

Section A, 2nd Floor, Suite 02/B1, Norfolk House 54 Norfolk Terrace, off Blair Atholl Drive Westville, 3630 P O Box 1969 Westville, 3630 South Africa T: +27 (0) 31 279 1200 F: +27 (0) 31 279 1204 E: durban@srk.co.za www.srk.co.za

05 April 2017 489025/ALLK/1704006

Ms. A. Gibb SiVEST PO Box 2921 Rivonia 2128

Attention: Ms. A. Gibb

Dear Ms. Gibb

Peer Review of the TsIsitseng 1 and 2 PV and Grid Connection Visual Impact Assessment Reports

SiVEST Reports: 13303

SiVEST (Pty) Ltd. (SiVEST) is undertaking Environmental Impact Assessments (EIA's) for:

- 1) The construction of the Tslisitseng Solar 1 Photovoltaic (PV) Energy Facility (EIA Ref: 14/12/16/3/3/2/889); and
- 2) The construction of the Tslisitseng Solar 2 Photovoltaic (PV) Energy Facility (EIA Ref: 14/12/16/3/3/2/890)

As well as Basic Assessments for:

- 1) The construction of the Tlisitseng 1 Substation and associated 132 kV Power Line; and
- 2) The construction of the Tlisitseng 2 Substation and associated 132 kV Power Line.

As part of the Environmental Authorisation process, a Visual Impact Assessment (VIA) for each of these projects was needed. As SiVEST is the primary environmental assessment practitioner (EAP) for the environmental assessments and VIA, an external peer review is required.

This letter constitutes the independent peer review conducted by Mr K Allan Pr Sci Nat of SRK Consulting (South Africa) (Pty) Ltd. (SRK). As the Tlisitseng 1 and Tlisitseng 2 projects share the same property, and hence the same sensitive receptors, this letter presents the review findings of all four reports.

Partners R Armstrong, AH Bracken, N Brien, JM Brown, CD Dalgliesh, BM Engelsman, R Gardiner, M Hinsch,
GC Howell, WC Joughin, DA Kilian, S Kisten, JA Lake, V Maharaj, DJ Mahlangu, I Mahomed, HAC Meintjes,
MJ Morris, GP Nel, VS Reddy, PE Schmidt, PJ Shepherd, MJ Sim, VM Simposya, HFJ Theart, KM Uderstadt, AT van
Zyl, MD Wanless, ML Wertz, A Wood

Directors AJ Barrett, GC Howell, WC Joughin, V Maharaj, VS Reddy, PE Schmidt, PJ Shepherd

Associate Partners PJ Aucamp, LSE Coetser, E Goossens, SG Jones, W Jordaan, F Lake, MJ Meiring, L Nedeljkovic, RD O'Brien, T Shepherd, JJ Slabbert, WI Stewart, JS Stiff, M van Huyssteen, D Visser

Consultants JAC Cowan, PrSciNat, BSc(Hons); JH de Beer, PrSci Nat, MSc; JR Dixon, PrEng; T Hart, MA, TTHD; GA Jones, PrEng, PhD; PR Labrum, PrEng; RRW McNeill, PrTech Eng; PN Rosewame, PrSciNat; AA Smithen, PrEng; TR Stacey, PrEng, DSc; OKH Steffen, PrEng, PhD; PJ Terbrugge, PrSciNat, MSc, DJ Venter; PrTech Eng

Reg No 1995.012890.07

African Offices:		Group Offices:
Cape Town	+ 27 (0) 21 659 3060	Africa
Durban	+ 27 (0) 31 279 1200	Asia
East London	+ 27 (0) 43 748 6292	Australia
Johannesburg	+ 27 (0) 11 441 1111	Europe
Kimberley	+ 27 (0) 53 861 5798	North America
Pietermaritzburg	+ 27 (0) 33 347 5069	South America
Port Elizabeth	+ 27 (0) 41 509 4800	
Pretoria	+ 27 (0) 12 361 9821	CESA
Rustenburg	+ 27 (0) 14 594 1280	
Accra	+ 23 (3) 24 485 0928	
Lubumbashi	+ 243 (0) 81 999 9775	

1. Summary of Peer Review

It must be noted that this review was focussed primarily on the content of the SiVEST VIA Report, and did not focus on formatting or grammatical errors. Some recommendations for grammatical review have however been made in the final report reviews. No **site visit** was undertaken as part of the peer review.

SRK's review has been guided by the NEMA 2014 EIA Regulations, Government Notice (GN) R982 of 04 December 2014, whereby all specialist studies undertaken as part of an EIA, are required to comply with Appendix 6 of the notice. This is presented in Table 1, below. A **detailed CV** of the peer reviewer (Mr K Allan Pr Sci Nat) is attached to this letter.

Mr Allan is of the opinion that the VIA Report, compiled by SiVEST is fair and that the **terms of reference** and **methodology** used were **transparent and well stated**. There is a substantial focus on potential sensitive viewers, with care taken to attempt to identify sensitive viewers that could potentially be affected by the projects.

