|                                             | Jones & Wagener | Jones & Wagener |     |
|---------------------------------------------|-----------------|-----------------|-----|
|                                             | Jones & Wagener | Jones & Wagener |     |
|                                             | Jones & Wagener |                 |     |
|                                             |                 |                 |     |
| EXM ADVISOR                                 |                 |                 |     |
| KUMBA IRON<br>WASTE ASSE<br><u>FINAL RE</u> |                 |                 |     |
| Report No.: JW099/                          |                 | Jones & Wagener |     |
|                                             |                 |                 |     |
| June 20                                     | Jones & Wagener | Jones & Wagener |     |
|                                             | Jones & Wagener | Jones & Wagener |     |
|                                             | Jones & Wagener |                 | mer |
|                                             | Jones & Wagener |                 |     |
|                                             | Jones & Wagener | Jones & Wagener |     |
|                                             | lones & Wagener | lones & Wagener |     |
| Eng                                         |                 |                 |     |
|                                             | ones & Wagener  |                 |     |

## **Y SERVICES**

GRADE C ESSMENT PORT

17/G227- Rev 2

017



## DOCUMENT APPROVAL RECORD

## Report No.: JW099/17/G227- Rev 2

| ACTION   | FUNCTION                   | NAME              | DATE       | SIGNATURE |
|----------|----------------------------|-------------------|------------|-----------|
| Prepared | Geohydrologist             | Cameron<br>Turner | 01/06/2017 | latime    |
| Reviewed | Environmental<br>Scientist | Marius van Zyl    | 09/06/2017 | Mran /    |
| Approved | Environmental<br>Scientist | Marius van Zyl    | 18/09/2017 | Mran H    |

## **RECORD OF REVISIONS AND ISSUES REGISTER**

| Date       | Revision | Description               | Issued to  | Issue Format | No. Copies |
|------------|----------|---------------------------|------------|--------------|------------|
| 08/06/2017 | Rev A    | Draft for internal review | M. van Zyl | Electronic   | 1          |
| 13/06/2017 | Rev 0    | Draft for client review   | K. Fairley | Electronic   | 1          |
| 12/09/2017 | Rev 1    | Draft for client review   | K. Fairley | Electronic   | 1          |
| 12/09/2017 | Rev 2    | Final                     | K. Fairley | Electronic   | 1          |

## EXM ADVISORY SERVICES

Kumba Iron Grade C Waste Assessment FINAL REPORT

## REPORT NO: JW099/17/G227- Rev 2

## <u>CONTENTS</u>

### PAGE

| INTRODUCTION                            | 1                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Background                              | 1                                                                                                                                                                                                                                                                                                                                                                                                    |
| Objectives                              | 2                                                                                                                                                                                                                                                                                                                                                                                                    |
| SAMPLE COLLECTION AND ANALYSIS          | 2                                                                                                                                                                                                                                                                                                                                                                                                    |
| Samples                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                    |
| Analyses Conducted                      | 2                                                                                                                                                                                                                                                                                                                                                                                                    |
| MINERALOGY                              | 3                                                                                                                                                                                                                                                                                                                                                                                                    |
| XRD Analysis – C-Grade ROM              | 3                                                                                                                                                                                                                                                                                                                                                                                                    |
| Alloway Crustal Abundance Ratios        | 3                                                                                                                                                                                                                                                                                                                                                                                                    |
| WASTE ASSESSMENT                        | 4                                                                                                                                                                                                                                                                                                                                                                                                    |
| Waste Assessment Overview and Procedure | 4                                                                                                                                                                                                                                                                                                                                                                                                    |
| Tailings and tailings water fractions   | 6                                                                                                                                                                                                                                                                                                                                                                                                    |
| Results Assessment                      | 8                                                                                                                                                                                                                                                                                                                                                                                                    |
| DISCUSSIONS AND CONCLUSIONS             | 16                                                                                                                                                                                                                                                                                                                                                                                                   |
| RECOMMENDATIONS                         | 18                                                                                                                                                                                                                                                                                                                                                                                                   |
| REFERENCES                              | 19                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                         | INTRODUCTION<br>Background.<br>Objectives.<br>SAMPLE COLLECTION AND ANALYSIS<br>Samples.<br>Analyses Conducted.<br>MINERALOGY<br>XRD Analysis – C-Grade ROM.<br>Alloway Crustal Abundance Ratios.<br>WASTE ASSESSMENT<br>Waste Assessment Overview and Procedure .<br>Tailings and tailings water fractions.<br>Results Assessment .<br>DISCUSSIONS AND CONCLUSIONS<br>RECOMMENDATIONS<br>REFERENCES |

## **APPENDIXES**

Appendix A Waterlab: Analytical Certificates

## LIST OF TABLES

| Table 3-1:       | XRD Analysis of the C-Grade ROM                                                      | 3 |
|------------------|--------------------------------------------------------------------------------------|---|
| Table 3-2:       | Total Concentrations and Alloway Abundance Ratios                                    | 1 |
| Table 4-1:       | Organic limits for wastes to be classified as Type 4 wastes                          | 3 |
| Table 4-2:       | Weighted concentrations based on tailings water and distilled water leach results or | n |
| solid tailings f | fraction                                                                             | 7 |
| Table 4-3:       | De-ionised Water Leach test and Total Concentration Result: C-Grade ROM versus       | s |
| LCTs and TC      | Ts10                                                                                 | ) |
| Table 4-4:       | De-ionised Water Leach and Tailings Water + Total Concentration Results: C-Grade     | э |
| Tailings 1 ver   | sus LCTs and TCTs                                                                    | 1 |
| Table 4-5:       | De-ionised Water Leach and Total Concentration Results: C-Grade Tailings             | 1 |
| versus LCTs      | and TCTs                                                                             | 2 |
| Table 4-6:       | De-ionised Water Leach test and Total Concentration Result: C-Grade Discard          | b |
| Material versu   | us LCT and TCT                                                                       | 3 |

| Table 4-7:    | De-ionised Water Leach test and Total Concentration Result: C-Grade Tai   | lings 2 |
|---------------|---------------------------------------------------------------------------|---------|
| Solid Fractic | on versus LCT and TCT                                                     | 14      |
| Table 4-8:    | C-Grade Tailings 1 and C-Grade Tailings 2 water concentrations versus LCs | s 15    |
| Table 5-1: S  | Summary of Waste Assessment Results                                       | 17      |
|               | -                                                                         |         |

## LIST OF FIGURES

| Figure 5-1: | Class C landfill barrier system (DEA, 2013b) | 18   |
|-------------|----------------------------------------------|------|
| Figure 5-2: | Class D base preparation layer (DEA, 2013b)  | . 18 |

## Acronyms and abbreviations used in this document:

| ABA    | Acid Base Accounting                                                     |
|--------|--------------------------------------------------------------------------|
| ASLP   | Australian Standard Leaching Procedure                                   |
| DEA    | Department of Environmental Affairs                                      |
| DWS    | Department of Water and Sanitation                                       |
| DWAF   | Department of Water Affairs and Forestry                                 |
| FAD    | Fine Ash Dam                                                             |
| GN     | Government Notice                                                        |
| GNR    | Government Notice Regulation                                             |
| e      | Litre                                                                    |
| LC     | Leach concentration in mg/ł                                              |
| LCT    | Leach concentration threshold in mg/ł                                    |
| mg/kg  | Milligram per kilogram                                                   |
| mg/ℓ   | Milligram per litre                                                      |
| mm     | millimetres                                                              |
| NEM:WA | National Environmental Management: Waste Act, Act 59 of 2008, as amended |
| NWA    | National Water Act, Act 39 of 1998, as amended                           |
| тс     | Total concentration in mg/kg                                             |
| тст    | Total concentration threshold in mg/kg                                   |
| TDS    | Total dissolved solids                                                   |
| TSF    | Tailings storage facility                                                |
| µS/cm  | Micro Siemens per centimetre                                             |



ones & Wagener

Engineering & Environmental Consultants 59 Bevan Road PO Box 1434 Rivonia 2128 South Africa tel: 00 27 11 519 0200 www.jaws.co.za email: post@jaws.co.za



## EXM ADVISORY SERVICES

Kumba Iron Grade C Waste Assessment FINAL REPORT

REPORT NO: JW099/17/G227- Rev 2

#### 1. INTRODUCTION

#### Background 1.1

The existing DMS plant at Sishen Iron Ore Company's Sishen Mine is to be upgraded to process C-Grade ore. Application is being made for the processing of C-grade material currently stockpiled on site. The DMS plant should be licensed as a waste management facility as a residue (waste) will be recovered at the upgraded plant.

In addition, disposal of the additional waste streams will need to be disposed of at facilities authorised in terms of the National Environmental Management: Waste Act, Act 59 of 2008, as amended (NEM:WA) and the National Water Act, Act 36 of 1998, as amended (NWA).

The C-Grade will be milled and processed in the still to be upgraded DMS plant. The plant currently processes A-Grade material and two (2) waste streams are generated. One of the waste streams is a wet tailings material, which is disposed of on a four (4) compartment tailings disposal facility. The JIG plant, on the other hand, processes B-Grade ore of which the tailings material is wet deposited in the open valleys between the four (4) compartment tailings disposal facility. Water from the tailings facility is returned to the DMS and JIG plant for re-use.

The DMS and JIG plants also generates coarse, medium and fine discard material, which are co-disposed of on a discard dump via a conveyor system.

The DMS plant will be upgraded to an Ultra High Dense Media Separation (UHDMS) process that will allow for the future processing of both A-grade and C-grade material to produce a saleable iron ore product. The plant will continue to produce both tailings and plant discard to be disposed at the at existing authorised waste management facilities at Sishen Mine.

For waste management licensing purposes and for potential engineering requirements, the various waste streams, including the C-Grade needs to be assessed for disposal purposes in terms of the Department of Environmental Affairs (DEA's) GNR 635 regulations known as the "National Norms and Standards for the Assessment of Waste for Landfill Disposal" (DEA, 2013a).

Jones & Wagener (J&W) as therefore appointed to undertake an assessment of the various waste streams to be generated due to the processing of C-grade material.

Trial runs with the C-Grade material were done in the JIG and DMS plants. Samples of the C-Grade Run of Mine Material (RoM), tailings and discard from the JIG plant were obtained for this waste assessment, as well as a tailings sample of the material assessed in the DMS plant.

#### JONES & WAGENER (PTY) LTD REG NO. 1993/002655/07 VAT No. 4410136685

DIRECTORS: GR Wardle (Chairman) PrEng MSc(Eng) FSAICE JP van der Berg (CEO) PrEng PhD MEng FSAICE JE Glendinning PrSciNat MSc(Env Geochem) MSAIEG M Rust PrEng PhD MSAICE

DIRECTORS: GR Wardle (Chairman) Pfeng MSc(Eng) FSAICE JP van der Berg (CEO) Pfeng PhD MEng FSAICE JE Glendinning PSciNat MSc(Env Geochem) MSAICE MR ust Pfeng PhD MSAICE TH Ramabulana BA(Social Sciences) A Oosthuizen (Alternate) Pfeng BEng(Hons) MSAICE TECHNICAL DIRECTORS: D Brink Pfeng BEng(Hons) FSAICE PG Gage Pfeng CEng BSc(Eng) GDE MSAICE AlstructE JR Shamrock Pfeng MSc(Eng) MSAICE MWMSA NJ Vermeulen Pfeng PhD MEng MSAICE HR Aschenborn Pfeng BEng (Hons) MSAICE M van Zyl PrSciNat BSc(Hons) MWMSA MW Palmer PrEng MSc(Eng) MSAICE TG Le Roux Pfeng MEng MSAICE JA Bain Pfeng BEng (Hons) MSAICE GB Simpson Pfeng MEng MSAIAE MSAICE J SMizia Pfeng BEng(Hons) MSAICE MWMSA G Harli Pfeng MEng MSAICE JA Dear Pfeng MEng MSAICE JA Bain Pfeng BEng (Hons) MSAICE ASSOCIATES: M van Biljon PrSciNat MSc(Hydrogeology) RA Nortjé Pfeng MSc(Eng) MSAICE MWMSA C Cilliers Pfeng BEng(Hons) MSAICE F Hoertkorn Pfeng MEng MSAICE JS Mizia Pfeng BEng (Hons) MSAICE J Breyl PrEng BEng(Hons) MSAICE F Hoertkorn Pfeng Dr.-Ing MSAICE CONSULTANTS: PW Day Phong Diet, JA Kempe Pfeng BSc(Eng) GDE MSAICE AlStructE BR Antrobus PrSciNat BSc(Hons) MSAICE FINANCIAL MANAGER: HC Neveling BCom MBL CIMA Adv Dip MA

## 1.2 Objectives

The objective of the project was to assess the new C-Grade waste streams in terms of the DEA's "National Norms and Standards for the Assessment of Waste for Landfill Disposal" (DEA, 2013a). This is required in order to apply for a waste management licence for the processing of C-grade material source from residue stockpiles. Since the tailings and discard are planned to be disposed at existing facilities it is important that the material be assessed in order to determine if the waste does not pose any additional risk to the environment when compared to that which is already disposed at such facilities. The assessment will also be required should there be a need for amendments to the Water Use License (WUL) or any new WULs, and may be required for design purposes. This will only be necessary if the existing waste management facilities not be suitable to manage the environmental risks associated with the processing of C-grade material.

The existing waste streams have already been assessed in a separate project (Exigo<sup>3</sup>, 2014).

#### 2. SAMPLE COLLECTION AND ANALYSIS

#### 2.1 Samples

In order to assess each of the various waste streams to be generated due to the processing of C-grade material samples were obtained from processing trials undertaken using the existing processing plants. The following samples were collected and analysed, including:

- 1. C-Grade ROM (tested at JIG Plant)
- 2. C-Grade Tailings 1 (tested at JIG Plant)
- 3. C-Grade Discard (tested at JIG Plant); and
- 4. C-Grade Tailings 2 (tested at the DMS modular plant)

## 2.2 Analyses Conducted

The collected samples were submitted to Waterlab, a SANAS accredited laboratory, where the following tests and analyses were conducted:

- The water fractions of the tailings samples were analysed for metals and anions as per GNR 635, excluding cyanide;
- The solid fractions of the tailings, C-Grade ROM and C-Grade Discard Material • were subjected to a distilled water leach and the leach solutions were then analysed for the metals and anions listed in GNR 635, excluding cyanide, to determine the leachable concentrations (LCs) of the metals and anions of concern.
- The solid fractions were also subjected to an aqua regia digestion and the digestion solutions then analysed for the metals and anion listed in GNR 635, excluding cyanide, to determine the total concentrations (TCs) of the metals and anions of concern.
- Paste pH's of all solid phases were determined, as well as the water fractions in each sample; and
- The XRD of the C-Grade ROM sample was determined



The solid and liquid samples were not analysed for any organic constituents, including pesticides, as it is highly unlikely that these samples would contain any organic constituents due to the nature of the operations.

