Terrestrial Biodiversity Assessment

prepared in accordance with the

"Protocol for the Specialist Assessment and minimum report content requirements for environmental impacts on Terrestrial Animal Species, Terrestrial Plant Species and Terrestrial Biodiversity"

Moriri Solar PV project near Richmond, Northern Cape Province

David Hoare Consulting (Pty) Ltd

David Hoare Consulting (Pty) Ltd

Address: Postnet Suite #116 Private Bag X025

Lynnwood Ridge 0040

41 Soetdoring Avenue Lynnwood Manor Pretoria

Telephone: 087 701 7629

Cell: 083 284 5111 Fax: 086 550 2053

Email: dhoare@lantic.net

Terrestrial Biodiversity Assessment for the proposed Moriri Solar PV project near Richmond, Northern Cape Province.

Location:

Ubuntu Local Municipality within the Pixley Ka Seme District Municipality

for

Great Karoo Renewable Energy (Pty) Ltd.

11 May 2022

Report version: 1st Draft

TABLE OF CONTENTS

TABLE OF CONTENTS	
SPECIALIST DETAILS & DECLARATION	IV
Declaration of independence: Disclosure:	
TERMS OF REFERENCE	VI
LIMITATIONS, ASSUMPTIONS & UNCERTAINTIES	IX
ACRONYMS	x
ABBREVIATIONS	
GLOSSARY	
LIST OF FIGURES	
LIST OF TABLES	
INTRODUCTION	_
BACKGROUND	13
APPROACH & METHODOLOGY	14
Approach	
FIELD SURVEYS	
Sources of Information	
Vegetation	
Regional plans	
HABITAT SENSITIVITY	
IMPACT ASSESSMENT METHODOLOGY	
RELEVANT LEGISLATIVE AND PERMIT REQUIREMENTS	
CONVENTION ON BIODIVERSITY (CBD)	
NATIONAL ENVIRONMENTAL MANAGEMENT ACT, ACT NO. 107 OF 1998 (NEMA)	
NATIONAL ENVIRONMENTAL MANAGEMENT: BIODIVERSITY ACT (ACT NO 10 of 2004)	
Alien and Invasive Species	
Government Notice No. 1002 of 2011: National List of Ecosystems that are Threatened and in need of p	
GNR 151: Critically Endangered, Endangered, Vulnerable and Protected Species List	
GNR 1187: Amendment of Critically Endangered, Endangered, Vulnerable and Protected Species List	
Government Notice No. 40733 of 2017: Draft National Biodiversity Offset Policy	
National Forests Act (Act no 84 of 1998)	
National Water Act (Act 36 of 1998)	
Conservation of Agricultural Resources (Act No. 43 of 1983) as amended in 2001	
NATIONAL VELD AND FOREST FIRE ACT (ACT No. 101 of 1998)	
Northern Cape Nature Conservation Act, No. 9 of 2009	
OTHER ACTS	
SENSITIVITIES IDENTIFIED FROM DEA ONLINE SCREENING TOOL	24
Terrestrial Biodiversity theme	24
DESCRIPTION OF STUDY AREA	24
SITE CONDITIONS	25
TOPOGRAPHY AND DRAINAGE	

CLIMATE	26
Broad vegetation patterns	26
Upper Karoo Hardeveld (NKu2)	26
Eastern Upper Karoo (NKu4)	27
CONSERVATION STATUS OF BROAD VEGETATION TYPES	28
BIODIVERSITY CONSERVATION PLANS	29
PROTECTED AREAS AND PROPOSED PROTECTED AREAS	30
HABITATS ON SITE	31
Habitat sensitivity	33
DESCRIPTION OF POTENTIAL IMPACTS	35
PROPOSED INFRASTRUCTURE IN RELATION TO SENSITIVITIES	35
POTENTIAL SENSITIVE RECEPTORS IN THE GENERAL STUDY AREA	35
Construction Phase Impacts	
Direct impacts	35
Indirect impacts	
Operational Phase Impacts	
Direct impacts	35
Indirect impacts	
DECOMMISSIONING PHASE IMPACTS	36
Direct impacts	36
Indirect impacts	36
ASSESSMENT OF IMPACTS	37
Construction Phase Impacts	37
Loss and/or fragmentation of indigenous natural vegetation due to clearing	37
Establishment and spread of alien invasive plants	38
Increased runoff and erosion	39
OPERATIONAL PHASE IMPACTS	40
Disturbance of indigenous natural vegetation	40
Continued establishment and spread of alien invasive plants	
Continued impacts due to runoff and erosion	41
DECOMMISSIONING PHASE IMPACTS	42
Disturbance of indigenous natural vegetation	42
Continued establishment and spread of alien invasive plants	
Continued impacts due to runoff and erosion	44
Assessment of Cumulative Impacts	46
Cumulative loss and/or fragmentation of indigenous natural vegetation due to clearing	
Cumulative establishment and spread of alien invasive plants	
Cumulative damage from increased runoff and erosion	
Assessment of No-Go alternative	
SUMMARY OF MITIGATION MEASURES	_
SUMMARY OF MONITORING RECOMMENDATIONS	51
DISCUSSION AND CONCLUSIONS	52
REFERENCES:	53
APPENDICES:	54
APPENDIX 1: CURRICULUM VITAE: DR DAVID HOARE	54

SPECIALIST DETAILS & DECLARATION

This report has been prepared in accordance with the "Protocol for the specialist assessment and minimum report content requirements for environmental impacts on terrestrial animal species, terrestrial plant species and terrestrial biodiversity", as promulgated in terms of Section 24 (5) of the National Environmental Management Act, 1998 (Act No. 107 of 1998), published in GN. No. 320 dated 20 March 2020. It has been prepared independently of influence or prejudice by any parties.

The details of Specialists are as follows -

Table 1: Details of Specialist

Specialist	Qualification and accreditation	Signature
Dr David Hoare	 PhD Botany Pr.Sci.Nat. 400221/05 (Ecological Science, Botanical Science) 	Date: 11/05/2022

Details of Author:

Dr David Hoare

PhD (Botany) - Nelson Mandela Metropolitan University, Port Elizabeth

Main areas of specialisation

- Vegetation and general ecology (grasslands, savanna, Albany thicket, fynbos, coastal systems, wetlands).
- Plant biodiversity and threatened plant species specialist.
- Alien plant identification and control / management plans.
- Remote sensing, analysis and mapping of vegetation.
- Specialist consultant for environmental management projects.

Professional Natural Scientist, South African Council for Natural Scientific Professions, Reg. no. 400221/05 (Ecology, Botany)

Member, International Association of Vegetation Scientists (IAVS)

Member, Ecological Society of America (ESA)

Member, International Association for Impact Assessment (IAIA)

Member, Herpetological Association of Africa (HAA)

Employment history

- 1 December 2004 present, Director, David Hoare Consulting (Pty) Ltd. Consultant, specialist consultant contracted to various companies and organisations.
- 1January 2009 30 June 2009, Lecturer, University of Pretoria, Botany Dept.
- 1January 2013 30 June 2013, Lecturer, University of Pretoria, Botany Dept.
- 1 February 1998 30 November 2004, Researcher, Agricultural Research Council, Range and Forage Institute, Private Bag X05, Lynn East, 0039. Duties: project management, general vegetation ecology, remote sensing image processing.

Declaration of independence:

David Hoare Consulting (Pty) Ltd in an independent consultant and hereby declare that it does not have any financial or other vested interest in the undertaking of the proposed activity, other than remuneration for the work performed in terms of the National Environmental Management Act, 1998 (Act 107 of 1998). In addition, remuneration for services provided by David Hoare Consulting (Pty) Ltd is not subjected to or based on approval of the proposed project by the relevant authorities responsible for authorising this proposed project.

Disclosure:

David Hoare Consulting (Pty) Ltd undertake to disclose, to the competent authority, any material information that has or may have the potential to influence the decision of the competent authority or the objectivity of any report, plan or document required in terms of the National Environmental Management Act, 1998 (Act 107 of 1998) and will provide the competent authority with access to all information at its disposal regarding the application, whether such information is favourable to the applicant or not.

Based on information provided to David Hoare Consulting (Pty) Ltd by the client and in addition to information obtained during the course of this study, David Hoare Consulting (Pty) Ltd present the results and conclusion within the associated document to the best of the author's professional judgement and in accordance with best practise.

Dr David Hoare Date

TERMS OF REFERENCE

PROTOCOL FOR THE SPECIALIST ASSESSMENT AND MINIMUM REPORT CONTENT REQUIREMENTS FOR ENVIRONMENTAL IMPACTS ON TERRESTRIAL BIODIVERSITY

This site sensitivity assessment follows the requirements of The Environmental Impact Assessment Regulations, as promulgated in terms of Section 24 (5) of the National Environmental Management Act, 1998 (Act No. 107 of 1998), published in GN. No. 320 dated 20 March 2020.

General information

- 1.1. An applicant intending to undertake an activity identified in the scope of this protocol, on a site identified on the screening tool as being of "very high sensitivity" for terrestrial biodiversity, must submit a Terrestrial Biodiversity Specialist Assessment.
- 1.2. An applicant intending to undertake an activity identified in the scope of this protocol on a site identified by the screening tool as being "**low sensitivity**" for terrestrial biodiversity, must submit a <u>Terrestrial Biodiversity Compliance Statement</u>.
- 1.3. However, where the information gathered from the site sensitivity verification differs from the designation of "very high" terrestrial biodiversity sensitivity on the screening tool and it is found to be of a "low" sensitivity, then a Terrestrial Biodiversity Compliance Statement must be submitted.
- 1.4. Similarly, where the information gathered from the site sensitivity verification differs from that identified as having a "low" terrestrial biodiversity sensitivity on the screening tool, a Terrestrial Biodiversity Specialist Assessment must be conducted.
- 1.5. If any part of the proposed development footprint falls within an area of "very high" sensitivity, the assessment and reporting requirements prescribed for the "very high" sensitivity apply to the entire footprint, *excluding linear activities* for which impacts on terrestrial biodiversity are temporary and the land in the opinion of the terrestrial biodiversity specialist, based on the mitigation and remedial measures, can be returned to the current state within two years of the completion of the construction phase, in which case a compliance statement applies. Development footprint in the context of this protocol means the area on which the proposed development will take place and includes any are that will be disturbed.

Terrestrial Biodiversity Specialist Assessment

- 2.1. The assessment must be prepared by a specialist registered with the South African Council for Natural Scientific Professionals (SACNASP) with expertise in the field of terrestrial biodiversity.
- 2.2. The assessment must be undertaken on the preferred site and within the proposed development footprint.
- 2.3. The assessment must provide a baseline description of the site which includes, as a minimum, the following aspects:
 - 2.3.1. a description of the ecological drivers or processes of the system and how the proposed development will impact these;
 - 2.3.2. ecological functioning and ecological processes (e.g. fire, migration, pollination, etc.) that operate within the preferred site;
 - 2.3.3. the ecological corridors that the proposed development would impede including migration and movement of flora and fauna;

- 2.3.4. the description of any significant terrestrial landscape features (including rare or important flora-faunal associations, presence of strategic water source areas (SWSAs) or freshwater ecosystem priority area (FEPA) sub catchments;
- 2.3.5. a description of terrestrial biodiversity and ecosystems on the preferred site, including:
 - (a) main vegetation types;
 - (b) threatened ecosystems, including listed ecosystems as well as locally important habitat types identified;
 - (c) ecologicalconnectivity, habitatfragmentation, ecological processes and fine-scale habitats; and
 - (d) species, distribution, important habitats (e.g. feeding grounds, nesting sites, etc.) and movement patterns identified;
- 2.3.6. the assessment must identify any alternative development footprints within the preferred site which would be of a "low" sensitivity as identified by the screening tool and verified through the site sensitivity verification; and
- 2.3.7. the assessment must be based on the results of a site inspection undertaken on the preferred site and must identify:
 - 2.3.7.1. terrestrial critical biodiversity areas (CBAs), including:
 - (a) the reasons why an area has been identified as a CBA;
 - (b) an indication of whether or not the proposed development is consistent with maintaining the CBA in a natural or near natural state or in achieving the goal of rehabilitation;
 - (c) the impact on species composition and structure of vegetation with an indication of the extent of clearing activities in proportion to the remaining extent of the ecosystem type(s);
 - (d) the impact on ecosystem threat status;
 - (e) the impact on explicit subtypes in the vegetation;
 - (f) the impact on overall species and ecosystem diversity of the site; and
 - (g) the impact on any changes to threat status of populations of species of conservation concern in the CBA;
 - 2.3.7.2. terrestrial ecological support areas (ESAs), including:
 - (a) the impact on the ecological processes that operate within or across the site;
 - (b) the extent the proposed development will impact on the functionality of the ESA; and
 - (c) loss of ecological connectivity (on site, and in relation to the
 - broader landscape) due to the degradation and severing of ecological corridors or introducing barriers that impede migration and movement of flora and fauna;
 - 2.3.7.3. protected areas as defined by the National Environmental Management: Protected Areas Act, 2004 including-
 - (a) an opinion on whether the proposed development aligns with the objectives or purpose of the protected area and the zoning as per the protected area management plan;
 - 2.3.7.4. priority areas for protected area expansion, including-
 - (a) the way in which in which the proposed development will compromise or contribute to the expansion of the protected area network;
 - 2.3.7.5. SWSAsincluding:
 - (a) the impact(s) on the terrestrial habitat of a SWSA; and
 - (b) the impacts of the proposed development on the SWSA water quality and quantity (e.g. describing potential increased runoff leading to increased sediment load in water courses);
 - 2.3.7.6. FEPAsubcatchments, including-
 - (a) theimpactsoftheproposeddevelopmentonhabitatconditionand species in the FEPA sub catchment;
 - 2.3.7.7 indigenous forests, including:
 - (a) impact on the ecological integrity of the forest; and
 - (b) percentage of natural or near natural indigenous forest area lost and a statement on the implications in relation to the remaining areas.

2.4. The findings of the assessment must be written up in a Terrestrial Biodiversity Specialist Assessment Report.

Terrestrial Biodiversity Specialist Assessment Report

- 3.1. The Terrestrial Biodiversity Specialist Assessment Report must contain, as a minimum, the following information:
 - 3.1.1. contact details of the specialist, their SACNASP registration number, their field of expertise and a curriculum vitae;
 - 3.1.2. a signed statement of independence by the specialist;
 - 3.1.3. a statement on the duration, date and season of the site inspection and the relevance of the season to the outcome of the assessment;
 - 3.1.4. a description of the methodology used to undertake the site verification and impact assessment and site inspection, including equipment and modelling used, where relevant;
 - 3.1.5. a description of the assumptions made and any uncertainties or gaps in knowledge or data as well as a statement of the timing and intensity of site inspection observations;
 - 3.1.6. a location of the areas not suitable for development, which are to be avoided during construction and operation (where relevant);
 - 3.1.7. additional environmental impacts expected from the proposed development;
 - 3.1.8. any direct, indirect and cumulative impacts of the proposed development;
 - 3.1.9. the degree to which impacts and risks can be mitigated;
 - 3.1.10. the degree to which the impacts and risks can be reversed;
 - 3.1.11. the degree to which the impacts and risks can cause loss of irreplaceable resources;
 - 3.1.12. proposed impact management actions and impact management outcomes proposed by the specialist for inclusion in the Environmental Management Programme (EMPr);
 - 3.1.13. a motivation must be provided if there were development footprints identified as per paragraph 2.3.6 above that were identified as having a "low" terrestrial biodiversity sensitivity and that were not considered appropriate;
 - 3.1.14. a substantiated statement, based on the findings of the specialist assessment, regarding the acceptability, or not, of the proposed development, if it should receive approval or not; and
 - 3.1.15. any conditions to which this statement is subjected.
- 3.2.The findings of the Terrestrial Biodiversity Specialist Assessment must be incorporated into the Basic Assessment Report or the Environmental Impact Assessment Report, including the mitigation and monitoring measures as identified, which must be incorporated into the EMPr where relevant.
- 3.3. A signed copy of the assessment must be appended to the Basic Assessment Report or Environmental Impact Assessment Report.

LIMITATIONS, ASSUMPTIONS & UNCERTAINTIES

The following assumptions, limitations, uncertainties are listed regarding the terrestrial biodiversity assessment of the study site:

• None.

ACRONYMS

AIS	Alien and Invasive species
СВА	Critical Biodiversity Area
CBD	Convention on Biodiversity
CITES	Convention on the International Trade in Endangered Species of Wild Fauna and Flora
DAFF	Department of Agriculture, Forestry and Fisheries
DEA	Department of Environmental Affairs
DWS	Department of Water and Sanitation
EA	Environmental Authorisation
EAP	Environmental Assessment Practitioner
ECO	Environmental Control Officer
BA	Basic Assessment
ESA	Ecological Support Area
IUCN	International Union for the Conservation of Nature
I&APs	Interested and Affected Parties
GIS	Geographical Information System
NC	Northern Cape province
NEMA	National Environmental Management Act
NEM:BA	National Environmental Management: Biodiversity Act
NCNCA	Northern Cape Nature Conservation Act
NPAES	National Protected Area Expansion Strategy
ONA	Other Natural Areas
PA	Protected Area
REDZ	Renewable Energy Development Zone
SCC	Species of conservation concern
SEA	Strategic Environmental Assessment
SANBI	South African National Biodiversity Institute
ToPS	Threatened and Protected Species
ToR	Terms of Reference
WEF	Wind Energy Facility

ABBREVIATIONS

%	Percentage
MW	Megawatt
kV	Kilovolt
cm	Centimetres
m	Metres
km	Kilometres

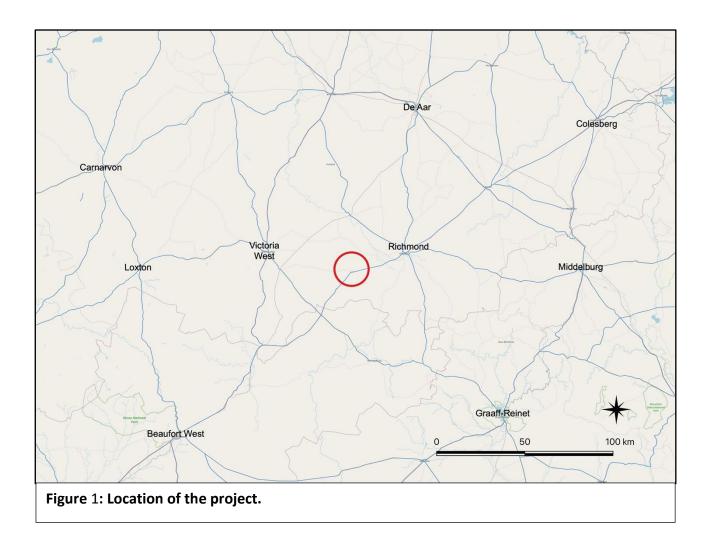
GLOSSARY

Definitions			
Alternative	Alternatives can refer to any of the following but are not limited to: alternative sites for development, alternative projects for a particular site, alternative site layouts, alternative designs, alternative processes and alternative materials.		
Category 1a Listed Invasive Species	Species listed by notice in terms of section 70(1)(a) of the act, as a species that must be combatted or eradicated. These species are contained in Notice 3 of the AIS list, which is referred to as the National List of Invasive Species. Landowners are obliged to take immediate steps to control Category 1a species.		
Category 1b Listed Invasive Species	Species listed by notice in terms of section 70(1)(a) of the act, as species that must be controlled or 'contained'. These species are contained in Notice 3 of the AIS list, which is referred to as the National List of Invasive Species. However, where an Invasive Species Management Programme has been developed for a Category 1b species, then landowners are obliged to "control" the species in accordance with the requirements of that programme.		
Category 2 Listed Invasive Species	Species which require a permit to carry out a restricted activity e.g. cultivation within an area specified in the Notice or an area specified in the permit, as the case may be. Category 2 includes plant species that have economic, recreational, aesthetic or other valued properties, notwithstanding their invasiveness. It is important to note that a Category 2 species that falls outside the demarcated area specified in the permit, becomes a Category 1b invasive species. Permit-holders must take all the necessary steps to prevent the escape and spread of the species.		
Category 3 Listed Invasive Species	A species listed by notice in terms of section 70(1)(a) of the act, as species which are subject to exemptions in terms of section 71(3) and prohibitions in terms of section 71A of the act, as specified in the notice. Category 3 species are less-transforming invasive species which are regulated by activity. The principal focus with these species is to ensure that they are not introduced, sold or transported. However, Category 3 plant species are automatically Category 1b species within riparian and wetland areas.		
Connectivity	The spatial continuity of a habitat or land cover type across a landscape.		
Corridor	A relatively narrow strip of a particular type that differs from the areas adjacent on both sides.		
Edge	The portion of an ecosystem or cover type near its perimeter, and within which environmental conditions may differ from interior locations in the ecosystem.		
Exempted Alien Species	An alien species that is not regulated in terms of this statutory framework - as defined in Notice 2 of the AIS List.		
Fragmentation	The breaking up of a habitat or cover type into smaller, disconnected parcels, often associated with, but not equivalent to, habitat loss.		
Prohibited Alien Species	An alien species listed by notice by the Minister, in respect of which a permit may not be issued as contemplated in section 67(1) of the act. These species are contained in Notice 4 of the AIS List, which is referred to as the List of Prohibited Alien Species.		
Mitigate	The implementation of practical measures to reduce adverse impacts or enhance beneficial impacts of an action.		
"No-Go" option	The "no-go" development alternative option assumes the site remains in its current state, i.e. there is no construction of a WEF and associated infrastructure in the proposed project area.		
Patch	A surface area that differs from its surroundings in nature or appearance.		
Rehabilitation	Less than full restoration of an ecosystem to its predisturbance condition.		
Restoration	To return a site to an approximation of its condition before alteration.		
Riparian	The land adjacent to a river or stream that is, at least periodically, influenced by flooding.		
Runoff	Non-channelized surface water flow.		

LIST OF FIGURES

Figure 1: Location of the project	13
Figure 2: DEA Screening Tool extract for Terrestrial Biodiversity Theme.	
Figure 3: Aerial image showing drainage and topography of the site and surrounding areas	25
Figure 4: Regional vegetation types of the site and surrounding areas	
Figure 5: Northern Cape CBA map of the site and surrounding areas.	30
Figure 6: Habitats of the study area.	32
Figure 7: Habitat sensitivity of the study area.	
Figure 8: Approved renewable Energy Facilities within a radius of approximately 30km (red line) around the	
2021)	46

LIST OF TABLES


Table 1: Details of Specialist	iv
Table 2: Explanation of sensitivity ratings	15
Table 3: Conservation status of different vegetation types occurring in the study area.	

INTRODUCTION

Background

Great Karoo Renewable Energy (Pty) Ltd is proposing the development of a commercial solar PV project and associated infrastructure on a site located approximately 35km south-west of Richmond and 80km south-east of Victoria West (Figure 1), within the Ubuntu Local Municipality and the Pixley Ka Seme District Municipality in the Northern Cape Province.

The proposed facility is located just to the north of the Beaufort West Renewable Energy Development Zone (REDZ 11), one of the eleven REDZ formally gazetted in South Africa for development of solar and wind energy generation facilities.

APPROACH & METHODOLOGY

The detailed methodology followed as well as the sources of data and information used as part of this assessment is described below.

Approach

The study commenced as a desktop-study followed by site-specific field surveys on 25th – 27th April 2016, 11th October 2020, 4th - 6th December 2020, and 30th - 31st July 2021. During the field survey, the entire footprint of the proposed project was traversed on foot.

During the field survey, all major natural variation on site was assessed and select locations were traversed on foot. A hand-held Garmin GPSMap 64s was used to record a track within which observations were made. Digital photographs were taken of features and habitats on site, as well as of all plant species that were seen. All plant species recorded were uploaded to the iNaturalist website.

Aerial imagery from Google Earth was used to identify and map habitats on site. Patterns identified from satellite imagery were verified on the ground. During the field survey, a checklist of plant species was compiled as well as an estimate of cover/abundance. From this vegetation survey, as well as *ad hoc* observations on site, a checklist of plant species occurring on site was compiled. Digital photographs were taken at locations where features of interest were observed.

Field surveys

The study area was visited and assessed to confirm patterns identified from the desktop assessment. Site-specific field surveys were conducted on $25^{th} - 27^{th}$ April 2016, 11^{th} October 2020, 4^{th} - 6^{th} December 2020, and 30^{th} - 31^{st} July 2021.

Specific features of potential concern were investigated in the field, including the following:

- General vegetation status, i.e. whether the vegetation was natural, disturbed/secondary or transformed;
- Presence of habitats of conservation concern in terms of high biodiversity, presence of SCC, specific sensitivities, e.g. wetlands, and any other factors that would indicate an elevated biodiversity or functional value that could not be determined from the desktop assessment;
- Presence of protected trees; and
- Potential presence of SCC, including observation of individual plants found on site or habitats that are suitable for any of the species identified from the desktop assessment.

Key parts of the development site were visited during the site visit in such a way as to ensure all major variation was covered and that any unusual habitats or features were observed. A checklist of species occurring on site was collected during the surveys (Appendix 3, highlighted in green). Plant names follow Germishuizen *et al.* (2005). The season of the survey was favourable, and it there is moderate confidence that many of species present on site were identifiable at the time of the survey, the main limitation being the persistent drought on site over a period of a number of years. The survey was of adequate duration and intensity to characterise the flora of the development site as per the regulations.

Sources of information

Vegetation

• Broad vegetation types occurring on site were obtained from Mucina and Rutherford (2006), with updates according to the SANBI BGIS website (http://bgis.sanbi.org).

• The conservation status of the vegetation types were obtained from Mucina and Rutherford (2006) and the National List of Ecosystems that re Threatened and in need of protection (GN1002 of 2011), published under the National Environmental Management: Biodiversity Act (Act No. 10, 2004).

Regional plans

- Information from the National Protected Areas Expansion Strategy (NPAES) was consulted for possible inclusion of the site into a protected area in future (available on http://bgis.sanbi.org).
- The Northern Cape Biodiversity Area Maps were consulted for inclusion of the site into a Critical Biodiversity Area or Ecological Support Area (biodiversityadvisor.sanbi.org).

Habitat sensitivity

The purpose of producing a habitat sensitivity map is to provide information on the location of potentially sensitive features in the study area. This was compiled by taking the following into consideration:

- 1. The general status of the vegetation of the study area was derived by compiling a landcover data layer for the study area (*sensu* Fairbanks *et al.*, 2000) using available satellite imagery and aerial photography. From this, it can be seen which areas are transformed versus those that are still in a natural status.
- 2. Various provincial, regional or national level conservation planning studies have been undertaken in the area, e.g. the National Spatial Biodiversity Assessment (NSBA). The mapped results from these were taken into consideration in compiling the habitat sensitivity map.
- 3. Habitats in which various species of plants or animals occur that may be protected or are considered to have high conservation status are considered to be sensitive.

An explanation of the different sensitivity classes is given in Table 1. Areas containing untransformed natural vegetation of conservation concern, high diversity or habitat complexity, Red List organisms or systems vital to sustaining ecological functions are considered potentially sensitive. In contrast, any transformed area that has no importance for the functioning of ecosystems is considered to potentially have low sensitivity.

Table 2: Explanation of sensitivity ratings.

Sensitivity	Factors contributing to sensitivity	Example of qualifying features		
VERY HIGH	Indigenous natural areas that are highly positive for any of the following: • presence of threatened species (Critically Endangered, Endangered, Vulnerable) and/or habitat critical for the survival of populations of threatened species. • <u>High</u> conservation status (low proportion remaining intact, highly fragmented, habitat for species that are at risk). • <u>Protected</u> habitats (areas protected according to national / provincial legislation, e.g. National Forests Act, Draft Ecosystem List of NEM:BA, Integrated Coastal Zone Management Act, Mountain Catchment Areas Act, Lake Areas Development Act) And may also be positive for the following: • <u>High</u> intrinsic biodiversity value (<u>high</u> species richness and/or turnover, unique ecosystems) • <u>High</u> value ecological goods & services (e.g. water supply, erosion control, soil formation, carbon storage, pollination, refugia, food production, raw materials, genetic resources, cultural value)	CBA 1 areas. Remaining areas of vegetation type listed in Draft Ecosystem List of NEM:BA as Critically Endangered, Endangered or Vulnerable. Protected forest patches. Confirmed presence of populations of threatened species.		

Sensitivity	Factors contributing to sensitivity	Example of qualifying features	
	Low ability to respond to disturbance (low resilience,		
	dominant species very old).		
HIGH	Indigenous natural areas that are positive for any of the following: • High intrinsic biodiversity value (moderate/high species richness and/or turnover). • presence of habitat highly suitable for threatened species (Critically Endangered, Endangered, Vulnerable species). • Moderate ability to respond to disturbance (moderate resilience, dominant species of intermediate age). • Moderate conservation status (moderate proportion remaining intact, moderately fragmented, habitat for species that are at risk). • Moderate to high value ecological goods & services (e.g. water supply, erosion control, soil formation, carbon storage, pollination, refugia, food production, raw materials, genetic resources, cultural value). And may also be positive for the following: • Protected habitats (areas protected according to national / provincial legislation, e.g. National Forests Act, Draft Ecosystem List of NEM:BA, Integrated Coastal Zone Management Act, Mountain Catchment Areas Act, Lake Areas Development Act)	 CBA 2 "critical biodiversity areas". Habitat where a threatened species could potentially occur (habitat is suitable, but no confirmed records). Confirmed habitat for species of lower threat status (near threatened, rare). Habitat containing individuals of extreme age. Habitat with low ability to recover from disturbance. Habitat with exceptionally high diversity (richness or turnover). Habitat with unique species composition and narrow distribution. Ecosystem providing high value ecosystem goods and services. 	
MEDIUM-HIGH	Indigenous natural areas that are positive for one or two of the factors listed above, but not a combination of factors.	 CBA 2 "corridor areas". Habitat with high diversity (richness or turnover). Habitat where a species of lower threat status (e.g. (near threatened, rare) could potentially occur (habitat is suitable, but no confirmed records). 	
MEDIUM	Other indigenous natural areas in which factors listed above are of no particular concern. May also include natural buffers around ecologically sensitive areas and natural links or corridors in which natural habitat is still ecologically functional.	Natural habitat with no specific sensitivities.	
MEDIUM-LOW	Degraded or disturbed indigenous natural vegetation.	 Highly degraded areas or highly disturbed areas in which the original species composition has been lost. 	
LOW	No natural habitat remaining.	 Transformed areas. 	

