

SiVEST SA (PTY) LTD
PROPOSED CONSTRUCTION OF THE KOUP 1 WIND ENERGY FACILITY AND ASSOCIATED GRID INFRASTRUCTURE, NEAR BEAUFORT WEST, WESTERN CAPE PROVINCE, SOUTH AFRICA

Aquatic Impact Assessment - EIA Phase

DEFF Reference:
Report Prepared by: Issue Date:
Version No.:

14/12/16/3/3/2/2120
EnviroSci (Pty) Ltd - Dr Brian Colloty
14 April 2022
1

SiVEST SA (PTY) LTD

PROPOSED CONSTRUCTION OF THE KOUP 1 WIND ENERGY FACILITY AND ASSOCIATED GRID INFRASTRUCTURE, NEAR BEAUFORT WEST, WESTERN CAPE PROVINCE, SOUTH AFRICA

Aquatic Impact Assessment - EIA Phase

EXECUTIVE SUMMARY

EnviroSci (Pty) Ltd was appointed to undertake an assessment of the aquatic environment in relation to the proposed Koup 1 Wind Energy facility, as several Very High Sensitivity river systems are indicated within the study area by the DFFE Screening Tool. The study area does contain a variety of aquatic features associated, and were characterised as follows:

- Non perennial rivers alluvial dominated channels with or without riparian vegetation. These ranged from narrow channels within small canyons with steep cliffs to broad flood plain areas in the lower valleys. Some of these did contain small seeps/fountains which sustained small pools of water inhabited by invertebrates and amphibians. However, broad riparian zones are only found within the lower valley areas, dominated by a small number of trees, while obligate instream vegetation is limited to a small number of sedges (nut grasses).
- Minor drainage lines, with no obligate aquatic vegetation and were mostly $2-8 \mathrm{~m}$ in width
- Dams or weirs with no wetland or aquatic features, although not many of these were located within the study area.

The features listed above, drain the study area in a north westerly region, forming part of a tributary of the Veldmans River (J21E) Quinary Catchment of the Great Karoo Ecoregion in the Breede-Gouritz Catchment Management Agency (George Regional Office). The Veldmans River in turn drains into the Gamka River. The proposed grid options are located within Subquaternary catchments J21E, J23B, L12A and J32A, however it has been assumed that as the proposed corridors are located within flatter portion of these catchments, with access already occurring (i.e. in close proximity to an existing grid corridor with an existing track), the lines will span the observed aquatic systems with the towers/pylons being placed outside of these systems.

No wetlands were found within the proposed development areas, only the riverine features such as alluvial floodplains and riparian thickets dominated by Vachellia karroo, Searsia lancea, Euclea undulata, Gymonsporia buxifolia Ficinia nodusa, Carex spp, Centella asiatica, Erianthus capensis, Sporobolus fimbriatus, Cynodon incompletes, Prosopis spp (Exotic,) Eragrostis curvula, Erharta calcyni, a Merxmuellera disticha, and Cynodon dactylon are found in close proximity to any of the proposed infrastructure.

SiVEST Environmental	Prepared by: EnviroSci (Pty) Ltd
Aquatic Impact Assessment	
Version No. 1	
Date: 14 April 2022	

As indicated previously, two main natural aquatic systems were observed within the study area, namely the broader non-perennial rivers and the minor drainage lines. The fine scale delineation of the broader systems was focused on the proposed wind farm infrastructure, to ensure that turbines, buildings and any new internal access roads (as far as possible) avoided these areas. Due to the nature of the landscape, the small drainage lines are unavoidable, but these have also been avoided by the turbines and most of the proposed buildings.

The following impacts were then assessed, which are aligned with those contained in the Biodiversity Assessment Protocol and include in the table below and assessed against the proposed alignment and potential activities:

Biodiversity Assessment Protocol Impacts found applicable to this project	Impacts assessed in this report below
Faunal and vegetation communities inhabiting the site	Impact 1 and 2
Fragmentation (physical loss of ecological connectivity and or CBA corridors)	Impact 1 and 2
Changes in numbers and density of species	Impact 1 and 2
Water quality changes (increase in sediment, organic loads, chemicals or eutrophication	Impact 3
Hydrological regime or Hydroperiod changes (Quantity changes such as abstraction or diversion)	Impact 4
Streamflow regulation	Impact 2
Erosion control	Impact 5
No-Go Impact	Impact 6
Cumulative Impacts	Impact 7

As highlighted above the following impacts on the aquatic environment have been identified and will be assessed in greater detail as follows, as well as separately the No-Go and Cumulative impacts:

Construction \& Decommissioning Phases

- Impact 1: Loss of aquatic species of special concern
- Impact 2: Damage or loss of riparian and wetlands systems and disturbance of the waterbodies in the construction phase
- Impact 3: Potential impact on localised surface water quality
- Impact 4: Impact on groundwater resources, through abstraction via boreholes

Operational phase

- Impact 5: Impact on aquatic systems through the possible increase in surface water runoff on form and function - Increase in sedimentation and erosion

The nature of the wind farm is such that it carries a low intensity impact on aquatic resources. A wind farm typically targets the higher lying areas where wind resources are best, thus keeping the turbines away from freshwater resources for the most part, however, the associated roads, cables and other infrastructures must cross the site, and these come in more frequent contact with the drainage lines
and associated features. The project also has a small footprint spread out over a large area, allowing for retention of much of the natural environment so that the systems should remain largely unaffected.

The current layout has, to a large degree, avoided these sensitive features and buffer areas, greatly reducing the potential overall impact and risk to Aquatic resources. The overall and cumulative impacts, as assessed, are linked to instances where complete avoidance was not possible, or the nature of the activities involve a potential risk to aquatic resources even at great distance. Overall, it is expected that the impact on the aquatic environment would be Low (-).

Noteworthy areas, that should be avoided, include the Very High Sensitivity areas as shown in this report. Existing crossings may be used and/or upgraded that intersect these systems however, , detailed monitoring plan must be developed in the pre-construction phase.

Based on the findings of this study, the specialist finds no reason to withhold to an authorisation of any of the proposed activities, assuming that key mitigations measures are implemented. Lastly no preference is provided with regard the grid connections, as it assumed based on the characteristics of the site, that all the aquatic systems could be spanned, while making use of existing tracks, however technical considerations have resulted in Option 2 being selected. Therefore, based on the refinement of the Substation / Laydown positioning not direct impacts on the aquatic environment are anticipated.

NATIONAL ENVIRONMENTAL MANAGEMENT ACT, 1998 (ACT NO. 107 OF 1998) AND ENVIRONMENTAL IMPACT REGULATIONS, 2014 (AS AMENDED) - REQUIREMENTS FOR SPECIALIST REPORTS (APPENDIX 6)

Regulation GNR 326 of 4 December 2014, as amended 7 April 2017, Appendix 6	Section of Report
1. (1) A specialist report prepared in terms of these Regulations must contain- a) details of- i. the specialist who prepared the report; and ii. the expertise of that specialist to compile a specialist report including a curriculum vitae;	Appendix 1 CV
b) a declaration that the specialist is independent in a form as may be specified by the competent authority;	Attached to Report
c) an indication of the scope of, and the purpose for which, the report was prepared;	Section 1.1 and 1.3 of this report
(cA) an indication of the quality and age of base data used for the specialist report;	Section 1.3
(cB) a description of existing impacts on the site, cumulative impacts of the proposed development and levels of acceptable change;	Section 5
d) the date and season of the site investigation and the relevance of the season to the outcome of the assessment;	Section 1.3 and 5
e) a description of the methodology adopted in preparing the report or carrying out the specialised process inclusive of equipment and modelling used;	Appendix 3
f) details of an assessment of the specific identified sensitivity of the site related to the proposed activity or activities and its associated structures and infrastructure, inclusive of a site plan identifying site alternatives;	Section 5.1
g) an identification of any areas to be avoided, including buffers;	Section 5 \& 6
h) a map superimposing the activity including the associated structures and infrastructure on the environmental sensitivities of the site including areas to be avoided, including buffers;	Section 5
i) a description of any assumptions made and any uncertainties or gaps in knowledge;	Section 2
j) a description of the findings and potential implications of such findings on the impact of the proposed activity, (including identified alternatives on the environment) or activities;	Section 6 \& 8

| k)any mitigation measures for inclusion in the EMPr; | Section 6 |
| :---: | :---: | :--- |
| I)any conditions for inclusion in the environmental authorisation; | Section 5. 6 and 8 |
| m) any monitoring requirements for inclusion in the EMPr or | |
| environmental authorisation; | | Section 6

SiVEST SA (PTY) LTD

PROPOSED CONSTRUCTION OF THE KOUP 1 WIND ENERGY FACILITY AND ASSOCIATED GRID INFRASTRUCTURE, NEAR BEAUFORT WEST, WESTERN CAPE PROVINCE, SOUTH AFRICA

Aquatic Impact Assessment - EIA Phase

Contents

1. INTRODUCTION 1
1.1 Terms of Reference 2
1.2 Specialist Credentials 2
1.3 Assessment Methodology 3
2. ASSUMPTIONS AND LIMITATIONS 3
3. TECHNICAL DESCRIPTION 3
3.1 Project Location 3
3.1.1 WEF 4
3.1.2 Grid Connection 5
3.2 Project Description 6
3.2.1 Wind Farm Components 6
3.2.2 Grid Components 7
3.3 Layout alternatives 8
3.3.1 Wind Energy Facility 8
3.3.2 Grid Components 9
3.3.3 No-go Alternative 9
4. LEGAL REQUIREMENT AND GUIDELINES 9
5. DESCRIPTION OF THE RECEIVING ENVIRONMENT 10
5.1 Present Ecological State and conservation importance 15
6. SPECIALIST FINDINGS / IDENTIFICATION AND ASSESSMENT OF IMPACTS 0
6.1 Construction \& Decommissioning Phase 3
6.2 Operation 7
6.3 No go Impact 8
6.4 Cumulative Impacts 10
6.5 Overall Impact Rating 12
7. COMPARATIVE ASSESSMENT OF ALTERNATIVES 15
7.1 Wind Energy Facility 15
7.2 Grid components 15
7.3 No-Go Alternative 16
8. CONCLUSION AND SUMMARY 16
8.1 Summary of Findings 16
8.2 Conclusion and Impact Statement 18
9. REFERENCES 19
9.1 Waterbody classification systems 26
9.2 Wetland definition 27
9.3 National Wetland Classification System method 28
9.4 Waterbody condition 1
9.5 Aquatic ecosystem importance and function 1
List of Tables
Table 1: Results of the sensitivity rating / constraints assessment 1
Table 2: Rating of impacts for the construction and decommissioning phase 3
Table 3: Rating of impacts for the operational phase 7
Table 4: Rating of impacts (No-go) 8
Table 5: Rating of cumulative impacts 11
Table 6: Overall Impact Significance for the WEF (Pre- and Post-Mitigation) 12
Table 7: Comparative assessment of WEF components 15
List of Figures
Figure 1: Proposed wind farm layout 4
Figure 2: Koup 1 WEF Site Locality in relation to all sensitivities layers 5
Figure 3: Proposed 132kV Power Line Route Alignment 6
Figure 4:: Alternatives proposed as part of the Koup 1 WEF 8
Figure $5::$ Project locality map indicating the various quaternary catchments and mainstem rivers (Source DWS and NGI) within the project boundary 11
Figure 6: National Wetland Inventory wetlands and waterbodies (van Deventer et al., 2020) 14
Figure 7: Waterbodies delineated in this assessment based on groundtruthing information collected 14
Figure 8: Confirmed and delineated waterbodies in relation to the proposed Substation and laydown area localities 15
Figure 9: The Freshwater Ecosystem Priority Areas for the study site (Nel et al, 2011) 16
Figure 10: The Critical Biodiversity Areas as per the Western Cape Biodiversity Spatial Plan (2017) 17

List of Appendices

Appendix 1 Specialist CV
Appendix 2 DFFE Site verification statement
Appendix 3 Detailed study methodology

Glossary of Terms

- Drainage line: A drainage line is a lower category or order of watercourse that does not have a clearly defined bed or bank. It carries water only during or immediately after periods of heavy rainfall i.e. non-perennial, and riparian vegetation may not be present.
- Perennial and non-perennial: Perennial systems contain flow or standing water for all or a large proportion of any given year, while non-perennial systems are episodic or ephemeral and thus contains flows for short periods, such as a few hours or days in the case of drainage lines.
- Riparian: the area of land adjacent to a stream or river that is influenced by stream-induced or related processes. Riparian areas which are saturated or flooded for prolonged periods would be considered wetlands and could be described as riparian wetlands. However, some riparian areas are not wetlands (e.g. an area where alluvium is periodically deposited by a stream during floods but which is well drained).
- Wetland: land which is transitional between terrestrial and aquatic systems where the water table is usually at or near the surface, or the land is periodically covered with shallow water, and which under normal circumstances supports or would support vegetation typically adapted to life in saturated soil (Water Act 36 of 1998); land where an excess of water is the dominant factor determining the nature of the soil development and the types of plants and animals living at the soil surface (Cowardin et al., 1979).
- Water course: as per the National Water Act means -
(a) a river or spring;
(b) a natural channel in which water flows regularly or intermittently;
(c) a wetland, lake or dam into which, or from which, water flows; and
(d) any collection of water which the Minister may, by notice in the Gazette, declare to be a watercourse, and a reference to a watercourse includes, where relevant, its bed and banks

