EXECUTIVE SUMMARY

Manupont (Pty) Ltd is proposing to construct a 60-bed lodge with associated infrastructure on the Remainder of Farm Juliana 647 MS and Portion 1 of Farm Coen Brits 646 MS, within the boundaries of the Lion Farm located within Ekland Safaris. The project area is situated c. 30 km N of Louis Trichardt in the Soutpansberg District of Limpopo Province, RSA. Three lodge site options (1 to 3) are under consideration as well as an airfield. The project area is underlain by Karoo Supergroup sediments of potentially high palaeontological sensitivity in the south and by low-sensitivity Precambrian basement rocks, Quaternary sands and alluvium in the north. Lodge site option 3 overlying Quaternary alluvium as well as the airfield footprint that overlies a range of low-sensitivity basement rocks are not problematic from a palaeontological heritage viewpoint. However, the prominent rocky outcrops of Bobbejaankop, where lodge site options 1 and 2 are located, represent some of the best known exposures of Early Jurassic desert sandstones of the Clarens Formation in the Alldays 1: 250 000 sheet area and are therefore of special geo-heritage interest. They might also feature important, unrecorded fossil remains of dinosaurs and other vertebrates, petrified wood and trace fossils (e.g. trackways), such as are reported from the Clarens Formation elsewhere in Limpopo. Potentially detrimental impacts to any unrecorded fossil remains and geosites posed by lodge construction as well as increased human activity on Bobbejaankop need to be considered and assessed. It is therefore recommended that a palaeontological field survey of the project area, with a special focus on Bobbejaankop, be conducted before authorization for a lodge or any other major development on this rocky outcrop is granted. Any new fossil or geological finds would be of geotourism as well as scientific research interest. Should it be decided to rather proceed with lodge development at the site option 3 only, there are no objections on palaeontological heritage grounds to authorization of the development, including the associated airstrip, and no further specialist palaeontological mitigation or monitoring is necessary. In all cases the Chance Fossil Finds Protocol appended to this report should be applied by the responsible ECO. If any substantial fossil remains (e.g. vertebrate bones, teeth, petrified wood) are found during construction SAHRA should be notified immediately (Contact details: SAHRA, 111 Harrington Street, Cape Town. PO Box 4637, Cape Town 8000, South Africa. Phone: +27 (0)21 462 4502. Fax: +27 (0)21 462 4509. Web: www.sahra.org.za). This is so that appropriate mitigation (i.e. recording, sampling or collection) by a palaeontological specialist can be considered and implemented, at the developer’s expense.
1. INTRODUCTION

1.1. Project outline and brief

The company Manupont (Pty) Ltd is proposing to construct a 60-bed lodge with associated structures and infrastructure on the Remainder of the Farm Juliana 647 MS and Portion 1 of the Farm Coen Brits 646 MS, located within the boundaries of the Lion Farm located within Ekland Safaris. The project area is situated on the northern foothills of the Soutpansberge Range and just east of the N1, c. 30 km N of Louis Trichardt and c. 50 km SSW of Musina in the Soutpansberg District, Limpopo Province, RSA (Fig. 1). Three lodge site options (1 to 3) are under consideration as well as an airport (Figs. 2 & 3).

The client is submitting an application for Environmental Authorisation for all listed activities associated with the construction and operation of the lodge which will be submitted to the Limpopo Department of Economic Development, Environment and Tourism (LEDET) in terms of the NEMA 107 of 1998 via a Basic Assessment process. A Water Use Licence Application will be submitted to the Department of Water and Sanitation for activities triggered that are listed within section 21 of the National Water Act 36 of 1998. The Basic Assessment process is being co-ordinated by Aurecon South Africa (Pty) Ltd (Contact details: Ms Anne-Mari White. Aurecon South Africa (Pty) Ltd. Address: 10 Nel Street, Sonheuwel Central, Nelspruit, 1200. Tel: (013) 752 7055. Fax: 086 5711464. E-mail: Anne-Mari.White@aurecongroup.com).

A Phase 1 Heritage Impact Assessment (HIA), required in terms of Section 38(1) of the South African Heritage Resources Act (25 of 1999), will also be submitted to the Provincial Heritage Resources Authority of Limpopo (LIHRA). The HIA is being conducted by G&A Heritage (Pty) Ltd (Contact details: Mr Stephan Gaigher. G&A Heritage (Pty) Ltd. 38A Vorster Street, Louis Trichardt 0920. Cell: 073 752 6583. Tel: 015 516 1561. E-mail: stephan@gaheritage.co.za). Since the project footprint overlies potentially fossiliferous sediments of the Karoo Supergroup, a desktop Palaeontological Assessment has been commissioned as part of the HIA by G&A Heritage (Pty) Ltd.
1.2. Legislative context for palaeontological assessment studies

The various categories of heritage resources recognised as part of the National Estate in Section 3 of the National Heritage Resources Act (Act 25 of 1999) include, among others:

- geological sites of scientific or cultural importance;
- palaeontological sites;
- palaeontological objects and material, meteorites and rare geological specimens.

