
AVIFAUNAL IMPACT ASSESSMENT

132kV grid connection for the proposed of the 100 MW Vrede Photovoltaic Solar Energy Facility located near Kroonstad in the Free State Province

EXECUTIVE SUMMARY

South Africa Mainstream Renewable Power Developments (Pty) Ltd is proposing the construction and operation of grid connection infrastructure for the proposed 100MWac **Vrede** Solar Energy Facility, Battery Energy Storage System (BESS) and associated infrastructure respectively. This project is located near the town of Kroonstad in the Moqhaka Local Municipality (Fezile Dabi District) of the Free State Province of South Africa. The solar PV facility will be connected to the grid via a dedicated grid connection solution, to be known as Vrede Grid Connection.

The proposed grid solutions comprise the following:

- On-site substation (located within the Solar PV Facility), consisting of:
 - o 33/132 kV Eskom substation (only one alternative option)
 - Associated equipment, infrastructure and buildings;
 - o Access and maintenance roads; and
 - Temporary and permanent laydown areas.
- Distribution Lines:
 - 132kV distribution line from the onsite 33/132 kV Eskom substation via a loop in loop out into the Eskom 132 kV Kroonstad Munic– Theseus 1 Switching Station (S/Stn) powerline. Two options are proposed: Option 1 is 3.12km in length and Option 2 is 3.47km in length.

Avifauna

The SABAP2 data indicates that a total of 192 bird species could potentially occur within the study area and immediate surroundings – Appendix 1 provides a comprehensive list of all the species. Of these, 37 species are classified as priority species (see definition of priority species in section 4) and 2 of these are South African Red Data species. Of the priority species, 20 are likely to occur regularly at the study area and immediate surrounding area, and another 17 could occur sporadically.

POTENTIAL IMPACTS

The following impacts have been identified in the Avifauna Specialist Assessment.

Construction Phase

• Displacement due to disturbance associated with the construction of the grid and onsite substation.

Operational Phase

- Displacement due to habitat transformation associated with the operation of the onsite substation.
- Collisions with the 132kV grid connection.
- Electrocutions in the onsite substation.

Decommissioning Phase

• Displacement due to disturbance associated with the decommissioning of the grid and onsite substation.

Cumulative Impacts

- Displacement due to disturbance associated with the construction and decommissioning of the grid and onsite substation.
- Displacement due to habitat transformation associated with the onsite substation.
- Collisions with the 132kV power line.
- Electrocutions in the onsite substation.

ENVIRONMENTAL SENSITIVITIES

The following environmental sensitivities were identified from an avifaunal perspective for the proposed powerline grid connections:

The following environmental sensitivities were identified from an avifaunal perspective:

• High sensitivity – Mark with Bird Flight Diverters: Flight paths associated with surface water.

Rivers and drainage lines are used by birds as flight paths, particularly waterbirds that commute up and down channels. Dams are also a large attraction for waterbirds, and birds commuting between dams may be at risk of collisions.

MANAGEMENT ACTIONS

The following management actions have been proposed in this assessment:

Construction phase

- Construction activity should be restricted to the immediate footprint of the infrastructure.
- Access to the remainder of the site should be strictly controlled to prevent unnecessary disturbance of priority species.
- Measures to control noise and dust should be applied according to current best practice in the industry.
- Maximum used should be made of existing access roads and the construction of new roads should be kept to a minimum.

Operational phase

- Vegetation clearance should be limited to what is absolutely necessary.
- The mitigation measures proposed by the vegetation specialist must be strictly enforced.
- The avifaunal specialist must conduct a walk-through prior to implementation to demarcate sections of powerline that need to be marked with Eskom approved bird flight diverters. The bird flight diverters should be installed on the full span length on the earthwire (according to Eskom guidelines five metres apart). Light and dark colour devices must be alternated to provide contrast against both dark and light backgrounds respectively. These devices must be installed as soon as the conductors are strung.
- The hardware within the proposed transmission substation yard is too complex to warrant any mitigation for electrocution at this stage. It is recommended that if on-going impacts are recorded once operational, site specific mitigation (insulation) be applied reactively. This is an acceptable approach because Red Data priority species is unlikely to frequent the substation and be electrocuted.

De-commissioning phase

- Decommissioning activity should be restricted to the immediate footprint of the infrastructure as far as possible.
- Access to the remainder of the site should be strictly controlled to prevent unnecessary disturbance of priority species.
- Measures to control noise and dust should be applied according to current best practice in the industry.
- Maximum used should be made of existing access roads and the construction of new roads should be kept to a minimum.
- The existing transmission lines must be inspected for active raptor nests prior to the commencement of the decommissioning activities. Should any active nests be present, decommissioning activities during the breeding season should be avoided if possible.

STATEMENT AND REASONED OPINION

The table below indicates the overall impact significance for each phase before and after mitigation, as well as cumulative impacts, for all alternatives.

Environmental parameter	Issues	Rating prior to mitigation	Rating post mitigation
Avifauna	Displacement of priority species due to disturbance associated with construction of the grid and onsite substation	40 medium	20 low
	Displacement of priority species due to habitat transformation associated with the operation of the OHL and onsite substation	27 medium	18 low
	Mortality of priority species due to collisions with the 132kV OHL	52 low	33 low
	Electrocution of priority species in the onsite substation	42 low	26 low
	Displacement of priority species due to disturbance associated with decommissioning of the grid and onsite substation	40 medium	20 low
	Average	40 medium	20 low

Cumulative impacts

The proposed Vrede PV grid equates to a maximum of 3.47km, depending on which of the alternatives are used. There are approximately 300 kilometres of existing high voltage lines within the 30km radius around the Vrede PV project (counting parallel lines as one). The Vrede PV grid project will thus increase the total number of existing high voltage lines by approximately 1% or less. The contribution of the planned Vrede PV grid connection to the cumulative impact of all the high voltage lines is thus low. However, the combined cumulative impact of the existing and planned power lines on avifauna within a 30km radius is considered to be moderate.

The cumulative impact of displacement due to disturbance and habitat transformation in the onsite substation associated with the Vrede PV project is considered to be low, due to the small size of the footprint, and the availability of similar habitat within the 30km radius area. The cumulative impact of potential electrocutions in the substation yard of the onsite substation is also likely to be low as it is expected to be a rare event.

No-Go alternative

The no-go alternative will result in the current status quo being maintained at the proposed development site as far as the avifauna is concerned. The study area itself consist mostly of natural grassland, wetlands and drainage lines. The no-go option would maintain the natural habitat which would be beneficial to the avifauna currently occurring there.

Comparison of alternatives

From an avifaunal perspective, Alternative 1 is preferred powerline alternative because it is the shortest alternative. However, Alternative 2 is not fatally flawed and can be utilised with appropriate mitigation.

Concluding statement

The expected impacts of the Vrede PV grid and associated infrastructure were rated to be of Moderate significance and negative status pre-mitigation. However, with appropriate mitigation, the post-mitigation significance of the identified impacts should be reduced to Low negative (see Table 3 above). No fatal flaws were discovered in the course of the investigation. It is therefore recommended that the activity is authorised, on condition that the proposed mitigation measures as detailed in the Impact Tables (Section 9 of the report) and the EMPr (Appendix 4) are strictly implemented.

CONTENTS

1.	IN 1.1	NTRODUCTION Project Alternatives	
2		ROJECT SCOPE	-
2			
3	0	UTLINE OF METHODOLOGY AND INFORMATION REVIEWED	12
4	Α	SSUMPTIONS AND LIMITATIONS	13
5	L	EGISLATIVE CONTEXT	13
	5.1	AGREEMENTS AND CONVENTIONS	13
	5.2	NATIONAL LEGISLATION	
	5.3	PROVINCIAL LEGISLATION	15
6	В	ASELINE ASSESSMENT	15
	6.1	IMPORTANT BIRD AREAS	-
	6.2	CRITICAL BIODIVERSITY AREAS (CBAS)	
	6.3	DFFE NATIONAL SCREENING TOOL	-
	6.4	NATIONAL PROTECTED AREAS EXPANSION STRATEGY (NPEAS) FOCUS AREAS	
	6.5	BIOMES AND VEGETATION TYPES BIRD HABITATS	
	6.6		
7	Α	VIFAUNA IN THE STUDY AREA	
	7.1	South African Bird Atlas Project 2	
	7.2	ON-SITE SURVEYS	20
8	IN	MPACT ASSESSMENT	22
	8.1	GENERAL	
	8.2	ELECTROCUTIONS	
	8.3	Collisions	
	8.4	DISPLACEMENT DUE TO HABITAT DESTRUCTION AND DISTURBANCE	
9	IN	MPACT RATING	-
	9.1	DETERMINATION OF SIGNIFICANCE OF IMPACTS	
	9.2	IMPACT ASSESSMENTS	
	9.3		
	9.4	NO-GO ALTERNATIVE ENVIRONMENTAL SENSITIVITIES	
	9.5		
10). E	NVIRONMENTAL MANAGEMENT PROGRAMME INPUTS	35
11	. F	INAL SPECIALIST STATEMENT AND AUTHORISATION RECOMMENDATION	35
	9.5	11.1 STATEMENT AND REASONED OPINION	35
	9.6	11.2 EA CONDITION RECOMMENDATIONS	35
12	2. R	EFERENCES	35
13		PPENDICES	
		NDIX 1: SABAP 2 SPECIES LIST FOR THE STUDY AREA AND SURROUNDINGS	
		NDIX 2: HABITAT AT THE STUDY AREA	
		NDIX 3: PRE-CONSTRUCTION MONITORING	
A		NDIX 4: ENVIRONMENTAL MANAGEMENT PROGRAMME	45

DETAILS OF THE SPECIALIST AND EXPERTISE TO COMPILE A SPECIALIST REPORT

Chris van Rooyen (Avifaunal Specialist)

Chris has 24 years' experience in the management of wildlife interactions with electricity infrastructure. He was head of the Eskom-Endangered Wildlife Trust (EWT) Strategic Partnership from 1996 to 2007, which has received international acclaim as a model of co-operative management between industry and natural resource conservation. He is an acknowledged global expert in this field and has worked in South Africa, Namibia, Botswana, Lesotho, New Zealand, Texas, New Mexico and Florida. Chris also has extensive project management experience and has received several management awards from Eskom for his work in the Eskom-EWT Strategic Partnership. He is the author of 15 academic papers (some with co-authors), co-author of two book chapters and several research reports. He has been involved as ornithological consultant in numerous power line and wind generation projects. Chris is also co-author of the Best Practice for Avian Monitoring and Impact Mitigation at Wind Development Sites in Southern Africa, which is currently (2016) accepted as the industry standard. Chris also works outside the electricity industry and had done a wide range of bird impact assessment studies associated with various residential and industrial developments.

Albert Froneman (Avifaunal and GIS Specialist)

Albert has an M. Sc. in Conservation Biology from the University of Cape Town and started his career in the natural sciences as a Geographic Information Systems (GIS) specialist at Council for Scientific and Industrial Research (CSIR). In 1998, he joined the Endangered Wildlife Trust where he headed up the Airports Company South Africa -EWT Strategic Partnership, a position he held until he resigned in 2008 to work as a private ornithological consultant. Albert's specialist field is the management of wildlife, especially bird related hazards at airports. His expertise is recognized internationally; in 2005 he was elected as Vice Chairman of the International Bird Strike Committee. Since 2010, Albert has worked closely with Chris van Rooyen in developing a protocol for pre-construction monitoring at wind energy facilities, and he is currently jointly coordinating pre-construction monitoring programmes at several wind farm facilities. Albert also works outside the electricity industry and had done a wide range of bird impact assessment studies associated with various residential and industrial developments.

Jason Boyce (Field Monitor)

Jason is the owner of Jason Boyce Birding, a company specialising in custom made birding tours. He has a BSc Environmental Management from (Zoology) from UNISA. Prior to starting his own company in 2019, he was a senior tour leader and bird guide with Birding Ecotours for 7 years, working in Africa, Asia and Europe.

SPECIALIST DECLARATION

I, Chris van Rooyen as duly authorised representative of Chris van Rooyen Consulting, and working under the supervision of and in association with Albert Froneman (SACNASP Zoological Science Registration number 400177/09) as stipulated by the Natural Scientific Professions Act 27 of 2003, hereby confirm my independence (as well as that of Chris van Rooyen Consulting) as a specialist and declare that neither I nor Chris van Rooyen Consulting have any interest, be it business, financial, personal or other, in any proposed activity, application or appeal in respect of which Savannah Environmental was appointed as environmental assessment practitioner in terms of the National Environmental Management Act, 1998 (Act No. 107 of 1998), other than fair remuneration for worked performed, specifically in connection with the Basic Assessment for the proposed Vrede PV Facility.