List of Abbreviations

AER	Along Existing Roads - cables that are included in existing road servitudes
CARA	Conservation of Agricultural Resources Act
CBA	Critical Biodiversity Area
CSIR	Council for Scientific and Industrial Research
DWS	Department of Water and Sanitation formerly the Department of Water Affairs
EIA	Environmental Impact Assessment
EIS	Ecological Importance and Sensitivity
ESA	Ecological Support Area
GA	General Authorisation (WUA type)
GIS	Geographic Information System
NFEPA	National Freshwater Ecosystem Priority Atlas (Nel, et al. 2011).
OHL	Overhead Line - transmission line cable that is not buried
ORC	Off road cable - underground or overhead transmission cable not within a road reserve
PES	Present Ecological State
SANBI	South African National Biodiversity Institute
SQ	Subquaternary catchment
WUA	Water Use Authorisation
WUL	Water Use License
WULA	Water Use License Application

SiVEST SA (PTY) LTD

PROPOSED CONSTRUCTION OF THE KOUP 1 WIND ENERGY FACILITY AND ASSOCIATED GRID INFRASTRUCTURE, NEAR BEAUFORT WEST, WESTERN CAPE PROVINCE, SOUTH AFRICA

Aquatic Impact Assessment - EIA Phase

1. INTRODUCTION

Abstract

Genesis Enertrag Koup 1 Wind (Pty) Ltd (hereafter referred to as "Genesis"), has appointed SiVEST Environmental (hereafter referred to as "SiVEST") to undertake the required EIA / BA Processes for the proposed construction of the Koup 1 Wind Energy Facility (WEF) and associated grid connection infrastructure near Beaufort West in the Western Cape Province of South Africa.

The overall objective of the development is to generate electricity by means of renewable energy technology capturing wind energy to feed into the National Grid.

It is anticipated that the proposed Koup 1 WEF will comprise twenty-eight (28) wind turbines with a maximum total energy generation capacity of up to approximately 140MW. The electricity generated by the proposed WEF development will be fed into the national grid via a 132 kV overhead power line. A Battery Energy Storage System (BESS) will be located next to the onsite $33 / 132 \mathrm{kV}$ substation. The storage capacity and type of technology would be determined at a later stage during the development phase, but most likely will comprise an array of containers, outdoor cabinets and/or storage tanks.

In terms of the Environmental Impact Assessment (EIA) Regulations, which were published on 04 December 2014 [GNR 982, 983, 984 and 985) and amended on 07 April 2017 [promulgated in Government Gazette 40772 and Government Notice (GN) R326, R327, R325 and R324 on 7 April 2017], various aspects of the proposed development are considered listed activities under GNR 327 and GNR 324 which may have an impact on the environment and therefore require authorisation from the National Competent Authority (CA), namely the Department of Environment, Forestry and Fisheries (DEFF), prior to the commencement of such activities. Specialist studies have been commissioned to assess and verify the project under the new Gazetted specialist protocols.

1.1 Terms of Reference

- Initiated the assessment with a review of the available information for the region and the proposed project, this will also include review of the proposed project in relation to any conservation plans or assessments known for the area, e.g. Critical Biodiversity Area maps, National Waterbody Inventory and high-level groundwater availability maps etc.
- Conducted a site visit (May 2021) to inspect the surrounding waterbodies / features, to developed maps.
- Prepared a map demarcating the respective watercourses or wetland/s, i.e. the waterbody, its respective catchment and other areas within a 500 m radius of the study area. This demonstrated, from a holistic point of view the connectivity between the site and the surrounding regions, i.e. the hydrological zone of influence while classifying the hydrogeomorphic type of the respective water courses / wetlands in relation to present land-use and their current state. The maps depicting demarcated waterbodies were delineated to a scale of 1:10 000, following the methodology described by the DWS, together with an estimation of their functionality, Habitat Integrity (IHI), Wet-Ecoservices (Wet-Health) and Socio-Cultural Importance of the delineated systems, whichever is relevant to the particular systems.
- Recommended buffer zones using the Macfarlane \& Bredin (2017) approach to indicate any No-go / Sensitive areas around any delineated aquatic zones supported by any relevant legislation, e.g. any bioregional plans, conservation guidelines or best practice.
- Determined the Present Ecological State (PES) of any waterbodies including wetlands, estimating their biodiversity, conservation importance with regard ecosystem services during the site visit using recognised PES / EIS assessment methods to determine the state, importance and sensitivity of the respective wetland / watercourse systems.
- Identified and assessed the potential impacts of the proposed project using the revised project layout and description, based on a supplied impact assessment methodology (provided by Aurecon), including cumulative impacts and for construction, operations and decommissioning phases. Also assess the potential impact of the "no go" alternative.
- Provided recommendations and mitigations regarding project related impacts for inclusion into the Environmental Management Program (EMPr).
- Supplied the client with geo-referenced GIS shape files of the wetland / riverine areas and associated buffers to be used in the finalisation of the project layout and management of the project going forward.
- Provided a separate Risk Assessment Matrix as per the DWS 2016 requirements to determine the Water Use License Application Requirements, i.e. indication of future permitting requirements

1.2 Specialist Credentials

Please see Appendix 1 - CV

1.3 Assessment Methodology

The proposed methods have been developed with the renewable industry in mind, coupled to the minimum requirements stipulated by DFFE and the Department of Water and Sanitation. These have been successful in assessing the direct, indirect and cumulative impacts of 115 renewable energy projects (2010 - 2020), of which 18 have been constructed.

These assessments were conducted using the following assessment process based on 4 days field work conducted in May 2021, with the detailed methods included in Appendix 3 of this report

2. ASSUMPTIONS AND LIMITATIONS

To obtain a comprehensive understanding of the dynamics of both the flora and fauna of communities within a study site, as well as the status of endemic, rare or threatened species in any area, assessments should always consider investigations at different time scales (across seasons/years) and through replication. However, due to time constraints these long-term studies are not feasible and are thus mostly based on instantaneous sampling. This limitation is common to many impact assessment type studies, but the findings are deemed adequate for the purposes of decision-making support regarding project acceptability, unless otherwise stated.

Therefore, due to the scope of the work presented in this report, a long-term investigation of the proposed site was not possible and as such not perceived as part of the Terms of Reference. However, a concerted effort was made to sample and assess as much of the potential site, as well as make use of any supporting literature, species distribution data and aerial photography.

It should be emphasised that information, as presented in this document, only has reference to the study area as indicated on the accompanying maps. Therefore, this information cannot be applied to any other area without detailed investigation.

3. TECHNICAL DESCRIPTION

3.1 Project Location

The proposed WEF and associated grid connection infrastructure is located approximately 55 km south of Beaufort West in the Western Cape Province and is within the Beaufort West and Prince Albert Local Municipalities, in the Central Karoo District Municipality (Figure 1).

Figure 1: Proposed wind farm layout

3.1.1 WEF

The WEF application site as shown on the locality map below (Figure 2) is approximately 4279.398 hectares (ha) in extent and incorporates the following farm portions:

- The Farm Riet Poort No 231
- Portion 11 Of The Farm Brits Eigendom No 374
- Portion 15 Of The Farm Brits Eigendom No 374
- Portion 5 Of Farm 380
- Portion 10 Of Farm 380
- Portion 11 Of Farm 380

A smaller buildable area (2445.667 ha) has however been identified as a result of a preliminary suitability assessment undertaken by Genesis and this area is likely to be further refined with the exclusion of sensitive areas determined through various specialist studies being conducted as part of the EIA process.

Figure 2: Koup 1 WEF Site Locality in relation to all sensitivities layers

3.1.2 Grid Connection

At this stage, it is proposed that a 132 kV overhead power line will connect the Koup 1 WEF on-site switching substation / collector to the national grid either by way of an off-site collector substation, or via a direct tie-in to existing 400 kV transmission lines that traverse the Koup 1 WEF project site (Figure 3).

Figure 3: Proposed 132kV Power Line Route Alignment

3.2 Project Description

It is anticipated that the proposed Koup 1 WEF will comprise twenty-eight (28) wind turbines with a maximum total energy generation capacity of up to approximately 140 MW . The electricity generated by the proposed WEF development will be fed into the national grid via a 132kV overhead power line. A Battery Energy Storage System (BESS) will be located next to the onsite $33 / 132 \mathrm{kV}$ substation. The storage capacity and type of technology would be determined at a later stage during the development phase, but most likely will comprise an array of containers, outdoor cabinets and/or storage tanks.

3.2.1 Wind Farm Components

- Up to 28 wind turbines, each between 5.6 MW and 6.6 MW , with a maximum export capacity of approximately 140 MW . This will be subject to allowable limits in terms of the Renewable Energy Independent Power Producer Procurement Programme (REIPPPP). The final number of turbines and layout of the WEF will, however, be dependent on the outcome of the Specialist Studies conducted during the EIA process;
- Each wind turbine will have a hub height and rotor diameter of up to approximately 200 m ;
- Permanent compacted hardstanding areas / platforms (also known as crane pads) of approximately 90m x 50 m (total footprint of approx. 4500 m 2) per turbine during construction and for on-going maintenance purposes for the lifetime of the proposed development;
- Each wind turbine will consist of a foundation of up to approximately $15 \mathrm{~m} \times 15 \mathrm{~m}$ in diameter. In addition, the foundations will be up to approximately $3 m$ in depth;
- Electrical transformers adjacent to each wind turbine (typical footprint of up to approximately $2 \mathrm{~m} \times 2 \mathrm{~m}$) to step up the voltage to 33 kV ;
- One (1) new $33 / 132 \mathrm{kV}$ on-site substation and/or combined collector substation, occupying an area of approximately 1.5 ha . The proposed substation will be a step-up substation and will include an Eskom portion and an IPP portion, hence the substation has been included in the WEF EIA and in the grid infrastructure BA (substation and 132kV overhead power line) to allow for handover to Eskom. Following construction, the substation will be owned and managed by Eskom. The current applicant will retain control of the low voltage components (i.e. 33kV components) of the substation, while the high voltage components (i.e. 132kV components) of this substation will likely be ceded to Eskom shortly after the completion of construction ;
- The wind turbines will be connected to the proposed substation via medium voltage (33 kV) cables. Cables will be buried along access roads wherever technically feasible.
- A Battery Energy Storage System (BESS) will be located next to the onsite $33 / 132 \mathrm{kV}$ substation. The storage capacity and type of technology would be determined at a later stage during the development phase, but most likely will comprise an array of containers, outdoor cabinets and/or storage tanks;
- Internal roads with a width of between 8 m and 10 m will provide access to each wind turbine. Existing site roads will be used wherever possible, although new site roads will be constructed where necessary. Turns will have a radius of up to 50 m for abnormal loads (especially turbine blades) to access the various wind turbine positions. It should be noted that the proposed application site will be accessed via an existing gravel road from the N12 National Route;
- One (1) construction laydown / staging area of up to approximately 2.25ha. It should be noted that no construction camps will be required in order to house workers overnight as all workers will be accommodated in the nearby town;
- One (1) permanent Operation and Maintenance (O\&M) building, including an on-site spares storage building, a workshop and an operations building to be located on the site identified for the construction laydown area.
- A wind measuring lattice (approximately 120 m in height) mast has already been strategically placed within the wind farm application site in order to collect data on wind conditions;
- No new fencing is envisaged at this stage. Current fencing is standard farm fence approximately 1-1.5m in height. Fencing might be upgraded (if required) to be up to approximately 2 m in height; and
- Water will either be sourced from existing boreholes located within the application site or will be trucked in, should the boreholes located within the application site be limited.

3.2.2 Grid Components

The proposed grid connection infrastructure to serve the Koup 1 WEF will include the following components:

- One (1) new 33/132kV on-site substation and/or collector substation, occupying an area of up to approximately 1.5 ha. The proposed substation will be a step-up substation and will include an Eskom portion and an IPP portion, hence the substation has been included in both the EIA for the WEF and in
the BA for the grid infrastructure to allow for handover to Eskom. The applicant will remain in control of the low voltage components (i.e. 33kV components) of the substation, while the high voltage components (i.e. 132 kV components) of this substation will likely be ceded to Eskom shortly after the completion of construction; and
- One (1) new 132kV overhead power line connecting the on-site and/or collector substation either to an off-site collector substation, or via a direct tie-in to the existing 400kV overhead power lines and thereby feeding the electricity into the national grid. Power line towers being considered for this development include self-supporting suspension monopole structures for relatively straight sections of the line and angle strain towers where the route alignment bends to a significant degree. Maximum tower height is expected to be approximately 25 m .

