

Financial Provisioning and Closure Cost for K4 -Pollution Control Dam and Related Infrastructure

PREPARED BY:

Hydrological Environmental Engineering Solutions (Pty) Ltd Company Registration No: 2018/065233/07 Exempted Micro Enterprise 16 Lemonwood Street CENTURION 0157

Contact person: Deon van der Merwe Pr Eng (960070) BEng(Agric) MBL SANCOLD SAIAE MSAIMM Tel: +27 (0)82 895 1538 PREPARED FOR:

Alta van Dyk Environmental cc 9 Mountain Sherman CRESCENT Midlands Estate JULY 2023

and

SIBANYE-STILLWATER K4 Constantia Office Park Cnr 14th Avenue & Hendrik Potgieter Road Bridgeview House, Ground Floor WELTEVREDEN PARK 1706

EEC12_2023

Quality information

Prepared by:

Deon van der Merwe Pr Eng Competent Engineer

Revision History

Revision	Revision date	Details	Authorized	Name	Position
01	25 July 2023	Update Context	Yes	HGvdM	Engineer

Distribution List

# Hard Copies	PDF Required	Association / Company Name
No	Yes	Alta van Dyk Environmental

Prepared for:

Alta van Dyk Environmental 9 Mountain Sherman Crescent Midlands Estate

Prepared by:

HEES (Pty) Ltd 16 Lemonwood street, Centurion, 0181, SOUTH AFRICA Deon van der Merwe T: +27(0) 82 895 1538

This document has been prepared by Hydrological Environmental Engineering Solutions (Pty) Ltd ("HEES") for sole use of our client (the "Client") in accordance with generally accepted consultancy principles, the budget for fees and the terms of reference agreed between HEES and the Client. Any information provided by third parties and referred to herein has not been checked or verified by HEES, unless otherwise expressly stated in the document. No third party may rely upon this document without the prior and express written agreement of HEES.

EXECUTIVE SUMMARY

Introduction

This project rehabilitation and costing is additional to the existing provisioning of the whole mine of Karee shaft K4, Sibanye-Stillwater Marikana Operations.

This project consist of the diversion berms and canals around the Waste Rock Dump towards the new Pollution Control Dam and a pipeline from the Pollution Control Dam towards the plant.

Rehabilitation plan

The Waste Rock Dump will be rehabilitated by reduction of slopes and full vegetation of the slopes. No or minimal erosion will be result of the Waste Rock Dump rehabilitation.

Due to the Waste Rock Dump rehabilitation the diversion berms and canals towards the Pollution Control Dam and the pipeline to the plant can be demolished and the area rehabilitated to a pre-mining state at the closure of the mine.

Methodology

The diversion berms will be used to shape and form the flow canals to the pre-mining topographical state.

The pollution control dam infrastructure and lining will be removed and the basin backfilled from the existing embankment material as well as imported selected material in order to shape the area to a pre-mining topographical state. Contour walls can be constructed where required although the area is very flat and with vegetation this should not be required.

The pipeline will be demolished, and the plinths removed.

The affected area will be prepared and vegetated with local species.

Financial Provisioning

The 2022 regulations (Greecy, 2022) require that for new developments the cost related to the disturbance and closure that will occur in the first year of operations with latent cost after closure must be included in the Financial Provisioning cost.

The estimated financial provisioning to rehabilitate the relevant area is estimated at **R20 340 184** including Preliminary & General, Contingencies and VAT. This cost must be added to the existing Financial Provisioning of the Karee K4 shaft.

Information gaps

This EIA study was very comprehensive, and no information gaps are identified for this project.

CONTENTS

1		lr	ntroduc	ction	12
	1.1		Backę	ground	12
	1.2		Decla	ration of interest	12
	1.3		Repo	rt layout	13
2		C	Details	of author and experience	15
3		C	Details	of Applicant	17
4		P	Project	Context	18
	4.1		Proje	ct background	18
	4.2		Proje	ct infrastructure	18
5		E	Inviron	mental Drivers and Context	20
	5.1		Vege	tation assessment (de Beer, 2022)	20
	5	5.1	1.1	General	20
	5	5.1	1.2	Impact importance	21
	5.2		Surfa	ce water assessment (Lourens, 2019)	22
	5.3		Waste	e classification	22
	5.4		Wetla	unds (Davis, 2023)	22
	5.5		Soil c	ompliance (Mamera, 2023)	23
	5.6		Fauna	a and Flora (Burger, 2023)	23
	5.7		Herita	age assessment (van der Walt, 2023)	23
6		S	Social a	aspects influencing closure	26
7		S	Surrour	nding Mining Activities	28
8		S	Stakeho	older issues	29
9		F	Results	of environmental risk assessment	30
	9.1		Risk /	Assessment methodology	30
	9.2		Plann	ed activities	33
	9.3		Mitiga	ation of risk by closure plan	35
1	0	C	Design	principles	40

10	.1	Legal	framework	40
	10.	1.1	Minerals and petroleum resources development (MPRDA) Act, Act 28 of 200 40	02
	10.	1.2	Mineral and petroleum resources development regulations	41
	10.	1.3	National environmental management Act (Act 107 of 1998)	43
	10.	1.4	Financial provisioning regulations	45
	10.	1.5	Other guidelines	46
10	.2	Closu	re objective	47
	10.	2.1	Safety	48
	10.	2.2	Physical and Ecological stability	48
	10.	2.3	Chemical Stability	48
	10.	2.4	Socio-economic transition	48
	10.	2.5	Risk Limitation	48
	10.:	2.6	Long-Term Care	49
10	.3	Altern	ative closure options	49
10	.4	Prefe	rred closure action	49
10	.5	Post	closure period	50
10	.6	Assur	nptions	50
11	Ρ	ost mi	ning land use	51
11	.1	Desci	iption of land use	51
11	.2	A ma	o of post closure land use	51
11	.3	Post (Closure Period	53
12	A	nnual	rehabilitation actions	54
12	.1	Techr	nical solutions	54
13	Fi	inal re	habilitation and closure actions	55
13	.1	Gene	ral technical solutions	55
13	.2	Pollut	ion Control Dam technical solution	55
13	.3	Divers	sion canals and berms	56

13.4 Pipeline	56
13.5 Culvert	56
13.6 Threats and opportunities	61
14 Schedule of actions	62
15 Organisational capacity	63
16 Relinquishment criteria	64
17 Monitoring	65
17.1 Schedule	65
17.1.1 Water quality	65
17.1.2 Physical properties	65
17.2 Responsible persons	65
17.2.1 Water quality	66
17.2.2 Physical properties	66
17.3 Schedule of reporting	66
17.3.1 Water quality	66
17.3.2 Physical properties	67
17.4 Monitoring plan	67
17.4.1 Monitoring parameters for water quality	67
17.4.2 Monitoring parameters for physical rehabilitation structures	67
17.4.3 Surface Water monitoring positions	68
18 Final and Annual rehabilitation cost	73
18.1 Calculations & Assumptions	73
18.2 Methodology and Costing	73
18.3 Period of determination	77
18.4 Results	77
19 Assumptions, limitations and knowledge gaps	78
19.1 Assumptions	78
19.2 Limitation	78

19.	3 Information gaps	78
20	Bibliography	79
ANN	EXURE A: CV OF DEON VAN DER MERWE	80

FIGURES

Figure 1-1: Locality of Karee K4 shaft (Google Earth)	14
Figure 4-1: Infrastructure layout	19
Figure 5-1: Locality of project in relation to towns and dominant veld type	20
Figure 5-2: Project in relation to vegetation importance	22
Figure 3: Points of interest for heritage at K001 to K003	24
Figure 4: Degrade trough at K001	24
Figure 7: General site view at K002	25
Figure 6: Stone features at K003	25
Figure 7-1: South Africa Mining Map	
Figure 11-1: Total Area of land use after closure	52
Figure 13-1; General layout of project (RSV Minerals, drawing number 500032877)	57
Figure 13-2: Pollution Control Dam Layout (RSV minerals, Drawing no. 064	1900SE-
100.130.170-01-001-06)	58
Figure 13-3: Pollution Control Dam extraction layout (RSV minerals, Drawing no. 064	900SE-
100.130.170-01-001-06)	59
Figure 13-4: Culvert for diversion canals	60
Figure 17-1: Surface monitoring positions	69
Figure 17-2:Surface water localities monitored around the WRD and PCD	71
Figure 17-3: Groundwater Localities monitored	72

TABLES

Table 3-1: Details of Applicant	17
Table 4-1: Proposed infrastructure	18
Table 9-1: Scale utilised for the evaluation of the Environmental Risk Ratings	30
Table 9-2: Scale used for the evaluation of the Environmental Significance Ratings	33
Table 9-3: Identified risk, mitigation measures and mitigated quantified risks	35
Table 10-1: Motivation for preferred option	49
Table 11-1: Post Mining Land Use	51
Table 13-1: Threats, Opportunities and Uncertainties (Post Mining)	61
Table 14-1: Rehabilitation planning	62
Table 15-1: Organisational Capacity	63
Table 17-1: Water Quality Parameters for Surface and Groundwater Monitoring	67
Table 17-2: Surface Water Quality Monitoring Points	68
Table 17-3: Groundwater Quality Monitoring Positions	69
Table 18-1: Financial provisioning – Final rehabilitation cost for 2023 to 2025	74
Table 18-2 : Summary of Financial Provisioning cost	77

ACRONYMS

Acronym	Long Form
BoQ	Bill of quantities
c/c	centre to centre
ССТ	Condenser Cooling Tower
cm	centimeter
DWS	Department of Water and Sanitation
EIA	Environmental impact assessment
ECSA	Engineering Council of South Africa
FoS	Factor of safety
Fr	Froude number
g	Gravitational acceleration, 9.81 m/s²
HEC-RAS	Hydrologic Engineering Centre's River Analysis System (software)
km	kilometer
km ²	square kilometer
kN/m³	kiloNewton per cubic meter
kN	kiloNewton
kNm	kiloNewton meter
LHOS	Long Hole Open Stoping
LoM	Life of Mine
m	meter
m/s	meter per second
m²	square meter
m ³	cubic meter
m³/d	cubic meter per day
m³/s	cubic meter per second
MAP	Mean annual precipitation
masl	meters above sea level
mm	millimeter
mm/a	millimeter/annum
MPa	MegaPascal
NEMA	National Environmental Management Act

Acronym	Long Form
N/A	not applicable
PGM	Platinum Group Metals
ROM	Run Of Mine
RMF	Regional maximum flood
RAW	Return Air Way
S	second
SANRAL	The South African National Roads Agency
VAT	Value Added Tax
WRYM	Water Resource Yield
ZAR	South African Rand

1 Introduction

1.1 Background

Sibanye-Stillwater is the owner of the K4 Shaft that forms part of the Marikana Operations located near Marikana town, North-West Province. The Marikana Operations is divided into two entities consisting of Western Platinum (Pty) Ltd and Eastern Platinum (Pty) Ltd. The K4 Shaft falls under the Western Platinum (Pty) Ltd.

The shaft was placed under care and maintenance for a period of **6 years** but is being made ready to be fully operational in the year **2024.** The current Waste Rock dump on the property of the shaft has been established and licensed by the previous owner. Sibanye-Stillwater is planning to extend the Life of Mine (LOM) with approximately 30 years and the existing waste rock dump will be utilised. The size of the waste rock dump will not exceed the approved footprint as authorised in the Western Platinum Limited – Environmental Management Programme.

Additional infrastructure that needs to be implemented in order to chieve the full operation of the shaft, include the construction of:

- A lined V-drain around the current waste rock dump. The V-drain is considered as catchment berms on either side of the waste rock dump and is located on a ridge.
- A Pollution Control Dam (PCD) that will be lined and completed with a recovery sump for the recycling of stormwater runoff for the mining operations.
- A pipeline from the K4 Shaft to the PCD.
- An emergency spillway to manage the overflow.

1.2 Declaration of interest

I, Hermanus Gideon van der Merwe, declare that -

- I act as the independent specialist in this application;
- I will perform the work relating to the application in an objective manner, even if this results in views and findings that are not favourable to the applicant;
- I declare that there are no circumstances that may compromise my objectivity in performing such work;
- I have expertise in conducting the specialist report relevant to this application, including knowledge of the Act, Regulations and any guidelines that have relevance to the proposed activity;
- I will comply with the Act, Regulations and all other applicable legislation;
- I have no, and will not engage in, conflicting interests in the undertaking of the activity;

- I undertake to disclose to the applicant and the competent authority all material information in my possession that reasonably has or may have the potential of influencing - any decision to be taken with respect to the application by the competent authority; and - the objectivity of any report, plan or document to be prepared by myself for submission to the competent authority;
- all the particulars furnished by me in this form are true and correct; and
- I realise that a false declaration is an offence in terms of regulation 48 and is punishable in terms of section 24F of the Act.
- Signature as part of this document layout.

1.3 Report layout

This report will follow the requirements of Regulations No. R1147¹ promulgated under NEMA and will address the infrastructure at the K4 shaft. This report further references the GN704 Storm water Assessment (Lourens, 2019).

The annual rehabilitation plan will be addressed in the same report as the final rehabilitation and closure plan, as stated in Appendix 1 of the NEMA (R1147) regulations.

The Karee K4 shaft is located on the western limb of the Bushveld complex near Brits and Rustenburg in the North-West Province, South Africa.

This report will focus on the canal and berms around the Waste Rock Stockpile, the Pollution Control Dam for the stockpile and the pump line from the Pollution Control Dam to the Plant of the Karee K4 shaft which is situated at:

- ◀ 25° 40' 8.10" S
- < 27° 28' 2.98" E

The locality of the Karee K4 shaft in relation to South Africa is shown in **Figure 1-1**.

¹ National Environmental management Act, 1998 (Act 107 of 1998), Government Notice Regulation 1147 dated 20 November 2015

Figure 1-1: Locality of Karee K4 shaft (Google Earth)

2 Details of author and experience

Hermanus Gideon (Deon) van der Merwe is registered as a Professional Engineer with ECSA, Registration number 960070 and is the Director of the company Hydrological Environmental Engineering Solutions (Pty) Ltd situated at: 18 Lemonwood street, Centurion, 0157, SOUTH AFRICA T:+27(0) 82 895 1538

Deon has 27-years' experience in a wide field. Deon specialises in the design and project management of projects comprising dams, SWMPs, rehabilitation plans, canals, gabion structures and concrete structures. He also has experience in the management and maintenance of pump schemes and general management. He has successfully completed many water-related projects for the mining sector but has undertaken work for an array of other clients in other various sectors.

