RESTRICTED

AW 125 TH100A WTG

Page i

Interference Testing and Consultancy Services (Pty) Ltd

ITC SERVICES (PTY) LTD Reg 88/02032/07 Plot 44 Kameeldrift East, Pretoria Private Bag X13 Lynn East 0039 Republic of South Africa Tel (012) 808 1730 Int + 27 12 808 1730 Fax (012) 808 1733

PATH LOSS AND RISK ASSESSMENT REPORT FOR NEW ALETTA WINDFARM LAYOUT INCLUDING EMISSION CONTROL PLAN FOR THE AW125 TH100A WTG

DOCUMENT NUMBER : CP 6778/16 CONFIGURATION CO	NTROL
---	-------

REVISION : 1.0

DATE : 8 September 2016

MASTER : MASTER

PARTIES INVOLVED			
AUTHORITY	NAME	SIGNATURE	DATE
Client BioTherm Energy (Pty) Ltd	M Barnes		
ITC SERVICES Prepared By	C Fouché	Jachi'	08/09/2016
SKA Reviewed By	A Tiplady		

DISTRIBUTION LIST					
COPY NO	DPY NO NAME ORGANISATION				
MASTER					
1	CONFIGURATION LIBRARY	ITC SERVICES			

HISTORY SHEET							
REV	DATE	AUTHOR	PAGES AFFECTED	CHANGE PROPOSAL			
1.0	8/09/2016	CFH Fouche	All	N/A			

MAGNETIC ARCHIVE INFORMATION						
DIRECTORY	FILE NAME					
C:\Users\Admin\Documents\Projects\	Aletta Control Plan updated 8 September					
Renewable energy and						
SKA\Biothermenergy\						

LIST OF EFFECTIVE PAGES					CONFIGURATION CONTROL			
PAGE	REV	PAGE	REV	PAGE	REV	PAGE	REV	
i	1.0	16	1.0	37	1.0	58	1.0	
ii	1.0	17	1.0	38	1.0	59	1.0	
iii	1.0	18	1.0	39	1.0	60	1.0	
iv	1.0	19	1.0	40	1.0	61	1.0	
V	1.0	20	1.0	41	1.0	62	1.0	
vi	1.0	21	1.0	42	1.0	63	1.0	
1	1.0	22	1.0	43	1.0	64	1.0	
2	1.0	23	1.0	44	1.0	65	1.0	
3	1.0	24	1.0	45	1.0	66	1.0	
4	1.0	25	1.0	46	1.0	67	1.0	
5	1.0	26	1.0	47	1.0	68	1.0	
6	1.0	27	1.0	48	1.0	69	1.0	
7	1.0	28	1.0	49	1.0	70	1.0	
8	1.0	29	1.0	50	1.0	71	1.0	
9	1.0	30	1.0	51	1.0	72	1.0	
10	1.0	31	1.0	52	1.0	73	1.0	
11	1.0	32	1.0	53	1.0	74	1.0	
12	1.0	33	1.0	54	1.0	75	1.0	
13	1.0	34	1.0	55	1.0	76	1.0	
14	1.0	35	1.0	56	1.0	77	1.0	
15	1.0	36	1.0	57	1.0			

ACRONYMS AND ABBREVIATIONS

AC Alternating Current
AM Amplitude Modulation

CAL Calibration

CCW Counter Clockwise
CM Common Mode
E-Fields Electric Fields
EM Electro Magnetic

EMC Electromagnetic Compatibility
EMI Electromagnetic Interference

Eq Equation

EUT Equipment Under Test
Fr Resonant frequency
H- Fields Magnetic Fields

IEEE Institute of Electrical and Electronic Engineers

MIL-STD Military Standard
PSU Power Supply Unit
R&S Rohde and Schwarz
RF Radio Frequency
SE Shielding Effectiveness

SELDS Shielded Enclosure Leak Detection System

SKA Square Kilometer Array

TABLE OF CONTENTS

1. INTRODUCTION	2
2. SCOPE	2
2.1 INTENT	2
3. REFERENCES	2
3.1 Referenced Documents	2
3.2 GENERAL REFERENCE MATERIAL	
4. TESTING AND QUALIFICATION	3
4.1 EMC Interest Group	
4.2 PROCEDURES FOR IDENTIFYING AND RESOLVING EMI PROBLEMS	
5. SYSTEM ARCHITECTURE	
5.1 BASIC INFORMATION	
5.3 TURBINE BASE	5
5.4 NACELLE	
5.6 SITE WIDE COMMUNICATIONS	
6. EMC REQUIREMENTS	ç
7. POTENTIAL NOISE SOURCES	9
7.1 NACELLE	
7.1.1 LIGHTING	
7.1.2 WIND SPEED SENSOR	
7.3 Base	11
7.3.1 Ground controller cabinet	
7.3.3 Other Base Equipment	
8. DESIGN FEATURES	13
8.1 ELECTRICAL DESIGN	
8.1.1 Nacelle equipment	
8.2 Wiring Design	
8.2.1 Nacelle cable groups	
8.2.2 Tower Cable grouping	
8.2.4 General cable practices	15
8.3 ELECTRICAL GROUNDING	
8.4.1 Bonding Classes	
9. CURRENT MECHANICAL DESIGN	20
9.1 ENCLOSURE MATERIALS	
9.2 SHIELDING	
10. EMC ANALYSIS	
10.1 SITE LOCATION	
10.1.2 Local Map	23
10.1.3 Distance Table	
10.1.4 Elevation Maps	24

RESTRICTED

AW 125 TH100A WTG	Page v

10.2 PATH LOSS CALCULATIONS	
10.3 SIGNAL LIST	
10.3.1 Base to Nacelle	
10.3.2 Base Signals	
10.3.3 Nacelle Signals	
11. EMISSION ANALYSIS	
11.1 RADIATED EMISSIONS	
11.1.1 Converter Cabinet	
11.1.2 Top Controller (Measurement distance = 1m)	
11.1.3 Bottom Controller (Measurement distance = 1m)	
11.2 CONDUCTED EMISSIONS	
11.2.1 Converter	
11.2.2 Stator	
11.2.3 Encoder signal cable	
11.2.4 CAN Bus (Nacelle)	
12. MITIGATION	
12.1 CONCLUSIONS	
12.1.1 Converter Cabinet	
12.1.2 Bottom Control Cabinet	
12.1.3 Top Control Cabinet	
12.2 MITIGATION PRINCIPLES	
12.3 REQUIRED MITIGATIONS MEASURES	
12.3.1 SHIELDING OF BASE TO NACELLE CABLES	
12.3.2 ABSORPTION OF COMMON MODE CURRENTS 12.3.3 NACELLE CABLE INSTALLATION	
12.3.4 TOP CONTROLLER ENCLOSURE	
12.3.4.1 TOP CONTROLLER MITIGATION ACTION PLAN	
12.4 LIGHTING	
12.5 Tests at the New Site	
12.6 FINAL SITE TESTS	
13. APPENDIX A: EXAMPLE OF MITIGATION PRODUCTS	61
13.1 ENCLOSED METAL WIRING DUCT WITH DUCT COVER	61
13.2 SHIELDED FLEXIBLE CONDUIT	
13.3 CABLE SHIELDING	
13.4 High frequency ferrite	

TABLE OF TABLES	
Table 1 Summary of Electrical Bonding Classes	
Table 2: Converter enclosure mechanical details	
Table 3: Top enclosure mechanical detail	21
Table 4: New Aletta layout distance from SKA infrastructure	
Table 5: Path loss input data	
Table 6: Base to Nacelle signal list	
Table 7: Base signals	
Table 8: Nacelle signals	
Table 9: Shielding effectiveness – Vertical Polarization	
Table 10: Shielding effectiveness – Horizontal Polarization	
Table 11: Bottom Equipment shielding requirement parameters	
Table 12: Nacelle Equipment shielding requirement parameters	
Table 13: Mitigation Principles	59
TABLE OF FIGURES	
Figure 1: High level block diagram	
Figure 2: Turbine components	
Figure 3: Base component layout	
Figure 4: Nacelle layout	
Figure 5: Tower earth cable and connections	
Figure 6: Power section of the top controller cabinet	9
Figure 7: Control section of the top controller cabinet	
Figure 8: Bottom control cabinet	
Figure 9: Ground converter cabinet	
Figure 10: Port definition	
Figure 11: Nacelle cable grouping	
Figure 12: Tower cable grouping	
Figure 13: Tower base cabling Figure 14: Equipotential system and lightning protection zones	
Figure 15: Foundation earth equipotential diagram	
Figure 17: WTG 31 to SKA ID 1890	
Figure 18: WTG 31 to SKA 004	

1. INTRODUCTION

An area, 20km east of Copperton in the Northern Cape Province, has been identified for the Aletta Windfarm Facility (Aletta) development by BioTherm Energy (Pty) Ltd (BioTherm). This is the second update of the initial site layout. The initial site layout had 125 turbines with a 20.9dB cumulative effect. As part of the mitigation strategy, it was reduced to 80 turbines ((19dB cumulative effect) and the new layout has 60 turbines (17.8dB cumulative effect). There has also been a slight change in location to obtain better total path loss values. With the initial layout the nearest turbine was located 20km from the nearest SKA Station, this has now been increased to 25km with the layout update.

The SKA is a stakeholder listed in the Interested and Affected parties of the EIA phase of the proposed project. In order to determine whether the planned windfarm development could have any influence on the SKA, BioTherm requested a risk evaluation of the planned development to SKA activities.

