

BIODIVERSITY AND WATER RESOURCE ASSESSMENT FOR THE PROPOSED DECOMMISSIONING OF THE TRANSNET DURBAN TO JOHANNESBURG PIPELINE (DJP)

Gauteng, Free State and KwaZulu Natal

Date December 2019

Prepared for:

Prepared by: The Biodiversity Company Cell: +27 81 319 1225 Fax: +27 86 527 1965 info@thebiodiversitycompany.com www.thebiodiversitycompany

Report Name	BIODIVERSITY AND WATER RESOURCE ASSESSMENT FOR THE PROPOSED DECOMMISSIONING OF THE TRANSNET DURBAN TO JOHANNESBURG PIPELINE (DJP)	
Submitted to	CONSULTING	
Dement Writer	Martinus Erasmus	- AB
Report writer	Martinus Erasmus (Cand Sci Nat) obtained his 2016 at the Tshwane University of Technology. I assessments and assisting specialists in the field	B-Tech degree in Nature Conservation in Martinus has been conducting EIAs, basic d during his studies since 2015.
	Lindi Steyn	8
Report writer	Lindi Steyn has a PhD in Biodiversity and Johannesburg. She specialises in avifauna and 2013.	d Conservation from the University of d has worked in this specialisation since
	Tyron Clark	Ja Andrew
Report Writer	Tyron has 9 years of experience conducting we number of African countries, affording him good e He attained his MSC in Zoological science from research interests centre on biogeography and completed courses in wetland deliniation and ma Free State.	etland and biodiversity assessments in a experience in variety of development types. In the University of the Witwatersrand. His d ecological niche modelling. Tyron has anagement hosted by the University of the
Denert Writer	Christian Fry (Pr. Sci. Nat. 119082)	
Report writer	Christian Fry is Pr Sci Nat registered (119082) in 6 years of experience of consulting in the Aquat training courses for buffers and riverine ecology,	the field of Aquatic Science. Christian has ic Science, and has completed numerous , and is an accredited SASS5 practitioner.
	Andrew Husted	Hart
Report Reviewer	Andrew Husted is Pr Sci Nat registered (4002 Ecological Science, Environmental Science and Wetland and Biodiversity Specialist with mo environmental consulting field. Andrew has comp and is an accredited wetland practitioner, reco Wetlands programme as a competent wetland c	13/11) in the following fields of practice: d Aquatic Science. Andrew is an Aquatic, ore than 12 years' experience in the oleted numerous wetland training courses, gnised by the DWS, and also the Mondi onsultant.
Declaration	The Biodiversity Company and its associates of the auspice of the South African Council for Nature we have no affiliation with or vested financial inter performed under the Environmental Impact Asse We have no conflicting interests in the undertaking secondary developments resulting from the author interest in the project, other than to provide a pro- the project (timing, time and budget) based on the	perate as independent consultants under ural Scientific Professions. We declare that erests in the proponent, other than for work essment Regulations, 2014 (as amended). ing of this activity and have no interests in prisation of this project. We have no vested ofessional service within the constraints of the principles of science.

EXECUTIVE SUMMARY

The Biodiversity Company was appointed to conduct a terrestrial ecology and water resource baseline and impact (risk) assessment for the environmental authorisation processes for the proposed decommissioning of the Transnet Durban-Johannesburg Pipeline (DJP) and associated structures, specifically the demolition and dismantling and selected depots.

Wet season surveys were completed from the 28th of October 2019 till the 15th of November 2019. The surveys primarily focussed on the area along the pipeline servitude with a 64 m survey corridor, referred to as the project area herein. The project also considered the 500 m regulation area, which comprises fieldwork information and desktop data.

Terrestrial Ecology

The project area (pipeline and depots) stretches across three provinces namely: Gauteng, Free State and KwaZulu-Natal. Various assessment sites were selected along the project area. The following datasets were used to select the assessment points: NFEPA, topographical data (rivers and inland waterbodies), D'MOSS, CoJ wetlands and RAMSAR. The points selected are focussed around water resources, to ensure the habitat is assessed from a terrestrial, aquatics and a wetland perspective. A total of 544 sites were selected on a desktop basis as they fell in a number of different classifications as per the scoping report (TBC: Biodiversity and Water Resource Desktop Assessment for the Proposed Decommissioning of the Transnet Durban to Johannesburg Pipeline (DJP). Scoping Report., 2019). These sites were further reduced and a total of 129 sites were visited based on the inherent sensitivity of these areas, of these 61 sites were found to have a moderately-high to high sensitivity. A total of 44 sites were rated as low-moderate or moderate, and 24 sites were given a low sensitivity. The sensitivity allocated to the areas were based on the overall habitat quality and state, the species of conservation concern (SCC) present as well as the function of landscape features (e.g. wetland) in the area that contribute to the general ecology of the area. These areas exhibit a healthy ecological functionality, integrity and may provide habitat for some additional threatened species. This diversity is indicative of the importance of these systems to collectively provide refugia, food and corridors for dispersal in and through the surrounding area.

The proposed project area is disturbed primarily due to clearing of vegetation within the servitude, presence of humans and associated impacts such as litter and livestock. Additional impacts include secondary and main roads, power and telephone lines as well as farming which resulted in many sites being scored low or not even being considered for the field assessment.

Wetland Ecology

Based on a combination of desktop and in-field delineation, a total of 356 individual wetland hydrogeomorphic (HGM) units were identified and delineated within the 32 m survey area on either side of the pipeline route (62 m corridor). These included six wetland HGM types floodplains, channelled valley-bottoms, unchanneled valley-bottoms, flats, seeps and depressions. Together these wetlands occupied a total of 267.7 ha covering 6% of the 64 m survey corridor along the pipeline route. Encouragingly the majority of wetlands along the pipeline route were found to be in a Largely Natural to Moderately Modified state, reflecting

the large extent of undeveloped and often remote (and intact) rural land traversed by the pipeline. Class B systems were least abundant Gauteng Province where they were mainly encountered near Faerie Glen and south of Rietvlei (near Elandsfontein AH) nature reserves while the highest frequency of these systems were encountered in the Free State (particularly between Bethlehem and Swinburne) and KwaZulu-Natal (particularly in the midlands between Estcourt and Curries Post). most wetlands along the pipeline route have a High (class B) to Moderate (class C) EIS with a comparatively small proportion of wetlands occupying either extreme (class A or D). Most of the systems (174) along the pipeline route are considered to provide Highly important ecosystem services. These are predominantly large, relatively intact systems that provide both direct provisional and indirect regulating and supporting services in rural settings.

To facilitate the feasibility and practicality of pipeline decommissioning efforts given the high number of wetland crossings (356 HGM units) an approach was adopted to prioritise wetlands in order of highest to lowest risk to the anticipated impacts associated with pipeline closure and ultimate abandonment. The prioritization of wetland sites was primarily based on hydroperiod while ecological integrity was also considered. Two closure scenarios are anticipated; Scenario 1 remove the pipeline and Scenario 2 leave in place and mitigate in-situ. The risk assessment provided in this report caters for both potential scenarios (scenarios 1 and 2). It is, however, our understanding that the client intends to opt for Scenario 2 which involves applying non-invasive mitigation from beyond the delineated wetland boundary and associated buffer. All post-mitigation ratings for this scenario should be used to inform decisions with regards to the level of water use licencing required. Under this scenario, it is recommended that at sites earmarked as being of potential risk (Priority 1 and 2) that the mitigation as outlined in the risk assessment be applied while at all times remaining outside of the delineated wetland boundary and associated buffers as provided in the GIS shapefile provided to the client. Effective implementation of the suggested mitigation is anticipated to decrease the risk of all impacts associated with Scenario 2 to Low, and as such, a General Authorisation should be considered in terms of water use licensing.

Riverine Ecology

The watercourses in the project area drain into the Vaal and the Pongola and Mtamvuna Water Management Areas (WMAs). A total of 30 riverine assessments were conducted to characterise the watercourses encountered during the proposed pipeline decommissioning. Standard riverine and wetland assessments were completed to define their spatial sensitivity and Present Ecological Status. The watercourses ranged from seriously modified (class E/F) to largely natural (class B) according to biotic integrity of macroinvertebrate assemblages. A single protected fish species was collected during the study in the Vaal and Suikerbosrand systems, *Labeobarbus kimberleyensis*, which is listed as Near Threatened. The proposed activities do not pose a threat to the species populations should the pipeline be left in situ. Numerous drainage lines are encountered along the pipeline, these sites were delineated in the wetland assessment and appropriate buffers were applied. According to the proposed activities, recommended buffers and mitigations measures, the risks to the ephemeral and perennial watercourses were rated as low.

Document Guide

The table below provides the NEMA (2014) Requirements for Ecological Assessments, and also the relevant sections in the reports where these requirements are addressed:

GNR 982 April 2017	Description	Section in the Report
Specialist Report		
Appendix 6 (a)	A specialist report prepared in terms of these Regulations must contain— details of— i. the specialist who prepared the report; and ii. the expertise of that specialist to compile a specialist report including a curriculum vitae;	Page i
Appendix 6 (b)	A declaration that the specialist is independent in a form as may be specified by the competent authority;	Page Vi - Viii
Appendix 6 (c)	An indication of the scope of, and the purpose for which, the report was prepared;	Section 3
Appendix 6 (cA)	An indication of the quality and age of base data used for the specialist report;	Section 7
Appendix 6 (cB)	A description of existing impacts on the site, cumulative impacts of the proposed development and levels of acceptable change;	Section 9 & 10
Appendix 6 (d)	The <u>duration</u> , date and season of the site investigation and the relevance of the season to the outcome of the assessment;	Section 8
Appendix 6 (e)	A description of the methodology adopted in preparing the report or carrying out the specialised process <u>inclusive of equipment and modelling used;</u>	Scoping report (TBC, 2019)
Appendix 6 (f)	<u>Details of an assessment of</u> the specific identified sensitivity of the site related to the <u>proposed</u> activity <u>or activities</u> and its associated structures and infrastructure, inclusive of a <u>site plan identifying site alternatives</u> ;	Section 8
Appendix 6 (g)	An identification of any areas to be avoided, including buffers;	Section 8 as well as spatial data
Appendix 6 (h)	A map superimposing the activity including the associated structures and infrastructure on the environmental sensitivities of the site including areas to be avoided, including buffers;	Section 8
Appendix 6 (i)	A description of any assumptions made and any uncertainties or gaps in knowledge;	Section 5
Appendix 6 (j)	A description of the findings and potential implications of such findings on the impact of the proposed activity [including identified alternatives on the environment] or activities;	Section 9
Appendix 6 (k)	Any mitigation measures for inclusion in the EMPr;	Section 9
Appendix 6 (I)	Any conditions for inclusion in the environmental authorisation;	Section 9 & 13
Appendix 6 (m)	Any monitoring requirements for inclusion in the EMPr or environmental authorisation;	Section 9 & 13
Appendix 6 (n)	 A reasoned opinion— [as to] whether the proposed activity, activities or portions thereof should be authorised; (iA) regarding the acceptability of the proposed activity or activities; and ii. if the opinion is that the proposed activity, activities or portions thereof should be authorised, any avoidance, management and mitigation measures that should be included in the EMPr, and where applicable, the closure plan; 	Page ii
Appendix 6 (o)	A description of any consultation process that was undertaken during the course of preparing the specialist report;	None
Appendix 6 (p)	A summary and copies of any comments received during any consultation process and where applicable all responses thereto; and	None
Appendix 6 (q)	Any other information requested by the competent authority.	None

Declaration

I, Martinus Erasmus, declare that:

- I act as the independent specialist in this application;
- I will perform the work relating to the application in an objective manner, even if this results in views and findings that are not favourable to the applicant;
- I declare that there are no circumstances that may compromise my objectivity in performing such work;
- I have expertise in conducting the specialist report relevant to this application, including knowledge of the Act, regulations and any guidelines that have relevance to the proposed activity;
- I will comply with the Act, regulations and all other applicable legislation;
- I have no, and will not engage in, conflicting interests in the undertaking of the activity;
- I undertake to disclose to the applicant and the competent authority all material information in my possession that reasonably has or may have the potential of influencing any decision to be taken with respect to the application by the competent authority; and the objectivity of any report, plan or document to be prepared by myself for submission to the competent authority;
- All the particulars furnished by me in this form are true and correct; and
- I realise that a false declaration is an offence in terms of Regulation 71 and is punishable in terms of Section 24F of the Act.

Martinus Erasmus Terrestrial Ecologist The Biodiversity Company December 2019

Declaration

I, Tyron Clark declare that:

- I act as the independent specialist in this application;
- I will perform the work relating to the application in an objective manner, even if this results in views and findings that are not favourable to the applicant;

the

BIODIVER

- I declare that there are no circumstances that may compromise my objectivity in performing such work;
- I have expertise in conducting the specialist work relevant to this application, including knowledge of the Act (NEMA), regulations and any guidelines that have relevance to the proposed activity;
- I will comply with the Act, regulations and all other applicable legislation;
- I have no, and will not engage in, conflicting interests in the undertaking of the activity;
- I undertake to disclose to the applicant and the competent authority all material information in my possession that reasonably has or may have the potential of influencing any decision to be taken with respect to the application by the competent authority; and the objectivity of any report, plan or document to be prepared by myself for submission to the competent authority;
- All the particulars furnished by me in this form are true and correct; and
- I realise that a false declaration is an offence in terms of Regulation 71 and is punishable in terms of Section 24F of the Act.

Tyron Clark Wetland Specialist The Biodiversity Company December 2019

Declaration

I, Christian Fry declare that:

- I act as the independent specialist in this application;
- I will perform the work relating to the application in an objective manner, even if this results in views and findings that are not favourable to the applicant;

the

BIODIVERS

- I declare that there are no circumstances that may compromise my objectivity in performing such work;
- I have expertise in conducting the specialist work relevant to this application, including knowledge of the Act (NEMA), regulations and any guidelines that have relevance to the proposed activity;
- I will comply with the Act, regulations and all other applicable legislation;
- I have no, and will not engage in, conflicting interests in the undertaking of the activity;
- I undertake to disclose to the applicant and the competent authority all material information in my possession that reasonably has or may have the potential of influencing any decision to be taken with respect to the application by the competent authority; and the objectivity of any report, plan or document to be prepared by myself for submission to the competent authority;
- All the particulars furnished by me in this form are true and correct; and
- I realise that a false declaration is an offence in terms of Regulation 71 and is punishable in terms of Section 24F of the Act.

Christian Fry Aquatic Specialist The Biodiversity Company December 2019

Abbreviations

Abbreviation	Meaning
ASPT	Average Score Per Recorded Taxon
СВА	Critical biodiversity Area
CBD	Convention on Biological Diversity
CBG	Central Bushveld Group
CITES	The Convention on International Trade in Endangered Species of Wild Fauna and Flora
CoJ	City of Johannesburg
D'MOSS	Durban Metropolitan Open Space System
DEA	Department of Environmental Affairs
DHG	Dry Highveld Grasslands Group
DJP	Transnet Durban-Johannesburg Pipeline
DO	Dissolved Oxygen
DWS	Department of water and Sanitation
ECO	Environmental control officer
EIA	Environmental Impact Assessment
EIS	Ecological Importance and Sensitivity
EMP	Environmental Management Plan
EN	Endangered
ESA	Environmental Support Area
GDARD	Gauteng Department of Agriculture and Rural Development
HGM	Hydrogeomorphic
IEM	Integrated environmental management
IHIA	Habitat integrity
IOCBG	Indian Ocean Coastal Belt Group
IUCN	International Union for Conservation of Nature
KZN	KwaZulu-Natal
LC	Least Concerned
MHGG	Mesic Highveld Grasslands Group
NBF	National Biodiversity Framework
NEMA	The National Environmental Management Act
NFEPA (FEPA)	National Freshwater Ecosystem Priority Areas
NPAES	National Protected Areas Expansion Strategy
NSBA	National Spatial Biodiversity Assessment
NT	Near threatened
NWA	National Water Act
PES	Present ecological state
RAMSAR	Ramsar Convention on Wetlands of International Importance
SANBI	South African National Biodiversity Institute
SASS5	South African Scoring System version 5
SCC	species of conservation concern
SEGG	Sub-Escarpment Grassland
SES	Sub-Escarpment Savanna Group
ТВС	The Biodiversity Company

Biodiversity and Water Resource Assessment

ToR	Terms of Reference
UNFCC	The United Nations Framework Convention on Climate Change
VGI	VGI Consulting
VU	Vulnerable
WCO	Without Channelled Inflow
WMA	Water Management Area

Table of Contents

1	Intr	oduc	tion	1
2	Pro	ject /	Area	2
3	Ter	ms o	f Reference	
4	Met	thodo	ologies	
5	Lim	itatic	on	
6	Key	/ Leg	islative Requirements	5
7	Ass	essr	nent Sites	6
8	Fiel	d Re	esults	20
8	8.1	Ter	restrial	
8	8.2	We	tlands	50
	8.2.	1	Classification	50
	8.2.	2	Hydrogeomorphic Setting	50
	8.2.	3	Soils	
	8.2.	4	Wetland Health	63
	8.2.	5	Wetland Ecological Importance and Sensitivity	67
	8.2.	6	Wetland Ecosystem Services	67
	8.2.	7	Wetland Prioritisation	
	8.2.	8	Wetland Buffers	71
	8.2.	9	Representative wetland sites	73
8	8.3	Riv	erine Ecology	
9	Imp	act a	and Risk Assessment	126
ç).1	Imp	act Assessment Methodology	126
ç).2	Cur	rent Impacts	128
ç).3	Imp	acts Assessment	131
	9.3.	1	Terrestrial Ecology Impacts	131
	9.3.	2	Wetland and Riverine Risk Assessment	145
ç).4	Miti	gation Measures	160
	9.4.	.1	Mitigation Measures for Impacts on Flora and Faunal Communities .	160
10	С	umu	lative Impact	163

11	Conclusion	164
11.1	1 Terrestrial Ecosystems	164
11.2	2 Riverine Ecology	164
11.3	3 Wetlands	165
12	Impact Statement	165
12.1	1 Terrestrial Ecosystems	165
12.1	1 Wetland and Riverine	166
13	Recommendations	166
14	References	168

Tables

Table 1: A list of key legislative requirements relevant to biodiversity and conservation Gauteng, Free State and KwaZulu Natal	۱ in 6
Table 2: Summary of terrestrial features of site106	. 25
Table 3: Summary of terrestrial features of site 107	. 25
Table 4: Summary of terrestrial features of site 182	. 26
Table 5: Summary of terrestrial features of site 182	. 27
Table 6: Summary of terrestrial features of sites 196 and 197	. 28
Table 7: Summary of terrestrial features of sites 196 and 197	. 28
Table 8: Summary of terrestrial features of sites 221 and 222	. 29
Table 9: Summary of terrestrial features of site 270	. 30
Table 10: Summary of terrestrial features of site 280	. 30
Table 11: Summary of terrestrial features of site 371	. 31
Table 12: Summary of terrestrial features of site 420	. 32
Table 13: Summary of terrestrial features of site 425	. 33
Table 14: Summary of terrestrial features of site 426	. 34
Table 15: Summary of terrestrial features of site 450	. 35
Table 16: Summary of terrestrial features of site 476	. 36
Table 17: Summary of terrestrial features of site 489	. 37
Table 18: Summary of terrestrial features of site 492	. 37

Table 19: Summary of terrestrial features of site 521	38
Table 20: Summary of terrestrial features of site 522	39
Table 21: Summary of terrestrial features of site 450	40
Table 22: Summary of terrestrial features of site 533	41
Table 23: Summary of terrestrial features of site 535	42
Table 24: Summary of terrestrial features of site 545	43
Table 25: Summary of terrestrial features of the Pretoria West depot	44
Table 26: Summary of terrestrial features of the Elardus Park depot	45
Table 27: Summary of terrestrial features of the Magdala depot.	46
Table 28: Summary of terrestrial features of the Bethlehem depot	47
Table 29: Summary of terrestrial features of the Van Reenen depot	48
Table 30: Summary of terrestrial features of the Potchefstroom depot	49
Table 31: Wetland classification as per SANBI guideline (Ollis et al. 2013)	50
Table 32: Examples and descriptions of the dominant soil forms encountered on site 1991)	(SASA, 58
Table 33: Preliminary rating of the hydrological benefits likely to be provided by a based on its particular HGM type (Kotze et al., 2009)	wetland 68
Table 34: Wetland prioritisation	70
Table 35: Summary of the wetland system sampled at site 15	73
Table 36: Summary of the wetland system sampled at site 87	74
Table 37: Summary of the wetland system sampled at site 81	75
Table 38: Summary of the wetland system sampled at site 82	76
Table 39: Summary of the wetland system sampled at site 19	77
Table 40: Summary of the wetland system sampled at site 14	78
Table 41: Summary of the wetland system sampled at site 54	79
Table 42: Summary of the wetland system sampled at site 57	80
Table 43: Summary of the wetland system sampled at site 12	81
Table 44: Summary of the wetland system sampled at site 17	82
Table 45: Summary of the wetland system sampled at site 59	83
Table 46: Summary of the wetland system sampled at site 58	84
	04

the BIODIVERSITY company

Table 48: Summary of the wetland system sampled at site 51	86
Table 49: Summary of the wetland system sampled at site 50	87
Table 50: Summary of the wetland system sampled at site W131CBI	88
Table 51: Summary of the wetland system sampled at site 46	89
Table 52: Summary of the wetland system sampled at site 83	90
Table 53: Summary of the wetland system sampled at site 78	91
Table 54: Summary of the wetland system sampled at site 76	92
Table 55: Summary of the wetland system sampled at site 86	93
Table 56: Summary of the wetland system sampled at site 85	94
Table 57: Summary of the wetland system sampled at site 90	95
Table 58: Summary of the aquatic system sampled at site 56	97
Table 59: Summary of the aquatic system sampled at site 57	98
Table 60: Summary of the aquatic system sampled at site 61	99
Table 61: Summary of the aquatic system sampled at site 61	100
Table 62: Summary of the aquatic system sampled at site 84	101
Table 63: Summary of the aquatic system sampled at site 126	102
Table 64: Summary of the aquatic system sampled at site 144	103
Table 65: Summary of the aquatic system sampled at site 158	104
Table 66: Summary of the aquatic system sampled at site 177	105
Table 67: Summary of the aquatic system sampled at site 189	106
Table 68: Summary of the aquatic system sampled at site 192	107
Table 69: Summary of the aquatic system sampled at site 204	108
Table 70: Summary of the aquatic system sampled at site 230	109
Table 71: Summary of the aquatic system sampled at site 261	110
Table 72: Summary of the aquatic system sampled at site 270	111
Table 73: Summary of the aquatic system sampled at site 298	112
Table 74: Summary of the aquatic system sampled at site 306	113
Table 75: Summary of the aquatic system sampled at site 315	114
Table 76: Summary of the aquatic system sampled at site 332	115
Table 77: Summary of the aquatic system sampled at site 339	116

Table 78: Summary of the aquatic system sampled at site 371
Table 79: Summary of the aquatic system sampled at site 420
Table 80: Summary of the aquatic system sampled at site 437
Table 81: Summary of the aquatic system sampled at site 468
Table 82: Summary of the aquatic system sampled at site 471
Table 83: Summary of the aquatic system sampled at site 480
Table 84: Summary of the aquatic system sampled at site 483
Table 85: Summary of the aquatic system sampled at site 530
Table 86: Summary of the aquatic system sampled at site 537
Table 87: Environmental risk and impact assessment criteria 127
Table 88: Assessment of significance of potential site establishment phase impacts on sensitive or protected vegetation and SCC faunal communities associated with the proposed decommissioning of the pipeline pre- and post-mitigation:
Table 89: Assessment of significance of potential site establishment phase impacts onvegetation and faunal communities associated with the proposed decommissioning of thepipeline pre- and post-mitigation:138
Table 90: Assessment of significance of potential decommissioning phase impacts on sensitive or protected vegetation and SCC faunal communities associated with the proposed decommissioning of the pipeline pre- and post-mitigation:
Table 91: Assessment of significance of potential decommissioning phase impacts on vegetation and faunal communities associated with the proposed decommissioning of the pipeline and the depots pre- and post-mitigation:
Table 92: Assessment of significance of potential rehabilitation phase impacts on vegetation and faunal communities associated with the proposed decommissioning of the pipeline and depots process pre- and post-mitigation:
Table 93: Wetland Risk Assessment (Andrew Husted (Pr Sci Nat 400213/11) for Scenario 1 and Scenario 2 146
Table 94: Unplanned Events, Low Risks and their Management Measures
Table 95: DWS Risk Assessment for perennial watercourses 156
Table 96: DWS Risk Assessment perennial watercourses
Table 97: DWS Risk Assessment for ephemeral watercourses
Table 98: DWS Risk Assessment for ephemeral watercourses
Table 99: Cumulative Impact of the project area 163
Table 100: Recommendations for changes to buffers

Figures

Figure 1: The general location of the project area
Figure 2: Assessment sites identified
Figure 3: Assessment sites identified9
Figure 4: Assessment sites identified 10
Figure 5: Assessment sites identified 11
Figure 6: Assessment sites identified 12
Figure 7: Assessment sites identified 13
Figure 8: Assessment sites identified
Figure 9: Assessment sites identified 15
Figure 10: Assessment sites identified
Figure 11: Assessment sites identified 17
Figure 12: Assessment sites identified
Figure 13: Assessment sites identified 19
Figure 14: Graphical representation of the composition of the terrestrial SCCs recorded in in the various sites surveyed
Figure 15: Areas with high sensitivities found along the pipeline
Figure 16: Areas with high sensitivities found along the pipeline
Figure 17: Areas with high sensitivities found along the pipeline
Figure 18: The Depots to be decommissioned
Figure 19: Amalgamated diagram of the wetland units, highlighting the dominant water inputs, throughputs and outputs, SANBI guidelines (Ollis et al. 2013)
Figure 20: Example of a typical priority 1A floodplain wetland identified along the pipeline route 52
Figure 21: Example of a typical priority 1B channelled valley-bottom wetland identified along the pipeline route
Figure 22: Example of a typical priority 1C unchanneled valley-bottom wetland identified along the pipeline route
Figure 23: Example of a typical priority 1D flat wetland identified along the pipeline route 55
Figure 24: Example of a typical priority 3E seep wetland identified along the pipeline route 56

Figure 29: Ecological Importance and Sensitivity, (a) numbers and (b) area of wetlands classified under each of the four EIS classes within the 64 m pipeline corridor project area 67

Figure 31: Schematic of corrosion process of steel pipeline in soil (Scott, 2015)......71

Figure 36: The Mitigation Hierarchy (Macfarlane et al., 2016) 160

1 Introduction

The Biodiversity Company (TBC) was appointed to conduct a terrestrial ecology and water resource baseline and impact (risk) assessment for the environmental authorisation processes for the proposed decommissioning of the Transnet Durban-Johannesburg Pipeline (DJP) and associated structures (Figure 1).

The pipeline was established in 1965 to supply refined petroleum products to Gauteng. In March 2018 the DJP stopped operating and due to welding defects, which increased the risk of failure as well as spillages and the pipeline seized to operate. The decommissioning of the pipeline will take place after the deactivation which involves the displacement of the product (removal of the product) and cleaning of the pipeline. At the decommissioning phase the pipeline is classified as empty and clean.

Along with the pipeline, selected depots will also be decommissioned (demolition and dismantling). The decommissioning includes the removal of all above ground infrastructure including, buildings, pumps, motors, valves, spill basins, bunded areas, electrical and communication infrastructure, power and water infrastructure as well as fencing and security. The depots that will be decommissioned are:

- Van Reenen;
- Bethlehem;
- Magdala;
- Elardus Park;
- Pretoria West; and
- Potchefstroom.

The pipeline will be left underground as this is deemed internationally as the most environmentally friendly option. The pipeline will be segmented and plugged to limit its ability to function as a conduit. Certain sections of the pipe will be filled with a wet sand mixture. At the areas where the pipe will be cut and filled a 4 m by 4 m hole will be excavated, while at the other end of the section of pipe a 2 m by 2 m hole will be opened. A contactors camp will also be set up next to the excavated hole. Both project areas will be fenced in. The pipe will be filled in areas where subsidence could be a problem, this includes river crossings, streams, wetlands, roads and rail crossings. The estimate of total area disturbed at each point is 10 m by 10 m.

This assessment is in accordance with the 2014 EIA Regulations (No. R. 982-985, Department of Environmental Affairs, 4 December 2014) emanating from Chapter 5 of the National Environmental Management Act (Act No. 107 of 1998). The findings and information herein are in terms of Appendix 6 of the 2014 NEMA EIA Regulations (amended in 2017).

The project was also completed in accordance with the requirements of the Water Use Authorisation in terms of Section 21(c) and (i) of the National Water Act (Act 36 of 1998) (NWA).

2 Project Area

The sections of the pipeline along with the decommissioned depots and their associated infrastructure are referred to as the project area herein. The project area portions stretch across three provinces, namely Gauteng, Free State and KwaZulu-Natal (KZN). A station might also be decommissioned in the North West in Potchefstroom. The Gauteng portion stretches from Pretoria Industrial to Moreletapark, Silverton to Moreletapark, Moreletapark to Boksburg, Alrode to Maraisburg, Maraisburg to the Free State border and then stretches to Sasolburg. In between Sasolburg and Kroonstad Magdala depot is found. The project area then starts again in Kroonstad where it continues to Bethlehem, from Bethlehem to Harrismith, Harrismith into KZN continuing to Ladysmith, Ladysmith to Estcourt, Estcourt to Howick, Howick to Ashburton (old line), Howick via Ashburton to Lynnfield Park (new line) and Lynnfieldpark ending in Durban (Figure 1).

Figure 1: The general location of the project area

www.thebiodiversitycompany.com

3 Terms of Reference

The specialist assessments undertaken for this project took into consideration what is typically deemed as best practice and also the draft minimum requirements for biodiversity considerations in land-use management and integrated environmental management (IEM) by the Department of Environmental Affairs (DEA). The specialist assessments completed herein include:

- Terrestrial biodiversity assessment;
- Aquatic ecology assessment; and
- Wetland assessment.

The Terms of Reference (ToR) included the following:

- Description of the baseline receiving environment specific to the field of expertise (general surrounding area as well as site specific environment);
- Identification and description of any sensitive receptors in terms of relevant specialist disciplines (biodiversity, aquatics and wetlands) that occur in the project area, and the manner in which these sensitive receptors may be affected by the activity;
- Identify 'significant' ecological and faunal features within the proposed development areas; and
- Risk study to identify any critical issues (potential fatal flaws) that may result in project delays or rejection of the application.

4 Methodologies

Refer to scoping report for a full method description for the Terrestrial, Aquatic and Wetland studies (TBC, 2019).

5 Limitation

The following limitations are relevant for this project:

- This report must be read in conjunction with the desktop scoping report that assessed the spatial datasets for the project area (TBC: Biodiversity and Water Resource Desktop Assessment for the Proposed Decommissioning of the Transnet Durban to Johannesburg Pipeline (DJP). Scoping Report., 2019);
- The joining and termination location of the old line (Howick to Ashburton) and new line (Howick via Ashburton to Lynnfields) are not accurate as per the provided shapefiles, the variation falls inside of urban areas which does not influence the sites selected for this study;
- Some field sites could not be accessed due to various restrictions including locked gates and inaccessible roads, these sites were then assessed on a desktop basis or from an adjacent property;

- Only sites identified as sensitive as per the desktop scoping assessment were assessed in field, desktop assessments of the other areas are provided in this report as well as the scoping report (TBC Biodiversity and Water Resource Desktop Assessment for the Proposed Decommissioning of the Transnet Durban to Johannesburg Pipeline (DJP). Scoping Report., 2019, 2019);
- Spillage of fuel out of the system was not considered in the impact section as the pipe were drained and cleaned before the start of the decommissioning;
- Only representative water resources have been assessed for the riverine assessment portion of the project, with the location and extent of the remaining water resources indicated (only);
- Field assessments were completed to assess as much of the site as possible with focus on the proposed directly impacted and downstream areas;
- Only defined watercourses at the Sub Quaternary Reach level were considered in the aquatic ecology study;
- Numerous watercourses were observed to be dry during the survey;
- The use of two of the main wetland indicators namely hydromorphic soils and hydrophytic vegetation was, in places, limited due to soil disturbances;
- Due to the considerable scale of the project area, in field delineations were restricted to within a 32 m corridor on either side of the pipeline route. As such the delineations end abruptly outside this corridor. Wetlands within the 500 m regulated area were considered but not explicitly assessed;
- Due to the scale of the project the delineations represent a combination of in-field and desktop delineations; and
- The GPS used for water resource delineations is accurate to within five meters. Therefore, the wetland delineation plotted digitally may be offset by at least five meters to either side

6 Key Legislative Requirements

The legislation, policies and guidelines listed below are applicable to the ecological component of the current project in terms of biodiversity and ecological support systems. The list below may not be applicable to other parts of the project but are relevant to the ecological studies alone. The list below, although extensive, may not be complete and other legislation, policies and guidelines may apply in addition to those listed below.

Explanation of certain documents or organisations is provided (Table 1) where these have a high degree of relevance to the project and/or are referred to in this assessment.

Table 1: A list of key legislative requirements relevant to biodiversity and conservation in Gauteng,Free State and KwaZulu Natal

Ļ	Convention on Biological Diversity (CBD, 1993)
ATIONA	The United Nations Framework Convention on Climate Change (UNFCC, 1994)
UTERN/	The Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES 1973)
£	The Convention on the Conservation of Migratory Species of Wild Animals (Bonn Convention, 1979)
	Constitution of the Republic of South Africa (Act No. 108 of 2006)
	The National Environmental Management Act (NEMA) (Act No. 107 of 1998)
	The National Environmental Management Protected Areas Act (Act No. 57 of 2003)
	The National Environmental Management Biodiversity Act (Act No. 10 of 2004)
	The National Environmental Management: Waste Act, 2008 (Act 59 of 2008);
	The Environment Conservation Act (Act No. 73 of 1989)
	National Environmental Management Air Quality Act (No. 39 of 2004)
	National Protected Areas Expansion Strategy (NPAES)
	Natural Scientific Professions Act (Act No. 27 of 2003)
	National Biodiversity Framework (NBF, 2009)
INAI	National Forest Act (Act No. 84 of 1998)
АТІС	National Water Act, 1998 (Act 36 of 1998)
Z	National Freshwater Ecosystem Priority Areas (NFEPA's)
	National Spatial Biodiversity Assessment (NSBA)
	World Heritage Convention Act (Act No. 49 of 1999)
	National Heritage Resources Act, 1999 (Act 25 of 1999)
	Municipal Systems Act (Act No. 32 of 2000)
	Alien and Invasive Species Regulations, 2014
	South Africa's National Biodiversity Strategy and Action Plan (NBSAP)
	Conservation of Agricultural Resources Act, 1983 (Act 43 of 1983)
	Sustainable Utilization of Agricultural Resources (Draft Legislation).
	White Paper on Biodiversity
	GDARD Requirements for Biodiversity Assessments (Version 3, 2014a)
	Gauteng Department of Agriculture and Rural Development (GDARD): Checklist for Biodiversity Assessments
	GDARD Mining and Environmental Impact Guide
٩L	Free State Nature Conservation Ordinance 8 of 1969
NCI	KwaZulu-Natal Environmental, Biodiversity and Protected Areas Management Bill, 2014
IVOS	KwaZulu-Natal Nature Conservation Management Act (No. 9 of 1997)
Ϋ́Α	KwaZulu-Natal Nature Conservation Management Amendment Act (No. 5 of 1999)
	KwaZulu-Natal Planning and Development Act (No. 6 of 2008)
	Local Government Municipal System's Act (No 32 of 2000)
	Guidelines for Biodiversity Impact Assessments in KZN (2013)

7 Assessment Sites

Assessment sites were selected based on the desktop information available as well as sites suggested by VGI. The following datasets were used for the selection of the sites: NFEPA, inland water (river and inland waterbodies), D'MOSS, CoJ and RAMSAR. The sites were numbered 1-544, this can be seen in Figure 2 to Figure 13. The sites selected are focussed

around water resources, to ensure the habitat is assessed from a terrestrial, aquatics and a wetland perspective. Areas of interest surrounding for example the river lines were delineated by using Google Earth imagery and a 32 m buffer was added to ensure sufficient area is considered as per the amended EIA Regulations, which lists a 32 m regulation area from a watercourse for developments under Activity 14.