3.3 Layout alternatives

3.3.1 Wind Energy Facility

Design and layout alternatives will be considered and assessed as part of the EIA. These include alternatives for the Substation locations and also for the construction / laydown area. The proposed site alternatives are shown in Error! Reference source not found. below.

Figure 4:: Alternatives proposed as part of the Koup 1 WEF

3.3.2

The grid connection infrastructure proposals include two (2) switching and collector substation site alternatives and three (3) power line route alignment alternatives (Figure 3). These alternatives will be considered and assessed as part of the BA process and will be amended or refined to avoid identified environmental sensitivities.

Three (3) power line route alignments were assessed within a 300 m wide assessment corridor (150 m on either side of power line). These alternatives were as follows:

- Power Line Corridor Option 1 is approximately 1.3 km in length, linking either substation / collector Option 1 or Option 2 to the existing 400kV transmission lines.
- Power Line Corridor Option 2 is approximately 9.9 km in length, linking either substation / collector Option 1 or Option 2 to a proposed Collector Substation to the south, adjacent to the existing 400 kV transmission lines.
- Power Line Corridor Option 3 is approximately 12.9 km in length, linking either substation / collector Option 1 or Option 2 to a proposed Collector Substation to the north, adjacent to the existing 400 kV transmission lines.

Due to technical and environmental constraints identified in the Scoping Phase Option 2 was selected

3.3.3 No-go Alternative

The 'no-go' alternative is the option of not undertaking the proposed WEF and / or grid connection infrastructure projects. Hence, if the 'no-go' option is implemented, there would be no development. This alternative would result in no environmental impacts from the proposed project on the site or surrounding local area. It provides the baseline against which other alternatives are compared and will be considered throughout the report.

4. LEGAL REQUIREMENT AND GUIDELINES

The following is pertinent to this study:

- Section 24 of The Constitution of the Republic of South Africa;
- Agenda 21 - Action plan for sustainable development of the Department of Environmental Affairs and Tourism (DEAT) 1998;
- National Environmental Management Act (NEMA), 1998 (Act No. 107 of 1998) inclusive of all amendments, as well as the NEM: Biodiversity Act;
- National Water Act, 1998 (Act No. 36 of 1998);
- Conservation of Agricultural Resources Act, 1983 (Act No. 43 of 1983);
- Minerals and Petroleum Resources Development Act, 2002 (Act No. 28 of 2002);
- Nature and Environmental Conservation Ordinance (No. 19 of 1974);
- National Forest Act (No. 84 of 1998); and
- National Heritage Resources Act (No. 25 of 1999) - could apply if cultural use or heritage is linked to any aquatic resources
Based on an assessment of the proposed activities and past engagement with DWS, the following Water Use Authorisations may be required based on thresholds as listed in the following Government Notices, however ultimately the Department of Water and Sanitation (DWS) must determine if a General Authorisation (GA) or full WULA will be required during the pre-application process as it relates to the following:
- DWS Notice 538 of 2016, 2 September in GG 40243-Section 21 a \& b water uses relating to the Abstraction and Storage of water.
- Government Notice 509 in GG 40229 of 26 August 2016 - Section 21 c \& I water uses relating to the Impeding or diverting the flow of water in a watercourse and or altering the bed, banks, course or characteristics of a watercourse.
- Government Notice 665, 6 September 2013 in GG 36820 Section 21 g relating to disposing of waste in a manner that may detrimentally impact on a water source which includes temporary storage of domestic waste water i.e. conservancy tanks under Section 37 of the notice.

5. DESCRIPTION OF THE RECEIVING ENVIRONMENT

The study area contains variety of aquatic features associated, characterised as follows:

- Non perennial rivers alluvial dominated channels with or without riparian vegetation (Plate 1 \& 2). These ranged from narrow channels within small canyons with steep cliffs to broad flood plain areas in the lower valleys. Some of these did contain small seeps/fountains which sustained small pools of water inhabited by invertebrates and amphibians. However, broad riparian zones are only found within the lower valley areas, dominated by a small number of trees, while obligate instream vegetation is limited to a small number of sedges (nut grasses).
- Minor drainage lines (Plate 3), with no obligate aquatic vegetation and were mostly $2-8 \mathrm{~m}$ in width
- Dams or weirs (Plate 4) with no wetland or aquatic features, although not many of these were located within the study area.

The features listed above, drain the study area in a north westerly region, forming part of a tributary of the Veldmans River (J21E) Quinary Catchment of the Great Karoo Ecoregion in the Breede-Gouritz Catchment Management Agency (George Regional Office) (Figure 5). The Veldmans River in turn drains into the Gamka River (Figure 5). The proposed grid options are located within Subquaternary catchments J21E, J23B, L12A and J32A, however it has been assumed that as the proposed corridors are located within flatter portion of these catchments, with access already occurring (i.e. in close proximity to an existing grid corridor with an existing track), the lines will span the observed aquatic systems with the towers/pylons being placed outside of these systems.

No wetlands were found within the proposed development areas, only the riverine features such as alluvial floodplains and riparian thickets dominated by Vachellia karroo, Searsia lancea, Euclea undulata, Gymonsporia buxifolia Ficinia nodusa, Carex spp, Centella asiatica, Erianthus capensis, Sporobolus fimbriatus, Cynodon incompletes, Prosopis spp (Exotic,) Eragrostis curvula, Erharta calcyni,a Merxmuellera disticha, and Cynodon dactylon are found in close proximity to any of the proposed infrastructure.

Figure 5:: Project locality map indicating the various quaternary catchments and mainstem rivers (Source DWS and NGI) within the project boundary

Plate 1: A broad alluvial watercourse with defined riparian zone

Plate 2: Alluvial channel with undefined channel and or riparian zone

Plate 3: A view of a minor drainage line observed on the upper plateaux where most of the proposed internal roads are located, thus crossings will mostly occur in these areas of the aquatic systems

Plate 4: Several small weirs were found within the steeper valleys through-out the study area, most no longer functional

Figure 6 indicates the available spatial data with regard potential wetlands and or riverine systems within the study area (van Deventer et al., 2020). During the field work, the site was then groundtruthed as well as compared to 1:50000 topocadastral surveys mapping data and that which was observed on site. A baseline map was then refined using the May 2021 survey data, noting that due to the complex nature of the topography and geology, the features were digitised at a scale of $1: 10000$ to provide greater accuracy when in close proximity to the proposed infrastructure (Figure 7).

As indicated previously, two main natural aquatic systems were observed within the study area, namely the broader non-perennial rivers and the minor drainage lines. The fine scale delineation of the broader systems was focused on the proposed wind farm infrastructure, to ensure that turbines, buildings and any new internal access roads (as far as possible) avoided these areas. Due to the nature of the landscape, the small drainage lines are unavoidable, but these have also been avoided by the turbines and most of the proposed buildings.

Notably the proposed substation and laydown options have been located outside any of the minor drainage lines, thus avoided in the scoping selection process (Figure 8).

Figure 6: National Wetland Inventory wetlands and waterbodies (van Deventer et al., 2020)

Figure 7: Waterbodies delineated in this assessment based on groundtruthing information collected

Figure 8: Confirmed and delineated waterbodies in relation to the proposed Substation and laydown area localities.

5.1 Present Ecological State and conservation importance

The Present Ecological State (PES) of a river, watercourse or wetland represents the extent to which it has changed from the reference or near pristine condition (Category A) towards a highly impacted system where there has been an extensive loss of natural habit and biota, as well as ecosystem functioning (Category E). The PES scores have been revised for the country and based on the new models, aspects of functional importance as well as direct and indirect impacts have been included (DWS, 2014). The new PES system incorporates Ecological Importance (EI) and Ecological Sensitivity (ES) separately as opposed to Ecological Importance and Sensitivity (EIS) in the old model, although the new model is still heavily centred on rating rivers using broad fish, invertebrate, riparian vegetation and water quality indicators. The Recommended Ecological Category (REC) is still contained within the new models, with the default REC being B, when little or no information is available to assess the system or when only one of the above-mentioned parameters are assessed or the overall PES is rated between a C or D .

All of the systems assessed by DWS (2014) on a Subquaternary level within the study area were rated as PES = B or Largely Natural. While these were also rated as High in terms of Ecological Sensitivity and High in terms of Ecological Importance respectively. Based on the information collected during the field investigations, these ratings are verified and upheld for the riverine systems. The High Ecological Sensitivity rating for the natural water sources, is further substantiated by the fact that the affected catchments are
included in both the National Freshwater Priority Atlas (FEPAs \& Important Upstream Areas) and the provincial Biodiversity Spatial Plan Critical Biodiversity Area (CBA) spatial layers (Figure 9 and 10). Noting that the aquatic systems associated with the study area have been rated as Ecological Support Areas (Type 1 \& 2), where the CBA layers are associated with terrestrial systems.

Overall, these catchment areas and subsequent rivers / watercourses are largely in a natural state with localised impacts in some areas, which include the following:

- Erosion and sedimentation associated with existing road crossings; and
- Impeded water flow due to several in channel farm dams or weirs.

The DFFE screening tool indicated that several Very High aquatic sensitivity features were located within the study area. The DFFE ratings were based on the presence of a Aquatic Critical Biodiversity Areas (CBA), Rivers, and Freshwater Ecosystem Priority Area quinary catchments (NFEPAs). The presence of these Very High Sensitivity features was confirmed during this assessment (See Appendix 2 for Verification Statement), but also extended to include additional areas as delineated in Figure 7. However, the present layout with the exception of a number of new watercourse crossings, within or in close proximity to existing roads/tracks, the overall layout (turbines and temporary/permanent building areas) have avoided the Very High sensitivity areas shown in Figures 7 \& 8, with the activities thus located within the Low sensitivity areas according to the DFFE Screening Tool.

The study area is also not located within an International Bird Area (IBA) or a Strategic Water Resource Area and did not contain any wetland clusters or listed Threatened Ecosystems.

Figure 9: The Freshwater Ecosystem Priority Areas for the study site (Nel et al, 2011)

Figure 10: The Critical Biodiversity Areas as per the Western Cape Biodiversity Spatial Plan (2017)

6. SPECIALIST FINDINGS / IDENTIFICATION AND ASSESSMENT OF IMPACTS

Using the baseline description and field data while considering the current disturbances and site characteristics, the following features were identified, then categorized into one of number pre-determined sensitivity categories to provide protect and/or guide the layout planning and design processes of the corridor and a suitable alignment for the grid within. Aquatic sensitivity mapping categorizes feature or areas (with their buffers) into the following categories that were used by all specialists on the project to ensure consistency:

No Go	Legislated "no go" areas or setbacks and areas or features that are considered of such significance that impacting them may be regarded as fatal flaw or strongly influence the project impact significance profile
High	Areas or features that are considered to have a high sensitivity or where project infrastructure would be highly constrained and should be avoided as far as possible. Infrastructure located in these areas are likely to drive up impact significance ratings and mitigations
Medium	Buffer areas and or areas that are deemed to be of medium sensitivity
Low	Areas of low sensitivity or constraints
Neutral	Unconstrained areas (left blank in mapping)

Currently there are no formalised riverine or wetland buffer distances provided by the provincial authorities and as such the buffer model as described Macfarlane \& Bredin (2017) for wetlands, rivers and estuaries was used. These buffer models are based on the condition of the waterbody, the state of the remainder of the site, coupled to the type of development, as wells as the proposed alteration of hydrological flows. Based then on the information known for the site the buffer model provided the following:

- Construction period: 10 m
- Operation period: 8 m
- Final: 10 m

Artificial dams were not buffered.

Table 1 below provides an overview of the sensitivity of various aquatic features (with buffers distances included) as it relates to the main project component types for the project. The features are shown spatially in Figures 7 \& 8. The sensitivity ratings of No go, High, Medium and Low were determined through an assessment of the aquatic habitat sensitivity and related constraints. However, these No-Go areas (with buffers) relate in general terms to the project and there are areas where encroachment on these areas would occur (i.e. existing road crossings within Very High sensitivity areas) but this is considered acceptable since these areas have already been impacted.