The frequency band of concern for SKA mid-band is 200MHz to 20GHz. This assessment does not consider any potential telecommunication services or networks that are to be established as part of the operational plan.

This risk assessment would enable one to estimate the maximum permissible radiated emissions from the equipment installed within the Aletta and will be compared to known radiated emission data from the Acciona WTG.

2. SCOPE

This assessment and Electromagnetic Control Plan with its associated procedures addresses mitigation actions required to reduce the radiated emissions of the AW 125 TH 100A wind turbine generator (WTG) to levels acceptable for installation within the declared Karoo Central Astronomy Advantage Area. The AW 125 TH 100A is the model within the AW 3000 platform that will be evaluated for this project. This Plan will be updated based on additional measurement results and design information as it becomes available.

2.1 INTENT

With reference to the letter from the South African SKA Project Office dated 14th April 2016 [3], the intent of this plan is to ensure that this facility poses a low risk of detrimental impact on the SKA by describing specific mitigation measurements to be implemented in order to achieve 40 dB of attenuation, as agreed with SKA South Africa. This plan provides general Electromagnetic Compatibility guidelines as well as specific guidelines to assist and maintain electromagnetic compatibility between the windfarm and Square Kilometer Array (SKA) facility.

This plan refers to the radiated emissions of the AW3000/125 TH100 50Hz wind turbine and it concerns itself with the goal of eliminating causes of electromagnetic interference (EMI), which can adversely affect the performance of the SKA Radio telescope.

3. REFERENCES

3.1 REFERENCED DOCUMENTS

[1]	No.R 90. Government Gazette 10 February 2012 (35007).	Regulations on Radio Astronomy Protection Levels in Astronomy		
[2]	NIE 49577REM.001	Measurements according to client protocol "Emission Test Procedure for the AW TH100A WTG"		
[3]	DG200233 Rev G	AW3000 Earthing and Lightning protection Systems; Acciona Windpower		
[4]	INP125 Rev A	Windfarm Communications – Garob / Copperton: Acciona Windpower		
[5]	R6114	Aletta Path Loss and RA 25 Feb 2016V1.0: ITC Services 25 February 2016		

AW 125 TH100A WTG Page 3

RESTRICTED

3.2 GENERAL REFERENCE MATERIAL

- a. EMC Analysis Methods and Computational Models, Frederick M. Tesche, Michel V. Ianoz, Torbjörn Karlson, Wiley Interscience, 1997
- b. Noise reduction techniques in electronic systems, Second edition, Henry W. Ott, Wiley Interscience Publications, 1998
- c. Electromagnetic Compatibility Principles and Applications, Second Edition, David A. Weston, Marcel Dekker Inc, 2000

4. TESTING AND QUALIFICATION

It is not intended that EMC/EMI testing will be done for every subsystem, only for subsystems that require mitigation to reduce the radiated emissions It is rather anticipated that most EMC/EMI tests will be performed on integrated system level. Where possible, units such as shielded cabinets will be tested before installation on site. The final system test will be done on site.

In order to evaluate the impact of the completed windfarm on the ambient emissions, reference measurements are to be done before construction and after construction. A separate test plan will be developed for that.

4.1 EMC INTEREST GROUP

For this project, it will be appropriate to assemble an EMC Interest group. The EMC Interest Group normally has a wide management structure. The Developer Project Manager will chair the group with at least the following as group members:

- Developers (Wind Farm owners)
- SKA Representative
- EMC Consultant
- Technology Manufacturer (Acciona Windpower)

The function of the group is to review EMC related issues and to ensure that the EMC performance is not jeopardised by any changes to production units.

4.2 PROCEDURES FOR IDENTIFYING AND RESOLVING EMI PROBLEMS

In the event of an EMI problem being identified, the following methodology will be followed:

- a. Is the emission repeatable and consistent?
- b. Can EMI source(s), coupling path(s) and victim(s) be identified?
- c. What are possible corrective actions?
- d. Which of the proposed EMI fixes are most desirable in terms of safety, reliability, effectiveness, cost and simplicity?
- e. What effect will the proposed fixes have on the program schedule and other functional disciplines?

4.3 CONFLICT RESOLUTION

In the case of solving an EMI impact on the SKA project, a balanced approach will be required in the following general order of precedence:

- a. Personnel safety
- b. Functionality
- c. Reliability

- d. Simplicity
- e. Cost/Schedule
- f. Maintainability

5. SYSTEM ARCHITECTURE

5.1 BASIC INFORMATION

Figure 1: High level block diagram

5.2 TURBINE STRUCTURE & LAYOUT

The turbine configuration evaluated as part of this control plan consists of a base, a 100m concrete tower and a nacelle on top as shown in Figure 2. For the South African projects, the transformer will be installed inside the tower inside the tower base..

Figure 2: Turbine components

5.3 TURBINE BASE

The following components are installed in the base:

- power controller cabinet
- switch cabinet
- ground converter cabinet
- power converter intercooler
- auxiliary transformer (12kV)
- power transformer (34kVA)

The base component layout is shown in Figure 3.

Figure 3: Base component layout

5.4 NACELLE

The nacelle is manufactured from fiber glass panels and is transparent to radio frequency signals.

The following components are installed in the nacelle

- gearbox
- generator
- ring gear

CP6778/16

control electronics

The gearbox and generator are connected with the drive shaft. Additional earth reference cables (bonding straps) also connect them together.

The entire nacelle rotates on a ring gear which is positioned at the top of the turbine pedestal.

Communications within the nacelle between different sub-systems will be via a shielded cable and close ducting trays..

The nacelle component layout is shown in Figure 4

Revision 1.0

RESTRICTED

Figure 4: Nacelle layout

Fig 4b: cable tray distribution in the nacelle

5.5 TOWER

The Ground Converter is connected to the Nacelle by nine power cables (rotor cables) and one control cable (generator encoder). There is also a safety system cable connection to the bottom controller.

- Power cables: Three cables per phase, each cable is 1x 300mm² Aluminum conductor, 400A max current at 690V. The external diameter 32mm max.
- Control cables: Connected from the bottom controller to the generator encoder, 4x2x0.5mm² shielded cable. The external diameter 12mm max.
- Safety system cable: Connected from the ground controller to Top with a14x0.5mm² shielded copper conductor. The external diameter is 14mm max.

Earth cables: From the nacelle to the base is a 95mm² aluminum earth conductor that also serves
as the lightning down conductor. Keystones (tower sections) are equipotentially connected to this
earth cable by 25mm² aluminum conductors. . In addition, the metallic ladder acts as an earth
conductor. It is connected at every tower section to the cable trays and at the nacelle level and at
the ground level connected to the foundation strips.

At the base, all the earth cables are connected to the foundation strips, using four 95mm² aluminium cables.

Figure 5: Tower earth cable and connections

5.6 SITE WIDE COMMUNICATIONS

The communication among the wind turbines, the met masts and windturbines and the substation will always be through an Ethernet optical fiber network as described in INP125-A.

6. EMC REQUIREMENTS

The current requirement is a 30dB reduction in radiated emissions to ensure the cumulative emission level of a wind farm is within the requirements of SKA. This requirement is based on measurements on the Acciona AW 125 TH100A WTG at the Gouda facility in South Africa and Barosoain windfarm, Navarra, Spain. Very similar design will be used for the Copperton/ Garob facilities

7. POTENTIAL NOISE SOURCES

7.1 NACELLE

The top controller cabinet consists of two sections: Power Section as shown in Figure 6 and Control section as shown in Figure 7.

Figure 6: Power section of the top controller cabinet

Figure 7: Control section of the top controller cabinet

Sensors and motors in the nacelle are connected to the Top Controller Cabinet. All the contactors, plc's etc. are housed inside the Top Controller Cabinet.

Although the components that generate the interference are located inside the cabinet, it would be the interconnecting cables between the cabinet and the equipment that would form the radiating element.

7.1.1 LIGHTING

Fluorescent lights are a known broadband emission source and all lights in the at least the tower (due to the height) and in the nacelle should be LED or incandescent types.

Due to the arcing nature of strobe lights, aircraft warning light for Garob and Copperton windfarms will be LED type. The synchronization among these obstruction light will be done through GPS.

7.1.2 WIND SPEED SENSOR

The FT702LT/D50-v22-FF sensor uses a RS-485 communication link of 15m. The cable is a 3 pair twisted screened cable. The sensor complies to CISPR 22 Class B for radiated emissions.

7.2 TOWER

The tower does not have any equipment installed; however the cabling between the nacelle and base running inside the tower is considered a radiating source. Mitigation techniques will be applied. Refer to Paragraph 12.

7.3 BASE

7.3.1 Ground controller cabinet

The ground controller cabinet (Figure 8) differs from the nacelle mounted top cabinet in it being a top-bottom configuration rather than a side-by-side configuration.

Figure 8: Bottom control cabinet

As with the top controller, interference generated inside the controller cabinet will be radiated by the interconnecting cables. Test results currently show no additional attenuation is required. Refer to Paragraph 12.

7.3.2 Ground converter

Figure 9: Ground converter cabinet

The ground converter is the most likely main interfering source as high dV/dT and dI/dT signals are generated.

7.3.3 Other Base Equipment

Other base installed equipment such as the auxiliary transformer, switching cabinets etc is seen as low risk equipment as they are in a static switched position.

Regarding the elevator, there isn't a PLC. The contactors and switches are installed inside the elevator control cabinet at the ground level..