The LCs of the metals and anions were determined using the Australian Standard Leaching Procedure (AS 4439.1, 4439.2 and 4439.3) as prescribed in GNR 635.

The laboratory certificates are included in **Appendix A**.

## 3. <u>MINERALOGY</u>

## 3.1 XRD Analysis – C-Grade ROM

**Table 3-1** contains a summary of the mineralogy of the C-Grade ROM sample. As can be seen from the table, the major mineral in the C-Grade ROM sample is hematite ( $Fe_2O_3$ ) followed by quartz (SiO2) (both members of the oxide mineral group). Minor amounts of the phyllosilicate minerals kaolinite and muscovite, together with the silicate mineral talc, make up the remainder of the sample.

## Table 3-1: XRD Analysis of the C-Grade ROM

| Composition (%) [s]          |       |  |  |
|------------------------------|-------|--|--|
| C-Grade ROM                  |       |  |  |
| Mineral Amount<br>(weight %) |       |  |  |
| Hematite                     | 72.03 |  |  |
| Quartz                       | 23.16 |  |  |
| Kaolinite                    | 2.72  |  |  |
| Muscovite                    | 1.8   |  |  |
| Talc                         | 0.30  |  |  |

## 3.2 Alloway Crustal Abundance Ratios

**Table 3-2** below indicates the total concentrations (TCs) of various metals in the C-Grade ROM sample. Also indicated in the table are the Alloway Crustal Abundance concentrations of the particular elements, which is simply an indication of the average abundance of an element in the earth's crust (Alloway et al, 1995). By calculating the ratio of the trace element concentrations to the average composition of the earth's crust (Crustal Abundances) an indication can be obtained whether the concentration of a particular element is raised above the average for the earth or enriched above the average due to some process.

The comparison to the average Crustal Abundance is geochemically accepted as a means of highlighting elements, which may possibly be enriched in the various lithologies. Although enrichment does not necessarily indicate that the element is likely to be an environmental risk, it does, however, indicate where attention should be focussed when assessing metal mobility/solubility.

Based on the results obtained (**Table 3-2**), the C-Grade ROM sample has concentrations of antimony, arsenic, cadmium and iron which are elevated above the average Alloway Crustal Abundance of the earth's crust.

| SAMPLE DESCRIPTION |                           |             |                |  |
|--------------------|---------------------------|-------------|----------------|--|
|                    | Alloway Crustal Abundance | C-Grade ROM |                |  |
| Element            | mg/kg or %                | mg/kg or %  | Ratio          |  |
| Antimony (Sb)      | 2.2                       | 18.80       | 8.5            |  |
| Arsenic (As)       | 1.5                       | 12          | 7.7            |  |
| Barium (Ba)        | 425                       | 331         | 0.78           |  |
| Cadmium (Cd)       | 0.1                       | 18.0        | 180            |  |
| Cobalt (Co)        | 20                        | <10         | Not Calculated |  |
| Chromium (Cr)      | 100                       | 52          | 0.52           |  |
| Copper (Cu)        | 50                        | <4.0        | Not Calculated |  |
| Iron (Fe)          | 3.2%                      | 14.5%       | 4.5            |  |
| Lead (Pb)          | 14                        | 12          | 0.83           |  |
| Mercury (Hg)       | 0.05                      | <0.40       | Not Calculated |  |
| Manganese (Mn)     | 950                       | 170 0.18    |                |  |
| Molybdenum (Mo)    | 1.5                       | <10         | Not Calculated |  |
| Nickel (Ni)        | 80                        | 18          | 0.23           |  |
| Selenium (Se)      | 0.05                      | <4.0        | Not Calculated |  |
| Vanadium (V)       | 160                       | <10         | Not Calculated |  |
| Zinc (Zn)          | 75                        | 11          | 0.15           |  |

| Tahle 3-2. | Total Concentrations | and Alloway | λhundance | Rating  |
|------------|----------------------|-------------|-----------|---------|
|            |                      | una Anoway  | Abundance | Turio 3 |

Although certain of the metals listed in Table 3-2 have concentrations which exceed the Alloway Crustal Abundance values, it should be noted that the C-Grade ROM, resultant tailings and discard are unlikely to be subjected to chemical processes that would mobilise metals and anions. I.e., the residues associated with the Kumba mine are generally resistant to chemical weathering and thus have very slow reaction rates (Exigo<sup>3</sup>, 2014). It may therefore be considered that the wastes (tailings and discard) generated from the C-Grade ROM processing will not have a significant impact on the water environment due to the metals and anions generally being immobile.

#### 4. WASTE ASSESSMENT

#### 4.1 Waste Assessment Overview and Procedure

The DEA's waste assessment system, which replaced the Department of Water Affairs and Forestry's Minimum Requirements waste classification system on 23 August 2013, focuses on the long term storage (in excess of 90 days) and disposal of waste on land or waste disposal facilities. The system is based on the Australian State of Victoria's waste classification system for disposal, which uses the Australian Standard Leaching Procedure (ASLP) to determine the leachable concentrations (LCs) of pollutants in a particular waste (DEA, 2013a).

A number of leach solutions can be used to determine the LCs. For waste to be disposed of with putrescible organic matter, an acetic acid leach solution is used. This leach solution

Jones & Wagener (Pty) Ltd Engineering & Environmental Consultants



is very similar to the US EPA TCLP leach solution used in the now outdated Minimum Requirements, except that the pH is 5.0, instead of pH 4.93. In cases where a waste has an alkaline pH, and following an acid neutralisation capacity test, a pH 2.9 leach solution must be used.

In cases where non-organic waste is to be co-disposed with other non-organic wastes, a basic 0.10 M sodium tetraborate decahydrate (borax) solution of pH 9.2 ± 0.10 should be used in addition to the acetic acid leach (DEA, 2013a). The objective of the sodium tetraborate test is to identify contaminants that are leached above the various leachable concentration thresholds (LCTs) trigger values at an alkaline pH.

For non-putrescible inorganic waste, such as the tailings, to be disposed of without any other wastes (mono- disposal scenario), reagent water (distilled water) is used as a leach agent.

In addition to the above, the total concentrations (TCs) of the constituents of concern need to be determined and compared to specified total concentration threshold (TCT) values (DEA, 2013a).

The number of potentially hazardous substances in the new assessment system has been significantly reduced from that listed in the old Minimum Requirements of 1998 and brought in line with the potentially hazardous substances being used in other parts of the world to classify waste for disposal purposes. However, if a generator is aware of a hazardous substance other than those listed by the DEA, they are obliged to indicate and analyse for this.

Once the analytical results are known, the waste is assessed in line with the following approach:

- Wastes with any element or chemical substance concentration above the LCT3 or TCT2 values (LC >LCT3 or TC>TCT2) are Type 0 Wastes. Type 0 wastes (extremely hazardous waste), require treatment/stabilisation before disposal;
- Wastes with any element or chemical substance concentration above the LCT2 but below LCT3 values, or above the TCT1 but below TCT2 values (LCT2<LC ≤ LCT3 or TCT1<TC  $\leq$  TCT2), are Type 1 Wastes (highly hazardous waste, which must be disposed of on a Class A landfill constructed with the most conservative double composite barrier system);
- Wastes with any element or chemical substance concentration above the LCT1 but below the LCT2 values and all concentrations below the TCT1 values (LCT1 < LC ≤ LCT2 and TC  $\leq$  TCT1) are Type 2 Wastes (moderate hazardous waste, which must be disposed of on a Class B landfill);
- Wastes with any element or chemical substance concentration above the LCT0 but below LCT1 values and all concentrations below the TCT1 values (LCT0 < LC ≤ LCT1 and TC  $\leq$  TCT1) are Type 3 Wastes (low hazardous waste, which must be disposed of on a Class C landfill);
- Wastes with all elements and chemical substance concentration levels for metal ions and inorganic anions below the LCT0 and TCT0 values (LC  $\leq$  LCT0 and TC  $\leq$  TCT0), as well as below the limits for organics and pesticides as in **Table 4-1**, are Type 4 Wastes (near inert wastes, which must be disposed of on sites with some base preparation, but no formal barrier system);

| Chemical Substances in Waste                       | Total Concentration (mg/kg) |  |  |
|----------------------------------------------------|-----------------------------|--|--|
| Organic<br>constituents                            |                             |  |  |
| Total organic carbon (TOC)                         | 30 000 (3%)                 |  |  |
| Benzene, toluene, ethyl benzene and xylenes (BTEX) | 6.0                         |  |  |
| Polychlorinated Biphenyls (PCBs)                   | 1.0                         |  |  |
| Mineral Oil (C10 to C40)                           | 500                         |  |  |
| Pesticides                                         |                             |  |  |
| Aldrin + Dieldrin                                  | 0.050                       |  |  |
| DDT + DDD + DDE                                    | 0.050                       |  |  |
| 2,4-D                                              | 0.050                       |  |  |
| Chlordane                                          | 0.050                       |  |  |
| Heptachlor                                         | 0.050                       |  |  |

## Table 4-1: Organic limits for wastes to be classified as Type 4 wastes.

- Wastes with all element or chemical substance leachable concentration levels for metal ions and inorganic anions below or equal to the LCT0 limits are considered to be Type 3 wastes, irrespective of the TCs of elements or chemical substances in the waste, provided that:
  - All chemical substance concentration levels are below the total concentration limits for organics and pesticides as listed in **Table 4-1**,;
  - The inherent physical and chemical character of the waste is stable and will not change over time; and,
  - The waste is disposed of to landfill without any other waste.
- Wastes with the TC of an element or chemical substance above the TCT2 limit, and where the concentration cannot be reduced to below the TCT2 limit, but the LC for the particular element or chemical substance is below the LCT3 limit, the waste is considered to be Type 1 Waste.

## 4.2 Tailings and tailings water fractions

In order to assess the C-Grade Tailings 1 sample, the percentage contributions of the concentrations of the constituents in the liquid fractions and the leach concentrations were calculated based on the percentage liquids to solids – see **Table 4-2**.

Jones & Wagener (Pty) Ltd Engineering & Environmental Consultants

KUMBA IRON ORE DMS PLANT UPGRADE: C-Grade Tailings 1 65.00% Percentage solids Leach Water Phase Solid Phase: Distilled Water Leach Concentration Corrected concentration in Corrected concentration in mg/ℓ mg/ℓ mg/ℓ Element/Compound **Contribution Factor Contribution Factor** mq/ℓ mq/ℓ 0.00325 0.0050 As. Arsenic 0.0050 0.6500 0.3500 0.00500 < 0.010 B. Boron 0.010 0.6500 0.00813 0.308 0.3500 0.1078 0.116 Ba, Barium 0.288 0.6500 0.18720 0.039 0.3500 0.0137 0.201 0.6500 0.00098 0.3500 0.0015 < 0.003 Cd. Cadmium 0.0020 0.0015 0.6500 0.0125 0.3500 0.0125 < 0.025 Co. Cobalt 0.010 0.00813 Cr. Chromium - total 0.6500 0.00813 0.0125 0.3500 0.0125 <0.025 0.013 Cr VI, Chromium VI 0.6500 0.00325 0.3500 0.00500 < 0.010 0.005 0.0050 Cu, Copper 0.6500 0.005 0.3500 0.00500 < 0.025 0.013 0.00813 0.183 Fe, Iron 0.26 0.6500 0.17095 0.0125 0.3500 0.0125 Ha, Mercury 0.6500 0.0005 0.3500 0.0005 < 0.001 0.0010 0.00033 Mn, Manganese 0.6500 0.01950 0.053 0.3500 0.0186 0.038 0.030 Mo, Molydenum 0.6500 0.00813 0.013 0.3500 0.0125 <0.025 0.010 Ni, Nickel 0.6500 0.00813 0.0125 0.3500 0.0125 < 0.025 0.013 Pb, Lead 0.6500 0.00325 0.0050 0.3500 0.00500 < 0.010 0.0050 Sb, Antimony 0.6500 0.00325 0.010 0.3500 0.0010 < 0.020 0.0050 0.6500 0.00325 0.3500 0.00500 < 0.010 Se, Selenium 0.0050 0.0050 0.6500 <0.025 V, Vanadium 0.013 0.00813 0.0125 0.3500 0.0125 Zn, Zinc 0.6500 0.00813 0.0125 0.3500 0.0125 < 0.025 0.013 TDS, Total dissolved solids 30 0.6500 19.50000 854 0.3500 298.9 318 Cl. Chloride 0.6500 1.30000 0.3500 24.2 25 2.0 69 69 SO<sub>4</sub>, Sulphate 6.0 0.6500 3.90000 187 0.3500 65.5 NO<sub>3</sub>, Nitrate 0.50 0.6500 0.32500 49 0.3500 17.2 17 0.6500 F. Fluoride 0.26000 0.40 0.60 0.3500 0.21 0.470 Note: In order to calculate the % contribution of each phase, values less than (<) the limit of detection were divided by 2

Table 4-2: Weighted concentrations based on tailings water and distilled water leach results on solid tailings fraction

Jones & Wagener (Pty) Ltd

## 4.3 Results Assessment

The results of the De-ionised Water Leach and Total Concentration analysis of the C-Grade ROM, C-Grade Tailings 1, C-Grade Discard material and the C-Grade Tailings 2 samples are shown in Table 4-3, Table 4-5, Table 4-6 and Table 4-7.

The results of the water fractions from the C-Grade Tailings 1 and C-Grade Tailings 2 are included in Table 4-8.