Acri can Raufe

Full Name: Chris van Rooyen

Position: Director

National Environmental Management Act, 1998 (Act No. 107 of 1998) and Environmental Impact Regulations 2014 (as amended) Requirements for Specialist Reports (Appendix 6)

Section in Regulations (as amended)	EIA 2014	Clause	Section in Report
Appendix 6	(1)	A specialist report prepared in terms of these Regulations must contain —	
	(a)	details of –	
		(i) the specialist who prepared the report; and	Pg.5
		(ii) the expertise of that specialist to compile a specialist report including a curriculum vitae.	Pg.5
	(b)	A declaration that the person is independent in a form as may be specified by the competent authority;	Pg.5
	(c)	An indication of the scope of, and the purpose for which, the report was prepared;	Section 2
	(cA)	An indication of the quality and age of base data used for the specialist report;	Section 3
	(cB)	A description of existing impacts on the site, cumulative impacts of the proposed development and levels of acceptable change;	Section 8
	(d)	The duration, date and season of the site investigation and the relevance of the season to the outcome of the assessment;	Section 7
	(e)	A description of the methodology adopted in preparing the report or carrying out the specialised process; inclusive of equipment and modelling used;	Section 3
	(f)	Details of an assessment of the specific identified sensitivity of the site related to the proposed activity or activities and its associated structures and infrastructure, inclusive of a site plan identifying site alternatives;	Sections 6 - 9
	(g)	An indication of any areas to be avoided, including buffers;	Not applicable
	(h)	A map superimposing the activity including the associated structures and infrastructure on the environmental sensitivities of the site including areas to be avoided, including buffers;	Not applicable
	(i)	A description of any assumptions made and any uncertainties or gaps in knowledge;	Section 4
	(j)	A description of the findings and potential implications of such findings on the impact of the proposed activity, including identified alternatives on the environment or activities;	Sections 9 and 10
	(k)	Any mitigation measures for inclusion in the EMPr;	Section 9
	(I)	Any conditions for inclusion in the environmental authorization;	Section 9
	(m)	Any monitoring requirements for inclusion in the EMPr or environmental authorization;	Not applicable
	(n)	A reasoned opinion –	

	(i) as to whether the proposed activity, activities or portions thereof should be authorized;	Sections 9 -10
	(iA) regarding the acceptability of the proposed activity or activities; and	Sections 9 -10
	(ii) if the opinion is that the proposed activity, activities or portions thereof should be authorized, any avoidance, management and mitigation measures that should be included in the EMPr, and where applicable, the closure plan;	Section 10
(0	A description of any consultation process that was undertaken during the course of preparing the specialist report;	Section 3
q)	A summary and copies of any comments received during any consultation process and where applicable all responses thereto; and	No comments received
(q	Any other information requested by the authority.	Not applicable
(2	Where a government notice gazetted by the Minister provides for any protocol or minimum information requirement to be applied to a specialist report, the requirements as indicated in such notice will apply.	Not applicable

1. INTRODUCTION

South Africa Mainstream Renewable Power Developments (Pty) Ltd is proposing the construction and operation of grid connection infrastructure for the proposed 100MWac **Vrede** Solar Energy Facility, Battery Energy Storage System (BESS) and associated infrastructure respectively. This project is located near the town of Kroonstad in the Moqhaka Local Municipality (Fezile Dabi District) of the Free State Province of South Africa. The solar PV facility will be connected to the grid via a dedicated grid connection solution, to be known as Vrede Grid Connection.

The proposed grid solutions comprise the following:

- On-site substation (located within the Solar PV Facility), consisting of:
 - o 33/132 kV Eskom substation (only one alternative option)
 - Associated equipment, infrastructure and buildings;
 - o Access and maintenance roads; and
 - Temporary and permanent laydown areas.
- Distribution Lines:
 - 132kV distribution line from the onsite 33/132 kV Eskom substation via a loop in loop out into the Eskom 132 kV Kroonstad Munic– Theseus 1 Switching Station (S/Stn) powerline. Two options are proposed: Option 1 is 3.12km in length and Option 2 is 3.47km in length.

The 132kV grid connection is the subject of this impact assessment report¹.

1.1 Project alternatives

Two alternative alignments have been identified for the proposed grid connection. These are the following:

- Alternative 1: 3.12 km
- Alternative 2: 3.47 km

See Figure 1 for a map showing the alternative alignment options.

¹ Note that the work commenced before the publication of the Terrestrial Animal Species Protocol on 30 October 2020. The report was therefore prepared according to the National Environmental Management Act, 1998 (Act No. 107 of 1998) and Environmental Impact Regulations 2014 (as amended) Requirements for Specialist Reports (Appendix 6).

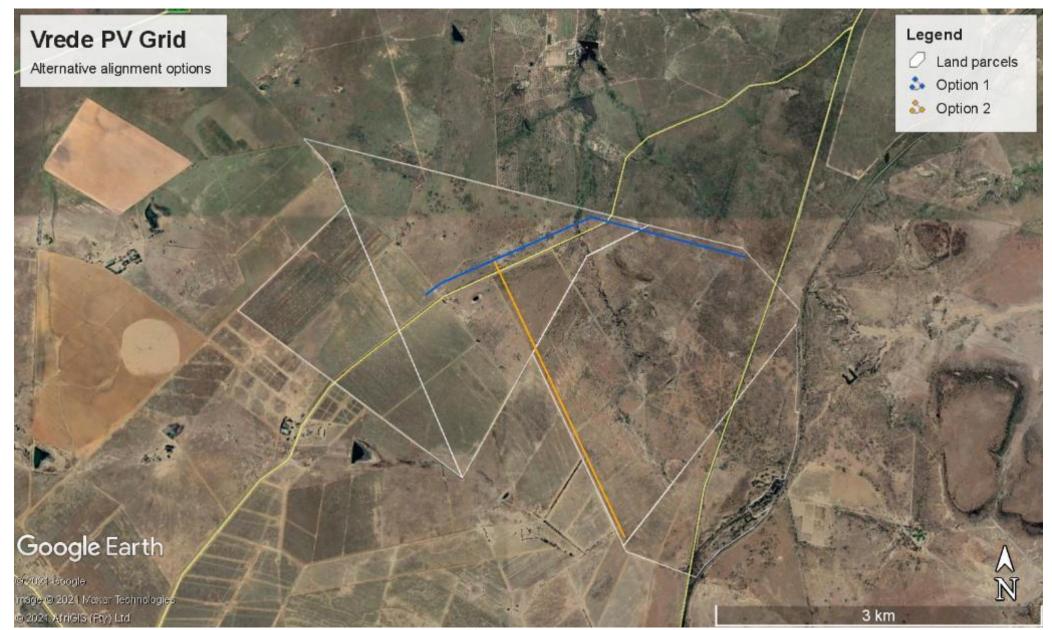


Figure 1: Locality map of the study area of the proposed 100 MW Vrede Photovoltaic (PV) Solar Energy Facility (SEF) showing the two alternative options for the grid connection.

2 PROJECT SCOPE

The terms of reference for this assessment report are as follows:

- Describe the affected environment from an avifaunal perspective
- Discuss gaps in baseline data and other limitations
- List and describe the expected impacts associated with the 132kV grid connection
- Perform an assessment of the potential impacts
- Recommend mitigation measures to reduce the significance of the expected impacts.

3 OUTLINE OF METHODOLOGY AND INFORMATION REVIEWED

The following information sources were consulted to conduct this study:

- Bird distribution data from the Southern African Bird Atlas Project 2 (SABAP 2) was obtained (http://sabap2.adu.org.za/), in order to ascertain which species occur in the pentads where the proposed development is located. A pentad grid cell covers 5 minutes of latitude by 5 minutes of longitude (5' × 5'). Each pentad is approximately 8 × 7.6 km. To get a more representative impression of the birdlife, a consolidated data set was obtained for a total of 6 pentads some of which intersect and others that are near the study area. The decision to include multiple pentads around the study area was influenced by the fact that many of the pentads in the area have few completed full protocol surveys. The additional pentads and their data augment the bird distribution data. The 6 pentad grid cells are the following: 2735_2705, 2735_710, 2740_2705, 2740_2710, 2745_2705, AND 2745_2710 (see Figure 22). A total of 57 full protocol lists (i.e. bird listing surveys lasting a minimum of two hours each) and 63 ad hoc protocol lists (surveys lasting less than two hours but still yielding valuable data) have been completed to date for the 6 pentads where the study area is located. The SABAP2 data was therefore regarded as a reliable reflection of the avifauna which occurs in the area, but the data was also supplemented by data collected during the site surveys and general knowledge of the area.
- A classification of the vegetation types in the study area was obtained from the Atlas of Southern African Birds 1 (SABAP1) and the National Vegetation Map compiled by the South African National Biodiversity Institute (Mucina & Rutherford 2006).
- The national threatened status of all priority species was determined with the use of the most recent edition of the Red Data Book of Birds of South Africa, Lesotho and Swaziland (Taylor *et al.* 2015), and the latest authoritative summary of southern African bird biology (Hockey *et al.* 2005).
- The global threatened status of all priority species was determined by consulting the latest (2020.2) IUCN Red List of Threatened Species (http://www.iucnredlist.org/).
- The Important Bird and Biodiversity Areas of South Africa (Marnewick *et al.* 2015; http://www.birdlife.org.za/conservation/important-bird-areas) was consulted for information on potentially relevant Important Bird Areas (IBAs).
- Satellite imagery (Google Earth © 2020) was used in order to view the broader area on a landscape level and to help identify bird habitat on the ground.
- The South African National Biodiversity BGIS map viewer was used to determine the locality of the study area relative to National Protected Areas, National Protected Areas Expansion Strategy (NPEAS) focus areas and Critical Biodiversity Areas in the Free State.
- The DFFE National Screening Tool was used to determine the assigned avian sensitivity of the study area.
- A one-day site visit was conducted on 17 July 2020 and again from 20 22 July 2020. During the latter, data was collected by means of transect and incidental counts.

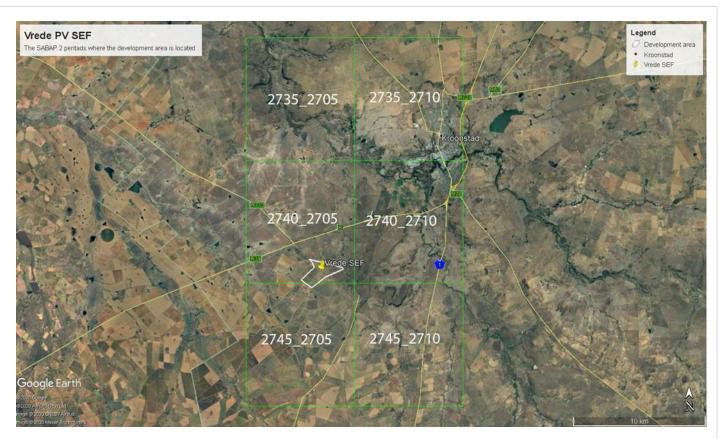


Figure 2: Area covered by the six SABAP2 pentads.

4 ASSUMPTIONS AND LIMITATIONS

This study assumed that the sources of information used in this report are reliable. In this respect, the following must be noted:

- The focus of the study was primarily on the potential impacts of the proposed power line on priority species. Priority species were defined as species which could potentially be impacted by power line collisions or electrocutions, based on specific morphological and/or behavioural characteristics. Priority species were further subdivided into raptors, waterbirds and terrestrial birds.
- The assessment of impacts is based on the baseline environment as it currently exists in the study area.
- Cumulative impacts include all solar PV projects with grid connections within a 30km radius that currently have open applications or have been approved by the Competent Authority as per the 2020 Q4 database from the DFFE.
- Conclusions in this study are based on experience of these and similar species in different parts of South Africa. Bird behaviour can never be entirely reduced to formulas that will be valid under all circumstances.
- The study area was defined as a 2km zone around the proposed grid connection.

5 LEGISLATIVE CONTEXT

5.1 Agreements and conventions

Table 1 below lists agreements and conventions which South Africa is party to and which is relevant to the conservation of avifauna².

² (BirdLife International (2021) Country profile: South Africa. Available from: http://www.birdlife.org/datazone/country/south_africa. Checked: 2021-04-02).

Table 1: Agreements and conventions which South Africa is party to and which is relevant to the conservation of avifauna.

Convention name	Description	Geographic scope
African-Eurasian Waterbird Agreement (AEWA)	The Agreement on the Conservation of African-Eurasian Migratory Waterbirds (AEWA) is an intergovernmental treaty dedicated to the conservation of migratory waterbirds and their habitats across Africa, Europe, the Middle East, Central Asia, Greenland and the Canadian Archipelago. Developed under the framework of the Convention on Migratory Species (CMS) and administered by the United Nations Environment Programme (UNEP), AEWA brings together countries and the wider international conservation community in an effort to establish coordinated conservation and management of migratory waterbirds throughout their entire migratory range.	Regional
Convention on Biological Diversity (CBD), Nairobi, 1992	The Convention on Biological Diversity (CBD) entered into force on 29 December 1993. It has 3 main objectives: The conservation of biological diversity The sustainable use of the components of biological diversity The fair and equitable sharing of the benefits arising out of the utilization of genetic resources.	Global
Convention on the Conservation of Migratory Species of Wild Animals, (CMS), Bonn, 1979	As an environmental treaty under the aegis of the United Nations Environment Programme, CMS provides a global platform for the conservation and sustainable use of migratory animals and their habitats. CMS brings together the States through which migratory animals pass, the Range States, and lays the legal foundation for internationally coordinated conservation measures throughout a migratory range.	Global
Convention on the International Trade in Endangered Species of Wild Flora and Fauna, (CITES), Washington DC, 1973	CITES (the Convention on International Trade in Endangered Species of Wild Fauna and Flora) is an international agreement between governments. Its aim is to ensure that international trade in specimens of wild animals and plants does not threaten their survival.	Global
Ramsar Convention on Wetlands of International Importance, Ramsar, 1971	The Convention on Wetlands, called the Ramsar Convention, is an intergovernmental treaty that provides the framework for national action and international cooperation for the conservation and wise use of wetlands and their resources.	Global
Memorandum of Understanding on the Conservation of Migratory Birds of Prey in Africa and Eurasia	The Signatories will aim to take co-ordinated measures to achieve and maintain the favourable conservation status of birds of prey throughout their range and to reverse their decline when and where appropriate.	Regional

5.2 National legislation

5.2.1 Constitution of the Republic of South Africa, 1996

The Constitution of the Republic of South Africa provides in the Bill of Rights that: Everyone has the right -

- (a) to an environment that is not harmful to their health or well-being; and
- (b) to have the environment protected, for the benefit of present and future generations, through reasonable legislative and other measures that
 - (i) prevent pollution and ecological degradation;
 - (ii) promote conservation; and
 - (iii) secure ecologically sustainable development and use of natural resources while promoting justifiable economic and social development.