RESTRICTED

AW 125 TH100A WTG

Page 13

8. DESIGN FEATURES

The emphasis is not on redesigning a special turbine configuration, but rather to improve and control the installation. Items identified as EMC emitters and therefore being a risk for the SKA will be analysed independently and mitigation measures will be applied.

Figure 10: Port definition

Figure 10 shows how ports can be defined for leaking electromagnetic interference based on a six port scenario. Mitigation measures for the critical components will be evaluated on the general six port model.

8.1 ELECTRICAL DESIGN

The approach to EMC during installation will be to control radiated emissions by reducing noise source levels where practical and to reduce propagation efficiency. It is however not envisaged that there will be control over low level circuit design as the components used are commercial off the shelf units.

Rotor currents are sinusoidal. The frequency of the fundamental is variable and depends on the turbine rotation speed. For 50Hz turbines, the revolution range will be between 700rpm to 1200rpm (rated speed can be 1100rpm or 1200rpm, depending on the turbine type)

At 700rpm, the rotor current amplitude is low and fundamental frequency is about 15Hz.

At 1000rpm (synchronism), rotor current amplitude is near to zero and fundamental frequency is also zero.

At 1100rpm/1200rpm rotor currents are close to maximum levels and fundamental frequency is 5Hz to 10Hz

The rotor currents will have harmonic content at the rotor side converter with a fundamental frequency, of 2kHz for the GHAC0039 model and 2.75kHz for PT0085 model.

8.1.1 Nacelle equipment

- All analog signals (sensors, emergency and DC power), CAN bus and digital signals are routed via shielded looms and shielded cables.
- 50Hz sinewave signals are routed via unshielded cables.
- Soft start is implemented for Yaw motors
- All the contactors have a snubber circuit for switching transients. The hydraulic pump motor is the biggest in the nacelle

8.1.2 Base equipment

The Controller and Converter are fitted with filters.

8.2 WIRING DESIGN

As the site wiring is most likely responsible for emitting interference signals careful consideration should be given to the types of wire and installation methodology.

8.2.1 Nacelle cable groups

The cable grouping of the nacelle is shown below in Figure 11.

Figure 11: Nacelle cable grouping

8.2.2 Tower Cable grouping

The cables between the base and nacelle are grouped as shown in Figure 12.

Figure 12: Tower cable grouping

8.2.3 Base cable grouping

The cables in the base are as shown in Figure 13.

Figure 13: Tower base cabling

8.2.4 General cable practices

- a. All internal screens should be terminated at both the source end and load end to minimize antenna effects.
- b. Internal screens should be terminated to the external cable bundle screen by means of a knitted wire and clamp configuration or any similar technique that will ensure a maximum contact resistance of $25m\Omega$.
- c. Pigtail connections shall not be allowed.

- d. All external screens shall be terminated 360° with regard to connector back shells.
- e. Cable groupings should be in a grounded cable tray cables should be routed low down in the tray, preferably in the corners. The height to width ratio of the trays should be at least 2:1 (ie. higher rather than wider). Special care must be taken to ensure that earthing and terminations are appropriately done.
- f. When conductors of more than one category are routed through a single connector, the conductors shall be separated and routed by category as soon as possible after exiting the connector.
- g. Wires of different categories will be segregated to maximum extent possible within the constraints imposed upon packaging and interface cable design.

8.3 ELECTRICAL GROUNDING

Equipotential bonding of the nacelle equipment and hub is achieved by means of the nacelle main frame, hub, low speed shaft bearings and also through the gearbox case .Dedicated bonding conductors are used to bond the various components to the nacelle main frame.

The nacelle is bonded to the base and the foundation earth system by a conductor of 95mm² minimum.

A single line earth diagram with lightning protection zoning is shown in Figure 14 and the foundation equipotential diagram is shown in Figure 15.

The grounding system is currently designed for lightning protection and safety. Radio frequency bonding properties are enhanced by creating parallel paths to lower the inductance. The ladder is an example of such a parallel path. Is not foreseen that more parallel connections between the nacelle and the base would be required.

8.4 BONDING

The purpose of electrical bonding is to provide structural homogeneity with respect to the flow of electrical currents, including high frequency currents for proper operation of filters, fault current paths and prevents or safely discharges static charges. Electrical bonding prevents the development of electrical potentials between shield terminations, connectors and metallic enclosures to prevent personnel shock.

8.4.1 Bonding Classes

Electrical bonds are classified according to the purpose of the bond. There may be more than one purpose for bonding a specific interface, and the bond shall meet the requirements of each applicable class. The applicable classes for this project are:

- a. Class H (Shock Hazard)
- b. Class R (Radio Frequency)
- c. Class L (Lightning)

	Power Return	Shock Hazard	Radio Frequency	Lightning	Electrostatic Charge
BOND CLASS	CLASS "C"	CLASS "H"	CLASS "R"	CLASS "L"	CLASS "S"

	Power Return	Shock Hazard	Radio	Lightning	Electrostatic			
			Frequency		Charge			
BOND CLASS	CLASS "C"	CLASS "H"	CLASS "R"	CLASS "L"	CLASS "S"			
PURPOSE OF BOND	Reduces power and voltage losses. Applies to equipment & structure, which are required to return intentional current through structure.	Protects against fire or shock to personnel. Applies to equipment & structure that may be required to carry fault current in case of a short to case or structure.	Applies to equipment that could generate, retransmit, or be susceptible to RF. Covers wide frequency range.	Applies to equipment or structure that would carry current resulting from a lightning strike.	Protects against electrostatic discharge. Applies to any item subject to electrostatic charging.			
BOND REQT	Requires low impedance & low voltage across joints to assure adequate power to the user. Jumpers and Straps acceptable.	Requires low impedance & low voltage across joints to prevent shock hazard or fire due to short. Jumpers and straps acceptable.	Requires low RF impedance at high frequency. Direct contact preferred. No jumpers. Short, wide strap may be used as last resort.	Requires low impedance at moderate frequency. Bonding components must withstand high current. Straps and jumpers must withstand high magnetic forces.	Allows moderate impedance. Jumpers and straps acceptable.			
DC BOND RESISTANCE REQT.	Bonding resistance requirement depends on current.	Bonding resistance requirement, 0.1 ohm or less. Special requirements when near flammable vapours.	Bonding resistance requirement, 5.0 milliohms or less. Low inductance required.	Bonding resistance Requirement depends on current. Low inductance required.	Typical bonding resistance requirement, 1.0 ohm or less.			
FREQ. REQT.	Low	Low	High	High	Low			
CURRENT REQT.	High	High	Low	High	Low			
Low frequency bonds allow use of straps and jumpers. High frequency bonds require low inductance paths. Short straps sometimes acceptable. High current bonds require large cross sectional areas.								

High current bonds require large cross sectional areas. Low current bonds allow use of small contact areas.

Table 1 Summary of Electrical Bonding Classes

The following design criteria will be followed:

- a. Bonding will be designed into the system. Specific attention will be directed to the interconnections between conductors and between structural members.
- b. Metal surfaces allocated for bonding, will be controlled for flatness surface finish and cleanliness.
- Insofar possible, bonds will be made between similar metals. When different metals are to be C. bonded, the materials will be selected for maximum galvanic compatibility.
- d. Protection of the bond from moisture and other corrosive elements will be recommended
- e. Bonds should be installed in accessible locations for inspections, tests and maintenance.

Figure 14: Equipotential system and lightning protection zones

Figure 15: Foundation earth equipotential diagram

9. CURRENT MECHANICAL DESIGN

9.1 ENCLOSURE MATERIALS

CONVERTER ENCLOSURE							
Item	Description	Value					
1	Enclosure Height	2189,5 mm					
2	Enclosure Width	2293 mm					
3	Enclosure Depth	670 mm					
4	Material Thickness	2mm					
	Type of enclosure, e.g.						
	Metal framed plastic enclosure						
5	Metallised plastic enclosure						
5	Sheet-metal enclosure	Х					
	Milled enclosure						
6	Enclosure surface impedance in ohms/square	The impedance does not exceed 100m Ohms for the power and auxiliary circuits.					
7	Enclosure individual aperture dimensions. There might be more than one aperture per enclosure. (fuse holder, connector etc)	Apart from main connections , air inlets and fans					
8	Enclosure lid overlap depth	40 mm					
9	Centre to centre fastener spacing of lid	600 mm in lids,350 mm in doors					
10	Specification of EMI gaskets used	No EMI gasket					

Table 2: Converter enclosure mechanical details

TOP ENC	TOP ENCLOSURE							
Item	Description	Value						
1	Enclosure Height	1040mm						
2	Enclosure Width	2138mm						
3	Enclosure Depth	298mm						
4	Material Thickness	2mm						
	Type of enclosure, e.g.							
	Metal framed plastic enclosure							
5	Metallised plastic enclosure							
	Sheet-metal enclosure	х						
	Milled enclosure							

TOP EN	TOP ENCLOSURE								
Item	Description	Value							
6	Enclosure surface impedance in ohms/square	The impedance does not exceed 100m Ohms for the power and auxiliary circuits.							
7	Enclosure individual aperture dimensions. There might be more than one aperture per enclosure. (fuse holder, connector etc)	Only main connections.							
8	Enclosure lid overlap depth	20 mm							
9	Centre to centre fastener spacing of lid	400 mm in lids and doors							
10	Specification of EMI gaskets used	No EMI gasket							

Table 3: Top enclosure mechanical detail

9.2 SHIELDING

The enclosures will perform a critical function with regard to shielding from EMI, both for radiation and susceptibility. The design goal for the different enclosure's shielding effectiveness for electric field radiation should be a minimum of 30dB from 30MHz to 3GHz. The shielding effectiveness of the enclosures should be maximized using the following principles.

