	<0.400
Coal Slurry	55822	94	37600	0.070	28	0.004	1.60
-							
Sample Id	Sample Number	Ge	Ge	Hf	Hf	Hg	Hg
Det Limit		mg/l <0.001	mg/kg <0.400	mg/l <0.001	mg/kg <0.400	mg/l <0.001	mg/kg <0.400
Coal Slurry	55822	0.007	2.80	<0.001	<0.400	<0.001	<0.400
						•	
Sample Id	Sample Number	Но	Но	In	In	lr	lr
Battinit		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit Coal Slurry	55822	<u><0.001</u> 0.001	<0.400 0.400	<0.001 <0.001	<0.400 <0.400	<0.001 <0.001	<0.400 <0.400
coardiurry	55622	0.001	0.400	<0.001	\$0.400	40.001	\$0.400
Sample Id	Sample Number	К	К	La	La	Li	Li
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.5	<200	<0.001	<0.400	<0.001	<0.400
Coal Slurry	55822	25	10000	0.022	8.80	0.100	40
Sample Id	Sample Number	Lu	Lu	Mg	Mg	Mn	Mn
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.001	<0.400	<1	<400	<0.025	<10
Coal Slurry	55822	<0.001	<0.400	4	1600	1.03	412
Sample Id	Sample Number	Мо	Мо	Na	Na	Nb	Nb
Sample Id	Sample Number	mg/l	mo mg/kg	na mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.001	<0.400	<1	<400	<0.001	<0.400
Coal Slurry	55822	0.005	2.00	6	2400	0.026	10
Sample Id	Sample Number	Nd	Nd	Ni	Ni	Os ma(l	Os
Det Limit		mg/l <0.001	mg/kg <0.400	mg/l <0.001	mg/kg <0.400	mg/l <0.001	mg/kg <0.400
Coal Slurry	55822	0.020	8.00	0.089	36	<0.001	<0.400
	· ·				·	·	
Sample Id	Sample Number	Р	Р	Pb	Pb	Pd	Pd
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit	55822	<0.001	<0.400	<0.001	<0.400	<0.001	<0.400
Coal Slurry	33022	1.98	792	0.056	22	0.004	1.60
Sample Id	Sample Number	Pr	Pr	Rb	Rb	Rh	Rh
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
		-		-		-	

Det Limit		<0.001	<0.400	<0.001	<0.400	<0.001	<0.400
Coal Slurry	55822	0.005	2.00	0.074	30	<0.001	<0.400
,							
Sample Id	Sample Number	Ru	Ru	Sb	Sb	Sc	Sc
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.001	<0.400	<0.001	<0.400	<0.001	<0.400
Coal Slurry	55822	<0.001	<0.400	<0.001	<0.400	0.088	35
Sample Id	Sample Number	Se	Se	Si	Si	Sm	Sm
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.001	<0.400	<0.2	<80	<0.001	<0.400
Coal Slurry	55822	<0.001	<0.400	340	136000	0.004	1.60
					-		-
Sample Id	Sample Number	Sn	Sn	Sr	Sr	Та	Та
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.001	<0.400	<0.001	<0.400	<0.001	<0.400
Coal Slurry	55822	0.005	2.00	0.388	155	<0.001	<0.400
Sample Id	Sample Number	Tb	Tb	Te	Те	Th	Th
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.001	<0.400	<0.001	<0.400	<0.001	<0.400
Coal Slurry	55822	0.001	0.400	<0.001	<0.400	0.014	5.60
Sample Id	Sample Number	Ti	Ti	TI	TI	Tm	Tm
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.001	<0.400	<0.001	<0.400	<0.001	<0.400
Coal Slurry	55822	8.66	3464	0.002	0.800	<0.001	<0.400
Sample Id	Sample Number	U	U	V	V	W	W
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.001	<0.400	<0.001	<0.400	<0.001	<0.400
Coal Slurry	55822	0.008	3.20	0.160	64	0.002	0.800
	On starts Manufacture	~	N/	N/L	M	-	-
O a ser a la la l		Y	Ŷ	Yb	Yb	Zn	Zn
Sample Id	Sample Number						
•	Sample Number	mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Sample Id Det Limit Coal Slurry	55822	mg/l <0.001 0.017	mg/kg <0.400 6.80	mg/l <0.001 0.003	mg/kg <0.400 1.20	mg/l <0.001 0.236	mg/kg <0.400 94

Sample Id	Sample Number	Zr	Zr
		mg/l	mg/kg
Det Limit		<0.001	<0.400
Coal Slurry	55822	0.371	148

W WATERLAB

WATERLAB (PTY) LTD

23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020

Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES BIO-ELUTION

Date received:	20/02/2019	Report number: 81060	Date completed:	22/03/2019
Project number:	132		Order number:	PO19-09925
Client name:	Jones & Wagener		Contact person:	Marius van Zyl
Address:	PO Box 1434, Rivonia, 2128		Email:	vanzyl@jaws.co.za
Telephone:	0115190200		Cell:	082 880 1250

Analyses								
Analyses	Coal	Slurry	Coal	Slurry	Coa	l Slurry	Coal Slurry 55822 Alveolar 1 50 mg/e mg/kg 133 6650	
Sample Number	55	822	55	822	5	5822	558	322
	Ga	stric	Inte	stinal	S	weat	Alve	olar
Dry Mass Used (g)		1		1		1	1	
Volume Used (mℓ)	Ę	50	Ę	50		50	5	0
Inorganic Anions	mg/ℓ	mg/kg	mg/ℓ	mg/kg	mg/ℓ	mg/kg	mg/ℓ	mg/kg
Chloride as Cl	5	250	<2	<100	21	1050	133	6650
Sulphate as SO4	17	850	26	1300	12	600	23	1150
Nitrate as N	<0.1	<5.0	<0.1	<5.0	<0.1	<5.0	<0.1	<5.0
Fluoride as F	<0.2	<10	0.5	25	16	800	<0.2	<10
Ortho-Phosphate as P	4.1	205	<0.1	<5.0	<0.1	<5.0	<0.1	<5.0
Hexavalent Chromium as Cr6+	<0.010	<0.5	<0.010	<0.5	0.028	1.40	<0.010	<0.5
ICP-MS full Quant		See tab ICP Bio-Elution						

Bio-Elution Testing Jones & Wagener Report No 81060 Order No PO19-09925

Coal Slurry		Lab ID	Coal Slurry		Lab ID	Coal Slurry		Lab ID	Coal Slurry		Lab ID
Gastric Extra Sample Weig		55822 1.0000	Intestinal Sample Weig	n h f	55822 1.0000	Alveolar Semple Wei	abt	55822 1.0000	Sweat Sample Weig	a b f	55822 1.0000
Sample Velo		50	Sample Velo		50	Sample Wei Sample Volu		50	Sample Vel		50
Massa / liter		50	Massa / liter		50	Massa / liter		50	Massa / liter		50
Element	mg/l	mg/kg	Element	mg/l	mg/kg	Element	mg/l	mg/kg	Element	mg/l	mg/kg
AI	9.380	469	AI	0.014	1	AI	0.833	42	Al	0.000	0
Са	77.060	3853	Ca	15.430	772	Ca	54.670	2734	Ca	0.000	0
Fe	195.500	9775	Fe	0.000	0	Fe	64.620	3231	Fe	0.445	22
K	3.090	155	K	0.000	0	K	0.765	38	K	0.000	0
Mg	10.220	511	Mg	7.190	360	Mg	15.530	777	Mg	4.100	205
Mn	6.160	308	Mn	0.194	10	Mn	4.784	239	Mn	0.183	9
Na	26.400	1320	Na	0.000	0	Na	14.500	725	Na	0.000	0
Si	17.560	878	Si	1.670	84	Si	3.450	173	Si	2.760	138
Ag As	0.001 0.013	0	Ag As	0.000	0	Ag As	0.000 0.012	0	Ag As	0.000	0
As	0.009	0	As	0.000	0	Au	0.012	0	Au	0.002	0
B	0.054	3	B	0.028	1	B	0.028	1	B	0.031	2
Ba	3.186	159	Ba	0.933	47	Ba	0.200	10	Ba	1.454	73
Be	0.010	1	Be	0.000	0	Be	0.000	0	Be	0.003	0
Bi	0.001	0	Bi	0.000	0	Bi	0.000	0	Bi	0.000	0
Cd	0.001	0	Cd	0.000	0	Cd	0.000	0	Cd	0.001	0
Ce	0.064	3	Ce	0.000	0	Ce	0.000	0	Ce	0.004	0
Co Cr	0.104 0.056	<u>5</u> 3	Co Cr	0.001	0	Co Cr	0.003	0	Co Cr	0.068	3
CI	0.006	0	Cs	0.001	0	CI	0.000	0	Cr	0.000	0
Cu	0.230	11	Cu	0.000	5	Cu	0.000	1	Cu	0.000	2
Dy	0.014	1	Dy	0.000	0	Dy	0.000	0	Dy	0.002	0
Er	0.008	0	Er	0.000	0	Er	0.000	0	Er	0.002	0
Eu	0.003	0	Eu	0.000	0	Eu	0.000	0	Eu	0.001	0
Ga	0.067	3	Ga	0.021	1	Ga	0.005	0	Ga	0.033	2
Gd	0.015	1	Gd	0.000	0	Gd	0.000	0	Gd	0.001	0
Ge Hf	0.002	0	Ge Hf	0.000	0	Ge Hf	0.001	0	Ge Hf	0.003	0
Hg	0.008	0	Hg	0.002	0	Hg	0.002	0	Hg	0.000	0
Ho	0.003	0	Ho	0.000	0	Ho	0.000	0	Ho	0.000	0
In	0.000	0	In	0.000	0	In	0.000	0	In	0.000	0
lr	0.000	0	lr	0.000	0	lr	0.000	0	lr	0.000	0
La	0.028	1	La	0.000	0	La	0.000	0	La	0.002	0
Li	0.012	1	Li	0.002	0	Li	0.002	0	Li	0.004	0
Lu	0.001	0	Lu	0.000	0	Lu	0.000	0	Lu	0.000	0
Mo	0.000	0	Mo	0.003	0	Mo	0.002	0	Mo	0.002	0
Nb Pd	0.000	0	Nb Pd	0.000	0	Nb Pd	0.000	0	Nb Pd	0.000	0
Pr	0.000	0	Pr	0.000	0	Pr	0.000	0	Pr	0.001	0
Pt	0.000	0	Pt	0.000	0	Pt	0.000	0	Pt	0.000	0
Rb	0.033	2	Rb	0.002	0	Rb	0.004	0	Rb	0.009	0
Rh	0.000	0	Rh	0.000	0	Rh	0.000	0	Rh	0.000	0
Ru	0.000	0	Ru	0.000	0	Ru	0.000	0	Ru	0.000	0
Sb	0.000	0	Sb	0.001	0	Sb	0.002	0	Sb	0.001	0
Sc So	0.008	0	Sc Se	0.000 0.003	0	Sc	0.000 0.000	0	Sc	0.001	0
Se Sm	0.000	0	Se Sm	0.003	0	Se Sm	0.000	0	Se Sm	0.000	0
Sn	0.012	0	Sn	0.000	0	Sn	0.000	0	Sn	0.001	0
Sr	0.755	38	Sr	0.357	18	Sr	0.253	13	Sr	0.544	27
Та	0.000	0	Ta	0.000	0	Ta	0.000	0	Та	0.000	0
Tb	0.002	0	Tb	0.000	0	Tb	0.000	0	Tb	0.000	0
Те	0.000	0	Te	0.000	0	Te	0.000	0	Те	0.000	0
Th Ti	0.012	1	Th Ti	0.001	0	Th Ti	0.000	0	Th T:	0.000	0
Ti Tl	0.010	0	Ti Tl	0.002	0	Ti TI	0.000 0.000	0	Ti Tl	0.005	0
Tm	0.001	0	Tm	0.000	0	Tm	0.000	0	Tm	0.001	0
U	0.001	0	U	0.000	0	U	0.000	0	U	0.000	0
V	0.000	0	V	0.010	1	V	0.006	0	V	0.003	0
Ŵ	0.000	0	Ŵ	0.000	0	W	0.000	0	Ŵ	0.000	0
Y	0.071	4	Y	0.000	0	Y	0.000	0	Y	0.013	1
Yb	0.006	0	Yb	0.000	0	Yb	0.000	0	Yb	0.002	0
Zn	0.501	25	Zn	0.000	0	Zn Zn	0.000	0	Zn	0.316	16
Zr	0.002	0	Zr	0.000	0	Zr	0.000	0	Zr	0.000	0