According to Section 35 of the National Heritage Resources Act, dealing with archaeology, palaeontology and meteorites:

(1) The protection of archaeological and palaeontological sites and material and meteorites is the responsibility of a provincial heritage resources authority.

(2) All archaeological objects, palaeontological material and meteorites are the property of the State.

(3) Any person who discovers archaeological or palaeontological objects or material or a meteorite in the course of development or agricultural activity must immediately report the find to the responsible heritage...
resources authority, or to the nearest local authority offices or museum, which must immediately notify such heritage resources authority.

(4) No person may, without a permit issued by the responsible heritage resources authority—

(a) destroy, damage, excavate, alter, deface or otherwise disturb any archaeological or palaeontological site or any meteorite;

(b) destroy, damage, excavate, remove from its original position, collect or own any archaeological or palaeontological material or object or any meteorite;

(c) trade in, sell for private gain, export or attempt to export from the Republic any category of archaeological or palaeontological material or object, or any meteorite; or

(d) bring onto or use at an archaeological or palaeontological site any excavation equipment or any equipment which assist in the detection or recovery of metals or archaeological and palaeontological material or objects, or use such equipment for the recovery of meteorites.

(5) When the responsible heritage resources authority has reasonable cause to believe that any activity or development which will destroy, damage or alter any archaeological or palaeontological site is under way, and where no application for a permit has been submitted and no heritage resources management procedure in terms of section 38 has been followed, it may—

(a) serve on the owner or occupier of the site or on the person undertaking such development an order for the development to cease immediately for such period as is specified in the order;

(b) carry out an investigation for the purpose of obtaining information on whether or not an archaeological or palaeontological site exists and whether mitigation is necessary;

(c) if mitigation is deemed by the heritage resources authority to be necessary, assist the person on whom the order has been served under paragraph (a) to apply for a permit as required in subsection (4); and

(d) recover the costs of such investigation from the owner or occupier of the land on which it is believed an archaeological or palaeontological site is located or from the person proposing to undertake the development if no application for a permit is received within two weeks of the order being served.

Minimum standards for the palaeontological component of heritage impact assessment reports (PIAs) have been published by SAHRA (2013).

1.3. Approach to the desktop palaeontological heritage study

The approach to this desktop palaeontological heritage study is briefly as follows. Fossil bearing rock units occurring within the broader study area are determined from geological maps and satellite images. Known fossil heritage in each rock unit is inventoried from scientific literature, previous assessments of the broader study region, and the author’s field experience and palaeontological database (See Table 1). Based on this data as well as field examination of representative exposures of all major sedimentary rock units present, the impact significance of the proposed development is assessed and recommendations for any necessary further studies or mitigation are made.

In preparing a palaeontological desktop study the potentially fossiliferous rock units (groups, formations etc.) represented within the study area are determined from geological maps and satellite images. The known fossil
heritage within each rock unit is inventoried from the published scientific literature, previous palaeontological impact studies in the same region, and the author’s field experience (consultation with professional colleagues as well as examination of institutional fossil collections may play a role here, or later following field assessment during the compilation of the final report). This data is then used to assess the palaeontological sensitivity of each rock unit to a development (Provisional tabulations of palaeontological sensitivity of all formations in the Limpopo Province have already been compiled by J. Almond and colleagues; cf Groenewald & Groenewald 2014).

The likely impact of the proposed development on local fossil heritage is then determined on the basis of (1) the palaeontological sensitivity of the rock units concerned, and (2) the nature and scale of the development itself, most significantly the extent of fresh bedrock excavation envisaged. When rock units of moderate to high palaeontological sensitivity are present within the development footprint, a Phase 1 field assessment study by a professional palaeontologist is usually warranted to identify any palaeontological hotspots and make specific recommendations for any mitigation required before or during the construction phase of the development.

On the basis of the desktop and Phase 1 field assessment studies, the likely impact of the proposed development on local fossil heritage and any need for specialist mitigation are then determined. Adverse palaeontological impacts normally occur during the construction rather than the operational or decommissioning phase. Phase 2 mitigation by a professional palaeontologist – normally involving the recording and sampling of fossil material and associated geological information (e.g. sedimentological data) may be required (a) in the pre-construction phase where important fossils are already exposed at or near the land surface and / or (b) during the construction phase when fresh fossiliferous bedrock has been exposed by excavations. To carry out mitigation, the palaeontologist involved will need to apply for a palaeontological collection permit from the relevant heritage management authority (e.g. SAHRA for Limpopo Province). It should be emphasized that, provided that appropriate mitigation is carried out, the majority of developments involving bedrock excavation can make a positive contribution to our understanding of local palaeontological heritage.

1.4. Assumptions & limitations

The accuracy and reliability of palaeontological specialist studies as components of heritage impact assessments are generally limited by the following constraints:

1. Inadequate database for fossil heritage for much of the RSA, given the large size of the country and the small number of professional palaeontologists carrying out fieldwork here. Most development study areas have never been surveyed by a palaeontologist.

