Hydrogeological & Hydrological Impact Assessment for Annesley Salt Mine

Hydrogeological & Hydrological Impact Assessment Report

Report Prepared for

Annesley Salt (Pty) Ltd

Report Number 528347

Report Prepared by

June 2018

Annesley Salt (Pty) Ltd

Private Bag X6009 UPINGTON 8800

SRK Consulting (South Africa) Pty Ltd

The Administrative Building Albion Spring 183 Main Rd Rondebosch 7700 Cape Town South Africa

e-mail: ddupreez@srk.co.za website: <u>www.srk.co.za</u>

Tel: +27 (0) 21 659 3060 Fax: +27 (0) 86 530 7003

SRK Project Number 528347

June 2018

Compiled by:

Daniell du Preez Engineering Geologist

Email: ddupreez@srk.co.za

Authors:

Daniell du Preez, Des Visser

Peer Reviewed by:

Bruce Engelsman Pr Eng Pr CPM Partner

Statement of SRK Independence

Neither SRK nor any of the authors of this Report have any material present or contingent interest in the outcome of this Report, nor do they have any pecuniary or other interest that could be reasonably regarded as being capable of affecting their independence or that of SRK.

SRK has no beneficial interest in the outcome of the assessment, which is capable of affecting its independence.

Disclaimer

The opinions expressed in this report have been based on the information supplied to SRK by Annesley Salt (Pty) Ltd (Annesley Salt) and obtained from various sources referenced in this report. SRK has exercised all due care in reviewing the supplied information, but conclusions from the review are reliant on the accuracy and completeness of the supplied data. SRK does not accept responsibility for any errors or omissions in the supplied information and does not accept any consequential liability arising from commercial decisions or actions resulting from them. Opinions presented in this report apply to the site conditions and features, as they existed at the time of SRK's investigations, and those reasonably foreseeable. These opinions do not necessarily apply to conditions and features that may arise after the date of this Report, about which SRK had no prior knowledge nor had the opportunity to evaluate.

Table of Contents

	Glos	sary	vi
	Acro	nyms and Abbreviations	vii
1	Intro	oduction	1
	1.1	Appointment	1
	1.2	Background	1
	1.3	Scope of Work	3
	1.4	Water uses	3
2	Hyd	Irogeology	5
	2.1	Desk study	5
	2.2	Existing boreholes information	9
	2.3	Borehole pumping test results	9
	2.4	Groundwater quality	15
3	Hyd	Irology	.17
	3.1	Project information pertinent to hydrology	17
	3.2	Climate	17
		3.2.1 Rainfall	17
		3.2.2 Evaporation	18
	3.3	Nearby water bodies, floodlines and riparian habitat	18
	3.4	Stream and salt pan morphology	19
	3.5	Catchments, surface flow and sediment regime	19
	3.6	Surface water quality	20
4	Imp	act Assessment	.24
	4.1	Hydrogeology	24
	4.2	Hydrology	25
	4.3	Cumulative impacts	26
5	Wat	ter Balance	.30
6	Sto	rmwater Management Plan	.30
7	Con	nclusions	.31
	7.1	Hydrogeology	31
	7.2	Hydrology	
8	Rec	commendations	
-	8.1	Hydrogeology	
	8.2	Hydrology	
9		erences	
-			

Appendices

Appendix A	Water Use Registrations for D42D
Appendix B	Pump Test Data Sheets and Graphs
Appendix C	Water Quality Analysis Certificates
Appendix D	Impact Severity Rating Methodology

List of Tables

Table 1-1:	Estimated cyclical and annual groundwater demand of the proposed salt mine1
Table 2-1:	Groundwater storage and resource potential of Quaternary catchment D42D6
Table 2-2:	Summary of available information for the Annesley Salt boreholes9
Table 2-3:	Summary of the NGA borehole information within a 10 km radius of Annesley Salt10
Table 2-4:	Summary of pumping test results12
Table 2-5:	Recommended management options for borehole Bloupan-HN113
Table 2-6:	Recommended management options for borehole Bloupan-HN214
Table 2-7:	Recommended management options for borehole Bloupan-HN314
Table 2-7:	Summary of chemical analysis for the Annesley Salt boreholes16
Table 3-1:	Rainfall stations in the vicinity of Annesley Farm 33818
Table 3-2:	Design rainfall values for Annesley Farm 33818
Table 4-1:	Possible impacts of the proposed development on groundwater without mitigation measures 27
Table 4-2:	Possible impacts of the proposed development on groundwater with mitigation measures27
Table 4-3:	Possible impacts of the proposed development on surface water without mitigation measures
Table 4-4:	Possible impacts of the proposed development on surface water with mitigation measures28
Table 4-5:	Possible cumulative impacts of the proposed development on groundwater with mitigation measures
Table 4-6:	Possible cumulative impacts of the proposed development on surface water with mitigation measures
Table 5-1:	Water balance for the proposed Annesley Salt project

List of Figures

Figure 1-1:	Locality map4
Figure 2-1:	Geology7
Figure 2-2:	Hydrogeology8
Figure 2-3:	Google Earth image showing borehole positions within a 10 km radius of Annesley Salt11
Figure 3-1:	Average rainfall per month at the nearest rainfall station (Vrouenspan)
Figure 3-2:	Catchment21
Figure 3-3:	Slopes
Figure 3-4:	Google Earth image showing the layout of the proposed Annesley Salt mine at Bloupan23

List of Photos

Photo 2-1:	Dwyka rock terraces occurring along the edges of Bloupan with calcrete along the centre of the pan5
Photo 2-2:	Minor vegetation cover on the sand dunes during the dry seasons
Photo 3-1:	The salt bed (foreground) and banks (background) of the salt pan19
Photo 3-2:	Old evaporation pond being filled during a pumping test and in the background, more highly vegetated dunes are observed at the site

Glossary							
Abstraction	The act of removing groundwater from an aquifer by means of pumping from boreholes or wells.						
Aquifer	A formation, group of formations, or part of a formation that contains sufficient saturated permeable material to store and transmit water; and to yield economical quantities of water to boreholes or springs. An aquifer is the storage medium from which groundwater is abstracted.						
Brine	Brine is water with relatively high concentration of salt (usually sodium chloride) normally >100 000 mg/l.						
Blow yield	The volume of water per unit of time blown from the borehole during drilling. Blow yield gives an indication of the rate at which groundwater can be abstracted from a borehole.						
Electrical conductivity (EC)	Electrical conductivity is a measure of how well a material accommodates the transport of electric charge. The more salts dissolved in the water, the higher the EC value. It is used to estimate the amount of total dissolved salts, or the total amount of dissolved ions in the water.						
Formation	A body of rock identified by lithic characteristics and stratigraphic position. Different formations have different geohydrological properties.						
Fractured-rock Aquifer	Aquifers where groundwater occurs within fractures and fissures in hard-rock formations.						
Groundwater	Water found in the subsurface in the saturated zone below the water table. Groundwater is a source of water and is an integral part of the hydrological system.						
Groundwater Recharge	Refers to the portion of rainfall that actually infiltrates the soil, percolates under gravity through the unsaturated zone (also called the Vadose Zone) down to the saturated zone below the water table (also called the Phreatic Zone).						
Groundwater Resource	All groundwater available for beneficial use, including by man, aquatic ecosystems and the greater environment.						
Environmental Impact Assessment	A process of evaluating the environmental and socio-economic consequences of a proposed course of action or project.						
Ephemeral	A water body that does not flow or contain water year-round, in response to seasonal rainfall and run-off.						
Fauna	The collective animals of a particular region, habitat or geological period.						
Feasibility study	The determination of the technical and financial viability of a proposed project.						
Fossil	Rare objects that are preserved due to unusual circumstances.						
Flora	The collective plants of a particular region, habitat or geological period.						
Geohydrology	The study of the character, source and mode of occurrence of groundwater						
Hydrogeology	In South Africa the term geohydrology and hydrogeology are used interchangeably. In theory hydrogeology is the study of geology from the perspective of its role and influence in hydrology, while geohydrology is the study of hydrology from the perspective of the influence on geology.						
Hydrology	(The study of) surface water flow.						
Intergranular Aquifer	Aquifers where groundwater is contained in original intergranular interstices of sedimentary and weathered formations.						

рН	pH is the negative logarithm of the hydrogen ion concentration in solution. pH is the measure of the acidity or alkalinity of a solution.
Saline Water	Water that is generally considered unsuitable for human consumption or for irrigation because of its high content of dissolved solids.
Sustainable yield/ Safe yield	Safe yield is defined as the maximum rate of withdrawal that can be sustained by an aquifer without causing an unacceptable decline in the hydraulic head or deterioration in water quality in the aquifer.
Perennial river	A river that flows year-round
Water table	The upper surface of the saturated zone of an unconfined aquifer at which pore pressure is equal to that of the atmosphere. It marks the top of the groundwater body.
Transmissivity	The rate at which groundwater flows horizontally through an aquifer.

Acronyms and Abbreviations

DWAF	Department of Water Affairs and Forestry (now DWS)
DWS:	Department of Water and Sanitation
EC:	electrical conductivity
h:	hour
L/s:	litres per second
m/s	Metres per second
m³/a:	cubic metres per annum
m³/d:	cubic metres per day
m³/h:	cubic metres per hour
m³/m:	cubic metres per month
mbc:	metres below collar
mbgl:	metres below ground level
mm:	millimetres
mS/m:	milli-Siemens per metre

1 Introduction

1.1 Appointment

SRK Consulting (South Africa) (Pty) Ltd (SRK) was appointed by Annesley Salt (Pty) Ltd to pump test three water supply boreholes, and conduct hydrogeological and hydrological impact assessments in support of the Water Use License Application (WULA) for the proposed mining of salt on a portion of the Remainder of the Farm Annesley no. 338 in the Kalahari West, Northern Cape.

1.2 Background

The proposed salt mine is situated on a portion of the farm known as the Remainder of the Farm Annesley no. 338, which is located approximately 120 km north of Upington, and approximately 35 km southwest of Noenieput, in the Northern Cape Province.

The site is located in Bloupan at latitude -27.588867° and longitude 20.489743°, and extends over an area of 100 ha. The site locality is shown in Figure 1-1.

According to the information provided by Annesley Salt, highly saline groundwater (brine) will be abstracted from three existing boreholes at the salt pan and pumped to ten 100 m x 60 m evaporation ponds (0.6 ha each), from where the salt will be cyclically harvested six times a year (see breakdown of harvest cycles in Table 1-1). The proposed salt mine requires $c.17550 \text{ m}^3$ of brine per harvest cycle, which equates to 105 300 m³ of total brine abstracted over a period of nine months per annum (i.e. over c.285 days per annum). This equates to an average abstraction rate of 370 m³/d, i.e. $c.15.42 \text{ m}^3/h$, or c.4.28 L/s. Salt is not harvested during the cold winter months from 31 May to 20 August, as the evaporation rate is too low for good quality salt crystals to form; hence, no water is abstracted from the boreholes during this period.

The proposed abstraction will be fractionally divided between the three boreholes depending on the yield, i.e. abstraction of $c.14 \text{ m}^3$ /h from boreholes HN1 and HN2, and 4.5 m³/h from borehole HN3.

Harvest Cycle	Period	Duration (Weeks)	Description	Abstraction (Litres)
1	21 Aug to 2 Oct	6	Pump 14 000 L/h x 24 h/day for 2 days (21 & 22 Aug) = 672 000 L x 2 boreholes (HN1 and HN2) Pump 4 500 L/h x 24 h/day for 2 days (21 & 22 Aug) = 216 000 L x 1 boreholes (HN3) Pump 14 000 L/h x 12 h/day for 41 days (from 23 Aug to 2 Oct) = 6 888 000 L x 2 boreholes (HN1 and HN2) Pump 4 500 L/h x 12 h/day for 41 days (from 23 Aug to 2 Oct) = 2 214 000L x 1 boreholes (HN3)	1 344 000 216 000 13 776 000 2 214 000
			Rest boreholes for 5 days from 3 to 7 Oct while harvesting the salt Total abstraction for harvest cycle 1	0 17 550 000
			Pump 14 000 L/h x 24 h/day for 2 days (8 & 9 Oct) = 672 000 L x 2 boreholes (HN1 and HN2) Pump 4 500 L/h x 24 h/day for 2 days (8 & 9 Oct) = 216 000 L x 1	1 344 000
2	8 Oct to 19 Nov	6	boreholes (HN3) Pump 14 000 L/h x 12 h/day for 41 days (from 10 Oct to 19 Nov) = 6888000 L x 2 boreholes (HN1 and HN2)	216 000 13 776 000
		19 Nov	Pump 4 500 L/h x 12 h/day for 41 days (from 10 Oct to 19 Nov) = 2 214 000 L x 1 boreholes (HN3) Rest boreholes for 5 days from 20 to 24 Nov while harvesting the	2 214 000
			salt	0
			Total abstraction for harvest cycle 2	17 550 000

Table 1-1: Estimated cyclical and annual groundwater demand of the proposed salt mine

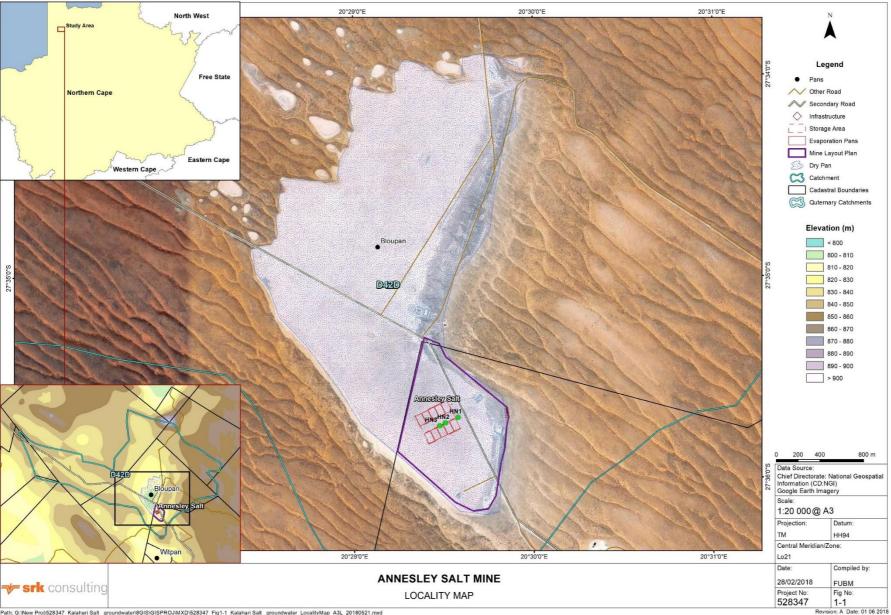
Harvest Cycle	Period	Duration (Weeks)		Abstraction (Litres)	
-			Pump 14 000 L/h x 24 h/day for 2 days (25 & 26 Nov) = 672 000 L x 2 boreholes (HN1 and HN2)	1 344 000	
	25 Nov to		Pump 4 500 L/h x 24 h/day for 2 days (25 & 26 Nov) = 216 000 L x 1 boreholes (HN3)	216 000	
3		6	Pump 14 000 L/h x 12 h/day for 41 days (from 27 Nov to 6 Jan) = 6888000 L x 2 boreholes (HN1 and HN2)	13 776 000	
	6 Jan		Pump 4 500 L/h x 12 h/day for 41 days (from 27 Nov to 6 Jan) = 2 214 000 L x 1 boreholes (HN3)	2 214 000	
	Rest boreholes for 5 days from 7 to 11 Jan while harvesting the salt		0		
			Total abstraction for harvest cycle 3	17 550 000	
			Pump 14 000 L/h x 24 h/day for 2 days (12 & 13 Jan) = 672 000 L x 2 boreholes (HN1 and HN2)	1 344 000	
			Pump 4 500 L/h x 24 h/day for 2 days (12 & 13 Jan) = 216 000 L x 1 boreholes (HN3)	216 000	
4	12 Jan to 23 Feb	6	Pump 14 000 L/h x 12 h/day for 41 days (from 14 Jan to 23 Feb) = 6888000 L x 2 boreholes (HN1 and HN2)	13 776 000	
	10 23 190		Pump 4 500 L/h x 12 h/day for 41 days (from 14 Jan to 23 Feb) = 2 214 000 L x 1 boreholes (HN3)	2 214 000	
			Rest boreholes for 5 days from 24 to 28 Feb while harvesting the salt	(
			Total abstraction for harvest cycle 4	17 550 000	
			Pump 14 000 L/h x 24 h/day for 2 days (1 & 2 Mar) = 672 000 L x 2 boreholes (HN1 and HN2)	1 344 000	
			Pump 4 500 L/h x 24 h/day for 2 days (1 & 2 Mar) = 216 000 L x 1 boreholes (HN3)	216 000	
5	1 Mar to	6	Pump 14 000 L/h x 12 h/day for 41 days (from 3 Mar to 12 Apr) = 6888000 L x 2 boreholes (HN1 and HN2)	13 776 000	
-	12 Apr	-	Pump 4 500 L/h x 12 h/day for 41 days (from 3 Mar to 12 Apr) = 2 214 000 L x 1 boreholes (HN3)	2 214 000	
			Rest boreholes for 5 days from 13 to 17 Apr while harvesting the salt	C	
			Total abstraction for harvest cycle 5	17 550 000	
			Pump 14 000 L/h x 24 h/day for 2 days (18 & 19 Apr) = 672 000 L x 2 boreholes (HN1 and HN2)	1 344 000	
	18 Apr to 30 May		Pump 4 500 L/h x 24 h/day for 2 days (18 & 19 Apr) = 216 000 L x 1 boreholes (HN3)	216 000	
6			Pump 14 000 L/h x 12 h/day for 41 days (from 20 Apr to 30 May) = 6888000 L x 2 boreholes (HN1 and HN2)	13 776 000	
Ŭ			Pump 4 500 L/h x 12 h/day for 41 days (from 20 Apr to 30 May) = 2 214 000 L x 1 boreholes (HN3)	2 214 000	
			Rest boreholes for 5 days from 31 May to 4 June while harvesting the salt	C	
			Total abstraction for harvest cycle 6	17 550 000	
Estimated Total Abstraction per Year					
Estimated Total Abstraction per Year in m ³					

1.3 Scope of Work

As no detailed Scope of Work (SoW) was provided, SRK proposed the following SoW, which was accepted by the client:

Hydrogeology

- Collate available geohydrological information for the site;
- Assess the aquifer vulnerability and geohydrological impacts related to groundwater abstraction at the salt mine;
- Conduct step, 24-hour constant discharge (CDT) and recovery tests on three existing boreholes at the site earmarked for water supply; and
- Analyse the data and compile a basic hydrogeological impact report (this report).


<u>Hydrology</u>

- Collate and analyse available hydrological information for the site including catchment characteristics, rainfall and design rainfall data;
- Review information on proposed activities, relevant historical reports and photographs of the site;
- Delineate the salt pan's catchment, morphology etc.;
- Conduct a basic hydrological impact assessment;
- Propose mitigation measures;
- Analyse the data and compile a basic hydrological impact report (this report).

1.4 Water uses

The following legislative water use framework applies:

- Section 21(a) of the National Water Act: Taking water from a water resource. This is due the abstraction of hypersaline groundwater for salt mining.
- Section 21(b) of the National Water Act: Storing of water. This is due to the fact that water will be stored temporarily in the evaporation ponds.
- Section 21(c) of the National Water Act: Impeding or diverting the flow of water in a watercourse. This is due to the fact that the natural flow of water, in the unlikely event that a very large rainfall event occurs and fills the salt pan, might be impeded by the evaporation dams.
- Section 21(i) of the National Water Act: Altering the beds, banks and characteristics of a watercourse. The increase in salt due to evaporation might impact the water quality in the salt pan and thus its 'characteristics'. The structure of the evaporation dams will also alter the bed of the watercourse and vehicles accessing the site may alter the banks.
- Section 21(g) of the National Water Act: Disposing of waste in a manner that may detrimentally impacts on a water resource. The Evaporation ponds are not lined and hence the dams may change the concentration of salt in the groundwater. Similarly, during rainfall events the concentration of salt in the surface water may be different than it would otherwise have been.

Path: G:\New Proj\528347_Kalahari Salt_groundwater\8GIS\GISPROJ\MXD\528347_Fig1-1_Kalahari Salt_groundwater_LocalityMap_A3L_20180521.mxd

2 Hydrogeology

2.1 Desk study

Bedrock at the site consists of tillite and shale of the Dwyka Group, belonging to the Karoo Supergroup (Council for Geoscience, 1988). The rocks of the Dwyka Group are covered by calcrete (Photo 2-1) and dune sand (Photo 2-2) of the Gordonia Formation of the Kalahari Group (Figure 2-1).

Photo 2-1: Dwyka rock terraces occurring along the edges of Bloupan with calcrete along the centre of the pan.

Photo 2-2: Minor vegetation cover on the sand dunes during the dry seasons.

Groundwater is found in the weathered fractured-rock aquifers of the Dwyka Group tillite and shale (Dwyka Aquifer). According to the Department of Water and Sanitation's (DWS) 1:500 000 geohydrological map sheet 2718, Upington/Alexander Bay, the site's median borehole yield is classified as B3, where between 0.5 and 2.0 L/s can be expected (Figure 2-2).

The site is located within Quaternary catchment D42D. This catchment is listed under Zone A of the Groundwater Taking Zones in the Revision of General Authorisations (GA) in Terms of Section 39 of the National Water Act, 1998 (DWAF 2004 & 2012). For Zone A, no water may be taken under GA except as set out under Schedule 1¹ (DWS, 2016).

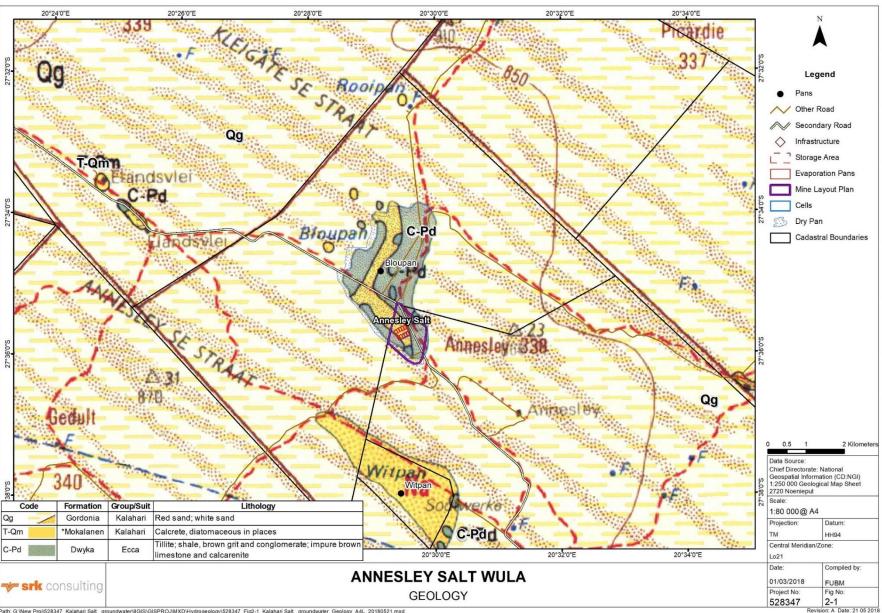
The groundwater storage and resource potential of Quaternary catchment D42D was derived from the DWS, national groundwater resource assessment phase 2 (GRA2) dataset (DWAF, 2005). As boreholes cannot harvest all the available recharge in an area, an exploitability factor (DWA IF, 2005) was used to calculate the volume of groundwater that can actually be abstracted from boreholes (i.e. the utilisable exploitation potential). Reported abstraction was subtracted from this calculated value to determine the utilisable groundwater exploitation potential of the catchment. These calculated values are summarised in Table 2-1.

¹ Not taking more than 10 cubic metres from groundwater on any given day.

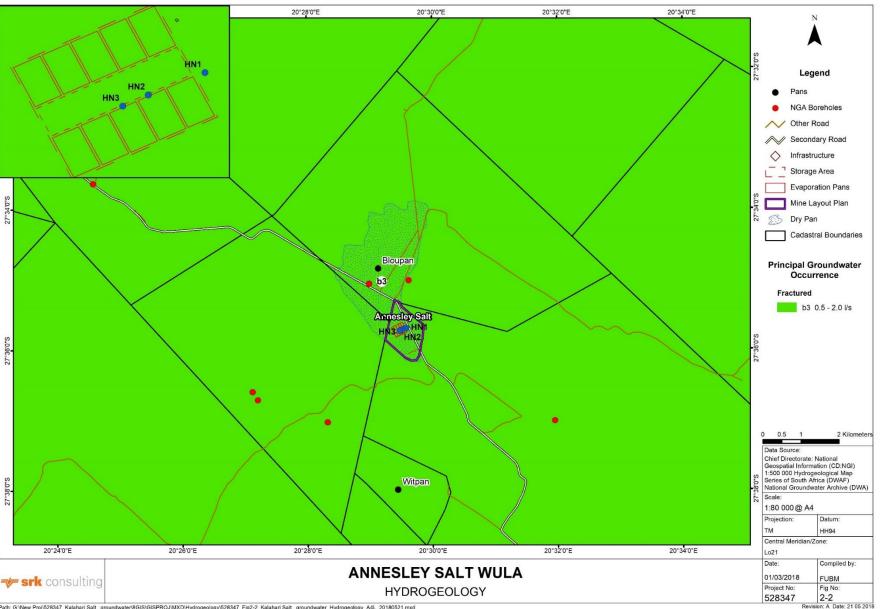
Drainage Region	Extent (km²)	Volume of Water stored in Aquifer (m ³)	5m Drawdown Storage Volume (m³)	Est. Abstraction (m³/a)	Mean Potential Recharge (m³/a)	Mean Groundwater Resource Potential (m³/a)	Mean Utilisable Groundwater Exploitation Potential (m ³ /a)
D42D	16 209	6 089 570 000	317 942 000	789 589	12 296 920	15 119 884	15 010 500

Table 2-1: Groundwater storage and resource potential of Quaternary catchment D42D

The GRA2 data indicates that Quaternary catchment D42D has an estimated mean potential recharge of approximately *c*.12.3 million cubic metres per annum (Mm^3/a) and an utilisable groundwater exploitation potential (UGEP) of *c*.15 Mm^3/a . The potential volume of water stored in the D42D aquifers is estimated at *c*.6 089.6 Mm^3 .