Table 1 summarises the legal requirements for all specialist studies, as well as an indication of the relevant Section of this report which complies with the requirement. For ease of reference, the reports for the PV Facilities are labelled: **PV** and the substation and 132 kV power lines are labelled: **Grid**

Legal	Legal Requirement	
(1)	A specialist report prepared in terms of these Regulations must contain details of:	
(0)	The specialist who prepared the report; and	Present
(a)	The expertise of that specialist to compile a specialist report including curriculum vitae.	Missing
(b)	A declaration that the specialist is independent in a form as may be specified by the competent authority.	Present
(c)	An indication of the scope of, and the purpose for which, the report was prepared.	Section 1 of Report
(d)	The date and season of the site investigation and the relevance of the season to the outcome of the assessment.	Present (Grid Section 1.3) (PV Section 1.4)
(e)	A description of the methodology adopted in preparing the report or carrying out the specialised process.	Present (Grid Section 1.4) (PV Section 1.5)
(f)	The specific identified sensitivity of the site related to the activity and its associated structures and infrastructure.	Present (Section 2)
(g)	An identification of any areas to be avoided, including buffers.	Present Section 4 and Section 5
(h)	A map superimposing the activity including the associated structures and infrastructure on the environmental sensitivities of the site including areas to be avoided, including buffers.	Present (various sections)
(i)	A description of any assumptions made and any uncertainties or gaps in knowledge.	Present (Section 1.4)
(j)	A description of the findings and potential implications of such findings on the impact of the proposed activity, including identified alternatives on the environment.	Present (Section 4 and Section 5)
(k)	Any mitigation measures for inclusion in the EMPR. Note that an EMPR has three levels of impact management: Impact management action; Impact management outcome; and Impact management objective.	Present (Section 4)
(I)	Any conditions/aspects for inclusion in the environmental authorisation.	Present (Section 4)
(m)	Any monitoring requirements for inclusion in the EMPR or environmental authorisation.	Present (Section 4)

Table 1: Legal Requirements for Specialist Studies

Lega	Requirement	Relevant Section in Specialist study
	A reasoned opinion1 (Environmental Impact Statement)-	Present (Section 6.1)
(n)	As to whether the proposed activity or portions thereof should be authorised.	Present (Section 6)
	If the opinion is that the proposed activity or portions thereof should be authorised, any avoidance, management and mitigation measures that should be included in the EMPR, and where applicable, the closure plan.	Present (Section 6)
(o)	A description of any consultation process that was undertaken during the course of preparing the specialist report.	N/A
(p)	A summary and copies of any comments received during any consultation process and where applicable all responses thereto.	N/A
(q)	Any other information requested by the competent authority.	N/A

While the **mitigation measures** proposed in the reports were clear and appropriate, some **additional recommendations** for improving the report were identified during the review process. These are listed below:

- 1. Recommendation was made that vegetation rehabilitation could involve the establishment of nurseries, to aid in reducing the time for the vegetation cleared to re-establish.
- 2. Some text in the report may not be relevant or too emotive; these recommendations are made in the report.
- 3. Recommendations for additional mitigation measures have been included in the text.

Additional comments for the reports have been compiled in separate Word Document submitted to SiVEST on 29 July 2016:

- SRK Report: 489025_SivestReview_Tlisitseng_1_GridReview_20160729
- SRK Report: 489025_SivestReview_Tlisitseng_1_PV_20160729
- SRK Report: 489025_SivestReview_Tlisitseng_2_GridReview_20160729
- SRK Report: 489025_SivestReview_Tlisitseng_2_PV_20160729

SRK is of the opinion that the reports were **well written and easy** to understand. Should you have any queries regarding the review or comments made in the reviewed document, please do not hesitate to contact Mr. Keagan Allan, SRK (031 279 1200).

Yours faithfully,

SRK Consulting (South Africa) (Pty) Ltd

SRK Consulting - Cartified Electronic Signature srk Consulting 489025-48258Letter Report 6538-1650-6703-ALLK This signature has been printes digital use for this document. The details are stored in the BRK Signature Database

Mr. K. Allan (Pr. Sci. Nat.) Senior GIS Specialist

Disclaimer

Signature has been plinted digitory. The Autominas given permission for is as forms document. The degris estored in the BRK Bignature Database

SRK Consulting - Certified Elect

Mr. M.J. Morris (Pr. Eng.) Partner

The opinions expressed in this Report have been based on the information supplied to SRK Consulting (South Africa) (Pty) Ltd (SRK). SRK has exercised all due care in reviewing the supplied information. Whilst SRK has compared key supplied data with expected values, the accuracy of the results and conclusions from the review are entirely reliant on the accuracy and completeness of the supplied data. SRK does not accept responsibility for any errors or omissions in the supplied information and does not accept any consequential liability arising from commercial decisions or actions resulting from them. Opinions presented in this report apply to the site conditions and features as they existed at the time of SRK's investigations, and those reasonably foreseeable. These opinions do not necessarily apply to conditions and features that may arise after the date of this Report, about which SRK had no prior knowledge nor had the opportunity to evaluate.

ALLK/MORI

¹ Also include a summary of the impacts.

BIOTHERM ENERGY PTY (LTD)

ProposedConstructionoftheTlisitseng1Substationandassociated132kVPowerLinenearLichtenburg, North West Province

Visual Impact Assessment Report - Basic Assessment

Issue Date: 09 May 2017 Revision No.: 4 Project No.: 13303

Date:	09 May 2017		
	Proposed Construction of the Tlisitseng 1 Substation and		
Document Title:	Associated 132kV Power Line near Lichtenburg, North West		
	Province: Visual Impact Assessment Report – Basic Assessment		
	Stephan Jacobs		
Author:	B.Sc. (Hons) Environmental Management & Analysis (UP)		
	BSc Environmental Sciences (UP)		
Revision Number:	#4		
	Andrea Gibb (internal review)		
	B.Sc. (Hons) Environmental Management (UNISA)		
Checked by:	BSc Landscape Architecture Cum Laude (UP)		
onconcer by:	Keagan Allan - SRK Consulting (South Africa) (Pty) Ltd (peer		
	review)		
	Pr. Sci Nat		
Approved:	Kelly Tucker		
Signature:	Veter		
For:	SiVEST Environmental Division		