5.2.2 The National Environmental Management Act 107 of 1998 (NEMA)

The National Environmental Management Act 107 of 1998 (NEMA) creates the legislative framework for environmental protection in South Africa and is aimed at giving effect to the environmental right in the Constitution. It sets out a number of guiding principles that apply to the actions of all organs of state that may significantly affect the environment. Sustainable development (socially, environmentally and economically) is one of the key principles, and internationally accepted principles of environmental management, such as the precautionary principle and the polluter pays principle,

are also incorporated. NEMA also provides that a wide variety of listed developmental activities, which may significantly affect the environment, may be performed only after an environmental impact assessment has been done and authorization has been obtained from the relevant authority. Many of these listed activities can potentially have negative impacts on bird populations in a variety of ways. The clearance of natural vegetation, for instance, can lead to a loss of habitat and may depress prey populations, while erecting structures needed for generating and distributing energy, communication, and so forth can cause mortalities by collision or electrocution.

NEMA makes provision for the prescription of procedures for the assessment and minimum criteria for reporting on identified environmental themes (Sections 24(5)(a) and (h) and 44) when applying for environmental authorisation. The Protocol for the Specialist Assessment and Minimum Report Content Requirements for Environmental Impacts on Terrestrial Animal Species was published on 30 October 2020. This protocol applies also for the assessment of impacts caused by power lines on avifauna³.

5.2.2 The National Environmental Management: Biodiversity Act 10 of 2004 (NEMBA) and the Threatened or Protected Species Regulations, February 2007 (TOPS Regulations)

The most prominent statute containing provisions directly aimed at the conservation of birds is the National Environmental Management: Biodiversity Act 10 of 2004 read with the Threatened or Protected Species Regulations, February 2007 (TOPS Regulations). Chapter 1 sets out the objectives of the Act, and they are aligned with the objectives of the Convention on Biological Diversity, which are the conservation of biodiversity, the sustainable use of its components, and the fair and equitable sharing of the benefits of the use of genetic resources. The Act also gives effect to CITES, the Ramsar Convention, and the Bonn Convention on Migratory Species of Wild Animals. The State is endowed with the trusteeship of biodiversity and has the responsibility to manage, conserve and sustain the biodiversity of South Africa.

5.3 Provincial Legislation

The current legislation applicable to the conservation of fauna and flora in the Free State Province is the Nature Conservation Ordinance 8 of 1969. There are no specific regulations pertaining to the conservation of avifauna, except to classify all birds as wild animals with the exception of a list of species in Schedule 1, which is exempted from a general hunting ban.

6 BASELINE ASSESSMENT

6.1 Important Bird Areas

There are no Important Bird Areas (IBA) within a 60km radius around the proposed Vrede SEF. It is therefore highly unlikely that the proposed grid connection will have a negative impact on any IBA.

6.2 Critical Biodiversity Areas (CBAs)

The part of the northern section of the development area is classified as a CBA, but the majority is classified as degraded.

³ Note that the work commenced before the publication of the Terrestrial Animal Species Protocol on 30 October 2020. The report was therefore prepared according to the National Environmental Management Act, 1998 (Act No. 107 of 1998) and Environmental Impact Regulations 2014 (as amended) Requirements for Specialist Reports (Appendix 6).

6.3 DFFE National Screening Tool

The DFFE National Screening Tool (Terrestrial Animal Species Theme) classifies the development area as Low Sensitivity as far as avifauna is concerned.

6.4 National Protected Areas Expansion Strategy (NPEAS) focus areas

The development area does not form part of a NPEAS focus area.

6.5 Biomes and vegetation types

The bulk of the study area is situated approximately 6-7km south-west of the town of Kroonstad, in the Free State Province, and is located in the grassland biome, in the Dry Highveld Grassland Bioregion (Mucina & Rutherford 2006). Only one vegetation type occurs in the study area, namely Central Free State Grassland (Mucina & Rutherford 2006). This vegetation type occurs on undulating plains supporting short grassland, in natural condition dominated by *Themeda triandra* while *Eragrostis curvula* and *E. chloromelas* become dominant in degraded habitats. Dwarf karoo bushes establish in severely degraded clayey bottomlands. Overgrazed and trampled low-lying areas with heavy clayey soils are prone to *Vachellia karroo* encroachment. This vegetation type occurs in the summer-rainfall seasonal precipitation region, with a mean annual precipitation of 560 mm. Much of the rainfall is of convectional origin and peaks in December to January. Incidence of frost relatively high (43 days on average) (Mucina & Rutherford 2006). January is the warmest month of the year. The temperature in January averages 22.4 °C. The lowest average temperatures in the year occur in June, when it is around 8.8 °C⁴.

Whilst the distribution and abundance of the bird species in the study area and immediate surrounding environment are typical of the broad vegetation type, it is also necessary to examine bird habitats in more detail as it may influence the distribution and behaviour of priority species. These are discussed in more detail below. The priority species most likely associated with the various bird habitats are listed in Table 2.

6.6 Bird habitats

6.6.1 Grassland

The study area and immediate surrounding environment consist mainly of tall, dense, grassland with high levels of encroachment of thorny shrubs, probably due to heavy cattle grazing.

6.6.2 Woodland

The study area and immediate surrounding environment contains many areas of dense thorny shrubs. Two minor ephemeral drainage lines are present study area. Drainage lines are important corridors for woodland species because the woodland along the banks is a refuge for woodland species. The largest concentration of shrubs and a few small trees in the study area is found along the banks of drainage lines.

6.6.3 Dams, pans and wetlands

The study area contains several dams which are situated in drainage lines, small pans and a few wetlands. When the dams, pans and wetlands hold surface water (which is only likely after sustained rainfall events), it may temporarily attract a variety of waterbirds, as well as other birds which use them to drink and bath.

⁴ https://en.climate-data.org/

6.6.4 Fences

The study area contains a number of fences. Farm fences provide important perching substrate for a wide range of birds, as a staging post for territorial displays by small birds and also for perch hunting by some raptors.

See Appendix 2 for photographic record of the habitat in the study area.

7 AVIFAUNA IN THE STUDY AREA

7.1 South African Bird Atlas Project 2

The SABAP2 data indicates that a total of 192 bird species could potentially occur within the study area and immediate surroundings – Appendix 1 provides a comprehensive list of all the species. Of these, 37 species are classified as priority species (see definition of priority species in section 4) and 2 of these are South African Red Data species. Of the priority species, 20 are likely to occur regularly at the study area and immediate surrounding area, and another 17 could occur sporadically.

Table 2 below lists all the priority species and the possible impact on the respective species by the proposed 132kV grid connection. The following abbreviations and acronyms are used:

- NT = Near threatened
- End = South African Endemic
- N-End = South African near endemic
- H = High
- M = Medium
- L = Low

Table 2: Priority species potentially occurring in the study area and immediate surroundings.

Species	Taxonomic name	Full protocol	Ad hoc protocol	Powerline priority species	Red Data status: International	Red Data status: Regional	Endemic/near endemic - South Africa	Raptor	Waterbird	Terrestrial	Possibility of regular occurrence	Recorded during surveys: Vrede	Grassland	Woodland	Surface water	Fences	Displacement – disturbance and habitat transformation	Electrocution (substations)	Collisions
African Black Duck	Anas sparsa	1.75	0.00	х					х		L				х				х
African Darter	Anhinga rufa	10.53	0.00	х					х		М				х				х
African Fish-eagle	Haliaeetus vocifer	1.75	0.00	х				х	х		L				х			х	x
African Openbill	Anastomus lamelligerus	1.75	0.00	х					х		L				х				x
African Sacred Ibis	Threskiornis aethiopicus	26.32	0.00	х					х		Н				х				x
African Spoonbill	Platalea alba	7.02	0.00	х					х		Н				х				x
Amur Falcon	Falco amurensis	28.07	4.76	х				х			Н		х			х		х	
Black Sparrowhawk	Accipiter melanoleucus	1.75	0.00	х				х			L			х					
Black-headed Heron	Ardea melanocephala	47.37	6.35	х					х		н		x		х				x
Black-necked Grebe	Podiceps nigricollis	1.75	0.00	х					х		L				х				х
Black-shouldered Kite	Elanus caeruleus	45.61	9.52	х				х			Н		х			х		x	
Blue Korhaan	Eupodotis caerulescens	1.75	1.59	х	NT	LC	х			х	L		х				x		x
Cape Shoveler	Anas smithii	8.77	0.00	х					х		М				х				x
Cape Teal	Anas capensis	1.75	0.00	х					х		L				х				x
Common Buzzard	Buteo vulpinus	7.02	0.00	х			х	х			Н		х			х		х	
Common Moorhen	Gallinula chloropus	22.81	0.00	х					х		Н				х				x
Egyptian Goose	Alopochen aegyptiacus	49.12	1.59	х					х		Н	х			х				х
Fulvous Duck	Dendrocygna bicolor	10.53	0.00	х					х		М				х				x
Glossy Ibis	Plegadis falcinellus	12.28	0.00	х					х		Н				х				х
Goliath Heron	Ardea goliath	1.75	0.00	х					х		L				х			х	х
Greater Flamingo	Phoenicopterus ruber	1.75	1.59	х	LC	NT			х		L				х				х
Grey Heron	Ardea cinerea	14.04	1.59	х					х		Н				х				х
Hadeda Ibis	Bostrychia hagedash	84.21	11.11	х					х		Н				х			х	x
Hamerkop	Scopus umbretta	5.26	1.59	х					х		L				х				х
Helmeted Guineafowl	Numida meleagris	66.67	3.17	х						х	Н	х	х	х			х	х	x
Lesser Flamingo	Phoenicopterus minor	1.75	0.00	х	NT	NT			х		L				х				х
Lesser Kestrel	Falco naumanni	35.09	1.59	х				х			Н		х			х		х	

Species	Taxonomic name	Full protocol	Ad hoc protocol	Powerline priority species	Red Data status: International	Red Data status: Regional	Endemic/near endemic - South Africa	Raptor	Waterbird	Terrestrial	Possibility of regular occurrence	Recorded during surveys: Vrede	Grassland	Woodland	Surface water	Fences	Displacement – disturbance and habitat transformation	Electrocution (substations)	Collisions
Little Egret	Egretta garzetta	12.28	0.00	х					х		Н				х				х
Little Grebe	Tachybaptus ruficollis	38.60	1.59	х					х		Н				х				х
Maccoa Duck	Oxyura maccoa	1.75	0.00	х					х		L				х				х
Marsh Owl	Asio capensis	7.02	0.00	х				х			М		х			х		х	х
Northern Black Korhaan	Afrotis afraoides	82.46	12.70	х						х	Н	х	х				х		х
Pale Chanting Goshawk	Melierax canorus	5.26	0.00	х				х			М	х	х	х	х	х		х	х
Purple Heron	Ardea purpurea	8.77	0.00	х					х		М				х				х
Red-billed Teal	Anas erythrorhyncha	28.07	0.00	х					х		Н				х				х
Red-knobbed Coot	Fulica cristata	59.65	7.94	х					х		Н				х				х
Reed Cormorant	Phalacrocorax africanus	43.86	3.17	х					х		Н				х				х
South African Shelduck	Tadorna cana	7.02	0.00	х			х		х		Н	х			х				х
Southern Pochard	Netta erythrophthalma	10.53	0.00	х					х		М				х				х
Spur-winged Goose	Plectropterus gambensis	24.56	3.17	х					х		Н				х			х	х
Western Cattle Egret	Bubulcus ibis	77.19	19.05	х					х	L	Н	х	х		х				х
White Stork	Ciconia ciconia	1.75	0.00	х					х	L	L		х		х				х
White-breasted Cormorant	Phalacrocorax carbo	28.07	1.59	х					х	L	Н				х				х
White-faced Duck	Dendrocygna viduata	33.33	0.00	х					х	L	Н				х				х
Yellow-billed Duck	Anas undulata	68.42	1.59	х					х		Н				х				х

7.2 On-site surveys

On-site surveys were conducted from 20 - 22 July 2020 by means of transect counts. The methodology which was followed to record the avifauna is explained in Appendix 3.

The abundance of avifauna recorded during the transect counts are displayed in Figure 3 and 4.