#### 4.3.1 C-Grade ROM

- In terms of the LCs, none of the constituents exceed the Leach Concentration Threshold 0 (LCT0) values, which classifies it as a Type 4 (inert) waste. The LCT0 values are derived from the SANS 241 drinking water standards;
- In terms of the TCs, however, the concentrations of arsenic, barium, cadmium, antimony and fluoride exceed their respective Total Concentration Threshold 0 (TCT0) values. Based on the National Norms and Standards for the Assessment of Waste for landfill Disposal, the C-Grade ROM sample is therefore assessed as a Type 3 (low hazardous waste) which must be disposed of on a Class C landfill.
- The paste pH of the C-Grade ROM was 7.8, which indicates a slightly alkaline material.

#### 4.3.2 C-Grade Tailings 1 (Solid and Water fraction combined)

- Based on the distilled water leach and the water fraction results of the C-Grade Tailings 1 sample, it is evident that nitrate concentration exceeds the LCT0 value, therefore in terms of the LC results, the C-Grade Tailings 1 is assessed as a Type 3 waste.
- In terms of the TCs, arsenic, boron, barium, cadmium, copper and fluoride were found to exceed their respective TCT0 values, and therefore, based on the National Norms and Standards for the Assessment of Waste for landfill Disposal, the C-Grade Tailings 1 sample is assessed as a Type 3 (low hazardous waste) which must be disposed of on a Class C landfill.

#### 4.3.3 C-Grade Tailings 1 (Solid fraction)

- In terms of the LCs for the solid fraction of the C-Grade Tailings 1, none of the . constituents exceed the Leach Concentration Threshold 0 (LCT0) values, which classifies it as a Type 4 (inert) waste. The LCT0 values are derived from the SANS 241 drinking water standards;
- In terms of the TCs, arsenic, boron, barium, cadmium, copper and fluoride were found to exceed their respective TCT0 values, and therefore, based on the National Norms and Standards for the Assessment of Waste for landfill Disposal, the C-Grade Tailings 1 sample is assessed as a Type 3 (low hazardous waste) which must be disposed of on a Class C landfill.
- The paste pH of the C-Grade Tailings 1 was 8.3, which indicates an alkaline material.

#### 4.3.4 C-Grade Discard Material

In terms of the LCs, none of the constituents exceed the Leach Concentration Threshold 0 (LCT0) values, therefore a Type 4 waste;



- In terms of the TCs, however, the concentrations of barium, cadmium and fluoride were found to exceed their respective TCT0 values, and therefore, based on the *National Norms and Standards for the Assessment of Waste for landfill Disposal,* the C-Grade Discard sample is assessed as a Type 3 (low hazardous waste) which must be disposed of on a Class C landfill.
- The paste pH of the C-Grade Discard material was 7.6, which indicates a slightly alkaline material.

## 4.3.5 <u>C-Grade Tailings 2 (Solid Fraction)</u>

- In terms of the LCs, the iron was detected at a concentration exceeding the LCT0 value of 2.0 mg/ℓ (which is based on the SANS 241 Drinking Water Standard), therefore a Type 3 waste;
- In terms of the TCs, the concentrations of arsenic, barium, manganese and fluoride were found to exceed their respective TCT0 value. Therefore, based on the National Norms and Standards for the Assessment of Waste for landfill Disposal, the C-Grade Tailings 2 sample is assessed as a Type 3 waste which must be disposed of on a Class C landfill.
- The paste pH of the C-Grade Tailings 2 was 8.7, which indicates an alkaline material.

## 4.3.6 <u>Water Fractions (C-Grade Tailings 1 and C-Grade Tailings 2)</u>

When assessing only the water fractions of the C-Grade Tailings 1 and C-Grade Tailings 2 samples, the water is assessed as a Type 3 waste – see **Table 4-8**. In the water fractions, it is noted that only the concentrations of nitrate exceed the LCT0 concentrations. The concentrations of all other constituents within the water fraction of the two (2) tailings samples were all below the respective LCT0 values.

The water fractions also had pH values of 8.1 (C-Grade Tailings 1) and 7.9 (C-Grade Tailings 2), which indicates a slightly alkaline water. At these pH values, certain metals tend to be less mobile, i.e. dissolved.

Jones & Wagener (Pty) Ltd Engineering & Environmental Consultants

| 10 |
|----|
|----|

Table 4-3: De-ionised Water Leach test and Total Concentration Result: C-Grade ROM versus LCTs and TCTs

|                            | Kum                                          | ba Iron Ore: C-Gr        | ade ROM                          |        | LCT0   | ТСТО    |        | LCT1   | TCT1    |        | LCT2   | TCT1    |
|----------------------------|----------------------------------------------|--------------------------|----------------------------------|--------|--------|---------|--------|--------|---------|--------|--------|---------|
| Substances                 | LC in mg/ℓ                                   | TC in mg/kg              | Limit of Report<br>for LC (mg/ℓ) |        | (mg/ℓ) | (mg/kg) |        | (mg/ℓ) | (mg/kg) |        | (mg/ℓ) | (mg/kg) |
|                            |                                              |                          |                                  |        |        |         |        |        |         |        |        |         |
| As                         | <0.010                                       | 12                       | 0.010                            |        | 0.010  | 5.8     |        | 0.50   | 500     |        | 1.00   | 500     |
| В                          | <0.025                                       | 35                       | 0.025                            |        | 0.50   | 150     |        | 25     | 15 000  |        | 50     | 15 000  |
| Ва                         | 0.47                                         | 331                      | 0.025                            |        | 0.70   | 62.5    |        | 35     | 6 250   |        | 70     | 6 250   |
| Cd                         | <0.0030                                      | 18                       | 0.0030                           |        | 0.0030 | 7.5     |        | 0.15   | 260     |        | 0.30   | 260     |
| Co                         | <0.025                                       | <10                      | 0.025                            |        | 0.50   | 50      |        | 25     | 5 000   |        | 50     | 5 000   |
| Cr (total)                 | <0.025                                       | 52                       | 0.025                            |        | 0.10   | 46 000  |        | 5.0    | 800 000 |        | 10     | 800 000 |
| Cr(VI)                     | <0.010                                       | <5.0                     | 0.010                            |        | 0.050  | 6.5     |        | 2.5    | 500     |        | 5.0    | 500     |
| Cu                         | <0.025                                       | <4.0                     | 0.025                            |        | 2.0    | 16      |        | 100    | 19 500  |        | 200    | 19 500  |
| Fe                         | 0.19                                         | 145 200                  | 0.025                            | ]      | 2.0    |         |        | 100    |         |        | 200    |         |
| Hg                         | <0.0010                                      | <0.40                    | 0.0010                           | ]      | 0.0060 | 0.93    |        | 0.30   | 160     |        | 0.60   | 160     |
| Mn                         | <0.025                                       | 170                      | 0.025                            |        | 0.50   | 1 000   |        | 25     | 25 000  |        | 50     | 25 000  |
| Мо                         | <0.025                                       | <10                      | 0.025                            | Ţ      | 0.070  | 40      | Ту     | 3.5    | 1 000   | Τy     | 7.0    | 1 000   |
| Ni                         | <0.025                                       | 18                       | 0.025                            | pe 4 \ | 0.070  | 91      | pe 3 \ | 3.5    | 10 600  | pe 2 \ | 7.0    | 10 600  |
| Pb                         | <0.010                                       | 12                       | 0.010                            | Wast   | 0.010  | 20      | Wast   | 0.50   | 1 900   | Wast   | 1.0    | 1 900   |
| Sb                         | <0.010                                       | 19                       | 0.020                            | Ű      | 0.020  | 10      | ()     | 1.0    | 75      | CD     | 2.0    | 75      |
| Se                         | <0.010                                       | <4.0                     | 0.010                            |        | 0.010  | 10      |        | 0.50   | 50      |        | 1.0    | 50      |
| V                          | <0.025                                       | <10                      | 0.025                            |        | 0.20   | 150     |        | 10     | 2 680   |        | 20     | 2 680   |
| Zn                         | 0.095                                        | 11                       | 0.025                            |        | 5.0    | 240     |        | 250    | 160 000 |        | 500    | 160 000 |
| Inorganic Anions           |                                              |                          |                                  |        |        |         |        |        |         |        |        |         |
| TDS                        | <10                                          |                          | 10                               |        | 1 000  |         |        | 12 500 |         |        | 25 000 |         |
| Chloride                   | <2.0                                         |                          | 5.0                              |        | 300    |         |        | 15 000 |         |        | 30 000 |         |
| Sulfate as SO <sub>4</sub> | 2.0                                          |                          | 3.0                              |        | 250    |         |        | 12 500 |         |        | 25 000 |         |
| NO <sub>3</sub> as N       | 0.40                                         |                          | 0.20                             | ]      | 11     |         |        | 550    |         |        | 1 100  |         |
| Fluoride                   | <0.20                                        | 100                      | 0.20                             |        | 1.5    | 100     |        | 75     | 10 000  |        | 150    | 10 000  |
| Cyanide                    |                                              |                          | 0.050                            |        | 0.070  | 14      |        | 3.5    | 10 500  |        | 7.0    | 10 500  |
|                            | Not applicable                               |                          |                                  |        |        |         |        |        |         |        |        |         |
|                            | Not analysed                                 |                          |                                  |        |        |         |        |        |         |        |        |         |
|                            | LC > LCT3 <u>or</u> T                        | C > TCT2: Type 0         | Wastes                           |        |        |         |        |        |         |        |        |         |
|                            | LCT2< LC ≤ LC                                | T3 <u>or </u> TCT1 < TC  | ≤ TCT2 : Type 1 Wasi             | tes    |        |         |        |        |         |        |        |         |
|                            | LCT1< LC ≤ LCT2 and TC ≤ TCT1: Type 2 Wastes |                          |                                  |        |        |         |        |        |         |        |        |         |
|                            | LCT0 < LC ≤ LC                               | CT1 <u>and </u> TC ≤ TC1 |                                  |        |        |         |        |        |         |        |        |         |
|                            | LC ≤ LCT0 and                                | TC ≤ TCT0: Type          | 4 wastes                         |        |        |         |        |        |         |        |        |         |

|              | LCT3<br>(mg/ℓ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TCT2<br>(mg/kg)                                                                                                                                                                                   |              |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Type 1 Waste | 4.0<br>200<br>280<br>1.2<br>200<br>40<br>20<br>800<br>800<br>2.4<br>200<br>28<br>28<br>4.0<br>8.0<br>4.0<br>8.0<br>4.0<br>80<br>2000<br>28<br>28<br>4.0<br>8.0<br>4.0<br>80<br>200<br>28<br>28<br>4.0<br>80<br>20<br>28<br>28<br>4.0<br>80<br>20<br>28<br>28<br>4.0<br>80<br>20<br>28<br>28<br>4.0<br>80<br>20<br>28<br>28<br>4.0<br>80<br>28<br>28<br>28<br>4.0<br>80<br>28<br>28<br>4.0<br>80<br>20<br>28<br>28<br>28<br>4.0<br>80<br>20<br>28<br>28<br>28<br>4.0<br>80<br>20<br>28<br>28<br>4.0<br>80<br>20<br>28<br>28<br>4.0<br>80<br>200<br>28<br>28<br>4.0<br>80<br>200<br>28<br>28<br>4.0<br>80<br>200<br>28<br>28<br>4.0<br>80<br>200<br>28<br>28<br>4.0<br>80<br>200<br>28<br>28<br>4.0<br>80<br>200<br>28<br>20<br>20<br>28<br>28<br>4.0<br>80<br>2000<br>28<br>200<br>28<br>28<br>4.0<br>80<br>2000<br>28<br>200<br>20<br>28<br>28<br>4.0<br>80<br>2000<br>20<br>20<br>20<br>28<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 2 000<br>60 000<br>25 000<br>1 040<br>20 000<br>2 000<br>78 000<br>78 000<br>640<br>100 000<br>4 000<br>4 000<br>10 720<br>640 000<br>10 720<br>640 000<br>10 720<br>640 000<br>10 720<br>640 000 | Type 0 Waste |

## Table 4-4: De-ionised Water Leach and Tailings Water + Total Concentration Results: C-Grade Tailings 1 versus LCTs and TCTs