WATERLAB (PTY) LTD

23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020 Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES TRANSFORMATION / DISSOLUTION

Date received:	20/02/2019	Report number: 81060	Date completed:	22/03/2019
Project number:	132		Order number:	PO19-09925
Client name:	Jones & Wagener		Contact person:	Marius van Zyl
Address:	PO Box 1434, Rivonia, 2128		Email:	vanzyl@jaws.co.za
Telephone:	0115190200		Cell:	082 880 1250

Analyzan							
Analyses	Coal Slurry						
Sample Number	558	822					
Dry Mass Used (g)	0	.1					
Volume Used (mℓ)	10	00					
Inorganic Anions	mg/ℓ	mg/kg					
Chloride as Cl	<2	<20000					
Sulphate as SO4	<2	<2000					
Nitrate as N	<0.1	<1000					
Fluoride as F	<0.2	<2000					
Ortho-Phosphate as P	<0.1	<1000					
Hexavalent Chromium as Cr6+	<0.010	<100					
ICP-MS full Quant	See tab ICP TDT						

Jones & Wa Report No 7	81060	on testing
Order No P	O19-09925	Lab ID
Coal Slurry		55822
Sample We Sample Vol		0.1 1000
Massa / lite	r	10000
Element Al	mg/l 0.000	mg/kg 0
Ca	0.000	0
Fe	0.000	0
K	0.039 0.070	390
Mg Mn	0.070	700 20
Na	0.370	3700
Si	0.033	330
Ag Al	0.000	0
As	0.000	2
Au	0.000	0
B Ba	0.000	0 12
Be	0.000	0
Bi	0.000	0
Ca Cd	7.450 0.000	74500 0
Ce	0.000	0
Co	0.000	1
Cr	0.000	0
Cs Cu	0.000	0
Dy	0.000	0
Er	0.000	0
Eu Fe	0.000	0 110
Ga	0.000	2
Gd	0.000	0
Ge Hf	0.000	0
Hg	0.000	2
Ho	0.000	0
ln Ir	0.000 0.000	0
K	0.000	0
La	0.000	0
Li Lu	0.000 0.000	0
Mg	0.000	0
Mn	0.000	0
Mo Na	0.000 20.900	0 209000
Nb	0.000	209000
Nd	0.000	0
Ni	0.000	0
Os P	0.000	0
Pb	0.000	0
Pd	0.000	0
Pr Pt	0.000	0
Rb	0.000	0
Rh	0.000	0
Ru Sb	0.000	0 1
Sc	0.000	0
Se	0.000	0
Si Sm	0.000 0.000	0
Sn	0.000	0
Sr	0.001	12
Ta Tb	0.000 0.000	0
Te	0.000	2
Th	0.000	0
Ti Tl	0.009	87 0
Tm	0.000 0.000	0
V	0.000	3
W	0.000	0
Y Yb	0.000	0
Zn	0.000	0
Zr	0.000	0

WATERLAB (PTY) LTD

CERTIFICATE OF ANALYSIS

Proje Client

: Jones and Wagener Engineering : 81065-A

Report Nur	nber							
Sample Sample								
Origin	ID							

ID												
	Ag	AI	As	Au	В	Ва	Be	Bi	Са	Cd	Ce	Со
	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	< 0.001	<0.100	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<1	< 0.001	< 0.001	< 0.001
55842	< 0.001	< 0.100	< 0.001	< 0.001	0.119	0.582	< 0.001	< 0.001	21	< 0.001	< 0.001	0.002
55843	< 0.001	< 0.100	< 0.001	< 0.001	0.019	0.212	< 0.001	< 0.001	8	< 0.001	< 0.001	0.002
	55842	Ag (mg/L) < 0.001 55842 < 0.001	Ag Al (mg/L) (mg/L) < 0.001 <0.100 55842 < 0.001 < 0.100	Ag Al As (mg/L) (mg/L) (mg/L) < 0.001 <0.100 < 0.001 55842 < 0.001 < 0.100 < 0.001	Ag Al As Au (mg/L) (mg/L) (mg/L) (mg/L) < 0.001 <0.100 <0.001 <0.001 55842 < 0.001 < 0.100 < 0.001 <0.001	Ag Ai As Au B (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) < 0.001 <0.100 <0.001 <0.001 <0.001 55842 <0.001 <0.100 <0.001 <0.001 0.119	Ag Al As Au Ba Ba (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) < 0.001 <0.100 <0.001 <0.001 <0.001 <0.001 <0.001 55842 <0.001 <0.100 <0.001 <0.001 0.119 0.582	Ag AI As Au Ba Ba Be (mg/L) (mg/L)	Ag AI As Au Ba Ba Be Bi (mg/L) (mg/L)	Ag Al As Au Ba Ba Be Bi Ca (mg/L) (mg/L)	Ag Al As Au Ba Ba Be Bi Ca Cd (mg/L) (mg/	Ag Al As Au B Ba Be Bi Ca Cd Ce (mg/L) (mg/L)

Sample Sample

Origin	ID												
		Cr	Cs	Cu	Dy	Er	Eu	Fe	Ga	Gd	Ge	Hf	Hg
		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.025	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
UB110	55842	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.041	0.036	< 0.001	< 0.001	0.001	< 0.001
WBH2510	55843	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.079	0.016	< 0.001	< 0.001	< 0.001	< 0.001

Sample	Sample												
Origin	ID	1											
		Но	In	lr	K	La	Li	Lu	Mg	Mn	Мо	Na	Nb
		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
		< 0.001	< 0.001	< 0.001	<0.5	< 0.001	< 0.001	< 0.001	<1	<0.025	< 0.001	<1	< 0.001
UB110	55842	< 0.001	< 0.001	< 0.001	4.3	< 0.001	0.007	< 0.001	13	0.248	0.001	68	< 0.001
WBH2510	55843	< 0.001	< 0.001	< 0.001	2.2	< 0.001	0.004	< 0.001	3	0.315	< 0.001	16	< 0.001

Sample	Sample												
Origin	ID												
		Nd	Ni	Os	Р	Pb	Pd	Pr	Pt	Rb	Rh	Ru	Sb
		(mg/L)											
		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
UB110	55842	< 0.001	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.004	< 0.001	< 0.001	< 0.001
WBH2510	55843	< 0.001	0.002	< 0.001	0.023	< 0.001	< 0.001	< 0.001	< 0.001	0.002	< 0.001	< 0.001	0.001

Sample Sample Origin ID

Ongin	ID D												
		Sc	Se	Si	Sm	Sn	Sr	Та	Tb	Те	Th	Ti	TI
		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
		< 0.001	< 0.001	<0.2	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
UB110	55842	< 0.001	< 0.001	5.1	< 0.001	< 0.001	0.293	< 0.001	< 0.001	< 0.001	< 0.001	0.008	< 0.001
WBH2510	55843	< 0.001	< 0.001	10.1	< 0.001	< 0.001	0.091	< 0.001	< 0.001	< 0.001	< 0.001	0.003	< 0.001

Sample Sample

Origin	ID								
		Tm	U	V	W	Y	Yb	Zn	Zr
		(mg/L)							
		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
UB110	55842	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.003	< 0.001
WBH2510	55843	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.004	< 0.001

SOUTH32 SOUTH AFRICA COAL HOLDINGS (PTY) LTD


WOLVEKRANS COLLIERY: VANDYKSDRIFT CENTRAL MINING INFRASTRUCTURE DEVELOPMENT COAL SLURRY <u>GEOCHEMICAL ASSESSMENT AND WASTE CLASSIFICATION REPORT</u>

Report: JW103/19/G535 - Rev 0

APPENDIX B

INFOTOX WASTE CLASSIFICATION REPORT

Project conducted on behalf of Jones & Wagener

GHS Classification of Coal Slurry

Report No 014 - 2019 Rev 2.0

Compiled by

M H Fourie PhD MSc (Biological Science) MSc (Epidemiology) Pr Sci Nat (Toxicological Science)

17 April 2019

Copyright Warning

Copyright of all text and other matter in this document, including the manner of presentation, is the exclusive property of INFOTOX (Pty) Ltd. It is a criminal offence to publish this document or any part of the document under a different cover, or to reproduce and/or use, without written consent, any technical procedure and/or technique contained in this document. The intellectual property reflected in the contents resides with INFOTOX (Pty) Ltd and shall not be used for any project or activity that does not involve INFOTOX (Pty) Ltd, without the written consent of INFOTOX (Pty) Ltd.