Table 1: Results of the sensitivity rating / constraints assessment

Development Component	Waterbody type	Sensitivity rating of the respective waterbody type against the development type and the required buffer	Sensitivity rating override if an impact such as a road already occurs within the proposed footprint
WTG areas	Alluvial Rivers with or without riparian vegetation	No-Go with 10m buffer	

The following impacts were then assessed, which are aligned with those contained in the Biodiversity Assessment Protocol and included in the table below and assessed against the proposed alignment and potential activities:

Biodiversity Assessment Protocol Impacts found applicable to this project	Impacts assessed in this report below
Faunal and vegetation communities inhabiting the site	Impact 1 and 2
Fragmentation (physical loss of ecological connectivity and or CBA corridors)	Impact 1 and 2
Changes in numbers and density of species	Impact 1 and 2
Water quality changes (increase in sediment, organic loads, chemicals or eutrophication	Impact 3
Hydrological regime or Hydroperiod changes (Quantity changes such as abstraction or diversion)	Impact 4
Streamflow regulation	Impact 4
Erosion control	Impact 4
No-Go Impact	Impact 5
Cumulative Impacts	Impact 6

As highlighted above, the following impacts on the aquatic environment have been identified and will be assessed in greater detail as follows, as well as separately the No-Go and Cumulative impacts:

Construction \& Decommissioning Phases

- Impact 1: Loss of aquatic species of special concern
- Impact 2: Damage or loss of riparian and wetlands systems and disturbance of the waterbodies in the construction phase
- Impact 3: Potential impact on localised surface water quality

Operational phase

- Impact 4: Impact on aquatic systems through the possible increase in surface water runoff on form and function - Increase in sedimentation and erosion

Table 2: Rating of impacts for the construction and decommissioning phase

ENVIRONMENTAL PARAMETER	ISSUE / IMPACT / ENVIRONMENTAL EFFECT/ NATURE	ENVIRONMENTAL SIGNIFICANCE BEFORE MITIGATION									RECOMMENDED MITIGATION MEASURES	ENVIRONMENTAL SIGNIFICANCE AFTER MITIGATION								
		E	P	R	L	D	$\begin{aligned} & \text { I } \\ & \text { / } \\ & \mathbf{M} \end{aligned}$	$\begin{aligned} & \frac{1}{4} \\ & \stackrel{O}{1} \end{aligned}$	$\overrightarrow{2}$ $\stackrel{y}{6}$ $\underset{6}{6}$	S		E	P	R	L	D	$\begin{gathered} \text { I } \\ \text { M } \\ \hline \end{gathered}$	$\begin{aligned} & \text { を } \\ & \stackrel{\circ}{\mathrm{O}} \end{aligned}$	$\overrightarrow{2}$ $\frac{1}{6}$ $\underset{6}{6}$	S
Construction/ Decommissioning Phase																				
Impact 1: Loss of aquatic species of special concern	During construction activities within watercourses could result in the disturbance or destruction of any listed and or protected plant or animal species. However none of these aquatic obligate species were observed during this assessment	1	1	1	1	1	1	5	-	LOW (- ve)	Develop and implement an Aquatic Rehabilitation and Monitoring plan post Environmental Authorisation. This must be developed following the finalisation of the turbine / road layout and a walk down has been completed.	1	1	1	1	1	1	5	-	$\begin{gathered} \text { LOW (- } \\ \text { ve) } \end{gathered}$
Impact 2: Damage or loss of riparian and or drainage line systems i.e. disturbance of the waterbodies in the construction phase	Construction could result in the loss of drainage systems that are fully functional and provide an ecosystem services within the site especially where new access roads are required or road upgrades will widen any current bridges or	2	3	2	2	3	2	24	-	MEDIUM (-ve)	A pre-construction walkthrough with an aquatic specialists is recommended and they can assist with the development of the stormwater management plan and Aquatic Rehabilitation and Monitoring plan, coupled to micro-siting of the final layout. All alien plant re-growth, which is currently low	1	3	2	1	2	2	18	-	$\begin{gathered} \text { LOW (- } \\ \text { ve) } \end{gathered}$

SiVEST Environmental
Aquatic Impact Assessment
Version No. 1

ENVIRONMENTAL PARAMETER	ISSUE / IMPACT / ENVIRONMENTAL EFFECT/ NATURE	ENVIRONMENTAL SIGNIFICANCE BEFORE MITIGATION									RECOMMENDED MITIGATION MEASURES	ENVIRONMENTAL SIGNIFICANCE AFTER MITIGATION								
		E	P	R	L	D	$\begin{aligned} & \mathrm{I} \\ & \text { / } \\ & \mathrm{M} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ㄴ } \\ & \stackrel{1}{6} \\ & \stackrel{\circ}{1} \end{aligned}$	$\overrightarrow{2}$ \vdots \vdots 6 6	S		E	P	R	L	D	$\begin{aligned} & \mathrm{I} \\ & \text { I } \\ & \mathbf{M} \\ & \hline \end{aligned}$	-		S
	drifts. Loss can also include a functional loss, through change in vegetation type via alien encroachment for example										within the greater region must be monitored and should it occur, these plants must be eradicated within the project footprints and especially in areas near the proposed crossings. Prosopis (alien invasive riparian tree) is prevalent in areas to the north of the site, thus care in transporting any material, while ensuring that such materials is free of alien seed, coupled with pre and post alien clearing must be stipulated in the EMPr. Where roads and crossings are upgraded, the following applies: Existing pipe culverts must be removed and replaced with suitable sized box culverts, especially where road levels are raised to accommodate any large vehicles. River levels, regardless of the current state of the river / water course must be reinstated thus preventing any impoundments from being									

ENVIRONMENTAL PARAMETER	ISSUE / IMPACT / ENVIRONMENTAL EFFECT/ NATURE	ENVIRONMENTAL SIGNIFICANCE BEFORE MITIGATION									RECOMMENDED MITIGATION MEASURES	ENVIRONMENTAL SIGNIFICANCE AFTER MITIGATION								
		E	P	R	L	D	1 M	$\begin{aligned} & \stackrel{\rightharpoonup}{〔} \\ & \stackrel{1}{\circ} \end{aligned}$	$\begin{aligned} & \overrightarrow{2} \\ & \frac{1}{6} \\ & \infty \end{aligned}$	S		E	P	R	L	D	I / M	㐫		S
											formed. The related designs must be assessed by an aquatic specialist during a preconstruction walkdown. Where large cut and fill areas are required these must be stabilised and rehabilitated during the construction process, to minimise erosion and sedimentation. Suitable stormwater management systems must be installed along roads and other areas and monitored during the first few months of use. Any erosion / sedimentation must be resolved through whatever additional interventions maybe necessary (i.e., extension, energy dissipaters, spreaders, etc). A detailed monitoring plan must be developed in the pre-construction phase by an aquatic specialist, where any delineated system occurs within 50 m of existing crossings.									
Impact 3: Potential impact on localised surface water quality	During construction earthworks will expose and mobilise earth	1	3	2	2	3	3	33	-	MEDIUM (-ve)	- All liquid chemicals including fuels and oil, including the BESS must be stored in with	1	3	2	1	2	2	18	-	$\begin{gathered} \text { LOW } \\ \text { ve) } \end{gathered}$

SiVEST Environmental
Aquatic Impact Assessment
Version No. 1

ENVIRONMENTAL PARAMETER	ISSUE / IMPACT / ENVIRONMENTAL EFFECT/ NATURE	ENVIRONMENTAL SIGNIFICANCE BEFORE MITIGATION									RECOMMENDED MITIGATION MEASURES	ENVIRONMENTAL SIGNIFICANCE AFTER MITIGATION								
		E	P	R	L	D	$\begin{aligned} & \hline \mathbf{I} \\ & \text { / } \\ & \mathbf{M} \\ & \hline \end{aligned}$	$\stackrel{\rightharpoonup}{\sqrt{6}}$		S		E	P	R	L	D	$\begin{array}{\|l\|} \hline \mathbf{I} \\ 1 \\ \mathbf{M} \\ \hline \end{array}$	$\stackrel{\text { ¢ }}{\stackrel{1}{¢}}$		S
(construction materials and fuel storage facilities) during the construction and decommissioning phases	materials, and a number of materials as well as chemicals will be imported and used on site and may end up in the surface water, including soaps, oils, grease and fuels, human wastes, cementitious wastes, paints and solvents, etc. Any spills during transport or while works area conducted in proximity to a watercourse has the potential to affect the surrounding biota. Leaks or spills from storage facilities also pose a risk and due consideration to the safe design and management of the 300001 fuel storage facility must be given. Although unlikely, consideration must										secondary containment (bunds or containers or berms) that can contain a leak or spill. Such facilities must be inspected routinely and must have the suitable PPE and spill kits needed to contain likely worst-case scenario leak or spill in that facility, safely. - Washing and cleaning of equipment must be done in designated wash bays, where rinse water is contained in evaporation/sedimentation ponds (to capture oils, grease cement and sediment). - Mechanical plant and bowsers must not be refuelled or serviced within 100 m of a river channel. - All construction camps, lay down areas, wash bays, batching plants or areas and any stores should be more than 50 m from any demarcated water courses. Note comment regards Camp A that requires micro-siting. - Littering and contamination associated									

SiVEST Environmental
Aquatic Impact Assessment
Version No

ENVIRONMENTAL PARAMETER	ISSUE／IMPACT／ ENVIRONMENTAL EFFECT／NATURE	ENVIRONMENTAL SIGNIFICANCE BEFORE MITIGATION									RECOMMENDED MITIGATION MEASURES	ENVIRONMENTAL SIGNIFICANCE AFTER MITIGATION								
		E	P	R	L	D	$\begin{aligned} & \mathbf{I} \\ & \mathbf{M} \\ & \hline \end{aligned}$	$\stackrel{\text { を }}{\text { を }}$	$\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{k}}$	S		E	P	R	L	D	$\begin{aligned} & \mathbf{I} \\ & 1 \\ & \mathbf{M} \end{aligned}$	$\stackrel{\text { ¢ }}{\stackrel{1}{\circ}}$		S
	also be provided for the proposed Battery Energy Storage System （BESS），with regard safe handling during the construction phase． This to avoid any spills or leaks from this system										with construction activity must be avoided through effective construction camp management； －No stockpiling should take place within or near a water course －All stockpiles must be protected and located in flat areas where run－off will be minimised and sediment recoverable；									

Table 3：Rating of impacts for the operational phase

ENVIRONMENTAL PARAMETER	ISSUE／IMPACT／ ENVIRONMENTAL EFFECT／NATURE	ENVIRONMENTAL SIGNIFICANCE BEFORE MITIGATION									RECOMMENDED MITIGATION MEASURES	ENVIRONMENTAL SIGNIFICANCE AFTER MITIGATION								
		E	P	R	L	D	I I \mathbf{M}	－	方	S		E	P	R	L	D	$\begin{aligned} & \mathrm{I} \\ & / \\ & \mathbf{M} \end{aligned}$	－	$\begin{aligned} & \overrightarrow{2} \\ & \frac{1}{6} \\ & 6 \end{aligned}$	S
Operation Phase																				
Impact 4：Impact on aquatic systems through the possible increase in surface water runoff on form and function during the operational phase	Increase in hard surface areas，and roads that require stormwater management will increase through the concentration of surface water flows that could result in localised changes to flows（volume）	2	3	2	2	3	3	36	－	MEDIUM （－ve）	A stormwater management plan must be developed in the preconstruction phase，detailing the stormwater structures and management interventions that must be installed to manage the increase of surface water flows	1	1	1	1	1	1	5	－	$\begin{gathered} \text { LOW (- } \\ \text { ve) } \end{gathered}$

SiVEST Environmental
Aquatic Impact Assessment
Version No．

ENVIRONMENTAL PARAMETER	ISSUE／IMPACT／ ENVIRONMENTAL EFFECT／NATURE	ENVIRONMENTAL SIGNIFICANCE BEFORE MITIGATION									RECOMMENDED MITIGATION MEASURES	ENVIRONMENTAL SIGNIFICANCE AFTER MITIGATION								
		E	P	R	L	D	$\begin{aligned} & \mathbf{I} \\ & \text { I } \\ & \mathbf{M} \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{k} \\ & \stackrel{y}{6} \\ & \hline \end{aligned}$	S		E	P	R	L	D	I M	玄	$\begin{aligned} & \stackrel{\rightharpoonup}{k} \\ & \text { 岳 } \\ & \hline \end{aligned}$	S
	that would result in form and function changes within aquatic systems， which are currently ephemeral．This then increases the rate of erosions and sedimentation of downstream areas．										directly into any natural systems．This stormwater control systems must be inspected on an annual basis to ensure these are functional． Effective stormwater management must include effective stabilisation（gabions and Reno mattresses） of exposed soil and the re－vegetation of any disturbed riverbanks									

Table 4：Rating of impacts（No－go）

ENVIRONMENTAL PARAMETER	ISSUE／IMPACT／ ENVIRONMENTAL EFFECT／NATURE	ENVIRONMENTAL SIGNIFICANCE BEFORE MITIGATION									RECOMMENDED MITIGATION MEASURES	ENVIRONMENTAL SIGNIFICANCE AFTER MITIGATION								
		E	P	R	L	D	I 1 M	$\stackrel{\text {－}}{\text { 「 }}$	$\begin{aligned} & \frac{2}{4} \\ & \frac{1}{6} 0 \\ & \hline \end{aligned}$	S		E	P	R	L	D	I 1 M	辰	$$	S
No－Go																				
Combined impact on aquatic resources should the project not go ahead（i．e．the No Go Alternative）	Should the project not proceed，then current status quo with regard the aquatic environment would	1	3	2	1	2	2	18	－	LOW（－ ve）	Improve the current stormwater and energy dissipation features not currently found along the	1	3	2	1	2	2	18	－	LOW（－ ve）

SiVEST Environmental
Aquatic Impact Assessment
Version No． 1

ENVIRONMENTAL PARAMETER	ISSUE / IMPACT / ENVIRONMENTAL EFFECT/ NATURE	ENVIRONMENTAL SIGNIFICANCE BEFORE MITIGATION									RECOMMENDED MITIGATION MEASURES	ENVIRONMENTAL SIGNIFICANCE AFTER MITIGATION								
		E	P	R	L	D	$\begin{aligned} & \mathrm{I} \\ & \text { / } \\ & \mathrm{M} \end{aligned}$	$\begin{aligned} & \text { ㄴ } \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \frac{\rightharpoonup}{6} \\ & \frac{1}{6} \\ & \hline \end{aligned}$	S		E	P	R	L	D	$\begin{aligned} & \mathbf{I} \\ & 1 \\ & \mathbf{M} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ! } \\ & \stackrel{\circ}{6} \\ & 卜 \end{aligned}$	$\begin{aligned} & \frac{2}{6} \\ & \frac{1}{6} \\ & 0 \end{aligned}$	S
	remain unchanged. Overall, these catchment and subsequent rivers / watercourses are largely in a natural state. But present day impacts do occur in localised areas and included the following: - Erosion as a result of road crossings; - Several farm dams; and - Undersized culverts within present day road crossings. This has resulted in a slow degradation within the wetland and aquatic systems but the rate in change is not noticeable within the timeframe of this assessment. These activities are likely to continue intermitted into the future and										tracks and roads within the region Install properly sized culverts with erosion protection measures at the present road / track crossings									

6.4 Cumulative Impacts

A cumulative impact assessment was conducted by assessing this project in relation to any other proposed projects within a 35 km radius, which included, Leeu Gamka PV, Koup 1 WEF, Trakas WEF, Beaufort West WEF and Lombaardskraal WEF. The report author has been involved in the assessment of all the listed projects within the exception of the PV project (Leeu Gamka). However, all of the reports were based on the premise that all layouts were developed on the basis of impact avoidance, with particular reference to the avoidance of Very High Sensitivity areas. Consequently, all the impacts that remain could be mitigated mostly through revegetation and / or proper stormwater management. Thus all the impacts would be Medium to Low depending on the scale of the sites, but found acceptable.