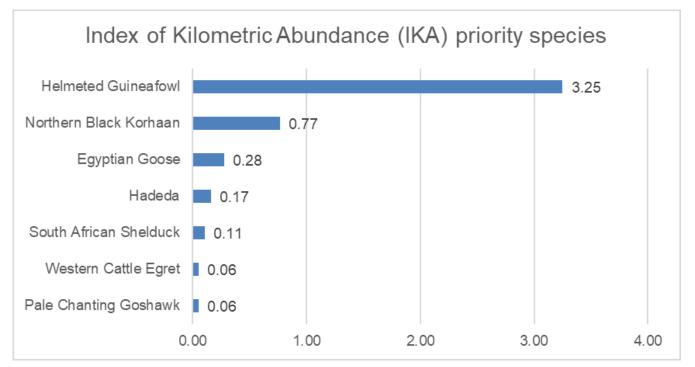


Figure 3: Index of kilometric abundance (IKA) for all priority species recorded by means of transect counts during the surveys in the study area, conducted in July 2020.

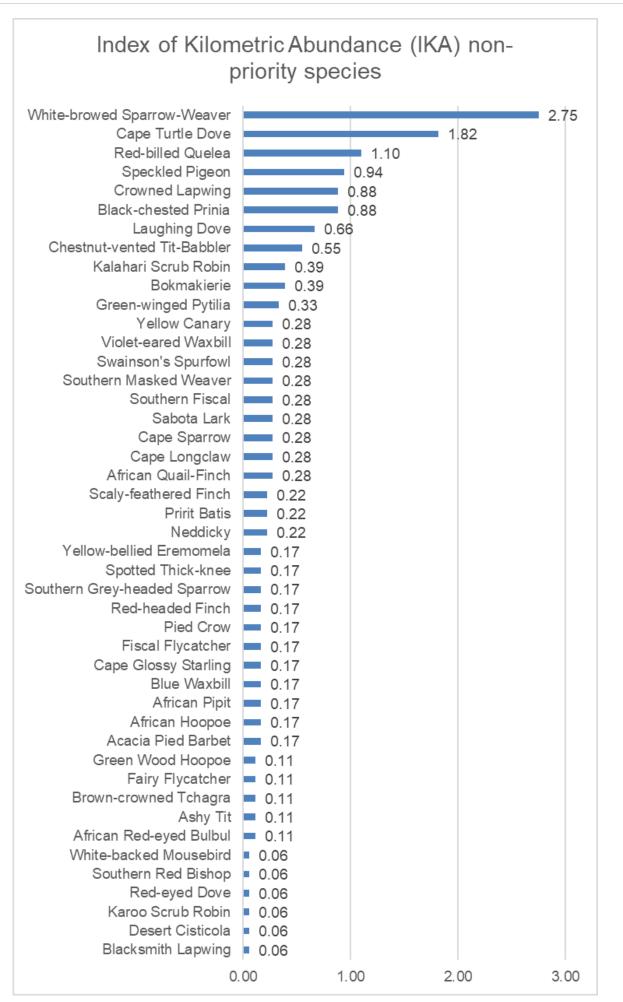


Figure 4: Index of kilometric abundance (IKA) for all non-priority species recorded by means of transect counts during the surveys, conducted in July 2020.

8 IMPACT ASSESSMENT

8.1 General

Negative impacts on avifauna by electricity infrastructure generally take two main forms namely electrocution and collisions (Ledger & Annegarn 1981; Ledger 1983; Ledger 1984; Hobbs and Ledger 1986a; Hobbs & Ledger 1986b; Ledger, Hobbs & Smith, 1992; Verdoorn 1996; Kruger & Van Rooyen 1998; Van Rooyen 1998; Kruger 1999; Van Rooyen 1999; Van Rooyen 2000; Van Rooyen 2004; Jenkins *et al.* 2010). Displacement due to habitat destruction and disturbance associated with the construction of the electricity infrastructure is another impact that could potentially impact on avifauna.

8.2 Electrocutions

Electrocution refers to the scenario where a bird is perched or attempts to perch on the electrical structure and causes an electrical short circuit by physically bridging the air gap between live components and/or live and earthed components (Van Rooyen 2004). The electrocution risk is largely determined by the pole/tower design. In the case of the proposed power lines, the electrocution risk is envisaged to be low because the proposed design of the 132kV line, namely the steel monopole and self-supporting lattice structures, should not pose an electrocution threat to the majority of the priority species which are likely to occur in the study area and immediate surrounding environment. Electrocutions within the proposed transmission substation yard are possible but should not affect the more sensitive Red Data bird species, as these species are unlikely to use the infrastructure within the substation yard for perching or roosting. Species that are more vulnerable to this impact are corvids, owls and certain species of waterbirds. The priority species which are potentially vulnerable to this impact are listed in Table 2, and below:

- African Fish-eagle
- Amur Falcon
- Black-shouldered Kite
- Common Buzzard
- Goliath Heron
- Hadeda Ibis
- Helmeted Guineafowl
- Lesser Kestrel
- Marsh Owl
- Pale Chanting Goshawk
- Spur-winged Goose

8.3 Collisions

Collisions are the biggest threat posed by transmission lines to birds in southern Africa (Van Rooyen 2004). Most heavily impacted upon are bustards, storks, cranes and various species of waterbirds, and to a lesser extent, vultures. These species are mostly heavy-bodied birds with limited manoeuvrability, which makes it difficult for them to take the necessary evasive action to avoid colliding with transmission lines (Van Rooyen 2004, Anderson 2001). In a PhD study, Shaw (2013) provides a concise summary of the phenomenon of avian collisions with transmission lines:

"The collision risk posed by power lines is complex and problems are often localised. While any bird flying near a power line is at risk of collision, this risk varies greatly between different groups of birds, and depends on the interplay of a wide range of factors (APLIC 1994). Bevanger (1994) described these factors in four main groups – biological, topographical, meteorological and technical. Birds at highest risk are those that are both susceptible to collisions and frequently exposed to power lines, with waterbirds, gamebirds, rails, cranes and bustards usually the most numerous reported victims (Bevanger 1998, Rubolini et al. 2005, Jenkins et al. 2010).

The proliferation of man-made structures in the landscape is relatively recent, and birds are not evolved to avoid them. Body size and morphology are key predictive factors of collision risk, with large-bodied birds with high wing loadings (the ratio of body weight to wing area) most at risk (Bevanger 1998, Janss 2000). These birds must fly fast to remain airborne, and do not have sufficient manoeuvrability to avoid unexpected obstacles. Vision is another key biological factor, with many collision-prone birds principally using lateral vision to navigate in flight, when it is the lower-resolution, and often restricted, forward vision that is useful to detect obstacles (Martin & Shaw 2010, Martin 2011, Martin et al. 2012). Behaviour is important, with birds flying in flocks, at low levels and in crepuscular or nocturnal conditions at higher risk of collision (Bevanger 1994). Experience affects risk, with migratory and nomadic species that spend much of their time in unfamiliar locations also expected to collide more often (Anderson 1978, Anderson 2002). Juvenile birds have often been reported as being more collision-prone than adults (e.g. Brown et al. 1987, Henderson et al. 1996).

Topography and weather conditions affect how birds use the landscape. Power lines in sensitive bird areas (e.g. those that separate feeding and roosting areas, or cross flyways) can be very dangerous (APLIC 1994, Bevanger 1994). Lines crossing the prevailing wind conditions can pose a problem for large birds that use the wind to aid take-off and landing (Bevanger 1994). Inclement weather can disorient birds and reduce their flight altitude, and strong winds can result in birds colliding with power lines that they can see but do not have enough flight control to avoid (Brown et al. 1987, APLIC 2012).

The technical aspects of power line design and siting also play a big part in collision risk. Grouping similar power lines on a common servitude, or locating them along other features such as tree lines, are both approaches thought to reduce risk (Bevanger 1994). In general, low lines with short span lengths (i.e. the distance between two adjacent pylons) and flat conductor configurations are thought to be the least dangerous (Bevanger 1994, Jenkins et al. 2010). On many higher voltage lines, there is a thin earth (or ground) wire above the conductors, protecting the system from lightning strikes. Earth wires are widely accepted to cause the majority of collisions on power lines with this configuration because they are difficult to see, and birds flaring to avoid hitting the conductors often put themselves directly in the path of these wires (Brown et al. 1987, Faanes 1987, Alonso et al. 1994a, Bevanger 1994)."

From incidental record keeping by the Endangered Wildlife Trust, it is possible to give a measure of what species are generally susceptible to power line collisions in South Africa (see Figure 5 below).

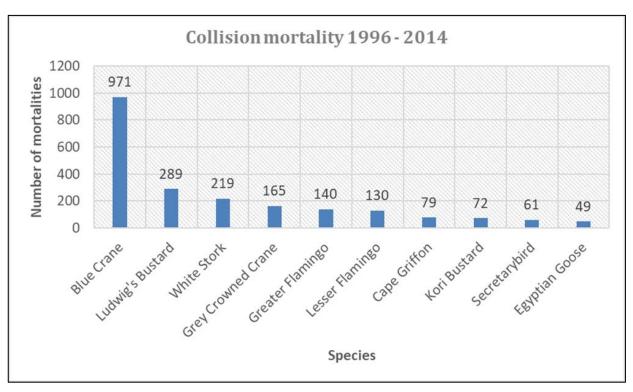


Figure 5: The top 10 collision prone bird species in South Africa, in terms of reported incidents contained in the Eskom/Endangered Wildlife Trust Strategic Partnership central incident register 1996 - 2014 (EWT unpublished data)

Power line collisions are generally accepted as a key threat to bustards (Raab *et al.* 2009; Raab *et al.* 2010; Jenkins & Smallie 2009; Barrientos *et al.* 2012, Shaw 2013). In a recent study, carcass surveys were performed under high voltage transmission lines in the Karoo for two years, and low voltage distribution lines for one year (Shaw 2013). Ludwig's Bustard was the most common collision victim (69% of carcasses), with bustards generally comprising 87% of mortalities recovered. Total annual mortality was estimated at 41% of the Ludwig's Bustard population, with Kori Bustards also dying in large numbers (at least 14% of the South African population killed in the Karoo alone). Karoo Korhaan was also recorded, but to a much lesser extent than Ludwig's Bustard. The reasons for the relatively low collision risk of this species probably include their smaller size (and hence greater agility in flight) as well as their more

sedentary lifestyles, as local birds are familiar with their territory and are less likely to collide with power lines (Shaw 2013).

Several factors are thought to influence avian collisions, including the manoeuvrability of the bird, topography, weather conditions and power line configuration. An important additional factor that previously has received little attention is the visual capacity of birds; i.e. whether they are able to see obstacles such as power lines, and whether they are looking ahead to see obstacles with enough time to avoid a collision. In addition to helping explain the susceptibility of some species to collision, this factor is key to planning effective mitigation measures. Recent research provides the first evidence that birds can render themselves blind in the direction of travel during flight through voluntary head movements (Martin & Shaw 2010). Visual fields were determined in three bird species representative of families known to be subject to high levels of mortality associated with power lines i.e. Kori Bustards Ardeotis kori, Blue Cranes Anthropoides paradiseus and White Storks Ciconia ciconia. In all species the frontal visual fields showed narrow and vertically long binocular fields typical of birds that take food items directly in the bill under visual guidance. However, these species differed markedly in the vertical extent of their binocular fields and in the extent of the blind areas which project above and below the binocular fields in the forward-facing hemisphere. The importance of these blind areas is that when in flight, head movements in the vertical plane (pitching the head to look downwards) will render the bird blind in the direction of travel. Such movements may frequently occur when birds are scanning below them (for foraging or roost sites, or for conspecifics). In bustards and cranes pitch movements of only 25° and 35°, respectively, are sufficient to render the birds blind in the direction of travel; in storks, head movements of 55° are necessary. That flying birds can render themselves blind in the direction of travel has not been previously recognised and has important implications for the effective mitigation of collisions with human artefacts including wind turbines and power lines. These findings have applicability to species outside of these families especially raptors (Accipitridae) which are known to have small binocular fields and large blind areas similar to those of bustards and cranes, and are also known to be vulnerable to power line collisions.

Despite doubts about the efficacy of line marking to reduce the collision risk for bustards (Jenkins *et al.* 2010; Martin *et al.* 2010), there are numerous studies which prove that marking a line with PVC spiral type Bird Flight Diverters (BFDs) generally reduce mortality rates (e.g. Bernardino *et al.* 2018; Sporer *et al.* 2013, Barrientos *et al.* 2011; Jenkins *et al.* 2010; Alonso & Alonso 1999; Koops & De Jong 1982), including to some extent for bustards (Barrientos *et al.* 2012; Hoogstad 2015 pers.comm). Beaulaurier (1981) summarised the results of 17 studies that involved the marking of earth wires and found an average reduction in mortality of 45%. Barrientos *et al.* (2011) reviewed the results of 15 wire marking experiments in which transmission or distribution wires were marked to examine the effectiveness of flight diverters in reducing bird mortality. The presence of flight diverters was associated with a decrease of 55–94% in bird mortalities. Koops and De Jong (1982) found that the spacing of the BFDs was critical in reducing the mortality rates - mortality rates are reduced up to 86% with a spacing of 5m, whereas using the same devices at 10m intervals only reduces the mortality by 57%. Barrientos *et al.* (2012) found that larger BFDs were more effective in reducing with the background. Colour is probably less important as during the day the background will be brighter than the obstacle with the reverse true at lower light levels (e.g. at twilight, or during overcast conditions). Black and white interspersed patterns are likely to maximise the probability of detection (Martin *et al.* 2010).