Deon served as the area manager/deputy regional director of the Tugela-Vaal Government Water Scheme on behalf of the then Department of Water Affairs (DWA), he was the deputy chief engineer for open channel systems and manager of the hydraulic laboratory at the DWA. He is thus aware of the challenges South Africa faces in terms of water resources management. He started his career at the Department of Agriculture and at exiting was the Principal Engineer – Soil Conservation for the North-West Province.

His most recent project experience includes the cost closure methods and rehabilitation plans for, Jwaneng Diamond Mine, Thorncliffe Chrome Mine and Mogalakwena Platinum Mine. Deon is also the Approved Professional Person for the Dam Safety Evaluation of the 29 m high earth embankment Imvutshane Dam. Recent detail design work includes a Parshall flume for Mogalakwena Mine and an oil separator for Thorncliffe Mine.

Other large projects include the civil design of the 55 m high ACR Itare Dam components, the detail design for the rehabilitation of the 37 m high Mothusi Dam at Letseng Mine, EPC tender design of the ± 90 m high Arror ECRD, 3 130 m³/s diversion tunnels, dam intake structure and cofferdams for the 1000 MW Hydroelectric Power Sounda Gorge Project, serving as the Civil Design Engineer for a 40 m high Concrete Gravity Dam and Powerhouse on the Orange River in South Africa for a installed capacity of 22 MW, Assistant Civil Design Engineer for the water infrastructure tender design of the 40 MW Kabompo Gorge Hydroelectric scheme in Zambia, the Assistant Design Engineer for the feasibility investigations and option analysis for the uMkhomazi transfer scheme, Design Engineer on the river diversion tender design for Neckartal Dam, Design Engineer for the review on the river diversion of the Mphanda Nkuwa

Hydroelectric Project, Member of the project team for the Safety Evaluation of the Category III Bivane (Paris) Dam, Locumue (Mozambique) Dams, the Category II Doornpoort, Wilge River, 3rd Recovery, the Approved Professional Person for the Category II Raw Water Reservoirs at Lethabo Power Station and Imvutshane Dam and detail design and draughting of a 4 km concrete-lined canal for AngloGold Ashanti's West Complex (R6 million).

Deon's full Curriculum Vitae is attached as Annexure A.

Details of Applicant 3

Details of the applicant is shown in Table 3-1.

Table 3-1: Details of Applicant

Name	SIBANYE-STILLWATER
	WESTERN PLATINUM (PTY) LTD
	K4 SHAFT
Postal Address	Private bag X508
	Marikana
	0284
Contact Details	Tel: 014 571 2000 • Fax 014 571 2037

4 Project Context

4.1 **Project background**

Sibanye-Stillwater is the owner of the K4 Shaft that forms part of the Marikana Operations located near Marikana town, North-West Province. The Marikana Operations is divided into two entities consisting of Western Platinum (Pty) Ltd and Eastern Platinum (Pty) Ltd. The K4 Shaft falls under the Western Platinum (Pty) Ltd.

The shaft was placed under care and maintenance for a period of **6 years** but are being made ready to be fully operational in the year **2024.** The current Waste Rock dump on the property of the shaft has been established and licensed by the previous owner. Sibanye-Stillwater is planning to extend the Life of Mine (LOM) with approximately 30 years and the existing waste rock dump will be utilised. The size of the waste rock dump will not exceed the approved footprint as authorised in the Western Platinum Limited – Environmental Management Programme.

4.2 **Project infrastructure**

Additional infrastructure that needs to be implemented in order to chieve the full operation of the shaft, including the construction of the infrastructure as described in **Table 4-1** and the layout as in **Figure 4-1**.

Proposed infrastructure	Description
Surface infrastructure	
Waste Rock Stockpile – V drains (protection berms)	 The total final waste rock stockpile footprint area will be 203 830 m² and this footprint has already been authorised in the WPL EMPR. Canals and berms will be 1 353 meters in length and 10,83 meters wide. The west berm (V drain) length is 550 m and east berm (V drain) Length 600 m.
Pollution Control Dam	A Class C lined pollution control dam will be constructed with a capacity of 35 203 m³ and will have a maximum height of 3 m from the floor of the dam. It will have a spillway of at least 0.8 m depth and an effected area of 3.6 ha.
Pipelines	Transfer water from the PDC to the K4 Shaft for re-use. The pipeline will be 500m in length with a total pump capacity of 60 m ³ /hour. It will consist of a 110 OD HDPE line, sized to empty the dam for a 1:20 year ARI over 14 days continuous operation.

Table 4-1: Proposed infrastructure

Figure 4-1: Infrastructure layout

5 Environmental Drivers and Context

5.1 Vegetation assessment (de Beer, 2022)

5.1.1 General

Figure 5-1: Locality of project in relation to towns and dominant veld type

The following summarised description of Marikana Thornveld vegetation applies (Mucina and Rutherford (2006)):

SVcb6 is generally characterized by valleys and slightly undulating plains and some lowland hills. It occurs in Gauteng and North-West Provinces from the Rustenburg area in the west, through Marikana and Brits to Pretoria eastwards.

The mean annual precipitation in the area ranges between 600 and 700mm which falls predominantly in the summer months. This region has a somewhat temperate climate with mean maximum and minimum temperatures ranging between 35.3°C (November) and -1.4°C (July) for Rustenburg with frost occurring during winter months. The geology of SVcb6 consists mainly of mafic intrusive rocks of the Rustenburg Layered Suite of the Bushveld Igneous Complex. Shales and quartzites of the Pretoria Group of the Transvaal Supergroup, also contribute. The soils are mainly vertic or melanic clays with some dystrophic or mesotrophic plinthic catenas and some freely drained,

deep soils. The vegetation of SVcb 6 is characterized by open Acacia karroo with more dense shrubby vegetation along drainage lines, on termitaria and rocky outcrops and other habitats that are protected from fires. The important woody species that occur in this vegetation type include Acacia karroo, A. nilotica subsp. kraussiana, A. tortilis subsp. heteracantha, A. caffra, A. gerrardii, Ziziphus mucronata, Searsia lancea, S. pyroides var. pyroides, Combretum molle, Grewia flava and Diospyros lycioides subsp. guerkei. Significantly represented grasses include Elionurus muticus, Eragrostis lehmanniana var. lehmanniana, Fingerhuthia africana, Setaria sphacelata, Heteropogon contortus and Themeda triandra, with Ischaemum afrum, Aristida scabrivalvis subsp. Scabrivalvis, Hyperthelia dissoluta, Melinis nerviglumis and Pogonarthria squarrosa Herb species of importance are Hermannia depressa, Ledebouria revoluta, Ipomoea obscura, Barleria macrostegia and Vernonia oligocephala. Alien invasive plants occur localized in high densities, especially along drainage lines.

5.1.2 Impact importance

The project infrastructure in relation to the importance of the vegetation is provided in **Figure 5-2**. It is shown in **Figure 5-2** that the area of the Pollution Control Dam is not situated at an important vegetation area, and it is confirmed that the area of the Waste Rock Facility is already approved in a previous process. The V-drains (berms) fall within the Waste Rock Facility Footprint.

Figure 5-2: Project in relation to vegetation importance

5.2 Surface water assessment (Lourens, 2019)

The surface water assessment from Stormwater Solutions (Pty) Ltd (Lourens, 2019) address the infrastructure related to the mine excluding the Waste Rock Facility and Pollution Control Dam.

5.3 Waste classification

Due to the low contamination potential of the waste rock exemption from GN704 Regulation (4a), (4c) and 5 was obtained through licence No: 01/A21K/ABCEFGIHJ/4620 and the Waste rock material can be used as inert material. The contamination potential will be related to the migration of particles to the environment. The rehabilitation of the Waste rock dump will remove this potential.

5.4 Wetlands (Davis, 2023)

No wetlands are identified within 500m from the footprint of the PCD, canals and berms and pump line to the plant, while the Waste Rock Dump footprint is already approved (Davis, 2023).

5.5 Soil compliance (Mamera, 2023)

The soil suitability and land potential was identified and summarise as follows:

Sensitive soils identified were the Arcadia and Zondereinde soil forms with Rensburg, Rustenburg and Wasbank in the area with a land capacity class of III an IV and a land potential level 6. This area is **non-arable** and is classified as a low to medium sensitivity (Mamera, 2023).

5.6 Fauna and Flora (Burger, 2023)

A Fauna and Flora assessment was commissioned in order to assess the baseline ecological state of the area. This assessment involved the detection, identification and description of any local relevant receptors with the possible effect from the project. The conclusion from this study states:

The area has been historically altered and no significant impacts from a terrestrial ecology perspective are expected, subject to the proposed mitigation measures as escribed in the detail assessment report. This area is classified with a sensitivity rating of 'Very Low' (Burger, 2023).

5.7 Heritage assessment (van der Walt, 2023)

A heritage assessment of the project area was commissioned and the points of interest are shown in **Figure 3** with details in **Figure 4 and Figure 6**. These structural remains should be mapped before construction prior to development and a application for destruction permit can be applied for after mapping. However, continues monitoring for graves and other heritage resources should be executed during development (van der Walt, 2023).

Figure 3: Points of interest for heritage at K001 to K003

Figure 4: Degrade trough at K001

Figure 7: General site view at K002

Figure 6: Stone features at K003

6 Social aspects influencing closure

Legacy Issues

Mining legacies are understood in relation to the completion of success criteria as set out by Stakeholders, in the context of the Closure Plan. When there is failure in the meeting the specific success criteria and therefore failure for effective closure it results in a negative mining legacy.

It is essential for a mine to ensure that the future public health and safety are not compromised and that the end product of mine closure results in beneficial and sustainable end-use for communities in the long term so that adverse socioeconomic impacts are minimised, and socioeconomic benefits are maximised.

Human Capital

The Mining Charter requires mines to formulate and implement a Human Resource Development and Planning (HRDP) to enable transformation and empowerment of the workforce, in particular the Historically Disadvantaged South Africans employees (HDSA), to progress to higher levels of employment in the organisation, and to be able to exploit alternative income generating opportunities outside of the organisation.

Skills and knowledge of employees and therefore the surrounding communities are restricted to the mining industry. This results in difficult implementation of skill transfer programmes as developed by the mine when closure occurs, the consequences of which are prolonged unemployment periods within the surrounding community, where there is already a limited income.

The Mine requires a skilled workforce for daily activities, and therefore offers training support and career development opportunities to its employees, in particular to the Historically Disadvantaged South African (HDSA) employees from the local labour sending areas. The Mine complies with the requirements of the Skills Development Act (No 97 of 1998) and submits Workplace Skills Plans and Annual Training Reports to the Mining Qualifications Authority (MQA).

Post-mining land use

Post closure land use is normally determined in consultation with the stakeholders (inclusive of the tribal authorities who hold the surface rights). Collective views on post-mining land use might be difficult to obtain in the cases where indigenous people have strong links with the natural environment and land and where traditional rights holds a huge social impact on the surrounding community. Finding a balanced viewpoint on the post-mining land use which will satisfy all stakeholders involved will allow for a smooth transition in the relinguishment of the mine to the appropriate third parties.

Loss of Employment

The closure phase of any mining company results in the massive downgrade of workforce as relevant positions become irrelevant with the decommissioning of mining processes. Social aspects associated with the loss of employment include:

- Poor social risks management regarding communities not being properly prepared for the loss of employment (improper implementation of assessment and counselling services, comprehensive self-employment training programmes and comprehensive training and re-employment programmes)
- Since all mining operations will one day come to an end, the Mine will equip those employees with mining-specific skills with non-mining-related portable skills to enable them to find other forms of livelihood in other sectors of the economy. Only those lower level employees working at the plant can be considered as having mining-specific skills and would therefore have been given the opportunity to acquire a non-mining-related portable skill. However, the location of the mine makes it easy for these employees to be absorbed by other mines around. Hence, the focus is also on how to make them more marketable to other mines given their experience in mining. NA will assist these miners in acquiring self-marketing skills through CV writing and interview skills, and also assist them to obtain employment in the surrounding mines.
- Sibanye-Stillwater K4 Shaft Mine will implement a sustainable community development initiative to ensure that Sibanye-Stillwater K4 Shaft Mine meet the requirements of participation in Local Economic Development (LED) programmes. These LED will be aligned with the initiatives of the Integrated Development Plans (IDP's) of Local Municipality (Rustenburg) and the District Municipality (Bojanala Platinum District Municipality).

7 Surrounding Mining Activities

The Rustenburg surrounding area is Chrome and Platinum rich as can be seen in **Figure 7-1**. The following are some of the mining companies ,but not limited to, located in the surrounding area:

- Impala Platinum (Implats)
- Anglo American Platinum (Amplats)
- Northam Platinum
- Eastern Platinum (Eastplats)
- Norilsk Nickel
- < Sylvania Platinum
- African Thunder Platinum
- Aberdeen International Inc

- African Rainbow Minerals (ARM)
- Lonmin Plc
- Wesizwe Platinum
- Platinum Group Metals
- Nkwe Platinum
- Sedibelo Platinum Mines
- Sibanye Platinum
- Ivanhoe

Figure 7-1: South Africa Mining Map

8 Stakeholder issues

Stakeholder issues are written in a logbook that will be kept at the mine office and the mine have a department to address and attend to relevant engagement and support.

Results of environmental risk assessment 9

The rehabilitation plan is based and addresses the findings of the Risk Assessment (RA) as compiled in this section.

9.1 **Risk Assessment methodology**

A risk assessment table was compiled in order to quantify the risks. The significance of the identified impacts will be determined using an accepted methodology from the Department of Environmental Affairs and Tourism Guideline document on EIA Regulations, April 1998. As with all impact methodologies, the impact is defined in a semi-quantitative way and will be assessed according to methodology prescribed in the following section.