Table 5: Rating of cumulative impacts

ENVIRONMENTA L PARAMETER	ISSUE / IMPACT / ENVIRONMENTA L EFFECT/ NATURE	ENVIRONMENTAL SIGNIFICANCE BEFORE MITIGATION									RECOMMENDED MITIGATION MEASURES	ENVIRONMENTAL SIGNIFICANCE AFTER MITIGATION								
		E	P	R	L	D	$\begin{aligned} & \hline \mathbf{1} \\ & 1 \\ & \mathbf{M} \end{aligned}$	$\stackrel{\rightharpoonup}{\mathbf{k}}$	$\begin{gathered} \overrightarrow{2} \\ \stackrel{\rightharpoonup}{6} \\ 5 \end{gathered}$	S		E	P	R	L	D	$\begin{aligned} & \hline \mathbf{1} \\ & 1 \\ & \mathbf{M} \end{aligned}$		$\begin{array}{\|l\|} \hline \stackrel{\rightharpoonup}{k} \\ \text { 匕 } \\ \hline \end{array}$	S
Cumulative Phase																				
Cumulative Impact of various proposed wind farms and associated grid lines on the local aquatic resources	The cumulative assessment considers the various proposed renewable projects that occur within a 35 km radius of this site, where the author has either been involved in the assessment of these projects (Enertrag SA) and or review of the past assessments as part of any required Water Use Licenses (Atlantic Energy Partners \& Mainstream projects).	1	1	1	1	1	1	5	-	LOW (ve)	The premise of all the reviewed or assessed projects has been the avoidance of impacts on the aquatic environment, which have been achieved by the various proposed layouts. The only remaining impacts will be the crossing of internal roads over minor watercourse drainage lines.	Cumulativ e Impact of various proposed wind farms and associated grid lines on the local aquatic resources	The cumulative assessment considers the various proposed renewable projects that occur within a 30km radius of this site, where the author has either been involved in the assessment of these projects (Enertrag SA) and or review of the past assessment s as part of any required Water Use Licenses (Atlantic Energy Partners \& Mainstream projects).	1	1	1	1	1	1	5

6.5 Overall Impact Rating

Table 6: Overall Impact Significance for the WEF (Pre- and Post-Mitigation)

Nature of impact and Phase	Overall Impact Significance (Pre Mitigation)	Proposed mitigation	Overall Impact Significance (Post - Mitigation)
Construction Phase			
Impact 1: Loss of aquatic species of special concern	Low	Develop and implement an Aquatic Rehabilitation and Monitoring plan post Environmental Authorisation. This must be developed following the finalisation of the turbine / road layout and a walk down has been completed.	Low
Impact 2: Damage or loss of riparian and wetlands systems and disturbance of the waterbodies in the construction phase	Medium	A pre-construction walkthrough with an aquatic specialists is recommended and they can assist with the development of the stormwater management plan and Aquatic Rehabilitation and Monitoring plan, coupled to micro-siting of the final layout. All alien plant re-growth, which is currently low within the greater region must be monitored and should it occur, these plants must be eradicated within the project footprints and especially in areas near the proposed crossings. Prosopis (alien invasive riparian tree) is prevalent in areas to the north of the site, thus care in transporting any material, while ensuring that such materials is free of alien seed, coupled with pre and post alien clearing must be stipulated in the EMPr. Where roads and crossings are upgraded, the following applies: Existing pipe culverts must be removed and replaced with suitable sized box culverts, especially where road levels are raised to accommodate any large vehicles. River levels, regardless of the current state of the river / water course must be reinstated thus preventing any impoundments from being formed. The related designs must be assessed by an	Low

		aquatic specialist during a preconstruction walkdown. Where large cut and fill areas are required these must be stabilised and rehabilitated during the construction process, to minimise erosion and sedimentation. Suitable stormwater management systems must be installed along roads and other areas and monitored during the first few months of use. Any erosion / sedimentation must be resolved through whatever additional interventions maybe necessary (i.e., extension, energy dissipaters, spreaders, etc). A detailed monitoring plan must be developed in the preconstruction phase by an aquatic specialist, where any delineated system occurs within 50 m of existing crossings.	
Impact 3: Potential impact on localised surface water quality	Medium	- All liquid chemicals including fuels and oil, including the BESS must be stored in with secondary containment (bunds or containers or berms) that can contain a leak or spill. Such facilities must be inspected routinely and must have the suitable PPE and spill kits needed to contain likely worst-case scenario leak or spill in that facility, safely. - Washing and cleaning of equipment must be done in designated wash bays, where rinse water is contained in evaporation/sedimentation ponds (to capture oils, grease cement and sediment). - Mechanical plant and bowsers must not be refuelled or serviced within 100 m of a river channel. - All construction camps, lay down areas, wash bays, batching plants or areas and any stores should be more than 50 m from any demarcated water courses. Note comment regards Camp A that requires micro-siting. - Littering and contamination associated with construction activity must be avoided through effective construction camp management; - No stockpiling should take place	Low

		within or near a water course - All stockpiles must be protected and located in flat areas where run-off will be minimised and sediment recoverable;	
Operation Phase			
Impact 4: Impact on aquatic systems through the possible increase in surface water runoff on form and function Increase in sedimentation and erosion	Medium	A stormwater management plan must be developed in the preconstruction phase, detailing the stormwater structures and management interventions that must be installed to manage the increase of surface water flows directly into any natural systems. This stormwater control systems must be inspected on an annual basis to ensure these are functional. Effective stormwater management must include effective stabilisation (gabions and Reno mattresses) of exposed soil and the revegetation of any disturbed riverbanks	Low
No-Go	Low	Improve the current stormwater and energy dissipation features not currently found along the tracks and roads within the region Install properly sized culverts with erosion protection measures at the present road / track crossings	Low
Cumulative Impacts	Low	The premise of all the reviewed or assessed projects has been the avoidance of impacts on the aquatic environment, which have been achieved by the various proposed layouts. The only remaining impacts will be the crossing of internal roads over minor watercourse / drainage lines.	Low

7. COMPARATIVE ASSESSMENT OF ALTERNATIVES

Key

PREFERRED	The alternative will result in a low impact / reduce the impact / result in a positive impact
FAVOURABLE	The impact will be relatively insignificant
LEAST PREFERRED	The alternative will result in a high impact / increase the impact
NO PREFERENCE	The alternative will result in equal impacts

7.1 Wind Energy Facility

Table 7: Comparative assessment of WEF components

Alternative	Preference	Reasons (incl. potential issues)
SUBSTATION SITE ALTERNATIVES		
Substation Option 1	Avoids all aquatic systems	Stormwater management will not be an issue
Substation Option 2	Mostly avoid aquatic systems	With minor layout adjust the drainage line can be avoided
CONSTRUCTION LAYDOWN AREA SITE ALTERNATIVES		
Construction Laydown Area Option 1	No preference	All aquatic features are avoided
Construction Laydown Area Option 2	No preference	All aquatic features are avoided

7.2 Grid components

Table 8: Comparative assessment of Grid components

Alternative	Preference	Reasons (incl. potential issues)
GRID ALTERNATIVES		
Option 1 A	Can span all aquatic systems	All components avoid aquatic systems
Option 1 B	Can span all aquatic systems	Towers can be placed outside of delineated aquatic systems, with assumption that the associated substation is moved (See Table 7 above)
Option 2 A	Can span all aquatic systems	All components avoid aquatic systems
Option 2 B	Can span all aquatic systems	Towers can be placed outside of delineated aquatic systems, with assumption that the associated substation is moved (See Table 7 above)
Option 3 A	Can span all aquatic systems	All components avoid aquatic systems

Alternative	Preference	Reasons (incl. potential issues)
Option 3 B	Can span all aquatic systems	Towers can be placed outside of delineated aquatic systems, with assumption that the associated substation is moved (See Table 7 above)

7.3 No-Go Alternative

Should the project not proceed, then current status quo with regard the aquatic environment would remain unchanged. Overall, these catchment and subsequent rivers / watercourses are largely in a natural state. But present day impacts do occur in localised areas and included the following:

- Erosion as a result of road crossings;
- Several farm dams; and
- Undersized culverts within present day road crossings, although very few occur on site

Land owners should undertake the following:

- Improve the current stormwater and energy dissipation features not currently found along some of the tracks and roads within the region
- Install properly sized culverts or drifts with erosion protection measures at the present road / track crossings

8. CONCLUSION AND SUMMARY

8.1 Summary of Findings

The nature of the wind farm is such that it carries a low intensity impact on aquatic resources. A wind farm typically targets the higher lying areas where wind resources are best, thus keeping the turbines away from freshwater resources for the most part, however, the associated roads, cables and other infrastructures must cross the site, and these come in more frequent contact with the drainage lines and associated features. The project also has a small footprint spread out over a large area, allowing for retention of much of the natural environment so that the systems should remain largely unaffected.

A variety of aquatic features, mostly ephemeral in nature were observed within the study area and these were mapped and buffered as necessary for their protection. The current layout has, to a large degree, avoided these sensitive features and buffer areas, greatly reducing the potential overall impact and risk to Aquatic resources. The overall and cumulative impacts, as assessed, are linked to instances where complete avoidance was not possible, or the nature of the activities involve a potential risk to aquatic resources even at great distance. Overall, it is expected that the impact on the aquatic environment would be Low (-).

Noteworthy areas, that should be avoided, include the Very High Sensitivity areas as show in this report. Existing crossings may be used and/or upgraded that intersect these systems however, but these crossings, detailed monitoring plan must be developed in the pre-construction phase.

8.2 Conclusion and Impact Statement

Based on the findings of this study, the specialist finds no reason to withhold to an authorisation of any of the proposed activities, assuming that key mitigations measures are implemented. Lastly no preference is provided with regard the grid connections, as it assumed based on the characteristics of the site, that all the aquatic systems could be spanned, while making use of existing tracks, however technical considerations have resulted in Option 2 being selected. Therefore, based on the refinement of the Substation / Laydown positioning not direct impacts on the aquatic environment are anticipated.

9. REFERENCES

Agenda 21 - Action plan for sustainable development of the Department of Environmental Affairs and Tourism (DEAT) 1998.

Agricultural Resources Act, 1983 (Act No. 43 of 1983).
Davies, B. and Day J., (1998). Vanishing Waters. University of Cape Town Press.
Department of Water Affairs and Forestry - DWAF (2005). A practical field procedure for identification and delineation of wetland and riparian areas Edition 1. Department of Water Affairs and Forestry , Pretoria.

Department of Water Affairs and Forestry - DWAF (2008). Manual for the assessment of a Wetland Index of Habitat Integrity for South African floodplain and channelled valley bottom wetland types by M. Rountree (ed); C.P. Todd, C. J. Kleynhans, A. L. Batchelor, M. D. Louw, D. Kotze, D. Walters, S. Schroeder, P. Illgner, M. Uys. and G.C. Marneweck. Report no. N/0000/00/WEI/0407. Resource Quality Services, Department of Water Affairs and Forestry, Pretoria, South Africa.

