

BASIC ASSESSMENT LEVEL REPORT

SOIL, LAND USE, LAND CAPABILITY AND AGRICULTURAL POTENTIAL SURVEY:

PROPOSED MOUNT ROPER SOLAR ENERGY FACILITY: KURUMAN, NORTHERN CAPE PROVINCE

March 22nd, 2012

Compiled by: J.H. van der Waals (PhD Soil Science, Pr.Sci.Nat)

Member of: Soil Science Society of South Africa (SSSSA) Soil Science Society of America (SSSA)

Accredited member of: South African Soil Surveyors Organisation (SASSO)

Registered with: The South African Council for Natural Scientific Professions Registration number: 400106/08

DECLARATION

I, Johan Hilgard van der Waals, declare that I -

- I act as the independent specialist in this application
- I will perform the work relating to the application in an objective manner, even if this results in views and findings that are not favourable to the applicant
- I declare that there are no circumstances that may compromise my objectivity in performing such work;
- I have expertise in conducting the specialist report relevant to this application, including knowledge of the Act, regulations and any guidelines that have relevance to the proposed activity;
- I will comply with the Act, regulations and all other applicable legislation;
- I have no, and will not engage in, conflicting interests in the undertaking of the activity;
- I undertake to disclose to the applicant and the competent authority all material information in my possession that reasonably has or may have the potential of influencing - any decision to be taken with respect to the application by the competent authority; and - the objectivity of any report, plan or document to be prepared by myself for submission to the competent authority;
- all the particulars furnished by me in this form are true and correct; and
- I realise that a false declaration is an offence in terms of Regulation 71 and is punishable in terms of Section 24F of the Act.

J.H. VAN DER WAALS TERRA SOIL SCIENCE

Table of Contents

Declarat	tion		ii
1. TE	RMS	OF REFERENCE	1
2. INT	ROE	DUCTION	1
2.1	Stu	dy Aim and Objectives	1
2.2	Agr	icultural Potential Background	1
2.3		vey Area Boundary	
2.4	Sur	vey Area Physical Features	2
3. SO	IL, L	AND CAPABILITY, LAND USE SURVEY AND AGRICULTURAL POTENTIAL	
SURVE	Y		2
3.1	Met	hod of Survey	2
3.1	.1	Phase 1: Land Type Data	2
3.1	.2	Phase 2: Aerial Photograph Interpretation and Land Use Mapping	4
3.1	.3	Phase 3: Site Visit and Soil Survey	4
3.2	Sur	vey Results	4
3.2	.1	Phase 1: Land Type Data	4
3.2	.2	Phase 2: Aerial Photograph Interpretation and Land Use/Capability Mapping	
3.2	.3	Phase 3: Site Visit and Soil Survey	6
4. INT		PRETATION OF SOIL, LAND CAPABILITY AND LAND USE SURVEY RESULTS	
4.1	•	icultural Potential	
4.2	Ove	erall Soil and Land Impacts	. 11
5. AS		MENT OF IMPACT	
5.1	Ass	essment Criteria	. 11
5.2	List	of Activities for the Site	.13
5.3	Ass	essment of the Impacts of Activities	.13
5.3	.1	Construction of Solar Panels and Stands	. 14
5.3	.2	Construction of Buildings and Other Infrastructure	. 14
5.3	.3	Construction of Roads	. 15
5.3	.4	Vehicle Operation on Site	. 15
5.3	.5	Dust Generation	. 16
5.4	Env	ironmental Management Plan	. 18
6. CO	NCL	USIONS AND RECOMMENDATIONS	. 19
Referen	ces.		. 20

SOIL, LAND USE, LAND CAPABILITY AND AGRICULTURAL POTENTIAL SURVEY – PROPOSED MOUNT ROPER SOLAR ENERGY FACILITY: KURUMAN, NORTHERN CAPE PROVINCE

1. TERMS OF REFERENCE

Terra Soil Science (TSS) was commissioned by EnviroAfrica to undertake a Basic Assessment level soil, land use, land capability, and agricultural potential survey for the proposed Mount Roper Solar Energy Facility near Kuruman in the Northern Cape Province.