This report has been prepared by INFOTOX (Pty) Ltd with all reasonable skill, care and diligence within the terms of the Agreement with the Client. The report is confidential to the client and INFOTOX (Pty) Ltd accepts no responsibility of whatsoever nature to third parties whom this report, or any part thereof, is made known. Any such parties rely upon the report at their own risk.

WCA van Niekerk PhD QEP (USA) Pr Sci Nat (Environmental Science) Managing Director

17 April 2019

Internal review:

WCA van Niekerk PhD QEP (USA) Pr Sci Nat (Environmental Science)

Expertise and Declaration of Independence

This report was prepared by INFOTOX (Pty) Ltd ("INFOTOX"). Established in 1991, INFOTOX is a professional scientific company, highly focused in the discipline of ecotoxicological risk assessment. Both occupational and environmental human health risks, as well as risks to ecological receptors, are addressed.

Dr Willie van Niekerk, Managing Director of INFOTOX, has BSc, Hons BSc and MSc degrees from the University of Potchefstroom and a PhD from the University of South Africa. He is a Qualified Environmental Professional (QEP), certified by the Institute of Professional Environmental Practice (IPEP) in the USA (No 07960160), and a registered Professional Natural Scientist (Pr Sci Nat, Environmental Science, No 400284/04). Dr Van Niekerk has specialised in chemical toxicology and human health risk assessments, but he has experience in many other areas in the disciplines of analytical and environmental sciences.

Dr Marlene Fourie has BSc and Hons BSc degrees from the University of Stellenbosch and MSc and PhD degrees from the University of Pretoria. Her field of specialisation is reproductive biology/toxicology. Dr Fourie also has an MSc-degree in epidemiology from the University of Pretoria. Following positions as Medical Natural Scientist at the Andrology Unit, Department of Urology, University of Pretoria and the Pretoria Academic Hospital from 1987 to 2001, she joined INFOTOX as a Medical Biological Scientist. Dr Fourie has conducted many health risk assessments and projects relating to the health status of communities. She is a registered Professional Natural Scientist (Pr Sci Nat, Toxicological Science, No 400190/14). Dr Fourie has completed the Globally Harmonised System (GHS) course *Classifying and Labelling Chemicals According to the UN GHS*, presented by the United Nations Institute for Training and Research (UNITAR) in 2017, with previous experience in GHS classification since 2010.

This specialist report was compiled for Jones & Wagener. We do hereby declare that we are financially and otherwise independent of Jones & Wagener.

Signed on behalf of INFOTOX (Pty) Ltd, duly authorised in the capacity of Managing Director:

Willem Christiaan Abraham van Niekerk

17 April 2019

Executive Summary

South Africa has adopted the Globally Harmonized System (GHS) of classification and labelling of chemicals, as represented in South African National Standard SANS 10234:2008. The aim of the GHS is to have, worldwide, the same:

- criteria for classifying chemicals according to their physical, health and environmental hazards; and
- hazard communication requirements for labelling and safety data sheets.

The GHS is based on a broad description of hazard classes in the main categories of <u>physical hazards</u>, <u>hazards to human health</u> and <u>hazards to aquatic ecosystems</u>. For each of the hazards a series of hazard statement codes (H-codes) has been developed, to assist in the classification. For each of the hazard statement codes that relates to the intrinsic properties of a hazardous constituent in the slurry under assessment there is a limiting concentration above which the slurry would classify as hazardous and below which it would be non-hazardous. Multi-component materials are dealt with by summation of concentrations of constituents with similar hazards. Where reference is made to the GHS in this report, it means the GHS as represented in SANS 10234:2008. Hazard classification according to the GHS is the basic step in the preparation of safety data sheets (SDSs) that provide information and codes for hazard communication.

A coal slurry sample was submitted for analysis by Jones & Wagener. Results were given to INFOTOX for hazard assessment following the approach and methods prescribed in SANS 10234:2008. INFOTOX has not evaluated any physical hazards as defined in the GHS. Physical hazards refer to explosive properties, flammability, self-reacting and self-heating characteristics, pyrophoric and oxidising properties, generation of hazardous or flammable gases when in contact with water and chemical properties that will materially damage, or even destroy metals.

The slurry is not classified as acutely toxic by the oral, dermal or inhalation routes of exposure. Based on the chemical properties of the constituents of the slurry, coal slurry is not a corrosion or irritation hazard to the skin or eyes. However, although SANS 10234:2008 does not include a specific hazard class for mechanical eve or skin irritation, it is noted that coal slurry may cause mechanical irritation to the skin and eyes after prolonged unprotected exposure. The slurry is not hazardous with regard to skin or respiratory sensitisation. Coal slurry is not classified as a germ cell mutagen and is not a cancer hazard. The slurry is not classified as a reproductive hazard, or as hazardous to specific target organs following single exposures. If the coal slurry should dry out and the dry material should generate dust, prolonged or repeated inhalation may cause damage to the lungs, due to the presence of the quartz mineral. However, the outcome is not necessarily silicosis, but suitable respiratory equipment is recommended if dust is generated during use or handling of dry slurry solids. The slurry precipitate is muddy and presents an aspiration hazard; therefore, the slurry my be harmful if swallowed and enters airways. With regard to the aquatic environment, coal slurry is not harmful to the aquatic environment. However, this does not imply that coal slurry may be disposed of in the aquatic environment and the usual precautionary principles to prevent environmental spills of the slurry are applicable.

Table of Contents

1	Introduction and terms of reference	. 1
2	Chemical analyses for the classification of materials	. 1
3 3.1 3.2 3.3 3.4	Analytical results Bio-elution (bio-accessibility) tests Transformation/dissolution leach test pH, deionised water leach test and hexavalent chromium X-Ray Diffraction analysis	. 2 . 3 . 4
4	Physical hazards assessment	. 5
5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9	Human health hazard assessment Introduction Acute toxicity data review Skin and eye corrosion and irritation Skin and respiratory sensitisation Germ cell mutagenicity Carcinogenicity Reproductive toxicity Specific target organ toxicity Aspiration hazards	. 5 . 7 . 9 10 11 12
6 6.1 6.2 6.3 6.4 6.5	Assessment of hazards to aquatic ecosystems	14 14 14 15
7	Conclusions - classification according to the GHS	18
8	References	19

List of Tables

Table 3.1.1:	Bio-accessibility of elemental constituents of the slurry (bio-elution tests) 3
Table 3.2.1:	Results of the transformation/dissolution leach tests conducted on the slurry4
Table 3.3.1:	pH, anions and hexavalent chromium4
Table 3.4.1:	Mineral composition of the slurry based on XRD5
Table 5.2.1:	Oral acute toxicity estimates for the constituents of the slurry
Table 5.2.2:	Dermal acute toxicity estimates for the constituents of the slurry7
Table 5.2.3:	Inhalation acute toxicity estimates for the constituents of the slurry7
Table 5.2.4:	Acute toxicity classification of the slurry7
Table 5.3.1:	Skin hazard classification of constituents of the slurry
Table 5.3.2:	Summary of criteria for the classification of the slurry as hazardous to skin 8
Table 5.3.3:	Eye hazard classification of constituents in the slurry
Table 5.3.4:	Criteria for the classification of the slurry in eye categories 1 or 2
Table 5.3.5:	Skin hazard classification of the slurry9
Table 5.3.6:	Classification of the slurry as hazardous to the eyes9
Table 5.4.1:	Constituents of the slurry classified as skin contact or respiratory sensitisers10
Table 5.4.2:	Classification of the slurry with regard to skin or respiratory sensitisation 10
Table 5.5.1:	Constituents of the slurry classified as germ cell mutagens
Table 5.5.2:	Germ cell mutagen classification of the slurry10
Table 5.6.1:	Constituents of the slurry classified as carcinogenic11
Table 5.6.2:	Carcinogenicity classification of the slurry11
Table 5.7.1:	Constituents of the slurry classified as reproductive toxicants
Table 5.7.2:	Reproductive hazard classification of the slurry12
Table 5.8.1:	Constituents of the slag classified as STOT-SE
Table 5.8.2:	Constituents classified as STOT-RE 13
Table 5.8.3:	STOT classification of the slurry13
Table 5.9.1:	Aspiration hazard classification of material13
Table 6.2.1:	Hazard categories of acute toxicity to the aquatic environment
Table 6.3.1:	Hazard categories of chronic toxicity to the aquatic environment
Table 6.3.2:	Chronic toxicity hazard category 4: "safety net" classification
Table 6.4.1:	Aquatic toxicity M factors for highly toxic constituents of mixtures (SANS 10234:2008)
Table 6.4.2:	Constituents classified as hazardous to the aquatic environment, acute hazard category 1, H400, very toxic to aquatic life

Table 6.4.3:	Constituents classified as hazardous to the aquatic environment, long- term (chronic) hazard categories	. 17
Table 6.4.4:	Equations and limiting concentrations for classification of mixtures regarding acute hazards to the aquatic environment following the summation approach	. 17
Table 6.4.5:	Equations and limiting concentrations for classification of mixtures regarding chronic hazards to the aquatic environment following the summation approach	. 17
Table 6.5.1:	Acute hazard to the aquatic environment classification.	. 18
Table 6.5.2:	Chronic hazard to the aquatic environment classification.	. 18
Table 7.1:	Summary of hazard classifications of the slurry	. 18

1 Introduction and terms of reference

South Africa has adopted the Globally Harmonized System (GHS) of classification and labelling of chemicals, as represented in South African National Standard SANS 10234:2008. The aim of the GHS is to have, worldwide, the same:

- criteria for classifying chemicals according to their physical, health and environmental hazards; and
- hazard communication requirements for labelling and safety data sheets.

