# **APPENDIX: 5**

**Impact Assessment** 



# IMPACT ASSESSMENT:

IMPACT ASSESSMENT FOR THE S&EIR PROCESS FOR THE PROSPECTING RIGHT FOR THE PROPOSED PROSPECTING FOR DIAMONDS ON THE REMAINDER, PORTION 1 AND PORTION 16 OF THE FARM JAGERSFONTEIN 14, FAURESMITH DISTRICT, FREE STATE PROVINCE

DMR Ref: FS 30/5/1/1/3/2/1 (10505) EM

February 2019

# **Applicant:**

Contact: Mr. Pieter Meyer Address: P.O. Box 24 Jagersfontein 9974 Tel: 018 297 2090



#### **PROJECT TEAM**

| Environmental<br>Assessment<br>Practitioner(s): | Louis De Villiers   |
|-------------------------------------------------|---------------------|
| Postal address:                                 | Suite 221           |
|                                                 | Private Bag X01     |
|                                                 | Brandhof            |
|                                                 | 9324                |
| Contact person(s):                              | Louis de Villiers   |
| Tel:                                            | 072 967 7962        |
| E-mail:                                         | louis@turn180.co.za |

#### 1. Assessment methodology

The environmental significance assessment methodology is based on the following determination:

Environmental Significance = Overall Consequence x Overall Likelihood.

#### 1.1 Determination of Consequence

Consequence analysis is a mixture of quantitative and qualitative information and the outcome can be positive or negative. Several factors can be used to determine consequence. For determining the environmental significance in terms of consequence, the following factors were chosen: Severity/Intensity, Duration and Extent/Spatial Scale. Each factor is assigned a rating of 1 to 5, as described in the tables below.

#### Determination of Severity

Severity relates to the nature of the event, aspect or impact to the environment and describes how severe the aspects impact on the biophysical and socio-economic environment (Table 1).

| Type of                                                                    |                                                                                                                                         |                                                            | Rating                                                                                                             |                                                                    |                                                                                                         |
|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| criteria                                                                   | 1                                                                                                                                       | 2                                                          | 3                                                                                                                  | 4                                                                  | 5                                                                                                       |
| Quantitative                                                               | 0-20%                                                                                                                                   | 21-40%                                                     | 41-60%                                                                                                             | 61-80%                                                             | 81-100%                                                                                                 |
| Qualitative                                                                | Insignificant /<br>Non-harmful                                                                                                          | Small /<br>Potentially<br>harmful                          | Significant /<br>Harmful                                                                                           | Great / Very<br>harmful                                            | Disastrous<br>Extremely<br>harmful                                                                      |
| Social/<br>Community<br>response                                           | Acceptable /<br>I&AP satisfied                                                                                                          | Slightly<br>tolerable /<br>Possible<br>objections          | Intolerable/<br>Sporadic<br>complaints                                                                             | Unacceptable<br>/ Widespread<br>complaints                         | Totally<br>unacceptable<br>/ Possible legal<br>action                                                   |
| Irreversibility                                                            | Very low cost<br>to mitigate/<br>High<br>potential to<br>mitigate<br>impacts to<br>level of<br>insignificance<br>/ Easily<br>reversible | Low cost to<br>mitigate                                    | Substantial<br>cost to<br>mitigate /<br>Potential to<br>mitigate<br>impacts /<br>Potential to<br>reverse<br>impact | High cost to<br>mitigate                                           | Prohibitive cost<br>to mitigate /<br>Little or no<br>mechanism to<br>mitigate<br>impact<br>Irreversible |
| Biophysical<br>(Air quality,<br>water<br>quantity<br>and quality,<br>waste | Insignificant<br>change /<br>deterioration<br>or<br>disturbance                                                                         | Moderate<br>change /<br>deterioration<br>or<br>disturbance | Significant<br>change /<br>deterioration<br>or<br>disturbance                                                      | Very<br>significant<br>change /<br>deterioration<br>or disturbance | Disastrous<br>change /<br>deterioration<br>or disturbance                                               |

#### Table 1: Rating of severity

| Type of                            |   |   | Rating |   |   |
|------------------------------------|---|---|--------|---|---|
| criteria                           | 1 | 2 | 3      | 4 | 5 |
| production,<br>fauna and<br>flora) |   |   |        |   |   |

# Determination of Duration

Duration refers to the amount of time that the environment will be affected by the event, risk or impact, if no intervention e.g. remedial action takes place (Table 2).