Any natural vegetation within which there are features of conservation concern will be classified into one of the high sensitivity classes (MEDIUM-HIGH, HIGH or VERY HIGH). The difference between these three high classes is based on a combination of factors and can be summarised as follows:

- 1. Areas classified into the VERY HIGH class are vital for the survival of species or ecosystems. They are either known sites for threatened species or are ecosystems that have been identified as being remaining areas of vegetation of critical conservation importance. CBA1 areas would qualify for inclusion into this class.
- 2. Areas classified into the HIGH class are of high biodiversity value, but do not necessarily contain features that would put them into the VERY HIGH class. For example, a site that is known to contain a population of a threatened species would be in the VERY HIGH class, but a site where a threatened species could potentially occur (habitat is suitable), but it is not known whether it does occur there or not, is classified into the HIGH sensitivity class. The class also includes any areas that are not specifically identified as having high conservation status, but have high local species richness, unique species composition, low resilience or provide very important ecosystem goods and services. CBA2 "irreplaceable biodiversity areas" would qualify for inclusion into this class, if there were no other factors that would put them into the highest class.
- 3. Areas classified into the MEDIUM-HIGH sensitivity class are natural vegetation in which there are one or two features that make them of biodiversity value, but not to the extent that they would be classified into one of the other two higher categories. CBA2 "corridor areas" would qualify for inclusion into this class.

Impact assessment methodology

Direct, indirect and cumulative impacts associated with the projects were assessed in terms of the following criteria:

- The nature, which shall include a description of what causes the effect, what will be affected and how it will be affected.
- The extent, wherein it will be indicated whether the impact will be local (limited to the immediate area or site of development) or regional, and a value between 1 and 5 will be assigned as appropriate (with 1 being low and 5 being high):
- The duration, wherein it will be indicated whether:
 - the lifetime of the impact will be of a very short duration (0–1 years) assigned a score of 1;
 - the lifetime of the impact will be of a short duration (2-5 years) assigned a score of 2;
 - o medium-term (5–15 years) assigned a score of 3;
 - o long term (> 15 years) assigned a score of 4; or
 - permanent assigned a score of 5;
- The magnitude, quantified on a scale from 0-10, where a score is assigned:
 - o 0 is small and will have no effect on the environment
 - o 2 is minor and will not result in an impact on processes
 - o 4 is low and will cause a slight impact on processes
 - o 6 is moderate and will result in processes continuing but in a modified way
 - 8 is high (processes are altered to the extent that they temporarily cease)
 - 10 is very high and results in complete destruction of patterns and permanent cessation of processes
- The probability of occurrence, which shall describe the likelihood of the impact actually occurring. Probability will be estimated on a scale of 1–5, where
 - o 1 is very improbable (probably will not happen),
 - o 2 is improbable (some possibility, but low likelihood),
 - o 3 is probable (distinct possibility),
 - 4 is highly probable (most likely) and
 - o 5 is definite (impact will occur regardless of any prevention measures).
- the significance, which shall be determined through a synthesis of the characteristics described above and can be assessed as low, medium or high; and
- the status, which will be described as either positive, negative or neutral.
- the degree to which the impact can be reversed.
- the degree to which the impact may cause irreplaceable loss of resources.
- the degree to which the impact can be mitigated.

The significance is calculated by combining the criteria in the following formula:

S=(E+D+M)P

S = Significance weighting

E = Extent

D = Duration

M = Magnitude

P = Probability

The significance weightings for each potential impact are as follows:

- < 30 points: Low (i.e. where this impact would not have a direct influence on the decision to develop in the
 area)
- 30-60 points: Medium (i.e. where the impact could influence the decision to develop in the area unless it is effectively mitigated),
- > 60 points: High (i.e. where the impact must have an influence on the decision process to develop in the area).

RELEVANT LEGISLATIVE AND PERMIT REQUIREMENTS

Relevant legislation is provided in this section to provide a description of the key legal considerations of importance to the proposed project. The applicable legislation is listed below.

Convention on Biodiversity (CBD)

South Africa became a signatory to the United Nations Convention on Biological Diversity (CBD) in 1993, which was ratified in 1995. The CBD requires signatory states to implement objectives of the Convention, which are the conservation of biodiversity; the sustainable use of biological resources and the fair and equitable sharing of benefits arising from the use of genetic resources. According to Article 14 (a) of the CBD, each Contracting Party, as far as possible and as appropriate, must introduce appropriate procedures, such as environmental impact assessments of its proposed projects that are likely to have significant adverse effects on biological diversity, to avoid or minimize these effects and, where appropriate, to allow for public participation in such procedures.

National Environmental Management Act, Act No. 107 of 1998 (NEMA)

NEMA is the framework environmental management legislation, enacted as part of the government's mandate to ensure every person's constitutional right to an environment that is not harmful to his or her health or wellbeing. It is administered by DEA but several functions have been delegated to the provincial environment departments. One of the purposes of NEMA is to provide for co-operative environmental governance by establishing principles for decision-making on matters affecting the environment. The Act further aims to provide for institutions that will promote cooperative governance and procedures for coordinating environmental functions exercised by organs of state and to provide for the administration and enforcement of other environmental management laws.

NEMA requires, inter alia, that:

- "development must be socially, environmentally, and economically sustainable",
- "disturbance of ecosystems and loss of biological diversity are avoided, or, where they cannot be altogether avoided, are minimised and remedied.",
- "a risk-averse and cautious approach is applied, which takes into account the limits of current knowledge about the consequences of decisions and actions",

NEMA states that "the environment is held in public trust for the people, the beneficial use of environmental resources must serve the public interest and the environment must be protected as the people's common heritage."

This report considers the Environmental Impact Assessment (EIA) Regulations of 2014 (NEMA, 2014) as amended in 2017 (NEMA, 2017), under the National Environmental Management Act, (Act No. 107 of 1998). According to these Regulations under Listing Notice 1 (GRN No. 327), Listing Notice 2 (GRN No 325) and Listing Notice 3 (GRN No 324), the activities listed are identified as activities that may require Environmental Authorisation prior to commencement of that activity and to identify competent authorities in terms of sections 24(2) and 24D of the Act.

National Environmental Management: Biodiversity Act (Act No 10 of 2004)

As the principal national act regulating biodiversity protection, NEM:BA, which is administered by DEA, is concerned with the management and conservation of biological diversity, as well as the use of indigenous biological resources in a sustainable manner. The term biodiversity according to the Convention on Biodiversity (CBD) refers to the variability among living organisms from all sources including, inter alia terrestrial, marine and other aquatic ecosystems and the ecological complexes of which they are part; this includes diversity in genes, species and ecosystems.

In terms of the Biodiversity Act, the developer has a responsibility for:

- The conservation of endangered ecosystems and restriction of activities according to the categorisation of the area (not just by listed activity as specified in the EIA regulations).
- Promote the application of appropriate environmental management tools in order to ensure integrated environmental management of activities thereby ensuring that all development within the area are in line with ecological sustainable development and protection of biodiversity.
- Limit further loss of biodiversity and conserve endangered ecosystems.

Chapter 4 of the Act relates to threatened or protected ecosystems or species. According to Section 57 of the Act, "Restricted activities involving listed threatened or protected species":

• (1) A person may not carry out a restricted activity involving a specimen of a listed threatened or protected species without a permit issued in terms of Chapter 7.

Such activities include any that are "of a nature that may negatively impact on the survival of a listed threatened or protected species".

Alien and Invasive Species

Chapter 5 of NEM:BA relates to species and organisms posing a potential threat to biodiversity. The Act defines alien species and provides lists of invasive species in regulations. The Alien and Invasive Species (AIS) Regulations, in terms of Section 97(1) of NEM:BA, was published in Government Notice R598 in Government Gazette 37885 in 2014 (NEM:BA, 2014). The Alien and Invasive Species (AIS) lists were subsequently published in Government Notice R 864 of 29 July 2016 (NEM:BA, 2016).

According to Section 75 of the Act, "Control and eradication of listed invasive species":

- (1) Control and eradication of a listed invasive species must be carried out by means of methods that are appropriate for the species concerned and the environment in which it occurs.
- (2) Any action taken to control and eradicate a listed invasive species must be executed with caution and in a manner that may cause the least possible harm to biodiversity and damage to the environment.
- (3) The methods employed to control and eradicate a listed invasive species must also be directed at the offspring, propagating material and re-growth of such invasive species in order to prevent such species from producing offspring, forming seed, regenerating or re-establishing itself in any manner.

The National Environmental Management: Biodiversity Act (NEMBA) regulates all invasive organisms in South Africa, including a wide range of fauna and flora. Chapter 5 of the Act relates to species and organisms posing a potential threat to biodiversity. The purpose of Chapter 5 is:

- a) to prevent the unauthorized introduction and spread of alien species and invasive species to ecosystems and habitats where they do not naturally occur;
- b) to manage and control alien species and invasive species to prevent or minimize harm to the environment and to biodiversity in particular;
- c) to eradicate alien species and invasive species from ecosystems and habitats where they may harm such ecosystems or habitats;

According to Section 65 of the Act, "Restricted activities involving alien species":

- 1) A person may not carry out a restricted activity involving a specimen of an alien species without a permit issued in terms of Chapter 7. Restricted activities include the following:
 - a. Importing into the Republic, including introducing from the sea, any specimen of a listed invasive species.
 - b. Having in possession or exercising physical control over any specimen of a listed invasive species.
 - c. Growing, breeding or in any other way propagating any specimen of a listed invasive species, or causing it to multiply.
 - d. Conveying, moving or otherwise translocating any specimen of a listed invasive species.
 - e. Selling or otherwise trading in, buying, receiving, giving, donating or accepting as a gift, or in any other way acquiring or disposing of any specimen of a listed invasive species.
 - f. Spreading or allowing the spread of any specimen of a listed invasive species.
 - g. Releasing any specimen of a listed invasive species.
 - h. Additional activities that apply to aquatic species.

2) A permit referred to in subsection (1) may be issued only after a prescribed assessment of risks and potential impacts on biodiversity is carried out.

3)

An "alien species" is defined in the Act as:

- a) a species that is not an indigenous species; or
- b) an indigenous species translocated or intended to be translocated to a place outside its natural distribution range in nature, but not an indigenous species that has extended its natural distribution range by means of migration or dispersal without human intervention.

According to Section 71 of the Act, "Restricted activities involving listed invasive species":

- 1) A person may not carry out a restricted activity involving a specimen of a listed invasive species without a permit issued in terms of Chapter 7.
- 2) A permit referred to in subsection (1) may be issued only after a prescribed assessment of risks and potential impacts on biodiversity is carried out.

An "invasive species" is defined in the Act as any species whose establishment and spread outside of its natural distribution range:

- a) threaten ecosystems, habitats or other species or have demonstrable potential to threaten ecosystems, habitats or other species; and
- b) may result in economic or environmental harm or harm to human health.

A "listed invasive species" is defined in the Act as any invasive species listed in terms of section 70(1).

According to Section 73 of the Act, "Duty of care relating to listed invasive species":

- 2) A person who is the owner of land on which a listed invasive species occurs must
 - a) notify any relevant competent authority, in writing, of the listed invasive species occurring on that land;
 - b) take steps to control and eradicate the listed invasive species and to prevent it from spreading; and
 - c) take all the required steps to prevent or minimize harm to biodiversity.

According to Section 75 of the Act, "Control and eradication of listed invasive species":

- (1) Control and eradication of a listed invasive species must be carried out by means of methods that are appropriate for the species concerned and the environment in which it occurs.
- (2) Any action taken to control and eradicate a listed invasive species must be executed with caution and in a manner that may cause the least possible harm to biodiversity and damage to the environment.
- (3) The methods employed to control and eradicate a listed invasive species must also be directed at the offspring, propagating material and re-growth of such invasive species in order to prevent such species from producing offspring, forming seed, regenerating or re-establishing itself in any manner.

Government Notice No. 1002 of 2011: National List of Ecosystems that are Threatened and in need of protection Published under Section 52(1)(a) of the National Environmental Management: Biodiversity Act (Act No. 10 of 2004). This Act provides for the listing of threatened or protected ecosystems based on national criteria. The list of threatened terrestrial ecosystems supersedes the information regarding terrestrial ecosystem status in the National Spatial Biodiversity Assessment (2004).

The EIA Regulations (2014, as amended) include three lists of activities that require environmental authorisation:

- Listing Notice 1: activities that require a basic assessment (GNR. 327 of 2014, as amended),
- Listing Notice 2: activities that require a full environmental impact assessment report (EIR) (GNR. 325 of 2014, as amended),
- Listing Notice 3: activities that require a basic assessment in specific identified geographical areas only (GNR. 324 of 2014, as amended).

The proposed WEF is located partially within the Komsberg Renewable Energy Development Zone (REDZ 2), one of the eight REDZ formally gazetted¹ in South Africa indicating the procedure to be followed in applying for environmental authorisation (EA) for large scale solar and wind energy generation facilities. Considering that a portion of the proposed facility is located outside of the Komsberg REDZ, the Rondekop WEF will be subject to a full Environmental Impact Assessment (EIA) process in terms of the National Environmental Management Act (Act 107 of 1998) (NEMA) as amended and EIA Regulations, 2014 (as amended).

The full list of trigger activities has been included in the application form and will be assessed and discussed in the Ecology Impact Assessment Report.

GNR 151: Critically Endangered, Endangered, Vulnerable and Protected Species List

Published under Section 56(1) of the National Environmental Management: Biodiversity Act (Act No. 10 of 2004).

GNR 1187: Amendment of Critically Endangered, Endangered, Vulnerable and Protected Species List

Published under Section 56(1) of the National Environmental Management: Biodiversity Act (Act No. 10 of 2004).

Government Notice No. 40733 of 2017: Draft National Biodiversity Offset Policy

Published under the National Environmental Management Act (Act No. 107 of 1998). The aim of the Policy is to ensure that significant residual impacts of developments are remedied as required by NEMA, thereby ensuring sustainable development as required by section 24 of the Constitution of the Republic of South Africa, 1996. This policy should be taken into consideration with every development application that still has significant residual impact after the Mitigation Sequence has been followed. The mitigation sequence entails the consecutive application of avoiding or preventing loss, then at minimizing or mitigating what cannot be avoided, rehabilitating where possible and, as a last resort, offsetting the residual impact. The Policy specifies that one impact that has come across consistently as unmitigatable is the rapid and consistent transformation of certain ecosystems and vegetation types, leading to the loss of ecosystems and extinction of species. The Policy specifically targets ecosystems where the ability to reach protected area targets is lost or close to being lost. However, the Policy states that "[w]here ecosystems remain largely untransformed, intact and functional, an offset would not be required for developments that lead to transformation, provided they have not been identified as a biodiversity priority". Biodivesity offsets should be considered to remedy residual negative impacts on biodiversity of 'medium' to 'high' significance. Residual impacts of 'very high' significance are a fatal flaw for development and residual biodiversity impacts of 'low' significance would usually not require offsets. The Policy indicates that impacts should preferably be avoided in protected areas, CBAs, verified wetland and river features and areas earmarked for protected area expansion.

National Forests Act (Act no 84 of 1998)

Protected trees

According to this act, the Minister may declare a tree, group of trees, woodland or a species of trees as protected. The prohibitions provide that 'no person may cut, damage, disturb, destroy or remove any *protected tree*, or collect, remove, transport, export, purchase, sell, donate or in any other manner acquire or dispose of any protected tree, except under a licence granted by the Minister'.

Forests

Prohibits the destruction of indigenous trees in any natural forest without a licence.

National Water Act (Act 36 of 1998)

Wetlands, riparian zones and watercourses are defined in the Water Act as a water resource and any activities that are contemplated that could affect the wetlands requires authorisation (Section 21 of the National Water Act of 1998). A "watercourse" in terms of the National Water Act (Act 36 of 1998) means:

- River or spring;
- A natural channel in which water flows regularly or intermittently;

¹ Formally gazetted on 16 February 2018 (government notice 114).

• A wetland, lake or dam into which, or from which, water flows; and

Any collection of water which the Minister may, by notice in the gazette, declare to be a watercourse, and a reference to a watercourse includes, where relevant, its bed and banks.

Conservation of Agricultural Resources (Act No. 43 of 1983) as amended in 2001

Declared Weeds and Invaders in South Africa are categorised according to one of the following categories:

- <u>Category 1 plants</u>: are prohibited and must be controlled.
- <u>Category 2 plants</u>: (commercially used plants) may be grown in demarcated areas providing that there is a permit and that steps are taken to prevent their spread.
- <u>Category 3 plants</u>: (ornamentally used plants) may no longer be planted; existing plants may remain, as
 long as all reasonable steps are taken to prevent the spreading thereof, except within the floodline of
 watercourses and wetlands.

National Veld and Forest Fire Act (Act No. 101 of 1998)

Provides requirements for veldfire prevention through firebreaks and required measures for fire-fighting. Chapter 4 of the Act places a duty on landowners to prepare and maintain firebreaks. Chapter 5 of the Act places a duty on all landowners to acquire equipment and have available personnel to fight fires.

Northern Cape Nature Conservation Act, No. 9 of 2009

This Act provides for the sustainable utilisation of wild animals, aquatic biota and plants; provides for the implementation of the Convention on International Trade in Endangered Species of Wild Fauna and Flora; provides for offences and penalties for contravention of the Act; provides for the appointment of nature conservators to implement the provisions of the Act; and provides for the issuing of permits and other authorisations. Amongst other regulations, the following may apply to the current project:

- Boundary fences may not be altered in such a way as to prevent wild animals from freely moving onto
 or off of a property;
- Aquatic habitats may not be destroyed or damaged;
- The owner of land upon which an invasive species is found (plant or animal) must take the necessary steps to eradicate or destroy such species.

The Act provides lists of protected species for the Province. According to Northern Cape Nature Conservation officials, a permit is required for the removal of any species on this list.

Other Acts

Other Acts that may apply to biodiversity issues, but which are considered to not apply to the current site are as follows:

- National Environmental Management Protected Areas Act (Act No. 57 of 2003)
- Marine Living Resources Act (Act No. 18 of 1998)
- Sea Birds and Seals Protection Act (Act No. 46 of 1973)
- Lake Areas Development Act (Act No. 39 of 1975)
- Mountain Catchment Areas Act (Act No. 63 of 1970)
- Integrated Coastal Zone Management Act (Act No. 24 of 2008)

SENSITIVITIES IDENTIFIED FROM DEA ONLINE SCREENING TOOL

Terrestrial Biodiversity theme

The terrestrial biodiversity theme indicates that the site is within two sensitivity classes, namely **VERY HIGH** and **LOW** (Figure 3). Sensitivity features are indicates as follows:

Sensitivity	Feature(s)
Very High	Critical biodiversity area 1
Very High	Ecological Support Area
Very High	FEPA Subcathments



Figure 2: DEA Screening Tool extract for Terrestrial Biodiversity Theme.

DESCRIPTION OF STUDY AREA

Site conditions

A landcover map of the study area (Fairbanks *et al.* 2000) indicates that the entire study area consists of natural vegetation, classified as "shrubland and low fynbos" with scattered waterbodies. The 1:50 000 topocadastral maps of the study area confirm this pattern, including small areas of cultivation and homesteads associated with the farmhouse complexes at Rondavel and Bultfontein.

Topography and drainage

The study site is situated in an area with a combination of steep and relatively gentle topography (Figure 2). Adjacent to the N1, the landscape is gently sloping. Inland of this is a relatively steep escarpment / ridge area that runs more-orless parallel to the national road / southern boundary (Figure 2). Above this the landscape is relatively flat again, with the exception of localised ridges, koppies and shallow valleys. The elevation on site varies from 1284 to 1507 m above sea level, an elevation difference of approximately 223 m.

The main drainage is in the southern part of the site. This is a non-perennial drainage that forms the upper reaches of the Brakrivier.



Figure 3: Aerial image showing drainage and topography of the site and surrounding areas.

Climate

The study area is within a relatively dry area. Rainfall occurs mainly in Summer and Autumn, peaking in March. Mean annual rainfall is just under 300 mm per year. All areas with less than 400 mm rainfall are considered to be arid and all areas with more than 600 mm are moist. The study area can therefore be considered to be arid. Winter frost is common and may occur for more than 80 days per year. Mean maximum and minimum monthly temperatures for Victoria West are 36.6°C and -8°C.

Broad vegetation patterns

The vegetation of the study area indicates that there are two regional vegetation types occurring in the study area, one of which only occurs as thin strips in parts of the study area. These are Eastern Upper Karoo across most of the site and Upper Karoo Hardeveld associated with low mountains. Another vegetation type, Southern Karoo Riviere, is shown as occurring nearby, but there is a possibility that this may occur within drainage areas on site, even though it is not mapped at a regional scale as occurring there. The distribution of these relative to the site is shown in Figure 3. The vegetation types that occur on site are briefly described below.

Upper Karoo Hardeveld (NKu2)

Distribution

Northern, Western and Eastern Cape Provinces: Discrete areas of slopes and ridges including dolerite dykes and sills in the region spanning Middelpos in the west and Strydenburg, Richmond and Nieu-Bethesda in the east. Most crest areas

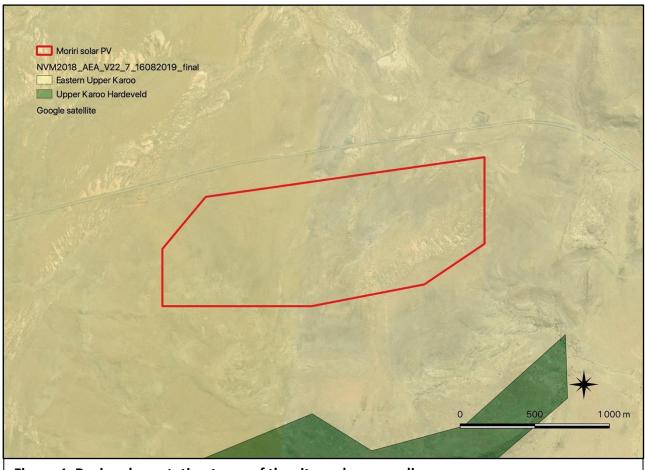


Figure 4: Regional vegetation types of the site and surrounding areas.

and steep slopes of the Great Escarpment facing south between Teekloofpas (connecting Leeu-Gamka and Fraserburg) and eastwards to Graaff-Reinet. Altitude varies mostly from 1 000–1 900 m..

<u>Vegetation & Landscape Features</u>

Steep slopes of koppies, butts, mesas and parts of the Great Escarpment covered with large boulders and stones supporting sparse dwarf Karoo scrub with drought-tolerant grasses of genera such as *Aristida, Eragrostis* and *Stipagrostis*.

Geology & Soils

Primitive, skeletal soils in rocky areas developing over sedimentary rocks such as mudstones and arenites of the Adelaide Subgroup of the Karoo Supergroup and to a lesser extent also the Ecca Group (Waterford and Volksrust Formations) as well as Jurassic dolerite sills and dykes and subsummit positions of mesas and butts with dolerite boulder slopes. Almost entirely Ib land type.

Climate

In the western part of its area this unit experiences the same climate as the Western Upper Karoo. In the eastern part the climate is very close to that of Karoo Escarpment. The MAP ranges from about 150 mm in the northwest to 350 mm along some grassland margins on the Great Escarpment and in the east. Water concentrates between rocks as a result of rainfall runoff. Incidence of frost is relatively high, but ranging widely from <30 days per year at lower altitudes to >80 days at highest altitudes. See also climate diagram for NKu 2 Upper Karoo Hardeveld (Figure 7.2).

Important Taxa

Tall Shrubs: Lycium cinereum (d), Rhigozum obovatum (d), Cadaba aphylla, Diospyros austro-africana, Ehretia rigida subsp. rigida, Lycium oxycarpum, Melianthus comosus, Rhus burchellii. Low Shrubs: Chrysocoma ciliata (d), Eriocephalus ericoides subsp. ericoides (d), Euryops lateriflorus (d), Felicia muricata (d), Limeum aethiopicum (d), Pteronia glauca (d), Amphiglossa triflora, Aptosimum elongatum, A. spinescens, Asparagus mucronatus, A. retrofractus, A. striatus, A. suaveolens, Eriocephalus spinescens, Euryops annae, E. candollei, E. empetrifolium, E. nodosus, Felicia filifolia subsp. filifolia, Garuleum latifolium, Helichrysum lucilioides, H. zeyheri, Hermannia filifolia var. filifolia, H. multiflora, H. pulchella, H. vestita, Indigofera sessilifolia, Jamesbrittenia atropurpurea, Lessertia frutescens, Melolobium candicans, M. microphyllum, Microloma armatum, Monechma incanum, Nenax microphylla, Pegolettia retrofracta, Pelargonium abrotanifolium, P. ramosissimum, Pentzia globosa, P. spinescens, Plinthus karooicus, Polygala seminuda, Pteronia adenocarpa, P. sordida, Rosenia humilis, Selago albida, Solanum capense, Sutera halimifolia, Tetragonia arbuscula, Wahlenbergia tenella. Succulent Shrubs: Aloe broomii, Drosanthemum lique, Faucaria bosscheana, Kleinia longiflora, Pachypodium succulentum, Trichodiadema barbatum, Zygophyllum flexuosum. Semiparasitic Shrub: Thesium lineatum (d). Herbs: Troglophyton capillaceum subsp. capillaceum, Dianthus caespitosus subsp. caespitosus, Gazania krebsiana, Lepidium africanum subsp. africanum, Leysera tenella, Pelargonium minimum, Sutera pinnatifida, Tribulus terrestris. Geophytic Herbs: Albuca setosa, Androcymbium albomarginatum, Asplenium cordatum, Boophone disticha, Cheilanthes bergiana, Drimia intricata, Oxalis depressa, Graminoids: Aristida adscensionis (d), A. congesta (d), A. diffusa (d), Cenchrus ciliaris (d), Enneapogon desvauxii (d), Eragrostis lehmanniana (d), E. obtusa (d), Sporobolus fimbriatus (d), Stipagrostis obtusa (d), Cynodon incompletus, Digitaria eriantha, Ehrharta calycina, Enneapogon scaber, E. scoparius, Eragrostis curvula, E. nindensis, E. procumbens, Fingerhuthia africana, Heteropogon contortus, Merxmuellera disticha, Stipagrostis ciliata, Themeda triandra, Tragus berteronianus, T. koelerioides.

Endemic Taxa

Succulent Shrubs: Aloe chlorantha, Crassula barbata subsp. broomii, Delosperma robustum, Sceletium expansum, Stomatium suaveolens. Low Shrubs: Cineraria polycephala, Euryops petraeus, Lotononis azureoides, Selago magnakarooica. Tall Shrub: Anisodontea malvastroides. Herbs: Cineraria arctotidea, Vellereophyton niveum. Succulent Herbs: Adromischus fallax, A. humilis. Geophytic Herbs: Gethyllis longistyla, Lachenalia auriolae, Ornithogalum paucifolium subsp. karooparkense.

Eastern Upper Karoo (NKu4)

Distribution

Northern Cape, Eastern Cape and Western Cape Provinces: Between Carnarvon and Loxton in the west, De Aar, Petrusville and Venterstad in the north, Burgersdorp, Hofmeyr and Cradock in the east and the Great Escarpment and the Sneeuberge-Coetzeesberge mountain chain in the south. Altitude varies between mostly 1 000–1 700 m. Vegetation & Landscape Features

Flats and gently sloping plains (interspersed with hills and rocky areas of Upper Karoo Hardeveld in the west, Besemkaree Koppies Shrubland in the northeast and Tarkastad Montane Shrubland in the southeast), dominated by dwarf microphyllous shrubs, with 'white' grasses of the genera *Aristida* and *Eragrostis* (these become prominent especially in the early autumn months after good summer rains). The grass cover increases along a gradient from southwest to northeast.

Geology & Soils

Mudstones and sandstones of the Beaufort Group (incl. both Adelaide and Tarkastad Subgroups) supporting duplex soils with prismacutanic and/or pedocutanic diagnostic horizons dominant (Da land type) as well as some shallow Glenrosa and Mispah soils (Fb and Fc land types). In places, less prominent Jurassic dolerites (Karoo Dolerite Suite) are also found.

Climate

Rainfall mainly in autumn and summer, peaking in March. MAP ranges from about 180 mm in the west to 430 mm in the east. Incidence of frost is relatively high, but ranging widely from <30 days (in the lower-altitude Cradock area) to >80 days of frost per year (bordering the Upper Karoo Hardeveld on the Compassberg and mountains immediately to the west). Mean maximum and minimum monthly temperatures in Middelburg (Grootfontein) are 36.1°C and -7.2°C for January and July, respectively. Corresponding values are 37°C and -8°C for Victoria West and 36.6°C and -4.2°C for Hofmeyr. See also climate diagram for NKu 4 Eastern Upper Karoo.