The GHS is based on a broad description of hazard classes in the main categories of <u>physical hazards</u>, <u>hazards to human health</u> and <u>hazards to aquatic ecosystems</u>. For each of the hazard categories a series of hazard statement codes (H-codes) has been developed, to assist in the classification. The assessment of a multi-component material starts with the individual assessment of the constituents of the slurry. A multi-component chemical or mineralogical material is referred to as a mixture or a preparation. For each of the hazard statement codes that relates to the intrinsic properties of hazardous constituents in the slurry under assessment, a limiting concentration is specified above which the slurry would classify as hazardous and below which it would be non-hazardous. Multi-component materials are dealt with by summation of concentrations of constituents with similar hazards. Where reference is made to the GHS in this report, it means the GHS as represented in SANS 10234:2008. Hazard classification according to the GHS is the basic step in the preparation of safety data sheets (SDSs) that provide information and codes for hazard communication.

Material was submitted for analysis by Jones & Wagener. Extractions and analyses were conducted on dried slurry material. Reference to "slurry" in the text thus means "dried slurry material". Results were given to INFOTOX for hazard assessment following the approach and methods prescribed in SANS 10234:2008.

2 Chemical analyses for the classification of materials

The default hazard classification is based on the total concentration of a substance, expressed as a percentage. However, hazard classification is complex in the case of certain materials that can be described as preparations, for which the default classification approach is not suitable. Examples of such preparations are soil, metallurgical slags and dusts, mineral ores and metal alloys. It should be recognised that these preparations have their own specific physical, chemical and toxicological/ecotoxicological properties distinct from those of their elemental constituents.

Bio-elution testing is a means of estimating the bio-accessibility of inorganic elements from preparations. Bio-elution refers to in vitro methods used to measure the elution of a substance, such as inorganic elements, in artificial biological fluids. Bio-accessibility refers to the amount of a chemical that is available to interact with an organism's contact surfaces, and is therefore potentially available for absorption. Relevant simulated fluids have been developed for the gastric, intestinal and alveolar systems, saliva and for sweat, since the widely used deionised

water leach test is not representative of the biological environment. The bio-accessible concentration of an element is expressed as the mass per cent of an element in the preparation that would be available to interact with relevant physiological contact surfaces according to the specific body fluid. For example, hazards associated with inhalation of elements in dusts from materials can be determined from bio-elution tests in alveolar fluid. The assessment based on the bio-elution tests is accepted as the most relevant, since the tests represent the bio-accessibility of the relevant elements, as opposed to "exhaustive" analyses such as the aqua regia analysis.

Bio-elution tests were conducted by Waterlab (Pty) Ltd. The bio-elution results of the samples are presented in Section 3.1.

The GHS provides guidance on how to deal with hazards to the aquatic ecosystem in the case of preparations that contain poorly soluble elements, such as mineral ores and dusts or mineralogical materials. Assessment of hazards to the aquatic environment requires a test for transformation/dissolution of metals and metal compounds in aqueous media, as described in the GHS. This test provides information on the proportion of a metal, expressed as mass per cent in the slurry, which would be available to exert its toxic effects on aquatic organisms in freshwater systems. Elution is performed at pH 6, pH 7 and pH 8 in a standard aqueous test medium that contains sodium bicarbonate, potassium chloride, calcium chloride and magnesium sulphate.

Transformation/dissolution tests were conducted by Waterlab (Pty) Ltd. The test results of the samples are presented in Section 3.2.

Anions are determined by Waterlab (Pty) Ltd in a separate deionised water leach test at a liquid-to-solids ratio of 20:1 (v/m). The pH is reported, which may be useful in interpretations regarding the potential corrosivity of a preparation. These data are presented in Section 3.3.

Fine particulates of certain mineralogical phases may exert toxic effects, most notably irritation effects, which may not be evident from the interpretation of bio-elution tests. These potential effects are evaluated by examination of the mineralogical properties of the slurry by means of X-Ray Diffraction (XRD). XRD investigates the crystalline structure of materials, and one of the applications is to identify the mineral composition of materials such as metallurgical materials. XRD analysis was done by XRD Analytical Consulting cc on data collected by a PANalytical diffractometer using the Autoquan Rietveld software. The XRD results for the slurry are listed in Section 3.4.

3 Analytical results

3.1 Bio-elution (bio-accessibility) tests

The results of the bio-elution (bio-accessibility) tests are presented in Table 3.1.1. Elements not detected by the analytical laboratory are reported as "not detected". Quantities in mg/kg are reported to the second decimal and values smaller than 0.01 are indicated as < 0.01. Mass per cent values are reported to the fourth decimal and mass percentages smaller than 0.0001 are reported as < 0.0001.

Analyte	Gastro-intes	tinal elution*	Sweat	elution	Alveolar elution	
	mg/kg	Mass %	mg/kg	Mass %	mg/kg	Mass %
Ag	0.07	<0.0001	Not de	etected	Not de	tected
AI	469.00	0.0469	Not de	etected	41.65	0.0042
As	0.67	0.0001	0.12	<0.0001	0.59	0.0001
В	2.68	0.0003	1.53	0.0002	1.42	0.0001
Ва	159.32	0.0159	72.72	0.0073	10.00	0.0010
Be	0.51	0.0001	0.16	<0.0001	Not de	tected
Са	3 853.00	0.3853	Not de	etected	2 733.50	0.2734
Cd	0.06	<0.0001	0.04	<0.0001	Not de	tected
Со	5.21	0.0005	3.41	0.0003	0.16	<0.0001
Cr (total)	2.78	0.0003	0.32	<0.0001	Not de	tected
Cu	11.48	0.0011	1.79	0.0002	0.82	0.0001
Fe	9 775.00	0.9775	22.25	0.0022	3 231.00	0.3231
Hg	0.03	<0.0001	Not de	etected	0.01	<0.0001
Li	0.59	0.0001	0.19	<0.0001	0.11	<0.0001
Mg	511.00	0.0511	205.00	0.0205	776.50	0.0777
Mn	308.00	0.0308	9.15	0.0009	239.20	0.0239
Мо	0.13	<0.0001	0.08	<0.0001	0.11	<0.0001
Na	1 320.00	0.1320	Not de	etected	725.00	0.0725
Ni	11.03	0.0011	7.52	0.0008	0.49	<0.0001
Pb	4.25	0.0004	0.08	<0.0001	Not de	tected
Sb	0.05	<0.0001	0.07	<0.0001	0.08	<0.0001
Se	0.14	<0.0001	Not de	etected	Not de	tected
Sn	0.01	<0.0001	Not de	etected	Not de	tected
TI	0.07	<0.0001	0.03	<0.0001	Not de	tected
V	0.52	0.0001	0.13	<0.0001	0.31	<0.0001
W	0.02	<0.0001	0.01	<0.0001	0.01	<0.0001
Zn	25.05	0.0025	15.82	0.0016	Not de	tected
Zr	0.08	<0.0001	0.02	<0.0001	0.01	<0.0001

Table 3.1.1:Bio-accessibility of elemental constituents of the slurry (bio-elution tests).

* Maximum concentration of the gastric and intestinal elutions

3.2 Transformation/dissolution leach test

Results of the transformation/dissolution test for the assessment of hazards to aquatic ecosystems are presented in Table 3.2.1. Elements not detected by the analytical laboratory are reported as "not detected". Quantities in mg/kg are reported to the second decimal and values smaller than 0.01 are indicated as < 0.01. Mass per cent values are reported to the fourth decimal and mass percentages smaller than 0.0001 are reported as < 0.0001.

Element	Leachable cor	ncentration
Element	mg/kg	Mass %
Ag	Not dete	ected
As	1.59	0.0002
Ве	Not dete	ected
Cd	Not dete	ected
Co	0.75	0.0001
Cr (total)	Not dete	ected
Cu	Not dete	ected
Hg	2.02	0.0002
Mn	Not dete	ected
Ni	Not dete	ected
Pb	Not dete	ected
Sb	0.57	0.0001
Se	Not dete	ected
TI	0.18	0.0000
Zn	Not dete	ected

Table 3.2.1:Results of the transformation/dissolution leach tests conducted on the
slurry.

3.3 pH, deionised water leach test and hexavalent chromium

Results of the deionised water leach test at a liquid-to-solids ratio of 20:1 (v/m) are presented in Table 3.3.1. Decimals are as reported by the analytical laboratory. The paste pH is reported, which may be useful in interpretations regarding the potential corrosivity of the slurry. Hexavalent chromium was determined through alkaline digestion and colorimetric analysis by ultraviolet-visible (UV-VIS) spectrophotometry.