# Table 2: Rating of Duration

| Rating         | Description                           |  |  |
|----------------|---------------------------------------|--|--|
| 1: Low         | Almost never / almost impossible      |  |  |
| 2: Low-Medium  | Very seldom / highly unlikely         |  |  |
| 3: Medium      | Infrequent / unlikely / seldom        |  |  |
| 4: Medium-High | Often / regularly / likely / possible |  |  |
| 5: High        | Daily / highly likely / definitely    |  |  |

# Determination of Extent/Spatial Scale

Extent refer to the spatial influence of an impact be local (extending only as far as the activity or will be limited to the site and its immediate surroundings), regional (will have an impact on the region), national (will have an impact on a national scale) or international (impact across international borders) (Table 3).

# Table 3: Rating of Extent / Spatial Scale

| Rating         | Description                       |  |  |
|----------------|-----------------------------------|--|--|
| 1: Low         | mmediate, fully contained area    |  |  |
| 2: Low-Medium  | Within Prospecting Boundary area  |  |  |
| 3: Medium      | Surrounding area                  |  |  |
| 4: Medium-High | Local (Town boundaries)           |  |  |
| 5: High        | Regional, National, International |  |  |

# Determination of Overall Consequence

Overall consequence is determined by adding the factors determined above and summarised below, and then dividing the sum by 4 (Table 4).

#### Table 4: Example of calculating Overall Consequence

| Consequence                               | Rating      |
|-------------------------------------------|-------------|
| Severity                                  | Example 4   |
| Duration                                  | Example 2   |
| Extent                                    | Example 4   |
| SUBTOTAL                                  | Example 10  |
| TOTAL CONSEQUENCE:(Subtotal divided by 4) | Example 3.3 |

#### <u>Likelihood</u>

The determination of likelihood is a combination of Frequency and Probability. Each factor is assigned a rating of 1 to 5, as described and in Tables 5 and 6.

#### Determination of Frequency

Frequency refers to how often the specific activity, related to the event, aspect or impact, is undertaken (Table 5).

#### Table 5: Rating of frequency

| Rating         | Description                                       |
|----------------|---------------------------------------------------|
| 1: Low         | Once a year or once / more during operation / LOM |
| 2: Low-Medium  | Once / more in 6 Months                           |
| 3: Medium      | Once / more a Month                               |
| 4: Medium-High | Once / more a Week                                |
| 5: High        | Daily                                             |

#### Determination of Probability

Probability refers to how often the activity/event or aspect has an impact on the environment (Table 6).

#### Table 6: Rating of probability

| Rating         | Description                           |  |
|----------------|---------------------------------------|--|
| 1: Low         | Almost never / almost impossible      |  |
| 2: Low-Medium  | Very seldom / highly unlikely         |  |
| 3: Medium      | Infrequent / unlikely / seldom        |  |
| 4: Medium-High | Often / regularly / likely / possible |  |
| 5: High        | Daily / highly likely / definitely    |  |

Overall Likelihood

Overall likelihood is calculated by adding the factors determined above and summarised below, and then dividing the sum by 2 (Table 7).

#### Table 7: Example of calculating the overall likelihood

| Consequence                              | Rating    |
|------------------------------------------|-----------|
| Frequency                                | Example 4 |
| Probability                              | Example 2 |
| SUBTOTAL                                 | Example 6 |
| TOTAL LIKELIHOOD (Subtotal divided by 2) | Example 3 |

# Determination of Overall Environmental Significance

The multiplication of overall consequence with overall likelihood will provide the environmental significance, which is a number that will then fall into a range of LOW, LOW-MEDIUM, MEDIUM, MEDIUM, MEDIUM-HIGH or HIGH, as shown in the table below (Table 8).

#### Table 8: Determination of overall environmental significance

| Significance or Risk                        | Low     | Low-<br>Moderate | Moderate  | Moderate-<br>High | High    |
|---------------------------------------------|---------|------------------|-----------|-------------------|---------|
| Overall Consequence X<br>Overall Likelihood | 1 - 4.9 | 5 - 9.9          | 10 - 14.9 | 15 – 19.9         | 20 - 25 |

#### Qualitative description or magnitude of Environmental Significance

This description is qualitative and is an indication of the nature or magnitude of the Environmental Significance. It also guides the prioritisations and decision-making process associated with this event, aspect or impact (Table 9).