The following guidelines were used as per legislations to determine whether the various assessment sites will be influenced by the various datasets on a desktop base.

- A 200 m buffer was considered for Class 1 and Class 2 ridges;
- A 500 m buffer was considered for a NFEPA river or NFEPA wetland;
- A 1 km buffer was considered for protected areas;
- A 10 km buffer was considered for National parks;
- PES rating was given to the most relevant data, the same rating was given to drainage lines of the same system; and
- Default ecological categories were used as per DWS (2019).

The sites selected for the field assessments were identified based on their sensitivities (CBA classifications, proximities to protected areas, ridge classifications, NFEPA), their topographical layout, size of the systems (wetlands and rivers) ultimately to provide a representative sample of the various systems and habitats. Sites that were not assessed in fields' destails are provided based on a desktop level.

Figure 2: Assessment sites identified

Figure 3: Assessment sites identified

Figure 4: Assessment sites identified

Figure 5: Assessment sites identified

Figure 6: Assessment sites identified

Figure 7: Assessment sites identified

Figure 8: Assessment sites identified

Figure 9: Assessment sites identified

Figure 10: Assessment sites identified

Figure 11: Assessment sites identified

Figure 12: Assessment sites identified

Figure 13: Assessment sites identified

the BIODIVERSITY company

Transnet Pipeline

8 Field Results

The following is a summary of the results from the field survey of the project area, the aim of this section is to highlight some of the sensitive areas and to ensure that the impact of the project is managed. Key features (such as location, habitat type, sensitivity, system type and hydrology) of all the sites assessed in the field are provided in Appendix A (Terrestrial) and Appendix B (Wetlands). Wet season surveys were completed from the 28th of October 2019 till the 15th of November 2019. The surveys primarily focussed on the area along the pipeline servitude with a 64 m corridor (comprising the 32 m buffer).

8.1 Terrestrial

A total of 129 sites were visited, of these 61 sites were found to have a moderately-high to high sensitivity. A total of 44 sites were rated as low-moderate or moderate, and 24 sites were given a low sensitivity. The sensitivity given to the areas were based on the overall habitat quality and state, the species of conservation concern (SCC) found in the area as well as the function of landscape features (e.g. wetland) in the area that contribute to the general ecology of the area. Table 2 to Table 24 is an overview of the terrestrial sites visited and summarises the reasons for the sensitivities as well as the general impacts found at that specific site. Coordinates of the sites where these species are found were not provided in an attempt to reduce the likelihood of poaching or harvesting of these SCCs and CITES species. Buffers given below were adapted in the spatial data to ensure desktop information is incorporated, for example the sites buffer would have been extended to ensure that the Critical Biodiversity Area is included as such this report needs to be read in conjunction with the spatial data. Areas with a high sensitivity is shown in Figure 15 to Figure 17. For the buffer determination other provinces' guidelines and legislation as well as literature were consulted to ensure sufficient protection for the various species as some of the SCCs do not have province specific quidelines.

The pipeline runs through a number of different environments from natural areas to farmlands and urban areas. In each different habitat a new set of species can be encountered. The pipeline crosses areas that are home to some of the big 5 (Rhino, Leopard, Lion, Elephant and Buffalo), as well as areas where species that are highly endemic occur. Some plants and animals depend on the existence of habitats of a certain size that is undisturbed and unfragmented. In addition to this, they can also depend on the existence of other plants and animals within their habitat for pollination, food/ nutrients or cover to name a few. A total of 24 different SCCs were recorded during the survey that spans three provinces and approximately 716 km. These SCCs include mammals (4%), reptiles (4%), avifauna (38%) and flora (54%) species of which in some cases numerous specimens were found of each (Figure 14). In order to ensure these species, their habitats and species on which they depend are sufficiently protected mitigations and guidelines are described in section 9.

Biodiversity and Water Resource Assessment

Figure 14: Graphical representation of the composition of the terrestrial SCCs recorded in in the various sites surveyed.

Figure 15: Areas with high sensitivities found along the pipeline.

Figure 16: Areas with high sensitivities found along the pipeline.

Figure 17: Areas with high sensitivities found along the pipeline.

Table 2: Summary of terrestrial features of site106

Site Number		106	Sample Date	2019/04/11
	Site photo			re
			Giant girdled lizard (Smat	ug giganteus) burrow.
Habitat Type	Natural grassland			
Habitat features	Secondary Grassla	and that has only had impact fr	om livestock, with a wetland prese	nt.
Sensitivity	Low	Moderate	Moderate-High	₩
Current Impacts	Erosion, Livestock and footpaths			
Discussion:	This area was given a 200m buffer around the point based on guidelines specified in the Free State CBA guidelines 2016. Based on this the Giant Girdled Lizards' burrows can be found 17m apart. This species is categorised as VU based on the IUCN (2019) and are nationally and provincially protected. It is thus important that area must be carefully checked before any construction /development takes place in the area and adjacent areas.			

Table 3: Summary of terrestrial features of site 107

Site Number	Site Number 107		10/29/2019
Site photo		Featu	re
		Giant girdled lizard (S	Imaug giganteus)

Habitat Type	Secondary Grassland				
Habitat features	Secondary Grassland that has only had impact from livestock, with a wetland present.				
Sensitivity	Low	Low Moderate Moderate-High High			
Current Impacts	Erosion, Livestock and footpaths				
Discussion:	This area was given a 200m buffer around the point based on guidelines specified in the Free State CBA guidelines 2016. Based on this the Giant Girdled Lizards' burrows can be found 17m apart. This species is categorised as VU based on the IUCN (2019) and are nationally and provincially protected. It is thus important that area must be carefully checked before any construction /development takes place in the area.				

Table 4: Summary of terrestrial features of site 182

Point Number		182	Sample Date	2019/04/11
Site photo			Featu	ıre
			Southern Bald Ibis (Geronticus calvus)
Habitat Type	Secondary Grassla the associated live	and with historical and current stock.	impacts due to the close proximit	y of the rural community with
Habitat features	Small stream that s	still functions as a water resou	rce for this SCC.	
Sensitivity	Low	Moderate	Moderate-High	HÌX
Current Impacts	Livestock, Alien vegetation , Litter and Dumping , Roads , Urban development			
Discussion:	This area was given a 500m buffer around the site based on guidelines specified in the Free State CBA guidelines 2016. The Southern Bald Ibis is listed as VU (IUCN, 2019). The area needs to be walked through to ensure this species is not present where construction and decommissioning begins.			

Table 5: Summary of terrestrial features of site 182

Site Number		193	Sample Date	2019/05/11
	Site photo		Feat	ure
			Example of a Blue korhaan Selection Blue korhaan (Eupodotis caeru in fie	(Eupodotis caerulescens) specimen recorded
Habitat Type	Secondary Grassla	nd with historical Impacts and	has been recent disturbed.	
Habitat features	Secondary Grassla	and with a drainage line that ha	as been artificially altered.	
Sensitivity	Low	Moderate	Moderate-High	HÌX
Current Impacts	Cattle and agricultu	re		
Discussion:	This area was giver The Blue korhaan i not present where o	n a 500m buffer from the edge o s listed as NT (IUCN, 2019). T construction and decommission	of the drainage line as per the Fre The area needs to be walked thro ning begins.	e State CBA guidelines 2016. ugh to ensure this species is

Site Number	196 and197		Sample Date	2019/05/11
Site photo			Feature	
			Giant girdled lizard (Smaug giganteus)	
Habitat Type	Secondary Grassla	nd with historical Impacts		
Habitat features	Semi-Natural Grass	sland, even though degraded rat	ed as important and sensitive.	
Sensitivity	Low	Moderate	Moderate-High	н <mark>ж</mark>
Current Impacts	Livestock			
Discussion:	This area was given a 200m buffer around the sites based on guidelines specified in the Free State CBA guidelines 2016. Based on this the Giant Girdled Lizards' burrows can be found 17m apart. This species is categorised as VU based on the IUCN (2019) and are nationally and provincially protected. It is important that area must be carefully checked before any construction /decommissioning takes place in the area.			

Table 6: Summary of terrestrial features of sites 196 and 197

Table 7: Summary of terrestrial features of sites 196 and 197

Site Number	220	Sample Date	2019/04/11
	Site photo	Featu	re
		Southern Bald Ibis (G	eronticus calvus)
Habitat Type	Secondary Grassland with a seep and the Katspru	vit.	

Habitat features	Stream, wetland and a dam in close proximity				
Sensitivity	Low Moderate Moderate-High Hix				
Current Impacts	Livestock , Roads and the community in close proximity.				
Discussion:	This area was given a 500m buffer around the site based on guidelines specified in the Free State CBA guidelines 2016. The Southern Bald Ibis is listed as VU (IUCN, 2019). The area needs to be walked through to ensure this species is not present where construction and decommissioning begins.				

Site Number 221 and 222 Sample Date 2019/06/11 Site photo Feature Yellow wood (Podocarpus latifolius) Habitat Type Secondary Grassland , Thicket The presence of the intact forest thicket with protected tree species (Yellow wood) makes the adjacent area Habitat features sensitive. High Sensitivity Low Moderate **Moderate-High Current Impacts** Erosion, Livestock, Vegetation Clearing, Roads This area was given a 20m buffer from the edge of the thicket as per the KZN CBA guidelines 2013. The yellow Discussion: wood tree is nationally protected (Protected Trees List of South Africa, 2016). The thicket area must be demarcated, if it needs to be relocated permits will need to be sourced.

Table 8: Summary of terrestrial features of sites 221 and 222

Site Number		270	Sample Date	2019/05/11
Site photo			Feat	ure
			Greater Flamingo (Pho	benicopterus roseus)
Habitat Type	Wetland depression a	area around the Rensburg spruit		
Habitat features	Exceptionally high richness and abundance of waterfowl in correlation with the wastewater treatment works. Potential to support significant congregations of migratory species. A green Island within the Ladysmith urban area.			
Sensitivity	Low	Moderate	Moderate-High	₩ h
Current Impacts	Erosion, Livestock, Vegetation Clearing, Roads and the urban area.			
Discussion:	This area was given a 500m buffer from the edge of the wetland area as per the GDARD Biodiversity guidelines 2012. The greater flamingo is listed as NT nationally (SANBI, 2016).			

Table 9: Summary of terrestrial features of site 270

Table 10: Summary of terrestrial features of site 280

Site Number	280	Sample Date	2019/05/11
Site photo		Feature	
		Example of a White bellier	ed korhaan (Eupodotis ensis)

			Lanner Falcon (Falco b	iarmicus) recorded.
Habitat Type	Natural degraded g	rassland with a wetland seep.		
Habitat features	Open degraded gra	assland.		
Sensitivity	Low	Moderate	Moderate-High X	Hym
Current Impacts	Rural settlements a	and overgrazing		
Discussion:	This area was give The White bellied I VU on a national se	n a 500m buffer from the edge korhaan is listed as VU nation cale.	of the wetland area as per the Free ally (SANBI, 2016) and the Lanner	e State CBA guidelines 2016. Falcon (<i>Falco biarmicus</i>) is

Table 11: Summary of terrestrial features of site 371

Site Number	371	Sample Date	2019/07/11
	Site photo	Featu	re
		Grey Crowned Crane (B	alearica regulorum)
Habitat Type	Grasslands around the Mooi river		
Habitat features	Mooi river with associated riparian habitat		

Sensitivity	Low	Moderate	Moderate-High	H	
Current Impacts	Livestock, Roads and farm development				
Discussion:	This area was given a 200m buffer from the site as per the GDARD Biodiversity guidelines 2012. The Grey Crowned Crane is listed as EN nationally and internationally (IUCN, 2019; SANBI, 2016). The areas need to be walked through prior to any activities to ensure faunal species is not present in the site.				

Table 12: Summary of terrestrial features of site 420

Site Number		420	Sample Date	2019/11/11
Site photo			Featu	re
<image/>				
Habitat Type	Grasslands surroun	iding a wetland that leads into a	riparian area.	
Habitat features	Wetland and riparia	n area with surrounding grassla	nd. Functions as a movement co	ridor.
Sensitivity	Low	Moderate	Moderate-High	₩
Current Impacts	Alien vegetation, Vegetation Clearing , Powerlines , Roads , Urban development			
Discussion:	The project area is adjacent to a wetland, species such as <i>Crinum bulbispermum</i> is common in this habitat. As this species is declining and the habitat is sensitive a 200m buffer were given to this site.			

Site Number	Site Number 425		Sample Date 2019/11/11	
Site photo			Featu	re
Image: state of the state				
Habitat Type	Grasslands with ass	sociated wetland habitat		
Habitat features	Rocky outcrop to the	e west, adjacent to the wetland		
Sensitivity	Low	Moderate	Moderate-High	ні
Current Impacts	Livestock, Farming, Alien vegetation, Vegetation Clearing			
Discussion:	Cape Clawless Otter scat were found, this species is classified as NT both Nationally (SANBI, 2016) and Internationally (IUCN, 2019). A 500m buffer were placed around the site as per the GDARD Biodiversity guidelines 2012. KZN does not have specified buffer guidelines for this species so we referred to GDARD for guidance. The wetland area needs to be regarded as a no-go area.			

Table 13: Summary of terrestrial features of site 425

Site Number		426	Sample Date	2019/11/11
	Site photo		Featu	re
Habitat Type	Grasslands surroun	ding a wetland		
Habitat features	Wetland and dam, s	surrounded by grassland within a	farming area.	
Sensitivity	Low	Moderate	Moderate-High	Hýc h
Current Impacts	Farming , Powerlines			
Discussion:	This area was given a 200m buffer from the pin as per the GDARD Biodiversity guidelines 2012. The Grey Crowned Crane is listed as EN nationally and internationally (IUCN, 2019; SANBI, 2016). The areas need to be walked through prior to any activities to ensure faunal species is not present in the site. Site could not be accessed due to access restrictions; survey was done from adjacent property.			

Table 14: Summary of terrestrial features of site 426

Site Number		450	Sample Date	2019/12/11	
Site photo			Featu	re	
			<image/>		
Habitat Type	Grassland , Thicket	, Riparian			
Habitat features	The riparian zone hemerocallidea occ	and adjacent thornveld is r aur on the servitude.	regarded as sensitive. Ledebou	rria revoluta and Hypoxis	
Sensitivity	Low	Moderate	Moderate-High	HÌM	
Current Impacts	Alien vegetation, Vegetation Clearing , Roads				
Discussion:	Hypoxis hemerocal buffer were given to	<i>Hypoxis hemerocallidea</i> is protected in KZN under schedule 8, this combined with the sensitive habitat a 200m buffer were given to this site.			

Table 15: Summary of terrestrial features of site 450

Site Number		476	Sample Date	2019/12/11
	Site photo		Featur	e
Image: Constraint of the second se			s coprotheres)	
Habitat Type	Grassland, Thicke	t		
Habitat features	Vegetation surrou and servitude. Ove as well as a Rock	nding the route is natural with erall a relatively high biodiversi monitor (<i>Varanus albigularis</i>)	Hypoxis hemerocallidea and H. ang ty was present in the site and a Cap were observed.	ustifolia present in grassland e Vulture (<i>Gyps coprotheres</i>)
Sensitivity	Low	Moderate	Moderate-High	Hy h
Current Impacts	Alien vegetation, \	/egetation Clearing		
Discussion:	This site is highly sensitive based on the fauna and flora species present. <i>Hypoxis hemerocallidea</i> is protected in KZN under schedule 8. Cape vulture is EN both regionally (SANBI, 2016) and internationally (IUCN, 2019). It is unlikely that the vulture will be nesting in the project area, but as it was seen foraging this must still be considered. The rock monitor is protected in KZN under schedule 3 and a permit will be required for the relocation of this species. Overall a 500m buffer was placed around the sites. It is imperative that the area must be investigated first to ensure that a rock monitor has not moved into the area outside of the buffer area.			

Table 16: Summary of terrestrial features of site 476

Site Number		489	Sample Date	2019/13/11
	Site photo		Featu	re
Image: state of the state				
Habitat Type	Grassland, Thicket,	Riparian		
Habitat features	Vegetation in surrou grassland.	unding area largely natural. Hyp	oxis hemerocallidea present within	n servitude and surrounding
Sensitivity	Low	Moderate	Moderate-High	High
Current Impacts	Livestock, Alien vegetation, Vegetation Clearing , Roads			
Discussion:	Hypoxis hemerocallidea is protected in KZN under schedule 8, this combined with the sensitive habitat a 200m buffer were given to this site.			

Table 17: Summary of terrestrial features of site 489

Table 18: Summary of terrestrial features of site 492

Habitat Type	Secondary Grassland			
Habitat features	Habitat is semi-natural. However, Hypoxis angustifolia, H. hemerocallidea and B. disticha present within grassland and servitude.			
Sensitivity	Low	Moderate	Moderate-High	н <mark>ж</mark>
Current Impacts	Erosion, Livestock , Alien vegetation , Vegetation Clearing , Litter and Dumping			
Discussion:	<i>H. hemerocallidea</i> and <i>B. disticha</i> are protected in KZN under schedule 8, as a result of these protected species a 200m buffer were given to this site. A permit will be required should these species need to be relocated.			

Table 19: Summary of terrestrial features of site 521

Site Number	Site Number 521		Sample Date 11/14/2019		
Site photo			Featu	re	
Image: state of the state					
Habitat Type	Thicket, Riparian				
Habitat features	Protected coastal for	prest inside the Marianwood Nat	ture Reserve		
Sensitivity	Low	Moderate	Moderate-High	Hix	
Current Impacts	Alien vegetation, Vegetation Clearing				
Discussion:	The coastal forest was given a 500m buffer as this fall within a nature reserve and the overall habitat is in a natural state. This area also has a high likelihood of being habitat for SCCs.				

Site Number		522	Sample Date	11/14/2019
	Site photo			re
			Image: Contract of the second seco	ethiopica
Habitat Type	Grassland, Riparia	n		
Habitat features	Grassland and rip Grassland and ass angustifolia, Zanteo	arian vegetation are predomir sociated seeps, including serv deschia aethiopica and Scleroca	nantly natural, albeit with degrada itude, possesses <i>Merwilla plumbe</i> arya birrea. Consequently, this hab	ation due to edge effects. ea, Kniphofia spp, Hypoxis itat is regarded as sensitive.
Sensitivity	Low	Moderate	Moderate-High	HÌX
Current Impacts	Alien vegetation, Vegetation Clearing			
Discussion:	Merwilla plumbea, Kniphofia spp, Hypoxis angustifolia, Zantedeschia aethiopica and Sclerocarya birrea is protected provincially under schedule 8 of KZN. While Sclerocarya birrea is also a Nationally protected tree (Protected Trees List of South Africa, 2016). A 200m buffer was placed around this project area due to the high density of protected species.			

Table 20: Summary of terrestrial features of site 522

Site Number		524	Sample Date	11/14/2019
	Site photo		Featu	re
			Sclerocarya birm	waa (Marula)
Habitat Type	Grassland, Riparia	n		
Habitat features	Surrounding veget	ation largely natural. Merwilla	plumbea and Sclerocarya birrea pre	esent within grassland.
Sensitivity	Low	Moderate	Moderate-High	HĂ
Current Impacts	Alien vegetation, Vegetation Clearing , Litter and Dumping			
Discussion:	<i>Merwilla plumbea</i> and <i>Sclerocarya birrea are</i> protected provincially under schedule 8 of KZN. <i>Sclerocarya birrea</i> is also a Nationally protected tree (Protected Trees List of South Africa, 2016). A 300m buffer was placed around this project area due to the protected species and overall natural state of the project area.			

Table 21: Summary of terrestrial features of site 450

Site Number		533	Sample Date	11/15/2019	
Site photo			Featu	re	
Fresia lax					
Habitat Type	Thicket, Riparian				
Habitat features	Although degraded along the servitude, the surrounding vegetation is predominantly comprised of indigenous flora. <i>Freesia laxa</i> and <i>Hypoxis hemerocallidea</i> occur within the servitude.				
Sensitivity	Low	Moderate	Moderate-High	ні	
Current Impacts	Alien vegetation, Vegetation Clearing , Litter and Dumping				
Discussion:	Hypoxis hemerocal placed around this	Hypoxis hemerocallidea and Freesia laxa is protected provincially under schedule 8 of KZN. A 300m buffer was placed around this project area due to the protected species in the project area.			

Table 22: Summary of terrestrial features of site 533

Site Number		535	Sample Date 11/15/2019				
	Site photo			re			
			Fradoxus puniceus				
Habitat Type	Thicket, Riparian						
Habitat features	Although degraded along the servitude and urban edge, vegetation interior consists primarily of indigenous flora. Scadoxus puniceus and Freesia laxa occurs in the servitude.						
Sensitivity	Low	Moderate	Moderate-High	н <mark>ж</mark>			
Current Impacts	Erosion, Alien vegetation , Vegetation Clearing , Powerlines , Litter and Dumping						
Discussion:	Scadoxus puniceus respectively. A 300	s and <i>Freesia laxa</i> is protecte m buffer was placed around this	d provincially under schedule 11 project area due to the protected	and Schedule 8 of KZN, species in the project area.			

Table 23: Summary of terrestrial features of site 535

Site Number		542	Sample Date 11/15/2019				
Site photo			Featu	re			
			Fink-backed pelican (Per	elecanus rufescens)			
Habitat Type	Thicket with an art	ificial dam					
Habitat features	Pink-backed pelic is mainly thicket ve	an (<i>Pelecanus rufescens</i>) we egetation.	re found in an artificial dam close to	the project area. The habitat			
Sensitivity	Low	Moderate	Moderate-High	HÌM			
Current Impacts	Alien vegetation, \	/egetation Clearing , Powerlin	es , Urban development				
Discussion:	Pink-backed pelic habitat is disturbe surrounding the da	Pink-backed pelican (<i>Pelecanus rufescens</i>) is VU on a regional scale (SANBI, 2016) and although parts of the habitat is disturbed, this species is very sensitive to disturbance and a 500m buffer were given to the area surrounding the dam.					

Table 24: Summary of terrestrial features of site 545

Th depots that will be decommissioned include Pretoria West, Elardus Park, Magdala, Bethlehem and Van Reenen (Figure 18). These sites have been disturbed long term and have been cleared and maintained and as such the habitat is transformed and will need to be rehabilitated extensively. The following tables (Table 25 to Table 29) presents an overview of the depots, the current alien species found on the sites as well as recommendations of plant species that should be planted that are specific to the region they occur in.

Figure 18: The Depots to be decommissioned

Depot Name	F	Pretoria West	Sample Date	10/28/2019
	Site photo	Feature		
Habitat Type	Transformed, with a pa	ark across the road		
Sensitivity	X	Moderate	Moderate-High	High
Current Impacts	Industrial area, footpat	hs, road and litter		

Table 25: Summary of terrestrial features of the Pretoria West depot.

Invasive plant species present	Arundo donax (Across the road) Jacaranda mimosifolia (Across the road) Pennisetum clandestinum (Kikuyu)
Plant species suggested to be used in rehabilitation	Elionurus muticus Eragrostis lehmanniana Pogonarthria squarrosa Searsia lancea Searsia pyroides Themeda triandra Vachellia karroo

Table 26: Summary of terrestrial features of the Elardus Park depot.

Depot Name		Sample Date	10/28/2019		
	Site photo		Feature		
	Footpath adjace	ent to fence			
Habitat Type	Transformed adjacent to	an urban greenbelt			
Sensitivity	×	Moderate	Moderate-High	High	
Current Impacts	Erosion, footpaths, Urbar	n area, roads			
Invasive plant species present	Pennisetum clandestinur Verbena bonariensis	n (Kikuyu)			
Plant species suggested to be used in rehabilitation	Cymbopogon caesius Elephantorrhiza elephant Elionurus muticus	tina			

Eragrostis chloromelas
Eragrostis curvula
Themeda triandra

Table 27: Summary of terrestrial features of the Magdala depot.

Depot Name	ame Magdala		Sample Date	2019/01/11		
Site photo			Feature			
			Cattle dung			
Habitat Type	Secondary Grassla	and surrounds the station, the h	abitat within the station is transfor	med.		
Sensitivity	LXW	Moderate	Moderate-High	High		
Current Impacts	Livestock, Vegetati	on Clearing, Powerlines and R	oads			
Invasive plant species present	Pennisetum clandestinum (Kikuyu)					
Plant species suggested to be used in rehabilitation	Themeda triandra Elionurus muticus Cymbopogon caes	ius				

Depot Name		Bethlehem	Sample Date	2019/04/11		
	Site photo		Feature			
			Sewage spi	ling out.		
Habitat Type	Degraded and Tr	ansformed				
Sensitivity	X	Moderate	Moderate-High	High		
Current Impacts	Livestock, Alien	regetation, Powerlines, Litter	r and Dumping, Roads, Urban develo	pment, Sewage		
	Acacia mearnsii (Black Wattle)				
	Eucalyptus camaldulensis					
Invasive plant species present	Melia azedarach					
	Pennisetum clandestinum (Kikuyu)					
	Verbena bonariensis					
	Aristida congesta	(Grass)				
Plant species	Aristida junciformis (Grass)					
Plant species	Aristida junciform	iis (Grass)				
Plant species suggested to be used in	Aristida junciform Cynodon dactylo	is (Grass) n (Grass)				
Plant species suggested to be used in rehabilitation	Aristida junciform Cynodon dactylo Eragrostis chloro	is (Grass) n (Grass) melas (Grass)				

Table 28: Summary of terrestrial features of the Bethlehem depot.

Depot Name	١	/an Reenen	Sample Date	2019/05/11		
Site photo			Feature			
			Acacia mearnsii	(Black Wattle)		
Habitat Type	Degraded surrounding habitat whereas the area within the station is transformed. Topography is sensiti erosion control mitigations will be crucial.					
Sensitivity	Low Moderate Moderate-High Hig					
Current Impacts	Livestock, Alien veg	etation, Powerlines, Litter and D	umping and Roads			
Invasive plant species present	Acacia mearnsii (Black Wattle) (Dominated) all individuals within and surrounding the station must be eradicated. Pennisetum clandestinum (Kikuyu) Palm species					
Plant species suggested to be used in rehabilitation	Aristida diffusa (Gra Buddleja salviifolia (Diospyros whyteana Elionurus muticus (Eragrostis chloroma Eragrostis curvula (Leucosidea sericea Pennisetum sphace	ss) (Tree) a (Tree) Grass) elas (Grass) Grass) (Tree) latum (Grass)				
Rehabilitation	The existing slope netting and Geojute Seeds for plants: Lifestyle Seeds (<u>http</u> Silverhill Seeds (<u>http</u>	of the area is inclining, and if le logs are suggested. <u>ps://lifestyleseeds.co.za/</u>) p://www.silverhillseeds.co.za/def	eft un-rehabilitated, severe soil ault.asp)	erosion will exist; Geojute		

Table 29: Summary of terrestrial features of the Van Reenen depot.

Depot Name	Potchefstroom		Sample Date	02/18/2020		
Site photo			Feature			
Habitat Type	Transformed, with	storage of metal on site				
Sensitivity	Low X	Moderate	Moderate-High	High		
Current Impacts	Industrial area, dus	st, oil spills, road and metal sto	orage			
Invasive plant species present	Ipomoea purpurea (On fence) Pennisetum clandestinum (Kikuyu) Solanum mauritianum Bidens pilosa					
Plant species suggested to be used in rehabilitation	Elionurus muticus Eragrostis lehmanniana Eragrostis curvula Pogonarthria squarrosa Searsia lancea Searsia pyroides Themeda triandra Vachellia karroo					
Rehabilitation	All materials store topsoil. Alien mana species.	d on the area must be remov agement must be made a pri	ed, all soil affected by oil must b ority as surrounding area has lar	e removed and replaced with ge numbers of alien invasive		

Table 30: Summary of terrestrial features of the Potchefstroom depot

BIODIVERSITY company

Transnet Pipeline

8.2 Wetlands

8.2.1 Classification

Based on a combination of desktop and in-field delineation, a total of 356 individual wetland hydrogeomorphic (HGM) units were identified and delineated within the 32 m survey area on either side of the pipeline route (64 m corridor). Non-HGM units intersected by the pipeline corridor included 17 dams and two artificial systems.

Each wetland was classified following the national wetland classification system (level 1-4) as per (Ollis *et al.*, 2013) into one of six main types (Table 31). These included floodplains, channelled valley-bottoms, unchanneled valley-bottoms, flats, seeps and depressions. Together these wetlands occupied a total of 267.7 ha covering 6% of the 64 m survey corridor along the pipeline route. A representative example of each wetland HGM type is shown in Figure 20 to Figure 25 The numbers and areas of each delineated HGM unit are provided in Table 31.

Wetlands (n)	Area	Level 1	Leve	12	Level 3		Level 4				
	(ha)	System	DWS Ecoregion/s	NFEPA Wet Veg Group/s	Landscape Unit	4A (HGM)	4B	4C			
26	47.8		Western Bankenveld, Highveld; Eastern Escarpment Mountains; North-eastern Highlands; South-eastern Uplands; North-eastern Coastal Belt	Western Bankenveld, Highveld; Eastern Escarpment Mountains; North-eastern Highlands; South-eastern Uplands; North-eastern Coastal Belt	Western	Plain	Floodplain	Floodplain flats and depressions	N/A		
177	107.6				Barkeriveld, Highveld; Eastern Mountains; North-eastern Uplands; North-eastern Coastal BeltCBG1 & 2, DHG4,5, MHGG1,2, 3,4, SEGG2, 3,4, SEGG2, 3,4, SEGG2, SES; IOCBG2Valley-bottomChanneled valley-bottomValley-bottom Valley-bottomUnchanneled valley-bottomValley-bottomUnchanneled valley-bottomNorth-eastern Coastal BeltOCBG2SlopeSeepPlainFlatPlainDepression	Highveld; Eastern Escarpment Mountains: Highveld; CBG1 & 2 DHG4,5 MHGG1,2	CBG1 & 2,	Valley-bottom	Channeled valley-bottom	N/A	N/A
76	44.2						Escarpment Mountains:	nent DHG4,5, MHGG1,2,	Valley-bottom	Unchanneled valley-bottom	N/A
10	17.3	Inland									
40	32.1					South-eastern Uplands; North-eastern Coastal Belt	SES; IOCBG2	Slope	Seep	With and without channeled outflow	N/A
26	18.7							Plain	Depression	Endorheic	WCO

Table 31: Wetland classification as per SANBI guideline (Ollis et al. 2013)

Key: CBG, Central Bushveld Group; DHG, Dry Highveld Grasslands Group; MHGG, Mesic Highveld Grasslands Group, SEGG, Sub-Escarpment Grassland; SES Sub-Escarpment Savanna Group; IOCBG, Indian Ocean Coastal Belt Group; WCO, Without Channelled Inflow.

8.2.2 Hydrogeomorphic Setting

Figure 19 presents a diagram of the HGM units, showing the dominant movement of water into, through and out of the system (Ollis et al., 2013). A description of the wetland HGM unit is provided below.

Channelled valley-bottom wetlands are typically found on valley floors with a clearly defined, finite stream channel and lacks floodplain features, referring specifically to meanders. Channelled valley-bottom wetlands are known to undergo loss of sediment in cases where the wetlands' slope is high and the deposition thereof in cases of low relief. Unchanneled valley-bottom wetlands are typically found on valley floors where the landscape does not allow high energy flows.

Depressions are inward draining basins with an enclosing topography which allows for water to accumulate within the system. Depressions, in some cases, are also fed by lateral subsurface flows in cases where the dominant geology allows for these types of flows.

Hillslope seeps are characterised by colluvial movement of material. These systems are fed by very diffuse sub-surface flows which seep out at very slow rates, ultimately ensuring that no direct surface water connects this wetland with other water courses within the valleys.

Figure 19: Amalgamated diagram of the wetland units, highlighting the dominant water inputs, throughputs and outputs, SANBI guidelines (Ollis et al. 2013)

Figure 20: Example of a typical priority 1A floodplain wetland identified along the pipeline route

Figure 21: Example of a typical priority 1B channelled valley-bottom wetland identified along the pipeline route

Figure 22: Example of a typical priority 1C unchanneled valley-bottom wetland identified along the pipeline route

Figure 23: Example of a typical priority 1D flat wetland identified along the pipeline route

Figure 24: Example of a typical priority 3E seep wetland identified along the pipeline route

www.thebiodiversitycompany.com

Figure 25: Example of a typical priority 1F depression wetland identified along the pipeline route

www.thebiodiversitycompany.com

the BIODIVERSITY company

8.2.3 Soils

Although the pipeline route traverses a wide range lithologies and soil types nine soil forms dominated the majority of sites visited. These included Willowbrooke, Westleigh, Rensburg, Mispah, Longlands, Kroonstad, Katspruit, Dundee and Champagne. Examples of these dominant soil forms are shown in Table 32. A brief discussion on each is provided below provided pertinent information on the distribution, typical topographical position, saturation levels associated with each of the soil forms as encountered along the pipeline route with additional information on their structure and physical properties.

Table 32: Examples and descriptions of the dominant soil forms encountered on site (SASA, 1991)

8.2.4 Wetland Health

Wetland health or present ecological state (PES) ratings for each of the 356 wetland HGM units identified within the 64 m pipeline corridor is provided in Appendix B. A summary of the frequency with which each of the 6 PES classes was encountered along the pipeline route together with the total area occupied by each is provided in Figure 26. This figure shows that most of the systems along the route are classified as class C (Moderately Modified) followed by class B (Largely Natural). Class D (Largely Modified) systems are less numerous but still common but were, on average, larger. Class E (seriously Modified) and F (Critically Modified) systems are considerably less common and accounted for a small proportion of the identified wetlands. The fact that the majority of wetlands along the pipeline route are in a Largely Natural to Moderately Modified state, reflects the large extent of undeveloped and often remote (and intact) rural land traversed by the pipeline. Class B systems were least abundant in the Gauteng Province where they were mainly encountered near Faerie Glen and south of Rietvlei (near Elandsfontein AH) nature reserves while the highest frequency of these systems were encountered in the Free State (particularly between Bethlehem and Swinburne) and KwaZulu-Natal (particularly in the midlands between Estcourt and Curries Post). More impacted systems (class E and F) were typically only encountered closer to major towns or in areas of intense overgrazing and / or alien plant infestation.

Figure 26: Present Ecological State, (a) numbers and (b) area of wetlands classified under each of the PES classes within the 64 m pipeline corridor project area

Hydrological impacts within urban landscapes typically centred on increased runoff as a result of increased hardened surfaces (decreased ground infiltration and permeability) associated with the built environment including areas of infilling, but also various flow impeding features in the form of roads, railway lines and dams. In rural settings hydrological impacts mainly involved decreased water inputs due to woody alien bush clumps together with a decreased water distribution and retention time within the soils due to tillage practices associated with crop cultivation but also included increased runoff from crust formation due to livestock overgrazing.

Geomorphological impacts within urban settings was dominated by the disruption of natural sediment regimes as a result of numerous impeding features (dams and bridge culverts) which in most cases served to create a depositional environment upstream and an erosive environment downstream of the impeding feature accompanied by noticeable bed scouring, bank incisement and increased channelization. In more rural settings the most frequently encountered geomorphological impact was gulley formation. Gulleys were most frequently encountered in areas where rainfall was more sporadic and intense particularly in areas prone

to increased runoff due to veld overutilization from frequent burning and / or livestock overgrazing.