2. INTRODUCTION

2.1 Study Aim and Objectives

The study area has been proposed to serve as a locality for the construction of a photovoltaic solar energy facility and associated infrastructure for power generation purposes. This study aims to determine the possible impact that this development could have on the soils, land use, land capability and agricultural potential as well as to identify areas of high sensitivity regarding solar panels and infrastructure.

The study has as objectives the identification and estimation of:

- » Soil form (SA taxonomic system) and soil depth for the area;
- » Soil potential linked to current land use and other possible uses and options;
- » Discussion of the agricultural potential in terms of the soils, water availability, surrounding developments and current status of land; and
- » Discussion of impacts (potential and actual) as a result of the development.

2.2 Agricultural Potential Background

The assessment of agricultural potential rests primarily on the identification of soils that are suited to crop production. In order to qualify as high potential soils they must have the following properties:

- » Deep profile (more than 600 mm) for adequate root development,
- » Deep profile and adequate clay content for the storing of sufficient water so that plants can weather short dry spells,
- » Adequate structure (loose enough and not dense) that allows for good root development,
- » Sufficient clay or organic matter to ensure retention and supply of plant nutrients,
- » Limited quantities of rock in the matrix that would otherwise limit tilling options and water holding capacity,
- » Adequate distribution of soils and size of high potential soil area to constitute a viable economic management unit, and

» Good enough internal and external (out of profile) drainage if irrigation practices are considered. Drainage is imperative for the removal (leaching) of salts that accumulate in profiles during irrigation and fertilization.

In addition to soil characteristics, climatic characteristics need to be assessed to determine the agricultural potential of a site. The rainfall characteristics are of primary importance and in order to provide an adequate baseline for the viable production of crops rainfall quantities and distribution need to be sufficient and optimal. The combination of the above mentioned factors will be used to assess the agricultural potential of the soils on the site.

2.3 Survey Area Boundary

The site lies between 27° 20' 38" and 27° 21' 04" south and 23° 11' 02" and 23° 11' 35" east 25 km west-north-west of the town of Kuruman in the Northern Cape Province (**Figure 1**).

2.4 Survey Area Physical Features

The survey area lies on flat terrain at 1220 m above mean sea level. The geology of the area consists of red wind-blown sand and surface limestone with the surrounding hills consisting of banded ironstone, dolomite, chert and dolomitic limestone (Land Type Survey Staff, 1972 – 2006).

3. SOIL, LAND CAPABILITY, LAND USE SURVEY AND AGRICULTURAL POTENTIAL SURVEY

3.1 Method of Survey

The Basic Assessment level soil, land capability, land use and agricultural potential surveys were conducted in three phases.

3.1.1 Phase 1: Land Type Data

Land type data for the site was obtained from the Institute for Soil Climate and Water (ISCW) of the Agricultural Research Council (ARC). The land type data is presented at a scale of 1:250 000 and entails the division of land into land types, typical terrain cross sections for the land type and the presentation of dominant soil types for each of the identified terrain units (in the cross section). The soil data is classified according to the Binomial System (MacVicar et al., 1977). The soil data was interpreted and re-classified according to the Taxonomic System (MacVicar, C.N. et al. 1991).