#### Table 9: Description of the environmental significance and the related action required.

| Significance        | Low                                                                                                                | Low-<br>Moderate                                                                                      | Moderate                                                                                                                         | Moderate-<br>High                                                                                                          | High                                                                           |
|---------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Impact<br>Magnitude | Impact is of<br>very low<br>order and<br>therefore<br>likely to have<br>very little real<br>effect.<br>Acceptable. | Impact is of<br>low order<br>and therefore<br>likely to have<br>little real<br>effect.<br>Acceptable. | Impact is real,<br>and<br>potentially<br>substantial in<br>relation to<br>other<br>impacts. Can<br>pose a risk to<br>the company | Impact is real<br>and<br>substantial in<br>relation to<br>other impacts.<br>Pose a risk to<br>the company.<br>Unacceptable | Impact is of<br>the highest<br>order possible.<br>Unacceptable.<br>Fatal flaw. |
| Action<br>Required  | Maintain<br>current<br>management<br>measures.                                                                     | Maintain<br>current<br>management<br>measures.                                                        | Implement<br>monitoring.<br>Investigate<br>mitigation                                                                            | Improve<br>management<br>measures to<br>reduce risk.                                                                       | Implement<br>significant<br>mitigation<br>measures or                          |

| Significance | Low                           | Low-<br>Moderate                                                                                                             | Moderate                                                                                   | Moderate-<br>High | High                       |
|--------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------|----------------------------|
|              | Where<br>possible<br>improve. | Implement<br>monitoring<br>and evaluate<br>to determine<br>potential<br>increase in<br>risk.<br>Where<br>possible<br>improve | measures<br>and improve<br>management<br>measures to<br>reduce risk,<br>where<br>possible. |                   | implement<br>alternatives. |

#### 1.2 Environmental Impact Assessment

| Impact                                                     | Severity | Duration | Extent | Consequence | Probability | Frequency | Likelihood | Significance |  |  |
|------------------------------------------------------------|----------|----------|--------|-------------|-------------|-----------|------------|--------------|--|--|
| Drilling Phase                                             |          |          |        |             |             |           |            |              |  |  |
| Loss of topsoil<br>through<br>erosion and<br>contamination | 2        | 3        | 1      | 2           | 2           | 5         | 3.5        | 7            |  |  |
| MITIGATED                                                  | 1        | 1        | 1      | 1           | 1           | 5         | 3          | 3            |  |  |
|                                                            | 1        |          | 1      | Trenching/F | Pitting     |           |            |              |  |  |
| Loss of topsoil<br>through<br>erosion and<br>contamination | 3        | 4        | 2      | 3           | 4           | 5         | 4.5        | 13.5         |  |  |
| MITIGATED                                                  | 2        | 2        | 2      | 2           | 2           | 5         | 3.5        | 7            |  |  |
|                                                            |          |          |        | Stockpili   | ng          |           |            |              |  |  |
| Loss of topsoil<br>through<br>erosion and<br>contamination | 2        | 4        | 2      | 2.7         | 4           | 5         | 4.5        | 12           |  |  |
| MITIGATED                                                  | 2        | 1        | 1      | 1.3         | 1           | 5         | 3          | 4            |  |  |
|                                                            |          |          |        | Loading and | Hauling     |           |            |              |  |  |
| Loss of topsoil<br>through<br>erosion and<br>contamination | 3        | 3        | 2      | 2.7         | 4           | 5         | 4.5        | 12           |  |  |
| MITIGATED                                                  | 2        | 2        | 2      | 2           | 2           | 5         | 3.5        | 7            |  |  |

#### 1. Geology and Soil

#### Conclusion

The impact assessment above indicates that significance of the impact of loss of soil will be Low – Moderate without mitigation and Low with the implementation of mitigation and management measures in the drilling phase of the project. During the drilling phase of the project the topsoil will not be removed, and drilling will take place. The amount of soil loss will therefore be very little, and the activity will also be temporary.

However, during trenching, stockpiling and loading and hauling the significance of the impacts will increase as topsoil will have to be cleared and stockpiled. This may lead to larger areas of topsoil losses occurring.

