Prepared by: UMHLABA GEOTECHNICAL ENGINEERS

123 Marineview Avenue Durban North 4016 Cell: 078 518 4959 Email: info.umhlabageotech@gmail.com

Prepared for:

MONDLI CONSULTING (PTY) LTD

GEOTECHNICAL INVESTIGATION REPORT FOR THE PROPOSED NEW SERVICE STATION AND ASSOCIATED INFRASTRUCTURE AT KWAMBONAMBI, KWAZULU-NATAL

DATE: 14 JULY 2022

OUR REFERENCE: UGE-03-2022-R00

REASON FOR ISSUE: FINAL GEOTECHNICAL INVESTIGATION REPORT

TABLE OF CONTENTS

1.	INTRODUCTION	.3
1.	1 Aims and Scope of Report	. 3
2.	INFORMATION SUPPLIED	.3
3.	DESCRIPTION OF SITE	.4
3.1	SITE LOCALITY	.4
3.2	WEATHERING	.5
4.	FIELDWORK	.5
5.	REGIONAL GEOLOGY	.6
6.	GROUNDWATER SEEPAGE	.8
7.	LABORATORY RESULTS	.8
7.1	FOUNDATION INDICATOR RESULTS	.9
7.2	COMPACTION CHARACTERISTIC AND MATERIAL SUITABILITY RESULTS	11
7.3	POTENTIAL CORROSIVENESS OF IN-SITU SOIL	12
	POTENTIAL CORROSIVENESS OF IN-SITU SOIL	
		14
8.	SITE CLASSIFICATION	14 14
8. 9.	SITE CLASSIFICATION	14 14 14
8 . 9 . 9.	SITE CLASSIFICATION	14 14 15 16
8. 9. 9.2 9.2 9.2	SITE CLASSIFICATION	14 14 15 16 16
8. 9. 9. 9.2 9.2	SITE CLASSIFICATION	14 14 15 16 16
8. 9. 9.2 9.2 9.2	SITE CLASSIFICATION	14 14 15 16 16
8. 9. 9. 9. 9. 9. 9.	SITE CLASSIFICATION	 14 14 15 16 16 16 18 18
8. 9. 9. 9. 9. 9. 9. 9. 9. 9. 10.	SITE CLASSIFICATION	 14 14 15 16 16 16 18 18
 8. 9. 9.2 9.2 9.2 9.2 9.2 9.2 10. 10 10 10 	SITE CLASSIFICATION	 14 14 15 16 16 18 19 21
 8. 9. 9.2 9.2 9.2 9.2 9.2 10. 10 10 	SITE CLASSIFICATION	 14 14 15 16 16 18 19 21

List of Figures

Figure 1: General view of the site	4
Figure 2: Micro-climatic region of Southern Africa (TRH 4, 1996 adapted from Weinert, 1980)	5
Figure 3: (a) Subsoil profile showing geological material (b) TLB excavating a test pit	7
Figure 4: Potential expansiveness (van der Merwe, 1975)	9
Figure 5: Proposed new infirmary building on site.	. 14
Figure 6: Classification of material for machine excavation (SANS 1200D).	. 15
Figure 7: Shear strength parameters for non-cohesive soils (Byrne and Berry, 2008)	. 20

List of Tables

Table 1: Summary of samples tested	8
Table 2: Summary of Foundation Indicator Test Results	10
Table 3: Layerworks for light traffic flexible pavement	11
Table 4: Layerworks for interlocking paving blocks	12
Table 5: Summary of Compaction Test Results	12
Table 6: Guideline Values for Interpretation of Soil Conductivity (Duligal, 1996)	13
Table 7: Summary of pH and Electrical Conductivity Test	13
Table 8: Summary of DPL results	18
Table 9: Equivalent SPT N values estimated from DPL blows/300mm	19
Table 10: Summary of bearing pressures	21
Table 11: Summary of initial settlement for aeolian and alluvial horizon	22
Table 12: Summary of consolidation settlement for alluvial horizon	23
Table 13: Preliminary Pile Design Summary	25

1.INTRODUCTION

Umhlaba Geotechnical Engineers (hereafter referred to as UGE) was requested by Mondli Consulting (Pty) Ltd to provide a proposal for a scope of work and a cost estimate to undertake a geotechnical site investigation for the proposed new service station and associated infrastructure at KwaMbonambi, KwaZulu-Natal. The cost estimate was accepted and UGE was subsequently appointed to carry out the site investigation as proposed.

1.1 Aims and Scope of Report

The aim of the geotechnical investigation was to ascertain prevailing geological and geotechnical conditions on site for the design and construction of the proposed development.

This geotechnical investigation report summarises the results of the site investigation that was undertaken at the above mentioned site. Estimated settlement and allowable bearing pressures are provided. In addition, recommendations for site drainage, earthworks, material excavatability, material investigation for construction of roads/pavements layerworks, and suitable foundation options are also provided.

2. INFORMATION SUPPLIED

For the purpose of assisting with the investigation, Mondli Consulting provided UGE with a site layout drawing of the proposed development. In addition, the following information was utilised for the purpose of the geotechnical investigation:

- The 1:50 000 Geological Map of KwaMbonambi (2832 CA), compiled by the South African Geological Survey 1988.
- The 1:50 000 Topographical Map of KwaMbonambi (2832 CA).
- Google Earth satellite imagery of the site (2022).

3. DESCRIPTION OF SITE

3.1 Site Locality

The proposed new development is located in KwaMbonambi. The development area may be located using the following central coordinates 28°36'05.28"S and 32°05'39.54"E. KwaMbonambi is a town under King Cetshwayo District Municipality, KwaZulu-Natal.

KwaMBonambi is approximately 30km north of Richards Bay. The proposed development area is to the west of N2 Road. At the time of the site investigation, there was no development on site, with the exception of informal crop farming that was noted on isolated areas of the site. The study area was predominately covered by dense vegetation and trees. The terrain on site was relatively flat, no steep slopes were observed (Figure 1).

Figure 1: General overview of the site.

3.2 Weathering

The type and rate of rock weathering are determined by the climate of an area. Weinert (1980) developed an N-value system, which is used to establish the type of weathering that is likely to occur in an area based on macro-climatic conditions i.e. evaporation and rainfall. Mechanical weathering is likely to occur in regions where N>5, while chemical weathering occurs in regions where N<5. An N-value <2 was determined for the site, using the diagram provided in Figure 2 (TRH4, 1996). This indicates that wet climatic conditions occur on site and, that rock and soil are envisaged to be subject to chemical weathering.

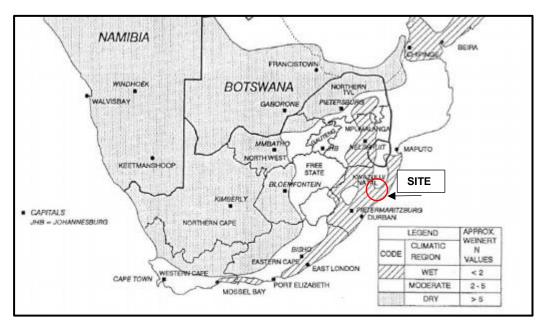


Figure 2: Micro-climatic region of Southern Africa (TRH 4, 1996 adapted from Weinert, 1980).

4. FIELDWORK

The site investigation was undertaken in accordance to the following guidelines and standard codes of practice:

- SAICE: Site Investigation Code of Practice (2010).
- Guidelines for Soil and Rock logging in South Africa (2002).
- OHS Act (1993) & Construction Regulation (2014).

The fieldwork associated with this investigation was carried out on the 23rd of April 2022. All the geotechnical information pertaining to the investigation for the proposed

development is included in the appendices of this report. The profiles were logged by a professionally registered Engineering Geologist (SACNASP) using the "Guidelines for Soil and Rock Logging in South Africa (2002)". The Global Positioning System (GPS) coordinates of the tests positions were recorded.

A total of seven (7) test pits, designated TP1- TP7, were excavated using hand tools and hand auger in order to (a) identify the nature of the existing subsoil with depth, (b) retrieve disturbed soil samples for laboratory testing and (c) ascertain shallow groundwater level. The test pits were excavated to depths of below existing ground level (BEGL) using hand tools, and were advanced further by means of hand auger down to a maximum depth of 2.50m BEGL. The subsoils as revealed by the test pits are included in Appendix B of the report. The intercepted horizons were profiled as follows:

- Soil moisture, colour, consistency, structure (for clays), soil type and origin.
- **Rock** colour, degree of weathering, fabric (grain size, micro-structure spacing and discontinuity spacing), hardness, rock type and stratigraphic unit.

A total of seven (7) Dynamic Probe Light (DPL) tests, designated DPL1-DPL7, were undertaken adjacent to the test pits. The results of the DPL tests were used to evaluate (a) consistency of the underlying material, (b) refusal depth and (c) to estimate allowable bearing pressures of the in-situ material.

5. REGIONAL GEOLOGY

According to the 1:50 000 scale geological map provided by the Council of Geoscience, the site is underlain by sand and aeolianite of KwaMbonambi Formation. A geological map of the area (KwaMbonambi 2832CA 1:50 000) is included in Appendix A: Drawing No. UGE-02-GM-R00.

The upper subsoils on site comprised the following soil profiles:

Aeolian Horizon (Wind Deposit)

Aeolian horizon was noted through the upper profile of the excavated test pits. The material was intercepted from natural ground level down to a maximum depth of 2.50m BEGL. The horizon was profiled as moist/very moist, greyish pale brown/pale brown/dark grey, loose to medium dense with depth, silty fine grained sand/slightly silty fine grained sand with minor rootlets.

Alluvial Horizon (River Deposit)

Alluvial horizon was generally noted to be overlain by aeolian horizon throughout the site. the material was intercepted from a minimum depth of 0.30m down to a maximum excavation depth 2.50m BEGL. The horizon was profiled as moist, reddish orange speckled orange/yellowish orange mottled red, soft/ firm to stiff with depth, intact, slightly silty clay.

Figure 3: (a) Sandy aeolian material (b) clayey alluvial material.

6. GROUNDWATER SEEPAGE

During the site investigation, groundwater seepage was intercepted in **TP1 at a depth of 2.10m** below natural ground level. Furthermore, surfacewater was noted in isolated areas of the development area. The investigation was carried out in April, therefore it must be noted that the month of April in **KwaMbonambi** is generally one the driest months, as it occasionally receives one of the least rainfall. It should be noted that there is a possibility that during periods of prolonged rainfall, particularly during the summer season, groundwater level may ascend towards the surface. Thus, perched watertable is envisaged during and after periods of rainfall.