- a. Mechanical discontinuities will be kept to a minimum.
- b. All necessary mechanical discontinuities will be electrically continuous using conductive gaskets. The gasket material should at least have an electric field attenuation of 30dB minimum between 30MHz and 10GHz.
- c. The wave-guide below cut-off (WGBCO) principle will be applied for all drain holes.
- d. The wave-guide below cut-off (WGBCO) principle will be applied for applicable apertures such as cooling vents etc where needed.
- e. Provisions will be made to control surface flatness to ensure constant and uniformly distributed contact pressure across metal-to-metal bonded joints.
- f. Unused apertures will be galvanically sealed appropriately.

10. EMC ANALYSIS

As a working system is available for measurements, actual values are to be used during further analyses rather than a theoretic analysis. Measurements were taken at the Barasoain windfarm (Spain) and Gouda Windfarm (South Africa).

10.1 SITE LOCATION

10.1.1 Area Map

Picture 1: Area map showing Aletta locations relative to SKA

Three WTG locations (WTG 1, WTG 25 and WTG 31) and four SKA installations were used for the evaluation.

10.1.2 Local Map

Picture 2: Local map showing nearest four SKA Locations

10.1.3 Distance Table

	Aletta WTG 1	Aletta WTG 25	Aletta WTG 31
SKA 004 (Phase 1)	46.52km	50.22km	44.63km
SKA ID 1895 (Phase 2)	29.77km	29.39km	42.46km
SKA ID 1890 (Phase 2)	26.78km	30.65km	24.99km
SKA ID 2348 (Phase 2)	53.42km	53.38km	40.88km
MeerKAT (Core)	119.82km	121.6km	119.96km

Table 4: New Aletta layout distance from SKA infrastructure

10.1.4 Elevation Maps

Figure 16: WTG 1 to SKA ID 1895

Figure 17: WTG 31 to SKA ID 1890

Figure 18: WTG 31 to SKA 004

Figure 19: WTG 31 to SKA 2348

RESTRICTED

AW 125 TH100A WTG

Page 28

Figure 20: WTG 31 to the MeerKAT Core

10.2 PATH LOSS CALCULATIONS

The path loss was calculated using the parameters as specified in Table 5: Path loss input data.

Parameter	Description	Quantity	Comment
Source/ Victim	SKA 004 to WTG 31	44.63km	Line of sight conditions
separation distance			
Frequency	Frequencies assessed	100MHz, 300MHz, 500MHz,	Free space loss
		1000MHz, 3000MHz,	increases with
		6000MHz	frequency.
SARAS	Protection level	dBm/Hz = -17.2708 log 10 (f)	Government Gazette 10
		-192.0714 for f<2GHz	February 2012
Location	WTG 31	Latt: -29.860263°	Waypoint received from
		Long: 22.360129°	Biotherm Energy (Pty)
			Ltd

Location	SKA 004	Latt: -30.262608	Waypoint received from
		Long: 22.221794	SKA SA (Pty) Ltd
TX height	Nacelle	100m	Height of nacelle eqp
	Base	2m	Height of base eqp
RX height	All SKA receivers	15m	Height used for SKA
			receive horn

Table 5: Path loss input data

Graph 1: WTG 1 (100m height) to SKA 004 Path Loss Calculation result

Graph 2: WTG 1 (2m) to SKA 004 Path Loss Calculation result

RESTRICTED AW 125 TH100A WTG Page 30

Graph 1 and Graph 2 shows worst case path loss calculations for the nacelle equipment emissions at 100m hub height and for base equipment at a 2m height. Although not the worst case, these values were used for the analysis as they are within 6dB of the WTG 1 to SKA ID 1895 values. SKA 004 is however a SKA 1 installation and SKA ID 1895 is a SKA 2 installation.

SPLAT! (Signal Propagation, Loss And Terrain) analysis was used to calculate the ITM path loss values. SPLAT! Is based on the Longley –Rice Irregular Terrain Model and Irregular Terrain With Obstruction Model. The digital elevation model resolution data used was 3-arc –seconds.

The ITU 1546-4 was calculated with Monte Carlo based ITU 1546-4 path loss software to obtain a minimum and maximum path loss values.

A factor of 10 \log_{10} N where N = the number of turbines to account for cumulative emissions is normally account for.

10.3 SIGNAL LIST

Following are the WTG Signal lists. Not all signals are considered critical and not all signals will therefore be analyzed or measured.

10.3.1 Base to Nacelle

Ref		From		То		Signal description	Voltage	Length	Wire type	Transient Voltage Protection	Filter	Shield
		Unit	Connector	Unit	Connector					110.000.011		
1027781	WTM9.4/9.5/ 9.6/9.7/9.8/9 .9/9.10/9.11/ 9.12: rotor cable	Converter	U2,V2,W2	Generator	K,L,M			112	RZ1-K 1,8/3kV 1x300mm² Al - BT*	Converter manual		No
1027781	WTM9.4/9.5/ 9.6/9.7/9.8/9 .9/9.10/9.11/ 9.12: rotor cable	Converter	U2,V2,W2	Generator	K,L,M			112	RZ1-K 1,8/3kV 1x300mm² Al - BT*			No
1027781	WTM9.4/9.5/ 9.6/9.7/9.8/9 .9/9.10/9.11/ 9.12: rotor cable	Converter	U2,V2,W2	Generator	K,L,M			112	RZ1-K 1,8/3kV 1x300mm² Al - BT*			No
1027781	WTM9.4/9.5/ 9.6/9.7/9.8/9 .9/9.10/9.11/ 9.12: rotor cable	Converter	U2,V2,W2	Generator	K,L,M			112	RZ1-K 1,8/3kV 1x300mm² Al - BT*			No
1027781	WTM9.4/9.5/ 9.6/9.7/9.8/9 .9/9.10/9.11/ 9.12: rotor cable	Converter	U2,V2,W2	Generator	K,L,M			112	RZ1-K 1,8/3kV 1x300mm² Al - BT*			No
1027781	WTM9.4/9.5/ 9.6/9.7/9.8/9 .9/9.10/9.11/ 9.12: rotor cable	Converter	U2,V2,W2	Generator	K,L,M			112	RZ1-K 1,8/3kV 1x300mm² Al - BT*			No
1027781	WTM9.4/9.5/ 9.6/9.7/9.8/9 .9/9.10/9.11/ 9.12: rotor cable	Converter	U2,V2,W2	Generator	K,L,M			112	RZ1-K 1,8/3kV 1x300mm² Al - BT*			No
1027781	WTM9.4/9.5/ 9.6/9.7/9.8/9 .9/9.10/9.11/ 9.12: rotor cable	Converter	U2,V2,W2	Generator	K,L,M			112	RZ1-K 1,8/3kV 1x300mm² Al - BT*			No

RESTRICTED Revision 1.0

AW 125 TH100A WTG Page 32

Ref		From		То		Signal description	Voltage	Length	Wire type	Transient Voltage Protection	Filter	Shield
		Unit	Connector	Unit	Connector							
1027781	WTM9.4/9.5/ 9.6/9.7/9.8/9 .9/9.10/9.11/ 9.12: rotor cable	Converter	U2,V2,W2	Generator	K,L,M			112	RZ1-K 1,8/3kV 1x300mm² AI - BT*			No
1029193	WNS9.5: Generator encoder	Converter	XENC	Generator	1,2,3,4,5,6,7,8	Encoder specification		130	LiHCH 4x2x0.5mm ² - BT*			Yes
1021307	WTC1.1: Safety system	Controlller	X3 (1A,1B,2A,2 B,3A,3C,4A, 4C,5A,5C,6 A,6B,7A,7B)	TOP	X3 (19A,19B,201,20 B,21A,21B,22A, 22B,23A,23B)	Continuous	24V	130	LiHCH 14x0.5mm² - BT*			Yes
1008139	WTC0.1: Top controller auxiliaries	Controlller	X2	ТОР	X2 (1,2,3,4)	Sinewave	230V	130	H07ZZ-F 5G6mm² - LT*			No
1029099	WTB1.1: Optic fiber	Controller	U52 (TX,RX)	ТОР	U20 (TX,RX)			130	Fibra óptica 4xMM G50/125 OM2 - BT*			-
1043064	WTM1.1 T5 400V power supply cable	TOP	X1 (1)	Controller	X1.1	Sinewave	400V	112	DZ-F 0.6/1kV 1x50mm² BT*	400V filter		No
1043064	WTM1.2 T5 400V power supply cable	TOP	X1 (2)	Controller	X1.1	Sinewave	400V	112	DZ-F 0.6/1kV 1x50mm² BT*			No
1043064	WTM1.3 T5 400V power supply cable	ТОР	X1 (3)	Controller	x1.1	Sinewave	400V	112	DZ-F 0.6/1kV 1x50mm² BT*			No