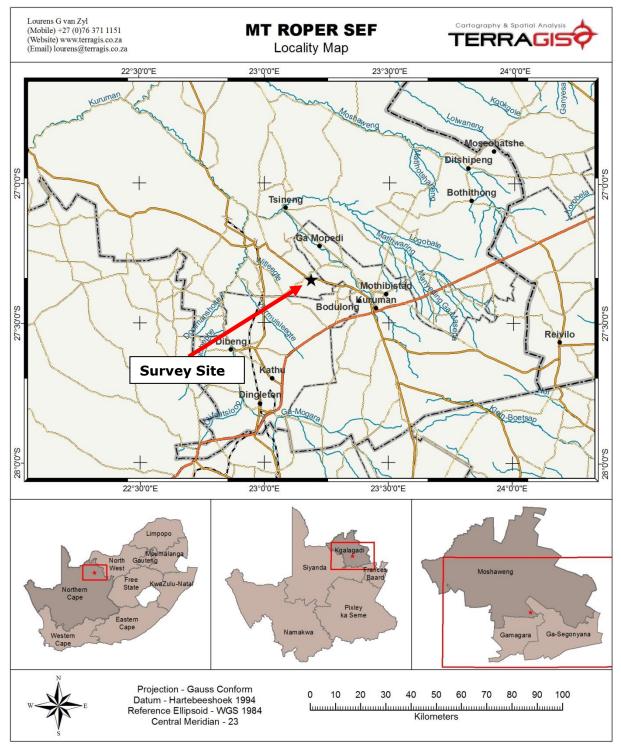


Figure 1 Locality of the survey site

3.1.2 Phase 2: Aerial Photograph Interpretation and Land Use Mapping

The most up to date aerial photographs of the site were obtained from Google Earth. The image was used to interpret aspects such as land use and land cover.

3.1.3 Phase 3: Site Visit and Soil Survey

A site visit was conducted on the 8th of March, 2012, during which a soil survey was conducted. The site was traversed on foot with the aim of ascertaining as much of the soil variability as possible. Soils were described and photographs were taken of pertinent soil, landscape and land use characteristics.

3.2 Survey Results

3.2.1 Phase 1: Land Type Data

The site falls into the **Ae1** land type (Land Type Survey Staff, 1972 - 2006). (Refer to **Figure 2** for the land type map of the area). Below follows a brief description of the land type in terms of soils, land capability, land use and agricultural potential.

Land Type Ae1

<u>Soils</u>: Ae land types denote areas with red soils of high base status that are deeper than 300 mm. The soils in the land type are moderately deep to deep, red in colour and of high base status, often with a regular occurrence of calcrete. Rock outcrops occur throughout and soils often exhibit a very distinct rocky matrix even though the overall profile is deep and well-drained.

<u>Land capability and land use</u>: Mainly extensive grazing due to climatic constraints. Dryland cropping is often non-viable due to low rainfall and well-drained soils that do not have high water holding capacities. Irrigated agriculture is not often practiced in the general area due to water availability constraints.

<u>Agricultural potential</u>: Low in the natural state due to soil and climate (rainfall – **Figure 3**) constraints with the potential of improvement in the case of irrigated agriculture developments. Water availability is the main constraint.

3.2.2 Phase 2: Aerial Photograph Interpretation and Land Use/Capability Mapping

The interpretation of aerial photographs yielded one dominant land use namely extensive grazing (**Figure 4**). The carrying capacity of the site is moderate as rainfall and soils are limiting with regards to biomass production. Additional feeding of animals and proper grazing management (camps) are imperative for the sustainable production of the livestock.