In comparison, the annual water demand of Annesley Salt proposed salt mine is 105 300 m³/a, which equates to *c*.0.7 % of UGEP and <0.002 % of aquifer storage. This demand will be obtained from three existing boreholes located in the salt mining area (Figure 2-3), with abstraction spreading over six harvest cycles (six weeks each) during the warmer months of the year, i.e. pumping for approximately nine months per annum, with an average abstraction of *c*.14 m³/h from NH1 and NH2, and *c*.4.5 m³/h from borehole NH3.

A total 258 859 m³/a of groundwater is registered on the DWS ²database by 14 water users in Quaternary catchment D42D, which equates to c.1.7 % of UGEP and c.0.004 % of aquifer storage (see Appendix A for information received from the DWS). Of this registered amount, 254 359 m³/a is registered for mining use, presumably for salt mining.


Should a WUL be granted to Annesley Salt for the proposed abstraction, the combined abstraction from the brine aquifer in Quaternary catchment D42D will amount to $c.364 \ 159 \ m^3/a$, which equates to 2.43 % of UGEP and $c.0.006 \ \%$ of aquifer storage.

Based on the available groundwater information, and the above comparisons, it can be concluded that there is more than adequate brine/groundwater available in the Quaternary catchment D42D aquifers to satisfy the water demand of the existing registered users and Annesley Salt's proposed new salt mine at Bloupan.

² 2016 Database

Path: G:\New Proj528347_Kalahari Salt_groundwater/BGIS\GISPROJMXD\Hydrogeology/528347_Fig2-1_Kalahari Salt_groundwater_Geology_A4L_20180521.mxd

2.2 Existing boreholes information

Information on existing boreholes for a 10 km radius around the site was downloaded from the DWS National Groundwater Archives (NGA). The information for these boreholes is summarised in Table 2-3 and their positions are shown in Figure 2-3. All seven NGA boreholes are listed as abandoned.

Annesley Salt is planning to use three existing boreholes in their mining area on the salt pan to abstract 105 300 m³/a of brine from the Dwyka Aquifer for the proposed new salt mine. See subsection 1.2 for details on the anticipated water demand. The details for these three boreholes are summarised in Table 2-2 and their positions shown in Figure 2-2 and Figure 2-3.

Borehole ID	Latitude	Longitude	Depth (m)	Casing	Collar Height (magl)	Rest Water Level (mbgl)	Notes
Bloupan-HN1	S27.595694°	E20.491222°	26.8	uPVC		1.90	Existing borehole
Bloupan-HN2	S27.595461°	E20.491748°	35.5	uPVC		1.88	Existing borehole
Bloupan-HN3	S27.595417°	E20.494722°	46.6	uPVC		2.13	Existing borehole

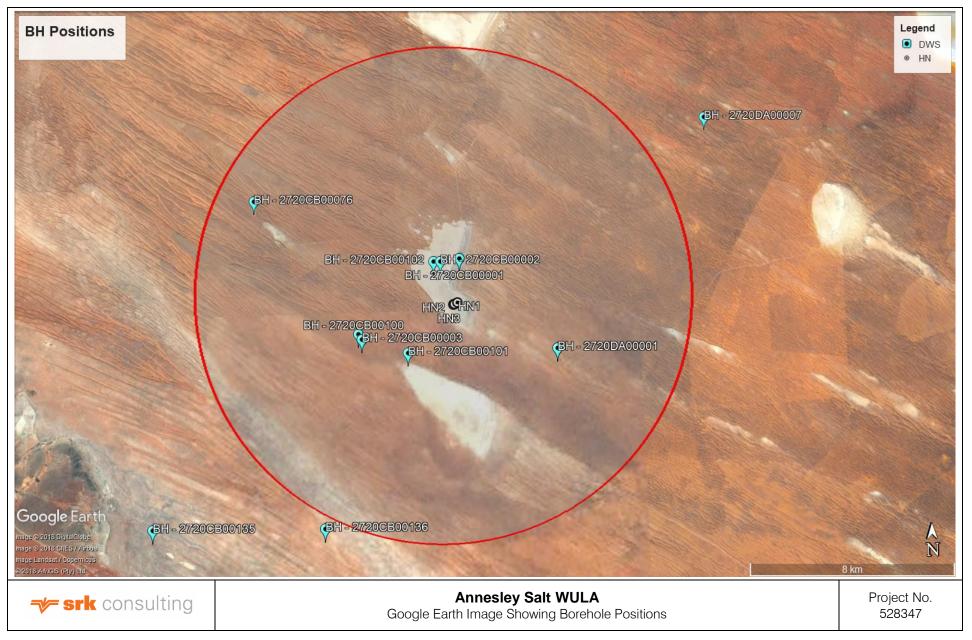
 Table 2-2:
 Summary of available information for the Annesley Salt boreholes

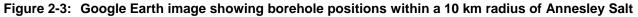
The water table below the mine site is shallow, ranging from 1.88 to 2.13 mbgl. Seasonal water level variation (particularly during high rainfall periods) at the site is unknown.

2.3 Borehole pumping test results

AB Pumps carried out test pumping of the three boreholes, Bloupan-HN1, -HN2 and -HN3, in March 2018. The positions of these boreholes is indicated in Figure 2-2.

The test pumping data sheets and water level graphs are included in Appendix B, whilst the borehole information and test results for each borehole is summarised in the subsections below and in Table 2-4.


The pumping tests included four by 1 hr step drawdown tests and 24 h constant discharge tests with subsequent recovery monitoring after each test. The purpose of the step-tests was to establish the efficiency of a single borehole, and to provide preliminary information on the yield of the borehole (both from a quantitative and qualitative perspective). The purpose of the constant discharge test was to determine the hydraulic properties of the aquifer adjacent to the tested borehole and to investigate, identify and characterise nearby hydraulic boundaries. These data, together with the recovery test results, were used to determine the optimal and safe yield and pumping schedule for the borehole.


Borehole Bloupan-HN1 is located at latitude S27.595694° and longitude E20.491222°. The borehole is 26 m deep, and the test pump was installed at 18.5 mbgl. The pre-pumping water level was 1.90 mbgl. The test data and associated hydrographs are included in Appendix B.

Geosite ID	Туре	Latitude	Longitude	Elevation (mamsl)	Farm	Depth	Water Level (mbgl)	Date measured	EC (mS/m)	рН	Status
2720BD00004	Borehole	-27.36424	20.90065	840	Goeboe Goeboe 251/59	-	-	-	-	-	Abandoned
2720BD00001	Borehole	-27.35396	20.89509	860	Goeboe Goeboe 251/59	108	-	-	-	-	Abandoned
2720BD00005	Borehole	-27.35368	20.92093	870	Goeboe Goegoe 251/59	-	-	-	-	-	Abandoned
2720BD00029	Borehole	-27.35313	20.90482	870	Goeboe Goeboe 251/59	132	-	-	-	-	Abandoned
2720BD00002	Borehole	-27.35174	20.90898	870	Goeboe Goeboe 251/59	132	-	-	-	-	Abandoned
2720BD00006	Borehole	-27.33091	20.77565	850	Vrysoutpan 251/58	162	-	-	-	-	Abandoned
2720BD00003	Borehole	-27.29618	20.92149	870	Goeboe Goeboe 251/59	177	44.5	01/01/1982	5410	7.6	Abandoned
- = No information	available										

Table 2-3: Summary of the NGA borehole information within a 10 km radius of Annesley Salt

Borehole Bloupan-HN2 is located at latitude S27.595461° and longitude E20.491748°. The borehole is 35.5 m deep, and the test pump was installed at 30.5 mbgl. The pre-pumping water level was 1.88 mbgl. The test data and associated hydrographs are included in Appendix B.

Borehole Bloupan-HN3 is located at latitude S27.595417° and longitude E20.494722°. The borehole is 46.6 m deep, and the test pump was installed at 42.5 mbgl. The pre-pumping water level was 2.13 mbgl. The test data and associated hydrographs are included in Appendix B.

The pumping test results for the three boreholes are summarised in Table 2-4. The influence of pumping on the water level of each borehole is graphically presented in Appendix B.

Description		Borehole ID	
	Bloupan-HN1	Bloupan-HN2	Bloupan-HN3
Pre-pumping rest water level	1.62 mbgl	1.41 mbgl	1.47 mbgl
Pump intake depth	17.80 mbgl	30.03 mbgl	41.84 mbgl
Available drawdown before pump suction	16.18 m	28.62 m	40.37 m
Step 1: Drawdown @ pumping rate	0.21 m @ 0.66 L/s	0.18 m @ 0.82 L/s	0.71 m @ 0.83 L/s
Step 2: Drawdown @ pumping rate	0.37 m @ 1.21 L/s	0.26 m @ 1.59 L/s	1.25 m @ 1.48 L/s
Step 3: Drawdown @ pumping rate	0.95 m @ 3.05 L/s	0.76 m @ 3.41 L/s	9.78 m @ 3.27 L/s
Step 4: Drawdown @ pumping rate	3.54 m @ 6.38 L/s	2.06 m @ 6.64 L/s	39.03 m @ 5.56 L/s
Step 5: Drawdown @ pumping rate	14.86 m @ 10.14 L/s	4.97 m @ 11.20 L/s	-
Pump suction occurring	5 min into Step 5	-	7 min into Step 4
Pumping rate during pump suction	9.67 L/s	-	3.48 L/s
Recovery deficit after pump switch-off	0.01 m after 110 min	0 m after 70 min	0 m after 70 min
CDT pumping rate and duration	6.17 L/s for 24 h	8.23 L/s for 24 h	2.76 L/s for 24 h
Maximum drawdown at end of CDT	3.94 m	3.63 m	7.21 m
Recovery deficit after pump switch-off	0 m after 24 h	0 m after 16 h	0 m after 3 h
% Recovery	100%	100%	100%
Step duration = 60 min each	·	·	·

Table 2-4: Summary of pumping test results

Both boreholes HN1 and HN2 have good yields, whilst borehole HN3 has a moderate yield in comparison. The yields of all three boreholes are, however, considered as good for this area. Recovery was rapid, with full recovery occurring within 3 to 24h of pump shutdown. This is indicative of a large, well developed fractured-rock aquifer.

To estimate optimum pumping rates, pumping schedules and aquifer parameters, the test pumping data were analysed by means of an Excel based software package developed by Van Tonder *et al* (2002). In the software package, various methods such as the Flow Characteristic method (FC-method), porous aquifer solutions (Theis and Cooper-Jacob methods), fractional pumping test analysis (Barkers Generalised Radial Flow Model), and the recovery method were used to estimate a risk-based sustainable yield for the borehole. In addition, aquifer parameters such as transmissivity (T) and the storage coefficient (S) were determined. In the FC-Analysis the following aquifer input parameters were used:

- Effective recharge of 0 mm per annum.
- Data were extrapolated for 30 years.

- In calculating the 'safe' yield of Bloupan-HN1, HN2, and HN3 the following was allowed for:
 - Abstraction of c.93 300 m³/a from both boreholes HN1 and HN2 at an average pumping rate of 3 L/s. The boreholes are c.130 m apart;
 - Abstraction of c.31 100 m³/a from HN3 which is c.50 m away from HN2 at an average pumping rate of 1 L/s.

Summaries of the results and recommended management options for the three boreholes are presented in Table 2-5, Table 2-6, and Table 2-7.

	Summary	Main				BH HN1			
Applicable	Method	Sustainable yield (l/s)	Std. Dev	Early 1	Г (m²/d)	Late T (m²/d)	S	AD used
K	Basic FC	2.66	1.41	2	16	41.	7	2.75E-03	15.0
	Advanced FC								
	FC inflection point								
×	Cooper-Jacob	4.06	2.63			108.	7	1.04E-03	15.0
v	FC Non-Linear	3.47	3.06			152	0	1.00E-03	15.0
V	Recovery	3.22							
~	Barker	3.92	3.00	K _f =	75		S _s =	1.00E-03	15.0
	Average Q_sust (I/s)	3.47	0.57	b =	1.32	Fractal dime	nsion n =	2.09	
	Amount of water allowed to be abs Amount of water allowed to be ab Borehole could satisfy the basic Is the water suitable for domesti	stracted per day human need of	7776 256 N	m ³ persons	5				
	Recommended pump depth be Tot	elow surface (m) al Casing length Blow yield (l/s)	Unknown						
	Depth	· · · ·	17 26.8						
	Management recomme Pumping Rate for 24 hr/day schedule Pumping Rate for 12 hr/day schedule	ndations 3.00 L/s	1.02	I					

Table 2-5: Recommended management options for borehole Bloupan-HN1

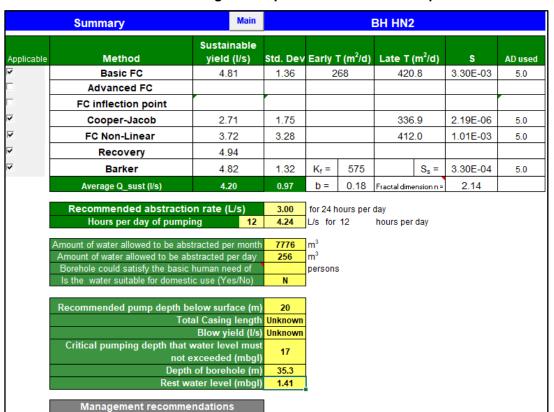


Table 2-6: Recommended management options for borehole Bloupan-HN2

Table 2-7:	Recommended mana	aement options fo	or borehole Bloupan-HN3
	nooconnonaca mana	gomonic optiono ic	

3.00 L/s

4.00 L/s

Pumping Rate for 24 hr/day schedule

Pumping Rate for 12 hr/day schedule

	Summary	Main							
Applicable	Method	Sustainable yield (l/s)	Std. Dev	Early 1	Г (m ² /d)	Late T	(m²/d)	s	AD used
~	Basic FC	0.72	0.31	2	21	20	5	1.65E-03	10.0
	Advanced FC								
	FC inflection point								
₹ (Cooper-Jacob	0.19	0.13			26	.1	1.44E-03	10.0
~	FC Non-Linear	0.57	0.50			104	.0	1.01E-03	10.0
~	Recovery	2.50							
v	Barker	0.88	0.46	K _f =	15		S _s =	2.00E-03	10.0
	Average Q_sust (I/s)	0.97	0.89	b =	0.83	Fractal dime		2.22	
	Amount of water allowed to be ab Borehole could satisfy the basic Is the water suitable for domesti Recommended pump depth be	human need of ic use (Yes/No)	85 N	m ³ persons	5				
		al Casing length							
		Blow yield (I/s)							
		water level must exceeded (mbgl) of borehole (m)	17						
		ater level (mbgl)							
[Management recomme	ndations							
	Pumping Rate for 24 hr/day schedule Pumping Rate for 12 hr/day schedule								

Based on the well test results, we recommend pumping the three boreholes as follows:

Bloupan-HN1

- 3 L/s (10.8 m³/hr) for 24 h/day pumping schedule (259 m³/day); or
- 4 L/s (14.4 m³/hr) for 12 h/day pumping schedule (173 m³/day).

Bloupan-HN2

- 3 L/s (10.8 m³/hr) for 24 h/day pumping schedule (259 m³/day); or
- 4 L/s (14.4 m³/hr) for 12 h/day pumping schedule (173 m³/day).

Bloupan-HN3

- 1 L/s (3.6 m³/hr) for 24 h/day pumping schedule (86 m³/day); or
- 1.4 L/s (5.0 m³/hr) for 12 h/day pumping schedule (60 m³/day).

2.4 Groundwater quality

Water samples were collected at the end of each pumping test and submitted to Talbot Laboratories after completion of all three of the pumping tests in April 2018. The analysis results are summarised in Table 2-8. The groundwater from all three boreholes indicates an EC of more than 31 000 mS/m. The TDS of the three boreholes exceeds 225 000 mg/L, which is more than 6 times higher than that for seawater. This hypersaline (brine) groundwater cannot be used for human or animal consumption, or for irrigation purposes. The only practical use is source water supply for evaporative salt mining. The analysis certificates are in Appendix C.

On the hydrogeological map of the region, the groundwater EC is indicated as >1 000 mS/m in the study area (DWAF, 2001), whilst an EC of 5 410 mS/m is reported in the NGA for borehole 2720BD00003 (see Table 2-3 and Figure 2-3). This highly saline groundwater also cannot be used for human or animal consumption, or for irrigation purposes.

Table 2-8:	Summary	y of chemical anal	ysis for the Annesle	y Salt boreholes
------------	---------	--------------------	----------------------	------------------

Determinand	Units		Results	
		Bloupan-HN1	Bloupan-HN2	Bloupan-HN3
Electrical Conductivity at 25°C	mS/m	31 240	31 840	32 400
Total Dissolved Solids at 180 °C	mg/L	226 888	230 326	243 280
pH at 25⁰C	pH Units	9	9	9.4
Ammonia as N	mg/L	<0.11	<0.11	0.21
Chloride as Cl	mg/L	118 639	123 950	123 047
Sulfate as SO4	mg/L	17 536	17 142	19 787
Fluoride as Fl	µg/L	98 000	106 000	82 000
Nitrate as N	mg/L	412	433	407
Nitrite as N	mg/L	0.58	0.6	1.2
Calcium as Ca	mg/L	0.57	<0.12	<0.12
Magnesium as Mg	mg/L	0.12	<0.07	<0.07
Potassium as K	mg/L	34	34	38
Sodium as Na	mg/L	113 100	137 759	134 330
Total Organic Carbon	mg/L	8.4#	6.7#	8.5#
Turbidity	NTU	1.5	0.9	0.9
Aluminium as Al	mg/L	<0.02	<0.02	<0.02
Antimony as Sb	mg/L	0.47	0.59	0.3
Arsenic as As	mg/L	0.36	0.41	0.34
Cadmium as Cd	mg/L	<0.02	<0.02	<0.02
Chromium as Cr	mg/L	<0.02	<0.02	<0.02
Cobalt as Co	mg/L	<0.02	<0.02	<0.02
Copper as Cu	mg/L	0.02	<0.02	<0.02
Iron as Fe	mg/L	<0.02	<0.02	<0.02
Lead as Pb	mg/L	<0.03	<0.03	<0.03
Manganese as Mn	mg/L	<0.02	<0.02	<0.02
Mercury as Hg	mg/L	<0.002	<0.002	<0.002
Nickel as Ni	mg/L	<0.02	<0.02	<0.02
Selenium as Se	mg/L	0.75	0.83	0.68
Uranium as U	mg/L	0.18	0.23	0.17
Vanadium as V	mg/L	0.56	0.63	0.65
Zinc as Zn	mg/L	<0.02	<0.02	<0.02

3 Hydrology

3.1 Project information pertinent to hydrology

The project information pertinent to hydrology includes:

- As part of the operation, ten evaporation ponds of 100 m x 60 m each are proposed (i.e. a total extent of 100.35 ha) and will be constructed within the Bloupan pan. The evaporation ponds will be excavated 300 mm below natural ground level (ngl). After excavation, a 150 mm salt floor will be constructed. The walls of the evaporation ponds will be 600 mm high and will be constructed 150 mm below ngl and 450 mm above ngl. Periodically, groundwater (brine) will be used to add water to the ponds. The water depth in the ponds will be limited to 50 mm (maximum of 75 mm). The formation of salt crystals will raise the floor of the ponds periodically by 150 mm until harvest time every 6 weeks hence, the water level should remain 375 mm below the top of the dam walls.
- The 5 m wide and 600 mm high walls will serve as roads for vehicles to drive on. Vehicles will also operate in the salt pan or evaporation ponds to recover the salt.
- The boreholes (Bloupan-HN1, HN2, and HN3) are positioned on the 5 m wide road. The standpipes of the boreholes are approximate 300 mm above the road height or 750 mm above ngl.
- Access to the site will mostly be via existing roads, with the district gravel road to Noenieput running along the site. A small 5 m wide access road (not paved) links the operations to this road.

3.2 Climate

3.2.1 Rainfall

The rainfall in the area is low. The two closest stations (which are 26.8 km and 38.9 km away) indicated the following:

- 128 mm mean annual rainfall at Vrouenspan station; and
- 147 mm at the Noenieput (Pol) station.

This data was verified by SRK using available weather station data. The daily rainfall data for the closest station (Vrouenspan) have been summarized to represent the average monthly rainfall, which is graphically presented in Figure 3-1 below.

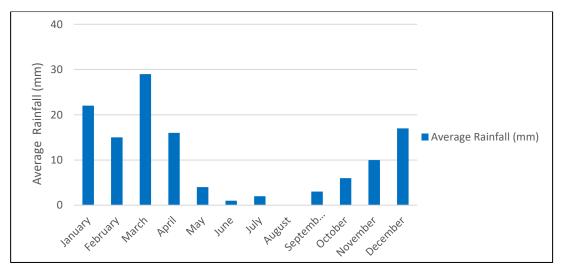


Figure 3-1: Average rainfall per month at the nearest rainfall station (Vrouenspan).

Although the rainfall is low, it occurs as short-lived but intense isolated or scattered thunderstorms during the summer months. The rainfall station details of Vrouenspan, along with five other rainfall stations considered in the hydrological assessment are provided in Table 3-1.

Station name	Station number	Distance from site (km)	Record available (years)	Mean annual precipitation (mm)
Vrouenspan	0351708_W	26.8	44	128
Noenieput (Pol)	0387240_W	38.9	70	147
Zwartmodder	0316061_W	47.4	54	155
Witdraai (Pol)	0424357_W	72.3	52	171
Askham	0424509_W	73.3	50	181
Witdraai (Gemsbok) (Pol)	0424354_W	76.9	32	186

 Table 3-1:
 Rainfall stations in the vicinity of Annesley Farm 338.

The rainfall intensity data (also known as design rainfall data) for the site are in

. Design rainfall data were extracted from the Design Rainfall estimation software (Gorven, 2002).

	Design R	ainfall Dat	a (mm) interpo	lated from six o	losest statio	ns							
Mean annual rainfall	112	mm	Latitude	-27.58887	degrees								
Altitude 826		mamsl	Longitude	20.48974	degrees								
Storm duration		Return Period (Years)											
Storm duration	2	5	10	20	50	100	200						
5 minutes	6.3	9.9	12.5	15.3	19.2	22.5	25.9						
15 minutes	11.9	18.7	23.6	28.8	36.2	42.3	48.8						
1 hour	17.9	28.1	35.6	43.4	54.5	63.7	73.5						
1.5 hours	20.2	31.7	40.1	49	61.5	71.8	82.9						
2 hours	22	34.5	43.7	53.3	66.9	78.2	90.3						
8 hours	28.7	45	57	69.6	87.4	102.1	117.8						
24 hours	35.5	55.6	70.5	86	107.9	126.1	145.6						

 Table 3-2:
 Design rainfall values for Annesley Farm 338

3.2.2 Evaporation

Evaporation far exceeds rainfall at the site. Although no records are available from the nearest station, the estimated evaporation is above 2 600 mm per annum according to the S-pan and A-pan methods (WR, 2012).

3.3 Nearby water bodies, floodlines and riparian habitat

The nearest water body to the proposed project is the salt pan in which the project will be located. Other salt pans (nearest is about 3 km from the project) are also located in the area (Figure 2-3). No rivers or streams were observed on satellite images (Google earth).

Floodline determination is beyond the scope of the current project, and is not necessary for determining impacts as the project is clearly within a pan that may be inundated occasionally. Nonetheless, it can be stated that the floodline is likely to lie very close to the salt pan or possibly be contained within it given the evaporative, non-draining conditions.

No true riparian habitat exists, as water in the salt pan is extremely intermittent and saline. For example, during a 1 in 2 year, 24 hour storm event, only 35.5 mm of rain are likely in the pan itself and little runoff is expected from the catchment (See Section 3.2.1 and 3.5).

3.4 Stream and salt pan morphology

No stream morphology is described as no streams or rivers were observed. The salt pan on the other hand is seen as a water body and a seasonal/partial wetland.

A few short, localised drainage channels (possibly natural erosion lines) were observed on the slopes around the salt pan (what would be the banks in a typical pan). These small channels indicate that water probably periodically flows into the salt pan from the immediate surrounds. The pan is likely to become inundated in times of intense rainfall events during the summer months. Thereafter, water will slowly evaporate leaving any salts behind.

Other hydrological losses are not expected to be significant because the pan is the lowest point in the landscape and thus water cannot flow downstream and seepage through the bed of the pan will be very low (the most likely reason why the pan exists in this location at all, and also the reason that salts naturally concentrate in the pan with time).

The morphology of the salt pan is shown in Photo 3-1 - a depression with a bed that is flat and hardened with crystallised salts on the surface. It is underlain by clay and weathered tillite with very low permeability.