Driver A., Sink, K.J., Nel, J.N., Holness, S., Van Niekerk, L., Daniels, F., Jonas, Z., Majiedt, P.A., Harris, L. \& Maze, K. 2012. National Biodiversity Assessment 2011: An assessment of South Africa's biodiversity and ecosystems. Synthesis Report. South African National Biodiversity Institute and Department of Environmental Affairs, Pretoria.

Du Preez, L. And Carruthers, V. 2009. A Complete Guide To Frogs Of Southern Africa. Struik Nature, Cape Town

Ewart-Smith J.L., Ollis D.J., Day J.A. and Malan H.L. (2006). National Wetland Inventory: Development of a Wetland Classification System for South Africa. WRC Report No. KV 174/06. Water Research Commission, Pretoria.

IUCN (2019). Red List of Threatened Species. IUCN Species Survival Commission, Cambridge Available: http://www.iucnredlist.org/

Kleynhans C.J., Thirion C. and Moolman J. (2005). A Level 1 Ecoregion Classification System for South Africa, Lesotho and Swaziland. Report No. N/0000/00/REQ0104. Resource Quality Services, Department of Water Affairs and Forestry, Pretoria.

Kotze D.C., Marneweck G.C., Batchelor A.L., Lindley D.S. and Collins N. (2008). WET-EcoServices A technique for rapidly assessing ecosystem services supplied by wetlands. WRC Report No: TT 339/08.

Macfarlane, D.M. \& Bredin, I.P. 2017. Buffer Zone Guidelines for Rivers, Wetlands and Estuaries Buffer Zone Guidelines for Rivers, Wetlands and Estuaries. WRC Report No TT 715/1/17 Water Research Commission, Pretoria.

Minerals and Petroleum Resources Development Act, 2002 (Act No. 28 of 2002), as amended.
Mitsch, J.G. and Gosselink, G. (2000). Wetlands 3rd End, Wiley, NewYork, 2000, 920 pg.
Mucina, L., \& Rutherford, M.C., 2006. The Vegetation of South Africa, Lesotho and Swaziland, Strelitzia 19, South Africa.

National Environmental Management Act, 1998 (Act No. 107 of 1998), as amended.
SiVEST Environmental Prepared by: EnviroSci (Pty) Ltd

Aquatic Impact Assessment Version No. 1

Date: 14 April 2022

National Water Act, 1998 (Act No. 36 of 1998), as amended
Nel, J., Maree, G., Roux, D., Moolman, J., Kleynhans, N., Silberbauer, M. and Driver, A. 2004. South African National Spatial Biodiversity Assessment 2004: Technical Report. Volume 2: River Component. CSIR Report Number ENV-S-I-2004-063. Council for Scientific and Industrial Research, Stellenbosch.

Nel, J.L., Murray, K.M., Maherry, A.M., Petersen, C.P., Roux, D.J., Driver, A., Hill, L., Van Deventer, H., Funke, N., Swartz, E.R., Smith-Adao, L.B., Mbona, N., Downsborough, L. and Nienaber, S. (2011). Technical Report for the National Freshwater Ecosystem Priority Areas project. WRC Report No. K5/1801.

Nel, J., Colvin, C., Le Maitre, D., Smith, J. \& Haines, I. (2013). South Africa's Strategic Water Source Areas. CSIR Report No: CSIR/NRE/ECOS/ER/2013/0031/A. Report for WWF South Africa

Ollis, D.J., Snaddon, C.D., Job, N.M. \& Mbona, N. 2013. Classification System for Wetlands and other Aquatic Ecosystems in South Africa. User Manual: Inland Systems. SANBI Biodiversity Series 22. South African National Biodiversity Institute, Pretoria.

Parsons R. (2004). Surface Water - Groundwater Interaction in a Southern African Context. WRC Report TT 218/03, Pretoria.

Ramsar Convention, (1971) including the Wetland Conservation Programme (DEAT) and the National Wetland Rehabilitation Initiative (DEAT, 2000).

Rowntree, K., Wadesone, R. and O'Keeffe, J. 2000. The development of a geomorphological classification system for the longitudinal zonation of South African rivers. South African Geographical Journal 82(3): 163172.

South African Bird Atlasing Project 2 (SABAP2). 2017. Animal Demographic Unit. Available online: http://sabap2.adu.org.za/

Stuart, C and Stuart, T. 2007. A field guide to the mammals of Southern Africa. Struik Nature, Cape Town.
van Deventer H., Smith-Adao, L. Petersen C., Mbona N., Skowno A., Nel, J.L. (2020) Review of available data for a South African Inventory of Inland Aquatic Ecosystems (SAIIAE). Water SA 44 (2) 184-199

Appendix 1 Specialist CV

CURRICULUM VITAE Dr Brian Michael Colloty 7212215031083

1 Rossini Rd
Pari Park
Gqeberha, 6070
b.colloty@gmail.com

0834983299
Profession: Ecologist \& Environmental Assessment Practitioner (Pr. Sci. Nat. 400268/07) Member of the South African Wetland Society
Specialisation: Ecology and conservation importance rating of inland habitats, wetlands, rivers \& estuaries Years experience: 25 years

SKILLS BASE AND CORE COMPETENCIES

- 25 years experience in environmental sensitivity and conservation assessment of aquatic and terrestrial systems inclusive of Index of Habitat Integrity (IHI), WET Tools, Riparian Vegetation Response Assessment Index (VEGRAI) for Reserve Determinations, estuarine and wetland delineation throughout Africa. Experience also includes biodiversity and ecological assessments with regard sensitive fauna and flora, within the marine, coastal and inland environments. Countries include Mozambique, Kenya, Namibia, Central African Republic, Zambia, Eritrea, Mauritius, Madagascar, Angola, Ghana, GuineaBissau and Sierra Leone. Current projects also span all nine provinces in South Africa.
- 15 years experience in the coordination and management of multi-disciplinary teams, such as specialist teams for small to large scale EIAs and environmental monitoring programmes, throughout Africa and inclusive of marine, coastal and inland systems. This includes project and budget management, specialist team management, client and stakeholder engagement and project reporting.
- GIS mapping and sensitivity analysis

TERTIARY EDUCATION

- 1994: B Sc Degree (Botany \& Zoology) - NMU
- 1995: B Sc Hon (Zoology) - NMU
- 1996: M Sc (Botany - Rivers) - NMU
- 2000: Ph D (Botany - Estuaries \& Mangroves) - NMU

EMPLOYMENT HISTORY

- 1996-2000 Researcher at Nelson Mandela University - SAB institute for Coastal Research \& Management. Funded by the WRC to develop estuarine importance rating methods for South African Estuaries
- 2001 - January 2003 Training development officer AVK SA (reason for leaving - sought work back in the environmental field rather than engineering sector)
- February 2003- June 2005 Project manager \& Ecologist for Strategic Environmental Focus (Pretoria) (reason for leaving - sought work related more to experience in the coastal environment)
- July 2005 - June 2009 Principal Environmental Consultant Coastal \& Environmental Services (reason for leaving - company restructuring)
- June 2009 - August 2018 Owner / Ecologist of Scherman Colloty \& Associates cc
- August 2018 Owner / Ecologist - EnviroSci (Pty) Ltd

SELECTED RELEVANT PROJECT EXPERIENCE

World Bank IFC Standards

- Botswana South Africa 400kv transmission line (400km) biodiversity assessment on behalf of Aurecon - current
- Farim phosphate mine and port development, Guinea Bissau - biodiversity and estuarine assessment on behalf of Knight Piesold Canada - 2016.

[^0]- Tema LNG offshore pipeline EIA - marine and estuarine assessment for Quantum Power (2015).
- Colluli Potash South Boulder, Eritrea, SEIA marine baseline and hydrodynamic surveys co-ordinator and coastal vegetation specialist (coastal lagoon and marine) (on-going).
- Wetland, estuarine and riverine assessment for Addax Biofeuls Sierra Leone, Makeni for Coastal \& Environmental Services: 2009
- ESHIA Project manager and long-term marine monitoring phase coordinator with regards the dredge works required in Luanda bay, Angola. Monitoring included water quality and biological changes in the bay and at the offshore disposal outfall site, 2005-2011

South African

- Plant and animal search and rescue for the Karusa and Soetwater Wind Farms on behalf of Enel Green Power, Current
- Plant and animal search and rescue for the Nxuba, Oyster Bay and Garob Wind Farms on behalf of Enel Green Power, 2018-2019
- Plant and Animal Search and Rescue for the Port of Ngqura, Transnet Landside infrastructure Project, with development and management of on site nursery, Current
- Plant and Animal Search and Rescue for the Port of Ngqura, OTGC Tank Farm Project (2019)
- Plant search and rescue, for NMBM (Driftsands sewer, Glen Hurd Drive), Department of Social Development (Military veterans housing, Despatch) and Nxuba Wind Farm, - current
- Wetland specialist appointed to update the Eastern Cape Biodiversity Conservation Plan, for the Province on behalf of EOH CES appointment by SANBI - current. This includes updating the National Wetland Inventory for the province, submitting the new data to CSIR/SANBI.
- CDC IDZ Alien eradication plans for three renewable projects Coega Wind Farm, Sonop Wind Farm and Coega PV, on behalf of JG Afrika (2016-2017).
- Nelson Mandela Bay Municipality Baakens River Integrated Wetland Assessment (Inclusive of Rehabilitation and Monitoring Plans) for CEN IEM Unit - Current
- Rangers Biomass Gasification Project (Uitenhage), biodiversity and wetland assessment and wetland rehabilitation / monitoring plans for CEM IEM Unit - 2017
- Gibson Bay Wind Farm implementation of the wetland management plan during the construction and operation of the wind farm (includes surface / groundwater as well wetland rehabilitation \& monitoring plan) on behalf of Enel Green Power - 2018
- Gibson Bay Wind Farm 133kV Transmission Line wetland management plan during the construction of the transmission line (includes wetland rehabilitation \& monitoring plan) on behalf of Eskom - 2016.
- Tsitsikamma Community Wind Farm implementation of the wetland management plan during the construction of the wind farm (includes surface / biomonitoring, as well wetland rehabilitation \& monitoring plan) on behalf of Cennergi - completed May 2016.
- Alicedale bulk sewer pipeline for Cacadu District, wetland and water quality assessment, 2016
- Mogalakwena 33kv transmission line in the Limpopo Province, on behlaf of Aurecon, 2016
- Cape St Francis WWTW expansion wetland and passive treatment system for the Kouga Municipality, 2015
- Macindane bulk water and sewer pipelines wetland and wetland rehabilitation plan 2015
- Eskom Prieska to Copperton 132 kV transmission line aquatic assessment, Northern Cape on behalf of Savannah Environmental 2015.
- Joe Slovo sewer pipeline upgrade wetland assessment for Nelson Mandela Bay Municipality 2014
- Cape Recife Waste Water Treatment Works expansion and pipeline aquatic assessment for Nelson Mandela Bay Municipality 2013
- Pola park bulk sewer line upgrade aquatic assessment for Nelson Mandela Bay Municipality 2013
- Transnet Freight Rail - Swazi Rail Link (Current) wetland and ecological assessment on behalf of Aurecon for the proposed rail upgrade from Ermelo to Richards Bay
- Eskom Transmission wetland and ecological assessment for the proposed transmission line between Pietermaritzburg and Richards Bay on behalf of Aurecon (2012).
- Port Durnford Exarro Sands biodiversity assessment for the proposed mineral sands mine on behalf of Exxaro (2009)
- Fairbreeze Mine Exxaro (Mtunzini) wetland assessment on behalf of Strategic Environmental Services (2007).
- Wetland assessment for Richards Bay Minerals (2013) - Zulti North haul road on behalf of RBM.
- Biodiversity and aquatic assessments for 118 renewable projects in the past 9 years in the Western, Eastern, Northern Cape, KwaZulu-Natal and Free State provinces. Clients included RES-SA, Red Cap, ACED Renewables, Mainstream Renewable, GDF Suez, Globeleq, ENEL, Abengoa amongst others. Particular aquatic
sensitivity assessment and Water Use License Applications on behalf of Mainstream Renewable Energy (8 wind farms and 3 PV facilities.), Cennergi / Exxaro (2 Wind farms), WKN Wind current (2 wind farms \& 2 PV facilities), ACED (6 wind farms) and Windlab (3 Wind farms) were also conducted. Several of these projects also required the assessment of the proposed transmission lines and switching stations, which were conducted on behalf of Eskom.
- Vegetation assessments on the Great Brak rivers for Department of Water and Sanitation, 2006 and the Gouritz Water Management Area (2014)
- Proposed FibreCo fibre optic cable vegetation assessment along the PE to George, George to Graaf Reinet, PE to Colesburg, and East London to Bloemfontein on behalf of SRK (2013-2015).

Appendix 2 - Site Verification Report

SITE SENSITIVITY VERIFICATION (IN TERMS OF PART A OF THE ASSESSMENT PROTOCOLS PUBLISHED IN GN 320 ON 20 MARCH 2020

INTRODUCTION

In accordance with Appendix 6 of the National Environmental Management Act (Act 107 of 1998, as amended) (NEMA) Environmental Impact Assessment (EIA) Regulations of 2014, a site sensitivity verification has been undertaken in order to confirm the current land use and environmental sensitivity of the proposed project area as identified by the National Web-Based Environmental Screening Tool (Screening Tool).