COPYRIGHT IS VESTED IN SIVEST IN TERMS OF THE COPYRIGHT ACT (ACT 98 OF 1978) AND NO USE OR REPRODUCTION OR DUPLICATION THEREOF MAY OCCUR WITHOUT THE WRITTEN CONSENT OF THE AUTHOR

For full details and the expertise of the specialists that compiled / checked this report refer to Appendix C.

prepared by: SiVEST

BIOTHERM ENERGY PTY (LTD)

environmental affairs

Department: Environmental Affairs **REPUBLIC OF SOUTH AFRICA**

DETAILS OF SPECIALIST AND DECLARATION OF INTEREST

(For official use only)

File Reference Number: NEAS Reference Number: Date Received:

Application for authorisation in terms of the National Environmental Management Act, 1998 (Act No. 107 of 1998), as amended and the Environmental Impact Assessment Regulations, 2010

PROJECT TITLE

Proposed Construction of the Tlisitseng 1 Substation and Associated 132kV Power Line near Lichtenburg, North West Province

o	011/207.04 (D()) ()		
Specialist:	SIVEST SA (Pty) Ltd		
Contact person:	Stephan Jacobs		
Postal address:	P O Box 2921, Rivonia		
Postal code:	2128	Cell:	072 737 2114
Telephone:	011 798 0677	Fax:	011 803 7272
E-mail:	stephanj@sivest.co.za		
Professional	None		
affiliation(s) (if any)			
Project Consultant:	SiVEST SA (Pty) Ltd		
Contact person:	Andrea Gibb		
Postal address:	P O Box 2921, Rivonia		
Postal code:	2128	Cell:	072 587 6525
Telephone:	011 798 0638	Fax:	011 803 7272
E-mail:	andreag@sivest.co.za		

The specialist appointed in terms of the Regulations

I, Stephan Jacobs , declare that --

General declaration:

- I act as the independent specialist in this application;
- I will perform the work relating to the application in an objective manner, even if this results in views and findings that are not favourable to the applicant;
- I declare that there are no circumstances that may compromise my objectivity in performing such work;
- I have expertise in conducting the specialist report relevant to this application, including knowledge of the Act, regulations and any guidelines that have relevance to the proposed activity;
- I will comply with the Act, regulations and all other applicable legislation;
- I have no, and will not engage in, conflicting interests in the undertaking of the activity;
- I undertake to disclose to the applicant and the competent authority all material information in my possession that reasonably has or may have the potential of influencing - any decision to be taken with respect to the application by the competent authority; and - the objectivity of any report, plan or document to be prepared by myself for submission to the competent authority;
- all the particulars furnished by me in this form are true and correct; and
- I realise that a false declaration is an offence in terms of Regulation 71 and is punishable in terms of section 24F of the Act.

Signature of the specialist

BIOTHERM ENERGY PTY (LTD)

SiVEST SA (Pty) Ltd Name of company (if applicable)

09 March 2016 Date

The specialist appointed in terms of the Regulations

I, Andrea Gibb , declare that --

General declaration:

- I act as the independent specialist in this application;
- I will perform the work relating to the application in an objective manner, even if this results in views and findings that are not favourable to the applicant;
- I declare that there are no circumstances that may compromise my objectivity in performing such work;
- I have expertise in conducting the specialist report relevant to this application, including knowledge of the Act, regulations and any guidelines that have relevance to the proposed activity;
- I will comply with the Act, regulations and all other applicable legislation;
- I have no, and will not engage in, conflicting interests in the undertaking of the activity;
- I undertake to disclose to the applicant and the competent authority all material information in my possession that reasonably has or may have the potential of influencing - any decision to be taken with respect to the application by the competent authority; and - the objectivity of any report, plan or document to be prepared by myself for submission to the competent authority;
- all the particulars furnished by me in this form are true and correct; and
- I realise that a false declaration is an offence in terms of Regulation 71 and is punishable in terms of section 24F of the Act.

Signature of the specialist

BIOTHERM ENERGY PTY (LTD)

SiVEST SA (Pty) Ltd Name of company (if applicable)

19 April 2016

Date

Tlisitseng 1 Substation and 132kV Power Line - Visual Impact Assessment Report

BIOTHERM ENERGY PTY (LTD)

PROPOSED CONSTRUCTION OF THE TLISITSENG 1 SUBSTATION AND ASSOCIATED 132kV POWER LINE NEAR LICHTENBURG, NORTH WEST PROVINCE

VISUAL IMPACT ASSESSMENT REPORT - BASIC ASSESSMENT

Contents

Page

1		1	
1.1	Project Description	1	
1.2	Site Location	3	
1.3	Assumptions and Limitations	6	
1.4	Assessment Methodology	7	
2	VISUAL BASELINE ASSESSMENT	9	
2.1	Topography	9	
2.2	Vegetation and land cover	12	
2.3	Visual Character	22	
2.4	Cultural, Historical and Scenic Value	23	
2.5	Visual Sensitivity	25	
2.6	Sensitive Visual Receptor Locations	27	
3 SUE	TYPICAL VISUAL IMPACTS ASSOCIATED WITH ON-SITE BSTATIONS AND POWER LINES	39	
4		40	
4.1	Visual Compatibility / Contrast	40	
4.2	Receptor Impact Rating	41	
BIOT Tlisits	HERM ENERGY PTY (LTD) prepared by: SiVEST seng 1 Substation and 132kV Power Line – Visual Impact Assessment Report		
Revis	sion No. 4		
22 Ma	ay 2017 Page v		
P:\1300 BA_03	P:\r3000\r3303 BOTTHERM LICHTENBURG PBETA\ENVIRONMENTAL\Reports\R5 Specialist\Tlisitseng Grd\BA\Visual\Tlisitseng Grd 1\13303_Tlisitseng Grd 1 BA_03 May 2017_Rev3_AG.docx		