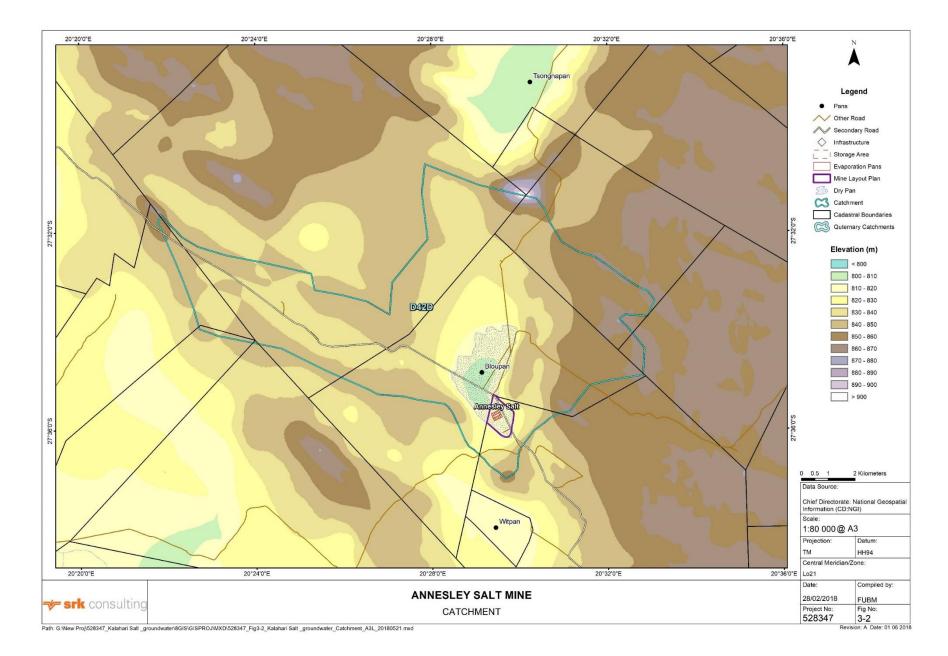
Photo 3-1: The salt bed (foreground) and banks (background) of the salt pan

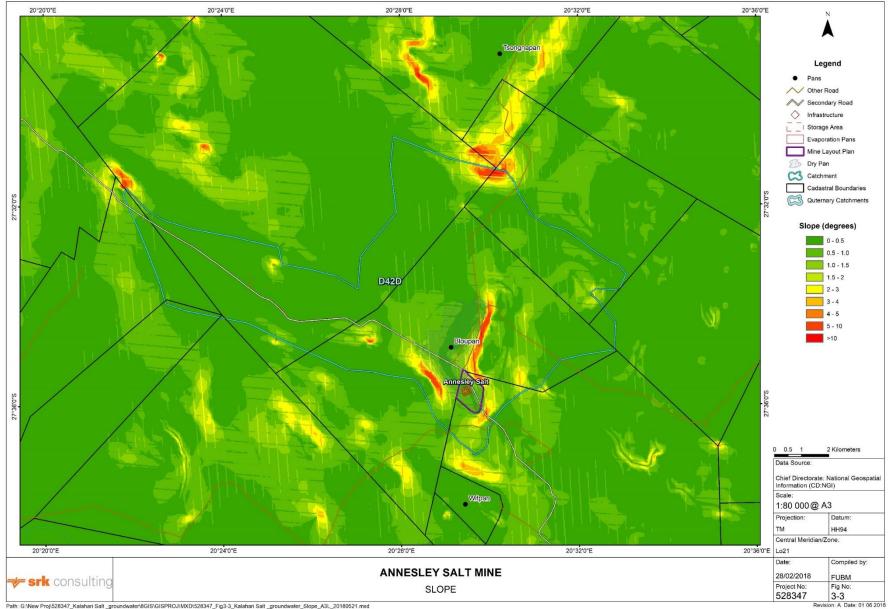
3.5 Catchments, surface flow and sediment regime

As indicated in the insert map of Figure 3-2, the salt pan is located in Quaternary catchment D42D. The immediate catchment draining to the salt pan is also shown in Figure 3-2. This catchment was delineated using the twenty-meter contours available on topographic maps of the area. The catchment area was conservatively delineated wherever there was doubt as to its exact boundary (due to the low resolution topographical data available). The catchment area for the salt pan was estimated to be 92 km² in extent.

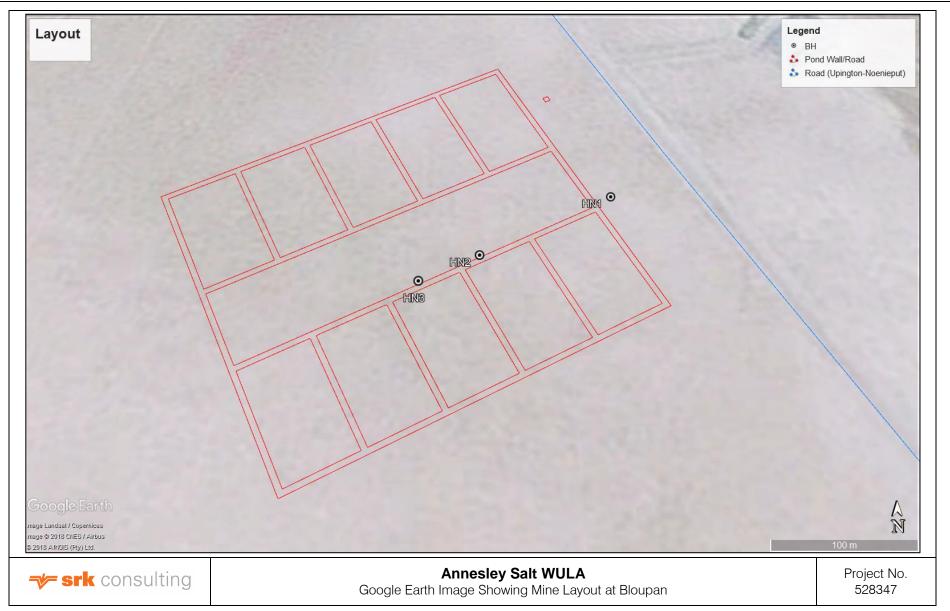
Note that the catchment has no outlet. Essentially the immediate catchment is an isolated catchment disconnected from the larger Quaternary catchment. The likely reason for this non-draining nature of the catchment is as follows:

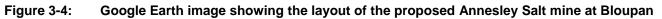
- The catchment is characterised by relatively flat slopes generally below 3 degrees with minor slopes of > 10 degrees along the edges of pans (as shown on Figure 3-3). The slightly vegetated sandy dunes (as shown in Photo 3-1) have soil depths up to a few metres deep, interspersed with rocky calcrete areas. Due to these characteristics, most of the rain infiltrates into these dunes rather than reporting as surface flows.
- At times, large rainfall events might occur in succession that result in the catchment being saturated and then generating surface flows. In such cases (which will be rare), surface flow might be generated. Due to the topography of the area (Figure 3-2), all surface flow would drain to the salt pan as it lies in a depression (i.e. at the low point in the system).
- Theoretically, and over time, the salt pan could fill up and eventually overtop and connect to the greater catchment. This, however, is highly unlikely because evaporation greatly exceeds rainfall (2 000 mm vs 200 mm Section 3.2.1 and Section 3.2.2) hence, a negative water balance occurs even during the summer rainfall months.


• The fact that a crust of salt has precipitated on the pan bed adds to the evidence that this is a nondraining (as shown in Photo 3-2), evaporative system except in extremely rare circumstances.


Photo 3-2: Old evaporation pond being filled during a pumping test and in the background, more vegetated dunes are observed at the site.

The sediment regime on the site is characterised by little movement due to absence of surface water flows and shallow topographical gradients (hence low flow velocities). The dunes within the catchment are stable, and are vegetated, and thus limited sediment transport is expected. As noted in Section 3.4, a few short, localised drainage channels (possibly natural erosion lines) were noted on the banks of the salt pan, indicating that some localised sediment transport into the salt pan has occurred. This small-scale sediment transport is probably intermittent, and probably occurs during high rainfall events (i.e. rarely) only – hence and would manifest where localised slopes are steeper.


3.6 Surface water quality


It is not possible to collect surface water samples for quality analysis at the site, as standing surface water is such a rare occurrence.

Path: G:\New Proj\528347_Kalahari Salt _groundwater\8GIS\GISPROJ\MXD\528347_Fig3-3_Kalahari Salt _groundwater_Slope_A3L_20180521.mxd

4 Impact Assessment

4.1 Hydrogeology

From the information available and discussed in this report, the following potential impacts to the groundwater resources have been identified:

- 1. Drawdown of the water table in the local Dwyka Aquifer by abstraction of c.105 300 m³/a of hypersaline groundwater for salt mining.
- 2. Contamination of the groundwater resource by onsite sanitation facilities.
- 3. Increase of groundwater salinity beneath the mine site.
- 4. Contamination of the groundwater resources by fuel and oil spills from construction and mine vehicles.

The severity of the potential groundwater impacts without mitigation measures is rated in Table 4-1, and with proposed mitigation measures implemented is rated in Table 4-2. The impact severity rating methodology used is included in Appendix D.

Abstraction of Groundwater for Salt Mining

There is a slight local risk of lowering the local water table in the near vicinity (likely <1 km radius) of the mine by abstraction of 105 300 m³/a brine from the Dwyka Aquifer beneath the site. This potential impact is rated as moderate, and it can be mitigated to low by resting the boreholes during harvesting of the salt and during the winter season (31 May to 20 August) when high quality salt crystals do not form.

Aquifer Contamination from onsite sanitation facilities

There is a slight risk of contamination of the Dwyka Aquifer by onsite sanitation facilities. This potential impact is rated as low, and it can be mitigated to very low by appropriate engineering design, good housekeeping and regular maintenance of these facilities.

Aquifer Contamination from Oil and Fuel Spills

There is a slight risk of contamination of the Dwyka Aquifer by oil and fuel spills from construction and operational vehicles. This potential impact is rated as low, and it can be mitigated to very low by appropriate engineering design, good housekeeping and regular maintenance of infrastructure.

Increase in Aquifer Salinity at the Mine Site

During preparation of the hard salt crystal floor in the Evaporation ponds, there is likely to be a slight increase in brine salinity beneath the mine by infiltration of evaporation-enriched brine through the extremely low permeable ³clay surface of the salt pan. This extremely low infiltration rate is expected to decrease further once the hard floor is established. Any slight increases in brine salinity will be an advantage for the mine, as this will result in a slightly higher salt production. Due to the zone of drawdown in the local aquifer by pumping from the three boreholes at the mine, this slightly saltier brine will migrate towards the boreholes, where it will be recycled back to the Evaporation ponds. Over the long term, abstraction of brine beneath the natural salt pan is likely to draw in slightly less saline water from the aquifer around the salt pan. It must be born in mind that the groundwater in the Dwyka Aquifer around the salt pan has very poor quality (with reported ECs of >1 000 mS/m (DWAF,2001),

³ Published hydraulic conductivity of clay and weathered tillite is 10⁻⁹ to10⁻¹³ m/s (de Marsily, 1986).

and this water is not fit for any use other than source water for salt mining. To further illustrate this point, the reported EC for abandoned NGA borehole 2720BD00003 (Table 2-3 and Figure 2-3) is 5 410 mS/m. This impact is rated as low, and it remains low after mitigation by abstraction from the three boreholes and pumping the brine back to the evaporation ponds.

4.2 Hydrology

From the information available and discussed in this report, the following potential impacts to the surface water resources have been identified:

- 1. Contamination of surface water (when present) by onsite sanitation facilities.
- 2. Contamination of the surface water resources (when present) by fuel and oil spills from construction and operational vehicles or from hazardous substances (however, no hazardous substances are currently envisaged in the proposed normal operations).
- 3. Contamination of the surface water with water of a differing salinity in the event of extreme storms that overwhelms the evaporation ponds, resulting in overtopping.
- 4. Altering flow in a water course due to the Evaporation ponds.
- 5. Alteration of the beds or banks of the salt pan, changing their morphology.

The severity of the potential surface impacts without mitigation measures are rated in Table 4-3, and with mitigation measures implemented in Table 4-4. The impact severity rating methodology used is included inAppendix D.

Contamination of surface water by onsite sanitation facilities

In the rare event that surface water pools in the salt pan, there is a slight risk of contamination by onsite sanitation facilities if they are poorly managed. This potential impact is rated as low, and it can be mitigated to very low by appropriate engineering design, good housekeeping and regular maintenance of these facilities.

Contamination of surface water from Oil and Fuel Spills or other hazardous substances

In the rare event that surface water pools in the salt pan, there is a slight risk of contamination by oil and fuel spills that have collected on the surface of the salt pan, or on the surrounding roads from construction and operational vehicles. This potential impact is rated as low, and it can be mitigated to very low by good housekeeping and regular maintenance of vehicles.

No hazardous substances are required for the project (e.g. Acids), but if at any time such substances are stored and used on site, they must be stored as per the supplier's instructions, bunded as per regulation and checked regularly for leaks or spills.

Modified surface water salinity due to mining

When surface water collects in the salt pan, it will interact with salt in the ponds. However, even in an extreme rainfall event (e.g. 1:200 year storm), the proposed 600 mm bund will not overtop. As such, the brine dams themselves will provide all necessary attenuation as at all times the water level will remain 375 mm below the top of the dam walls. For a 1 in 200 year, 24 hour event of 145.6 mm of rainfall (less than 15 cm of rain depth), the depth of water in the ponds could increase by 145.6 mm due to direct rainfall, but that is still well below the 375 mm of freeboard in the ponds. Stockpiles will be placed within the designated storage area between the ponds which is protected by berms (5 m wide and 600 mm high walls) such that they cannot be mobilised into the pan, or elsewhere, during rainfall events.

The contributing catchment is likely to add very little runoff due to the permeable sands into which most of the water will infiltrate. Notwithstanding the very low likelihood of overtopping, the salt in the pan might mix with the surface water to produce localised salinities that differ from what they would naturally have been were the dam walls to be breached (e.g. erosion failure). However, these salinities are extremely unlikely to have a greater range than is natural for the salt pan due to salt saturation and dilution effects.

Altered flow in a water course due to the Evaporation ponds

In theory, the Evaporation ponds could impede water flowing across the salt pan. However, since flow is nearly negligible as it is a salt pan and not a stream, the impact is likely to be negligible.

Altered beds and banks

The Evaporation ponds and access to the salt pan itself with vehicles will alter the bed and banks of the salt pan. The impact could be increased if non-essential infrastructure (parking areas, offices) are located in the salt pan, and multiple routes are created as access into the pan (similarly if staff indiscriminately drive around the salt pan in general). However, if non-essential infrastructure, other items (e.g. construction material) is stored away from the salt pan, and staff use only one access road and do not drive into other areas of the salt pan, then the impact on the bed and banks will be very limited. It should be noted that traversing the salt pan with vehicles will result in extremely high maintenance risks to these vehicles (rust), and it is probable that the mine staff will avoid doing so as a general rule.

4.3 Cumulative impacts

Cumulative impacts on the salt pan will be very low, as no other project (salt mine) exist within the salt pan. No registered groundwater user exists within 10 km radius of the proposed Annesley Salt project (Figure 2-3 and Table 2-3). If Annesley Salt implements mitigation measures for all impacts, the impact to the hydrogeological environment (Table 4-5) and hydrological environment (Table 4-6) of the overall area will be categorised as having a low significance.

a		Status of Impacts		-	Spatial Scale of Impacts		Temporal Scale of Impacts		Probability of Impacts		ude of acts	Potential Significance of Impacts	
Phase	Impact description	Rating	Quanti- tative Rating	Rating	Quanti- tative Rating	Rating	Quanti- tative Rating	Rating	Quanti- tative Rating	Rating	Quanti- tative Rating	Rating	Quanti- tative Rating
c	Groundwater contamination by onsite sanitation facilities	Negative	-	Site	1	Short	2	Low	2	Low	4	Low	14
Construction	Increase in groundwater salinity beneath the mine site during preparation of the hard salt crystal Evaporation pond floors	Negative	-	Site	1	Short	2	Low	2	Low	4	Low	14
Ŭ	Groundwater contamination by oil and fuel spills from construction vehicles	Negative	-	Site	1	Short	2	Low	2	Low	4	Low	14
	Lowering of the water table by abstraction of <i>c</i> .105 300 m ³ /annum of saline groundwater	Negative	-	Local	2	Long	4	Medium	3	Low	4	Moderate	30
Operational	Groundwater contamination by onsite sanitation facilities	Negative	-	Site	1	Long	4	Low	2	Low	4	Low	18
Opera	Increase in groundwater salinity beneath the mine site during salt mining	Negative	-	Site	1	Long	4	Low	2	Low	4	Low	18
	Groundwater contamination by oil and fuel spills from mine vehicles	Negative	-	Site	1	Long	4	Low	2	Low	4	Low	18

Table 4-1: Possible impacts of the proposed development on groundwater without mitigation measures

Table 4-2: Possible impacts of the proposed development on groundwater with mitigation measures

Phase		Statu: Impa		-	Scale of acts		ion of acts	Probabi Impa	•	Magnit Impa		Potential Significance of Impacts	
Pha	Impact description	Rating	Quanti- tative Rating	Rating	Quanti -tative Rating	Rating	Quanti- tative Rating	Rating	Quanti- tative Rating	Rating	Quanti- tative Rating	Rating	Quanti- tative Rating
	Groundwater contamination by onsite sanitation facilities	Negative	-	Site	1	Short	2	Improbable	1	Low	4	Low	7
	Increase in groundwater salinity beneath the mine site during preparation of the hard salt crystal Evaporation pond floors	Negative	-	Site	1	Short	2	Low	2	Low	4	Low	14
Construction	Groundwater contamination by oil and fuel spills from construction vehicles	Negative	-	Site	1	Short	2	Improbable	1	Low	4	Low	7
stru	Essential mitigation measures:												
Ö	• Ensure that onsite sanitation facilities	are appropriat	ely designed	l, are well i	maintained	and servic	ed regularly	/.					
	 Place oil traps under stationary machi dispose contaminated material (soil, e 	• •		at fuelling	station, c	onstruct str	uctures to t	trap fuel spills at	fuelling stati	on, immediat	ely clean oil	and fuel sp	oills and
	• Draw up and strictly enforced a proce	dure for the sto	orage, handl	ing and tra	nsport of a	different ha	zardous ma	terials used on s	site.				
	• Ensure vehicles and equipment are in	good working	order and dr	ivers and o	operators a	ire well trai	ned.						
	• Ensure that good housekeeping and m	naintenance ru	les are appli	ed.									
	Lowering of the water table by abstraction of <i>c</i> .105 300 m ³ /annum of saline groundwater	Negative	-	Local	2	Long	4	Low	2	Low	4	Low	20
	Groundwater contamination by onsite sanitation facilities	Negative	-	Site	1	Long	4	Improbable	1	Low	4	Low	9
	Increase in groundwater salinity beneath the mine site during salt mining	Negative	-	Site	1	Long	4	Low	2	Low	4	Low	18
lar	Groundwater contamination by oil and fuel spills from mine vehicles	Negative	-	Site	1	Long	4	Improbable	1	Low	4	Low	9
ation	Essential mitigation measures:												
Operational	• Rest boreholes during salt harvesting	and during the	winter sease	on.									
õ	• Implement and follow water saving pr	ocedures and i	methodologi	ies.									
	• Ensure that onsite sanitation facilities	are appropriat	ely designed	l, are well i	maintained	and servic	ed regularly	<i>į</i> .					
	 Place oil traps under stationary machi dispose contaminated material (soil, et al.) 			at fuelling	station, c	onstruct str	uctures to t	trap fuel spills at	fuelling stati	on, immediat	ely clean oil	and fuel sp	oills and
	• Draw up and strictly enforced a proce	dure for the sto	orage, handl	ing and tra	nsport of a	different ha	zardous ma	terials used on s	site.				
	• Ensure vehicles and equipment are in	good working	order and dr	ivers and o	operators a	ire well trai	ned.						
	 Ensure that good housekeeping and m 	agintonanco ru	los aro appli	ad									

• Ensure that good housekeeping and maintenance rules are applied.

ē		Status of Impacts		Spatial Scale of Impacts		Tempora Imp		Probability of Impacts		Magnitude of Impacts		Potential Significance of Impacts	
Phase	Impact description	Rating	Quanti- tative Rating	Rating	Quanti- tative Rating	Rating	Quanti- tative Rating	Rating	Quanti- tative Rating	Rating	Quanti- tative Rating	Rating	Quanti- tative Rating
ion	Contamination of surface water by onsite sanitation facilities	Negative	-	Local	2	Short	2	Low	2	Low	4	Low	16
Construction	Contamination of surface water from Oil and Fuel Spills	Negative	-	Local	2	Short	2	Low	2	Low	4	Low	16
Ŝ	Altered beds and banks of the salt pan	Negative	-	Local	2	Long	4	High	4	Medium	4	Moderate	40
	Modified surface water salinity	Negative	-	Local	2	Short	2	Improbable	1	Minor	2	Low	6
lar	Altered flow in the salt pan due to the Evaporation ponds	Negative	-	Site	1	Short	2	Low	2	Minor	2	Low	10
Operational	Altered beds and banks of the salt pan	Negative	-	Local	2	Long	4	High	4	Medium	4	Moderate	40
ď	Contamination of surface water by onsite sanitation facilities	Negative	-	Local	2	Short	2	Low	2	Low	4	Low	16
	Contamination of surface water from Oil and Fuel Spills	Negative	-	Local	2	Short	2	Low	2	Low	4	Low	16

Т

 Table 4-3:
 Possible impacts of the proposed development on surface water without mitigation measures

Table 4-4: Possible impacts of the proposed development on surface water with mitigation measures

Phase	Impact description	Status of Impacts		Spatial Scale of Impacts		Duration of Impacts		Probability of Impacts		Magnitude of Impacts		Potential Significance of Impacts		
		Rating	Quanti- tative Rating	Rating	Quanti- tative Rating	Rating	Quanti- tative Rating	Rating	Quanti- tative Rating	Rating	Quanti- tative Rating	Rating	Quanti- tative Rating	
Construction	Contamination of surface water by onsite sanitation facilities	Negative	-	Site	1	Short	2	Improbable	1	Low	4	Low	7	
	Contamination of surface water from Oil and Fuel Spills	Negative	-	Site	1	Short	2	Improbable	1	Low	4	Low	7	
	Altered beds and banks of the salt pan	Negative	-	Site	1	Long	4	High	4	Minor	1	Low	24	
	Essential mitigation measures:													
	Ensure that onsite sanitation facilities are appropriately designed, are well maintained and serviced regularly.													
	• Place oil traps under stationary machinery, only re-fuel machines at fuelling station, construct structures to trap fuel spills at fuelling station, immediately clean oil and fuel spills and dispose contaminated material (soil, etc.) at licensed sites only.													
	Draw up and strictly enforced a proce	edure for the s	storage, hai	ndling and	l transport o	of different	hazardous	materials used o	on site.					
	Ensure vehicles and equipment are in	ngood workin	g order and	drivers a	nd operato	rs are well t	rained.							
	• Ensure that good housekeeping and r	maintenance i	rules are ap	plied.										
	All non-essential infrastructure should be located outside of the salt pan to minimise disturbance to the bed and banks													
	Staff should access only the portions of the salt pan that it is absolutely necessary to access													
Operational	Modified surface water salinity	Negative	-	Site	1	Short	2	Improbable	1	Minor	2	Low	5	
	Altered flow in the salt pan due to the Evaporation ponds	Negative	-	Site	1	Short	2	Low	2	Minor	2	Low	10	
	Altered beds and banks of the salt pan	Negative	-	Site	1	Long	4	High	4	Minor	1	Low	24	
	Contamination of surface water by onsite sanitation facilities	Negative	-	Site	1	Short	2	Improbable	1	Low	4	Low	7	
	Contamination of surface water from Oil and Fuel Spills	Negative	-	Site	1	Short	2	Improbable	1	Low	4	Low	7	
	Essential mitigation measures:													
	• Ensure that onsite sanitation facilities	 Ensure that onsite sanitation facilities are appropriately designed, are well maintained and serviced regularly. 												
	 Place oil traps under stationary machinery, only re-fuel machines at fuelling station, construct structures to trap fuel spills at fuelling station, immediately clean oil and fuel spills and dispose contaminated material (soil, etc.) at licensed sites only. 													
	• Draw up and strictly enforced a proce	edure for the s	storage, hai	ndling and	l transport o	of different	hazardous	materials used o	on site.					
	• Ensure vehicles and equipment are in	good workin	g order and	drivers a	nd operato	rs are well t	rained.							
	• Ensure that good housekeeping and r													
	All non-essential infrastructure shoul	d be located o	outside of th	ne salt par	n to minimis	se disturbai	nce to the b	ed and banks						
	• Staff should access only the portions	of the salt pa	n that it is a	bsolutely	necessary t	o access								
	Manage the Evaporation ponds such	that water lev	els remain	well belo	w the heigh	t of the cor	itainment b	arriers						