Mitigation:

- It is proposed that topsoil be cleared from all areas where trenching will occur as well as areas planned for the construction of access roads.
- The topsoil must be stockpiled not more than 2 m in height and not on steep slopes which are prone to erosion.
- Topsoil will always be protected and will be kept clean of alien vegetation.
- Topsoil must be returned as the final / top layer of soil after trenches have been backfilled. Topsoil will not be used for any other purpose other than rehabilitation of trenches.

| Impact                  | Severity | Duration | Extent | Consequence   | Probability | Frequency | Likelihood | Significance |  |  |  |
|-------------------------|----------|----------|--------|---------------|-------------|-----------|------------|--------------|--|--|--|
| Drilling Phase          |          |          |        |               |             |           |            |              |  |  |  |
| Dust (Air<br>Pollution) | 3        | 4        | 3      | 3.3           | 4           | 5         | 4.5        | 15           |  |  |  |
| MITIGATED               | 3        | 3        | 2      | 2.7           | 3           | 5         | 4          | 10.7         |  |  |  |
| Noise                   | 3        | 5        | 4      | 4             | 4           | 5         | 4.5        | 18           |  |  |  |
| MITIGATED               | 3        | 3        | 2      | 2.7           | 3           | 5         | 4          | 10.7         |  |  |  |
| Trenching/Pitting       |          |          |        |               |             |           |            |              |  |  |  |
| Dust (Air<br>Pollution) | 3        | 3        | 3      | 3             | 4           | 5         | 4.5        | 13.5         |  |  |  |
| MITIGATED               | 2        | 2        | 2      | 2             | 2           | 5         | 3.5        | 7            |  |  |  |
| Noise                   | 2        | 3        | 3      | 2.7           | 4           | 5         | 4.5        | 12           |  |  |  |
| MITIGATED               | 2        | 2        | 2      | 2             | 2           | 5         | 3.5        | 7            |  |  |  |
|                         |          |          |        | Stockpili     | ng          |           |            |              |  |  |  |
| Dust (Air<br>Pollution) | 3        | 3        | 3      | 3             | 4           | 5         | 4.5        | 13.5         |  |  |  |
| MITIGATED               | 2        | 2        | 2      | 2             | 2           | 5         | 3.5        | 7            |  |  |  |
| Noise                   | 2        | 3        | 3      | 2.7           | 4           | 5         | 4.5        | 12           |  |  |  |
| MITIGATED               | 2        | 2        | 2      | 2             | 2           | 5         | 3.5        | 7            |  |  |  |
|                         |          |          |        | Loading and I | Hauling     |           |            |              |  |  |  |
| Dust (Air<br>Pollution) | 4        | 4        | 3      | 3.7           | 4           | 5         | 4.5        | 16.5         |  |  |  |
| MITIGATED               | 2        | 3        | 2      | 2.3           | 3           | 5         | 4          | 10.7         |  |  |  |
| Noise                   | 3        | 4        | 3      | 3.3           | 4           | 5         | 4.5        | 15           |  |  |  |

#### 2. Air quality

| MITIGATED | 3 | 2 | 3 | 2.7 | 3 | 5 | 4 | 10.7 |
|-----------|---|---|---|-----|---|---|---|------|
|           |   |   |   |     |   |   |   |      |

#### Conclusion

There are no major industrial complexes or facilities in the Jagersfontein area which contributes to air pollution and noise. Noise in the area is that associated with the tailings operation (i.e. process plant, conveyors, vehicular traffic, etc.) and the town of Jagersfontein (i.e. vehicular traffic, etc.). The surrounding area is used for agriculture mainly in the form of animal grazing. Therefore, the activities associated with the prospecting will add to the ambient noise levels in the area, especially drilling. Trenching, stockpiling and hauling will be noises which are associated with the current tailings operation.

Drilling, loading and hauling will have a Moderate – High impact on air quality and noise before mitigation and a moderate impact after mitigation. This is due to the emissions and noise associated with drilling and the hauling of material on dirt roads. Environmental factors play an important role in the dust emissions in the Jagersfontein area as the area is not located in a high rainfall area.

The impacts on air quality and noise will be Moderate before mitigation and Low – Moderate after mitigation during trenching and stockpiling.