| Elements &                 | Kumba Iron O                                                                                                                                                                   | re: C-Grade Tailin<br>Fraction | gs 1 Solid + Water               |      | LCT0   | ТСТО    |        | LCT1   | TCT1    |       | LCT2   | TCT1    |   |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------|------|--------|---------|--------|--------|---------|-------|--------|---------|---|
| Chemical<br>Substances     | LC in mg/ℓ                                                                                                                                                                     | TC in mg/kg                    | Limit of Report<br>for LC (mg/ℓ) |      | (mg/ℓ) | (mg/kg) |        | (mg/ℓ) | (mg/kg) |       | (mg/ℓ) | (mg/kg) |   |
|                            |                                                                                                                                                                                |                                |                                  |      |        |         |        |        |         |       |        |         | F |
| As                         | <0.010                                                                                                                                                                         | 21                             | 0.010                            |      | 0.010  | 5.8     |        | 0.50   | 500     |       | 1.00   | 500     | 1 |
| В                          | 0.12                                                                                                                                                                           | 170                            | 0.025                            |      | 0.50   | 150     |        | 25     | 15 000  |       | 50     | 15 000  | 1 |
| Ва                         | 0.20                                                                                                                                                                           | 1 544                          | 0.025                            |      | 0.70   | 62.5    |        | 35     | 6 250   |       | 70     | 6 250   | 1 |
| Cd                         | <0.0030                                                                                                                                                                        | 18                             | 0.0030                           |      | 0.0030 | 7.5     |        | 0.15   | 260     |       | 0.30   | 260     | 1 |
| Со                         | <0.025                                                                                                                                                                         | <10                            | 0.025                            |      | 0.50   | 50      |        | 25     | 5 000   |       | 50     | 5 000   | 1 |
| Cr (total)                 | <0.025                                                                                                                                                                         | 146                            | 0.025                            |      | 0.10   | 46 000  |        | 5.0    | 800 000 |       | 10     | 800 000 |   |
| Cr(VI)                     | <0.010                                                                                                                                                                         | <5.0                           | 0.010                            |      | 0.050  | 6.5     |        | 2.5    | 500     |       | 5.0    | 500     |   |
| Cu                         | <0.025                                                                                                                                                                         | 39                             | 0.025                            |      | 2.0    | 16      |        | 100    | 19 500  |       | 200    | 19 500  | 1 |
| Fe                         | 0.18                                                                                                                                                                           | 134 400                        | 0.025                            |      | 2.0    |         |        | 100    |         |       | 200    |         |   |
| Hg                         | <0.0010                                                                                                                                                                        | <0.40                          | 0.0010                           |      | 0.0060 | 0.93    |        | 0.30   | 160     |       | 0.60   | 160     | 1 |
| Mn                         | 0.038                                                                                                                                                                          | 386                            | 0.025                            |      | 0.50   | 1 000   |        | 25     | 25 000  |       | 50     | 25 000  | 1 |
| Мо                         | <0.025                                                                                                                                                                         | <10                            | 0.025                            | Ту   | 0.070  | 40      | Ту     | 3.5    | 1 000   | Ţ     | 7.0    | 1 000   | 1 |
| Ni                         | <0.025                                                                                                                                                                         | 37                             | 0.025                            | pe 4 | 0.070  | 91      | pe 3 \ | 3.5    | 10 600  | pe 21 | 7.0    | 10 600  | 1 |
| Pb                         | <0.010                                                                                                                                                                         | 15                             | 0.010                            | Wast | 0.010  | 20      | Wast   | 0.50   | 1 900   | Wast  | 1.0    | 1 900   | 1 |
| Sb                         | <0.020                                                                                                                                                                         | 9.6                            | 0.020                            | ¢D   | 0.020  | 10      | ¢D     | 1.0    | 75      | CD CD | 2.0    | 75      | 1 |
| Se                         | <0.010                                                                                                                                                                         | <4.0                           | 0.010                            |      | 0.010  | 10      |        | 0.50   | 50      |       | 1.0    | 50      | 1 |
| V                          | <0.025                                                                                                                                                                         | 21                             | 0.025                            |      | 0.20   | 150     |        | 10     | 2 680   |       | 20     | 2 680   | 1 |
| Zn                         | <0.025                                                                                                                                                                         | 22                             | 0.025                            |      | 5.0    | 240     |        | 250    | 160 000 |       | 500    | 160 000 | 1 |
| Inorganic<br>Anions        |                                                                                                                                                                                |                                |                                  |      |        |         |        |        |         |       |        |         |   |
| TDS                        | 318                                                                                                                                                                            |                                | 10                               |      | 1 000  |         |        | 12 500 |         |       | 25 000 |         |   |
| Chloride                   | 25                                                                                                                                                                             |                                | 5.0                              |      | 300    |         |        | 15 000 |         |       | 30 000 |         |   |
| Sulfate as SO <sub>4</sub> | 69                                                                                                                                                                             |                                | 3.0                              |      | 250    |         |        | 12 500 |         |       | 25 000 |         |   |
| NO <sub>3</sub> as N       | 17                                                                                                                                                                             |                                | 0.20                             |      | 11     |         |        | 550    |         |       | 1 100  |         |   |
| Fluoride                   | 0.47                                                                                                                                                                           | 213                            | 0.20                             |      | 1.5    | 100     |        | 75     | 10 000  |       | 150    | 10 000  |   |
| Cyanide                    |                                                                                                                                                                                |                                | 0.050                            |      | 0.070  | 14      |        | 3.5    | 10 500  |       | 7.0    | 10 500  |   |
|                            | Not applicable                                                                                                                                                                 |                                |                                  |      |        |         |        |        |         |       |        |         |   |
|                            | Not analysed                                                                                                                                                                   |                                |                                  |      |        |         |        |        |         |       |        |         |   |
|                            | LC > LCT3 or TO                                                                                                                                                                | C > TCT2: Type 0 \             | Wastes                           |      |        |         |        |        |         |       |        |         |   |
|                            | LCT2< LC ≤ LC                                                                                                                                                                  | T3 <u>or</u> TCT1 < TC ≤       | TCT2 : Type 1 Waste              | S    |        |         |        |        |         |       |        |         |   |
|                            | LCT1 <lc≤lc< td=""><td>T2 <u>and </u>TC ≤ TCT1</td><td>: Type 2 Wastes</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lc≤lc<> | T2 <u>and </u> TC ≤ TCT1       | : Type 2 Wastes                  |      |        |         |        |        |         |       |        |         |   |
|                            | LCT0 < LC ≤ LC                                                                                                                                                                 | T1 and TC ≤ TCT                | 1: Type 3 Wastes                 |      |        |         |        |        |         |       |        |         |   |
|                            | LC ≤ LCT0 and                                                                                                                                                                  | TC ≤ TCT0: Type                | 4 wastes                         |      |        |         |        |        |         |       |        |         |   |

|   | LCT3<br>(mg/ℓ) | TCT2<br>(mg/kg) |        |
|---|----------------|-----------------|--------|
|   |                |                 |        |
|   | 4.0            | 2 000           |        |
|   | 200            | 60 000          |        |
|   | 280            | 25 000          |        |
|   | 1.2            | 1 040           |        |
|   | 200            | 20 000          |        |
|   | 40             |                 |        |
|   | 20             | 2 000           |        |
|   | 800            | 78 000          |        |
|   | 800            |                 |        |
|   | 2.4            | 640             |        |
|   | 200            | 100 000         |        |
| • | 28             | 4 000           | Тур    |
|   | 28             | 42 400          | be 0 V |
|   | 4.0            | 7 600           | Vaste  |
|   | 8.0            | 300             |        |
|   | 4.0            | 200             |        |
|   | 80             | 10 720          |        |
|   | 2000           | 640 000         |        |
|   |                |                 |        |
|   | 100 000        |                 |        |
|   | 120 000        |                 |        |
|   | 25 000         |                 |        |
|   | 4 400          |                 |        |
|   | 600            | 40 000          |        |
|   | 28             | 42 000          |        |

Table 4-5: De-ionised Water Leach and Total Concentration Results: C-Grade Tailings 1 versus LCTs and TCTs

| Elements &                 | Kumba Iron O                                  | re: C-Grade Tailin                    | gs 1 Solid Fraction              |        | LCT0   | TCT0    |        | LCT1   | TCT1    |        | LCT2   | TCT1    |
|----------------------------|-----------------------------------------------|---------------------------------------|----------------------------------|--------|--------|---------|--------|--------|---------|--------|--------|---------|
| Chemical<br>Substances     | LC in mg/ℓ                                    | TC in mg/kg                           | Limit of Report for<br>LC (mg/ℓ) |        | (mg/ℓ) | (mg/kg) |        | (mg/ℓ) | (mg/kg) |        | (mg/ℓ) | (mg/kg) |
|                            |                                               |                                       |                                  |        |        |         |        |        |         |        |        |         |
| As                         | <0.010                                        | 21                                    | 0.010                            |        | 0.010  | 5.8     |        | 0.50   | 500     |        | 1.00   | 500     |
| В                          | <0.025                                        | 170                                   | 0.025                            |        | 0.50   | 150     |        | 25     | 15 000  |        | 50     | 15 000  |
| Ва                         | 0.29                                          | 1 544                                 | 0.025                            |        | 0.70   | 62.5    |        | 35     | 6 250   |        | 70     | 6 250   |
| Cd                         | <0.0030                                       | 18                                    | 0.0030                           |        | 0.0030 | 7.5     |        | 0.15   | 260     |        | 0.30   | 260     |
| Со                         | <0.025                                        | <10                                   | 0.025                            |        | 0.50   | 50      |        | 25     | 5 000   |        | 50     | 5 000   |
| Cr (total)                 | <0.025                                        | 146                                   | 0.025                            |        | 0.10   | 46 000  |        | 5.0    | 800 000 |        | 10     | 800 000 |
| Cr(VI)                     | <0.010                                        | <5.0                                  | 0.010                            |        | 0.050  | 6.5     |        | 2.5    | 500     |        | 5.0    | 500     |
| Cu                         | <0.025                                        | 39                                    | 0.025                            |        | 2.0    | 16      |        | 100    | 19 500  |        | 200    | 19 500  |
| Fe                         | 0.26                                          | 134 400                               | 0.025                            |        | 2.0    |         |        | 100    |         |        | 200    |         |
| Hg                         | <0.0010                                       | <0.40                                 | 0.0010                           |        | 0.0060 | 0.93    |        | 0.30   | 160     |        | 0.60   | 160     |
| Mn                         | 0.030                                         | 386                                   | 0.025                            |        | 0.50   | 1 000   |        | 25     | 25 000  |        | 50     | 25 000  |
| Мо                         | <0.025                                        | <10                                   | 0.025                            | Ту     | 0.070  | 40      | Ту     | 3.5    | 1 000   | Ty     | 7.0    | 1 000   |
| Ni                         | <0.025                                        | 37                                    | 0.025                            | pe 4 \ | 0.070  | 91      | pe 3 \ | 3.5    | 10 600  | pe 2 \ | 7.0    | 10 600  |
| Pb                         | <0.010                                        | 15                                    | 0.010                            | Wast   | 0.010  | 20      | Wast   | 0.50   | 1 900   | Nast   | 1.0    | 1 900   |
| Sb                         | <0.010                                        | 9.6                                   | 0.020                            | (D     | 0.020  | 10      | Ċ,     | 1.0    | 75      | Ű      | 2.0    | 75      |
| Se                         | <0.010                                        | <4.0                                  | 0.010                            |        | 0.010  | 10      |        | 0.50   | 50      |        | 1.0    | 50      |
| V                          | <0.025                                        | 21                                    | 0.025                            |        | 0.20   | 150     |        | 10     | 2 680   |        | 20     | 2 680   |
| Zn                         | <0.025                                        | 22                                    | 0.025                            |        | 5.0    | 240     |        | 250    | 160 000 |        | 500    | 160 000 |
| Inorganic<br>Anions        |                                               |                                       |                                  |        |        |         |        |        |         |        |        |         |
| TDS                        | 30                                            |                                       | 10                               |        | 1 000  |         |        | 12 500 |         |        | 25 000 |         |
| Chloride                   | 2.0                                           |                                       | 5.0                              |        | 300    |         |        | 15 000 |         |        | 30 000 |         |
| Sulfate as SO <sub>4</sub> | 6.0                                           |                                       | 3.0                              |        | 250    |         |        | 12 500 |         |        | 25 000 |         |
| NO₃ as N                   | 0.50                                          |                                       | 0.20                             |        | 11     |         |        | 550    |         |        | 1 100  |         |
| Fluoride                   | 0.40                                          | 213                                   | 0.20                             |        | 1.5    | 100     |        | 75     | 10 000  |        | 150    | 10 000  |
| Cyanide                    |                                               |                                       | 0.050                            |        | 0.070  | 14      |        | 3.5    | 10 500  |        | 7.0    | 10 500  |
|                            | Not applicable                                |                                       |                                  |        |        |         |        |        |         |        |        |         |
|                            | Not analysed                                  |                                       |                                  |        |        |         |        |        |         |        |        |         |
|                            | LC > LCT3 <u>or</u> TC                        | > TCT2: Type 0 W                      | 'astes                           |        |        |         |        |        |         |        |        |         |
|                            | LCT2< LC ≤ LCT                                | 3 <u>or </u> TCT1 < TC ≤ <sup>°</sup> | TCT2 : Type 1 Wastes             |        |        |         |        |        |         |        |        |         |
|                            | LCT1< LC ≤ LCT2 and TC ≤ TCT1: Type 2 Wastes  |                                       |                                  |        |        |         |        |        |         |        |        |         |
|                            | LCT0 < LC ≤ LCT1 and TC ≤ TCT1: Type 3 Wastes |                                       |                                  |        |        |         |        |        |         |        |        |         |
|                            | LC ≤ LCT0 <u>and </u> T                       | C ≤ TCT0: Type 4                      | wastes                           |        |        |         |        |        |         |        |        |         |

| LCT3<br>(mg/ℓ) | TCT2<br>(mg/kg) |      |
|----------------|-----------------|------|
|                |                 |      |
| 4.0            | 2 000           |      |
| 4.0            | 2 000           |      |
| 200            | 25.000          |      |
| 1.2            | 25 000          |      |
| 200            | 20.000          |      |
| 200            | 20 000          |      |
| 40             | 2 000           |      |
| 20             | 2 000           |      |
| 000            | 78 000          |      |
| 800            | 640             |      |
| 2.4            | 040             |      |
| 200            | 100 000         |      |
| 28             | 4 000           | Туре |
| 28             | 42 400          | 0 Wa |
| 4.0            | 7 600           | ıste |
| 8.0            | 300             |      |
| 4.0            | 200             |      |
| 80             | 10 720          |      |
| 2000           | 640 000         |      |
|                |                 |      |
| 100 000        |                 |      |
| 120 000        |                 |      |
| 25 000         |                 |      |
| 4 400          |                 |      |
| 600            | 40 000          |      |
| 28             | 42 000          |      |
|                |                 |      |