Г

T

Table 4-5:	Possible cumulative impact	ts of the pro	posed develor	oment on aroun	ndwater with mitigat	ion measures

se			us of acts	-	ial Scale o mpacts		ation of npacts	Probab Imp	-	-	tude of acts	Potential S of Im	Significance Ipacts
Phase	Impact description	Rating	Quanti- tative Rating	Ratin	Quar g tativ Ratir	ve Rating	Quanti- tative Rating	Rating	Quanti- tative Rating	Rating	Quanti- tative Rating	Rating	Quanti- tative Rating
	Groundwater contamination by onsite sanitation facilities	Negative	-	Loca	1 2	Short	2	Improbable	1	Low	4	Low	8
	Increase in groundwater salinity beneath the mine site during preparation of the hard salt crystal Evaporation pond floors	Negative	-	Loca	I 2	Short	2	Low	2	Low	4	Low	16
uction	Groundwater contamination by oil and fuel spills from construction vehicles	Negative	-	Loca	1 2	Short	2	Improbable	1	Low	4	Low	8
Construction	 Essential mitigation measures: Ensure that onsite sanitation facilities Place oil traps under stationary mach dispose contaminated material (soil, Draw up and strictly enforced a proce Ensure vehicles and equipment are in Ensure that good housekeeping and response to the strict of th	inery, only re etc.) at license edure for the n good workin	e-fuel mach ed sites on storage, ha ng order an	ines at fue ly. Indling and d drivers a	elling statio	n, construct	structures to nazardous n	o trap fuel spills	_	tation, imme	diately clea	n oil and fuel	spills and
	Lowering of the water table by abstraction of c.190 000 m ³ /annum of saline groundwater	Negative	-	Loca	1 2	Long	4	Low	2	Low	4	Low	20
	Groundwater contamination by onsite sanitation facilities	Negative	-	Loca	I 2	Long	4	Improbable	1	Low	4	Low	10
	Increase in groundwater salinity beneath the mine site during salt mining	Negative	-	Loca	I 2	Long	4	Low	2	Low	4	Low	20
Operational	Groundwater contamination by oil and fuel spills from mine vehicles	Negative	-	Site	1	Long	4	Improbable	1	Low	4	Low	9
	 Ensure that good housekeeping and r 	maintenance	rules are a	oplied.									
	Implement a groundwater monitorin Table 4-6: Possible cumulative i	impacts of	the pro	traction an	evelopm	ent on su					uda af	Detection	
ase	Table 4-6: Possible cumulative		of the proj	traction a	evelopm Scale of acts	ent on su Duratio Impac	n of ts	er with mitig Probabilit Impact:	/ of	asures Magnit Impa	acts		Significance
Pnase		impacts of Status	the prop	traction an posed d Spatial S	evelopm Scale of	ent on su Duratio Impac Rating	n of	Probabilit	/ of	Magnit			Quanti- tative
Phase	Table 4-6: Possible cumulative	impacts of Status Impac	of the prop of ts Quanti- tative	bosed d Spatial S Impa	evelopm Scale of acts Quanti- tative	ent on su Duratio Impac Rating	n of ts Quanti- tative Rating	Probabilit Impact	y of Guanti- tative	Magnit Impa	acts Quanti- tative	of Im	Quanti- tative
Phase	Table 4-6: Possible cumulative Impact description Impact description Contamination of surface water by Impact description	impacts of Status Impac Rating	of ts Quanti- tative Rating	cosed d Spatial S Imp Rating	evelopm Scale of acts Quanti- tative Rating	ent on su Duratio Impac Rating	n of ts Quanti- tative Rating 2	Probabilit Impact Rating	y of Quanti- tative Rating	Magnit Impa Rating	acts Quanti- tative Rating	of Im Rating	Quanti- tative Rating
on Phase	Table 4-6: Possible cumulative i Impact description Contamination of surface water by onsite sanitation facilities Contamination of surface water from Oil and Fuel Spills Altered beds and banks of the salt pan	impacts of Status Impac Rating Negative	of ts Quanti- tative Rating	cosed d Spatial S Imp Rating Local	evelopm Scale of acts Quanti- tative Rating 2	Duratio Impac Rating Short	n of ts Quanti- tative Rating 2	Probabilit Impacts Rating Improbable	y of Quanti- tative Rating 1	Magnit Impa Rating Low	Quanti- tative Rating 4	of Im Rating Low	Quanti- tative Rating 8
	Table 4-6: Possible cumulative i Impact description Impact description Contamination of surface water by onsite sanitation facilities Impact description Contamination of surface water from Oil and Fuel Spills Impact description	impacts of Status Impac Rating Negative Negative Negative Negative s are appropri- ninery, only re etc.) at license edure for the n good workin maintenance d be located of	the prop of ts Quanti- tative Rating - - - - - - - - - - - - - - - - - - -	traction and traction and traction and traction and tractic procession of the second of the secon	evelopm Scale of acts Quanti- tative Rating 2 2 2 2 2 vell mainta elling station d transport and operato	eent on su Duratio Impac Rating Short Short Long ined and ser n, construct of different ors are well to	n of ts Quanti- tative Rating 2 2 4 2 4 viced regula structures to nazardous marained.	Probability Impacts Rating Improbable Improbable High rly. o trap fuel spills materials used o	y of Quanti- tative Rating 1 1 4 at fuelling st	Magnit Impa Rating Low Low Minor	Acts Quanti- tative Rating 4 4 1 1	of Im Rating Low Low	Quanti- tative Rating 8 8 28
	Table 4-6: Possible cumulative is impact description Impact description Impact description Contamination of surface water by onsite sanitation facilities Impact description Contamination of surface water from Oil and Fuel Spills Altered beds and banks of the salt pan Essential mitigation measures: Impact description facilities Place oil traps under stationary mach dispose contaminated material (soil, Impact description facilities Draw up and strictly enforced a procession Ensure that good housekeeping and the same of the sam	impacts of Status Impac Rating Negative Negative Negative Negative s are appropri- ninery, only re etc.) at license edure for the n good workin maintenance d be located of	the prop of ts Quanti- tative Rating - - - - - - - - - - - - - - - - - - -	traction and traction and traction and traction and tractic procession of the second of the secon	evelopm Scale of acts Quanti- tative Rating 2 2 2 2 2 vell mainta elling station d transport and operato	eent on su Duratio Impac Rating Short Short Long ined and ser n, construct of different ors are well to	n of ts Quanti- tative Rating 2 2 4 2 4 viced regula structures to nazardous n rained. ce to the be	Probability Impacts Rating Improbable Improbable High rly. o trap fuel spills materials used o	y of Quanti- tative Rating 1 1 4 at fuelling st	Magnit Impa Rating Low Low Minor	Acts Quanti- tative Rating 4 4 1 1	of Im Rating Low Low	Quanti- tative Rating 8 8 28
	Table 4-6: Possible cumulative is Impact description Impact description Contamination of surface water by onsite sanitation facilities Ontamination of surface water from Oil and Fuel Spills Altered beds and banks of the salt pan Essential mitigation measures: • Ensure that onsite sanitation facilities • Place oil traps under stationary mach dispose contaminated material (soil, • Draw up and strictly enforced a proce • Ensure that good housekeeping and resures • All non-essential infrastructure shoul • Staff should access only the portions Modified surface water salinity Altered flow in the salt pan due to the Evaporation ponds	impacts of Status Impac Rating Negative Negative Negative Negative s are appropri- ninery, only re etc.) at license edure for the n good workin maintenance d be located of of the salt pa Negative Negative	the prop of ts Quanti- tative Rating - - - - - - - - - - - - - - - - - - -	Cosed d Spatial S Imp Rating Local Local Local Local cocal dirvers a polied. the salt pa absolutely	evelopm Scale of acts Quanti- tative Rating 2 2 2 2 2 vell mainta elling static d transport ind operato n to minim necessary 2 2	Impact Duratio Impact Rating Short Short Long ined and server n, construct of different ors are well to ise disturbant to access	n of ts Quanti- tative Rating 2 2 4 2 4 viced regula structures to nazardous n rained. ce to the be	Probability Impact: Rating Improbable Improbable High rly. o trap fuel spills naterials used o ed and banks Improbable Low	y of Quanti- tative Rating 1 1 4 at fuelling st n site.	Magnit Impa Rating Low Low Minor	Acts Quanti- tative Rating 4 4 1 cdiately clea	of Im Rating Low Low	spills and
	Table 4-6: Possible cumulative is Impact description Impact description Contamination of surface water by onsite sanitation facilities Ontamination of surface water from Oil and Fuel Spills Altered beds and banks of the salt pan Essential mitigation measures: Ensure that onsite sanitation facilities Place oil traps under stationary mach dispose contaminated material (soil, Draw up and strictly enforced a proce Ensure vehicles and equipment are ir Ensure that good housekeeping and rest for the salt pan due to the portions Modified surface water salinity Altered flow in the salt pan due to the Evaporation ponds Altered beds and banks of the salt pan	impacts of Status Impac Rating Negative Negative Negative Negative s are appropri- ninery, only re etc.) at licens- edure for the n good workin maintenance d be located of of the salt pa Negative	the prop of ts Quanti- tative Rating - - - - - - - - - - - - - - - - - - -	traction and cosed d Spatial S Imp Rating Local Local Local gned, are v ines at fue ly. andling and d drivers at polied. the salt pa absolutely Local	evelopm Scale of acts Quanti- tative Rating 2 2 2 2 2 vell mainta elling static d transport ind operato n to minim necessary 2	Impact Duratio Impact Rating Short Short Long ined and serrent, construct of different tors are well to access Short Short	n of ts Quanti- tative Rating 2 1 2 4 4 viced regula structures to hazardous n rained. ce to the be 2 1 2 1 4	Probability Impacts Rating Improbable Improbable High rly. o trap fuel spills naterials used o ed and banks Improbable	y of Quanti- tative Rating 1 1 4 at fuelling st n site.	Magnit Impa Rating Low Low Minor tation, imme	Acts Quanti- tative Rating 4 4 1 ctional definition ctional definitio ctional definition ctional definition	of Im Rating Low Low n oil and fuel	spills and
Construction	Table 4-6: Possible cumulative is in the impact description Impact description Impact description Contamination of surface water by onsite sanitation facilities Impact description Contamination of surface water from Oil and Fuel Spills Altered beds and banks of the salt pan Essential mitigation measures: Impact description Ensure that onsite sanitation facilities Place oil traps under stationary mach dispose contaminated material (soil, Draw up and strictly enforced a procession Ensure that good housekeeping and restrictly enforced a procession All non-essential infrastructure shoul Staff should access only the portions Modified surface water salinity Altered flow in the salt pan due to the Evaporation ponds Altered beds and banks of the salt pan Contamination of surface water by onsite sanitation facilities Contamination of surface water from Contamination of surface water from	impacts of Status Impac Rating Negative Negative Negative Sare appropri- sinery, only re etc.) at licensse edure for the n good workin maintenance d be located of of the salt pa Negative Negative Negative Negative	the prop of ts Quanti- tative Rating - - - - - - - - - - - - - - - - - - -	traction and cosed d Spatial S Imp Rating Local Local Local Local gned, are v ines at fue andling and d drivers at pplied. the salt pa absolutely Local Local	evelopm Scale of acts Quanti- tative Rating 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Duratio Duratio Impace Rating Short Short Long ined and server n, construct of different ors are well to ise disturbant to access Short Short Long	n of ts Quanti- tative Rating 2 2 4 2 4 2 4 2 2 4 2 2 2 2 2 2 2 4 2 2 4 2 2 1 2 2 1 2 2 1 2 1	Probability Impacts Rating Improbable Improbable High rly. o trap fuel spills naterials used o ed and banks Improbable Low High	y of Quanti- tative Rating 1 1 4 at fuelling st n site. 1 2 4	Magnit Impa Rating Low Low Minor tation, imme tation, imme Minor Minor Minor	Acts Quanti- tative Rating 4 4 4 1 cdiately clea 2 2 1	of Im Rating Low Low n oil and fuel Low Low	spills and
Operational Construction Phase	Table 4-6: Possible cumulative is in the impact description Impact description Impact description Contamination of surface water by onsite sanitation facilities Impact description Contamination of surface water from Oil and Fuel Spills Impact description Altered beds and banks of the salt pan Impact description Essential mitigation measures: Impact description • Ensure that onsite sanitation facilities • Place oil traps under stationary mach dispose contaminated material (soil, Impact description) • Draw up and strictly enforced a proces • Ensure that good housekeeping and the impact description infrastructure should • All non-essential infrastructure should • Staff should access only the portions Modified surface water salinity Altered flow in the salt pan due to the Evaporation ponds Altered beds and banks of the salt pan Contamination of surface water by onsite sanitation facilities	impacts of Status Impac Rating Negative Negative Negative Negative s are appropri- inery, only re etc.) at license edure for the n good workin maintenance d be located of of the salt pa Negative Negative Negative Negative Negative	the prop of ts Quanti- tative Rating - - - - - - - - - - - - - - - - - - -	traction and cosed d Spatial S Imp Rating Local Local Local Local gned, are v ines at fue ly. andling and oplied. the salt pa absolutely Local	evelopm Scale of acts Quanti- tative Rating 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Impact Duratio Impact Rating Short Short Short Impact Short Short Impact Short Impact Short Impact Short Impact Short Impact Short Short Short Short Short Short Short	n of ts Quanti- tative Rating 2 2 4 2 4 2 4 2 2 4 2 2 2 2 2 2 2 4 2 2 4 2 2 1 2 2 1 2 2 1 2 1	Probability Rating Impacts Rating Improbable Improbable Improbable High Improbable otrap fuel spills naterials used o ed and banks Improbable Low High Improbable	y of Quanti- tative Rating 1 1 4 at fuelling st n site. 1 2 4 1 2 4 1	Magnit Impa Rating Low Low Minor tation, imme tation, imme Minor Minor Low	Acts Quanti- tative Rating 4 4 4 1 control con	of Im Rating Low Low n oil and fuel Low Low Low	spills and 5 12 28

- Ensure that good housekeeping and maintenance rules are applied.
- All non-essential infrastructure should be located outside of the salt pan to minimise disturbance to the bed and banks
- Staff should access only the portions of the salt pan that it is absolutely necessary to access
- Manage the Evaporation ponds such that water levels remain well below the height of the containment barriers

5 Water Balance

The water balance for the proposed Annesley Salt project was calculated as follows (Table 5-1):

Source	Wate	er In (m³)	Use	Water Out (m ³)		
	day	annum		m³/day	m³/annum	
Abstraction HN1 (x days/annum)	258	45 360	Evaporation	283	77 120	
Abstraction HN2 (x days/annum)	258	45 360				
Abstraction HN3 (x days/annum)	258	14 580				
Mean annual direct rainfall on the ponds (128 mm/a)	25	7680				
Total in	283	112 980	Total out	283	112 980	

Table 5-1: Water balance for the proposed Annesley Salt project

The extent of the mine ponds is 100 m x 60 m each, which for the 10 ponds equates to 60 000 m^2 , or 6 ha.

Potential evaporation rate for the area is 2 000 mm/a, therefore, the maximum evaporation potential for the 60 000 m^2 of ponds is 120 000 m^3/a , which is much higher than the proposed mine's evaporation requirements.

6 Stormwater Management Plan

The following stormwater management measures should be implemented during construction:

- Place oil traps under stationary machinery, only re-fuel machines at a designated fuelling station, construct structures to trap fuel spills at this fuelling station, immediately clean oil and fuel spills and dispose contaminated material (soil, etc.) at licensed sites only.
- Draw up and strictly enforce a procedure for the storage, handling and transport of different hazardous materials used on site. This procedure should be informed by hazardous material safety data sheets and discussions with the supplier.
- Ensure vehicles and equipment are in good working order, and drivers and operators are welltrained.
- Ensure that good housekeeping and maintenance rules are applied.
- All non-essential infrastructure should be located outside of the salt pan to minimise disturbance to the bed and banks including any material stockpiles or parking areas.
- Staff should access only the portions of the salt pan that it is absolutely necessary to access for operations.
- Any construction material stockpiles should be protected by berms (or other mechanism) to ensure that material cannot be mobilised into the salt pan.
- Ensure that onsite sanitation facilities are appropriately designed, are well maintained and serviced regularly.

The following stormwater management measures should be implemented during operation:

- Ensure that onsite sanitation facilities are appropriately designed, are well maintained and serviced regularly.
- Place oil traps under stationary machinery, only re-fuel machines at a designated fuelling station, construct structures to trap fuel spills at this fuelling station, immediately clean oil and fuel spills and dispose contaminated material (soil, etc.) at licensed sites only.
- Draw up and strictly enforced a procedure for the storage, handling and transport of different hazardous materials used on site.
- Ensure vehicles and equipment are in good working order and drivers and operators are well trained.
- Ensure that good housekeeping and maintenance rules are applied.
- All non-essential infrastructure should be located outside of the salt pan to minimise disturbance to the bed and banks.
- Staff should access only the portions of the salt pan that it is necessary to access, avoiding establishing multiple access routes/roads.
- Manage the Evaporation ponds such that water levels remain well below the height of the containment barriers.
- The boreholes should be sealed by installing a bentonite sanitary seal around the borehole standpipes built to a minimum height of 600 mm such that the surface water will not enter the boreholes during an intense rainfall event.
- Stockpiles should be placed within the designated storage area and protected by berms (height of the containment barriers should be at least 450 mm) such that they cannot be mobilised into the pan.
- Stormwater plans should be updated after one year of operation.

Note: Formalised stormwater drainage is not required due to the flat terrain, low rainfall and location of the proposed operation within the salt pan. This should be reassessed after a year of operation when the stormwater plan is updated.

7 Conclusions

7.1 Hydrogeology

Based on the hydrogeology data and borehole test results presented in this report, we conclude that:

- The site contains sufficient groundwater resources to satisfy the water demand of the proposed Annesley Salt mine. The other salt mines and water users in the Quaternary catchment would not have any significant identified impacts. Therefore, from a hydrogeological perspective, there are no obvious or known reasons why a water use licence for abstraction of 105 300 m³/a of brine from the three boreholes on the mine property should not be issued to Annesley Salt.
- No other groundwater users near the Annesley Salt site were identified that could be negatively impacted by the proposed development, nor have any significant or unacceptable impacts, or cumulative impacts, on the local aquifer been identified.

- Pumping tests results indicate that boreholes at Bloupan (HN1, HN2 and HN3), can sustainably supply sufficient quantities of water to satisfy the Annesley Salt mine's brine demand of 105 300 m³/a for the life of mine at sustainable pumping rates.
- Chemical analyses indicates that the groundwater from all three boreholes tested is hypersaline and is classified as brine (TDS >225 000 mg/L), and unfit for any human or animal consumption, or for irrigation purposes. However, the groundwater is ideal for brine supply to the salt mine in the salt pan.

7.2 Hydrology

Based on the hydrology assessment presented in this report, we conclude that:

- The salt pan is almost certainly within an isolated, evaporative catchment.
- Rainfall is low, and comes predominantly in the form of isolated or scattered thundershowers.
- The catchment in general is permeable (referring to the sand dune cover) hence any surface water will infiltrate and ponding in the salt pan will be a rare occurrence.
- The project will generally have impacts of low significance on surface water.
- Altering large portions of the bed and banks may cause a moderate environmental impact if no mitigations measures are implemented.

8 Recommendations

8.1 Hydrogeology

The recommendations arising from the borehole investigations are:

- 1. Bloupan-HN1 can be pumped at 3 L/s for a 24 h/day schedule, or at 4 L/s for a 12 h/day schedule.
- 2. Bloupan-HN2 can be pumped at 3 L/s for a 24 h/day schedule, or at 4 L/s for a 12 h/day schedule.
- 3. Bloupan-HN3 can be pumped at 1 L/s for a 24 h/day schedule, or at 1.4 L/s for a 12 h/day schedule
- 4. The minimum pump installation depth for Bloupan-HN1, HN2, and HN3 should be at 20 mbgl.
- 5. Expected pumped water levels for Bloupan-HN1, HN2 and HN3 to be approximately 15 mbgl.
- 6. A flow meter (preferably a magflow meter) to measure total water use should be installed at each borehole.
- 7. The water level in the boreholes should be measured and recorded at regular intervals by means of a dipmeter. Alternatively, automatic dataloggers may be installed in the boreholes to record the water level at pre-set intervals of (e.g. hourly).
- 8. A sample of the raw brine pumped from the boreholes should be collected annually, and submitted to an accredited laboratory for macro chemical, and trace metal analysis.
- 9. A low-level cut-off switch should be installed *c*.2 m above each pump intake.
- 10. A water use licence needs to be obtained from the DWS.

8.2 Hydrology

The main recommendations arising from the hydrology study are as follows:

- 1. All non-essential infrastructure should be located outside of the salt pan to minimise disturbance to the bed and banks.
- 2. Staff should access only the portions of the salt pan that it is necessary to access for operations, avoiding establishing multiple access routes/roads.

Other recommendations, in summary, include:

- 1. Onsite sanitation facilities are appropriately designed, are well maintained and serviced regularly during construction and operation.
- 2. Oil and fuel from storage, maintenance and handling (e.g. vehicles) and any hazardous substances are well managed such that spills and leaks do not contaminate the environment.

Prepared By

SRK Consulting - Certified Electronic Signature S 528347/43243/Report 5149-9202-4710-VISS This signature has been printed digitally. The Author has use for this document. The details are stored in the SRK

Desmond Visser *Pr Sci Nat* Principal Hydrogeologist & Associate Partner

SRK Consulting - Certified Electronic Signature 528347/43242/Reno 765-4274-3959-INDUE

This signature has been privated digitally. The Author has given permission for is use for this document. The details are stored in the SRK Signature Database

Daniell du Preez, *MEng* Engineering Geologist

Reviewed By

SRK Consulting - Certified Electronic Signature 1422-6970-7584-EN This signature has been crinted digitally. The Author has given permissi use for this document. The details are stored in the SRK Signature Data

Bruce Engelsman *Pr Eng Pr CPM*. Partner

All data used as source material plus the text, tables, figures, and attachments of this document have been reviewed and prepared in accordance with generally accepted hydrogeological and hydrological practices.

9 References

Council for Geoscience, (1988). 1:250 000 scale Geological Series 2720 Noenieput.

- Department of Water Affairs and Forestry, (2001). 1: 500 000 Scale Hydrogeological Map Sheet 2718 Upington / Alexander Bay.
- Department of Water Affairs and Forestry, (2005). *Groundwater Resource Assessment Phase* 2. Reports 2C and 3E. Pretoria.
- Department of Water Affairs and Forestry, (2004). *Revision of General Authorisations in Terms of Section 39 of the National Water Act, 1998.* Government Gazette no. 26187, Government Notice No. 399, 26 March 2004.
- Department of Water Affairs, (2012). Extension of the Time Period for a General Authorisation Published in Terms of Section 39 of the National Water Act, 1998 (Act No 36 Of 1998) to 30 June 2012. Published under Government Notice 498 in Government Gazette 35477 of 28 June 2012.
- Department of Water and Sanitation (2016). National Water Act, 1998 (Act No. 36 Of 1998), Revision of General Authorisation for the Taking and Storing of Water. Notice 538 of 2016 published in Government Gazette No. 40243 of 2 September 2016.
- Gorven, M.J., (2002). *Design Rainfall Software, Design rainfall estimation in South Africa*. Water Research Commission and the University of Natal Research Fund.
- De Marsily, G., (1986). *Quantitative Hydrogeology: Groundwater Hydrology for Engineers*. 1st Edition. ISBN: 9780122089169. Published Date: 9 May 1986
- SA Soutwerke, (date unknown). Scoping report for mining area: Portion 148 (A portion of portion 59)(Vrysoutpan) of Kalahari Wes 251, Gordonia. Suid Afrikaanse Soutwerke Pty Ltd.
- SABS (2015). South African National Standard for Mixing Water for Concrete. SANS 241:2015.
- SABS (2006). South African National Standard for Drinking Water. SANS 51008:2006.
- Smithers, J.C. and Schulze, R.E. (2002). *Design Rainfall and Flood Estimation in South Africa*. Water Research Commission and the University of Natal Research Fund.
- SRK Consulting, (Nov. 2004). *Stand van Grondwaterbronne in Die Mier Gebied*. Unpublished SRK report No. 342995v1, compiled for the Mier Municipality.
- The Engineering Toolbox, (2016). *Salinity of Water*. Downloaded on 12 December 2016 from http://www.engineeringtoolbox.com/water-salinity-d_1251.html.
- Van Tonder, G, Bardenhagen, I, Riemann, K, Van Bosch, J, Dzanga, P and Xu, Y, (2002). Manual on Pumping Test Analysis in Fractured-Rock Aquifers. WRC Report No. 1116/1/02, ISBN No. 1 86845 861 X.

Appendix A: Water Use Registrations for D42D

Page 36

Water Resource Use Registrations in D42D - received from the DWS on 18 Nov 2016

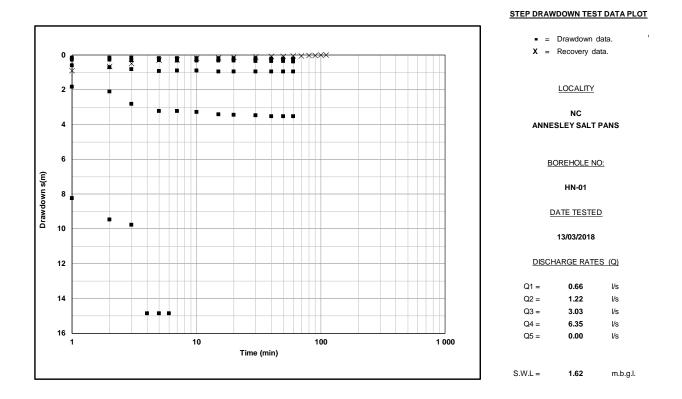
DWS Office Name	Catchment Code	WU Sector	Resource Type	Latitude	Longitude	Registered Volume (m³/a)
LOWER ORANGE - NORTHERN CAPE UPINGTON OFFICE	D42D	MINING	BOREHOLE	-27.74811	20.73167	10 800
LOWER ORANGE - NORTHERN CAPE UPINGTON OFFICE	D42D	MINING	BOREHOLE	-27.87420	20.90788	2 000
LOWER ORANGE - NORTHERN CAPE UPINGTON OFFICE	D42D	MINING	BOREHOLE	-27.63320	20.49265	38 538
LOWER ORANGE - NORTHERN CAPE UPINGTON OFFICE	D42D	MINING	BOREHOLE	-27.67810	20.88902	10 800
LOWER ORANGE - NORTHERN CAPE UPINGTON OFFICE	D42D	MINING	BOREHOLE	-27.62000	20.53000	2 000
LOWER ORANGE - NORTHERN CAPE UPINGTON OFFICE	D42D	MINING	BOREHOLE	-27.35411	20.82953	129 821
LOWER ORANGE - NORTHERN CAPE UPINGTON OFFICE	D42D	MINING	BOREHOLE	-27.84467	20.88981	21 600
LOWER ORANGE - NORTHERN CAPE UPINGTON OFFICE	D42D	MINING	BOREHOLE	-27.44532	20.43640	20 000
LOWER ORANGE - NORTHERN CAPE UPINGTON OFFICE	D42D	MINING	BOREHOLE	-27.85850	20.90650	2 000
LOWER ORANGE - NORTHERN CAPE UPINGTON OFFICE	D42D	MINING	BOREHOLE	-27.74125	20.74885	2 000
LOWER ORANGE - NORTHERN CAPE UPINGTON OFFICE	D42D	MINING	BOREHOLE	-27.72964	20.74158	10 800
LOWER ORANGE - NORTHERN CAPE UPINGTON OFFICE	D42D	MINING	BOREHOLE	-27.85360	20.89975	2 000
LOWER ORANGE - NORTHERN CAPE UPINGTON OFFICE	D42D	MINING	BOREHOLE	-27.86970	20.90876	2 000
LOWER ORANGE - NORTHERN CAPE UPINGTON OFFICE	D42D	AGRICULTURE: IRRIGATION	BOREHOLE	-26.97642	20.70647	4 500
Total						258 859
Mining						254 359

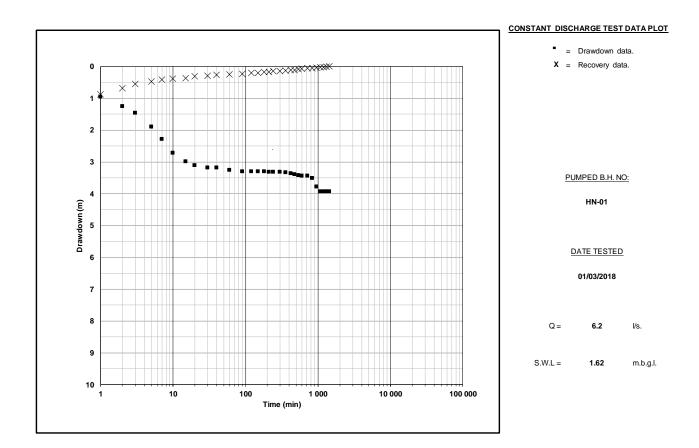
Appendix B: Pump Test Data Sheets and Graphs

Telephone: 043-732 1211

Copyright subsists in this work. No part of this work may be reproduced in any form or by any means without the publisher's written permission. Any unauthorised reproduction of this work will constitute a copyright infringement and render the doer liable under both civil and criminal law.