The EIA methodology complies to Regulation 31(2)(I) of the National Environmental Management Act (Act 107 of 1998) (NEMA), and requires that each potential impact is assessed in terms of the following components:

Evaluation Component	Rating	Scale	Description / criteria					
	10	Very high	Bio-physical and/or social functions and/or proces might be <i>severely</i> altered.					
	8	High	Bio-physical and/or social functions and/or processes might be <i>considerably</i> altered.					
MAGNITUDE of negative impact	6	Medium	Bio-physical and/or social functions and/or processes might be <i>notably</i> altered.					
(at the indicated spatial scale)	4	Low	Bio-physical and/or social functions and/or processes might be <i>slightly</i> altered.					
	2	Very low	Bio-physical and/or social functions and/or process might be <i>negligibly</i> altered.					
	0	Zero	Bio-physical and/or social functions and/or processes will remain <i>unaltered</i> .					
	10	Very high	Positive: Bio-physical and/or social functions and/or processes might be <i>substantially</i> enhanced.					
	8	High	Positive: Bio-physical and/or social functions and/or processes might be <i>considerably</i> enhanced.					
POSITIVE	6	Medium	Positive: Bio-physical and/or social functions and/or processes might be <i>notably</i> enhanced.					
indicated spatial	4	Low	Positive: Bio-physical and/or social functions and/or processes might be <i>slightly</i> enhanced.					
scale	2	Very low	Positive: Bio-physical and/or social functions and/or processes might be <i>negligibly</i> enhanced.					
	0	Zero	Positive: Bio-physical and/or social functions and/or processes will remain <i>unaltered</i> .					
	5	Permanent	Impact in perpetuity. –					
DURATION	4	Long term	Impact ceases after operational phase/life of the activity					

Table 9-1: Scale utilised for the evaluation of the Environmental Risk Ratings

Stillwater

Evaluation Component	Rating	Scale	Description / criteria						
	З	Medium	Impact might occur during the operational phase/life						
	5	term	of the activity						
	2	Short term	Impact might occur during the construction phase						
	1	Immediate	Instant impact.						
	5	International	Beyond the National boundaries.						
EXTENT	4	National	Beyond provincial boundaries, but within National boundaries.						
(or spatial scale/influence of	3	Regional	Beyond 5 km of the Mine and within the provincial boundaries.						
impact)	2	Local	Within a 5 km radius of the Mine.						
	1	Site-specific	On site or within 100 meters of the site boundaries.						
	0	None	Zero extent.						
	5	Definite	Definite loss of irreplaceable resources.						
	4	High potential	High potential for loss of irreplaceable resources.						
IRREPLACEABLE	3	Moderate potential	Moderate potential for loss of irreplaceable resources.						
loss of resources	2	Low potential	Low potential for loss of irreplaceable resources.						
	1	Very low potential	Very low potential for loss of irreplaceable resources.						
	0	None	Zero potential.						
	5	Irreversible	Impact cannot be reversed.						
	4	Low irreversibility	Low potential that impact might be reversed.						
REVERSIBILITY	3	Moderate reversibility	Moderate potential that impact might be reversed.						
	2	High reversibility	High potential that impact might be reversed.						
	1	Reversible	Impact will be reversible.						
	0	No impact	No impact.						
	5	Definite	>95% chance of the potential impact occurring.						
	4	High probability	75% - 95% chance of the potential impact occurring.						
PROBABILITY (of	3	Medium probability	25% - 75% chance of the potential impact occurring						
occurrence)	2	Low probability	5% - 25% chance of the potential impact occurring.						
	1	Improbable	<5% chance of the potential impact occurring.						
	0	No probability	Zero probability.						

Stillwater

SIBANYE STILLWATER K4 SHAFT FINAL REHABILITATION AND FINANCIAL PROVISIONING PLAN

Evaluation Component	Rating	Scale	Description / criteria								
Evaluation Component	Rating scale and description / criteria										
CUMULATIVE impacts	High: Th the same combine local, reg <i>Medium:</i> the same significar regional <i>Low:</i> The <i>None:</i> No	e activity is one e geographical d impact on the gional or nation The activity is e geographical nce on the natu or national con e activity is loca o cumulative in	e of several similar past, present or future activities in area, and might contribute to a very significant e natural, cultural, and/or socio-economic resources of al concern. one of a few similar past, present or future activities in area, and might have a combined impact of moderate irral, cultural, and/or socio-economic resources of local, cern. alised and might have a negligible cumulative impact. apact on the environment.								

Once the Environmental Risk Ratings have been evaluated for each potential environmental impact, the Significance Score of each potential environmental impact is calculated by using the following equation:

SS (Significance Score) = (magnitude + duration + extent + irreplaceable + reversibility) x probability.

The maximum Significance Score value is 150.

The Significance Score is then used to rate the Environmental Significance of each potential environmental impact as per **Table 9-2** below. The Environmental Significance rating process is completed for all identified potential environmental impacts both before and after implementation of the recommended mitigation measures.

Table 9-2: Scale used for the evaluation of the Environmental Significance Ratings

Significance Score	Environmental Significance	Description / criteria
125 – 150	Very high (VH)	An impact of very high significance will mean that the project cannot proceed, and that impacts are irreversible, regardless of available mitigation options.
100 – 124	High (H)	An impact of high significance which could influence a decision about whether or not to proceed with the proposed project, regardless of available mitigation options.
75 – 99	Medium-high (MH)	If left unmanaged, an impact of medium-high significance could influence a decision about whether or not to proceed with a proposed project. Mitigation options should be relooked at.
40 – 74	Medium (M)	If left unmanaged, an impact of moderate significance could influence a decision about whether or not to proceed with a proposed project.
<40	Low (L)	An impact of low is likely to contribute to positive decisions about whether or not to proceed with the project. It will have little real effect and is unlikely to have an influence on project design or alternative motivation.
+	Positive impact (+)	A positive impact is likely to result in a positive consequence/effect, and is likely to contribute to positive decisions about whether or not to proceed with the project.

9.2 Planned activities

The proposed development and its associated activities are all planned within the mining right area and confined to the Waste Rock Stockpile extension, Pollution Control Dam and related structures. The "spatial extent is regarded as "Site Specific", with the exception of the effects from erosion (water and/or wind) which might impact the downslope/downwind environments. These impacts are considered to be of a "Localised" spatial effect.

The infrastructure considered as part of this investigation include:

- The stormwater control berms, trenches, from the Waste Rock Stockpile
- Pollution Control Dam and related infrastructure,
- Pipeline from Pollution Control Dam to the shaft.

These facilities and associated support activities will entail the removal of significant quantities of utilisable soil soft overburden and hard rock. This will include the design of engineered foundations for the associated stormwater control trenches, berms and PCD and the construction and implementation of support infrastructure and activities (piping).

All of these soils will be sterilised and lost from the system for the life of the operation.

A number of site-specific baseline (existing environment) conditions need mention here if the relative significance of the activities being planned are to be understood.

Of importance are:

- The soil structure and clay content are important when considering the effects of compaction and the potential impacts of storage of the soil structure and soil health.
- The occurrence/presence of soils with a shallow rooting depth (<400mm) that form ٠ restrictions and or inhibiting layers to soil water movement (hydro pedological conditions) down the profile. This will in almost all cases [deep foundations or facilities (dams etc.)] be destroyed and possibly removed from the system. Reinstatement of these layers is difficult, and the impacts will affect the end land use and overall ecological status at closure as a result.
- Removal of vegetation from any of the soils mapped will result in increased erosion to varying degrees and impacts on the receiving environment (streams, rivers and dams).

These conditions will have an influence on the overall impact significance rating as loss of these features will have a definite localised or site-specific negative impact on the ecological functionality of the area and will have a bearing on the management recommendations tabled.

Mitigation of risk by closure plan 9.3

The following matrix describe all identified risks, the mitigation thereof and the resultant risk quantification. It can be seen that the rehabilitation measures reduce the risks significantly.

Table 9-3: Identified risk, mitigation measures and mitigated quantified risks

RISK BEFORE AND AFTER BEHABILITATION	POTENTIAL ENVIRONMENTAL	ACTIVITY	ENVIRONMENTAL SIGNIFICANCE BEFORE MITIGATION					ICANCE		Cumulative	Status	RECOMMENDED MITIGATION MEASURES/		ENVIRONMENTAL SIGNIFICANCE AFTER MITIGATION							
PHASE			М	D	E I	R	Tot	Prob	SS			REMARKS		D	E	1	R T	ot F	rob	SS	
SOILS, LAND USE AN	ID LAND CAPABILITY (F	REMOVED WRD B	ERMS,	, POL	LUT		ONTRO	OL DAM AI	ND PIPE	LINE)											
			8	3	3 3	3 2	19	4	76	Medium High	Negative	Management of Soil Erosion	4	1	1	2	2 1	0	4	40	
Sc	Soil erosion	Management of surface water run-off and erosion through gully formation	 Mitigating measures: Topsoil and contour/bench rehabilitated areas as to prevent wind and water erosion. Monitor the impact from erosion after a severe rainfall event and implement repairs immediately. Where appropriate, allow for energy dissipation structures or sedimentation traps to be constructed. Stabilise all open slopes immediately to prevent erosion and gully formation. Ensure that gradients of the slopes are planned in such a way so that the run-off water will not cause wash ways. Allow for the natural succession of indigenous species. Should it seem that indigenous species battle to colonise the areas, consideration should be given to the establishment of vegetation by means of a seed mix. 																		
		Mechanical	4	2	2 2	2 2	12	4	48	Medium	Negative	Management of Soil Compaction	1	5	1	1	1 9	9	4	36	
Decommissioning and Closure Phase	Soil compaction	compaction from increased vehicular movement.	 Mitigating measures: Minimise catchment hardening as far as possible, and design and implement a rigorous storm water management system for the development area. Restrict vehicular movement to the demarcated areas as to allow for rehabilitation to occur successfully. For rehabilitation purposes, rin the soils to at least 25cm to allow for seed dermination and natural plant succession. 																		
	Soil contamination		2	3	1 1	1	8	4	32	Low	Negative	General – All areas	0	0	0	1	1 2	2	1	2	
		Spills/leaks of minerals and improper waste handling, storage, and disposal.	 Mitigating measures: Provide spill containment kits across the operation in suitable locations and train staff how to use these. Maintain and implement an Incident Management and Emergency Procedure/s. Maintain the vehicle and equipment maintenance plan. Vehicles and machinery must be regularly serviced and operated according to manufacturer's specifications. When an emergency breakdown occurs, adequate drip plates shall be used to prevent oils / lubricants / fuels from spilling onto exposed soils. Vehicles only to be services at dedicated areas located outside of the development area. No servicing or repairs to take place on bare soil. Burying of waste to be strictly prohibited. Any general waste that cannot be recycled must be disposed of at an approved landfill site as general waste. Make use of a licensed/permitted waste contractor. Hazardous waste should be placed into hazardous waste skips and should then be removed together with other hazardous waste by a licensed/permitted waste management contractor and disposal of at a licensed hazardous landfill site. Ensure that dirty areas are contained, and oil separators are incorporated as relevant. Development of updated closure plans based on the outcome of the soil and aquifer characterisation studies. 																		
SURFACE WATER																					
Decommissioning and Closure Phases	Water Quality	Siltation of surface water resource - transportation of disturbed soils.	2 Mitig:	4 ating M In C In In	1 3 meas aintai plem onfine spect plem	B 1 sures: n an a ent ref e any u ent a s divers entatic	11 ppropr habilita inpollut suitable sion tre on of er	5 iate stormw ition and me ted water to e water mol enches and nergy dissip	55 vater mai onitor the o a clean nitoring p berms a oaters at	Medium nagement system throug adequacy of vegetation water system, away fro programme as per the re fter a heavy storm event the appropriate places a	Negative ghout the decommission in cover of disturbed a m any dirty area. equirements of the Wa t as to ensure the inter as to reduce the veloc	Storm Water Management ioning and closure phase. areas. ater Use Licence. grity and stability and to address eros ity and speed of surface water run-off	sion p and	4 probl	lems risk (1 s ediate sion a	9 ely. and se	3	ation.	
			3	4	1 1	1	10	4	40	Medium	Negative	Hydrocarbon Management	0	0	0	1	1 2	2	1	2	

SIBANYE-STILLWATER K4 EXTENSION PROJECT FINAL REHABILITATION PLAN AND FINANCIAL PROVISIONING

RISK BEFORE AND AFTER REHABILITATION	ACTIVITY	ENVIRONMENTAL SIGNIFICANCE BEFORE MITIGATION										Cumulative	Status	RECOMMENDED MI MEASURES/	
PHASE	IMPACT		м	D	Е	Т	R	Т	ot	Prob		SS			REMARKS
		Hydrocarbon Contamination - Spillages / leaks of oil, grease, diesels etc	Miti Dra Dis _l Spil	gatir • • • • • • • • • • • • • • • • • • •	ng m Rep Drip If sp Je Sy No c All c All c A re Haza nd lea	easu pairs r trays trays trays bills o vstem dirty o chann chann chann chann chann chann chann chann chann chann chann chann chann chann chans c	ires: must s mu s mu or leal ns, Si or co nels a to be ble h us wa	take ist be ks do umps ontam and o aand o azar aste	e pla e us e pla o oc s an nina drair dou con	ace in de ed whe aced un ccur, the id Sepa ted wat ns shou ed of in is waste itaminal	esigi re sp der v ey mi arato cer m ild be the v e ren ted v	nated a pills/leal vehicles ust be o rs: nust be shape veld or noval co with oil n	reas where there are ad as are likely to occur. s/machinery. cleaned up immediately. discharged into the surro ed to smooth slopes and down any drains. ompany must collect was must be correctly dispose	equate facilities to co bunding environment integrated into natur ste oil for recovery. ed of.	ontain spills and leaks o
			2	3		1	<u>וונוופ</u> 1		as p 8	<u>10vided</u> 4		32	Low	Negative	Management of Leak
		Surface water contamination by solids and mineral solids	 r Mitigating measures: All spills and leaks of chemical and petrochemical products must be reported as per the Inc Allow for drip trays to contain possible spillages/leakages from equipment. The spill must be assessed and addressed in accordance with EMS Procedures. All commitments as provided for under the "Hydrocarbon Management" section. 									he Incident and Emerg			
			5	4	1	1	1	1	0	4		40	Medium	Negative	General and Hazardo
		Poor general and hazardous waste management practices.	Ens No Illeç	eure pers gal d	com National Res Son m Disp is au Disp for s Um for s All h Impl Spill What	plian onal pectinay: oose uthor oose nping such ere po sal, co nazar leme l kits ste m	ce w Envi ve M of wa ised of wa of w	ith ap ronm lunic by la aste mpou ose i ole ar ing a s was suita t be a ot be	or k or k aw. in a undi in ac nd ir and stes ble avai e bui	cable le cal Mana by-laws manne ing of ru ccordan n terms littering (non-re water n ilable at rnt.	gisla agen s. gly or ubble nce v of s i is ill ecycl nonit	ation. nent Wa r neglige at is like e, litter, with the afety ar legal. lable) a toring p areas w	aste Act 59 of 2008 (NEI ently cause or permit wa ly to cause pollution of th garbage, rubbish or disc measures stipulated in t nd security, waste recept re to be transported dire rogramme as per the rec here hazardous waste is	MWA) and all the rel ste to be disposed of he environment or ha cards of any descript this document. tacles should be pro- ctly off site to hazard quirements of the Wa s being handled; if sp	evant regulations and N f, in or on any land, wate arm to health and well-k ion, whether solid or liq vided so at to prevent li lous waste disposal fac ater Use Licence. ills occur they must be
		Reduced	2	5	1	1	5	1	4	5		70	Medium	Negative	Catchment Yield and Demand
		catchment yield - containment of water on site.		•	Impl is al Con	leme lowe fine a	nt eff d to l any ເ	fectiv leave unpol	/e cl e the llute	lean an e site cl ed watei	d dir ean r to a	ty wate and tha a clean	r separation systems as It clean water is not allov water system, away fron	part of the storm wat ved to spill into the d n any dirty areas.	er management plan - I irty water system and v
BIODIVERSITY - FAU	NA, FLORA AND WETL	AND AREAS		1											_
Decommissioning	Alien and Invasivo		4	5	1	1	1	1	2	5		60	Medium	Negative	Alien and Invasive Pla
and Closure Phases	Plant Colonisation		Miti	gatir ●	ng m Rec	easu urring	ires: g inv	asive	e sp	ecies m	nust	be cont	rolled and removed (Cat	tegory 1a and 1b (NI	EM:BA) and Category 1