Table 6: Base to Nacelle signal list

10.3.2 Base Signals

Ref		From		То		Signal description	Voltage	Length	Wire type	Transient Voltage Protection	Filter	Shield
		Unit	Connector	Unit	Connector							
1009528	WGM0.4/0.5 /0.6: 630kVA transformer 690V side - Power converter power supply	Converter	Q1 (1,3,5)	Transformer	3U/3V/3W	Sinewave	690V	7	RZ1-K 0,6/1KV 1x300mm ² - BT*	Converter manual		No
1008141	WGC2.8: Switch cabinet (12kV drive circuit breaker failure) - power converter	Converter	X24 (14,12)	Switch Cabinet	11/9	Digital	24V	11	RC4Z1-K 2x1mm² - BT* (Azul - marrón)			Yes
1008141	WGC2.9: Switch cabinet (stator contactor feedback) - power converter	Converter	X24(2,10)	Switch Cabinet	R (13,14)	Digital	24V	11	RC4Z1-K 2x1mm² - BT* (Azul - marrón)			Yes
1008141	WGC2.6: Switch cabinet (line protection no trip) - power converter	Converter	X24 (1,11)	Switch Cabinet	S(8,4)	Digital	24V	11	RC4Z1-K 2x1mm² - BT* (Azul - marrón)			Yes
1024946	WGC2.5: Switch cabinet (stator current measureme nt) - power converter	Converter	XIS(1,2,3,4, 5,6)	Switch Cabinet	BPMA(2,4,6,8)	Analogical		11	RC4Z1-K 2x1mm² - BT* (Azul - marrón)			Yes
1028656	WGC2.1: Switch cabinet	Converter	X4 (1A,1B)	Switch Cabinet	TM (1,2)	Signal	230V	11	RC4Z1-K 2x1mm² - BT* (Azul -			Yes

AW 125 TH100A WTG Page 34

Ref		From		То		Signal description	Voltage	Length	Wire type	Transient Voltage Protection	Filter	Shield
		Unit	Connector	Unit	Connector					T TOLOGION		
	(stator connection order) - power converter								marrón)			
1028656	WGC2.14: Stator emergency oppening contactor (converter- switch cabinet control box)	Converter	X4 (1C,1D)	Switch Cabinet	TM(5,6)	Signal	230V	11	RZ1-K 0,6/1kV 2x1,5mm ² - BT*			Yes
1008141	WGC2.7: Switch cabinet (overcurrent relay trip) - power converter	Converter	X24 (5,6)	Switch Cabinet	RS(4,3)	Digital	24V	11	RC4Z1-K 2x1mm² - BT* (Azul - marrón)			Yes
1010682	WGB3.1: optical fiber power converter - ground controller	Converter	XOP (1,2)	Controller	U6 (X1, X2))			10	Fibra óptica 4xHCS + 4x50MM con cubierta de poliuretano LSZH - BT*			-
1008145	WGC2.3: Switch cabinet (grid voltage measureme nt) - power converter	Converter	XMED (4,5,6,7)	Switch Cabinet	1T(1,2,3,4)	Analogical	0110V	11	RC4Z1-K 4x0,5mm² - BT*			Yes
1008145	WGC2.4: Switch cabinet (stator voltage measureme nt) - power converter	Converter	XMED (1,2,3)	Controller	2T(1,2,3)	Analogical	0110V	11	RC4Z1-K 4x0,5mm² - BT*			Yes

Ref	Ref			То		Signal description	Voltage	Length	Wire type	Transient Voltage Protection	Filter	Shield
		Unit	Connector	Unit	Connector							
1008159	WGC3.4: Safety system power converter - Ground controller	Converter	X3 (1A,1B,2A,2 B,3A,3C,4A, 4C,5A,5C)	Controller	X3 (8A,8B,9A,9B,10 A,10B,11A,11B, 12A,12B)	Continuous	24V	8	LiHCH 12x0,5mm² - BT*			Yes
1028659	WGM3.1: 230V power supply ground controller (UPS) - power converter	Converter	XUPS (1,2,pe)	Controller	X2 (3A,3B,3PE)	Sinewave	230V	8	RZ1-K 0,6/1kV 3G2,5mm ² - BT*			No

Table 7: Base signals

10.3.3 Nacelle Signals

Ref		From		То		Signal description	Voltage	Length	Wire type	Transient Voltage Protection	Filter	Shield
		Unit	Connector	Unit	Connector	1						
1028662	WNM7.8: Yaw motor 6	TOP	X1 (38U,38V,38 W,38PE)	Yaw motor	U6 (M6)	Sinewave	400V	10.5	RZ1-K 0,6/1kV 4G2,5mm ² - BT*			No
1028661	WNM7.14: Yaw motor electric brake 6	ТОР	X1 (44U, 44V, 44W)	Yaw motor	U6 (Y6)	Sinewave	400V	10.5	RZ1-K 0,6/1kV 4G2,5mm² - BT*	400V filter		No
1028662	WNM7.7: Yaw motor 5	TOP	X1 (37U, 37V, 37W)	Yaw motor	U5 (M5)	Sinewave	400V	6.5	RZ1-K 0,6/1kV 4G2,5mm ² - BT*	400V lillel		No
1028661	WNM7.13: Yaw motor electric brake 5	ТОР	X1 (43U, 43V, 43W)	Yaw motor	U5 (Y5)	Sinewave	400V	10.5	RZ1-K 0,6/1kV 4G2,5mm² - BT*			No

AW 125 TH100A WTG Page 36

Ref		From		То		Signal description	Voltage	Length	Wire type	Transient Voltage Protection	Filter	Shield
		Unit	Connector	Unit	Connector							
1028662	WNM7.3: Yaw motor 1	ТОР	X1 (33U,33V,33 W)	Yaw motor	U1 (M1)	Sinewave	400V	13	RZ1-K 0,6/1kV 4G2,5mm² - BT*		1	No
1028661	WNM7.9: Yaw motor electric brake 1	TOP	X1 (39,39V,39 W)	Yaw motor	U1 (Y1)	Sinewave	400V	12	RZ1-K 0,6/1kV 4G2,5mm² - BT*			No
1028662	WNM7.4: Yaw motor 2	ТОР	X1 (34U,34V,34 W)	Yaw motor	U2 (M2)	Sinewave	400V	8.5	RZ1-K 0,6/1kV 4G2,5mm ² - BT*			No
1028661	WNM7.10: Yaw motor electric brake 2	TOP	X1 (40U,40V,40 W)	Yaw motor	U2 (Y2)	Sinewave	400V	8.5	RZ1-K 0,6/1kV 4G2,5mm² - BT*			No
1028662	WNM7.5: Yaw motor 3	ТОР	X1 (35U, 35V, 35W)	Yaw motor	U3 (M3)	Sinewave	400V	8.5	RZ1-K 0,6/1kV 4G2,5mm ² - BT*			No
1028661	WNM7.11: Yaw motor electric brake 3	ТОР	X1 (41U, 41V, 41W)	Yaw motor	U3 (Y3)	Sinewave	400V	8.5	RZ1-K 0,6/1kV 4G2,5mm² - BT*			No
1028662	WNM7.6: Yaw motor 4	ТОР	X1 (36U, 36V, 36W)	Yaw motor	U4 (M4)	Sinewave	400V	6.5	RZ1-K 0,6/1kV 4G2,5mm ² - BT*			No
1028661	WNM7.12: Yaw motor electric brake 4	ТОР	X1 (42U, 42V, 42W)	Yaw motor	U4 (Y4)	Sinewave	400V	6.5	RZ1-K 0,6/1kV 4G2,5mm ² - BT*			No
1028662	WNM0.1: Hoist power supply	ТОР	X1(7U, 7V, 7W)	Hoist	KM1	Sinewave	400V	15.00	RZ1-K 0,6/1kV 4G2,5mm ² - BT*			No
1018336	WNM10.1: Pitch pump motor	ТОР	X1(4,5,6)	Hydraulic system	14	Sinewave	400V	13.50	Cable 300/500V 4G25mm² AS			No
1018337	WNM10.2: Brake pump motor	ТОР	X1 (10U, 10V, 10WW)	Hydraulic system	20	Sinewave	400V	6.50	Cable 300/500V 4G25mm² AS			No
1018337	WNM10.3: Intercooler fan motor	ТОР	X1(11U, 11V, 11W)	Hydraulic system	29	Sinewave	400V	6.5	Cable 300/500V 4G25mm² AS			No
1028662	WNM8.6: Gearbox intercooler Motor 1	TOP	x1 (15U, 15V, 15W)	Gearbox	X2	Sinewave	400V	4.5	RZ1-K 0,6/1kV 4G2,5mm ² - BT*			No