Abbreviations


Fax no: 043-732 1 Fax to e-mail: 086 E mail: office@abp	7 732		μS/cm	Abbreviations Electrical conductivity Meters below ground level Meters below datum level Meters abelow datum level Utres per second Rates per minute Static water level Microsièmens per centimeter LETEST REC	CORD			Ground water soluti	AB PLIMPS ons t/a AB Pumps CC	
									PR0JECT # BBR	P1947
CONSULTANT:		SRK							BBR	
DISTRICT:		NOENIEPUT						-		
PROVINCE:		NC						-	PRODUCTION BONUS:	
FARM / VILLAGE NAME :		ANNESLEYSA	LT PANS					-		
DATE TESTED:		13/03/2018						-	EC meter number	
MAP REFERENCE:										
CO-ORDINATES:					_					
FORMAT ON	I GPS:	hddd	°mm	ss.s			hddd	°mm.mmm		hddd.dddd
		27	° 35 '	41.9				0		
	TUDE:	21				OR		o	OR	
LONG						_			-	
BOREHOLE NO:		HN-01				-				
TRANSMISSIVITY VALUE:		OPEN				-				
BOREHOLE DEPTH: (mbgl)		26.80				-				
						-				
COMMENTS:										
SAMPLE INSTRUCTIONS :				•						•
Water sample taken		Yes	No		Test for:		macro	bacterio-logical	DATA CAPTURED BY:	AVN
Date sample taken				If cor	nsultant took sample, give	name:			DATA CHECKED BY:	AVN
Time sample taken										
CONSULTANT GUIDELINES			1			1		1	1	1
BOREHOLE DEPTH:		m	STE	EP 1:		l/s	WATER STRIKE 1:			m
BLOW YIELD:		m		EP 2:		l/s	WATER STRIKE 2:			m
STATIC WATER LEVEL:		m		EP 3:		l/s	WATER STRIKE 3:			m
PUMP INSTALLATION DEPTH: RECOVERY:		m		EP 4: EP 5:		l/s l/s	COMMENTS:			
AFTER STEPS:		h		EP 6:		l/s		BERS PHONE : (NAME &	TEL)	
AFTER CONSTANT:		h		URATION:		min			/	
DESCRIPTION:			UNIT	QTY					UNIT	QTY
STRAIGHTNESS TEST:			NO		BOREHOLE DEPTH AFTER T	EST:			M	26.00
VERTICALLY TEST:			NO		BOREHOLE WATER LEVEL A		(mbch)		м	1.9
CASING DETECTION:			NO		SAND/GRAVEL/SILT PUMPED		. ,		YES/NO	0
SUPPLIED NEW STEEL BORE	HOLE	COVER:	NO	0	DATA REPORTING AND REC	ORDING			NO	1
BOREHOLE MARKING			NO	0	SLUG TEST:				NO	0
SITE CLEANING & FINISHING			NO	1	LAYFLAT (M):				м	50
LOGGERS FOR WATERLEVEL	L MONIT	TORING	NO	0	LOGGERS FOR pH AND EC:				NO	0
It is hereby acknowledged				ting equipm						
DESIGNATION:					31		:			
			-					_		


	Grou		LE TEST CON tions t/a AB P				
Borehole number:	HN		Old / Alternativ				
Contractor:	AB PL		Supervisor:	ve number.			
Operator:	ABTO		Rig number &				
		FXISTING		Type lig.			
Type pump Dep	oth Condition	Drive unit	Condition	Pump house	Condition	B	emarks
	Condition	Drive unit	Condition	r unp nouse	Condition		emarka
		TESTING					
Pump type	Depth installe		Date & time (started)	Date & time (con	nleted)	
	· · ·	.50	T ·	18 10H08		ipieteu)	
			TEPTEST DE				
STEP		on (Min)		ERY (MIN)	YIELD	(L/S)	DRAWDOWN (m)
1	6	0			0.66	l/s	0.21
2	6	0			1.22	l/s	0.37
3	6	0			3.03	l/s	0.95
4		0			6.35	l/s	3.54
5		7	2	40	9.87	l/s	14.83
6						l/s	
7 °					<u> </u>	l/s	
8 Calibration:						l/s l/s	
TOTAL:	2/	47	2	40	21.13	l/s	19.90
COMMENT:	2	T1		-0	21.15	1/3	19.50
	CON	STANT RATE	DISCHARGE	TEST			
Pump type	Depth installe	ed (m)	Date & time (started)	Date & time (con	npleted)	
0	18	.50	01/03/2018	18H28			
Yield I/s	Drawdown (r	n)	Duration (mi	n)	Recovery (min)		
0.10	2						
6.16	3.	94	14	140		1440	
6.16 Total: (Multi-rate and C COMMENT:		-	1	687		1440 1680	
Total: (Multi-rate and C	onstant Discharge rat	-	MAINTENAN	687 CE	Travelling (To fix);	-	Km
Total: (Multi-rate and C COMMENT: Work time:	hour	e) Transport exis	16 MAINTENAN sting equipm.	287 <u>CE</u> Km		1680	I
Total: (Multi-rate and C COMMENT: Work time: List of parts replaced c	hour br repaired:	e) Transport exis nber	MAINTENAN sting equipm.	287 CE Km	Travelling (To fix); Drawdown (m)	1680	Distance (m)
Total: (Multi-rate and C COMMENT: Work time: List of parts replaced of Observation Hole 1	hour bor repaired: Borehole nur	e) Transport exis nber -02	MAINTENAN sting equipm. Duration (min SEE	n) CONSTANT		1680	Distance (m)
Total: (Multi-rate and C COMMENT: Work time: List of parts replaced of Observation Hole 1 Observation Hole 2	hour bor repaired: Borehole nur	e) Transport exis nber	MAINTENAN sting equipm. Duration (min SEE	287 CE Km		1680	Distance (m) 127.6 185.9
Total: (Multi-rate and C COMMENT: Work time: List of parts replaced of Observation Hole 1 Observation Hole 2 Observation Hole 3	hour bor repaired: Borehole nur	e) Transport exis nber -02	MAINTENAN sting equipm. Duration (min SEE	n) CONSTANT		1680	Distance (m) 127.6 185.9
Total: (Multi-rate and C COMMENT: Work time: List of parts replaced of Observation Hole 1 Observation Hole 2 Observation Hole 3 Observation Hole 4	hour bor repaired: Borehole nur	e) Transport exis nber -02	MAINTENAN sting equipm. Duration (min SEE	n) CONSTANT		1680	Distance (m) 127.6 185.9
Total: (Multi-rate and C COMMENT: Work time: List of parts replaced of Observation Hole 1 Observation Hole 2 Observation Hole 3	hour bor repaired: Borehole nur	e) Transport exis nber -02 -03	MAINTENAN sting equipm. Duration (min SEE SEE	n) CONSTANT		1680	I
Total: (Multi-rate and C COMMENT: Work time: List of parts replaced of Observation Hole 1 Observation Hole 2 Observation Hole 3 Observation Hole 4 Observation Hole 5	hour bor repaired: Borehole nur HN HN	e) Transport exis nber -02 -03	MAINTENAN sting equipm. Duration (min SEE SEE SEE ERAL	n) CONSTANT		1680	Distance (m) 127.6 185.9
Total: (Multi-rate and C COMMENT: Work time: List of parts replaced of Observation Hole 1 Observation Hole 2 Observation Hole 3 Observation Hole 4	hour bor repaired: Borehole nur HN HN From:	e) Transport exis nber -02 -03 <u>GEN</u>	MAINTENAN sting equipm. Duration (min SEE SEE ERAL To:	n) CONSTANT DATA DATA		1680	Distance (m) 127.6 185.9
Total: (Multi-rate and C COMMENT: Work time: List of parts replaced of Observation Hole 1 Observation Hole 2 Observation Hole 3 Observation Hole 3 Observation Hole 5 ESTABLISHMENT	hour bour bor repaired: Borehole nur HN HN From: From project#	e) Transport exis nber -02 -03 <u>GEN</u>	MAINTENAN MAINTENAN Sting equipm. Duration (min SEE SEE ERAL To: To: To #:	CE Km n) CONSTANT DATA DATA DATA	Drawdown (m)	1680	Distance (m) 127.6 185.9
Total: (Multi-rate and C COMMENT: Work time: List of parts replaced of Observation Hole 1 Observation Hole 2 Observation Hole 3 Observation Hole 3 Observation Hole 5 ESTABLISHMENT	hour bor repaired: Borehole nur HN HN From:	e) Transport exis nber -02 -03 <u>GEN</u>	MAINTENAN MAINTENAN Sting equipm. Duration (min SEE SEE CERAL To: To: To: Village ANNESLEY	CE Km b) CONSTANT DATA DATA DATA P1947 Borehole no	Drawdown (m)	1680	Distance (m) 127.6 185.9
Total: (Multi-rate and C COMMENT: Work time: List of parts replaced of Observation Hole 1 Observation Hole 2 Observation Hole 3 Observation Hole 3 Observation Hole 5 ESTABLISHMENT	hour bour bor repaired: Borehole nur HN HN From: From project#	e) Transport exis nber -02 -03 <u>GEN</u>	MAINTENAN sting equipm. Duration (min SEE SEE SEE To: To: To: To #: Village	CE Km n) CONSTANT DATA DATA DATA	Drawdown (m)	1680	Distance (m) 127.6 185.9
Total: (Multi-rate and C COMMENT: Work time: List of parts replaced of Observation Hole 1 Observation Hole 2 Observation Hole 3 Observation Hole 3 Observation Hole 5 ESTABLISHMENT Site Move	hour bour bour bor repaired: Borehole nur HN HN HN From: From: From project# Village Work time hr	e) Transport exis nber -02 -03 <u>GEN</u>	MAINTENAN sting equipm. Duration (min SEE SEE SEE To: To: To: To #: Village ANNESLEY SALT PANS Pans	CE Km b) CONSTANT DATA DATA DATA P1947 Borehole no HN-01	Drawdown (m)	1680	Distance (m) 127.6 185.9
Total: (Multi-rate and C COMMENT: Work time: List of parts replaced of Observation Hole 1 Observation Hole 2 Observation Hole 3 Observation Hole 3 Observation Hole 5 ESTABLISHMENT Site Move Maintenance: After test measuremen Water level before insta	hour br repaired: Borehole nur HN HN From: From project# Village Work time hr ats Water level alling test pump: (mbc	e) Transport exis nber -02 -03 <u>GEN</u> Borehole no 1.90	MAINTENAN sting equipm. Duration (min SEE SEE SEE To: To: To: To: To: Village ANNESLEY SALT PANS Parts repaired/ molecod	CE Km b) CONSTANT DATA DATA DATA P1947 Borehole no HN-01 26.00	Drawdown (m)	1680	Distance (m) 127.6 185.9
Total: (Multi-rate and C COMMENT: Work time: List of parts replaced of Observation Hole 1 Observation Hole 2 Observation Hole 3 Observation Hole 3 Observation Hole 5 ESTABLISHMENT Site Move Maintenance: After test measuremen	hour br repaired: Borehole nur HN HN From: From project# Village Work time hr ats Water level alling test pump: (mbc	e) Transport exis nber -02 -03 <u>GEN</u> Borehole no 1.90	MAINTENAN MAINTENAN Sting equipm. Duration (min SEE SEE SEE To: To: To: To: To: Village ANNESLEY SALT PANS Parts repaired/ monbroad Borehole depth	CE Km b) CONSTANT DATA DATA DATA P1947 Borehole no HN-01 26.00	Drawdown (m)	1680	Distance (m) 127.6 185.9
Total: (Multi-rate and C COMMENT: Work time: List of parts replaced of Observation Hole 1 Observation Hole 2 Observation Hole 3 Observation Hole 3 Observation Hole 5 ESTABLISHMENT Site Move Maintenance: After test measuremen Water level before insta	hour br repaired: Borehole nur HN HN From: From project# Village Work time hr ats Water level alling test pump: (mbc	e) Transport exis mber -02 -03 <u>GEN</u> Borehole no 1.90 h)	MAINTENAN sting equipm. Duration (min SEE SEE SEE CONTROL SEE CONTROL SEE C	CE Km b) CONSTANT DATA DATA DATA P1947 Borehole no HN-01 26.00	Drawdown (m)	1680	Distance (m) 127.6 185.9
Total: (Multi-rate and C COMMENT: Work time: List of parts replaced of Observation Hole 1 Observation Hole 2 Observation Hole 3 Observation Hole 3 Observation Hole 5 ESTABLISHMENT Site Move Maintenance: After test measuremen Water level before installing	hour bor repaired: Borehole nur HN HN From project# Village Work time hr tts Water level alling test pump: (mbc test pump: Once /Twice	e) Transport exis mber -02 -03 <u>GEN</u> Borehole no 1.90 h)	MAINTENAN sting equipm. Duration (min SEE SEE SEE ERAL To: To #: Village ANNESLEY SALT PANS Parts repaired/ Borehole depth 1.9 26.80	CE Km b) CONSTANT DATA DATA DATA P1947 Borehole no HN-01 26.00	Drawdown (m)	1680	Distance (m) 127.6 185.9
Total: (Multi-rate and C COMMENT: Work time: List of parts replaced of Observation Hole 1 Observation Hole 2 Observation Hole 3 Observation Hole 3 Observation Hole 4 Observation Hole 5 ESTABLISHMENT Site Move Maintenance: After test measuremen Water level before installing Testpump Installed	hour br repaired: Borehole nur HN HN From: From project# Village Work time hr Work time hr tts Water level alling test pump: (mbc test pump: Once /Twice / <10 l/s / >1	e) Transport exis nber -02 -03 <u>GEN</u> Borehole no 1.90 h)	MAINTENAN sting equipm. Duration (min SEE SEE ERAL To: To #: Village ANNESLEY SALT PANS Pans repaired/ Borehole depth 1.9 26.80 Reason:	CE Km b) CONSTANT DATA DATA DATA P1947 Borehole no HN-01 26.00	Drawdown (m)	1680	Distance (m) 127.6 185.9
Total: (Multi-rate and C COMMENT: Work time: List of parts replaced of Observation Hole 1 Observation Hole 2 Observation Hole 3 Observation Hole 3 Observation Hole 4 Observation Hole 5 ESTABLISHMENT Site Move Maintenance: After test measuremen Water level before installing Testpump Installed Installed Testpump	hour br repaired: Borehole nur HN HN From: From project# Village Work time hr Work time hr tts Water level alling test pump: (mbc test pump: Once /Twice / <10 l/s / >1	e) Transport exis nber -02 -03 <u>GEN</u> Borehole no 1.90 h)	MAINTENAN sting equipm. Duration (min SEE SEE ERAL To: To #: Village ANNESLEY SALT PANS Pans repaired/ Borehole depth 1.9 26.80 Reason:	CE Km b) CONSTANT DATA DATA DATA P1947 Borehole no HN-01 26.00	Drawdown (m)	1680	Distance (m) 127.6 185.9

528347_Annesley Salt Mine_Hydrogeology & Hydrology Impact Assessment_Report_ Final_20180611

PROJ NO : BOREHOLE N ALT BH NO: ALT BH NO: BOREHOLE D WATER LEVEL	10:	P1947 HN-01		MAP REFER	ENCE:	0				PROVI	NCE:	NC		
BOREHOLE D		0								DISTRI SITE N	EPUT	LT PANS		
	DEPTH (m)	0	26.80		DATUMLE	EVEL ABOVE	E CASIN	G (m):	0.40	EXISTI	NG PUMP:			
DEPTH OF PU	. ,		2.32 18.50			IEIGHT: (ma 1P INLET (m	• •		0.30 165.00	CONTF PUMP	RACTOR:	AB PUN 0	NPS	
				S	TEPPED D	DISCHARG	1							
DISCHARGE F			RPM			GE RATE 2		RPM			ARGE RATE		RPM	
DATE: TIME	01/03/2018 DRAW	TIME: YIELD	10H08 TIME	RECOVERY	DATE: TIME	01/03/2018 DRAW	TIME: YIELD	11H08 TIME	RECOVERY	DATE: TIME	01/03/201 DRAW	TIME: YIELD	12H08 TIME	RECOVER
MIN)		(L/S)	(MIN)	(M)	(MIN)	DOWN (M)		(MIN)	(M)	(MIN)	DOWN (M)		(MIN)	(M)
1	0.15		1		1	0.26	1.02	1		1	0.59	1.36	1	
2	0.15		2		2	0.26		2		2	0.72	2.17	2	
3	0.17		3		3	0.31	1.15	3		3	0.83		3	
5	0.18		5		5	0.31	4.00	5		5	0.92	3.02	5	
<u>/</u> 10	0.18	0.63	7 10		7 10	0.33	1.22	7 10		7 10	0.91	3.03	7 10	
15	0.18	0.00	15		10	0.33	1.22	15		15	0.91	3.03	15	
20	0.19	0.66	20		20	0.33	1.22	20		20	0.95	0.01	20	
30	0.20		30		30	0.36		30		30	0.95	3.04	30	
40	0.21	0.66	40		40	0.36	1.20	40		40	0.95	3.05	40	
50	0.21		50		50	0.36		50		50	0.95		50	
60	0.21	0.66	60		60	0.37	1.21	60		60	0.95		60	ļ
70			70		70			70		70			70	
80			80		80			80		80			80	
90			90		90			90		90			90	
100			100		100			100		100			100	
110 120			110 120		110 120			110 120		110 120			110 120	
pH			150		pH			150		pH			150	
TEMP		°C	180		ТЕМР		°C	180		TEMP		°C	180	
EC		µS/cm	210		EC		μS/cm	210		EC		μS/cm	210	
DISCHARGE F	RATE 4		RPM		DISCHAR	GE RATE 5		RPM		DISCH	ARGE RATE		RPM	
DATE:	01/03/2018	TIME:	13H08		DATE:	01/03/2018	TIME:	14H08		DATE:	•	TIME:		
TIME	DRAW	YIELD	TIME	RECOVERY	TIME	DRAW	YIELD	TIME		TIME	DRAW	YIELD	TIME	RECOVER
(MIN)	DOWN (M)	(L/S)	(MIN)	(M)	(MIN)	DOWN (M)	(L/S)	(MIN)	(M)	(MIN)	DOWN (M)	(L/S)	(MIN)	(M)
1	1.84	5.35	1		1	8.24		1	0.90	1			1	
2	2.10		2		2	9.48	10.14			2			2	
3	2.82	6.36	3		3 5	9.76	0.07	3	0.49	3 F			3	
5 7	3.23 3.22	6.35	5 7		5 7	14.86 14.86	9.87 9.83	5 7	0.31	5 7			5 7	
10	3.22	6.36	, 10		/ PI	14.86	9.67	, 10	0.27	, 10			, 10	
15	3.42	0.00	15			14.00	5.07	15	0.15	15			15	
20	3.45	6.36	20		l	1		20	0.13	20			20	1
30	3.48		30					30	0.11	30			30	
40	3.53	6.37	40					40	0.09	40			40	
50	3.53	6.38	50					50	0.07	50			50	
60	3.54		60					60	0.05	60			60	
70			70					70	0.04	70			70	ļ
30			80					80	0.03	80			80	
90			90					90		90			90	
100			100					100	0.01	100			100	
110 120			110 120			<u> </u>		110 120	0.01	110 120			110 120	
л <u>го</u> оН			120		pН			120		120 pH			120	
рн ГЕМР		°C	150		рн ТЕМР	<u> </u>	°C	150		рн ТЕМР		°C	150	
EC		μS/cm	210		EC		μS/cm	210		EC		μS/cm	210	
			240			1		240					240	
			300		l	1		300					300	1
	1		360	İ	1	1		360	i		1	1	360	1

				FORM 5	-							
				NT DISCHAR	GE TES	T & RECOV	/ERY					
PROJ	HOLE TEST R	P1947	SHEET	MAP REFER	ENCE.	0			PROVINCE		NC	
	IOLE NO:	HN-01			LITOL.	0			DISTRICT:		NOENI	EPUT
ALT BH	-	0							SITE NAME	:		SLEY SALT PANS
ALT BH		0					,	0.40				
	HOLE DEPTH: R LEVEL (mbdl)	26.80 : 2.33		DATUMLEVI CASING HE			n):	0.40 0.30	EXISTING I		0 AB PUI	IPS
	OF PUMP (m):			DIAMPUMP				165	PUMP TYP		0	VIF 5
	ANT DISCHARC	SE TEST &	RECOVER		``							
TEST S	TARTED	1	1	TEST COMP		1	1					
DATE:	01/03/2018	TIME:	18H28		DATE:		TIME:		TYPE OF P	UMP:		0
						VATION HOI	_E 1		ATION HOLI	Ξ2	8	VATION HOLE 3
	DISCHARGE B		-		NR:	o(m);		NR:	(m);		NR:	aa (m) :
TIME	DRAW	YIELD	TIME	RECOVERY	Distance TIME:	Drawdown	Recovery	Distance TIME:	Drawdown	Recovery	Distant TIME:	Drawdown
(MIN)	DOWN (M)	(L/S)	MIN	(M)	(min)	m	(m)	(min)	(m)	Recovery	(min)	(m)
1	0.95		1	0.88	1			1			1	
2	1.26	4.66	2	0.68	2			2			2	
3 5	1.46 1.90	5.56	3 5	0.55	3 5			3 5			3 5	
7	2.28	6.13	5 7	0.48	7			5 7			5 7	
10	2.72	6.17	10	0.38	10			10			10	
15	2.99		15	0.37	15			15			15	
20	3.11	6.17	20	0.31	20			20			20	
30 40	3.18 3.18	6.17	30 40	0.30	30 40			30 40			30 40	
40 60	3.18	0.17	60	0.26	40 60			40 60			40 60	
90	3.30	6.16	90	0.23	90			90			90	
120	3.30	6.16	120	0.21	120			120			120	
150	3.31		150	0.20	150			150			150	
180 210	3.31 3.32	6.16	180 210	0.18	180 210			180 210			180 210	
240	3.32	6.17	240	0.17	240			240			240	
300	3.32		300	0.14	300			300			300	
360	3.33	6.16	360	0.13	360			360			360	
420	3.36	0.40	420	0.12	420			420			420	
480 540	3.40 3.42	6.13 6.17	480 540	0.11	480 540			480 540			480 540	
600	3.44	0.17	600	0.03	600			600			600	
720	3.44	6.15	720	0.06	720			720			720	
840	3.51		840	0.05	840			840			840	
960 1080	3.79 3.94	6.11	960 1080	0.04	960 1080			960 1080			960 1080	
1200	3.94	6.17	1200	0.03	1200			1200			1200	
1320	3.94	6.17	1320	0.01	1320			1320			1320	
1440	3.94	6.17	1440	0.00	1440			1440			1440	
1560			1560	-	1560			1560			1560	
1680 1800			1680 1800	+	1680 1800		<u> </u>	1680 1800			1680 1800	
1920			1920		1920			1920			1920	
2040			2040		2040			2040			2040	
2160			2160		2160			2160			2160	ļ
2280 2400			2280 2400		2280 2400			2280 2400			2280 2400	
2400 2520		-	2400		2400 2520			2400			2400	
2640		1	2640		2640		<u> </u>	2640			2640	
2760			2760		2760			2760			2760	
2880			2880		2880			2880			2880	
3000 3120			3000 3120		3000 3120			3000 3120			3000 3120	
3120			3120		3120			3120			3120	
3360		L	3360		3360			3360			3360	
3480			3480		3480			3480			3480	
3600			3600		3600			3600			3600	
3720			3720		3720			3720			3720	
3840 3960			3840 3960		3840 3960			3840 3960			3840 3960	
4080		1	4080		4080			4080			4080	
4200			4200		4200			4200			4200	
4320 Total fir			4320	1.1.10	4320	14//1		4320	\A//I		4320)A//I
	me pumped(mi e yield (l/s):	n):		1440 6.17		W/L			W/L			W/L
/ weray	- yioiu (1/3).			0.17	L		I	I	1	I	I	

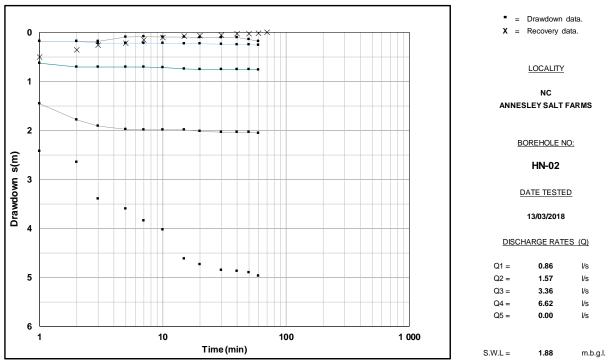
DUPD/VISS/adax/enge

Telephone: 043-732 1211

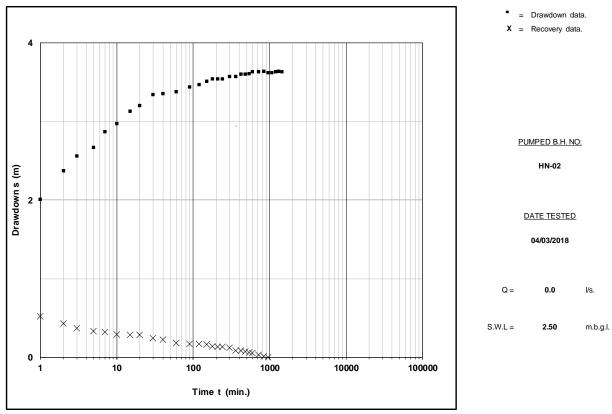
Copyright subsists in this work. No part of this work may be reproduced in any form or by any means without the publisher's written permission. Any unauthorised reproduction of this work wil constitute a copyright infringement and render the doer liable under both civil and criminal law.