2. Variable accuracy of geological maps which underpin these desktop studies. For large areas of terrain these maps are largely based on aerial photographs alone, without ground-truthing. The maps generally depict only significant (“mappable”) bedrock units as well as major areas of superficial “drift” deposits (alluvium,
colluvium) but for most regions give little or no idea of the level of bedrock outcrop, depth of superficial cover (soil etc.), degree of bedrock weathering or levels of small-scale tectonic deformation, such as cleavage. All of these factors may have a major influence on the impact significance of a given development on fossil heritage and can only be reliably assessed in the field.

3. Inadequate sheet explanations for geological maps, with little or no attention paid to palaeontological issues in many cases, including poor locality information.

4. The extensive relevant palaeontological “grey literature” - in the form of unpublished university theses, impact studies and other reports (e.g. of commercial mining companies) - that is not readily available for desktop studies.

5. Absence of a comprehensive computerized database of fossil collections in major RSA institutions which can be consulted for impact studies. A Karoo fossil vertebrate database is now accessible for impact study work.

In the case of palaeontological desktop studies without supporting Phase 1 field assessments these limitations may variously lead to either:
(a) underestimation of the palaeontological significance of a given study area due to ignorance of significant recorded or unrecorded fossils preserved there, or
(b) overestimation of the palaeontological sensitivity of a study area, for example when originally rich fossil assemblages inferred from geological maps have in fact been destroyed by tectonism or weathering, or are buried beneath a thick mantle of unfossiliferous “drift” (soil, alluvium etc.).

Since most areas of the RSA have not been studied palaeontologically, a palaeontological desktop study usually entails inferring the presence of buried fossil heritage within the study area from relevant fossil data collected from similar or the same rock units elsewhere, sometimes at localities far away. Where substantial exposures of bedrocks or potentially fossiliferous superficial sediments are present in the study area, the reliability of a palaeontological impact assessment may be significantly enhanced through field assessment by a professional palaeontologist. In the present case, site visits to the various loop and borrow pit study areas in some cases considerably modified our understanding of the rock units (and hence potential fossil heritage) represented there.

In the case of the Ekland Safaris Lion Farm project area near Louis Trichardt, Limpopo Province, the main limitation for fossil heritage studies is the paucity of previous field-based specialist palaeontological studies in the Tshipise Karoo Basin, and indeed in the Limpopo Province as a whole. It is noted, for example, that HIAs for several major coal mining projects to the east, west and northwest of the present study area (e.g. Chapudi Coal Project, Greater Soutpansberg Mopane Coal Project, Generaal Coal Project) do not have a palaeontological heritage component.
1.5. Information sources

The information used in this desktop study was based on the following:

1. Project outlines, kmz files and maps provided by G&A Heritage;

2. A review of the relevant scientific literature, including published geological maps and accompanying sheet explanations (e.g. Brandl 1981, Brandl 2002, Groenewald & Groenewald 2014) (Note that no relevant PIA reports for the region could be traced on SAHRIS);

3. Examination of relevant 1: 250 000 topographical maps and Google Earth© satellite images;

4. The author’s previous field experience with the formations concerned and their palaeontological heritage (Table 1).
Figure 2. Satellite image of the project area for the proposed Ekland Safaris lodge near Louis Trichardt, Limpopo Province, showing the land portions concerned and three lodge site options under consideration.
Figure 3. Google Earth© satellite image of the project area for the proposed Ekland Safaris lodge near Louis Trichardt showing in yellow the footprints of the three lodge sites under consideration (1 to 3) as well as that of the proposed airstrip in orange. The green symbols refer to bedrock units identified on the basis of the geological map shown in Figure 4 (Please refer to figure legend there). Rocky upland areas in the southern portion of the project area underlain by Clarens Formation sandstones (TRct) that are potentially of high geoheritage and palaeontological sensitivity.
Figure 4. Extract from 1: 250 000 geology sheet 2228 Alldays (Council for Geoscience, Pretoria) showing the geology of the Ekland Safaris lodge project area (yellow polygon) near Louis Trichardt, Limpopo Province. The three numbered lodge site options are shown by yellow triangles and the approximate location of the proposed airport by the blue rectangle. Please see following page for a key to the main rock units represented here.
Key to rock units within the project area represented on the 1: 250 000 geological map:

1. **BEIT BRIDGE COMPLEX (Archaean)**

   Dowe Complex (Zd, yellow) – metaquartzites and associated high-grade metamorphic rocks

2. **SOUTPANSBERG GROUP (Proterozoic)**

   Sibasa Formation (Ms, olive green with stipple) – basaltic lavas and minor sandstones
   Wylie’s Poort Formation (Mw, brown) – quartzites with minor conglomerates, shales