## Table 4-6: De-ionised Water Leach test and Total Concentration Result: C-Grade Discard Material versus LCT and TCT

| Elements &                 | Kumba Iro                                     | on Ore: C-Grade D        | iscard Material                  |       | LCT0   | тсто    |       | LCT1   | TCT1    |       | LCT2   | TCT1    |   |
|----------------------------|-----------------------------------------------|--------------------------|----------------------------------|-------|--------|---------|-------|--------|---------|-------|--------|---------|---|
| Chemical<br>Substances     | LC in mg/ℓ                                    | TC in mg/kg              | Limit of Report<br>for LC (mg/ℓ) |       | (mg/ℓ) | (mg/kg) |       | (mg/ℓ) | (mg/kg) |       | (mg/ℓ) | (mg/kg) |   |
|                            |                                               |                          |                                  |       |        |         |       |        |         |       |        |         | Γ |
| As                         | <0.010                                        | <4.0                     | 0.010                            |       | 0.010  | 5.8     |       | 0.50   | 500     |       | 1.00   | 500     |   |
| В                          | <0.025                                        | 123                      | 0.025                            |       | 0.50   | 150     |       | 25     | 15 000  |       | 50     | 15 000  |   |
| Ва                         | 0.26                                          | 588                      | 0.025                            |       | 0.70   | 62.5    |       | 35     | 6 250   |       | 70     | 6 250   |   |
| Cd                         | <0.0030                                       | 16.4                     | 0.0030                           |       | 0.0030 | 7.5     |       | 0.15   | 260     |       | 0.30   | 260     |   |
| Co                         | <0.025                                        | <10                      | 0.025                            |       | 0.50   | 50      |       | 25     | 5 000   |       | 50     | 5 000   |   |
| Cr (total)                 | <0.025                                        | 128                      | 0.025                            |       | 0.10   | 46 000  |       | 5.0    | 800 000 |       | 10     | 800 000 |   |
| Cr(VI)                     | <0.010                                        | <5.0                     | 0.010                            |       | 0.050  | 6.5     |       | 2.5    | 500     |       | 5.0    | 500     |   |
| Cu                         | <0.025                                        | <4.0                     | 0.025                            |       | 2.0    | 16      |       | 100    | 19 500  |       | 200    | 19 500  |   |
| Fe                         | 0.077                                         | 105 600                  | 0.025                            |       | 2.0    |         |       | 100    |         |       | 200    |         |   |
| Hg                         | <0.0010                                       | <0.40                    | 0.0010                           |       | 0.0060 | 0.93    |       | 0.30   | 160     |       | 0.60   | 160     |   |
| Mn                         | <0.025                                        | 520                      | 0.025                            |       | 0.50   | 1 000   |       | 25     | 25 000  |       | 50     | 25 000  |   |
| Мо                         | <0.025                                        | <10                      | 0.025                            | Ţ     | 0.070  | 40      | Ţ     | 3.5    | 1 000   | Ţ     | 7.0    | 1 000   |   |
| Ni                         | <0.025                                        | 30                       | 0.025                            | pe 4  | 0.070  | 91      | pe 3  | 3.5    | 10 600  | pe 2  | 7.0    | 10 600  |   |
| Pb                         | <0.010                                        | 14                       | 0.010                            | Wast  | 0.010  | 20      | Wast  | 0.50   | 1 900   | Wast  | 1.0    | 1 900   |   |
| Sb                         | <0.010                                        | <8.0                     | 0.020                            | CD CD | 0.020  | 10      | CD CD | 1.0    | 75      | CD CD | 2.0    | 75      |   |
| Se                         | <0.010                                        | <4.0                     | 0.010                            |       | 0.010  | 10      |       | 0.50   | 50      |       | 1.0    | 50      |   |
| V                          | <0.025                                        | 16                       | 0.025                            |       | 0.20   | 150     |       | 10     | 2 680   |       | 20     | 2 680   |   |
| Zn                         | <0.025                                        | 16                       | 0.025                            |       | 5.0    | 240     |       | 250    | 160 000 |       | 500    | 160 000 |   |
| Inorganic<br>Anions        |                                               |                          |                                  |       |        |         |       |        |         |       |        |         |   |
| TDS                        | <10                                           |                          | 10                               |       | 1 000  |         |       | 12 500 |         |       | 25 000 |         |   |
| Chloride                   | <2.0                                          |                          | 5.0                              |       | 300    |         |       | 15 000 |         |       | 30 000 |         |   |
| Sulfate as SO <sub>4</sub> | 3.0                                           |                          | 3.0                              |       | 250    |         |       | 12 500 |         |       | 25 000 |         |   |
| NO <sub>3</sub> as N       | 0.10                                          |                          | 0.20                             |       | 11     |         |       | 550    |         |       | 1 100  |         |   |
| Fluoride                   | <0.20                                         | 127                      | 0.20                             |       | 1.5    | 100     |       | 75     | 10 000  |       | 150    | 10 000  |   |
| Cyanide                    |                                               |                          | 0.050                            |       | 0.070  | 14      |       | 3.5    | 10 500  |       | 7.0    | 10 500  |   |
|                            | Not applicable                                |                          |                                  |       |        |         |       |        |         |       |        |         |   |
|                            | Not analysed                                  |                          |                                  |       |        |         |       |        |         |       |        |         |   |
|                            | LC > LCT3 or TO                               | C > TCT2: Type 0 \       | Wastes                           |       |        |         |       |        |         |       |        |         |   |
|                            | LCT2< LC ≤ LC                                 | T3 <u>or</u> TCT1 < TC ≤ | TCT2 : Type 1 Waste              | S     |        |         |       |        |         |       |        |         |   |
|                            | LCT1< LC ≤ LCT2 and TC ≤ TCT1: Type 2 Wastes  |                          |                                  |       |        |         |       |        |         |       |        |         |   |
|                            | LCT0 < LC ≤ LCT1 and TC ≤ TCT1: Type 3 Wastes |                          |                                  |       |        |         |       |        |         |       |        |         |   |
|                            | LC ≤ LCT0 and                                 | TC ≤ TCT0: Type          | 4 wastes                         |       |        |         |       |        |         |       |        |         |   |

| 4.0         2 000           200         60 000           280         25 000                                                                                                                                                                                      |              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 1.2 $1040$ $200$ $20000$ $40$ $2000$ $20$ $2000$ $800$ $78000$ $800$ $78000$ $800$ $24$ $2.4$ $640$ $200$ $100000$ $28$ $42400$ $4.0$ $7600$ $8.0$ $300$ $4.0$ $200$ $80$ $10720$ $2000$ $640000$ $100000$ $120000$ $120000$ $40000$ $4400$ $40000$ $28$ $42000$ | Type 0 Waste |

## Table 4-7: De-ionised Water Leach test and Total Concentration Result: C-Grade Tailings 2 Solid Fraction versus LCT and TCT

| Elements &                 | Kumba Iron Ore: C-Grade Tailings 2 Solid Fraction          |                    | gs 2 Solid Fraction              |        | LCT0   | тсто    |        | LCT1   | TCT1    |        | LCT2   | TCT1    |   |
|----------------------------|------------------------------------------------------------|--------------------|----------------------------------|--------|--------|---------|--------|--------|---------|--------|--------|---------|---|
| Chemical<br>Substances     | LC in mg/ℓ                                                 | TC in mg/kg        | Limit of Report<br>for LC (mg/ℓ) |        | (mg/ℓ) | (mg/kg) |        | (mg/ℓ) | (mg/kg) |        | (mg/ℓ) | (mg/kg) |   |
|                            |                                                            |                    |                                  |        |        |         |        |        |         |        |        |         | Γ |
| As                         | <0.010                                                     | 14                 | 0.010                            |        | 0.010  | 5.8     |        | 0.50   | 500     |        | 1.00   | 500     |   |
| В                          | 0.16                                                       | 139                | 0.025                            |        | 0.50   | 150     |        | 25     | 15 000  |        | 50     | 15 000  |   |
| Ва                         | 0.34                                                       | 1 240              | 0.025                            |        | 0.70   | 62.5    |        | 35     | 6 250   |        | 70     | 6 250   |   |
| Cd                         | <0.0030                                                    | <1.2               | 0.0030                           |        | 0.0030 | 7.5     |        | 0.15   | 260     |        | 0.30   | 260     |   |
| Co                         | <0.025                                                     | 14                 | 0.025                            |        | 0.50   | 50      |        | 25     | 5 000   |        | 50     | 5 000   |   |
| Cr (total)                 | <0.025                                                     | 92                 | 0.025                            |        | 0.10   | 46 000  |        | 5.0    | 800 000 |        | 10     | 800 000 |   |
| Cr(VI)                     | <0.010                                                     | <5.0               | 0.010                            |        | 0.050  | 6.5     |        | 2.5    | 500     |        | 5.0    | 500     | 1 |
| Cu                         | <0.010                                                     | <4.0               | <0.010                           |        | 2.0    | 16      |        | 100    | 19 500  |        | 200    | 19 500  |   |
| Fe                         | 3.7                                                        | 125 200            | 0.025                            |        | 2.0    |         |        | 100    |         |        | 200    |         |   |
| Hg                         | <0.0010                                                    | <0.40              | 0.0010                           |        | 0.0060 | 0.93    |        | 0.30   | 160     |        | 0.60   | 160     |   |
| Mn                         | 0.037                                                      | 1 012              | 0.025                            |        | 0.50   | 1 000   |        | 25     | 25 000  |        | 50     | 25 000  |   |
| Мо                         | <0.025                                                     | <10                | 0.025                            | Ту     | 0.070  | 40      | Ту     | 3.5    | 1 000   | Τy     | 7.0    | 1 000   |   |
| Ni                         | <0.025                                                     | 40                 | 0.025                            | pe 4 \ | 0.070  | 91      | pe 3 \ | 3.5    | 10 600  | pe 2 l | 7.0    | 10 600  |   |
| Pb                         | <0.010                                                     | 5.6                | 0.010                            | Wast   | 0.010  | 20      | Wast   | 0.50   | 1 900   | Wast   | 1.0    | 1 900   |   |
| Sb                         | <0.020                                                     | 8.8                | 0.020                            | CD     | 0.020  | 10      | ¢D     | 1.0    | 75      | CD CD  | 2.0    | 75      |   |
| Se                         | <0.010                                                     | <4.0               | 0.010                            |        | 0.010  | 10      |        | 0.50   | 50      |        | 1.0    | 50      |   |
| V                          | <0.025                                                     | 14                 | 0.025                            |        | 0.20   | 150     |        | 10     | 2 680   |        | 20     | 2 680   |   |
| Zn                         | 0.068                                                      | 10                 | 0.025                            |        | 5.0    | 240     |        | 250    | 160 000 |        | 500    | 160 000 |   |
| Inorganic<br>Anions        |                                                            |                    |                                  |        |        |         |        |        |         |        |        |         |   |
| TDS                        | 72                                                         |                    | 10                               |        | 1 000  |         |        | 12 500 |         |        | 25 000 |         |   |
| Chloride                   | 4.0                                                        |                    | 5.0                              |        | 300    |         |        | 15 000 |         |        | 30 000 |         |   |
| Sulfate as SO <sub>4</sub> | 8.0                                                        |                    | 3.0                              |        | 250    |         |        | 12 500 |         |        | 25 000 |         |   |
| NO <sub>3</sub> as N       | 0.50                                                       |                    | 0.20                             |        | 11     |         |        | 550    |         |        | 1 100  |         |   |
| Fluoride                   | 0.20                                                       | 658                | 0.20                             |        | 1.5    | 100     |        | 75     | 10 000  |        | 150    | 10 000  |   |
| Cyanide                    |                                                            | <0.010             | 0.050                            |        | 0.070  | 14      |        | 3.5    | 10 500  |        | 7.0    | 10 500  |   |
|                            | Not applicable                                             |                    |                                  |        |        |         |        |        |         |        |        |         |   |
|                            | Not analysed                                               |                    |                                  |        |        |         |        |        |         |        |        |         |   |
|                            | LC > LCT3 <u>or</u> T(                                     | C > TCT2: Type 0 \ | Wastes                           |        |        |         |        |        |         |        |        |         |   |
|                            | LCT2< LC ≤ LCT3 <u>or</u> TCT1 < TC ≤ TCT2 : Type 1 Wastes |                    |                                  |        |        |         |        |        |         |        |        |         |   |
|                            | LCT1< LC ≤ LCT2 and TC ≤ TCT1: Type 2 Wastes               |                    |                                  |        |        |         |        |        |         |        |        |         |   |
|                            | LCT0 < LC ≤ LCT1 and TC ≤ TCT1: Type 3 Wastes              |                    |                                  |        |        |         |        |        |         |        |        |         |   |
|                            | LC ≤ LCT0 and                                              | TC ≤ TCT0: Type 4  | 4 wastes                         |        |        |         |        |        |         |        |        |         |   |

| 4.0       2 000         200       60 000         280       25 000         1.2       1 040         200       20 000         40       200         200       2 000         800       78 000         800       78 000         28       4 00         28       4 2 400         4.0       7 600         8.0       300         4.0       200         28       4 2 400         200       640 000         200       640 000         100 000       100 200         2000       640 000         100 000       120 000         25 000       4 400         28       42 000 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