Using a controlled experiment spanning a period of nearly eight years (2008 to 2016), the Endangered Wildlife Trust (EWT) and Eskom tested the effectiveness of two types of line markers in reducing power line collision mortalities of large birds on three 400kV transmission lines near Hydra substation in the Karoo. Marking was highly effective for Blue Cranes, with a 92% reduction in mortality, and large birds in general with a 56% reduction in mortality, but not for bustards, including the endangered Ludwig's Bustard. The two different marking devices were approximately equally effective, namely spirals and bird flappers, they found no evidence supporting the preferential use of one type of marker over the other (Shaw *et al.* 2017).

The most likely Red Data candidates for potential collision mortality on the proposed powerline are waterbirds. The priority species which are potentially vulnerable to this impact are listed in Table 2, and below:

- African Fish-eagle
- Goliath Heron
- Hadeda Ibis
- Helmeted Guineafowl
- Marsh Owl
- Pale Chanting Goshawk

- Spur-winged Goose
- African Black Duck
- African Darter
- African Openbill
- African Sacred Ibis
- African Spoonbill
- Black-headed Heron
- Black-necked Grebe
- Blue Korhaan
- Cape Shoveler
- Cape Teal
- Common Moorhen
- Egyptian Goose
- Fulvous Duck
- Glossy Ibis
- Greater Flamingo
- Grey Heron
- Hamerkop
- Lesser Flamingo
- Little Egret
- Little Grebe
- Maccoa Duck
- Northern Black Korhaan
- Purple Heron
- Red-billed Teal
- Red-knobbed Coot
- Reed Cormorant
- South African Shelduck
- Southern Pochard
- Western Cattle Egret
- White Stork
- White-breasted Cormorant
- White-faced Duck
- Yellow-billed Duck

8.4 Displacement due to habitat destruction and disturbance

During the construction of power lines, service roads (jeep tracks) and substations, habitat destruction/transformation inevitably takes place. The construction activities will constitute the following:

- Site clearance and preparation;
- Construction of the infrastructure (i.e. the on-site substation, OHL and service road);
- Transportation of personnel, construction material and equipment to the site, and personnel away from the site;
- Removal of vegetation for the proposed substation and stockpiling of topsoil and cleared vegetation;
- Excavations for infrastructure;

These activities could impact on birds breeding, foraging and roosting in or in close proximity of the proposed transmission substation through **transformation of habitat**, which could result in temporary or permanent displacement. Unfortunately, very little mitigation can be applied to reduce the significance of this impact as the total permanent transformation of the natural habitat within the construction footprint of the substation yard is unavoidable. Fortunately, due to the nature of the vegetation, and judged by the existing power lines, very little if any vegetation clearing will be required in the power line servitudes. The habitat in the study area is very uniform from a bird impact perspective; therefore, the loss of habitat for priority species due to direct habitat transformation associated with the construction of the proposed substation is likely to be fairly minimal. The species most likely to be directly affected by this impact would be terrestrial, non-Red Data species.

Apart from direct habitat destruction, the above-mentioned activities also impact on birds through **disturbance**; this could lead to breeding failure if the disturbance happens during a critical part of the breeding cycle. Construction activities in close proximity to breeding locations could be a source of disturbance and could lead to temporary breeding failure or even permanent abandonment of nests. A potential mitigation measure is the timeous identification of nests and the timing of the construction activities to avoid disturbance during a critical phase of the breeding cycle, although in practice that can admittedly be very challenging to implement. Terrestrial species are most likely to be affected by displacement due to disturbance.

The priority species which are potentially vulnerable to this impact are listed in Table 2, and below:

- Helmeted Guineafowl
- Blue Korhaan
- Northern Black Korhaan

9 IMPACT RATING

The EIA Methodology assists in evaluating the overall effect of a proposed activity on the environment. The determination of the effect of an environmental impact on an environmental parameter is determined through a systematic analysis of the various components of the impact. This is undertaken using information that is available to the environmental practitioner through the process of the environmental impact assessment. The impact evaluation of predicted impacts was undertaken through an assessment of the significance of the impacts.

9.1 Determination of Significance of Impacts

Direct, indirect and cumulative impacts of the issues identified through the EIA process, as well as all other issues identified due to the amendment were assessed in terms of the following criteria:

- The nature, which includes a description of what causes the effect, what will be affected and how it will be affected.
- The extent, wherein it is indicated whether the impact will be local (limited to the immediate area or site of development) or regional, and a value between 1 and 5 will be assigned as appropriate (with 1 being low and 5 being high):
- The duration, wherein is indicated whether:
 - \circ the lifetime of the impact will be of a very short duration (0–1 years) assigned a score of 1
 - o the lifetime of the impact will be of a short duration (2-5 years) assigned a score of 2
 - medium-term (5–15 years) assigned a score of 3
 - o long term (> 15 years) assigned a score of 4 or
 - o permanent assigned a score of 5
- The consequences (magnitude), quantified on a scale from 0-10, where 0 is small and will have no effect on the environment, 2 is minor and will not result in an impact on processes, 4 is low and will cause a slight impact on processes, 6 is moderate and will result in processes continuing but in a modified way, 8 is high (processes are altered to the extent that they temporarily cease), and 10 is very high and results in complete destruction of patterns and permanent cessation of processes.
- The probability of occurrence, which describes the likelihood of the impact actually occurring. Probability is
 estimated on a scale of 1–5, where 1 is very improbable (probably will not happen), 2 is improbable (some
 possibility, but low likelihood), 3 is probable (distinct possibility), 4 is highly probable (most likely) and 5 is definite
 (impact will occur regardless of any prevention measures).
- The significance, which is determined through a synthesis of the characteristics described above and is assessed as low, medium or high; and
- The status, which is described as either positive, negative or neutral.
- The degree to which the impact can be reversed.
- The degree to which the impact may cause irreplaceable loss of resources.

• The degree to which the impact can be mitigated.

The significance is calculated by combining the criteria in the following formula:

- S = (E+D+M)P
- S = Significance weighting
- E = Extent
- D = Duration
- M = Magnitude
- P = Probability

The significance weightings for each potential impact are as follows:

- < 30 points: Low (i.e. where this impact would not have a direct influence on the decision to develop in the area),
- 30-60 points: Medium (i.e. where the impact could influence the decision to develop in the area unless it is effectively mitigated),
- 60 points: High (i.e. where the impact must have an influence on the decision process to develop in the area).

9.2 Impact Assessments

The impact assessments are summarised in the tables below.

9.2.1 Construction Phase

Nature: Displacement of priority species due to disturbance associated with construction of the grid and onsite substation **Option 1** Option 2 Without mitigation Without mitigation With mitigation With mitigation Extent 1 local 1 local 1 local 1 local Duration 1 very short 1 very short 1 very short 1 very short Magnitude 8 high 8 high 8 high 8 high 4 highly probable 4 highly probable 2 improbable 2 improbable Probability Significance 40 medium 40 medium 20 low 20 low Status (positive or negative negative negative negative negative) Reversibility Medium Medium High High Irreplaceable loss of No No No No resources? Yes Can impacts be Yes mitigated?

Mitigation:

Construction activity should be restricted to the immediate footprint of the infrastructure.

• Access to the remainder of the site should be strictly controlled to prevent unnecessary disturbance of priority species.

Measures to control noise and dust should be applied according to current best practice in the industry.

• Maximum used should be made of existing access roads and the construction of new roads should be kept to a minimum.

Residual Risks:

The residual risk of displacement will be reduced to a low level after mitigation, if the proposed mitigation is implemented.

9.2.2 Operational Phase

Nature: Displacement of priority species due to habitat transformation associated with the operation of the OHL and onsite substation.

	o	ption 1		Option 2
	Without mitigation	Without mitigation	With mitigation	With mitigation
Extent	1 local	1 local	1 local	1 local
Duration	4 long term	4 long term	4 long term	4 long term
Magnitude	4 low	4 low	4 low	4 low
Probability	3 probable	3 probable	2 improbable	2 improbable
Significance	27 low	27 low	18 low	18 low
Status (positive or negative)	negative	negative	negative	negative
Reversibility	high	high	high	high

	1		1		
Irreplaceable loss of resources?	no	no	no	no	
Can impacts be mitigated?	To a limited extent	To a limited extent			
-		t is absolutely necessary. tation specialist must be strict	ly enforced.		
Residual Risks: The resid	ual risk of displacement,	which is already low, will be	further reduced after mitig	ation	
Nature: Mortality of priori	ty species due to collisi	ions with the 132kV OHL	1		
	0	ption 1	Ομ	ption 2	
	Without mitigation	Without mitigation	With mitigation	With mitigation	
Extent	1 local	1 local	1 local	1 local	
Duration	4 long term	4 long term	4 long term	4 long term	
Magnitude	8 high	8 high	6 moderate	6 moderate	
Probability	4 highly probable	4 highly probable	3 probable	3 probable	
Significance	52 medium	52 medium	33 medium	33 medium	
Status (positive or negative)	negative	negative	negative	negative	
Reversibility	high	high	high	high	
Irreplaceable loss of resources?	yes	yes	yes	yes	
Can impacts be mitigated?	To a limited extent	To a limited extent	To a limited extent	To a limited extent	

Mitigation:

.

The avifaunal specialist must conduct a walk-through prior to implementation to demarcate sections of powerline that need to be marked with Eskom approved bird flight diverters. The bird flight diverters should be installed on the full span length on the earthwire (according to Eskom guidelines - five metres apart). Light and dark colour devices must be alternated to provide contrast against both dark and light backgrounds respectively. These devices must be installed as soon as the conductors are strung.

Residual Risks: There will be an ongoing residual risk of collisions with the OHL, but mitigation should make a material difference.

Nature: Electrocution of priority species in the onsite substation.							
	Without mitigation	With mitigation					
Extent	2 local	1 local					
Duration	4 long term	4 long term					
Magnitude	8 high	8 high					
Probability	3 improbable	2 very improbable					
Significance	42 medium	26 low					
Status (positive or negative)	negative	negative					
Reversibility	high	high					
Irreplaceable loss of resources?	yes	yes					
Can impacts be mitigated?	yes						

Mitigation:

 The hardware within the proposed transmission substation yard is too complex to warrant any mitigation for electrocution at this stage. It is recommended that if on-going impacts are recorded once operational, site specific mitigation (insulation) be applied reactively. This is an acceptable approach because Red Data priority species is unlikely to frequent the substation and be electrocuted.

Residual Risks:

The residual risk of electrocution will be low once mitigation is implemented.

9.2.3 Decommissioning Phase

Nature: Displacement of priority species due to disturbance associated with decommissioning of the grid and onsite substation

	Option 1		Option 2	
	Without mitigation	Without mitigation	With mitigation	With mitigation
Extent	1 local	1 local	1 local	1 local
Duration	1 very short	1 very short	1 very short	1 very short
Magnitude	8 high	8 high	8 high	8 high
Probability	4 highly probable	4 highly probable	2 improbable	2 improbable
Significance	40 medium	40 medium	20 low	20 low
Status (positive or negative)	negative	negative	negative	negative
Reversibility	Medium	Medium	High	High
Irreplaceable loss of resources?	No	No	No	No
Can impacts be mitigated?	Yes	Yes		

Mitigation:

- Decommissioning activity should be restricted to the immediate footprint of the infrastructure as far as possible.
- Access to the remainder of the site should be strictly controlled to prevent unnecessary disturbance of priority species.
- Measures to control noise and dust should be applied according to current best practice in the industry.
- Maximum used should be made of existing access roads and the construction of new roads should be kept to a minimum.
- The existing transmission lines must be inspected for active raptor nests prior to the commencement of the decommissioning activities. Should any active nests be present, decommissioning activities during the breeding season should be avoided if possible.

Residual Risks: The residual risk of displacement will be reduced to a low level after mitigation, if the proposed mitigation is implemented.

The impacts were summarized, and a comparison made between pre-and post-mitigation phases as shown in Table 4 below. The rating of environmental issues associated with different parameters prior to, and post mitigation of a proposed activity was averaged. A comparison was then made to determine the effectiveness of the proposed mitigation measures. The comparison identified critical issues related to the environmental parameters.

Table 3: Comparison of summarised impacts on environmental parameters for all alternatives

Environmental	Issues	Rating prior to mitigation	Rating post mitigation
parameter			

Avifauna	Displacement of priority species due to disturbance associated with construction of the grid and onsite substation	40 medium	20 low
	Displacement of priority species due to habitat transformation associated with the operation of the OHL and onsite substation	27 medium	18 low
	Mortality of priority species due to collisions with the 132kV OHL	52 low	33 low
	Electrocution of priority species in the onsite substation	42 low	26 low
	Displacement of priority species due to disturbance associated with decommissioning of the grid and onsite substation	40 medium	20 low
	Average	40 medium	20 low

9.3 Comparative assessment of alternative grid corridors

From an avifaunal perspective, Alternative 1 is preferred powerline alternative because it is the shortest alternative. However, Alternative 2 is not fatally flawed and can be utilised with appropriate mitigation.

VREDE GRID INFRASTRUCTURE			
Alternative	Preference	Reasons	
Grid Option 1	Preferred	This is the shortest option	
Grid Option 2	Acceptable	This option is marginally longer than Option1, but still acceptable	

9.4 Cumulative impacts

"Cumulative Impact", in relation to an activity, means the past, current and reasonably foreseeable future impact of an activity, considered together with the impact of activities associated with that activity, that in itself may not be significant, but may become significant when added to existing and reasonably foreseeable impacts eventuating from similar or diverse activities.