Important Taxa

Tall Shrubs: Lycium cinereum (d), L. horridum, L. oxycarpum. Low Shrubs: Chrysocoma ciliata (d), Eriocephalus ericoides subsp. ericoides (d), E. spinescens (d), Pentzia globosa (d), P. incana (d), Phymaspermum parvifolium (d), Salsola calluna (d), Aptosimum procumbens, Felicia muricata, Gnidia polycephala, Helichrysum dregeanum, H. lucilioides, Limeum aethiopicum, Nenax microphylla, Osteospermum leptolobum, Plinthus karooicus, Pteronia glauca, Rosenia humilis, Selago geniculata, S. saxatilis. Succulent Shrubs: Euphorbia hypogaea, Ruschia intricata. Herbs: Indigofera alternans, Pelargonium minimum, Tribulus terrestris. Geophytic Herbs: Moraea pallida (d), Moraea polystachya, Syringodea bifucata, S. concolor. Succulent Herbs: Psilocaulon coriarium, Tridentea jucunda, T. virescens. Graminoids: Aristida congesta (d), A. diffusa (d), Cynodon incompletus (d), Eragrostis bergiana (d), E. bicolor (d), E. lehmanniana (d), E. obtusa (d), Sporobolus fimbriatus (d), Stipagrostis ciliata (d), Tragus koelerioides (d), Aristida adscensionis, Chloris virgata, Cyperus usitatus, Digitaria eriantha, Enneapogon desvauxii, E. scoparius, Eragrostis curvula, Fingerhuthia africana, Heteropogon contortus, Sporobolus ludwigii, S. tenellus, Stipagrostis obtusa, Themeda triandra, Tragus berteronianus.

Endemic Taxa

Succulent Shrubs: Chasmatophyllum rouxii, Hertia cluytiifolia, Rabiea albinota, Salsola tetrandra. **Tall Shrub:** Phymaspermum scoparium. **Low Shrubs:** Aspalathus acicularis subsp. planifolia, Selago persimilis, S. walpersii.

Conservation status of broad vegetation types

On the basis of a scientific approach used at national level by SANBI (Driver *et al.*, 2005), vegetation types can be categorised according to their conservation status which is, in turn, assessed according to the degree of transformation relative to the expected extent of each vegetation type. The status of a habitat or vegetation type is based on how much of its original area still remains intact relative to various thresholds. The original extent of a vegetation type is as presented in the most recent national vegetation map (Mucina, Rutherford & Powrie 2005) and is the extent of the vegetation type in the absence of any historical human impact. On a national scale the thresholds are as depicted in Table 4 below, as determined by best available scientific approaches (Driver *et al.*, 2005). The level at which an ecosystem becomes Critically Endangered differs from one ecosystem to another and varies from 16% to 36% (Driver *et al.*, 2005).

Determining ecosystem status (Driver et al., 2005). *BT = biodiversity

target (the minimum conservation requirement).

•	00.400	1 11 1	
bū	80–100	least threatened	LI
at ining	60–80	vulnerable	VU
<u>:</u> :	*BT-60	endangered	EN
Hab rem (%)	0-*BT	critically endangered	CR

Table 3: Conservation status of different vegetation types occurring in the study area.

Vegetation Type		Target	Conserved	Transformed	Conservation status	
		(%)	(%)	(%)	Driver et al. 2005; Mucina	National Ecosystem List
					et al., 2006	(NEM:BA)
Eastern	Upper	21	0.7	2	Least Threatened	Not listed
Karoo						
Upper	Karoo	21	2.9	<1	Least Threatened	Not listed
Hardeveld						

According to scientific literature (Driver et al., 2005; Mucina et al., 2006), as shown in Table 3, both vegetation types are listed as Least Threatened.

The National List of Ecosystems that are Threatened and need of protection (GN1002 of 2011), published under the National Environmental Management: Biodiversity Act (Act No. 10, 2004), lists national vegetation types that are afforded protection on the basis of rates of transformation. The thresholds for listing in this legislation are higher than in the scientific literature, which means there are fewer ecosystems listed in the National Ecosystem List versus in the scientific literature.

Neither vegetation types are listed in the National List of Ecosystems that are Threatened and in need of protection (GN1002 of 2011).

Biodiversity Conservation Plans

The Northern Cape Critical Biodiversity Area (CBA) Map (Figure 4) was published in 2016 (Holness & Oosthuysen 2016) and "updates, revises and replaces all older systematic biodiversity plans and associated products for the province". The Northern Cape CBA map classifies the natural vegetation of the province according to conservation value in decreasing value, as follows:

- 1. Protected
- 2. Critical Biodiversity Area One (Irreplaceable Areas) (RED)
- 3. Critical Biodiversity Area Two (Important Areas) (ORANGE)
- 4. Ecological Support Area (GREEN)
- 5. Other Natural Area (YELLOW)

This shows features within the study area within four of these classes, as follows:

- 1. <u>Critical Biodiversity Areas</u>: The main drainage line, as well as an area to the north of the site (outside of boundary) are within a CBA1 area.
- 2. <u>Ecological Support Areas</u>: Other main drainage line and an area in the southern part of the study area is within ECAs.
- 3. Other Natural Areas: Most remaining areas on site are indicated as being in a natural state.

The presence of CBA1 areas indicate that these areas are considered important for biodiversity conservation. Additionally, the ESAs indicate that the site has importance in a wider ecological context for supporting biodiversity patterns.

Protected areas and proposed protected areas

According to an online database hosted by the Department of Forestry, Fisheries and the Environment (South African Protected, Conservation and Marine Protected Areas Data), there are no protected areas on site or in the near vicinity. The nearest protected area is more than 50 km away.

According to the National Parks Area Expansion Strategy (NPAES), there are no areas within the study area that have been identified as priority areas for inclusion in future protected areas. The study area is therefore **outside the NPAES focus area**. There are many areas outside of the study site, to the north, south, east and west that are included as being part of future protected areas, but not within or adjacent to the site itself.

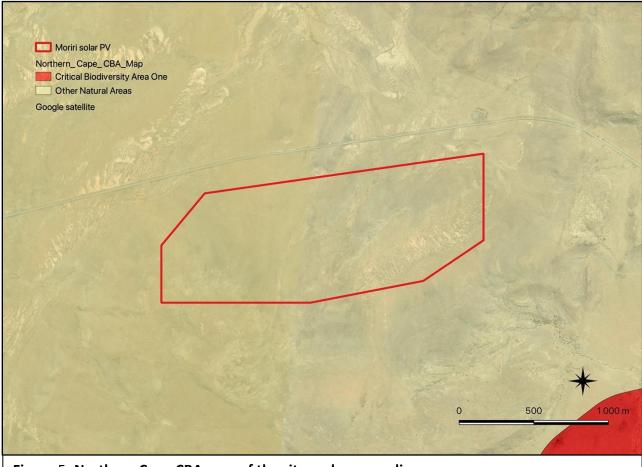


Figure 5: Northern Cape CBA map of the site and surrounding areas.

Habitats on site

A map of habitats on site is provided in (Figure 5). This shows various habitat units on site, as follows:

- 1. Hills and mountains
- 2. Rocky areas
- 3. Plains
- 4. Drainage areas
- 5. Drainage scrub
- 6. Open water
- 7. No natural habitat

Hills and mountains

The site is characterised by the presence of a range of hills that form a mini-escarpment parallel to the national road. The topography within these areas is relatively steep and rugged. There are also various low hills and the free-standing Bloukop inland of the mini-escarpment. The vegetation in these areas is a grassy dwarf karroid shrubland.

Rocky areas

There are various parts of the hills that contain outcrops of rocks, either as shelves or as boulders. The vegetation within these areas is largely woody, consisting of various low- to medium-height shrubs. The rocky areas constitute important refugia for small mammals and reptiles, including as potential habitat for the Near Threatened Karoo Dwarf Tortoise (Homopus boulengeri).

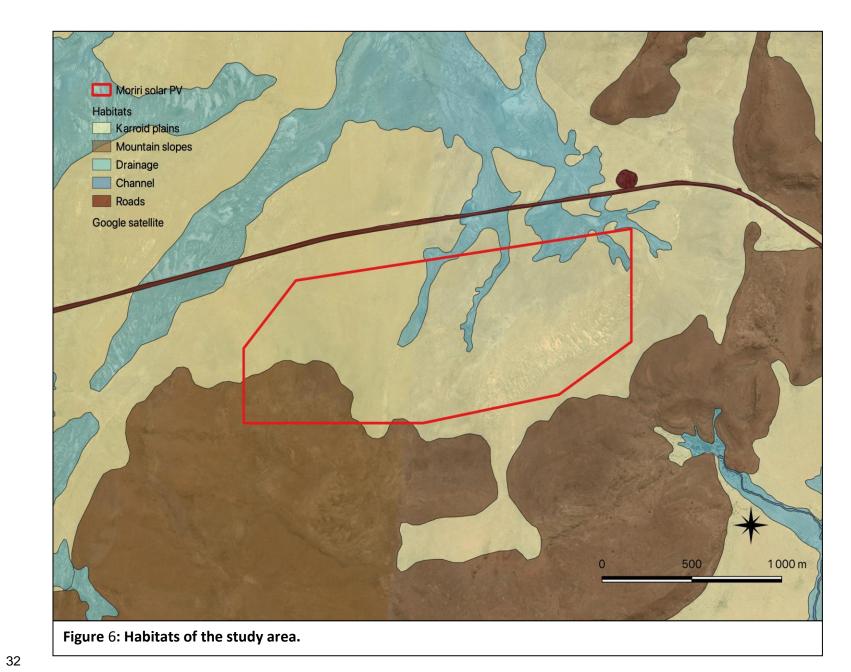
Plains

The plains on the lowlands have gently undulating topography. They are found between the hills throughout the site. The vegetation in these areas is mostly a dwarf karroid shrubland. These areas have been moderately to heavily grazed throughout the study area.

Drainage areas

In the lowest parts of the plains, often in wide bands, are areas that are shaped by fluvial processes and are either channelled in places or eroded from water movement. The soils are mostly deep sands where they have not been eroded away. The vegetation is a karroid dwarf shrubland or a sparse weedy community in eroded areas.

Drainage scrub


This forms part of the drainage areas, but has been mapped as a separate unit due to the clearly different vegetation structure and composition. The vegetation is a scrub or shrubland with shrubs up to 3 m high in places. The vegetation is relatively dense and the soils are deep and sandy. It constitutes an important refuge for wildlife, both in terms of the dense vegetation cover as well as the deep sands which are ideal for burrowing animals. Although considered unlikely that it would occur on site, this is the habitat that most closely matches the habitat requirements of the Critically Endangered Riverine Rabbit.

Open water

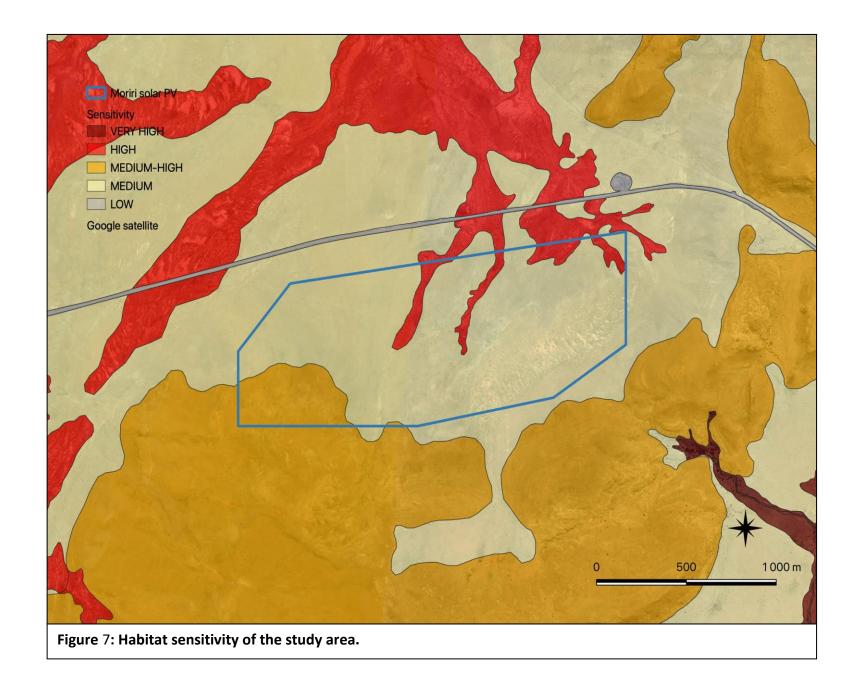
There are a number of farm dams on site. These are all man-made, but they nevertheless constitute an important water resource for wildlife. There is a possibility that the Protected Giant Bullfrog occurs in the general area, in which case these areas of open water may constitute important habitat for them.

No natural habitat

All areas where natural habitat has been lost have been included in this map unit. This includes farm houses, roads, cultivated areas, previously cultivated areas, quarries and other disturbed areas.

Habitat sensitivity

To determine sensitivity on site, local and regional factors were taken into account. There are some habitats on site that have been described as sensitive in their own right, irrespective of regional assessments. This includes primarily the dry stream beds and associated riparian zones. Rocky outcrops and steep slopes are more sensitive than surrounding areas, mainly due to higher floristic diversity and the likelihood of plant species with low local abundance occurring there.


At a regional level, the Critical Biodiversity Area (CBA) map for Northern Cape indicates one drainage line, along with a buffer on each side, that is designated as being a CBA1 area. The remaining drainage lines of the study area are indicated as being Ecological Support Areas (ESAs).

In terms of other species of concern and overall biological diversity, including both plants and animals, the low hills and mountain ranges are the areas with the most species as well as being most likely to contain any species of concern. However, the southern main drainage line is the most likely habitat for the Critically Endangered Riverine Rabbit, if it occurs on site, which is unknown but possible.

A summary of sensitivities that occur on site and that may be vulnerable to damage from the proposed project are as follows:

- 1. Dry stream beds, including the associated riparian habitats and adjacent floodplains;
- 2. CBA1 areas;
- 3. Habitat suitable for Riverine Rabbit.

Based on this information, a map of habitat sensitivity on site is provided in Figure 6. This shows main habitat sensitivity classes on site, namely VERY HIGH for habitat suitable for Riverine Rabbit, VERY HIGH for other CBA1 areas, HIGH for other riparian habitats, MEDIUM-HIGH for ridges, outcrops, hills and mountain slopes, and MEDIUM for plains vegetation.

DESCRIPTION OF POTENTIAL IMPACTS

Proposed infrastructure in relation to sensitivities

Infrastructure locations relative to mapped sensitivities are shown in Figure 7. The entire solar array area is within an area of MEDIUM sensitivity.

Potential sensitive receptors in the general study area

A summary of the potential ecological issues for the study area is as follows (issues assessed by other specialists, e.g. on birds and on wetland and hydrological function, are not included here):

- Presence of natural vegetation on site.
- Possible presence of Critically Endangered mammal on site (assessed separately).
- Presence of various plant species protected according to the Northern Cape Nature Conservation Act (Act 9 of 2009) (assessed separately). The identity of such species requires detailed floristic surveys within the footprint of the proposed project.
- Potential invasion of natural habitats by alien invasive plants, thus causing additional impacts on biodiversity features.

Construction Phase Impacts

Direct impacts

Direct impacts include the following:

1. Loss and/or fragmentation of indigenous natural vegetation due to clearing;

Indirect impacts

Indirect impacts during the construction phase include the following:

- 1. Establishment and spread of alien invasive plants due to the clearing and disturbance of indigenous vegetation;
- 2. Increased runoff and erosion due to clearing of vegetation, construction of hard surfaces and compaction of surfaces, leading to changes in downslope areas.

Operational Phase Impacts

Direct impacts

Ongoing direct impacts will include the following:

1. Continued disturbance to natural habitats due to general operational activities and maintenance;

Indirect impacts

These will include the following:

- 1. Continued establishment and spread of alien invasive plant species due to the presence of migration corridors and disturbance vectors;
- 2. Continued runoff and erosion due to the presence of hard surfaces that change the infiltration and runoff properties of the landscape;

Decommissioning Phase Impacts

Direct impacts

These will include the following:

1. Loss and disturbance of natural vegetation due to the removal of infrastructure and need for working sites;

Indirect impacts

These will occur due to renewed disturbance due to decommissioning activities, as follows:

- 1. Continued establishment and spread of alien invasive plant species due to the presence of migration corridors and disturbance vectors;
- 2. Continued runoff and erosion due to the presence of hard surfaces that change the infiltration and runoff properties of the landscape;

ASSESSMENT OF IMPACTS

A detailed assessment, as per the requirements of the protocol for the specialist assessment and minimum report content requirements of environmental impacts on terrestrial biodiversity for activities requiring environmental authorisation, (20 March 2020), of the significance of all impacts during all phases of the project (Construction, Operation, Decommissioning and Cumulative) is provided below. This also includes all proposed mitigation measures and provides assessment before and after the implementation of proposed mitigation measures.

The proposed site is identified by the national web-based environmental screening tool as being very high sensitivity for Terrestrial Biodiversity, and the protocol therefore requires that the level of assessment must be written up in a Terrestrial Biodiversity Impact Assessment Report.

Note that the impact assessment methodology requires placing a potential impact within a category of extent, probability, duration, etc. There are many cases where mitigation measures will have a clear effect on reducing an impact, but not to the degree that it would result in an assessed impact being placed in a lower category. The impact assessment methodology is categorical in nature and incremental improvements in design and implementation may possibly not lead to a change in the category in which a potential impact is placed. In the current case, mitigation measures can potentially reduce by approximately half the extent of the potential impact (loss of vegetation), which is a significant reduction, but the extent remains "Site", because there is no lower category. This does not reduce the value of proposed measures, even if it gives the appearance in the assessment that no improvement is realized.

Detailed discussion of each impact, including justification for assigned scores, is provided below.

Construction Phase Impacts

Loss and/or fragmentation of indigenous natural vegetation due to clearing

IMPACT 1: Direct	loss and/or fragmentatio	n of indigenous natural vegetation	
Impact description	n: The impact will occur	due to clearing of natural habitat for construction	on of infrastructure.
	Rating	Motivation	Significance
Prior to Mitigatio	n		
Duration	Permanent (5)	The effect of clearing will be permanent.	Medium Negative (50)
Extent	Site (1)	The impact will occur at the scale of the proposed infrastructure.	
Magnitude	Low (4)	Clearing will be complete in a relatively small area and will lead to some impact on ecological processes.	
Probability	Definite (5)	The site is in a mostly natural state and construction cannot take place without clearing.	

Mitigation/Enhancement Measures

Mitigation:

It is not possible to completely avoid impacts on indigenous vegetation for this project. The following mitigation measures would help to limit impacts:

- 1. Restrict impact to development footprint only and limit disturbance creeping into surrounding areas.
- 2. As far as possible, locate infrastructure within areas that have been previously disturbed or in areas with lower sensitivity scores.
- 3. Avoid sensitive features and habitats when locating infrastructure.
- 4. Compile a Rehabilitation Plan.
- 5. Compile an Alien Plant Management Plan, including monitoring, to ensure minimal impacts on surrounding areas.

- 6. Where possible, access roads should be located along existing farm and district roads.
- 7. Access to sensitive areas should be limited during construction.
- 8. Undertake monitoring to evaluate whether further measures would be required to manage impacts.

Post Mitigation/Enhancement Measures

Duration	Permanent (5)	The effect of clearing will be permanent.	Medium Negative (50)
Extent	Site (1)	The impact will occur at the scale of the	
		proposed infrastructure.	
Magnitude	Low (4)	Clearing will be partial across a wide area	
		and will lead to some impact on ecological	
		processes.	
Probability	Definite (5)	The site is in a mostly natural state and	
		construction cannot take place without	
		clearing.	

Cumulative impacts:

The probability of the impact occurring increases with the number of projects that are constructed. An assessment of cumulative impacts is provided below (separate table).

Residual Risks:

There is residual risk on the basis that construction crews are unlikely to remain within the confines of the demarcated construction zone. There is always likely to be "spillage" into surrounding areas, or movement of personnel and/or machinery into areas beyond the footprint of the proposed project.

Establishment and spread of alien invasive plants

IMPACT 3: Establishment and spread of declared weeds and alien invader plants

Impact description: The impact will occur due to alien invader plants immigrating into the site, becoming established and spreading, which degrades and displaces indigenous natural habitat.

	Rating	Motivation	Significance
Prior to Mitigatio	on		
Duration	Long-term (4)	This issue will occur for the duration of the life of the project and beyond.	Medium Negative (40)
Extent	Local (2)	Alien invader plants will become established on site but can cause problems more widely by spreading into surrounding landscapes.	
Magnitude	Low (4)	In the construction phase of the project the problem will not appear to be big, as this would be the initial establishment phase for alien invader plants.	
Probability	Highly probable (4)	Alien invader plants are almost certain to become established in disturbed areas.	

Mitigation/Enhancement Measures

Mitigation:

- 1. Compile and implement an alien management plan, which highlights control priorities and areas and provides a programme for long-term control.
- 2. Undertake regular monitoring to detect alien invasions early so that they can be controlled.
- 3. Implement control measures.
- 4. Apply mitigation measures for impact 1.

Post Mitigation/Enhancement Measures				
Duration	Long-term (4)	This issue will occur for the duration of the	Low Negative (28)	
		life of the project and beyond.		
Extent	Site (1)	Control measures can contain alien		
		invader plants to local sites.		
Magnitude	Minor (2)	Early control can largely contain the		
		problem.		
Probability	Highly probable (4)	Alien invader plants are almost certain to		
		become established in disturbed areas.		

Cumulative impacts:

The probability of the impact occurring increases with the number of projects that are constructed. An assessment of cumulative impacts is provided below (separate table).

Residual Risks:

Due to the high number of alien invader plant species in the country, the problem of local invasion is pervasive. Seasonal climate conditions make it unpredictable which species are likely to spread at any particular time. Any drop in focus on this problem can lead to breakaway invasion.

Increased runoff and erosion

IMPACT 4: Increased runoff and erosion

Impact description: Increased runoff and erosion due to clearing of vegetation, construction of hard surfaces and compaction of surfaces, leading to impacts on downslope areas.

	Rating	Motivation	Significance
Prior to Mitigation	n		
Duration	Long-term (4)	This issue will occur for the duration of the	Low Negative (14)
		life of the project and beyond.	
Extent	Site (1)	Problem will affect localised areas.	
Magnitude	Minor (2)	The impact is likely to be low on average	
		across the extent of the project area.	
Probability	Improbable (2)	Site is relatively flat.	

Mitigation/Enhancement Measures

Mitigation:

- 1. Compile and implement a stormwater management plan.
- 2. Monitor surfaces for erosion and repair or upgrade, where necessary.

Post Mitigation/Enhancement Measures

Duration	Long-term (4)	This issue will occur for the duration of the life of the project and beyond.	Low Negative (12)
Extent	Site (1)	Problem will affect localised areas.	
Magnitude	Minor (1)	The impact is likely to be low on average	
		across the extent of the project area.	
Probability	Improbable (2)	Site is relatively flat.	

Cumulative impacts:

The probability of the impact occurring increases with the number of projects that are constructed. An assessment of cumulative impacts is provided below (separate table).

Residual Risks:

Extreme rainfall events are likely to render any control measures irrelevant.

Operational Phase Impacts

Disturbance of indigenous natural vegetation

IMPACT 5: Direct disturbance of indigenous natural vegetation				
Impact description	on: Continued disturbanc	e and/or degradation of habitat.		
	Rating	Motivation	Significance	
Prior to Mitigation	on			
Duration	Long term (4)	The impact will be for the duration of the project.	Medium Negative (30)	
Extent	Site (1)	The impact will occur at the scale of the proposed infrastructure.		
Magnitude	Low (4)	Disturbance will be related to normal operational activities in areas adjacent to existing infrastructure.		
Probability	Probable (3)	Post-construction monitoring indicates that there is a strong probability of activities spilling into areas surrounding constructed infrastructure.		

Mitigation/Enhancement Measures

Mitiaation:

- 1. Restrict activities to infrastructure locations only and limit disturbance creeping into surrounding areas.
- 3. Protect sensitive features and habitats during operational activities.
- 4. Implement and monitor Rehabilitation Plan.
- 5. Implement Alien Plant Management Plan, including monitoring, to ensure minimal impacts on surrounding areas.
- 7. Access to sensitive areas must be enforced.
- 8. Undertake monitoring to evaluate whether further measures would be required to manage impacts.

Post Mitigation/Enhancement Measures

		_	
Duration	Long term (4)	The impact will be for the duration of the project.	Low Negative (24)
Extent	Site (1)	The impact will occur at the scale of the proposed infrastructure.	
Magnitude	Low (3)	Disturbance will be related to normal operational activities in areas adjacent to existing infrastructure.	
Probability	Probable (3)	Post-construction monitoring indicates that there is a strong probability of activities spilling into areas surrounding constructed infrastructure.	

Cumulative impacts:

The probability of the impact occurring increases with the number of projects that are constructed. An assessment of cumulative impacts is provided below (separate table).

Residual Risks

There is residual risk on the basis that maintenance personnel are unlikely to remain within the confines of the demarcated project area. There is always likely to be "spillage" into surrounding areas, or movement of personnel and/or machinery into areas beyond the footprint of the proposed project.

Continued establishment and spread of alien invasive plants

IMPACT 6: Establishment and spread of declared weeds and alien invader plants

Impact description: The impact will occur due to alien invader plants immigrating into the site, becoming established and spreading, which degrades and displaces indigenous natural habitat.

	Rating	Motivation	Significance
Prior to Mitigation			
Duration	Long-term (4)	This issue will occur for the duration of the	Medium Negative (48)
		life of the project and beyond.	
Extent	Local (2)	Alien invader plants will become	
		established on site but can cause	
		problems more widely by spreading into	
		surrounding landscapes.	
Magnitude	Moderate (6)	In the operational phase of the project	
		alien invader plants will actively establish	
		and spread in disturbed areas.	
Probability	Highly probable (4)	Alien invader plants are almost certain to	
		become established in disturbed areas.	

Mitigation/Enhancement Measures

Mitigation:

- 1. Compile and implement an alien management plan, which highlights control priorities and areas and provides a programme for long-term control.
- 2. Undertake regular monitoring to detect alien invasions early so that they can be controlled.
- 3. Implement control measures.
- 4. Apply mitigation measures for impact 1.

Post Mitigation/Enhancement Measures

, ,			
Duration	Long-term (4)	This issue will occur for the duration of the	Low Negative (28)
		life of the project and beyond.	
Extent	Site (1)	Control measures can contain alien	
		invader plants to local sites.	
Magnitude	Minor (2)	Early control can largely contain the	
		problem.	
Probability	Highly probable (4)	Alien invader plants are almost certain to	
		become established in disturbed areas.	

Cumulative impacts:

The probability of the impact occurring increases with the number of projects that are constructed. An assessment of cumulative impacts is provided below (separate table).

Residual Risks:

Due to the high number of alien invader plant species in the country, the problem of local invasion is pervasive. Seasonal climate conditions make it unpredictable which species are likely to spread at any particular time. Any drop in focus on this problem can lead to breakaway invasion.

Continued impacts due to runoff and erosion

IMPACT 7: Impacts from runoff and erosion

Impact description: Increased runoff and erosion due to clearing of vegetation, construction of hard surfaces and compaction of surfaces, leading to impacts on downslope areas.

	Rating	Motivation	Significance
Prior to Mitigation			
Duration	Long-term (4)	This issue will occur for the duration of the	Low Negative (14)
		life of the project and beyond.	
Extent	Site (1)	Problem will affect localised areas.	
Magnitude	Minor (2)	The impact is likely to be low on average	
		across the extent of the project area.	
Probability	Improbable (2)	Site is relatively flat.	

Mitigation/Enhancement Measures

Mitigation:

- 1. Compile and implement a stormwater management plan.
- 2. Monitor surfaces for erosion and repair or upgrade, where necessary.

Post Mitigation/Enhancement Measures

Duration	Long-term (4)	This issue will occur for the duration of the	Low Negative (12)
		life of the project and beyond.	
Extent	Site (1)	Problem will affect localised areas.	
Magnitude	Minor (1)	The impact is likely to be low on average	
		across the extent of the project area.	
Probability	Improbable (2)	Site is relatively flat.	

Cumulative impacts:

The probability of the impact occurring increases with the number of projects that are constructed. An assessment of cumulative impacts is provided below (separate table).

Residual Risks:

Extreme rainfall events are likely to render any control measures irrelevant.

Decommissioning Phase Impacts

Disturbance of indigenous natural vegetation

	Rating	Rating Motivation	
Prior to Mitigation	1		
Duration	Long term (4)	The impact will have a footprint for a long period of time beyond the life of the project. Medium Negative	
Extent	Site (1)	The impact will occur at the scale of the removed infrastructure.	
Magnitude	Low (4)	Disturbance will be related to de- construction and rehabilitation activities in footprint areas.	
Probability	Probable (3)	Difficult to avoid.	

- 1. Restrict activities to infrastructure locations only and limit disturbance creeping into surrounding areas.
- 3. Protect sensitive features and habitats during operational activities.
- 4. Implement and monitor Rehabilitation Plan.
- 5. Implement Alien Plant Management Plan, including monitoring, to ensure minimal impacts on surrounding areas.
- 7. Access to sensitive areas must be enforced.
- 8. Undertake monitoring to evaluate whether further measures would be required to manage impacts.