## Table 4-8: C-Grade Tailings 1 and C-Grade Tailings 2 water concentrations versus LCs

| Flements &                 | Kumba Iron Ore<br>Taili                                                                                                      | nd C-Grade                          | LCTO                                |               | TCT0   | LCT1    |               | TCT1   |         | LCT2   | TCT1   |         |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------|---------------|--------|---------|---------------|--------|---------|--------|--------|---------|
| Chemical<br>Substances     | C-Grade Tailings<br>1 Water in mg/ℓ                                                                                          | C-Grade Tailings 2<br>Water in mg/ℓ | Limit of<br>Report for LC<br>(mg/ℓ) |               | (mg/ℓ) | (mg/kg) |               | (mg/ℓ) | (mg/kg) |        | (mg/ℓ) | (mg/kg) |
|                            |                                                                                                                              |                                     |                                     |               |        |         |               |        |         |        |        |         |
| As                         | <0.010                                                                                                                       | <0.010                              | 0.010                               |               | 0.010  |         |               | 0.50   |         |        | 1.00   |         |
| В                          | 0.31                                                                                                                         | 0.20                                | 0.025                               |               | 0.50   |         |               | 25     |         |        | 50     |         |
| Ва                         | 0.039                                                                                                                        | 0.059                               | 0.025                               |               | 0.70   |         |               | 35     |         |        | 70     |         |
| Cd                         | <0.0030                                                                                                                      | <0.0030                             | 0.0030                              |               | 0.0030 |         |               | 0.15   |         |        | 0.30   |         |
| Со                         | <0.025                                                                                                                       | <0.025                              | 0.025                               |               | 0.50   |         |               | 25     |         |        | 50     |         |
| Cr (total)                 | <0.025                                                                                                                       | <0.025                              | 0.025                               |               | 0.10   |         |               | 5.0    |         |        | 10     |         |
| Cr(VI)                     | <0.010                                                                                                                       | <0.010                              | 0.010                               |               | 0.050  |         |               | 2.5    |         |        | 5.0    |         |
| Cu                         | <0.010                                                                                                                       | <0.010                              | 0.025                               |               | 2.0    |         |               | 100    |         |        | 200    |         |
| Fe                         | <0.025                                                                                                                       | 0.029                               | 0.025                               |               | 2.0    |         |               | 100    |         |        | 200    |         |
| Hg                         | <0.0010                                                                                                                      | 0.0030                              | 0.0010                              |               | 0.0060 |         |               | 0.30   |         |        | 0.60   |         |
| Mn                         | 0.053                                                                                                                        | 0.026                               | 0.025                               |               | 0.50   |         |               | 25     |         |        | 50     |         |
| Мо                         | <0.025                                                                                                                       | 0.044                               | 0.025                               | Туџ           | 0.070  |         | Ту            | 3.5    |         | Тур    | 7.0    |         |
| Ni                         | <0.025                                                                                                                       | <0.025                              | 0.025                               | be 4 \        | 0.070  |         | be 3 V        | 3.5    |         | oe 2 \ | 7.0    |         |
| Pb                         | <0.010                                                                                                                       | <0.010                              | 0.010                               | Vaste         | 0.010  |         | Waste         | 0.50   |         | Waste  | 1.0    |         |
| Sb                         | <0.020                                                                                                                       | <0.020                              | 0.020                               | <sup>()</sup> | 0.020  |         | <sup>()</sup> | 1.0    |         | U U    | 2.0    |         |
| Se                         | <0.010                                                                                                                       | <0.010                              | 0.010                               |               | 0.010  |         |               | 0.50   |         |        | 1.0    |         |
| V                          | <0.025                                                                                                                       | <0.025                              | 0.025                               |               | 0.20   |         |               | 10     |         |        | 20     |         |
| Zn                         | <0.025                                                                                                                       | <0.025                              | 0.025                               |               | 5.0    |         |               | 250    |         |        | 500    |         |
| Inorganic<br>Anions        |                                                                                                                              |                                     |                                     |               |        |         |               |        |         |        |        |         |
| TDS                        | 854                                                                                                                          | 624                                 | 10                                  |               | 1 000  |         |               | 12 500 |         |        | 25 000 |         |
| Chloride                   | 69                                                                                                                           | 65                                  | 5.0                                 |               | 300    |         |               | 15 000 |         |        | 30 000 |         |
| Sulfate as SO <sub>4</sub> | 187                                                                                                                          | 205                                 | 3.0                                 |               | 250    |         |               | 12 500 |         |        | 25 000 |         |
| NO₃ as N                   | 49                                                                                                                           | 35                                  | 0.20                                |               | 11     |         |               | 550    |         |        | 1 100  |         |
| Fluoride                   | 0.60                                                                                                                         | 1.1                                 | 0.20                                |               | 1.5    |         |               | 75     |         |        | 150    |         |
| Cyanide                    |                                                                                                                              |                                     | 0.050                               |               | 0.070  |         |               | 3.5    |         |        | 7.0    |         |
|                            | Not applicable                                                                                                               |                                     |                                     |               |        |         |               |        |         |        |        |         |
|                            | Not analysed                                                                                                                 |                                     |                                     |               |        |         |               |        |         |        |        |         |
|                            | LC > LCT3 <u>or</u> TC > T                                                                                                   | CT2: Type 0 Wastes                  |                                     |               |        |         |               |        |         |        |        |         |
|                            | LCT2< LC ≤ LCT3 <u>or</u>                                                                                                    | <u>-</u> TCT1 < TC ≤ TCT2 : T       | ype 1 Wastes                        |               |        |         |               |        |         |        |        |         |
|                            | LCT1 <lc 2="" and="" lct2="" tc="" tct1:="" td="" type="" wastes<="" ≤=""><td></td><td></td><td></td><td></td><td></td></lc> |                                     |                                     |               |        |         |               |        |         |        |        |         |
|                            | LCT0 < LC ≤ LCT1 and TC ≤ TCT1: Type 3 Wastes                                                                                |                                     |                                     |               |        |         |               |        |         |        |        |         |
|                            | LC ≤ LCT0 <u>and</u> TC ≤                                                                                                    | TCT0: Type 4 wastes                 |                                     |               |        |         |               |        |         |        |        |         |

|       | LCT3    | TCT2    |       |
|-------|---------|---------|-------|
|       | (mg/ℓ)  | (mg/kg) |       |
|       |         |         |       |
|       | 4.0     |         |       |
|       | 200     |         |       |
|       | 280     |         |       |
|       | 1.2     |         |       |
|       | 200     |         |       |
|       | 40      |         |       |
|       | 20      |         |       |
|       | 800     |         |       |
|       | 800     |         |       |
|       | 2.4     |         |       |
|       | 200     |         |       |
| Тур   | 28      |         | Тур   |
| e 1 W | 28      |         | 9 0 W |
| aste  | 4.0     |         | aste  |
|       | 8.0     |         |       |
|       | 4.0     |         |       |
|       | 80      |         |       |
|       | 2000    |         |       |
|       |         |         |       |
|       | 100 000 |         |       |
|       | 120 000 |         |       |
|       | 25 000  |         |       |
|       | 4 400   |         |       |
|       | 600     |         |       |
|       | 28      |         |       |
|       |         |         |       |

#### 5. DISCUSSIONS AND CONCLUSIONS

The XRD analysis undertaken on the C-Grade ROM sample indicated that the major mineral in the C-Grade ROM sample is hematite (Fe<sub>2</sub>O<sub>3</sub>) followed by quartz (SiO<sub>2</sub>) (both members of the oxide mineral group). Minor amounts of the phyllosilicate minerals, kaolinite and muscovite, together with the silicate mineral talc, make up the remainder of the sample.

In terms of the heavy metal content of the C-Grade ROM sample, concentrations of antimony, arsenic, cadmium and iron are elevated above the average Alloway Crustal Abundance concentrations and have the potential to pose an environmental risk. However, the distilled water leach tests indicate that none of these metals leach at concentrations above their respective LCT0 values when considering the leach test results only (Table 4-3), i.e. the C-Grade ROM sample is, in terms of leachables, assessed as a Type 4 (inert waste).

In terms of the DEA's National Norms and Standards (DEA, 2013a), the wet C-Grade Tailings 1 samples were dewatered, where after the water fraction was analysed for the chemical constituents as listed in the Norms and Standards. The samples were all subjected to distilled water leaches and the leach solutions were analysed for the chemical constituents as listed in the Norms and Standards. The solid fractions were also subjected to a TC analysis. As it is highly unlikely that the samples will contain any of the listed organic constituents of concern, the water fractions and leach and digestive solutions were not analysed for organics. The water fraction was analysed for the metals and anions as listed in the National Norms and Standards.

In order to assess the wet C-Grade Tailings 1 sample, in line with the rules of the National Norms and Standards, the percentage contributions of the concentrations of the chemical constituents in the liquid fraction (tailings water) and the solid fraction leach concentrations were calculated based on the percentage liquids to solids in each of the two samples. The resultant concentrations were then used in this assessment. In terms of leachable concentrations, the C-Grade Tailings 1 (including the liquid water fraction contribution) is assessed as a Type 3 waste due to the elevated nitrate concentration. In terms of total concentrations (TCs), the C-Grade Tailings 1 is also assessed as a Type 3 waste. When only the leach results (LCs) are considered, the C-Grade Tailings 1 is assessed as a Type 4 waste, i.e., it is clear that the C-Grade Tailings 1 water, which contains elevated concentrations of nitrate, causes the tailings to be assessed as a Type 3 waste.

In terms of leachables, the C-Grade Discard material is assessed as a Type 4, inert waste, while based on total concentrations, the Discard Material is a Type 3 waste.

In terms of leachables and total concentrations, the C-Grade Tailings 2 is assessed as a Type 3 waste. It is pointed out that the larger portion of the wet fraction of this tailings was decanted prior to J&W receiving the tailings sample, therefore the contribution to the leachable concentration by the water fraction could not be calculated.

The two water fractions of the tailings samples were also assessed as separate wastes. The water fractions are assessed as Type 3 wastes, therefore storage facilities for the tailings water, such as return water dams, must also be constructed with systems complying with the performance requirements of a Class C landfill. It should be noted that the tailings water is the potential pollution threat to the environment, i.e., the carrier of pollutants.

The results of the waste assessment exercise are summarised in **Table 5-1** below. It is clear from the results that the various wastes, based on their TCs are Type 3 wastes. However, based on the LCs, the C-Grade ROM, C-Grade Tailings 1 and C-Grade Discard are Type 4 wastes. The C-Grade Tailings 2 will also classify as a Type 4 waste if the LC of iron is ignored. Based on this and the fact that, although the C-Grade ROM, C-Grade tailings and C-Grade discard material contain elevated total concentrations of metals, which result in

Jones & Wagener (Pty) Ltd Engineering & Environmental Consultants



them being assessed as Type 3 wastes, it is unlikely that these wastes will be subject to chemical processes that would mobilise metals and anions, i.e., residues associated with the Kumba mine are generally resistant to chemical weathering and thus have very slow reaction rates (Exigo<sup>3</sup>, 2014). It is therefore considered that the discard and tailings itself will not have a significant impact on the water environment and should rather be classified as a Type 4 waste.

Motivation for classifying the discard as a Type 4 waste is further supplemented by the fact that geochemical analyses of the discard material, conducted by Exigo<sup>3</sup> in 2014, classified the reside stockpile as a Type 4 (inert waste).

The default barrier system for a Type 3 waste is shown in **Figure 5-1** below. Class C barrier systems consist of a single composite barrier. Based on the work conducted by  $Exigo^3$  and J&W, therefore, the existing C-Grade ROM stockpile is assessed as a Type 4 (inert waste) and disposal could be allowed on a disposal facility with a Class D base preparation layer – see **Figure 5-2**.

The tailings water fractions on the other hand, have elevated nitrate concentrations and the groundwater in the vicinity of the tailings disposal facility appears to have been impacted by nitrate. Measures must therefore be put in place to reduce the impacts from the tailings and the tailings return water dams, i.e., the dams should be provided by barrier systems complaint with the performance criteria of a Class C barrier.

With regards to the tailings facility and its return water dam, the DWS has recently circulated a letter stating that use can be made of source – pathway – receptor modelling to motivate for an alternative (less stringent barrier system) for mine residues and deposits (DWS, 2016).

| Waste                                                      | LC Results | TC Results | <b>Overall Result</b> |
|------------------------------------------------------------|------------|------------|-----------------------|
| C-Grade ROM                                                | Type 4     | Туре 3     | Туре 3                |
| C-Grade Tailings 1 (including water fraction contribution) | Туре 3     | Туре 3     | Туре 3                |
| C-Grade Tailings 1: Solid fraction only                    | Туре 4     | Туре 3     | Туре 3                |
| C-Grade Tailings 1: Water fraction only                    | Туре 3     | N/A        | Туре 3                |
| C-Grade Discard Material                                   | Type 4     | Туре 3     | Туре 3                |
| C-Grade Tailings 2: Solid fraction only                    | Туре 3     | Туре 3     | Туре 3                |
| C-Grade Tailings 2: Water fraction only                    | Туре 3     | N/A        | Туре 3                |

## Table 5-1: Summary of Waste Assessment Results





Figure 5-1: Class C landfill barrier system (DEA, 2013b)



Figure 5-2: Class D base preparation layer (DEA, 2013b)

## 6. <u>RECOMMENDATIONS</u>

Based on the results obtained from this study and the conclusions drawn, the following recommendations are made:

- The C-Grade ROM material as well as the various C-Grade waste streams being generated by the processing of C-grade material should be considered a Type 4 (inert waste) and may be disposed of on a dump with barrier systems of which the performance complies with that of a Class D landfill.
- All associated water management infrastructure should be provided with barrier systems of which the performance complies with that of a Class C barrier system.
- Alternatively, source-pathway-receptor modelling can be conducted to demonstrate that an alternative, less conservative barrier system, will protect the receiving environment against the impacts of the tailings and tailings water; and
- All designs must be approved by the DWS.



## 7. <u>REFERENCES</u>

- Alloway, B. J. 1995. *Heavy metals in soils* Second Edition. Blackie Academic & Professional.
- Department of Environmental Affairs, 2013a. *National norms and standards for the assessment of waste for landfill disposal*. R635 of 23 August 2013, Government Gazette 36784 of 23 August 2013, Government Printer, Pretoria.
- Department of Environmental Affairs, 2013b. *National norms and standards for disposal of waste to landfill*. R636 of 23 August 2013, Government Gazette 36784 of 23 August 2013, Government Printer, Pretoria.
- Department of Water and Sanitation, 2016. Risk based approach assessment water use licence applications in relations of facilities for Section 21(g) water use in the Mining Sector. Chamber of Mines, Johannesburg.
- Exigo<sup>3</sup>, 2014. Sishen Iron Ore Mine: Mine Residue Leachate Assessment. Sishen Iron Ore Company (Pty) Ltd.
- South Africa, 2014. Act No. 26 of 2014: National Environmental Management: Waste Amendment Act. Government Gazette 37714, Volume 588, Cape Town.

Manf

Cameron Turner Geohydrologist for Jones & Wagener

Marius van Zyl Technical Director

12 September 2017 Document source: C:\Alljobs\G227 EXM Kumba\REP\G227\_REP\_Rev2\_Kumba\_WasteAssess\_18Sept2017.docx Document template: Normal.dotm



EXM ADVISORY SERVICES

Kumba Iron Grade C Waste Assessment FINAL REPORT

Report: JW099/17/G227- Rev 2

## **APPENDIX A**

## WATERLAB: ANALYTICAL CERTIFICATES





## WATERLAB (PTY) LTD

23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020 Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za

## CERTIFICATE OF ANALYSES X-RAY DIFFRACTION

| Date received: 2017-04-11<br>Project number: 132                                               | Report number: 66275    | Date completed: 2017-05-09<br>Order number: PR17-05873                          |
|------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------|
| Client name: Jones & Wagener<br>Address: PO Box 1434, Rivonia, 2128<br>Telephone: 011 519 0200 | Facsimile: 011 519 0201 | Contact person: Marius van Zyl<br>Email:vanzyl@jaws.co.za<br>Cell: 082 880 1250 |

| Composition (%) [s]          |       |  |  |
|------------------------------|-------|--|--|
| JIG                          | ROM   |  |  |
| 26                           | 24    |  |  |
| Mineral Amount<br>(weight %) |       |  |  |
| Hematite                     | 72.03 |  |  |
| Quartz                       | 23.16 |  |  |
| Kaolinite                    | 2.72  |  |  |
| Muscovite                    | 1.8   |  |  |
| Talc                         | 0.30  |  |  |
|                              |       |  |  |

[s] Results obtained from sub-contracted laboratory

## Note:

The material was prepared for XRD analysis using a backloading preparation method

It was analysed with a PANalytical Empyrean diffractometer with PIXcel detector and fixed slits with Fe filtered Co-Kα radiation.