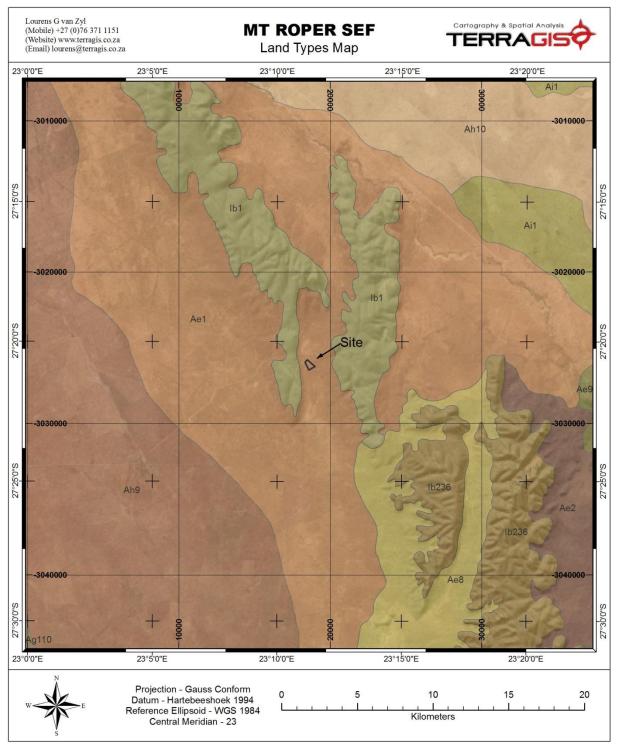


Figure 2 Land type map of the survey area

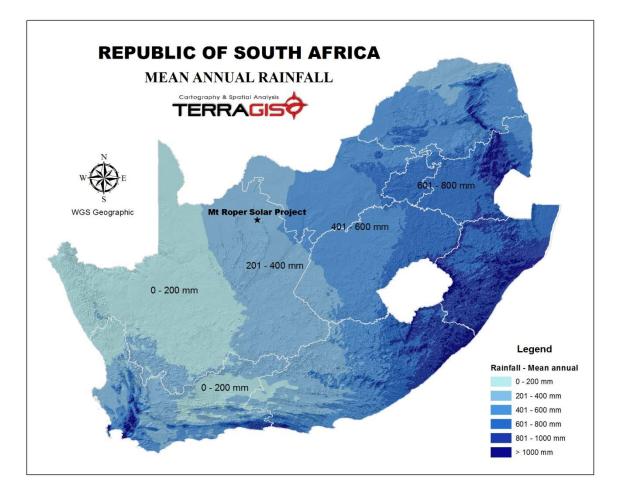


Figure 3 Rainfall map of South Africa indicating the survey site

3.2.3 Phase 3: Site Visit and Soil Survey

The soil survey revealed that the site consists mainly of variable depth soils of the Hutton (Orthic A-horizon / Red Apedal B-horizon / Unspecified) form (**Figures 5** to **7**). The soils have large quantities of rock and pebbles in the matrix and this is exhibited by their frequency on the soil surface (**Figures 8** to **10**). The rocky nature of the soils varies across the site with certain areas dominated by deep red soils and other by shallow and rocky red soils. The patterns appear to be random and such that a soil map with delineated boundaries could not be generated for the site. Although these rocky soils are not very sensitive to erosion they have a low biological productivity and are therefore only suited to extensive grazing.

Figure 4 Satellite map of the general and the survey area

Figure 5 Soils of the Hutton form with associated vegetation on the site

Figure 6 Soils of the Hutton form with associated vegetation on the site

Figure 7 Soils of the Hutton form with associated vegetation on the site

Figure 8 Rocky and shallow soils of the Hutton form on the site

Figure 9 Rocky and shallow soils of the Hutton form on the site

Figure 10 Rocky and shallow soils of the Hutton form on the site

4. INTERPRETATION OF SOIL, LAND CAPABILITY AND LAND USE SURVEY RESULTS

The interpretation of the land use and land capability results yielded a number of aspects that are of importance to the project.

4.1 Agricultural Potential

The dryland cropping potential of the site is low due to climatic constraints as well as the rocky nature of the soils that limit water holding and storage. Due to water availability constraints the site is not considered to be of high irrigation potential. The grazing potential of the site is moderate to high with the condition that livestock is kept that are adapted to the utilisation of thorny plants and shrubs like camphor bush.

4.2 Overall Soil and Land Impacts

Due to the low agricultural potential of the site as well as the rocky soils the impacts on soils and agriculture is expected to be low. The rocky matrix of the soils provide a degree of protection against erosion pressures but erosion mitigation should be implemented on site due to the slope of the land. These measures should be included in the layout and engineering designs of the development.