7. LABORATORY RESULTS

A total of eight (8) representative soil samples were retrieved from the site in order to assess the engineering characteristics of the material, and were sent to a SANAS accredited soil laboratory for testing and were subjected to:

- (a) **2No. Foundation Indicator testing:** to determine the Atterberg limits, particle size distribution and potential expansiveness.
- (b) **3No. Mod CBR testing:** to determine the suitability of the material to be use as construction material for road layerworks.
- (c) **3No. pH & Electrical Conductivity:** to determine the aggressiveness of the soil to concrete and steel

Test Position	Depth (m)	Foundation	Mod CBR	pH & Electrical
(TP)		Indicator		Conductivity
TP1	0.00-2.50		x	x
TP3	0.00-1.60		x	
TP4	0.60-2.40	x		x
TP5	0.30-2.00	x	x	x

Table 1: Summary of samples tested

7.1 Foundation Indicator Results

Two (2) disturbed soil samples were retrieved on site for laboratory testing and were subjected to foundation indicator testing (as per TMH1 test methods A2 to A4). The samples were considered representative of the material on site. The widely used classification system for geotechnical engineering purposes is the Unified Soil Classification System (USCS).

According to the Unified Soil Classification System (USCS), the soil classifies as SC i.e. clayey sands, sand-clay mixtures. The Weighted PI of the samples is in the order of 6.9 – 11.8%. Figure 4 below shows the potential expansiveness of soil material (mm) per metre as suggested by van der Merwe (1975). As noted in the figure below, that the soil samples plot in the **low region** of the van der Merwe graph. According to van der Merwe (1975), Low potential expansiveness correlates to a heave of **0mm per 1.0m**.

Potential Expansiveness	Heave: mm per m
Very High	> 80
High	40
Medium	20
Low	0

Figure 4: Potential expansiveness (van der Merwe, 1975).

Based on the AASHTO Classification system, the material classifies as A-2-4 (0) and A-6. According to the classification system, **the general rating of the material as subgrade is excellent to good and fair to poor (A-6)**.

Test Pit	Depth (m)		F	Particle	e size (%	%)		Atterbe	rg Limit	s %	GM Potential			U.S. Highway	
	(11)	Description	Clay	Silt	Sand	Gravel	LL	PI	LS	WPI		Expansiveness	Classification	Classification	
TP4	0.60-2.40	Light orange pale red blotched yellowish brown, sandy CLAY.	28	6	58	8	29	8	4.3	6.9	0.88	L	SC	A-2-4 (0)	
TP5	0.30-2.00	Dark brown, sandy CLAY.	28	12	59	1	32	12	6.3	11.8	0.61	L	SC	A-6 (2)	

Where:

SC: Clayey sands, sand-clay mixtures

L: Low Heave Potential.

GM: Grading Modulus.

LL: Liquid Limit.

PI: Plasticity Index

7.2 Compaction Characteristic and Material Suitability Results

Three (3) samples were retrieved on site for MOD CBR testing to determine suitability of the material for construction of roads/pavement. The samples were classified in accordance with TRH14 guidelines.

- TP1 (0.00 2.50m) has a CBR strength of 9 at 95% Mod AASHTO density and classifies as >G10 quality material.
- TP3 (0.00 1.60m) has a CBR strength of 6 at 95% Mod AASHTO density and classifies as >G10 quality material.
- TP5 (0.30 2.00m) has a CBR strength of 3 at 95% Mod AASHTO density and classifies as >G10 quality material.

The material on site comprises **>G10** quality material, therefore it is not suitable for the upper layerworks. It is suggested that the **material should only be used as subgrade material**. The subbase layer requires a material of G5 - G6 quality. The base course material should be at least a G1 - G4 material. The base and subbase material should be obtained from a commercial source.

The design of the layerworks for parking bays and access roads should be as indicated in the table below, furthermore, the thickness of the layerworks should be according to the Engineer's specifications:

Layer	Material	Compaction/Strength
Surfacing	Asphalt	
		86 -88% Apparent Density (G1)
Base-course	G1 – G4	100-102% Mod AASHTO (G2)
		98% Mod AASHTO (G3 and G4)
Sub-base	G5-G6	95% Mod AASHTO
Selected layer	G6-G9	93% Mod AASHTO
Sub-grade	G8-G10	Rip and re-compact in-situ material to 93% Mod AASHTO

Table 3: Layerworks for light traffic flexible pavement

Layer	Material	Compaction/Strength
Pavers	Interlocking paving blocks on 25mm bedding sand	>25MPa
Sub-base	G5/G6	95% Mod AASHTO
Sub-grade	G7	93% Mod AASHTO

Table 4: Layerworks for interlocking paving blocks

Table 5: Summary of Compaction Test Results

Test	Depth	Description	OMC	Swell	MDD	CBR at various densities					
Pit	(m)		(%)	(%)	(kg/m³)	90 %	93 %	95 %	98 %	100%	TRH 14
TP 1	0.00-2.50	Greyish pale brown, sandy CLAY.	9.1	0.1	1827	4	6	9	15	21	>G10
TP3	0.60-2.30	Light orange yellowish brown, sandy CLAY	102	0.1	1688	1	3	6	14	26	>G10
TP5	0.90-2.30	Light purplish brown, sandy CLAY	12.1	1.2	1877	1.1	1.6	3.0	3.6	5.2	>G10

7.3 Potential Corrosiveness of In-Situ Soil

Corrosion is defined as the degradation of a material or its properties due to a reaction with the environment. Corrosion exists in virtually all materials, but is most often associated with metals. Metallic corrosion is a naturally occurring process in which the surface of a metallic structure is oxidized or reduced to a corrosion product such as rust by chemical or electrochemical reaction with the environment.

Corrosion of metallic elements in soil can vary from relatively rapid material loss to negligible effects. The factors that influence this are:

- The heterogeneity of the soil (long-line currents).
- Aeration (oxygen and moisture to the metallic element).
- Groundwater.
- Electrical conductivity of the soil (reciprocal of resistivity).
- Chemical properties of the soil.
- Bacterial attack.
- Stay currents in the soil, and
- Soils potential to support sulphate reducing bacteria.

Soil Conductivity (mS/m)	Corrosion Classification
More than 50	Extremely corrosive
25 – 50	Very corrosive
20 - 25	Corrosive
10 - 20	Mildly corrosive
Less than 10	Not generally corrosive

Table 6: Guideline Values for Interpretation of Soil Conductivity (Duligal, 1996)

Table 7: Summary of pH and Electrical Conductivity Test

Test Pit	Depth (m)	Description	Electrical Conductivity mS/m	рН
TP 1	0.00-2.50	Silty fine grained sand	5.3	5.7
TP4	0.60-2.40	Silty clay	47.2	7.1
TP5	0.30-2.0	Silty clay	30.6	6.6

According to the conductivity values given in the above table, the material retrieved at TP 1 is considered "not generally corrosive". The material retrieved at TP 4 and TP 5 is regarded as being "very corrosive" material toward buried metallic objects, corrosion of metallic pipefittings and other construction materials will be negatively influenced by low pH and high conductivity (indicating high concentration of dissolved salts in the soils).

In the light of the foregoing information, we recommend that precautions against corrosion, in the form of piping made of inert materials such as PVC and HDPE be used instead of metallic pipes were feasible, as is frequently common local practice. It should be borne in mind that the soil pH values measured at the site are at average 6.47 (i.e. pH is ranging between 5.7 and 7.1) implying that the soil profile is in general slightly acidic. A pH levels of 5 or below can lead to extreme corrosion rates and premature pitting of metallic objects, a neutral pH of about 7 is most desirable to minimize this potential for damage.

8. SITE CLASSIFICATION

In terms of SANS 10400 – H (2012, Edition 3) clause 4.2.1, Table 1, page 11, the site class designation is **H1/S2**.

9. DEVELOPMENT RECOMMENDATIONS

9.1 Proposed Development

It is understood that a service station and associated infrastructure will be constructed in the development area. The development is anticipated to comprise the following:

- Service Station.
- Retail Outlet.
- Entertainment Area.
- Motel.
- Paved Area.
- Workshop and Battery Centre.
- Male and Female Ablutions.
- Pay Point Building for Trucker.

Figure 5: Proposed development on site.

9.2 Excavatability

The excavation characteristics of the soil horizons that underlain the site have been evaluated according to the South African National Standard (SANS 1200D). In terms of SANS 1200D, classification of material for excavation is generally as follows:

- Soft excavation.
- Intermediate excavation.
- Hard rock excavation.

According to SANS 1200D classification, the intercepted material on site classifies as **SOFT**. This implies that, material which can be efficient removed by a back-acting excavator of fly wheel power > 0.10kW for each mm of tined bucket width. During the site investigation, hand tools and an auger were used to excavate the test pits. It is therefore suggested that a TLB or a better plant should be used for excavation on site. No intermediate or hard excavation is anticipated for the proposed development on site.

CLASSIFICATION	DESCRIPTION						
Restricted excavation							
Soft	Material which can be efficient removed by a back-acting excavator of fly wheel power >0,10 kW each mm of tined bucket width.						
Intermediate Material which can be removed by a back-acting excavator having a fly wheel power > 0,10k each mm of tined-bucket width or with the use of pneumatic tools before removal by a ma capable of removing soft material.							
Hard Rock	Material that cannot be removed without blasting or wedging and splitting.						
Non-restricted excav	vation						
Soft	Material which can be efficiently removed or loaded, without prior ripping, by any of the following plant: a bulldozer or a track type front end loader having an approximate mass of 22 tonne and a fly wheel power of 145 kW. a tractor-scraper unit having an approximate mass of 28 tonne and fly wheel power of 245 kW, pushed during loading by a bulldozer equivalent to that described above.						
Intermediate	Material which can be efficiently ripped by a bulldozer having an approximate mass of 35 tonne and a fly wheel power of 220 kW.						
Hard Rock	Material that cannot be efficiently ripped by a bulldozer having an approximate mass of 35 tonne and a fly wheel power of 220 kW.						
Boulder class A	Material containing more than 40% by volume of boulders of size between 0,03 m ³ and 20m ³ , in a matrix of soft material or smaller boulders.						
Boulder class B	Material containing 40% or less by volume of boulders of size between 0,03 m ³ and 20m ³ , in a matrix of soft material or smaller boulders.						

Figure 6: Classification of material for machine excavation (SANS 1200D).

9.3 Inspection of Excavation

The Contractor must (1) ensure that all excavations work is carried out under the supervision of a competent person and (2) evaluate the stability of the ground prior excavation work commences. All excavations must be inspected on daily basis, (a) after unexpected collapse of the ground, (b) after a rainfall, and or (c) after damage to support. The inspection will need to be carried out by a competent person as recommended by OSH Act (1993). It remains the responsibility of the Contractor to comply with the current requirements of the Occupational Health and Safety Act (1993).