Abbreviations

Fax no: 043-732 1422 Electrical conductivity EC Fax to e-mail: 0866 717 732 mbgl Meters below ground level E mail: office@abpumps.co.za mbch Meters below casing height mbdl Meters below datum level PUMPS magl Meters above ground level L/S Litres per second RPM Rates per minute s/w/L Static water level μS/cm Microsiemens per centimeter **BOREHOLE TEST RECORD** Ground water solutions t/a AB Pumps CC P1947 PR0JECT # BBR CONSULTANT: SRK CPT DISTRICT: NOENIEPUT PRODUCTION BONUS PROVINCE: NC ANNESLEY SALT FARMS FARM / VILLAGE NAME : DATE TESTED: EC meter number 13/03/2018 MAP REFERENCE: CO-ORDINATES: FORMAT ON GPS: hddd °mm 'ss.s hddd °mm.mmm hddd.ddddd **27 ° 35 '** 43.5 " LATITUDE: OR OR . 29 ' 41.0 20 ° LONGITUDE: HN-02 BOREHOLE NO: TRANSMISSIVITY VALUE: OPEN TYPE INSTALLATION: BOREHOLE DEPTH: (mbgl) 35.35 COMMENTS: SAMPLE INSTRUCTIONS Water sample taken No Test for: bacterio-logical DATA CAPTURED BY: Yes macro If consultant took sample, give name: DATA CHECKED BY: Date sample taken Time sample taken CONSULTANT GUIDELINES BOREHOLE DEPTH: m STEP 1: Vs. WATER STRIKE 1 BLOW YIELD: STEP 2: Vs. WATER STRIKE 2 m STATIC WATER LEVEL m STEP 3: Vs. WATER STRIKE 3 PUMP INSTALLATION DEPTH: m STEP 4: ٧s COMMENTS: RECOVERY: STEP 5: **V**s AFTER STEPS: h STEP 6: **V**s TELEPHONE NUMBERS PHONE : (NAME & TEL) AFTER CONSTANT: STEP DURATION: h min DESCRIPTION: UNIT QTY UNIT ΟΤΥ STRAIGHTNESS TEST: NO BOREHOLE DEPTH AFTER TEST: м 35.35 0 VERTICALLY TEST: NO 0 BOREHOLE WATER LEVEL AFTER TEST: (mbch) м 1.88 CASING DETECTION: NO SAND/GRAVEL/SILT PUMPED? YES/NO 0 1 SUPPLIED NEW STEEL BOREHOLE COVER: NO 0 DATA REPORTING AND RECORDING NO 1 BOREHOLE MARKING NO 0 SLUG TEST: NO 0 SITE CLEANING & FINISHING NO 1 LAYFLAT (M): м 50 LOGGERS FOR WATERLEVEL MONITORING NO LOGGERS FOR pH AND EC: 0 NO 0 t is hereby acknowledged that upon leaving the site, all existing equipment is in an acceptable condition. NAME: SIGNATURE: DESIGNATION: DATE:


	Grou		LE TEST CON				
Borehole number:		-02	Old / Alternativ				
Contractor:	AB PL		Supervisor:				
Operator:	, ABT (Rig number &				
		FXISTING		Type lig.			
Type pump Dep	oth Condition	Drive unit	Condition	Pump house	Condition	B	emarks
		2	Condition		Condition		
I		TESTING		1	1	1	
Pump type	Depth install		Date & time (started)	Date & time (con	npleted)	
	•	.50		18 08H00			
			STEPTEST DE				
STEP		ON (MIN)	i	ERY (MIN)	YIELD	(L/S)	DRAWDOWN (m
1	6	0			0.86	l/s	0.18
2	6	0	12	0.00	1.57	l/s	0.26
3	6	0			3.36	l/s	0.76
4		0			6.62	l/s	2.06
5	6	0			10.87	l/s	4.97
6						l/s	
7						l/s	
8 Oslihastisau						l/s	
Calibration:		0	· ·	20	22.22	l/s	0.00
TOTAL: COMMENT:	31	00	1	20	23.28	l/s	8.23
	CON	STANT RATE	DISCHARGE	TEST			
Pump type	Depth install		Date & time (Date & time (con	npleted)	
0	•	.50	04/03/2018	15H03		ipiotou)	
Yield I/s	Drawdown (r		Duration (mi		Recovery (min)		
8.22	· · · ·	63		140		960	
Total: (Multi-rate and C	-			740		1080	
Moule time			MAINTENAN	CE			
Work time: List of parts replaced of	hour or repaired:	Transport exis		<u>CE</u> Km	Travelling (To fix);		Km
	or repaired:		sting equipm.	Km			
List of parts replaced o	or repaired: Borehole nur	nber	sting equipm.	Km n) CONSTANT	Travelling (To fix); Drawdown (m)	Hand/logger	Distance (m)
List of parts replaced of Observation Hole 1	or repaired: Borehole nur HN	nber 101	Duration (mi	Km n) CONSTANT DATA		Hand/logger	Distance (m)
List of parts replaced of Observation Hole 1 Observation Hole 2	or repaired: Borehole nur HN	nber	Duration (mi	Km n) CONSTANT		Hand/logger	Distance (m) 127. 58.
List of parts replaced of Observation Hole 1 Observation Hole 2 Observation Hole 3	or repaired: Borehole nur HN	nber 101	Duration (mi	Km n) CONSTANT DATA		Hand/logger	Distance (m) 127.0 58.3
List of parts replaced of Observation Hole 1 Observation Hole 2 Observation Hole 3 Observation Hole 4	or repaired: Borehole nur HN	nber 101	Duration (mi	Km n) CONSTANT DATA		Hand/logger	Distance (m) 127.0 58.3
List of parts replaced of Observation Hole 1 Observation Hole 2 Observation Hole 3	or repaired: Borehole nur HN	nber 101 103	Duration (min SEE SEE	Km n) CONSTANT DATA		Hand/logger	
List of parts replaced of Observation Hole 1 Observation Hole 2 Observation Hole 3 Observation Hole 4 Observation Hole 5	or repaired: Borehole nur HN HN	nber 101 103	Duration (min SEE SEE SEE ERAL	Km n) CONSTANT DATA		Hand/logger	Distance (m) 127.6 58.3
List of parts replaced of Observation Hole 1 Observation Hole 2 Observation Hole 3 Observation Hole 4 Observation Hole 5 ESTABLISHMENT	Pr repaired: Borehole nur HN HN From:	nber 101 103 <u>GEN</u>	Duration (min SEE SEE ERAL To:	Km n) CONSTANT DATA DATA	Drawdown (m)	Hand/logger	Distance (m) 127. 58.
List of parts replaced of Observation Hole 1 Observation Hole 2 Observation Hole 3 Observation Hole 4 Observation Hole 5	or repaired: Borehole nui HN HN From: From project#	nber 101 103 <u>GEN</u>	Duration (min SEE SEE SEE ERAL To: To #:	CONSTANT DATA DATA DATA		Hand/logger	Distance (m) 127. 58.
List of parts replaced of Observation Hole 1 Observation Hole 2 Observation Hole 3 Observation Hole 4 Observation Hole 5 ESTABLISHMENT	Pr repaired: Borehole nur HN HN From:	nber 101 103 <u>GEN</u>	Sting equipm. Duration (min SEE SEE SEE Interview ERAL To: To: Village ANNESLEY SALT	P1947 Borehole no	Drawdown (m)	Hand/logger	Distance (m) 127. 58.
List of parts replaced of Observation Hole 1 Observation Hole 2 Observation Hole 3 Observation Hole 4 Observation Hole 5 ESTABLISHMENT	or repaired: Borehole nui HN HN From: From project#	nber 101 103 <u>GEN</u>	Sting equipm. Duration (min SEE SEE SEE ERAL To: To #: Village ANNESLEY	CONSTANT DATA DATA DATA	Drawdown (m)	Hand/logger	Distance (m) 127. 58.
List of parts replaced of Observation Hole 1 Observation Hole 2 Observation Hole 3 Observation Hole 3 Observation Hole 5 ESTABLISHMENT Site Move Maintenance: After test measuremer	br repaired: Borehole nui HIN HIN From: From project# Village Work time hr tts Water level	nber 101 103 GEN Borehole no	Sting equipm. Duration (min SEE SEE SEE SEE To: To: To: Vilage ANNESLEY SALT FARMS Parts Parts Borehole depth	P1947 Borehole no HN-02 35.35	Drawdown (m)	Hand/logger	Distance (m) 127. 58.
List of parts replaced of Observation Hole 1 Observation Hole 2 Observation Hole 3 Observation Hole 3 Observation Hole 5 ESTABLISHMENT Site Move Maintenance: After test measuremer Water level before inst	Pr repaired: Borehole nui Hh Hh From: From project# Village Work time hr tts Water level alling test pump: (mbc	nber 101 103 GEN Borehole no	Duration (min SEE SEE SEE ERAL To: To #: Village ANNESLEY SALT FARMS Fants repaired/ molecod Borehole depth 1.88	Km n) CONSTANT DATA DATA DATA P1947 Borehole no HN-02 35.35	Drawdown (m)		Distance (m) 127. 58.
List of parts replaced of Observation Hole 1 Observation Hole 2 Observation Hole 3 Observation Hole 3 Observation Hole 4 Observation Hole 5 ESTABLISHMENT Site Move Maintenance: After test measuremen Water level before installing	br repaired: Borehole num HN HN From: From: From project# Village Work time hr tts Water level alling test pump: (mbc test pump:	nber 101 103 <u>GEN</u> Borehole no 1.88 h)	Duration (min SEE SEE SEE ERAL To: To #: Village ANNESLEY SALT FARMS Parts repaired/ moleced Borehole depth 1.88 35.35	Km n) CONSTANT DATA DATA DATA P1947 Borehole no HN-02 35.35	Drawdown (m)		Distance (m) 127. 58.
List of parts replaced of Observation Hole 1 Observation Hole 2 Observation Hole 3 Observation Hole 4 Observation Hole 5 ESTABLISHMENT Site Move Maintenance: After test measuremen Water level before installing Testpump Installed	br repaired: Borehole num HN HN From: From project# Village Work time hr ts Water level alling test pump: (mbc test pump: Once /Twice	nber 101 103 <u>GEN</u> Borehole no 1.88 h)	buration (min SEE SEE SEE ERAL To: To #: Village ANNESLEY SALT FARMS repaired/ Borehole depth 1.88 35.35 Reason:	Km n) CONSTANT DATA DATA DATA P1947 Borehole no HN-02 35.35	Drawdown (m)		Distance (m) 127. 58.
List of parts replaced of Observation Hole 1 Observation Hole 2 Observation Hole 3 Observation Hole 3 Observation Hole 5 ESTABLISHMENT Site Move Maintenance: After test measuremen Water level before installing Testpump Installed Installed Testpump	br repaired: Borehole nui HN HN From: From project# Village Work time hr ts Water level alling test pump: (mbc test pump: Once /Twice 1	nber 101 103 <u>GEN</u> Borehole no 1.88 h) /More 0ls/s	Duration (min SEE SEE SEE ERAL To: To #: Village ANNESLEY SALT FARMS Parts repaired/ moleced Borehole depth 1.88 35.35	Km n) CONSTANT DATA DATA DATA P1947 Borehole no HN-02 35.35	Drawdown (m)		Distance (m) 127. 58.
List of parts replaced of Observation Hole 1 Observation Hole 2 Observation Hole 3 Observation Hole 3 Observation Hole 5 ESTABLISHMENT Site Move Maintenance: After test measuremer Water level before inst Depth before installing Testpump Installed Installed Testpump Was existing equipme	br repaired: Borehole nui HN HN From: From project# Village Work time hr ts Water level alling test pump: (mbc test pump: Once /Twice 1	nber 101 103 <u>GEN</u> Borehole no 1.88 h)	buration (min SEE SEE SEE ERAL To: To #: Village ANNESLEY SALT FARMS repaired/ Borehole depth 1.88 35.35 Reason:	Km n) CONSTANT DATA DATA DATA P1947 Borehole no HN-02 35.35	Drawdown (m)		Distance (m) 127. 58.
List of parts replaced of Observation Hole 1 Observation Hole 2 Observation Hole 3 Observation Hole 3 Observation Hole 5 ESTABLISHMENT Site Move Maintenance: After test measuremen Water level before installing Testpump Installed Installed Testpump	br repaired: Borehole nui HN HN From: From project# Village Work time hr ts Water level alling test pump: (mbc test pump: Once /Twice 1	nber 101 103 <u>GEN</u> Borehole no 1.88 h) /More 0ls/s	buration (min SEE SEE SEE ERAL To: To #: Village ANNESLEY SALT FARMS repaired/ Borehole depth 1.88 35.35 Reason:	Km n) CONSTANT DATA DATA DATA P1947 Borehole no HN-02 35.35	Drawdown (m)		Distance (m) 127. 58.

528347_Annesley Salt Mine_Hydrogeology & Hydrology Impact Assessment_Report_ Final_20180611


				OTES			RM 5	_							
				STEPPED I	DISCHARC	GE TEST &	RECO	VERY							
BOREHOLE	TEST RECO		HEET												
		P1947		MAP REFER	ENCE:	0						NC NOENI			
BOREHOLE N ALT BH NO:	NU:	HN-02 0								DISTRI SITE N		NOENI	EPUI		
ALT BH NO:		0									-uvi∟.	ANNES	SLEY SA	_T FARMS	
BOREHOLE	DEPTH (m)	-	35.35		DATUMLE	EVEL ABOV	E CASIN	IG (m):	0.38	EXISTI	NG PUMP:	0			
NATER LEVE	. ,		1.88			IEIGHT: (ma		()	0.09	CONTR	ACTOR:	AB PUN	<i>I</i> PS		
DEPTH OF PL	JMP (m):		30.50		DIAMPUN	/IP INLET (m	nm):		165.00	PUMP TYPE: 0					
				S		DISCHARG	E TEST		OVERY	-					
DISCHARGE	RATE 1		RPM		DISCHAR	GE RATE 2		RPM		DISCH	ARGE RATE	3	RPM		
DATE:	08H00	TIME:	04/03/2	018	DATE:	09H00	TIME:	04/03/2	2018	DATE:	10H00	TIME:	04/03/2	018	
ΓIME	DRAW	YIELD	TIME	RECOVERY		DRAW	YIELD	TIME	RECOVERY	TIME	DRAW	YIELD	TIME	RECOVE	
(MIN)	DOWN (M)	(L/S)	(MIN)	(M)	(MIN)	DOWN (M)	(L/S)	(MIN)	(M)	(MIN)	DOWN (M)	(L/S)	(MIN)	(M)	
	0.18		1		1	0.18	1.20	1		1	0.63	2.97	1		
2	0.18	0.86	2		2	0.18		2		2	0.71		2		
3	0.18	0.00	3		3	0.22	1.57	3		3	0.71	3.33	3		
		0.04	-				1.57	5		5		5.55	-		
5	0.09	0.81	5		5	0.22		-	-	-	0.71		5	-	
,	0.08		7		7	0.22	1.57	7		7	0.71	3.36	7	<u> </u>	
0	0.09	0.82	10		10	0.22		10		10	0.72		10		
15	0.09		15		15	0.23	L	15		15	0.74	3.38	15		
20	0.10	0.82	20		20	0.23	1.59	20		20	0.75		20		
30	0.10		30		30	0.24		30		30	0.75	3.39	30		
10	0.10	0.82	40		40	0.25	1.59	40		40	0.75	-	40		
50	0.14	0.02	50		40 50	0.25	1.00	50		40 50	0.75	3.41	50	l	
		0.00	50 60		50 60			50 60		50 60	0.75	3.41	50 60		
60	0.18	0.82				0.26					0.76				
70			70		70			70		70			70		
30			80		80			80		80			80		
90			90		90			90		90			90		
00			100		100			100		100			100		
110			110		110			110		110			110		
120			120		120			120		120			120		
oH 			150		pН			150	-	pН			150		
TEMP		°C	180		TEMP		°C	180		TEMP		°C	180		
EC		µS/cm	210		EC		µS/cm	210		EC		µS/cm	210		
DISCHARGE	RATE 4		RPM		DISCHAR	GE RATE 5		RPM		DISCH	ARGE RATE	6	RPM		
		TIME:	04/03/2	018	DATE:	12H00	TIME:	05/03/2	2018	DATE:		TIME:			
DATE:	11H00	T IIVI∟.	1												
DATE: TIME	11H00 DRAW	YIELD	TIME	RECOVERY	TIME	DRAW	YIELD	TIME	RECOVERY	TIME	DRAW	YIELD	TIME	RECOVER	
ГIME	1	YIELD	TIME (MIN)	RECOVERY (M)	TIME (MIN)	DRAW DOWN (M)		TIME (MIN)	RECOVERY (M)	TIME (MIN)	DRAW DOWN (M)		TIME (MIN)	RECOVER (M)	
ГIME	DRAW DOWN (M)	YIELD (L/S)			(MIN)	DOWN (M)			(M)				(MIN)		
fime Min)	DRAW DOWN (M) 1.45	YIELD	(MIN) 1		(MIN) 1	DOWN (M) 2.42	(L/S)	(MIN) 1	(M) 0.50	(MIN) 1			(MIN) 1		
FIME MIN) I	DRAW DOWN (M) 1.45 1.78	YIELD (L/S) 5.66	(MIN) 1 2		(MIN) 1 2	DOWN (M) 2.42 2.65	(L/S)	(MIN) 1 2	(M) 0.50 0.36	(MIN) 1 2			(MIN) 1 2		
FIME MIN) L 2 3	DRAW DOWN (M) 1.45 1.78 1.91	YIELD (L/S)	(MIN) 1 2 3		(MIN) 1 2 3	DOWN (M) 2.42 2.65 3.40	(L/S) 7.79	(MIN) 1 2 3	(M) 0.50 0.36 0.26	(MIN) 1 2 3			(MIN) 1 2 3		
ГІМЕ MIN) 2 3 5	DRAW DOWN (M) 1.45 1.78 1.91 1.98	YIELD (L/S) 5.66 6.59	(MIN) 1 2 3 5		(MIN) 1 2 3 5	DOWN (M) 2.42 2.65 3.40 3.60	(L/S)	(MIN) 1 2 3 5	(M) 0.50 0.36 0.26 0.22	(MIN) 1 2 3 5			(MIN) 1 2 3 5		
ГІМЕ MIN) 2 3 5	DRAW DOWN (M) 1.45 1.78 1.91	YIELD (L/S) 5.66	(MIN) 1 2 3		(MIN) 1 2 3	DOWN (M) 2.42 2.65 3.40	(L/S) 7.79 9.00	(MIN) 1 2 3 5 7	(M) 0.50 0.36 0.26	(MIN) 1 2 3			(MIN) 1 2 3		
FIME MIN) 1 2 3 3 5 7	DRAW DOWN (M) 1.45 1.78 1.91 1.98	YIELD (L/S) 5.66 6.59	(MIN) 1 2 3 5		(MIN) 1 2 3 5	DOWN (M) 2.42 2.65 3.40 3.60	(L/S) 7.79	(MIN) 1 2 3 5	(M) 0.50 0.36 0.26 0.22	(MIN) 1 2 3 5			(MIN) 1 2 3 5		
FIME	DRAW DOWN (M) 1.45 1.78 1.91 1.98 1.99	YIELD (L/S) 5.66 6.59	(MIN) 1 2 3 5 7		(MIN) 1 2 3 5 7	DOWN (M) 2.42 2.65 3.40 3.60 3.84	(L/S) 7.79 9.00 9.84	(MIN) 1 2 3 5 7	(M) 0.50 0.36 0.26 0.22 0.15	(MIN) 1 2 3 5 7			(MIN) 1 2 3 5 7		
FIME	DRAW DOWN (M) 1.45 1.78 1.91 1.98 1.99 1.99 1.99	YIELD (L/S) 5.66 6.59 6.62	(MIN) 1 2 3 5 7 10		(MIN) 1 2 3 5 7 10 15	DOWN (M) 2.42 2.65 3.40 3.60 3.84 4.03 4.62	(L/S) 7.79 9.00 9.84 10.87	(MIN) 1 2 3 5 7 10 15	(M) 0.50 0.36 0.26 0.22 0.15 0.10 0.07	(MIN) 1 2 3 5 7 10 15			(MIN) 1 2 3 5 7 10 15		
TIME MIN) 2 2 3 3 5 7 7 10 15 5 20	DRAW DOWN (M) 1.45 1.78 1.91 1.98 1.99 1.99 1.99 2.02	YIELD (L/S) 5.66 6.59 6.62 6.63	(MIN) 1 2 3 5 7 10 15 20		(MIN) 1 2 3 5 7 10 15 20	DOWN (M) 2.42 2.65 3.40 3.60 3.84 4.03 4.62 4.74	(L/S) 7.79 9.00 9.84	(MIN) 1 2 3 5 7 10 15 20	(M) 0.50 0.36 0.26 0.22 0.15 0.10 0.07 0.06	(MIN) 1 2 3 5 7 10 15 20			(MIN) 1 2 3 5 7 10 15 20		
TIME MIN) 2 2 3 3 5 5 7 7 0 1 5 5 20 30	DRAW DOWN (M) 1.45 1.78 1.91 1.98 1.99 1.99 1.99 2.02 2.04	YIELD (L/S) 5.66 6.59 6.62	(MIN) 1 2 3 5 7 10 15 20 30		(MIN) 1 2 3 5 7 10 15 20 30	DOWN (M) 2.42 2.65 3.40 3.60 3.84 4.03 4.62 4.74 4.85	(L/S) 7.79 9.00 9.84 10.87 11.04	(MIN) 1 2 3 5 7 10 15 20 30	(M) 0.50 0.36 0.26 0.22 0.15 0.10 0.07 0.06 0.05	(MIN) 1 2 3 5 7 10 15 20 30			(MIN) 1 2 3 5 7 10 15 20 30		
TIME MIN) 2 2 3 3 5 5 7 0 0 15 5 20 30 80 40	DRAW DOWN (M) 1.45 1.78 1.91 1.98 1.99 1.99 1.99 2.02 2.04 2.04	YIELD (L/S) 5.66 6.59 6.62 6.63 6.64	(MIN) 1 2 3 5 7 10 15 20 30 40		(MIN) 1 2 3 5 7 10 15 20 30 40	DOWN (M) 2.42 2.65 3.40 3.60 3.84 4.03 4.62 4.74 4.85 4.87	(L/S) 7.79 9.00 9.84 10.87	(MIN) 1 2 3 5 7 10 15 20 30 40	(M) 0.50 0.36 0.26 0.22 0.15 0.10 0.07 0.06 0.05 0.03	(MIN) 1 2 3 5 7 10 15 20 30 40			(MIN) 1 2 3 5 7 10 15 20 30 40		
TIME	DRAW DOWN (M) 1.45 1.78 1.91 1.98 1.99 1.99 1.99 2.02 2.04 2.04 2.04 2.04	YIELD (L/S) 5.66 6.59 6.62 6.63	(MIN) 1 2 3 5 7 10 15 20 30 40 50		(MIN) 1 2 3 5 7 10 15 20 30 40 50	DOWN (M) 2.42 2.65 3.40 3.60 3.84 4.03 4.62 4.74 4.85 4.87 4.90	(L/S) 7.79 9.00 9.84 10.87 11.04 11.19	(MIN) 1 2 3 5 7 10 15 20 30 40 50	(M) 0.50 0.36 0.26 0.22 0.15 0.10 0.07 0.06 0.05 0.03 0.03	(MIN) 1 2 3 5 7 10 15 20 30 40 50			(MIN) 1 2 3 5 7 10 15 20 30 40 50		
TIME	DRAW DOWN (M) 1.45 1.78 1.91 1.98 1.99 1.99 1.99 2.02 2.04 2.04	YIELD (L/S) 5.66 6.59 6.62 6.63 6.64	(MIN) 1 2 3 5 7 10 15 20 30 40 50 60		(MIN) 1 2 3 5 7 10 15 20 30 40 50 60	DOWN (M) 2.42 2.65 3.40 3.60 3.84 4.03 4.62 4.74 4.85 4.87	(L/S) 7.79 9.00 9.84 10.87 11.04	(MIN) 1 2 3 5 7 10 15 20 30 40 50 60	(M) 0.50 0.36 0.26 0.22 0.15 0.10 0.07 0.06 0.05 0.03	(MIN) 1 2 3 5 7 10 15 20 30 40 50 60			(MIN) 1 2 3 5 7 10 15 20 30 40 50 60		
TIME	DRAW DOWN (M) 1.45 1.78 1.91 1.98 1.99 1.99 1.99 2.02 2.04 2.04 2.04 2.04	YIELD (L/S) 5.66 6.59 6.62 6.63 6.64	(MIN) 1 2 3 5 7 10 15 20 30 40 50		(MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70	DOWN (M) 2.42 2.65 3.40 3.60 3.84 4.03 4.62 4.74 4.85 4.87 4.90	(L/S) 7.79 9.00 9.84 10.87 11.04 11.19	(MIN) 1 2 3 5 7 10 15 20 30 40 50	(M) 0.50 0.36 0.26 0.22 0.15 0.10 0.07 0.06 0.05 0.03 0.03	(MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70			(MIN) 1 2 3 5 7 10 15 20 30 40 50		
TIME MIN) 2 3 5 5 7 7 0 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5	DRAW DOWN (M) 1.45 1.78 1.91 1.98 1.99 1.99 1.99 2.02 2.04 2.04 2.04 2.04	YIELD (L/S) 5.66 6.59 6.62 6.63 6.64	(MIN) 1 2 3 5 7 10 15 20 30 40 50 60		(MIN) 1 2 3 5 7 10 15 20 30 40 50 60	DOWN (M) 2.42 2.65 3.40 3.60 3.84 4.03 4.62 4.74 4.85 4.87 4.90	(L/S) 7.79 9.00 9.84 10.87 11.04 11.19	(MIN) 1 2 3 5 7 10 15 20 30 40 50 60	(M) 0.50 0.36 0.22 0.15 0.10 0.07 0.06 0.05 0.03 0.03 0.02	(MIN) 1 2 3 5 7 10 15 20 30 40 50 60			(MIN) 1 2 3 5 7 10 15 20 30 40 50 60		
TIME MIN) 2 3 5 7 0 0 5 5 5 5 5 5 5 5 6 0 5 6 0 5 6 0 5 6 0 5 6 6 6 7 0 5 6 7 0 5 6 7 6 7 6 7 6 7 7 6 7 7 7 7 7 7 7 7 7	DRAW DOWN (M) 1.45 1.78 1.91 1.98 1.99 1.99 1.99 2.02 2.04 2.04 2.04 2.04	YIELD (L/S) 5.66 6.59 6.62 6.63 6.64	(MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70		(MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70	DOWN (M) 2.42 2.65 3.40 3.60 3.84 4.03 4.62 4.74 4.85 4.87 4.90	(L/S) 7.79 9.00 9.84 10.87 11.04 11.19	(MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70	(M) 0.50 0.36 0.22 0.15 0.10 0.07 0.06 0.05 0.03 0.03 0.02	(MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70			(MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70		
TIME MIN) 2 3 5 7 0 0 5 5 5 20 5 5 5 5 5 5 5 5 5 5 5 5 5	DRAW DOWN (M) 1.45 1.78 1.91 1.98 1.99 1.99 1.99 2.02 2.04 2.04 2.04 2.04	YIELD (L/S) 5.66 6.59 6.62 6.63 6.64	(MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90		(MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90	DOWN (M) 2.42 2.65 3.40 3.60 3.84 4.03 4.62 4.74 4.85 4.87 4.90	(L/S) 7.79 9.00 9.84 10.87 11.04 11.19	(MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90	(M) 0.50 0.36 0.22 0.15 0.10 0.07 0.06 0.05 0.03 0.03 0.02	(MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90			(MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80		
TIME MIN) 2 3 5 7 0 0 5 5 5 20 5 5 5 5 5 5 5 5 5 5 5 5 5	DRAW DOWN (M) 1.45 1.78 1.91 1.98 1.99 1.99 1.99 2.02 2.04 2.04 2.04 2.04	YIELD (L/S) 5.66 6.59 6.62 6.63 6.64	(MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 100		(MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 100	DOWN (M) 2.42 2.65 3.40 3.60 3.84 4.03 4.62 4.74 4.85 4.87 4.90	(L/S) 7.79 9.00 9.84 10.87 11.04 11.19	(MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 100	(M) 0.50 0.36 0.22 0.15 0.10 0.07 0.06 0.05 0.03 0.03 0.02	(MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 100			(MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 100		
TIME	DRAW DOWN (M) 1.45 1.78 1.91 1.98 1.99 1.99 1.99 2.02 2.04 2.04 2.04 2.04	YIELD (L/S) 5.66 6.59 6.62 6.63 6.64	(MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 100 110 110		(MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 100 110	DOWN (M) 2.42 2.65 3.40 3.60 3.84 4.03 4.62 4.74 4.85 4.87 4.90	(L/S) 7.79 9.00 9.84 10.87 11.04 11.19	(MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 100 110 110	(M) 0.50 0.36 0.22 0.15 0.10 0.07 0.06 0.05 0.03 0.03 0.02	(MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 100 110			(MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 100 110 110		
TIME MIN) 2 3 5 7 0 0 5 5 5 20 5 5 5 5 5 5 5 5 5 5 5 5 5	DRAW DOWN (M) 1.45 1.78 1.91 1.98 1.99 1.99 1.99 2.02 2.04 2.04 2.04 2.04	YIELD (L/S) 5.66 6.59 6.62 6.63 6.64	(MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 100 110 120		(MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 100 110 120	DOWN (M) 2.42 2.65 3.40 3.60 3.84 4.03 4.62 4.74 4.85 4.87 4.90	(L/S) 7.79 9.00 9.84 10.87 11.04 11.19	(MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 100 110 120	(M) 0.50 0.36 0.22 0.15 0.10 0.07 0.06 0.05 0.03 0.03 0.02	(MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 100 110 120			(MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 100 110 120		
TIME MIN) 2 3 5 7 0 5 5 5 5 5 5 5 5 5 5 5 6 0 5 5 5 6 0 6 0	DRAW DOWN (M) 1.45 1.78 1.91 1.98 1.99 1.99 1.99 2.02 2.04 2.04 2.04 2.04	YIELD (L/S) 5.66 6.59 6.62 6.63 6.64 6.64	((MIN)) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 100 110 120 150		(MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 100 110 120 pH	DOWN (M) 2.42 2.65 3.40 3.60 3.84 4.03 4.62 4.74 4.85 4.87 4.90	(L/S) 7.79 9.00 9.84 10.87 11.04 11.19 11.20	(MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 100 110 120 150	(M) 0.50 0.36 0.22 0.15 0.10 0.07 0.06 0.05 0.03 0.03 0.02	(MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 100 110 120 pH			(MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 100 110 120 150		
TIME MIN) 2 3 5 7 0 5 5 5 5 5 5 5 5 5 5 5 6 0 5 5 5 6 0 6 0	DRAW DOWN (M) 1.45 1.78 1.91 1.98 1.99 1.99 1.99 2.02 2.04 2.04 2.04 2.04	YIELD (L/S) 5.66 6.59 6.62 6.63 6.64	(MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 100 110 120		(MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 100 110 120 pH TEMP	DOWN (M) 2.42 2.65 3.40 3.60 3.84 4.03 4.62 4.74 4.85 4.87 4.90	(L/S) 7.79 9.00 9.84 10.87 11.04 11.19	(MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 100 110 120	(M) 0.50 0.36 0.22 0.15 0.10 0.07 0.06 0.05 0.03 0.03 0.02	(MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 100 110 120			(MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 100 110 120		
TIME MIN) 2 3 5 7 0 5 5 5 5 5 5 5 6 0 5 5 6 0 5 6 0 6 0 6	DRAW DOWN (M) 1.45 1.78 1.91 1.98 1.99 1.99 1.99 2.02 2.04 2.04 2.04 2.04	YIELD (L/S) 5.66 6.59 6.62 6.63 6.64 6.64	((MIN)) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 100 110 120 150		(MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 100 110 120 pH	DOWN (M) 2.42 2.65 3.40 3.60 3.84 4.03 4.62 4.74 4.85 4.87 4.90	(L/S) 7.79 9.00 9.84 10.87 11.04 11.19 11.20	(MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 100 110 120 150	(M) 0.50 0.36 0.22 0.15 0.10 0.07 0.06 0.05 0.03 0.03 0.02	(MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 100 110 120 pH			(MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 100 110 120 150		
	DRAW DOWN (M) 1.45 1.78 1.91 1.98 1.99 1.99 1.99 2.02 2.04 2.04 2.04 2.04	YIELD (L/S) 5.66 6.59 6.62 6.63 6.64 6.64 6.64	((MIN)) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 100 110 120 150 180		(MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 100 110 120 pH TEMP	DOWN (M) 2.42 2.65 3.40 3.60 3.84 4.03 4.62 4.74 4.85 4.87 4.90	(L/S) 7.79 9.00 9.84 10.87 11.04 11.19 11.20	(MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 100 110 120 150 180	(M) 0.50 0.36 0.22 0.15 0.10 0.07 0.06 0.05 0.03 0.03 0.02	(MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 100 110 120 pH TEMP		(L/S)	(MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 100 110 120 150 180		
TIME MIN) 1 2 3 3 5 7 7 10 15 5 7 10 15 5 20 30 30 50 50 50 50 50 50 50 50 50 50 50 50 50	DRAW DOWN (M) 1.45 1.78 1.91 1.98 1.99 1.99 1.99 2.02 2.04 2.04 2.04 2.04	YIELD (L/S) 5.66 6.59 6.62 6.63 6.64 6.64 6.64	(MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 100 110 120 150 180 210		(MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 100 110 120 pH TEMP	DOWN (M) 2.42 2.65 3.40 3.60 3.84 4.03 4.62 4.74 4.85 4.87 4.90	(L/S) 7.79 9.00 9.84 10.87 11.04 11.19 11.20	(MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 100 110 120 150 180 210	(M) 0.50 0.36 0.22 0.15 0.10 0.07 0.06 0.05 0.03 0.03 0.02	(MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 100 110 120 pH TEMP		(L/S)	(MIN) 1 2 3 5 7 10 15 20 30 40 50 60 70 80 90 100 110 120 150 180 210		