AW 125 TH100A WTG Page 3

Ref		From		То		Signal description	Voltage	Length	Wire type	Transient Voltage	Filter	Shield
		Unit	Connector	Unit	Connector					Protection		
	(high speed)											
1028662	WNM8.5: Gearbox intercooler Motor 1 (low speed)	TOP	X1 (14u, 14v)	Gearbox	X2	Sinewave	400V	4.5	RZ1-K 0,6/1kV 4G2,5mm² - BT*			No
1028662	WNM8.11: Gearbox lubrication motor (low speed)	ТОР	X1 (8U, 8V, 8W)	Gearbox	X1	Sinewave	400V	4.5	RZ1-K 0,6/1kV 4G2,5mm² - BT*			No
1028662	WNM8.12: Gearbox lubrication motor (high speed)	ТОР	X1 (9U, 9V, 9W)	Gearbox	X1	Sinewave	400V	4.5	RZ1-K 0,6/1kV 4G2,5mm² - BT*			No
1028662	WNR8.1: Gearbox oil warming resistance	ТОР	X1 (19U, 19V, 19W)	Gearbox	Х3	Sinewave	400V	4.5	RZ1-K 0,6/1kV 4G2,5mm ² - BT*			No
1028662	WNM9.2:Ge nerator fan low speed	ТОР	X1 (21U, 21V, 21W)	Generator	X1	Sinewave	400V	14	RZ1-K 0,6/1kV 4G2,5mm ² - BT*			No
1028662	WNM9.1:Ge nerator fan high speed	ТОР	X1 (18U, 18V, 18W)	Generator	X1	Sinewave	400V	14	RZ1-K 0,6/1kV 4G2,5mm ² - BT*			No
1028658	WNR8.3: Gearbox cooling motor anticondens ation 1	ТОР	X2 (13l, 13N)	Gearbox	X4	Sinewave	230V	5.00	RZ1-K 0,6/1kV 3G1,5mm² - BT*			No
1028658	WNR8.2: Gearbox lubrication motor anticondens ation resistance	ТОР	X2 (9L, 9N)	Gearbox	X4	Sinewave	230V	5.00	RZ1-K 0,6/1kV 3G1,5mm ² - BT*			No
1028658	WNR9.2: Generator slip rings	ТОР	X2 (8L, 8N)	Generator	X1	Sinewave	230V	14.00	RZ1-K 0,6/1kV 3G1,5mm ² - BT*			No

AW 125 TH100A WTG Page 38

Ref		From		То		Signal description	Voltage	Length	Wire type	Transient Voltage Protection	Filter	Shield
		Unit	Connector	Unit	Connector	1						
	warming resistance										•	
1028658	WNR9.1: Generator windings warming resistance	ТОР	x2 (7l, 7n)	Generator	X1	Sinewave	230V	14.00	RZ1-K 0,6/1kV 3G1,5mm² - BT*			No
1030551	WNC1.1: Generator emergency button (left)	ТОР	X3 (7A,7B,7C,8 A,8B,8C)	Nacelle	SB1	Digital	24V	13	LiHCH(AS) 6x0,5mm2 - BT*			Yes
1030551	WNC1.2: Generator emergency button (right)	ТОР	X3 (9A,9B,9C,1 0A,10B,10C)	Nacelle	SB2	Digital	24V	14	LiHCH(AS) 6x0,5mm2 - BT*			Yes
1030551	WNC1.3: Frame emergency button	ТОР	X3 (11A,11B,11 C,12A,12B,1 2C)	Nacelle	SB3	Digital	24V	8	LiHCH(AS) 6x0,5mm2 - BT*			Yes
1008141	WNC1.6: Speed shaft brake thermistor 2	ТОР	X3 (13C,14A)	Nacelle	A71	Digital	24V	10	LiHCH(AS) 6x0,5mm2 - BT*			Yes
1023464	WNC4.1: Front vibration sensor	ТОР	X1 (9U,9V,9W)	Nacelle	X3 (1C,2A,2B,2C,3 A,3B,3C,4A,4B, 4C,5C,6A,6B,6C ,24A,24B,25A,2 5B)	Analogical		12	LiHCH 12x2x0,22mm ² - BT*			Yes
1028656	WNS5.5: Wind sensors power supply	ТОР	X4 (14A,14B)	Anemo	CSA	Continuous	24V	19	RZ1-K 0,6/1kV 2x1,5mm² - BT*			Yes
1018338	WNC10.1 (sensors power supply)	ТОР	X4(12A,12B)	Hydraulic system	С	Continuous	24V	12	Cable 3G1.5mm²			Yes
1018330	WNB11.1 (CAN group- Rotatory joining)	ТОР	D89	Sensors	U11CAN_L/H/G ND/34/SH	CAN		12	Cable CAN (1x2x0.21mm² +1x2x0.33mm ²) apantallado			Yes

AW 125 TH100A WTG Page 39

Ref		From		То		Signal description	Voltage	Length	Wire type	Transient Voltage Protection	Filter	Shield
		Unit	Connector	Unit	Connector							
1018327	WNV11.1 (electrovalve s power supply)	ТОР	X4 (1A,1,B,2A,2 B,3A,3B)	Hydraulic system	C5.1	Continuous	24V	11	Cable 12G1.5mm² apantallado			Yes
1018323	WNV10.1: Electro- valve power supply	ТОР	X4 (7A,7B,8A,8 B,9A,9B,10A ,10B,11A,11 B)	Hydraulic system	С	Continuous	24V	16	Cable 12G1.5mm²			Yes
1018330	WNB10.1 (CAN group- Top)	ТОР	D89	Hydraulic system	A4 CONECTARO A	CAN		12	Cable CAN (1x2x0.21mm² +1x2x0.33mm ²) apantallado			Yes
1018338	WNV10.7 (electrovalve s 2 power supply)	TOP	X4 (5A,5B)	Hydraulic system	C(1,2)	Continuous	24V	16	Cable 3G1.5mm²			Yes
1030557	WNB5.1: RS485 Wind sensor 1 (anemomete r box - top)	ТОР	X4 (15A,15B)	Inductive sensors junction box	CSA.1	Analogical		19	LiHCH 2x2x0,5mm ² - BT*			Yes
1008156	WNC1.5: Slow shaft inductive sensor. TOG	ТОР	X6 (21+,21-,21s)	Inductive box	A6(1,2,3)	Continuous	24V	5.5	LiHCH 3x0,34mm² - BT*			Yes
1030355	WNS2.2: T back bearing	ТОР	X8(24A/24B)	Nacelle PT100	pt100	Current		2.5	Sonda PT100 2 hilos L=2500mm			Yes
1008155	WNS2.3:PT A6 box - TOP	ТОР	X8(23A/23B)	Inductive box	A6 (9,10)	Current		5	LiHCH 2x0,5mm² - BT*			Yes
1030356	WNS5.1: PT100 nacelle	ТОР	X8(28A/28B)	Nacelle PT100	pt100	Current		2.5	Sonda PT-100 con 3m de cable (2 hilos)			Yes
1008156	WNS6.1: Slow shaft inductive sensor. Control	ТОР	X6 (2A,2B,2C)	Inductive box	A6 (5,6,7,8)	Continuous	24V	5.5	LiHCH 3x0,34mm² - BT*			Yes
1008163	WNS7.2: Yaw cam sensor	ТОР	X6 (5S, 5+)	Limit switches block	U7 (S1)	Digital	24V	6.5	LiHCH 8x0.75mm ² - BT*			Yes

AW 125 TH100A WTG Page 40

Ref		From		То		Signal description	Voltage	Length	Wire type	Transient Voltage Protection	Filter	Shield
		Unit	Connector	Unit	Connector							
1015158	WNS8.2: Gearbox PT100 temperature sensors	ТОР	X8 (25A,25B,26 A,26B,27A,2 7B)	Gearbox	X7	Current		4	LiHCH 14x0.5mm² - BT*			Yes
1021307	WNS8.1: Gearbox sensors (level, filters,)	ТОР	X6	Gearbox	X5(1,2,3,4,5,6)	Digital	24V	4	Cable LIHCH(AS) 6x0,34mm2 - BT*			Yes
1015158	WNS9.3: Generator PT100 temperature sensors	TOP	X8 (22B,22A)	Generator	X2 (39,41)	Current		13	LiHCH 2x0,5mm² - BT*			Yes
1030550	WNS9.2: Generator PT100 temperature sensors	ТОР	X8 (9A,9B,10A, 10B,11A,11 B,12A,12B,1 3A,13B,14A, 14B)	Generator	X2 (10,12,13,15,16, 18,19,21,25,27,3 1,33)	Current		13	LiHCH(AS) 12x0,34mm2 - BT*			Yes
1008155	WNS9.4: Generator braid wear indicator sensor	ТОР	X6 (20+,20S)	Generator	X2 (37,38)	Current		13	LiHCH 2x0,5mm² - BT*			Yes
1008155	WNS12.2 A6 - TOP	ТОР	X6 (6+,6S)	Inductive box	A6	Continuous	24V	8	Sensor Inductivo Omron			Yes
1014092	WNS7.5: inductivo yaw reset vuelta posición nacelle	ТОР	X6(25+,25- ,25s)	Nacelle	30295Q2	Continuous	24V	2	Cable 4x0.34mm²			Yes
1029392	WNS11.1: Bursting disc power supply and signal	TOP	Hydraulic system	Hydraulic system	c5.3	Digital	24V	10.5	2 cores +PE; 3.18 mm2/AWG12. Fieldbus: Conductor: 0.60 mm2/AWG20; separately shielded.			Yes

	RESTRICTED		
AW 125 TH100A WTG		Page	41

Ref		From		То		Signal description	Voltage	Length	Wire type	Transient Voltage Protection	Filter	Shield
		Unit	Connector	Unit	Connector							
									Alarm wires 0.5 mm2. Outer shield braided			
	Beacon power	ТОР										

Table 8: Nacelle signals

11. EMISSION ANALYSIS

Test were done in Gouda windfarm (South Africa) from the 18th to 20th August 2015 and again on the 4th and 5th of March 2016 and from the 16th-19th of May 2016 in Barasoain windfarm (Spain)

11.1 RADIATED EMISSIONS

The CISPR 22 Class B limit line adjusted to the requirement at 1m will be $50dB\mu V/m$ below 230MHz and $57dB\mu V/m$ above 230MHz.

11.1.1 Converter Cabinet

Picture 3: PT0085 Converter cabinet measurements

The converter cabinet can be divided into three major blocks, Grid Cell, Converter Cell and Machine Cell.