7	REFERENCES	106
6.1	Environmental Impact Statement	105
6	CONCLUSIONS	104
5	COMPARATIVE ASSESSMENT OF ALTERNATIVES	101
4.6	Overall Visual Impact Rating	. 89
4.5	Cumulative Impacts	55
4.4	Visual Impact Summary	50
4.3	Night-time Impacts	49

List of Figures

Figure 1: Proposed Steel Lattice Tower Types Figure 2: Regional Context Map Figure 3: Locality Map	.3 .4 .5
ypically flat to gently undulating terrain within the study area	10 11
Figure 6: Typical vegetation cover within the study area	12 13
he study area	4 5
lirection	, 16 an
seen from various parts of the study area	17
Figure 13: Land cover within the study area1 Figure 14: Example of tall trees that have been established around farmhouses and which provide visual screening	19 21
Figure 15: Typical natural rural visual character found within larger portions of the stud area	y 22 29
Figure 17: The outside swimming pool area with slides which is found within the Lichtenburg Vakansie Oord Figure 18: Lookout Tower found in the Lichtenburg Vakansie Oord which looks out ove he adjacent Lichtenburg Game Breeding Centre	30 er 31
BIOTHERM ENERGY PTY (LTD) prepared by: SiVEST Tisitseng 1 Substation and 132kV Power Line – Visual Impact Assessment Report Revision No. 4 2 May 2017	

igure 19: Large cement factory which can be seen from inside the Lichtenburg /akansie Oord
Figure 20: View from one of the game drive routes in the Lichtenburg Game Breeding
Centre showing the largely natural character of the area
igure 21: The tall steel structures of the Watershed MTS which can be seen from
ertain parts of the Lichtenburg Game Breeding Centre
igure 22: View of one of the dried up wetland/dam/pan areas within the Lichtenburg
Same Breeding Centre where burning has taken place
igure 23: Visually sensitive receptors within the study area
igure 24: Zones of visual contrast
Figure 25: View of the Watershed MTS51
igure 26: View from the proposed power line corridor showing the largely natural haracter of the area. The tall steel structures that make up the Watershed MTS are
owever visible from parts of the power line corridor

List of Tables

Table 1: Environmental factors used to define visual sensitivity of the study area Table 2: Visual receptor locations sensitive to the proposed on-site Tlisitseng 1	<u>26</u>
Substation and 132kV power line	37
Table 3: Visual assessment matrix used to rate the impact of the proposed developme	ent
on sensitive / potentially sensitive visual receptors	43
Table 4: Visual impact of the proposed development on sensitive / potentially sensitive	÷
visual receptors within the study area	47
Table 5: Visual impact summary of the proposed power line corridor in relation to	
surrounding environment	53
Table 6: Renewable energy developments proposed within a 30km radius from the	
Tlisitseng 1 Substation site and 132kV Power Line Corridor	57
Table 7: Proposed renewable energy projects in the area, steps taken to obtain the	
relevant information and documents obtained.	58
Table 8: Literature Review of Visual Impacts for Surrounding Renewable Energy	
Developments	63
Table 9: Rating of visual impacts of the proposed on-site Tlisitseng 1 Substation and	
132kV power line (including associated infrastructure) during construction	90
Table 10: Rating of cumulative visual impacts as a result of the other proposed	
renewable energy developments (including associated infrastructure) during constructi	on
	93
Table 11: Rating of visual impacts of the proposed on-site Tlisitseng 1 Substation and	
132kV power line (including associated infrastructure) during operation	95
Table 12: Rating of cumulative visual impacts as a result of the other proposed	
renewable energy developments (including associated infrastructure) during operation	98
Table 13: Comparative Assessment of Alternatives 1	01

Appendices

Appendix A: Impact Rating Methodology
Appendix B: List of visually sensitive and potentially sensitive receptor locations (including coordinates) that were identified during the BA investigation
Appendix C: Specialist CVs

GLOSSARY OF TERMS

ABBREVIATIONS

- BA Basic Assessment
- DM District Municipality
- EIA Environmental Impact Assessment
- I&AP Interested and/or Affected Party
- kV Kilovolt
- LM Local Municipality

BIOTHERM ENERGY PTY (LTD)

MTS Main Transmission Substation

OHLOverhead Line

- NGI National geo-spatial information
- SANBI South African National Biodiversity Institute
- VIA Visual Impact Assessment

DEFINITIONS

BIOTHERM ENERGY PTY (LTD)

Anthropogenic feature: An unnatural feature as a result of human activity.

Aspect: Direction in which a hill or mountain slope faces.

Cultural landscape: A representation of the combined worlds of nature and of man illustrative of the evolution of human society and settlement over time, under the influence of the physical constraints and/or opportunities presented by their natural environment and of successive social, economic and cultural forces, both external and internal (World Heritage Committee, 1992).

Power line route: The alignment followed by the proposed power line or power line alternatives.