Post Mitigation/Enhancement Measures

	1		1
Duration	Long term (4)	The impact will have a footprint for a long	Low Negative (24)
		period of time beyond the life of the	
		project.	
Extent	Site (1)	The impact will occur at the scale of the	
		removed infrastructure.	
Magnitude	Low (3)	Disturbance will be related to de-	
		construction and rehabilitation activities	
		in footprint areas.	
Probability	Probable (3)	Difficult to avoid.	

Cumulative impacts:

The probability of the impact occurring increases with the number of projects that are constructed. An assessment of cumulative impacts is provided below (separate table).

Residual Risks:

There is residual risk on the basis that de-construction teams are unlikely to remain within the confines of the demarcated project area. There is always likely to be "spillage" into surrounding areas, or movement of personnel and/or machinery into areas beyond the footprint of the proposed project.

Continued establishment and spread of alien invasive plants

IMPACT 9: Establishment and spread of declared weeds and alien invader plants

Impact description: The impact will occur due to alien invader plants immigrating into the site, becoming established and spreading, which degrades and displaces indigenous natural habitat.

	Rating	Motivation	Significance
Prior to Mitigatio	n		
Duration	Long-term (4)	This issue will occur beyond the life of the project, until rehabilitated areas are completely stable.	Medium Negative (48)
Extent	Local (2)	Alien invader plants will become established on site but can cause problems more widely by spreading into surrounding landscapes.	
Magnitude	Moderate (6)	In the decommissioning phase of the project alien invader plants will actively establish and spread in disturbed areas.	
Probability	Highly probable (4)	Alien invader plants are almost certain to become established in disturbed areas.	

Mitigation/Enhancement Measures

Mitigation:

1. Compile and implement an alien management plan, which highlights control priorities and areas and provides a programme for long-term control.

- 2. Undertake regular monitoring to detect alien invasions early so that they can be controlled.
- 3. Implement control measures.
- 4. Apply mitigation measures for impact 1.

Post Mitigation/Enhancement Measures				
Duration	Long-term (4)	This issue will occur beyond the life of the project, until rehabilitated areas are completely stable.	Low Negative (28)	
Extent	Site (1)	Control measures can contain alien invader plants to local sites.		
Magnitude	Minor (2)	Early control can largely contain the problem.		
Probability	Highly probable (4	Alien invader plants are almost certain to become established in disturbed areas.		

Cumulative impacts:

The probability of the impact occurring increases with the number of projects that are constructed. An assessment of cumulative impacts is provided below (separate table).

Residual Risks:

Due to the high number of alien invader plant species in the country, the problem of local invasion is pervasive. Seasonal climate conditions make it unpredictable which species are likely to spread at any particular time. Any drop in focus on this problem can lead to breakaway invasion.

Continued impacts due to runoff and erosion

IMPACT 10: Impacts from runoff and erosion

Impact description: Increased runoff and erosion due to clearing of vegetation, construction of hard surfaces and compaction of surfaces, leading to impacts on downslope areas.

	Rating	Motivation	Significance
Prior to Mitigation	1		
Duration	Long-term (4)	This issue will occur for the duration of the life of the project and beyond.	Low Negative (14)
Extent	Site (1)	Problem will affect localised areas.	
Magnitude	Minor (2)	The impact is likely to be low on average across the extent of the project area.	
Probability	Improbable (2)	Site is relatively flat.	

Mitigation/Enhancement Measures

Mitigation:

- 1. Compile and implement a stormwater management plan.
- 2. Monitor surfaces for erosion and repair or upgrade, where necessary.

Post Mitigation/Enhancement Measures

Duration	Long-term (4)	This issue will occur for the duration of the Low Negati	
		life of the project and beyond.	
Extent	Site (1)	Problem will affect localised areas.	
Magnitude	Minor (1)	The impact is likely to be low on average	
		across the extent of the project area.	
Probability	Improbable (2)	Site is relatively flat.	
Cumulative impacts	s:		

The probability of the impact occurring increases with the number of projects that are constructed. An assessment of cumulative impacts is provided below (separate table).

Residual Risks:

Extreme rainfall events are likely to render any control measures irrelevant.

Assessment of Cumulative Impacts

Cumulative impacts, in relation to an activity, refer to the impact of an activity that in itself may not be significant but may become significant when added to the existing and potential impacts eventuating from similar or diverse activities or undertakings in the area. For cumulative effects analysis to help the decision-maker and inform interested parties, it must be limited to effects that can be evaluated meaningfully (DEAT, 2004). It is important to explore the potential for cumulative impacts as this will lead to a better understanding of these impacts and the potential for mitigation that may be required. The scale at which the cumulative impacts are assessed is important. For practical purposes a sub-regional scale of 30km is considered for the evaluation of cumulative impact of renewable energy projects.

The site for the proposed development is located within 30km from several other authorised renewable energy facilities. These projects include the following (refer to Figure 9):

Project Name	Project Status
Brakpoort Solar PV Facility	Authorised
Umsinde Emoyeni Wind Energy Facility	Authorised
Aurora Solar PV Facility	Authorised
Mainstream Renewable Energy Cluster	Authorised
Ishwati Emoyeni Wind Energy Facility	Authorised
Trouberg Wind Energy Facility	Authorised
Modderfontein Wind Energy Facility	Authorised

Figure 8: Approved renewable Energy Facilities within a radius of approximately 30km (red line) around the site (DEA, 2021).

Nobelsfontein Wind Energy Facility	Authorised
Bietjiesfontein Solar Energy Facility	Authorised
Karoo Renewable Energy Facility	Authorised

In addition to the renewable energy facilities listed above, four new renewable energy facilities (three solar PV facilities and two wind farms are proposed adjacent to the project, namely:

Project Name	Affected property	Contracted Capacity
Kwana Solar PV Facility	Portion 0 of Farm Rondavel 85	100MW
Moriri Solar PV Facility	Portion 0 of Farm Rondavel 85	100MW
Nku Solar PV Facility	Portion 1 of Farm Rondavel 85	100MW
Angora Wind Farm	Portion 11 of Farm Gegundefontein 53	140MW
	Portion 0 of Farm Vogelstruisfontein 84	
	Portion 1 of Farm Rondavel 85	
	Portion 0 of Farm Rondavel 85	
Merino Wind Farm	Portion 0 of Farm Rondavel 85	140MW

Cumulative loss and/or fragmentation of indigenous natural vegetation due to clearing Nature:

Nature: Loss and/or fragmentation of indigenous natural vegetation due to clearing			
	Overall impact of the proposed	Cumulative impact of the project and	
	project considered in isolation	other projects in the area	
Extent	Site (1)	Local (2)	
Duration	Permanent (5)	Permanent (5)	
Magnitude	Low (4)	Moderate (5)	
Probability	Definite (5)	Definite (5)	
Significance	Medium (50)	High (60)	
Status (positive or negative)	Negative	Negative	
Reversibility	Low	Low	
Irreplaceable loss of resources?	Yes	Yes	
Can impacts be mitigated?	No	No	
Confidence in findings: High.			
Mitigation:			
As for site impact			

Cumulative establishment and spread of alien invasive plants Nature:

Nature: Establishment and spread of alien invasive plants over wide areas					
	Overall impact of the proposed	Cumulative impact of the project and			
	project considered in isolation	other projects in the area			
Extent	Local (2)	Local (2)			
Duration	Long-term (4)	Long-term (4)			
Magnitude	Moderate (6)	Moderate (6)			
Probability	Highly probable (4)	Highly probable (4)			
Significance	Medium (48)	Medium (48)			

Status (positive or negative)	Negative	Negative		
Reversibility	Low	Low		
Irreplaceable loss of resources?	Yes	Yes		
Can impacts be mitigated?	Yes	Yes		
Confidence in findings: High.				
Mitigation:				
As for site impact				

Cumulative damage from increased runoff and erosion Nature:

Nature: Establishment and spread of alien invasive plants over wide areas					
	Overall impact of the proposed	Cumulative impact of the project and			
	project considered in isolation	other projects in the area			
Extent	Site (1)	Site (1)			
Duration	Long-term (4)	Long-term (4)			
Magnitude	Minor (2)	Moderate (6)			
Probability	Improbable (2)	Probable (3)			
Significance	Low (14)	Medium (33)			
Status (positive or negative)	Negative	Negative			
Reversibility	Partly reversible	Partly reversible			
Irreplaceable loss of resources?	Yes but limited	Yes but limited			
Can impacts be mitigated?	Yes	Yes			
Confidence in findings: High.					
Mitigation:	Mitigation:				
As for site impact					

Assessment of No-Go alternative

If the project does not proceed then the current status quo will continue. This will involve continued use of the land for livestock production. Current patterns suggest that this will mean that the landscape remains unaltered into the future under an unchanging land-use regime. However, historical evidence has shown that livestock production, especially in arid parts of the country has led to overall degradation of the vegetation, especially in times of drought. This degradation has been shown to accumulate over time, incrementally reducing the productive capacity of the landscape. Indications are that, due to human-induced climate change, the risk of future degradation has increased. The site is in an arid area and, based on the scientific consensus that global climate change is affecting local climate and that South Africa is more significantly affected than other parts of the planet, in terms of a warming effect as well increased risk of drought, the risks to livestock production have probably worsened and will continue to do so into the future. This implies that stocking rates, and therefore profitability, will need to be reduced to avert land degradation, putting financial strain on producers. An alternative income stream associated with financial benefits from hosting renewable energy projects is likely to improve the financial viability of any land manager, which in turn reduces the pressure to carry unsustainable stock numbers. This in turn puts less pressure on the land, which reduces the likelihood of grazinginduced degradation of the land. In summary, the No-Go option could increase the risk of land degradation due to overgrazing under adverse future climate scenarios, whereas there is a possibility of this effect being lessened in the case of the project promoting local economic diversity.

Summary of mitigation measures

The following mitigation measures are recommended to address known potential impacts:

- Use existing stream crossings
- Cross streams and other linear features at right angles, and also near their end-points or where there are natural breaks in the feature of concern.
- Internal access roads should be aligned along existing farm, access and district roads, even if these require upgrading.
- Restrict impact to development footprint only and limit disturbance spreading into surrounding areas.
- Footprints of infrastructure, laydown areas, construction sites, roads and substation sites should be clearly demarcated.
- Ensure all possible steps are taken to limit erosion of surfaces, including proper management of storm-water runoff.
- Compile a Rehabilitation Plan prior to the commencement of construction.
- No additional clearing of vegetation should take place without a proper assessment of the environmental impacts and authorization from relevant authorities, unless for maintenance purposes, in which case all reasonable steps should be taken to limit damage to natural areas.
- No driving of vehicles off-road outside of construction areas.
- It is a legal requirement to obtain permits for specimens or protected species that will be lost due to construction of the project.
- A detailed pre-construction walk-through survey will be required during a favourable season to locate any individuals of protected plants, as well as for any populations of threatened plant species. This survey must cover the footprint of all approved infrastructure, including internal access roads (final infrastructure layout). The best season is **early to late Summer**, but dependent on recent rainfall and vegetation growth.
- It is possible that some plants lost to the development can be rescued and planted in appropriate places in rehabilitation areas, but the description and appropriateness of such measures must be included in a Plant Rescue Plan. Any such measures will reduce the irreplaceable loss of resources as well as the cumulative effect. Note that Search and Rescue is only appropriate for some species and that a high mortality rate can be expected from individuals of species that are not appropriate to transplant.
- A Plant Rescue Plan must be compiled to be approved by the appropriate authorities.
- For any plants that are transplanted, annual monitoring should take place to assess survival. This should be
 undertaken for a period of three years after translocation and be undertaken by a qualified botanist. The
 monitoring programme must be designed prior to translocation of plants and should include control sites
 (areas not disturbed by the project) to evaluate mortality relative to wild populations.
- Limit clearing of natural habitat designated as sensitive, especially rocky outcrops, cliffs and riparian habitats, where possible. This has already been applied during the Design phase of the project where attempts have been made to avoid sensitive habitats.
- Speed limits should be set for all roads on site, as well as access roads to the site. These limits should not exceed 40 km/h, but may be set lower, depending on local circumstances. Strict enforcement of speed limits should occur install speed control measures, such as speed humps, if necessary.
- Night driving should be strictly limited and, where absolutely required, lower speed limits should apply for night driving.
- Pre-construction walk-through, undertaken in the correct season, in front of construction must be undertaken to move any individual animals, such as tortoises, prior to construction.
- No dogs or other pets should be allowed on site, except those confined to landowners' dwellings.
- Personnel on site should undergo environmental induction training, including the need to abide by speed limits, the increased risk of collisions with wild animals on roads in rural areas..
- Proper waste management must be implemented, ensuring no toxic or dangerous substances are accessible to wildlife. This should also apply to stockpiles of new and used materials to ensure that they do not become a hazard.
- No collecting, hunting or poaching of any plant or animal species.
- Report any mortality of protected species to conservation authorities
- Personnel to be educated about protection status of species, including distinguishing features, to be able to identify protected species.

- Implement strict access control for the site.
- Report any illegal collection to conservation authorities.
- Excessive dust can be controlled by using appropriate dust-control measures.
- Compile and implement an alien management plan, which highlights control priorities and areas and provides a programme for long-term control.
- Undertake regular monitoring to detect alien invasions early so that they can be controlled, as per the Alien Management Plan.
- Implement control measures, as per the Alien Management Plan.
- Appropriate lighting should be installed to minimize impacts on nocturnal animals, as per visual specialist assessment.
- Construction activities should not be undertaken at night.
- Maintain adequate buffer zones around hydrological features so that these do not become degraded from runoff and erosion.
- Compile and implement a Stormwater Management Plan, which highlights control priorities and areas and provides a programme for long-term control.
- Undertake regular monitoring to detect erosion features early so that they can be controlled.
- Implement erosion control measures.
- Construct proper culverts, bridges and/or crossings at drainage-line crossings, and other attenuation devices to limit overland flow.
- No additional clearing of vegetation should take place during the operational phase without a proper assessment of the environmental impacts and authorization from relevant authorities, unless for maintenance purposes, in which case all reasonable steps should be taken to limit damage to natural areas.
- Surface runoff and erosion must be properly controlled during the operational phase, and any issues addressed as quickly as possible.
- Continued implementation and monitoring of Rehabilitation Plan during operational phase.
- Personnel and vehicles should be restricted to access / internal roads and no off-road driving should occur.
- Prevent unauthorised access to the site project roads provide access to remote areas that were not previously easily accessible for illegal collecting or hunting.
- Undertake regular monitoring to detect alien invasions early so that they can be controlled. This should include formal monitoring on an annual basis by a qualified botanist for up to five years.
- Implement control measures on an ongoing basis, according to the Alien Management Plan.
- Do NOT use any alien plants during rehabilitation.
- Noise and light pollution should be managed according to guidelines from the noise specialist study and visual specialist assessment respectively.

Summary of monitoring recommendations

Specific monitoring recommendations should be provided in the Plant Rescue Plan, the Alien Invasive Management Plan, and the Rehabilitation Plan. The following are broad recommendations:

Alien Invasive Species:

- Monitor for early detection, to find species when they first appear on site. This should be annual, and should be conducted by an experienced botanist. Early detection should provide a list of species and locations where they have been detected.
- Monitor for the effect of management actions on target species, which provides information on the effectiveness of management actions. Such monitoring depends on the management actions taking place. It should take place after each management action.
- Monitor for the effect of management actions on non-target species and habitats.

Rescued plants:

- The location of all transplanted rescued plants must be recorded, along with the identity of the plant.
- The health / vigour of each transplanted individual should be monitored annually for a minimum of three years.
- As a scientific control, an equal number of non-transplanted individuals of the same species, within similar habitats, should be monitored in the same way as the transplanted specimens. This will provide comparative data on the survival of wild populations relative to transplanted plants.

Threatened species

 Where populations of threatened species are found to occur on site (flora and fauna), annual monitoring of population health should take place. This should be appropriate to the species concerned.

Rehabilitated areas:

- All management actions associated with rehabilitation must be recorded after each management action has taken place.
- All rehabilitated areas should be monitored to assess vegetation recovery. For each monitoring site, an
 equivalent comparitive site in adjacent undisturbed vegetation should be similarly monitored. Monitoring data
 collection should include the following:
 - o total vegetation cover and height, as well as for each major growth form;
 - species composition, including relative dominance;
 - soil stability and/or development of erosion features;
 - o representative photographs should be taken at each monitoring period.
- Monitoring of rehabilitated areas should take place annually for a minimum of three years, or until vegetation stability has been achieved.

DISCUSSION AND CONCLUSIONS

The study area consists mostly of natural habitat that is used for commercial animal husbandry. There are existing transmission power lines running across the farm with associated access tracks as well infrastructure associated with a farmstead (Rondavel), but no other infrastructure on site. Existing impacts on natural habitat are related to grazing effects and erosion in lowland areas. The proposal to build a renewable energy facility on site will therefore have significant effects on natural habitat. The existing biodiversity on site is, however, relatively limited in terms of uniqueness or potential presence of species of concern, with the possible presence of one Critically Endangered mammal species.

The vegetation on site is <u>not</u> part of any threatened ecosystem. The regional vegetation types that occur on site, Eastern Upper Karoo and Upper Karoo Hardeveld, are both widespread and have low rates of transformation across their geographical range.

A risk assessment was undertaken which identified seven potential negative impacts due to construction or operation of the proposed infrastructure. The potential impacts are as follows:

- 1. Direct loss of vegetation. For wind energy projects, the main impact on terrestrial ecosystems is due to road construction and not to the turbines themselves. The placement of roads is therefore critical in limiting impacts.
- 2. Introduction and/or spread of declared weeds and alien invasive plants in terrestrial habitats. This can lead to additional degradation of natural areas.
- 3. Runoff and erosion due to creation of hard surfaces. This can lead to downslope impacts that can cause additional degradation beyond the direct footprint of proposed infrastructure.

An assessment of these impacts indicates that they will have a significance of low or medium. If appropriate mitigation measures are put in place, all impacts can be reduced to having low significance, except for loss of habitat, which will remain medium significance after mitigation. On the basis of this assessment, the opinion is that the project should be able to proceed on condition the recommended mitigation measures are put in place to minimise predicted impacts.

REFERENCES:

- FAIRBANKS, D.H.K., THOMPSON, M.W., VINK, D.E., NEWBY, T.S., VAN DEN BERG, H.M & EVERARD, D.A. 2000. The South African Land-Cover Characteristics Database: a synopsis of the landscape. *S.Afr.J.Science* 96: 69-82.
- HOLNESS, S. and OOSTHUYSEN, E. 2016. Critical Biodiversity Areas of the Northern Cape: Technical Report.
- MUCINA, L. AND RUTHERFORD, M.C. (editors) 2006. Vegetation map of South Africa, Lesotho and Swaziland: an illustrated guide. *Strelitzia* 19, South African National Biodiversity Institute, Pretoria.
- MUCINA, L., RUTHERFORD, M.C. AND POWRIE, I.W. (editors) 2005. Vegetation map of South Africa, Lesotho and Swaziland, 1:1 000 000 SCALE SHEET MAPS South African National Biodiversity Institute, Pretoria.
- MYERS, N., MITTERMEIR, R.A., MITTERMEIR, C.G., DE FONSECA, G.A.B., AND KENT, J. 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853-858.
- RUTHERFORD, M.C. AND WESTFALL., R.H. 1994. Biomes of Southern Africa. An objective characterisation. Memoirs of the Botanical Survey of South Africa 63, 1-94.
- RUTHERFORD, M.C., MUCINA, L. AND POWRIE, L.W. 2006. Biomes and Bioregions of Southern Africa. In: L. Mucina and M.C. Rutherford (Eds). The vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19, pp. 30-51. South African National Biodiversity Institute, Pretoria.
- VAN WYK, A.E. AND SMITH, G.F. (Eds) 2001. Regions of Floristic Endemism in Southern Africa: A review with emphasis on succulents, pp. 1-199. Umdaus Press, Pretoria.

APPENDICES:

Appendix 1: Curriculum vitae: Dr David Hoare

Education

Matric - Graeme College, Grahamstown, 1984
B.Sc (majors: Botany, Zoology) - Rhodes University, 1991-1993
B.Sc (Hons) (Botany) - Rhodes University, 1994 with distinction
M.Sc (Botany) - University of Pretoria, 1995-1997 with distinction
PhD (Botany) - Nelson Mandela Metropolitan University, Port Elizabeth

Main areas of specialisation

- Vegetation ecology, primarily in grasslands, thicket, coastal systems, wetlands.
- Plant biodiversity and threatened plant species specialist.
- Alien plant identification and control / management plans.
- Remote sensing, analysis and mapping of vegetation.
- Specialist consultant for environmental management projects.

Membership

Professional Natural Scientist, South African Council for Natural Scientific Professions, 16 August 2005 – present. Reg. no. 400221/05 (Ecology, Botany)

Member, International Association of Vegetation Scientists (IAVS)

Member, Ecological Society of America (ESA)

Member, International Association for Impact Assessment (IAIA)

Member, Herpetological Association of Africa (HAA)

Employment history

1 December 2004 – present, <u>Director</u>, David Hoare Consulting (Pty) Ltd. <u>Consultant</u>, specialist consultant contracted to various companies and organisations.

1January 2009 – 30 June 2009, Lecturer (contract), University of Pretoria, Botany Dept.

1January 2013 – 30 June 2013, Lecturer (contract), University of Pretoria, Botany Dept.

1 February 1998 – 30 November 2004, <u>Researcher</u>, Agricultural Research Council, Range and Forage Institute, Private Bag X05, Lynn East, 0039. Duties: project management, general vegetation ecology, remote sensing image processing.

Experience as consultant

Ecological consultant since 1995. Author of over 800 specialist ecological consulting reports. Wide experience in ecological studies within grassland, savanna and fynbos, as well as riparian, coastal and wetland vegetation.

Publication record:

Refereed scientific articles (in chronological order):

Journal articles:

- **HOARE, D.B.** & BREDENKAMP, G.J. 1999. Grassland communities of the Amatola / Winterberg mountain region of the Eastern Cape, South Africa. *South African Journal of Botany* 64: 44-61.
- **HOARE, D.B.**, VICTOR, J.E., LUBKE, R.A. & MUCINA, L., 2000. Vegetation of the coastal fynbos and rocky headlands south of George, South Africa. *Bothalia* 30: 87-96.
- VICTOR, J.E., **HOARE, D.B.** & LUBKE, R.A., 2000. Checklist of plant species of the coastal fynbos and rocky headlands south of George, South Africa. *Bothalia* 30: 97-101.
- MUCINA, L, BREDENKAMP, G.J., **HOARE, D.B** & MCDONALD, D.J. 2000. A National Vegetation Database for South Africa *South African Journal of Science* 96: 1-2.
- **HOARE, D.B.** & BREDENKAMP, G.J. 2001. Syntaxonomy and environmental gradients of the grasslands of the Stormberg / Drakensberg mountain region of the Eastern Cape, South Africa. *South African Journal of Botany* 67: 595 608.
- LUBKE, R.A., **HOARE, D.B.**, VICTOR, J.E. & KETELAAR, R. 2003. The vegetation of the habitat of the Brenton blue butterfly, Orachrysops niobe (Trimen), in the Western Cape, South Africa. *South African Journal of Science* 99: 201–206.
- **HOARE, D.B** & FROST, P. 2004. Phenological classification of natural vegetation in southern Africa using AVHRR vegetation index data. *Applied Vegetation Science* 7: 19-28.
- FOX, S.C., HOFFMANN, M.T. and HOARE, D. 2005. The phenological pattern of vegetation in Namaqualand, South Africa and its climatic correlates using NOAA-AVHRR NDVI data. South African Geographic Journal, 87: 85–94.
- PFAB, M.F., COMPAAN, P.C., WHITTINGTON-JONES, C.A., ENGELBRECHT, I., DUMALISILE, L., MILLS, L., WEST, S.D., MULLER, P., MASTERSON, G.P.R., NEVHUTALU, L.S., HOLNESS, S.D., HOARE, D.B. 2017. The Gauteng Conservation Plan: Planning for biodiversity in a rapidly urbanising province. Bothalia, Vol. 47:1. a2182. https://doi.org/10.4102/abc.v47i1.2182.

Book chapters and conference proceedings:

- **HOARE, D.B.** 2002. Biodiversity and performance of grassland ecosystems in communal and commercial farming systems in South Africa. Proceedings of the FAO's Biodiversity and Ecosystem Approach in Agriculture, Forestry and Fisheries Event: 12–13 October, 2002. Food and Agriculture Organisation of the United Nations, Viale delle Terme di Caracalla, Rome, Italy. pp. 10 27.
- STEENKAMP, Y., VAN WYK, A.E., VICTOR, J.E., **HOARE, D.B.**, DOLD, A.P., SMITH, G.F. & COWLING, R.M. 2005. Maputaland-Pondoland-Albany Hotspot. In: Mittermeier, R.A., Gil, P.R., Hoffmann, M., Pilgrim, J., Brooks, T., Mittermeier, C.G., Lamoreux, J. & Fonseca, G.A.B. da (eds.) *Hotspots revisited*. CEMEX, pp.218–229. ISBN 968-6397-77-9
- STEENKAMP, Y., VAN WYK, A.E., VICTOR, J.E., **HOARE, D.B.**, DOLD, A.P., SMITH, G.F. & COWLING, R.M. 2005. Maputaland-Pondoland-Albany Hotspot. http://www.biodiversityhotspots.org/xp/hotspots/maputaland/.
- HOARE, D.B., MUCINA, L., RUTHERFORD, M.C., VLOK, J., EUSTON-BROWN, D., PALMER, A.R., POWRIE, L.W., LECHMERE-OERTEL, R.G., PROCHES, S.M., DOLD, T. and WARD, R.A. *Albany Thickets*. in Mucina, L. and Rutherford, M.C. (eds.) 2006. The vegetation of South Africa, Lesotho and Swaziland. *Strelitzia* 19, South African National Biodiversity Institute, Pretoria.
- MUCINA, L., **HOARE, D.B.**, LÖTTER, M.C., DU PREEZ, P.J., RUTHERFORD, M.C., SCOTT-SHAW, C.R., BREDENKAMP, G.J., POWRIE, L.W., SCOTT, L., CAMP, K.G.T., CILLIERS, S.S., BEZUIDENHOUT, H., MOSTERT, T.H., SIEBERT, S.J., WINTER, P.J.D., BURROWS, J.E., DOBSON, L., WARD, R.A., STALMANS, M., OLIVER, E.G.H., SIEBERT, F., SCHMIDT, E., KOBISI, K., KOSE, L. 2006. *Grassland Biome*. In: Mucina, L. & Rutherford, M.C. (eds.) The vegetation of South Africa, Lesotho and Swaziland. *Strelitzia* 19. South African National Biodiversity Institute, Pretoria.
- RUTHERFORD, M.C., MUCINA, L., LÖTTER, M.C., BREDENKAMP, G.J., SMIT, J.H.L., SCOTT-SHAW, C.R., **HOARE, D.B.**, GOODMAN, P.S., BEZUIDENHOUT, H., SCOTT, L. & ELLIS, F., POWRIE, L.W., SIEBERT, F., MOSTERT, T.H., HENNING, B.J., VENTER, C.E., CAMP, K.G.T., SIEBERT, S.J., MATTHEWS, W.S., BURROWS, J.E., DOBSON, L., VAN ROOYEN, N., SCHMIDT, E., WINTER, P.J.D., DU PREEZ, P.J., WARD, R.A., WILLIAMSON, S. and HURTER, P.J.H. 2006. *Savanna Biome.* In: Mucina, L. & Rutherford, M.C. (eds.) The vegetation of South Africa, Lesotho and Swaziland. *Strelitzia* 19. South African National Biodiversity Institute, Pretoria.
- MUCINA, L., RUTHERFORD, M.C., PALMER, A.R., MILTON, S.J., SCOTT, L., VAN DER MERWE, B., **HOARE, D.B.**, BEZUIDENHOUT, H., VLOK, J.H.J., EUSTON-BROWN, D.I.W., POWRIE, L.W. & DOLD, A.P. 2006. *Nama-Karoo Biome*. In: Mucina, L. & Rutherford, M.C. (eds.) The vegetation of South Africa, Lesotho and Swaziland. *Strelitzia* 19. South African National Biodiversity Institute, Pretoria.

MUCINA, L., SCOTT-SHAW, C.R., RUTHERFORD, M.C., CAMP, K.G.T., MATTHEWS, W.S., POWRIE, L.W. and **HOARE, D.B.** 2006. *Indian Ocean Coastal Belt*. In: Mucina, L. & Rutherford, M.C. (eds.) The vegetation of South Africa, Lesotho and Swaziland. *Strelitzia* 19. South African National Biodiversity Institute, Pretoria.