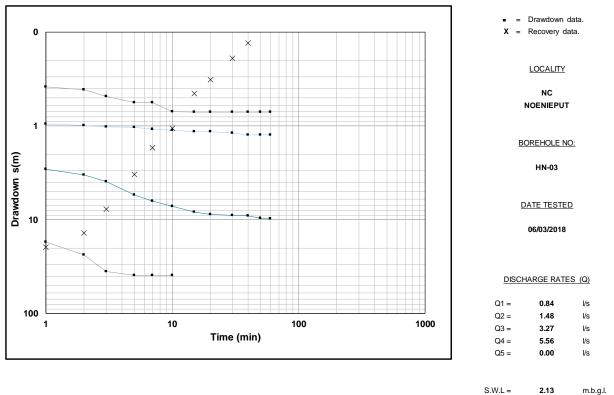
S/W/L:(mbch)

				FORM 5	=	·						
			CONSTAN	IT DISCHAR		T & RECOV	/ERY					
BORE	HOLE TEST R	ECORD	SHEET						-			
PROJ		P1947		MAP REFER	ENCE:	0			PROVINCE		NC	
ALT BH	HOLE NO:	HN-02 0				0			DISTRICT: SITE NAME			EPUT SLEY SALT
ALTBH	-	0									FARMS	
	OLE DEPTH:	35.35		DATUMLEV	EL ABOV	E CASING (I	m):	0.38	EXISTING I	PUMP:	0	
	R LEVEL (mbdl):			CASING HE	IGHT: (m	nagl):	,	0.09	CONTRAC			<i>I</i> PS
	OF PUMP (m):			DIAM PUMP	INLET(m	m):		165	PUMP TYP	E:	0	
	ANT DISCHARG	EIESIO	RECOVERI	TEST COMP	FTFD							
												_
DATE:	04/03/2018	TIME:	15H02		DATE:	VATION HOI	TIME:	OBSERV	TYPE OF P		OPSEC	0 VATION HOLE 3
					NR:		I	NR:		= 2	NR:	VATION HOLE 3
	DISCHARGE B	OREHOLE			Distanc	e(m);		Distance	(m);		Distand	æ(m);
TIME	DRAW	YIELD	TIME	RECOVERY		Drawdown			Drawdown	Recovery		Drawdown
(MIN)	DOWN (M)	(L/S)	MIN	(M)	(min)	m	(m)	(min)	(m)		(min)	(m)
1 2	2.01 2.37		1	0.52	1 2		+	1			1 2	
3	2.56	7.74	3	0.43	3			3			3	
5	2.67		5	0.33	5			5			5	
7	2.87	8.05	7	0.32	7			7			7	
10 15	2.97 3.13	8.17	10 15	0.29	10 15			10 15			10 15	┨─────┤
20	3.13	8.20	20	0.28	20		<u> </u>	20			20	
30	3.34		30	0.24	30			30			30	
40	3.35	8.21	40	0.22	40			40			40	
60 90	3.38 3.44	8.22	60 90	0.18	60 90			60 90			60 90	
90 120	3.44	0.22	120	0.17	90 120			120			90 120	
150	3.51	8.22	150	0.16	150			150			150	<u> </u>
180	3.54	8.22	180	0.14	180			180			180	
210	3.54	0.00	210	0.13	210			210			210	
240 300	3.54 3.57	8.22	240 300	0.13	240 300			240 300			240 300	
360	3.57	8.23	360	0.08	360			360			360	
420	3.60	8.24	420	0.08	420			420			420	
480	3.60		480	0.07	480			480			480	
540 600	3.61 3.63	8.23 8.24	540 600	0.06	540 600			540 600			540 600	
720	3.63	0.24	720	0.03	720			720			720	
840	3.64		840	0.01	840			840			840	
960	3.62	8.22	960	0.00	960			960			960	
1080 1200	3.62 3.63	8.23	1080 1200		1080 1200			1080 1200			1080 1200	
1320	3.64	8.23	1320		1320			1320			1320	
1440	3.63		1440		1440			1440			1440	
1560			1560		1560			1560			1560	
1680 1800		-	1680 1800		1680 1800			1680 1800			1680 1800	
1920			1920		1920			1920			1920	
2040			2040		2040			2040			2040	
2160			2160		2160			2160			2160	
2280 2400			2280 2400		2280 2400			2280 2400			2280 2400	
2400			2400		2400 2520			2400			2400	
2640			2640		2640			2640			2640	
2760			2760		2760			2760			2760	
2880			2880		2880			2880			2880	
3000 3120		1	3000 3120		3000 3120			3000 3120			3000 3120	
3240			3240		3240			3240			3240	
3360			3360		3360			3360			3360	
3480			3480		3480			3480			3480	
3600 3720			3600 3720		3600 3720			3600 3720			3600 3720	
3720			3720		3720 3840			3720			3720	
3960			3960		3960			3960			3960	
4080			4080		4080			4080			4080	
4200 4320			4200 4320		4200 4320			4200 4320			4200 4320	
	l ne pumped(mii	n):	1320		4520	W/L		4520	W/L		-520	W/L
	e yield (l/s):	<u> </u>										

CONSTANT DISCHARGE TEST DATA PLOT

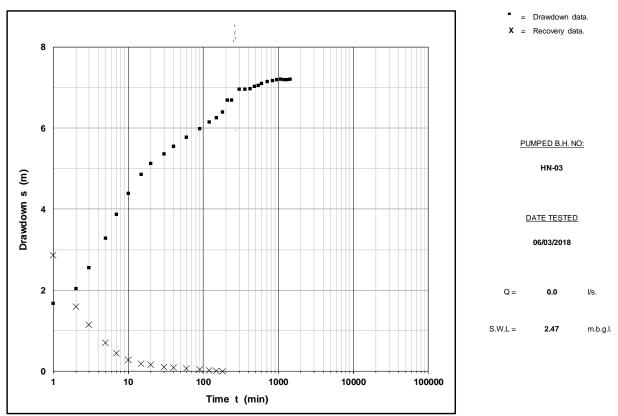
Copyright subsists in this work. No part of this work may be reproduced in any form or by any means without the publisher's written permission. Any unauthorised reproduction of this work will constitute a copyright infringement and render the doer liable under both civil and criminal law.

Telephone: 043-732 1 Fax no: 043-732 1422 Fax to e-mail: 0866 7' E mail: office@abpump	2 17 732		μS/cm	Abbreviations Electrical conductivity Meters below ground level Meters below casing height Meters above ground level Litres per second Rates per minute Static water level Microsiemens per centimeter LE TESST RECO	CORD	<u>1</u>		Ground water solution	AB Pumps CC
								PR0JECT #	P1947
								BBR	
CONSULTANT:	SRK CPT								
DISTRICT:	NOENIEPUT								
PROVINCE:	NC							PRODUCTION BONUS:	
FARM / VILLAGE NAME :	NOENIEPUT								
DATE TESTED:	06/03/2018							EC meter number	
MAP REFERENCE:									
CO-ORDINATES:									
FORMAT ON GPS:	hddd	°mm '	SS.S	п		hddd	°mm.mmm		hddd.ddddd
LATITUDE:	27	° 35 '	44.5	"			•	•	
LONGITUDE:	20	° 29 '	28.4	"	OR		0	OR	
BOREHOLE NO:	HN-03							_	
TRANSMISSIVITY VALUE:									
TYPE INSTALLATION:	OPEN								
BOREHOLE DEPTH: (mbgl)	46.60)							
COMMENTS:									
SAMPLE INSTRUCTIONS : Water sample taken	Yes	No		Test for:		macro	bacterio-logical	DATA CAPTURED BY:	AVN
Date sample taken	100	110	lf cor	nsultant took sample, give r		madro	bactorio logical	DATA CHECKED BY:	AVN
			11 COI	Isuitant took sample, give i	ame.			DATA CHECKED BI.	AVN
Time sample taken									
CONSULTANT GUIDELINES	1	1						1	
BOREHOLE DEPTH:	m		P 1:		l/s	WATER STRIKE 1:			m
BLOW YIELD:	m		P 2:		l/s	WATER STRIKE 2:			m
STATIC WATER LEVEL:	m		P 3:		l/s	WATER STRIKE 3:		1	m
PUMP INSTALLATION DEPTH:	m		P 4:		l/s	COMMENTS:			
RECOVERY:			P 5:		Vs.				
AFTER STEPS:	h		P 6:		l/s	TELEPHONE NUME	BERS PHONE : (NAME &	TEL)	
AFTER CONSTANT:	h	STEP DU	JRATION:		min			1	
DESCRIPTION:		UNIT	QTY					UNIT	QTY
STRAIGHTNESS TEST:		NO	0	BOREHOLE DEPTH AFTER TI	EST:			м	46.60
VERTICALLY TEST:		NO	0	BOREHOLE WATER LEVEL A	FTER TEST:	(mbch)		м	2.13
CASING DETECTION:		NO	PVC	SAND/GRAVEL/SILT PUMPED)?			YES/NO	0
SUPPLIED NEW STEEL BOREHOLE	COVER:	NO	0	DATA REPORTING AND RECO	ORDING			NO	1
BOREHOLE MARKING		NO	0	SLUG TEST:				NO	0
SITE CLEANING & FINISHING		NO	1	LAYFLAT (M):				м	50
LOGGERS FOR WATERLEVEL MONI	TORING	NO	0	LOGGERS FOR pH AND EC:				NO	0
It is hereby acknowledged that u			ting equipm						
NAME: DESIGNATION:				30					


		Grou		LE TEST CON tions t/a AB P							
Borehole number	r.	HN		Old / Alternativ							
Contractor:	1.	AB PL		Supervisor:	e number.						
Operator:				Rig number &							
			FXISTING		Type lig.						
Type pump	Depth	Condition	Drive unit	Condition	Pump house	Condition	R	emarks			
		<u> </u>									
Pump type		Depth installe	. /	Date & time (Date & time (con	npleted)				
		42		06/03/20	18 09H38						
STEP	P	7	ON (MIN)		ERY (MIN)	YIELD	(1/S)	DRAWDOWN (m)			
1			0		20	0.84	//s	0.71			
2			0		20	1.48	l/s	1.25			
3		-	0			3.27	l/s	9.78			
4			9			5.56	l/s	39.03			
5							l/s				
6							l/s				
7							l/s				
8							l/s				
Calibration:							l/s				
TOTAL:		18	39	1:	20	11.15	l/s	50.77			
COMMENT:											
				DISCHARGE							
Pump type		Depth installe	. /	Date & time (r (Date & time (con	npleted)				
0			.50	06/03/2018	15H32						
Yield I/s		Drawdown (n	n)	Duration (min	1)	Recovery (min)					
							180				
2.71		7.:			40						
2.71 Total: (Multi-rate a COMMENT:					440 629		180 300				
Total: (Multi-rate	and Constar	ht Discharge rat		MAINTENAN	629	Travelling (To fix);		Km			
Total: (Multi-rate a COMMENT: Work time:	and Constar	ht Discharge rat	e) Transport exis	16 MAINTENAN sting equipm.	29 <u>CE</u> Km	1	300	I			
Total: (Multi-rate a COMMENT: Work time: List of parts repla	and Constar	ht Discharge rat	e) Transport exis nber	16 MAINTENAN sting equipm.	<u>CE</u> Km	Travelling (To fix); Drawdown (m)		Distance (m)			
Total: (Multi-rate a COMMENT: Work time: List of parts repla	and Constan	ht Discharge rat hour ired: Borehole nur HN	e) Transport exis nber -01	MAINTENAN sting equipm. Duration (min SEE	CE Km h) CONSTANT DATA	1	300	Distance (m)			
Total: (Multi-rate a COMMENT: Work time: List of parts repla Observation Hole Observation Hole	and Constan aced or repa e 1 e 2	ht Discharge rat	e) Transport exis nber -01	MAINTENAN sting equipm. Duration (min SEE	<u>CE</u> Km	1	300	Distance (m) 185.9 58.3			
Total: (Multi-rate a COMMENT: Work time: List of parts repla Observation Hole Observation Hole	and Constan aced or repa e 1 e 2 e 3	ht Discharge rat hour ired: Borehole nur HN	e) Transport exis nber -01	MAINTENAN sting equipm. Duration (min SEE	CE Km h) CONSTANT DATA	1	300	Distance (m)			
Total: (Multi-rate a COMMENT: Work time: List of parts repla Observation Hole Observation Hole Observation Hole	and Constan aced or repa e 1 e 2 e 3 e 4	ht Discharge rat hour ired: Borehole nur HN	e) Transport exis nber -01	MAINTENAN sting equipm. Duration (min SEE	CE Km h) CONSTANT DATA	1	300	Distance (m) 185.9 58.3			
Total: (Multi-rate a COMMENT: Work time: List of parts repla Observation Hole Observation Hole	and Constan aced or repa e 1 e 2 e 3 e 4	ht Discharge rat hour ired: Borehole nur HN	e) Transport exis nber -01 -02	MAINTENAN sting equipm. Duration (min SEE SEE	CE Km h) CONSTANT DATA	1	300	Distance (m) 185.9 58.3			
Total: (Multi-rate a COMMENT: Work time: List of parts repla Observation Hole Observation Hole Observation Hole Observation Hole	and Constar aced or repa e 1 e 2 e 3 e 4 e 5	hour ired: Borehole nur HN HN	e) Transport exis nber -01 -02	MAINTENAN sting equipm. Duration (min SEE SEE SEE	CE Km h) CONSTANT DATA	1	300	Distance (m) 185.9 58.3			
Total: (Multi-rate a COMMENT: Work time: List of parts repla Observation Hole Observation Hole Observation Hole Observation Hole Observation Hole	and Constar aced or repa e 1 e 2 e 3 e 4 e 5	ht Discharge rat	e) Transport exis nber -01 -02	16 MAINTENAN sting equipm. Duration (min SEE SEE SEE SEE SEE SEE To:	CE Km b) CONSTANT DATA DATA	Drawdown (m)	300	Distance (m) 185.9 58.3			
Total: (Multi-rate a COMMENT: Work time: List of parts repla Observation Hole Observation Hole Observation Hole Observation Hole	and Constar aced or repa e 1 e 2 e 3 e 4 e 5	hour ired: Borehole nur HN HN	e) Transport exis nber -01 -02	MAINTENAN sting equipm. Duration (min SEE SEE SEE ERAL	CE Km h) CONSTANT DATA	1	300	Distance (m) 185.9 58.3			
Total: (Multi-rate a COMMENT: Work time: List of parts repla Observation Hole Observation Hole Observation Hole Observation Hole Observation Hole	and Constar aced or repa e 1 e 2 e 3 e 4 e 5	ht Discharge rat	e) Transport exis nber -01 -02 <u>GEN</u>	16 MAINTENAN sting equipm. Duration (min SEE SEE SEE To: To: To: Village	CE Km DATA DATA DATA P1947 Borehole no	Drawdown (m)	300	Distance (m) 185.9 58.3			
Total: (Multi-rate a COMMENT: Work time: List of parts repla Observation Hole Observation Hole Observation Hole Observation Hole Observation Hole	and Constar aced or repa e 1 e 2 e 3 e 4 e 5	ht Discharge rat	e) Transport exis nber -01 -02 <u>GEN</u>	MAINTENAN Sting equipm. Duration (min SEE SEE ERAL To: To: To #:	CE Km DATA DATA DATA P1947 Borehole no	Drawdown (m)	300	Distance (m) 185.9 58.3			
Total: (Multi-rate a COMMENT: Work time: List of parts repla Observation Hole Observation Hole Observation Hole Observation Hole Observation Hole ESTABLISHMEN Site Move	and Constan aced or repa e 1 e 2 e 3 e 4 e 5 NT	ht Discharge rat	e) Transport exis nber -01 -02 <u>GEN</u>	MAINTENAN sting equipm. Duration (min SEE SEE ERAL To: To: To #: Village NOENIEPUT Farts	CE Km b) CONSTANT DATA DATA DATA P1947 Borehole no HN-03	Drawdown (m)	300	Distance (m) 185.9 58.3			
Total: (Multi-rate a COMMENT: Work time: List of parts repla Observation Hole Observation Hole Observation Hole Observation Hole ESTABLISHMEN Site Move	and Constan aced or repa e 1 e 2 e 3 e 4 e 5 NT	ht Discharge rat	e) Transport exis nber -01 -02 <u>GEN</u> Borehole no 2.13	MAINTENAN Sting equipm. Duration (min SEE SEE To: To: To: To: To: To: Village NOENIEPUT Parts repaired/	CE Km DATA DATA DATA DATA P1947 Borehole no HN-03 46.60	Drawdown (m)	300	Distance (m) 185.9 58.3			
Total: (Multi-rate a COMMENT: Work time: List of parts repla Observation Hole Observation Hole Observation Hole Observation Hole Observation Hole ESTABLISHMEN Site Move Maintenance: After test measur	and Constan aced or repa e 1 e 2 e 3 e 4 e 5 NT rements re installing t	ht Discharge rat	e) Transport exis nber -01 -02 <u>GEN</u> Borehole no 2.13	MAINTENAN MAINTENAN Sting equipm. Duration (min SEE SEE SEE To: To: To: To: Village NOENIEPUT Parts repaired/ modeod Borehole depth	CE Km b) CONSTANT DATA DATA DATA P1947 Borehole no HN-03 46.60	Drawdown (m)	300	Distance (m) 185.9 58.3			
Total: (Multi-rate a COMMENT: Work time: List of parts repla Observation Hole Observation Hole Observation Hole Observation Hole Observation Hole Observation Hole Site Move	and Constant aced or repart e 1 e 2 e 3 e 4 e 5 NT rements ree installing t talling test p	ht Discharge rat	e) Transport exis nber -01 -02 GEN Borehole no 2.13 h)	MAINTENAN sting equipm. Duration (min SEE SEE SEE CONTROLOGIE ERAL To: To #: Village NOENIEPUT Parts repaired/ Borehole depth 2.13	CE Km b) CONSTANT DATA DATA DATA P1947 Borehole no HN-03 46.60	Drawdown (m)	300	Distance (m) 185.9 58.3			
Total: (Multi-rate a COMMENT: Work time: List of parts repla Observation Hole Observation Hole Observation Hole Observation Hole Observation Hole ESTABLISHMEN Site Move Maintenance: After test measur Water level befor Depth before inst	and Constan	ht Discharge rat	e) Transport exis nber -01 -02 GEN Borehole no 2.13 h)	MAINTENAN MAINTENAN Sting equipm. Duration (min SEE SEE C ERAL To: To #: Village NOENIEPUT Pans repaired/ Borehole depth 2.13 46.60 Reason:	CE Km b) CONSTANT DATA DATA DATA P1947 Borehole no HN-03 46.60	Drawdown (m)	300	Distance (m) 185.9 58.3			
Total: (Multi-rate a COMMENT: Work time: List of parts repla Observation Hole Observation H	and Constan	ht Discharge rat	e) Transport exis nber -01 -02 <u>GEN</u> Borehole no 2.13 h) /More	MAINTENAN MAINTENAN Sting equipm. Duration (min SEE SEE C ERAL To: To #: Village NOENIEPUT Pans repaired/ Borehole depth 2.13 46.60	CE Km b) CONSTANT DATA DATA DATA P1947 Borehole no HN-03 46.60	Drawdown (m)	300	Distance (m) 185.9 58.3			
Total: (Multi-rate a COMMENT: Work time: List of parts repla Observation Hole Observation Hole	and Constan	ht Discharge rat	e) Transport exis nber -01 -02 <u>GEN</u> Borehole no 2.13 h) /More	MAINTENAN MAINTENAN Sting equipm. Duration (min SEE SEE C ERAL To: To #: Village NOENIEPUT Pans repaired/ Borehole depth 2.13 46.60 Reason:	CE Km b) CONSTANT DATA DATA DATA P1947 Borehole no HN-03 46.60	Drawdown (m)	300	Distance (m) 185.9 58.3			