Power line corridor: The 500m wide power line route assessed during the BA in order to allow for flexibility when determining the final route alignment. Ultimately the 31m wide power line servitude would be routed within the 500m wide corridor.

Sense of place: The unique quality or character of a place, whether natural, rural or urban. It relates to uniqueness, distinctiveness or strong identity.

Scenic route: A linear movement route, usually in the form of a scenic drive, but which could also be a railway, hiking trail, horse-riding trail or 4x4 trail.

Sensitive visual receptors: An individual, group or community that is subject to the visual influence of the proposed development and is adversely impacted by it. They will typically include locations of human habitation and tourism activities.

Study area: The study area is assumed to encompass a zone of 5km from the outer boundary of the power line corridor. This is also referred to as the visual assessment zone.

Viewshed: The geographical area, based entirely on topography, from where an object / structure would be visible, i.e. the zone of visual influence. The viewshed defines the outer boundary of a visual envelope, usually along crests and ridgelines.

Visual character: The physical elements and forms and land use related characteristics that make up a landscape and elicit a specific visual quality or nature. Visual character can be defined based on the level of change or transformation from a completely natural setting.

Visual contrast: The degree to which the development would be congruent with the surrounding environment. It is based on whether or not the development would conform with the land use, settlement density, forms and patterns of elements that define the structure of the surrounding landscape.

Visual envelope: A geographic area, usually defined by topography, within which a particular project or other feature would generally be visible.

Visual exposure: The relative visibility of a project or feature in the landscape.

Visual impact: The effect of an aspect of the proposed development on a specified component of the visual, aesthetic or scenic environment within a defined time and space.

Visual receptors: An individual, group or community that is subject to the visual influence of the proposed development but is not necessarily adversely impacted by it. They will typically include commercial activities and motorists travelling along routes that are not regarded as scenic.

Visual sensitivity: The inherent sensitivity of an area to potential visual impacts associated with a proposed development. It is based on the physical characteristics of the area (visual character), spatial distribution of potential receptors, and the likely value judgements of these receptors towards the new development, which are usually based on the perceived aesthetic appeal of the area.

prepared by: SiVEST

BIOTHERM ENERGY PTY (LTD)

BIOTHERM ENERGY PTY (LTD)

PROPOSED CONSTRUCTION OF THE TLISITSENG 1 SUBSTATION AND ASSOCIATED 132kV POWER LINE NEAR LICHTENBURG, NORTH WEST PROVINCE

VISUAL IMPACT ASSESSMENT REPORT - BASIC ASSESSMENT

1 INTRODUCTION

BioTherm Energy (Pty) Ltd (hereafter referred to as BioTherm) are proposing to construct a 132kV on-site substation, namely Tlisitseng 1 Substation, and associated 132kV power line near Lichtenburg in the North West Province (hereafter referred to as the 'proposed development'). The proposed development is aimed at connecting BioTherm's proposed Tlisitseng Solar 1 photovoltaic (PV) energy facility (part of separate on-going EIA process) onto Eskom's national grid at the existing Watershed Main Transmission substation (MTS). SiVEST South Africa (Pty) Ltd (hereafter referred to as SiVEST) have been appointed by BioTherm to undertake the Basic Assessment (BA) for proposed construction of the 132kV on-site Tlisitseng 1 Substation, 132V power line and associated infrastructure. As part of the BA studies conducted for the proposed development, the need to undertake a visual impact assessment (VIA) has been identified. During the BA, a desktop assessment of the visual environment within the study area was undertaken in order to characterise the area and broadly identify all the potential visual impacts and issues relating to the proposed development. This visual assessment undertaken during the BA focuses on the potential sensitive receptor locations, and provides an assessment of the magnitude and significance of the visual impacts associated with the proposed 132kV on-site Tlisitseng 1 Substation and associated 132kV power line. The main deliverable of this study is the generation of maps indicating visual receptors within the various distance bands and this report indicating the findings of the study.

1.1 Project Description

At this stage, it is understood that the proposed development will include the construction / development of a 132kV on-site substation (namely Tlisitseng 1 Substation), as well as a 132kV power line, which will aim at connecting the proposed Tlisitseng solar 1 PV energy facility (part of

separate on-going EIA process) to Eskom's national grid. The proposed development will include the following components/factors:

- Construction of an on-site substation with a capacity of up to 132kV (referred to as Tlisitseng 1 substation) occupying a footprint area of approximately 2.25ha;
- Construction of a power line with a capacity of up to 132kV routed between the new proposed on-site Tlisitseng 1 substation and the existing Watershed MTS;
- The proposed 132kV power line will have a servitude width of approximately 31m;
- An on-site switching substation with grid transformer(s) for voltage step up to a high voltage of up to 132kV. The switching station will be a common substation connecting multiple phases of the project to the Watershed MTS;
- Access roads; and

BIOTHERM ENERGY PTY (LTD)

• Administration, control and warehouse buildings.

The 132kV power line will consist of a series of towers located approximately 250 to 400m apart, depending on the terrain. It is proposed that the steel lattice tower type (518H and 518C), would predominantly be used for the proposed power line in combination with other towers, as required (e.g. guyed 'vee' suspension towers). The steel lattice tower type is approximately 28m in height. The height will vary based on the terrain, but will ensure minimum Overhead Line (OHL) clearances with buildings and surrounding infrastructure. The exact location of the towers will be determined during the final design stages of the power line.

Drawings of the tower type are indicated in **Figure 1** below.