Vegetation impacts in urban landscapes where mainly associated with vegetation clearing, soil disturbances and encroachment by alien and invasive species. In rural settings wetland vegetation was most extensively impacted by crop cultivation. Aside from the complete loss of wetland vegetation within active croplands many of the wetlands showed an altered vegetation integrity due to past cultivation. Recently cultivated areas were dominated by weedy annuals such *Tagetes minuta* and *Verbena bonariensis* while older abandoned lands simply have not re-established the species diversity typically associated with them. Seeps and, to a lesser extent, depressions were the most impacted HGM types in this regard due to their shallow cross-sectional profile which often coincided with prime arable land. Alien and invasive plant infestation was another major impact in both urban and rural settings. The most commonly encountered alien bushclumps encroaching on wetlands systems long the pipeline route included *Eucalyptus camaldulensis*, *Acacia mernsii*, *Populus alba* and *Lantana camara* (lower KwaZulu-Natal). Some of the most intact wetland vegetation was encountered along the escarpment between Bethlehem and Van Reenen, in Tugela Private Nature Reserve (near Colenso) and in the KwaZulu-Natal midlands between Estcourt and Curries Post.

Figure 27: Examples of typical impacts affecting the PES ratings of wetlands along the pipeline route;
A) litter dumping, B) Solanum mauritianum, C) Opuntia ficus indica, D) Verbena bonariensis, E)
bridge, F) dams, G) alien bush clumps, H) settlement, I) Nigeria, J) Clearing of riparian zone

Figure 28: Examples of typical impacts affecting the PES continued; A) bank erosion, B) gulley erosion, C) infilling, D) crop cultivation, E) abstraction, F) rock infilling, G) pipe culverts and subsequent erosion, H) soil poaching by livestock, I) wall across wetland and flow impediment, J) restrictive barriers, K) erosion, L) bank incisement and channelisation, M) infilling and flow concentration, N) livestock grazing, O) Eucalyptus camaldulensis

8.2.5 Wetland Ecological Importance and Sensitivity

The Ecological Importance and Sensitivity ratings for each of the wetland HGM units is provided in Appendix B. Several factors were considered when establishing the EIS of a system. Regional to national scale considerations included NFEPA river or wetland status, provincial conservation plans (Critical Biodiversity Areas, Ecological Support Areas and Other Natural Areas), protected areas as well as Ramsar wetlands. Local considerations included habitat integrity and diversity, likelihood of supporting conservation important species and potential for hosting significant congregations of local or migratory species.

A summary of the frequency with which each of the four (4) EIS classes was encountered along the pipeline route together with the total area occupied by each is provided in Figure 29. From this figure it is evident that most wetlands along the pipeline route have a High (class B) to Moderate (class C) EIS with a comparatively small proportion of wetlands occupying either extreme (class A or D).

Figure 29: Ecological Importance and Sensitivity, (a) numbers and (b) area of wetlands classified under each of the four EIS classes within the 64 m pipeline corridor project area

Wetlands of particular ecological importance and sensitivity (Very High) were as follows:

- **Gauteng**; Blaauwpan (Wetlands 89, 90), Sesmylspruit (Wetland 81), Reitvleirivier (Wetland 82), Wetland 16, Wetlands 158, 263 and 264, Blouwkransrivier (Wetland 3)
- Free State; Wetlands 6 and 7 (near Steynsrus), Jordaanrivier (370), Kroonspruit (14), Nuwejaarspruit (10), Wilgerivier (274)
- **KwaZulu-Natal**; Ngwenyana (Wetlands 148-150), Wetlands 228 and 1 near Tugela Private Nature reserve, Wetlands 2, 57, 220 and 386 between Frere and Mooi River, Kusane (Wetlands 61 and 62 and 236), Umgeni River (Wetland 182), Msunduzi (Wetland 19).

8.2.6 Wetland Ecosystem Services

The ecosystem services provided by the wetlands identified along the pipeline corridor were assessed and rated using the WET-EcoServices method (Kotze *et al.* 2008). A summary of the frequency with which each of the five ecosystem services classes was encountered along the pipeline route together with the total area occupied by each is provided in Figure 30. This figure shows that most of the systems (174) along the pipeline route are considered to provide Highly important ecosystem services. Of these the most significant are Wetlands 16, 14, 10, 15, 54, 77, 86, 95, 96, 158, 228, 266, 264, 263, 267, 274, 295 and 356. These are

predominantly large, relatively intact systems that provide both direct provisional and indirect regulating and supporting services in rural settings.

Figure 30: Ecosystem services, (a) numbers and (b) area of wetlands classified under each of the five ecosystem services classes within the 64 m pipeline corridor project area namely High (H), Moderate High (MH), Intermediate (I), Moderate Low (ML) and Low (L)

Due to the high number of HGM units identified and delineated for the project, only a general description of the ecoservices typically associated with each HGM type is provided here. Table 33 provides a general guide as to the hydrological benefits likely to be provided by a the respective HGM types. It is however important to note that the descriptions of the abovementioned functions are merely typical expectations. All wetland systems are unique and therefore, the ecosystem services ratings as provided in Appendix B may deviate from the trends as outlined below.

		REGULATORY BENEFITS POTENTIALLY PROVIDED BY WETLAND							
HYDRO-GEO-	Flood attenu	ation	Stream flow	tream flow Enhancement of water quality					
MORPHIC TYPE	Early wet season	Late wet season	regulation	Erosion control	Sediment trapping	Phos- phates	Nitrates	Toxicants ²	
1. Floodplain	**	+	0	++	++	++	+	+	
2. Valley-bottom - channelled	·	0	0	++	+	+	+	+	
3. Valley-bottom -unchannelled	·	+	+?	++	++	+	+	++	
4. Hillslope seepage connected to a stream channel	+	0	+	++	0	0	++	++	
5. Isolated hillslope seepage	+	0	0	++	0	0	++	+	
6. Pan/ Depression	÷	+	0	0	0	0	+	+	

Table 33: Preliminary rating of the hydrological benefits likely to be provided by a wetland based on itsparticular HGM type (Kotze et al., 2009)

Rating: 0 Benefit unlikely to be provided to any significant extent + Benefit likely to be present at least to some degree ++ Benefit very likely to be present (and often supplied to a high level)

According to (Kotze *et al.* 2009), floodplains typically contribute mostly towards flood attenuation (more than other HGM types), erosion control and phosphate assimilation particularly during the onset of the rainy season. Their size, high channel sinuosity, abundance of depressions and meander cut-offs make them particularly effective in this regard.

Channelled valley-bottom wetlands tend to contribute less to sediment trapping and flood attenuation than other systems. Channelled valley-bottom wetlands are well known to improve the assimilation of toxicants, nitrates and sulphates, especially in cases where sub-surface flows contribute to the systems' water source (Kotze *et al.*, 2009).

Unchanneled valley-bottoms are characterised by sediment deposition, a gentle gradient with streamflow generally being spread diffusely across the wetland, ultimately ensuring prolonged saturation levels and high levels of organic matter (Kotze *et al.* 2009). The assimilation of toxicants, nitrates and phosphates are usually high for unchanneled valley-bottom wetlands, especially in cases where the valley is fed by sub-surface interflow from slopes. The shallow depths of surface water within this system adds to the degradation of toxic contaminants by means of sunlight penetration.

According to (Kotze *et al.* 2009), the generally impermeable nature of depressions and their inward draining features are the main reasons why the streamflow regulation ability of these systems is mediocre. Additionally, depressions do not tend to contribute meaningfully to sediment trapping. The reason for this phenomenon is due to winds picking up sediments within pans during dry seasons which ultimately leads to the removal of these sediments and the deposition thereof elsewhere. The assimilation of nitrates, toxicants and phosphates are some of the higher rated ecosystem services for depressions due to the continuous precipitation and dissolving of minerals and other contaminants during dry and wet seasons respectively, (Kotze *et al.*, 2009).

Hillslope seeps are well documented by (Kotze *et al.*, 2009) to be associated with sub-surface ground water flows. These systems tend to contribute to flood attenuation given their diffuse nature. This attenuation only occurs while the soil within the wetland is not yet fully saturated. The accumulation of organic material and sediment contributes to prolonged levels of saturation due to this deposition slowing down the sub-surface movement of water. Water typically accumulates in the upper slope (above the seep). The accumulation of organic matter additionally is essential in the denitrification process involved with nitrate assimilation. Seeps generally also improve the quality of water by removing excess nutrients and inorganic pollutants originating from agriculture, industrial or mine activities. The diffuse nature of flows ensures that the assimilation of nitrates, toxicants and phosphates occurs readily while at the same time protecting against erosion.

8.2.7 Wetland Prioritisation

To facilitate the feasibility and practicality of pipeline closure efforts given the high number of wetland crossings (356 HGM units) an approach was adopted to prioritise wetlands in order of highest to lowest risk to the anticipated impacts associated with pipeline closure and ultimate abandonment. All 356 wetlands identified during a combination of in-field and desktop delineation where assigned a rating according to two variables namely level of saturation and ecological integrity. These systems were then further classified by HGM type (floodplain, channelled valley-bottom, unchanneled valley-bottom, flat, seep and depression) to yield a

total of 24 classes (1-4; a-f) (Table 34). It is advised that at least all HGM 1 and 2 systems be earmarked for closure activities.

Code	Hydroperiod	Integrity	Priority
1 (a-f)	Permanent to seasonally saturated	Mostly intact	Very High
2 (a-f)	Permanent to seasonally saturated	Mostly degraded	High
3 (a-f)	Seasonally to temporarily saturated	Mostly intact	Moderate
4 (a-f)	Seasonally to temporarily saturated	Mostly degraded	Low

Table 34: Wetland prioritisation	Table 34:	Wetland	prioritisation
----------------------------------	-----------	---------	----------------

Key: a) floodplain, b) channelled valley-bottom, c) unchanneled valley-bottom, d) flat, e) seep and f) depression.

The prioritization of wetland sites was primarily based on hydroperiod while ecological integrity was also considered. Corrosion of pipeline steel in the soil is a complex process but is essentially driven by the interplay of water, carbon dioxide and oxygen, the rate of which being influenced by various factors including saturation, the atmospheric conditions and bacterial activity. In situations where the pipeline is above the water table oxygen, either dissolved in the water or diffusing into the soil from the surface, is predominantly responsible for the corrosion and the rate of corrosion in turn is mainly dependant on the hydraulic conductivity of the soil. Sandier soils with larger grain sizes (e.g. Dundee soils) are generally more water permeable and will result in faster corrosion than pipelines situated in more clay rich soils (e.g. Rensburgs) which are less water permeable.

Generally dry soils are of low concern with corrosion risk increasing with increasing saturation. Soils with low water contents (<20%) are subject to pitting corrosion whereas those with greater water contents (>20%) are vulnerable to general corrosion. Pipelines situated below the water table are in permanent contact with water with corrosion being influenced by the levels of dissolved oxygen and carbon dioxide (Scott, 2015). Wetland hydroperiod further influences corrosion by altering atmospheric conditions in the soil. As permanency of saturation increases oxygen levels decrease until the soil becomes anoxic. Corrosion rates in anoxic soils are generally higher than in aerobic conditions due to the presence of sulphide reducing bacteria which accelerate the corrosion process.

These factors influenced the prioritisation of wetlands based on saturation levels affording more permanently saturated systems a higher priority for mitigation than more temporarily (ephemerally) inundated systems.

BIODIVERSIT

Transnet Pipeline

Figure 31: Schematic of corrosion process of steel pipeline in soil (Scott, 2015)

8.2.8 Wetland Buffers

Separate buffer calculations were made on the basis of biophysical attributes which included the HGM type, and the wetlands EIS following Graham and de Winnaar (2009). The buffers varied from 12 m for the most impacted low inundation systems to 30 m for the largest most intact floodplain and valley-bottom systems. The methodology implemented in order to determine the extent of the areas of risk is as follows:

- Amalgamated the wetland shapefiles with the wetlands delineated in field in order to obtain a single wetlands shapefile;
- Standardised the attributes table for the wetlands shapefiles using the national wetland classification system nomenclature (i.e. NFEPA wetland nomenclature); and
- Buffers were then assigned systematically to each feature following the proposed process outline presented in Figure 32.

Figure 32: Model for wetland buffer width determination according to land use in KwaZulu-Natal (Source: Graham and de Winnaar, 2009)

8.2.9 Representative wetland sites

Table 35 to Table 57 are examples of a small representative subset of the wetlands visited during fieldwork illustrating some of the more pertinent information collected at each.

HGM Type	Floodplain	Site Code	15		
Location	-28.349571, 29.214173	Priority	Very High		
	Wetland	Katspruit			
Wetland FEPA	No	River FEPA	FEPA Code 1		
Description	scription Very Intermittently inundated system, hydrophytic indicators few, bed covered by grass (<i>Themeda triandra</i> dominated). Deep alluvial deposits with feint signs of mottling.				
Impacts	Powerlines, road crossings, alien a grazing pressure from game.	and invasive plants present but minor and	I restricted to road verge. Mild		
Assessment Pating	PES	EIS	Ecosystem Services		
Assessment Railing	B: Largely Modified	Moderate	Very High		

Table 35: Summary of the wetland system sampled at site 15

HGM Туре		Flat	Site Code	de 87		
Location		-26.750481, 27.926415	Priority		Very High	
			Tiony the second			
Wetland			Scirpoides spp on edge of temporary zone			
Wetland FEPA		No	River FEPA		No	
Description		Degraded area with several wetlan	ds. Fragmented from surround	ling areas.		
Impacts		Livestock, Alien vegetation, Power	lines, Roads. Old degraded Gra	assland due	to livestock mainly	
Accession Det		PES	EIS		Ecosystem Services	
Assessment Rati	ing	C: Moderately Modified	High		Moderately High	

Table 36: Summary of the wetland system sampled at site 87

HGM Type Ch	hannelled valley-bottom	Site Code	81	
Location -2	25.971931, 28.299415	Priority	Very High	
We	tland	Other		
Wetland FEPA	No	River FEPA	FEPA Code 4	
Description	Use existing path and track to pun	np valve stay out of wetland		
Impacts	Moderate bank incisement, clear v	water minimal alien vegetation, o	decreased surface roughness grazing.	
Assessment Rating	PES	EIS	Ecosystem Services	
Assessment rating	B: Largely Natural	Very High	Moderately High	

Table 37: Summary of the wetland system sampled at site 81

HGM Type	U	nchanneled valley-bottom	Site Code		82
Location		-26.024605, 28.321810	Priority		Very High
Wetland		Dundee Soils			
Wetland FEPA		FEPA Code 1	River FEPA		No
Description		Large system, wide system, shall	ow cross-sectional profile. R	elatively intact	vegetation.
Impacts		Livestock, Railway decreased r	oughness. Burning		
Assessment Ratin	na	PES	EIS		Ecosystem Services
	5	B: Largely natural	Very High		Moderately High

Table 38: Summary of the wetland system sampled at site 82

HGM Type	Floodplain	Site Code	19
Location	-26.399984, 28.109348	Priority	Very High
	Wetland		Livostosk
vveulario			
Wetland FEPA	No	River FEPA	No
Description	reduced by livestock grazin	g.	Jeranon roughness has been significantly
Impacts	Livestock, Alien vegetation,	Litter and Dumping, Roads	
Assessment Rati	PES	EIS	Ecosystem Services
	C: Moderately modified	Very High	High

Table 39: Summary of the wetland system sampled at site 19

HGM Type		Floodplain	Site Code		14
Location		-28.204761, 28.362827	Priority	۷	ery High
Wetland			Serisium vulgare		
Wetland FEPA		No	River FEPA		No
Description		Impacted area due to proximity o	f urban area. Avoid riparian and	rocky outcrop ar	rea.
Impacts		Erosion, livestock, alien vegetatio	on, litter and dumping, Roads, u	rban developmer	nt
Assessment Rat	ing	PES	EIS		Ecosystem Services
		C: Moderately Modified	Very High		High

Table 40: Summary of the wetland system sampled at site 14

HGM Type	С	hannelled valley-bottom	Site Code	54	
Location	-	28.329719, 29.112475	Priority	Very High	
			• • •		
		RAP LINE			
Wetland			View looking downstream, <i>Eucalyptus camaldulensis</i> in background.		
Wetland FEPA		No	River FEPA	No	
Description		Small yet permanently saturated	system with vegetation in a lar	gely natural state.	
Impacts		Alien vegetation and dams (mino	r).		
Assessment Rat	ing	PES	EIS	Ecosystem Services	
		C: Moderately modified	High	High	

Table 41: Summary of the wetland system sampled at site 54

HGM Туре	Cha	nnelled valley-bottom	Site Code		57
Location	-28	3.951001, 29.886447	Priority		Very High
	Watan		Downstream show		rad hadrack
Wetland		Downstream show			
		Large intact channelled valles	y-bottom system in nature rese	rve. Exten	sive sheets of exposed
Description		bedrock.			
Impacts			g by game.		Econyotom Convisoo
Assessment Rating		C: Moderately modified	Very High		Moderately High

Table 42: Summary of the wetland system sampled at site 57

НСМ Туре		Floodplain	Site Code		12	
Location	28°44	'32.69"S, 29°48'12.41"E	Priority		Very High	
Wetland FEPA		FEPA Code 1	River FEPA		FEPA Code 4	
Description		Thukela River. Large floodplain with distinct channel. Moderate to high channel sinuosity.				
Impacts		Alien vegetation has replaced natural riparian zone. Crop cultivation.				
Assessment Rating		PES	EIS		Ecosystem Services	
Assessment Rating		D: Largely modified	High		High	

Table 43: Summary of the wetland system sampled at site 12

HGM Type	Floodplain	Site Code	17	
Location	-26.773718, 27.896160	Priority	Very High	
	Wetland	Pipe culverts for dirt road	rossings	
Wetland FEPA	No	River FEPA	No	
Description	Taaibospruit. Particularly large, wi	de, low gradient floodplain. Vegetation o	cover low. Deep alluvial	
Impacts	Burning, weedy annuals, culvert, liv	Burning, weedy annuals, culvert, livestock, farming, alien vegetation, roads.		
	PES	EIS	Ecosystem Services	
Assessment Rating	C: Moderately modified	High	Intermediate	

Table 44: Summary of the wetland system sampled at site 17

HGM Type	Channelled valley-bottom	Site Code	59
Location	29°44'5.43"S, 30°38'31.38"E	Priority	Very High
	Websed		
	Wetland	Encroachment by P	inus spp.
Wetland FEPA	No	River FEPA	Np
Description	Stion Livestock grazing limited to grassland. Alien and invasive plant species tended to occur in more intensive growth on south-facing slope. Sand could be sourced locally from surrounding grassland. No SCC or protected species observed.		
Impacts	Erosion, Livestock, Alien vegetation		
Accessment Dating	PES	EIS	Ecosystem Services
Assessment Rating	C: Moderately modified	High	Intermediate

HGM Type	Channelled valley-bottom	Site Code	58
Location	29°29'3.74"S, 30°12'11.36"E	Priority	Very High
Wetland showing	voung Phragmites australis	Soil ped showing coarse sand	v Katspruit soils
Wetland FEPA	FEPA Code 1	River FEPA	No
Description	A large permanently saturated system with signs of channel erosion.		
Impacts	Altered surface roughness, alien vegetation.		
Assessment Rating	PES	EIS	Ecosystem Services
•	D: Largely modified	Moderate	Intermediate

Table 46: Summary of the wetland system sampled at site 58

HGM Туре	Channelled valley-bottom	Site Code	53
Location	29°44'6.57"S, 30°39'6.88"E	Priority	Very High
Wetland showing	signs of soil poaching by livestock	G horizon in K	atspruit soil form
Wetland FEPA	No	River FEPA	No
Description	A relatively intact channelled valley	A relatively intact channelled valley-bottom system in incised terrain.	
Impacts	Alien vegetation.	egetation.	
Accompating	PES	EIS	Ecosystem Services
Assessment Raing	B: Largely Natural	High	High

Table 47: Summary of the wetland system sampled at site 53

HGM Type	Channelled valley-bottom	Site Code	51
Location	-29.5223, 30.3276	Priority	Very High
Worker	h chawina nina cuharti		Fauluarta
Wetlar	ad showing pipe culverts	Erosion downstream o	
Wetland FEPA	No A small yet permanently saturated	River FEPA channelled valley-bottom wetland. The pi	No
Description	culverts serves to funnel and direct	flows which has led to notable erosion of	the bed and banks.
Impacts	Erosion, culverts, farming, alien veg	getation, roads	_
Assessment Rating	PES	EIS	Ecosystem Services
	D: Largely modified	Moderate	Intermediate

Table 48: Summary of the wetland system sampled at site 51

HGM Туре	Channelled valley-bottom	Site Code	50	
Location	-29.5216, 30.3226	Priority	Very High	
Wetland				
Wetland FEPA	No	River FEPA	No	
Description	Small, permanently inundated chan	nelled valley-bottom wetland sur	rounded by farming.	
Impacts	Erosion, alien vegetation, farming.			
Assessment Rating	PES	EIS	Ecosystem Services	
A looson in the training	D: Largely modified	Moderate	Intermediate	

Table 49: Summary of the wetland system sampled at site 50

НСМ Туре	Channelled valley-bottom	Site Code	W131CBI
Location	-29.5123, 30.2661	Priority	Very High
	<image/>		
Wetland FEPA	Fepa Code 1	River FEPA	No
Description	Small permanently inundated system	m with dense hydromorphic vegetation co	Dver.
Impacts	Livestock, alien vegetation.		
	PES	EIS	Ecosystem Services
Assessment Rating	C: Moderately modified	High	Intermediate

HGM Туре	Channelled valley-bottom	Site Code	46
Location	29°23'33.12"S, 30° 9'10.15"E	Priority	Very High
	Wathan	Fatures i face	la and the second se
Wetland FEPA	No	River FEPA	NO
Description	Small permanently inundated system	m, remote largely intact.	
impacts		F10	Foreign Original
Assessment Rating	PES	Elo	Ecosystem Services
	D: Largely modified	ivioderate	woderately Low

Table 51: Summary of the wetland system sampled at site 46

HGM Type	Unchanneled valley-bottom	Site Code	83
Location	-29.4047, 30.1597	Priority	Very High
		0	
	Wetland	Other	
Wetland FEPA	No	River FEPA	No
Description	Intact mountain grassland to the no	rth. Agriculture to the south. Pump from a	griculture
Impacts	Farming, powerlines, adjacent impa	licts	
Assessment Pating	PES	EIS	Ecosystem Services
Assessment Rating	C: Moderately modified	High	High

Table 52: Summary of the wetland system sampled at site 83

HGM Туре	Unchanneled valley-bottom	Site Code	78
Location	-29.7663, 30.7045	Priority	Very High
Wetland		Acacia melanoxylon encroad	ching om wetland
Wetland FEPA	No	River FEPA	No
Description	Moderate to small, permanent syste	em with dense hydrophytic vegetation.	
Impacts Dams, past cultivation.			
Assessment Rating	PES C: Modorately medified	EIS	Ecosystem Services
		nigii	nigh

Table 53: Summary of the wetland system sampled at site 78

HGM Туре	Unchanneled valley-bottom	Site Code	76	
Location	-29.5123, 30.2661	Priority	Very High	
	View c	lownstream	I	
Wetland FEPA	No	River FEPA	No	
Description	Small system that still retains an int mearnsii bushclumps.	tact wetland vegetation although impacted	turther upstream by Acacia	
Impacts	Livestock, Alien vegetation			
Assessment Rating	PES	EIS	Ecosystem Services	
	C: Moderately modified	Moderate	High	

HGM Туре	Flat	Site Code	86
Location	-29.5723, 30.3522	Priority	Very High
	Wetland	Humus rich melanic A horizon of a	Willowbrook soil form.
Wetland FEPA	No	River FEPA	No
Description	A permanently saturated fat wetland	a adjacent to residential area.	
Impacts	Alien vegetation, urban developmer	nt.	
Assessment Rating	PES	EIS	Ecosystem Services
	B: Largely natural	High	Very High

Table 55: Summary of the wetland system sampled at site 86

НСМ Туре	Flat	Site Code	85		
Location	-29.4799, 30.1989	Priority	Very High		
Wetland	I showing Cyperus dives	Willowbrook sc	il form		
Wetland FEPA	No	River FEPA	No		
Description	Large permanently inundated flat w	etland			
Impacts	Alien vegetation, Roads, Urban dev	velopment			
Assessment Rating	PES	EIS	Ecosystem Services		
	C: Moderately modified	High	High		

Table 56: Summary of the wetland system sampled at site 85

НСМ Туре	Depression	Site Code	90
Location	-26.123640, 28.273442	Priority	Very High
	Wedned	Other	
	vvetiano	Other	
Wetland FEPA	No	River FEPA	No
Description	vegetation persist along margin	on levels during survey. Only a harrow	
Impacts	Alien vegetation, litter and Dumping	, roads, urban development	
Assessment Rating	PES	EIS	Ecosystem Services
	B: Largely natural	Very High	Moderately High

Table 57: Summary of the wetland system sampled at site 90

8.3 Riverine Ecology

A total of 30 riverine systems were assessed during the survey. A selection of systems was conducted to provide a representative sample of riverine systems encountered during the decommissioning of the pipeline. These sites are summarised in Table 58 to Table 86. The river systems assessed ranged from ephemeral mountain streams with Strahler order 1, to large lowland rivers such as the Vaal River. *In situ* water quality, macroinvertebrates, habitat, and fish were assessed at each site that presented adequate surface water to conduct each assessment. Dry systems were photographed, and habitat integrity assessed. Site access was limited at several sites and therefore sampling was conducted up or downstream at an accessible point to assess the state of the riverine system. The state of the systems fluctuated from largely natural to critically modified according to biological bands (Dallas, 2007). All riverine system delineations are provided in the wetland assessment, which included the riparian zones within the delineations. Buffers were appropriately added to each delineation. Despite the fluctuating states of the systems assessed, the buffers and risks to the systems remain constant due to legislative protections of the water resources. Methodologies and desktop assessments are provided in the scoping report (TBC, 2019).

Site Code	56	Priority	1	Sam	ple Date		01/11/2019	
	Upst	ream			Downs	stream		
	<image/>							
	Coo	ordinates		26°-	40'12.50"S		28° 0'33.24"E	
Desktop d	lata for the Sub-	Quaternary Read	ch: C21G-1692	Riv	ver Name	Sui	kerbosrand River	
Strahle	r Order	;	3		Modific	ations		
Present Eco	logical State	Cla	ss D	Dryland a	griculture, Vereen	iging, Ran	d Water – treatment	
Ecological	Importance	Hi	igh	works, Suikerbosrand treatme		ment plant,	, Alien invasive	
Ecological	Sensitivity	Hi	igh					
Water Quality								
рН		Conductiv	ity (µS/cm)	DO (mg/l)	Te	mperature (°C)	
7.8	7.86		1249		81		20.1	
			Hab	pitat				
Geoclass	Class F -	- Lowland river	WMA	Vaal	Ecore	egion	Highveld	
Habitat inte	arity (IHIA)	Riparian			Instream			
	ging (initA)		Class D		Class D			
Distance D	-4:		. r		Comment			
вюторе к	ating X/45	24	2.0	Site dominated	by stones in curre	ent, with lin	nited marginal and	
		1	Macroinvertebra	ate Assessment	-			
SASS5	Score	No. o	f Taxa	AS	PT	Eco	logical category (Dallas 2007)	
9	5	2	!1	4	5		Class B	
			Fish Communi	ty Assessment				
	Species collecte	ed (IUCN Status)		Species of Co	onservational Co	oncern	1	
Labeo capensis (LC) Labeobarbus aeneus (LC) Labeobarbus kimberleyensis (NT)								
			Discu	ssion				
The state of the modifications. A concern was co the pipeline sho	Suikerbosrand F largely intact bio llected during the uld be located ou	River was found t tic macroinverteb survey and ident tside the recomm	o be in a modera rate community wa ified according to pended buffer for t	tely modified stat as observed durin <i>(Skelton, 2001), I</i> he riparian zone.	e. This was attrib g the study. A sing Labeobarbus kiml	uted to hal gle fish spe berleyensis	bitat and water quality ecies of conservational s (<i>NT</i>). Access point to	

Site Code	57	Priority	1		Sam	ple Date		01/11/2019
	Upst	ream		Downstream				
						J.		
	Coc	ordinates			26°4	1'43.42"S		27°59'56.57"E
Desktop o	lata for the Sub-	Quaternary Rea	ch: C22F-1737		Riv	er Name		Vaal River
Strahle	Strahler Order 4					Modifie	ations	
Present Eco	logical State	Clas	ss C	AgriculturePower station,Mining				
Ecological	Importance	Hi	gh					
Ecological	Sensitivity	Hi	gh	Methabo weir				
Water Quality								
pH Conductivity (μS/cm)			ity (µS/cm)		DO (r	ng/l)	Т	emperature (°C)
			Not ass	sesse	ed			
			Hab	itat				
Geoclass	Class F	- Lowland river	WMA		Vaal	Ecore	egion	Highveld
Habitat into	arity (ILIA)		Riparian				Instre	am
	giny (iniA)		Class C		Class D			s D
Distance D	ating VIAE					Com	ment	
Бюторе К	aung A/45		-	Slo	w deep movi	ng waters, margi	nal vegeta	ation
			Macroinvertebra	ate A	ssessment			
SASS5	Score	No. o	f Taxa		AS	РТ	Ec	ological category (Dallas 2007)
			Not ass	sesse	ed			
			Fish Communit	ty As	ssessment			
	Species collecte	ed (IUCN Status)		S	pecies of Co	nservational Co	ncern	1
Labeo capensis Labeobarbus ae Labeobarbus kii	(LC) eneus (LC) mberleyensis (N	Г)						
			Discu	ssio	n			
The access poin and negligible ri	t to the pipeline f sk is assessed fo	alls within the Rar or the Vaal system	nd Water treatmen n. The desktop sta	t woi ite of	ks. Should th the Vaal is c	e access point be lassed as modera	e within th ately mod	e Rand Water property, ified.

Table 59: Summary of the aquatic system sampled at site 57

	labl	e 60: Summa	iry of the aqu	iatic system s	ampied at si			
Site Code	61	Priority	1	Sam	ple Date		01/11/2019	
	Upst	tream			Downs	tream		
Foorfinats								
	Coc	ordinates		26°4	46'43.70"S	_	27°53'22.49"E	
Desktop da	ta for the Sub	Quaternary Read	ch: C22K-1795	Riv	ver Name		Taaibospruit	
Strahler	Drder	3	}		Modific	ations		
Present Ecolo	Present Ecological State Class D		Impacts fro	Impacts from discharge from industries,				
Ecological In	portance	Hi	gh	 Agriculture back water 	 Agriculture from from Barrage in 		ower reach	
Ecological Sensitivity High								
Water Quality								
рН		Conductivi	ity (µS/cm)	DO (r	ng/l)	Te	emperature (°C)	
			Not as	sessed				
			Hab	pitat				
Geoclass	Class F	 Lowland river 	WMA	Vaal	Ecore	egion	Highveld	
Habitat integ	ritv (IHIA)		Riparian			Instre	am	
	, (Class C		Class D			
Biotope Rat	ina X/45				Com	nent		
				Slow deep movi	ng waters, margi	nal vegeta	tion	
		1	Macroinvertebra	ate Assessment				
SASS5 S	core	No. of	Таха	AS	PT	Eco	ological category (Dallas 2007)	
			Not as	sessed				
			NUL do					
			Fish Communi	ty Assessment				
s	pecies collect	ed (IUCN Status)	Fish Communi	ty Assessment Species of Co	nservational Co	ncern	1	
S Labeo capensis (Labeobarbus aen Labeobarbus kim	Decies collect LC) eus (LC) berleyensis (N	ed (IUCN Status) T)	Fish Communi	ty Assessment Species of Co	nservational Co	ncern	1	
S Labeo capensis (Labeobarbus aen Labeobarbus kim	Decies collect LC) eus (LC) berleyensis (N	ed (IUCN Status) Τ)	Fish Communi	ty Assessment Species of Co	nservational Co	ncern	1	

	Table	e 61: Summa	ry of the aqu	atic system s	ampled at si	te 61	
Site Code	69	Priority	3	Sam	ple Date		01/11/2019
	Upst	ream			Downs	stream	
Ecordinates							
	Coo	rdinates		275	°44'2.35"S		27°17'58.10"E
Desktop da	Desktop data for the Sub-Quaternary Reach: C60D-2472			Riv	ver Name	Unna	amed Tributary of the Vals River
Strahler	Order	1			Modifie	ations	
Present Ecolo	gical State	Clas	is D	 Erosion Livestock 			
Ecological In	nportance	Mode	erate	Instream impoundment			
Ecological S	ensitivity	Mode	erate				
Water Quality							
рН		Conductivi	ty (µS/cm)	DO (mg/l)	Т	emperature (°C)
			DF	RY			
			Hab	itat			_
Geoclass	Class D -	- Lowland river	WMA	Vaal	Ecor	egion	Highveld
Habitat integ	rity (IHIA)		Riparian			Instre	eam
			Class D	1	Class D		
Biotone Bat	tina X/45	N/	Δ		Com	ment	
	ing XI+0	1.1/		Dry dam			
			Macroinvertebra	ate Assessment			
SASS5 S	Score	No. of	Таха	AS	PT	Ec	ological category (Dallas 2007)
			Dr	ry			
	Fish Community Assessment						
S	pecies collecte	ed (IUCN Status)		Species of Co	onservational Co	oncern	0
			Dr	ry			
			Discu	ssion			
Site was dry, prop	oosed activities	pose a low risk to	aquatic system. I a lower priori	Follow wetland de	elineation and buf	fer. Due t	o the ephemeral nature

Site Code	84	Priority	1		Sample D	ate		04/11/2019
	Ups	tream	•	Downstream				
Coordinates								
Coordinates					27°49'43.	.36"S		27°30'14.98"E
Desktop o	lata for the Sub	-Quaternary Rea	ch: C60D-2507		River Na	ame	Unna	Vals River
Strahle	r Order		1	Modifi			ations	
Present Eco	logical State	Cla	ss C	Erosion				
Ecological	Importance	Mod	erate	•	Abstraction			
Ecological	al Sensitivity Moderate Alien vegetation				۱			
Water Quality								
p	pH Conductivity (μS/cm)				DO (mg/l)		Te	emperature (°C)
8.	16	10	52		3.84			23.3
			Hab	oitat				
Geoclass	Class E	 Lowland river 	WMA		Vaal	Ecoregion		Highveld
Habitat into	arity (IUIA)		Riparian				Instre	am
	ging (iniA)		Class C		Class B			
			•			Com	ment	
Biotope R	ating X/45	1	0	Site d aquat	Site dominated by stones in current, with limited marginal and aquatic vegetation.			
			Macroinvertebra	ate Ass	essment			
SASS5	Score	No. o	f Taxa		ASPT		Eco	ological category (Dallas 2007)
10)7	2	24		4.5			Class B
			Fish Communi	ty Asse	essment			
	Species collect	ted (IUCN Status)	1	Spee	cies of Conser	vational Co	oncern	0
Enteromius ano	plus (LC)			•				
			Discu	ission				
Limited flow wi Modified in	thin the reach. L stream and ripa	argely intact macr ian habitat, howe	oinvertebrate com ver, largely intact r prescribe	nmunity, macroin ed buffe	, a single specie vertebrates con r.	es of fish col nmunity. Fol	lected, list low wetlar	ed as Least Concern. Ind delineation and

	Table 63: Summary of the aquatic system sampled at site 126									
Site Code	125/126	Priority	1	Sam	ple Date	04/11/2019				
	Upst	ream			Downstream					
Coordinates			28°	8'27.37"S		28° 6'48.67"E				
Desktop dat	Desktop data for the Sub-Quaternary Reach: C60A-2607			Riv	ver Name		Vals River			
Strahler of	order	2	2	Roads	Modifie	cations				
Present Ecological State		Clas	as C	 Roads instream dam dams in tributaries agriculture 						
Ecological Im	portance	High								
Ecological Sensitivity			gh	Eutrophica	ation					
Water Quality										
рН		Conductivi	ty (µS/cm)	DO (r	ng/l)	Т	emperature (°C)			
7.79		90)5	4.6	67		23.1			
			Hab	pitat						
Geoclass	Class E -	- Lowland river	WMA	Vaal	Ecore	gion	Highveld			
Habitat integ	rity (IHIA)		Riparian			Instr	eam			
nabitat integi			Class D		Class D					
			_		Com	ment				
Biotope Rat	ing X/45	12	5	Site dominated	by mud, marginal es out of current	l vegetatio	on, undercut banks,			
			Macroinvertebra	ate Assessment						
SASS5 S	core	No. of	Таха	AS	РТ	Ec	ological category (Dallas 2007)			
78		1	8	4.	3		Class C			
			Fish Communi	ty Assessment						
S	pecies collecte	ed (IUCN Status)		Species of Co	onservational Co	oncern	0			
No fish collected a	at site						·			
Limited flow at flow, sedime	site due to upst ntation and wa	ream impoundme ter quality modific	Discu nt. Moderately m ations. Meanderin prescribe	ssion odified biotic com ng system with lar ed buffer.	munity. Largely n ge floodplain, foll	nodified h ow wetlar	abitat integrity due to nd delineation and			

Site Code	144	Priority	1		Sample	e Date		05/11/2019
	Upst	ream		Downstream				
Foordinates								
Coordinates				28°12'	27.97"S		28°21'48.61"E	
Desktop c	lata for the Sub-	Quaternary Read	ch: C83C-2847	River Name			Lie	ebenbergsvlei River
Strahle	r Order	3	3		Fracion	Modifi	cations	
Present Eco	logical State	Clas	ss E	 Livestock 				
Ecological	Importance	Lo	W	•	Sewage			
Ecological Sensitivity High • Alien vegetation Increased flow			ion ws					
	Water Quality							
р	н	Conductivi	ity (μS/cm)		DO (mg	/I)	Т	emperature (°C)
د	•	11	10		4.75			18.4
			Hab	oitat				
Geoclass	Class E -	- Lowland river	WMA		Upper Vaal	Ecore	gion	Eastern Escarpment Mountains
			Riparian			·	Instr	eam
Habitat inte	grity (IHIA)		Class C		Class D		s D	
			_		l	Com	ment	
Biotope R	ating X/45	1	8	Site	dominated by	sand and mar	ginal veg	etation.
		I	Macroinvertebra	ate As	sessment			
SASS5	Score	No. of	f Taxa		ASPT		Ec	ological category (Dallas 2007)
5	4	1	4		3.9			Class D
			Fish Communi	ty Ass	sessment			
	Species collecte	ed (IUCN Status)		Sp	ecies of Cons	ervational Co	oncern	0
No Fish collecte	d							I
			Discu	ssion				
Extensive ch	annel modificatio	n and erosion has Follow	s limited instream wetland delineatio	habita	at diversity. Mo	dified habitat i Iffer.	ntegrity a	nd biotic community.