Graph 3: PT0085 Converter with ambient algorithm (Horizontal)

The following algorithm was used to represent the horizontally polarized radiated emissions from the PT0085 converter as shown in Graph 3. The vertically polarized radiated emissions are shown in Graph 4

If radiated emissions machine side > radiated emissions grid, then plot machine; else plot grid. If (radiated emissions – ambient) < 3dB then plot 0; else plot radiated emissions.

There is a 30dB to 40dB increase in the ambient emissions when the converter is switched on. Although the conducted emissions indicated little emissions above 200MHz, the radiated emission results indicates emissions at frequencies into the GHz range.

Graph 4: PT0085 Converter with ambient algorithm (Vertical)

11.1.2 Top Controller (Measurement distance = 1m)

Picture 4: Top Controller

The top control cabinet can be divided in two segments, ie. the power side and the control side. Comparing the results in Report (NIE) 49577REM.001 for the power and control side it is shown that the control side emissions were worst case. (Graphs 29 to 34 of Report (NIE) 49577REM.001).

Graph 5: Top Controller (Horizontal @ 1m)

Graph 6: Top controller (Vertical @1m)

11.1.3 Bottom Controller (Measurement distance = 1m)

Picture 5: Bottom Controller

The Bottom Control Cabinet is an upright configuration and not side by side as the Top Control Cabinet configuration.

Graph 7: Bottom Controller (Horizontal @1m)

Graph 8: Bottom Controller (Vertical @ 1m)

11.2 CONDUCTED EMISSIONS

Critical cables were measured in an installation to characterize the emissions and to determine the likelihood of the cable acting as a radiator.

As a rule of thumb, a common mode current value of $14dB\mu A$ can potentially cause radiated emissions in excess of $37dB\mu V/m$ (CISPR Class B radiated emission limit at 10m distance). This will only be valid for cables in free space and when the cable has resonant properties at a given frequency.

Figure 21: Conducted emission test locations

11.2.1 Converter

The converter was previously identified as a significant risk due to the following:

- i. High dV and dI values
- ii. Cable connection from converter in the base to the rotor in the nacelle
- iii. Unshielded cable used between the converter (base) and rotor (nacelle)

Graph 9: Rotor cable measured in the base between converter in the base and rotor in nacelle

Graph 10: Rotor cable measured in the nacelle between converter in the base and rotor in nacelle From Graph 9 and Graph 10, it is evident that the converter to rotor cable emissions is below 15dBµA in

the higher frequency range.

When comparing the two graphs, the effect of cable length (inductance) on the signal is clear.

The spectrum envelope in Graph 9 is typical of a periodic signal. This was expected and is a function of the converter switching frequency of 2.75 kHz and cable properties. The amplitude decay is however more than 40dB/decade, indicating that the rise time of the signal is more than 6.3nS.

Graph 11: Converter cable between the converter and auxiliary transformer measured in base

Graph 11 shows emissions on the transformer side of the converter. This confirms that conducted emissions from the converter are relative low in frequency. Although high in amplitude, this cable is inside the base with added path loss due to proximity to the ground.

11.2.2 Stator

The stator cables run from the bottom control cabinet in the base to the stator in the nacelle. The emissions from stator cables in the nacelle (Graph 12) are less than the rotor cables (Graph 10). The stator cables are currently shielded.

Graph 12: Stator cable in nacelle between bottom control cabinet in base and stator in nacelle

Graph 13: Stator cable in base between bottom control cabinet in base and stator in nacelle

As the signal amplitudes are higher in the nacelle (Graph 12) than in the base (Graph 13), the conclusion would be that the source of the emissions is in the nacelle.

11.2.3 Encoder signal cable

The encoder signal cable runs between the generator and converter. It is a shielded cable and the common mode currents on the shield were measured.

Graph 14: Encoder cable in the nacelle

Graph 15: Encoder cable in the base

A significantly denser spectrum was measured in the base (Graph 15) than in the nacelle (Graph 14). It would therefore be fair to assume that the source is in the converter cabinet in the base.

11.2.4 CAN Bus (Nacelle)

The CAN bus is also a shielded cable and carries the different sensor data, such as the electro valves, pitch position sensor etc. in the nacelle.

Graph 16: CAN Bus in the nacelle

The profile of the emissions below 60MHz is similar to the shielded encoder cable (Graph 14) in the nacelle. Site conditions limited the number of tests and investigations that could be done.

11.3 TOWER SHIELDING EFFECTIVENESS

The minimum shielding effectiveness of the tower was found to be 5.2dB at the door. The electrical contact between the door and door frame can be improved to increase this figure, but the 5.85dB of the concrete will still be the limiting factor.

Vertical Polarization						
Frequency (MHz)	Distance (m)	Reference (dBm)	Door (dBm)	Concrete (dBm)	SE Door (dB)	SE Concrete (dB)
80	2.5		-31.51	-32.62	6.28	7.39
110	2.5		-38.52	-33.89	16.77	12.14
300	2.5		-4.69	5.51	16.05	5.85
500	2.5		-27.4	0.99	36.69	8.3
700	2.5		-18.93	-1.24	24.12	6.43
1000	2.5		-40.05	-9.08	41.11	10.14

Table 9: Shielding effectiveness - Vertical Polarization

Horizontal Polarization						
Frequency (MHz)	Distance (m)	Reference (dBm)	Door (dBm)	Concrete (dBm)	SE Door (dB)	SE Concrete (dB)
80	2.5		-43.55	-34.05	23.93	14.43
110	2.5		-27.77	-36.11	5.2	13.54
300	2.5		-5.95	5.28	18.95	7.72
500	2.5		-16.89	3.51	27.75	7.35

Horizontal Polarization						
Frequency (MHz)	Distance (m)	Reference (dBm)	Door (dBm)	Concrete (dBm)	SE Door (dB)	SE Concrete (dB)
700	2.5		-17.24	0.43	23.93	6.26
1000	2.5		-28.09	-8.99	28.48	9.38

Table 10: Shielding effectiveness - Horizontal Polarization

The shielding effectiveness values will be used as input to the Risk Matrix.

12. MITIGATION

Although site measurements were done, there is always the risk of interference signals (A) being masked by a higher amplitude interference signal (B). Signal A will then only become apparent once signal B has being mitigated.

As the wind turbine generator and control equipment is a matured design, mitigation will be limited to non-invasive techniques.

12.1 CONCLUSIONS

As mitigation techniques are source and coupling path specific, tests were be done on a current WTG to confirm the suspected noise sources.

The results indicated shielding required at frequencies in the FM Radio band as well as other controlled frequency bands, especially in the nacelle area.

Parameter	Description	Comment
Frequency	50MHz to 1GHz	Measured (CISPR 22
		parameters except
		distance = 1m)
EIRP	EIRP(dBm)=dBµV/m+20log(d)-106.93+2.15	Calculated from
	[where d=1m]	measurement
Path Loss	Aletta WTG 1 to SKA 004 at 46.52km, TX height 2m AGL, RX height 15m AGL. (119dB to 137dB)	Calculated with SPLAT! (Longley-Rice Irregular Terrain Model) at 5 frequencies, linear
		frequencies, linear interpolated
Margin	10dB	Measurement and path loss uncertainty

Table 11: Bottom Equipment shielding requirement parameters

Parameter	Description	Comment
Frequency	50MHz to 1GHz	Measured (CISPR 22
		parameters except
		distance = 1m)
EIRP	EIRP(dBm)=dBµV/m+20log(d)-106.93+2.15	Calculated from
	[where d=1m]	measurement
Path Loss	Aletta WTG 1 to SKA ID 1895 at 46.52km, TX	Calculated with SPLAT!
	height 100m AGL, RX height 15m AGL.	(Longley-Rice Irregular
	(115dB to 134dB)	Terrain Model) at 5
		frequencies, linear
		interpolated
Margin	10dB	Measurement and path
		loss uncertainty

Table 12: Nacelle Equipment shielding requirement parameters

The only difference between Table 11 and Table 12 is the transmitter height. The Aletta WTG 1 was chosen as the transmitter site as at 46.52km from SKA 004 it is the closest to the SKA 1 infrastructure.

12.1.1 Converter Cabinet

The converter cabinet is in the base of tower. The 6dB to 10dB shielding provided by the concrete tower is currently not included in the results.

The shielding required is calculated based in the information in Table 11.

Graph 17: Converter Cabinet Attenuation required

Test results obtained at the current installation including a 10dB safety margin (Graph 17) shows no additional attenuation is required. Adding a 17.8dB requirement to accommodate cumulative effect highlighted a few frequencies that will require additional attenuation as shown in Graph 18. Further analysis of the frequencies above the 0dB line in Graph 17 proved that they are ambient frequencies in the FM, TV and cell phone band The shielding effectiveness of the concrete tower (Table 9 and Table 10) was not taken into account. No additional shielding of the bottom converter cabinet would therefore be required.

Graph 18: Converter Cabinet Attenuation required including cumulative effect

12.1.2 Bottom Control Cabinet

The calculated shielding required for the Bottom Control Cabinet was based on the data as shown in Table 11. The 6dB to 10dB shielding provided by the concrete tower is currently not included in the results.