Table 3.3.1:	pH, anions and hexavalent chromium.
--------------	-------------------------------------

Parameter	Value		
рН	7.4		
Anions	mg/kg leachable	Mass %	
Nitrate as N	0.4	<0.0001	
Ortho-phosphate as P	< 0.1	not detected	
Fluoride as F	1.4	0.0001	
Hexavalent Cr	<0.1	not detected	

3.4 X-Ray Diffraction analysis

The XRD results for the slurry are listed in Table 3.4.1. The percentage by mass is rounded as reported by the laboratory.

Mineralogical phase	Chemical formula	CAS number	Mass %
Quartz	SiO ₂	14808-60-7	14.18
Goethite	αFeO(OH)	1310-14-1	0.51
Kaolinite	$AI_2O_3\cdot 2SiO_2\cdot 2H_2O$	1318-74-7	21.13
Dolomite	CaMg(CO ₃) ₂	16389-88-1	0.41
Microcline	K(AISi ₃ O ₈)	68476-25-5	4.52
Muscovite	KAI ₂ (AISi ₃ O ₁₀)(F,OH) ₂	1318-94-1	4.80
Amorphous	Not applicable	Unknown	54.45

Table 3.4.1:Mineral composition of the slurry based on XRD.

4 Physical hazards assessment

Physical hazards refer to explosive properties, flammability, self-reacting and self-heating characteristics, pyrophoric and oxidising properties, generation of hazardous or flammable gases when in contact with water and chemical properties that will materially damage, or even destroy metals. INFOTOX has not evaluated any physical hazards as defined in the GHS.

5 Human health hazard assessment

5.1 Introduction

The constituents were classified in various GHS hazard categories according to SANS 10234:2008. Classifications were according to the salts of constituents. The classifications were sourced from the Classification and Labelling Inventory (C&L Inventory) of the European Chemical Agency (ECHA online). Salts with appropriate thermodynamic properties were selected. Classifications were done with regard to hazards to human health related to each of the following hazard classes:

- Acute toxicity
- Skin corrosion and skin irritation
- Serious eye damage and eye irritation
- Respiratory sensitisation and skin sensitisation
- Germ cell mutagenicity
- Carcinogenicity
- Reproductive toxicity
- Specific target organ toxicity single exposure Specific target organ toxicity — repeated exposure
- Aspiration hazards

5.2 Acute toxicity data review

According to SANS 10234:2008, substances are allocated to one of five acute toxicity hazard categories based on acute toxicity (lethal dose data) by the oral, dermal or inhalation route of exposure. Acute toxicity values, namely, the 50 per cent lethal dose (LD50¹) for oral or dermal exposure and the 50 per cent lethal concentration (LC50²) for inhalation exposure, are required for classification purposes. These are presented in Tables 5.2.1 to 5.2.3 for oral, dermal and inhalation toxicity, respectively. Acute toxicity values are not rounded to the nearest integer, because the values are used in further calculations that are rounded.

Flowert	Oral LD50		
Element	mg/kg	Acute toxicity category and H-code	
AI	394.3	4 – H302	
As	26.0	2 – H300	
Ва	262.7	3 – H301	
Ве	8.6	2 – H300	
Cd	237.7	3 – H301	
Со	161.1	3 – H301	
Cu	199.1	3 – H301	
F	45.0	2 – H300	
Fe	183.8	3 – H301	
Hg	3.1	1 – H300	
Li	63.1	3 – H301	
Ni	189.6	3 – H301	
Pb	341.6	4 – H302	
Sb	229.0	3 – H301	
Se	69.0	3 – H301	
TI	4.0	1 – H300	
V	209.0	3 – H301	
Zn	202.5	3 – H301	

Table 5.2.1:	Oral acute toxicity estimates for the constituents of the slurry.
--------------	---

¹ The LD50 is the amount of a chemical, given all at once, which causes the death of 50 per cent of a group of test animals.

² LC50 is the concentration of a chemical in air which causes the death of 50 per cent of a group of test animals exposed through inhalation within the stated study time.

Table 5.2.2:Dermal acute toxicity estimates for the constituents of the slurry.

Element	Dermal LD50	 Acute toxicity category and H-code 	
Element	mg/kg	Acute toxicity category and n-code	
Hg	30.9	1 - H300	

Table 5.2.3:	Inhalation acute toxicity estimates for the constituents of the slurry.
--------------	---

Element	Inhalation LC50	Aquita taviaity actor and H anda
Element	mg/litre	Acute toxicity category and H-code
As	0.1	2 – H330
Ва	0.8	3 – H331
Be	0.004	1 – H330
Cd	0.02	1 – H330
Hg	0.03	1 – H330
Ni	0.68	3 – H331
Pb	1.02	4 – H332
Sb	0.7	3 – H331
Se	0.35	2 – H330
ТІ	0.04	1 – H330

The oral, dermal and inhalation toxicity data in Tables 5.2.1 to 5.2.3, the bio-elution results in Table 3.1.1, and the deionised water leach results in Table 3.3.1, are used to calculate the Acute Toxicity Estimates (ATEs) of the slurry with regard to oral, dermal and inhalation toxicity. The oral toxicity ATE was calculated using the gastro-intestinal bio-elution mass percentage reported in Table 3.1.1. The dermal toxicity was calculated with the sweat bio-elution result and the inhalation toxicity with the alveolar bio-elution result.

Table 5.2.4 presents a summary of the acute toxicity classification and the calculated ATEs. The slurry is not classified as acutely toxic by the oral, dermal or inhalation routes of exposure.

Acute toxicity category	Oral toxicity (mg/kg)	Dermal toxicity (mg/kg)	Inhalation toxicity (mg/litre)
ATE*	>5000	Hg not detected	>5000
Acute toxicity category	Not classified	Not classified	Not classified
H-code	Not applicable	Not applicable	Not applicable
Hazard statement	Not applicable	Not applicable	Not applicable

 Table 5.2.4:
 Acute toxicity classification of the slurry.

*ATE: Acute Toxicity Estimate

5.3 Skin and eye corrosion and irritation

According to SANS 10234:2008, substances may be classified as skin corrosives or skin irritants, depending on the results of animal toxicity studies, or based on the hazard

classifications of constituents of the slurry. The classification of the constituents of the slurry with regard to potential hazards to the skin is presented in Table 5.3.1.

Skin hazard category, H-code and hazard statement				
Skin corrosion 1A - H314 - Causes severe skin burns and eye damage			Skin irritation 3 - H316 - Causes mild skin irritation	
W Zr	Ag Be Cu	F Fe Mo	Sn Tl V	Со
	Ni, provideo P evaluateo	l Ni <u>></u> 20 mass I as PO₄ ³⁻	s %	

The criteria from SANS 10234:2008 are summarised in Table 5.3.2. The sweat bio-elution results were used for the calculations. In addition, if the pH of the substance under assessment (Table 3.3.1) is less than 2.0 or more than 11.5, the substance is considered a skin corrosive (SANS 10234:2008). If none of the criteria are met, the substance is classified as not hazardous with regard to potential corrosive or irritant effects on the skin. The skin hazard classification is given in Table 5.3.5.

Table 5.3.2:	Summary of criteria for the classification of the slurry as hazardous to
	skin.

	Concentration triggering classification of a mixture as:			
Sum of constituents classified as	Skin corrosive	Skin irritant		
	Category 1	Category 2	Category 3	
Skin category 1	<u>></u> 5%	<u>></u> 1 % but < 5 %		
Skin category 2		<u>></u> 10 %	<u>></u> 1 % but < 10 %	
Skin category 3			<u>></u> 10 %	
(10 x skin category 1) + skin category 2		<u>></u> 10 %	<u>></u> 1 % but < 10 %	
(10 x skin category 1) + skin category 2 + skin category 3			<u>></u> 10 %	

Regarding eye hazard classifications, irritant and corrosive effects on the eyes are considered, depending on the results of animal toxicity studies, or based on the hazard classifications of constituents of the slurry. The eye hazard classification of constituents of the slurry is given in Table 5.3.3.

Table 5.3.3:	Eye hazard classification of constituents in the slurry.
--------------	--

Eye damage 1 - H318 - Causes serious eye damage	Eye irritation 2A - H319 - Causes serious eye irritation			
Al	Be	Fe	Mo	Sn Zr
Cu W	Ca Co	ЦI Mg	Na Ni	Zr Microcline
Zn	F	Mn	NO ₃	Muscovite
	P (evalua	ted as PO ₄ ³⁻)		

The slurry was assessed according to criteria explained in SANS 10234:2008, summarised in Table 5.3.4. A specific bio-elution test for the eyes was not done, but the alveolar bio-elution

concentrations were used as a best estimate, because the alveolar elution medium is physiologically pH neutral, as are tears.

In addition, if the pH of the substance (Table 3.3.1) is less than 2.0 or more than 11.5, the substance is considered damaging to the eye (SANS 10234:2008). If none of the criteria in Table 5.3.4 are met, and if the pH of the substance is not less than 2 and not more than 11.5, the substance is classified as not potentially damaging or irritating to the eyes.

Table 5.3.4:	Criteria for the classification of the slurry in eye categories 1 or 2.
	orneria for the classification of the starty in eye categories for z.

	Concentration triggering classification of the slurry as:			
Sum of constituents classified as	Category 1: serious eye damage/irreversible effects on the eye	Category 2: eye irritant/reversible effects on the eye		
Eye category 1	<u>></u> 3 %	<u>></u> 1 % but < 3 %		
Eye category 2	-	<u>></u> 10 %		
Skin category 1 + eye category 1	<u>></u> 3 %	<u>></u> 1 % but < 3 %		
(10 x eye category 1) + eye category 2	-	<u>></u> 10 %		
10 x (skin category 1 + eye category 1) + eye category 2	-	<u>≥</u> 10 %		

The skin hazard classification is given in Table 5.3.5 and the eye hazard classification in Table 5.3.6. The slurry is not classified as hazardous to the skin or eyes. However, although SANS 10234:2008 does not include a specific hazard class for mechanical irritation, it is noted that dust and grit from the dry material may cause mechanical abrasion and thus irritation in case of prolonged exposure of the unprotected skin and eyes.