SITE SENSITIVITY VERIFICATION

Using the result of the specialist aquatic impact assessment, that made use of past and current spatial databases, aerial images and field work conducted within and adjacent to the site over a number of years / seasons, various habitats were delineated and the rated in terms of their sensitivity.

OUTCOME OF SITE SENSITIVITY VERIFICATION

Similar to the results of the Screening Tool, the study area contained two types of sensitivity aquatic habitats, namely Very High and Low (Figure 1). However, the extent of the Very High Sensitivity areas was found be greater in extent that what is shown in Figure 1.
NATIONAL ENVIRONMENTAL SCREENING TOOL
Based on the DFFE Screening Tool, the site contains areas of very high sensitivity due to the presence of CBAs, NFEPAs and rivers. The remaining area within the development footprint is deemed to be of low sensitivity (Figure 1).

Figure 1. DFFE Screening Tool outcome for the aquatic biodiversity theme
Figure 2 below shows the sensitivity map produced following the desktop assessment as well as a groundtruthing exercises, with mapping of the observed features at a finer scale.

Figure 2. Environmental sensitivity map produced by the aquatic specialist

CONCLUSION

In conclusion, the DFFE Screening Tool identified two sensitivity ratings within the development study area, very high and low. Although there is some overlap with the findings on site and the Screening Tool's outcome, the extent of the Very High sensitivity areas was found to be greater than the extent in the Screening Tool.

However and appropriate layout has been developed to minimise the impact on the Very High areas and is presently deemed acceptable by the aquatic ecologist..

Appendix 3 - Study METHODOLOGY

This study followed the approaches of several national guidelines with regards to wetland assessment. These have been modified by the author, to provide a relevant mechanism of assessing the present state of the study area aquatic systems, applicable to the specific environment and, in a clear and objective manner, identify and assess the potential impacts associated with the proposed development site based on information collected within the relevant farm portions.
Current water resource classification systems make use of the Hydrogeomorphic (HGM) approach, and for this reason, the National Wetland Classification System (NWCS) approach will be used in this study. It is also important to understand the legal definition of a wetland, the means of assessing wetland conservation and importance and the relevant legislation aimed at protecting wetlands. These aspects will be discussed in greater depth in this section of the report, as they form the basis of the study approach to assessing wetland impacts.
For reference the following definitions are as follows:

- Drainage line: A drainage line is a lower category or order of watercourse that does not have a clearly defined bed or bank. It carries water only during or immediately after periods of heavy rainfall i.e. non-perennial, and riparian vegetation may not be present.
- Perennial and non-perennial: Perennial systems contain flow or standing water for all or a large proportion of any given year, while non-perennial systems are episodic or ephemeral and thus contains flows for short periods, such as a few hours or days in the case of drainage lines.
- Riparian: The area of land adjacent to a stream or river that is influenced by stream-induced or related processes. Riparian areas which are saturated or flooded for prolonged periods would be considered wetlands and could be described as riparian wetlands. However, some riparian areas are not wetlands (e.g. an area where alluvium is periodically deposited by a stream during floods but which is well drained).
- Wetland: Land which is transitional between terrestrial and aquatic systems where the water table is usually at or near the surface, or the land is periodically covered with shallow water, and which under normal circumstances supports or would support vegetation typically adapted to life in saturated soil (Water Act 36 of 1998); land where an excess of water is the dominant factor determining the nature of the soil development and the types of plants and animals living at the soil surface (Cowardin et al., 1979).
- Water course: As per the National Water Act means -
(a) a river or spring;
(b) a natural channel in which water flows regularly or intermittently;
(c) a wetland, lake or dam into which, or from which, water flows; and
(d) any collection of water which the Minister may, by notice in the Gazette, declare to be a watercourse, and a reference to a watercourse includes, where relevant, its bed and banks

9.1 Waterbody classification systems

Since the late 1960's, wetland classification systems have undergone a series of international and national revisions. These revisions allowed for the inclusion of additional wetland types, ecological and conservation rating metrics, together with a need for a system that would allude to the functional requirements of any given wetland (Ewart-Smith et al., 2006). Wetland function is a consequence of biotic and abiotic factors, and wetland classification should strive to capture these aspects. Coupled to this was the inclusion of other criteria within the classification systems to differentiate between river, riparian and wetland systems, as well as natural versus artificial waterbodies.
The South African National Biodiversity Institute (SANBI) in collaboration with several specialists and stakeholders developed the newly revised and now accepted National Wetland Classification Systems (NWCS) (Ollis et al., 2013). This system comprises a hierarchical classification process of defining a wetland based on the principles of the hydrogeomorphic (HGM) approach at higher levels, with including structural features at the finer or lower levels of classification (Ollis et al., 2013).

Wetlands develop in a response to elevated water tables, linked either to rivers, groundwater flows or seepage from aquifers (Parsons, 2004). These water levels or flows then interact with localised geology and soil forms, which then determines the form and function of the respective wetlands. Water is thus the common driving force, in the formation of wetlands (DWAF, 2005). It is significant that the HGM approach has now been included in the wetland classifications as the HGM approach has been adopted throughout the water resources management realm with regards to the determination of the Present Ecological State (PES) and Ecological Importance and Sensitivity (EIS) and WET-Health assessments for aquatic environments. All these systems are then easily integrated using the HGM approach in line with the Eco-classification process of river and wetland reserve determinations used by the Department of Water and Sanitation (DWS). The Ecological Reserve of a wetland or river is used by DWS to assess the water resource allocations when assessing WULAs

The NWCS process is provided in more detail in the methods section of the report, but some of the terms and definitions used in this document are present below:

Definition Box

Present Ecological State is a term for the current ecological condition of the resource. This is assessed relative to the deviation from the Reference State. Reference State/Condition is the natural or pre-impacted condition of the system. The reference state is not a static condition, but refers to the natural dynamics (range and rates of change or flux) prior to development. The PES is determined per component - for rivers and wetlands this would be for the drivers: flow, water quality and geomorphology; and the biotic response indicators: fish, macroinvertebrates, riparian vegetation and diatoms. PES categories for every component would be integrated into an overall PES for the river reach or wetland being investigated. This integrated PES is called the EcoStatus of the reach or wetland.
EcoStatus is the overall PES or current state of the resource. It represents the totality of the features and characteristics of a river and its riparian areas or wetland that bear upon its ability to support an appropriate natural flora and fauna and its capacity to provide a variety of goods and services. The EcoStatus value is an integrated ecological state made up of a combination of various PES findings from component EcoStatus assessments (such as for invertebrates, fish, riparian vegetation, geomorphology, hydrology, and water quality).
Reserve: The quantity and quality of water needed to sustain basic human needs and ecosystems (e.g. estuaries, rivers, lakes, groundwater and wetlands) to ensure ecologically sustainable development and utilisation of a water resource. The Ecological Reserve pertains specifically to aquatic ecosystems.
Reserve requirements: The quality, quantity and reliability of water needed to satisfy the requirements of basic human needs and the Ecological Reserve (inclusive of instream requirements).
Ecological Reserve determination study: The study undertaken to determine Ecological Reserve requirements.
Licensing applications: Water users are required (by legislation) to apply for licenses prior to extracting water resources from a water catchment or any other activity that qualifies as a water use.
Ecological Water Requirements: This is the quality and quantity of water flowing through a natural stream course that is needed to sustain instream functions and ecosystem integrity at an acceptable level as determined during an EWR study. These then form part of the conditions for managing achievable water quantity and quality conditions as stipulated in the Reserve Template
Water allocation process (compulsory licensing): This is a process where all existing and new water users are requested to reapply for their licenses, particularly in stressed catchments where there is an over-allocation of water or an inequitable distribution of entitlements.
Ecoregions are geographic regions that have been delineated in a top-down manner on the basis of physical/abiotic factors. - NOTE: For purposes of the classification system, the 'Level I Ecoregions' for South Africa, Lesotho and Swaziland (Kleynhans et al. 2005), which have been specifically developed by the Department of Water Affairs \& Forestry (DWAF) for rivers but are used for the management of inland aquatic ecosystems more generally, are applied at Level 2A of the classification system. These Ecoregions are based on physiography, climate, geology, soils and potential natural vegetation.

$9.2 \quad$ Wetland definition

Although the National Wetland Classification System (NWCS) (Ollis et al., 2013) is used to classify wetland types it is still necessary to understand the definition of a wetland. Terminology currently strives to characterise a wetland not only on its structure (visible form), but also to relate this to the function and value of any given wetland.
The Ramsar Convention definition of a wetland is widely accepted as "areas of marsh, fen, peatland or water, whether natural or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish or salt, including areas of marine water the depth of which at low tide does not exceed six metres" (Davis 1994). South Africa is a signatory to the Ramsar Convention and therefore its extremely broad definition of wetlands has been adopted for the proposed NWCS, with a few modifications.
Whereas the Ramsar Convention included marine water to a depth of six metres, the definition used for the NWCS extends to a depth of ten metres at low tide, as this is recognised as the seaward boundary of the shallow photic zone (Lombard et al., 2005). An additional minor adaptation of the definition is the removal of the term 'fen' as fens are considered a type of peatland. The adapted definition for the NWCS is, therefore, as follows (Ollis et al., 2013):
WETLAND: an area of marsh, peatland or water, whether natural or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish or salt, including areas of marine water the depth of which at low tide does not exceed ten metres.
This definition encompasses all ecosystems characterised by the permanent or periodic presence of water other than marine waters deeper than ten metres. The only legislated definition of wetlands in South Africa, however, is contained within the National Water Act (Act No. 36 of 1998) (NWA), where wetlands are defined as "land which is transitional between terrestrial and aquatic systems, where the water table is usually at, or near the surface, or the land is periodically covered with shallow water and which land in normal circumstances supports, or would support, vegetation adapted to life in saturated soil." This definition is consistent with more precise working definitions of wetlands and therefore includes only a subset of ecosystems encapsulated in the Ramsar definition. It should be noted that the NWA definition is not concerned with marine systems and
clearly distinguishes wetlands from estuaries, classifying the latter as a watercourse (Ollis et al., 2013). Table 1 below provides a comparison of the various wetlands included within the main sources of wetland definitions used in South Africa. Although a subset of Ramsar-defined wetlands was used as a starting point for the compilation of the first version of the National Wetland Inventory (i.e. "wetlands", as defined by the NWA, together with open waterbodies), it is understood that subsequent versions of the Inventory include the full suite of Ramsar-defined wetlands in order to ensure that South Africa meets its wetland inventory obligations as a signatory to the Convention (Ollis et al., 2013).
Wetlands must therefore have one or more of the following attributes to meet the above definition (DWAF, 2005):

- A high-water table that results in the saturation at or near the surface, leading to anaerobic conditions developing in the top 50 cm of the soil.
- Wetland or hydromorphic soils that display characteristics resulting from prolonged saturation, i.e. mottling or grey soils
- The presence of, at least occasionally, hydrophilic plants, i.e. hydrophytes (water loving plants).

It should be noted that riparian systems that are not permanently or periodically inundated are not considered true wetlands, i.e. those associated with the drainage lines and rivers.

Table 2: Comparison of ecosystems considered to be 'wetlands' as defined by the proposed NWCS, the NWA and ecosystems included in DWAF's (2005) delineation manual.

Ecosystem	NWCS "wetland"	National Water Act wetland	DWAF delineation manual
Marine	YES	NO	NO
Estuarine	YES	NO	NO
Waterbodies deeper than 2 m (i.e. limnetic habitats often described as lakes or dams)	YES	NO	NO
Rivers, channels and canals	YES	NO¹	NO
Inland aquatic ecosystems that are not river channels and are less than 2 meep deep that are	YES	YES	YES
Riparian areas that permanently / periodically inundated or saturated with water within 50 cm of the surface		YES	YES 3
Riparian ${ }^{3}$ areas that are not permanently / periodically inundated or saturated with water within 50 cm of the surface		NO	

${ }^{1}$ Although river channels and canals would generally not be regarded as wetlands in terms of the National Water Act, they are included as a 'watercourse' in terms of the Act
${ }^{2}$ According to the National Water Act and Ramsar, riparian areas are those areas that are saturated or flooded for prolonged periods and would be considered riparian wetlands, as opposed to non -wetland riparian areas that are only periodically inundated and the riparian vegetation persists due to having deep root systems drawing on water many meters below the surface.
${ }^{3}$ The delineation of 'riparian areas' (including both wetland and non-wetland components) is treated separately to the delineation of wetlands in DWAF's (2005) delineation manual.

9.3 National Wetland Classification System method

Due to the nature of the wetlands and watercourses observed, it was determined that the newly accepted NWCS should be adopted. This classification approach has integrated aspects of the HGM approach used in the WET-Health system as well as the widely accepted eco-classification approach used for rivers.
The NWCS (Ollis et al., 2013) as stated previously, uses hydrological and geomorphological traits to distinguish the primary wetland units, i.e. direct factors that influence wetland function. Other wetland assessment techniques, such as the DWAF (2005) delineation method, only infer wetland function based on abiotic and biotic descriptors (size, soils \& vegetation) stemming from the Cowardin approach (Ollis et al., 2013).