Conference Presentations:

- HOARE, D.B. & LUBKE, R.A. Management effects on diversity at Goukamma Nature Reserve, Southern Cape; Paper presentation, Fynbos Forum, Bienne Donne, July 1994
- HOARE, D.B., VICTOR, J.E. & LUBKE, R.A. *Description of the coastal fynbos south of George, southern Cape*; Paper presentation, Fynbos Forum, Bienne Donne, July 1994
- HOARE, D.B. & LUBKE, R.A. Management effects on fynbos diversity at Goukamma Nature Reserve, Southern Cape; Paper presentation, South African Association of Botanists Annual Congress, Bloemfontein, January 1995
- HOARE, D.B. & BOTHA, C.E.J. *Anatomy and ecophysiology of the dunegrass Ehrharta villosa var. maxima*; Poster presentation, South African Association of Botanists Annual Congress, Bloemfontein, January 1995
- HOARE, D.B., PALMER, A.R. & BREDENKAMP, G.J. 1996. *Modelling grassland community distributions in the Eastern Cape using annual rainfall and elevation*; Poster presentation, South African Association of Botanists Annual Congress, Stellenbosch, January 1996
- HOARE, D.B. Modelling vegetation on a past climate as a test for palaeonological hypotheses on vegetation distributions; Paper presentation, Randse Afriakaanse Universiteit postgraduate symposium, 1997
- HOARE, D.B., VICTOR, J.E. & BREDENKAMP, G.J. *Historical and ecological links between grassy fynbos and afromontane fynbos in the Eastern Cape*; Paper presentation, South African Association of Botanists Annual Congress, Cape Town, January 1998
- LUBKE, R.A., HOARE, D.B., VICTOR, J.E. & KETELAAR, R. *The habitat of the Brenton Blue Butterfly*. Paper presentation, South African Association of Botanists Annual Congress, Cape Town, January 1998
- HOARE, D.B. & PANAGOS, M.D. Satellite stratification of vegetation structure or floristic composition? Poster presentation at the 34th Annual Congress of the Grassland Society of South Africa, Warmbaths, 1-4 February 1999.
- HOARE, D.B. & WESSELS, K. Conservation status and threats to grasslands of the northern regions of South Africa, Poster presentation at the South African Association of Botanists Annual Congress, Potchefstroom, January 2000.
- HOARE, D.B. Phenological dynamics of Eastern Cape vegetation. Oral paper presentation at the South African Association of Botanists Annual Congress, Grahamstown, January 2002.
- HOARE, D.B., MUCINA, L., VAN DER MERWE, J.P.H. & PALMER, A.R. Classification and digital mapping of grasslands of the Eastern Cape Poster presentation at the South African Association of Botanists Annual Congress, Grahamstown, January 2002.
- HOARE, D.B. Deriving phenological variables for Eastern Cape vegetation using satellite data Poster presentation at the South African Association of Botanists Annual Congress, Grahamstown, January 2002.
- MUCINA, L., RUTHERFORD, M.C., HOARE, D.B. & POWRIE, L.W. 2003. VegMap: The new vegetation map of South Africa, Lesotho and Swaziland. In: Pedrotti, F. (ed.) Abstracts: Water Resources and Vegetation, 46th Symposium of the International Association for Vegetation Science, June 8 to 14 Napoli, Italy.
- HOARE, D.B. 2003. Species diversity patterns in moist temperate grasslands of South Africa. Proceedings of the VIIth International Rangeland Congress, 26 July 1 August 2003, Durban South Africa. African Journal of Range and Forage Science. 20: 84.

Unpublished technical reports:

- PALMER, A.R., HOARE, D.B. & HINTSA, M.D., 1999. Using satellite imagery to map veld condition in Mpumalanga: A preliminary report. Report to the National Department of Agriculture (Directorate Resource Conservation). ARC Range and Forage Institute, Grahamstown.
- HOARE, D.B. 1999. The classification and mapping of the savanna biome of South Africa: methodology for mapping the vegetation communities of the South African savanna at a scale of 1:250 000. Report to the National Department of Agriculture (Directorate Resource Conservation). ARC Range and Forage Institute, Pretoria.
- HOARE, D.B. 1999. The classification and mapping of the savanna biome of South Africa: size and coverage of field data that exists on the database of vegetation data for South African savanna. Report to the National Department of Agriculture (Directorate Resource Conservation). ARC Range and Forage Institute, Pretoria.
- THOMPSON, M.W., VAN DEN BERG, H.M., NEWBY, T.S. & HOARE, D.B. 2001. Guideline procedures for national land-cover mapping and change monitoring. Report no. ENV/P/C 2001-006 produced for Department of Water Affairs and Forestry, National Department of Agriculture and Department of Environment Affairs and Tourism. Copyright: Council for Scientific and Industrial Research (CSIR) and Agricultural Research Council (ARC).

- HOARE, D.B. 2003. Natural resource survey of node O R Tambo, using remote sensing techniques, Unpublished report and database of field data for ARC Institute for Soil, Climate & Water, ARC Range and Forage Institute, Grahamstown.
- HOARE, D.B. 2003. Short-term changes in vegetation of Suikerbosrand Nature Reserve, South Africa, on the basis of resampled vegetation sites. Gauteng Department of Agriculture, Conservation, Environment and Land Affairs, Conservation Division.
- BRITTON, D., SILBERBAUER, L., ROBERTSON, H., LUBKE, R., HOARE, D., VICTOR, J., EDGE, D. & BALL, J. 1997. The Life-history, ecology and conservation of the Brenton Blue Butterfly (*Orachrysops niobe*) (Trimen)(*Lycaenidea*) at Brenton-on-Sea. Unpublished report for the Endangered Wildlife Trust of Southern Africa, Johannesburg. 38pp.
- HOARE, D.B., VICTOR, J.E. & MARNEWIC, G. 2005. Vegetation and flora of the wetlands of Nylsvley River catchment as component of a project to develop a framework for the sustainable management of wetlands in Limpopo Province.

Consulting reports:

Total of over 800 specialist consulting reports for various environmental projects from 1995 – present.

Workshops / symposia attended:

International Association for Impact Assessment Annual Congress, Durban, 16 – 19 May 2018.

Workshop on remote sensing of rangelands presented by Paul Tueller, University of Nevada Reno, USA, VIIth International Rangeland Congress, 26 July – 1 August 2003, Durban South Africa.

VIIth International Rangeland Congress, 26 July – 1 August 2003, Durban South Africa.

BioMap workshop, Stellenbosch, March 2002 to develop strategies for studying vegetation dynamics of Namaqualand using remote sensing techniques

South African Association of Botanists Annual Congress, Grahamstown, January 2002.

28th International Symposium on Remote Sensing of Environment, Somerset West, 27-31 March 2000.

Workshop on Vegetation Structural Characterisation: Tree Cover, Height and Biomass, 28th International Symposium on Remote Sensing of Environment, Strand, 26 March 2000.

South African Association of Botanists Annual Congress, Potchefstroom, January 2000

National Botanical Institute Vegmap Workshop, Kirstenbosch, Cape Town, 30 September-1 October 1999.

Sustainable Land Management – Guidelines for Impact Monitoring, Orientation Workshop: Sharing Impact Monitoring Experience, Zithabiseni, 27-29 September 1999.

WWF Macro Economic Reforms and Sustainable Development in Southern Africa, Environmental Economic Training Workshop, development Bank, Midrand, 13-14 September 1999.

34th Annual Congress of the Grassland Society of South Africa, Warmbaths, 1-4 February 1999

Expert Workshop on National Indicators of Environmental Sustainable Development, Dept. of Environmental Affairs and Tourism, Roodevallei Country Lodge, Roodeplaat Dam, Pretoria, 20-21 October 1998.

South African Association of Botanists Annual Congress, Cape Town, January 1998

Randse Afriakaanse Universiteit postgraduate symposium, 1997.

South African Association of Botanists Annual Congress, Bloemfontein, January 1995.

David Hoare Consulting (Pty) Ltd

Address: Postnet Suite #116 Private Bag X025 Lynnwood Ridge 0040

41 Soetdoring Avenue Lynnwood Manor Pretoria

Telephone: 087 701 7629 Cell: 083 284 5111

Fax: 086 550 2053

Email: dhoare@lantic.net

Terrestrial Plant Species Compliance Statement

prepared in accordance with the "Protocol for the Specialist Assessment and minimum report content requirements for environmental impacts on Terrestrial Plant Species"

Moriri Solar PV project near Richmond, Northern Cape Province

Prepared by: Dr David Hoare

Pr.Sci.Nat. (Botany, Ecology) 400221/05

For: Greater Kroo Renewable Energy (Pty) Ltd

11 May 2022

TABLE OF CONTENTS

TABLE OF CONTENTS	1
SPECIALIST DETAILS & DECLARATION	3
STATEMENT OF INDEPENDENCE:	3
TERMS OF REFERENCE	4
INTRODUCTION	
Project Background	
Plant Species theme	
METHODOLOGY	8
Survey timing	
FIELD SURVEY APPROACH	
Sources of information	9
Plant species	
LIMITATIONS	
IMPACT ASSESSMENT METHODOLOGY	
RESULTS	
Broad vegetation patterns	
Upper Karoo Hardeveld (NKu2)	
Eastern Upper Karoo (NKu4)	
Plant species flagged for the study area	
Hereroa concava (Aizoaceae)	
Sensitive species 945	
Additional listed plant species for the study area	18
Protected species recorded in the study area	
Plant species recorded in the study area	19
POSSIBLE IMPACTS	20
Anticipated impacts	20
Construction Phase Impacts	20
ASSESSMENT OF IMPACTS	21
Construction Phase Impacts	21
Loss of individuals of Species of Conservation Concern due to clearing for construction	
Summary of mitigation measures	
SUMMARY OF MONITORING RECOMMENDATIONS	
Comparison of infrastructure alternatives	
CONCLUSIONS	
Required pre-construction survey	
REFERENCES:	27
APPENDICES:	28
Appendix 1: List of protected tree species (National Forests Act, 1998).	
APPENDIX 2: PLANT SPECIES RECORDED ON SITE AND NEARBY.	
APPENDIX 3: FLORA PROTECTED UNDER THE NORTHERN CAPE NATURE CONSERVATION ACT NO. 9 OF 2009	40

APPENDIX	4:	Flora	AND	VERTEBRATE	ANIMAL	SPECIES	PROTECTED	UNDER	THE	National	Environmental
MANAGEN	1ENT	: BIODIV	ERSITY	ACT, 2004 (ACT 10 O	F 2004).				•••••	45
APPENDIX ;	5: C	URRICUL	UM VI	AE: DR DAVI	d Hoare						47

SPECIALIST DETAILS & DECLARATION

This report has been prepared in accordance with the "Protocol for the specialist assessment and minimum report content requirements for environmental impacts on terrestrial biodiversity", as promulgated in terms of Section 24 (5) of the National Environmental Management Act, 1998 (Act No. 107 of 1998), published in GN. No. 320 dated 20 March 2020. It has been prepared independently of influence or prejudice by any parties.

The details of Specialists are as follows –

Table 1: Details of Specialist

Specialist	Qualification and accreditation	Signature
Dr David Hoare	PhD Botany SACNASP (Pr.Sc.Nat.)	Date: 11/05/2022

<u>Details of Author:</u>

Dr David Hoare

PhD (Botany) – Nelson Mandela Metropolitan University, Port Elizabeth

Professional Natural Scientist, South African Council for Natural Scientific Professions, Reg. no. 400221/05 (Ecology, Botany)

Statement of independence:

- I, David Hoare, as the appointed plant species specialist, hereby declare/affirm the correctness of the information provided in this compliance statement, and that I:
 - 1. meet the general requirements to be independent and
 - 2. have no business, financial, personal or other interest in the proposed development and that no circumstances have occurred that may have compromised my objectivity; and
 - 3. am aware that a false declaration is an offence in terms of regulation 48 of the EIA Regulations (2014).

TERMS OF REFERENCE

PROTOCOL FOR THE SPECIALIST ASSESSMENT AND MINIMUM REPORT CONTENT REQUIREMENTS FOR ENVIRONMENTAL IMPACTS ON TERRESTRIAL PLANT SPECIES

Prior to commencing with a specialist assessment, the current use of the land and the environmental sensitivity of the site under consideration identified by the screening tool must be confirmed by the undertaking a site sensitivity verification. For the current site, the site web-based Online Screening Tool indicated MEDIUM sensitivity for the Terrestrial Plant Species Theme. This was confirmed as part of the Site Sensitivity Verification process (suspected habitat for SCC).

According to the Protocols, the following process must be followed:

- The presence or likely presence of the SCC identified by the screening tool, must be confirmed through a site inspection by a specialist registered with the SACNASP in a field of practice relevant to the taxonomic group ("taxa") for which the assessment is being undertaken.
- The assessment must be undertaken within the study area.
- The site inspection to determine the presence or likely presence of SCC must be undertaken in accordance with the Species Environmental Assessment Guideline.
- The site inspection is to confirm the presence, likely presence or confirmed absence of a SCC within the site identified as "medium" sensitivity by the screening tool.
- Where SCC are found on site or have been confirmed to be likely present, a Terrestrial Plant Species Specialist Assessment must be submitted in accordance with the requirements specified for "very high" and "high" sensitivity in this protocol.
- Similarly, where no SCC are found on site during the investigation or if the presence is confirmed to be unlikely, a Terrestrial Plant Species Compliance Statement must be submitted.

On the basis of the outcome of the reconnaissance site inspection, where no SCC were found on site, a Compliance Statement process is proposed to be followed here. However, detailed research on the species flagged for this project indicates that both have a high likelihood of occurring within specific habitats on site. Suitable habitat on site is therefore automatically treated as having HIGH sensitivity (SCC found to be likely present).

TERRESTRIAL PLANT SPECIES COMPLIANCE STATEMENT

Where the sensitivity in the Screening Report from the web-based Online Screening Tool has been confirmed to be LOW, a Plant Species Compliance Statement is required, either (1) for areas where no natural habitat remains, or (2) in natural areas where there is no suspected occurrence of SCC.

The compliance statement must be prepared by a SACNASP registered specialist under one of the two fields of practice (Botanical Science or Ecological Science).

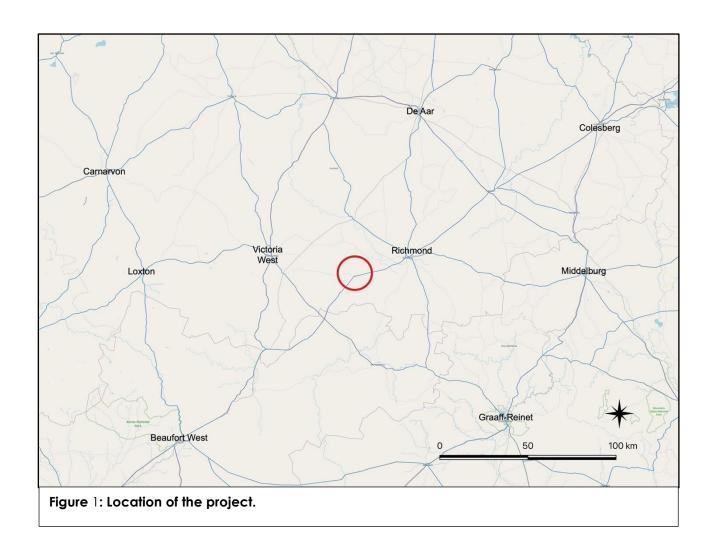
The compliance stement must:

- o be applicable within the study area
- confirm that the study area is of "low" sensitivity for terrestrial plant species; and
- o indicate whether or not the proposed development will have anyimpact on SCC.

The compliance statement must contain, as a minimum, the following information:

- o contact details of the specialist, their SACNASP registration number, their field of expertise and a curriculum vitae;
- a signed statement of independence by the specialist;

- o a statement on the duration, date and season of the site inspection and the relevance of the season to the outcome of the assessment;
- o a baseline profile description of biodiversity and ecosystems of the site;
- o the methodology used to verify the sensitivities of the terrestrial biodiversity and plant species features on the site including the equipment and modelling used where relevant;
- o in the case of a linear activity, confirmation from the terrestrial biodiversity specialist that, in their opinion, based on the mitigation and remedial measures proposed, the land can be returned to the current state within two years of completion of the construction phase;
- where required, proposed impact management outcomes or any monitoring requirements for inclusion in the EMPr;
- a description of the assumptions made as well as any uncertainties or gaps in knowledge or data; and
- o any conditions to which this statement is subjected.


A signed copy of the compliance statement must be appended to the Basic Assessment Report or Environmental Impact Assessment Report.

INTRODUCTION

Project Background

Great Karoo Renewable Energy (Pty) Ltd is proposing the development of a commercial solar PV project and associated infrastructure on a site located approximately 35km south-west of Richmond and 80km south-east of Victoria West (Figure 1), within the Ubuntu Local Municipality and the Pixley Ka Seme District Municipality in the Northern Cape Province.

The proposed facility is located just to the north of the Beaufort West Renewable Energy Development Zone (REDZ 11), one of the eleven REDZ formally gazetted in South Africa for development of solar and wind energy generation facilities.

Identified Theme Sensitivities

A sensitivity screening report from the DEA Online Screening Tool was requested in the application category: Utilities Infrastructure | Electricity | Generation | Renewable | Wind. The DEA Screening Tool report for the area indicates the following ecological sensitivities:

Theme	Very High sensitivity	High sensitivity	Medium sensitivity	Low sensitivity
Plant Species Theme			X	

Plant Species theme

The plant species theme was highlighted as being of Medium sensitivity due the potential presence of the following species:

Sensitivity	Feature(s)
Medium	Hereroa concava
Medium	Sensitive species 945

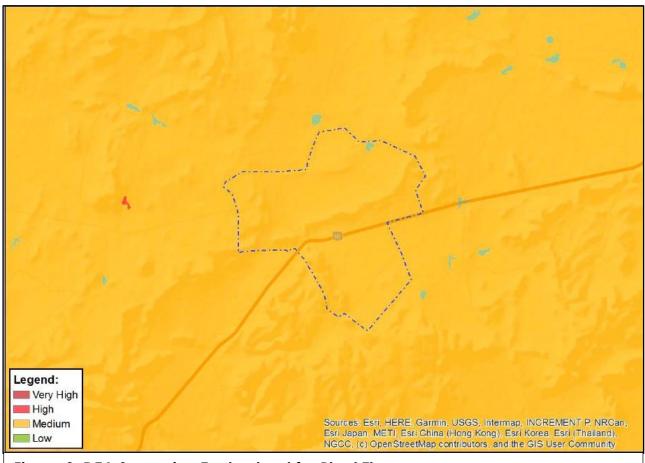


Figure 2: DEA Screening Tool extract for Plant Theme.

METHODOLOGY

The detailed methodology followed as well as the sources of data and information used as part of this assessment is described below.

Survey timing

The study commenced as a desktop-study followed by a site-specific field surveys on 25^{th} – 27^{th} April 2016, 11^{th} October 2020, 4^{th} - 6^{th} December 2020, and 30^{th} - 31^{st} July 2021. The site is within the Nama-Karoo Biome with a peak rainfall season in summer, spring and autumn, which occurs in March (major) and December / January (minor). The timing of the survey is therefore good in terms of assessing the flora of the site.

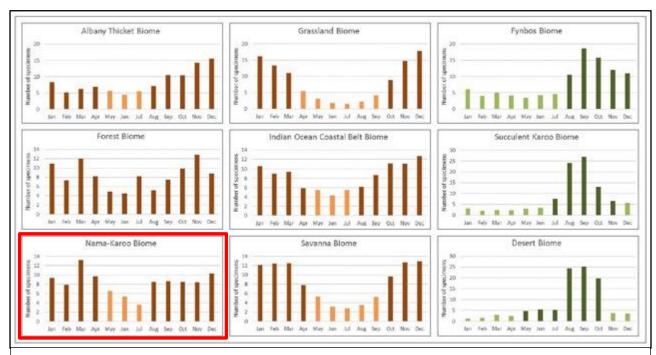


Figure 3: Recommended survey periods for different biomes (Species Environmental Assessment Guidelines). The site is within the Nama-Karoo Biome.

Field survey approach

During the field survey, all major natural variation on site was assessed and select locations were traversed on foot. A hand-held Garmin GPSMap 64s was used to record a track within which observations were made.

Aerial imagery from Google Earth was used to identify and assess habitats on site. Patterns identified from satellite imagery were verified on the ground. During the field survey, particular attention was paid to ensuring that all habitat variability was covered physically on the ground during the search for plant species. From this ground survey, as well as ad hoc observations on site, a checklist of plant species occurring on site was compiled.

Digital photographs were taken of all plant species that were seen on site. All plant species recorded were uploaded to the iNaturalist website.

Sources of information

Plant species

- Broad vegetation types occurring on site were obtained from Mucina and Rutherford (2006), with updates according to the SANBI BGIS website (http://bgis.sanbi.org). The description of each vegetation type includes a list of plant species that may be expected to occur within the particular vegetation type.
- Plant species that could potentially occur on in the general area was extracted from the NewPosa database of the South African National biodiversity Institute (SANBI) for the quarter degree grid/s in which the site is located.
- The IUCN Red List Category for plant species, as well as supplementary information on habitats and distribution, was obtained from the SANBI Threatened Species Programme (Red List of South African Plants, http://redlist.sanbi.org).
- Lists were compiled specifically for any species at risk of extinction (Red List species) previously recorded in the area. Historical occurrences of threatened plant species were obtained from the South African National Biodiversity Institute (http://posa.sanbi.org) for the quarter degree square/s within which the study area is situated. Habitat information for each species was obtained from various published sources. The probability of finding any of these species was then assessed by comparing the habitat requirements with those habitats that were found, during the field survey of the site, to occur there.
- Regulations published for the National Forests Act (Act 84 of 1998) (NFA) as amended, provide a list of protected tree species for South Africa. The species on this list were assessed in order to determine which protected tree species have a geographical distribution that coincides with the study area and habitat requirements that may be met by available habitat in the study area. The distribution of species on this list were obtained from published sources (e.g. van Wyk & van Wyk 1997) and from the SANBI Biodiversity Information System website (http://sibis.sanbi.org/) for quarter degree grids in which species have been previously recorded. Species that have been recorded anywhere in proximity to the site (within 100 km), or where it is considered possible that they could occur there, were listed and were considered as being at risk of occurring there.

Limitations

• All fieldwork undertaken for this project was of a general nature to characterize the habitat of the study area, compile checklists from as diverse a variety of habitats as possible, and to map habitats within the entire collection of farms within which the cluster of renewable energy projects is situated. The proposed project layout was only provided during the EIA process; therefore no specific footprint areas were assessed for the project, only the general area in which the project is located.

Impact assessment methodology

The Impact Assessment Methodology assists in evaluating the overall effect of a proposed activity on the environment. Impact assessment must take account of the nature, scale and duration of effects on the environment and whether such effects are positive (beneficial) or negative (detrimental). The rating system is applied to the potential impact on the receptor. In assessing the significance of each issue the following criteria (including an allocated point system) is used:

Table 2: Rating of impact assessment criteria

ENVIRONMENTAL PARAMETER A brief description of the environmental aspect likely to be affected by the proposed activity (e.g. Surface Water). ISSUE / IMPACT / ENVIRONMENTAL EFFECT / NATURE Include a brief description of the impact of environmental parameter being assessed in the context of the project. This criterion includes a brief written statement of the environmental aspect being impacted upon by a particular action or activity (e.g. oil spill in surface water). EXTENT (E) This is defined as the area over which the impact will be expressed. Typically, the severity and significance of an impact have different scales and as such bracketing ranges are often required. This is often useful during the detailed assessment of a project in terms of further defining the determined.

1	Site	The impact will only affect the site
2	Local/district	Will affect the local area or district
3	Province/region	Will affect the entire province or region
4	International and National	Will affect the entire country
		PROBABILITY (P)
This	describes the chance of occurrer	nce of an impact
1	Unlikely	The chance of the impact occurring is extremely low (Less than a 25% chance of occurrence).
2	Possible	The impact may occur (Between a 25% to 50% chance of occurrence).
3	Probable	The impact will likely occur (Between a 50% to 75% chance of occurrence).
4	Definite	Impact will certainly occur (Greater than a 75% chance of occurrence).
		REVERSIBILITY (R)
	describes the degree to which an ersed upon completion of the prop	impact on an environmental parameter can be successfully bosed activity.
1	Completely reversible	The impact is reversible with implementation of minor mitigation measures
2	Partly reversible	The impact is partly reversible but more intense mitigation measures are required.
3	Barely reversible	The impact is unlikely to be reversed even with intense mitigation measures.
4	Irreversible	The impact is irreversible and no mitigation measures exist.
	IRREPLAC	CEABLE LOSS OF RESOURCES (L)
This activ		sources will be irreplaceably lost as a result of a proposed
1	No loss of resource.	The impact will not result in the loss of any resources.

B 1 11	
Probable	The impact will likely occur (Between a 50% to 75% chance
	of occurrence).
Definite	Impact will certainly occur (Greater than a 75% chance of
	occurrence).
	REVERSIBILITY (R)
	impact on an environmental parameter can be successfully
sed upon completion of the pro	posed activity.
Completely reversible	The impact is reversible with implementation of minor mitigation measures
Partly reversible	The impact is partly reversible but more intense mitigation measures are required.
Barely reversible	The impact is unlikely to be reversed even with intense mitigation measures.
Irreversible	The impact is irreversible and no mitigation measures exist.
IRREPLA	CEABLE LOSS OF RESOURCES (L)
describes the degree to which re	esources will be irreplaceably lost as a result of a proposed
ity.	
No loss of resource.	The impact will not result in the loss of any resources.
Marginal loss of resource	The impact will result in marginal loss of resources.
Significant loss of resources	The impact will result in significant loss of resources.
Complete loss of resources	The impact is result in a complete loss of all resources.
	DURATION (D)
lescribes the duration of the impo	acts on the environmental parameter. Duration indicates the
ne of the impact as a result of th	e proposed activity.
Short term	The impact and its effects will either disappear with
	mitigation or will be mitigated through natural process in
	a span shorter than the construction phase $(0 - 1 \text{ years})$,
	or the impact and its effects will last for the period of a
	relatively short construction period and a limited recovery
	time after construction, thereafter it will be entirely negated $(0-2 \text{ years})$.
	Definite Describes the degree to which an sed upon completion of the processed upon completion of the processed upon completely reversible Partly reversible Barely reversible Irreversible IRREPLANT AND LOSS of resource. Marginal loss of resource Significant loss of resources Complete loss of resources Rescribes the duration of the impone of the impact as a result of the

2	Medium term	The impact and its effects will continue or last for some time after the construction phase but will be mitigated by direct human action or by natural processes thereafter (2 – 10 years).
3	Long term	The impact and its effects will continue or last for the entire operational life of the development but will be mitigated by direct human action or by natural processes thereafter (10 – 50 years).
4	Permanent	The only class of impact that will be non-transitory. Mitigation either by man or natural process will not occur in such a way or such a time span that the impact can be considered transient (Indefinite).
	INTEN	NSITY / MAGNITUDE (I / M)
Desc	ribes the severity of an impact.	
1	Low	Impact affects the quality, use and integrity of the system/component in a way that is barely perceptible.
2	Medium	Impact alters the quality, use and integrity of the system/component but system/ component still continues to function in a moderately modified way and maintains general integrity (some impact on integrity).
3	High	Impact affects the continued viability of the system/component and the quality, use, integrity and functionality of the system or component is severely impaired and may temporarily cease. High costs of rehabilitation and remediation.
4	Very high	Impact affects the continued viability of the system/component and the quality, use, integrity and functionality of the system or component permanently ceases and is irreversibly impaired (system collapse). Rehabilitation and remediation often impossible. If possible, rehabilitation and remediation often unfeasible due to extremely high costs of rehabilitation and remediation.
		SIGNIFICANCE (S)

Significance is determined through a synthesis of impact characteristics. Significance is an indication of the importance of the impact in terms of both physical extent and time scale, and therefore indicates the level of mitigation required. This describes the significance of the impact on the environmental parameter. The calculation of the significance of an impact uses the following formula:

Significance = (Extent + probability + reversibility + irreplaceability + duration) x magnitude/intensity.

The summation of the different criteria will produce a non-weighted value. By multiplying this value with the magnitude/intensity, the resultant value acquires a weighted characteristic which can be measured and assigned a significance rating.

5 to 23	Negative Low impact	The anticipated impact will have negligible negative effects and will require little to no mitigation.
5 to 23	Positive Low impact	The anticipated impact will have minor positive effects.
24 to 42	Negative Medium impact	The anticipated impact will have moderate negative effects and will require moderate mitigation measures.
24 to 42	Positive Medium impact	The anticipated impact will have moderate positive effects.
43 to 61	Negative High impact	The anticipated impact will have significant effects and will require significant mitigation measures to achieve an acceptable level of impact.

43 to 61	Positive High impact	The anticipated impact will have significant positive
		effects.
62 to 80	Negative Very high impact	The anticipated impact will have highly significant effects and are unlikely to be able to be mitigated adequately. These impacts could be considered "fatal flaws".
62 to 80	Positive Very high impact	The anticipated impact will have highly significant positive effects.

RESULTS

Broad vegetation patterns

There are two regional vegetation type in the study area, namely Eastern Upper Karoo and Upper Karoo Hardeveld, briefly described below, including expected species composition.

Upper Karoo Hardeveld (NKu2)

Distribution

Northern, Western and Eastern Cape Provinces: Discrete areas of slopes and ridges including dolerite dykes and sills in the region spanning Middelpos in the west and Strydenburg, Richmond and Nieu-Bethesda in the east. Most crest areas and steep slopes of the Great Escarpment facing south between Teekloofpas (connecting Leeu-Gamka and Fraserburg) and eastwards to Graaff-Reinet. Altitude varies mostly from 1 000–1 900 m..

<u>Vegetation & Landscape Features</u>

Steep slopes of koppies, butts, mesas and parts of the Great Escarpment covered with large boulders and stones supporting sparse dwarf Karoo scrub with drought-tolerant grasses of genera such as Aristida, Eragrostis and Stipagrostis.