Figure 1: Proposed Steel Lattice Tower Types

1.2 Site Location

BIOTHERM ENERGY PTY (LTD)

The proposed development site for the 132kV on-site Tlisitseng 1 Substation and 132kV power line will be located within the North West Province, approximately 6km north-west of Lichtenburg. It falls within the Ditsobotla Local Municipality that forms part of the Ngaka Modiri Molema District Municipality (**Figure 2**).

The application site for the proposed 132kV on-site Tlisitseng 1 Substation is located on Portion 25 of the Farm Houthaalboomen No 31, which is approximately 1000ha in extent.

As previously mentioned, grid connection for the proposed Tlisitseng solar 1 PV energy facility (part of separate on-going EIA process) will be to the existing Watershed MTS via a proposed 132kV power line. The Watershed MTS is located immediately adjacent to the south-east boundary of the PV facility application site. It should also be noted that the proposed 132kV power line will be either 1.9 or 2.9km in extent, depending on which substation alternative is chosen as the preferred option. The PV facility application site, proposed 132kV on-site Tlisitseng 1 Substation site and 132kV power line corridor route are shown in the locality map below (**Figure 3**).

prepared by: SiVEST

Figure 2: Regional Context Map

Tlisitseng 1 Substation and 132kV Power Line – Visual Impact Assessment Report

BIOTHERM ENERGY PTY (LTD)

Revision No. 4
22 May 2017
Page 4
P:\13000\13303 BOITHERM LICHTENBURG PB EIA\ENVIRONMENTAL\Reports\R5 Specialist\Tlisitseng Grid\BA\Visual\Tlisitseng Grid 1\13303_Tlisitseng Grid 1 BA_03 May 2017_Rev3_AG.docx

prepared by: SiVEST

Figure 3: Locality Map

BIOTHERM ENERGY PTY (LTD)

Tlisitseng 1 Substation and 132kV Power Line – Visual Impact Assessment Report Revision No. 4 22 May 2017 Page 5 P:\13000\13303 BOITHERM LICHTENBURG PB EIA\ENVIRONMENTAL\Reports\R5 Specialist\Tlisitseng Grid\BA\Visual\Tlisitseng Grid 1\13303_Tlisitseng Grid 1 BA_03 May 2017_Rev3_AG.docx

1.3 Assumptions and Limitations

- Given the nature of the receiving environment and the height of the proposed substation, power lines and associated infrastructure, the study area or visual assessment zone is assumed to encompass a zone of 5km from the proposed development i.e. all areas within a 5km radius of the power line corridor. The 5km radius was assigned as distance is a critical factor when assessing visual impacts and although the proposed development may still be visible from areas outside the 5km radius, the degree of visual impact would diminish considerably. Thus the need to assess the impact on potential receptors outside the visual assessment zone would not be warranted.
- Due to the extensive number of farmsteads and residential dwellings located within 5km of the power line corridor, which could potentially be sensitive to the proposed development, the identification and impact assessment rating on potentially sensitive visual receptor locations was based on a combination of desktop assessment as well as field-based observation. Initially Google Earth imagery was used to identify potentially sensitive receptor locations within the study area. Thereafter a site visit was undertaken to assist with rating the impact of the proposed development from each potentially sensitive visual receptor location and to eliminate receptors that are unlikely to be influenced by the proposed development. This involves establishing the visual character and level of transformation within the study area, classifying the study area into zones of visual contrast and identifying screening factors within the study area.
- It should be noted that the 'experiencing' of visual impacts is subjective and largely based on the perception of the viewer or receptor. A number of broad assumptions were made in terms of the sensitivity of the receptors to the proposed development. This is usually dependent on the use of the facility and the economic dependency on the natural / untransformed quality of views from the facility. Sensitive receptor locations typically include sites that are likely to be adversely affected by the visual intrusion of the proposed development. They include; tourism facilities and residential dwellings within natural / rural settings. Therefore, not all receptor locations would necessarily perceive the proposed development in a negative way.
- No viewsheds were generated during this visual study, as the topography within the study area is relatively flat and no detailed contours were available. Within this context, minor topographical features, vegetative screening, or man-made structures would be important factors which would influence the degree of visibility and which would not be factored in by the viewsheds.

- A matrix has been developed to assist in the assessment of the potential visual impact at each receptor location. The limitations of quantitatively assessing a largely subjective or qualitative type of impact should be noted. The matrix is relatively simplistic in considering three main parameters relating to visual impact, but provides a reasonably accurate indicative assessment of the degree of visual impact likely to be exerted on each receptor location by the proposed substation and power line. The matrix should therefore be seen as a representation of the likely visual impact at a receptor location.
- The assessment of receptor-based impacts has been based on the power line corridor and substation site alternatives provided by the proponent. It is recognised however that the exact route of the power line within the corridor has not been determined, and depending on this the proposed power line may result in greater or lesser visual impacts on receptor locations.
- Visualisation modelling has not been undertaken for the proposed development due to budget limitations. Should the need for visualisation modelling be proven by stakeholder / I&AP feedback, then this will be able to be incorporated into this assessment.
- The feedback regarding the visual environment received from the public participation process and as part of the social impact assessment to date has been incorporated into this report. Any additional feedback relevant to the visual environment received will be incorporated into further drafts of this report.
- Operational and security lighting will be required for the proposed on-site substation and associated infrastructure proposed within the development footprint. At the time of undertaking the visual study no information was available regarding the type and intensity of lighting required and therefore the potential impact of lighting at night has not been assessed at a detailed level. General measures to mitigate the impact of additional light sources on the ambiance of the nightscape have been provided.
- Most rainfall within the area occurs from November to April during the summer months. Therefore as the fieldwork was undertaken in December during the summer season the surrounding vegetation can be expected to provide the maximum potential screening. During winter months the visual impact of the proposed development may therefore be greater, particularly from farmhouses surrounded by tall deciduous trees.