3. **PRE-KAROO INTRUSIONS (Proterozoic, c. 1.6 Ga)**

   Diabase dykes & sills (Mdl, dark green) – basic igneous intrusions

4. **KAROO SUPERGROUP (Late Carboniferous – Early Jurassic)**

   Clarens Formation -
   Red Rocks Member (TRcr, pink with stipple) – reddish argillaceous sandstones with minor limestones
   Tshipise Member (TRct, pink) – pale aeolian sandstones

5. **LEBOMBO GROUP (Early Jurassic)**

   Letaba Formation (Jl, grey) – basic lavas within minor sandstone interbeds

6. **LATE CAENOZOIC SUPERFICIAL SEDIMENTS**

   Sandy soils (Qs, pale yellow)

---

2. **GEOLOGICAL OUTLINE OF THE PROJECT AREA**

The Ekland Safaris lodge project area near Louis Trichardt in Limpopo Province is situated on the border between the Soutpansberg and Eastern Limpopo Flats Geomorphic Provinces of the RSA, as defined by Partridge *et al.* (2010). The area comprises hilly terrain on the northern margins of the east-west trending Soutpansberg Range that is drained by the Mutamba River and its tributaries. As seen on satellite images (Figs. 2 & 3) and field photographs kindly provided by G&A Heritage (Pty) Ltd, lodge site options 1 and 2 are both located in a west-east tract of elevated, ruggedly rocky terrain known as Bobbejaankop (700-845 m amsl) towards the southern edge of the study area. The lodge site option 3 lies further north, close to a shallow, well-wooded drainage line traversing lower- and flatter-lying sandveld terrain.

The geology of the project area is shown on 1: 250 000-scale geology sheet 2228 Alldays published by the Council for Geoscience, Pretoria (Fig. 4), with an accompanying sheet explanation by Brandl (2002). Also relevant here is the geological explanation to the adjoining 1: 250 000 sheet Messina by Brandl (1981). The southern sector of the project area is underlain by *Karoo Supergroup* continental sediments of Triassic to Jurassic age that form part of the fault-bound *Tshipise Basin* of Limpopo.
The stratigraphy of the Karoo succession in the Tshipise Basin is outlined by Johnson et al. (2006) (Fig. 5) based on earlier accounts by McCourt and Brandl (1980), Van der Berg (1980) and Brandl (1981). Rock units mapped within the project area include the Red Rocks Member (TRcr, pink with dark stipple) and the overlying Tshipise Member (TRct, pink). Both of these sandstone-dominated units were included within the Clarens Formation by Brandl (1981) and Johnson et al. (2006) but it is noted that an alternative correlation of the Red Rocks Member with the slightly older Elliot Formation of the Main Karoo Basin has also been considered (cf Bordy 2006). The Red Rocks Member comprises up to 150 m of fine-grained, pinkish to reddish or mottled argillaceous sandstone with occasional m-thick limestone interbeds towards the base. In the south-eastern sector of the Messina 1: 250 000 sheet this unit also contains conglomerates with sandstone, quartzite and lava clasts within a reddish sandy matrix. No exposures of this member are reported in the Alldays sheet area, however. The overlying Tshipise Member is also up to 150 m thick and consists of pale white to cream-hued aeolianites, variously massive or showing large-scale aeolian cross-beds reflecting deposition as barchan dunes in an arid sandy desert setting. Calcareous diagenetic concretions may occur towards the base which has a gradational contact with the underlying, poorly-exposed Red Rocks Member. The Tshipise beds tends to weather prominently and often build cliffs and caves (“Cave Sandstone”). Secondary silification along well-defined fractures is commonly seen. Brandl (2002) notes that the Bobbejaankop outcrops – where the lodge site options 1 and 2 are located - are among the best known exposures of the Tshipise Member in the Alldays sheet area, so this area is certainly of geoscientific conservation value.

The Karoo sedimentary succession in the Tshipise Basin was terminated by voluminous eruption of basaltic lavas of the Letaba Formation (Lebombo Group) which forms part of the Early Jurassic Karoo Igneous Province (c. 183 Ma; Duncan & Marsh 2006). Lenticular arenitic (sandy) units up to a few meters thick are locally interbedded with the dark grey lavas in the Alldays sheet area. A small area of Letaba lavas is mapped close to the N1 on the south-western margins of the project area.