Table 64: Summary of the aquatic system sampled at site 144

	Table	65: Summai	ry of the aqua	atic system s	ampled a	t site 15	8		
Site Code	158	Priority	3	Sam	ple Date			05/11/2019	
	Upst	ream			Downstream				
Coordinates			28°	13'27.93"S			28°32'29.91"		
Desktop data	for the Sub-	Quaternary Read	ch: C83D-2806	Riv	ver Name		K	alkoenspruit River	
Strahler O	der		1	Modifica			ıs		
Present Ecologi	resent Ecological State Class C • Small area cultivation, • Excessive nutrients.								
Ecological Imp	ortance	Mode	erate	 abandoned lands, road crossings 					
Ecological Ser		sings							
Water Quality									
рН		Conductivi	ity (µS/cm)	D O (mg/l)		T	emperature (°C)	
*		34	11	3.	3.82			20.2	
	-		Hab	pitat					
Geoclass	Class D ·	- Lowland river	WMA	Upper Vaal	E	Ecoregion		Eastern Escarpment Mountains	
Habitat integrit			Riparian			In	stre	am	
Habitat integri	y (inia)		Class B		Class B			s B	
						Comment			
Biotope Ratin	g X/45	11	.5	Site dominated	by stones o	ut of currer	nt cu	rrent, with marginal	
			Macroinvertebra	ate Assessment					
SASS5 Sc	ore	No. of	Таха	AS	PT		Ec	ological category (Dallas 2007)	
123		2	4	5	1			Class C	
			Fish Communi	ty Assessment					
Spe	ecies collecte	ed (IUCN Status)		Species of Co	onservation	al Concer	n	0	
Enteromius anoplus	s (LC)								
			Discu	ssion					
No flow observed site, sampled u	during the su upstream at ro Kalkoenspruit	rvey within the rea bad crossing. Cha runs parallel and	ach. Habitat limite nnelled valley-bo classed unchanr	ed to a standing p ttom wetland, follo neled valley-botton	ool with stor ow wetland (m wetland (S	nes and mu delineation Sites 156 a	d su and nd 1	bstrate. No access to prescribed buffer. 57).	

			, ,	,	,			
Site Code	177	Priority	1	San	ple Date		05/11/2019	
	Ups	stream			Down	stream		
						「人間に、		
	Co	ordinates		28°	16'47.18"S	_	28°51'54.78"E	
Desktop d	ata for the Sul	o-Quaternary Rea	ch: C81H-2894	Ri	ver Name		Elands River	
Strahler order 3				Modifi	cations			
Present Ecological State Class B				Erosion Livestock				
Ecological	mportance	Hi	igh	Alien vege	etation			
Ecological	Sensitivity	Hi	igh	Agricultur	e			
		-	Water	Quality		1		
pl	H	Conductiv	ity (µS/cm)	DO (mg/l)	1	Cemperature (°C)	
*		5	09	4	.8		22.0	
			Hab	oitat				
Geoclass	Class E	- Lowland river	WMA	Upper Vaa	Ecore	gion	Eastern Escarpment Mountains	
Habitat into	arity (ILIA)		Riparian			Instr	eam	
Habitat inte	grity (IRIA)		Class C			Clas	is C	
					Com	ment		
Biotope R	ating X/45		7	Site dominated observable flow	by marginal and and and by mud substrate	aquatic v	egetation, no	
			Macroinvertebra	ate Assessment	,			
SASS5	Score	No. o	f Taxa	AS	PT	Ec	cological category (Dallas 2007)	
46 12				3	.8		Class D	
	Fish Community Assessment							
	Species collec	ted (IUCN Status)		Species of Co	onservational Co	oncern	0	
No fish collected	1			·				
			Discu	ssion				
Barely perceptit	ble flow at site. I ttom and a large	Eroded banks and e floodplain adjace	eutrophic conditio nt to the Elands R	ns as indicated b iver. Follow wetla	y excess algae. C Ind delineation ar	combinati	on of channelled valley- bed buffer.	

Table 66: Summary of the aquatic system sampled at site 177

Site Code	189	Priority	1	San	nple Date		05/11/2019	
	Upst	ream			Downs	tream		
	Coo	rdinates		28°19'36.56"S			29° 5'32.96"E	
Desktop d	ata for the Sub-	Quaternary Read	ch: C81E-2930	River Name Nuwejaarspuit River				
Strahler	r Order	2	2		Modific	ations		
Present Ecol	ogical State	Clas	ss C	Channelization				
Ecological Importance Moderate			erate	Livestock				
Ecological Sensitivity High			gh	 Alien veg 	etation			
			Quality					
pl	4	Conductivi	ity (µS/cm)	DO (mg/l)	T	emperature (°C)	
*		11	11	4.	26		25.4	
			Hab	itat				
Geoclass	Class E -	- Lowland river	WMA	Vaal	Ecore	gion	Highveld	
Habitat into	aurita (1111A)		Riparian			Instre	eam	
Habitat inte	grity (IHIA)		Class C			Class	s D	
					Comr	nent		
Biotope Ra	ating X/45		7	Site characteris	sed as slow deep r	noving wa	aters with marginal	
			Macroinvertebra	ate Assessment				
SASS5	Score	No. of	f Taxa	AS	PT	Ec	ological category (Dallas 2007)	
11	8	2	3	5	.1		Class B	
Fish Community Assessment								
	Species collecte	ed (IUCN Status)		Species of C	onservational Co	ncern	0	
Cyprinus carpio								
Channelized sys	stem, and pushba	ack from downstre	Discu eam impoundmen	ssion t has flooded ins	tream habitat. A la	rge floodi	plain occurs either side	
of the channel. flow were abse	A largely intact (nt from the site. A	class B) macroinv A single exotic fish	rertebrate commu n species was coll is exp	nity was collected ected. Due to the ected.	d, however, taxa w e large floodplain, a	ith a pref a low risk	erence to cobbles and to the riverine system	

Site Code	192	Priority	1	Sample Date 05/11/2019					
	Upst	ream				Downs	stream		
	Coo	ordinates		28°20'6.34"S				29° 8'29.15"E	
Desktop data for the Sub-Quaternary Reach: C81B-2864					River	Name		Wilge River	
Strahler Order 2						Modific	ations		
Present Ecological State Class D				• E	Erosion ivestock				
Ecological Importance High			gh	• 4	Alien vegetati	on			
Ecological Sensitivity High				• 5	Sedimentation	1			
Water Quality									
p	Н	Conductivi	ity (µS/cm)		DO (mg/	l)	Т	emperature (°C)	
,		19	0.7		5.44			27.4	
			Hab	itat					
Geoclass	Class F -	- Lowland river	WMA		Vaal	Ecore	egion	Highveld	
Habitat inte	arity (IHIA)		Riparian					Instream	
	gitty (ii ii/t)		Class D	r	s D				
Distance D	atin a V/AE		-			Com	ment		
вюторе к	ating X/40	;)	No flov habitat	w, dominated t diversity.	by bedrock a	nd mud s	ubstrate. Limited	
		I	Macroinvertebra	ate Asse	essment				
SASS5	Score	No. of	f Taxa		ASPT		Ec	ological category (Dallas 2007)	
3	4	1	0		3.4			Class E/F	
			Fish Communit	ty Asses	ssment				
Species collected (IUCN Status) Species of Conservational Concern 0							0		
Cyprinus carpio Labeo capensis Labeobarbus ae Clarias gariepin	(Exotic) (LC) eneus (LC) us (LC)								
			Discu	ssion					
Modified ripa macroinverte	arian and instrear brate community	n habitat was obs resulting in a ser	erved during the s iously modified ec species of conser	survey. I cological vational	No flow and li category. Fo concern.	mited instrear	m habitat s were co	diversity limited the illected, however, no	

	Table	69: Summar	y of the aqua	atic	system sa	ampled at sit	e 204	
Site Code	204	Priority	1		Sam	ple Date		05/11/2019
	Upst	ream				Downs	stream	
	Co-	ordinate			28°2	20'57.70"S	-	29°12'57.25"E
Desktop data f	or the Sub-	Quaternary Read	h: C81B-2864		Riv	ver Name		Wilge River
Strahler Ord	er	2		•	Erosion	Modific	cations	
Present Ecological State Class D			•	Excessive	algae			
Ecological Impo	Ecological Importance High			•	Alien vege	tation		
Ecological Sensitivity High			٠	No flow				
			Water	Qual	ity			
рН		Conductivi	ty (µS/cm)		DO (r	ng/l)	T	emperature (°C)
*		12	7		4.97			27.2
			Hab	itat				
Geoclass	Class F -	- Lowland river	WMA		Vaal	Ecore	egion	Highveld
Liebitet integrity	(11.11.6.)		Riparian				Instre	am
Habitat integrity	(іпіА)		Class C				Class	s B
						Com	ment	
Biotope Rating	X/45	1	8	Site ma sys	e dominated rginal and aq stems provide	by stones out of o uatic vegetation. diverse habitat	current an Undercut	d mud, with limited banks with root
			Macroinvertebra	ate A	ssessment			
SASS5 Sco	re	No. of	Таха		AS	PT	Ec	ological category (Dallas 2007)
183		32	2		5.	7		Class A
			Fish Communi	ty As	ssessment			
Spec	ies collecte	ed (IUCN Status)		S	pecies of Co	onservational Co	oncern	0
No Fish								
		1a 1 a	Discu	ssio	n			
Diverse biotopes wer site, with 32 taxa co activities have res	re available ollected. Flov sulted in a m	within the reach, c w modifications wi odified riparian ar reach. Follo	tespite absence of thin the river resund instream habitation ow wetland deline	of flov Ilted at int atior	w. A natural r in the absend egrity. A large <u>n and pres</u> cril	nacroinvertebrate ce of flow in the re e floodplain with o bed buffer.	e commun each. Live oxbow lak	ity was collected at the stock and agricultural es occurs within the

Site Code	230	Priority	2		Sam	ple Da	ate		06/11/2019
	Ups	tream					Downs	tream	
	Co	ordinates			28°24'22.81"S 29°25			29°25'56.97"E	
Desktop data for the Sub-Quaternary Reach: V12D-2987					Riv	ver Na	me	Unn	amed Tributary of the Sandspruit
Strahle	r Order	2 Modifications							
Present Ecological State Class C									
Ecological	gh	Instream impoundments							
Ecological	Sensitivity	Hi	gh	•	Sedimenta	ations			
			Water	Qual	ity				
р	н	Conductiv	ity (μS/cm)		DO (mg/l) Tempera			emperature (°C)	
6.2	27	1	51	3.86 24.2			24.2		
			Hab	oitat					
Geoclass	Class D	- Lowland river	WMA	Po	ngola-Mtamv	runa	Ecore	gion	North Eastern Uplands
Habitat inte	arity (IUIA)		Riparian					Instr	eam
	ging (IniA)		Class C					Clas	s B
Distance D	- 4		•				Com	ment	
вюторе к	ating X/45	1	0	Div aqu	verse stones uatic vegetati	in and on.	out of curre	ent, diver	se marginal and
			Macroinvertebra	ate A	ssessment				
SASS5	Score	No. o	f Taxa		AS	PT		Ec	ological category (Dallas 2007)
232 40					5.	.8			Class A
	Fish Community Assessment								
	Species collect	ed (IUCN Status)		S	pecies of Co	onserv	ational Co	ncern	0
Enteromius and	plus (LC)								
Modorata ta la	rachy patural hab	itat intogrity. Cas	Discu	Issio	n troom bobitor	tdivor		t in a net	ural magrainy ortobrate
communit	community. A single fish species was collected. The narrow channel and size of the system resulted in a priority rating of 2.								

	Table	71: Summai	ry of the aqua	atic	system s	amp	led at site	ə 261	
Site Code	261	Priority	1		Sam	ple D	ate		06/11/2019
	Upst	ream					Downs	tream	
	Co-	ordinate			28°	30'54.	.20"S	-	29°43'46.24"
Desktop data f	or the Sub-	Quaternary Read	ch: V12F-3125	1	Riv	ver Na	ame		Klip River
Strahler Ord	er	3	}		-	· · ·	Modific	ations	
Present Ecological State Class C			•	Livestock	ificatio	ons			
Ecological Importance			gh	Alien vegetation Windsor dam			ı		
Ecological Sensitivity High			gh	Ľ		am			
Water Quality									
рН		Conductivi	ty (μS/cm)		DO (mg/l)		Т	emperature (°C)
8.08		33	31	5.06					29.8
	1		Hab	oitat			I		
Geoclass	Class E -	- Lowland river	WMA	Po	ngola-Mtamv	/una	Ecoreg	gion	South Eastern Uplands
Habitat integrity	(111)		Riparian					Instre	eam
Habitat integrity	(іпіА)		Class C					Clas	s B
Distance Dating	N/AE	40	E				Com	nent	
Biotope Rating	A/4J	10		Site	e dominated	by gra	avel substrat	e, limitec	I marginal vegetation
			Macroinvertebra	ate A	ssessment				
SASS5 Sco	re	No. of	Таха		AS	PT		Ec	ological category (Dallas 2007)
179		3	1		5	.8			Class A
			Fish Communi	ty As	ssessment				
Species collected (IUCN Status)					pecies of Co	onser	vational Co	ncern	0
Labeobarbus nataler Enteromius anoplus Clarias gariepinus (L Pseudocrenilabrus p	osis (LC) (LC) C) hilander (LC)							
			Discu	issio	n				
Flow, riparian and ir natural macroir	Flow, riparian and instream modifications have resulted in a lower desktop PES of class C, however, according to biological bands, a natural macroinvertebrate community was collected. No fish species of conservational concern were collected in the reach.								

Site Code	270	Priority	1		Sam	ple Da	ate		06/11/2019
	Upst	ream					Downs	tream	
	Co-ordinate Desktop data for the Sub-Quaternary Reach: V12F-3125								
	Co-	ordinate			28°	30'54.	20"S		29°43'46.24"
Desktop da	ata for the Sub-	Quaternary Rea	ch: V12F-3125	1	Riv	ver Na	ame		Klip River
Strahler Order 3					Flow modi	ficatio	Modific	ations	
Present Ecolo	Present Ecological State Class C				Livestock	illoutio			
Ecological In	nportance	Hi	gh	Alien vegetation Seware					
Ecological Sensitivity High				•	Urban run	off			
Water Quality									
рН		Conductiv	ity (µS/cm)		DO (I	mg/l)		Т	emperature (°C)
			Not as	sesse	ed				
			Hat	oitat					
Geoclass	Class E -	- Lowland river	WMA	Po	ongola-Mtamvuna Ecoregion			jion	South Eastern Uplands
Habitat integ	rity (IHIA)		Riparian		Instream			am	
			Class D	1				Class	s D
Biotone Rat	ting X/45		-				Comr	nent	
Biotope nu				Site	e dominated	by sar	nd substrate		
			Macroinvertebra	ate A	ssessment				
SASS5 S	Score	No. o	f Taxa		AS	PT		Ec	ological category (Dallas 2007)
			Not as	sesse	ed				
			Fish Communi	ty As	ssessment				
Species expected (IUCN Status) Species						onserv	vational Co	ncern	0
Labeobarbus nata Enteromius anop Clarias gariepinu Pseudocrenilabru	alensis (LC) lus (LC) s (LC) ıs philander (LC)							
			Discu	issio	n				
No access to c solid waste v	rossing point. V within the chann	isual observation el and deteriorate	of reach. Riparian ed water quality de prescribe	n veg ue to ed bu	etation domi urban runoff ffer.	nated of a s	by alien inv sewage. Foll	asive spe ow wetla	cies. Large mount of nd delineation and

Site Cada	20.0	Deiceriter	1		- Sem	nla Data		07/11/2010	
Sile Code	290	Fliolity			Jail			07/11/2019	
	Ups	ream				Down	stream		
		and in sta	and the second					2000/00/27 06///	
					28	41 08.00 5	Unna	med Tributary of the	
Desktop c	lata for the Sub	Quaternary Rea	ch: V14B-3296	[Riv	ver Name		Thukela	
Strahle	r Order		3						
Present Eco	ogical State	Cla	ss B	•	Erosion	Modifi	cations		
Ecological	mportance	Hi	igh	•	Alien inva	sive vegetation			
Ecological Sensitivity High									
		1	Water	Qual	lity				
p	Н	Conductiv	ity (μS/cm)		DO (mg/l) Te			mperature (°C)	
			D	ry					
			Hab	oitat				1	
Geoclass	Class E	 Lowland river 	WMA	Po	ngola-Mtamv	runa Ecor	egion	South Eastern Uplands	
Habitat inte	arity /ILIA)		Riparian				Instre	am	
	giny (IFIA)		Class B				Class	В	
Piotono P	oting V/45					Com	ment		
Бюторе К	aung A/45		-	На	bitat dominal	ed by bedrock ar	id sand		
			Macroinvertebra	ate A	Assessment				
SASS5 Score No. of Taxa					AS	PT	Eco	logical category (Dallas 2007)	
			D	ry					
			Fish Communi	ty A	ssessment				
	Species collect	ed (IUCN Status)		S	pecies of Co	onservational Co	oncern	0	
Dry									
			Discu	ssio	n				
System	was dry during t	he survey. Within	a nature reserve.	Prio	rity 1, follow	wetland delineation	on and pre	scribed buffer.	

Site Code	306	Priority	1	Sample Date 07/11/2019					07/11/2019
	Upst	ream				<u> </u>	Downs	tream	
	Co-	ordinate			28°	44'33.5	59"S	_	29°48'16.47"E
Desktop data for the Sub-Quaternary Reach: V14B-3296					Riv	ver Na	me		l hukela
Strahler Order 4					oingo	Modific	ations		
Present Ecological State Class C					agriculture	e from o	canal		
Ecological	Importance	Hi	gh	•	gauging w	/eir d minin	a operation	e	
Ecological Sensitivity High					Sinai San	J 1111111	g operation	<u> </u>	
			Water	Qual	lity				
р	Н	Conductiv	ity (µS/cm)	DO (mg/l)			Те	emperature (°C)	
7.	11	81	1.2	5.5			25.2		
			Hab	oitat					
Geoclass	Class F -	- Lowland river	WMA	Po	ngola-Mtamv	/una	Ecore	gion	North Eastern Uplands
Habitat inte			Riparian					Instre	am
Habitat Inte	grity (IHIA)		Class C					Class	В
			_				Comr	nent	
Biotope R	ating X/45	2	5	Div	verse biotope	s withir	n the syster	n.	
			Macroinvertebra	ate A	ssessment				
SASS5	Score	No. o	f Taxa		AS	PT		Eco	logical category (Dallas 2007)
200 34					5	.9			В
	Fish Community Assessment								
	Species collecte	ed (IUCN Status)		S	pecies of Co	onserv	ational Co	ncern	0
No fish collected	d								
			Discu	issio	'n				
Large lowland	d river with divers	e instream habita	t. Largely natural	mac withi	roinvertebrat	e comr Follow	nunity. Ripa riparian del	arian vege	tation dominated by

	Table	75: Summar	y of the aqua	atic	system s	ampl	led at site	ə 315	
Site Code	315	Priority	1		Sam	ple Da	ate		07/11/2019
•	Upst	ream					Downs	tream	
	Co-	ordinate			28°	51'38.0	08"S		29°49'2.96"E
Desktop data f	or the Sub-	Quaternary Reac	h: V14D-3374		Riv	ver Na	ime		Bloukrans
Strahler Ord	ler	2		Modifications					
Present Ecologic	Present Ecological State Class B			Road crossings,					
Ecological Impo	rtance	High		•	sediments dams in tri	from i ibutari	upper reach es.	ies,	
Ecological Sens	sitivity	Hig	h						
	Qual	ity							
рН		Conductivit	y (µS/cm)		DO (I	mg/l)		Т	emperature (°C)
8.43		67	4		4.8				32.4
			Hab	oitat					
Geoclass	Class D –	Upper Foothills	WMA	Po	ngola-Mtamv	runa	Ecore	egion	North Eastern Uplands
	(11.11.4.)		Riparian					Instre	am
Habitat integrity	(IHIA)		Class B					Class	s B
							Com	nent	
Biotope Rating	X/45	9		Sit	e dominated	by bec	drock and m	ud subst	rate
			Macroinvertebra	ate A	ssessment				
SASS5 Sco	re	No. of	Таха		AS	РТ		Ec	ological category (Dallas 2007)
68		16	6		4.1	13			E/F
			Fish Communi	ty A	ssessment				
Species collected (IUCN Status) Species of Con-					onserv	vational Co	ncern	1	
Clarias gariepinus Labeo rubromaculatu	ıs (VU)								
			Discu	ssio	n				
Characterised as a reach, however the species of conservation	channelled v e biotic comr tional conce	alley-bottom with a nunity was rated a rn was collected, <i>L</i> risk a low to	adjacent floodpla s seriously modi .abeo rubromacu the fish commun	iin. A fied, <i>ilatu</i> : iity w	largely natu likely due to s, which is lis vithin the Blou	ral inst flow m ted as ukrans	tream and r nodifications Vulnerable river.	iparian ha within th . The pro	abitat occurs within the e reach. A single fish posed activities pose a

	Table 76: Summary of the aquatic system sampled at site 332								
Site Code	332	Priority	1		Sam	ple D	ate		07/11/2019
	Upst	ream					Downs	tream	
	Co-ordinate								
	Co-	ordinate			28°	59'1.0)5"S		29°54'36.38"E
Desktop data	for the Sub-	Quaternary Read	h: V70F-3623		Riv	ver Na	ime	Unna	med Tributary of the Boesmans
Strahler O	rder	2			Madifiationa				
Present Ecologi	cal State	Class C		•	Bank eros	Modifications			
Ecological Imp	ortance	Hiç	jh	•	Livestock	edime	entation		
Ecological Ser	nsitivity	Hiç	jh	•	motream a	seame	Intation		
	Water								
рН		Conductivi	ty (µS/cm)	DO (mg/l)				Те	emperature (°C)
7.92		74	5	6.17				28.1	
	-		Hab	itat					
Geoclass	Class E -	- Lower foothills	WMA	Po	ngola-Mtamv	runa	Ecore	egion	South Eastern Uplands
Habitat integri	57 (1 11 A)		Riparian					Instre	am
парнат шеуп	цу (ППА)		Class B					Class	; B
Distance Datio	W/AF						Com	nent	
Biotope Ratir	ig X/45	2.	5	Sit sa	e characteris	ed by	a single sta	nding poo	l, substrate gravel and
		L	Macroinvertebra	ate A	ssessment				
SASS5 Sc	ore	No. of	Таха		AS	PT		Eco	ological category (Dallas 2007)
76 15					5.	1			E/F
	Fish Community Assessment								
Spo	ecies collecte	ed (IUCN Status)		S	pecies of Co	onserv	ational Co	ncern	0
-			Discu	eelo	n				
Ephemeral syste	m. Standing p	ools present durin	ig the survey. Lar	gely	natural habit	at inte	egrity within	the reach	. However, seriously

Site Code	339	Priority	1	Sa	mple D	ate		08/11/2019
	Upst	ream				Downs	tream	
	Co-	ordinate		28	°41'58.	.56"S	_	29°48'37.06"E
Desktop o	ch: V14B-3296	<u>г</u>	liver Na	ame		Boesmans River		
Strahle	4	e Esteourt	\ <i>\\\\</i> /T\/		ations	nto		
Present Eco	ss C	 Estcourt road cro 	ssing,	vs, Allen inv	asive pla	nis,		
Ecological Importance High				 small sa irrigation 	nd mini	ng operatior	١,	
Ecological	Sensitivity	Hi	gh	• Ingalion	III IOwe	erreacties		
		r	Water	Quality		T		
р	Н	Conductiv	ity (µS/cm)	DO (mg/l)			Т	emperature (°C)
		12	7.2	3.74 19.			19.5	
			Hat	pitat				
Geoclass	Class E -	- Lower foothills	WMA	Pongola-Mtan	ivuna	Ecoreg	egion North Eastern Uplands	
Habitat inte	arity (IUIA)		Riparian				Instr	eam
nabitat inte	ging (initA)		Class C				Clas	s C
Diatana D	otina VIAE		4			Com	nent	
ыоторе к	ating X/45	1	4	Site dominate	d by be	drock and m	arginal v	regetation in current
			Macroinvertebra	ate Assessmen	t			
SASS5	Score	No. of	f Taxa	A	SPT		Ec	ological category (Dallas 2007)
4	2		3.7			E/F		
			Fish Communi	ty Assessment				
	Species collected	ed (IUCN Status)		Species of 0	Conser	vational Co	ncern	0
No fish collected	d							
			Discu	ission				
Extensive sewa	age present at the	e site resulting in r	nodified water qu habitat integrity	ality and criticall within the reach	y modif	fied biotic co	mmunity	. Modified instream and

Site Code	371	Priority	1	Sam	ple Date		08/11/2019			
	Upst	tream			Downs	stream				
	Co-	ordinate		29	°11'1.91"S		30° 3'4.14"E			
Desktop o	lata for the Sub	-Quaternary Rea	ch: V20E-3884	Ri	ver Name		Mooi River			
Strahle	r Order		4	Start in M	Modifications Start in Mearns weir,					
Present Eco	logical State	Clas	ss C	 irrigation, roads, toutile factory. 						
Ecological Importance High			 textile factory WWTWs, gauging weir, 							
Ecological	Sensitivity	Very	High	urban (Modairy farm	oiriver & surround	ding),	30° 3'4.14"E Mooi River ons),), Temperature (°C) 17.5 on North Eastern Uplands Instream Class B nt ons in current, aquatic and			
		1	Water	Quality		I				
р	Н	Conductiv	ity (µS/cm)	DO (mg/l)	Т	Temperature (°C)			
	•	13	6.6	6.	6.35					
			Hab	pitat						
Geoclass	Class E -	- Lower foothills	WMA	Pongola-Mtam	runa Ecor	egion	North Eastern Uplands			
Habitat inte	arity (IHIA)		Riparian			Instre	eam			
	·9····		Class C			Clas	s B			
Distance D	otina VIAE		0		Com	ment				
вюторе к	aung A/45	2	.2	Diverse instream habitat. Diverse stones in current, aquatic and marginal vegetation						
			Macroinvertebra	ate Assessment						
SASS5	Score	No. of	f Taxa	AS	PT	Ec	08/11/2019 08/11/2019 08/11/2019 0 0 0 0 0 0 0 0 0 0 0 0 0			
19	92	3	38	5	.1		В			
			Fish Communi	ty Assessment						
	Species collect	ed (IUCN Status)		Species of Co	onservational Co	oncern	0			
	moides									
Micropterus sal Lepomis macro	chirus									
Micropterus sali Lepomis macro	chirus		Discu	ssion						

	Table	79: Summa	ry of the aqu	atic system s	ample	ed at site	e 420	
Site Code	420	Priority	1	San	nple Dat	te		10/11/2019
	Upst	ream				Downs	tream	
	Co-	ordinate		29°	29'24.8	1"S		30°12'26.00"E
Desktop data	for the Sub-	Quaternary Rea	ch: U20E-4340	Ri	ver Nan	ne		Umgeni
Strahler O	rder	:	3	 Upper pa 	rt in Mid	Modific Imar Dam.	ations Howick.ir	ndustrial. Howick falls.
Present Ecolog	cal State	Class C		Howic	Howick WWTW, AIP in riparian zone, informal areas			
Ecological Imp	ortance	Hi	gh	orylariu agric. Sakabula			Stream and	a Riel not algitised.
Ecological Ser	Ecological Sensitivity High Very							
			Water	Quality				
рН		Conductiv	ity (µS/cm)	DO (DO (mg/l)			mperature (°C)
		74	1.6	5.	11			16.9
			Hat	pitat				
Geoclass	Class E -	- Lower foothills	WMA	Pongola-Mtam	vuna	Ecore	egion	South Eastern Uplands
Habitat integri			Riparian				Instrea	am
nabitat integri	y (11174)		Class C				Class	D
Diotono Dotir	~ V/45	6	F			Com	ment	
Бююре каш	iy x/45	0	.0	Sampling limited to marginal vegetation and mud substrate.				
			Macroinvertebr	ate Assessment				
SASS5 Sc	ore	No. o	f Taxa	AS	SPT		Eco	logical category (Dallas 2007)
65		1	4	4	.6			E/F
			Fish Communi	ity Assessment				
Spe	ecies collecte	ed (IUCN Status)		Species of C	onserva	ational Co	ncern	0
Gambusia affinis (E	xotic)							
			Discu	ission				
Channelized re collected. Hab	each of the Ur tat integrity ra	ngeni River. Sam Ited as moderatel	pling limited to ma y to largely modif delineation and p	arginal zones. Se ied. Extensive we prescribed buffer.	riously r etlands a	modified m adjacent to	acroinverte the chann	ebrate community el, follow wetland

	Table	80: Summar	ry of the aqua	atic system sa	impled at sit	e 437		
Site Code	437	Priority	1	Sam	ole Date		10/11/2019	
·	Upst	ream			Downs	stream		

	Co-	ordinate		29°3	36'6.06"S		30°24'28.75"E	
Desktop data f	or the Sub-	Quaternary Read	ch: U20J-4364	Riv	er Name		uMnsunduze	
Strahler Ord	er	4	ļ		Modifie	cations		
Present Ecologic	al State	Class E		Campsdrift, weir without fish ladder, industries, stormwate rupoff urbon, road erospinge, Demonstritt actilizemente				
Ecological Importance		Mode	erate	WWTW (D	an, road crossing arvill) return flow	js, Dorpsp s, Bainspr	ruit, settlements, ruit (pollution), oil	
Ecological Sensitivity		Very	High	industry, chicken farms				
			Water	Quality				
pH Conductivity (µS/cm)			DO (n	ng/l)	Те	emperature (°C)		
		24	2	5.3	5.34 22.9		22.9	
			Hat	oitat				
Geoclass	Class E –	Lower foothills	WMA	Pongola-Mtamvi	una Ecor	egion	South Eastern Uplands	
			Riparian			Instream		
Habitat integrity	(IHIA)		Class C			Class	s B	
					Com	ment		
Biotope Rating	X/45	2	3	Site dominated ta aquatic vegetation	by stones in curre	ent, with lir	mited marginal and	
			Macroinvertebra	ate Assessment				
SASS5 Sco	re	No. of	Таха	ASI	РТ	Eco	ological category (Dallas 2007)	
37		g)	4.1	1		E/F	
			Fish Communi	ty Assessment				
Spec	ies collecte	d (IUCN Status)		Species of Co	nservational Co	oncern	0	
lo fish collected								
			Discu	ssion				
nodifications to the r nstream habitat was	each include present at t	e urban runoff, so he site, indicating	lid waste disposa water quality det	I and alien vegetat erioration has implo	tion encroachme acted on the biot	nt into the tic integrity	riparian zone. Diverse of the reach, resulting	

	Table	81: Summa	ry of the aqu	atic system s	ampled at s	site 468		
Site Code	468	Priority	1	San	nple Date		09/11/2019	
	Upst	ream			Dow	Instream		
	Co-	ordinate		29°37'7.24"S 30°27'14.66"E				
Desktop da	ta for the Sub-	Quaternary Rea	ch: V14B-3296	Ri	River Name uMnsunduze			
Strahler	Order		1		Mod	ifications		
Present Ecolo	gical State	Class E		 Campsdri runoff, urb 	ndustries, stormwater pruit, settlements,			
Ecological Ir	Importance Moderate WWTW (Darvill) return industry, chicken farm				Darvill) return fl	ows, Bainspruit (pollution), oil		
Ecological S	Ecological Sensitivity Very High							
		Γ	Water	Quality				
рН		Conductiv	ity (μS/cm)	DO (mg/l)	Т	emperature (°C)	
-		38	38	4.	38		23.5	
			Hal	bitat				
Geoclass	Class E	- Lowland river	WMA	Pongola-Mtamy	vuna Ec	oregion	South Eastern Uplands	
Habitat inter	rity (IHIA)		Riparian			Instre	am	
nuonat intog	, , ,		Class C			Class	s B	
		-	_		Co	mment		
Biotope Ra	ting X/45	2	3	Site dominated	by stones in cu	ırrent, with liı	mited marginal and	
		I	Macroinvertebr	ate Assessment				
SASS5	Score	No. o	f Taxa	AS	SPT	Eco	ological category (Dallas 2007)	
26		{	3	3	.3		Class E/F	
		<u></u>	Fish Commun	ity Assessment				
S	pecies collecte	ed (IUCN Status)		Species of C	onservational	Concern	0	
No fish collected								
			Discu	ussion				
Site 468 was sa macroinvertebrat	mpled upstrean e community. S	n at the road cros everal instream ir <u>follow</u> th	sing. Water quali npoundments ha <u>e riparian deli</u> nea	ty deterioration wi ve resulted in flow ation and applicab	ithin the reach h / and habitat mo le buffer.	nas resulted odifications.	in a critically modified Pipeline access should	

	Table	82: Summar	y of the aqua	atic	system s	ampled at sit	e 471		
Site Code	471	Priority	1		Sam	ple Date		09/11/2019	
	Upst	ream				Down	stream		
	Co-	ordinate			28°	41'58.56"S		29°48'37.06"E	
Desktop da	ta for the Sub-	Quaternary Read	ch: U20J-4488	River Name Unnamed Tributary uMnsunduze			amed Tributary of the uMnsunduze		
Strahler	Order	3	}	Modifications					
Present Ecological State		Clas	is C	•	Erosion				
Ecological Importance		Hiç	gh	Livestock Sewage					
Ecological Sensitivity		Hiç	gh	•	Alien vege	etation			
			Water (Qual	lity				
рН		Conductivi	ty (µS/cm)		DO (mg/l)	Те	emperature (°C)	
-		85	57		2.	75		21.2	
			Hab	itat				-	
Geoclass	Class E -	- Lowland river	WMA	Po	ngola-Mtam	/una Ecor	egion	South Eastern Uplands	
Habitat integ	rity (141A)		Riparian				Instre	am	
Habitat integ	nty (iniA)		Class C				Class	С	
						Com	ment		
Biotope Ra	ting X/45	9	9	Site dominated by stones in current, with limited marginal and aquatic vegetation.					
			Macroinvertebra	ate A	Assessment				
SASS5	Score	No. of	Таха		AS	PT	Eco	ological category (Dallas 2007)	
87		22	2		4	.0		E/F	
			Fish Communit	ty As	ssessment				
S	pecies collecte	ed (IUCN Status)		S	pecies of Co	onservational Co	oncern	0	
No fish collected									
			Discu	ssio	n				
Ephemeral syste	em, characterise	ed by a standing p Seriously mo	ool during the sur	vey. rtebr	Reach domi ate commun	nated by sandy s ity collected.	ubstrate ar	nd aquatic vegetation.	