1.4 Assessment Methodology

BIOTHERM ENERGY PTY (LTD)

1.4.1 Field work and photographic review

From the 1st to the 2nd of December 2015 (summer), the study area was visited in order to;

- identify the landscape characteristics;
- classify the study area into zones of visual contrast;
- capture photos of the proposed study area;
- verify the potentially sensitive visual receptor locations previously identified via desktop means;
- eliminate receptors that are unlikely to be influenced by the proposed development; and
- identify any additional visually sensitive receptor locations within the study area.

1.4.2 Physical landscape characteristics

A site visit and digital information from spatial databases such as the National Geo-spatial Information (NGI), the South African National Biodiversity Institute (SANBI) and the South African National Land Cover (Geoterraimage – 2014) were sourced to provide baseline information on the topography, vegetation and land use in the study area. These physical landscape characteristics are important factors which influence the visual character and visual sensitivity of the study area.

1.4.3 Identification of sensitive receptors

During the field investigation, potentially sensitive visual receptor locations within the study area, such as residences, were identified and assessed as they may be potentially sensitive to the visual impacts associated with the proposed development. It must be noted that Google Earth imagery was used to assist with identifying and assessing these potentially sensitive receptor locations.

1.4.4 Impact Assessment

BIOTHERM ENERGY PTY (LTD)

A rating matrix was used to objectively evaluate the significance of the visual impacts associated with the proposed development, both before and after implementing mitigation measures. Mitigation measures were identified (where possible) in an attempt to minimise the potential visual impact of the proposed development. The rating matrix made use of a number of different factors including geographical extent, probability, reversibility, irreplaceable loss of resources, duration, cumulative effect and intensity, in order to assign a level of significance to the visual impact of the project. A separate rating matrix was used to assess the visual impact of the proposed development on the sensitive receptor locations, as identified. This matrix is based on the distance of a receptor from the proposed development, the presence of screening factors and the degree to which the proposed development would contrast with the surrounding environment from a particular location.

Thereafter, the substation site alternatives were comparatively assessed, in order to ascertain the preferred alternative from a visual perspective.

1.4.5 Consultation with I&APs

Continuous consultation with Interested and Affected Parties (I&APs) undertaken during the public participation process (PPP) will be used to help establish how the proposed development will be perceived by the various receptor locations and the degree to which the impact will be regarded as negative. Although I&APs have not as yet provided any feedback in this regard, the report will be updated to include relevant information as and when it becomes available.

2 VISUAL BASELINE ASSESSMENT

The physical and land use related characteristics are outlined below as they are important factors contributing to the visibility of a development and visual character of the study area. Defining the visual character is an important part of assessing visual impacts as it establishes the visual baseline or existing visual environment in which the development would be constructed. The visual impact of a development is measured according to this visual baseline by establishing the degree to which the development would contrast or conform with the visual character of the surrounding area. The inherent sensitivity of the area to visual impacts or visual sensitivity is thereafter determined, based on the visual character, economic importance of the scenic quality of the area, inherent cultural value of the area and presence of visual receptors.

2.1 Topography

BIOTHERM ENERGY PTY (LTD)

The topography within and in the immediate vicinity of the proposed 132kV on-site Tlisitseng 1 Substation and 132kV power line development sites is characterised by a flat to gently undulating landscape sloping very gradually down in a south-easterly direction.

A representation of the typical views from the proposed 132kV on-site Tlisitseng 1 Substation site has been provided in **Figure 4** below.

Figure 4: View from the proposed Tlisitseng 1 Substation application site showing the typically flat to gently undulating terrain within the study area

The topography in the wider study area is largely characterised by level plains with little noticeable relief and very gradual slopes (**Figure 5**). In general, the study area slopes down in a southerly direction towards the town of Lichtenburg.

prepared by: SiVEST

BIOTHERM ENERGY PTY (LTD)

Figure 5: Topography within the study area

2.1.1 Visual Implications

The very flat nature of the topography is a strong factor influencing the types of vistas typically present in the study area, as there are few areas of rising ground to block views and limit viewsheds. As a result, typically wide-ranging vistas are experienced within the study area, especially from locally higher elevations.

2.2 Vegetation and land cover

The study area is covered by the Carlton Dolomite Grassland vegetation type (**Figure 7**), which is characterised by low shrubland with an open tree layer and species-rich grasslands. In certain areas, has anthropogenic activities have had an impact on the natural vegetation. This is evident around farmsteads, where over many years tall exotic trees and other typical garden vegetation have been established. Much of the study area is however still charaterised by natural low shrubland and grassland (**Figure 6**) with limited transformation.

Figure 6: Typical vegetation cover within the study area

BIOTHERM ENERGY PTY (LTD) Tlisitseng 1 Substation and 132kV Power Line – Visual Impact Assessment Report Revision No. 4

Figure 7: Vegetation within the study area

Much of the assessment area is characterised by natural unimproved vegetation (**Figure 13**). Cultivated land is largely concentrated on the western boundary of the study area, with smaller, scattered patches of cultivation evident throughout the study area (**Figure 8**). Maize is the main crop produced in the area with both dryland and irrigated farming practises in evidence.

Figure 8: Typical view of cultivated land which can be found scattered throughout the study area. Cultivated land is however largely concentrated on the western boundary of the study area.