5. ASSESMENT OF IMPACT

5.1 Assessment Criteria

The following assessment criteria (Table 1) will be used for the impact assessment.

CATEGORY		DESCRIPTION OF DEFINITION		
Direct, indire	ct and	In relation to an activity, means the impact of an activity		
cumulative impa	acts	that in itself may not be significant but may become		
		significant when added to the existing and potential		
		impacts eventuating from similar or diverse activities or		
		undertakings in the area.		
Nature		A description of the cause of the effect, what will be		
		affected and how it will be affected.		
Extent (Scale)		The area over which the impact will be expressed -		
• 1		ranging from local (1) to regional (5).		
• 2				
• 3				
• 4				
• 5				

Table 1 Impact Assessment Criteria

CATEGORY	DESCRIPTION OF DEFINITION		
Duration	Indicates what the lifetime of the impact will be.		
• 1	 Very short term: 0 – 1 years 		
• 2	• Short-term: 2 – 5 years		
• 3	Medium-term: 5 – 15 years		
• 4	 Long-term: > 15 years 		
• 5	Permanent		
Magnitude	This is quantified on a scale from 0-10, where 0 is small		
• 2	and will have no effect on the environment, 2 is minor and		
• 4	will not result in an impact on processes, 4 is low and will		
• 6	cause a slight impact on processes, 6 is moderate and will		
• 8	result in processes continuing but in a modified way, 8 is		
• 10	high (processes are altered to the extent that they		
	temporarily cease), and 10 is very high and results in		
	complete destruction of patterns and permanent cessation		
	of processes.		
Probability	Describes the likelihood of an impact actually occurring.		
• 1	Very Improbable		
• 2	Improbable		
• 3	Probable		
• 4	Highly probable		
• 5	Definite		
Significance	The significance of an impact is determined through a		
	synthesis of <u>all</u> of the above aspects.		
	S = (E + D + M)*P		
	S = Significance weighting		
	E = Extent		
	D = Duration		
	M = Magnitude		
Status	Described as either positive, negative or neutral		
Positive			
Negative			
Neutral			
Other	Degree to which the impact can be reversed		
	• Degree to which the impact may cause irreplaceable		
	loss of resources		
	Degree to which the impact can be mitigated		

5.2 List of Activities for the Site

Table 2 lists the anticipated activities for the site. The last two columns in the table list the anticipated forms of soil degradation and geographical distribution of the impacts.

5.3 Assessment of the Impacts of Activities

Many of the impacts are generic and their impacts will remain similar for most areas on the site. The generic activity will therefore be assessed. The impacts associated with the different activities have been assessed below for each activity. These impacts have been summarized in **Table 8**. **Note**: The impacts listed below indicate that no mitigation is possible. It is important to note that any soil impact in the form of drastic physical disturbance (as with construction activities) is a permanent one and no mitigation is possible. The mitigation that can be applied is the restriction of off-site effects due to developments through adequate implementation of environmental management measures (discussed later in the report).

Activity	Form of		Geographical	Comment
	Degradatior	า	Extent	(Section
				described)
Construction Phase				
Construction of solar panels and	Physical		Two dimensional	Impact small due
stands	degradation			to localised nature
	(surface)			(Section 5.3.1)
Construction of buildings and other	Physical		Two dimensional	(Section 5.3.2)
infrastructure	degradation			
	(compound)			
Construction of roads	Physical		Two dimensional	(Section 5.3.3)
	degradation			
	(compound)			
Construction and Operational Phas	e Related Effe	cts		
Vehicle operation on site	Physical	and	Mainly point and	(Section 5.3.4)
	chemical		one dimensional	
	degradation			
	(hydrocarbon			
	spills)			
Dust generation	Physical		Two dimensional	(Section 5.3.5)
	degradation			

Table 2 List of activities and their associated forms of soil degradation

5.3.1 Construction of Solar Panels and Stands

Table 3 presents the impact criteria and a description with respect to soils, land capability and land use for the construction of solar panels and stands.