9.4 Earthworks

It is recommended that earthworks on site be undertaken in accordance to SANS 1200. Where lateral supports are not constructed, cut slopes should be restricted to maximum batters of **1:1.9 (28°) on aeolian sand and 1:1.6 (32°) on alluvial clay**, and to a maximum height of 1.50m. Any excavation that is greater than 1.50m should be battered back to safe slope angle or must be shored to ensure the safety of construction personnel.

Prior to construction of any fill, the natural ground should be cleared of all vegetation and should be compacted with a suitable compaction plant. The fill should be constructed in layers not exceeding 150mm loose thickness and be compacted to at least at least 93% Mod AASHTO maximum dry density prior to the placement of the next layer. The fill should be compacted to within 1 to 2% of optimum moisture content (OMC).

9.5 Drainage and Stormwater

It is recommended that all stormwater from hardened areas (roof and paved areas) should be collected and discharged in a carefully controlled manner. This will need to according to the Engineer's specifications. A detailed stormwater management plan should be produced for the site. Under no circumstances should water be allowed to discharge onto the ground near the foundations. It is further recommended that concrete aprons be constructed around the perimeter of the structures **if there no rigid or flexible pavement**. The material beneath the positions of the concrete aprons should be ripped (~150mm) and re-compacted to at least 93% Mod AASHTO.

In an event where stormwater cannot be discharged into a municipal system, a soakpit system should be considered. However, a percolation test should be undertaken to assess the permeability of the subsoil. The percolation test should be undertaken according to SANS 10400-P:2012. Alternatively, an attenuation tank maybe also be used, and it must be according to Engineer's details.

The soakpit volume should be calculated as follows, 40m² of hardened area of the site equals to 1m³ of the soakpit volume. It is important to locate stormwater soakpit on the downslope side of the site and at least 3m from the sides of any building, in order to ensure that there is no flow of subsurface water towards the foundations.

Focused runoff of surfacewater across the site should be avoided in order to limit erosion of the soil. Runoff can be minimised by the use of grass, which will allow part of the stormwater to percolate into the soil.

10. FOUNDATION RECOMMENDATIONS

10.1 Summary of Dynamic Probe Light (DPL) Test Results

As part of the geotechnical investigation, eight (8) test pits were manually excavated. The consistency of the soil material as observed at the time of profiling the test pits and DPL test results were empirically correlated to equivalent "SPT N" values in order to (a) estimate allowable bearing pressures and (b) carry out settlement analysis.

Depth (m)	DPL1	DPL2	DPL3	DPL4	DPL5	DPL6	DPL7
0.00	0	0	0	0	0	0	0
0.30	7	4	3	13	10	7	5
0.60	20	16	15	22	15	9	5
0.90	41 37	22	25	25	21	15	11
1.20		33	26	27	19	21	20
1.50	70	47	30	29	22	27	23
1.80	77	49	23	31	34	25	27
2.10	85	53	24	30	30	33	31
2.40	R	65	30	30	37	34 42	35
2.70		73	28	32	39		42
3.00		68	26	39	43	45	34
LEGEND							
Aeo	lian Hori	zon					
Allu	Alluvial Horizon Refusal						
Refu							

Table 8: Summary of DPL results

C	ohesive Soi	ls		Cohesionless Soils				
Clay consistency	SPT N	DPL blows/300mm	Sand consistency	SPT N	DPL blows/300mm			
Very soft	<2	0-4	Very loose	0-4	0-7			
Soft	2-4	4-7	Loose	4-10	8-16			
Firm	5-8	7-14	Medium Dense	11-30	17-50			
Stiff	9-15	14-25	Dense	31-50	51-84			
Very stiff	16-50	25-83	Very dense	>50	>84			
Hard	>50	>83						

.... - - - - -. -. . 1000

Equivalent SPT N = 0.60 * DPL blows per 300mm

<u>Aeolian Horizon</u>

According to the DPL test results, the aeolian horizon is generally loose between 0.00 -0.90m, and medium dense to dense between 0.90 - 2.10m, and dense between 2.10 -3.00m. Refusal was encountered only at TP1 at 2.40m BEGL.

Alluvial Horizon

According to the DPL test results, the alluvial horizon is generally firm to stiff between 0.00 - 1.50m, and very stiff between 1.50 - 3.00m. Refusal was not encountered on the alluvial horizon.

10.2 Estimated Allowable Bearing Pressures

Although the DPL test results indicates relatively high "SPT N" values, it should be borne in mind that DPL probes are affected by numerous factors such as type of material in the soil profile, moisture content and other factors. Therefore, significant engineering judgment and understanding as well as knowledge of the specific site are necessary to maximise the information that can be obtained from DPL test results.

As mentioned that the aeolian horizon displayed medium dense to dense consistency between 0.90 to 2.10m. Let SPT 'N' value be 11 (lower bound of medium dense consistency) for aeolian horizon, thus the effective friction angle (Ø') is 30°. According to the compaction test, the material has an average maximum dry density of 17.97kN/m³ and an average optimum moisture content of 10.47%. Therefore, the bulk unit weight is approximately 19.85kN/m³.

 $\gamma_b = \gamma_d \ (1+w)$

Where:

 γ_b – bulk density (kN/m³)

 γ_d – dry density (kN/m³)

W – moisture content (%)

Consistency	Rule of Thumb Field Identification	Approx CPT (MPa)	Approx SPT 'N'	Approx ¢'	Typical Dry Density (kN/m ³)
Very Loose	Almost no resistance to shovelling	0 to 2	0 to 4	26 to 28	< 14.5
Loose	Easily penetrated with 12mm bar pushed by hand; small resistance to shovelling	2 to 4	4 to 10	28 to 30	14.5 to 16.0
Med Dense	Easily penetrated with 12mm bar driven with 2kg hammer; considerable resistance to shovelling	4 to 9	11 to 30	30 to 35	16.0 to 17.5
Dense	Hard penetration with 12 mm bar to 300mm driven with 2 kg hammer; handpick required for excavation	9 to 12.5	31 to 50	35 to 40	17.5 to 19.25
Very Dense	Penetration only up to 75 mm with 12 mm bar driven with 2 kg hammer; power tools required for excavation	> 12.5	> 50	40 to 50	> 19.25

Figure 7: Shear strength parameters for non-cohesive soils (Byrne and Berry, 2008).

As mentioned, the DPL test results indicates that the alluvial horizon is firm to stiff between 0.0 to 1.50m. Let SPT 'N' value be 4 (lower bound of firm consistency) for alluvial horizon, therefore the UCS strength is 40kPa (Byrne and Berry, 2008). The undrained cohesion (c') is generally half of the UCS strength, thus the undrained cohesion for the alluvial horizon is 20kPa. At the time of writing this report, dimensions of the buildings were not given, let L=B, where L is the length of the building and B is the width. Therefore, according to Skempton (1951) $N_c' = 7.2$.

Table	Table 10: Summary of bearing pressures									
Effective friction angle (°)	Bulk density (kN/m³)	Founding depth (m)	Foundation width (m)	Cohesion (kPa)	Undrained Cohesion (kPa)	N 'c	N'q	N'y	Ultimate Bearing Pressure (kPa)	Allowable Bearing Pressure (kPa)
	Aeolian Horizon									
30	21	1.00	0.80	0	0	18.9	8.3	4.4	194	65
			_	Alluvial Ho	rizon		-	-		
0	18	1.00	0.80	0	20	7.2	-	-	162	54

The ultimate bearing pressures of the in-situ materials were estimated using Terzaghi's modified. A factor of safety of three (3) was applied to the ultimate bearing pressure in order to obtain the allowable bearing pressure. The allowable bearing pressure for the aeolian horizon is 65kPa, and 54kPa for the alluvial horizon. These allowable bearing pressures are INADEQUATE to safely carry the proposed new structures. For comparative purposes, a single storey structure generally requires allowable bearing pressures in the order of 75 – 100kPa. Therefore, conventional shallow footing foundations are NOT feasible for the proposed structures to be directly supported on the underlying aeolian and alluvial horizon based on the obtained estimated allowable bearing pressures.

10.3 Settlement Analysis

Primary settlement (initial settlement) analysis was carried out using Skempton and Bjerrum (1957) to assess the likely settlement behaviour of a rigid square footing on the aeolian and alluvial horizon (**Table 13**); while consolidation settlement (long term settlement) analysis was undertaken using Terzaghi one dimensional theory (1925) to predict the long term settlement of the alluvial horizon as excess pore pressure dissipates from the clay (**Table 14**). The results of the settlement analysis for a 0.80x0.80m square footing with a net bearing pressure of **150kPa at 1.00m** below existing ground level are presented below in Table 13 and Table 14.

Modulus of elasticity for the subsoils was estimated using empirically correlated SPT 'N' values. Aeolian horizon comprises of medium dense to dense soil, therefore let SPT 'N' value be **11 and 5** for the alluvial horizon. The modulus of elasticity was estimated using

the methods shown below i.e. **approach 1 and approach 2**. The obtained modulus of elasticity estimated from the two methods (approaches) were averaged in order to get a mean value.

Approach 1: $E_s = 300(N + 6)$

Approach 2: $q_c = 400(N)$ $E_s = 1.5q_c$

Total settlement is the summation of the primary settlement and consolidation settlement for clay (alluvial horizon), while total settlement is equal to the primary settlement for sand material (aeolian horizon), therefore the total settlement for a structure with an assumed net bearing pressure of 150kPa is **58.3mm** (28.6mm + 29.7mm) on the alluvial horizon, and **14.9mm** on the aeolian horizon. A maximum total settlement of 25mm is permissible for similar structures. The estimated total settlement i.e. 58.3mm>>>25mm. Therefore, the alluvial horizon subsurface is inadequate to safely carry the load of the proposed load. As mentioned, the total settlement on the aeolian horizon is within permissible settlement i.e. 14.9mm

LAYER	Net Foundation Pressure (kPa)	Foundation dimensions (m)	Poisson's Ratio	Young Modulus (kPa)	Founding Depth (m)	Influence Factor	Predicted Settlement (mm)
Aeolian Horizon	150	0.80x0.80	0.30	5850	1.00	0.8	14.9
Alluvial Horizon	150	0.80x0.80	0.25	3150	1.00	0.8	28.6

* v correlated from Das (2017)based on soil consistency.

LAYER	Net	Foundation	Ave	Coefficient	Founding	Oedometer	Predicted
	Foundation	dimensions	coefficient of	which	Depth	Settlement	Consolidation
	Pressure	(m)	volume	depends	(m)	(mm)	Settlement
	(kPa)		compressibility	on clay		(P _{oed})	(mm) (<i>P</i> _c)
			(m²/MN) (m _v)	type (μ_g)			
Alluvium	150	0.80x0.80	0.30	1.0	1.00	29.7	29.7
horizon							

Table 12: Summary of consolidation sottlement for alluvial barizon

 m_v and μ_q correlated from Tomlinson (1980) based on type of clay.