Site Code		48	80		Sam	ple Date		09/11/2019		
	Upst	ream				Downs	tream			
Co-ordinate										
	Co-	ordinate			29°4	11'27.03"S		30°30'50.26"E		
Desktop data for the Sub-Quaternary Reach: U20J-4488 River Name Msh			Mshwati							
Strahler Ord	Strahler Order 3				• F	Modific	ations			
Present Ecologica	al State	Clas	is B		• Al	ien vegetation				
Ecological Importance High			gh							
Ecological Sens	itivity	Very	High							
Water Quality										
рН	pН		ty (µS/cm)		DO (r	ng/l)	Те	Temperature (°C)		
			DF	RY						
Habitat										
			1100	niai			Pongola-Mtamyuna Ecoregion South R			
Geoclass	Class E -	- Lowland river	WMA	Pong	jola-Mtamv	una Ecore	gion	South Eastern Uplands		
Geoclass	Class E -	- Lowland river	WMA	Pong	jola-Mtamv	una Ecore	egion Instre	South Eastern Uplands am		
Geoclass Habitat integrity	Class E - (IHIA)	- Lowland river	WMA Riparian Class B	Pong	jola-Mtamv	una Ecore	egion Instre Class	South Eastern Uplands am B		
Geoclass Habitat integrity	Class E - (IHIA)	- Lowland river	WMA Riparian Class B	Pong	jola-Mtamv	una Ecore Com	egion Instre Class nent	South Eastern Uplands am B		
Geoclass Habitat integrity Biotope Rating	Class E - (IHIA) X/45	- Lowland river	WMA Riparian Class B	Pong Dry e	jola-Mtamv	una Ecore Com	egion Instre Class nent	South Eastern Uplands am B		
Geoclass Habitat integrity Biotope Rating	Class E - (IHIA) X/45	- Lowland river N/	WMA Riparian Class B A Macroinvertebra	Pong Dry e	jola-Mtamv phemeral s	una Ecore Com	egion Instre Class ment	South Eastern Uplands am B		
Geoclass Habitat integrity Biotope Rating SASS5 Scor	Class E - (IHIA) X/45 re	- Lowland river N/	WMA Riparian Class B A Macroinvertebra	Pong Dry e ate Ass	ola-Mtamv ophemeral s sessment AS	una Ecore Com system	egion Instre Class ment Ecc	South Eastern Uplands am B blogical category (Dallas 2007)		
Geoclass Habitat integrity Biotope Rating SASS5 Scor	Class E - (IHIA) X/45 re	- Lowland river N/ No. of	WMA Riparian Class B A Macroinvertebra Taxa	Pong Dry e ate Ass	ola-Mtamv ophemeral s sessment AS	una Ecore Com system	egion Instre Class nent Ecc	South Eastern Uplands am B ological category (Dallas 2007)		
Geoclass Habitat integrity Biotope Rating SASS5 Scor	Class E - (IHIA) X/45 'e	- Lowland river N/	WMA Riparian Class B A Macroinvertebra Taxa DF Fish Communit	Dry e ate Ass	ola-Mtamv ophemeral s sessment AS essment	una Ecore Com system	egion Instre Class ment Ecc	South Eastern Uplands am B blogical category (Dallas 2007)		
Geoclass Habitat integrity Biotope Rating SASS5 Scor	Class E - (IHIA) X/45 re ies collecte	- Lowland river N/ No. of d (IUCN Status)	WMA Riparian Class B A Macroinvertebra Taxa DF Fish Communit	Pong Dry e ate Ass RY ty Asse Spe	ola-Mtamv ophemeral s sessment AS essment ecies of Co	una Ecore Com system PT	egion Instre Class ment Ecc	South Eastern Uplands am B blogical category (Dallas 2007) 0		
Geoclass Habitat integrity Biotope Rating SASS5 Scor Spec	Class E - (IHIA) X/45 re ies collecte	- Lowland river N/ No. of d (IUCN Status)	WMA Riparian Class B A Macroinvertebra Taxa DF Fish Communit	Dry e ate Ass	ola-Mtamv ophemeral s sessment AS essment ecies of Co	una Ecore Com system PT	egion Instre Class ment Ecc	South Eastern Uplands am B ological category (Dallas 2007) 0		
Geoclass Habitat integrity Biotope Rating SASS5 Score SASS5 Score DRY	Class E - (IHIA) X/45 'e ies collecte	- Lowland river N/ No. of d (IUCN Status)	WMA Riparian Class B A Macroinvertebra Taxa DF Fish Communit	Dry e ate Ass Y ty Asse Spe	ola-Mtamv ophemeral s sessment AS essment ecies of Co	una Ecore Com system PT nservational Co	egion Instre Class ment Ecc	South Eastern Uplands am B blogical category (Dallas 2007) 0		

Site Code		48	33	Sam	ple Date		09/11/2019			
	Upst	ream			Downs	stream				
	Co-	ordinate		29°4	41'27.03"S	Umar	30°30'50.26"E			
Desktop data for the Sub-Quaternary Reach: U20J-4488 River Name Ms				Med Tributary of the Mshwati						
Strahler Ord	er	3	}	• F	Modifie	cations				
Present Ecologica	al State	Clas	is B	• A	lien vegetation					
Ecological Importance		Hi	gh		J					
Ecological Sensitivity		Very	High							
Water Quality										
рН		Conductivi	ty (µS/cm)	DO (1	mg/l)	Те	30°30'50.26"E Jnnamed Tributary of the Mshwati Is Temperature (°C) South Eastern Uplands Istream Class B			
			DF	RY						
			Hab	pitat						
Geoclass	Class E -	- Lowland river	WMA	Pongola-Mtamv	una Ecore	egion	South Eastern Uplands			
	(1111.4.)		Riparian			Instrea	am			
Habitat integrity	(IHIA)		Class B			Class	В			
Distance Dating	VIAE	N	•		Com	ment				
вюторе катінд	A/4J	N/A		Dry ephemeral system						
			Macroinvertebra	ate Assessment						
SASS5 Scor	re	No. of	Таха	AS	PT	Eco	logical category (Dallas 2007)			
			DF	RY						
			Fish Communit	ty Assessment						
Spec	ies collecte	d (IUCN Status)		Species of Co	nservational Co	oncern	0			
DRY										
			Discu	ssion						
Ephemeral s	ystem. No w	ater present durir	ng the survey. Ins	tream and riparia	n habitat integrity	rated as la	argely natural.			

	Table	85: Summar	y of the aqua	atic	system s	ample	ed at sit	e 530		
Site Code		53	0		Sam	nple Da	ite		09/11/2019	
	Upst	ream		Downstream						
<image/>										
	Co-	ordinate			29°	51'28.5	53"S		30°53'55.50"E	
Desktop data f	or the Sub-	Quaternary Reac	h: U60F-4632		Riv	ver Na	me		Umbilo	
Strahler Order 2				Resider	ntial (Pi	Modifie	cations	rea. Paradise Vallev		
Present Ecological State		Clas	s D		Nature	Reserv	ve, Alien in	vasive pla	nts in riparian zone,	
Ecological Importance		Hig	jh		quarry	/, into e	estuary. Mk	humbane	River not digitised.	
Ecological Sensitivity		Very	High						ea, Paradise Valley ts in riparian zone, iver not digitised.	
			Water (Qual	lity					
рН		Conductivit	ty (µS/cm)		DO (1	mg/l)		Te	emperature (°C)	
		32	8		5.0	02			23.1	
	•		Hab	oitat						
Geoclass	Class E -	- Lowland river	WMA	Po	ongola-Mtamv	/una	Ecor	egion	North Eastern Coastal Belt	
Liebitet integrity	(11.11.4.)		Riparian					Instre	am	
Habitat integrity	(IIIIA)		Class B					Class	a0°53'55.50"E Umbilo Dumbilo	
							Com	ment		
Biotope Rating	X/45	16	j	Site dominated by stones in current, with diverse marginal						
			Macroinvertebra	ate A	Assessment					
SASS5 Sco	re	No. of	Таха		AS	PT		Eco	ological category (Dallas 2007)	
14		5			2.	.8			E/F	
			Fish Communit	ty A	ssessment					
Spec	ies collecte	ed (IUCN Status)		S	pecies of Co	onserv	ational Co	oncern	0	
Poecilia reticulata (E	xotic)									
			Discu	ssio	on			,		
Perennial system. In	stream and sewa	riparian habitat int ige discharge resi	egrity rated as la ulted in a critically	rgely v mo	y natural, hov dified biotic ir	vever, e ntegrity	extensive w of the sys	vater quali tem.	ty deterioration due to	

Site Code		53	7		Sam	ple Da	ate		06/11/2019		
	Upst	ream					Downs	tream			
Co-ordinate											
	Co-	ordinate			28°	41'58.5	56"S		29°48'37.06"E		
Desktop data f	or the Sub-	Quaternary Read	h: U60F-4632		Riv	ver Na	me		Umbilo		
Strahler Ord	er	3	_		Modifications						
Present Ecologica	al State	Clas	s D	٠	Residential (Pinetown), industrial area,			a, Paradise Valley			
Ecological Impo	rtance	Hiç	jh		Mkhumbane River not digitised.				quarry, into estuary.		
Ecological Sens	itivity	Very	High		-						
			Water	Qual	ity						
рН		Conductivi	ty (µS/cm)		DO (mg/l)		Те	emperature (°C)		
		45	5		4.	97			21.3		
			Hab	oitat							
Geoclass	Class E -	- Lowland river	WMA	Po	ngola-Mtam	/una	Ecore	egion	North Eastern Coastal Belt		
Habitat integrity	(1414)		Riparian					Instre	am		
- Habitat integrity			Class C					Class	C		
Biotope Pating	¥/45	1.	,				Com	ment			
Diotope Rating	7/45	14		Su	bstrate domi	nated b	by sand. Div	verse mar	29°48'37.06"E Umbilo ons al area, Paradise Valley al area, Paradise Valley zone, quarry, into estuary. an North Eastern Coastal Belt Instream Class C ct e marginal vegetation Ecological category (Dallas 2007) E/F on 0		
			Macroinvertebra	ate A	ssessment						
SASS5 Scor	е	No. of	Таха		AS	PT		Eco	29°48'37.06"E Umbilo 29°48'37.06"E Umbilo Paradise Valley quarry, into estuary. 21.3 m perature (°C) 21.3 inal vegetation coastal Belt m C coastal Belt		
46		11	1		4	.2			E/F		
			Fish Communi	ty As	ssessment						
Spec	ies collecte	ed (IUCN Status)		S	pecies of Co	onserv	ational Co	ncern	0		
Poecilia reticulata (Ex	kotic)										
			Discu	ssio	n						
Instream habitat don have contributed to	ninated by s the serious	and substrate, wit ly modified state c	h diverse margination of the macroinvertion	al ve tebra	getation. Low ate communit	v bioto y. A sii	pe diversity ngle fish sp	and wate ecies was	r quality modifications collected at the site.		

9 Impact and Risk Assessment

Potential impacts were evaluated against the data captured during the fieldwork to identify relevance to the project area. It should be noted that the impacts described are not exhaustive, and more impacts may be identified at a later stage as more project specific information becomes available.

Mitigation measures were only applied to impacts deemed relevant based on the impact analysis. The standard impact assessment methodology may be used in the capture of generic anticipated impacts and potential mitigation measures for Basic Assessment Reports and Environmental Impact Assessment (EIA) Reports. The methodology described herein complies with the requirements of the EIA Regulations (2014), promulgated in terms of the National Environmental Management Act, 1998 (Act No. 107 of 1998). The methodology of impact assessment described herein must be used in relation to the Impact Assessment Rating Matrix Tool.

9.1 Impact Assessment Methodology

Each issue identified during the EIA process consists of components that on their own or in combination with each other give rise to potential impacts, either positive or negative from the project onto the environment or from the environment onto the project. The significance of the potential impacts for the project area will be considered before and after identified mitigation is implemented. The methodology provided by Hydroscience is described below, TBC included the sensitivity of the habitat to ensure the receiving environment is considered.

Methodology

The significance of the adverse environmental impacts identified were assessed in terms of their:

- Duration;
- Extent;
- Probability; and
- Severity.

The above was used to determine the significance of an impact without any mitigation, as well as with mitigation.

Nature of an impact: An impact's nature can be positive (+) or negative (-).

Consequence: Considers duration, extent and severity

Consequence = duration + extent + severity

Table 87: Environmental risk and impact assessment criteria

DURATION (D)		
Immediate	Less than 1 month	1
Short-term	2 - 24 months	2
Life of project	Decommissioning phase	3
Post-closure	Time of rehabilitation and for re-establishment of natural systems	4
Residual	A permanent impact (100 years or more)	5
EXTENT (E)		
Site specific	Site of the proposed work	1
Local	Site and immediate surroundings (property)	2
Regional	Municipal area	3
Provincial	Provincial area	4
National	Republic of South Africa	5
PROBABILITY (P)		
Rare	<5% probability of occurrence – may occur in exceptional circumstances	1
Unlikely	15% - 6% probability of occurrence – could potentially occur at some time	2
Possible	45% - 16% chance of occurrence – might occur at some time	3
Likely	65% - 46% probability of occurrence - will probably occur in most circumstances	4
Almost Certain	90% - 66% probability of occurrence – is expected to occur	5
Definite	100%- will occur	6
SEVERITY (S)		
Catastrophic (critical)	Total change in area of direct impact, relocation not an option, death, toxic release off-site with detrimental effects, irreversible loss, huge financial loss	6
Significant (High)	> 70% change in area of direct impact due to loss of significant aspect, extensive injuries, long term loss in capabilities, off-site release to high extent, major financial implications	5
Serious	50 – 70% long-term loss, extensive rehabilitation / restoration / treatment required, high financial impact, still restricted in extent	4
Moderate (medium)	20 – 49% change, medium term loss in capabilities, rehabilitation / restoration / treatment required, on-site release with outside assistance, medium financial impact	3
Minor	10 – 19% change, short term impact that can be absorbed, on-site release, immediate containment, low financial implications	2
Insignificant (low)	< 10 % change in the area of impact, no financial implications, localised impact, a small percentage of population	1
	-	•

[Duration (D) + Extent (E) + Severity (S)] x Probability (P) = Impact Significance (IS)

		IMPACT SIGNIFICANCE (IS)
Impact Significance	IS score range	Description
Low (L)	<15	The impact is minor or insubstantial; it is of little importance to any stakeholder and can easily be rectified.
Moderate Low (ML)	16 - 45	The impact is limited in extent, even if the intensity is major; the probability will only be likely, the impact will not have a significant impact considered in relation to the bigger picture; no major material effect on decisions and will require only small-scale management intervention bearing moderate costs.
Moderate High (MH)	46 - 70	The impact is significant to one or more stakeholders, and its intensity will be medium or high; therefore, the impact may materially affect the decision, and management intervention will be required.
High (H)	71 <	The impact could render options controversial or the entire project unacceptable if it cannot be reduced to acceptable levels; and/or the cost of management intervention will be a significant factor in project decision-making.

9.2 Current Impacts

The impacts identified during the survey that are having a negative impact in the project area were identified, and are listed below and can be seen in Figure 33 to Figure 35

- Agriculture, forestry and subsequent large-scale alteration of land use;
- Presence of alien and invasive plant species which have altered natural vegetation communities;
- Dumping of building litter and general waste;
- Existing infrastructure including roads and railways and also urbanisation which have had a myriad of associated impacts to local ecology;
- The existing pipeline servitude that it maintained and regularly monitored:
- National and Secondary road with the associated noise disturbance, road mortalities and human disturbances; and
- Telephone lines and power lines within the vicinity of the project area.

Figure 33: Collage of some of the current impacts within the project area. A) Vegetation clearing as a result of the pipeline, B) Forestry, C) Powerlines, D) Cattle, E) Burning and F) Alien invasive plant species.

Figure 34: Some of the impacts observed in and close to the pipe line; A) Urban and sub urban developments, B) Current block valve chamber of the pipeline, C) Secondary roads, D) National roads, E & F) Livestock

Figure 35: Some of the impacts observed in and close to the pipeline; A) Wood harvesting, B) Litter, C) Building rubble, D) Agriculture, E) Exposed soil and F) Erosion.

9.3 Impacts Assessment

9.3.1 Terrestrial Ecology Impacts

The proposed development is for the decommissioning of the underground pipeline and the associated structures, as well as selected depots. The proposed construction may result mainly in loss and alteration of habitats and displacement of fauna and flora:

The decommissioning of the pipeline will take place after the deactivation which involves the displacement of the product (removal of the product) and cleaning of the pipeline, thus resulting in no spillages. At the decommissioning phase the pipeline is classified as empty and clean. The pipeline will be left underground as this is deemed internationally as the most environmentally friendly option. The pipeline will be segmented and plugged to limit its ability to function as a conduit. Certain sections of the pipe will be filled with a wet sand mixture. At the areas where the pipe will be cut and filled a 4 m by 4 m hole will be excavated, while at the other end of the section of pipe a 2 m by 2 m hole will be opened. A contactors camp will also be set up next to the excavated hole. Both project areas will be fenced in. The pipe will be filled in areas where subsidence could be a problem, this includes river crossings, streams,

wetlands, roads and rail crossings. The estimate of total area disturbed at each point is 10 m by 10 m.

Along with the pipeline, selected depots will also be decommissioned (demolition and dismantling). The decommissioning includes the removal of all above ground infrastructure including, buildings, pumps, motors, valves, spill basins, bunded areas, electrical and communication infrastructure, power and water infrastructure as well as fencing and security. The following processes are expected to have impacts on terrestrial biodiversity:

- Gaining access to areas where the decommissioning will take place along the servitude, especially areas that do not have service roads to the pipeline;
- The removal and destruction of vegetation due to the excavation of the hole and the construction of the associated contactors camp, the same is expected for the depots;
- The removal of natural vegetation to accommodate surface infrastructure and operations will reduce the habitat available for fauna species and may reduce animal populations. Land clearing destroys local wildlife habitat and can lead to the loss of local breeding grounds, nesting sites and wildlife movement corridors such as rivers, streams and drainage lines, or other locally important features; and
- The human presence and associated impacts will result in the displacement of naturally occurring fauna. Besides direct impacts on faunal habitat, activities during the decommission process may also have additional impacts on local species due to increases in such as noise, waste, light, litter, vibrations, dust and encroachment by people.

Several areas throughout the project area provides habitat and shelter to several endemic and protected floral, mammal, reptile, amphibian and bird species. Although it is assumed that the majority of fauna species will move to different areas as a result of disturbance, many protected and endemic fauna species have very specific habitat requirements, and the destruction of their habitats will result in displacement to less optimal habitats.

The site establishment phase refers to the phase of the project where access to the areas being decommissioned are gained, the holes are excavated, and the contractor camps constructed. It also includes the process where the pipeline is being filled with the sand mixture.

The decommission phase refers to impacts at the end of the project lifecycle when removal of all surface infrastructure including those of the depots and the closing of excavations commences. Impacts regarding this phase may be detrimental as well as beneficial to the vegetation communities/ ecosystems depending on the extent and effort of the rehabilitation measures. Without the removal of all surface infrastructure as well as stockpiles and machinery or rehabilitation measures, removes the potential of vegetation communities/ ecosystems re-establishing within the footprint area, thus creating a dead spot within the area. Due to then transformed state to the area, the potential of impacting the vegetation community/ecosystem directly is unlikely. Thus, the impact of not demolishing the surface structure versus demolishing the infrastructure is rated.

The rehabilitation phase refers to the phase after the decommissioning phase when the impacted area is rehabilitated in conjunction with the decommission in order to attempt and return the area to the state it was in before construction, if not a better state. Rehabilitation efforts and removal of all unnatural structures, slopes and materials will result in conditions for

potential re-establishment of vegetation communities/ ecosystems and the associated fauna resulting in reinstating the land capability.

9.3.1.1 Anticipated Impact Framework

Main Impact	Project activities that can cause loss of habitat (especially with regard to the proposed infrastructure areas):	Secondary impacts anticipated
1. Loss / degradation of ecosystems	Physical removal of vegetation Access roads and servitudes Soil dust precipitation Water leakages Dumping of waste products Random events such as fire (cooking fires or cigarettes)	Displacement/loss of flora & fauna (including possible SCC) Increased potential for soil erosion Habitat fragmentation Increased potential for establishment of alien & invasive vegetation
2. Spread and/or establishment of alien and/or invasive species	Vegetation removal Vehicles potentially spreading seed Unsanitary conditions surrounding infrastructure promoting the establishment of alien and/or invasive rodents Creation of infrastructure suitable for breeding activities of alien and/or invasive birds Unsanitary conditions surrounding infrastructure promoting the establishment of alien and/or invasive rodents	Habitat loss for native flora & fauna (including SCC) Spreading of potentially dangerous diseases due to invasive and pest species Alteration of fauna assemblages due to habitat modification
3. Direct mortality of fauna	Clearing of vegetation Roadkill due to vehicle collision Pollution of water resources due to dust effects, chemical spills. Intentional killing of fauna for food (hunting) or otherwise (killing of snakes)	Displacement/loss of fauna (including possible SCC) Loss of ecosystem services Increase in rodent populations and associated disease risk
4. Reduced dispersal/migration of fauna	Loss of landscape used as corridor Compacted roads Removal of vegetation	Loss of ecosystem services Reduced plant seed dispersal
5. Environmental pollution due to water/ mine drainage runoff	Chemical (organic/inorganic) spills Erosion	Secondary impacts associated with pollution in water courses and the surrounding environment Faunal mortality (direct and indirectly) Groundwater pollution Loss of ecosystem services
6.Disruption/alteration of ecological life cycles (breeding, migration, feeding) due to noise	Operation of machinery vehicles, generators etc	Loss of ecosystem services
7. Disruption/alteration of ecological life cycles (breeding, migration, feeding) due to dust	Vehicles	Loss of ecosystem services
8. Staff and others interacting directly with potentially dangerous fauna or poaching of animals	All unregulated/supervised activities outdoors	Loss of ecosystem services Introduction of diseases and feral species such as cats.

The potential impacts associated with the various project stages are discussed below, due to the fact that sensitive and critical habitats as well as SCC were present at some areas, the impact assessment comprises of an impact assessment regarding the more sensitive terrestrial facets and a separate assessment for the less sensitive areas identified:

9.3.1.2 Site Establishment Phase

The following potential impacts were considered on terrestrial biodiversity and habitats for biodiversity species that were <u>sensitive and/or protected</u>:

• Destruction, further loss and fragmentation of the vegetation community classified as CBA or protected areas;

- Destruction of protected plant species;
- Displacement of faunal community (including threatened and protected species) due to habitat loss, direct mortalities and disturbance (noise, dust and vibration);
- Loss of SCC faunal species (road mortalities and/or poaching); and
- Infringement by humans into the remaining natural grassland areas, with associated impacts such as poaching, litter as well as introduction of pests, diseases and feral species.

The following potential impacts were considered on terrestrial biodiversity and habitats for faunal species that were <u>not</u> as sensitive and protected:

- Destruction, further loss and fragmentation of the vegetation community;
- Displacement of faunal community due to habitat loss, direct mortalities and disturbance (noise, dust and vibration);
- Loss of faunal species (road mortalities and/or poaching); and
- Infringement by humans into the remaining natural grassland areas, with associated impacts such as poaching, litter as well as introduction of pests, diseases and feral species.

9.3.1.3 Decommissioning Phase

The following potential impacts were considered on terrestrial biodiversity and habitats for faunal species that were sensitive and/or protected:

- Continued displacement, fragmentation and further loss of the vegetation community classified as CBA or protected areas;
- Continued displacement and fragmentation of the faunal community (including threatened and protected species) due to ongoing anthropogenic disturbances (noise, traffic and dust);
- Loss of SCC faunal species (road mortalities and/or poaching); and
- Infringement by humans into the remaining natural grassland areas, with associated impacts such as poaching, litter as well as introduction of pests, diseases and feral species.

The following potential impacts were considered on terrestrial biodiversity and habitats for faunal species that were <u>not as sensitive and protected</u>:

- Continued displacement, fragmentation and further loss of the of the vegetation community;
- Continued displacement and fragmentation of the faunal community due to ongoing anthropogenic disturbances (noise, traffic and dust);
- Loss of faunal species (road mortalities and/or poaching); and
- Infringement by humans into the remaining natural grassland areas, with associated impacts such as poaching, litter as well as introduction of pests, diseases and feral species.

9.3.1.4 Rehabilitation phase

The following potential impacts were considered on terrestrial biodiversity and habitats for faunal species in general regarding rehabilitation: The rehabilitation process may initially still displace the faunal species due to the large earth moving machines as well as the human presence. However, the post closure phase may result in fauna systematically returning in the best-case scenario if the rehabilitation efforts are well executed.

- Continued encroachment and displacement of the vegetation community due to alien invasive plant species, particularly in non-rehabilitated areas;
- Displacement, direct mortalities and sensory disturbance of faunal community as well as infringement by humans into the natural areas;
- Introduction of Indigenous plant species and the improvement of the area to be more natural; and
- Improvement of available habitat and the reduced displacement, loss and disturbance to faunal community and their associated ecological life cycles.

9.3.1.5 Assessment of Significance

Site Establishment Phase

Table 88 shows the significance of potential impacts associated with the decommissioning of the pipeline on sensitive vegetation and faunal communities before the implementation of mitigation measures. Prior to implementation of mitigation measures, the consequences of impacts were rated as moderately detrimental or highly detrimental due the fact that areas rated as CBA or containing SCC and/or protected species which would be impacted upon, implementation of avoidance measures such as avoiding these areas, reduced the significance of these potential impacts to low.

Table 89 shows the significance of potential impacts associated with the decommissioning of the pipeline on other vegetation and faunal communities before the implementation of mitigation measures. Prior to implementation of mitigation measures, the consequences of impacts were rated as moderately detrimental due to the areas that have been previously impacted or have a low sensitivity, implementation of avoidance measures such as access control, reduced the significance of these potential impacts to absent.

Decommissioning Phase

Table 90 shows the significance of potential impacts associated with the decommissioning of the pipeline and the depots on vegetation and faunal communities. Prior to implementation of mitigation measures, the consequences of impacts were rated as moderately detrimental due the fact that the areas have been impacted or have a low sensitivity, implementation of avoidance measures such as waste management, access control and environmental awareness reduced the significance of these potential impacts to absent. Table 91 shows the same as the impact of not demolishing the surface structure versus demolishing the infrastructure. The positive aspect of this is shown under rehabilitation.

Rehabilitation Phase

Table 92 shows the significance of potential impacts associated with the decommissioning of the pipeline and the depots on vegetation and faunal communities during the rehabilitation

phase. Rehabilitation efforts will result in a negative impact initially, as per the decommission phase due to the activities associated with the removal of all surface infrastructure. The positive impact arises from conditions for potential re-establishment of vegetation communities/ ecosystems and the associated fauna resulting in reinstating the land capability which results from following the mitigations of rehabilitation. The positive impact is low pre mitigation but becomes moderately positive post mitigation.

Table 88: Assessment of significance of potential **site establishment phase** impacts on sensitive or protected vegetation and SCC faunal communities associated with the proposed decommissioning of the pipeline pre- and post-mitigation:

			Prior to	o mitigation						Post mitigation		
Impact	Duration of Impact	Extent	Severity of Impact	Sensitivity of Receiving Environment	Probability of Impact	Significance	Duration of Impact	Extent	Severity of Impact	Sensitivity of Receiving Environment	Probability of Impact	Significance
	4	3	4	4	5		2	2	2	2	3	
Destruction, further loss and fragmentation of the vegetation community classified as CBA or protected areas.	Post- closure	Regional	Serious	Ecology highly sensitive /important	Almost Certain	Moderately High	Short- term	Local	Minor	Ecology with limited sensitivity/importance	Possible	Low
	5	3	4	5	4		2	2	2	2	3	
Destruction of protected plant species	Residual	Regional	Serious	Ecology critically sensitive /important	Likely	High	Short- term	Local	Minor	Ecology with limited sensitivity/importance	Possible	Low
Displacement of	3	3	4	5	4		2	2	2	2	3	
faunal community(including threatened and protected species) due to habitat loss, direct mortalities and disturbance (noise, dust and vibration).	Life of project	Regional	Serious	Ecology critically sensitive /important	Likely	Moderately High	Short- term	Local	Minor	Ecology with limited sensitivity/importance	Possible	Low
	4	3	4	4	4		2	2	2	3	2	

Loss of SCC faunal species (road mortalities and/or poaching)	Post- closure	Regional	Serious	Ecology highly sensitive /important	Likely	Moderately High	Short- term	Local	Minor	Ecology moderately sensitive/ /important	Unlikely	Low
Infringement by	4	3	4	4	4		2	2	2	3	2	
remaining natural grassland areas, with associated impacts such as poaching, litter as well as introduction of pests, diseases and feral species.	Post- closure	Regional	Serious	Ecology highly sensitive /important	Likely	Moderately High	Short- term	Local	Minor	Ecology moderately sensitive/ /important	Unlikely	Low

Table 89: Assessment of significance of potential **site establishment phase** impacts on vegetation and faunal communities associated with the proposed decommissioning of the pipeline pre- and post-mitigation:

			Prior to	o mitigation						Post mitigation		
Impact	Duration of Impact	Spatial Scope	Severity of Impact	Sensitivity of Receiving Environment	Probability of Impact	Significance	Duration of Impact	Spatial Scope	Severity of Impact	Sensitivity of Receiving Environment	Probability of Impact	Significance
	3	3	3	3	4		2	2	2	2	2	
Destruction, further loss and fragmentation of the vegetation community.	Life of project	Regional	Moderate (medium)	Ecology moderately sensitive/ /important	Likely	Moderate	Short- term	Local	Minor	Ecology with limited sensitivity/importance	Unlikely	Absent
	3	3	3	3	4		2	2	2	2	2	

Displacement of faunal community due to habitat loss, direct mortalities and disturbance (noise, dust and vibration).	Life of project	Regional	Moderate (medium)	Ecology moderately sensitive/ /important	Likely	Moderate	Short- term	Local	Minor	Ecology with limited sensitivity/importance	Unlikely	Absent
	5	3	3	3	3		2	2	2	3	2	
Loss of faunal species (road mortalities and/or poaching)	Residual	Regional	Moderate (medium)	Ecology moderately sensitive/ /important	Possible	Moderate	Short- term	Local	Minor	Ecology moderately sensitive/ /important	Unlikely	Low
Infringement	3	3	3	3	3		2	2	2	3	3	
by runnaits into the remaining natural grassland areas, with associated impacts such as poaching, litter as well as introduction of pests, diseases and feral species.	Life of project	Regional	Moderate (medium)	Ecology moderately sensitive/ /important	Possible	Moderate	Short- term	Local	Minor	Ecology moderately sensitive/ /important	Possible	Low

Table 90: Assessment of significance of potential **decommissioning phase** impacts on sensitive or protected vegetation and SCC faunal communities associated with the proposed decommissioning of the pipeline pre- and post-mitigation:

			Prior to	mitigation					F	Post mitigation		
Impact	Duration of Impact	Spatial Scope	Severity of Impact	Sensitivity of Receiving Environment	Probability of Impact	Significance	Duration of Impact	Spatial Scope	Severity of Impact	Sensitivity of Receiving Environment	Probability of Impact	Significance
	3	3	4	4	4		2	2	2	2	3	
Continued displacement, fragmentation and further loss and fragmentation of the vegetation community classified as CBA or protected areas.	Life of project	Regional	Serious	Ecology highly sensitive /important	Likely	Moderately High	Short-term	Local	Minor	Ecology with limited sensitivity/importance	Possible	Low
Continued	3	3	4	4	4		2	2	2	2	3	
fragmentation of the faunal community (including threatened and protected species) due to ongoing anthropogenic disturbances (noise, traffic and dust)	Life of project	Regional	Serious	Ecology highly sensitive /important	Likely	Moderately High	Short-term	Local	Minor	Ecology with limited sensitivity/importance	Possible	Low
	5	3	4	4	4		2	2	2	3	2	
Loss of SCC faunal species (road mortalities and/or poaching)	Residual	Regional	Serious	Ecology highly sensitive /important	Likely	Moderately High	Short-term	Local	Minor	Ecology moderately sensitive/ /important	Unlikely	Low

Infringement by	3	3	4	4	4		2	2	2	3	2	
humans into the remaining natural grassland areas, with associated impacts such as poaching, litter as well as introduction of pests, diseases and feral species.	Life of project	Regional	Serious	Ecology highly sensitive /important	Likely	Moderately High	Short-term	Local	Minor	Ecology moderately sensitive/ /important	Unlikely	Low

Table 91: Assessment of significance of potential **decommissioning phase** impacts on vegetation and faunal communities associated with the proposed decommissioning of the pipeline and the depots pre- and post-mitigation:

			Prior to I	mitigation					Р	ost mitigation		
Impact	Duration of Impact	Spatial Scope	Severity of Impact	Sensitivity of Receiving Environment	Probability of Impact	Significance	Duration of Impact	Spatial Scope	Severity of Impact	Sensitivity of Receiving Environment	Probability of Impact	Significance
	3	3	4	3	4		2	2	2	2	3	
Destruction, further loss and fragmentation of the vegetation community.	Life of project	Regional	Serious	Ecology moderately sensitive/ /important	Likely	Moderate	Short-term	Local	Minor	Ecology with limited sensitivity/importance	Possible	Low
Continued	3	3	3	3	3		2	2	3	2	3	
displacement and fragmentation of the faunal community due to ongoing anthropogenic	Life of project	Regional	Moderate (medium)	Ecology moderately sensitive/ /important	Possible	Moderate	Short-term	Local	Moderate (medium)	Ecology with limited sensitivity/importance	Possible	Low

disturbances (noise, traffic and dust)												
	5	3	3	3	3		2	2	2	3	2	
Loss of faunal species (road mortalities and/or poaching)	Residual	Regional	Moderate (medium)	Ecology moderately sensitive/ /important	Possible	Moderate	Short-term	Local	Minor	Ecology moderately sensitive/ /important	Unlikely	Low
Infringement by	3	3	3	3	3		2	2	2	3	3	
humans into the remaining natural grassland areas, with associated impacts such as poaching, litter as well as introduction of pests, diseases and feral species.	Life of project	Regional	Moderate (medium)	Ecology moderately sensitive/ /important	Possible	Moderate	Short-term	Local	Minor	Ecology moderately sensitive/ /important	Possible	Low

Table 92: Assessment of significance of potential **rehabilitation phase** impacts on vegetation and faunal communities associated with the proposed decommissioning of the pipeline and depots process pre- and post-mitigation:

			Pri	or to mitigation						Post mitigation		
Impact	Duration of Impact	Spatial Scope	Severity of Impact	Sensitivity of Receiving Environment	Probability of Impact	Significance	Duration of Impact	Spatial Scope	Severity of Impact	Sensitivity of Receiving Environment	Probability of Impact	Significance
Continued	3	3	4	3	4		2	2	2	2	3	
encroachment and displacement of the vegetation community due to alien invasive plant species, particularly in non-rehabilitated areas	Life of project	Regional	Serious	Ecology moderately sensitive/ /important	Likely	Moderate	Short- term	Local	Minor	Ecology with limited sensitivity/importance	Possible	Low
Displacement,	3	3	3	3	3		2	2	3	2	3	
direct mortalities and sensory disturbance of faunal community as well as infringement by humans into the natural areas.	Life of project	Regional	Moderate (medium)	Ecology moderately sensitive/ /important	Possible	Moderate	Short- term	Local	Moderate (medium)	Ecology with limited sensitivity/importance	Possible	Low
	2	2	2	2	3		4	3	3	3	4	
Introduction of Indigenous plant species and the improvement of the area to be more natural	Short-term	Local	Minor	Ecology with limited sensitivity/importance	Possible	Low	Post- closure	Regional	Moderate (medium)	Ecology moderately sensitive/ /important	Likely	Moderate
	2	2	2	2	3		4	3	3	3	4	

Improvement of available habitat and the reduced displacement, loss and disturbance to faunal community and their associated ecological life cycles.	Short-term	Local	Minor	Ecology with limited sensitivity/importance	Possible	Low	Post- closure	Regional	Moderate (medium)	Ecology moderately sensitive/ /important	Likely	Moderate
--	------------	-------	-------	---	----------	-----	------------------	----------	----------------------	--	--------	----------

9.3.2 Wetland and Riverine Risk Assessment

A risk assessment was conducted in line with Section 21 (c) and (i) of NWA to investigate the level of risk posed by the project, namely the proactive mitigatory measures associated with pipeline closure. Table 93 lists the potential risks posed by the development to wetlands within the 500 m regulated area surrounding for each of the four proposed footprint alternatives. As per DWS requirement the significance ratings presented in the risk matrix are post-mitigation ratings (i.e. the residual impact assuming all specified mitigation is successfully implemented).