ITIGATION	ENVIRONMENTAL SIGNIFICANCE AFTER MITIGATION											
	М	D	Е	I	R	Tot	Prob	SS				
of the hydrocarl	bon p	produ	ıcts.									
s and Spills	2	1	1	1	1	6	3	18				
ency Response	e Pro	cedu	ıre/s.									
ous Waste	0							0				
	0	1	1	1	1	4	2	8				
Norms and Star	ndaro	ls.										
er body or at ar	ny fao	cility	unles	ss th	ne c	lisposa	al of that w	aste				
oeing. juid, must take	place	e onl	y at t	the	site	e or site	es demarc	ated				
ttering and dun	nping	g on s	site.									
ilities by Hazar	dous	was	te co	ontra	acto	or.						
cleaned up imr	nedia	ately	by fc	ollov	ving	g the S	pill Proced	lure.				
Water	2	5	1	1	5	14	5	70				
Ensure through vice versa.	n effe	ctive	impl	eme	enta	ation th	nat clean w	/ater				
ant	2	1	1	1	1	6	2	12				
and 2 (CARA))).											

RISK BEFORE AND AFTER REHABILITATION	POTENTIAL ENVIRONMENTAL	ACTIVITY	EN BE	VIR Foi	ONMEI	NTAL IGATI(sig On	NIFIC	ANCE		Cumulative	Status	RECOMMENDED M MEASURES/
PHASE	IMPACT		М	D	Е	I R		Tot	Prob	SS			REMARKS
				• • • •	Any a biodiv The m specie A prog The us Herbic times. Only c overse	ction t ersity a lethod es in or gramm se of h cides s contrac	take and s en rder ne sh nerbi shou ctors app	n to o dama nployo to pro nould icides ild on s with olicatio	control and age to the ed to contr event such be implem and pestic ly be appli a valid pestic on of chem	d eradica environn ol and e species iented to cides mu ed in the st contro icals for	ate a listed invasive sp nent. radicate a listed invasive from producing off-spri didentify, manage and e ust be limited as far as p concentrations prescri of operator (PCO) certified the eradication of alien	ecies must be execu e species must also b ing, forming seed, reg radicate alien and inv ossible. bed by the product la cate (certified by the I vegetation. Copies of	ted with caution and i be directed at the offspr lenerating or re-establis vasive species. abels and the safety ins Department of Agricultu
		Wetland	6	4	1	3 3	;	17	5	85	Medium High	Negative	Protection of Sensitiv Landscapes
		to sedimentation and water quality and quantity impacts	Mit	igati • •	ing mea Ensur is allov Impler Ensur	isures e an e wed to nent a e stab	: ffect lea an ef ilisa	tive cl ve the ffectiv tion o	ean and di e site clear e monitorii f slopes to	rty wate and thang programe	r separation systems as at clean water is not allo amme as per the appro erosion into the wetland	part of the storm wat wed to spill into the d ved Water Use Licend ls	er management plan - l irty water system and v ce.
	Destruction / alteration		2	2	1	1 1		7	3	21	low	Negative	Management of veld
	of protected species and their habitat	Uncontrolled veld fires	Mit	igati • •	ing mea No inf Adequ Corred	isures ormal iate fir ct PPE	: fires efigl E sho	s are a hting ould b	allowed wit equipment be used.	thin the a	area as to prevent veld t be provided on-site.	fires.	
			3	5	1	3 1		13	2	26	Low	Negative	Poaching
		Poaching	Mit	igati • •	ing mea Impler No tra specie Impler	isures nent a pping es will l nent a	: an A or h be r acce	nti-Po nuntin eloca ss co	baching Pro g of any fa ted to a su ntrol to site	ocedure. iunal spe itable ha e as to m	ecies is to take place wi abitat. nanage the movement o	thin the mining area a f construction workers	and should any faunal s
GROUNDWATER					- T	T							
Decommissioning and Closure Phases	Groundwater Pollution / Hydrocarbon Pollution	Contamination of groundwater due to waste management, sewage management and chemical	4 Mit	3 igati	ing mea All ma To pro contar Leaks	3 1 Isures nagen event minant must	: nent grou ts int be r	4 t / mit undwa to the repaire	4 igation me ater polluti groundwa ed immedia arrier (liner	60 asures c on, it is iter reso ately to s	Medium outlined in the surface w critically important tha urces. stop leaching into soils a achate detection system	Negative ater section above me t all spills are collect and subsequently into	Management of Grou Contamination ust be fully implemente red and treated immed the groundwater resou
		spills onto the soils.		•	A suita Routir	able m ie che	ionit cks	oring shoul	program is d be done	s to be ir on all m	nplemented as per the a nechanical instruments f	approved Water Use I or problems such as I	Licence. eaks.
NOISE													
Decommissioning and Closure Phases	Elevated noise levels causing disturbance	Noise caused by the construction activities, site clearance activities, stripping and stockpiling, civil works and	4 Mit	3 igati	2 Img mea Impler Impler Impler Impler Vehicu	3 3 asures ment re ment a ment a ment a ment n ular sp	: egul a vel a noi appro noise beed	15 lar en nicle a se mo opriat e griev ls sho	3 gineering r and equipn onitoring p e Persona vance proc uld be res	45 maintena nent mai rogram. I Protect sedure. tricted as	Medium ance schedules for cons ntenance plan. ive Equipment in workin s to limit noise levels.	Negative truction equipment. ng areas with elevated	Management of eleva levels

ITIGATION	EN AF	VIRO TER	NME MITI	ENT GA	AL TIO	SIGN N	IFICANCE	
	М	D	Е	I	R	Tot	Prob	SS
n a manner tha	at m	ay ca	ause	the	lea	ast po	ssible har	m to
ring, propagatin shing itself in aı	ig ma ny mi	ateria anne	l and r.	l re-	gro	owth of	' such inva	isive
structions on th	ie pro	oduct	: labe	els s	sho	uld be	followed a	at all
ure, for a specif s mus <u>t be kept</u>	ic fie	ld of	pest	cor	ıtro	l) will b	be permitte	ed to
/e	2	1	1	3	3	10	3	30
Ensure through /ice versa.	ı effe	ctive	impl	eme	enta	ation th	nat clean w	vater
t fires	2	2	1	1	1	7	3	21
	3	5	1	3	1	13	2	26
species be enc	ount	ered	that	may	y ne	eed rel	location, tł	nese
undwater	4	3	2	2	2	3	3	39
d. diately after the urce.	e inc	ident	occ	urs,	to	preve	nt leachin	ıg of
ated poico				_				
ated noise	3	3	2	3	3	14	2	28

RISK BEFORE AND AFTER REHABILITATION	POTENTIAL ENVIRONMENTAL	ACTIVITY	ENV BEF	/IRO ORE	NMEN E MITI	ITAL S GATIC	SIGNIF)N		NCE		Cumulative	Status	RECOMMENDED MI MEASURES/
PHASE	ІМРАСТ		М	D	E I	R	Tot	t Pi	rob	SS			REMARKS
		haulage of building materials, operational activities and decommissionin g and closure activities		 F T F F F F F 	Regula he effe Decom Mobile Jse de Fit effic Damp Ensure	ectiver missic equip signat cient si mecha	atenanc ness of oning a ment n ced rou ilencer anical v all mac	ce scl f encl and cl noise: ites. ites. 's anc /ibrat	hedules osure p d enclos ions who y and ve	, especia or any o hase ac e engine ere prac ehicles a	ally for diesel-powered ed ther noise control measu tivities to be undertaken e compartments. cticable. are well maintained.	quipment, must inclu ires. during the day-time	de the checking of the fu
VISUAL	1			1								1	
Decommissioning and Closure Phases	Generation of dust leading to visual intrusion and impacts on the overall landscape character.	Generation of dust during construction, operation and closure activities.	2 Mitig	2 gating • • •	g meas mplem mplem mplem mplem	1 1 sures: nent al nent du nent sp nent du	7 I meas ust sup beed lin ust sup	sures opres mits a opres	2 as per t sion on and traff sion on	he Air G all dirt ro ic calmi overbur	Low Quality Section. oads. ng measures where appl den stockpiles	Negative	Fugitive Dust
AIR QUALITY													
Decommissioning	Increased fugitive dust.	Vehicular movement.	2 Mitig	2 gating • F • F • F	1 g meas Keep fe Enforce mplem mplem Dust fa	1 1 sures: ootprir e spee nent a nent du	7 nt as sr ed limits dust m ust sup rom un	mall a s on s nonito press	2 as possil site. oring net sion me d roads	14 ble. work. asures. is to be	Low	Negative	Fugitive D
and Closure Phases	Increased emissions.	Generation of greenhouse gasses caused by construction machinery and vehicles.	2 Mitig	2 gating • •	1 g meas mplem Any ve Pesticio Spravio	1 1 sures: nent a hicles des ar	7 vehicle (Cons nd Hert	e and tructi bicide	2 equipm on vehic es nd herbi	14 nent mai cles, flee cides m	Low intenance plan. et vehicles, Ore Transpor	Negative rt vehicles, Private v stered Pest Control (Emissions, Gaseous Particulate matter ehicles) continuously en
ARCHAEOLOGICAL	(Heritage/Cultural)					<u> </u>					1 7 5		
Decommissioning and Closure Phases	Graves and archaeological structures	Loss and demolishment of structures	4 Mitig	5 gating • E	1 (g meas Ensure	5 5 sures: all as	20 pects	ofarc	2 chaeolog	40 gical rec	Medium	Negative ered to	Heritage and Archaed Aspects
TRAFFIC					ī	T							
Decommissioning and Closure Phases	Increased traffic volumes and increased road safety risks	Impact on existing traffic	4 Mitig	3 gating • / • • • • • •	1 g meas All emp measu mplem mplem Conduc Fitness Ensure Ensure	1 1 sures: 5 bloyee res. nent transmitter 1 nent a 1 ct alcost for W a that r 1	10 s, cont affic ca Traffic ohol bro ork pro oads a all vehi	tracto almino Man eatha ocedu are m cles a	5 ors and t g measu agemer alyser te ure). aintaine are road	50 ranspor ires, wh it Plan ii sting or d at all t worthy	Medium ters should be made awa ere required. n areas where it may be n all drivers entering and times to an acceptable st	Negative are on the safe use required to manage l leaving the operation tandard.	Road Safety of the roads, including a vehicle flow. on, and where necessa

MITIGATION	EN AF	VIRO FER	NME MITI	ENT GA	'AL TIO	SIGN N	IFICANCE	•
	М	D	Е	I	R	Tot	Prob	SS
functional state o	of all	intak	e and	d ex	hau	ust nois	se attenua	tors,
	2	2	1	1	1	7	2	14
	Ζ	Ζ	I	I	I	1	2	14
Duet	0	2	4	4	4	7	2	4.4
Dust	2	2	1	1	1	1	2	14
s and								
s anu	2	2	1	1	1	7	2	14
emitting black sn to apply pesticio	noke les a	mus nd/o	t und r her	erg bicio	o th des	ne nece	essary rep	oairs.
eological	0	4	4			0	0	40
C	2	1	1	1	1	6	2	12
							_	
	4	3	1	1	1	10	2	20
adhering to the sary, take releva	spee nt ac	d lim	iit an (to b	d ei e de	mer efin	rgency ed in t	prepared he operat	ness ion's

RISK BEFORE AND AFTER BEHADILITATION	RISK BEFORE AND AFTER REHABILITATION REHABILITATION		EN' BE	ENVIRONMENTAL SIGNIFICANCE BEFORE MITIGATION							Cumulative	Status	RECOMMENDED MITIGATION MEASURES/		ENVIRONMENTAL SIGNIFICANCE AFTER MITIGATION						
PHASE	IMPACT		Μ	D	E	I	R	Tot	Prob	SS			REMARKS		D	Е	1	R	Tot	Prob	SS
SOCIO-ECONOMIC																					
		Rehabilitation	4	5	1	1	1	12	5	60	Medium	Negative	Retrenchments	4	1	1	1	1	8	5	32
Decommissioning	lah lagaga	the end of	Miti	igatin	g me	asui	res:														
and Closure Phase	JOD IOSSES	operation may		•	Consi	idera	ation i	must k	be given to	measu	res that will reduce retrend	ched employees' diffic	culties in finding work elsewhere and c	onse	quer	it un	empl	oym	nent fo	or long pe	riods.
		result in job		•	Ensui Ensui	re th re th	hat ski hat the	ilis tra e closi	nster prog ure obiect	ives are	s are successful.	sure Plan.									
			4	3	1	1	1	10	4	40	Medium	Negative	Anti-Social Behaviour	4	3	1	1	1	10	2	20
			Miti	igatin	g me	asu	res:									_					
Decommissioning	Community health and	Anti-social		•	Imple	mer	nt stric	ct acco	ess contro	ol to the	site.										
and Closure Phases	safety.	behaviour.		•	Deve	lop a	a train	ning ar	nd awarer	iess pro	gramme addressing the s	pread and control of	communicable diseases and anti-soc	ial be	havi	our.					
				•	Ensu	re sa	afe tra	anspo	rtation is a	available	to and from the site.										
				•	Unde	rtak	e alco	hol al	nd drug te	sting if a	and when required.										
				•	Imple	mer	nt a si	litable	e aiscipiina	ary proce	eaure.										