Criteria	Description		
Cumulative	The cumulative impact of this activity will be small as it is constructed on land with		
Impact	low agricultural potential.		
Nature	This activity entails the construction of so	lar panels and stands with the associated	
	disturbance of soils and existing land use.		
	Without Mitigation	With Mitigation	
Extent	1 - Site: The impact is two dimensional	1 - Site: The impact is two dimensional	
	but then limited to the immediate area	but then limited to the immediate area	
	that is being developed	at is being developed that is being developed	
Duration	5 – Permanent (unless removed) 5 – Permanent (unless removed)		
Magnitude	2	2	
Probability	4 (highly probable due to inevitable	4 (highly probable due to inevitable	
	changes in land use)	changes in land use)	
Significance	S = (1 + 5 + 2)*4 = 32 (low)	S = (1 + 5 + 2)*4 = 32 (low)	
of impact			
Status	Negative	Negative	
Mitigation	None possible. Limit footprint to the	None possible. Limit footprint to the	
	immediate development area	immediate development area	

Table 3 Construction of solar panels and stands

5.3.2 Construction of Buildings and Other Infrastructure

Table 4 presents the impact criteria and a description with respect to soils, land capability and land use for the construction of solar panels and stands.

Criteria	Description		
Cumulative	The cumulative impact of this activity will be small as it is constructed on land with		
Impact	low agricultural potential.		
Nature	This activity entails the construction of buildings and other infrastructure with the		
	associated disturbance of soils and existing land use.		
	Without Mitigation	With Mitigation	
Extent	1 - Site: The impact is two dimensional	1 - Site: The impact is two dimensional	
	but then limited to the immediate area	but then limited to the immediate area	
	that is being developed	that is being developed	
Duration	5 – Permanent (unless removed)	5 – Permanent (unless removed)	

Table 4 Construction of buildings and other infrastructure

Magnitude	2	2	
Probability	4 (highly probable due to inevitable	4 (highly probable due to inevitable	
	changes in land use)	changes in land use)	
Significance	$S = (1 + 5 + 2)^* 4 = 32$	S = (1 + 5 + 2)*4 = 32 (low)	
of impact			
Status	Negative	Negative	
Mitigation	None possible. Limit footprint to the	None possible. Limit footprint to the	
	immediate development area	immediate development area	

5.3.3 Construction of Roads

Table 5 presents the impact criteria and a description with respect to soils, land capability and land use for the construction of roads.

Criteria	Description		
Cumulative	The cumulative impact of this activity will be small as it is linear and limited in		
Impact	geographical extent.		
Nature	This activity entails the construction of roa	ds with the associated disturbance of soils	
	and existing land use.		
	Without Mitigation	With Mitigation	
Extent	1 - Site: The impact is two dimensional	1 - Site: The impact is two dimensional	
	but then limited to the immediate area	but then limited to the immediate area	
	that is being developed along the road	that is being developed along the road	
Duration	5 – Permanent (unless removed) 5 – Permanent (unless removed)		
Magnitude	2 2		
Probability	4 (highly probable due to inevitable 4 (highly probable due to inevitab		
	changes in land use)	changes in land use)	
Significance	S = $(1 + 5 + 2)^{*}4 = 32$ (low) S = $(1 + 5 + 2)^{*}4 = 32$ (low)		
of impact			
Status	Negative Negative		
Mitigation	None possible. Limit footprint to the	None possible. Limit footprint to the	
	immediate development area and keep	immediate development area and keep	
	to existing roads as far as possible	to existing roads as far as possible	

Table 5 Construction of roads

5.3.4 Vehicle Operation on Site

It is assumed that vehicle movement will be restricted to the construction site and established roads. Vehicle impacts in this sense are restricted to spillages of lubricants and petroleum products. **Table 6** presents the impact criteria and a description with respect to soils, land capability and land use for the operation of vehicles on the site.