A total of 30 riverine systems were assessed during the survey to characterise the various systems, from drainage lines to larger rivers. The risk assessment addresses ephemeral and perennial crossings and applies to all the relevant crossing points for the proposed decommissioning, including those not assessed. The wetland assessment included all 544 crossing points and recommended buffers have been applied to each crossing. As the buffers place the proposed activities at a distance from the watercourses, the risks for the proposed activities were rated as low for both ephemeral and perennial systems (Table 96 and Table 98).

Typically pipeline closure involves one of two main forms of mitigatory closure (1) remove the pipeline or (2) leave in place and mitigate in-situ. The risk assessment provided below caters for potential scenarios (scenarios 1 and 2). Given the scale of the project together with the high number of wetlands crossed, the large size of the pipeline and high ecological importance and sensitivity of many of the wetlands physical removal of the pipeline is likely to result in more damage to the integrity of this systems as opposed to leaving them in place and applying non-invasive mitigation. In acknowledgement of this, it is our understanding that the client intends to opt for Scenario 2 and all post-mitigation ratings for this scenario should be used to inform decisions with regards to the level of water use licencing required. Scenario 1 was retained in the risk assessment in the event that areas of past contamination are identified, or segments of the pipes discovered that still retain product post-cleansing. In these areas best practice advocates for the complete removal of the affected segment of pipeline followed by site cleansing and rehabilitation (Amec Foster Wheeler, 2017).

Unlike the new pipeline the old pipeline being decommissioned will not be subject to any cathodic protection and will gradually corrode with time losing its structural integrity leading to perforation and eventual collapse. From a wetland perspective the most potentially adverse impact associated with this would be the creation of a new preferential flow path along the void or more conductive structure that remains. This is known as the conduit effect. At this stage it is important to note that an extensive review of the available literature (79 sources) conducted by Amec Foster Wheeler (2017) revealed no evidence or reliable accounts of historical instances of water conduit formation in pipelines and that the understanding of the required conditions for water conduit formation in real-life applications is yet to be adequately established. In spite of these findings the study concluded that based on the paucity of available research it would be prudent to assume that conduit formation remains a potential concern during pipeline abandonment.

					S	Severit	у													
Activity	Aspect	Impact	Priority	Flow Regime	Water Quality	Habitat	Biota	Total	Spatial scale	Duration	Consequence	Frequency of activity	Frequency of impact	Legal Issues	Detection	Likelihood	Significance	Without Mitigation	With Mitigation	Control Measures
						Scei	nario 1	Remo	val of	Pipeli	ne Infr	astruc	ture		T		-			
Excavation and removal of pipeline infrastructure	Clearing of vegetation and striping of topsoil	Degradation of wetland vegetation and the introduction and spread of alien and invasive vegetation.	1	1	1	5	5	5	3	5	13	3	3	5	4	15	195	Н	М	It is understood that the client will avoid excavating and removing pipeline infrastructure wherever possible, as (in most cases) this will result in more damage than simply leaving it in place and applying in-
			2	1	4	4	4	5	2	4	11	3	3	5	3	14	154	М	М	situ mitigation. In situations where this is not possible, and a pipeline needs to be removed (e.g. for to spill clean-up purposes or in otherwise
			3	1	4	4	4	5	2	4	11	3	3	5	2	13	143	М	М	mandatory severity rating of 5 applies for activities within the watercourse. In this case apply the following mitigation under Scenario 1:
			4	1	4	3	3	5	2	4	11	3	3	5	1	12	132	М	М	 Restrict the disturbance footprint to within 10 m on either side of the proposed pipeline route (20 m corridor). Request the wetland spatial data from TBC, load it onto a GPS and use it to mark out the positions where the pipeline will enter and exits the buffer on the boundary of a wetland. Try to reduce the 20 m disturbance corridor and the unnecessary clearing of vegetation on either side of the trench as far as possible when traversing wetlands. Clearly demarcate footprint corridor,

Table 93: Wetland Risk Assessment (Andrew Husted (Pr Sci Nat 400213/11) for Scenario 1 and Scenario 2

					S	Severit	у													
Activity	Aspect	Impact	Priority	Flow Regime	Water Quality	Habitat	Biota	Total	Spatial scale	Duration	Consequence	Frequency of activity	Frequency of impact	Legal Issues	Detection	Likelihood	Significance	Without Mitigation	With Mitigation	Control Measures
																				 and limit all activities to within this area. Minimize unnecessary clearing of vegetation. Landscape and re-vegetate all denuded areas as soon as possible. Demarcate with high visibility plastic fencing Signpost the area beyond the site establishment footprint as an environmentally sensitive area and keep all excavation, soil stockpiling, general access and construction activities out of this area. Promptly remove / control all alien and invasive plant species that may emerge during site establishment (i.e. weedy annuals and other alien forbs) must be removed. Appropriately stockpile topsoil excavated from the footprint corridor.
		Increased bare	1	1	5	4	4	3.5	3	5	12	3	1	1	1	6	69	М	L	Keep trench excavation neat and tidy ad limit disturbance to a 20 m corridor
		potential for erosion.	2	1	4	3	4	3	3	4	10	3	1	1	1	6	60	М	L	• Only stockpile on one side of the
			3	1	3	2	4	2.5	3	4	9.5	3	1	1	1	6	57	Μ	L	trench. •Attempt to conduct the majority of the
			4	1	1	1	4	1.8	3	4	8.8	3	1	1	1	6	53	L	L	pipeline extraction activities during the dry seasons when storms are least likely to wash concrete and sand into wetlands.
	Trench excavation	Increased sediment loads to downstream reaches.	1	1	5	4	4	3.5	3	5	12	3	1	1	1	6	69	М	L	Ensure soil stockpiles and concrete / building sand are sufficiently safeguarded against rain wash. Mixing of concrete must under no

					ę	Severit	у													
Activity	Aspect	Impact	Priority	Flow Regime	Water Quality	Habitat	Biota	Total	Spatial scale	Duration	Consequence	Frequency of activity	Frequency of impact	Legal Issues	Detection	Likelihood	Significance	Without Mitigation	With Mitigation	Control Measures
			2	1	4	3	4	3	3	4	10	3	1	1	1	6	60	М	L	circumstances take place in any wetland. Scrape the area where mixing and storage of sand and concrete occurred to clean once finished
			3	1	3	2	4	2.5	3	4	9.5	3	1	1	1	6	57	М	L	 (preferably store on the south-eastern side of the project area). Do not situate any of the site establishment material laydown areas
			4	1	1	1	4	1.8	3	4	8.8	3	1	1	1	6	53	L	L	 within any wetland. No machinery should be a parked in wetlands or their associated buffers. If storing materials on site, take into account the prevailing winds, distance to rivers, stream, wetlands, environmental protected areas and topography. Maintain a tidy site. Educate construction workers on upholding a clean site policy. No wetland vegetation is to be cleared without prior permission from the responsible TPL Environment
		Contamination of	1	1	5	4	4	3.5	3	5	12	3	1	5	1	10	115	М	L	Make sure all excess consumables
		wetlands with pipeline	2	1	4	3	4	3	3	4	10	3	1	5	1	10	100	М	L	and building materials / rubble is
		hydrocarbons from machinery, equipment &	3	1	3	2	4	2.5	3	4	9.5	3	1	5	1	10	95	М	L	appropriate waste facility. • Appropriately contain any generator discel storage tasks, machinery spills
			4	1	1	1	4	1.8	3	4	8.8	3	1	5	1	10	88	М	L	(e.g. accidental spills of hydrocarbons oils, diesel etc.) or construction materials on site (e.g. concrete) in such a way as to prevent them leaking and entering the north-western seep.

					S	Severit	у													
Activity	Aspect	Impact	Priority	Flow Regime	Water Quality	Habitat	Biota	Total	Spatial scale	Duration	Consequence	Frequency of activity	Frequency of impact	Legal Issues	Detection	Likelihood	Significance	Without Mitigation	With Mitigation	Control Measures
																				 Mixing of concrete must under no circumstances take place within the permanent or seasonal zones of the wetland.
		Conduit formation along	1	5	3	1	4	3.3	3	5	11	3	1	5	1	10	113	L	М	Install trench breakers along pipeline
		open trencn.	2	4	2	1	4	2.8	3	5	11	3	1	5	1	10	108	L	М	material with a low permeability such
			3	3	1	1	4	2.3	2	5	9.3	3	1	5	1	10	93	L	L	as a bentonite clay mix. Install at
			4	2	1	1	4	2	2	5	9	3	1	5	1	10	90	L	L	 trench, increase frequency in areas of steeper slope. Work one wetland at a time (although multiple teams working on multiple wetlands at one time are of course possible, and indeed likely most pragmatic).
	Backfilling of	Disruption of wetland	1	5	3	1	4	3.3	3	5	11	3	1	5	1	10	113	L	М	Work on one wetland at a time and
	trench	soil profile and alteration	2	4	2	1	4	2.8	3	5	11	3	1	5	1	10	108	L	М	backfill with original soil horizon order.
		or hydrological regime.	3	3	1	1	4	2.3	2	5	9.3	3	1	5	1	10	93	L	L	specifications of the wetland.
			4	2	1	1	4	2	2	5	9	3	1	5	1	10	90	L	L	 Implement stormwater management plan. Re-vegetate denuded areas as soon as possible. Regularly clear drains. Minimise the extent of concreted / paved areas.
					So	cenario	o 2 Tre	atmen	t of Pi	peline	Infrast	tructur	e In-si	tu						
Leaving of pipeline infrastructure	Contamination	Contamination of	1	1	5	2	2	2.5	2	2	6.5	1	1	5	2	9	59	М	L	 It is understood that the pipeline has been drained of product and cleaned and as such this is not considered to
	Containination	product.	2	1	5	2	2	2.5	2	2	6.5	1	1	5	2	9	59	М	L	be a significant risk.
			3	1	4	2	2	2.3	2	2	6.3	1	1	5	2	9	56	М	L	If areas where significant amounts of

					S	Severit	y													
Activity	Aspect	Impact	Priority	Flow Regime	Water Quality	Habitat	Biota	Total	Spatial scale	Duration	Consequence	Frequency of activity	Frequency of impact	Legal Issues	Detection	Likelihood	Significance	Without Mitigation	With Mitigation	Control Measures
			4	1	3	2	2	2	2	2	6	1	1	5	2	9	54	L	L	fuel product remain then implement pipeline cleaning exercise at that location prior to any closure-related activities or abonnement. Do so in accordance with national legislation as well as local and international best practice standards.
		Transportation of	1	5	5	4	4	4.5	4	5	14	3	3	5	3	14	189	Н	L	Identify sites of previous spill events
		contaminants	2	5	5	4	4	4.5	4	5	14	3	3	5	3	14	189	Н	L	hazardous substances is otherwise
		(petroleum or other) from previous affected	3	3	3	2	2	2.5	1	4	7.5	3	3	5	3	14	105	М	L	known to occur.
		sites to downslope wetlands.	4	2	2	2	2	2	1	4	7	3	3	5	3	14	98	М	L	 Application of suggested mitigation in this table should mitigate against this eventuality.
			1	5	3	4	4	4	4	5	13	3	3	5	3	14	182	H	L	Pipeline compartmentalisation required for high priority watercourses (see priorities 1 and 2).
			2	5	3	4	4	4	4	5	13	3	3	5	3	14	182	н	L	 Fill pipeline with inert filler material such as bentonite or better still a mix of soils with similar texture, hydraulic
	Conduit effect	Transportation of water away from wetlands	3	3	1	2	2	2	1	4	7	3	3	5	3	14	98	М	L	conductivity, and density as is present in the wetland, geotechnical specialists could advise in this regard.
		effect).	4	2	1	2	2	1.8	1	4	6.8	3	3	5	3	14	95	М	L	 Plug pipeline segment on either end and cap. Effect all activities from beyond the prescribed wetland buffer. Where block vales are present utilise them, however, if within the wetland buffer excavate and cap at a new location outside if the wetland buffer.
		Increased floodpeaks into downslope wetlands from water entering the	1	5	2	3	3	3.3	4	5	12	2	2	5	3	12	147	М	L	The main objective here is to deny water ingress into the abandoned pipeline particularly in areas of

					5	Severit	y	1												
Activity	Aspect	Impact	Priority	Flow Regime	Water Quality	Habitat	Biota	Total	Spatial scale	Duration	Consequence	Frequency of activity	Frequency of impact	Legal Issues	Detection	Likelihood	Significance	Without Mitigation	With Mitigation	Control Measures
		corroded pipeline in areas of steep slope.	2	5	2	3	3	3.3	4	5	12	2	2	5	3	12	147	М	L	significant slope where ingress water could be diverted along the preferential flow path created by the pipeline an accelerated to potentially destructive and erosive velocities. Steps to
			3	3	1	2	2	2	1	4	7	2	2	5	3	12	84	М	L	mitigate against this include: • Identifying areas where the pipeline traverses significantly long and steep slopes using. This may be achieved through GIS-based terrain modelling (i.e. slope, aspect, elevation) using fine
			4	2	1	2	2	1.8	1	4	6.8	3	3	5	3	14	95	м	L	 scale digital elevation model data such as that provided by NASA and the USGS. This data can be used to prioritise sites where floodpeaks and consequent erosion of downstream watercourses are deemed to be highest. At these areas manage or divert stormflow channels away from the pipeline in areas of high slope e.g., control berms, water bars, ground contouring, matting, vegetation planting, terracing). Install breakers and plugs by cutting and capping along the abandoned pipeline in these areas to compartmentalise potential flows.
	Pipeline	Impeding effects	1	3	1	2	1	1.8	2	2	5.8	1	1	1	2	5	29	L	L	Determine pipeline depths below the channel hed consider pipeline removal
	exposure	exposure following	2	2	1	2	1	1.5	2	2	5.5	1	1	1	2	5	28	L	L	only in areas situated in shallow sandy
			3	1	1	2	1	1.3	2	2	5.3	1	1	1	2	5	26	L	L	or alluvial soils in systems prone to

Aspect

Approach to sites

Filler materials,

plugging and

Loss of wetland

vegetation beneath fill

materials storage /

1

1

1

Transnet Pipeline

Activity

Activities

associated

with in-situ

treatment

																RI	OL	company
				Severit	y													
Impact	Priority	Flow Regime	Water Quality	Habitat	Biota	Total	Spatial scale	Duration	Consequence	Frequency of activity	Frequency of impact	Legal Issues	Detection	Likelihood	Significance	Without Mitigation	With Mitigation	Control Measures
eventual erosion of channel bed.	4	1	1	2	1	1.3	2	2	5.3	1	1	1	2	5	26	L	L	erosion. Low probability of occurring.
Disturbance of wetland vegetation and soils through trampling of vegetation and poaching	1	1	1	5	5	5	3	5	13	3	3	5	4	15	195	н	L	Adhere to the prescribed wetland buffers (varies among HGM units) by restricting all in-situ treatment activities to areas beyond these buffers.
of soils by vehicles and people accompanied by the introduction and spread of alien and	2	1	4	4	4	5	2	4	11	3	3	5	3	14	154	М	L	Where possible make use of block valves outside of the buffer zones to gain access to the pipeline (minimising the disturbance footprint), where none
invasive vegetation.	3	1	4	4	4	5	2	4	11	3	3	5	2	13	143	М	L	exist or are too far from the wetland then excavate just beyond the prescribed wetland buffer (as agreed upon by DWS).
	4	1	4	3	3	5	2	4	11	3	3	5	1	12	132	М	L	 Avoid driving into and / or parking in wetlands and their buffers. Utilise existing tracks to gain access wherever possible and use the same access route to and from the wetland. Promptly remove / control all alien and invasive plant species that may emerge during site establishment (i.e. weedy annuals and other alien forbs) must be removed. Clearly demarcate site establishment footprint, and limit all activities to within this area.

9

5

2

63

L

L

2

3

7

1

1

2

4

2

• Minimise the clearing of vegetation. · Landscape and re-vegetate all denuded areas as soon as possible.

• Attempt not to store and mix the filler

slurry and other plugging materials on

site but instead opt for contained, pre-

						Severit	ty	T												
Activity	Aspect	Impact	Priority	Flow Regime	Water Quality	Habitat	Biota	Total	Spatial scale	Duration	Consequence	Frequency of activity	Frequency of impact	Legal Issues	Detection	Likelihood	Significance	Without Mitigation	With Mitigation	Control Measures
	pumping process	mixing areas and increased potential for	2	1	1	4	2	2	2	3	7	1	1	5	2	9	63	L	L	mixed mobile alternatives. Consider the use of cement trucks to
		sediment input.	3	1	1	4	2	2	2	3	7	1	1	5	2	9	63	L	L	neatly transport and contain the inert filler material and other plugging
			4	1	3	4	2	2.5	2	3	7.5	1	1	5	2	9	68	L	L	 materials (separate trucks). If substances must be stored and mixed do so outside of the wetlands and their prescribed buffers and scrape area clean once finished. Also do one site at a time to avoid filler and plugging material stockpiles being washed into nearby wetlands.
	Contamination associated with closure activities	Contamination of wetlands from machinery spills or inappropriate sanitation	1	1	5	2	2	2.5	2	2	6.5	1	1	5	2	9	59	М	L	 Restrict all closure activities to outside of the wetlands and their associated buffers. Chemical ablutions toilets should be
		practices	2	1	5	2	2	2.5	2	2	6.5	1	1	5	2	9	59	М	L	provided and be maintained in good working order. • All non-decomissioning related activities should be prohibited within
			3	1	4	2	2	2.3	2	2	6.3	1	1	5	2	9	56	Μ	L	wetlands including bathing, swimming and general sanitation • All concrete mixing must take place on a designated and impermeable
			4	1	3	2	2	2	2	2	6	1	1	5	2	9	54	L	L	 In the event of a contaminant spills (e.g. engine or hydraulic oils) implement spill management plan and contact relevant clean up specialist. Materials that absorb fuel & oil, such as saw dust should be place over the spill. Remove and dispose of at an approved waste disposal site. Immediately repair all leaks of

					ę	Severit	y													
Activity	Aspect	Impact	Priority	Flow Regime	Water Quality	Habitat	Biota	Total	Spatial scale	Duration	Consequence	Frequency of activity	Frequency of impact	Legal Issues	Detection	Likelihood	Significance	Without Mitigation	With Mitigation	Control Measures
																				hydrocarbons or chemicals or oil. • Do not discharge any substances including clean water into a watercourse.
	Post-closure aspects	Potential for the creation of either flow impeding features or in contrast	1	1	3	2	2	2	2	5	9	1	1	5	2	9	81	М	L	 Avoid the use of concrete as a filler material as it may end up acting as an impeding feature over the long-term.
		the re-creation of conduits from using an inappropriate filler	2	1	3	2	2	2	2	5	9	1	1	5	2	9	81	М	L	Instead opt for an inert filler material such as bentonite or better still a mix of soils with similar texture, porosity, and
		medium.	3	1	3	2	2	2	2	5	9	1	1	5	2	9	81	М	L	density as is present in the wetland, geotechnical specialists could advise in this regard.
			4	1	3	2	2	2	2	5	9	1	1	5	2	9	81	М	L	 A detailed geotechnical description of the soils at each site earmarked for pipe filling would drastically assist in determining the correct physical properties of the filler material to be used. More closely matching the physical properties of the soil within the individual wetland in question would also help t reduce the potential for conduit creation following eventual pipeline disintegration.

9.3.2.1 Unplanned Events

The planned activities will have known impacts as discussed above; however, unplanned events may occur on any project and may have potential impacts which will need mitigation and management. Table 94 is a summary of the findings from a riverine and wetland ecology perspective. Please note not all potential unplanned events may be captured herein and this must therefore be managed throughout all phases.

able 01: Unplanned Events 1	ow Dicks and thai	Managamont Maagurag
anie 34. Uripiaririeu Everiis, L	0111 11383 8110 111611	

Unplanned Event	Potential Impact	Mitigation
Hydrocarbon spill in wetland/riverine habitat	Contamination of sediments and water resources associated with the spillage.	A spill response kit must be available at all times. The incident must be reported on and if necessary, a wetland specialist must investigate the extent of the impact and provide rehabilitation recommendations.
Uncontrolled erosion	Sedimentation of downstream river reach.	Erosion control measures must be put in place.
Flooding durir decommissioning	g Significant habitat degradation of downstream areas.	A flood emergency response plan should be drafted.

Aspect	Flow Regime	Water Quality	Habitat	Biota	Severity	Spatial scale	Duration	Consequence
	Site e	establishment	Phase					
Clearing of vegetation and striping of topsoil	1	2	2	2	1,75	2	1	4,75
Trench excavation	1	2	2	2	1,75	1	1	3,75
Backfilling of trench	1	2	1	1	1,25	1	1	3,25
Operational of heavy machinery	1	3	1	2	1,75	2	1	4,75
Erosion and sedimentation control	1	2	3	2	2	2	1	5
Staff ablutions	1	2	1	1	1,25	1	1	3,25
Erosion	1	1	2	2	1,5	2	5	8,5
Flow modification	2	1	2	2	1,75	2	5	8,75

Table 95: DWS Risk Assessment for perennial watercourses

	Frequency of activity	Frequency of impact	Legal Issues	Detection	Likelihood	Sig.	Without Mitigation	With Mitigation
Site Establishment Phase								
Clearing of vegetation and striping of topsoil	1	2	1	2	6	28,5	Low	Low
Trench excavation	1	2	1	2	6	22,5	Low	Low
Backfilling of trench	1	2	1	1	5	16,25	Low	Low
Operational of heavy machinery	1	2	1	2	6	28,5	Low	Low
Erosion and sedimentation control	1	2	1	2	6	30	Low	Low
Staff ablutions	1	2	1	1	5	16,25	Low	Low
Erosion	1	1	1	2	5	42,5	Low	Low
Flow modification	1	1	1	2	5	43,75	Low	Low
(*) denotes-In accordance with General Notice 509 "Risk is determined after considering all listed control / mitigation measures. Borderline moderate risk scores can be manually adapted downwards up to a maximum of 25 points (from a score of 80). This risk assessment was completed by Russell Tate (Pr. Sci. Nat: 400089/15)								

Table 96: DWS Risk Assessment perennial watercourses

Aspect	Flow Regime	Water Quality	Habitat	Biota	Severity	Spatial scale	Duration	Consequence	
	Site Establishment Phase								
Clearing of vegetation and striping of topsoil	2	2	2	2	2	2	1	5	
Trench excavation	1	2	2	2	1,75	1	1	3,75	
Backfilling of trench	1	2	2	1	1,5	2	1	4,5	
Operational of heavy machinery	1	3	2	2	2	2	1	5	
Erosion and sedimentation control	2	2	3	2	2,25	2	1	5,25	
Staff ablutions	1	2	1	1	1,25	1	1	3,25	
Erosion	2	1	2	2	1,75	2	5	8,75	
Flow modification	2	1	2	2	1,75	2	5	8,75	

Table 97: DWS Risk Assessment for ephemeral watercourses

	Frequency of activity	Frequency of impact	Legal Issues	Detection	Likelihood	Sig.	Without Mitigation	With Mitigation
Site Establishment Phase								
Clearing of vegetation and striping of topsoil	1	2	1	2	6	30	Low	Low
Trench excavation	1	2	1	2	6	22,5	Low	Low
Backfilling of trench	1	2	1	2	6	27	Low	Low
Operational of heavy machinery	1	2	1	2	6	30	Low	Low
Erosion and sedimentation control	1	2	1	2	6	31,5	Low	Low
Staff ablutions	1	2	1	2	6	19,5	Low	Low
Erosion	1	1	1	2	5	43,75	Low	Low
Flow modification	1	1	1	2	5	43,75	Low	Low
(*) denotes-In accordance with General Notice 509 "Risk is determined after considering all listed control / mitigation measures. Borderline moderate risk scores can be manually adapted downwards up to a maximum of 25 points (from a score of 80). This risk assessment was completed by Russell Tate (Pr. Sci. Nat: 400089/15)								

Table 98: DWS Risk Assessment for ephemeral watercourses

9.4 Mitigation Measures

The mitigation actions provided below are important to consider with other specialist assessment. These mitigation measures should be implemented in the Environmental Management Plan (EMP) should the project go-ahead. The mitigation hierarchy proposed by Macfarlane et al., (2016) was considered for this study.

	Rehabilitation does not form part of the first two stages of the mitigation hierarchy. These stages involve
Minimise	technology and phasing to avoid or minimise impacts on biodiversity, associated ecosystem services, and people.
Rehabilitate re mi	Most rehabilitation requirements are linked to the rehabilitation of unavoidable impacts. Rehabilitation refers to measures provided to eturn impacted areas to near-natural state or an agreed land use after ne closure.
Offset Rehabil compens	itation may be included as part of an offset plan. Offset are measures to ate for the residual negative effects on biodiversity and ecosystems, afte bas been made to minimise and then rebabilitate impacts.

Figure 36: The Mitigation Hierarchy (Macfarlane et al., 2016)

The focus of mitigation measures is to reduce the significance of potential impacts associated with the decommissioning and thereby to:

- Prevent the further loss and fragmentation of sensitive vegetation communities, protected plants and the CBA areas in the vicinity of area decommissioned (including wetland areas);
- As far as possible, reduce the negative fragmentation effects of the linear development and enable safe movement of faunal species; and
- Prevent the direct and indirect loss and disturbance of faunal species and community (including potentially occurring species of conservation concern)

9.4.1 Mitigation Measures for Impacts on Flora and Faunal Communities

The mitigation measures below substantiate and emphasizes the provided comprehensive list of management protocols as per the Environmental Management Plan for DJP Petroleum project (Transnet, 2019);

 The decommission process and the associated access, movement and infrastructure should be limited to the already impacted pipeline servitude so that far as possible, the proposed areas to be decommissioned are placed in areas that have already been disturbed, thus no further loss of vegetation occurs. It is recommended that the footprint areas and access roads should be specifically demarcated so that during the life of the project, only the demarcated areas be impacted upon;

- The areas rated as highly sensitive and the associated buffers in the project as defined in this report are considered "no go" areas (section 8.1 and Appendix A) should be treated as such and should be adhered to;
- Managing the movement of large earth moving machinery, staff, livestock and local people is essential in order to prevent unnecessary loss of biodiversity. All essential operational staff, machinery must be limited to decommissioning area (no need to go outside area during the life of the project). Demarcating the footprint area and/or "no go" areas will prevent unregulated access and activities;
- Access to the surrounding areas should be prevented. Human encroachment into this area will most likely severely alter the more natural state of these areas especially areas rated as critical habitat and areas that contain SCC;
- Prefabricated structures should be prioritised for the contractor's camp due to the temporary nature of the activities, in order to reduce on site fabrication. Where possible structures can be placed on plinths to avoid clearing areas and the impact footprint.
- The movement of construction vehicles and construction workers within these areas should be strictly prohibited to the servitude and low sensitivity areas;
- Existing access routes and walking paths <u>must be made use of</u>, and new routes limited;
- All laydown, storage areas, ablutions, skips etc should be restricted to the low sensitivity areas within the existing pipeline servitude of project area;
- Dust-reducing mitigation measures must be put in place and must be strictly adhered to. This includes wetting of exposed soft soil surfaces;
- Appropriately contain and prevent any chemical spills (e.g. accidental spills of hydrocarbons oils, diesel etc.)
- A qualified environmental control officer (ECO) must be on site when decommissioning begins to identify species that will be directly disturbed and to relocate fauna/flora that is found;
- Areas that are denuded during decommissioning need to be re-vegetated with indigenous vegetation to prevent erosion during flood events. This will also reduce the likelihood of encroachment by alien invasive plant species.
- During vegetation clearance, methods should be employed to minimize potential harm to fauna species. Clearing has to take place in a phased and slow manner, commencing from the interior of the site progressing outwards towards the boundary to maximize potential for mobile species to move to adjacent areas;
- Prior and during vegetation clearance any larger fauna species noted should be given the opportunity to move away from the construction machinery;
- Fauna species such as frogs and reptiles that have not moved away should be carefully and safely removed to a suitable location beyond the extent of the development footprint by a suitably qualified ECO trained in the handling and relocation of animals;

- Waste management must be a priority. Temporary storage of domestic waste shall be in covered waste skips. Refuse bins will be emptied and secured, to prevent unauthorized removal or access by wildlife. It is recommended that all waste be removed from site on a weekly basis to prevent rodents and pests entering the site.
- No trapping, killing or poisoning of any wildlife is to be allowed;
- Staff should be educated about the sensitivity of faunal species and measures should be put in place to deal with any species that are encountered during the decommissioning process as well as the fire risk associated with smoking and cooking; discarding of lit cigarette butts and/or glowing embers from cooking fires being blown into surrounding vegetation may cause runaway fires to remove habitat for terrestrial plant species that would otherwise have been available;
- Noise must be kept to a minimum to reduce the impact of the activities on the fauna residing on the site and neighbouring areas;
- Decommissioning activities and vehicles could cause spillages of lubricants, fuels and construction material which could then be transported to the wetland areas, impacting on the water quality and potentially the functioning of the systems. All vehicles and equipment must be maintained, and all re-fuelling and servicing of equipment is to take place off-site with only emergency maintenance done on-site in demarcated areas with drip trays;
- The intentional killing of any animals including snakes, insects, lizards, birds or other animals should be strictly prohibited;
- Speed limiting of large earth moving machinery and vehicles, speeds must be limited to 30 km/h;
- Staff should be made environmentally aware during the inductions and potentially as part of the environmental awareness plan;
- Signs prohibiting access as well as poaching of animals must be put up;
- The Contractor should inform all site staff to the use of supplied ablution facilities and under no circumstances shall indiscriminate excretion and urinating be allowed other than in supplied facilities. A minimum of one toilet must be provided per 10 persons;
- Under no circumstances may domestic waste be burned on site;
- Implementation of an alien vegetation management plan with the associated monitoring;
- Implementation of rehabilitation plan.
 - Areas were infrastructure was demolished must be landscaped back to original contours and rehabilitated to the designated land capability;
 - The replacement of the topsoil must be done within the rehabilitated areas. The topsoil will be ripped and reseeded. Any contamination of the topsoil must be avoided by ensuring machinery is well maintained and leak free. If contamination has occurred the area must be ameliorated immediately;

- The infringement by local people and the associated impacts such as livestock will hinder the rehabilitation process, thus accessibility to the rehabilitated areas must be prohibited as far as possible;
- The rehabilitated areas must be revegetated as soon as possible to reduce the risk of increased runoff from bare areas. Vehicles will be driving around on site and must stay within the designated routes. This will prevent compaction of soils outside of the disturbed area. If areas have been compacted the soil must be ripped to remedy the effects of compaction. More detailed management measure can be seen in the soils, land use and land capability study report; and
- During the rehabilitation effort, movement of large machinery as well as staff will resemble roles and movement as per the site establishment phase, thus management measures are similar, such as demarcating the footprint area and/or "no go" areas will prevent unregulated access and activities

Specific Mitigation Measures for Reptiles

• Regarding reptiles, a qualified Zoologist must conduct a pre-site establishment survey for potential burrows of Sungazers within the expected distribution that may be disturbed or destroyed.

10 Cumulative Impact

The impacts of projects are often assessed by comparing the post-project situation to a preexisting baseline. Where projects can be considered in isolation this provides a good method of assessing a project's impact. However, in areas where baselines have already been affected, or where future development will continue to add to the impacts in an area or region, it is appropriate to consider the cumulative effects of development. This is similar to the concept of shifting baselines, which describes how the environmental baseline at a point in time may represent a significant change from the original state of the system. This section describes the potential impacts of the project that are cumulative for terrestrial fauna and flora.

The area within the servitude area has previously and presently been impacted directly due to the maintenance of the pipeline which involves clearing of vegetation, the servitude has been impacted indirectly by rural communities, agriculture and the associated impacts. Due to the nature of and age of the pipeline, the impact is linear and is restricted to the servitude. The cumulative impact of the project was rated as moderate should the project go ahead, due to the negligible and short nature of the impact in comparison to existing impacts, but also taking into account the number and expanses of areas to be impacted.

Nature of the impact: Habitat Quality Deterioration in the along the Transnet pipeline						
	Cumulative impact should the project not go	Cumulative impacts should the project go				
	anead	anead				
Extent	Regional	Regional				
Duration	Long term	Life of project				

Magnitude	Medium	Medium
Probability	Definite	Definite
Calculated Significance Rating	Minor / Moderate	Moderate
Impact Status:	Negative	Negative/Positive
Reversibility:	Reversible	Reversible
Irreplaceable loss of resources:	No	Potentially
Can impacts be enhanced:	Yes	Yes

11 Conclusion

11.1 Terrestrial Ecosystems

The project area (pipeline and depots) stretches across three provinces namely: Gauteng, Free State and KwaZulu-Natal. Various assessment sites were selected along the project area. The following datasets were used to select the assessment points: NFEPA, topographical data (rivers and inland waterbodies), D'MOSS, CoJ wetlands and RAMSAR. The points selected are focussed around water resources, to ensure the habitat is assessed from a terrestrial, aquatics and a wetland perspective. A total of 544 sites were selected on a desktop basis as they fell in a number of different classifications as per the scoping report (TBC: Biodiversity and Water Resource Desktop Assessment for the Proposed Decommissioning of the Transnet Durban to Johannesburg Pipeline (DJP). Scoping Report, 2019). These sites were further reduced and a total of 129 sites were visited based on the inherent sensitivity of these areas, of these 61 sites were found to have a moderately-high to high sensitivity. A total of 44 sites were rated as low-moderate or moderate, and 24 sites were given a low sensitivity. The sensitivity allocated to the areas were based on the overall habitat quality and state, the species of conservation concern (SCC) present as well as the function of landscape features (e.g. wetland) in the area that contribute to the general ecology of the area. These areas exhibit a healthy ecological functionality, integrity and may provide habitat for some additional threatened species. This diversity is indicative of the importance of these systems to collectively provide refugia, food and corridors for dispersal in and through the surrounding area.