10.4 Proposed Foundation

A total of three (3) samples were retrieved on site and were subjected to Foundation Indicator testing to determine (a) Atterberg limits, (b) particle size distribution, and (c) heave potential. According to the lab results, the two samples retrieved from the alluvial horizon will not be subjected to heaving. The alluvium material plots in the low heave region of the van der Merwe graph; while the aeolian material which plot in the low region of the van der Merwe graph. This implies that for every 1000mm of the layer of soil, the alluvial material is anticipated to heave by 0mm. Alternatively, for every 300mm of the layer of soil, the material is envisaged to heave by 6mm. According to SANS 10400H, the site class designation of the study area is H1/S2.

Based on the bearing capacity and settlement analysis, the subsoils on site do not satisfy the governing factors i.e. bearing capacity and settlement. Furthermore, the alluvial horizon on site will be subjected to medium heave, therefore construction of strip footing and pad footing foundations directly onto the in-situ material is **NOT feasible**. It is therefore suggested that the single storey structures be founded on improved soil as follows:

(A) <u>Single Storey Buildings</u>

Option 1: Reinforced Raft Foundations

Reinforced raft foundation may be used for all single storey buildings, where the design bearing pressure is limited to a maximum of 100kPa, however, the reinforced raft foundation will NEED to be supported on engineered fill as specified below.

The in-situ material must be removed to a depth of 0.50m below ground level and should be replaced with at least G7 quality material and be compacted in 150mm layers to 93% Mod A.A.S.T.O maximum dry density. The reinforced raft foundations should be according to Engineer's specifications. Guidelines for **reinforced raft foundations** are given in SANS 10400-H:2012.

• Option 2: Reinforced Strip Footing Foundations

Reinforced strip footing foundation may be used for all single storey buildings, where the design bearing pressure is limited to a maximum of 100kPa, however, the reinforced strip footing foundations will NEED to be supported on engineered fill as specified.

Footings: The in-situ material must be removed from the footprint of the proposed structures. The over-excavated material must then be replaced with at least G7 quality material to a minimum of 1.5B (where B = foundation width) below the foundation footings and to a distance of 0.5B either side of the footings in order to minimise the risk of differential settlement. The inert granular material should be compacted in layers not exceeding150mm to at least 93% Mod A.A.S.T.O maximum dry density. The design bearing pressure should be limited to **100kPa**. The reinforced strip footing foundations must be according to the Engineers specifications. Guidelines for **reinforced strip footing foundations foundations** are given in SANS 10400-H:2012.

Surface bed: 300mm of the subsoil material beneath the floor area should be removed and must be replaced with at least G7 quality material loosely compacted in 100mm layers to at least 93% Mod AASHTO maximum dry density.

It is essential that the concrete is poured into the excavation with a minimum of delay. In this regard, foundation trenches should not remain exposed for periods longer than 3 days to avoid mechanical and chemical deterioration.

(B) Double Storey Buildings

It is understood that a motel forms part of the proposed development on site. At the time of writing this report, it is understood that the proposed motel will be a double storey structure. It is therefore recommended that **any double storey structure** on site be founded on CFA pressure piled foundations with ground beams spanning over the piles.

Working Load	Diameter	Pile Length	Reinforcement
(kN)	(mm)	(m)	(0.8%)
200	250	8	6Y10
300	300	10	6Y12
350	300	11	6Y12
450	350	12	7Y12

Table	13: F	Preliminary	/ Pile	Desian	Summary
TUDIC	10.1	TC III III III III III III III III III I		Design	Johnmary

The pile lengths in the table above are approximate pile lengths and are measured below the pile caps. This preliminary pile design summary is based on a maximum shaft stress of 5MPa and a factor of safety of >2 for skin friction and factor of safety of >3 for end bearing.

The reinforcement for the piles should be at least 0.80% of the required pile area. The size and or quantity of pile reinforcement may need to be adjusted should the piles be subjected to excessive lateral loads. In addition, the diameter of the helical steel should not be less than ¼ of the diameter of compression bar, and the pitch must not be greater than 16 times the diameter of the compression bar. If the piles will be subjected to uplift forces, the skin friction and the self-weight of the pile must be greater than the uplift force. **A detailed pile design should be carried out by the Piling Contractor.**

The following are recommended:

- It is recommended that a detailed pile design should be carried out by the Piling Contractor.
- The piles should be designed by a competent Geotechnical Professional.
- A pile load test should be undertaken on at least one pile to ascertain the pile load carrying capacity. A pile load test is the only dependable means of ascertaining the load capacity of piles.
- A pile integrity should be carried out on all the piles, to check the pile shaft for any structural defects and to ensure the quality of the piles.
- Ground beams should be constructed as the main support structure spanning over the piles.

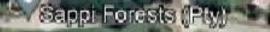
11. CONCLUSIONS

The report presents the findings of a shallow geotechnical investigation that was undertaken on the 23rd of April 2022 in KwaMbonambi, KwaZulu-Natal.

Based on the information collected at the time of the site investigation the proposed site is feasible for the development provided that the recommendations contained in this report are adhered to.

The subsoil conditions provided in the report refer to the excavated test pits on site, therefore it is possible that conditions may be different elsewhere on site. During the site investigation, an effort was undertaken to identify the prevailing subsoil material, however it is not possible to ensure that varying material may have been missed. The undertaken investigation was in-depth, and site conditions are not anticipated to vary that much compared to those identified in this report. It is therefore essential that Umhlaba Geotechnical Engineers be appointed to undertake inspection during construction.

We trust that this brief summation of our findings and conclusions meet your immediate requirements. Should you require clarity on any part of the report, please do not hesitate in contacting Umhlaba Geotechnical Engineers.


Yours sincerely, Mr TMH (Pr.Sci.Nat- 124314) Umhlaba Geotechnical Engineers

APPENDIX A:

TEST POSITIONS - UGE-01-TP-R00

Acacia Rd

ndi Secondary School

SEE


TP5 TP4 TP6 TP7

TP3

TP2

TP1

DC Motors - Umfolozi Service

123 Marine View Avenue Durban North 4051 Cell : 081 328 4756 Email: info@umhlaba.co.za

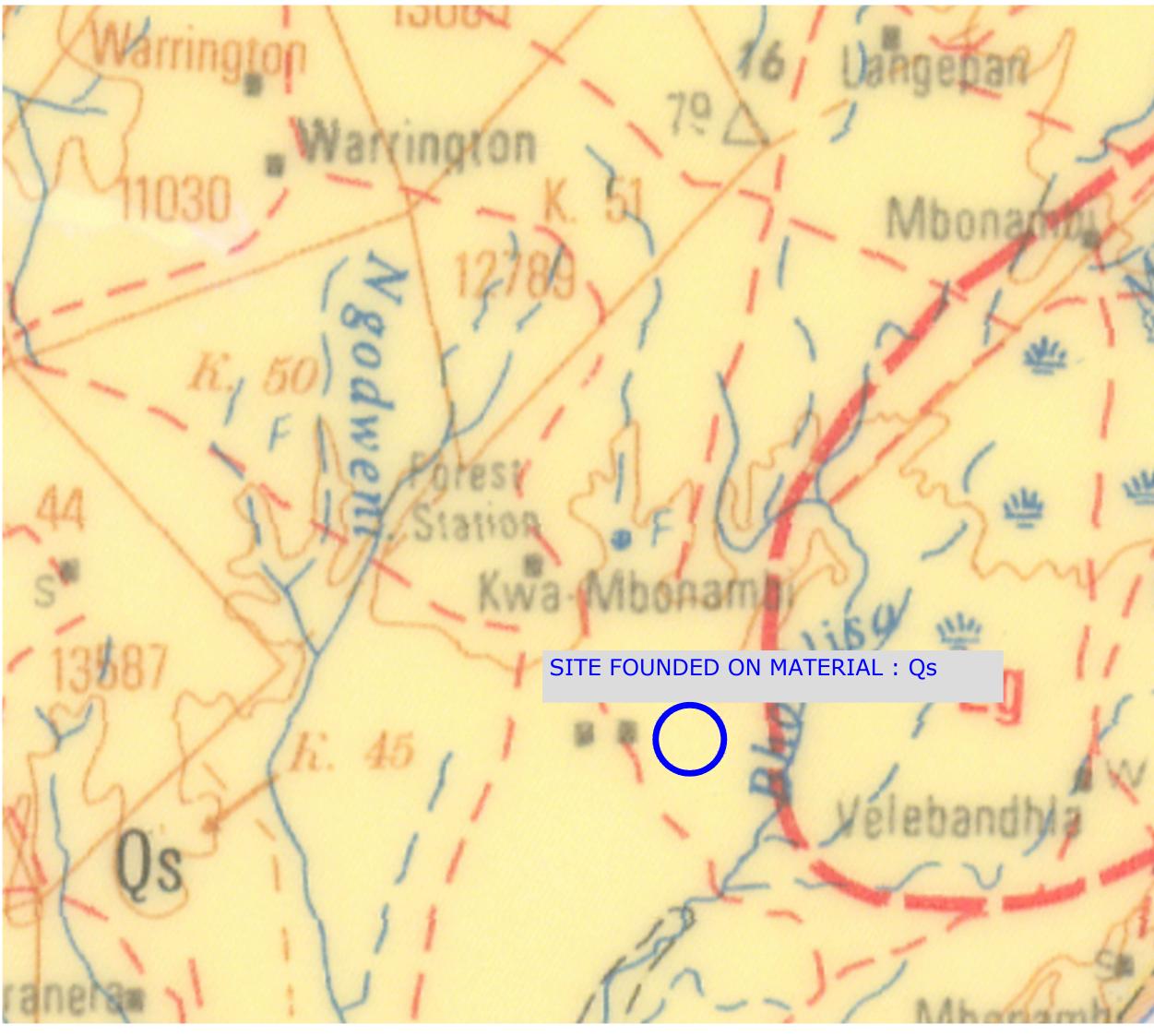
PROJECT

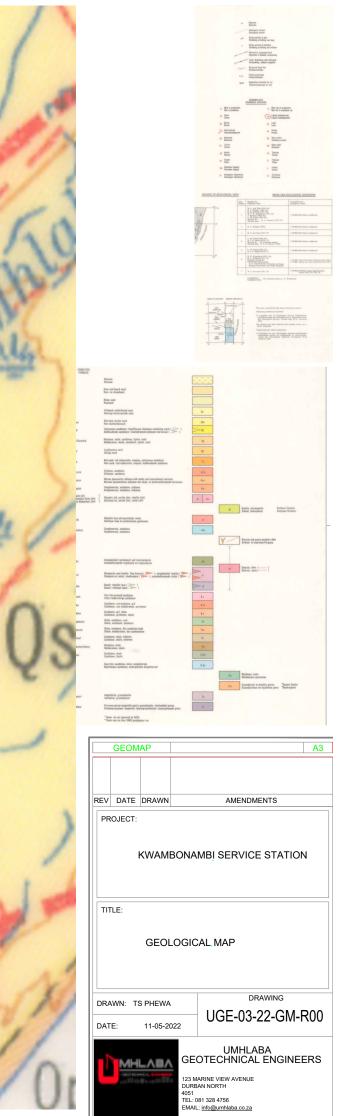
KWAMBONAMBI SERVICE STATION

DRAWING

TEST POSITIONS

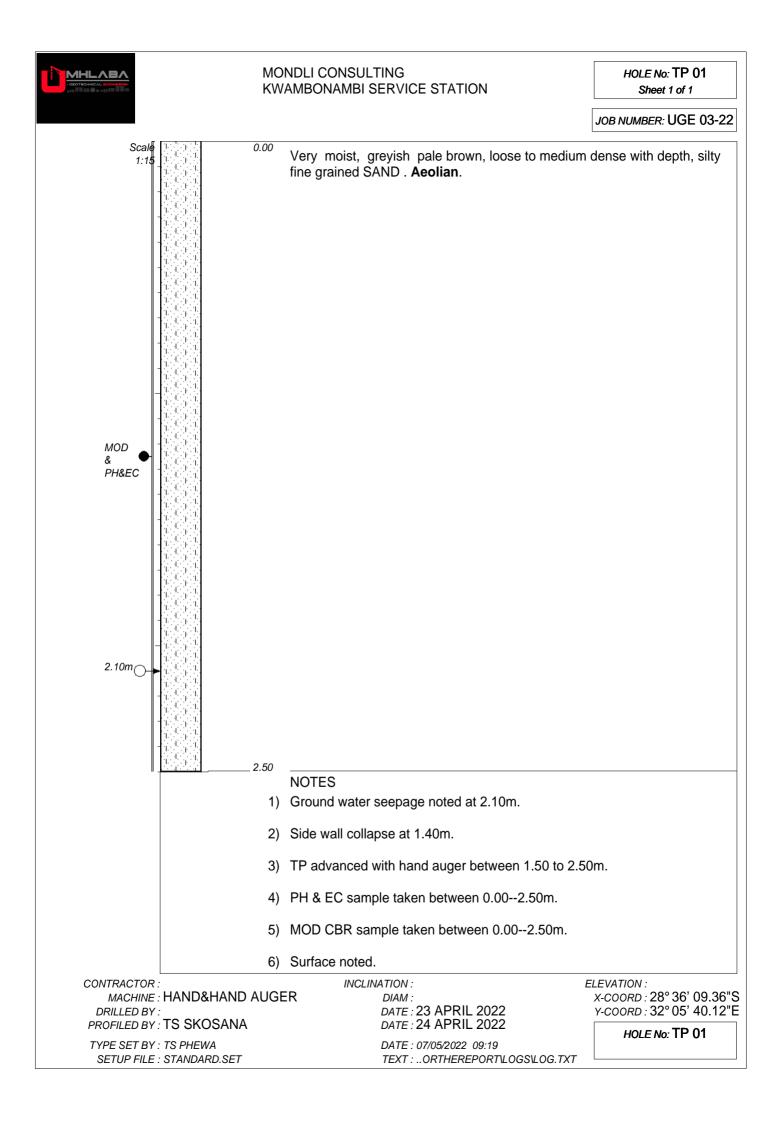
	RESPONSIBLE PERSON	DATE						
DRAWN	TS PHEWA							
CHECKED	TS SKOSANA	Pr.Sci.N	at: XXXXXXX					
APPROVED	TS SKOSANA	Pr.Sci.N	at: XXXXXXX					
SCALE	NTS		SHEET SIZE	A3				
PROJE	CT NUMBER DRAWING NUMBER	R STAT	US REVISION					
UGE-03-22-TP-R00								
DRAWING	STATUS CODES :							


 R = REPORT
 T = TENDER


 D = DRAFT
 P = PRELIMINARY

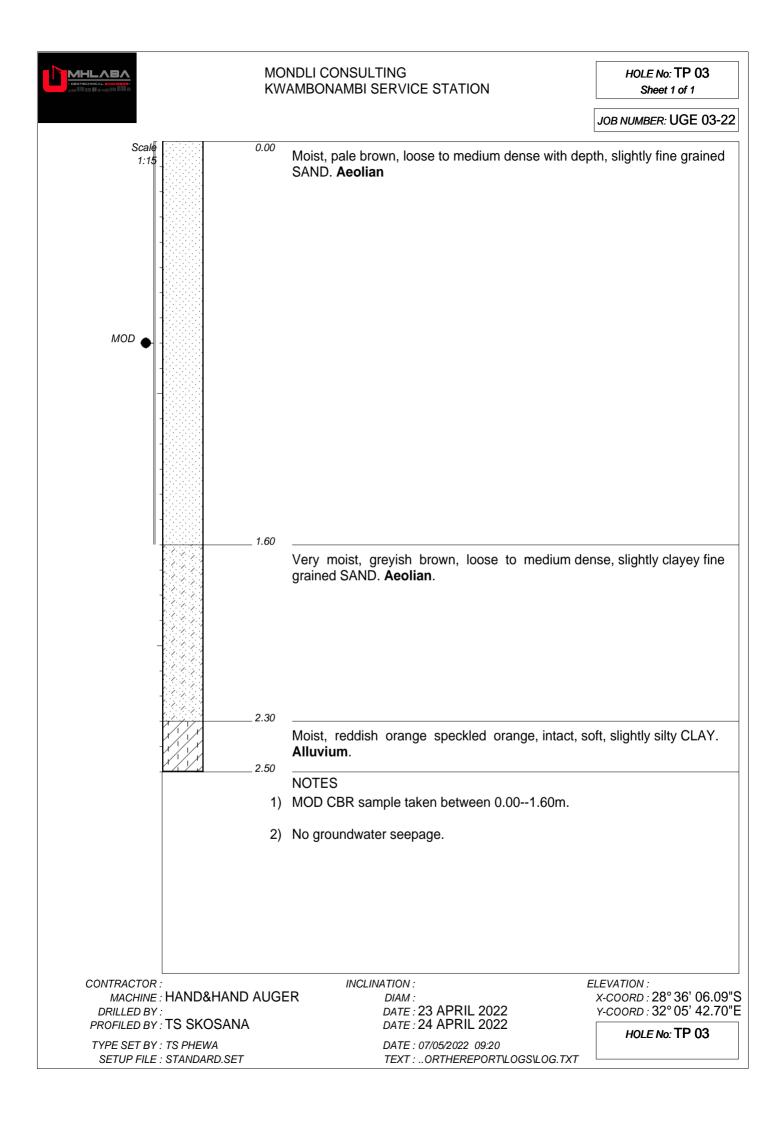
APPENDIX B:

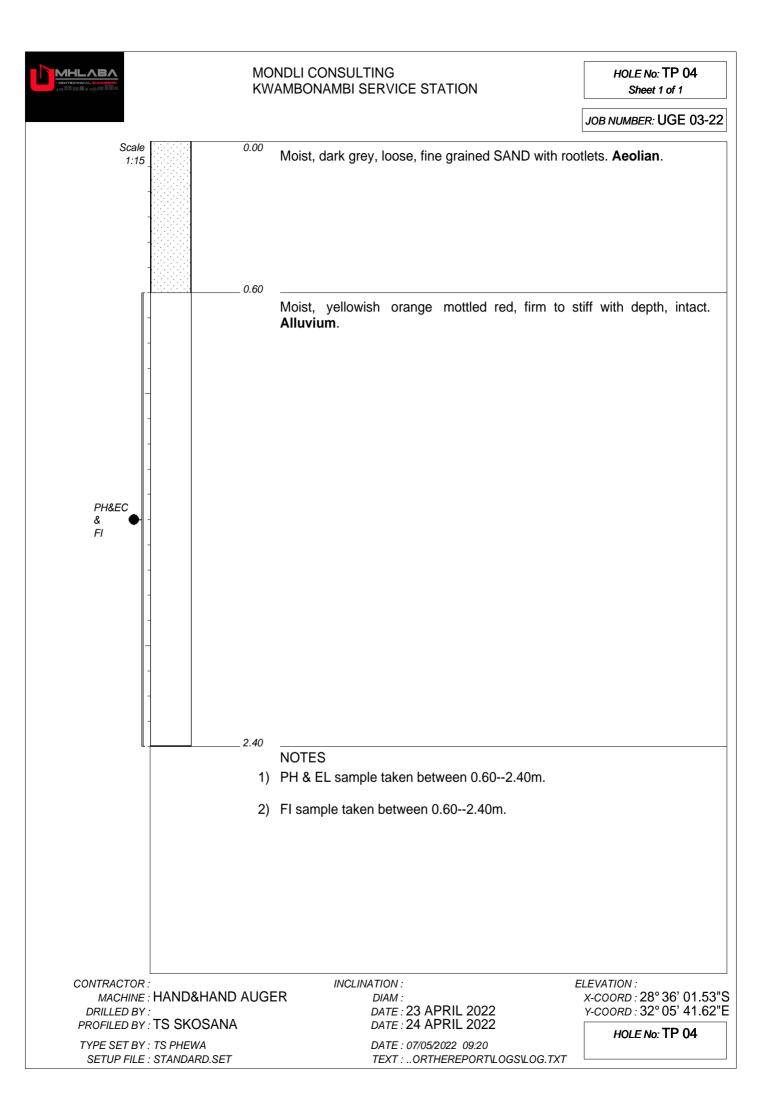
GEOLOGICAL MAP - UGE-02-GM-R00

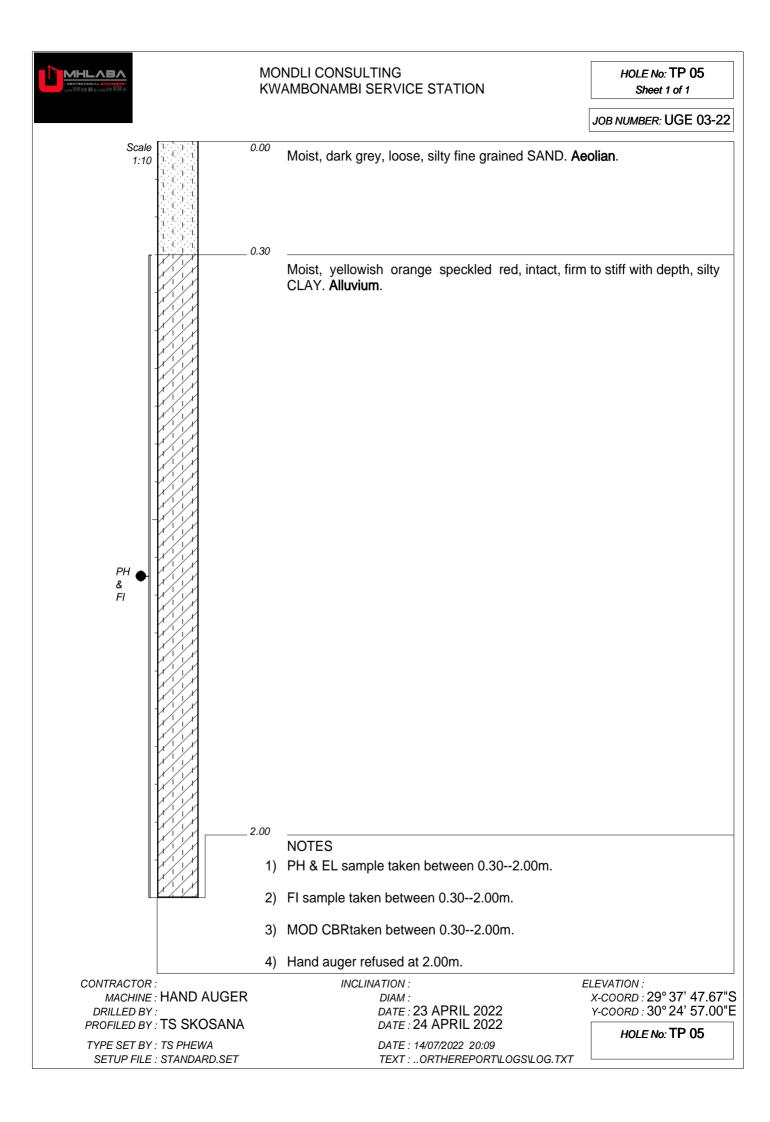


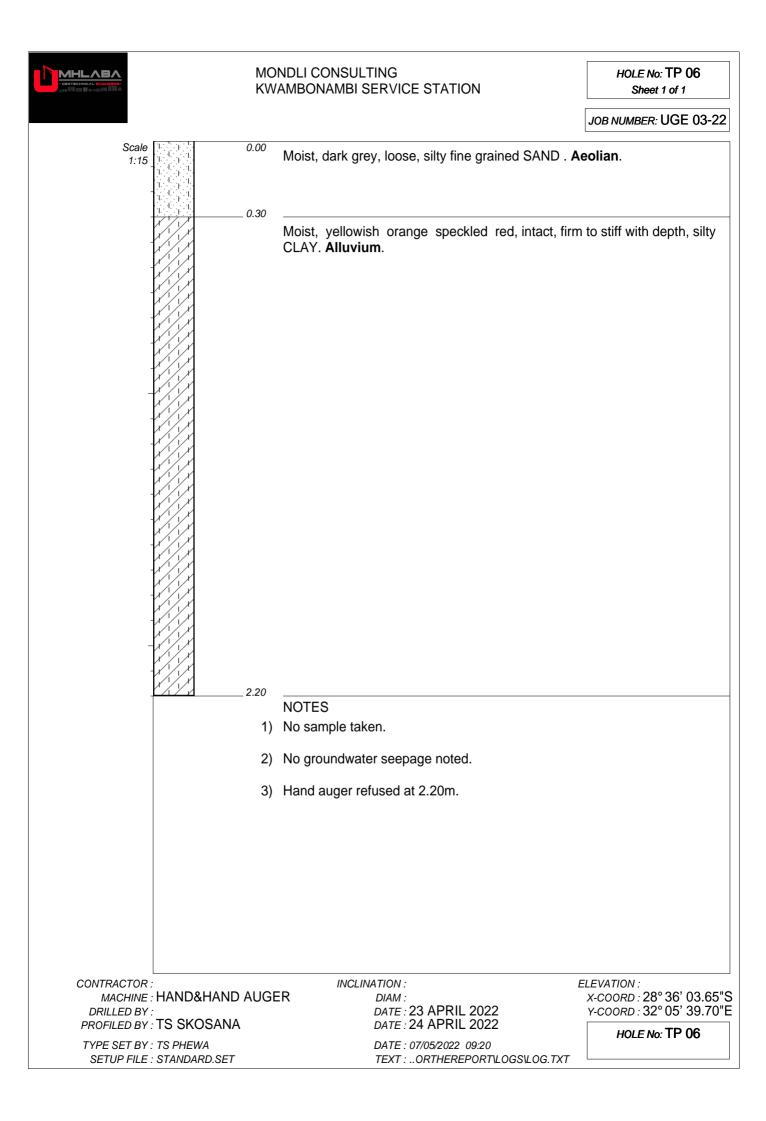
APPENDIX C:

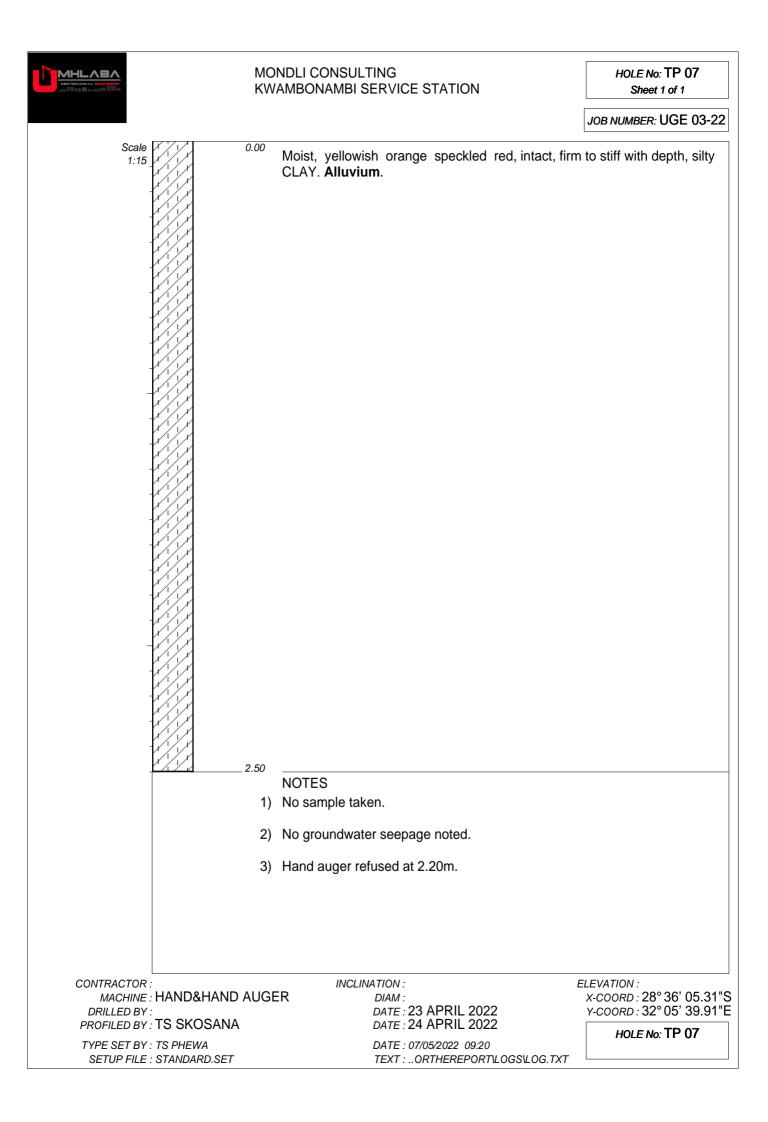
TEST PIT LOGS

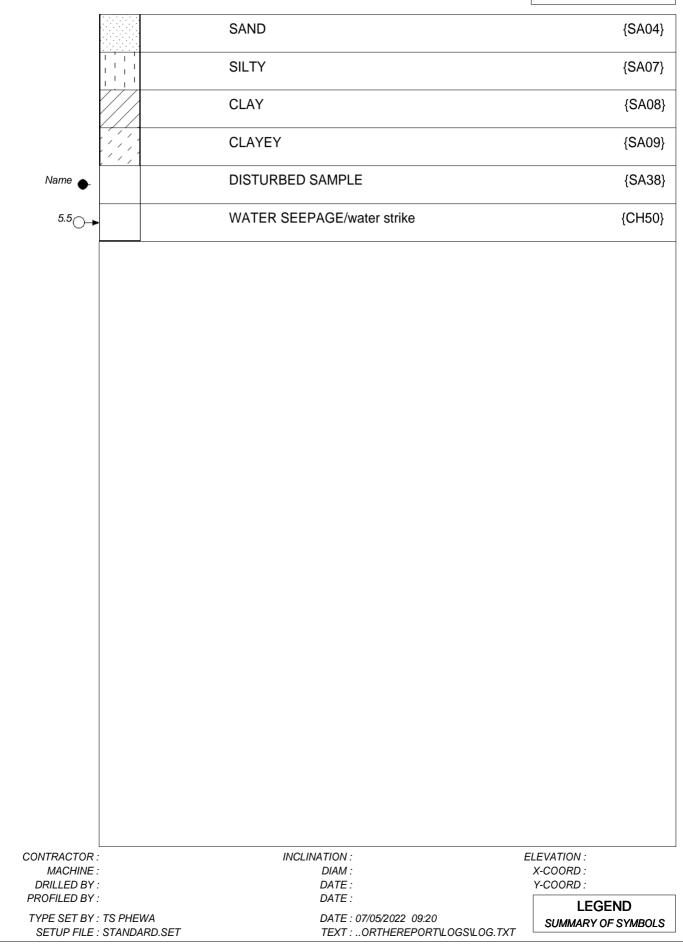



MONDLI CONSULTING KWAMBONAMBI SERVICE STATION


HOLE No: TP 02 Sheet 1 of 1


JOB NUMBER: UGE 03-22


Scale 1:15		Very moist, greyish pale brown, loose to medium fine grained SAND. Aeolian .	dense with depth, silty
-			
-			
-			
-			
-			
	2.50		
		NOTES	
	1)	TP advanced with hand auger between 1.50 to 2.5	0m.
	2)	Surface water noted.	
CONTRACTOR		INCLINATION :	ELEVATION :
	HAND&HAND AUGE		x-coord : 28° 36' 07.64"S y-coord : 32° 05' 40.67"E
	TS SKOSANA	DATE : 24 APRIL 2022	HOLE No: TP 02
TYPE SET BY . SETUP FILE .	: TS PHEWA : STANDARD.SET	DATE : 07/05/2022 09:19 TEXT :ORTHEREPORT\LOGS\LOG.TXT	