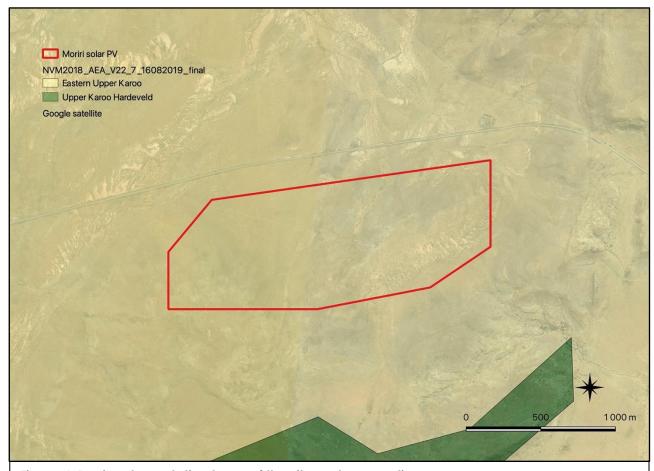


Figure 4: Regional vegetation types of the site and surrounding areas.

Geology & Soils

Primitive, skeletal soils in rocky areas developing over sedimentary rocks such as mudstones and arenites of the Adelaide Subgroup of the Karoo Supergroup and to a lesser extent also the Ecca Group (Waterford and Volksrust Formations) as well as Jurassic dolerite sills and dykes and subsummit positions of mesas and butts with dolerite boulder slopes. Almost entirely lb land type.

Climate

In the western part of its area this unit experiences the same climate as the Western Upper Karoo. In the eastern part the climate is very close to that of Karoo Escarpment. The MAP ranges from about 150 mm in the northwest to 350 mm along some grassland margins on the Great Escarpment and in the east. Water concentrates between rocks as a result of rainfall runoff. Incidence of frost is relatively high, but ranging widely from <30 days per year at lower altitudes to >80 days at highest altitudes. See also climate diagram for NKu 2 Upper Karoo Hardeveld (Figure 7.2).

<u>Important Taxa</u>

Tall Shrubs: Lycium cinereum (d), Rhigozum obovatum (d), Cadaba aphylla, Diospyros austro-africana, Ehretia rigida subsp. rigida, Lycium oxycarpum, Melianthus comosus, Rhus burchellii. Low Shrubs: Chrysocoma ciliata (d), Eriocephalus ericoides subsp. ericoides (d), Euryops lateriflorus (d), Felicia muricata (d), Limeum aethiopicum (d), Pteronia glauca (d), Amphiglossa triflora, Aptosimum elongatum, A. spinescens, Asparagus mucronatus, A. retrofractus, A. striatus, A. suaveolens, Eriocephalus spinescens, Euryops annae, E. candollei, E. empetrifolium, E. nodosus, Felicia filifolia subsp. filifolia, Garuleum latifolium, Helichrysum lucilioides, H. zeyheri, Hermannia filifolia var. filifolia, H. multiflora, H. pulchella, H. vestita, Indigofera sessilifolia, Jamesbrittenia atropurpurea, Lessertia frutescens, Melolobium candicans, M. microphyllum, Microloma armatum, Monechma incanum, Nenax microphylla, Pegolettia retrofracta, Pelargonium abrotanifolium, P. ramosissimum, Pentzia globosa, P. spinescens, Plinthus karooicus, Polygala seminuda, Pteronia adenocarpa, P. sordida, Rosenia humilis, Selago albida, Solanum capense, Sutera halimifolia, Tetragonia arbuscula, Wahlenbergia tenella. Succulent Shrubs: Aloe broomii, Drosanthemum lique, Faucaria bosscheana, Kleinia longiflora, Pachypodium succulentum, Trichodiadema barbatum, Zygophyllum flexuosum. Semiparasitic Shrub: Thesium lineatum (d). Herbs: Troglophyton capillaceum subsp. capillaceum, Dianthus caespitosus subsp. caespitosus, Gazania krebsiana, Lepidium africanum subsp. africanum, Leysera tenella, Pelargonium minimum, Sutera pinnatifida, Tribulus terrestris. Geophytic Herbs: Albuca setosa, Androcymbium albomarginatum, Asplenium cordatum, Boophone disticha, Cheilanthes bergiana, Drimia intricata, Oxalis depressa, Graminoids: Aristida adscensionis (d), A. congesta (d), A. diffusa (d), Cenchrus ciliaris (d), Enneapogon desvauxii (d), Eragrostis lehmanniana (d), E. obtusa (d), Sporobolus fimbriatus (d), Stipagrostis obtusa (d), Cynodon incompletus, Digitaria eriantha, Ehrharta calycina, Enneapogon scaber, E. scoparius, Eragrostis curvula, E. nindensis, E. procumbens, Fingerhuthia africana, Heteropogon contortus, Merxmuellera disticha, Stipagrostis ciliata, Themeda triandra, Tragus berteronianus, T. koelerioides.

Endemic Taxa

Succulent Shrubs: Aloe chlorantha, Crassula barbata subsp. broomii, Delosperma robustum, Sceletium expansum, Stomatium suaveolens. **Low Shrubs**: Cineraria polycephala, Euryops petraeus, Lotononis azureoides, Selago magnakarooica. **Tall Shrub**: Anisodontea malvastroides. **Herbs**: Cineraria arctotidea, Vellereophyton niveum. **Succulent Herbs**: Adromischus fallax, A. humilis. **Geophytic Herbs**: Gethyllis longistyla, Lachenalia auriolae, Ornithogalum paucifolium subsp. karooparkense.

Eastern Upper Karoo (NKu4)

Distribution

Northern Cape, Eastern Cape and Western Cape Provinces: Between Carnarvon and Loxton in the west, De Aar, Petrusville and Venterstad in the north, Burgersdorp, Hofmeyr and Cradock in the east and the Great Escarpment and the Sneeuberge-Coetzeesberge mountain chain in the south. Altitude varies between mostly 1 000–1 700 m. Vegetation & Landscape Features

Flats and gently sloping plains (interspersed with hills and rocky areas of Upper Karoo Hardeveld in the west, Besemkaree Koppies Shrubland in the northeast and Tarkastad Montane Shrubland in the southeast), dominated by dwarf microphyllous shrubs, with 'white' grasses of the genera Aristida and Eragrostis (these become prominent especially in the early autumn months after good summer rains). The grass cover increases along a gradient from southwest to northeast.

Geology & Soils

Mudstones and sandstones of the Beaufort Group (incl. both Adelaide and Tarkastad Subgroups) supporting duplex soils with prismacutanic and/or pedocutanic diagnostic horizons dominant (Da land type) as well as some shallow Glenrosa and Mispah soils (Fb and Fc land types). In places, less prominent Jurassic dolerites (Karoo Dolerite Suite) are also found.

Climate

Rainfall mainly in autumn and summer, peaking in March. MAP ranges from about 180 mm in the west to 430 mm in the east. Incidence of frost is relatively high, but ranging widely from <30 days (in the lower-altitude Cradock area) to >80 days of frost per year (bordering the Upper Karoo Hardeveld on the Compassberg and mountains immediately to the west). Mean maximum and minimum monthly temperatures in Middelburg (Grootfontein) are 36.1°C and -7.2°C for January and July, respectively. Corresponding values are 37°C and -8°C for Victoria West and 36.6°C and -4.2°C for Hofmeyr. See also climate diagram for NKu 4 Eastern Upper Karoo.

Important Taxa

Tall Shrubs: Lycium cinereum (d), L. horridum, L. oxycarpum. Low Shrubs: Chrysocoma ciliata (d), Eriocephalus ericoides subsp. ericoides (d), E. spinescens (d), Pentzia globosa (d), P. incana (d), Phymaspermum parvifolium (d), Salsola calluna (d), Aptosimum procumbens, Felicia muricata, Gnidia polycephala, Helichrysum dregeanum, H. lucilioides, Limeum aethiopicum, Nenax microphylla, Osteospermum leptolobum, Plinthus karooicus, Pteronia glauca, Rosenia humilis, Selago geniculata, S. saxatilis. Succulent Shrubs: Euphorbia hypogaea, Ruschia intricata. Herbs: Indigofera alternans, Pelargonium minimum, Tribulus terrestris. Geophytic Herbs: Moraea pallida (d), Moraea polystachya, Syringodea bifucata, S. concolor. Succulent Herbs: Psilocaulon coriarium, Tridentea jucunda, T. virescens. Graminoids: Aristida congesta (d), A. diffusa (d), Cynodon incompletus (d), Eragrostis bergiana (d), E. bicolor (d), E. lehmanniana (d), E. obtusa (d), Sporobolus fimbriatus (d), Stipagrostis ciliata (d), Tragus koelerioides (d), Aristida adscensionis, Chloris virgata, Cyperus usitatus, Digitaria eriantha, Enneapogon desvauxii, E. scoparius, Eragrostis curvula, Fingerhuthia africana, Heteropogon contortus, Sporobolus ludwigii, S. tenellus, Stipagrostis obtusa, Themeda triandra, Tragus berteronianus.

Endemic Taxa

Succulent Shrubs: Chasmatophyllum rouxii, Hertia cluytiifolia, Rabiea albinota, Salsola tetrandra. **Tall Shrub:** Phymaspermum scoparium. **Low Shrubs:** Aspalathus acicularis subsp. planifolia, Selago persimilis, S. walpersii.

Habitats on site

A map of habitats on site is provided in (Figure 5). This shows various habitat units on site, as follows:

- 1. Hills and mountains
- 2. Rocky areas
- 3. Plains
- 4. Drainage areas
- 5. Drainage scrub
- 6. Open water
- 7. No natural habitat

Hills and mountains

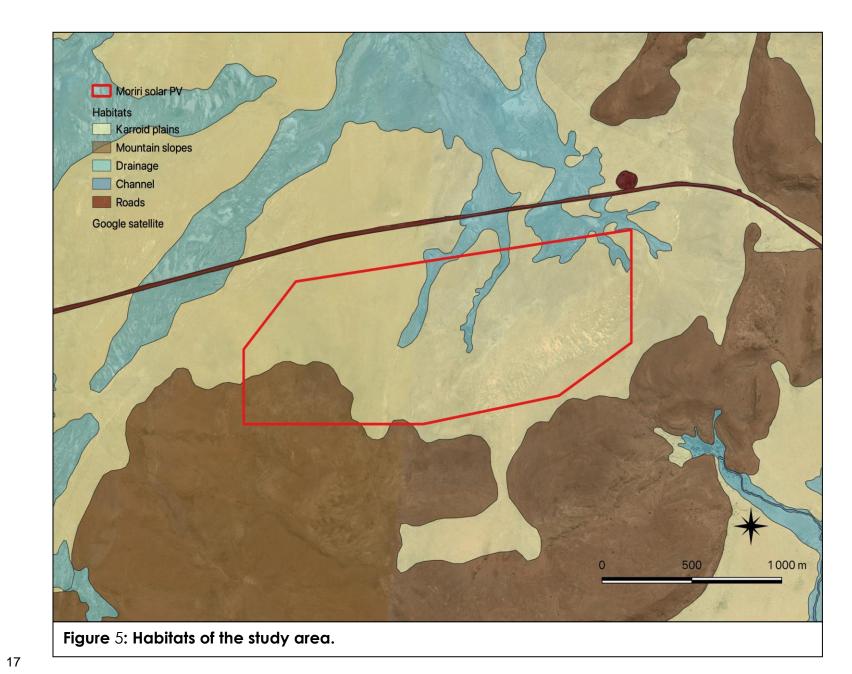
The site is characterised by the presence of a range of hills that form a mini-escarpment parallel to the national road. The topography within these areas is relatively steep and rugged. There are also various low hills and the free-standing Bloukop inland of the mini-escarpment. The vegetation in these areas is a grassy dwarf karroid shrubland. There are various parts of the hills that contain outcrops of rocks, either as shelves or as boulders. The vegetation within these areas is largely woody, consisting of various low- to medium-height shrubs.

The hills and mountains areas, including the rocky areas within them, are the most likely habitat for any SCC flagged for the site.

Plains

The plains on the lowlands have gently undulating topography. They are found between the hills throughout the site. The vegetation in these areas is mostly a dwarf karroid shrubland. These areas have been moderately to heavily grazed throughout the study area.

Drainage areas


In the lowest parts of the plains, often in wide bands, are areas that are shaped by fluvial processes and are either channelled in places or eroded from water movement. The soils are mostly deep sands where they have not been eroded away. The vegetation is a karroid dwarf shrubland or a sparse weedy community in eroded areas.

Open water

There are a number of farm dams on site. These are all man-made, but they nevertheless constitute and important water resource for wildlife. There is a possibility that the Protected Giant Bullfrog occurs in the general area, in which case these areas of open water may constitute important habitat for them.

No natural habitat

All areas where natural habitat has been lost have been included in this map unit. This includes farm houses, roads, cultivated areas, previously cultivated areas, quarries and other disturbed areas.

Plant species flagged for the study area

According to the National Web-Based Environmental screening tool, 2 plant species have been flagged as of concern for the area the current project is in, these are listed below. A description of each species is provided.

Hereroa concava (Aizoaceae)

Vulnerable B1ab(iii)

Due to taxonomic uncertainty, this species' distribution range is not well known. It appears to be endemic to a small area in the Great Karoo between Beaufort West, Richmond and De Aar. It is known to occur in Eastern Upper Karoo and Upper Karoo Hardeveld vegetation types. Plants occur sheltered among shrubs on flats and plateaus with shale outcrops. There are very few records of this species, and these known records are scattered over a wide area. Herbarium collections, where the identity is confirmed, indicate that it is common in the Karoo National Park. Its abundance elsewhere is not well known. Known records from iNaturalist include the plains above the mountains north of Beaufort West, and a hilltop north of Hanover. The study site is almost exactly half way between these two locations and habitat on site fits the description of locations where this species has been previously recorded. There are two records of Hereroa species on site that have only been identified to genus level. Based on the distribution of known taxa, it is highly likely that they are Hereroa concava. It is therefore assumed that it probably occurs on site, and that rocky hills are the most likely habitat on site.

Sensitive species 945

A Near Threatened geophyte known from the summits of rocky dolerite ridges in the Nama Karoo. It is endemic to the karoo, occurring in the Sneeuberg, Agter-Sneeuberg and Nuweveld Mountains, extending inland to the area between Hanover and Beaufort West, broadly following the N1 road. There is a known photographic observation within the broad renewable energy cluster assessed for this overall project, which is near to the current project. It is likely, based on the habitat requirements and distribution, that the species occurs on site, and that rocky hills are the most likely habitat on site.

Additional listed plant species for the study area

A database search identifies a number of additional listed plant species that could possibly occur on site that are not flagged in the Screening Tool output. This includes the following:

- <u>Tridentia virescens</u> (APOCYNACEAE) (Rare): Warmbad in southern Namibia to Kakamas and Prieska in the Nortern Cape stretching east to Prince Albert and Aberdeen. Stony ground, or hard loam in floodplains. It has a very wide geographical distribution but is rarely found. A relatively recent (2017) observation was made in the Doornkloof Nature Reserve north of Colesberg (www.ispotnature.org) and it was documented in 1957 from near Murraysburg in habitat similar to that found on site. There is therefore at least a moderate probability that it occurs on site.
- <u>Anisodontea malvastroides</u> (Rare): This species is endemic to the mountains of the Great Karoo, where it occurs in the Nuweveld and Sneeuberg mountains between Beaufort West and Middelburg in arid grassland on summit plateaus and escarpments. It has also been recorded on an inselberg-like outcrop north of Richmond. It could possibly occur on site, in which case it is likely to be found on the summit of prominent hills.
- <u>Aloe broomii var tarkaensis</u> (Rare) is found from Tarkastad and Middelburg to Graaff-Reinet in low stony ridges associated with the escarpment. The distribution of var. tarkaensis is to the south-east of the current site. Two observations of Aloe broomii were made on site, but both are from var. broomii and not var. tarkaensis. Aloe broomii var tarkaensis is therefore unlikely to occur on site.

Protected species recorded in the study area

There are a number of species recorded on site that are protected under the Northern Cape Nature Conservation Act No. 9 of 2009 (Appendix 3). It is a legal requirement to obtain a permit from the provincial authorities for the destruction of any of these species. A comprehensive walk-through survey of the final footprint is required to compile a complete list of these protected species.

Plant species recorded in the study area

A total of 72 plant species were recorded during the field surveys (Appendix 2). If other observation data is taken into account from other ad hoc surveys in the area, then there are close to 200 plant species that are known to occur in the direct study area and nearly 470 that are known from the general area that includes the site. This is relatively diverse for an arid environment.

POSSIBLE IMPACTS

Anticipated impacts

For all infrastructure components there is the possibility that individuals or populations of plant species of conservation concern may be lost due to construction impacts. It is, however, not possible to assess the significance of such impacts without information on the location of any such species, if they occur on site or not.

Based on known information, and data collected on site, the probability of encountering SCC at any particular location is considered to be low. Due to the arid nature of the area and the dispersed nature of plant populations, it is likely that any SCC on site will occur at low densities, if they occur there.

The best mitigation to address uncertainty issues related to SCC is to do a walk-through survey of all final infrastructure positions to check for SCC, and to collect the necessary data for any flora permits that may be required.

Construction Phase Impacts

1. Loss of individuals of SCC

ASSESSMENT OF IMPACTS

A detailed assessment, as per the requirements the protocol for the specialist assessment and minimum report content requirements of environmental impacts on terrestrial plant species for activities requiring environmental authorisation, (20 March 2020), of the significance of all impacts during all phases of the project (Construction, Operation, Decommissioning and Cumulative) is provided below. This also includes all proposed mitigation measures and provides assessment before and after the implementation of proposed mitigation measures.

The proposed site is identified by the national web-based environmental screening tool as being medium sensitivity for Plant Species, and the protocol therefore requires that the level of assessment must be written up in a Terrestrial Plant Species Compliance Statement.

Construction Phase Impacts

Loss of individuals of Species of Conservation Concern due to clearing for construction

Nature: Loss of individuals of Species of Conservation Concern due to clearing for construction

Impact description: The impact will occur due to clearing of indigenous vegetation for the purposes of construction of infrastructure.

	Rating	Motivation	Significance
Prior to Mitigation			
Duration	Permanent (5)	Clearing of habitat and consequent loss of individuals of plant species will be permanent	Medium Negative (30)
Extent	Local (2)	The impact will occur at the scale of the proposed infrastructure but could affect population processes more widely	
Magnitude	High (8)	For populations of plant species of concern, a worst-case scenario is that local populations are exterminated on site, in which case local population processes will cease.	
Probability	Improbable (2)	The location of possible populations is unknown. Infrastructure will be located in marginally favourable habitat, therefore there is a small possibility of it happening	

Mitigation/Enhancement Measures

Mitigation:

- 1. Undertake a detailed walk-through survey of footprint areas that are within habitats where SCC are likely to occur.
- 2. Where significant populations of SCC are found, shift infrastructure to avoid direct impacts.
- 3. Compile a Plant Rescue Plan.
- 4. Undertake monitoring to evaluate whether further measures would be required to manage impacts.

Post Mitigation/Enh	Post Mitigation/Enhancement Measures		
Duration	Permanent (5)	Clearing of habitat and	Low Negative (9)
		consequent loss of individuals of	
		plant species will be permanent	
Extent	Local (2)	The impact will occur at the scale of	
		the proposed infrastructure but	
		could affect population processes	
		more widely	
Magnitude	Minor (2)	Avoidance of impact will lead to	
		minimal loss of individuals of SCC.	
Probability	Very	Locating and avoiding any	
	improbable (1)	populations of SCC means the	
		impact will probably not occur.	

Cumulative impacts:

The probability of the impact occurring increases with the number of projects that are constructed. An assessment of cumulative impacts is provided below (separate table).

Residual Risks:

There is some residual risk on the basis that SCC are often difficult to locate in the field and could be overlooked during a walk-through survey. The risk is dependent on the competence and diligence of the botanist undertaking the walk-through survey, and the degree to which resources are limited in support of the walk-down survey.

Nature: Cumulative impacts on SCC from construction clearing due to a number of projects

Nature:			
	Overall impact of the proposed	Cumulative impact of the	
	project considered in isolation	project and other projects in the	
		area	
Extent	Local (2)	Local (2)	
Duration	Permanent (5)	Permanent (5)	
Magnitude	High (8)	High (8)	
Probability	Improbable (2)	Highly probable (4)	
Significance	Medium (30)	High (60)	
Status (positive or negative)	Negative	Negative	
Reversibility	Low	Low	
Irreplaceable loss of resources?	Yes	Yes	
Can impacts be mitigated?	Yes	Yes	
Confidence in findings: High.			
Mitigation:			
As above.			

Summary of mitigation measures

The following mitigation measures are recommended to address known potential impacts:

- It is a legal requirement to obtain permits for specimens or protected species that will be lost due to construction of the project.
- A detailed pre-construction walk-through survey will be required during a favourable season
 to locate any individuals of protected plants, as well as for any populations of threatened
 plant species. This survey must cover the footprint of all approved infrastructure, including
 internal access roads (final infrastructure layout). The best season is early to late Summer, but
 dependent on recent rainfall and vegetation growth.
- It is possible that some plants lost to the development can be rescued and planted in appropriate places in rehabilitation areas, but the description and appropriateness of such measures must be included in a Plant Rescue Plan. Any such measures will reduce the irreplaceable loss of resources as well as the cumulative effect. Note that Search and Rescue is only appropriate for some species and that a high mortality rate can be expected from individuals of species that are not appropriate to transplant.
- A Plant Rescue Plan must be compiled to be approved by the appropriate authorities.
- For any plants that are transplanted, annual monitoring should take place to assess survival.
 This should be undertaken for a period of three years after translocation and be undertaken by a qualified botanist. The monitoring programme must be designed prior to translocation of plants and should include control sites (areas <u>not</u> disturbed by the project) to evaluate mortality relative to wild populations.
- No collecting or poaching of any plant species.
- Report any loss of protected species to conservation authorities
- Personnel to be educated about protection status of species, including distinguishing features, to be able to identify protected species.
- Implement strict access control for the site.
- Report any illegal collection to conservation authorities.

Summary of monitoring recommendations

Specific monitoring recommendations should be provided in the Plant Rescue Plan, the Alien Invasive Management Plan, and the Rehabilitation Plan. The following are broad recommendations:

Rescued plants:

- The location of all transplanted rescued plants must be recorded, along with the identity of the plant.
- The health / vigour of each transplanted individual should be monitored annually for a minimum of three years.
- As a scientific control, an equal number of non-transplanted individuals of the same species, within similar habitats, should be monitored in the same way as the transplanted specimens.
 This will provide comparative data on the survival of wild populations relative to transplanted plants.

Threatened species

 Where populations of threatened species are found to occur on site (flora and fauna), annual monitoring of population health should take place. This should be appropriate to the species concerned.

Comparison of infrastructure alternatives

Three alternative sites were provided for the site compounds, one of which is also indicated as the location for the transformer station. An assessment of these is as follows:

Alternative	Sensitivities	Preference
Site compound alternative 1	MEDIUM sensitivity – karroid plains, LOW sensitivity – drainage	PREFERRED – avoids sites where SCC are likely to occur. Also, the site is adjacent to existing homestead and road and is therefore in proximity to existing disturbance, which is also preferable.
Site compound alternative 2	MEDIUM sensitivity – karroid plains, MEDIUM-HIGH sensitivity – mountain slopes	FEASIBLE – close to the existing gravel road, but partially impacts a mountain slope area.
Site compound alternative 3 / Transformer station	MEDIUM sensitivity – karroid plains, MEDIUM-HIGH sensitivity – mountain slopes.	FEASIBLE – close to the existing gravel road, but partially impacts a mountain slope area.

It is not indicated whether Site compound alternative 3 can be used as the Transformer station at the same time, or whether these are two mutually exclusive uses. If the transformer station location is fixed and the site can also be used for the site compound, then this would be the obvious location of the infrastructure.

CONCLUSIONS

There are two plant species of conservation concern that could possibly occur on site, but neither were seen during general field surveys. A targeted walk-through survey of footprint areas is required to determine if either occurs at any particular location or not. This survey can take place at the same time as the required walk-through surveys for permitting purposes, or it can be undertaken as a separate targeted survey.

Required pre-construction survey

For permitting purposes, the following flora survey is required prior to construction activities taking place:

- 1. Detailed floristic walk-through survey of all footprint areas in order to document composition, especially of protected species. This must be undertaken after an appropriate time-period after rainfall to allow emergence of any species of potential concern. The survey must also cover ALL footprint areas, including final road alignments. The walk-through survey:
 - a. MUST ASSESS THE FOOTPRINT THAT WILL BE CONSTRUCTED if this changes then the new footprint areas must be subject to a walk-through suvey in full.
 - b. MUST BE UNDERTAKEN IN THE CORRECT SEASON.
 - C. MUST BE ADEQUATELY RESOURCED TO ENSURE IT IS DONE PROPERLY.
 - d. MUST BE UNDERTAKEN BY A COMPETENT BOTANIST WITH KNOWLEDGE OF THE AREA.

REFERENCES:

- GERMISHUIZEN, G., MEYER, N.L., STEENKAMP, Y and KEITH, M. (eds.) (2006). A checklist of South African plants. Southern African Botanical Diversity Network Report No. 41, SABONET, Pretoria.
- IUCN (2001). IUCN Red Data List categories and criteria: Version 3.1. IUCN Species Survival Commission: Gland, Switzerland.
- MUCINA, L. AND RUTHERFORD, M.C. (editors) 2006. Vegetation map of South Africa, Lesotho and Swaziland: an illustrated guide. *Strelitzia* 19, South African National Biodiversity Institute, Pretoria.
- VAN WYK, A.E. AND SMITH, G.F. (Eds) 2001. Regions of Floristic Endemism in Southern Africa: A review with emphasis on succulents, pp. 1-199. Umdaus Press, Pretoria.

APPENDICES:

Appendix 1: List of protected tree species (National Forests Act, 1998).

In terms of section 15(1) of the National Forests Act, 1998, no person may cut, disturb, damage or destroy any protected tree; or possess, collect, remove, transport, export, purchase, sell, donate or in any other manner acquire or dispose of any protected tree or any product derived from a protected tree, except under a licence or exemption granted by the Minister of Agriculture, Forestry and Fisheries. The list of Protected Tree Species under the National Forest Act, 1998 (Act No. 84 of 1998) is attached here as Appendix 1. The most recent version of this list was published in the Government Gazette No. 41887 on 7 September 2018, designated as GN No. 536 of 2018, and contains 47 species distributed across South Africa.