The proposed project area is disturbed primarily due to clearing of vegetation within the servitude, presence of humans and associated impacts such as litter and livestock. Additional impacts include secondary and main roads, power and telephone lines as well as farming which resulted in many sites being scored low or not even being considered for the field assessment.

11.2 Riverine Ecology

The watercourses in the project area drain into the Vaal and the Pongola and Mtamvuna Water Management Areas (WMAs). A total of 30 riverine assessments were conducted to characterise the watercourses encountered during the proposed pipeline decommissioning. Standard riverine and wetland assessments were completed to define their spatial sensitivity and Present Ecological Status. The watercourses ranged from seriously modified (class E/F)

to largely natural (class B) according to biotic integrity of macroinvertebrate assemblages. A single protected fish species was collected during the study in the Vaal and Suikerbosrand systems, *Labeobarbus kimberleyensis*, which is listed as Near Threatened. The proposed activities do not pose a threat to the species populations should the pipeline be left *in situ*. Numerous drainage lines are encountered along the pipeline, these sites were delineated in the wetland assessment and appropriate buffers were applied. According to the proposed activities, recommended buffers and mitigations measures, the risks to the ephemeral and perennial watercourses were rated as low.

11.3 Wetlands

The combination of in-field and desktop delineation revealed a large number of wetland crossings (over 350). These systems varied considerably in hydrogeomorphic type, health, ecological importance and consequently in the ecosystem services they provide. To facilitate a practical and pragmatic approach to mitigating the potential effects of pipeline closure on these systems a decision was made to assign the various wetland systems a priority for mitigation action (1, Very High; 2, High; 3, Moderate and 4, Low). This rating was based primarily on hydroperiod (soil saturation levels) and ecological integrity. Generally, wetlands that were found to be more permanently saturated and ecologically intact were prioritised over wetlands that were more temporarily (ephemerally) inundated and adversely impacted. It is suggested that at least that priority 1 and 2 systems be considered for intensive mitigation. A total of 88 Priority 1 and 65 Priority 2 wetland crossings were identified along the pipeline route. Essentially two potential wetland risk scenarios are envisaged. Scenario 1 involves the removal of pipeline infrastructure from a given wetland. Scenario 2 involves the leaving of pipeline infrastructure in place followed by in-situ mitigation. Pipeline removal is considered the least favourable scenario due to the heightened hydrological risks associated with direct excavation and activities within the wetland. Scenario 1 is only included in the risk assessment in the unlikely event that an area of past contamination is identified, in which case the affected pipe and associated wetland soil needs to be removed and rehabilitated. In recognition of the potential impacts associated with pipeline removal the client intends to avoid Scenario 1 instead opting for non-invasive in-situ mitigation. Under this scenario, it is recommended that at sites earmarked as being of potential risk (Priority 1 and 2) that the mitigation as outlined in the risk assessment be applied while at all times remaining outside of the delineated wetland boundary and associated buffers as provided in the GIS shapefile provided to the client. Effective implementation of the suggested mitigation is anticipated to decrease the risk of all impacts associated with Scenario 2 to Low, and as such, a General Authorisation should be considered in terms of water use licensing. It is important to note that available research is yet to yield conclusive evidence for the conduit effect as a result of fuel pipeline abandonment and as such this project represents a pre-emptive approach following the precautionary principle.

12 Impact Statement

12.1 Terrestrial Ecosystems

Considering the above-mentioned conclusions, it is the opinion of the terrestrial specialists that, should the avoidance and mitigation actions proposed in this report be implemented, no significant fatal flaws could be determined as a result of the proposed project. The project can proceed, but only if the recommended mitigation measures are implemented.

12.1 Wetland and Riverine

Considering the above-mentioned conclusions, it is the opinion of the wetland and riverine specialists that, should the avoidance and mitigation actions proposed in this report be implemented, no significant fatal flaws could be determined as a result of the proposed project. It is thus the opinion of the specialists that the project can proceed, but only if the recommended mitigation measures are implemented.

13 Recommendations

A number of the points where the pipe will need to be exposed as part of the decommissioning phase, and also a few block valves that form part of the decommissioning phase, overlaps with the presented delineations and buffer areas. Taking into considering certain restraints associated with the decommissioning activities, selected buffer widths were re-examined and where feasible, these buffer widths reduced. In order to enable these reductions, further mitigation measures and recommendations have been prescribed for the specific points. Full reasoning for the buffers changed as well as ones that could not be changed can be seen in Table 100. It is apparent from these reductions that a rehabilitation plan is required for selected points, with the implementation of this plan important.

TBC Number	Recommendation
	Points to be opened
543	Buffer originally 22m - plug point were 3m inside buffer therefore the buffer was reduced to 15m. Buffer reduced based on proximity of the road.
542	Buffer originally 22m- plug point 6m inside buffer- reduced to 15m: must demarcate and this needs to be strictly enforced due to coastal vegetation
542	Buffer originally 22m- plug point 4m inside buffer- Buffer reduced to 15m: must demarcate and this needs to be strictly enforced due to coastal vegetation. Buffer reduced based on proximity of the road.
190	Ridge buffer cannot be reduced. This falls inside the Free State, no legislation regrading ridges, but these areas are seen as highly sensitive. Work can only commence if the team are accompanied by an ECO and a rehabilitation plan is done for the footprint area.
45	Buffer to be reduced to 15m: rehabilitation needs to be prioritised
25	CBA important: All mitigations needs to be applied. Provincial authorities needs to be consulted to determine if work will be allowed in the CBA.
18	Inside wetland : buffer cannot be reduced. Recommend implementation of a rehabilitation plan.
14	Buffer 26m currently can be reduced to 15m: rehabilitation will be required.
14	Inside wetland : buffer cannot be reduced . Recommend implementation of a rehabilitation plan.
13	Inside wetland : buffer cannot be reduced . Recommend implementation of a rehabilitation plan.
13	Inside wetland : buffer cannot be reduced . Recommend implementation of a rehabilitation plan.
12	Buffer currently 26m; point 16m from delineation: Recommend implementation of a rehabilitation plan.
12	Buffer currently 26m; point 15m from delineation, however the vegetation cover is in a natural state currently. Recommend implementation of a rehabilitation plan.
11	Buffer currently 26m : point 4m from wetland. Recommend implementation of a rehabilitation plan.
11	CBA: Irreplaceable. All mitigations needs to be applied. Provincial authorities needs to be consulted to determine if work will be allowed in the CBA.
11	Buffer currently 26m: point 15m from wetland. Buffer reduced to 15m based on proximity of the road.
11	CBA: Irreplaceable. All mitigations needs to be applied. Provincial authorities needs to be consulted to determine if work will be allowed in the CBA.
11	26m buffer, 15m from wetland. No change to buffer can be done. To accommodate for the 10m by 10m area, the buffer change will not be relevant. Recommend implementation of a rehabilitation plan.
11	26m buffer, 4m from wetland. No change to buffer can be done. To accommodate for the 10m by 10m area, the buffer change will not be relevant. Recommend implementation of a rehabilitation plan.

Table	100:	Recommendati	ons for a	changes	to buffers

7	22m buffer, buffer reduced to 15m based on proximity of developed areas.
7	22m buffer, point inside wetland. Recommend the point be moved or implement a rehabilitation plan.
7	22m buffer, point 1m from wetland. Recommend the point be moved or implement a rehabilitation plan.
7	22m buffer, point 4m from wetland. Recommend the point be moved or implement a rehabilitation plan.
443	CBA: Irreplaceable, ESA. All mitigations needs to be applied. Provincial authorities needs to be consulted to determine if work will be allowed in the CBA.
443	CBA: Irreplaceable, ESA. All mitigations needs to be applied. Provincial authorities needs to be consulted to determine if work will be allowed in the CBA.
435	22m buffer, point inside wetland. Recommend the point be moved or implement a rehabilitation plan.
435	22m buffer, point inside wetland. Recommend the point be moved or implement a rehabilitation plan.
	Block valves
405	CBA Irreplaceable. All mitigations needs to be applied. Provincial authorities needs to be consulted to determine if work will be allowed in the CBA.
256	CBA Optimal. All mitigations needs to be applied. Provincial authorities needs to be consulted to determine if work will be allowed in the CBA.
150	CBA 1. All mitigations needs to be applied. Provincial authorities needs to be consulted to determine if work will be allowed in the CBA.
106	Sungazers found in the area. Buffers cannot be reduced: Qualified herpetologist will need to accompany the team on foot into the area to ensure no sungazer burrows are present close to the area footprint
23	The block valve falls within the Rietvlei nature reserve and as such the buffer is based on legislation: Staff will need to be accompanied by reserve officials that must ensure no species are harmed during the process of decommissioning.
304	Block valve inside a wetland, however the decommissioning is regarded as part of the rehabilitation of the wetland. Recommendations: no vehicles, surface disturbances must be limited to valve footprint, rehabilitation of surface disturbances. Rehabilitation plan required
256	Buffer was 26m however to allow for the decommissioning the buffer was reduced to 18m.
74	Block valve inside a wetland, however the decommissioning is regarded as part of the rehabilitation of the wetland. Recommendations: no vehicles, surface disturbances must be limited to valve footprint, rehabilitation of surface disturbances. Rehabilitation plan required
61	Block valve inside a wetland, however the decommissioning is regarded as part of the rehabilitation of the wetland. Recommendations: no vehicles, surface disturbances must be limited to valve footprint, rehabilitation of surface disturbances. Rehabilitation plan required
61	Block valve inside a wetland, however the decommissioning is regarded as part of the rehabilitation of the wetland. Recommendations: no vehicles, surface disturbances must be limited to valve footprint, rehabilitation of surface disturbances. Rehabilitation plan required
32	Buffer is set at 17m and the block valve is located 7m inside of the buffer: unable to change the buffer. Recommendations: no vehicles, surface disturbances must be limited to valve footprint, rehabilitation of surface disturbances. Rehabilitation plan required
19	Buffer is set at 18m and the block valve is located 6m inside of the buffer: unable to change the buffer. Recommendations: no vehicles, surface disturbances must be limited to valve footprint, rehabilitation of surface disturbances. Rehabilitation plan required
543	Buffer is set at 22m and the block valve is located 6m inside of the buffer: unable to change the buffer on the basis that the vegetation surrounding the system is in a natural state. Recommendations: no vehicles, surface disturbances must be limited to valve footprint, rehabilitation of surface disturbances. Rehabilitation plan required
304	Inside the wetland/riparian buffer. Recommendations: no vehicles, surface disturbances must be limited to valve footprint, rehabilitation of surface disturbances
61	Inside the wetland/riparian buffer. Recommendations: no vehicles, surface disturbances must be limited to valve footprint, rehabilitation of surface disturbances
61	Inside the wetland/riparian buffer. Recommendations: no vehicles, surface disturbances must be limited to valve footprint, rehabilitation of surface disturbances

14 References

Amec Foster Wheeler. (2017). Water Conduit Effect in Abandoned Pipelines. Pipeline Abandonment Research Steering Committee. PARSC 012 Report. Submitted to: Petroleum Technology Alliance Canada Calgary, Alberta Submitted by: Amec Foster Wheeler Environment & Infrastructure Edmonton, Alberta August 2017.

CoJ (City of Johannesburg) (2008). Audit of wetlands within the city of Johannesburg. Spatial data as well as information. Strategic Environmental Focus (Pty Ltd).

Dallas, H.F. (2007). River Health Programme: South African Scoring System (SASS) Data Interpretation Guidelines. Report produced for the Department of Water Affairs and Forestry (Resource Quality Services) and the Institute of Natural Resources.

Department of Water and Sanitation (DWS). (2019). A Desktop Assessment of the Present Ecological State, Ecological Importance and Ecological Sensitivity per Sub Quaternary Reaches for Secondary Catchments in South Africa. Draft. Compiled by RQS-RDM.

DMOSS (Durban Metropolitan Open Space System) (2010). http://citymaps.durban.gov.za/website/master/viewer.htm.

EWT. (2016). Mammal Red List 2016. www.ewt.org.za (Accessed: November 2019).

Ezemvelo KZN Wildlife (2014) KZN Biodiversity Sector Plan Local Corridors, Version 2014. Unpublished GIS Coverage [BSP_loccorr_final_27102014.zip], Biodiversity Conservation Planning Division, Ezemvelo KZN Wildlife, P. O. Box 13053, Cascades, Pietermaritzburg, 3202.

Free State (2016). Collins, N.B. Free State Province Biodiversity Plan: Technical Report v1.0. Free State Department of Economic, Small Business Development, Tourism and Environmental Affairs. Internal Report. Biodiversity Plan v1.0 Free State Province Technical Report (FSDETEA/BPFS/2016_1.0).

GDARD. (2014). Requirements for biodiversity assessments: Version 3. Gauteng Department of Agriculture and Rural Development, Johannesburg.

Graham, M. And G. De Winnaar (2009). Developing guidelines to determine appropriate buffers for the protection of freshwater wetlands from various land use impacts in Kwazulu-Natal (Draft): 1-24.

IUCN. (2019). The IUCN Red List of Threatened Species. www.iucnredlist.org (Accessed: November 2019).

KZNEBPA. (2013). KwaZulu-Natal Environmental, Biodiversity and Protected Areas Management Bill. www.Kwa-zulu.conservation.laws.co.za. (Accessed: November 2019).

Lifestyle Seeds (https://lifestyleseeds.co.za/)

Macfarlane, D.M., Bredin, I.P., Adams, J.B., Zungu, M.M., Bate, G.C., Dickens, C.W.S. (2016). Preliminary guideline for the determination of buffer zones for rivers, wetlands and estuaries. Final Consolidated Report. WRC Report No TT 610/14, Water Research Commission, Pretoria.

Madingani, J. Transnet. (2019). Environmental Management Plan for DJP Petroleum Products Displacement, Document Number ENV-PRO-002

Ollis DJ, Snaddon CD, Job NM, and Mbona N. 2013. Classification System for Wetlands and other Aquatic Ecosystems in South Africa. User Manual: Inland Systems. SANBI Biodiversity Series 22. South African Biodiversity Institute, Pretoria.

Protected Trees List of South Africa. (2016). Dept. Agriculture, Forestry & Fisheries

Published initially 2011 by Dept. Agriculture, Forestry & Fisheries. https://www.sanbi.org/documents/south-african-protected-tree-species/

RAMSAR. (1971). The RAMSAR convention. www.ramsar.org (Accessed: November 2019).

SANBI. (2017). South African National Biodiversity Institute – Red List of South African Plants. http://redlist.sanbi.org/ (Accessed: November 2019).

Scott, C. (2015). Understanding the Mechanisms of Corrosion and their Effects on Abandoned Pipelines Petroleum Technology Alliance of Canada Calgary, Alberta Report No./DNV Reg No.: TAOUS813COSC (PP079627, Rev1) March 3, 2015.

Silverhill Seeds (http://www.silverhillseeds.co.za/default.asp).

Skelton, P.H. (2001). A complete guide to the freshwater fishes of southern Africa. Struik Publishers, South Africa.

Soil Classification Working Group. (1991). Soil Classification A Taxonomic system for South Africa. Pretoria: The Department of Agricultural Development.

South African Sugar Association Experiment Station (SASA). (1999). identification and Management of the Soils of the South African Sugar Industry. Third edition:

Taylor, M.R., Peacock, F., Wanless, R.M. (eds). (2015). The 2015 Eskom Red Data Book of birds of South Africa, Lesotho and Swaziland. BirdLife South Africa, Johannesburg.

The Biodiversity Company (TBC) 2019. Biodiversity and Water Resource Desktop Assessment for the Proposed Decommissioning of the Transnet Durban to Johannesburg Pipeline (Djp). Scoping Report. Pp. 28.

Transnet (2019). Environmental Management Plan for DJP Petroleum Products Displacement. Document number. ENV-PRO-002.

Appendix A: Raw Terrestrial Appdata

Site Code / Name	Date	Habitat Type	Impacts	Sensitivity	General discussion
Point 25	10/28/2019	Degraded, Secondary Grassland	Burning, Roads, Existing infrastructure	High	Ridge should be avoided on both sides. Stick to current infrastructure area using existing access
Elardus Park	10/28/2019	Transformed	Transformed adjacent to an urban greenbelt	Low	
Pretoria West	10/28/2019	Transformed	Industrial area, footpaths, road and litter	Low	
Point 27	10/28/2019	Degraded, Secondary Grassland	Burning, Livestock	Low	
Point 29	10/28/2019	Degraded, Grassland	Burning, Livestock , Roads	High	Stick to the existing infrastructure area.
Point 32	10/28/2019	Degraded, Secondary Grassland , Historical Impacts , Recent Disturbance	Burning, Alien vegetation, Litter and Dumping , Roads , Urban development Infringement	Low	Urban area impacts
Point 35	10/28/2019	Degraded, Secondary Grassland Secondary Grassland	Sewage, Aliens vegetation, Burning, Vegetation Clearing , Litter and Dumping , Urban development, Infringement	Low	
Point 38	10/28/2019	Degraded Secondary Grassland , Infrastructure , Historical Impacts , Recent Disturbance	Roads, Vegetation Clearing, Powerlines, Litter and Dumping, Roads, Urban development	Low	
Point 37	10/28/2019	Degraded Riparian	Alien vegetation , Litter and Dumping , Roads , Urban development	Moderate	Moderate due to the pan
Point 61	10/29/2019	Degraded Secondary Grassland , Riparian , Infrastructure , Historical Impacts	Farming , Alien vegetation , Vegetation Clearing , Roads	High	Riparian area
Point 59	10/29/2019	Degraded Secondary Grassland , Historical Impacts	Livestock , Alien vegetation , Powerlines , Roads, Old degraded Grassland due to livestock mainly	Low , Moderate	Degraded area with several wetlands. Fragmented from surrounding areas.
Point 49	10/29/2019	Natural , Degraded Riparian	Human waste dump, Roads, Rubble, Alien vegetation, Litter and Dumping, Roads	Moderate	Large wetland area with patches of impacts and a human waste dump nearby.

Point 48	10/29/2019	Natural , Degraded Riparian	Sewage, Livestock , Farming , Alien vegetation , Roads	Moderate	
Point 47	10/29/2019	Degraded Secondary Grassland , Recent Disturbance	Livestock Trampling, Infringement Livestock , Alien vegetation , Litter and Dumping , Roads, Large wetland mainly impacted by livestock	High	
Point 46	10/29/2019	Natural , Degraded Secondary Grassland , Historical Impacts	Urban area, Dumping Litter and Dumping , Roads , Urban development	High	Nice Grassland with a rocky outcrop
Magdala station	2019/01/11	Degraded , Transformed Secondary Grassland , Infrastructure	Cattle, Existing infrastructure, Livestock, Vegetation Clearing, Powerlines, Roads	Low	
Point 69	2019/04/11	Degraded, Secondary Grassland	Livestock , Farming , Vegetation Clearing , Roads, Maintenance impacts	Low	Ridge to the south of the pipeline.
Point 68	2019/04/11	Degraded, Grassland , Secondary Grassland	No real impact. Grazing mainly Livestock	Low , Moderate	Avoid wetland and limit impact to pipeline area
Point 70	2019/04/11	Degraded, Secondary Grassland	Mainly cattle and associated impacts Erosion , Livestock	Moderate	Avoid wetland
Point 73	2019/04/11	Degraded, Secondary Grassland	Cattle Erosion , Livestock , Roads	Low , Moderate	Ridge in close proximity. Avoid ridge and wetland
Point 74	2019/04/11	Degraded, Secondary Grassland	Cattle Farming, Vegetation clearing on pipeline, Livestock	Low	Cattle Farming with vegetation being cleared on pipeline.
Point 84	2019/04/11	Natural , Degraded Secondary Grassland , Riparian	Cattle and associated impacts Erosion, Livestock Mainly grazing by cattle, trampling of the riparian area	Low , Moderate	Stay out of the river area
Point 91	2019/04/11	Degraded, Secondary Grassland	Erosion , Livestock	Low	Small ridge between 90 and 91
Point 91	2019/04/11	Degraded, Secondary Grassland	Erosion , Livestock	Low	Small ridge between 90 and 92
Point 94	2019/04/11	Degraded, Secondary Grassland , Riparian	Cattle, Erosion , Livestock	Low , Moderate	Riparian area sensitive. Ridge to the NW

	1		1		1
Point 101	2019/04/11	Degraded, Secondary Grassland	Overgrazing Livestock , Roads	Low	General farming impacted area
Point 106	2019/04/12	Degraded, Secondary Grassland	Erosion , Livestock	High	Sungazers presents
Point 107	2019/04/11	Degraded, Secondary Grassland	Erosion , Livestock	High	Sungazers presents
Point 110	2019/04/11	Degraded, Secondary Grassland , Riparian	Agriculture, Water treatment	Moderate	Wetland surrounded by agriculture
Point 120	2019/04/11	Degraded, Secondary Grassland	Livestock , Farming , Roads	Low- Moderate	Artificial dam
Point 121	2019/04/11	Degraded, Secondary Grassland , Riparian	Agriculture Farming , Vegetation Clearing , Roads	Low- Moderate	Wetland /River with agriculture on both sides
Point 132	2019/04/11	Natural , Degraded Secondary Grassland , Riparian	Livestock , Farming	Moderate , High	Nice farm dam with intact to semi natural Grassland.
Bethlehem Station	2019/04/11	Degraded , Transformed Infrastructure , Historical Impacts , Recent Disturbance	Sewage, livestock , Alien vegetation , Powerlines , Litter and Dumping , Roads , Urban development	Low	Mitigations and rehab will be essential
Point 144	2019/04/11	Degraded, Secondary Grassland , Riparian	Cattle, Roads and human presence, Erosion, Livestock, Alien vegetation, Litter and Dumping, Roads, Urban development	Low , Moderate	Avoid riparian and ridge area.
Point 145	2019/05/11	Natural , Degraded Secondary Grassland , Riparian , Historical Impacts	Farming, Livestock, Farming, Alien vegetation, Roads Indirect impacts to the artificial dam and wetland area	Low , Moderate	Wetland area fragmented by farming and dammed. Pump from agricultural area.
Point 152	2019/05/11	Degraded, Secondary Grassland	Livestock , Farming , Roads Cattle grazing within fenced off wetland	Low , Moderate	Wetland and adjacent Grassland degraded by cattle grazing and indirect fragmentation due to agriculture. Pump from outside the fence
Point 153	2019/05/11	Degraded, Secondary Grassland , Historical Impacts	Livestock , Farming , Roads, Cattle grazing directly on the fenced off area which is surrounded by agriculture	High	Pump from outside fenced off area.
Point 154	2019/05/11	Degraded, Secondary Grassland , Historical Impacts	Erosion , Livestock , Farming , Roads	Low , Moderate	Functional as a Corridor and water resource. Pump from agricultural area.

			Fragmented by		
Point 169	2019/05/11	Degraded, Secondary Grassland	land use. Farming, Alien vegetation , Roads Cattle Grazing directly with agriculture around.	Low	Wetland area, pump from agriculture.
Point 177	2019/05/11	Degraded, Secondary Grassland, Riparian	Fences, Livestock, Farming , Roads, Vegetation clearing	Moderate- High	Pump from agricultural area. Ridge to the east and riparian area in good condition.
Point 182	2019/05/11	Degraded, Secondary Grassland , Historical Impacts , Recent Disturbance	Pipeline construction, Livestock, Alien vegetation, Litter and Dumping, Roads, Urban development Very impacted area due to proximity to the informal area. Goats and cattle have overgrazed it.	High	Small stream still functions as a water resource. Bald ibis observed foraging.
Point 189	2019/05/11	Natural , Degraded Secondary Grassland , Riparian , Historical Impacts	Livestock , Alien vegetation	Moderate	Nice river with associated floodplain. Pump from Road on either side
Point 193	2019/05/11	Degraded, Secondary Grassland , Historical Impacts	Erosion , Livestock , Alien vegetation, Eroded drainage area, dammed up seems artificial.	High	Degraded area. Pump from agriculture, Blue Korhaan and Blue Crane present
Point 196,197	2019/05/11	Degraded, Secondary Grassland , Historical Impacts	Livestock , Roads	High	Nice Grassland, even though degraded. Important and sensitive. Sungazers present.
Point 201	2019/05/11	Degraded, Secondary Grassland , Historical Impacts , Recent Disturbance	Livestock , Alien vegetation , Roads	Moderate	Nice Rocky grassland adjacent to the areas. If wet at all, pump from existing infrastructure areas
Point 202	2019/05/11	Degraded, Secondary Grassland , Historical Impacts , Recent Disturbance	Livestock , Litter and Dumping , Roads, Human presence with associated disturbance, livestock includes horses, goats and cattle	Low , Moderate	Ridge area to the west is most sensitive next to wetland areas
Point 208	2019/05/11	Degraded, Secondary Grassland , Riparian	Road, Erosion , Livestock	Low	
Point 209,210	2019/05/11	Secondary Grassland , Riparian , Historical Impacts , Recent Disturbance	Road, Erosion , Livestock	Low , Moderate	Pump from the road.

Point 211	2019/05/11	Degraded, Secondary Grassland, Historical Impacts, Recent Disturbance	Unregulated burning, Livestock , Farming , Roads	Low , Moderate	The farm dam is large and supports avifauna and is a Corridor. Pump from degraded areas
Point 219	2019/06/11	Degraded, Secondary Grassland	Urban area impacts, littering, Livestock, Vegetation Clearing, Litter and Dumping, Roads	Low	Area not too sensitive wetland and ridge to the north that should be avoided by staff
Point 220	2019/06/12	Secondary Grassland	Livestock , Roads and the community in close proximity.	High	Bald Ibis, wetland and spruit
Point 221,222	2019/06/11	Degraded, Secondary Grassland , Thicket	Erosion , Livestock , Vegetation Clearing , Roads	High	The presence of the intact forest thicket with protected tree species (Yellowwood) makes the adjacent area sensitive.
Van Reenen station	2019/06/11	Degraded , Transformed Secondary Grassland , Historical Impacts , Recent Disturbance	Livestock , Alien vegetation , Powerlines , Litter and Dumping , Roads	Moderate	Topography sensitive, erosion control mitigations. Alien Veg clearance. Avoid ridge to the north.
Point 232	2019/06/11	Degraded, Secondary Grassland , Riparian	Livestock , Farming , Roads	Low , Moderate	Nice stream. Pump from agriculture
Point 230	2019/06/11	Natural , Degraded Secondary Grassland , Riparian , Historical Impacts , Recent Disturbance	Alien vegetation, Livestock , Farming , Roads	Moderate	Nice little stream surrounded by mountain Grassland which is still functional
Point 250	2019/06/11	Natural Grassland	Livestock , Vegetation Clearing, pipeline maintenance	Moderate	
Point 256	2019/06/11	Natural Grassland , Secondary Grassland	Cattle Livestock , Roads	High	Nice bushveld. Pump from existing infrastructure.
Point 258	2019/06/11	Natural , Degraded Grassland , Riparian	Livestock	Moderate	Nice stream/drain area. Dry at the moment. Pump from the east/roadside. Nice habitat to the west of the crossing.
Point 265	2019/06/11	Natural , Degraded Grassland , Historical Impacts	Livestock , Roads, vegetation clearing from maintaining the pipe	Moderate	Pump from the Road and the property NW
Point 270	2019/06/12	Wetland depression area around the Rensburg spruit	Erosion, Livestock , Vegetation Clearing , Roads and the urban area.	High	Exceptionally high richness and abundance of waterfowl in correlation with the wastewater treatment works. Potential to support significant congregations of migratory species. A

					groop lolond within
			-		the Ladysmith urban area.
Point 282	2019/06/11	Natural , Degraded Grassland , Secondary Grassland	Roads, Vegetation clearance, Informal Settlements, Livestock	Moderate	Nice Rocky ridge bushveld. Intact except for overgrazing. Pump from downhill.
Point 280	2019/06/11	Degraded , Transformed Secondary Grassland , Historical Impacts , Recent Disturbance	Severely overgrazed. Informal settlement area, Erosion, Livestock, Alien vegetation, Vegetation Clearing, Litter and Dumping, Roads, Urban development	High	Pump from outside wetlands and stream(dry) at 281
Point 287	2019/06/11	Natural Grassland	Roads	High	Tugela Private Game
Point 323	2019/07/11	Natural , Degraded Grassland , Secondary Grassland	Livestock , Roads	Moderate	Nice bushveld with drainage to the west. Pump from cleared area.
Point 324	2019/07/11	Natural , Degraded Grassland , Historical Impacts , Recent Disturbance	Roads, vegetation clearance	High	Game reserve. 324 seems dry, ridge.
Point 330	2019/07/11	Natural , Degraded Grassland	No real impact except the disturbed condition of the habitat surrounding the pipeline	Moderate	Game farm area. Pump from outside wet area. Limit impact to pipeline area.
Point 339	2019/07/11	Natural , Degraded Secondary Grassland	Pipeline maintenance, Livestock , Roads	High	Pump from anywhere outside river area within pipeline concession.
Point 342	2019/07/11	Natural , Degraded Secondary Grassland , Historical Impacts	Pipeline maintenance, Livestock , Vegetation Clearing	Low , Moderate	Nice mountain to the south. Pump from road
Point 343	2019/07/11	Natural , Degraded Secondary Grassland	Dammed up drainage area, Livestock	Low , Moderate	Ridge to the north. Pump from either side outside wetland area avoiding the ridge.
Point 350,351	2019/07/11	Natural , Degraded Secondary Grassland , Historical Impacts	Pipeline maintenance, Livestock, Vegetation Clearing, Powerlines, Roads	Low , Moderate	Drainage area with a ridge to the north. Best to pump from the south as it is more degraded.
Point 361	2019/07/11	Natural Grassland , Secondary Grassland	Area has been burnt recently, Livestock	High	Intact Grassland . Antelope observed (Southern Reed buck)
Point 371	2019/07/12	Grasslands around the Mooi river	Livestock, Roads and farm development	High	Mooi river with associated riparian habitat

Point 381	2019/07/11	Degraded , Transformed Secondary Grassland , Riparian , Historical Impacts , Recent Disturbance	Eucalyptus plantations, Vegetation Clearing	High	Grassland to the north. Pump from plantation area to the south.
Point 398	2019/08/11	Natural, Secondary Grassland	Livestock , Roads	High	Grassland. Pump from road
Point 404	2019/07/11	Natural , Degraded Grassland , Secondary Grassland , Riparian , Historical Impacts , Recent Disturbance	Pipeline maintenance, Cattle Livestock , Vegetation Clearing	Moderate	Stream with natural Grassland. Ridge to the north. Pump from existing infrastructure
Point 408	2019/07/11	Natural , Degraded Grassland , Secondary Grassland , Historical Impacts , Recent Disturbance	Burning, Roads, Powerlines	High	Rocky Ridge
Point 407	2019/07/11	Natural Secondary Grassland	Livestock	Low , Moderate	Ridge to the north. Avoid ridge and riparian area. Pump from grazed area to the south
Point 402	2019/07/11	Natural , Degraded Secondary Grassland , Historical Impacts , Recent Disturbance	Farming , Powerlines Adjacent impacts	Moderate	Mountain Grassland to the north. Agriculture to the south. Pump from agriculture
Point 420	2019/11/11	Degraded Grassland , Riparian	Alien vegetation , Vegetation Clearing , Powerlines , Roads , Urban development	High	Wetland sensitive. Cacosternum heard. Crinum bulbispermum within wetland and along servitude
Point 423	2019/08/11	Degraded Thicket , Riparian	Burning, solid waste, Alien vegetation , Vegetation Clearing , Litter and Dumping , Urban development	Moderate	Pipeline runs within the thicket. Sand should be pumped from field to the East
Point 425	2019/11/11	Degraded Grassland , Riparian	Vegetation clearing, fences, Livestock , Farming , Alien vegetation	High	Cacosternum heard calling. Spotted necked Otter scat found. Rocky outcrop adjacent to wetland. Sand should be pumped from the plateau of the agricultural field to the East or plateau of the Wattle stand to the South. Ledebouria revoluta located within servitude
Point 426	2019/11/11	Degraded , Transformed, Secondary Grassland , Riparian	Farming , Powerlines	High	Wetlands sensitive. Crowned cranes observed

Point 437	2019/11/11	Transformed, Riparian	Solid waste, Erosion, pylons, Alien vegetation , Vegetation Clearing , Powerlines , Litter and Dumping , Roads , Urban development	Moderate	The South bank is owned by Ascot Bush Lodge.
Point 450	2019/11/12	Grassland , Thicket , Riparian	Alien vegetation , Vegetation Clearing , Roads	High	The riparian zone and adjacent thornveld is regarded as sensitive. <i>Ledebouria</i> <i>revoluta</i> and <i>Hypoxis</i> <i>hemerocallidea</i> occur on the servitude.
Point 443	2019/12/11	Natural Thicket , Riparian	Alien vegetation , Vegetation Clearing	High	Natural vegetation along route.
Point 445	2019/12/11	Natural Thicket	Vegetation clearing, possible Alien vegetation, Site could not be accessed but other impacts are possible	High	Vegetation is natural.
Point 447	2019/12/11	Natural Thicket	Alien vegetation , Vegetation Clearing Other impacts possible but site could not be accessed.	High	
Point 459	2019/11/11	Degraded, Secondary Grassland , Recent Disturbance	Livestock, agriculture, forestry, Roads	Low	
Point 460	2019/11/11	Transformed, Historical Impacts , Recent Disturbance	agriculture, forestry, Alien vegetation , Vegetation Clearing , Roads	Low	Area is transformed. No sensitive habitats or species observed. Sand supply can be used from local source.
Point 468	2019/11/11	Natural Grassland , Riparian	Vegetation clearing, erosion, Alien vegetation	High	Sand to be potentially pumped from field on the northern side of the road.
Point 470	2019/12/11	Natural Grassland , Riparian	Vegetation clearing, erosion, Alien vegetation	High	Sand to be potentially pumped from field on the northern side of the road.
Point 471	2019/12/11	Degraded, Secondary Grassland , Riparian	Vegetation clearing, Erosion , Alien vegetation , Roads	High	Riparian zone and immediate surrounds are regarded as sensitive. This is because it is used as a corridor, although it is degraded.
Point 476	2019/12/11	Natural Grassland , Thicket	Alien vegetation , Vegetation Clearing	High	Vegetation surrounding the route is natural. Relatively high biodiversity. Cape Vulture observed. Hypoxis hemerocallidea and H. angustifolia present in grassland

					and servitude. Property belongs to rainbow farms.
Point 480	2019/12/11	Natural Thicket	Vegetation clearing, Erosion, Alien vegetation, Vegetation Clearing, Snares/Hunting, Litter and Dumping	High	Biodiversity relatively high. Numerous bird species recorded.
Point 482	2019/12/11	Natural Thicket	Vegetation clearing, Livestock , Alien vegetation , Snares/Hunting , Litter and Dumping	High	CBA. Points 482 - 486 same habitat.
Point 482	11/13/2019	Natural Thicket	Vegetation clearing, Livestock , Alien vegetation , Snares/Hunting , Litter and Dumping	High	CBA. Points 482 - 486 same habitat.
Point 483	11/13/2019	Natural Thicket	Vegetation clearing, Livestock , Alien vegetation , Snares/Hunting , Litter and Dumping, Erosion	High	Although there are impacts surrounding vegetation is natural. Eulophia parviflora observed within the vegetation.
Point 484	11/13/2019	Natural Thicket	Vegetation clearing, Alien vegetation , Snares/Hunting , Litter and Dumping	High	Surrounding vegetation is largely natural. CBA. Eulophia parviflora observed within the vegetation.
Point 486	11/13/2019	Degraded Thicket , Riparian	Vegetation clearing, Livestock , Alien vegetation , Snares/Hunting , Litter and Dumping	High	Although degraded the surrounding area is predominantly natural. Drainage line is an important corridor.
Point 489	11/13/2019	Natural Grassland , Thicket , Riparian	Livestock , Alien vegetation , Vegetation Clearing , Roads	High	Vegetation in surrounding area largely natural. Hypoxis hemerocallidea present within servitude and surrounding grassland.
Point 492	11/13/2019	Degraded, Secondary Grassland	Erosion , Livestock , Alien vegetation , Vegetation Clearing , Litter and Dumping	High	Habitat is semi- natural. However, <i>Hypoxis angustifolia,</i> <i>H. hemerocallidea</i> and <i>B. disticha</i> present within grassland and servitude. Rocky outcrops are to be avoided.
Point 494	11/13/2019	Degraded, Riparian	Erosion , Livestock , Alien vegetation ,	Moderate	Riparian vegetation regarded as moderate sensitivity