The lower-lying, and topographically more subdued, northern half of the project area contrasts strongly with the southern, Karoo Supergroup-dominated half, from which it is separated by a major E-W trending fault (= local margin of the Tshipise Basin). The northern sector is underlain at depth by a range of Precambrian bedrocks assigned to the Archaean Beit Bridge Complex, the Proterozoic Soutpansberg Group and unnamed diabase intrusions (weathered dolerite) of pre-Karoo age. The Beit Bridge Complex, with only a narrow outcrop area in the northeast, is represented here by the metaquartzite-dominated Mount Dowe Group which also contains a range of other high-grade metasedimentary facies. The Soutpansberg Group is represented by braided alluvial quartzites (often cross-bedded and rippled) of the Wyllie’s Poort Formation with subordinate pebbly conglomerates and shales, as well as by basaltic lavas of the Sibasa Formation that may also have sandy interbeds. The outcrops of these ancient basement rocks are extensively mantled by Quaternary sandy soils and downwasted rubbly gravels, and locally by sandy to gravelly along drainage lines.
Lodge site options 1 and 2 are situated on the Tshipise Member (Clarens Formation) outcrop area. The proposed airfield would be constructed in topographically subdued terrain in the central part of the project area that is underlain at depth by Precambrian basement rocks in the north and centre and by Karoo Supergroup bedrocks towards the southwest end. The lodge site option 3 is underlain by Late Cenozoic alluvium close to a drainage line that may well be incised along a substantial fault. Precambrian basement rocks beneath the cover sediments probably belong to the Soutpansberg Group.

Figure 5. Lithostratigraphy of the Karoo Supergroup succession in the Tshipise Basin (column 4) and proposed correlations with other Karoo basins in the RSA (From Johnson et al. 2006). Rock units represented in the present study area are outlined in red.
3. PALAEONTOLOGICAL HERITAGE

The palaeontology of the sedimentary bedrocks represented in the Ekland Safaris lodge project area is poorly known - as indeed is the palaeontology of the Limpopo Province as a whole. This reflects in part the lack of good bedrock exposures of the more readily-weathered Karoo Supergroup sediments, but also the paucity of field studies by palaeontologists - including impact specialists (The lack of PIAs for several major mining developments along the northern margins of the Soutpansberg is highly regrettable in this regard).

The fossil record and inferred palaeontological sensitivity of the rock units found within the study area is outlined in Table 1 below. Note that none of the Precambrian basement units is palaeontologically sensitive, so they will not be treated further here.

The Clarens Formation has yielded a surprising diversity of fossil taxa within the various Karoo-aged basins of southern Africa, despite the arid sandy desert setting of the majority of these rocks (cf MacRae 1999, McCarthy & Rubidge 2005). Some of the fossils are associated with interdune ephemeral lake deposits. These fossil biotas are assigned to the Massospondylus Assemblage Zone of Early Jurassic age (c. 200-180 Ma) (Rubidge 2005, Smith et al. 2012) and include groups such as:

- **Vascular plants** - arthrophyte ferns, conifers and cycads as well as petrified logs;
- **Freshwater crustaceans** (conchostracans, triopsid tadpole shrimps, ostracods);
- **Trace fossils** of invertebrates such as arthropods (e.g. contentious termitaria) and molluscs;
- **Primitive bony fish** (e.g. well-known mass-mortality occurrences of *Semionotus*);
- A variety of **dinosaurs**, including prosauropods and sauropodomorphs (e.g. the common *Massospondylus*), heterodontosaurid and fabrosaurid ornithischians, as well as dinosaur trackways, coprolites and eggshells;
- **Crocodylomorphs**;
- Rare advanced **cynodonts** as well as some of the earliest true **mammaliaforms**.

These Clarens fossil assemblages are not only of interest in illuminating the long-lost arid desert ecosystems of Pangaea but also document an important interval in terrestrial evolution and biotic turnover between the major Late Triassic mass extinct event of c. 201 Ma and a second order, Early Jurassic extinction that coincided with intense igneous activity in the Karoo-Ferrar Large Igneous Province at around 183 Ma. The vertebrate fauna is of special interest for its dinosaur remains and rare fossils of small-bodied cynodont therapsids that shed light on the evolution of early mammals.

While the geology and palaeontology of the better-exposed Clarens Formation of the Tuli Basin in northern Limpopo has been well studied (e.g. Bordy & Catuneanu 2002), the Tshipise Basin outcrop area of this formation is much more poorly known. To the author’s knowledge, no Karoo fossils have yet been recorded from the present study area near Louis Trichardt or in its vicinity. Most of the Karoo fossil plant and dinosaur finds from the Tshipise Basin have been located within the comparatively well-

More systematic palaeontological investigation of any good exposures elsewhere - such as Bobbejaankop in the present study area - might well yield important new fossil remains, such as dinosaur bones and teeth, petrified wood, vertebrate trackways and other trace fossils. It is concluded that the southern portion of the Ekland Safaris lodge project area should be considered as high sensitivity as a precautionary measure, pending palaeontological field investigation.