Criteria	Description		
Cumulative	The cumulative impact of this activity will be small if managed.		
Impact			
Nature	This activity entails the operation of vehicl	les on site and their associated impacts in	
	terms of spillages of lubricants and petrole	um products	
	Without Mitigation	With Mitigation	
Extent	1 - Site: The impact is two dimensional	1 - Site: The impact is two dimensional	
	but then limited to the immediate area	but then limited to the immediate area	
	that is being developed	that is being developed	
Duration	2 – Short-term 2 – Short-term		
Magnitude	2 2		
Probability	4 2 (with prevention and mitigation)		
Significance	$S = (1 + 2 + 2)^{*}4 = 20$ $S = (1 + 2 + 2)^{*}2 = 10$ (with preven		
of impact	and mitigation)		
Status	Negative Negative		
Mitigation	Maintain vehicles, prevent and address Maintain vehicles, prevent and ad		
	spillages	spillages	

Table 6 Assessment of impact of vehicle operation on site

5.3.5 Dust Generation

Generated dust can impact large areas depending on environmental and climatic conditions. **Table 7** presents the impact criteria and a description with respect to soils, land capability and land use for dust generation on the site. For the sake of this assessment contributions of dust generation other than the activities on the site have been ignored.

Table 7 Assessment of impact of dust generation on site

Criteria	Description		
Cumulative	The cumulative impact of this activity will be small if managed but can have		
Impact	widespread impacts if ignored.		
Nature	This activity entails the operation of ve	hicles on site and their associated dust	
	generation		
	Without Mitigation	With Mitigation	
Extent	2 - Local: The impact is diffuse	2 - Local: The impact is diffuse	
	(depending on environmental and	(depending on environmental and	
	climatic conditions) and will probably be	climatic conditions) and will probably be	
	limited to within $3 - 5$ km of the site limited to within $3 - 5$ km of the s		
Duration	2 – Short-term	2 – Short-term	
Magnitude	2	2	
Probability	4	2 (with mitigation and adequate	

		management)
Significance	$S = (2 + 2 + 2)^* 4 = 24$	$S = (2 + 2 + 2)^2 = 12$ (with mitigation
of impact		and adequate management)
Status	Negative	Negative
Mitigation	Limit vehicle movement to absolute	Limit vehicle movement to absolute
	minimum, construct proper roads for	minimum, construct proper roads for
	access	access

Table 8 Summary of the impact of the development on agricultural potential and land capability

Nature of Impact	Loss of agricultural potential and land capability owing to the development	
	Without mitigation	With mitigation
Extent	Low (1) – Site	Low (1) – Site
Duration	Permanent (5)	Permanent (5)
Magnitude	Low (2)	Low (2)
Probability	Highly probable (4)	Highly probable (4)
Significance*	32 (Low)	32 (Low)
Status (positive or negative)	Negative	Negative
Reversibility	Medium	Medium
Irreplaceable loss of	No	No
resources?		
Can impacts be mitigated?	No	No

Mitigation:

The loss of agricultural land is a long term loss and there are no mitigation measures that can be put in place to combat this loss.

Cumulative impacts:

Soil erosion may arise owing to increased surface water runoff. Adequate management and erosion control measures should be implemented.

Residual Impacts:

The loss of agricultural land is a long term loss. This loss extends to the post-construction phase. The agricultural potential is very low though.

5.4 Environmental Management Plan

Tables 9 to 11 provide the critical aspects for inclusion in the EMP.