The phases were identified using X'Pert Highscore plus software.

The relative phase amounts (weight %) were estimated using the Rietveld method.

## Comment:

- In case the results do not correspond to results of other analytical techniques, please let me know for further fine tuning of XRD results.
- Mineral names may not reflect the actual compositions of minerals identified, but rather the mineral group.
- Due to preferred orientation and crystallite size effects, results may not be as accurate as shown in the table.
- Traces of additional phases may be present.
- Amorphous phases, which may be present, were not taken into consideration during quantification.

| Ideal Mineral Composition |                          |  |  |  |  |
|---------------------------|--------------------------|--|--|--|--|
| Hematite                  | Fe2O3                    |  |  |  |  |
| Kaolinite                 | Al2 Si2 O5 (OH)4         |  |  |  |  |
| Muscovite                 | K Al2 ((OH)2 Al Si3 O10) |  |  |  |  |
| Talc                      | Mg3Si4O10(OH)2           |  |  |  |  |
| Quartz                    | SiO2                     |  |  |  |  |

E. Botha

Geochemistry Project manager

The information contained in this report is relevant only to the sample/samples supplied to WATERLAB (Pty) Ltd. Any further use of the above information is not the responsibility or liability of WATERLAB (Pty) Ltd. Except for the full report, parts of this report may not be reproduced without written approval of WATERLAB (Pty) Ltd.



### WATERLAB (PTY) LTD 238 De Hevilland Crescent Telaphore: +2712 - 349 - 1066 Persequor Techno Park, Facsimile: +2712 - 349 - 2064 Maining Naudé Road, Prebria Ernait: accounts@waterlab.co.za P.O. Box 253, 000

CERTIFICATE OF ANALYSES EXTRACTIONS AS 4439.3

| Date received:  | 2017/04/11 |                      | Date completed: | 2017/05/09        |
|-----------------|------------|----------------------|-----------------|-------------------|
| Project number: | 132        | Report number: 66275 | Order number:   | PR17-05873        |
| Client name:    | Jones & Wa | gener                | Contact person: | Marius van Zyl    |
| Address:        | PO Box 143 | I, Rivonia, 2128     | Email:          | vanzyl@jaws.co.za |
| Telephone:      | 0115190200 |                      | Cell:           | 082 880 1250      |

| Analyses                           | JIG ROM                         | JIG Slimes      | Plant Discard<br>Materials |           |           |           |           |
|------------------------------------|---------------------------------|-----------------|----------------------------|-----------|-----------|-----------|-----------|
| Sample Number                      | 2624                            | 2625            | 2626                       |           |           |           |           |
| TCLP / Borax / Distilled Water     | Distilled Water                 | Distilled Water | Distilled Water            |           |           |           |           |
| Ratio*                             | 1:20                            | 1:20            | 1:20                       |           |           |           |           |
| Units                              | mg/€                            | mg/e            | mg/€                       | LCT0 mg/l | LCT1 mg/l | LCT2 mg/l | LCT3 mg/l |
| As, Arsenic                        | <0.010                          | < 0.010         | <0.010                     | 0.01      | 0.5       | 1         | 4         |
| B, Boron                           | <0.025                          | < 0.025         | <0.025                     | 0.5       | 25        | 50        | 200       |
| Ba, Barium                         | 0.468                           | 0.288           | 0.258                      | 0.7       | 35        | 70        | 280       |
| Cd, Cadmium                        | < 0.003                         | < 0.003         | < 0.003                    | 0.003     | 0.15      | 0.3       | 1.2       |
| Co, Cobalt                         | <0.025                          | < 0.025         | <0.025                     | 0.5       | 25        | 50        | 200       |
| Cr <sub>Total</sub> Chromium Total | <0.025                          | < 0.025         | <0.025                     | 0.1       | 5         | 10        | 40        |
| Cr(VI), Chromium (VI)              | <0.010                          | < 0.010         | <0.010                     | 0.05      | 2.5       | 5         | 20        |
| Cu, Copper                         | <0.025                          | < 0.025         | <0.025                     | 2.0       | 100       | 200       | 800       |
| Fe, Iron                           | 0.192                           | 0.263           | 0.077                      |           |           |           |           |
| Hg. Mercury                        | <0.001                          | < 0.001         | < 0.001                    | 0.006     | 0.3       | 0.6       | 2.4       |
| Mn, Manganese                      | <0.025                          | 0.030           | <0.025                     | 0.5       | 25        | 50        | 200       |
| Mo, Molybdenum                     | <0.025                          | < 0.025         | <0.025                     | 0.07      | 3.5       | 7         | 28        |
| Ni, Nickel                         | <0.025                          | < 0.025         | <0.025                     | 0.07      | 3.5       | 7         | 28        |
| Pb, Lead                           | <0.010                          | < 0.010         | <0.010                     | 0.01      | 0.5       | 1         | 4         |
| Sb, Antimony                       | <0.010                          | <0.010          | <0.010                     | 0.02      | 1.0       | 2         | 8         |
| Se, Selenium                       | <0.010                          | < 0.010         | <0.010                     | 0.01      | 0.5       | 1         | 4         |
| V, Vanadium                        | <0.025                          | < 0.025         | <0.025                     | 0.2       | 10        | 20        | 80        |
| Zn, Zinc                           | 0.095                           | < 0.025         | <0.025                     | 5.0       | 250       | 500       | 2000      |
| Inorganic Anions                   | mg/€                            | mg/e            | mg/€                       |           |           |           |           |
| Total Dissolved Solids*            | <10                             | 30              | <10                        | 1000      | 12 500    | 25 000    | 100 000   |
| Chloride as Cl                     | <2                              | 2               | <2                         | 300       | 15 000    | 30 000    | 120 000   |
| Sulphate as SO4                    | 2                               | 6               | 3                          | 250       | 12 500    | 25 000    | 100 000   |
| Nitrate as N                       | 0.4                             | 0.5             | 0.1                        | 11        | 550       | 1100      | 4400      |
| Fluoride as F                      | <0.2                            | 0.4             | <0.2                       | 1.5       | 75        | 150       | 600       |
| pH                                 | 6.8                             | 7.3             | 6.8                        |           |           |           |           |
| Paste pH                           | 7.8                             | 8.3             | 7.6                        | 1         |           |           |           |
| Moisture %                         |                                 | 18              |                            | 1         |           |           |           |
| % Solids                           |                                 | 65              |                            | 1         |           |           |           |
| X-ray Diffraction [s]              | See attached<br>Report<br>66275 |                 |                            |           |           |           |           |
| [e]-eubcontracted                  |                                 |                 |                            | -         |           |           |           |

E. Botha Geochemistry Project Manager

- Please note: 1. The samples were used as received.
   2. A moisture content were determined for wet or moist samples.
   3. In cases where the sample were a slumy, a solid to liquid ratio were done (reported). Moisture content were determined after filtration
   4. The results are reported as received. The moisture content were not taken into account.

## WATERLAB (PTY) LTD



23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020 Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za

### **CERTIFICATE OF ANALYSES**

Digestion AS 4439.3

| Date received:  | 2017/04/11                 | Report number: 66275A | Date completed: | 2017/05/19        |
|-----------------|----------------------------|-----------------------|-----------------|-------------------|
| Project number: | 132                        |                       | Order number:   | PR17-05873        |
| Client name:    | Jones & Wagener            |                       | Contact person: | Marius van Zyl    |
| Address:        | PO Box 1434, Rivonia, 2128 |                       | Email:          | vanzyl@jaws.co.za |
| Telephone:      | 0115190200                 |                       | Cell:           | 082 880 1250      |

| Analysias                           |         |        |        |        |                         |        |            |            |            |
|-------------------------------------|---------|--------|--------|--------|-------------------------|--------|------------|------------|------------|
| Analyses                            | JIG ROM |        | JIG S  | limes  | Plant Discard Materials |        |            |            |            |
| Sample Number                       | 26      | 24     | 2625   |        | 2626                    |        |            |            |            |
| Digestion                           | HNO     | 3 : HF | HNO    | 3 : HF | HNO                     | 3 : HF |            |            |            |
| Dry Mass Used (g)                   | 0.      | 25     | 0.     | 25     | 0.:                     | 25     |            |            |            |
| Volume Used (mℓ)                    | 1(      | 00     | 1(     | 00     | 1(                      | 00     |            |            |            |
| Units                               | mg/ℓ    | mg/kg  | mg/ℓ   | mg/kg  | mg/ℓ                    | mg/kg  | TCT0 mg/kg | TCT1 mg/kg | TCT2 mg/kg |
| As, Arsenic                         | 0.029   | 12     | 0.052  | 21     | <0.010                  | <4.00  | 5.8        | 500        | 2000       |
| B, Boron                            | 0.088   | 35     | 0.424  | 170    | 0.307                   | 123    | 150        | 15000      | 6000       |
| Ba, Barium                          | 0.828   | 331    | 3.86   | 1544   | 1.47                    | 588    | 62.5       | 6250       | 25000      |
| Cd, Cadmium                         | 0.045   | 18     | 0.044  | 18     | 0.041                   | 16     | 7.5        | 260        | 1040       |
| Co, Cobalt                          | <0.025  | <10    | <0.025 | <10    | <0.025                  | <10    | 50         | 5000       | 20000      |
| Cr <sub>Total,</sub> Chromium Total | 0.129   | 52     | 0.364  | 146    | 0.319                   | 128    | 46000      | 800000     | N/A        |
| Cu, Copper                          | <0.010  | <4.00  | 0.097  | 39     | <0.010                  | <4.00  | 16         | 19500      | 78000      |
| Fe, Iron                            | 363     | 145200 | 336    | 134400 | 264                     | 105600 |            |            |            |
| Hg, Mercury                         | <0.001  | <0.400 | <0.001 | <0.400 | <0.001                  | <0.400 | 0.93       | 160        | 640        |
| Mn, Manganese                       | 0.426   | 170    | 0.966  | 386    | 1.30                    | 520    | 1000       | 25000      | 100000     |
| Mo, Molybdenum                      | <0.025  | <10    | <0.025 | <10    | <0.025                  | <10    | 40         | 1000       | 4000       |
| Ni, Nickel                          | 0.045   | 18     | 0.093  | 37     | 0.076                   | 30     | 91         | 10600      | 42400      |
| Pb, Lead                            | 0.029   | 12     | 0.037  | 15     | 0.034                   | 14     | 20         | 1900       | 7600       |
| Sb, Antimony                        | 0.047   | 19     | 0.024  | 9.60   | <0.020                  | <8.00  | 10         | 75         | 300        |
| Se, Selenium                        | <0.010  | <4.00  | <0.010 | <4.00  | <0.010                  | <4.00  | 10         | 50         | 200        |
| V, Vanadium                         | <0.025  | <10    | 0.052  | 21     | 0.039                   | 16     | 150        | 2680       | 10720      |
| Zn, Zinc                            | 0.028   | 11     | 0.054  | 22     | 0.039                   | 16     | 240        | 160000     | 640000     |
| Inorganic Anions                    | mg/ℓ    | mg/kg  | mg/ℓ   | mg/kg  | mg/ℓ                    | mg/kg  |            |            |            |
| Cr(VI), Chromium (VI) Total [s]     |         | <5     |        | <5     |                         | <5     | 6.5        | 500        | 2000       |
| Total Fluoride [s] mg/kg            |         | 100    |        | 213    |                         | 127    | 100        | 10000      | 40000      |

[s] = subcontracted

UTD = Unable to determine

E. Botha

Geochemistry Project Manager



## WATERLAB (PTY) LTD 23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020

Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES EXTRACTIONS AS 4439.3

| Date received:<br>Project number:      | 2017/05/05<br>132                                           | Report number: | 66729a | Date completed:<br>Order number:   | 2017/05/30<br>PR17-05873                            |
|----------------------------------------|-------------------------------------------------------------|----------------|--------|------------------------------------|-----------------------------------------------------|
| Client name:<br>Address:<br>Telephone: | Jones & Wagener<br>PO Box 1434, Rivonia, 2128<br>0115190200 |                |        | Contact person:<br>Email:<br>Cell: | Marius van Zyl<br>vanzyl@jaws.co.za<br>082 880 1250 |

| Analyses                             | C Grade Tailings<br>(Kumba sample) |           |           |           |           |
|--------------------------------------|------------------------------------|-----------|-----------|-----------|-----------|
| Sample Number                        | 4134                               |           |           |           |           |
| TCLP / Borax / Distilled Water       | Distilled Water                    |           |           |           |           |
| Ratio*                               | 1:20                               |           |           |           |           |
| Units                                | mg/ℓ                               | LCT0 mg/l | LCT1 mg/l | LCT2 mg/l | LCT3 mg/l |
| As, Arsenic                          | <0.010                             | 0.01      | 0.5       | 1         | 4         |
| B, Boron                             | 0.163                              | 0.5       | 25        | 50        | 200       |
| Ba, Barium                           | 0.339                              | 0.7       | 35        | 70        | 280       |
| Cd, Cadmium                          | < 0.003                            | 0.003     | 0.15      | 0.3       | 1.2       |
| Co, Cobalt                           | <0.025                             | 0.5       | 25        | 50        | 200       |
| Cr <sub>Total</sub> , Chromium Total | <0.025                             | 0.1       | 5         | 10        | 40        |
| Cr(VI), Chromium (VI)                | <0.010                             | 0.05      | 2.5       | 5         | 20        |
| Cu, Copper                           | <0.010                             | 2.0       | 100       | 200       | 800       |
| Fe, Iron                             | 3.67                               |           |           |           |           |
| Hg, Mercury                          | <0.001                             | 0.006     | 0.3       | 0.6       | 2.4       |
| Mn, Manganese                        | 0.037                              | 0.5       | 25        | 50        | 200       |
| Mo, Molybdenum                       | <0.025                             | 0.07      | 3.5       | 7         | 28        |
| Ni, Nickel                           | <0.025                             | 0.07      | 3.5       | 7         | 28        |
| Pb, Lead                             | <0.010                             | 0.01      | 0.5       | 1         | 4         |
| Sb, Antimony                         | <0.020                             | 0.02      | 1.0       | 2         | 8         |
| Se, Selenium                         | <0.010                             | 0.01      | 0.5       | 1         | 4         |
| V, Vanadium                          | <0.025                             | 0.2       | 10        | 20        | 80        |
| Zn, Zinc                             | 0.068                              | 5.0       | 250       | 500       | 2000      |
| Inorganic Anions                     | mg/ℓ                               |           |           |           |           |
| Total Dissolved Solids*              | 72                                 | 1000      | 12 500    | 25 000    | 100 000   |
| Chloride as Cl                       | 4                                  | 300       | 15 000    | 30 000    | 120 000   |
| Sulphate as SO4                      | 8                                  | 250       | 12 500    | 25 000    | 100 000   |
| Nitrate as N                         | 0.5                                | 11        | 550       | 1100      | 4400      |
| Fluoride as F                        | 0.2                                | 1.5       | 75        | 150       | 600       |
| pH                                   | 7.2                                |           |           |           |           |
| Paste pH                             | 8.7                                |           |           |           |           |
| Moisture %                           | 39                                 |           |           |           |           |