Table 5.3.5:	Skin hazard classification of the slurry.

Skin hazard category	H-code	Hazard statement
Not classified	Not applicable	Not applicable

Table 5.3.6:Classification of the slurry as hazardous to the eyes.

Eye hazard category	H-code	Hazard statement
Not classified	Not applicable	Not applicable

5.4 Skin and respiratory sensitisation

According to SANS 10234:2008, a respiratory sensitiser is a substance that will lead to hypersensitivity of the airways following inhalation of the substance and a skin sensitiser is a substance that will lead to an allergic response following skin contact. The constituents of the slurry classified as skin or respiratory sensitisers are presented in Table 5.4.1 and the hazard classification of the slurry is presented in Table 5.4.2.

Table 5.4.1:Constituents of the slurry classified as skin contact or respiratory
sensitisers.

Skin contact or respiratory sensitiser category, H-code and hazard statement			
Skin sensitisers 1- H317 - May cause an allergic skin reactionRespiratory sensitisers 1 - H334 - May cause allergy or asthma symptoms or breathing difficulties if inhaled			
Be	Со		
Со	Ni		
Ni, with limit 0.01 mass %			

Table 5.4.2:Classification of the slurry with regard to skin or respiratory
sensitisation.

Hazard class	Classification	H-code	Hazard statement
Skin	Not classified	Not applicable	Not applicable
Respiratory	Not classified	Not applicable	Not applicable

The conclusion is that the slurry is not classified as a skin or respiratory sensitiser.

5.5 Germ cell mutagenicity

According to SANS 10234:2008, this hazard class covers chemicals that cause mutations³ in the germ cells of humans and that can be transmitted to the progeny. The germ cells in the reproductive tract give rise to the cells that develop into sperm and ova. The terms "genotoxic" and "genotoxicity" are more general than the term "mutagen". Genotoxicity applies to agents or processes that alter the structure, information content, or segregation of DNA, including those that cause DNA damage by interfering with normal replication processes. Genotoxicity test results are usually taken as indicators for mutagenic effects.

A germ cell mutagen can be classified in one of two hazard categories according to the weight of evidence available. For classification purposes, test results obtained by animal testing for mutagenic and/or genotoxic effects in germ cells and/or somatic cells are considered. The constituents of the slurry classified as germ cell mutagens are listed in Table 5.5.1, and the resultant GHS classification in Table 5.5.2. The slurry is not classified as hazardous with regard to germ cell mutagenicity.

Table 5.5.1:Constituents of the slurry classified as germ cell mutagens.

Germ cell mutagen 1 – H340 - May cause genetic defects	Germ cell mutagen 2 – H341 - Suspected of causing genetic defects	
Cd	Co Ni	

Table 5.5.2: Germ cell mutagen classification of the slurry.

Hazard category	H-code	Hazard statement
Not classified	Not applicable	Not applicable

³ Heritable genetic changes that can be manifested at the phenotypic level, and underlying DNA modifications, e.g., specific base pair changes and chromosomal translocations.

5.6 Carcinogenicity

SANS 10234:2008 states that classification of a substance as carcinogenic is based on the inherent properties of a substance and does not provide information on the level of the human cancer risk which the use of the substance may present. Classification of a product as carcinogenic, therefore, identifies a hazard, but does not involve or imply any classification of the potential risks associated with exposure. The evaluation is based on evidence from all existing, peer-reviewed published studies and additional data accepted by regulatory agencies. The constituents of the slurry classified as presumed or known human carcinogens are presented in Table 5.6.1 and the resultant GHS classification of the slurry is given in Table 5.6.2. The slurry is not classified as hazardous with regard to carcinogenicity.

	Constituent classification			
Constituent	Exposure route, if specified	Hazard category	H- code	Hazard statement
As	Not specified			
Be	Inhalation		H350	May cause cancer
Cd	Not specified	1 - Known or presumed human carcinogen		
Со	Inhalation			
Ni	Inhalation			
Pb	Inhalation or ingestion	2 - Suspected human carcinogen	H351	Suspected of causing cancer by inhalation or ingestion

 Table 5.6.1:
 Constituents of the slurry classified as carcinogenic.

Table 5.6.2: Carcinogenicity classification of the slurry.
--

Hazard category	H-code	Hazard statement
Not classified	Not applicable	Not applicable

5.7 Reproductive toxicity

Reproductive toxicity includes the assessment of sexual function, fertility and developmental effects. Adverse effects on sexual function and fertility include alterations to the female and male reproductive system, adverse effects on gamete production and transport, fertility or pregnancy outcomes. Developmental toxicity includes any effect which interferes with normal development of the offspring, either before or after birth. The elements classified as reproductive toxicants are presented in Table 5.7.1 and the resultant GHS classification of the slurry in Table 5.7.2. The slurry is not classified as a known or presumed human reproductive toxicant.

Table 5.7.1:	Constituents of the slurry classified as reproductive toxicants.
--------------	--

Element	Constituent classification			
Element	Hazard category	H-code	Hazard statement	
В	1 - Known or presumed human reproductive toxicant; not specified whether fertility or development is affected	H360	May damage fertility or the unborn child	
Cd	1 - Known or presumed human reproductive toxicant;	H360	May damage fertility and the	
Pb	fertility and development affected		unborn child	
Со	1 - Known or presumed human reproductive toxicant; fertility affected	H360	May damage fertility	
Ni	 Known or presumed human reproductive toxicant; development affected 	H360	May damage the unborn child	
Pb	Effects on or via lactation	H362	May cause harm to breastfed children	

Table 5.7.2: Reproductive hazard classification of the slurry.

Hazard class	Hazard category	H-code	Hazard statement
Reproductive toxicity	Not classified	Not applicable	Not applicable
Reproductive toxicity, effects on or via lactation	Not classified	Not applicable	Not applicable

5.8 Specific target organ toxicity

According to SANS 10234:2008, the classification of a substance or mixture as a specific target organ toxicant following single exposure (STOT-SE), depends on the availability of reliable evidence that a single exposure to the substance or mixture has caused consistent and identifiable toxic effects in humans and test animals. Moreover, the effects should be toxicologically significant; that is, the function and/or morphology of the tissue and/or organ has to be affected. Human data are the primary source of evidence, and the route of exposure by which a substance produces specific target organ toxicity should be identified.

Constituents of the slurry classified as STOT-SE are presented in Table 5.8.1. Only one category of classification was applicable, namely category 3 STOT-SE, with hazard statement "may cause respiratory irritation". The STOT-SE classification of the slurry is given in Table 5.8.3.

Table 5.8.1:Constituents of the slag classified as STOT-SE.

Constituent		Category, H-code and hazard statement
Be	Sn	STOT-SE category 3
Мо	Microcline	H335: may cause respiratory irritation

According to SANS 10234:2008, the classification of a substance or mixture as a specific target organ toxicant following prolonged or repeated exposure (STOT-RE), depends on the availability of reliable evidence that prolonged or repeated exposure to the substance or mixture has caused consistent and identifiable toxic effects in humans and test animals. Moreover, the effects should be toxicologically significant; that is, the function and/or morphology of the tissue and/or organ has to be affected. Human data are the primary source of evidence and the route of exposure by which a substance produces specific target organ toxicity should be identified.

The constituents of the slurry classified as STOT-RE are presented in Table 5.8.2.

Category 1. Causes damage to organs through prolonged or repeated exposure (H372)	Category 2. May cause damage to organs through prolonged or repeated exposure (H373)
Route not specified: TI	Route not specified: Se
Lungs by inhalation: Be	Central and/or peripheral nervous system by inhalation: Hg, concentration limit specified as 0.1 mass % Mn Mo
Respiratory organs by inhalation Ni	Respiratory organs by inhalation: Ni, concentration limit specified as ≥0.1 AND <1 mass % Lungs by inhalation: Quartz mineral (SiO ₂) (14808-60-7); not the element Si
Kidneys by inhalation: Cd	Brain by inhalation and ingestion: Pb
	Kidneys by ingestion: Hg, concentration limit specified as 0.1 mass %

Table 5.8.2:Constituents classified as STOT-RE.

The STOT classification of the slurry is presented in Table 5.8.3. Based on the presence of quartz in the slurry, it is classified as a category 2 STOT-RE, which may cause damage to the lungs through prolonged or repeated inhalation. The outcome is not necessarily silicosis, but suitable respiratory equipment is recommended if dust is generated during use or handling.

Table 5.8.3:STOT classification of the slurry.

Hazard class	Classification	H-code	Hazard statement
STOT-SE	Not classified	Not applicable	Not applicable
STOT-RE	Category 2	H373	May cause damage to lungs through prolonged or repeated inhalation

5.9 Aspiration hazards

Aspiration hazards are related to the potential entry of secretions or foreign material into the trachea (windpipe) and lungs. A substance or a mixture that poses an aspiration hazard causes severe acute effects such as chemical pneumonia, varying degrees of pulmonary injury or death following aspiration. Aspiration of a substance or a mixture can occur if it is vomited after ingestion, which has consequences for labelling and first-aid recommendations on the safety data sheet. The aspiration hazard is increased with increased corrosivity, volatility and viscosity of the vomited substance, and is mostly a function of the hydrocarbon constituents. None of the constituents of the slurry are specifically classified as aspiration hazards and it is not classified as corrosive. However, the slurry is muddy; therefore, it is classified as an aspiration hazard (Table 5.9.1).

Table 5.9.1:Aspiration hazard classification of material.