The role of the cumulative assessment is to test if such impacts are relevant to the proposed project in the proposed location (i.e. whether the addition of the proposed project in the area will increase the impact). This section addresses whether the construction of the proposed development will result in:

- Unacceptable risk
- Unacceptable loss
- Complete or whole-scale changes to the environment
- Unacceptable increase in impact

According to the official database of DFFE, there were no registered applications for renewable energy projects within a 30km radius around the proposed development at the end of 2020. The only other planned facility is the 100 MW Rondavel Photovoltaic (PV) Solar Energy Facility (SEF) and Battery Energy Storage System (BESS) (see Figure 7)

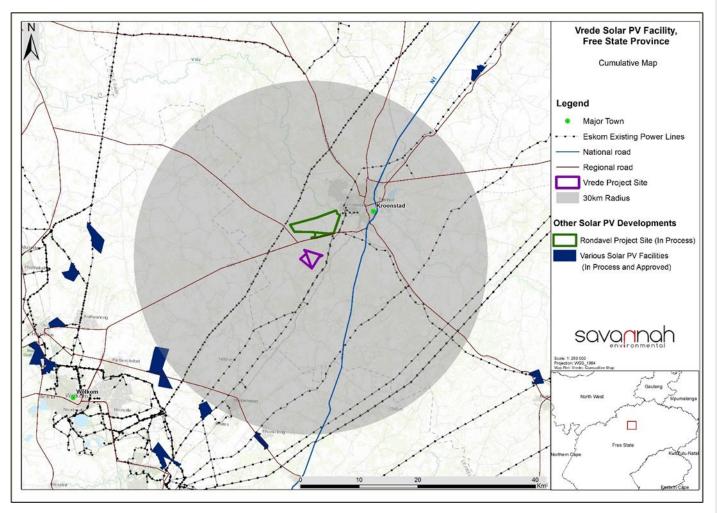


Figure 6: Renewable energy applications within 30km of the proposed Vrede SEF

The proposed Vrede PV grid equates to a maximum of 3.47km, depending on which of the alternatives are used. There are approximately 300 kilometres of existing high voltage lines within the 30km radius around the Vrede PV project (counting parallel lines as one). The Vrede PV grid project will thus increase the total number of existing high voltage lines by approximately 1% or less. The contribution of the planned Vrede PV grid connection to the cumulative impact of all the high voltage lines is thus low. However, the combined cumulative impact of the existing and planned power lines on avifauna within a 30km radius is considered to be moderate.

The cumulative impact of displacement due to disturbance and habitat transformation in the onsite substation associated with the Vrede PV project is considered to be low, due to the small size of the footprint, and the availability of similar habitat within the 30km radius area. The cumulative impact of potential electrocutions in the substation yard of the onsite substation is also likely to be low as it is expected to be a rare event.

The tables below summarise the cumulative impacts associated with the proposed development.

	Option 1		Option 2	
	Cumulative impact of the proposed grid connection (post mitigation) within a 30km radius (post mitigation).	Cumulative impact of the proposed grid connection (post mitigation) within a 30km radius (post mitigation).	The combined cumulative impact of the proposed grid connection and all the other high voltage lines within a 30km radius (post mitigation)	The combined cumulative impact of the proposed grid connection and all the other high voltage lines within a 30km radius (post mitigation)
Extent	1 local	1 local	2 regional	2 regional
Duration	4 long term	4 long term	4 long term	4 long term
Magnitude	2 minor	2 minor	6 moderate	6 moderate
Probability	4 highly probable	4 highly probable	4 highly probable	4 highly probable
Significance	28 low	28 low	48 medium	48 medium
Status (positive/negative)	Negative	Negative	Negative	Negative
Reversibility	High	High	High	High
Loss of resources?	yes	yes	yes	yes
Can impacts	Yes	Yes	Yes	Yes

Mitigation: Marking of all high risk sections of powerline with Bird Flight Diverters.

Nature: (1) Displacement of priority avifauna due to disturbance and habitat transformation, and (2) mortality (electrocution) of priority avifauna due to the construction of the onsite substation

	Overall impact of the proposed onsite substation (post mitigation) within a 30km radius (post mitigation).	Cumulative impact of the proposed onsite substation and other planned and existing substations within a 30km radius (post mitigation)
Extent	1 local	2 regional
Duration	4 long term	4 long term
Magnitude	2 minor	4 low
Probability	2 improbable	2 improbable
Significance	14 low	20 low
Status (positive/negative)	Negative	Negative
Reversibility	High	High

ſ

Loss of resources?	yes	yes		
Can impacts	Yes, but only to some extent	Yes, but only to some extent		
be mitigated?				
Confidence in finding	Confidence in findings:			
Medium.				
Mitigation:				
Construction activity should be restricted to the immediate footprint of the infrastructure.				
Access to the	Access to the remainder of the site should be strictly controlled to prevent unnecessary disturbance of priority species.			
Measures to control noise and dust should be applied according to current best practice in the industry.				
• Maximum used should be made of existing access roads and the construction of new roads should be kept to a minimum.				
• The hardware within the proposed transmission substation yard is too complex to warrant any mitigation for electrocution at				
this stage. It is	this stage. It is recommended that if on-going impacts are recorded once operational, site specific mitigation (insulation) be			
applied reactively. This is an acceptable approach because Red Data priority species is unlikely to frequent the substation				

9.5 No-Go Alternative

and be electrocuted.

The no-go alternative will result in the current status quo being maintained at the proposed development site as far as the avifauna is concerned. The study area site itself consist mostly of natural grassland, wetlands and drainage lines. The no-go option would maintain the natural habitat which would be beneficial to the avifauna currently occurring there.

9.6 Environmental sensitivities

The following environmental sensitivities were identified from an avifaunal perspective:

• High sensitivity – Mark with Bird Flight Diverters: Flight paths associated with surface water.

Drainage lines are used by birds as flight paths, particularly waterbirds that commute up and down channels. Dams, pans and wetlands are also a large attraction for waterbirds, and birds commuting between dams, pans and wetlands may be at risk of collisions.

See Figure 8 for the avifaunal sensitivities identified from a grid perspective.

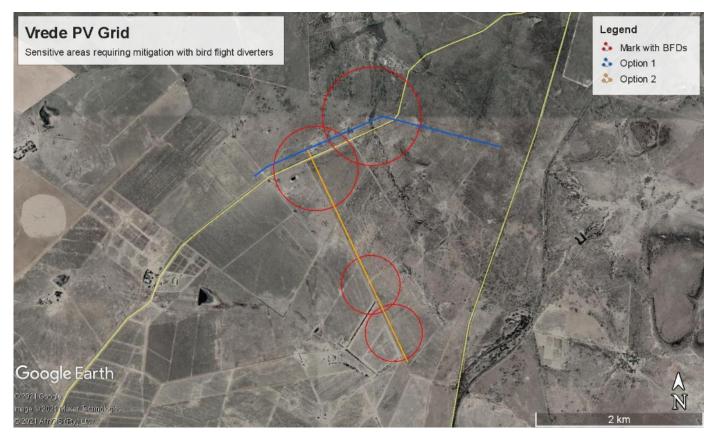


Figure 7: Avifaunal sensitivities grid connection) at the Vrede PV facility.

10. ENVIRONMENTAL MANAGEMENT PROGRAMME INPUTS

Refer to Appendix 4 for a description of the key mitigation and monitoring recommendations for each applicable mitigation measure identified for all phases of the project.

11. FINAL SPECIALIST STATEMENT AND AUTHORISATION RECOMMENDATION

11.1 Statement and Reasoned Opinion

The expected impacts of the Vrede PV grid and associated infrastructure were rated to be of Moderate significance and negative status pre-mitigation. However, with appropriate mitigation, the post-mitigation significance of the identified impacts should be reduced to Low negative (see Table 3 above).No fatal flaws were discovered in the course of the investigation. It is therefore recommended that the activity is authorised, on condition that the proposed mitigation measures as detailed in the Impact Tables (Section 9 of the report) and the EMPr (Appendix 4) are strictly implemented.

11.2 EA Condition Recommendations

The proposed mitigation measures are detailed in the EMPr (Appendix 4).

12. **REFERENCES**

- ANIMAL DEMOGRAPHY UNIT. 2020. The southern African Bird Atlas Project 2. University of Cape Town. <u>http://sabap2.adu.org.za</u>.
- ALONSO, J. A. AND ALONSO, J. C. 1999 Collision of birds with overhead transmission lines in Spain. Pp. 57–82 in Ferrer, M. and Janss, G. F. E., eds. Birds and power lines: Collision, electrocution and breeding. Madrid, Spain: Quercus.Google Scholar
- AVIAN POWER LINE INTERACTION COMMITTEE (APLIC). 2012. Mitigating Bird Collisions with Power Lines: The State of the Art in 2012. Edison Electric Institute. Washington D.C.

- BARRIENTOS R, PONCE C, PALACIN C, MARTÍN CA, MARTÍN B, ET AL. 2012. Wire marking results in a small but significant reduction in avian mortality at power lines: A BACI Designed Study. PLoS ONE 7(3): e32569. doi:10.1371/journal.pone.0032569.
- BARRIENTOS, R., ALONSO, J.C., PONCE, C., PALACÍN, C. 2011. Meta-Analysis of the effectiveness of marked wire in reducing avian collisions with power lines. Conservation Biology 25: 893-903.
- BEAULAURIER, D.L. 1981. Mitigation of bird collisions with transmission lines. Bonneville Power Administration. U.S. Dept. of Energy.
- BERNARDINO, J., BEVANGER, K., BARRIENTOS, R., DWYER, J.F. MARQUES, A.T., MARTINS, R.C., SHAW, J.M., SILVA, J.P., MOREIRA, F. 2018. Bird collisions with power lines: State of the art and priority areas for research. https://doi.org/10.1016/j.biocon.2018.02.029. Biological Conservation 222 (2018) 1 – 13.
- ENDANGERED WILDLIFE TRUST. 2014. Central incident register for powerline incidents. Unpublished data.
- HARRISON, J.A., ALLAN, D.G., UNDERHILL, L.G., HERREMANS, M., TREE, A.J., PARKER, V & BROWN, C.J. (eds). 1997. The atlas of southern African birds. Vol 1 & 2. BirdLife South Africa, Johannesburg.
- HOBBS, J.C.A. & LEDGER J.A. 1986a. The Environmental Impact of Linear Developments; Power lines and Avifauna. Proceedings of the Third International Conference on Environmental Quality and Ecosystem Stability. Israel, June 1986.
- HOBBS, J.C.A. & LEDGER J.A. 1986b. Power lines, Birdlife and the Golden Mean. Fauna and Flora, 44:23-27.
- HOCKEY P.A.R., DEAN W.R.J., AND RYAN P.G. 2005. Robert's Birds of Southern Africa, seventh edition. Trustees
 of the John Voelcker Bird Book Fund, Cape Town.
- JENKINS, A. & SMALLIE, J. 2009. Terminal velocity: the end of the line for Ludwig's Bustard? Africa Birds and Birding. Vol 14, No 2.
- JENKINS, A., DE GOEDE, J.H. & VAN ROOYEN, C.S. 2006. Improving the products of the Eskom Electric Eagle Project. Unpublished report to Eskom. Endangered Wildife Trust.
- JENKINS, A.R., DE GOEDE, J.H., SEBELE, L. & DIAMOND, M. 2013. Brokering a settlement between eagles and industry: sustainable management of large raptors nesting on power infrastructure. Bird Conservation International 23: 232-246.
- JENKINS, A.R., SMALLIE, J.J. & DIAMOND, M. 2010. Avian collisions with power lines: a global review of causes and mitigation with a South African perspective. Bird Conservation International 20: 263-278.
- KOOPS, F.B.J. & DE JONG, J. 1982. Vermindering van draadslachtoffers door markering van hoogspanningsleidingen in de omgeving van Heerenveen. Electrotechniek 60 (12): 641 – 646.
- KRUGER, R. & VAN ROOYEN, C.S. 1998. Evaluating the risk that existing power lines pose to large raptors by using risk assessment methodology: The Molopo Case Study. Proceedings of the 5th World Conference on Birds of Prey and Owls. August 4-8,1998. Midrand, South Africa.
- KRUGER, R. 1999. Towards solving raptor electrocutions on Eskom Distribution Structures in South Africa.
 Bloemfontein (South Africa): University of the Orange Free State. (M. Phil. Mini-thesis)
- LEDGER, J. 1983. Guidelines for Dealing with Bird Problems of Transmission Lines and Towers. Eskom Test and Research Division. (Technical Note TRR/N83/005).
- LEDGER, J.A. & ANNEGARN H.J. 1981. Electrocution Hazards to the Cape Vulture (Gyps coprotheres) in South Africa. Biological Conservation 20:15-24.
- LEDGER, J.A. 1984. Engineering Solutions to the Problem of Vulture Electrocutions on Electricity Towers. The Certificated Engineer, 57:92-95.
- LEDGER, J.A., J.C.A. HOBBS & SMITH T.V. 1992. Avian Interactions with Utility Structures: Southern African Experiences. Proceedings of the International Workshop on Avian Interactions with Utility Structures. Miami (Florida), Sept. 13-15, 1992. Electric Power Research Institute.
- MARNEWICK, M.D., RETIEF E.F., THERON N.T., WRIGHT D.R., ANDERSON T.A. 2015. Important Bird and Biodiversity Areas of South Africa. Johannesburg: Birdlife South Africa.
- MARTIN, G., SHAW, J., SMALLIE J. & DIAMOND, M. 2010. Bird's eye view How birds see is key to avoiding power line collisions. Eskom Research Report. Report Nr: RES/RR/09/31613.
- MUCINA. L. & RUTHERFORD, M.C. (Eds) 2006. The vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19. South African National Biodiversity Institute, Pretoria.
- SHAW, J.M. 2013. Power line collisions in the Karoo: Conserving Ludwig's Bustard. Unpublished PhD thesis. Percy FitzPatrick Institute of African Ornithology, Department of Biological Sciences, Faculty of Science University of Cape Town May 2013.
- SHAW, J.M., PRETORIUS, M.D., GIBBONS, B., MOHALE, O., VISAGIE, R., LEEUWNER, J.L.& RYAN, P.G. 2017. The effectiveness of line markers in reducing power line collisions of large terrestrial birds at De Aar, Northern Cape. Eskom Research, Testing and Development. Research Report. RES/RR/17/1939422.