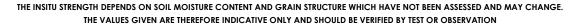
MONDLI CONSULTING KWAMBONAMBI SERVICE STATION

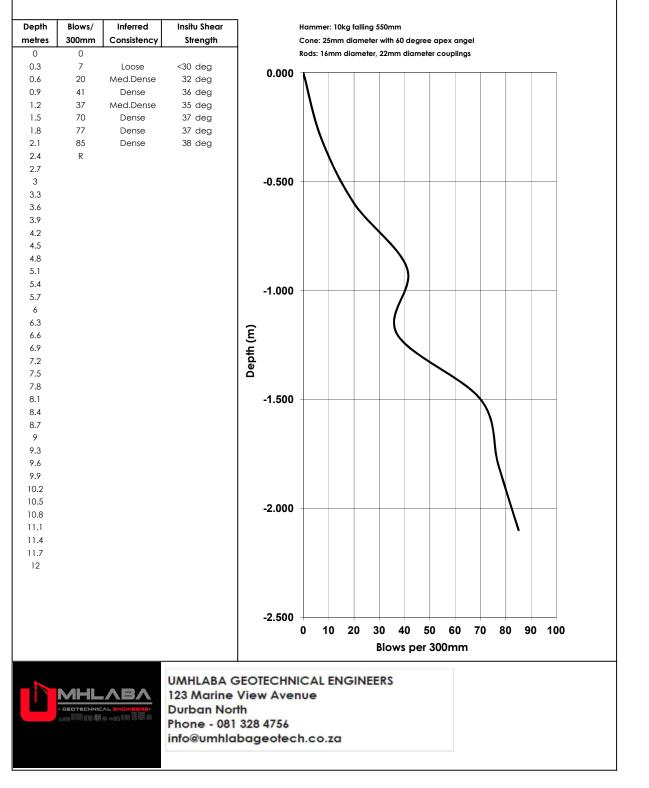
LEGEND Sheet 1 of 1

JOB NUMBER: UGE 03-22

APPENDIX D:

LIGHT DYNAMIC PENETROMETER PROBE (DPL) TEST RESULTS

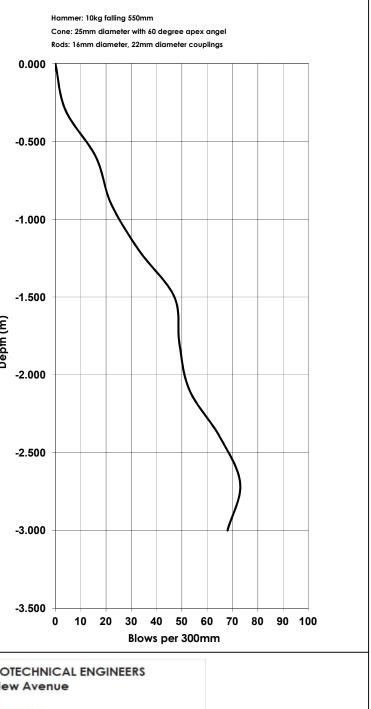



MONDLI CONSULTING KWAMBONAMBI SERVICE STATION RICHARDS BAY

Ref.No.: UGE-03-22 Date: 23-Apr-22 Operator: T.S SKOSANA

LIGHT DYNAMIC PENETROMETER PROBE (DPL)

TEST No.: DPL 1

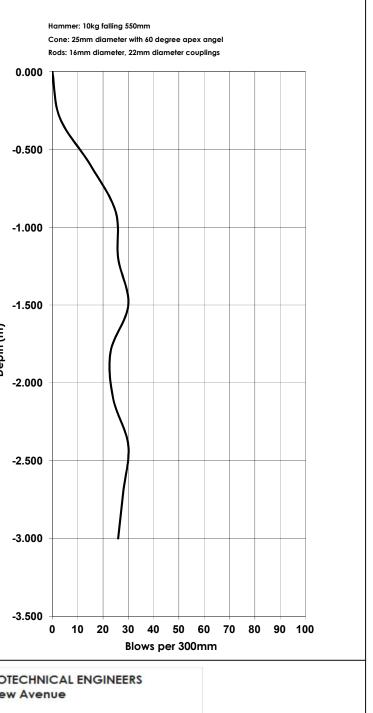

MONDLI CONSULTING KWAMBONAMBI SERVICE STATION RICHARDS BAY

Ref.No.: UGE-03-22 Date: 23-Apr-22 Operator: T.S SKOSANA

LIGHT DYNAMIC PENETROMETER PROBE (DPL)

TEST No.: DPL 2

Depth	Blows/	Inferred	Insitu Shear		nammer:	TUKG TAIII	ng 550n
metres	300mm	Consistency	Strength		Cone: 25r	nm diam	eter witl
0	0			1	Rods: 16m		
0.3	4	Very Loose	<29 deg				
0.6	16	Med.Dense	30 deg	0.000			
0.9	22	Med.Dense	33 deg				
1.2	33	Med.Dense	35 deg				
1.5	47	Dense	36 deg				
1.8	49	Dense	36 deg				
2.1	53	Dense	37 deg		$ \rangle$		
2.4	65	Dense	37 deg	-0.500		\leftarrow	
2.7	73	Dense	37 deg				
3	68	Dense	37 deg				
3.3	50	2 21100				N	
3.6						N	
3.9							
4.2				-1.000	+		$\backslash \vdash$
4.5							Ν
4.3 4.8							
4.0 5.1							
5.4							
5.7							
6				-1.500			
6.3							
6.6				Ê			
6.9				Depth (m)			
7.2				‡			
7.5				e l			
7.8				-2.000	+		
8.1							
8.4							
8.7							
9							
9.3							
9.6				-2.500	+		
7.0 9.9							
10.2							
10.2							
10.5							
10.0							
11.1				-3.000	1		
11.4				-5.000			
12							
				2 500			
				-3.500	0 40		20
					0 10	20	30
							Blo
Lane and the second sec			UMHLABA 123 Marine Durban No	View Aver		NGIN	EER

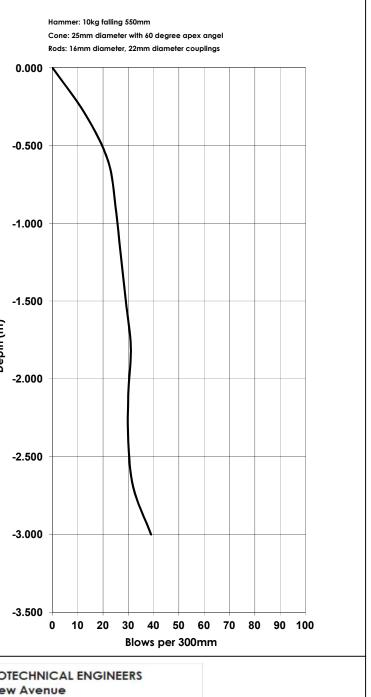

MONDLI CONSULTING KWAMBONAMBI SERVICE STATION RICHARDS BAY

Ref.No.: UGE-03-22 Date: 23-Apr-22 Operator: T.S SKOSANA

LIGHT DYNAMIC PENETROMETER PROBE (DPL)

TEST No.: DPL 3

Depth	Blows/	Inferred	Insitu Shear			0kg falling 550	
metres	300mm	Consistency	Strength		Cone: 25m	n diameter w	ith 60 c
0	0				Rods: 16mn	n diameter, 22	mm di
0.3	3	Very Loose	<29 deg	0.000			
0.6	15	Loose	<30 deg	0.000			
0.9	25	Med.Dense	33 deg				
1.2	26	Med.Dense	34 deg				
1.5	30	Med.Dense	34 deg				
1.8	23	Med.Dense	33 deg				
2.1	24	Med.Dense	33 deg				
2.4	30	Med.Dense	34 deg	-0.500			
2.7	28	Med.Dense	34 deg				
3	26	Med.Dense	34 deg				
3.3	20	Med.Dense	04 deg				
3.6							
3.8							
				-1.000	-		
4.2							
4.5							
4.8							
5.1							
5.4							
5.7				-1.500			
6				-1.500			
6.3				2			
6.6				Depth (m)			
6.9				E			
7.2				e l			
7.5				-2.000			
7.8				-2.000			
8.1							
8.4							
8.7							
9							
9.3							
9.6				-2.500			
9.9							
10.2							
10.5							
10.8							
11.1							
11.4				-3.000			
11.7							
12							
				-3.500	+		
					0 10	20 30	40
							ows
						DI	ows
	мні		UMHLABA			GINEER	S
	- GEOTECHNIC	AL ENGINEERS-	Durban No				
	na il in it		Phone - 081				
					heers		
			info@umhlc	indgeorec	11.00.20		


MONDLI CONSULTING KWAMBONAMBI SERVICE STATION RICHARDS BAY

Ref.No.: UGE-03-22 Date: 23-Apr-22 Operator: T.S SKOSANA

LIGHT DYNAMIC PENETROMETER PROBE (DPL)

TEST No.: DPL 4

Depth	Blows/	Inferred	Insitu Shear	па па	mmer: 10kg fallir	ig ssonin	
metres	300mm	Consistency	Strength	Co	ne: 25mm diame	eter with 60 de	egree
0	0			Rod	ds: 16mm diame	ter, 22mm dia	mete
0.3	13	Loose	<30 deg	0.000			
0.6	22	Med.Dense	33 deg	0.000			
0.9	25	Med.Dense	33 deg				
1.2	27	Med.Dense	34 deg				
1.5	29	Med.Dense	34 deg				
1.8	31	Med.Dense	35 deg				
2.1	30	Med.Dense	34 deg	0.500			
2.4	30	Med.Dense	34 deg	-0.500			
2.7	32	Med.Dense	35 deg		· · · · · \		
3	39	Med.Dense	36 deg				
3.3							
3.6							
3.9							
4.2				-1.000			
4.5							
4.8							
5.1							
5.4							
5.7							
6				-1.500		N I	
6.3							
6.6				Depth (m)			
6.9				£			
7.2				o o			
7.5							
7.8				-2.000			
8.1							
8.4							
8.7							
9							
9.3							
9.6				-2.500			
9.9							
10.2							
10.5							
10.8							
11.1							
11.4				-3.000			
11.7							
12							
				-3.500 -		_	
				0	10 20	30 40	5
						Blows p	oer i
						510413	
				GEOTECHNIC		EERS	
	MHL	.ABA	123 Marine	View Avenu	e		
	- GEOTECHNIC		Durban No	rth			
	DES THE COLOR	e-mailine	Phone - 08	1 328 4756			
				abageotech.	CO.70		