4. CONCLUSIONS AND RECOMMENDATIONS

The project area for the Ekland Safaris lodge and associated airfield near Louis Trichardt, Limpopo Province, is underlain by Karoo Supergroup sediments of potentially high palaeontological sensitivity in the south and by low-sensitivity Precambrian basement rocks, Quaternary sands and alluvium in the north. Lodge site option 3 overlying Quaternary alluvium as well as the airfield footprint that overlies a range of low-sensitivity basement rocks are not problematic from a palaeontological heritage viewpoint. However, the prominent rocky outcrops of Bobbejaankop, where lodge site options 1 and 2 are located, represent some of the best known exposures of Early Jurassic desert sandstones of the Clarens Formation in the Alldays 1: 250 000 sheet area (Brandl 2002) and are therefore of special geo-heritage interest. They might also feature important, unrecorded fossil remains of dinosaurs and other vertebrates, petrified wood and trace fossils (e.g. trackways), such as are reported from the Clarens Formation elsewhere in Limpopo. Potentially detrimental impacts to any unrecorded fossil remains and geosites posed by lodge construction as well as increased human activity on Bobbejaankop need to be considered and assessed. It is therefore recommended that a palaeontological field survey of the project area, with a special focus on Bobbejaankop, be conducted before authorization for a lodge or any other major development on this rocky outcrop is granted. Any new fossil or geological finds would be of geotourism as well as scientific research interest. Should it be decided to rather proceed with lodge development at the site option 3 only, there are no objections on palaeontological heritage grounds to authorisation of the development, including the associated airstrip, and no further specialist palaeontological mitigation or monitoring is necessary.

In all cases the Chance Fossil Finds Protocol appended to this report should be applied by the responsible ECO. If any substantial fossil remains (e.g. vertebrate bones, teeth, petrified wood) are found during construction SAHRA should be notified immediately (Contact details: SAHRA, 111 Harrington Street, Cape Town. PO Box 4637, Cape Town 8000, South Africa. Phone: +27 (0)21 462 4502. Fax: +27 (0)21 462 4509. Web: www.sahra.org.za). This is so that appropriate mitigation (i.e. recording, sampling or collection) by a palaeontological specialist can be considered and implemented, at the developer's expense.
These recommendations must be incorporated into the Environmental Management Programme for the lodge and airfield development. The palaeontologist concerned with mitigation work will need a valid collection permit from SAHRA. All work would have to conform to international best practice for palaeontological fieldwork and the study (e.g. data recording fossil collection and curation, final report) should adhere to the minimum standards for Phase 2 palaeontological studies published by SAHRA (2013).

5. ACKNOWLEDGEMENTS

Mr Stephan Gaigher of G&A Heritage (Pty) Ltd, Louis Trichardt, is thanked for commissioning this study and for providing the relevant background information as well as a useful series of field photographs from the project area.

6. REFERENCES


VAN HEERDEN, J. 1979. The morphology and taxonomy of *Euskelosaurus* (Reptilia: Saurischia; Late Triassic) from South Africa. Navorsinge van die Nasionale Museum, Bloemfontein 4, 21-84.


7. QUALIFICATIONS & EXPERIENCE OF THE AUTHOR

Dr John Almond has an Honours Degree in Natural Sciences (Zoology) as well as a PhD in Palaeontology from the University of Cambridge, UK. He has been awarded post-doctoral research fellowships at Cambridge University and in Germany, and has carried out palaeontological research in Europe, North America, the Middle East as well as North and South Africa. For eight years he was a scientific officer (palaeontologist) for the Geological Survey / Council for Geoscience in the RSA. His current palaeontological research focuses on fossil record of the Precambrian - Cambrian boundary and the Cape Supergroup of South Africa. He has recently written palaeontological reviews for several 1: 250 000 geological maps published by the Council for Geoscience and has contributed educational material on fossils and evolution for new school textbooks in the RSA.

Since 2002 Dr Almond has also carried out palaeontological impact assessments for developments and conservation areas in the Western, Eastern and Northern Cape, Limpopo, Gauteng, KwaZulu- Natal, Mpumalanga, North West and Free State under the aegis of his Cape Town-based company *Natura Viva* cc. He has been a long-standing member of the Archaeology, Palaeontology and Meteorites Committee for Heritage Western Cape (HWC) and an advisor on palaeontological conservation and management issues for the Palaeontological Society of South Africa (PSSA), HWC and SAHRA. He is currently compiling technical reports on the provincial palaeontological heritage of Western, Northern and Eastern Cape for SAHRA and HWC. Dr Almond is an accredited member of PSSA and APHP (Association of Professional Heritage Practitioners – Western Cape).

Declaration of Independence

I, John E. Almond, declare that I am an independent consultant and have no business, financial, personal or other interest in the proposed development project, application or appeal in respect of which I was appointed other than fair remuneration for work performed in connection with the activity, application or appeal. There are no circumstances that compromise the objectivity of my performing such work.