- SPORER, M.K., DWYER, J.F., GERBER, B.D, HARNESS, R.E, PANDEY, A.K. 2013. Marking Power Lines to Reduce Avian Collisions Near the Audubon National Wildlife Refuge, North Dakota. Wildlife Society Bulletin 37(4):796–804; 2013; DOI: 10.1002/wsb.329
- TAYLOR, M.R., PEACOCK F, & WANLESS R.W (eds.) 2015. The Eskom Red Data Book of Birds of South Africa, Lesotho and Swaziland. BirdLife South Africa, Johannesburg, South Africa.
- VAN ROOYEN, C.S. & LEDGER, J.A. 1999. Birds and utility structures: Developments in southern Africa. Pp 205-230, in Ferrer, M. & G.F.M. Janns. (eds.). Birds and Power lines. Quercus, Madrid (Spain). Pp 238.
- VAN ROOYEN, C.S. & TAYLOR, P.V. 1999. Bird Streamers as probable cause of electrocutions in South Africa. EPRI Workshop on Avian Interactions with Utility Structures 2-3 December 1999. Charleston, South Carolina.
- VAN ROOYEN, C.S. 1998. Raptor mortality on power lines in South Africa. Proceedings of the 5th World Conference on Birds of Prey and Owls. Midrand (South Africa), Aug.4 – 8, 1998.
- VAN ROOYEN, C.S. 1999. An overview of the Eskom-EWT Strategic Partnership in South Africa. EPRI Workshop on Avian Interactions with Utility Structures Charleston (South Carolina), Dec. 2-3 1999.
- VAN ROOYEN, C.S. 2004. The Management of Wildlife Interactions with overhead lines. In: The fundamentals and practice of Overhead Line Maintenance (132kV and above), pp217-245. Eskom Technology, Services International, Johannesburg.
- VAN ROOYEN, C.S. 2000. An overview of Vulture Electrocutions in South Africa. Vulture News, 43: 5-22. (Vulture Study Group, Johannesburg, South Africa).
- VAN ROOYEN, C.S. 2007. Eskom-EWT Strategic Partnership: Progress Report April-September 2007. Endangered Wildlife Trust, Johannesburg.
- VAN ROOYEN, C.S. VOSLOO, H.F. & R.E. HARNESS. 2002. Eliminating bird streamers as a cause of faulting on transmission lines in South Africa. Proceedings of the IEEE 46th Rural Electric Power Conference. Colorado Springs (Colorado), May. 2002.
- VERDOORN, G.H. 1996. Mortality of Cape Griffons Gyps coprotheres and African Whitebacked Vultures *Pseudogyps* africanus on 88kV and 132kV power lines in Western Transvaal, South Africa, and mitigation measures to prevent future problems. Proceedings of the 2nd International Conference on Raptors: Urbino (Italy), Oct. 2-5, 1996.

13 APPENDICES

Appendix 1: Species List

Appendix 2: Habitat in the study area

Appendix 3: Pre-construction monitoring methodology

Appendix 4: Environmental Management Plan

Species	Taxonomic name	Full	Ad hoc		AND SURROU		
		protocol	protocol	Solar priority	species Red Data status: International	Red Data status: Regional	
Acacia Pied Barbet	Tricholaema leucomelas	61.40	0.00				
African Black Duck	Anas sparsa	1.75	0.00	х			
African Darter	Anhinga rufa	10.53	0.00	х			
African Fish-eagle	Haliaeetus vocifer	1.75	0.00	х			
African Harrier-Hawk	Polyboroides typus	3.51	0.00	Х			
African Hoopoe	Upupa africana	54.39	3.17				
African Openbill	Anastomus lamelligerus	1.75	0.00	х			
African Palm-swift	Cypsiurus parvus	19.30	4.76				
African Paradise-flycatcher	Terpsiphone viridis	3.51	0.00				
African Pipit	Anthus cinnamomeus	33.33	1.59				
African Quailfinch	Ortygospiza atricollis	7.02	0.00				
African Red-eyed Bulbul	Pycnonotus nigricans	77.19	0.00				
African Reed-warbler	Acrocephalus baeticatus	3.51	0.00				
African Sacred Ibis	Threskiornis aethiopicus	26.32	0.00	х			
African Snipe		7.02	0.00				
	Gallinago nigripennis Platalea alba	-		X			
African Spoonbill		7.02	0.00	х			
African Stonechat	Saxicola torquatus	61.40	3.17				
Amethyst Sunbird	Chalcomitra amethystina	12.28	0.00				
Amur Falcon	Falco amurensis	28.07	4.76	х			
Anteating Chat	Myrmecocichla formicivora	29.82	12.70				
Ashy Tit	Parus cinerascens	3.51	0.00				
Barn Swallow	Hirundo rustica	17.54	0.00				
Black Sparrowhawk	Accipiter melanoleucus	1.75	0.00	х			
Black-chested Prinia	Prinia flavicans	66.67	0.00				
Black-collared Barbet	Lybius torquatus	40.35	1.59				
Black-faced Waxbill	Estrilda erythronotos	3.51	0.00				
Black-headed Heron	Ardea melanocephala	47.37	6.35	х			
Black-necked Grebe	Podiceps nigricollis	1.75	0.00	х			
Black-shouldered Kite	Elanus caeruleus	45.61	9.52	х			
Blacksmith Lapwing	Vanellus armatus	87.72	11.11	х			
Black-throated Canary	Crithagra atrogularis	54.39	3.17				
Black-winged Stilt	Himantopus himantopus	12.28	0.00	х	<u> </u>		
Blue Korhaan	Eupodotis caerulescens	1.75	1.59	x	NT	LC	
Blue Waxbill	Uraeginthus angolensis	10.53	0.00				
Bokmakierie	Telophorus zeylonus	38.60	0.00				
Brown-crowned Tchagra	Tchagra australis	8.77	0.00				
Brown-crowned Tchagra Brown-hooded Kingfisher	Halcyon albiventris	1.75	0.00				
*	-						
Brown-throated Martin	Riparia paludicola	10.53	1.59				
Buffy Pipit	Anthus vaalensis	3.51	0.00				
Burchell's Coucal	Centropus burchellii	5.26	0.00				
Cape Glossy Starling	Lamprotornis nitens	17.54	0.00				
Cape Longclaw	Macronyx capensis	45.61	0.00				
Cape Robin-chat	Cossypha caffra	61.40	1.59				
Cape Shoveler	Anas smithii	8.77	0.00	х			
Cape Sparrow	Passer melanurus	92.98	11.11				
Cape Teal	Anas capensis	1.75	0.00	х			
Cape Turtle-dove	Streptopelia capicola	94.74	12.70				
Cape Wagtail	Motacilla capensis	63.16	1.59				
Cape Weaver	Ploceus capensis	1.75	0.00	х			
Cape White-eye	Zosterops virens	35.09	1.59	х			
Cardinal Woodpecker	Dendropicos fuscescens	1.75	0.00				
Cattle Egret	Bubulcus ibis	77.19	19.05	х			
		5.26	0.00				
	Eremopterix leucotis	() ZD					
Chestnut-backed Sparrowlark	Eremopterix leucotis Parisoma subcaeruleum						
	Eremopterix leucotis Parisoma subcaeruleum Emberiza tahapisi	43.86 5.26	0.00				

Species	Taxonomic name	Full	Adhoc		IS:	is: Is:	
		protocol	protocol	ity	statu	al statu	
				oriori	ata	ation ata (ata	
				Solar priority	species Red Data status:	International Red Data status: Regional	
Common (Southern) Fiscal	Lanius collaris	91.23	22.22	ы К	ਨੇ ਨ ੇ	<u> </u>	
Common Buzzard	Buteo vulpinus	7.02	0.00	х			
Common Greenshank	Tringa nebularia	1.75	0.00	х			
Common House-martin	Delichon urbicum	1.75	0.00				
Common Moorhen	Gallinula chloropus	22.81	0.00	х			
Common Myna	Acridotheres tristis	78.95	9.52				
Common Ostrich	Struthio camelus	12.28	1.59				
Common Sandpiper	Actitis hypoleucos	1.75	0.00	х			
Common Scimitarbill	Rhinopomastus	8.77	0.00				
Crested Barbet	cyanomelas Trachyphonus vaillantii	77.19	1.59				
Crowned Lapwing	Vanellus coronatus	96.49	7.94				
Desert Cisticola	Cisticola aridulus	10.53	0.00				
Diderick Cuckoo	Chrysococcyx caprius	40.35	1.59				
Double-banded Courser	Rhinoptilus africanus	5.26	0.00				
Eastern Clapper Lark	Mirafra fasciolata	17.54	0.00				
Egyptian Goose	Alopochen aegyptiacus	49.12	1.59	х			
Fairy Flycatcher	Stenostira scita	5.26	0.00	x			
Familiar Chat	Cercomela familiaris	1.75	0.00				
Fiscal Flycatcher	Sigelus silens	42.11	0.00	х			
Fulvous Duck	Dendrocygna bicolor	10.53	0.00	х			
Gabar Goshawk	Melierax gabar	1.75	0.00	х			
Giant Kingfisher	Megaceryle maximus	3.51	0.00				
Glossy Ibis	Plegadis falcinellus	12.28	0.00	х			
Goliath Heron	Ardea goliath	1.75	0.00	х			
Greater Flamingo	Phoenicopterus ruber	1.75	1.59	х	LC	NT	
Greater Honeyguide	Indicator indicator	1.75	0.00				
Greater Kestrel	Falco rupicoloides	3.51	0.00	х			
Greater Striped Swallow	Hirundo cucullata	59.65	3.17				
Green Wood-hoopoe	Phoeniculus purpureus	45.61	3.17				
Green-winged Pytilia	Pytilia melba	5.26	0.00				
Grey Heron	Ardea cinerea	14.04	1.59	х			
Hadeda Ibis	Bostrychia hagedash	84.21	11.11	х			
Hamerkop	Scopus umbretta	5.26	1.59				
Helmeted Guineafowl	Numida meleagris	66.67	3.17				
Horus Swift	Apus horus	1.75	0.00				
House Sparrow	Passer domesticus	64.91	3.17				
Jacobin Cuckoo	Clamator jacobinus	3.51	0.00				
Jameson's Firefinch	Lagonosticta rhodopareia	1.75	0.00				
Kalahari Scrub-robin	Cercotrichas paena	28.07	0.00				
Karoo Scrub-robin	Cercotrichas coryphoeus	3.51	0.00				
Karoo Thrush	Turdus smithi	70.18	3.17				
Kittlitz's Plover	Charadrius pecuarius	3.51	0.00	х			
Kurrichane Buttonquail	Turnix sylvaticus	1.75	0.00				
Laughing Dove	Streptopelia senegalensis Phoenicopterus minor	92.98	19.05 0.00	¥	NT	NT	
Lesser Flamingo	Lanius minor		0.00	х			
Lesser Grey Shrike Lesser Honeyguide	Indicator minor	5.26	0.00				
Lesser Kestrel	Falco naumanni	35.09	1.59	х			
Lesser Swamp-warbler	Acrocephalus gracilirostris	5.26	1.59	^			
Levaillant's Cisticola	Cisticola tinniens	19.30	0.00				
Lilac-breasted Roller	Coracias caudatus	5.26	0.00				
Little Bee-eater	Merops pusillus	1.75	0.00				
Little Egret	Egretta garzetta	12.28	0.00	х			
Little Grebe	Tachybaptus ruficollis	38.60	1.59	x			
Little Stint	Calidris minuta	3.51	0.00	x			
Little Swift	Apus affinis	71.93	15.87				
Long-tailed Paradise-whydah	Vidua paradisaea	5.26	0.00				
Long-tailed Widowbird	Euplectes progne	57.89	4.76				
Maccoa Duck	Oxyura maccoa	1.75	0.00	х			