MONDLI CONSULTING KWAMBONAMBI SERVICE STATION RICHARDS BAY

Ref.No.: UGE-03-22 Date: 23-Apr-22 Operator: T.S SKOSANA

LIGHT DYNAMIC PENETROMETER PROBE (DPL)

TEST No.: DPL 5

70 80 90 100

Depth	Blows/	Inferred	Insitu Shear		Hammer: 10k				
metres	300mm	Consistency	Strength	4	Cone: 25mm				
0	0				Rods: 16mm	diameter, 2	2mm diam	eter cou	plings
0.3	10	Loose	<30 deg	0.000					
0.6	15	Loose	<30 deg						
0.9	21	Med.Dense	32 deg						
1.2	19	Med.Dense	32 deg						
1.5	22	Med.Dense	33 deg						
1.8	34	Med.Dense	35 deg						
2.1	30	Med.Dense	34 deg	-0.500					
2.4	37	Med.Dense	35 deg	0.000					
2.7	39	Med.Dense	36 deg						
3	43	Dense	36 deg						
3.3						N I			
3.6									
3.9				-1.000					
4.2				-1.000					
4.5									
4.8									
5.1									
5.4									
5.7				-1.500					
6				-1.500					
6.3				2					
6.6				Depth (m)					
6.9				Ę			\		
7.2				e d			/		
7.5							/		
7.8				-2.000					
8.1									
8.4									
8.7									
9									
9.3									
9.6				-2.500				-	-
9.9									
10.2							N		
10.5							1		
10.8							Ν		
11.1							1		
11.4				-3.000				-	
11.7									
12									
				-3.500					
					0 10	20 30	40	50	60
							lows pe		
			UMHLABA 123 Marine Durban No Phone - 08 info@umhla	View Aver rth 1 328 4756	nue	GINEE	RS		

MONDLI CONSULTING KWAMBONAMBI SERVICE STATION RICHARDS BAY

Ref.No.: UGE-03-22 Date: 23-Apr-22 Operator: T.S SKOSANA

LIGHT DYNAMIC PENETROMETER PROBE (DPL)

TEST No.: DPL 6

Depth														
metres	300mm	Consistency	Strength	4	Cone: 25r	mm diaı	meter v	vith 60	degre	e ape>	angel			
0	0				Rods: 16m	nm dian	neter, 2	2mm o	diamet	er cou	plings			
0.3	7	Loose	<30 deg	0.000	-									
0.6	9	Loose	<30 deg	0.000	Ν									
0.9	15	Loose	<30 deg											
1.2	21	Med.Dense	32 deg											
1.5	27	Med.Dense	34 deg											
1.8	25	Med.Dense	33 deg											
2.1	33	Med.Dense	35 deg											
2.4	34	Med.Dense	35 deg	-0.500										
2.7	42	Dense	36 deg		N N									
3	45	Dense	36 deg											
3.3														
3.6														
3.9														
4.2				-1.000	++	-++						_		+
4.2						Ι								
4.3						<u>ا</u>								
4.8 5.1														
5.4														
5.7 6				-1.500	. +		1							-
6.3														
6.6				2										
				Depth (m)										
6.9														
7.2				ep										
7.5				-2.000										
7.8				-2.000										
8.1														
8.4														
8.7														
9														
9.3				-2.500										
9.6				-2.500										
9.9)						
10.2									۱					
10.5														
10.8														
11.1														
11.4				-3.000					•					
11.7														
12														
				-3.500						-				-
					0 10) 20						70	80 9	90
							В	lows	per	300	mm			
			UMHLABA	SECTECHN		NO	NEE	20						
						INGI	NEE	13						
			123 Marine		nue									
	- GEOTECHNIC	and a set of the set o	Durban No	and the second se										
			Phone - 08											
			info@umhlo	abageoteo	h.co.z	a								

MONDLI CONSULTING KWAMBONAMBI SERVICE STATION RICHARDS BAY

Ref.No.: UGE-03-22 Date: 23-Apr-22 Operator: T.S SKOSANA

LIGHT DYNAMIC PENETROMETER PROBE (DPL)

TEST No.: DPL 7

Depth	Blows/	Inferred	Insitu Shear		Hammer: 1	-	-						
metres	300mm	Consistency	Strength	4	Cone: 25m								
0	0				Rods: 16mr	n diamet	ter, 22mn	n diamet	er coup	lings			
0.3	5	Very Loose	<29 deg	0.000									
0.6	5	Very Loose	<29 deg										
0.9	11	Loose	<30 deg										
1.2	20	Med.Dense	32 deg										
1.5	23	Med.Dense	33 deg										
1.8	27	Med.Dense	34 deg										
2.1	31	Med.Dense	35 deg	-0.500									
2.4	35	Med.Dense	35 deg	0.000									
2.7	37	Med.Dense	35 deg										
3	34	Med.Dense	35 deg										
3.3													
3.6													
3.9				-1.000									
4.2				-1.000		\							
4.5													
4.8						1							
5.1													
5.4													
5.7				4 500									
6				-1.500									
6.3													
6.6				<u>E</u>									
6.9				Depth (m)									
7.2				e b			1						
7.5							N						
7.8				-2.000									
8.1							Ι						
8.4							1						
8.7													
9							1						
9.3													
9.6				-2.500									
9.9													
10.2													
10.5													
10.8													
11.1													
11.4				-3.000									
11.7													
12													
				0.500									
				-3.500		-				o =c	-	-	
					0 10	20		40 5			80	90	1
							Blow	vs per	300m	nm			
				GEOTECHN		IGINI	FFRS						
			123 Marine				LENJ						
\$	GEOTECHN		Durban No		ive								
		10 10 10 10 10 10 10 10 10 10 10 10 10 1											
			Phone - 081 info@umhlc										

APPENDIX E:

LABORATORY RESULTS

	NALAE		RATORY
13 PESETA P	ID STRUCTURAL ENGINEERS ARADE, ARBORETUM RICHAR , Meerensee 3901 7105/6/7		
E-MAIL : rb@s			
REG No. 2005			
		TEST REPORT	
	the state of the s		REPORT NUMBER
Client :	UMHLABA GEOTECHN	CAL ENGINEERS	91651/2022
Address:	123 Marine View Aven Durban North 4051	le	
Cell :	078 378 0327		
Tel:	No Information Provide	ed	
Fax:	No Information Provide		
ATTENTIO			
Project/O	r der: Kwambon	ambi Service Station / Cash	
Brief :	Design: - Determine 2 N	o. Foundation Indicator. 3 No. MDD/OMC, CBR	, pH+ for the samples provided.
Date reques	ted	17/06/2022	
Date sample	d	SAMPLED BY CLIENT	
Date receive	ed .	17/06/2022	
Date tested		Refer attached report/s	
Location of s		SAMPLED BY CLIENT	
	thod/methods	SAMPLED BY CLIENT	
Sampling pla	n	SAMPLED BY CLIENT	
Sampled by		SAMPLED BY CLIENT	
Sample numb		Refer attached report/s	
Sample desc Sample cond		Refer attached report/s Slightly moist, uncontaminated	
Sample class		Refer attached report/s	
	vironmental condition	SAMPLED BY CLIENT	
	d/Methods used	Refer attached report/s	
Test done at		SNALAB R/Bay	
	Test Method's :	Will be noted on test report sheets/s, as	
This test repo	ort relates only to samples re-		he Laboratory.
		REPORT it is not fit for publication. tained on the reverse side of the report.	
1		Client/Sampled by Client" may effect the validit	ty of the test results.
M	M	04/07/2022 DATE:	
Christiaan		DATE	
Laboratory	Manager		
			page 1 of 2
[L			

			TEST REPOI		Lab No:	REFER BELOW		
	Client:				Client No :	91651/2022		
SNALAB CIVIL ENGINEERING LABORATORY	Project Name/No:		ONAMBI SERVICE	STATION		29/06/2022		
	- jsection nom.	REFER B	ELOW		Date :	29/06/2022		
Criteria	REFER PROJ SPEC			DI				
Laboratory & Field D	ata		88996		ESULTS 88998	88999		
Laboratory No Field No			TP1	88997 TP3		TP5		
Source			INSITU	INSITU	INSITU	INSITU		
Depth		m	0.00 - 2.50	0.00 - 1.60	0.60 - 2.40	0.30 - 2.00		
Description								
Sampled by			CLIENT	CLIENT	CLIENT	CLIENT		
	SANS 3001-GR1) / ASTM D422	% P						
53 mr					_			
53 mr 87.5 mr								
87.5 mr 26.5 mr					_			
.9 mr					100	-		
.3.2 mr					97			
l.75 mr					94	100		
2.00 mr	n	-			92	99		
).600 mr	n				89	99		
0.425 mr			-		86	98		
0.075 mr					34	42		
0.060 mr 0.050 mr					34	39		
0.050 mi 0.026 mi					31	37		
0.015 mr					31	35		
0.010 mr					31	35		
0.0050 mr	n				31	31		
0.0020 mr	n				28	28		
).0015 mr					28	28		
Grading Modulus (SANS	3001 - PR5)				0.88	0.61		
SOIL TYPE DISTRIBUTION		%			0	1		
· · · · · · · · · · · · · · · · · · ·	2.0mm) 0 - 0.6mm)				8	0		
	6 - 0.2mm)				26	20		
	2 - 0.06mm)				29	39		
	06 - 0.002mm)				6	12		
Clay (<	0.002mm)				28	28		
					_	1/		
SOIL CONSTANTS (SANS 30	<u>01 - GR10)</u>				29	32		
Liquid Limit Plasticity Index		%			8	12		
Linear Shrinkage		%			4.3	6.3		
Linear on mixage						010		
MDD/OMC (SANS 3001 - 0	R30)							
Maximum Dry Density			1827	1688		1874		
Opt. Moisture Content			9.1	10.2		12.1		
					-			
CBR (SANS GR40)			21	26	-	52		
CBR at : 100% Compaction : 98% Compaction			21 15	26	-	5.2 3.6		
: 95% Compaction			9	6	-	3.0		
: 93% Compaction			6	3		1.6		
: 90% Compaction			4	1		1.1		
Swell @ 100% Compacti	on		0.1	0.1		1.2		
					_			
OTHER (CANVERSE)			F 7		7.4			
OH (SANS 3001 GR57)	(TER114 40470)	% S/m	5.7 0.0053		7.1 0.0472	6.6 0.0306		
Electric Conductivity CLASSIFICATION	(TMH1 A21T)	5/III	0.0033		0.0472	0.0306		
AASHTO SCS & Group Inde	x	-			A-2-4 (0)	A-6 (2)		
		-			UNSUITABLE	UNSUITABL		
% P denotes "percentage p	he specific sample(s) tested herein. assing"							
Remarks:								
					Date:	04/07		