E. Botha \_\_\_\_\_ Geochemistry Project Manager



## WATERLAB (PTY) LTD

23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020 Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za

### CERTIFICATE OF ANALYSES Digestion AS 4439.3

| Date received:<br>Project number:      | 2017/05/05<br>132                                          | Report number: | 66729a | Date completed:<br>Order number:   | 2017/05/30<br>PR17-05873                            |
|----------------------------------------|------------------------------------------------------------|----------------|--------|------------------------------------|-----------------------------------------------------|
| Client name:<br>Address:<br>Telephone: | Jones & Wagener<br>PO Box 1434, Rivonia, 212<br>0115190200 | 28             |        | Contact person:<br>Email:<br>Cell: | Marius van Zyl<br>vanzyl@jaws.co.za<br>082 880 1250 |

| Analyses                            |                                 |        |            |            |            |
|-------------------------------------|---------------------------------|--------|------------|------------|------------|
| Allalyses                           | C Grade Tailings (Kumba sample) |        |            |            |            |
| Sample Number                       | 4134                            |        |            |            |            |
| Digestion                           | HNO3 : HF                       |        |            |            |            |
| Dry Mass Used (g)                   | 0.25                            |        | TCT0 mg/kg | TCT1 mg/kg | TCT2 mg/kg |
| Volume Used (mℓ)                    | 100                             |        |            |            |            |
| Units                               | mg/ℓ                            | mg/kg  |            |            |            |
| As, Arsenic                         | 0.034                           | 14     | 5.8        | 500        | 2000       |
| B, Boron                            | 0.347                           | 139    | 150        | 15000      | 6000       |
| Ba, Barium                          | 3.10                            | 1240   | 62.5       | 6250       | 25000      |
| Cd, Cadmium                         | <0.003                          | <1.20  | 7.5        | 260        | 1040       |
| Co, Cobalt                          | 0.036                           | 14     | 50         | 5000       | 20000      |
| Cr <sub>Total,</sub> Chromium Total | 0.230                           | 92     | 46000      | 800000     | N/A        |
| Cu, Copper                          | <0.010                          | <4.00  | 16         | 19500      | 78000      |
| Fe, Iron                            | 313                             | 125200 |            |            |            |
| Hg, Mercury                         | <0.001                          | <0.400 | 0.93       | 160        | 640        |
| Mn, Manganese                       | 2.53                            | 1012   | 1000       | 25000      | 100000     |
| Mo, Molybdenum                      | <0.025                          | <10    | 40         | 1000       | 4000       |
| Ni, Nickel                          | 0.101                           | 40     | 91         | 10600      | 42400      |
| Pb, Lead                            | 0.014                           | 5.60   | 20         | 1900       | 7600       |
| Sb, Antimony                        | 0.022                           | 8.80   | 10         | 75         | 300        |
| Se, Selenium                        | <0.010                          | <4.00  | 10         | 50         | 200        |
| V, Vanadium                         | 0.034                           | 14     | 150        | 2680       | 10720      |
| Zn, Zinc                            | 0.026                           | 10     | 240        | 160000     | 640000     |
| Inorganic Anions                    | mg/ℓ                            | mg/kg  |            |            |            |
| Cr(VI), Chromium (VI) Total [s]     |                                 | <5     | 6.5        | 500        | 2000       |
| Total Fluoride [s] mg/kg            |                                 | 658    | 100        | 10000      | 40000      |
| Total Cyanide as CN mg/kg           |                                 | <0.01  | 14         | 10500      | 42000      |

[s] = subcontracted

UTD = Unable to determine

#### <u>E. Botha</u>

Geochemistry Project Manager



**WATERLAB** (Pty) Ltd Reg. No.: 1983/009165/07 V.A.T. No.: 4130107891

23B De Havilland Crescent

Persequor Techno Park

Meiring Naudé Drive

Pretoria

P.O. Box 283, Persequor Park, 0020 Tel: +2712 - 349 - 1066 Fax: +2786 - 654 - 2570 e-mail: admin@waterlab.co.za



# AMENDED CERTIFICATE OF ANALYSES

| Date received: 2017-04-24                                                                                                                                                                        |                                 |                          | Date completed: 2017-05-22                      |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------|-------------------------------------------------|--|--|--|
| Project number: 132                                                                                                                                                                              | Report number:                  | 66539-A                  | Order number:                                   |  |  |  |
| Client name: Jones & Wagener Engineering & Environmental Consultant: Contact person: Mr. M. van Zyl<br>Address: 59 Bevan Road, PO BOX 1434, Rivonia, Johannesburg 2128 e-mail: vanzyl@jaws.co.za |                                 |                          |                                                 |  |  |  |
| Telephone: 0115190200                                                                                                                                                                            | Facsimile:                      | -                        | Mobile:                                         |  |  |  |
| Analyses in mg/ℓ<br>(Unless specified otherwise)                                                                                                                                                 |                                 | Method<br>Identification | Sample Identification: G227 Kumba<br>JIG Slimes |  |  |  |
| Sample Number Date\Time Sampled                                                                                                                                                                  | Sample Number Date\Time Sampled |                          | 003435<br>N/A                                   |  |  |  |
| pH - Value @ 25 °C                                                                                                                                                                               | N                               | WLAB065                  | 8.1                                             |  |  |  |
| Total Dissolved Solids @ 180°C                                                                                                                                                                   | N                               | WLAB003                  | 854                                             |  |  |  |
| Chloride as Cl                                                                                                                                                                                   | A                               | WLAB046                  | 69                                              |  |  |  |
| Sulphate as SO4                                                                                                                                                                                  | A                               | WLAB046                  | 187                                             |  |  |  |
| Fluoride as F                                                                                                                                                                                    | A                               | WLAB014                  | 0.6                                             |  |  |  |
| Nitrate as N                                                                                                                                                                                     | A                               | WLAB046                  | 49                                              |  |  |  |
| Antimony as Sb (Dissolved)                                                                                                                                                                       | N                               | WLAB015                  | <0.020                                          |  |  |  |
| Arsenic as As (Dissolved)                                                                                                                                                                        | N                               | WLAB015                  | <0.010                                          |  |  |  |
| Barium as Ba (Dissolved)                                                                                                                                                                         | N                               | WLAB015                  | 0.039                                           |  |  |  |
| Boron as B (Dissolved)                                                                                                                                                                           | N                               | WLAB015                  | 0.308                                           |  |  |  |
| Cadmium as Cd (Dissolved)                                                                                                                                                                        | A                               | WLAB015                  | <0.003                                          |  |  |  |
| Hexavalent Chromium as Cr                                                                                                                                                                        | N                               | WLAB032                  | <0.010                                          |  |  |  |
| Total Chromium as Cr (Dissolved)                                                                                                                                                                 | A                               | WLAB015                  | <0.025                                          |  |  |  |
| Cobait as Co (Dissolved)                                                                                                                                                                         | A                               | WLAB015                  | <0.025                                          |  |  |  |
| Copper as Cu (Dissolved)                                                                                                                                                                         | A                               | WLAB015                  | <0.010                                          |  |  |  |
| Iron as Fe (Dissolved)                                                                                                                                                                           | A                               | WLAB015                  | <0.025                                          |  |  |  |
| Lead as Pb (Dissolved)                                                                                                                                                                           | A                               | WLAB015                  | <0.010                                          |  |  |  |
| Manganese as Mn (Dissolved)                                                                                                                                                                      | A                               | WLAB015                  | 0.053                                           |  |  |  |
| Mercury as Hg (Dissolved)                                                                                                                                                                        | N                               | WLAB050                  | <0.001                                          |  |  |  |



E. Nkabinde - Technical Signatory

Molybdenum as Mo (Dissolved)

Nickel as Ni (Dissolved)

Selenium as Se (Dissolved)

Vanadium as V (Dissolved)

Zinc as Zn (Dissolved)

This Certificate, 66539-A, replaces the previous Certificate of Analysis 66539

#### A = Accredited N = Not Accredited S = Subcontracted

Tests marked "Not SANAS Accredited" in this report are not included in the SANAS Schedule of Accreditation for this Laboratory.

Results marked "Subcontracted Test" in this report are not included in the SANAS Schedule of accreditation for this Laboratory.

The information contained in this report is relevant only to the sample/samples supplied to **WATERLAB (Pty) Ltd**. Details of sampling conducted by Waterlab (PTY) Ltd, according to WLAB/Sampling Plan and Procedures/SOP, are available on request.

Ν

А

Ν

Ν

Α

WLAB015

WLAB015

WLAB015

WLAB015

WLAB015

<0.025

< 0.025

<0.010

<0.025

< 0.025



**WATERLAB** (Pty) Ltd Reg. No.: 1983/009165/07 V.A.T. No.: 4130107891

23B De Havilland Crescent

Persequor Techno Park

Meiring Naudé Drive

Pretoria

P.O. Box 283, Persequor Park, 0020 Tel: +2712 - 349 - 1066 Fax: +2786 - 654 - 2570 e-mail: admin@waterlab.co.za



# AMENDED CERTIFICATE OF ANALYSES

| Date received: 2017-05-05                                                                           |                   |          | Date completed: 2017-05-22   |  |  |  |
|-----------------------------------------------------------------------------------------------------|-------------------|----------|------------------------------|--|--|--|
| Date received. 2017-00-00                                                                           |                   | 00700 4  |                              |  |  |  |
| Project number: 132 Re                                                                              | port number:      | 66730-A  | Order humber:                |  |  |  |
| Client name: Jones & Wagener Engineering & Environmental Consultant։ Contact person: Mr. M. van Zyl |                   |          |                              |  |  |  |
| Address: 59 Bevan Road, PO BOX 1434, Rivonia, Johannesburg 2128 e-mail: vanzyl@jaws.co.za           |                   |          |                              |  |  |  |
| Telephone: 0115190200 Fa                                                                            | acsimile:         |          | Mobile:                      |  |  |  |
| Analyses in mg/ℓ<br>(Unless specified otherwise)                                                    |                   |          | Sample Identification: Kumba |  |  |  |
|                                                                                                     |                   | Method   | Tailings Sample              |  |  |  |
| Sample Number                                                                                       | Sample Number     |          | 004135                       |  |  |  |
| Date\Time Sampled                                                                                   | Date\Time Sampled |          | N/A                          |  |  |  |
|                                                                                                     | N                 | WI AB065 | 79                           |  |  |  |
| pri - Value @ 25 °C                                                                                 | N                 | WLAB003  | 624                          |  |  |  |
|                                                                                                     | A                 | WLAB046  | 65                           |  |  |  |
|                                                                                                     | A                 | WLAB046  | 205                          |  |  |  |
|                                                                                                     | A                 | WLAB014  | 11                           |  |  |  |
| Nifrata as N                                                                                        | A                 | WLAB046  | 35                           |  |  |  |
| Antimony as Sh (Dissolved)                                                                          | N                 | WLAB015  | <0.020                       |  |  |  |
| Arcanic as As (Dissolved)                                                                           | N                 | WLAB015  | <0.010                       |  |  |  |
| Barlum as Ba (Dissolved)                                                                            | N                 | WLAB015  | 0.059                        |  |  |  |
| Boron as B (Dissolved)                                                                              | N                 | WLAB015  | 0.201                        |  |  |  |
| Cadmium as Cd (Dissolved)                                                                           | A                 | WLAB015  | <0.003                       |  |  |  |
| Hexavalent Chromium as Cr                                                                           | N                 | WLAB032  | <0.010                       |  |  |  |
| Total Chromium as Cr (Dissolved)                                                                    | A                 | WLAB015  | <0.025                       |  |  |  |
| Cobalt as Co (Dissolved)                                                                            | A                 | WLAB015  | <0.025                       |  |  |  |
| Copper as Cu (Dissolved)                                                                            | A                 | WLAB015  | <0.010                       |  |  |  |
| Iron as Fe (Dissolved)                                                                              | A                 | WLAB015  | 0.029                        |  |  |  |
| Lead as Pb (Dissolved)                                                                              | A                 | WLAB015  | <0.010                       |  |  |  |
| Manganese as Mn (Dissolved)                                                                         | A                 | WLAB015  | 0.026                        |  |  |  |
| Mercury as Hg (Dissolved)                                                                           | N                 | WLAB050  | 0.003                        |  |  |  |
| Molybdenum as Mo (Dissolved)                                                                        | N                 | WLAB015  | 0.044                        |  |  |  |
| Nickel as Ni (Dissolved)                                                                            | A                 | WLAB015  | <0.025                       |  |  |  |
| Selenium as Se (Dissolved)                                                                          | N                 | WLAB015  | <0.010                       |  |  |  |
| Vanadium as V (Dissolved)                                                                           | N                 | WLAB015  | <0.025                       |  |  |  |
| Zinc as Zn (Dissolved)                                                                              | A                 | WLAB015  | <0.025                       |  |  |  |

-**1** 

E. Nkabinde - Technical Signatory

This Certificate, 66730-A, replaces the previous Certificate of Analysis 66730

#### A = Accredited N = Not Accredited S = Subcontracted

Tests marked "Not SANAS Accredited" in this report are not included in the SANAS Schedule of Accreditation for this Laboratory.

Results marked "Subcontracted Test" in this report are not included in the SANAS Schedule of accreditation for this Laboratory.

The information contained in this report is relevant only to the sample/samples supplied to **WATERLAB (Pty) Ltd**. Details of sampling conducted by Waterlab (PTY) Ltd, according to WLAB/Sampling Plan and Procedures/SOP, are available on request.