Objective: Erosion control and mitigation					
Project components	Soil stabilisation, construction of impoundments and erosion mitigation				
	structures				
Potential Impact	Large scale erosion and sediment generation				
Activity / risk source	Poor planning of rainfall surface runoff and storm water management				
Mitigation: Target /	Prevention of eroded materials and silt rich water running off the site				
Objective					
Mitigation: Action/control		Responsibility	Timeframe		
Plan and implement adequate erosion control		Construction team and	Throughout project		
measures		engineer			
Performance	Assessment of storm water structures and erosion mitigation measures.				
indicator	Measurement of actual erosion and sediment generation.				
Monitoring	Monitor and measure sediment generation and erosion damage				

 Table 9 Measures for erosion mitigation and control

Table 10 Measures for limiting vehicle operation impacts on site (spillages)

Objective: Erosion control and mitigation					
Project components	Maintenance of vehicles and planning of vehicle service areas				
Potential Impact	Oil, fuel and other hydrocarbon pollution				
Activity / risk source	Poor maintenance of vehicles and poor control over service areas				
Mitigation: Target /	Adequate maintenance and control over service areas				
Objective					
Mitigation: Action/control		Responsibility	Timeframe		
Service vehicles adequately		Construction team and	Throughout project		
		engineer			
Maintenance of service areas, regular cleanup		Construction team and	Throughout project		
		engineer			
Performance	Assessment number and extent of spillages on a regular basis.				
indicator					
Monitoring	Monitor construction and service sites				

Table 11 Measures for limiting dust generation on site

Objective: Dust generation suppression					
Project components	Limit and address dust generation on site linked to construction activities				
Potential Impact	Large scale dust generation on site				
Activity / risk source	Inadequate dust control measures, excessive vehicle movement on				
	unpaved roads				
Mitigation: Target /	Minimise generation of dust				
Objective					
Mitigation: Action/control		Responsibility	Timeframe		
Implement dust control strategy including dust		Construction team and	Throughout project		
suppressants and tarring of roads		engineer			
Limit vehicle movement on unpaved areas to		Construction team and	Throughout project		
the absolute minimum		engineer			
Performance	Assessment of dust generated on site				
indicator					
Monitoring	Monitor construction site and surrounds				

6. CONCLUSIONS AND RECOMMENDATIONS

It is concluded that the proposed development of a photovoltaic facility on the site will not have large impacts due to the low agricultural potential of the site as well as the general rocky nature of the soils. The low agricultural potential of the site is the result of a dominance shallow and rocky soils as well as the relatively low and erratic rainfall of the area.

Even though the soils on the site are not considered to be highly sensitive to erosion such prevention measures should be put in place due to the general slope of the site. The main impacts that have to be managed on the site during the construction activities are:

- 1. Erosion must be controlled through adequate mitigation and control structures.
- 2. Impacts from vehicles, such as spillages of oil and hydrocarbons, should be prevented and mitigated.
- 3. Dust generation on site should be mitigated and minimised as the dust can negatively affect the quality of grazing as well as livestock production.

The impacts on the site need to be viewed in relation to the opencast mining of coal in areas of high potential soils – such as the Eastern Highveld. With this comparison in mind the impact of a solar energy facility is negligible compared to the damaging impacts of coal mining – for a similar energy output. Therefore, in perspective, the impacts of the proposed facility can be motivated as necessary in decreasing the impacts in areas where agriculture potential plays a more significant role.

REFERENCES

LAND TYPE SURVEY STAFF. (1972 – 2006). *Land Types of South Africa: Digital map (1:250 000 scale) and soil inventory databases.* ARC-Institute for Soil, Climate and Water, Pretoria.

MACVICAR, C.N. et al. 1977. *Soil Classification. A binomial system for South Africa.* Sci. Bull. 390. Dep. Agric. Tech. Serv., Repub. S. Afr., Pretoria.

MACVICAR, C.N. et al. 1991. Soil Classification. A taxonomic system for South Africa. Mem. Agric. Nat. Resour. S.Afr. No.15. Pretoria.