John E. Almond (2018)  
*Natura Viva* cc
<table>
<thead>
<tr>
<th>GEOLOGICAL UNIT</th>
<th>ROCK TYPES &amp; AGE</th>
<th>FOSSIL HERITAGE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>CAENOZOIC SUPERFICIAL DEPOSITS</strong></td>
<td>Aeolian sand, alluvium, colluvium, spring tufa (calcareous) and sinter (siliceous), lake deposits, peats, pedocretes or duricrusts (calcrete, ferricrete), soils</td>
<td>Very wide range of possible fossil remains, though these are often sparse, such as: mammalian bones and teeth, tortoise remains, ostrich eggshells, non-marine mollusc shells, ostracods, diatoms and other microfossil groups,</td>
<td>Poorly investigated palaeontologically.</td>
</tr>
<tr>
<td><strong>KAROO IGNEOUS PROVINCE</strong></td>
<td>Up to 13 km of volcanic rocks (basic and acid lavas) and rare interbedded sandstones</td>
<td>Fossils might occur within thin sedimentary intervals (e.g. plants, traces, vertebrate bones)</td>
<td>Karroo-Ferrar igneous intrusions are probably associated with Early Jurassic global mass extinction event</td>
</tr>
<tr>
<td><strong>KAROO DOLERITE SUITE</strong></td>
<td>Dolerite intrusions (dykes, sills)</td>
<td>NO FOSSILS</td>
<td></td>
</tr>
<tr>
<td><strong>TSHIPISE BASIN</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Clarens Fm (TRc)</strong></td>
<td>Tshipise Member – cream-coloured aeolian sst, playa lake deposits</td>
<td>Trackways and skeletal remains of dinosaurs (Massospondylus). Stratigraphy uncertain.</td>
<td>Tshipise Basin:</td>
</tr>
<tr>
<td>Prob. = U. Elliot + Clarens</td>
<td>Red Rocks Member – Pale red sst with</td>
<td></td>
<td>• Comprises several fault-bound basins within the Limpopo Belt</td>
</tr>
<tr>
<td></td>
<td>calcareous concretions</td>
<td></td>
<td>• The precise stratigraphic context of recorded dinosaur fossils is often unclear in the literature</td>
</tr>
<tr>
<td><strong>Bosbokpoort Fm (P-TRkb)</strong></td>
<td>Red mudrocks and sst with calcareous concretions, arid meandering fluvial setting</td>
<td>Dinosaur remains – including juveniles - in red siltstones (e.g. Nyalaland, Kruger Park) attributed to several genera including &quot;Euskeleusaurus&quot; and Massospondylus (but stratigraphy uncertain)</td>
<td></td>
</tr>
<tr>
<td>Prob. = Elliot</td>
<td></td>
<td></td>
<td>• Historical records of fossil plants along the Sabie River (Kruger Park) in the late C19.</td>
</tr>
<tr>
<td><strong>Klopperfontein Fm (P-TRkb)</strong></td>
<td>Braided fluvial sandstones, grits, minor conglomerates</td>
<td>No fossils recorded</td>
<td>• Ecca equivalent plant fossils include leaves, Vertebrae root systems and petrified wood.</td>
</tr>
<tr>
<td>Correlated variously with Molteno and Elliot Fms</td>
<td></td>
<td></td>
<td>N.B. Stratigraphy shown on 1: 250 000 maps has since been revised, implying new correlations with the Karoo Supergroup succession in the Main Karoo Basin (See Bordy 2006)</td>
</tr>
<tr>
<td><strong>Solitude Fm (P-TRs)</strong></td>
<td>Purple and grey mudrocks, sandstones and minor coals, meandering fluvial setting.</td>
<td>Coal floras including Dicroidium in basal Solitude succession. Dinosaur remains supposedly recorded from this unit may rather be from the younger Bosbokpoort Fm (qv)</td>
<td></td>
</tr>
<tr>
<td>U. part poss. = Elliot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. part prob. = Molteno</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Fripp Fm (Pm)</strong></td>
<td>Braided fluvial sandstones, grits, conglomerates, mudrocks</td>
<td>Dicroidium flora in upper part of succession (i.e. Triassic)</td>
<td></td>
</tr>
<tr>
<td>Prob. = Molteno</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Mikambeni Fm (Pm)</strong></td>
<td>Fluvial mudstones, carbonaceous shales, sandstones, coals. Siderite nodules</td>
<td>Glossopterid coal flora. Siderite nodules might also be fossiliferous (cf Euamerican Carboniferous Coal Measures)</td>
<td></td>
</tr>
<tr>
<td><strong>Mdzaringwe Fm (Pm)</strong></td>
<td>Fluvial sandstones, siltstones and shales plus coals</td>
<td>Glossopterid coal flora</td>
<td></td>
</tr>
<tr>
<td><strong>Tschidzi Fm (Pm)</strong></td>
<td>Glacial and fluvioglacial diamictite, sst</td>
<td>No fossils recorded</td>
<td></td>
</tr>
<tr>
<td>PROTEROZOIC RED BED SUCCESSIONS</td>
<td>SOUTPANSBERG GROUP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ms – Stayt Fm</td>
<td>Continental “red beds” - predominantly braided stream deposits (sandstones, conglomerates with minor mudrocks).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mt – Sibasa &amp; Tshifhefhe Fms</td>
<td>Also beach, tidal flat, lacustrine, aeolian and possible marine shelf sediments.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mf – Fundudzi Fm</td>
<td>Basaltic lavas in Sibasa and Musekwa Formations of Soutpansberg Group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mw – Wyllie’s Poort Fm</td>
<td>Early to Mid Proterozoic (Mokolian)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mnz – Nzhelele Fm</td>
<td>c. 2 to 1.7 Ga</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mmb – Mabaligwe Fm</td>
<td>No fossils recorded.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

_N.B._ Earliest known terrestrial cyanobacterial mats recorded from similar aged playa lake deposits of the Makgabeng Fm (Waterberg Group) (1.8 Ga).