SCHEDULE A

Botanical name	English common names	Other common names Afrikaans (A), Sepedi (P), Sesotho (S),	National tree number
		Setswana (T), Tshivenda (V), isiXhosa (X), isiZulu (Z), Xitsonga (XT)	
Acacia erioloba	Camel thorn	Kameeldoring (A)/Mogohlo (NS)/Mogoftho (T)/	168
Acacia haematoxylon	Grey camel thorn	Vaalkameeldoring (A)/Mokholo (T))	169
Adansonia digitata	Baobab	Kremetart (A)/Seboi (NS)/Mowana (T)/Ximuwu (XT	467
Afzelia quanzensis	Pod mahogany	Peulmahonie (A)/Mutokota (V)/Inkehli (Z)	207
Balanites subsp. maughamii	Torchwood	Groendoring (A)/Ugobandlovu (Z)	251
Barringtonia racemosa	Powder-puff tree	Poeierkwasboom (A)/lboqo (Z)	524
Boscia albitrunca	Shepherd's tree	Witgat (A)/Mohlopi (NS)/Motlhopi (T)/ Muvhombwe (V)/Umgqomogqomo (X)/Umvithi (Z)	122
Brachystegia spiciformis	Msasa	Msasa (A)	198.1
Breonadia salicina	Matumi	Mingerhout (A)/Mohlome (NS)/Mutulume (V)/Umfomfo (Z)	684
Bruguiera gymnorrhiza	Black mangrove	Swartwortelboom (A)/isiKhangati (X)/IsiHlobane (Z)	527
Cassipourea swaziensis	Swazi onionwood	Swazi-uiehout (A)	531.1
Catha edulis	Bushman's tea	Boesmanstee (A)/Mohlatse (NS)/Igqwaka (X)/Umhlwazi (Z)	404
Ceriops tagal	Indian mangrove	Indiese wortelboom (A)/isinkaha (Z)	525

Cleistanthus schlechteri var. schlechteri	False tamboti	Bastertambotie (A)/Umzithi (Z)	320
Colubrina nicholsonii	Pondo weeping thorn	Pondo-treurdoring (A)	453.8
Combretum imberbe	Leadwood	Hardekool (A)/Mohwelere-tshipi (NS)/Motswiri (T)/Impondondlovu (Z)	539
Curtisia dentata	Assegai	Assegaai (A)/Umgxina (X)/Umagunda (Z)	570
Elaeodendron transvaalensis	Bushveld saffron	Bosveld-saffraan (A)/Monomane (T)/Ingwavuma (Z)	416
Erythrophysa transvaalensis	Bushveld red balloon	Bosveld-rooiklapperbos (A)/Mofalatsane (T)	436.2
Euclea pseudebenus	Ebony guarri	Ebbeboom-ghwarrie (A)	598
Ficus trichopoda	Swamp fig	Moerasvy (A)/Umvubu (Z)	54
Leucadendron argenteum	Silver tree	Silwerboom (A)	77
Lumnitzera racemosa var. racemosa	Tonga mangrove	Tonga-wortelboom (A)/isiKhaha-esibomvu (Z)	552
Lydenburgia abbottii	Pondo bushman's tea	Pondo-boesmanstee (A)	407
Lydenburgia cassinoides	Sekhukhuni bushman's tea	Sekhukhuni-boesmanstee (A)	406
Mimusops caffra	Coastal red milkwood	Kusrooimelkhout (A)/Umthunzi (X)/Umkhakhayi (Z)	583
Newtonia hildebrandtii var. hildebrandtii	Lebombo wattle	Lebombo-wattel (A)/Umfomothi (Z)	191
Ocotea bullata	Stinkwood	Stinkhout (A)/Umhlungulu (X)/Umnukane (Z)	118
Ozoroa namaquensis	Gariep resin tree	Gariep-harpuisboom (A)	373.2
Philenoptera violacea	Apple-leaf	Appelblaar (A)/Mphata (NS)/Mohata (T)/isiHomohomo (Z)	238
Pittosporum viridiflorum	Cheesewood	Kasuur (A)/Kgalagangwe (NS)/Umkhwenkwe (X)/Umfusamvu (Z)	139
Podocarpus elongatus	Breede River yellowwood	Breeriviergeelhout (A)	15
Podocarpus falcatus (Afrocarpus falcatus)	Outeniqua yellowwood	Outniekwageelhout (A)/Mogobagoba (NS)/Umkhoba (X)/Umsonti (Z)	16
Podocarpus henkelii	Henkel's yellowwood	Henkel se geelhout (A)/Umsonti (X)/Umsonti (Z)	17
Podocarpus latifolius	Real yellowwood	Regte-geelhout (A)/Mogobagoba (NS)/Umcheya (X)/Umkhoba (Z)	18
Protea comptonii	Saddleback sugarbush	Barberton-suikerbos (A)	88
Protea curvata	Serpentine sugarbush	Serpentynsuikerbos (A)	88.1
Prunus africana	Red stinkwood	Rooistinkhout (A)/Umkhakhase (X)/Umdumezulu (Z)	147
Pterocarpus angolensis	Wild teak	Kiaat (A)/Moroto (NS)/Mokwa (T)/Mutondo (V)/Umvangazi (Z)	236
Rhizophora mucronata	Red mangrove	Rooiwortelboom (A)/isiKhangathi (X)/Umhlume (Z)	526

Sclerocarya birrea subsp. caffra	Marula	Maroela (A)/Morula (NS)/Morula (T)/Umganu (Z) /Nkanyi (XT)	360
Securidaca longepedunculata	Violet tree	Krinkhout (A)/Mmaba (T)	303
Sideroxylon inerme subsp. inerme	White milkwood	Witmelkhout (A)/Ximafana (X)/Umakhwelafingqane (Z)	579
Tephrosia pondoensis	Pondo poison pea	Pondo-gifertjie (A)	226.1
Warburgia salutaris	Pepper-bark tree	Peperbasboom (A)/Molaka (NS)/Mulanga (V)/isiBaha (Z)	488
Widdringtonia cedarbergensis	Clanwilliam cedar	Clanwilliamseder (A)	19
Widdringtonia schwarzii	Willowmore cedar	Baviaanskloofseder (A)	21
Berchemia zeyheri (RHAMNACEAE) LC	Red ivory Pink ivory	Rooi-ivoor (A) / Rooihout (A) / Monee (S) / umNeyi (SW) / umNini (Z, X) / Xiniyani (TS) / Moye (T) / Munia-niane (V)	450
Diospyros mespiliformis	Jackal berry	Jakkalsbessie (A) / Musuma (V) / Muntoma (TS) / Mgula (TS)	606
(EBENACEAE) LC	Marakatti /	A A control tile come (A) / A A concle concle co (T) /	227
Schinziophyton rautanenii	Manketti / Mongongo	Mankettiboom (A) / Monghongho (T) / Makongwa (T)	337
Umtiza listeriana	Umtiza	Umtiza (X) / Omtisa (A)	205

Boscia albitrunca has a geographical distribution that is close to the study area.

Appendix 2: Plant species recorded on site and nearby.

This list was compiled by extracting a list of species that have been recorded within a rectangular area that includes the study area as well as similar habitats in surrounding areas, as obtained from http://newposa.sanbi.org/ accessed on 12 September 2021. It is probable that it includes some species that occur in habitats that do not occur on site. The list was supplemented from field observations, as well as observations from www.inaturalist.org, which are photographic observations verified by an online community.

The list is arranged by family in alphabetical order. Species listed in green are those that were found on site and those in blue are from iNaturalist for the general area.

Scrophulariaceae Aptosimum procumbens Indigenous

Acanthaceae Blepharis capensis Indigenous

Acanthaceae Justicia incana Indigenous

Agavaceae Agave americana* (Category 1b)

Aizoaceae Chasmatophyllum musculinum Indigenous

Aizoaceae Delosperma lootsbergense Indigenous; Endemic

Aizoaceae Delosperma multiflorum Indigenous; Endemic

Aizoaceae Drosanthemum hispidum Indigenous; Endemic

Aizoaceae Drosanthemum lique Indigenous; Endemic

Aizoaceae Galenia africana Indigenous

Aizoaceae Galenia glandulifera Indigenous; Endemic

Aizoaceae Galenia procumbens Indigenous; Endemic

Aizoaceae Galenia pubescens Indigenous; Endemic

Aizoaceae Galenia secunda Indigenous

Aizoaceae Hereroa incurva Indigenous; Endemic

Aizoaceae Mesembryanthemum coriarium Indigenous

Aizoaceae Mesembryanthemum crystallinum

Aizoaceae Mesembryanthemum nodiflorum Indigenous

Aizoaceae Pleiospilos compactus Indigenous

Aizoaceae Ruschia cradockensis

Aizoaceae Ruschia intricata

Aizoaceae Ruschia spinosa

Aizoaceae Ruschia sp.

Aizoaceae Trichodiadema attonsum Indigenous; Endemic

Aizoaceae Trichodiadema peersii Indigenous; Endemic

Aizoaceae Trichodiadema rogersiae Indigenous; Endemic

Aizoaceae Trichodiadema setuliferum Indigenous; Endemic

Alliaceae Allium sp.

Amaranthaceae Amaranthus thunbergii Indigenous

Amaranthaceae Amaranthus hybridus*

Amaranthaceae Atriplex nummularia*

Amaranthaceae Atriplex semibaccata*

Amaranthaceae Blitum virgatum subsp. virgatum Not indigenous; Cryptogenic

Amaranthaceae Caroxylon aphyllum

Amaranthaceae Dysphania schraderiana Indigenous

Amaranthaceae Exomis microphylla var. axyrioides Indigenous; Endemic

Amaranthaceae Salsola kali Not indigenous; Naturalised; Invasive

Amaranthaceae Sericorema remotiflora Indigenous

Amaryllidaceae Cyrtanthus macowanii Indigenous; Endemic

Amarvllidaceae Brunsviaia radulosa

Amaryllidaceae Boophone disticha

Anacardiaceae Schinus molle*

Anacardiaceae Searsia burchellii

Anacardiaceae Searsia discolor Indigenous

Anacardiaceae Searsia divaricata Indigenous

Anacardiaceae Searsia lancea Indigenous

Anacardiaceae Searsia lucida

Anacardiaceae Searsia pyroides Indigenous

Apiaceae Berula thunbergii

Apiaceae Chamarea longipedicellata Indigenous

Apiaceae Chamarea sp.

Apiaceae Deverra denudata subsp. aphylla Indigenous

Apocynaceae Gomphocarpus fruticosus Indigenous

Apocynaceae Cynanchum orangeanum Indigenous

Apocynaceae Cynanchum viminale Indigenous

Apocynaceae Duvalia maculata Indigenous

Apocynaceae Fockea comaru Indigenous

Apocynaceae Huernia barbata subsp. barbata Indigenous

Apocynaceae Stapelia grandiflora var. grandiflora Indigenous

Apocynaceae Microloma armatum Indigenous

Apocynaceae Tridentea jucunda Indigenous

Apocynaceae Tridentea virescens Indigenous RARE

Apocynaceae Xysmalobium gomphocarpoides Indigenous

Aponogetonaceae Aponogeton junceus

Asparagaceae Asparagus asparagoides Indigenous

Asparagaceae Asparagus burchellii Indigenous

Asparagaceae Asparagus capensis var. capensis Indigenous

Asparagaceae Asparagus exuvialis Indigenous

Asparagaceae Asparagus glaucus Indigenous

Asparagaceae Asparagus Iaricinus Indigenous

Asparagaceae Asparagus mucronatus Indigenous

Asparagaceae Asparagus retrofractus

Asparagaceae Asparagus suaveolens

Asparagaceae Daubenya comata Indigenous

Asphodelaceae Bulbine abyssinica Indigenous

Asphodelaceae Haworthia bolusii var. blackbeardiana Indigenous; Endemic

Asphodelaceae Haworthia bolusii var. bolusii Indigenous; Endemic

Asphodelaceae Haworthia marumiana var. marumiana Indigenous; Endemic

Asphodelaceae Haworthiopsis tessellata Indigenous

Asphodelaceae Kniphofia stricta Indigenous; Endemic

Asphodelaceae Trachyandra acocksii Indigenous; Endemic

Asphodelaceae Trachyandra karrooica Indigenous

Asphodolaceae Aloe broomii var. broomii

Asphodolaceae Aloe claviflora

Asteraceae Arctotheca calendula Indigenous

Asteraceae Arctotis adpressa Indigenous; Endemic

Asteraceae Arctotis dregei Indigenous

Asteraceae Arctotis leiocarpa Indigenous

Asteraceae Arctotis sp.

Asteraceae Arctotis subacaulis Indigenous

Asteraceae Centaurea calcitrapa* Not indigenous; Naturalised

Asteraceae Chrysocoma ciliata

Asteraceae Cineraria aspera Indigenous

Asteraceae Cineraria lyratiformis Indigenous

Asteraceae Cirsium vulgare* Category 1b

Asteraceae Conyza scabrida Indigenous

Asteraceae Crassothonna protecta Indigenous

Asteraceae Crassothonna sedifolia Indigenous

Asteraceae Curio radicans Indigenous

Asteraceae Cuspidia cernua subsp. annua Indigenous; Endemic

Asteraceae Denekia capensis Indigenous

Asteraceae Dicerothamnus rhinocerotis Indigenous; Endemic

Asteraceae Dimorphotheca caulescens Indigenous

Asteraceae Dimorphotheca cuneata Indigenous

Asteraceae Eriocephalus africanus Asteraceae Eriocephalus ericoides

Asteraceae Eriocephalus eximius Indigenous

Asteraceae Eriocephalus sp.

Asteraceae Euryops annae Indigenous

Asteraceae Euryops lateriflorus Indigenous

Asteraceae Euryops nodosus Indigenous

Asteraceae Euryops oligoglossus subsp. oligoglossus Indigenous

Asteraceae Euryops petraeus Indigenous; Endemic

Asteraceae Euryops tenuissimus subsp. trifurcatus Indigenous; Endemic

Asteraceae Felicia filifolia subsp. filifolia Indigenous Asteraceae Felicia filifolia subsp. schaeferi Indigenous

Asteraceae Felicia muricata subsp. muricata Indigenous

Asteraceae Felicia ovata Indigenous; Endemic

Asteraceae Garuleum bipinnatum Indigenous; Endemic

Asteraceae Garuleum pinnatifidum Indigenous; Endemic

Asteraceae Gazania krebsiana subsp. arctotoides Indigenous

Asteraceae Gazania krebsiana subsp. krebsiana Indigenous

Asteraceae Gazania linearis var. linearis Indigenous

Asteraceae Geigeria ornativa subsp. ornativa Indigenous

Asteraceae Helichrysum albo-brunneum Indigenous

Asteraceae Helichrysum cerastioides var. cerastioides Indigenous

Asteraceae Helichrysum hamulosum Indigenous; Endemic

Asteraceae Helichrysum lineare Indigenous

Asteraceae Helichrysum lucilioides Indigenous

Asteraceae Helichrysum nudifolium var. nudifolium Indigenous

Asteraceae Helichrysum pumilio subsp. pumilio Indigenous; Endemic

Asteraceae Helichrysum rosum var. arcuatum Indigenous; Endemic

Asteraceae Helichrysum splendidum Indigenous

Asteraceae Helichrysum stoloniferum Indigenous; Endemic

Asteraceae Helichrysum tysonii Indigenous; Endemic

Asteraceae Helichrysum zeyheri Indigenous

Asteraceae Hertia cluytiifolia Indigenous

Asteraceae Hilliardiella capensis Indigenous

Asteraceae Oedera humilis

Asteraceae Oedera oppositifolia Indigenous; Endemic

Asteraceae Oedera spinescens Indigenous; Endemic

Asteraceae Osteospermum incanum subsp. subcanescens Indigenous; Endemic

Asteraceae Osteospermum leptolobum Indigenous

Asteraceae Osteospermum scariosum var. scariosum Indigenous

Asteraceae Osteospermum sinuatum Indiaenous

Asteraceae Osteospermum sinuatum var. sinuatum Indigenous

Asteraceae Osteospermum spinescens Indigenous

Asteraceae Othonna auriculifolia Indigenous; Endemic

Asteraceae Othonna coronopifolia Indigenous; Endemic

Asteraceae Pegolettia retrofracta Indigenous

Asteraceae Pentzia globosa Indigenous

Asteraceae Pentzia incana Indigenous

Asteraceae Pentzia punctata Indigenous

Asteraceae Pentzia quinquefida Indigenous

Asteraceae Phymaspermum aciculare Indigenous

Asteraceae Phymaspermum parvifolium Indigenous

Asteraceae Phymaspermum thymelaeoides Indigenous

Asteraceae Pteronia adenocarpa Indigenous; Endemic

Asteraceae Pteronia glauca

Asteraceae Pteronia glomerata

Asteraceae Pteronia viscosa

Asteraceae Senecio alchelleifolius Indigenous

Asteraceae Senecio acutifolius Indigenous

Asteraceae Senecio cotyledonis Indigenous

Asteraceae Senecio erysimoides Indigenous

Asteraceae Senecio hastatus Indigenous

Asteraceae Senecio reptans Indigenous; Endemic

Asteraceae Sonchus asper

Asteraceae Tagetes minuta*

Asteraceae Taraxacum officinale*

Asteraceae Tarchonanthus minor

Asteraceae Ursinia pilifera Indigenous; Endemic

Asteraceae Vallereophyton sp.

Asteraceae Xanthium spinosum* (Category 1b)

Asterceae Cichorium intybus*

Bignoniaceae Rhigozum obovatum Indigenous

Boraginaceae Anchusa riparia Indigenous

Brassicaceae Cadaba aphylla

Brassicaceae Erucastrum strigosum Indigenous

Brassicaceae Heliophila cornuta var. squamata Indigenous

Brassicaceae Heliophila crithmifolia Indigenous

Brassicaceae Heliophila rigidiuscula Indigenous

Brassicaceae Heliophila suavissima Indigenous

Brassicaceae Lepidium africanum subsp. divaricatum Indigenous

Brassicaceae Lepidium trifurcum Indiaenous

Brassicaceae Sisymbrium capense Indigenous

Brassicaceae Sisymbrium turczaninowii Indigenous

Cactaceae Cylindropuntia imbricata imbricata* (Category 1b)

Cactaceae Cylindropuntia pallida* (Category 1b)

Cactaceae Opuntia ficus-indica* (Category 1b)

Cactaceae Opuntia robusta* (Category 1b)

Campanulaceae Wahlenbergia albens Indigenous

Campanulaceae Wahlenbergia androsacea Indigenous

Campanulaceae Wahlenbergia nodosa Indigenous

Campanulaceae Wahlenbergia thunbergiana Indigenous

Capparaceae Boscia albitrunca Indigenous PROTECTED

Caryophyllaceae Dianthus laingsburgensis (wrong id / distribution)

Caryophyllaceae Pollichia campestris

Caryophyllaceae Silene undulata undulata

Characeae Chara sp.

Colchicaceae Colchicum asteroides Indigenous; Endemic

Colchicaceae Colchicum burkei Indigenous

Colchicaceae Colchicum melanthioides subsp. melanthioides Indigenous

Colchicaceae Ornithoglossum vulgare Indigenous

Colchicaceae Ornithoglossum undulatum Indigenous

Convolvulaceae Convolvulus sagittatus Indigenous

Crassulaceae Adromischus filicaulis subsp. marlothii Indigenous; Endemic

Crassulaceae Adromischus triflorus Indigenous; Endemic

Crassulaceae Adromischus trigynus Indigenous; Endemic

Crassulaceae Anacampseros sp. Indigenous; Endemic

Crassulaceae Crassula campestris

Crassulaceae Crassula capitella capitella

Crassulaceae Crassula corallina

Crassulaceae Crassula muscosa var. muscosa Indigenous

Crassulaceae Crassula pyramidalis

Crassulaceae Crassula subaphylla

Crassulaceae Crassula vaillantii

Cucurbitaceae Kedrostis africana Indigenous

Cyperaceae Afroscirpoides dioeca Indigenous

Cyperaceae Carex glomerabilis Indigenous

Cyperaceae Cyperus capensis Indigenous

Cyperaceae Cyperus congestus Indigenous

Cyperaceae Cyperus marginatus Indigenous

Cyperaceae Cyperus usitatus Indigenous

Cyperaceae Isolepis expallescens Indigenous; Endemic

Cyperaceae Isolepis sororia Indigenous; Endemic

Dryopteridaceae Dryopteris antarctica Indiaenous

Dryopteridaceae Dryopteris dracomontana Indigenous

Ebenaceae Diospyros austro-africana var. microphylla Indigenous

Ebenaceae Diospyros austroafricana Indigenous

Ebenaceae Diospyros lycioides

Ericaceae Erica woodii var. woodii Indigenous

Eriospermaceae Eriospermum alcicorne

Euphorbiaceae Euphorbia caterviflora

Euphorbiaceae Euphorbia clavarioides

Euphorbiaceae Euphorbia decepta Indigenous; Endemic

Euphorbiaceae Euphorbia mauritanica Indigenous

Euphorbiaceae Euphorbia rhombifolia

Euphorbiaceae Euphorbia stellispina Indigenous; Endemic

Fabaceae Aspalathus perforata Indigenous; Endemic

Fabaceae Aspalathus triquetra Indigenous; Endemic

Fabaceae Cullen tomentosum Indigenous

Fabaceae Calobota spinescens Indigenous

Fabaceae Indigastrum niveum Indigenous

Fabaceae Indigofera alternans var. alternans Indigenous

Fabaceae Indigofera sessilifolia Indigenous

Fabaceae Lessertia annularis Indigenous

Fabaceae Lessertia frutescens subsp. microphylla Indigenous

Fabaceae Melolobium calycinum Indigenous

Fabaceae Melolobium candicans

Fabaceae Melolobium microphyllum Indigenous

Fabaceae Prosopis glandulosa* (Category 1b)

Fabaceae Rhynchosia capensis Indigenous; Endemic

Fabaceae Vachellia karroo Indigenous

Geraniaceae Erodium cicutarium*

Geraniaceae Pelargonium abrotanifolium

Geraniaceae Pelargonium alchemilloides

Geraniaceae Pelargonium aridum

Geraniaceae Pelargonium karooicum

Geraniaceae Pelargonium minimum

Geraniaceae Monsonia salmoniflora

Geraniaceae Pelargonium proliferum Indigenous; Endemic

Geraniaceae Pelargonium tragacanthoides Indigenous

Grimmiaceae Grimmia laevigata

Hyacinthaceae Albuca prasina Indigenous

Hyacinthaceae Albuca setosa Indigenous

Hyacinthaceae Daubenya comata Indigenous; Endemic

Hyacinthaceae Drimia anomala Indigenous; Endemic

Hyacinthaceae Drimia platyphylla Indigenous; Endemic

Hyacinthaceae Lachenalia ensifolia Indigenous; Endemic

Hyacinthaceae Massonia dentata Indigenous; Endemic

Hypoxidaceae Empodium gloriosum Indigenous; Endemic

Iridaceae Babiana bainesii Indigenous

Iridaceae Babiana hypogaea Indigenous

Iridaceae Babiana sambucina subsp. sambucina Indigenous; Endemic

Iridaceae Dierama pendulum Indigenous; Endemic

Iridaceae Gethyllis longistyla Indigenous

Iridaceae Hesperantha longituba Indigenous

Iridaceae Lapeirousia plicata subsp. plicata Indigenous

Iridaceae Moraea polystachya

Iridaceae Romulea macowanii var. alticola Indigenous

Iridaceae Syringodea concolor Indigenous; Endemic

Iridaceae Tritonia karooica Indigenous; Endemic

Iridaceae Tritonia Iaxifolia Indigenous

Juncaceae Juncus rigidus Indigenous

Juncaceae Juncus excertus Indigenous

Lamiaceae Mentha longifolia capensis Indigenous

Lamiaceae Salvia runcinata Indigenous

Lamiaceae Salvia stenophylla Indigenous

Lamiaceae Salvia verbenaca Indigenous

Lamiaceae Stachys hyssopoides Indigenous

Lamiaceae Stachys rugosa Indigenous

Limeaceae Limeum aethiopicum Indigenous

Limeaceae Limeum aethiopicum var. aethiopicum Indigenous; Endemic

Limeaceae Limeum fenestratum var. fenestratum Indigenous

Limeaceae Limeum humifusum Indigenous

Loranthaceae Moquiniella rubra Indigenous

Loranthaceae Septulina glauca Indigenous

Malvaceae Anisodontea capensis Indigenous; Endemic

Malvaceae Hermannia coccocarpa Indigenous

Malvaceae Hermannia cuneifolia var. cuneifolia Indigenous

Malvaceae Hermannia cuneifolia var. glabrescens Indigenous

Malvaceae Hermannia filifolia

Malvaceae Hermannia grandiflora Indigenous

Malvaceae Hermannia pulchella Indigenous

Malvaceae Hermannia spinosa

Malvaceae Hermannia vestita

Malvaceae Hermannia vestita Indigenous

Melianthaceae Melianthus comosus

Melianthaceae Melianthus dregeanus subsp. dregeanus Indigenous; Endemic

Myrtaceae Eucalyptus camaldulensis* (Category 1b)

Orchidaceae Eulophia ovalis var. ovalis Indigenous

Orchidaceae Habenaria arenaria Indiaenous

Orobanchaceae Hyobanche sanguinea Indigenous

Osmundaceae Todea barbara Indigenous

Oxalidaceae Oxalis depressa Indigenous

Oxalidaceae Oxalis obliquifolia Indigenous

Oxalidaceae Oxalis smithiana Indigenous

Papaveraceae Argemone ochroleuca* (Category 1b)

Pedaliaceae Pterodiscus speciosus Indigenous

Pedaliaceae Sesamum capense Indiaenous

Plantaginaceae Veronica anagallis-aquatica*

Poaceae Agrostis Iachnantha var. Iachnantha Indigenous

Poaceae Amelichloa clandestina* Not indigenous; Naturalised

Poaceae Aristida adscensionis Indigenous

Poaceae Aristida congesta subsp. congesta Indigenous

Poaceae Aristida diffusa subsp. burkei Indigenous

Poaceae Aristida diffusa subsp. diffusa Indigenous; Endemic

Poaceae Aristida sp.

Poaceae Arundo donax* (Category 1b)

Poaceae Brachiaria eruciformis Indigenous

Poaceae Bromus catharticus Not indigenous; Naturalised; Invasive

Poaceae Bromus sp.

Poaceae Cenchrus ciliaris Indigenous

Poaceae Cymbopogon prolixus Indigenous

Poaceae Cymbopogon pospischilii Indigenous; Endemic

Poaceae Cynodon incompletus Indigenous; Endemic

Poaceae Digitaria eriantha

Poaceae Digitaria sanguinalis Not indigenous; Naturalised

Poaceae Echinochloa crus-galli Indigenous

Poaceae Ehrharta calycina Indigenous

Poaceae Ehrharta erecta var. erecta Indigenous

Poaceae Ehrharta pusilla Indigenous

Poaceae Enneapogon desvauxii Indigenous

Poaceae Enneapogon scoparius Indigenous

Poaceae Eragrostis bicolor Indigenous

Poaceae Eragrostis chloromelas Indigenous

Poaceae Eragrostis cilianensis Indigenous

Poaceae Eragrostis curvula Indigenous

Poaceae Eragrostis cylindriflora Indigenous

Poaceae Eragrostis lehmanniana var. lehmanniana Indigenous

Poaceae Eragrostis nindensis Indigenous

Poaceae Eragrostis obtusa Indigenous

Poaceae Eragrostis tef Not indigenous; Naturalised

Poaceae Eragrostis truncata Indigenous

Poaceae Eustachys paspaloides Indigenous

Poaceae Festuca arundinacea Not indigenous; Naturalised

Poaceae Fingerhuthia africana Indigenous

Poaceae Fingerhuthia sesleriiformis Indigenous

Poaceae Heteropogon contortus

Poaceae Koeleria capensis Indigenous

Poaceae Leptochloa fusca Indigenous

Poaceae Lolium arundinaceum*

Poaceae Lolium multiflorum Not indigenous; Naturalised; Invasive

Poaceae Lolium perenne Not indigenous; Naturalised; Invasive

Poaceae Lolium temulentum Not indigenous; Naturalised; Invasive

Poaceae Melica decumbens

Poaceae Miscanthus ecklonii Indigenous

Poaceae Panicum coloratum Indigenous

Poaceae Paspalum dilatatum Not indigenous; Naturalised; Invasive

Poaceae Paspalum distichum*

Poaceae Phragmites australis Indigenous

Poaceae Polypogon monspeliensis Not indigenous; Naturalised

Poaceae Schismus barbatus Indigenous

Poaceae Setaria italica Not indigenous; Naturalised

Poaceae Setaria verticillata Indigenous

Poaceae Sporobolus fimbriatus Indiaenous

Poaceae Sporobolus ioclados Indigenous

Poaceae Sporobolus tenellus Indigenous

Poaceae Stipa dregeana var. dregeana Indigenous; Endemic

Poaceae Stipagrostis ciliata var. capensis Indigenous

Poaceae Stipagrostis namaquensis

Poaceae Stipagrostis obtusa Indigenous

Poaceae Tetrachne dregei Indigenous

Poaceae Themeda triandra

Poaceae Tragus berteronianus Indigenous

Poaceae Tragus koelerioides Indiaenous

Poaceae Tragus racemosus Indigenous

Poaceae Tribolium purpureum Indigenous

Poaceae Trisetopsis hirtula Indigenous

Poaceae Trisetopsis imberbis Indigenous

Poaceae Typha capensis Indigenous

Polygalaceae Muraltia alticola Indigenous

Polygalaceae Polygala leptophylla

Polygalaceae Polygala sp.

Polygonaceae Polygonum aviculare

Polypodiaceae Polypodium vulgare Indigenous

Pteridaceae Adiantum capillus-veneris Indigenous

Pteridaceae Asplenium cordatum Indigenous

Pteridaceae Cheilanthes eckloniana Indigenous

Pteridaceae Cheilanthes hirta var. brevipilosa Indigenous

Pteridaceae Cheilanthes hirta var. hirta Indigenous

Pteridaceae Cheilanthes induta Indigenous; Endemic

Pteridaceae Pellaea calomelanos var. calomelanos Indigenous

Ranunculaceae Ranunculus multifidus

Rosaceae Rubus rigidus Indigenous

Rubiaceae Anthospermum spathulatum subsp. spathulatum Indigenous

Rubiaceae Nenax microphylla Indigenous

Salicaceae Populus x canescens*

Salicaceae Salix babylonica babylonica*

Salviniaceae Azolla filiculoides* Category 1b

Santalaceae Lacomucinaea lineata Indigenous

Santalaceae Thesium megalocarpum Indigenous

Santalaceae Thesium hystricoides Indigenous

Santalaceae Thesium namaquense Indigenous

Santalaceae Viscum sp.

Santalaceae Viscum capense

Santalaceae Viscum continuum

Scrophulariaceae Aptosimum indivisum Indigenous

Scrophulariaceae Buddleja glomerata Indigenous; Endemic

Scrophulariaceae Chaenostoma macrosiphon Indigenous; Endemic

Scrophulariaceae Chaenostoma rotundifolium Indigenous; Endemic

Scrophulariaceae Diascia alonsooides Indigenous; Endemic

Scrophulariaceae Gomphostigma virgatum

Scrophulariaceae Jamesbrittenia filicaulis

Scrophulariaceae Jamesbrittenia tysonii

Scrophulariaceae Limosella africana Indigenous

Scrophulariaceae Limosella grandiflora Indigenous

Scrophulariaceae Manulea crassifolia subsp. thodeana Indigenous

Scrophulariaceae Nemesia cynanchifolia Indigenous

Scrophulariaceae Nemesia fruticans Indigenous

Scrophulariaceae Peliostomum leucorrhizum Indigenous

Scrophulariaceae Selago acocksii Indiaenous; Endemic

Scrophulariaceae Selago albida Indigenous

Scrophulariaceae Selago corymbosa Indigenous; Endemic

Scrophulariaceae Selago crassifolia Indigenous; Endemic

Scrophulariaceae Selago densiflora

Scrophulariaceae Selago divaricata Indigenous

Scrophulariaceae Selago geniculata Indigenous; Endemic

Scrophulariaceae Selago saxatilis Indigenous

Scrophulariaceae Selago sp.

Scrophulariaceae Zaluzianskya peduncularis Indigenous

Simaroubaceae Ailanthus altissima* Category 1b

Solanaceae Datura ferox* (Category 1b)

Solanaceae Lycium cinereum

Solanaceae Lycium horridum

Solanaceae Lycium oxycarpum

Solanaceae Lycium pumilum

Solanaceae Lycium schizocalyx

Solanaceae Solanum nigrum Indigenous

Solanaceae Solanum retroflexum Indigenous

Solanaceae Solanum tomentosum

Solanaceae Withania somnifera Indigenous

Thymelaeaceae Lasiosiphon microphyllus Indigenous; Endemic

Urticaceae Urtica lobulata Indigenous

Urticaceae Urtica urens Not indigenous; Naturalised; Invasive

Verbenaceae Chascanum pinnatifidum subsp. pinnatifidum

Vitaceae Rhoicissus tridentata subsp. tridentata Indigenous; Endemic

Zygophyllaceae Roepera incrustata

Appendix 3: Flora protected under the Northern Cape Nature Conservation Act No. 9 of 2009.