Species	Taxonomic name	Full	Ad hoc		.: S	.;
		protocol	protocol	ý.	tatu: al	tatu:
				iorit.	ta si ione	ta si al
				Solar priority	species Red Data status: International	Red Data status: Regional
				Sola	чрс Rec Inte	Rec Rec
Malachite Kingfisher	Alcedo cristata	15.79	0.00	x		
Marsh Owl	Asio capensis	7.02	0.00	X		
Marsh Sandpiper Melodious Lark	Tringa stagnatilis Mirafra cheniana	1.75 1.75	0.00	X		
Namaqua Dove	Oena capensis	29.82	1.59	х		
Namaqua Sandgrouse	Pterocles namaqua	1.75	0.00			
Natal Spurfowl	Pternistis natalensis	3.51	0.00			
Neddicky	Cisticola fulvicapilla	21.05	0.00			
Nicholson's Pipit	Anthus nicholsoni	1.75	0.00			
Northern Black Korhaan	Afrotis afraoides	82.46	12.70			
Orange River Francolin	Scleroptila levaillantoides	5.26	0.00			
Orange River White-eye	Zosterops pallidus	29.82	1.59			
Pied Avocet	Recurvirostra avosetta	1.75	0.00	х		
Pied Crow	Corvus albus	7.02	0.00			
Pied Kingfisher	Ceryle rudis	1.75	0.00	х		
Pied Starling	Spreo bicolor	5.26	1.59	х		
Pink-billed Lark	Spizocorys conirostris	1.75	0.00			
Pin-tailed Whydah	Vidua macroura	19.30	0.00			
Pririt Batis	Batis pririt	1.75	0.00			
Purple Heron	Ardea purpurea	8.77	0.00	х		
Red-backed Shrike	Lanius collurio	7.02	0.00			
Red-billed Firefinch	Lagonosticta senegala	8.77	0.00			
Red-billed Quelea	Quelea quelea	43.86	0.00			
Red-billed Teal	Anas erythrorhyncha	28.07	0.00	х		
Red-breasted Swallow	Hirundo semirufa	3.51	0.00			
Red-capped Lark	Calandrella cinerea	14.04	0.00			
Red-chested Cuckoo	Cuculus solitarius	14.04	0.00			
Red-eyed Dove	Streptopelia semitorquata	82.46	4.76			
Red-faced Mousebird	Urocolius indicus	56.14	0.00			
Red-footed Falcon	Falco vespertinus	1.75	0.00	х		
Red-headed Finch	Amadina erythrocephala	47.37	0.00			
Red-knobbed Coot	Fulica cristata	59.65	7.94	Х		
Red-throated Wryneck	Jynx ruficollis	8.77	0.00			
Red-winged Starling Reed Cormorant	Onychognathus morio Phalacrocorax africanus	1.75	0.00			
Reed Cormorant Rock Dove	Columba livia	43.86 26.32	3.17 3.17	х		
Rock Martin	Hirundo fuligula	3.51	1.59			
Ruff	Philomachus pugnax	3.51	0.00			
Rufous-naped Lark	Mirafra africana	40.35	1.59			
Sabota Lark	Calendulauda sabota	3.51	0.00			
Scaly-feathered Finch	Sporopipes squamifrons	7.02	0.00			
Shaft-tailed Whydah	Vidua regia	1.75	0.00			
South African Cliff-swallow	Hirundo spilodera	26.32	6.35	х		
South African Shelduck	Tadorna cana	7.02	0.00	х		
Southern Grey-headed Sparrow	Passer diffusus	26.32	1.59			
Southern Masked-weaver	Ploceus velatus	96.49	7.94			
Pale Chanting Goshawk	Melierax canorus	5.26	0.00	х		
Southern Pochard	Netta erythrophthalma	10.53	0.00	х		
Southern Red Bishop	Euplectes orix	59.65	6.35			
Speckled Mousebird	Colius striatus	45.61	1.59			
Speckled Pigeon	Columba guinea	84.21	12.70			
Spike-heeled Lark	Chersomanes albofasciata	5.26	0.00			
Spotted Thick-knee	Burhinus capensis	19.30	1.59			
Spur-winged Goose	Plectropterus gambensis	24.56	3.17	х		
Swainson's Spurfowl	Pternistis swainsonii	61.40	3.17			
Three-banded Plover	Charadrius tricollaris	26.32	0.00	х		
Village Indigobird	Vidua chalybeata	1.75	0.00			
Violet-eared Waxbill	Granatina granatina	3.51	0.00			
Wattled Starling	Creatophora cinerea	36.84	1.59			
Whiskered Tern	Chlidonias hybrida	3.51	0.00	х		

Species	Taxonomic name	Full protocol	Ad hoc protocol	Solar priority species	Red Data status:	Red Data status: Regional
White Stork	Ciconia ciconia	1.75	0.00	х		
White-backed Mousebird	Colius colius	35.09	0.00			
White-bellied Sunbird	Cinnyris talatala	8.77	0.00			
White-breasted Cormorant	Phalacrocorax carbo	28.07	1.59	х		
White-browed Sparrow-weaver	Plocepasser mahali	77.19	9.52			
White-faced Duck	Dendrocygna viduata	33.33	0.00	Х		
White-fronted Bee-eater	Merops bullockoides	12.28	0.00			
White-rumped Swift	Apus caffer	36.84	4.76			
White-throated Swallow	Hirundo albigularis	26.32	1.59			
White-winged Widowbird	Euplectes albonotatus	5.26	1.59			
Willow Warbler	Phylloscopus trochilus	7.02	0.00			
Yellow Canary	Crithagra flaviventris	70.18	1.59			
Yellow-bellied Eremomela	Eremomela icteropygialis	5.26	0.00			
Yellow-billed Duck	Anas undulata	68.42	1.59	х		
Yellow-crowned Bishop	Euplectes afer	21.05	4.76			
Zitting Cisticola	Cisticola juncidis	15.79	0.00			

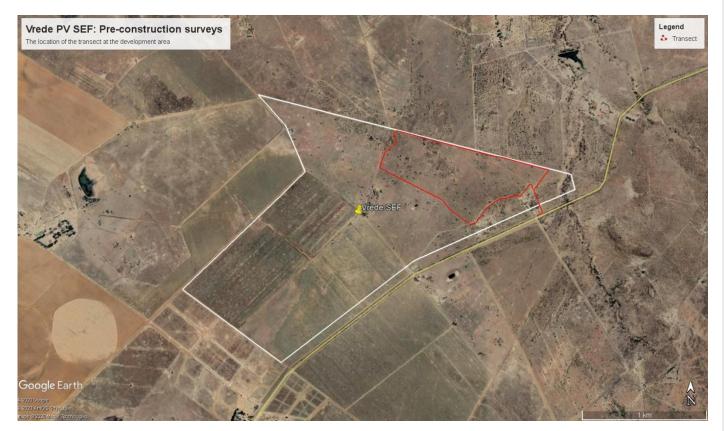
APPENDIX 2: HABITAT AT THE STUDY AREA

Figure 1: Typical grassland habitat at the study area.

Figure 2: A fence in the study area.

Figure 3: Woodland in the study area.

Figure 4: A small pan in the study area.


APPENDIX 3: PRE-CONSTRUCTION MONITORING

Methodology

Monitoring was conducted in the following manner:

- On site surveys were implemented on 17 July 2020 and again from 20 22 July 2020.
- One transect of 5km was identified and counted 5 times over a period of 3 days. The observer drove slowly and stopped at regular intervals to scan the environment with binoculars. All species were recorded.
- The following variables were recorded:
 - Species;
 - Number of birds;
 - o Date;
 - Start time and end time;
 - Estimated distance from transect (m);
 - Wind direction;
 - Wind strength (estimated Beaufort scale 1 7);
 - Weather (sunny; cloudy; partly cloudy; rain; mist);
 - Temperature (cold; mild; warm; hot);
 - Behaviour (flushed; flying-display; perched; perched-calling; perched-hunting; flying- foraging; flying-commute; foraging on the ground.
- All incidental sightings of priority species were recorded.

The map below indicates the location of the transect used for counting the birds at the development area.

	Manag	gement Plan for the Planni	ng and De	esign Phase			
Mitigation/Management Objectives and Mitigation/Management Actions							
Impact	Impact Outcomes Mitigation/Management Actions Methodology		Methodology	Frequency	Responsibility		
	Ma	None Anagement Plan for the Co	onstruction	n Phase			
	Mitigation/Management Objectives			Mon	itoring		
Impact	and Outcomes	Mitigation/Management Actions		Methodology	Frequency	Responsibilit	
Avifauna: Displacement due to di The noise and movement associated with the construction activities at the development ootprint will be a source of disturbance which would lead to he displacement of avifauna rom the area	isturbance Prevent unnecessary displacement of avifauna by ensuring that contractors are aware of the requirements of the Construction Environmental Management Programme (CEMPr.)	 A site-specific CEMPr must be implemented, which gives appropriate and detailed description of how construction activities must be conducted. All contractors are to adhere to the CEMPr and should apply good environmental practice during construction. The CEMPr must specifically include the following: 1. No off-road driving; 2. Maximum use of existing roads, where possible; 3. Measures to control noise and dust according to latest best practice; 4. Restricted access to the rest of the property; 5. Strict application of all recommendations in the botanical specialist report pertaining to the 	4. Monito control and international and international and international and international and real and real and real control and real 5. Ensure deman persor deman	nentation of the CEMPr. Oversee es to ensure that the CEMPr is nented and enforced via site audits spections. Report and record any ompliance. e that construction personnel are aware of the impacts relating to off- riving. ruction access roads must be cated clearly. Undertake site tions to verify. or the implementation of noise I mechanisms via site inspections cord and report non-compliance. e that the construction area is cated clearly and that construction nnel are made aware of these cations. Monitor via site tions and report non-compliance.	 On a daily basis Weekly Weekly Weekly Weekly Weekly 	 Contractor a ECO Contractor a ECO Contractor a ECO Contractor a ECO Contractor a ECO Contractor a ECO 	

	Mitigation/Management Objectives		Monitoring					
Impact and Outcomes		Mitigation/Management Actions	Methodology	Frequency	Responsibility			
vifauna: Mortality due to	collision with the 132kV OHL							
Mortality of avifauna due to collisions with the 132kV OHL.		Demarcate sections of the OHL to be marked with Eskom approved Bird Flight Diverters (BFDs).	 Walk-through by avifaunal specialist. Fit Eskom approved Bird Flight Diverter the earthwire at the demarcated section the OHL. 		1. Contractor 2. Contractor a ECO			
	N	lanagement Plan for the Ope	rational Phase					
Impact	Mitigation/Management Objectives and Outcomes	Mitigation/Management Actions		Monitoring				
			Methodology	Frequency	Responsibility			
Avifauna: Displacement d Total or partial displacement of avifauna due to habitat rransformation associated with the vegetation clearance in the onsite substations.	ue to habitat transformation in the substation Prevent unnecessary displacement of avifauna by ensuring that the rehabilitation of transformed areas is implemented where possible by an appropriately qualified rehabilitation specialist, according to the recommendations of the botanical specialist study.	 Develop a Habitat Restoration Plan (HRP) and ensure that it is approved. Monitor rehabilitation via site audits and site inspections to ensure compliance. Record and report any non-compliance. 	 Appointment of rehabilitation specialist to develop HRP. Site inspections to monitor progress of HRP. Adaptive management to ensure HRP goals are met. 	 Once-off Once a year As and when required 	1. Facility operato			
Avifauna: Mortality of avif	auna due to collision with the 132kV OHL							
Mortality of avifauna due to collisions with the 132kV OHL.	Reduction of avian collision mortality	 Monitor the collision mortality on the OHL. Apply additional BFDs if collision hotspots are discovered. 	 Avifaunal specialist to conduct quarterly inspections of the OHL for a period of two years. Apply additional BFDs if collision hotspots are discovered. 	 Quarterly As and when required 	1. Facility operato			
Avifauna: Mortality of avifa	auna due to electrocution in the onsite substa	tions						
	Reduction of avian electrocution mortality	 Monitor the electrocution mortality in the substations. Apply mitigation if electrocution 	1. Regular inspections of the substation yard	1. Weekly	1. Facility operator			

Management Plan for the Decommissioning Phase							
Impact	Mitigation/Management Objectives and Outcomes	Mitigation/Management Actions	Monitoring Methodology Frequency		Responsibility		
Avifauna: Displacement du The noise and movement associated with the decommissioning activities will be a source of disturbance which would lead to the displacement of avifauna from the area	Prevent unnecessary displacement of avifauna by ensuring that contractors are aware of the requirements of the Decommissioning EMPr.	 A site-specific Decommissioning EMPr (DEMPr) must be implemented, which gives appropriate and detailed description of how construction activities must be conducted. All contractors are to adhere to the DEMPr and should apply good environmental practice during decommissioning. The DEMPr must specifically include the following: 1. No off-road driving; 2. Maximum use of existing roads during the decommissioning phase and the construction of new roads should be kept to a minimum as far as practical; 3. Measures to control noise and dust according to latest best practice; 4. Restricted access to the rest of the property; 5. Strict application of all recommendations in the botanical specialist report pertaining to the 	 Implementation of the DEMPr. Oversee activities to ensure that the DEMPr is implemented and enforced via site audits and inspections. Report and record any non-compliance. Ensure that decommissioning personnel are made aware of the impacts relating to off-road driving. Access roads must be demarcated clearly. Undertake site inspections to verify. Monitor the implementation of noise control mechanisms via site inspections and record and report non-compliance. Ensure that the decommissioning area is demarcated clearly and that personnel are made aware of these demarcations. Monitor via site inspections and report non- 	 Weekly Weekly 	1. Contractor and ECO 2. Contractor and ECO 3. Contractor and ECO 4. Contractor and ECO 5. Contractor and ECO 5. Contractor and ECO		