Hazard category	H-code	Hazard statement
2	H305	May be harmful if swallowed and enters airways

6 Assessment of hazards to aquatic ecosystems

6.1 Surrogate species and toxicity data

According to the GHS, the intrinsic hazard to aquatic ecosystems is represented by the acute and chronic toxicity of a substance. These are dealt with separately. Acute toxicity normally is determined using a fish 96-hour 50 per cent lethal concentration (LC50⁴), a crustacean species 48-hour 50 per cent effect concentration (EC50⁵) and/or an algal species 72- or 96-hour 50 per cent effect concentration (EC50). These species are considered as surrogate for all aquatic organisms. Chronic toxicity is determined using the corresponding no-observed-effect-concentration (NOEC)⁶ values.

6.2 Hazard categories of acute toxicity

The SANS 10234:2008 definitions of the acute toxicity hazard categories of substances hazardous to the aquatic environment are summarised in Table 6.2.1.

Hazard category Acute toxicity	Classification criteria
1	96-hr LC50 (for fish): ≤ 1 mg/litre; and/or 48-hr EC50 (for crustacea): ≤ 1 mg/litre; and/or 72- or 96-hr ErC50 (for algae or other aquatic plants): ≤1 mg/litre.
2	96-hr LC50 (for fish): 1 mg/litre < LC50 ≤ 10 mg/litre; and/or 48-hr EC50 (for crustaceans): 1 mg/litre < EC50 ≤ 10 mg/litre; and/or 72- or 96-hr ErC50 (for algae or other aquatic plants): 1 mg/litre < ErC50 ≤ 10 mg/litre.
3	96-hr LC50 (for fish): 10 mg/litre < LC50 ≤ 100 mg/litre; and/or 48-hr EC50 (for crustaceans): 10 mg/litre < EC50 ≤ 100 mg/litre; and/or 72- or 96-hr ErC50 (for algae or other aquatic plants): 10 mg/litre < ErC50 ≤ 100 mg/litre.

 Table 6.2.1:
 Hazard categories of acute toxicity to the aquatic environment.

6.3 Hazard categories of chronic toxicity

The SANS 10234:2008 definitions of the chronic toxicity hazard categories of substances for which adequate chronic toxicity data are not available, as in the case of the slurry, are summarised in Table 6.3.1. The GHS also specifies a "safety net" classification, presented in Table 6.3.2.

⁴ LC50 is the lethal concentration in water required to kill 50 per cent of the aquatic population.

⁵ EC50 is the effective concentration of a substance that causes 50 per cent of the maximum response after exposure for 48, 72- or 96-hours.

⁶ NOEC is the highest concentration used in a toxicity test that does not cause a toxic effect that is statistically significantly (usually set at $p \le 0.05$) different to the control. NOECs typically affect 10 to 30% of a population (Warne and Van Dam 2008).

Table 6.3.1: Hazard categories of chronic toxicity to the aquatic environment.

Hazard category Chronic toxicity	Classification criteria
1	 96-hr LC50 (for fish): ≤ 1 mg/litre; and/or 48-hr EC50 (for crustacea): ≤ 1 mg/litre; and/or 72- or 96-hr ErC50 (for algae or other aquatic plants): ≤ 1 mg/litre and the substance is not rapidly degradable; and/or the experimentally determined bioconcentration factor (BCF) ≥ 500; or, if absent the log Kow (log octanol-water partition coefficient) ≥ 4.0
2	96-hr LC50 (for fish): 1 mg/litre < LC50 \le 10 mg/litre; and/or 48-hr EC50 (for crustaceans): 1 mg/litre < EC50 \le 10 mg/litre; and/or 72- or 96-hr ErC50 (for algae or other aquatic plants): 1 mg/litre < ErC50 \le 10 mg/litre and the substance is not rapidly degradable and/or the experimentally determined BCF \ge 500; or, if absent the log Kow \ge 4.0
3	96-hr LC50 (for fish): 10 mg/litre < LC50 \leq 100 mg/litre; and/or 48-hr EC50 (for crustaceans): 10 mg/litre < EC50 \leq 100 mg/litre; and/or 72- or 96-hr ErC50 (for algae or other aquatic plants): 10 mg/litre < ErC50 \leq 100 mg/litre and the substance is not rapidly degradable and/or the experimentally determined BCF \geq 500; or, if absent the log Kow \geq 4.0

Table 6.3.2: Chronic toxicity hazard category 4: "safety net" classification.

$\label{eq:classification criteria} Classification criteria \\ "Poorly soluble substances for which no acute toxicity is recorded at levels up to the water solubility, and which are not rapidly degradable and have a log Kow <math>\geq$ 4.0, indicating a potential to bioaccumulate, will be classified in this category unless other scientific evidence exists showing classification to be unnecessary. Such evidence would include an experimentally determined BCF < 500, or a chronic toxicity NOECs > 1 mg/litre, or evidence of rapid degradation in the environment."

6.4 Assessment of preparations according to SANS 10234:2008

SANS 10234:2008 makes provision for the assessment of mixtures or preparations that contain poorly soluble elements, such as mineralogical "preparations". The GHS methodology determines that assessment of the slurry is based on the aquatic hazard assessment of individual constituents. According to the GHS, components of a mixture in hazard category 1 with LC50, EC50 and ErC50 well below 1 mg/litre might influence the toxicity of the mixture and must be given additional weight in the assessment. Substances with a classification in a high toxicity band therefore contribute to the classification of a mixture, even though all other substances in the mixture might be classified in a lower band. A multiplication factor (M factor) is applied to account for such contributions. LC50 and EC50 [L(E)C50] categories for acute toxicity, NOEC categories for chronic toxicity and the corresponding M factors are listed in Table 6.4.1.

Table 6.4.1:Aquatic toxicity M factors for highly toxic constituents of mixtures
(SANS 10234:2008).

Acute toxicity		Chronic toxicity			
			M fa	M factor	
L(E)C50 value	M factor	NOEC value	NRD* constituents	RD** constituents	
0.1 < L(E)C50 ≤ 1	1	0.01 < L(E)C50 ≤ 0. 1	1	-	
0.01 < L(E)C50 ≤ 0. 1	10	0.001 < L(E)C50 ≤ 0.01	10	1	
0.001 < L(E)C50 ≤ 0.01	100	0.0001 < L(E)C50 ≤ 0.001	100	10	
0.0001 < L(E)C50 ≤ 0.001	1 000	0.00001 < L(E)C50 ≤ 0.0001	1 000	100	
0.00001 < L(E)C50 ≤ 0.0001	10 000	0.000001 < L(E)C50 ≤ 0.00001	10 000	1 000	
(Continue with factor 10 intervals)		(Continue with factor 10 intervals)			

*NRD: non-rapidly degradable, showing a lack of biodegradability or other evidence of a lack of rapid degradation

**RD: rapidly degradable

Constituents of the slurry were classified in GHS hazard classes according to the salts of constituents. The classifications and M factors, where applicable, were sourced from the ECHA C&L Inventory (ECHA online). Salts with appropriate thermodynamic properties were selected.

Constituents with the classification "hazardous to the aquatic environment, acute hazard" are presented in Table 6.4.2. Hexavalent chromium is included because it is sometimes present in the slurry. Only one category of classification was applicable, namely aquatic acute hazard category 1. The associated H-code is H400 and the environmental hazard statement is "very toxic to aquatic life".

Table 6.4.2:Constituents classified as hazardous to the aquatic environment, acute
hazard category 1, H400, very toxic to aquatic life.

Constituent	M factor	Constituent	M factor
Ag	1	Hg	1
As	1	Ni	1
Cd	1	Pb	1
Со	10	Se	1
Cu	10	Zn	1

The constituents that classified in the GHS hazard class "hazardous to the aquatic environment, long-term hazard" are presented in Table 6.4.3.

Aquatic chronic 1 – H410 - Very toxic to aquatic life with long-lasting effects	M factor	Aquatic chronic 2 – H411 - Toxic to aquatic life with long-lasting effects	M factor
Ag	1	Be	1
As	1	Mn	1
Cd	1	Sb	1
Со	10	ТІ	1
Cu	10		
Hg	1		
Ni	1		
Pb	1		
Se	1		
Zn	1		

Table 6.4.3: Constituents classified as hazardous to the aquatic environment, long-term (chronic) hazard categories.

The classification of a mixture is dependent on the contribution of all classification categories. Therefore, the mass percentage contents of the various categories are summed (and multiplied with the M factor if applicable), according to the equations in Table 6.4.4 for acute hazards and Table 6.4.5 for chronic hazards (SANS 10234:2008).

Table 6.4.4:Equations and limiting concentrations for classification of mixtures
regarding acute hazards to the aquatic environment following the
summation approach.

Sum of components for classification		Acute hazard category of the mixture
Acute 1 x M	≥ 25 %	1
[(M x 10 x Acute 1) + Acute 2]	≥ 25 %	2
[(M x 100 x Acute 1) + (10 x Acute 2)] + Acute 3	≥ 25 %	3

Table 6.4.5:Equations and limiting concentrations for classification of mixtures
regarding chronic hazards to the aquatic environment following the
summation approach.

Sum of components for classification	Chronic hazard category of the mixture	
Chronic 1 x M	≥ 25 %	1
(M x 10 x Chronic 1) + Chronic 2	≥ 25 %	2
(M x 100 x Chronic 1) + (10 x Chronic 2) + Chronic 3	≥ 25 %	3
Chronic 1 + Chronic 2 + Chronic 3 + Chronic 4	≥ 25 %	4

6.5 Aquatic hazard assessment of the slurry

As pointed out in Section 2, the GHS recommends the transformation/dissolution test for metals and metal compounds in aqueous media. Therefore, the aquatic hazard assessment was based on the results of the transformation/dissolution test in Table 3.2.1.

The classifications regarding hazards to aquatic ecosystems associated with acute and chronic exposures are given in Table 6.5.1 and in Table 6.5.2, respectively.