			Vegetation Clearing		due to intensive growth of IAPs. No SCC or protected species observed.
Point 497	11/13/2019	Degraded, Secondary Grassland , Thicket	Erosion , Livestock , Alien vegetation	Low	
Point 500	11/13/2019	Degraded, Thicket	Alien vegetation , Roads	Low	largely degraded.
Point 502	11/13/2019	Degraded, Historical Impacts , Recent Disturbance	Alien vegetation , Vegetation Clearing , Powerlines , Roads	Low	Site is degraded although IAP clearing is presently occurring. No SCC or protected species observed.
Point 503	11/13/2019	Natural , Degraded Riparian	Alien vegetation , Vegetation Clearing , Roads	High	Although also regarded as degraded, this is predominantly along the edge and indigenous vegetation is ubiquitous within the riparian forest interior. Clearing of IAPs is currently occurring. There is a rocky ridge along the route towards the South and the surrounding grassland is regarded as sensitive. <i>Merwilla</i> <i>plumbea</i> and <i>Hypoxis</i> <i>hemerocallidea</i> present.
Point 507	11/13/2019	Transformed, Secondary Grassland , Thicket , Riparian	Alien vegetation	Moderate , High	Private property. Regarded as moderate - high sensitivity as although transformed, this route possesses predominantly indigenous vegetation and includes wetlands.
Point 504	11/14/2019	Transformed, Thicket , Historical Impacts , Recent Disturbance	Alien vegetation , Urban development	Low	Urban private property surrounding pipeline. Appears to be composed of exotic species.
Point 518	11/14/2019	Natural , Degraded Secondary Grassland , Riparian	Alien vegetation , Vegetation Clearing , Litter and Dumping , Roads , Urban development Impacts tend to be limited closer to urban development and IAPs along the riparian zone.	High	Although degraded along the route this tends to concentrate along roads and urban developments. As the route proceeds East, the grassland quality improves. Riparian zone used as a corridor by avifauna. Therefore, the vegetation along this route regarded as moderate-high sensitivity.
Point 519	11/14/2019	Natural , Degraded Secondary	Erosion , Alien vegetation , Litter	High	Forest patches dominated by

		Grassland , Thicket , Riparian	A and Dumping , Roads Litter and dumping limited to road. Erosion and IAPs concentrated along riverbanks.		indigenous vegetation. Grassland along NE route in semi-natural condition. Eulophia species present. Possible source of sand is transformed area to the South.
Point 521	11/14/2019	Natural Thicket , Riparian	Alien vegetation , Vegetation Clearing	High	Protected coastal forest. Named Marian wood Nature Reserve. 500 m buffer.
Point 522	11/14/2019	Natural , Degraded Grassland , Riparian	Vegetation Clearing , Litter and Dumping , Roads , Urban development Impacts tend to be limited along periphery and servitude.	High	Grassland and riparian vegetation are predominantly natural, albeit with degradation due to edge effects. Grassland and associated seeps, including servitude, possesses Merwilla plumbea, Kniphofia spp, Hypoxis angustifolia, Zantedeschia aethiopica and Sclerocarya birrea. Consequently, regarded as sensitive habitat
Point 524	11/14/2019	Natural Grassland , Riparian	Alien vegetation , Vegetation Clearing , Litter and Dumping concentrated near houses and IAPs within riparian zone.	High	Surrounding vegetation largely natural. <i>Merwilla</i> <i>plumbea</i> and <i>Sclerocarya birrea</i> present within grassland
Point 527	11/14/2019	Natural , Degraded Thicket	Alien vegetation , Vegetation Clearing , Roads	High	
Point 530	11/14/2019	Degraded Thicket , Riparian	Alien vegetation , Vegetation Clearing	Moderate , High	Considering the riparian zone, regarded as moderate-high sensitivity.
Point 531	11/14/2019	Degraded Thicket , Riparian	Alien vegetation , Vegetation Clearing	Moderate , High	Considering the riparian habitat, regarded as moderate-high sensitivity.
Point 532	11/14/2019	Degraded Thicket , Riparian	Erosion , Alien vegetation , Vegetation Clearing , Litter and Dumping , Roads	Low , Moderate	Route is highly degraded. Thicket is regarded as possessing low sensitivity and riparian as possessing moderate sensitivity.
Point 533	11/15/2019	Natural , Degraded Thicket , Riparian	Alien vegetation , Vegetation Clearing , Litter and Dumping	High	Although degraded along the servitude, the surrounding vegetation is predominantly

					comprised of indigenous flora. Freesia laxa and Hypoxis hemerocallidea occur within the servitude.
Point 534	11/15/2019	Degraded, Thicket	Alien vegetation , Vegetation Clearing	High	Vegetation appears to be degraded.
Point 535	11/15/2019	Natural , Degraded Thicket , Riparian	Erosion , Alien vegetation , Vegetation Clearing , Powerlines , Litter and Dumping	High	Although degraded along the servitude and urban edge, vegetation interior consists primarily of indigenous flora. <i>Scadoxus puniceus</i> and <i>Freesia laxa</i> occurs in the servitude. Possible source of sand is quarry to the East.
Point 539	11/15/2019	Degraded, Riparian	Alien vegetation , Vegetation Clearing , Litter and Dumping	Low , Moderate	Site is largely degraded due to the presence of the Umbilo Canal and proximal urban development. Rated as possessing a low- moderate sensitivity as there are interspersed indigenous trees such as Syzygium cordatum and Ekebergia capensis.
Point 540	11/15/2019	Degraded, Riparian	Alien vegetation , Vegetation Clearing , Roads , Urban development	Low , Moderate	Site is largely degraded due to the presence of the Umbilo Canal and proximal urban development. Rated as possessing a low- moderate sensitivity as the route is interspersed with indigenous trees such as Syzygium cordatum and Ekebergia capensis.
Point 542	11/15/2020	Thicket, artificial dam	Alien vegetation , Vegetation Clearing , Powerlines , Urban development	High	Pink-backed pelican
Point 543	11/15/2019	Degraded, Riparian	Alien vegetation , Vegetation Clearing , Powerlines , Urban development	Low	
Point 538	11/15/2019	Degraded , Transformed Riparian	Alien vegetation , Vegetation Clearing , Litter and Dumping , Roads , Urban development	Low	Highly transformed site. No SCC or protected species observed.

Appendix B: Wetland spatial data

Code	Name	HGM	Priority	EIS	PES	Ecosystem services	Buffer	Area_ha
1	D123BAVH	Floodplain	1A	Α	В	Н	30	0.483
2	D129BAH	Floodplain	1A	А	Е	Н	30	0.617
3	D138BAH	Floodplain	1A	Α	В	Н	30	0.273
4	D156DCH	Floodplain	1A	С	D	Н	22	1.447
5	D36BBH	Floodplain	1A	В	В	Н	26	0.241
6	D41BAH	Floodplain	1A	А	В	Н	30	0.434
7	D42BAH	Floodplain	1A	Α	В	Н	30	0.554
8	D53BBH	Floodplain	1A	В	В	Н	26	1.965
9	D81BBVH	Floodplain	1A	В	В	Н	26	1.037
10	D91BAVH	Floodplain	1A	А	В	Н	30	2.886
11	D93BBH	Floodplain	1A	В	В	Н	26	0.43
12	W126DBH	Floodplain	1A	В	D	Н	26	1.034
13	W128CAH	Floodplain	1A	Α	С	Н	30	1.168
14	W144	Floodplain	1A	А	С	Н	30	1.97
15	W204	Floodplain	1A	С	В	Н	22	4.444
16	W47	Floodplain	1A	А	С	Н	30	4.981
17	W60	Floodplain	1A	В	С	I	26	10.847
18	D135BBH	Channelled valley- bottom	1B	В	В	Н	26	1.71
19	D163BAH	Channelled valley- bottom	1B	А	В	Н	30	0.814
20	D165BAVH	Channelled valley- bottom	1B	А	В	Н	30	0.295
21	D172CBI	Channelled valley- bottom	1B	В	С	I	26	0.162
22	D173BBH	Channelled valley- bottom	1B	В	В	н	26	0.124
23	D174BBH	Channelled valley- bottom	1B	В	В	н	26	0.138
24	D175BBH	Channelled valley- bottom	1B	В	В	Н	26	0.252
25	D177BBH	Channelled valley- bottom	1B	В	В	Н	26	0.403
26	D178CBH	Channelled valley- bottom	1B	В	С	Н	26	0.503
27	D180CCI	Channelled valley- bottom	1B	с	С	I	22	0.126
28	D184CCI	Channelled valley- bottom	1B	с	С	I	22	0.079

29	D185CBH	Channelled valley- bottom	1B	В	С	Н	26	0.188
30	D186BCI	Channelled valley- bottom	1B	с	В	I	22	0.181
31	D187CCI	Channelled valley- bottom	1B	с	С	I	22	0.167
32	D188CCI	Channelled valley- bottom	1B	С	С	I	22	0.344
33	D189CCI	Channelled valley- bottom	1B	С	С	I	22	0.293
34	D190BBH	Channelled valley- bottom	1B	В	В	Н	26	0.081
35	D31BBH	Channelled valley- bottom	1B	С	В	Н	22	0.75
36	D362CBH	Channelled valley- bottom	1B	В	С	н	26	0.619
37	D383CBH	Channelled valley- bottom	1B	В	С	н	26	0.254
38	D44BBH	Channelled valley- bottom	1B	В	В	н	26	1.031
39	D524	Channelled valley- bottom	1B	с	С	Н	22	0.401
40	D5BBH	Channelled valley- bottom	1B	В	В	Н	26	0.885
41	D5BBH	Channelled valley- bottom	1B	В	В	Н	26	0.179
42	D5BBH	Channelled valley- bottom	1B	В	В	н	26	0.455
43	D72BBH	Channelled valley- bottom	1B	В	В	н	26	1.047
44	D74BBH	Channelled valley- bottom	1B	В	В	н	26	0.229
45	D76BBH	Channelled valley- bottom	1B	В	В	Н	26	0.482
46	W120DCML	Channelled valley- bottom	1B	с	D	ML	22	0.023
47	W120DCML	Channelled valley- bottom	1B	с	D	ML	22	0.072
48	W122CCI	Channelled valley- bottom	4B	с	С	I	22	0.057
49	W131CBI	Channelled valley- bottom	1B	В	с	I	26	0.075
50	W133DCI	Channelled valley- bottom	1B	С	D	I	22	0.309

		Channelled						
51	W134DCI	valley- bottom	1B	С	D	I	22	0.157
52	W146ECL	Channelled valley- bottom	4B	С	E	L	22	0.093
53	W171BBH	Channelled valley- bottom	1B	В	В	Н	26	0.242
54	W190	Channelled valley- bottom	1B	В	С	Н	26	0.367
55	W196CCI	Channelled valley- bottom	1B	С	С	l	22	0.94
56	W198CCI	Channelled valley- bottom	1B	с	С	I	22	0.423
57	W332	Channelled valley- bottom	1B	А	С	MH	30	0.139
58	W419DCI	Channelled valley- bottom	1B	с	D	I	22	0.671
59	W497CBI	Channelled valley- bottom	1B	В	С	I	26	0.581
81	W25	Channelled valley- bottom	1B	А	В	MH	25	0.18
60	D133BBH	Unchanneled valley- bottom	1C	В	В	Н	22	0.362
61	D147BAVH	Unchanneled valley- bottom	1C	А	В	Н	25	0.916
62	D148BAVH	Unchanneled valley- bottom	1C	А	В	Н	25	0.768
63	D152DBH	Unchanneled valley- bottom	1C	В	D	Н	22	0.446
64	D15BBH	Unchanneled valley- bottom	1C	В	С	Н	22	0.207
65	D168CBH	Unchanneled valley- bottom	1C	с	С	Н	18	0.423
66	D179CBH	Unchanneled valley- bottom	1C	В	С	Н	22	0.244
67	D181CCI	Unchanneled valley- bottom	1C	с	с	I	18	0.19
69	D182CBI	Unchanneled valley- bottom	1C	В	с	I	22	0.135
70	D183CCI	Unchanneled valley- bottom	1C	с	с	I	18	0.146
71	D208DCI	Unchanneled valley- bottom	1C	с	D	I	18	1
73	D209EDL	Unchanneled valley- bottom	1C	D	E	L	14	1.364

74	D214CBH	Unchanneled valley- bottom	1C	В	С	Н	22	0.433
75	D410CCH	Unchanneled valley- bottom	1C	С	С	Н	18	3.656
76	W131CBH	Unchanneled valley- bottom	1C	с	С	Н	18	0.433
77	W151BAVH	Unchanneled valley- bottom	1C	с	В	Н	18	0.372
78	W176CBH	Unchanneled valley- bottom	1C	В	С	Н	22	0.123
79	W178CBH	Unchanneled valley- bottom	4C	В	С	Н	22	0.128
80	W179BBH	Unchanneled valley- bottom	1C	В	В	н	22	0.612
82	W29	Unchanneled valley- bottom	1C	A	В	MH	25	1.879
83	W402CBH	Unchanneled valley- bottom	4C	В	С	Н	22	0.085
84	W501BBH	Unchanneled valley- bottom	1C	В	В	Н	22	0.192
85	W127CBH	Flat	1D	В	С	н	22	4.428
86	W147BBVH	Flat	1D	В	В	Н	22	1.385
87	W59	Flat	1D	В	С	MH	22	3.681
88	D211CDI	Depression	1F	D	С	I	12	0.399
89	W37	Seep	1F	Α	В	MH	25	0.921
90	W37	Depression	1F	А	В	МН	20	0.313
91	D120CCI	Floodplain	2A	С	С	L	22	0.472
92	D14CCM	Floodplain	2A	С	С	MH	22	0.327
93	D21CBH	Floodplain	2A	В	С	Н	26	0.296
94	D23DBH	Floodplain	2A	В	D	Н	26	1.28
95	W270	Floodplain	2A	С	D	Н	22	3.145
96	W49	Floodplain	2A	С	D	Н	22	5.01
97	D100CBH	Channelled valley- bottom	2B	с	С	Н	22	0.395
98	D101CBH	Channelled valley- bottom	2B	С	С	Н	22	0.285
99	D103CBH	Channelled valley- bottom	2B	с	С	н	22	0.186
100	D104CBH	Channelled valley- bottom	2B	с	с	н	22	0.222
101	D117DCI	Channelled valley- bottom	2B	В	D	I	26	0.335
102	D119EDL	Channelled valley- bottom	2B	В	Е	L	26	0.188

		Channelled						
103	D11FDL	valley- bottom	2B	D	F	L	17	1.727
104	D120DCI	Channelled valley- bottom	2B	с	D	I	22	0.41
105	D153CCI	Channelled valley- bottom	2B	с	С	I	22	0.11
106	D154CCI	Channelled valley- bottom	2B	с	С	I	22	0.306
107	D155DBH	Channelled valley- bottom	2B	в	D	Н	26	0.448
108	D169DCI	Channelled valley- bottom	2B	С	D	I	22	0.139
109	D170DCI	Channelled valley- bottom	2B	С	D	I	22	1.087
110	D171DCI	Channelled valley- bottom	2B	с	D	I	22	0.1
111	D182ECI	Channelled valley- bottom	2B	с	E	I	22	0.016
112	D191CCI	Channelled valley- bottom	2B	с	с	I	22	0.778
113	D192CCI	Channelled valley- bottom	2B	с	С	I	22	2.012
114	D193ECL	Channelled valley- bottom	2B	с	E	L	22	2.752
115	D201DCI	Channelled valley- bottom	2B	с	D	I	22	1.099
116	D20CBH	Channelled valley- bottom	2B	D	С	Н	17	0.508
117	D348BCH	Channelled valley- bottom	2B	с	В	Н	22	0.274
118	D381CCI	Channelled valley- bottom	2B	с	С	I	22	0.346
119	D3DCM	Channelled valley- bottom	2B	с	D	Μ	22	1.937
120	D48DCI	Channelled valley- bottom	2B	с	D	I	22	0.708
121	D4DBI	Channelled valley- bottom	2B	В	D	I	26	7.532
122	D6DCI	Channelled valley- bottom	2B	с	D	н	22	0.244
123	D70BBH	Channelled valley- bottom	2B	В	В	I	26	0.159
124	D77CBH	Channelled valley- bottom	2B	В	С	Н	26	0.285

		Channelled						
125	D78CBH	valley- bottom	2B	В	С	Н	26	0.549
126	D7DCI	Channelled valley- bottom	2B	с	D	Ι	22	2.952
127	D84DCL	Channelled valley- bottom	2B	В	D	L	26	0.403
128	D86CBH	Channelled valley- bottom	2B	В	С	Н	26	0.4
129	D8EBH	Channelled valley- bottom	2B	В	E	Н	26	1.159
130	D96DCI	Channelled valley- bottom	2B	с	D	I	22	0.233
131	D96DCI	Channelled valley- bottom	2B	с	D	Ι	22	0.35
132	D97DCH	Channelled valley- bottom	2B	с	D	н	22	1.276
133	W128CCI	Channelled valley- bottom	2B	с	С	I	22	0.918
144	W144ECI	Channelled valley- bottom	2B	с	E	I	22	0.184
145	W162ECI	Channelled valley- bottom	2B	с	E	I	22	0.078
146	W183CCI	Channelled valley- bottom	2B	с	С	Ι	22	0.083
147	W184CCI	Channelled valley- bottom	2B	с	С	I	22	0.174
148	W232	Channelled valley- bottom	2B	А	С	MH	30	0.246
149	W232	Channelled valley- bottom	2B	А	С	MH	30	2.643
150	W232	Channelled valley- bottom	2B	А	С	MH	30	2.278
151	W32	Channelled valley- bottom	2B	D	С	I		0.26
152	W32	Channelled valley- bottom	2B	D	С	I	17	2.099
153	W32	Channelled valley- bottom	2B	D	С	I	17	4.321
154	W32	Channelled valley- bottom	2B	С	С		22	0.617
155	W67b	Channelled valley- bottom	2B	С	С	I	22	0.873
156	D1DCI	Unchanneled valley- bottom	2C	с	D	I	18	0.228

157	D2DBMH	Unchanneled valley- bottom	2C	В	В	н	22	2.107
158	W167	Unchanneled valley- bottom	2C	A	С	Н	25	0.816
159	W365DBH	Unchanneled valley- bottom	2C	В	D	Н	22	0.5
160	W368CBI	Unchanneled valley- bottom	2C	с	С	I	18	0.385
161	D61DCL	Seep	2E	С	D	L	18	0.857
162	D62CCI	Seep	2E	С	С	I	18	0.314
163	W74.1	Seep	2E	D	С	MH	14	0.295
164	D10DBH	Depression	2F	В	D	Н	17	0.517
165	D22CBH	Depression	2F	В	С	Н	17	0.412
166	D207CCI	Floodplain	ЗA	С	С	I	22	1.135
167	D47DCI	Floodplain	ЗA	С	D	I	22	0.613
168	W106.1	Floodplain	ЗA	В	С	MH	26	0.658
169	D108CBH	Channelled valley- bottom	3B	В	С	Н	26	0.184
170	D110CBH	Channelled valley- bottom	3B	В	С	н	26	1.121
171	D126ECL	Channelled valley- bottom	3B	с	С	L	22	0.885
172	D131BCMH	Channelled valley- bottom	3B	с	В	Н	22	0.133
173	D131BCMH	Channelled valley- bottom	3B	В	В	Н	26	0.121
174	D136BBH	Channelled valley- bottom	3B	В	В	Н	26	0.284
175	D137BBH	Channelled valley- bottom	3B	В	В	Н	26	0.359
176	D137BBH	Channelled valley- bottom	3B	В	В	н	26	0.158
177	D141CBH	Channelled valley- bottom	3B	В	С	н	26	2.55
178	D142BBH	Channelled valley- bottom	3B	В	В	н	26	0.351
179	D143BBH	Channelled valley- bottom	3B	В	В	н	26	0.372
180	D145BBH	Channelled valley- bottom	3B	В	В	н	26	0.634
181	D146DCI	Channelled valley- bottom	3B	с	D	I	22	0.433
182	D157BAH	Channelled valley- bottom	3B	A	В	Н	30	0.203

183	D158BCH	Channelled valley- bottom	3B	В	В	Н	26	0.13
184	D159CBI	Channelled valley- bottom	3B	В	С	I	26	0.269
185	D161BBH	Channelled valley- bottom	3B	в	D	Н	26	0.396
186	D164	Channelled valley- bottom	3B	с	D	I	22	0.082
187	D216BBI	Channelled valley- bottom	3B	В	В	I	26	0.227
188	D217CBH	Channelled valley- bottom	3B	В	С	Н	26	0.463
189	D218BBH	Channelled valley- bottom	3B	В	В	Н	26	0.5
190	D24BBH	Channelled valley- bottom	3B	В	В	Н	26	0.863
191	D27BBH	Channelled valley- bottom	3B	В	В	Н	26	0.216
192	D29CBH	Channelled valley- bottom	3B	с	С	MH	22	0.723
193	D30CBH	Channelled valley- bottom	3B	в	С	Н	26	0.385
194	D32CCI	Channelled valley- bottom	3B	С	С	Н	22	0.125
195	D339CBH	Channelled valley- bottom	3B	В	С	I	26	0.539
196	D348CBH	Channelled valley- bottom	3B	С	С	Н	22	0.214
197	D355BBH	Channelled valley- bottom	3B	В	В	Н	26	0.459
198	D35DCI	Channelled valley- bottom	3B	С	D	Ι	22	1.651
199	D35DCI	Channelled valley- bottom	3B	с	D	U	22	0.225
200	D37CBH	Channelled valley- bottom	3B	В	С	I	26	0.355
201	D38CBH	Channelled valley- bottom	3B	В	С	Н	26	0.194
202	D39BBH	Channelled valley- bottom	3B	В	В	н	26	0.079
203	D448BBH	Channelled valley- bottom	3B	В	В	Н	26	0.494
204	D45CBH	Channelled valley- bottom	3B	В	С	Н	26	0.149

205	D478DCI	Channelled valley- bottom	3B	С	D	Ι	22	0.187
206	D486CBH	Channelled valley- bottom	3B	В	С	Н	26	0.326
207	D489CBH	Channelled valley- bottom	3B	В	С	Н	26	0.355
208	D498CBH	Channelled valley- bottom	3B	В	С	Н	26	0.238
209	D50BBH	Channelled valley- bottom	3B	в	В	Н	26	0.13
210	D514CCI	Channelled valley- bottom	3B	с	С	I	22	1.006
211	D51BBH	Channelled valley- bottom	3B	В	В	Н	26	0.158
212	D64BBH	Channelled valley- bottom	3B	С	В	Н	22	0.399
213	D64BBH	Channelled valley- bottom	3B	В	В	Н	26	0.654
214	D68BBH	Channelled valley- bottom	3B	В	В	Н	26	0.181
215	D69CBH	Channelled valley- bottom	3B	В	С	н	26	0.384
216	D82BBH	Channelled valley- bottom	3B	В	D	Н	26	0.883
217	D98CBH	Channelled valley- bottom	3B	В	С	Н	26	0.88
218	D99CBH	Channelled valley- bottom	3B	В	С	Н	26	0.347
219	W1	Channelled valley- bottom	3B	В	С	MH	26	1.733
220	W126	Channelled valley- bottom	3B	А	С	MH	30	1.042
221	W128	Channelled valley- bottom	3B	В	С	I	26	0.39
222	W174DCI	Channelled valley- bottom	3B	С	D	I	22	0.103
223	W187CCI	Channelled valley- bottom	3B	с	с	I	22	0.187
224	W199CCH	Channelled valley- bottom	3B	с	С	н	22	0.099
225	W204	Channelled valley- bottom	3B	В	В	I	26	0.267
226	W265	Channelled valley- bottom	3B	В	С	I	26	0.292

227	W276	Channelled valley-	3B	с	С	MH	22	0.334
228	W287	Channelled valley-	3B	A	В	н	30	2.366
229	W330	Channelled valley-	3B	В	С	MH	26	0.093
230	W35	Channelled valley-	3B	с	С	I	22	0.849
231	D111BBH	Unchanneled valley- bottom	3C	в	В	Н	22	1.249
232	D121DDI	Unchanneled valley- bottom	3C	D	D	I	14	2.021
233	D139CBH	Unchanneled valley- bottom	3C	с	С	Н	18	0.383
234	D140CBH	Unchanneled valley- bottom	3C	в	С	Н	22	0.486
235	D150BBH	Unchanneled valley- bottom	3C	В	В	Н	22	0.364
236	D151BAH	Unchanneled valley- bottom	3C	A	В	Н	25	0.494
237	D162DBH	Unchanneled valley- bottom	3C	В	D	н	22	0.351
238	D17CCI	Unchanneled valley- bottom	3C	С	С	L	18	0.242
239	D206BBH	Unchanneled valley- bottom	3C	В	В	Н	22	0.245
240	D210CBH	Unchanneled valley- bottom	3C	В	С	Н	22	0.782
241	D25BBH	Unchanneled valley- bottom	3C	В	В	Н	22	0.172
242	D34BBI	Unchanneled valley- bottom	3C	В	В	Ι	22	0.177
243	D34BBI	Unchanneled valley- bottom	3C	В	В	I	22	0.806
244	D36BBH	Unchanneled valley- bottom	3C	В	В	Н	22	0.168
245	D385CCI	Unchanneled valley- bottom	3C	с	С	I	18	0.061
246	D40BBH	Unchanneled valley- bottom	3C	В	В	Н	22	0.727
247	D414DCI	Unchanneled valley- bottom	3C	С	D	I	18	0.108
248	D43BBH	Unchanneled valley- bottom	3C	В	В	Н	22	0.4

249	D445BBVH	Channelled valley- bottom	3C	в	В	Н	26	0.67
250	D46BBH	Unchanneled valley- bottom	3C	В	В	Н	22	0.61
251	D58BBH	Unchanneled valley- bottom	3C	В	В	н	22	0.531
252	D66BBH	Unchanneled valley- bottom	3C	В	В	Н	22	0.68
253	D67BBH	Unchanneled valley- bottom	3C	В	В	н	22	1.428
254	D73BBH	Unchanneled valley- bottom	3C	В	В	Н	22	0.945
255	D75BBH	Unchanneled valley- bottom	3C	В	В	н	22	0.485
257	D80CBH	Unchanneled valley- bottom	3C	В	С	н	22	0.563
258	D89CBH	Unchanneled valley- bottom	3C	В	С	н	22	0.908
259	W1	Unchanneled valley- bottom	3C	В	В	MH	22	0.72
260	W116CCI	Unchanneled valley- bottom	3C	с	С	I	18	0.183
261	W117CCI	Unchanneled valley- bottom	3C	с	С	I	18	0.294
262	W152BBH	Unchanneled valley- bottom	3C	В	В	н	22	0.321
263	W169	Unchanneled valley- bottom	3C	А	С	Н	25	0.392
264	W169	Unchanneled valley- bottom	3C	А	С	Н	25	0.575
265	W27	Unchanneled valley- bottom	3C	В	В	MH	22	0.245
266	W284	Unchanneled valley- bottom	3C	с	В	н	18	0.246
267	W68	Unchanneled valley- bottom	3C	В	С	Н	22	0.608
268	W69	Unchanneled valley- bottom	3C	с	С	MH	18	0.376
269	W78	Unchanneled valley- bottom	3C	В	В	MH	22	0.103
270	D114CBH	Flat	3D	В	С	Н	22	0.352
271	W115CCI	Flat	3D	С	С	I	18	0.881
272	W117	Flat	3D	D	С	MH	14	1.319
273	W117	Flat	3D	С	С	MH	18	2.569

274	W202	Flat	3D	Α	В	Н	25	1.936
275	D121BAH	Seep	3E	Α	В	Н	25	0.09
276	D124CBH	Seep	3E	В	С	Н	22	0.386
277	D125CBH	Seep	3E	В	С	Н	22	0.394
278	D132BCMH	Seep	3E	В	В	Н	22	0.278
279	D19CCI	Seep	3E	С	С	I	18	1.13
280	D202CCI	Seep	3E	В	С	I	22	0.202
281	D33BBMH	Seep	3E	В	В	Н	22	0.694
282	D361CCI	Seep	3E	С	С	I	18	0.412
283	D366DCI	Seep	3E	С	D	I	18	0.086
284	D377BNH	Seep	3E	С	В	Н	18	0.22
285	D506CBH	Seep	3E	В	С	Н	22	0.128
286	D60DCI	Seep	3E	С	D	I	18	1.006
287	D79CBI	Seep	3E	В	С	I	22	1.027
288	D94CBI	Seep	3E	С	С	I	18	0.682
289	D9BBH	Seep	3E	В	В	Н	22	1.464
290	W133	Seep	3E	D	С	MH	14	0.852
291	W170	Seep	3E	D	D	MH	14	0.724
292	W187BCI	Seep	3E	С	В	I	18	0.728
293	W199CCH	Seep	3E	С	С	Н	18	0.476
294	W203BCH	Seep	3E	С	В	Н	18	3.42
295	W220	Seep	3E	С	С	Н	18	1.598
296	W46	Seep	3E	В	С	MH	22	1.027
297	W67	Seep	3E	В	С	I	22	0.944
298	D115CBI	Depression	3F	В	С	Н	17	0.066
299	D116BBH	Depression	3F	В	В	Н	17	0.696
300	D118BBH	Depression	3F	С	В	Н	14	0.384
301	D160DCI	Depression	3F	С	В	I	14	0.177
302	D212BBH	Depression	3F	В	В	Н	17	3.099
303	D49BBH	Depression	3F	В	В	Н	17	0.042
304	D56BBH	Depression	3F	В	В	Н	17	1.042
305	D88CBH	Depression	3F	В	С	Н	17	1.629
306	D92BBH	Depression	3F	В	В	Н	17	0.132
307	W110	Depression	3F	В	С	MH	17	0.811
308	W111	Depression	3F	В	С	MH	17	0.113
309	W127BBI	Depression	3F	В	В	I	17	0.122
310	W217	Depression	3F	С	D	I	14	0.092
311	D107ECI	Channelled valley- bottom	4B	С	E	I	22	0.901
312	D109DCI	Channelled valley- bottom	4B	С	D	I	22	0.757
313	D113DCI	Channelled valley- bottom	4B	В	D	I	26	0.128

214		Channelled	4P	C	D	M	22	0.4
314		bottom	4D	C	D	IVI	22	0.4
315	D122ECL	Channelled valley- bottom	4B	D	E	L	17	0.64
316	D130CBH	Channelled valley- bottom	4B	В	С	н	26	0.203
317	D13DCI	Channelled valley- bottom	4B	С	D	I	22	0.538
318	D144DCI	Channelled valley- bottom	4B	С	D	I	22	0.169
319	D18DCI	Channelled valley- bottom	4B	С	D	I	22	0.481
320	D200CBI	Channelled valley- bottom	4B	В	С	I	26	0.486
321	D215DCL	Channelled valley- bottom	4B	С	D	L	22	0.513
322	D456DDI	Channelled valley- bottom	4B	D	D	I	17	0.325
323	D474BBH	Channelled valley- bottom	4B	В	В	Н	26	0.15
324	D65DBI	Channelled valley- bottom	4B	В	D	I	26	0.6
325	D90DCL	Channelled valley- bottom	4B	С	D	L	22	0.155
326	W149ECL	Channelled valley- bottom	4B	С	E	L	22	0.132
327	W173DCI	Channelled valley- bottom	4B	с	D	I	22	0.058
328	W185DCI	Channelled valley- bottom	4B	с	D	I	22	0.041
329	W195DCI	Channelled valley- bottom	4B	С	D	I	22	0.129
330	W198	Channelled valley- bottom	4B	В	В	MH	26	0.47
331	W201FCL	Channelled valley- bottom	4B	С	F	L	22	5.996
332	W282	Channelled valley- bottom	4B	В	В	МН	26	0.217
333	W58	Channelled valley- bottom	4B	D	С	MH	17	0.015
334	D112DCM	Unchanneled valley- bottom	4C	В	D	Н	22	1.424
335	D12ECL	Unchanneled valley- bottom	4C	С	E	L	18	2.106

336	D14DDL	Unchanneled valley- bottom	4C	D	D	М	14	0.122
337	D16CCI	Unchanneled valley- bottom	4C	С	С	I	18	0.61
338	D26CCI	Unchanneled valley- bottom	4C	С	С	I	18	0.108
339	D26CCI	Unchanneled valley- bottom	4C	С	С	Ι	18	0.16
340	D71DCL	Unchanneled valley- bottom	4C	С	D	L	18	0.813
341	D87CBH	Unchanneled valley- bottom	4C	В	с	Н	22	0.22
342	D87CBH	Unchanneled valley- bottom	4C	В	С	н	22	0.49
343	D8EDML	Unchanneled valley- bottom	4C	D	E	ML	14	0.162
344	W181ECI	Unchanneled valley- bottom	4C	С	E	I	18	0.205
345	D143ECL	Flat	4D	С	Е	L	18	0.35
346	W182ECI	Flat	4D	С	Е	Ι	18	0.097
347	W200ECI	Flat	4D	С	Е	I	18	0.403
348	D399DDL	Seep	4E	В	D	L	22	0.88
349	D55DCL	Seep	4E	С	D	L	18	1.464
350	D59ECL	Seep	4E	С	E	L	18	2.101
351	D63CCL	Seep	4E	С	С	L	18	1.224
352	D83DCL	Seep	4E	С	D	L	18	0.806
353	D85DCL	Seep	4E	С	D	L	18	0.982
354	D95DCI	Seep	4E	С	D	I	18	0.397
355	W194ECL	Seep	4E	С	E	L	18	0.244
356	W195	Seep	4E	В	С	Н	22	0.302
357	W205DCI	Seep	4E	С	D	I	18	1.417
358	W264DCL	Seep	4E	С	D	L	18	0.143
359	W280	Seep	4E	В	С	MH	22	0.103
360	W304	Seep	4E	D	С	I	14	1.636
361	D105EDL	Depression	4F	D	E	L	12	2.442
362	D106EDL	Depression	4F	D	E	L	12	2.433
363	D52EDL	Depression	4F	D	E	L	12	0.492
364	D54ECL	Depression	4F	С	E	L	14	0.613
365	D57DCI	Depression	4F	С	D	I	14	0.849
366	W134EDL	Depression	4F	D	E	L	12	0.093
367	W171	Depression	4F	С	С	MH	14	0.313
368	W171	Depression	4F	D	С	MH	12	0.51
369	W171	Depression	4F	С	С	MH	14	0.896
370	W139	Artificial	Artificial	Α			20	0.767

371	W139	Artificial	Artificial	D		12	1.526
372	D102	Dam	Dam	D		12	0.093
373	D123	Dam	Dam	D		12	0.153
374	D149	Dam	Dam	D	Н	12	1.443
375	D28	Dam	Dam	D	Н	12	0.029
376	W69	Dam	Dam	С		14	0.069
377	W69	Dam	Dam	С		14	0.236
378	D166	Dam	DAM	D		12	1.146
379	D167	Dam	DAM	D		12	0.035
380	D176	Dam	DAM	D		12	0.036
381	D181	Dam	DAM	С		14	0.074
382	D413	Dam	DAM	С		14	0.264
383	W120	Dam	DAM	В		17	0.054
384	W176	Dam	DAM	В		17	0.032
385	W181	Dam	DAM	С		14	0.012
386	W365	Dam	DAM	А		20	0.089
387	W365	Dam	DAM	С		14	0.093
388	W368	Dam	DAM	А		20	0.105