Mitigation

- Conveyors should be used to transport material over long distances to reduce dust.
- A speed limit of 40 km/h should be enforced on vehicles travelling on dirt roads.
- It should be considered to limit activities which causes high dust emissions during very windy conditions.
- The Dust Fallout Monitoring Programme will remain implemented during all phases of the prospecting activities.
- Drilling will only be done during normal daytime hours.

| Impact                | Severity | Duration | Extent | Consequence | Probability | Frequency | Likelihood | Significance |  |  |  |  |
|-----------------------|----------|----------|--------|-------------|-------------|-----------|------------|--------------|--|--|--|--|
| Drilling Phase        |          |          |        |             |             |           |            |              |  |  |  |  |
| Change in<br>land use | 2        | 2        | 1      | 1.7         | 2           | 5         | 3.5        | 5.8          |  |  |  |  |
| MITIGATED             | 1        | 1        | 1      | 1           | 1           | 5         | 3          | 3            |  |  |  |  |
| Trenching/Pitting     |          |          |        |             |             |           |            |              |  |  |  |  |
| Change in<br>Iand use | 4        | 4        | 1      | 3           | 4           | 5         | 4.5        | 13.5         |  |  |  |  |
| MITIGATED             | 2        | 2        | 1      | 1.7         | 2           | 5         | 3.5        | 5.8          |  |  |  |  |
| Stockpiling           |          |          |        |             |             |           |            |              |  |  |  |  |
| Change in<br>Iand use | 4        | 4        | 1      | 3           | 4           | 5         | 4.5        | 13.5         |  |  |  |  |
| MITIGATED             | 2        | 2        | 1      | 1.7         | 2           | 5         | 3.5        | 5.8          |  |  |  |  |

#### 3. Land Use

| Loading and Hauling   |   |   |   |     |   |   |     |    |  |  |  |  |
|-----------------------|---|---|---|-----|---|---|-----|----|--|--|--|--|
| Change in<br>land use | 3 | 3 | 2 | 2.7 | 4 | 5 | 4.5 | 12 |  |  |  |  |
| MITIGATED             | 2 | 2 | 2 | 2   | 2 | 5 | 3.5 | 7  |  |  |  |  |

#### Conclusion

Although the land used for communal grazing during prospecting it must be noted that this impact will be temporary. After trenching the land will be rehabilitated and returned to the determined end land use (i.e. vacant land) which is mainly used for animal grazing. From the impact assessment it can be derived that the impact on land use during the drilling of boreholes will Low – Moderate before mitigation and Low after mitigation. The impact of trenching, stockpiling and hauling on these areas will be Moderate before mitigation and Low – Moderate after mitigation.

Mitigation

- Small sections of the prospecting areas should be closed off on the communal land when activities occur to still allow the animal grazing on the other areas. The entire area should not be closed during the entire prospecting operation.
- Concurrent rehabilitation is important and should be implemented. Trenches should be completely rehabilitated after work is completed on it and should not be left open until the end of the prospecting operations.

#### 4. Vegetation, Animal Life and loss of watercourses

As per the Ecological and Wetland Assessment by Mr. D. Van Rensburg. The report is attached in Appendix 5.