The classification system used in this study is thus based on Ollis et al. (2013) and is summarised below:
The NWCS has a six-tiered hierarchical structure, with four spatially nested primary levels of classification (Figure 2). The hierarchical system firstly distinguishes between Marine, Estuarine and Inland ecosystems (Level 1), based on the degree of connectivity the particular system has with the open ocean (greater than 10 m in depth). Level 2 then categorises the regional wetland setting using a combination of biophysical attributes at the landscape level, which operate at a broad bioregional scale.
This is opposed to specific attributes such as soils and vegetation. Level 2 has adopted the following systems:

- Inshore bioregions (marine)
- Biogeographic zones (estuaries)
- Ecoregions (Inland)

Level 3 of the NWCS assess the topographical position of inland wetlands as this factor broadly defines certain hydrological characteristics of the inland systems. Four landscape units based on topographical position are used in distinguishing between Inland systems at this level. No subsystems are recognised for Marine systems, but estuaries are grouped according to their periodicity of connection with the marine environment, as this would affect the biotic characteristics of the estuary.
Level 4 classifies the hydrogeomorphic (HGM) units discussed earlier. The HGM units are defined as follows:

- Landform - shape and localised setting of wetland
- Hydrological characteristics - nature of water movement into, through and out of the wetland
- Hydrodynamics - the direction and strength of flow through the wetland

These factors characterise the geomorphological processes within the wetland, such as erosion and deposition, as well as the biogeochemical processes.
Level 5 of the assessment pertains to the classification of the tidal regime within the marine and estuarine environments, while the hydrological and inundation depth classes are determined for inland wetlands. Classes are based on frequency and depth of inundation, which are used to determine the functional unit of the wetlands and are considered secondary discriminators within the NWCS.
Level 6 uses six descriptors to characterise the wetland types based on biophysical features. As with Level 5, these are non-hierarchal in relation to each other and are applied in any order, dependent on the availability of information. The descriptors include:

- Geology;
- Natural vs. Artificial;
- Vegetation cover type;
- Substratum;
- Salinity; and
- Acidity or Alkalinity

It should be noted that where sub-categories exist within the above descriptors, hierarchical systems are employed, and these are thus nested in relation to each other.
The HGM unit (Level 4) is the focal point of the NWCS, with the upper levels (Figure 3 Figure - Inland systems only) providing means to classify the broad bio-geographical context for grouping functional wetland units at the HGM level, while the lower levels provide more descriptive detail on the particular wetland type characteristics of a particular HGM unit. Therefore Level 1-5 deals with functional aspects, while Level 6 classifies wetlands on structural aspects.

 applied at Level 5 to classify the tidal/hydrological regime, and 'descriptors' applied

Figure 3: Illustration of the conceptual relationship of HGM Units (at Level 4) with higher and lower levels (relative sizes of the boxes show the increasing spatial resolution and level of detail from the higher to the lower levels) for Inland Systems (from Ollis et al., 2013)

To assess the PES or condition of the observed wetlands, a modified Wetland Index of Habitat Integrity (DWAF, 2007) was used. The Wetland Index of Habitat Integrity (WETLAND-IHI) is a tool developed for use in the National Aquatic Ecosystem Health Monitoring Programme (NAEHMP), formerly known as the River Health Programme (RHP). The output scores from the WETLAND-IHI model are presented in the standard DWAF A-F ecological categories (Table) and provide a score of the PES of the habitat integrity of the wetland system being examined. The author has included additional criteria into the model-based system to include additional wetland types. This system is preferred when compared to systems such as WET-Health - wetland management series (WRC 2009), as WET-Health (Level 1) was developed with wetland rehabilitation in mind and is not always suitable for impact assessments. This coupled with the degraded state of the wetlands in the study area, indicated that a complex study approach was not warranted, i.e. conduct a Wet-Health Level 2 and WET-Ecosystems Services study required for an impact assessment.

Table 3: Description of A - F ecological categories based on Kleynhans et al., (2005)

ECOLOGICAL CATEGORY	ECOLOGICAL DESCRIPTION	MANAGEMENT PERSPECTIVE
A	Unmodified, natural.	Protected systems; relatively untouched by human hands; no discharges or impoundments allowed
B	Largely natural with few modifications. A small change in natural habitats and biota may have taken place but the ecosystem functions are essentially unchanged.	Some human-related disturbance, but mostly of low impact potential
C	Moderately modified. Loss and change of natural habitat and biota have occurred, but the basic ecosystem functions are still predominantly unchanged.	Multiple associated with need for socio- economic development, e.g. habitat
impoundment,		
modification and water quality		
degradation		

The WETLAND-IHI model is composed of four modules. The "Hydrology", "Geomorphology" and "Water Quality" modules all assess the contemporary driving processes behind wetland formation and maintenance. The last module, "Vegetation Alteration", provides an indication of the intensity of human land use activities on the wetland surface itself and how these may have modified the condition of the wetland. The integration of the scores from these 4 modules provides an overall PES score for the wetland system being examined. The WETLAND-IHI model is an MS Excel-based model, and the data required for the assessment are generated during a site visit.
Additional data may be obtained from remotely sensed imagery (aerial photos; maps and/or satellite imagery) to assist with the assessment. The interface of the WETLAND-IHI has been developed in a format which is similar to DWA's River EcoStatus models which are currently used for the assessment of PES in riverine environments.

9.5 Aquatic ecosystem importance and function

South Africa is a Contracting Party to the Ramsar Convention on Wetlands, signed in Ramsar, Iran, in 1971, and has thus committed itself to this intergovernmental treaty, which provides the framework for the national protection of wetlands and

[^1]the resources they could provide. Wetland conservation is now driven by the South African National Biodiversity Institute, a requirement under the National Environmental Management: Biodiversity Act (No 10 of 2004).
Wetlands are among the most valuable and productive ecosystems on earth, providing important opportunities for sustainable development (Davies and Day, 1998). However, wetlands in South Africa are still rapidly being lost or degraded through direct human induced pressures (Nel et al., 2004).
The most common attributes or goods and services provided by wetlands include:

- Improve water quality;
- Impede flow and reduce the occurrence of floods;
- Reeds and sedges used in construction and traditional crafts;
- Bulbs and tubers, a source of food and natural medicine;
- Store water and maintain base flow of rivers;
- Trap sediments; and
- Reduce the number of water-borne diseases.

In terms of this study, the wetlands provide ecological (environmental) value to the area acting as refugia for various wetland associated plants, butterflies and birds.
In the past wetland conservation has focused on biodiversity as a means of substantiating the protection of wetland habitat. However not all wetlands provide such motivation for their protection, thus wetland managers and conservationists began assessing the importance of wetland function within an ecosystem.
Table below summarises the importance of wetland function when related to ecosystem services or ecoservices (Kotze et al., 2008). One such example is emergent reed bed wetlands that function as transformers converting inorganic nutrients into organic compounds (Mitsch and Gosselink, 2000).

Table 4: Summary of direct and indirect ecoservices provided by wetlands from Kotze et al., 2008

			Flood attenu	
			Stream flow	lation
				Sediment trapping
			σ	Phosphate assimilation
			$\stackrel{\stackrel{\overleftarrow{\sigma}}{\bar{\omega}}}{ }$	Nitrate assimilation
			응	Toxicant assimilation
				Erosion control
			Carbon stor	
		Biodive	maintenance	
		Provision	water for hum	
		Provision	harvestable r	rces ${ }^{2}$
		Provision	cultivated foo	
	苍	Cultura	ificance	
	$\stackrel{8}{0}$	Tourism	recreation	
	$\stackrel{\text { ® }}{\partial}$	Education	nd research	

Conservation importance of the individual wetlands was based on the following criteria:

- Habitat uniqueness;
- Species of conservation concern;
- Habitat fragmentation or rather, continuity or intactness with regards to ecological corridors; and
- Ecosystem service (social and ecological).

The presence of any or a combination of the above criteria would result in a HIGH conservation rating if the wetland was found in a near natural state (high PES). Should any of the habitats be found modified the conservation importance would rate as MEDIUM, unless a Species of Conservation Concern (SCC) was observed, in which case it would receive a HIGH rating. Any system that was highly modified (low PES) or had none of the above criteria, received a LOW conservation
importance rating. Wetlands with HIGH and MEDIUM ratings should thus be excluded from development with incorporation into a suitable open space system, with the maximum possible buffer being applied. Natural wetlands or Wetlands that resemble some form of the past landscape but receive a LOW conservation importance rating could be included into stormwater management features and should not be developed to retain the function of any ecological corridors.

DETAILS OF THE SPECIALIST, DECLARATION OF INTEREST AND UNDERTAKING UNDER OATH

File Reference Number:
NEAS Reference Number:

(For official use only)
DEA/EIA

Date Received:
Application for authorisation in terms of the National Environmental Management Act, Act No. 107 of 1998, as amended and the Environmental Impact Assessment (EIA) Regulations, 2014, as amended (the Regulations)

PROJECT TITLE

KOUP WIND FARM 1 \& GRID

Kindly note the following:

1. This form must always be used for applications that must be subjected to Basic Assessment or Scoping \& Environmental Impact Reporting where this Department is the Competent Authority.
2. This form is current as of 01 September 2018. It is the responsibility of the Applicant / Environmental Assessment Practitioner (EAP) to ascertain whether subsequent versions of the form have been published or produced by the Competent Authority. The latest available Departmental templates are available at https://www.environment.gov.za/documents/forms.
3. A copy of this form containing original signatures must be appended to all Draft and Final Reports submitted to the department for consideration.
4. All documentation delivered to the physical address contained in this form must be delivered during the official Departmental Officer Hours which is visible on the Departmental gate.
5. All EIA related documents (includes application forms, reports or any EIA related submissions) that are faxed; emailed; delivered to Security or placed in the Departmental Tender Box will not be accepted, only hardcopy submissions are accepted.

Departmental Details

Postal address:

Department of Environmental Affairs
Attention: Chief Director: Integrated Environmental Authorisations
Private Bag X447
Pretoria
0001

Physical address:

Department of Environmental Affairs
Attention: Chief Director: Integrated Environmental Authorisations
Environment House
473 Steve Biko Road
Arcadia
Queries must be directed to the Directorate: Coordination, Strategic Planning and Support at:
Email: EIAAdmin@environment.gov.za

Page 1 of 3

1. SPECIALIST INFORMATION

Specialist Company Name: B-bBEE	EnviroSci (Pty) Ltd				
	Contribution level (indicate 1 to 8 or non-compliant)	4		Percentage Procurement recognition	100
Specialist name:	Dr Brian Colloty				
Specialist Qualifications:	PhD				
Professional	SACNASP Ecological 400268/07				
Physical address:	1 Rossini Rd Pari Park Gqeberha				
Postal address:	As above				
Postal code:	6070		$\begin{aligned} & \text { Cell: } \\ & \text { Fax: } \end{aligned}$		0834983299
Telephone:	- \quad Fax:				-
E-mail:	b.colloty@gmail.com brianc@envirosci.co.za				

2. DECLARATION BY THE SPECIALIST

I, \qquad Brian Colloty \qquad declare that -

- I act as the independent specialist in this application;
- I will perform the work relating to the application in an objective manner, even if this results in views and findings that are not favourable to the applicant;
- I declare that there are no circumstances that may compromise my objectivity in performing such work;
- I have expertise in conducting the specialist report relevant to this application, including knowledge of the Act, Regulations and any guidelines that have relevance to the proposed activity;
- I will comply with the Act, Regulations and all other applicable legislation;
- I have no, and will not engage in, conflicting interests in the undertaking of the activity;
- I undertake to disclose to the applicant and the competent authority all material information in my possession that reasonably has or may have the potential of influencing - any decision to be taken with respect to the application by the competent authority; and - the objectivity of any report, plan or document to be prepared by myself for submission to the competent authority;
- all the particulars furnished by me in this form are true and correct; and
- I realise that a false declarationifan offence in terms of regulation 48 and is punishable in terms of section 24 F of the Act.

Signature of the Specialist
fan offence in terms of regulation 48 and is punishable in terms of section 24 F of

EnviroSci (Pty) Ltd
Name of Company:

Date

3. UNDERTAKING UNDER OATH/ AFFIRMATION

I, \qquad Brian Colloty \qquad swear under oath / affirm that all the information submitted or to be submitted for the purposes of this application sprue and correct.

Signature of the Specialist

EnviroSci (Pity) Ltd
Name of Company

[^0]: SiVEST Environmental
 Prepared by: EnviroSci (Pty) Ltd
 Aquatic Impact Assessment
 Version No. 1

[^1]: SiVEST Environmental
 Prepared by: EnviroSci (Pty) Ltd
 Aquatic Impact Assessment
 Version No. 1
 Date: 14 April 2022