528347_Annesley Salt Mine_Hydrogeology & Hydrology Impact Assessment_Report_ Final_20180611

		_	_				RM 5	-						
				STEPPED I	DISCHARC	GE TEST &	RECO	VERY						
	TEST REC		HEET											
PROJ NO :		P1947		MAP REFER	ENCE:	0				PROVI		NC		
BOREHOLE ALT BH NO:	NO:	HN-03 0								DISTRICT: NOE SITE NAME: NOE			OENIEPUT	
ALT BH NO:		0		OTTE TV/WILL.				AIVIE.	ME: NOENIEPUT					
BOREHOLE	DEPTH (m)	-	46.60		DATUMLE		E CASIN	IG (m):	0.36	EXISTI	NG PUMP:	0		
WATER LEV	. ,		2.13			IEIGHT: (ma		, ,	0.30	CONTR	RACTOR:	AB PUI	MPS	
DEPTH OF P	PUMP (m):		42.50			<mark>1P INLET (</mark> m	,		165.00	PUMP .	TYPE:	0		
				S		DISCHARG	E TEST		OVERY			-		
DISCHARGE	RAIE 1		RPM		DISCHAR	GE RATE 2		RPM		DISCH	ARGE RATE	- 3	RPM	
DATE:	06/03/2018	TIME:	09H38		DATE:	06/03/2018	TIME:	10H38		DATE:	06/03/201	TIME:	11H38	
TIME	DRAW	YIELD	TIME	RECOVERY	TIME	DRAW	YIELD	TIME	RECOVERY	TIME	DRAW	YIELD	TIME	RECOVERY
(MIN)	DOWN (M)	(L/S)	(MIN)	(M)	(MIN)	DOWN (M)	(L/S)	(MIN)	(M)	(MIN)	DOWN (M)	(L/S)	(MIN)	(M)
1	0.38		1		1	0.95	1.44	1		1	2.88	2.80	1	
2	0.41		2		2	0.98		2		2	3.32		2	
3	0.48		3		3	1.02	1.46	3		3	3.91	3.22	3	
5	0.56	0.50	5		5	1.03		5		5	5.43		5	
7	0.56		7		7	1.08	1.46	7		7	6.35		7	
, 10	0.70	0.83	, 10		, 10	1.10		, 10		, 10	7.22	3.25	, 10	
15	0.70	5.00	15	1	15	1.10	1.48	15		15	8.31	5.25	15	1
		0.04					1.40					2.07		
20	0.71	0.84	20		20	1.15		20		20	8.71	3.27	20	
30	0.71	0.84	30		30	1.18	1.48	30		30	8.94	-	30	
40	0.71		40		40	1.24		40		40	9.05	3.27	40	
50	0.71	0.83	50		50	1.25	1.48	50		50	9.63		50	ļ
60	0.71		60		60	1.25		60		60	9.78		60	
70			70		70			70		70			70	
80			80		80			80		80			80	
90			90		90			90		90			90	
100			100		100			100		100			100	
110			110		110			110		110			110	
120	-		120		120			120		120			120	
										-				
рН			150		рН			150		рН			150	
TEMP		°C	180		TEMP		°C	180		TEMP		°C	180	
EC		µS/cm	210		EC		µS/cm	210		EC		µS/cm	210	
DISCHARGE	RATE 4		RPM		DISCHAR	GE RATE 5		RPM		DISCH	ARGE RATE	6	RPM	
DATE:	06/03/2018	TIME:	12H38		DATE:		TIME:		•	DATE:		TIME:		
TIME	DRAW	YIELD	TIME	RECOVERY	TIME	DRAW	YIELD	TIME	RECOVERY	TIME	DRAW	YIELD	TIME	RECOVERY
(MIN)	DOWN (M)	(L/S)	(MIN)	(M)	(MIN)	DOWN (M)	(L/S)	(MIN)	(M)	(MIN)	DOWN (M)	(L/S)	(MIN)	(M)
1	17.19		1	19.58	1			1		1			1	
2	23.79	5.56	2	13.77	2			2		2			2	
3	35.50		3	7.67	3			3		3			3	1
5				1.01	Ľ – – –	+			1	-	•			
	28 08		5	3 20	5					5				
5 7	38.98	2 40	5	3.29	5			5		5			5	
7	39.03	3.48	7	1.70	7			5 7		7			5 7	
7 10		3.48 3.22	7 10	1.70 1.06	7 10			5 7 10		7 10			5 7 10	
7 10 15	39.03		7 10 15	1.70 1.06 0.45	7 10 15			5 7 10 15		7 10 15			5 7 10 15	
7 10 15 20	39.03		7 10 15 20	1.70 1.06	7 10 15 20			5 7 10 15 20		7 10 15 20			5 7 10 15 20	
7 10 15 20 30	39.03		7 10 15	1.70 1.06 0.45	7 10 15 20 30			5 7 10 15		7 10 15 20 30			5 7 10 15 20 30	
7 10 15	39.03		7 10 15 20	1.70 1.06 0.45 0.32	7 10 15 20			5 7 10 15 20		7 10 15 20			5 7 10 15 20	
7 10 15 20 30	39.03		7 10 15 20 30	1.70 1.06 0.45 0.32 0.19	7 10 15 20 30			5 7 10 15 20 30		7 10 15 20 30			5 7 10 15 20 30	
7 10 15 20 30 40	39.03		7 10 15 20 30 40	1.70 1.06 0.45 0.32 0.19 0.13	7 10 15 20 30 40			5 7 10 15 20 30 40		7 10 15 20 30 40			5 7 10 15 20 30 40	
7 10 15 20 30 40 50 60	39.03		7 10 15 20 30 40 50 60	1.70 1.06 0.45 0.32 0.19 0.13 0.03 0.02	7 10 15 20 30 40 50 60			5 7 10 15 20 30 40 50 60		7 10 20 30 40 50 60			5 7 10 15 20 30 40 50 60	
7 10 15 20 30 40 50 60 70	39.03		7 10 15 20 30 40 50 60 70	1.70 1.06 0.45 0.32 0.19 0.13 0.03	7 10 15 20 30 40 50 60 70			5 7 10 15 20 30 40 50 60 70		7 10 15 20 30 40 50 60 70			5 7 10 15 20 30 40 50 60 70	
7 10 15 20 30 40 50 60 70 80	39.03		7 10 15 20 30 40 50 60 70 80	1.70 1.06 0.45 0.32 0.19 0.13 0.03 0.02	7 10 15 20 30 40 50 60 70 80			5 7 10 15 20 30 40 50 60 70 80		7 10 15 20 30 40 50 60 70 80			5 7 10 15 20 30 40 50 60 70 80	
7 10 15 20 30 40 50 60 70 80 90	39.03		7 10 15 20 30 40 50 60 70 80 90	1.70 1.06 0.45 0.32 0.19 0.13 0.03 0.02	7 10 15 20 30 40 50 60 70 80 90			5 7 10 15 20 30 40 50 60 70 80 90		7 10 15 20 30 40 50 60 70 80 90			5 7 10 15 20 30 40 50 60 70 80 90	
7 10 15 20 30 40 50 60 70 80 90 100	39.03		7 10 15 20 30 40 50 60 70 80 90 100	1.70 1.06 0.45 0.32 0.19 0.13 0.03 0.02	7 10 15 20 30 40 50 60 70 80 90 100			5 7 10 15 20 30 40 50 60 70 80 90 100		7 10 15 20 30 40 50 60 70 80 90 100			5 7 10 15 20 30 40 50 60 70 80 90 100	
7 10 15 20 30 40 50 60 70 80 90 100 110	39.03		7 10 15 20 30 40 50 60 70 80 90 100 110	1.70 1.06 0.45 0.32 0.19 0.13 0.03 0.02	7 10 15 20 30 40 50 60 70 80 90 100 110			5 7 10 15 20 30 40 50 60 70 80 90 100 110		7 10 15 20 30 40 50 60 70 80 90 100 110			5 7 10 15 20 30 40 50 60 70 80 90 100 110	
7 10 15 20 30 40 50 60 70 80 90 100	39.03		7 10 15 20 30 40 50 60 70 80 90 100	1.70 1.06 0.45 0.32 0.19 0.13 0.03 0.02	7 10 15 20 30 40 50 60 70 80 90 110 120			5 7 10 15 20 30 40 50 60 70 80 90 100		7 10 15 20 30 40 50 60 70 80 90 100			5 7 10 15 20 30 40 50 60 70 80 90 100	
7 10 15 20 30 40 50 60 70 80 90 100 110	39.03		7 10 15 20 30 40 50 60 70 80 90 100 110	1.70 1.06 0.45 0.32 0.19 0.13 0.03 0.02	7 10 15 20 30 40 50 60 70 80 90 100 110			5 7 10 15 20 30 40 50 60 70 80 90 100 110		7 10 15 20 30 40 50 60 70 80 90 100 110			5 7 10 15 20 30 40 50 60 70 80 90 100 110	
7 10 15 20 30 40 50 60 70 80 90 100 110 120	39.03		7 10 15 20 30 40 50 60 70 80 90 100 110 120	1.70 1.06 0.45 0.32 0.19 0.13 0.03 0.02	7 10 15 20 30 40 50 60 70 80 90 110 120		°C	5 7 10 15 20 30 40 50 60 70 80 90 100 110 120		7 10 15 20 30 40 50 60 70 80 90 100 110 120		°C	5 7 10 15 20 30 40 50 60 70 80 90 100 110 120	
7 10 15 20 30 40 50 60 70 80 90 100 110 120 pH	39.03	3.22	7 10 15 20 30 40 50 60 70 80 90 100 110 120 150	1.70 1.06 0.45 0.32 0.19 0.13 0.03 0.02	7 10 15 20 30 40 50 60 70 80 90 100 110 120 pH		°C µS/cm	5 7 10 15 20 30 40 50 60 70 80 90 100 110 120 150		7 10 15 20 30 40 50 60 70 80 90 100 110 120 pH			5 7 10 15 20 30 40 50 60 70 80 90 100 110 120 150	
7 10 15 20 30 40 50 60 70 80 90 100 110 110 120 pH TEMP	39.03	3.22	7 10 15 20 30 40 50 60 70 80 90 100 110 120 150 180	1.70 1.06 0.45 0.32 0.19 0.13 0.03 0.02	7 10 15 20 30 40 50 60 70 80 90 100 110 120 pH TEMP			5 7 10 15 20 30 40 50 60 70 80 90 100 110 120 150 180		7 10 15 20 30 40 50 60 70 80 90 100 110 120 pH TEMP			5 7 10 15 20 30 40 50 60 70 80 90 100 110 120 150 180	
7 10 15 20 30 40 50 60 70 80 90 100 110 110 120 pH TEMP	39.03	3.22	7 10 15 20 30 40 50 60 70 80 90 100 110 120 150 180 210	1.70 1.06 0.45 0.32 0.19 0.13 0.03 0.02	7 10 15 20 30 40 50 60 70 80 90 100 110 120 pH TEMP			5 7 10 15 20 30 40 50 60 70 80 90 100 110 120 150 180 210		7 10 15 20 30 40 50 60 70 80 90 100 110 120 pH TEMP			5 7 10 15 20 30 40 50 60 70 80 90 100 110 120 150 180 210	


S/W/L:(mbch)

				FORM 5	F							
				NT DISCHAR	GE TES	T & RECO\	/ERY					
PROJIN	HOLE TEST R	P1947	SHEET	MAP REFER	ENCE	0			PROVINCE		NC	
	IOLE NO:	HN-03			0				DISTRICT:		NOENIEPUT	
	ALT BH NO: 0								SITE NAME: NOENIEPUT			FPUT
		0					~).	0.26			-	
	IOLE DEPTH: LEVEL (mbdl)	46.60 : 2.47		DATUMLEV CASING HE		•	m):	0.36 0.30	EXISTING I		0 AB PUI	MPS
	OF PUMP (m):			DIAM PUMP				165	PUMP TYP	-	0	
	ANT DISCHARC	GE TEST 8	RECOVER									
IEST S	TARTED			TEST COMP								1
DATE:	06/03/2018	TIME:	15h32		DATE:		TIME:		TYPE OF P			0
					OBSER NR:	VATION HO	LE 1	OBSERV NR:	ATION HOLI	Ξ2	OBSEF NR:	VATION HOLE 3
	DISCHARGE B	OREHOLE			Distanc	e(m):		Distance	(m):		Distan	ce(m):
	DRAW	YIELD	TIME	RECOVERY	TIME:	Drawdown	Recovery		Drawdown	Recovery		Drawdown
(MIN)	DOWN (M)	(L/S)	MIN	(M)	(min)	m	(m)	(min)	(m)		(min)	(m)
1 2	1.68 2.04	1.88	1	2.87	1 2			1			1 2	
2 3	2.04	2.37	3	1.60	2 3			3			3	
5	3.29	2.65	5	0.71	5			5			5	<u> </u>
7	3.88	2.73	7	0.45	7			7			7	
10	4.39	0.70	10	0.28	10			10			10	
15 20	4.86 5.13	2.72	15 20	0.19	15 20			15 20			15 20	
30	5.37	2.70	30	0.16	20 30		1	30			30	
40	5.55	2.71	40	0.09	40			40			40	
60	5.78		60	0.07	60			60			60	
90 120	5.99	2.70	90 120	0.05	90 120			90 120			90 120	
120	6.15 6.26		120	0.02	120			120			120	
180	6.40	2.72	180	0.00	180			180			180	
210	6.70		210		210			210			210	
240	6.70	2.71	240		240			240			240	
300	6.96	0.70	300		300			300			300	
360 420	6.97 6.98	2.72	360 420		360 420			360 420			360 420	
480	7.04	2.73	480		480			480			480	
540	7.06		540		540			540			540	
600	7.11	0.74	600		600			600			600	
720 840	7.15 7.18	2.74	720 840		720 840			720 840			720 840	
960	7.20	2.74	960		960			960			960	
1080	7.21		1080		1080			1080			1080	
1200	7.20	2.76	1200		1200			1200			1200	
1320 1440	7.20 7.21	2.76	1320 1440		1320 1440			1320 1440			1320 1440	
1440	1.21	1	1560	1	1440 1560			1560			1560	
1680			1680		1680			1680			1680	
1800			1800		1800			1800			1800	
1920 2040			1920 2040		1920 2040			1920 2040			1920 2040	
2040			2040		2040 2160			2040			2040	
2280			2280		2280			2280			2280	
2400			2400		2400			2400			2400	
2520			2520		2520			2520			2520	
2640 2760			2640 2760		2640 2760			2640 2760			2640 2760	
2880		1	2880		2880			2880			2880	
3000			3000		3000			3000			3000	
3120			3120		3120			3120			3120	
3240			3240		3240			3240			3240	
3360 3480		-	3360 3480	+	3360 3480			3360 3480			3360 3480	
3600			3600		3600			3600			3600	
3720			3720		3720			3720			3720	
3840			3840		3840			3840			3840	
3960			3960		3960			3960			3960	
4080 4200		+	4080 4200	+	4080 4200			4080 4200			4080 4200	
4200		1	4320	1	4200			4200			4320	
	ne pumped(mi	n):				W/L			W/L			W/L
Average	e yield (l/s):											

STEP DRAWDOWN TEST DATA PLOT

CONSTANT DISCHARGE TEST DATA PLOT

Appendix C: Water Quality Analysis Certificates

Talbot Laboratories (Pty) Ltd • Company Registration Number: 2016/334237/07 20 Pentrich Road, P.O Box 22598, Pietermaritzburg, 3200, KwaZulu-Natal

2018/04/11

ANALYTICAL REPORT

OUR REF: COMPANY NAME: CONTACT ADDRESS: CONTACT PERSON: QUOTE: ORDER NUMBER: SAMPLE TYPE: DATE SUBMITTED: 002112/18 AB PUMPS PRIVATE BAG X39, BEACON BAY, EAST LONDON, 5205 AILENE VAN NIEKERK QU03-0041 112190 BOREHOLE WATER 2018-03-14

Determinand	Units Method No		Borehole Results				
Determinand	Units	wiethod No	P1947 HN-01	P1947 HN-02	P1947 HN-03		
Ammonia	mg N/ይ	64G	<0.11	<0.11	0.21		
Chloride	mg Cl/ℓ	16G	118 639	123 950	123 047		
Dissolved Aluminium	mg Al /ℓ	87	<0.02	<0.02	<0.02		
Dissolved Antimony	mg Sb/ℓ	89	0.47	0.59	0.3		
Dissolved Arsenic	mg As/ℓ	88	0.36	0.41	0.34		
Dissolved Barium	mg Ba/ℓ	87	<0.02	<0.02	<0.02		
Dissolved Beryllium	mg Be/ℓ	87	<0.02	<0.02	<0.02		
Dissolved Boron	mg B/ℓ	87	23	22	25		
Dissolved Cadmium	mg Cd/ℓ	87	<0.02	<0.02	<0.02		
Dissolved Calcium	mg Ca/ℓ	85	0.57	<0.12	<0.12		
Dissolved Chromium	mg Cr/ℓ	87	<0.02	<0.02	<0.02		
Dissolved Cobalt	mg Co/ℓ	87	<0.02	<0.02	<0.02		
Dissolved Copper	mg Cu/ℓ	87	0.02	<0.02	<0.02		
Dissolved Iron	mg Fe/ℓ	87	<0.02	<0.02	<0.02		
Dissolved Lead	mg Pb/ℓ	87	<0.03	<0.03	<0.03		
Dissolved Lithium	mg Li∕ℓ	87	<0.02	<0.02	<0.02		
Dissolved Magnesium	mg Mg/ℓ	85	0.12	<0.07	<0.07		
Dissolved Manganese	mg Mn/ℓ	87	<0.02	<0.02	<0.02		
Dissolved Mercury	mg Hg/ℓ	86	<0.002	<0.002	<0.002		
Dissolved Molybdenum*	mg Mo/ℓ	87	0.32	0.29	0.2		
Dissolved Nickel	mg Ni/ℓ	87	<0.02	<0.02	<0.02		
Dissolved Selenium	mg Se/ℓ	88	0.75	0.83	0.68		
Dissolved Silver*	mg Ag/ℓ	87	<0.01	<0.01	<0.01		
Dissolved Strontium	mg Sr/ℓ	87	0.11	0.09	0.08		
Dissolved Thallium	mg TI/ℓ	87	<0.02	<0.02	<0.02		
Dissolved Tin	mg Sn/ℓ	87	<0.02	<0.02	<0.02		
Dissolved Titanium	mg Ti/ℓ	87	<0.03	<0.03	<0.03		
Dissolved Uranium*	mg U/ይ	87	0.18	0.23	0.17		
Dissolved Vanadium	mg V/ℓ	87	0.56	0.63	0.65		
Dissolved Zinc	mg Zn/ℓ	87	<0.02	<0.02	<0.02		
Electrical Conductivity at 25°C	mS/m	2	31 240	31 840	32 400		
Fluoride	µg F/ℓ	18A	98 000	106 000	82 000		
Nitrate	mg N/ℓ	65Gc	412	433	407		
Nitrite	mg N/ይ	65Gb	0.58	0.6	1.2		
Odour*	-	-	Odourless	Odourless	Odourless		
pH at 25°C	pH units	1A	9	9	9.4		
Potassium	mg K/ℓ	85	34	34	38		
Sodium	mg Na/ℓ	84	113 100	137 759	134 330		
Sulphate	mg SO4/ℓ	67G	17 536	17 142	19 787		
Total Dissolved Solids at 180°C	mg/ℓ	41	226 888	230 326	243 280		
Total Organic Carbon*	mg C/ℓ	-	8.4#	6.7#	8.5#		
Turbidity	NTU	4	1.5	0.9	0.9		

Technical Signatory:

robiology: Jocelyn Winchester

- This report relates only to the samples tested. This report shall not be reproduced, except in full, without the written
 approval of TALBOT LABORATORIES.
- Tests marked with an asterisk (*) in this report are not SANAS accredited and are not included in the Schedule of Accreditation for our laboratory.
- · Opinions and interpretations expressed herein are outside the scope of SANAS accreditation.
- If the microbiological sample requirements are not met on receipt at the laboratory, the accuracy of the test results may be in question.
- Uncertainty of Measurement (UOM) values for Talbot Laboratories (T0122) apply to tests analysed at 20 Pentrich Road
 and are identified in the attached Appendix. UOM values for subcontracted tests, marked with a #, are available on
 request
- Note: Results marked with a (#) have been sub-contracted to a peer laboratory.
- Note: Estimates of Uncertainty of Measurement may be obtained from the laboratory if required.

Appendix D: Impact Severity Rating Methodology

Determination of Impact Significance

The information presented above in terms of identifying and describing the aspects and impacts is summarised in tabular form and significance is assigned with supporting rational.

The environmental significance rating is an attempt to evaluate the importance of a particular impact, the consequence and likelihood of which has already been assessed by the relevant specialist as and when required.

In order to assess the significance of each impact, the following ranking scales will be employed:

PROBABILITY: DURATION: 5 - Definite/don't know 5 - Permanent 4 - Highly probable 4 - Long-term (impact ceases after 3 - Medium probability the operational life of the activity) 2 - Low probability 3 - Medium-term (5-15 years) 1 - Improbable 2 - Short-term (0-5 years) 0 - None 1 - Immediate SCALE: **MAGNITUDE:** 5 - International 10 - Very high/don't know 4 - National 8 - High 3 - Regional 6 - Moderate 2 - Local 4 - Low 1 - Site only 2 - Minor 0 - None

 Table A-G.1: Impact Significance Ranking Scales

Once the above factors had been ranked for each impact, the overall significance of each impact was assessed using the following formula:

(Potential Significance) = (Magnitude + Duration + Scale) x Probability

The potential significance (PS) has a maximum rating of 100 points. Environmental impacts are rated as having either a High (H), a Moderate (M) or a Low (L) significance according to the following scale:

PS ≥ 60	=	High Environmental Significance
60 < PS ≥ 30	=	Moderate Environmental Significance
PS < 30	=	Low Environmental Significance

Significance will thus be classified according to the following:

- Low: Low Environmental Significance Mitigation easily achieved or little is required;
- **Moderate:** Moderate Environmental Significance Mitigation is both feasible and fairly easily possible; and
- **High:** High Environmental Significance Adverse Impact. Mitigation, if possible, is often difficult, expensive and time consuming.

The Potential Environmental Impact Significance can then be calculated for each impact at the various stages of the project before and after mitigation measures are implemented. The various stages of the project can be classified as follows:

- Construction Phase before mitigation,
- Construction Phase after mitigation,
- Operational Phase before mitigation,
- Operational Phase after mitigation,

The Potential Environmental Impact Significance is calculated by using the following matrix:

POTENTIAL ENVIRONMENTAL		CF	RITERI	4	SCORE	SIGN		NCE	
ІМРАСТ	Nature	Ρ	D	S	М	TOTAL	L	м	Н
CONSTRUCTION	-	3	4	2	4	30		М	
CONSTRUCTION MITIGATION	+	3	1	1	2	12	L		
OPERATION	-	3	1	1	4	18	L		
OPERATION MITIGATION	-	3	1	1	2	12	L		

SRK Report Distribution Record

528347 Report No. 1

Copy No.

Name/Title	Company	Сору	Date	Authorised by
Bertus Louw	Annesley Salt (Pty) Ltd bertus@blaauwsgroup.co.za	1 pdf	1 June 2018	D Visser
Irmé van Zyl	Van Zyl Environmental Consultants cc ibvanzyl@telkomsa.net	2 pdf	1 June 2018	D Visser
Project File	SRK	3 pdf, docx & HC	1 June 2018	D Visser
Library	SRK	4 HC	1 June 2018	D Visser

Approval Signature:

SRK Consulting - Certified Electronic Signature
📌 srk consulting
528347/43250/Report
1422-6970-7584-ENGE
This signature has been printed digitally. The Author has given permissi
use for this document. The details are stored in the SRK Signature Data

This report is protected by copyright vested in SRK (SA) (Pty) Ltd. It may not be reproduced or transmitted in any form or by any means whatsoever to any person without the written permission of the copyright holder, SRK.