# Significance of the impact:

| Impact       | Severity | Duration | Extent | Consequence  | Probability | Frequency | Likelihood | Significance |
|--------------|----------|----------|--------|--------------|-------------|-----------|------------|--------------|
|              |          |          |        | Before mitig | ation       |           |            |              |
| Loss of      | 3        | 4        | 3      | 3.3          | 3           | 4         | 3.5        | 11.5         |
| vegetation   |          |          |        |              |             |           |            |              |
| type and     |          |          |        |              |             |           |            |              |
| clearing of  |          |          |        |              |             |           |            |              |
| vegetation   |          |          |        |              |             |           |            |              |
| Loss of      | 4        | 5        | 3      | 4            | 4           | 3         | 3.5        | 14           |
| protected    |          |          |        |              |             |           |            |              |
| species      |          | _        |        |              |             |           | 0 F        | 15           |
| Loss of      | 4        | 5        | 4      | 4.3          | 4           | 3         | 3.5        | 15           |
| watercourse  |          |          |        |              |             |           |            |              |
| S            |          |          |        | 0.0          |             | 0         | 0.5        | 10.0         |
| Infestation  | 4        | 4        | 3      | 3.6          | 4           | 3         | 3.5        | 12.6         |
| with weeds   |          |          |        |              |             |           |            |              |
| and invaders | 2        |          | 2      | 2.2          | 2           | 2         | 2          | 10           |
| Impact on    | 3        | 4        | 3      | 3.3          | 3           | 3         | 3          | 10           |
| feune        |          |          |        |              |             |           |            |              |
| Idulid       |          |          |        | After mitige | tion        |           |            |              |
| Loss of      | 2        | 2        | 2      |              | 2           | 2         | 2          | 0            |
| Vegetation   | 5        | 5        | 5      | 5            | 5           | 5         | 5          | 5            |
| type and     |          |          |        |              |             |           |            |              |
| clearing of  |          |          |        |              |             |           |            |              |
| vegetation   |          |          |        |              |             |           |            |              |
| Loss of      | 1        | 5        | 3      | 3            | 1           | 1         | 1          | 3            |
| protected    |          |          |        |              |             |           |            |              |
| species      |          |          |        |              |             |           |            |              |
| Loss of      | 3        | 3        | 3      | 3            | 4           | 3         | 3.5        | 10.5         |
| watercourse  |          |          |        |              |             |           |            |              |
| S            |          |          |        |              |             |           |            |              |
| Infestation  | 2        | 2        | 3      | 2.3          | 3           | 2         | 2.5        | 5.7          |
| with weeds   |          |          |        |              |             |           |            |              |
| and invaders |          |          |        |              |             |           |            |              |
| Impact on    | 3        | 4        | 3      | 3.3          | 3           | 3         | 3          | 10           |
| Terrestrial  |          |          |        |              |             |           |            |              |
| fauna        |          |          |        |              |             |           |            |              |

#### 5. Groundwater

| Impact                       | Severity | Duration | Extent | Consequence | Probability | Frequency | Likelihood | Significance |  |  |  |  |  |
|------------------------------|----------|----------|--------|-------------|-------------|-----------|------------|--------------|--|--|--|--|--|
| Drilling Phase               |          |          |        |             |             |           |            |              |  |  |  |  |  |
| Groundwater<br>contamination | 3        | 3        | 2      | 2.7         | 4           | 5         | 4.5        | 12           |  |  |  |  |  |
| MITIGATED                    | 2        | 2        | 2      | 2           | 2           | 5         | 3.5        | 7            |  |  |  |  |  |
| Trenching/Pitting            |          |          |        |             |             |           |            |              |  |  |  |  |  |
| Groundwater contamination    | 4        | 4        | 1      | 3           | 4           | 5         | 4.5        | 13.5         |  |  |  |  |  |

| MITIGATED                    | 2                   | 2 | 1 | 1.7 | 2 | 5 | 3.5 | 5.8  |  |  |  |  |  |
|------------------------------|---------------------|---|---|-----|---|---|-----|------|--|--|--|--|--|
| Stockpiling                  |                     |   |   |     |   |   |     |      |  |  |  |  |  |
| Groundwater<br>contamination | 4                   | 4 | 1 | 3   | 4 | 5 | 4.5 | 13.5 |  |  |  |  |  |
| MITIGATED                    | 2                   | 2 | 1 | 1.7 | 2 | 5 | 3.5 | 5.8  |  |  |  |  |  |
|                              | Loading and Hauling |   |   |     |   |   |     |      |  |  |  |  |  |
| Groundwater<br>contamination | 3                   | 3 | 2 | 2.7 | 3 | 5 | 4   | 10.7 |  |  |  |  |  |
| MITIGATED                    | 2                   | 2 | 2 | 2   | 2 | 5 | 3.5 | 7    |  |  |  |  |  |

#### Conclusion

It should be noted that the prospecting operation will not have an additional impact on the water quantity in the area as no additional water will be abstracted from any sources to make provision for the prospecting operation. The existing Water Use License which the Applicant has will be used during the operation.

However, there may be an impact on water quality due to the spillage of hydrocarbons during the prospecting activities. These will be limited and the risk of large volumes of spills is unlikely as petrochemical substances will not be stored in large volumes at the prospecting sites.

It was determined that the significance of the impacts before mitigation will be Moderate and after mitigation it will be Low – Moderate.

Mitigation

- No hazardous substances will be stored at the prospecting sites permanently in large volumes.
- Drip trays will be placed under all equipment and vehicles which may cause spills.
- Servicing of vehicles will be carried out at the existing workshop and not at the prospecting areas.

#### 6. Archaeological, Paleontological and Cultural Resources

Refer to the Impact Assessment undertaken by the Heritage Specialist in the HIA in Appendix 5