10 Design principles

The relevant design principles are:

- Contour spacing: The basis of this is the USLE (La grange matthee, Van Staden, & Smithers, 1979) equation.
- ◀ All areas should be safeguarded as far as practically possible.
- Velocities allowable over soil range between 0.6m/s on sand to 2.5m/s on Kikuyu grass (Kruger, Van Vuuren, Van Dijk, & Gomes, 2013).

Mean annual rainfall (mm)		< 600		(500 – 700)	> 700			
Type of			%	% Clay c	ontent i	n the so	il			
grass	>15	6 - 15	< 6	>15	6 - 15	< 6	>15	6 - 15	< 6	
Kikuyu				1,8	1,5	0,8	2,5	2,0	1,2	
NK 37		No doto		2,0	1,5	0,8	2,0	1,5	1,0	
K11		No data		1,5	0,8	0,6	2,0	1,5	1,0	
Rhodes				1,2	0,8	0,6	1,5	1,0	0,8	
*E Curvula	1,0	0,8	0,8	1,2	0,8	0,6	1,5	1,0	0,8	
Blue Buffalo	1,0	0,8	0,8	1,2	0,8	0,6		No data		
Paspalum didatum		No data		1,2	0,8	0,6	2,0	1,5	1,0	

- Rational method alternative 3 for any peak run-off calculations (Kruger, Van Vuuren, Van Dijk, & Gomes, 2013).
- Mix of local grass species for vegetation of areas.
- Ameliorants can consist of organic material.

10.1 Legal framework

The following Acts have relevance to the rehabilitation and closure action by a mine:

10.1.1 Minerals and petroleum resources development (MPRDA) Act, Act 28 of 2002

The following extracts relate to the closure of a mine and for any right issued under the MPRDA:

• Section 43(1): The holder of a prospecting right, mining right, retention permit, mining permit, or previous holder of an old order right or previous owner of works that has ceased to exist, remains responsible for any environmental liability, pollution, ecological degradation, the pumping and treatment of extraneous water, compliance to the conditions of the environmental authorisation and the management and

sustainable closure thereof, until the Minister has issued a closure certificate in terms of this Act to the holder or owner concerned.

- Section 43(4): An application for a closure certificate must be made to the Regional Manager in whose region the land in question is situated within 180 days of the occurrence of the lapsing, abandonment, cancellation, cessation, relinquishment or completion contemplated in subsection (3) and must be accompanied by the required information, programmes, plans and reports prescribed in terms of this Act and the National Environmental Management Act, 1998.
- Section 43 (5): No closure certificate may be issued unless the Chief Inspector and each government department charged with the administration of any law which relates to any matter affecting the environment have confirmed in writing that the provisions pertaining to health and safety and management pollution to water resources, the pumping and treatment of extraneous water and compliance to the conditions of the environmental authorisation have been addressed.
- Section 43 (7): The holder of a prospecting right, mining right, retention permit, mining permit, or previous holder of an old order right or previous owner of works that has ceased to exist, or the person contemplated in subsection (2), as the case may be, must plan for, manage and implement such procedures and such requirements on mine closure as may be prescribed.
- Section 43 (8): Procedures and requirements on mine closure as it relates to the compliance of the conditions of an environmental authorisation, are prescribed in terms of the National Environmental Management Act, 1998.

10.1.2 Mineral and petroleum resources development regulations

The following extracts from the MPRDA Regulations are specifically applicable to the preparation of this Financial Provisioning and Closure of a mine:

- Regulation 51 (a)(i): An environmental management programme contemplated in section 39(1) of the Act must include the following: A description of the environmental objectives and specific goals for mine closure;
- *Regulation 54: Quantum of financial provision:*
 - (1) The quantum of the financial provision as determined in a guideline document published by the Department from time to time, include a detailed itemization of all actual costs required for
 - a. premature closure regarding- (i) the rehabilitation of the surface of the area; (ii) the prevention and management of pollution of the atmosphere; and (iii) the

- b. decommissioning and final closure of the operation; and
- c. post closure management of residual and latent environmental impacts.
- (2) The holder of a prospecting right, mining right or mining permit must annually update and review the quantum of the financial provision –
 - a. in consultation with a competent person;
 - b. as required in terms of the approved environmental management programme or environmental management plan; or
 - c. as requested by the Minister.
- Regulation 56: Principles for mine closure: In accordance with applicable legislative requirements for mine closure, the holder of a prospecting right, mining right, retention permit or mining permit must ensure that -
 - (a) the closure of a prospecting or mining operation incorporates a process which must start at the commencement of the operation and continue throughout the life of the operation;
 - (b) risks pertaining to environmental impacts must be quantified and managed proactively, which includes the gathering of relevant information throughout the life of a prospecting or mining operation;
 - (c) the safety and health requirements in terms of the Mine Health and Safety Act, 1996 (Act No. 29 of 1996) are complied with;
 - (d) residual and possible latent environmental impacts are identified and quantified;
 - (e) the land is rehabilitated, as far as is practicable, to its natural state, or to a predetermined and agreed standard or land use which conforms with the concept of sustainable development; and
 - (f) prospecting or mining operations are closed efficiently and cost effectively.
- Regulation 61: Closure objectives- Closure objectives form part of the draft environmental management programme or environmental management plan, as the case may be, and must –
 - (a) identify the key objectives for mine closure to guide the project design, development and management of environmental impacts;
 - (b) provide broad future land use objective(s) for the site; and
 - (c) provide proposed closure costs.

- Regulation 62: Contents of closure plan: A closure plan contemplated in section 43(3)(d) of the Act, forms part of the environmental management programme or environmental management plan, as the case may be, and must include -
 - (a) a description of the closure objectives and how these relate to the prospecting or mine operation and its environmental and social setting:
 - (b) a plan contemplated in regulation 2(2), showing the land or area under closure;
 - (c) a summary of the regulatory requirements and conditions for closure negotiated and documented in the environmental management programme or environmental management plan, as the case may be;
 - (d) a summary of the results of the environmental risk report and details of identified residual and latent impacts;
 - (e) a summary of the results of progressive rehabilitation undertaken;
 - (f) a description of the methods to decommission each prospecting or mining component and the mitigation or management strategy proposed to avoid, minimize and manage residual or latent impacts;
 - (g) details of any long-term management and maintenance expected;
 - (h) details of a proposed closure cost and financial provision for monitoring, maintenance and post closure management;
 - (i) a sketch plan drawn on an appropriate scale describing the final and future land use proposal and arrangements for the site;
 - (j) a record of interested and affected persons consulted; and
 - (k) technical appendices, if any.

10.1.3 National environmental management Act (Act 107 of 1998)

The requirement for rehabilitation, decommissioning and closure planning and associated financial provisions are incorporated into the NEMA. Specific sections of the act are extracted below:

- Section 24P: Financial provision for remediation of environmental damage:
 - (1) An applicant for an environmental authorisation relating to prospecting, exploration, mining or production must, before the Minister responsible for mineral resources issues the environmental authorisation, comply with the prescribed financial provision for the rehabilitation, closure and ongoing post decommissioning management of negative environmental impacts.
 - (2) If any holder or any holder of an old order right fails to rehabilitate or to manage any impact on the environment, or is unable to undertake such rehabilitation or to

manage such impact, the Minister responsible for mineral resources may, upon written notice to such holder, use all or part of the financial provision contemplated in subsection (1) to rehabilitate or manage the environmental impact in question.

- (3) Every holder must annually
 - a. assess his or her environmental liability in a prescribed manner and must increase his or her financial provision to the satisfaction of the Minister responsible for mineral resources; and submit an audit report to the Minister responsible for mineral resources on the adequacy of the financial provision from an independent auditor.
- (4) (a) If the Minister responsible for mineral resources is not satisfied with the assessment and financial provision contemplated in this section, the Minister responsible for mineral resources may appoint an independent assessor to conduct the assessment and determine the financial provision. (b) Any cost in respect of such assessment must be borne by the holder in question.
- (5) The requirement to maintain and retain the financial provision contemplated in this section remains in force notwithstanding the issuing of a closure certificate by the Minister responsible for mineral resources in terms of the Mineral and Petroleum Resources Development Act, 2002 to the holder or owner concerned and the Minister responsible for mineral resources may retain such portion of the financial provision as may be required to rehabilitate the closed mining or prospecting operation in respect of latent, residual or any other environmental impacts, including the pumping of polluted or extraneous water, for a prescribed period.
- (6) The Insolvency Act, 1936 (Act No. 24 of 1936), does not apply to any form of financial provision contemplated in subsection (1) and all amounts arising from that provision.
- (7) The Minister, or an MEC in concurrence with the Minister, may in writing make subsections (1) to (6) with the changes required by the context applicable to any other application in terms of this Act.
- Section 24R: Mine closure on environmental authorisation:
 - (1) Every holder, holder of an old order right and owner of works remain responsible for any environmental liability, pollution or ecological degradation, the pumping and treatment of polluted or extraneous water, the management and sustainable closure thereof notwithstanding the issuing of a closure certificate by the Minister responsible for mineral resources in terms of the Mineral and Petroleum Resources Development Act, 2002, to the holder or owner concerned.

- (2) When the Minister responsible for mineral resources issues a closure certificate, he or she must return such portion of the financial provision contemplated in section 24P as the Minister may deem appropriate to the holder concerned, but may retain a portion of such financial provision referred to in subsection (1) for any latent, residual or any other environmental impact, including the pumping of polluted or extraneous water, for a prescribed period after issuing a closure certificate.
- (3) Every holder, holder of an old order right or owner of works must plan, manage and implement such procedures and requirements in respect of the closure of a mine as may be prescribed.
- (4) The Minister may, in consultation with the Minister responsible for mineral resources and by notice in the Gazette, identify areas where mines are interconnected or their impacts are integrated to such an extent that the interconnection results in a cumulative impact.
- (5) The Minister may, by notice in the Gazette, publish strategies in order to facilitate mine closure where mines are interconnected, have an integrated impact or pose a cumulative impact.

10.1.4 Financial provisioning regulations

On the 11th of November 2015, the Minister promulgated the Financial Provisioning Regulations under the NEMA. The regulations aim to regulate the determine and making of financial provision as contemplated in the NEMA for the costs associated with the undertaking of management, rehabilitation and remediation of environmental impacts from prospecting, exploration, mining or production operations through the lifespan of such operations and latent or residual environmental impacts that may become known in the future. These regulations provide for, *inter alia*:

- Determination of financial provision: An applicant or holder of a right or permit must determine and make financial provision to guarantee the availability of sufficient funds to undertake rehabilitation and remediation of the adverse environmental impacts of prospecting, exploration, mining or production operations, as contemplated in the Act and to the satisfaction of the Minister responsible for mineral resources.
- Scope of the financial provision: Rehabilitation and remediation; decommissioning and closure activities at the end of operations; and remediation and management of latent or residual impacts.

- Regulation 8: Method for determining financial provision An applicant must determine the financial provision through a detailed itemisation of all activities and costs, calculated based on the actual costs of implementation of the measures required for:
 - progressive rehabilitation, determined in an annual rehabilitation plan, conforming to the requirements of Appendix 1 to these Regulations
 - final rehabilitation, decommission and mine closure, determined in the final rehabilitation, decommissioning and mine closure plan, conforming to the content requirement of Appendix 2 to these Regulations; and
 - rehabilitation and management of latent environmental impacts, including the ongoing pumping and treatment of polluted or extraneous water, where relevant, determined in an environmental risk assessment report, conforming to the content requirements of Appendix 3 to these Regulations; and
 - calculating the financial provision using the methodology conforming to the requirements identified in Appendix 4 to these Regulations. This cost include the cost associated with the rehabilitation and management of impacts from:
 - the current disturbed area;
 - the anticipated disturbance of the next year of mining operations; and
 - the latent impacts associated with the current disturbed area, the anticipated disturbance of the next year of mining operations.
- Regulation 9 (1): A holder must provide funds for the cost required to implement the activities for annual rehabilitation through the operational budget of the holder.
- Regulation 9 (2): "An applicant contemplated in regulation 7 (1) and 8(1) must provide proof of the arrangements made to secure financial provision prior to...."
- Regulation 11: Requires annual review, assessment and adjustment of the financial provision. The review of the adequacy of the financial provision including the proof of payment must be independently audited (annually) and included in the audit of the EMPR as required by the EIA regulations.

10.1.5 Other guidelines

The following additional guidelines which relate to financial provisioning and closure have been published in the South African context:

• Best Practice Guideline G5: Water Management Aspects for Mine Closure: This guideline was prepared by the then Department of Water and Sanitation (DWS) and aims to provide a logical and clear process that can be applied by mines and the competent authorities to enable proper mine closure planning that meets the

requirements of the relevant authorities. This guideline is aimed primarily at larger scale mines and does not specifically address closure issues related to closure of prospecting activities, however certain principles related to closure and water management are relevant. The following technical factors which should be considered during closure, and which are likely to relate to prospecting activities, have been considered:

- Land use plan: directly interlinked with water management issues in so far as water is required to support the intended land use- in this regard the surrounding communities and the land uses implemented rely on available ground and surface water to be sustained. Management of water quality and quantity has been identified as an aspect to be covered.
- Public participation and consultation: consultation is fundamental to closure and there is a need for full involvement of stakeholders in the development of the final closure plans, and in the agreement of closure objectives- in this regard this document must be made available through the Basic Assessment public participation process for comment by relevant stakeholders.
- Guideline for the Evaluation of the Quantum of Closure Related Financial Provision Provided by a Mine (2005):

The objectives of the guideline include the need to improve the understanding of the financial and legal aspects pertaining to the costing of remediation measures as a result of mining activities. Whilst this guideline predates the recent NEMA Financial Provisioning Regulations, it does contain certain principles and concepts that remain valid and have been considered.

10.2 Closure objective

The vision and closure objectives aim to reflect the local environmental and socio-economic context of the project and to represent both the requirements and expectations of the stakeholders. The determination of a realistic post-closure vision for the mining site is based on a good understanding of the ecological, physical, socio-economic and operational characteristics of the area within which the mine is located. Site specific closure objectives are then developed taking into consideration these characteristics inclusive of legal compliance, financial and end-land use goals. Each of these closure objectives as set forth are defined and discussed in further detail below.