Graph 19: Bottom Control Cabinet Attenuation required

Test results obtained at the current installation including a 10dB safety margin (Graph 19) shows that no additional attenuation is required. Adding a 17.8dB requirement to accommodate cumulative effect (Graph 20), highlighted the frequencies that will require additional attenuation of 12dB maximum excluding the FM radio frequencies. Further analysis of these signals proved that they are ambient signals from intentional transmitters. No additional shielding of the bottom control cabinet would therefore be required..

Graph 20: Bottom Control Cabinet Attenuation required including cumulative effect

12.1.3 Top Control Cabinet

The Top Control Cabinet is mounted in the nacelle. The calculated shielding required for the Top Control Cabinet was based on the data as shown in Table 12.

Graph 21: Top Control Cabinet Attenuation required

Graph 22: Top Control Cabinet mitigation required including cumulative effect

When taking cumulative effect into consideration, a significant amount of shielding is required. This is the combined effect of the cables entering and exiting the Top Control Cabinet and equipment mounted in the cabinet

Further analysis of the highest peaks of Graph 22 revealed that they can be attributed to FM radio stations, TV and GSM intentional transmitters. However, not all signals that require attenuation could be attributed to intentional transmitters.

Given that the nacelle houses different equipment in a confined space and the difficulty in performing tests in the nacelle while the system is operational mitigation should include shielded cabinets, shielded cable trays and the use of absorptive cable sleeves.

Laboratory tests will be done to narrow down the source possibilities.

12.2 MITIGATION PRINCIPLES

The mitigation principles are shown in Table 13.

Principle	Solution	Comment		
Cable emissions (DM)	Shield wires Control loop areas	Can be implemented by using metal wiring ducts with duct cover (Par 13.1 refers). Although not designed for shielding, the shielding effectiveness could be enough for this application. Shielded flexible conduits can be used to terminate onto duct end covers for cable exits and onto the receiving end. (Par 13.2 refers). By using the closed metal wiring duct and bonding them to earth, the loop area between cables and ground plane is reduced.		
	Ferrites and absorbers	Ferrite loaded sleeve to convert common mode currents to heat		
Cable emissions (CM)	Control loop areas	By using the closed metal wiring duct and bonding them to earth, the loop area between cables and ground plane is reduced		
Enclosure Radiation	Improve shielding			

Table 13: Mitigation Principles

12.3 REQUIRED MITIGATIONS MEASURES

12.3.1 SHIELDING OF BASE TO NACELLE CABLES

- Aluminium (fixed) and copper (flexible) rotor cables will be replaced by shielded cables
- Shields connected to earth.
- Termination on gland plate.

12.3.2 ABSORPTION OF COMMON MODE CURRENTS

- Absorption of common mode currents
- Ferrites will be installed in the cables going out from the Top controller cabinet and from the ground controller. The number and location to be defined in further updates of the control plan on completion of the controller cabinet tests.

12.3.3 NACELLE CABLE INSTALLATION

- Ethernet cable will be replaced by CAT7 cables.
- All cable trays will be metallic and of a closed type.
- The rest of the cables will be shielded and the shield will be correctly connected to earth.

12.3.4 TOP CONTROLLER ENCLOSURE

The top controller cabinet will be redesigned. The current design does not have an EMI gasket
and does not provide contact surfaces to retrofit with a conductive gasket. The emissions from
the top controller cabinet will be mitigated as shown in the action plan of Error! Reference
source not found. The objective is to reduce the emissions from the current configuration with
40dB. The new shielded enclosure will be tested using the IEEE 299 as guideline

12.3.4.1 TOP CONTROLLER MITIGATION ACTION PLAN

Figure 22: Top Controller Mitigation Action Plan

Figure 22 summarizes the top controller mitigation action plan. The current top controller will be tested in an accredited EMC Test laboratory to confirm the extend of mitigation required. Mitigation measures will then be applied and the effectiveness will be confirmed in the laboratory.

12.4 LIGHTING

Fluorescent lights in the tower and nacelle will be replace by LED

By implementing the suggested mitigation measures, the impact on the SKA project will be reduced. Where possible, the mitigation measures will be verified by means of laboratory tests.

To prevent an impact on the SKA Project, Biotherm Energy has reviewed the facility lay-out to increase the distance from the closest turbine to the closest SKA infrastructure from 20km to 25km. The number of turbines has also been reduced from the initial 125 turbines to 60 turbines.

12.5 TESTS AT THE NEW SITE

To verify overall windfarm emissions, ambient measurements should be done at the new site before construction starts. Tests points should be carefully selected based on test equipment sensitivity with the objective to observe the increase in ambient emissions as construction progresses.

12.6 FINAL SITE TESTS

Final site tests will be done on completion of the project and results should be compared to results in Par 11 to proof the effectiveness of the mitigation techniques applied to the turbine.

Although not anticipated, proper mitigation measures on identified emitters will be studied and implemented if final test shows emissions exceeding the SKA threshold.

13. APPENDIX A: EXAMPLE OF MITIGATION PRODUCTS

13.1 ENCLOSED METAL WIRING DUCT WITH DUCT COVER

13.2 SHIELDED FLEXIBLE CONDUIT

Shielded conduit provides exceptional shielding effectiveness from electromagnetic and radio frequency interference (EMI/RFI). Use it to protect sensitive electronic circuits from outside noise in such applications as communications, radar and data transmission. But shielded conduit doesn't just keep interference out; it also keeps emissions in, which is vital to meeting European CE standards – an important issue for OEMs.

Shield-Flex shields sensitive equipment and circuits from EMI/RFI emissions; both ingress and egress. Connector assemblies include a grounding ferrule that contacts the conduit's internal metallic material with the connector body, producing a direct shield-to-drain (ground) simply by tightening the connector. It's flexibility and simple assembly means it takes less time to install. It uses off-the-shelf (OTS) connectors that are less expensive than high-end, mil spec shielded conduit that require costly custom fittings.

Markets For Shield-Flex:

Medical
Military
Industrial
Government/Defense
Gommercial
Telecommunications
Aerospace
Public Transit
Utilities

SHIELD-FLEX represents a line of three shielded conduits, SLA, EMS and EMCS. It is designed to protect sensitive electronic circuits from electromagnetic and radio frequency interference (EMI/RFI).

Shield-Flex, SLA, EMS, EMCS, HFSLA, HFEMS and HFEMCS are trademarks of Electri-Flex Company, registered in the U.S. Patent and Trademark Office.

This series of shielding conduits consists of three configurations: Type SLA, Type EMS, and Type EMCS.

conduit's internal metallic material with the With three levels of effectiveness to choose from, Shield-Flex can meet your needs.

· Good Shielding:

Type SLA is identical to standard UL listed liquidtight flexible steel conduit, but is augmented with a tinned copper shielding braid located over the inner steel core and under its protective PVC jacket. It has a working temperature range of -4°F to 140°F (-20°C to 60°C) and the shielding braid offers a minimum of 90% shielding coverage.

· Better Shielding:

Type EMS offers a better shielding effectiveness than Type SLA and has a working temperature range of -67°F to 221°F (-55°C to 105°C). Type EMS has an inner core made from a fully interlocked bronze strip and does not contain a braided shield. An all-temperature PVC jacket is extruded over the core, resulting in a sealed, waterproof raceway when assembled with liquidtight fittings.

• BEST Shielding:

Type EMCS is a hybrid of SLA and EMS because it utilizes the same bronze core and PVC jacket as EMS but gets further screening protection from a tinned copper braid as found in the SLA

product. Type EMCS offers the same working temperatures as EMS.

Halogen-Free (HF) Series: For a low-smoke, low-flame spread, zero-halogen version, ask for HFSLA, HFEMS, or HFEMCS. It's ideal for field installation in confined, public areas such as subways, tunnels, etc. The jacketing material virtually eliminates the release of acidic gases found in PVC products.

The graph below depicts a general comparative shielding effectiveness (attenuation in dBs) of all three types of SHIELD-FLEX conduit. The dotted line indicates a comparison to standard

Applications / Vertical Markets

Air handling equipment (HVAC)

Fest & Measurement Equipment Data Centers

Variable Speed Drives Gommercial-off-the-shelf (COTS) (CAGE Code: 09641)

(COTS) (CAGE Code: 096
GE – European EMI
Requirements
Radio Broadband/Antenna
Solar / Wind Energy
Ship Building
Medical Diagnostic
Equipment
Wireless Communications

Healthcare / Medical

unshielded liquidtight flexible conduit Type LA. The spectrum of test frequency is from 1 MHz to 10 MHz Electric Field, to 100 MHZ to 1 GHz Planewave Field and 2 GHz to 6 GHz Microwave Field. Tests were performed per MIL-STD-285 on 1" trade size conduit using standard liquidtight fittings from Thomas & Betts series 5300. Results are based on controlled laboratory conditions and may vary in actual field installed conditions.

13.3 CABLE SHIELDING

13.4 HIGH FREQUENCY FERRITE

(Wurth 742716 22)

STAR-GAP Snap Ferrite for RF applications

Picture Dimensions Downloads

Characteristics

Applications

Design Kits

- Worldwide first split case ferrite with "defined air-gap" (patented)
- Especially helpful for EMI problems in frequency range of 100 MHz up to 2.5 GHz
- · Data signals up to 100 MHz will not be effected
- · Best performance (impedance) especially with 2 windings
- . Low magnetic saturation of the material in cases of high DC current applications which therefore gives a low reduction of impedance
- · Pre-fixing and cable protection system is time saving and makes it easier to assemble
- · Classification of the plastic case: UL94-V0
- Operating temperature: -25 °C to +105 °C