Early Proterozoic “red beds” provide evidence for the development of an oxygenated atmosphere after c. 2Ga.

<table>
<thead>
<tr>
<th>ARCHAEAN GRANITE-GNEISS BASEMENT</th>
<th>(e.g. Beit Bridge Complex: Mount Dowe Group, Zd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intrusive granitoids, gneisses, migmatites, metaquartzites and other high grade metamorphic rocks</td>
<td>NO FOSSILS</td>
</tr>
<tr>
<td>Early to Late Archaean 3.6 –2.4 (Swazian / Randian)</td>
<td>These ancient rocks build one of the oldest surviving blocks of continental crust (Kaapvaal Craton)</td>
</tr>
<tr>
<td></td>
<td>The famous Sand River Gneisses of the Limpopo Belt near Messina (previously designated National Monument) are spectacular examples of highly metamorphosed early crustal rocks (3.4 to 3.2 Ga)</td>
</tr>
</tbody>
</table>

Table 1: Summary of known fossil heritage from the main rock units represented in the study area near Louis Trichardt, Limpopo Province. Font colour gives an indication of inferred palaeontological sensitivity (black = VERY LOW; blue = LOW; green = MEDIUM; RED = HIGH).
APPENDIX: CHANCE FOSSIL FINDS PROCEDURE: Lodge & airfield on Remainder of the Farm Juliana 647 MS and Portion 1 of the Farm Coen Brits 646 MS

<table>
<thead>
<tr>
<th>Province &amp; region:</th>
<th>LIMPOPO PROVINCE, Soutpansberg District</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responsible Heritage Resources Authority</td>
<td>SAHRA (Contact details: Dr Ragna Redelstorff, SAHRA, P.O. Box 4637, Cape Town 8000. Tel: 021 202 8651. Email: <a href="mailto:rredelstorff@sahra.org.za">rredelstorff@sahra.org.za</a> or Ms Natasha Higgitt. Tel: 021 462 4502. Email: <a href="mailto:nhiggitt@sahra.org.za">nhiggitt@sahra.org.za</a>)</td>
</tr>
<tr>
<td>Rock unit(s)</td>
<td>Clarens Formation (Karoo Supergroup), Late Cenozoic alluvium</td>
</tr>
<tr>
<td>Potential fossils</td>
<td>Vertebrate (including dinosaur) bones, teeth, trackways, petrified wood or other plant material mammalian bones, teeth &amp; horn cores</td>
</tr>
</tbody>
</table>

**ECO protocol**

1. Once alerted to fossil occurrence(s): alert site foreman, stop work in area immediately (N.B. safety first!), safeguard site with security tape / fence / sand bags if necessary.

2. Record key data while fossil remains are still *in situ*:
   - Accurate geographic location – describe and mark on site map / 1: 50 000 map / satellite image / aerial photo
   - Context – describe position of fossils within stratigraphy (rock layering), depth below surface
   - Photograph fossil(s) *in situ* with scale, from different angles, including images showing context (e.g. rock layering)

3. If feasible to leave fossils *in situ*:
   - Alert Heritage Resources Authority and project palaeontologist (if any) who will advise on any necessary mitigation
   - Ensure fossil site remains safeguarded until clearance is given by the Heritage Resources Authority for work to resume

3. If not feasible to leave fossils *in situ* (emergency procedure only):
   - Carefully remove fossils, as far as possible still enclosed within the original sedimentary matrix (e.g. entire block of fossiliferous rock)
   - Photograph fossils against a plain, level background, with scale
   - Carefully wrap fossils in several layers of newspaper / tissue paper / plastic bags
   - Safeguard fossils together with locality and collection data (including collector and date) in a box in a safe place for examination by a palaeontologist
   - Alert Heritage Resources Authority and project palaeontologist (if any) who will advise on any necessary mitigation

4. If required by Heritage Resources Authority, ensure that a suitably-qualified specialist palaeontologist is appointed as soon as possible by the developer.

5. Implement any further mitigation measures proposed by the palaeontologist and Heritage Resources Authority

**Specialist palaeontologist**

Record, describe and judiciously sample fossil remains together with relevant contextual data (stratigraphy / sedimentology / taphonomy). Ensure that fossils are curated in an approved repository (e.g. museum / university / Council for Geoscience collection) together with full collection data. Submit Palaeontological Mitigation report to Heritage Resources Authority. Adhere to best international practice for palaeontological fieldwork and Heritage Resources Authority minimum standards.