SCHEDULE 1: SPECIALLY PROTECTED SPECIES

As per the Northern Cape Nature Conservation Act, No. 9 of 2009, Schedule 1

Formaile at AAAA DVII ID A CEAE	
Family: AMARYLLIDACEAE	
Clivia mirabilis	Oorlofskloof bush lily / Clivia
Haemanthus graniticus	April fool
Hessea pusilla	
Strumaria bidentata	
Strumaria perryae	
Family: ANACARDIACEAE	
Ozoroa spp.	All species
Family: APIACAEAE	
Centella tridentata	
Chamarea snijmaniae	
Family: APOCYNACEAE	
Hoodia gordonii	
Pachypodium namaquanum	Elephant's trunk
Family: ASPHODOLACEAE	
Aloe buhrii	
Aloe dichotoma	
Aloe dichotoma var. rumosissima	Maiden quiver tree
Aloe dabenorisana	
Aloe erinacea	
Aloe meyeri	
Aloe pearsonii	
Aloe pillansii	
Trachyandra prolifera	
Family: ASTERACEAE	
Athanasia adenantha	
Athanasia spathulata	
Cotula filifolia	
Euryops mirus	
Euryops rosulatus	
Euryops virgatus	
Felicia diffusa subsp. khamiesbergensis	
Othonna armiana	
Family: CRASSULACEAE	
Tylecodon torulosus	
Family: DIOSCORACEAE	
Dioscorea spp.	Elephant's foot, all species
Family: ERIOSPERMACEAE	
Eriospermum erinum	
Eriospermum glaciale	
Family: FABACEAE	
Amphithalea obtusiloba	
Lotononis acutiflora	
Lotononis polycephala	
Lessertia spp.	
Sceletium toruosum	
Sutherlandia spp.	Cancer Bush, all species

Wiborgia fusca subsp. macrocarpa	
Family: GERANIACEAE	
Pelargonium spp.	Pelargonium, all species
Family: HYACINTHACEAE	
Drimia nana	
Ornithogalum bicornutum	
Ornithogalum inclusum	
Family: IRIDACEAE	
Babiana framesii	
Ferraria kamiesbergensis	
Freesia marginata	
Geissorhiza subrigida	
Hesperantha minima	
Hesperantha oligantha	
Hesperantha rivulicola	
Lapeirousia verecunda	
Moraea kamiesensis	
Moraea namaquana	
Romulea albiflora	
Romulea discifera	
Romulea maculata	
Romulea rupestris	
Family: MOLLUGINACEAE	
Hypertelis trachysperma	
Psammotropha spicata	
Family: ORCHIDACEAE	
Corycium ingeanum Disa macrostachya	Disa
Family: OXALIDACEAE	Disd
Oxalis pseudo-hirta	Sorrel
Family: PEDALIACEAE	Sollei
Harpagophytum spp.	Devils' claw
Family: POACEAE	Deviis Cidw
Prionanthium dentatum	
Secale strictum subsp. africanum	Wild rye
Family: PROTEACEAE	Wild Tyc
Leucadendron meyerianum	Tolbos
Mimetes spp.	All species
Orothamnus zeyheri	7 (11 3)50 6163
Family: ROSACEAE	
Cliffortia arborea	Sterboom
Family: SCROPHULARIACEAE	
Charadrophila capensis	Cape Gloxinia
Family: STANGERIACEAE	
Stangeria spp.	Cycads, all species
Family: ZAMIACEAE	,
Encephalartos spp.	Cycads, all species
	1 - / 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -

SCHEDULE 2: PROTECTED SPECIES

As per the Northern Cape Nature Conservation Act, No. 9 of 2009, Schedule 2

Family: ACANTHACEAE	
Barleria paillosa	

Monechme saxatile	
Peristrophe spp.	All species
Family: ADIANTHACEAE	All species
Adiantium spp.	Maidenhair Fern, all species
Family: AGAPANTHACEAE	Malacrinali Ferri, ali species
Agapanthus spp.	All species
Family: AIZOACEAE	All species
(MESEMBRYANTHEMACEAE)	All species
Family:AMARYLLIDACEAE	All species except those listed in Schedule 1
Family: ANTHERICACEAE	All species
Family: APIACEAE	All species except those listed in Schedule 1
Family: APOCYNACEAE	All species except those listed in Schedule 1
Family: AQUIFOLIACEAE	All species
llex mitis	
Family: ARACEAE	
Zantedeschia spp.	Arum lilies, all species
Family: ARALIACEAE	·
Cussonia spp.	Cabbage trees, all species
Family: ASPHODOLACEAE	All species except those listed in Schedule 1 and the species Aloe ferox
Family: ASTERACEAE	
Helichrysum jubilatum	
Felicia deserti	
Gnaphalium simii	
Lopholaena longipes	
Senecio albo-punctatus	
Senecio trachylaenus	
Trichogyne lerouxiae	
Tripteris pinnatilobata	
Troglophyton acocksianum	
Vellereophyton lasianthum	
Family: BURMANNIACEAE	
Burmannia madagascariensis	Wild ginger
Family: BURSERACEAE	
Commiphora spp.	All species
Family: CAPPARACEAE	
Boscia spp.	Shepherd's trees, all species
Family: CARYOPHYLLACEAE	
Dianthus spp.	All species
Family: CELASTRACEAE	
Gymnosporia spp.	All species
Family: COLCHICACEAE	
Androcymbium spp.	All species
Gloriosa spp.	All species
Family: COMBRETACEAE	
Combretum spp.	All species
Family: CRASSULACEAE	All species except those listed in Schedule
Favorila in CHIDDDECC & CE & E	1
Family: CUPPRESSACEAE	NACIAL COMPANDA CONTRACTOR
Widdringtonia spp.	Wild cypress, all species
Family: CYATHEACEAE	L

Cyathea spp.	Tree ferns, all species
Cyathea capensis	Tree Fern
Family: CYPERACEAE	TICC TOTT
Carex acocksii	
Family: DROSERACEAE	
Drosera spp.	Sundews, all species
Family: DRYOPTERIDACEAE	3011dews, dii species
Rumohra spp.	Seven Weeks Fern, all species
Family: ERICACEAE	Erica, all species
Family: EUPHORBIACEAE	Liica, ali species
Alchornea laxiflora	Venda Bead-string
Euphorbia spp.	All species
Family: FABACEAE	To a Divide all an anima
Aspalathus spp.	Tea Bush, all species
Erythrina zeyheri	Ploughbreaker
Argyrolobium petiolare	
Caesalpinia bracteata	
Calliandra redacta	
Crotalaria pearsonii	
Indigofera limosa	
Lebeckia bowieana	
Polhillia involucrate	
Rhynchosia emarginata	
Wiborgia humilis	
Family: HYACINTHACEAE	
Daubenya spp	
Lachenalia spp.	Daubenya, all species
Veltheimia spp.	Viooltjie, all species
Eucomis spp.	Pineapple flower, all species
Neopatersonia namaquensis	
Ornithogalum spp.	All species
Family: IRIDACEAE	All species except those listed in Schedule
	1
Family: LAURACEAE	
Ocotea spp.	Stinkwood, all species
Family: MESEMBRYANTHEMACEAE	All species
Family: MELIACEAE	•
Nymania capensis	Chinese Lantern
Family: OLEACEAE	
Olea europea subsp. africana	Wild olive
Family: ORCHIDACEAE	Orchids, all species except those listed in
	Schedule 1
Family: OROBANCHACEAE	23.7333.0
Harveya spp.	Harveya, all species
Family: OXALIDACEAE	113.1073, 31.300003
Oxalis spp.	Sorrel, all species except those listed in
Oxuns spp.	Schedule 1
Family: PLUMBAGINACEAE	
Afrolimon namaquanum	
Family: POACEAE	
Brachiaria dura var. dura	
Dregeochloa calviniensis	
Pentaschistis lima	
Family: PODOCARPACEAE	
1 311 mg, 1 3 D 3 37 MM 7 M3 L7 ML	<u> </u>

Podocarpus spp.	Yellowwoods, all species
Family: PORTULACACEAE	
Anacampseros spp.	All species
Avonia spp.	All species
Portulaca foliosa	
Family: PROTEACEAE	All species except those listed in Schedule 1
Family: RESTIONACEAE	All species
Family: RHAMNACEAE	
Phylica spp.	All species
Family: RUTACEAE	
Agathosma spp.	Buchu, all species
Family: SCROPHULARIACEAE	
Diascia spp.	All species
Halleria spp.	All species
Jamesbrittenia spp.	All species
Manulea spp.	All species
Nemesia spp.	All species
Phyllopodium spp.	All species
Polycarena filiformis	
Chaenostoma longipedicellatum	
Family: STRELITZIACEAE	
Strelitzia spp.	All species
Family: TECOPHILACEAE	
Cyanella spp.	All species
Family: THYMELAEACEAE	
Gnidia leipoldtii	
Family: ZINGIBERACEAE	
Siphonochilus aethiopicus	Wild ginger

Appendix 4: Flora and vertebrate animal species protected under the National Environmental Management: Biodiversity Act, 2004 (Act 10 of 2004)

(as updated in R. 1187, 14 December 2007)

CRITICALLY ENDANGERED SPECIES

Flora

Adenium swazicum

Aloe pillansii

Diaphananthe millarii

Dioscorea ebutsniorum

Encephalartos aemulans

Encephalartos brevifoliolatus

Encephalartos cerinus

Encephalartos dolomiticus

Encephalartos heenanii

Encephalartos hirsutus

Encephalartos inopinus

Encephalartos latifrons

Encephalartos middelburgensis

Encephalartos nubimontanus

Encephalartos woodii

Reptilia

Loggerhead sea turtle

Leatherback sea turtle

Hawksbill sea turtle

<u>Aves</u>

Wattled crane

Blue swallow

Egyptian vulture

Cape parrot

Mammalia

Riverine rabbit

Rough-haired golden mole

ENDANGERED SPECIES

<u>Flora</u>

Angraecum africae

Encephalartos arenarius

Encephalartos cupidus

Encephalartos horridus

Encephalartos laevifolius

Encephalartos lebomboensis

Encephalartos msinganus

Jubaeopsis caffra

Siphonochilus aethiopicus

Warburgia salutaris

Newtonia hilderbrandi

Reptilia

Green turtle

Giant airdled lizard

Olive ridley turtle

Geometric tortoise

Aves

Blue crane

Grey crowned crane

Saddle-billed stork

Bearded vulture

White-backed vulture

Cape vulture

Hooded vulture

Pink-backed pelican

Pel's fishing owl

Lappet-faced vulture

Mammalia

Robust golden mole

Tsessebe

Black rhinoceros

Mountain zebra

African wild dog

Gunning's golden mole

Oribi

Red squirrel

Four-toed elephant-shrew

VULNERABLE SPECIES

<u>Flora</u>

Aloe albida

Encephalartos cycadifolius

Encephalartos Eugene-maraisii

Encephalartos ngovanus

Merwilla plumbea

Zantedeschia jucunda

<u>Aves</u>

White-headed vulture

Tawny eagle

Kori bustard

Black stork

Southern banded snake eagle

Blue korhaan

Taita falcon

Lesser kestrel

Peregrine falcon

Bald ibis

Ludwig's bustard Martial eagle Bataleur Grass owl

Mammalia

Cheetah

Samango monkey Giant golden mole

Giant rat Bontebok Tree hyrax Roan antelope Panaolin

Juliana's golden mole

Suni

Large-eared free-tailed bat

Lion Leopard Blue duiker

PROTECTED SPECIES

Flora

Adenia wilmsii Aloe simii Clivia mirabilis Disa macrostachya Disa nubigena

Disa physodes Disa procera

Disa sabulosa

Encephelartos altensteinii **Encephelartos** caffer Encephelartos dyerianus

Encephelartos frederici-guilielmi

Encephelartos ghellinckii **Encephelartos humilis** Encephelartos lanatus Encephelartos lehmannii **Encephelartos longifolius** Encephelartos natalensis

Encephelartos paucidentatus

Encephelartos princeps Encephelartos senticosus Encephelartos transvenosus Encephelartos trispinosus

Encephelartos umbeluziensis Encephelartos villosus Euphorbia clivicola

Euphorbia meloformis Euphorbia obesa

Harpagophytum procumbens Harpaqophytum zeyherii

Hoodia gordonii

Hoodia currorii Protea odorata Stangeria eriopus

Amphibia Giant bullfrog African bullfrog

Reptilia

Gaboon adder Namaqua dwarf adder Smith's dwarf chameleon Armadillo girdled lizard Nile crocodile African rock python

<u>Aves</u>

Southern ground hornbill African marsh harrier Denham's bustard Jackass penguin

Mammalia

Cape clawless ofter South African hedgehog White rhinoceros Black wildebeest Spotted hyaena Black-footed cat Brown hyaena

Cape fox

Serval African elephant Spotted-necked otter Honey badger Sharpe's grysbok Reedbuck

Appendix 5: Curriculum vitae: Dr David Hoare

Education

Matric - Graeme College, Grahamstown, 1984
B.Sc (majors: Botany, Zoology) - Rhodes University, 1991-1993
B.Sc (Hons) (Botany) - Rhodes University, 1994 with distinction
M.Sc (Botany) - University of Pretoria, 1995-1997 with distinction
PhD (Botany) - Nelson Mandela Metropolitan University, Port Elizabeth

Main areas of specialisation

- Vegetation ecology, primarily in grasslands, thicket, coastal systems, wetlands.
- Plant biodiversity and threatened plant species specialist.
- Alien plant identification and control / management plans.
- Remote sensing, analysis and mapping of vegetation.
- Specialist consultant for environmental management projects.

Membership

Professional Natural Scientist, South African Council for Natural Scientific Professions, 16 August 2005 – present. Reg. no. 400221/05 (Ecology, Botany)

Member, International Association of Vegetation Scientists (IAVS)

Member, Ecological Society of America (ESA)

Member, International Association for Impact Assessment (IAIA)

Member, Herpetological Association of Africa (HAA)

Employment history

1 December 2004 – present, <u>Director</u>, David Hoare Consulting (Pty) Ltd. <u>Consultant</u>, specialist consultant contracted to various companies and organisations.

1 January 2009 – 30 June 2009, Lecturer, University of Pretoria, Botany Dept.

1 January 2013 – 30 June 2013, <u>Lecturer</u>, University of Pretoria, Botany Dept.

1 February 1998 – 30 November 2004, <u>Researcher</u>, Agricultural Research Council, Range and Forage Institute, Private Bag X05, Lynn East, 0039. Duties: project management, general vegetation ecology, remote sensing image processing.

Experience as consultant

Ecological consultant since 1995. Author of over 800 specialist ecological consulting reports. Wide experience in ecological studies within grassland, savanna and fynbos, as well as riparian, coastal and wetland vegetation.

Publication record:

Refereed scientific articles (in chronological order):

Journal articles:

- **HOARE, D.B.** & BREDENKAMP, G.J. 1999. Grassland communities of the Amatola / Winterberg mountain region of the Eastern Cape, South Africa. South African Journal of Botany 64: 44-61.
- **HOARE, D.B.**, VICTOR, J.E., LUBKE, R.A. & MUCINA, L., 2000. Vegetation of the coastal fynbos and rocky headlands south of George, South Africa. *Bothalia* 30: 87-96.
- VICTOR, J.E., **HOARE, D.B.** & LUBKE, R.A., 2000. Checklist of plant species of the coastal fynbos and rocky headlands south of George, South Africa. *Bothalia* 30: 97-101.
- MUCINA, L, BREDENKAMP, G.J., **HOARE, D.B** & MCDONALD, D.J. 2000. A National Vegetation Database for South Africa South African Journal of Science 96: 1-2.
- **HOARE, D.B.** & BREDENKAMP, G.J. 2001. Syntaxonomy and environmental gradients of the grasslands of the Stormberg / Drakensberg mountain region of the Eastern Cape, South Africa.. South African Journal of Botany 67: 595 608.
- LUBKE, R.A., **HOARE**, **D.B.**, VICTOR, J.E. & KETELAAR, R. 2003. The vegetation of the habitat of the Brenton blue butterfly, Orachrysops niobe (Trimen), in the Western Cape, South Africa. South African Journal of Science 99: 201–206.
- **HOARE, D.B** & FROST, P. 2004. Phenological classification of natural vegetation in southern Africa using AVHRR vegetation index data. *Applied Vegetation Science* 7: 19-28.
- FOX, S.C., HOFFMANN, M.T. and HOARE, D. 2005. The phenological pattern of vegetation in Namaqualand, South Africa and its climatic correlates using NOAA-AVHRR NDVI data. South African Geographic Journal, 87: 85–94.
- Pfab, M.F., Compaan, P.C., Whittington-Jones, C.A., Engelbrecht, I., Dumalisile, L., Mills, L., West, S.D., Muller, P., Masterson, G.P.R., Nevhutalu, L.S., Holness, S.D., **Hoare, D.B.** 2017. The Gauteng Conservation Plan: Planning for biodiversity in a rapidly urbanising province. Bothalia, Vol. 47:1. a2182. https://doi.org/10.4102/abc.v47i1.2182.

Book chapters and conference proceedings:

- **HOARE, D.B.** 2002. Biodiversity and performance of grassland ecosystems in communal and commercial farming systems in South Africa. Proceedings of the FAO's Biodiversity and Ecosystem Approach in Agriculture, Forestry and Fisheries Event: 12–13 October, 2002. Food and Agriculture Organisation of the United Nations, Viale delle Terme di Caracalla, Rome, Italy. pp. 10 27.
- STEENKAMP, Y., VAN WYK, A.E., VICTOR, J.E., **HOARE, D.B.**, DOLD, A.P., SMITH, G.F. & COWLING, R.M. 2005. Maputaland-Pondoland-Albany Hotspot. In: Mittermeier, R.A., Gil, P.R., Hoffmann, M., Pilgrim, J., Brooks, T., Mittermeier, C.G., Lamoreux, J. & Fonseca, G.A.B. da (eds.) *Hotspots revisited*. CEMEX, pp.218–229. ISBN 968-6397-77-9
- STEENKAMP, Y., VAN WYK, A.E., VICTOR, J.E., **HOARE, D.B.**, DOLD, A.P., SMITH, G.F. & COWLING, R.M. 2005. Maputaland-Pondoland-Albany Hotspot. http://www.biodiversityhotspots.org/xp/hotspots/maputaland/.
- HOARE, D.B., MUCINA, L., RUTHERFORD, M.C., VLOK, J., EUSTON-BROWN, D., PALMER, A.R., POWRIE, L.W., LECHMERE-OERTEL, R.G., PROCHES, S.M., DOLD, T. and WARD, R.A. Albany Thickets. in Mucina, L. and Rutherford, M.C. (eds.) 2006. The vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19, South African National Biodiversity Institute, Pretoria.
- MUCINA, L., **HOARE, D.B.**, LÖTTER, M.C., DU PREEZ, P.J., RUTHERFORD, M.C., SCOTT-SHAW, C.R., BREDENKAMP, G.J., POWRIE, L.W., SCOTT, L., CAMP, K.G.T., CILLIERS, S.S., BEZUIDENHOUT, H., MOSTERT, T.H., SIEBERT, S.J., WINTER, P.J.D., BURROWS, J.E., DOBSON, L., WARD, R.A., STALMANS, M., OLIVER, E.G.H., SIEBERT, F., SCHMIDT, E., KOBISI, K., KOSE, L. 2006. *Grassland Biome*. In: Mucina, L. & Rutherford, M.C. (eds.) The vegetation of South Africa, Lesotho and Swaziland. *Strelitzia* 19. South African National Biodiversity Institute, Pretoria.
- RUTHERFORD, M.C., MUCINA, L., LÖTTER, M.C., BREDENKAMP, G.J., SMIT, J.H.L., SCOTT-SHAW, C.R., HOARE, D.B., GOODMAN, P.S., BEZUIDENHOUT, H., SCOTT, L. & ELLIS, F., POWRIE, L.W., SIEBERT, F., MOSTERT, T.H., HENNING, B.J., VENTER, C.E., CAMP, K.G.T., SIEBERT, S.J., MATTHEWS, W.S., BURROWS, J.E., DOBSON, L., VAN ROOYEN, N., SCHMIDT, E., WINTER, P.J.D., DU PREEZ, P.J., WARD, R.A., WILLIAMSON, S. and HURTER, P.J.H. 2006. Savanna Biome. In: Mucina, L. &

- Rutherford, M.C. (eds.) The vegetation of South Africa, Lesotho and Swaziland. *Strelitzia* 19. South African National Biodiversity Institute, Pretoria.
- MUCINA, L., RUTHERFORD, M.C., PALMER, A.R., MILTON, S.J., SCOTT, L., VAN DER MERWE, B., **HOARE, D.B.**, BEZUIDENHOUT, H., VLOK, J.H.J., EUSTON-BROWN, D.I.W., POWRIE, L.W. & DOLD, A.P. 2006. Nama-Karoo Biome. In: Mucina, L. & Rutherford, M.C. (eds.) The vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19. South African National Biodiversity Institute, Pretoria.
- MUCINA, L., SCOTT-SHAW, C.R., RUTHERFORD, M.C., CAMP, K.G.T., MATTHEWS, W.S., POWRIE, L.W. and **HOARE**, **D.B.** 2006. *Indian Ocean Coastal Belt*. In: Mucina, L. & Rutherford, M.C. (eds.) The vegetation of South Africa, Lesotho and Swaziland. *Strelitzia* 19. South African National Biodiversity Institute, Pretoria.

Conference Presentations:

- HOARE, D.B. & LUBKE, R.A. Management effects on diversity at Goukamma Nature Reserve, Southern Cape; Paper presentation, Fynbos Forum, Bienne Donne, July 1994
- HOARE, D.B., VICTOR, J.E. & LUBKE, R.A. Description of the coastal fynbos south of George, southern Cape; Paper presentation, Fynbos Forum, Bienne Donne, July 1994
- HOARE, D.B. & LUBKE, R.A. Management effects on fynbos diversity at Goukamma Nature Reserve, Southern Cape; Paper presentation, South African Association of Botanists Annual Congress, Bloemfontein, January 1995
- HOARE, D.B. & BOTHA, C.E.J. Anatomy and ecophysiology of the dunegrass Ehrharta villosa var. maxima; Poster presentation, South African Association of Botanists Annual Congress, Bloemfontein, January 1995
- HOARE, D.B., PALMER, A.R. & BREDENKAMP, G.J. 1996. Modelling grassland community distributions in the Eastern Cape using annual rainfall and elevation; Poster presentation, South African Association of Botanists Annual Congress, Stellenbosch, January 1996
- HOARE, D.B. Modelling vegetation on a past climate as a test for palaeonological hypotheses on vegetation distributions; Paper presentation, Randse Afriakaanse Universiteit postgraduate symposium, 1997
- HOARE, D.B., VICTOR, J.E. & BREDENKAMP, G.J. Historical and ecological links between grassy fynbos and afromontane fynbos in the Eastern Cape; Paper presentation, South African Association of Botanists Annual Congress, Cape Town, January 1998
- LUBKE, R.A., HOARE, D.B., VICTOR, J.E. & KETELAAR, R. The habitat of the Brenton Blue Butterfly. Paper presentation, South African Association of Botanists Annual Congress, Cape Town, January 1998
- HOARE, D.B. & PANAGOS, M.D. Satellite stratification of vegetation structure or floristic composition? Poster presentation at the 34th Annual Congress of the Grassland Society of South Africa, Warmbaths, 1-4 February 1999.
- HOARE, D.B. & WESSELS, K. Conservation status and threats to grasslands of the northern regions of South Africa, Poster presentation at the South African Association of Botanists Annual Congress, Potchefstroom, January 2000.
- HOARE, D.B. Phenological dynamics of Eastern Cape vegetation. Oral paper presentation at the South African Association of Botanists Annual Congress, Grahamstown, January 2002.
- HOARE, D.B., MUCINA, L., VAN DER MERWE, J.P.H. & PALMER, A.R. Classification and digital mapping of grasslands of the Eastern Cape Poster presentation at the South African Association of Botanists Annual Congress, Grahamstown, January 2002.
- HOARE, D.B. Deriving phenological variables for Eastern Cape vegetation using satellite data Poster presentation at the South African Association of Botanists Annual Congress, Grahamstown, January 2002.
- MUCINA, L., RUTHERFORD, M.C., HOARE, D.B. & POWRIE, L.W. 2003. VegMap: The new vegetation map of South Africa, Lesotho and Swaziland. In: Pedrotti, F. (ed.) Abstracts: Water Resources and Vegetation, 46th Symposium of the International Association for Vegetation Science, June 8 to 14 Napoli, Italy.
- HOARE, D.B. 2003. Species diversity patterns in moist temperate grasslands of South Africa. Proceedings of the VIIth International Rangeland Congress, 26 July 1 August 2003, Durban South Africa. African Journal of Range and Forage Science. 20: 84.

Unpublished technical reports:

- PALMER, A.R., HOARE, D.B. & HINTSA, M.D., 1999. Using satellite imagery to map veld condition in Mpumalanga: A preliminary report. Report to the National Department of Agriculture (Directorate Resource Conservation). ARC Range and Forage Institute, Grahamstown.
- HOARE, D.B. 1999. The classification and mapping of the savanna biome of South Africa: methodology for mapping the vegetation communities of the South African savanna at a scale of 1:250 000. Report to the National Department of Agriculture (Directorate Resource Conservation). ARC Range and Forage Institute, Pretoria.
- HOARE, D.B. 1999. The classification and mapping of the savanna biome of South Africa: size and coverage of field data that exists on the database of vegetation data for South African savanna. Report to the National Department of Agriculture (Directorate Resource Conservation). ARC Range and Forage Institute, Pretoria.
- THOMPSON, M.W., VAN DEN BERG, H.M., NEWBY, T.S. & HOARE, D.B. 2001. Guideline procedures for national land-cover mapping and change monitoring. Report no. ENV/P/C 2001-006 produced for Department of Water Affairs and Forestry, National Department of Agriculture and Department of Environment Affairs and Tourism. Copyright: Council for Scientific and Industrial Research (CSIR) and Agricultural Research Council (ARC).
- HOARE, D.B. 2003. Natural resource survey of node O R Tambo, using remote sensing techniques, Unpublished report and database of field data for ARC Institute for Soil, Climate & Water, ARC Range and Forage Institute, Grahamstown.
- HOARE, D.B. 2003. Short-term changes in vegetation of Suikerbosrand Nature Reserve, South Africa, on the basis of resampled vegetation sites. Gauteng Department of Agriculture, Conservation, Environment and Land Affairs, Conservation Division.
- BRITTON, D., SILBERBAUER, L., ROBERTSON, H., LUBKE, R., HOARE, D., VICTOR, J., EDGE, D. & BALL, J. 1997. The Life-history, ecology and conservation of the Brenton Blue Butterfly (*Orachrysops niobe*) (Trimen)(*Lycaenidea*) at Brenton-on-Sea. Unpublished report for the Endangered Wildlife Trust of Southern Africa, Johannesburg. 38pp.
- HOARE, D.B., VICTOR, J.E. & MARNEWIC, G. 2005. Vegetation and flora of the wetlands of Nylsvley River catchment as component of a project to develop a framework for the sustainable management of wetlands in Limpopo Province.

Consulting reports:

Total of over 800 specialist consulting reports for various environmental projects from 1995 – present.

Workshops / symposia attended:

International Association for Impact Assessment Annual Congress, Durban, 16 – 19 May 2018.

Workshop on remote sensing of rangelands presented by Paul Tueller, University of Nevada Reno, USA, VIIth International Rangeland Congress, 26 July – 1 August 2003, Durban South Africa.

VIIth International Rangeland Congress, 26 July – 1 August 2003, Durban South Africa.

BioMap workshop, Stellenbosch, March 2002 to develop strategies for studying vegetation dynamics of Namaqualand using remote sensing techniques

South African Association of Botanists Annual Congress, Grahamstown, January 2002.

28th International Symposium on Remote Sensing of Environment, Somerset West, 27-31 March 2000.

Workshop on Vegetation Structural Characterisation: Tree Cover, Height and Biomass, 28th International Symposium on Remote Sensing of Environment, Strand, 26 March 2000.

South African Association of Botanists Annual Congress, Potchefstroom, January 2000

National Botanical Institute Vegmap Workshop, Kirstenbosch, Cape Town, 30 September-1 October 1999.

- Sustainable Land Management Guidelines for Impact Monitoring, Orientation Workshop: Sharing Impact Monitoring Experience, Zithabiseni, 27-29 September 1999.
- WWF Macro Economic Reforms and Sustainable Development in Southern Africa, Environmental Economic Training Workshop, development Bank, Midrand, 13-14 September 1999.
- 34th Annual Congress of the Grassland Society of South Africa, Warmbaths, 1-4 February 1999
- Expert Workshop on National Indicators of Environmental Sustainable Development, Dept. of Environmental Affairs and Tourism, Roodevallei Country Lodge, Roodeplaat Dam, Pretoria, 20-21 October 1998.

South African Association of Botanists Annual Congress, Cape Town, January 1998 Randse Afriakaanse Universiteit postgraduate symposium, 1997. South African Association of Botanists Annual Congress, Bloemfontein, January 1995.