10.2.1 Safety

To ensure physical safety of the closed mining site over time, any void or pit left after mining activities have ceased will be filled accordingly or fenced as to ensure the safety of human and/or animal and prevent falls from height.

For this part of the project the berms, Pollution Control Dam and pipelines will be removed and therefore it should pose no safety risk at closure.

10.2.2 Physical and Ecological stability

To ensure the physical stability, and therefore the physical sustainability of the closed mining site over time, physically stable landscapes that are compatible with the intended post-mining land use will be worked towards. This will limit the latent occurrence of environmental degradation by limiting water and wind erosion.

A physically stable and sustainable landscape post-mining can be achieved by implementing the following measures:

- Maintain and restore biodiversity levels as to provide appropriate habitats.
- Shape all channels, drains and dams to smooth slopes and integrate into natural drainage patterns or to original topographical levels.
- Remove alien and/or invasive vegetation.

10.2.3 Chemical Stability

To ensure the prevention of negative effects on the local and adjacent environment quality by chemical contamination arising from mining and mining related activities by ensuring the prevention of soil, surface and groundwater contamination by managing water on the site.

10.2.4 Socio-economic transition

To ensure as far as practically possible a smooth transition in the socio-economic conditions that exist pre-mine closure to that will exist post-mine closure. The socio-economic transition will comprise of a net beneficial socio-economic impact to the affected communities in the region.

10.2.5 Risk Limitation

To ensure a restraint in the number and acceptable level of numerous risks such as safety, environmental, financial, legal and social aspects as to safeguard the execution of closure activities in such a way that it is the most cost-effective and efficient approach for the mine.

10.2.6 Long-Term Care

To ensure the design and implementation of a closure plan that will guarantee the minimization or elimination of the need for long-term post-closure care and maintenance. This is achievable by ensuring physical, ecological, chemical and socio-economic stability that will allow for the relinquishment of the closed site to the appropriate third parties.

10.3 Alternative closure options

The major infrastructure for this project is the Pollution Control Dam and canals/berms diverting water from the Waste Rock Dump to the PCD as well as a pipeline to the Plant area.

The Pollution Control Dam can only be removed once the Waste Rock Facility (Dump) is fully rehabilitated.

An alternative is to allow or maintain the Pollution Control Dam in order to provide a stock watering source to the community.

The following alternatives have been investigated for the LoM closure:

• Option 1 – Total removal of the Pollution Control Dam

- The area will be reinstated to pre-mine environment.
- ◄ A free draining surface will be formed as close as possible to pre-mining area.
- Minimal monitoring will be required.

Option 2 – Maintenance of the Pollution Control Dam

The dam will be fenced off by a security fence and donated for use by the community.

10.4 Preferred closure action

The advantages and disadvantages of each option to support this option is depicted in **Table 10-1**, with Option 1 being the proposed method.

Option	Advantage Disa	advantage
1	 Little visual impact and close to original land state. However, altered topography but with soil erosion reduction. 	Higher closure cost

Table 10-1: Motivation for preferred option

Option	Advantage	Disadvantage
2	 Pollution Control Dam will fill with water and community could have access to stock watering (Social impact). Lower closure cost 	 Safety risk to people and animals Minimal catchment area with possible redundant and dry reservoir

10.5 Post closure period

The closure period can be defined as the period when mining operations has ceased and all rehabilitation in terms of the final rehabilitation plan is completed. The post closure monitoring will then commence. This period must be evaluated after 5 years of the last rehabilitation and the mine is only in the monitoring phase.

The following infrastructure and items post closure will need to be monitored:

- Alien vegetation to be eradicated, •
- Ensure local vegetation has established, •
- Monitor erosion and contour berms where constructed. •

10.6 Assumptions

The following assumptions were made in relation to the rehabilitation for final closure:

The Waste Rock Dump will be fully rehabilitated when the Pollution Control Dam and berms will be rehabilitated.

11 Post mining land use

11.1 Description of land use

Post closure land use is normally determined in consultation with the stakeholders (inclusive of the tribal authorities who hold the surface rights) as to allow for the disturbed areas to be restored to pre-mining conditions which is inclusive of grazing land as to meet the requirements of the stakeholders, within the context of the closure plan. The post closure land use for Option 1 and Option 2 are discussed in **Table 11-1**.

Table 11-1: Post Mining Land Use

Post Closure Rehabilitation	Option 1	Option 2
Backfilling of benches with overburden material will take place as the mining benches are advanced. Each bench will be fully rehabilitated and covered with topsoil as backfilled.	\checkmark	\checkmark
All infrastructure (pipelines) not issued to the community will be demolished and the area rehabilitated by ripping and revegetating to be able to deliver an area as close as possible to the natural state.	\checkmark	\checkmark
The PCD will be decommissioned and backfilled.		

The rehabilitation of the project will aim to ensure the re-establishment of specific disturbed areas for grazing purposes as well as ensure landforms that has the capability to sustain indigenous vegetation as to limit water and wind erosion and provide sustainable grazing whilst enabling the gradual reestablishment of indigenous vegetation for a more diverse natural species composition.

The closure objective is that the land use, after mining, should be the same as before mining occurred.

11.2 A map of post closure land use

The area available for land use after mining is the same as before mining and is shown in **Figure 11-1.** The affected area is ± 6.5 ha.

Figure 11-1: Total Area of land use after closure

11.3 Post Closure Period

The closure period can be defined as the period when mining operations has ceased and all rehabilitation in terms of the final rehabilitation plan is completed. The post closure monitoring will then commence. This period must be evaluated after 5 years of the last rehabilitation and the mine is only in the monitoring phase.

The following infrastructure and items post closure will need to be monitored:

- Contours to ensure no breaching or erosion and repair thereof. This should be monitored yearly to determine the ongoing sedimentation and requirement for desilting of the flow areas.
- Alien vegetation to be eradicated,
- Ensure local vegetation has established.

12 Annual rehabilitation actions

This section describes the annual rehabilitation measures to be implemented over the LoM. Annexure 1 in the NEMA, 1998 (Act 107 of 1998), Government Notice Regulation 1147 dated 20 November 2015, states that the annual rehabilitation plan is allowed to form a chapter in the final rehabilitation and closure plan report due to the simplicity of the required annual rehabilitation.

12.1 Technical solutions

No progressive or continuous rehabilitation can be implemented for the diversion berms/canals, Pollution Control Dam and pipeline to the Plant while operating. No annual rehabilitation plan is therefore practical for the Pipeline, Pollution Control Dam or the diversion berms/canals.

13 Final rehabilitation and closure actions

The technical solutions in this section are described for closure at any time and for the next 12 months.

13.1 General technical solutions

The general rehabilitation plan for the area (Figure 13-1):

- All areas should be safeguarded as far as practically possible,
- The Waste Rock Stockpile (WRS) side slopes will be vegetated as per the approved EMPR. It is accepted that minimal erosion will be from the WRS after rehabilitation and vegetation.

13.2 Pollution Control Dam technical solution

- The Pollution Control Dam (Figure 13-2, Figure 13-3) will be decommissioned:
 - The security fence around the Dam will be removed and hauled to the local scrap metal dealer.
 - All water will be used to final plant process.
 - The barrier system, from the top of the embankment to 1m below the embankment, will be removed and hauled to an approved landfill site,
 - The concrete/brick Pollution Control Dam infrastructure will be demolished and used in backfill of the Pollution Control Reservoir.
 - The gabion spillway will be demolished and the wire netting removed to a scrap facility. The rock will be used for backfill of the reservoir.
 - The embankment will be the source of material to fill the reservoir. Additional waste rock or inert material will be required to over fill the reservoir area in order to allow for settlement and shaping of the area to be free draining.
 - The access to the penstock will be demolished and hauled to a scrap metal yard.
 - The pumps and mechanical equipment will be hauled to a local scrap metal dealer.
 - The area will be shaped to be free draining and covered with imported 200mm topsoil and vegetated with local grass species. Soil ameliorants will be added if required.
 - \circ Contouring of the area will ensure the minimal erosion of the area.

13.3 Diversion canals and berms

- The canals with concrete pitched lining will be demolished and the material used in the backfill of the Pollution Control Dam.
- The diversion berms will be used to shape the affected area to the original topographical area shape. These berms would have an active seed bed and will vegetate on its own.

13.4 Pipeline

The pipeline will be;

- Dismantled and hauled to a scrap metal yard or approved landfill site depending on the type of pipeline material.
- The pedestals will be demolished and used as backfill or as inert material.

13.5 Culvert

The culvert will be demolished and the 1050 ND pipes donated to the community. The concrete will be used as backfill in the reservoir basin.

Figure 13-1; General layout of project (RSV Minerals, drawing number 500032877)

Figure 13-2: Pollution Control Dam Layout (RSV minerals, Drawing no. 064900SE-100.130.170-01-001-06)

Figure 13-3: Pollution Control Dam extraction layout (RSV minerals, Drawing no. 064900SE-100.130.170-01-001-06)

Figure 13-4: Culvert for diversion canals

13.6 Threats and opportunities

A list of threats and opportunities as well as uncertainties for rehabilitation are relevant issues that must be updated yearly, or as new issues are identified. Current identified threats, opportunities and uncertainties for post mining are described in **Table 13-1**.

Table 13-1: Threats, Opportunities and Uncertainties (Post Mining)

Item	Threat	Opportunity	Uncertainties
Surface area	Erosion	Grazable area	Final slope of rehabilitated area
Surface area	Invader species	High quality veld	Rainfall and overgrazing

14 Schedule of actions

A schedule of actions is proposed in this section. These actions are scheduled as below.

The high level of actions proposed are shown in Table 14-1. These actions must be scheduled in detail as to incorporate the mine equipment, capacity and scheduling.

The assumptions of this schedule are that the available equipment can be utilised in the rehabilitation measures at closure.

Table 14-1: Rehabilitation planning

				Activity		
		Decommissioning and rehabilitation of PCD	Rehabilitation of berms/canals and area	decommissioning of pipeline and removal	Vegetation	Monitoring
	2025					
	2026					
ar	2027					
Ye	2028					
	2029					
	2030					

15 Organisational capacity

The current Mine Overseer Production is Dawie Marx while the Environmental Superintendent is Yolandé Janse van Rensburg.

Table 15-1: Organisational Capacity

Person	Responsibility	Contact details
Dawie Marx	Mine Overseer Production	dawie.marx@sibanyestillwater.com
Yolandé Janse van Rensburg	Environmental Superintendent	Yolande.JansevanRensburg@sibanyestillwater.com

16 Relinguishment criteria

Relinquishment can be defined as the approval by the regulator indicating that the rehabilitation and closure criteria for the mining activity have been met to the satisfaction of the Regulatory. Therefore, the relinquishment criteria are driven by the objectives of the rehabilitation and closure plan and consequently the indicators applicable to each impact associated with the rehabilitation, closure and decommissioning of the mining. In this regard reference is made to Table 9-3 which presents each identified environmental impact, the associated indicators and proposed closure targets. In summary, the proposed relinquishment criteria include:

- Biodiversity and soils: The vegetation cover of the rehabilitated areas must be consistent with the surrounding vegetative cover. There must be ecosystem functionality which is consistent with the surroundings.
- Social: There must be no unattended complaints. Where possible written confirmation from the affected landowner must be solicited confirming that outstanding issues have been addressed and closed out.
- Waste: There must be no waste materials remaining on site after rehabilitation.

17 Monitoring

A monitoring plan will be developed to include monitoring that will be undertaken prior to decommissioning and rehabilitation activities as well as after mine closure (inclusive of already in-place monitoring networks) as to evaluate the effectiveness of closure activities in meeting agreed closure objectives. Monitoring of the mine site will then be compared against success criteria that may lead to the identification of maintenance needs.

Post-closure monitoring will include:

- The confirmation that any and all waste, wastewater and pollutants generated as a result of decommissioning is properly managed;
- The confirmation that all disturbed and previously rehabilitated areas are free of residual pollution after decommissioning;
- The confirmation that the re-establishment of indigenous vegetation is encouraged within the disturbed areas and that these areas have a density similar to the surrounding environment, is non-eroding and free of alien and invasive species.

17.1 **Schedule**

17.1.1 Water quality

Monitoring of surface and groundwater occurs on a monthly basis by an external services provider at the current mining operations.

- Currently the external services provider is Aquatico Laboratories (Pty) Ltd which provides a surface water report on a monthly basis to Sibanye-Stillwater K4 Shaft Mine for record keeping purposes.
- Monitoring of groundwater occurs on a guarterly basis of which Aguatico Laboratories (Pty) Ltd send on a quarterly basis to Sibanye-Stillwater K4 Shaft Mine for record keeping purposes.

17.1.2 Physical properties

The erosion, siltation and vegetative investigations must be surveyed on a yearly basis for a period of 5 years post closure. If the erosion is minimal a decision can, then be taken for further monitoring and survey requirements.

17.2 **Responsible persons**

The CEO remains responsible for the implementation of the Rehabilitation and Closure Plan and is supported by the Mine Manager.

17.2.1 Water quality

Surface and Groundwater monitoring is conducted by Aquatico Laboratories (Pty) Ltd as external services providers.

Aquatico Laboratories (Pty) Ltd. 89 Regency Drive **R21** Corporate Park Centurion South Africa Tel:+27 (0) 12 450 3800 Fax:+27 (0) 12 450 3851

17.2.2 Physical properties

Erosion and siltation monitoring are conducted by HEES (Pty) Ltd as External Services Provider:

16 Lemonwood street, Centurion, 0181, SOUTH AFRICA T: +27(0) 82 895 1538 Email: ees@lantic.net

17.3 Schedule of reporting

17.3.1 Water quality

Monitoring of surface water occurs on a monthly basis of which a report from Aquatico Laboratories (Pty) Ltd is sent on a monthly basis to Sibanye-Stillwater K4 Shaft Mine for record keeping purposes.

Monitoring of ground-water occurs on a quarterly basis of which a report from Aquatico Laboratories (Pty) Ltd is sent on a quarterly basis to Sibanye-Stillwater K4 Shaft Mine for record keeping purposes.

17.3.2 Physical properties

A yearly report must be provided to Sibanye-Stillwater K4 Shaft Mine for decision and record keeping purposes and implementation of maintenance recommendations.