Table 6.5.1: Acute hazard to the aquatic environment classification.

Hazard category	H-code	Hazard statement
Not classified	Not applicable	Not applicable

Table 6.5.2: Chronic hazard to the aquatic environment classification.

Hazard category	H-code	Hazard statement
Not classified	Not applicable	Not applicable

In summary, the slurry is not hazardous to aquatic life, whether during or after short- or long-term exposure in the aquatic environment.

7 Conclusions - classification according to the GHS

Table 7.1 presents a summary of the hazard classifications pertaining to the slurry, based on SANS 10234:2008.

Hazard class	Classification	Overall hazard classification of the slurry		
Physical hazards				
Flammable	Not classified	Not classified		
Human health				
Acute toxicity: Oral	Not classified			
Acute toxicity: Dermal	Not classified			
Acute toxicity: Inhalation	Not classified			
Skin corrosive or skin irritant	Not classified			
Eye corrosive or eye irritant	Not classified			
Mechanical irritation to the unprotected skin and eyes	Not a defined GHS class, but the slurry may cause mechanical irritation	May cause mechanical irritation to the unprotected clip and avea		
Respiratory sensitisation and skin sensitisation	Not classified	 the unprotected skin and eyes May cause damage to lungs through prolonged or repeated 		
Germ cell mutagenicity	Not classified	inhalation (H373)		
Carcinogenicity	Not classified	• May be harmful if swallowed (H305)		
Reproductive toxicity	Not classified			
Specific target organ toxicity - single exposure	Not classified			
Specific target organ toxicity - repeated exposure	Category 2			
Aspiration hazard	Category 2			
Aquatic ecosystems	•			
Acute hazards	Not classified	- Not classified		
Chronic hazards	Not classified			

Table 7.1:Summary of hazard classifications of the slurry.

8 References

ECHA. Online. Classification and Labelling Inventory of the European Chemical Agency. Accessed December 2014 at <u>http://echa.europa.eu/information-on-chemicals/cl-inventory-database</u>.

SANS 10234:2008. Globally Harmonized System (GHS) of classification and labelling of chemicals. South African National Standard. Pretoria: Standards South Africa.

Warne MSt-J and Van Dam R. 2008. NOEC and LOEC data should no longer be generated or used. Australasian Journal of Ecotoxicology 14:1-5.

SOUTH32 SOUTH AFRICA COAL HOLDINGS (PTY) LTD

WOLVEKRANS COLLIERY: VANDYKSDRIFT CENTRAL MINING INFRASTRUCTURE DEVELOPMENT COAL SLURRY <u>GEOCHEMICAL ASSESSMENT AND WASTE CLASSIFICATION REPORT</u>

Report: JW103/19/G535 - Rev 0

APPENDIX C

SAFETY DATA SHEET

	SDS South32 SA Coal Holdings (Pty) Ltd			
Section			Description	
1	Identification			
-	Name:	Fine Coal Slurry f	rom Vandyksdrift Central	
	Generator	South32 SA Coal Holdings, Wolvekrans Colliery, Vandyksdrift Central		
		Street Address – to be completed by South32 SA Coal Holdings		
	In case of emergency	Telephone numbe		
		Alternative teleph	one number:	
	Commercial name	Fine Coal		
	Description		d from underground mine workings at Vandyksdrift Central	
	Hazardous ingredient	Quartz mineral		
2	Hazards Identification			
	Hazard Pictograms:	Warning		
	Category	GHS Codes	Hazard Statement	
	Health	H305	May be harmful if swallowed and enters airways	
		H373	May cause damage to lungs through prolonged or repeated inhalation	
	Category	GHS Codes	Precautionary statements	
	Health	P264	-	
		-	Wash hands thoroughly after handling	
		P270	Do not eat, drink or smoke when handling the fine coal	
		P271	Use in well ventilated area	
			Jones & Wagener (Pty) Ltd	

G535_27_REP_Rev0_MvZthIn_VDDC_29April2019.docx

Engineering & Environmental Consultants

South32 SA Coal Holdings (Pty) Ltd					
Section	Description				
		P280 Wear protectiv		ve gloves, protective clothing and eye protection	
				bry protection (manufacturer/supplied ed exposure to fine coal dust	er to specify equipment) in
	Disposal	P501	Dispose of coal slurry in accordance with South African national legis and requirements		African national legislation
3	Composition				
	Chemical identity	Coal slurry removed from underground coal mine workings at Vandyksdrift Central of the Wolvekrans Colliery		sdrift Central of the	
	Chemical composition Description			Percentage (dry weight basis)	CAS
	Quartz (SiO ₂))	14.18%	14808-60-7
		Goethite (FeO(OH))		0.51%	20344-49-4
		Kaolinite (Al ₂ Si ₂ O ₅ (OH) ₄)		21.13%	1318-74-7
		Dolomite (Ca/Mg (CO ₃) ₂)		0.41%	16389-88-1
		Microcline (K	(AISi ₃ O ₈)	4.52%	66402-68-4
		Muscovite (KAl2((OH) ₂ AlSi ₃ O ₁₀))		4.8%	1318-94-1
		Coal		54.45%	RR-14976-8
4	First Aid Measures				
	Inhalation	Move patient to fresh air, rest. Artificial respiration may be needed. Refer for medical attention.			efer for medical attention.
	Eye Contact	First rinse with plenty of water for several minutes (remove contact lenses if easily possible), ther refer for medical attention.			
	Skin Contact	Remove contaminated clothes. Rinse skin with plenty of water or shower. Refe attention.		wer. Refer for medical	
	Ingestion	If swallowed,	do not induce vomitin	g: Seek medical advice immediate	ly.
5	Fire-fighting measures				
	Extinguishing Media	Carbon dioxi	de, extinguishing powo	der or water spray. Fight large fires	s with water spray.

		South32 SA Coal Holdings (Pty) Ltd		
Section	Description			
	Fire Fighting Methods and	Wear full body protective clothing and use positive pressure, self-contained breathing apparatus		
	Protection	with a full-face piece.		
	Fire and/or Explosion Hazards	Avoid dusting. May become explosive when dispersed in air.		
	Hazardous Combustion Products	Carbon dioxide, carbon monoxide, sulfur dioxide.		
6	Accidental release			
	measures	Evacuate danger area. Sweep and scoop spilled filter cake into sealable containers with appropriate equipment.		
		Protective gloves should be worn when handling the filter cake.		
		Safety glasses or goggles should be worn when removing spills to prevent particles of dust from getting into the eyes.		
		Overall and protective shoes should be worn when removing spills. In case of droplets and aerosols, respiratory protection should be worn.		
7	Handling and storage			
		Prevent formation of dust – may cause explosive conditions.		
8	Exposure controls and personal protection			
	•	Protective gloves should be worn when handling the coal slurry		
		Safety glasses or goggles should be worn		
		Overall and protective shoes should be worn		
		Dust respirator. Use an approved/certified respirator or equivalent TWA OEL-RL may not exceed: 2.0 mg/m ³		
				
9	Physical and chemical properties			
	Appearance	Fine material black in colour		

Jones & Wagener (Pty) Ltd Engineering & Environmental Consultants

G535_27_REP_Rev0_MvZthIn_VDDC_29April2019.docx

	South32 SA Coal Holdings (Pty) Ltd		
Section	Description		
	Colour	Black	
	Odour	Unknown	
	Odour threshold	Unknown	
	Paste pH	Not determined	
	Melting point	Unknown	
	Initial boiling point and boiling range	Unknown	
	Flash point	Unknown	
	Evaporation rate	Unknown	
	Flammability	Unknown	
	Explosion limits	Unknown	
	Vapour pressure	Unknown	
	Vapour density	Unknown	
	Wet density	Unknown	
	Solubility in water	Note readily soluble	
	Partition coefficient	Unknown	
	Auto ignition temperature	Unknown	
	Decomposition temperature	Unknown	
10	Stability and reactivity		
	Chemical stability	Unknown	
	Hazardous reactions	Unknown	
	Shock or vibration sensitivity	Unknown	
	Incompatible materials	Unknown	
	Hazardous decomposition	May generate weak sulfuric acid and methane	
	products		
11	Toxicological information		
	-	Unknown	

Jones & Wagener (Pty) Ltd Engineering & Environmental Consultants

G535_27_REP_Rev0_MvZthln_VDDC_29April2019.docx

	South32 SA Coal Holdings (Pty) Ltd			
Section	Description			
12	Ecological toxicological information			
		Unknown		
13	Disposal considerations			
		Dispose in accordance with Sout	th African national legislation and requirements	
14	Transport information			
	UN Number CAS Number Proper Shipping Name IMDG: Hazard Class IMSBC Code SANS 10228 Packaging group	No number Quartz Goethite Kaolinite Dolomite Microcline Muscovite Coal Fine Coal Not applicable Cargo B Not applicable	14808-60-7 20344-49-4 1318-74-7 16389-88-1 66402-68-4 1318-94-1 RR-14976-8	
15	Regulatory information National Waste Management Act Hazardous Substances Act Occupational Health and Safety Act	Not classified as hazardous.	dous material in terms of SANS 10234: 2008 ge Occupation Exposure Limit Recommended Limit (TWA-OEL-	

Jones & Wagener (Pty) Ltd Engineering & Environmental Consultants

G535_27_REP_Rev0_MvZthln_VDDC_29April2019.docx

	South32 SA Coal Holdings (Pty) Ltd			
Section	Section Description			
16	Other information including information on preparation and revision of the SDS			
	Prepared by Revision Summary	Jones & Wagener (Pty) Ltd on behalf of South32 SA Coal Holdings This document has been prepared as revision 1 (April 2019) SDS adhering to the Globally Harmonized System of Classification and Labelling of Chemicals (GHS).		

G535_27_REP_Rev0_MvZthIn_VDDC_29April2019.docx

.docx Engineering