17.4 Monitoring plan

17.4.1 Monitoring parameters for water quality

The following chemical parameters are analysed for, as stipulated in the Water Use Licence, for both the surface and groundwater aspects:

Table 17-1: Water	r Qualitv	Parameters f	or Surface a	nd Groundwater	Monitorina
	Quanty	i ulumeters i	or ourrace a	na orounawater	monitoring

Chemical Parameters	Unit
pH	pH unit
Electrical Conductivity (EC)	mS/m
Nitrates (NO3)	mg/l
Chloride (Cl)	mg/l
Fluoride (F)	mg/l
Iron (Fe)	mg/l
Zinc (Zn)	mg/l
Manganese (Mn)	mg/l
Aluminium (Al)	mg/l
Sodium (Na)	mg/l
Magnesium (Mg)	mg/l
Calcium (Ca)	mg/l
Potassium (K)	mg/l
Sulphate (SO4)	mg/l
Faecal Coliforms	Counts / 100ml
Cd	mg/l
Cr	mg/l
Cu	mg/l
Нд	mg/l
Ni	mg/l
Pb	mg/l
Se	mg/l
Zn	mg/l

17.4.2 Monitoring parameters for physical rehabilitation structures

The following must be investigated, and maintenance recommended:

- Erosion in the storm water trenches (van der Merwe, 2022);
- Siltation in benches;
- Erosion of side slopes of stockpiles;
- Density of vegetation;

- Stability of safety berm; •
- Adequacy of security fence; •
- Erosion into and at the Open Pit sides; •
- Stability of Open Pit; and •
- Stability of stockpiles. •

17.4.3 Surface Water monitoring positions

Surface Water quality monitoring is conducted on a monthly basis at various locations. There are two receiving environment monitoring localities. These monitoring localities are noted in Table 17-2. and depicted in Figure 17-1.

Table 17-2: Surface Water Quality Monitoring Points

Site No.	Description	Coordinates		
		Х	γ	
Karee Mine				
	Upstream of Sterkstroom before Lonmin			
KM S 06	influence	S25°43'11.99"	E27°29'4.92"	
KN1 C 22	Downstream Point Sterkstroom and			
NIVI 3 5Z	Brakspruit with Lonmin Influence	S25°38'56.40"	E27°29'2.50"	

Figure 17-1: Surface monitoring positions

17.4.3.1 Groundwater Monitoring Positions

Groundwater quality monitoring is conducted on a monthly basis at various locations. There are 10 groundwater monitoring localities. These monitoring localities are listed in **Table 17-3** and illustrated in **Figure 17-2** and **Figure 17-3**.

Table 17-3: Groundwater Quality Monitoring Positions

Site No.	Description	Coordinate	

Alta van Dyk Environmental cc

E:\Projects\ 298. K4 Fin Prov for PCD\030. Reporting\SS25072023_FIN REHAB & FIN PROV PLAN K4 PCD Rev 01.docx

		X	Y		
Karee Mine					
KM BH 17	K3 Shaft	S25°41'41.47"	E27°27'36.08"		
KM BH 29	K4 Shaft	S25°39′59.35″	E27°28'5.11"		
KM BH 01	Tailings Dam 1, 2, 3 Upstream	S25°41'13.67"	E27°26'35.94"		
KM BH 27	K3 Waste Rock Dump & Concentrator	S25°41'42.71"	E27°26'44.17"		
KM BH 33	K4 Concentrator	S25°40'36.02"	E27°28'3.97"		

Figure 17-2: Surface water localities monitored around the WRD and PCD

Figure 17-3: Groundwater Localities monitored

18 Final and Annual rehabilitation cost

18.1 Calculations & Assumptions

The scope of the project made it possible for the quantities to be determined through the design layout of the Pollution Control Dam and the length of the pipeline and berms/canals.

The rates are obtained from previous similar projects and are subject to review as it was not tendered for in this specific project. The following assumptions are made:

- A contingency of 20% is allowed,
- Preliminary and General cost of 20% is allowed; and
- VAT of 15% is excluded in the summary cost.

The principles as described in this report were used to determine the final quantities. As these are new items, the quantities were determined as if the mine would close at the end of 2024, and it is assumed that construction of the PCD, berms/canals and pipelines were completed as in the design drawings.

18.2 Methodology and Costing

The methodology for costing is based on the rehabilitation plan:

A description of all actions, rates and results for **final rehabilitation** are shown below in **Table** 18-1.

Table 18-1: Financial provisioning – Final rehabilitation cost for 2023 to 2025

					2025						
Closure Component	Area	Description as from DMR guideline (2005)	Reference	Notes	Unit	Distance	Weight	Area	Volume	Rate m²/m³/unit	Cost
					#	m	kg	m²	m³	R	R
		Dismantling of processing plant and related structures (including overland conveyors and power lines),									685 867
	Pipeline	Pump line to Plant	Sec 13.4								0
		Demolish pipelines and allow for 493m of pipes less than 500mm diameter with 6m plinth spacing and disposes as waste at approved site				493				48.86	24 088
1A	PCD	Walkway (Light plant structure)	Sec 13.2								
	PCD	Steel structures light						17		1 295.81	22 029
		Pumps									
		Remove motor and pumps					200			4.58	916
		Demolish cabling				493				1 295.81	638 834
2A		Demolition of steel buildings and structures									
		Demolition of reinforced concrete buildings and structures									31 218
2B	PCD	Penstock and Sump	Sec 13.2								
		Light concrete structure							9.61	614.00	5 898
	Culvert	at Conveyor	Sec 13.5								
		Remove medium concrete (Wingwalls)							23.00	967.35	22 249
		Remove slabs/base, reinforced							2.00	338.57	677
		Remove 1050 ND concrete pipes (Load and haul)			18				46.12	51.90	2 393
3A		Rehabilitation of access roads									
4A		Demolition and rehabilitation of electrified and non-electrified railway lines									
5A		Demolition of housing and facilities									
6A		Opencast rehabilitation including final voids and ramps									
7A		Sealing of shafts, adits and inclines,									

stillwater

					2025						
Closure Component	Area	Description as from DMR guideline (2005)	Reference	Notes	Unit	Distance	Weight	Area	Volume	Rate m ² /m ³ /unit	Cost
Component					#	m	kg	m²	m³	R	R
8A		Rehabilitation of overburden and spoils and processing plant waste: basic, salt-producing,									
9A	Subsided areas	Rehabilitation of subsided areas,									
	Surface	General surface rehabilitation,									10 697 704
		Pollution Control Dam	Sec 13.2								
		Remove, HDPE liners to 1m below NOC						2 657		6.00	15 942
		Remove, GCL liner to 1m below NOC						2 657		6.00	15 942
		Remove tendon liner to 1m below NOC						2 657		6.00	15 942
	PCD	Remove and haul concrete liner of 150 mm to 1m below NOC						2 657		92.11	244 736
10A		Backfill with inert material (Load and haul)							33 631.20	51.90	1 745 459
		Shape and make free draining (general disturbed areas)						23 400		12.19	285 246
		Topsoil layer of 100mm						23 400		17.17	401 778
		Ameliorate and vegetate						23 400		6.70	156 780
	Canals	Demolish concrete floors, bases and foundations	Sec 13.3								
		Remove concrete pitching (concrete slabs)						42 599		153.51	6 539 316
		Rip to 500mm						42 599		0.64	27 263
		Shaping /levelling of berm						51 026		12.19	622 012
		Ameliorate and vegetate						93 625		6.70	627 288
11A	River diversions	Rehabilitation of river diversions									
	Maintenance	Maintenance and after care								Rate for one year	376 622
14A	Physical Monitoring										
		Specialist execute a site visit once a year to verify vegetative growth and erosion status and report on required actions to be taken		Total area for 5 years/yr				117 025		0.29	33 937
		Maintain vegetation									
	Maintain vegetation	Care and maintenance		Total area for 5 years/yr				117 025		2.93	342 684

						2025						
Closure Component	Area	Description as from DMR guideline (2005)	Reference	Notes	Unit	Distance	Weight	Area	Volume	Rate m²/m³/unit	Cost	
Component					#	m	kg	m²	m³	R	R	
									11 791 411			
									P&G s	0.20	3 537 423	
								Co	ntingencies	0.20	2 358 282	
								Total exc	luding VAT		17 687 117	
									VAT	15%	2 653 068	
										Total	20 340 184	

18.3 Period of determination

Appendix 4² of the regulations provide that the cost for closure after the first 12months of operations plus the latent cost must be determined.

18.4 Results

Table 18-2 provide a summary of the required Financial Provisioning and Closure Cost for the PCD, Pipeline, Culvert and canals at Karee K4 shaft.

Continu	Final (R)		
Section	2025		
Plant	685 867		
Steel buildings			
Concrete buildings	31 218		
Roads			
Railways			
Housing			
Opencast			
Sealing of shafts, adits and inclines,			
Rehabilitation of overburden and spoils and processing plant waste: basic,			
salt-producing,			
Subsided areas			
Surface	10 697 704		
River diversions			
After care	376 622		
Sub Total	11 791 411		
P&Gs	3 537 423		
Contingencies	2 358 282		
Sub Total	17 687 117		
VAT	2 653 068		
Total	20 340 184		

² national Environmental Management Act, Act 107 of 1998; Regulation No 2272 notice of proposed regulations

19 Assumptions, limitations and knowledge gaps

19.1 Assumptions

A limited number of assumptions were required with the following:

Minimal bulking factor was assumed for the backfill of the Pollution Control Dam basin.

19.2 Limitation

Some limitations to this rehabilitation plan and costing are:

- The real cost of haulage depend on the contractor or if executed by the mine itself it could be less expensive.
- The real cost for vegetation and topsoil depend on the availability of material.

19.3 Information gaps

The information collected with this EIA study is comprehensive.

20 Bibliography

- Burger, C. (2023). *Terrestrial Biodiversity Complliance Statement for the proposed K4 Pollution Control Dam.* The Biodiversity Company.
- Davis, S. (2023). *Wetland delineation and assessment, Sibanye-Stillwater.* Pretoria: WCS Scientific (Pty) Ltd.
- de Beer, A. (2022). Sibanye-Stillwater K4 shaft Vegetation assessment. Pretoria: Agrinco.
- Government of South Africa. (2012, February 24). National Water Act (36/1998): Regulations: Safety of Dams. Pretoria, Gauteng, South Africa: Government.
- Greecy, B. (2022). Proposed regulations pertaining to financial provisioning for the mitigation and rehabilitation of environmental damage caused by reconnaisance, prospecting, exploiration, mining or production opertions. Pretoria: Government of SA.
- Kruger, E., Van Vuuren, F., Van Dijk, M., & Gomes, N. (2013). *Drainage Manual*. Pretoria: South African Road Agency.
- La grange matthee, J., Van Staden, H., & Smithers, A. (1979). *Beskerming van bewerkte landerye.* Pretoria: Directorate: Agricultural Engineering and Water Supply.
- Lourens, S. (2019). Sibanye Stillwater K4 Shafts GN704 Storm Water Assessment. Rustenburg: Storm water Solutions (Pty) Ltd.
- Mamera, M. (2023). Soil compliance statement for the proposed K\$ Pollution Control Dam. The Biodiversity Company.
- Minister of Water Affairs. (1999). *Regulations on the use of water for mining and related activities aimed at the protecion of water resources.* Pretoria: Water Affairs.
- Minister of Water Affairs. (2012, February 24). Regulation. *Regulation 139 of the National Water Act, Act 36 of 1998*. Pretoria, Gauteng, South Africa: Water Affairs.
- Smithers, J., & Schulze, R. (2002). *Rainfall Statistics for Design Flood Estimation*. Pretoria: Water Research Commission.
- The Biodiversity Company. (2022). Proposed Opencast Mining Development, Rustenburg Vegetation Compliance Statement. Rustenburg, North-West.
- van der Merwe, H. (2022). Waterval UG1 Stormwater Management Plant. Pretoria: HEES (Pty) Ltd.
- van der Walt, J. (2023). *Heritage Impact Assessment for the proposed K4 waste rock dump an pollution control am at the Marikana operations near Marikana.* Modimole: Beyond Heritage.

ANNEXURE A: CV OF DEON VAN DER MERWE

Hermanus Gideon van der Merwe (Deon) Professional Engineer

Key skills

Dam design, Dam safety, Rehabilitation plans, Fin provisioning

Education B.Eng(Agric), University of Pretoria. 1992 MBL, University of South Africa

Training Civil Designer, HEC RAS, Geoslope, Geotech

Nationality South African Years of experience 27

Registrations/Certifications PrEng, ECSA, 960070

Language skills English and Afrikaans Years owner of HEES (Pty) Ltd 2

Professional affiliations SAIAI, 1992; SANCOLD, 2009

Date of birth 9 July 1968

Deon is a qualified professional engineer with more than 27 years' experience.

Deon specialises in the design and project management of projects comprising dams, SWMP, rehabilitation plans, canals, gabion structures and concrete structures. He also has experience in the management and maintenance of pump schemes and general management. He has successfully completed many water-related projects for the mining sector but has undertaken work for an array of other clients in other sectors.

Deon served as the area manager/deputy regional director of the Tugela-Vaal Government Water Scheme on behalf of the Department of Water Affairs (DWA), he was the deputy chief engineer for open channel systems and manager of the hydraulic laboratory at the DWA. He is thus aware of the challenges South Africa faces in terms of water resources. He started his career at the Department of Agriculture and at exiting was the Principal Engineer – Soil Conservation for the North West Province.

His most recent project experience includes the cost closure methods and rehabilitation plans for, Jwaneng mine and Mogalakwena mine, Approved Professional Person for the DSE of the 12 m high concrete gravity Wilgeriver Dam, Detail design of a Parshall flume and oil separator.

Other large projects include the civil design of the 55 m high ACR Itare Dam components, the EPC tender design of the ± 90 m high Arror ECRD, 3 130 m³/s diversion tunnels, dam intake structure and cofferdams for the 1000 MW Hydroelectric Power Sounda Gorge Project, serving as the Civil Design Engineer for a 40 m high Concrete Gravity Dam and Powerhouse on the Orange River in South Africa for a installed capacity of 22 MW, Assistant Civil Design Engineer for the water infrastructure tender design of the 40 MW Kabompo Gorge Hydroelectric scheme in Zambia, the Assistant Design Engineer for the feasibility investigations and option analysis for the uMkhomazi transfer scheme, Design Engineer on the river diversion tender design for Neckartal Dam, Design Engineer for the review on the river diversion of the Mphanda Nkuwa Hydroelectric Project, Member of the project team for the Safety Evaluation of the Category III Bivane (Paris) Dam, Locumue (Mozambique) Dams, the Category II

Doornpoort, Wilge River, 3rd Recovery, the Approved Professional Person for the Category II Raw Water Reservoirs at Lethabo Power Station and Imvutshane Dam and detail design and draughting of a 4 km concrete-lined canal for AngloGold Ashanti's West Complex (R6 million).

Activities Performed and work history

FROM 2018 to date

(Director: HEES (Pty) Ltd)

- Design Engineer for the construction of the 55m high Itare ACRDam, Kenya, for AECOM SA,
- Approved Professional Person for the Dam Safety Inspection of the 8.5 m high earth embankment Rustfontein Dam,
- Design Engineer for the SWMP for the WUL and EIA applications of the Mooifontein Cemetery,
- Design Engineer for the detail design of the sedimentation trap at Thorncliffe Mine, Steelpoort,
- Design Engineer for the detail design of the Oil Separator system at Thorncliffe Mine, Steelpoort.
- Rehabilitation costing review of the Jwaneng mine, Botswana,
- Rehabilitation design and costing of Mogalakwena mine TSF,
- Stormwater review for the Itare WtW,
- Approved Professional EWngineer for the Wilgeriver Dam. Safety Inspection,
- Design Engineer for the Dam Break analysis for 55m high dam in Kenya (Non Disclosure still valid)
- Tender Design Engineer for the Stability Analysis, River diversion, Floodlines and reservoir influence for Kinguele Aval Concrete gravity dam, Gabon, with Piano Key weir.
- Design Engineer for the Detail design installation for Parshall Flume at Mogalakwena mine (24" and 36")
- Design Engineer for the review of Manganang gauging weir in Swaziland and the design of rehabilitation of this weir.
- Approved Professional Person for the Dam safety Evaluation of the 8.5 m high Earth Rustfontein Dam.
- Design Engineer for the toe drain design of the Rustfontein Dam.
- Design Engineer for the design tender assistance on the 55m high earth Embankment (Dam break analysis, O&M, EPP) Kenya (Non-disclosure still valid)

From 2011 to 2018 BKS / AECOM SA

(Executive: Dams and Hydropower)

• Approved Professional Person for the Safety Evaluation of the 29m high Imvutshane earth fill dam in Kwa-Zulu Natal (Supervisor and reviewer – Danie Badenhorst Pr Eng) (2018).

- Design Engineer for the detail design of components of the 55 m high Itare Dam an ACRD in Kenya. The components include, Embankment (plinth, core and shells), monitoring, spillway, river diversion conduit and grouting (±R1 billion construction value (2016 to -).
- Design Engineer for the tender submission design of the 90 m high ECRD Arror Dam in Kenya (2017).
- Sounda Gorge Hydropower Project, Congo. River diversion optimization of 3 310 m³/s (Design Engineer).
- Itare Dam, 55 m high ACRD, Kenya. Dam optimisation tender study. Peak flood determination, embankment stability design (± R800 mill construction value).
- Vioolsdrift/Noordoewer Dam on the Orange River. Peak flood determination for design purposes with a RMF of ± 32 589 m³/s and ± 884 206 km² catchment. (APP, supervisor - Danie Badenhorst).
- Mothusi Dam, Lesotho. Detail design and assistance to the construction of the rehabilitation of the dam to the value of R34 million. (Supervisor and APP role Danie Badenhorst).
- Mohale Dam: Assistant Design Engineer on the rehabilitation of the crack on the concrete face. (APP role and supervisor, Danie Badenhorst)
- Nyamba B Hydropower Project, Uganda. Civil Design Engineer for the feasibility design of the 3.6 MW, R450 million, run-off river project (comprising of a 10 m concrete gravity weir, 3.1 km, 5.5 m³/s headrace canal, penstock and power house) (APP role and supervisor Danie Badenhorst).
- Rooikat Hydropower Project, Orange River, South Africa. Design Engineer for the design, for tender, of the 40 m high concrete gravity dam and power house with installed capacity of 22 MW (2014) (> R400 million) (APP – Danie Badenhorst)
- uMkhomazi transfer scheme (Project value ± R16 Billion) (APP role Danie Badenhorst).
 - Project manager for the Geotechnical investigations of the transfer scheme to the value of ±R 6 million (2013),
 - Assistant Design Engineer for the hydraulic design of the tunnel, connecting pipe, Intake works and project layout (2014),
 - Cost estimator.
- Approved Professional Person for the Dam Safety Inspection for the Category II Lethabo Power Station Raw Water Reservoir (2014).
- Design Engineer for the spillway on the Fairbreeze Pollution Control Dam (2014) (R 500 000),
- Design Engineer for the rehabilitation of the Category I, Lethabo Main Storm Water Dam (2013 -2014, R 4 million)
- Dam Safety Inspections on the Lethabo Station Dams and Ash Water Storm Water Dams (2013).
- Pretoria Country Club. Dam Engineer responsible for the embankment stability evaluation with professional fees to the value of R 40 000 (2013-15).

- Mphanda Nkhuwa hydroelectric project. Assistant Design Engineer for the review of the diversion works of the project (2013) with estimated value of R 5 million.
- Prefeasibility studies for three Hydroelectric sites on the Orange River (2012 -). Civil Design Engineer for hydraulic, hydrology, financial and structural design with a project value of a possible R20 million.
- 3rd Overflow Dam Komati Power Station (2012). Dam Engineer on the Dam Safety Evaluation of the dam. Professional fees ± R100 000.
- uMkhomazi transfer scheme (2012) Assistant Civil Design Engineer on the preliminary calculation on the hydropower potential for the transfer scheme with a project value of R 200 million (Technical supervisor – Willem van Wyk & Danie Badenhorst)
- uMkhomazi transfer scheme (2013) Assistant Civil design Engineer on the hydraulic optimization of the transfer of water from the uMkhomazi River to the Mgeni system with an estimated project value of R10 billion. (Technical supervisor – Willem van Wyk & Danie Badenhorst)
- Neckertal Dam (2013) Dam Engineer on the hydraulic calculation, program and design of the diversion works valued at approximately R 2 million (Supervisor Danie Badenhorst).
- Lethabo Raw Water Reservoir Dam Safety Inspection. APP for the evaluation of the safety of this Category II dam (R100 000 professional fees)(2013).
- Assistant Civil Design Engineer, water infrastructure, on the tender design of the 40 MW Kabompo Gorge Hydroelectric Scheme in Zambia to the value of R 800 million (2011) (Technical supervisor – Willem van Wyk & Danie Badenhorst).
- Assistant Civil Design Engineer for the feasibility design and option analysis on the eMkhomazi transfer scheme. Feasibility design of the ± 62 m high Smithfield Dam (R 1 100 million) and 44 m high Baynesfield Dam (R 800 million) (Technical supervisor Danie Badenhorst)(2012).
- Design Engineer for the 7 m high Fairbreeze pollution control dam (R1 million)(2012).
- Team member for the Safety Evaluation of the 69 m double curvature concrete arch Category III Bivane Dam near Vryheid (Professional fees R 180 000) (APP Danie Badenhorst)(2011).
- Team member for the Safety Evaluation of the 12 m high concrete gravity Category II Doornpoort Dam, near Middleburg, Gauteng (Professional fees – R 120 000) (APP – Danie Badenhorst)(2012).
- Team member for the Safety Evaluation of the 14.5 m high earth embankment Locume Dam in Mozambique (Project value of R 4 million) (APP role Danie Badenhorst) (2012).
- Civil Design engineer for the Preliminary design of the ± 10 m high earth Embankment, Hanna Lodge near Orighstad (R 2 million).

2010 to 2011 – Environmental Engineering Solution (Owner)

- Civil Design Engineer and draught person of 5 m high earth fill embankment of Wonderstone Dam with a project value of R1.3 million (2011) (Supervisor Helmuth Keller).
- Engineer responsible for hydrological investigations Dam break analysis, flood line determination and dam safety investigation (not classified) for Wonderstone mine (2011).
- Design engineer for sub- surface drainage investigation for West Complex tailings facility with estimated project cost of R3.5 million (2011).
- Design Engineer and draughts person for an 800 m long storm water diversion berm with a project value of R400,000 (2011).
- Design Engineer and draught person of 4 km concrete lined trench for West Complex, AngloGold Ashanti with a project value of R6 million (2010).
- Design engineer and draught person of 1.5 km rectangular concrete lined trench, Mponeng Mine, AngloGold Ashanti with a project value of R7.5 million (2010).
- Supervisory Engineer and draught person of 1.5 km concrete lined trench at EGAF facility, AngloGold Ashanti to the value of R1 million (2010).
- Specialist modeler for airspace modelling of Waste Rock Dump for Modikwa Platinum (2010).
- Engineer responsible for the clean and dirty water separation investigations and recommendations for TauTona (R6 million), Great Noligwa (R40 million), Kopanang (R15 million), Moab Khotsong (R4 million) Mines and Rand Carbide (R35 million) (2010-2011).
- Engineer responsible for the storm water management plans for Van Ouds and Baken mines (2010).

2008 to 2010 - Tugela Vaal Water Transfer Scheme

(Deputy Regional Manager)

- Project Manager for all mechanical, electrical and civil maintenance on scheme (Sterkfontein, Woodstock, Killburn Dams, Driel barrage, TUVA and subsidiary canals, Driel and Jagersrust Pump stations) (2008-2010).
- Manager responsible for all expenditure on scheme: Operational budget R 60 million per year (2008-2010).
- Manager responsible for all operations on scheme (2008-2010).
- Manager responsible for all dam safety aspects (Sterkfontein, Woodstock, Killburn Dams and Driel barrage) (2008-2010).
- Manager responsible for a staff compliment of 170 employees (2008-2010).

2006 to 2008 – Department of Water Affairs

(Deputy Chief Engineer – Open canal systems)

• Project manager for the Department on the:

- Increase of Rietfontein weir to the value of R1.5 million (2007) (Supervisor Kobus van Deventer, Client Danie Badenhorst).
- Feasibility study of the rehabilitation of Vlakfontein canal to the project value of R700 million (2007-2008).
- Oranje-Riet balancing Dam to the project value of R20 million (2008) (Supervisor Kobus van Deventer Pr Eng, Client Danie Badenhorst).
- Manager with the responsibility of the construction and design of hydraulic models at Pretoria west to the value of R1.5 million per year (2006-2008).
- Assistant Civil Design Engineer on Banhoek intake weir with a project value of R20 million (2006-2008) (Supervisor Kobus van Deventer Pr Eng).
- Construction supervision on rehabilitation of Tugela Vaal Canal to the value of R4 million (2007).

2003 to 2006 – Administrator and Engineering consultant

(Owner)

- Rehabilitation of mines. Undertook the modelling of rehabilitation for:
- Eerstelingfontein (2005).
- Lovedale Quarry (2005).
- Corheim Asbestos mine (2006).
- AngloGold Ashanti Bird Dam project (2006) Dam safety evaluation of Category I dam.
- Administrator of estates under Section 74 of the Magistrates Court Act with branches in:
 - Ermelo and Standerton

1999 to 2003 – Administrator

(Manager – Hannatjie van der Merwe Administrators)

- Administrator of estates under Section 74 of the Magistrates Court Act
 - Manager for Hannatjie van der Merwe Attorneys
 - Branches in Potchefstroom, Klerksdorp, Wolmaranstad, Witbank, Thabazimbi, Northam.

1992 to 1999 – Department of Agriculture

(Candidate to Principal Engineer – Soil Conservation)

- Project manager, Design Engineer, Contracts administrator and Site Engineer of 4m high Magogong gabion erosion structure to a project value of R400,000 (1999) (Supervisor – W Viljoen Pr Eng).
- Engineer responsible for the design, contract administration and construction supervision of 32 km² Heuningsvlei water reticulation scheme with a project value of R3 million (1998).

- Design Engineer and construction supervision of 25 m high steel lighting for Agricultural Sport fields with a project value of R100 000 (1998).
- Design Engineer, Contracts Engineer and Site Engineer of ± 400 ha sub–surface drainage at Taung irrigation scheme to a project value of R500,000 (1997-1999).
- Design and Site Engineer of 2 ha sub-surface drainage at Bultfontein to the project value of R30,000 (1998).
- Engineering team member for the evaluation of centre pivot system at Taung irrigation scheme (1996).
- Design Engineer of 0.5 ha tunnel micro-sprinkle irrigation at Potchefstroom to a project value of (R25 000) (1995).
- Design Engineer of 30 ha micro-sprinkle irrigation at Reitz to a project value of R300,000 (1994).
- Soil Conservation Engineer responsible for the technical standards under the R4 million per year Soil Conservation scheme. Eastern Free State and North West Province (1992-1996).
- Project Engineer on the Grootlaagte soil conservation diversion structures (1996-1998).
- Specialist Engineer on Soil Conservation for Soil conservation enforcement (1996-1999).

#	Description	Entity		Validation number	Year	Days
				(ECSA)		
Cour	se attended					
1	Dam design course	US			2007	2
2	Drainage manual	SAICE	2007	2		
3	Applied Geomechanics	US	2008	2		
4	Pipeline design course	Sinotech			2008	2
5	Level 1 – First Aid	SA Red Cro	2009	1		
6	Hazard identification and risk assessment	NOSA			2009	2
7	SHE Management tools	NOSA			2009	2
8	Sustainable rural livelihoods	ARC,	Ag	AGEng006	2011	3
		Engineerin	g			
9	Management and design of Dams in Africa	University	of	3250	2011	4
		Stellenboso	ch			
10	Dam Engineering short course and symposium	University	of	K2922	2012	5
		Stellenboso	ch			
11	5 th Annual Hydropower Africa	Spintelliger	nt	UP2012-43	2012	4
12	Flood hydrology	UP			2014	
13	Pipeline design, Operation and Maintenance course	Sinotech		SAICEwat13/01343/16	2014	2
14	Modelling of free surface flow and dam break	Sinotech		CESA-328-01/2016	2016	3
	analysis					

Conferences attended

SANCOLD, 2014 to 2018 SAIAE, 1992 to 2018

Publications

I. Curry, HG. Van der Merwe, R. Van Wyk, G. Benade, SANCOLD 2014, Feed Design for EPC contract of the Rooikat Hydropower project on the Orange River

14e Fer