Built form, in areas where cultivation occurs, is limited to isolated farmsteads, gravel access roads, ancillary farm buildings, telephone lines, windmills, fences and the remnants of old workers' dwellings.

prepared by: SiVEST

BIOTHERM ENERGY PTY (LTD)

Figure 9: Typical built form present in areas where cultivation occurs

BIOTHERM ENERGY PTY (LTD)

Human influence is also visible in the form of the R505 main road which traverses the study area in a north-west to south-east direction (**Figure 10**) as well as electricity transmission infrastructure comprising of three (3) 132kV power lines feeding into the Watershed MTS. It must be noted that the tall steel structures that make up the Watershed MTS, as well as the tall steel towers of the existing 132kV power lines, are visible from various parts of the study area (**Figure 11**). In addition, there are some relatively small scale mining/quarrying activities in the study area.

Figure 10: R505 main road which traverses the study area in a north-west to south-east direction

Figure 11: Tall steel structures that make up the Watershed MTS, as well as the tall steel towers of the existing 132kV power lines that run to the Watershed MTS, which can be seen from various parts of the study area

The closest built-up area is the agricultural town of Lichtenburg, which is located on the southern boundary of the study area, with only a small portion of the town lying just inside the 5km radius. Urban development on the outskirts of Lichtenburg comprises a mix of commercial, light/service industrial and residential development (**Figure 12**) as well as road and rail infrastructure largely concentrated on the eastern side of the R505 main road.

BIOTHERM ENERGY PTY (LTD)

Figure 12: Outskirts of the town of Lichtenburg which comprises a mix of commercial, light/service industrial and residential development

A large portion of the study area situated to the east of the R505 has been demarcated as the Lichtenburg Game Breeding Centre, a largely untransformed area which was previously operated by the National Zoological Gardens of South Africa. This game breeding centre was mainly aimed at furthering the breeding programmes of endangered species already in place by the National Zoo, as well as supplementing the populations of local and international zoos. It must however be noted that at present, the game breeding centre is no longer operated by the National Zoological Gardens of South Africa and is therefore currently not operational. The Lichtenburg Vakansie Oord is situated directly adjacent to the Lichtenburg Game Breeding Centre and provides an ideal destination for tourists and people on vacation.

prepared by: SiVEST

BIOTHERM ENERGY PTY (LTD)

Figure 13: Land cover within the study area

2.2.1 Visual Implications

BIOTHERM ENERGY PTY (LTD)

The predominant very low shrub layer and open areas of cultivated fields / grasslands results in wide-open vistas across most of the study area. Only in areas where tall trees (sometimes exotic) have been established around farmhouses, would the vegetation provide visual screening (**Figure 14**). The relatively low density of human habitation and the presence of natural vegetation cover across large portions of the study area would give the viewer the general impression of a largely natural rural setting (**Figure 15**). There are however significant patches of cultivation in the study area which have transformed the natural characteristics of the area. High levels of human transformation and visual degradation only become evident in the southern sector of the study area where urban/peri-urban development has taken place on the outskirts of Lichtenburg. The presence of the Surrounding area, reducing the visual implications of the proposed development within these areas.

The influence of the level of human transformation on the visual character of the area is described in more detail below.

Tlisitseng 1 Substation and 132kV Power Line - Visual Impact Assessment Report

Figure 14: Example of tall trees that have been established around farmhouses and which provide visual screening

Figure 15: Typical natural rural visual character found within larger portions of the study area

2.3 Visual Character

BIOTHERM ENERGY PTY (LTD)

Visual character can be defined based on the level of change or transformation from a completely natural setting, which would represent a natural baseline in which there is little evidence of human transformation of the landscape. Varying degrees of human transformation of a landscape would engender differing visual characteristics to that landscape, with a highly modified urban or industrial landscape being at the opposite end of the scale to a largely natural undisturbed landscape. Visual character is also influenced by the presence of built infrastructure such as buildings, roads and other objects such as electrical infrastructure.

As previously mentioned, much of the study area is characterised by rural areas with low densities of human settlement. Agriculture in the form of maize cultivation is the dominant land use, which has transformed the natural vegetation in some areas. However, a large portion of the study area has retained a natural appearance due to the presence of the low shrubs and grasslands. The most prominent anthropogenic elements in these areas include the R505 main road, 132kV power lines, a substation (Watershed MTS) and other linear elements, such as telephone poles, communication poles and farm boundary fences. The presence of this infrastructure is an important factor in this
context, as the introduction of the proposed 132kV on-site Tlisitseng 1 Substation and associated 132kV power line would result in less visual contrast where other anthropogenic elements (such as the Watershed MTS) are already present. Other human infrastructure in this setting occurs at a low density, and includes several gravel access roads and a west-east aligned railway line on the northern perimeter of Lichtenburg. Overall, the study area has a natural visual character, with certain areas displaying a rural or pastoral component where maize cultivation and farmsteads occur.

The relatively low density of human transformation throughout the surrounding area is an important component contributing to the largely natural visual character of the study area. This is important in the context of potential visual impacts associated with the proposed development of a substation and 132kV power line as introducing this type of development could be considered to be a degrading factor in this context.

It should however be noted that other solar energy facilities are proposed in relatively close proximity to the proposed development. These facilities and their associated infrastructure, typically consist of very large structures which are highly visible. As such, these facilities will significantly alter the visual character and baseline in the study area if constructed and make it appear to have a more industrial-type visual character.

2.4 Cultural, Historical and Scenic Value

Cultural landscapes are becoming increasingly important concepts in terms of the preservation and management of rural and urban settings across the world. The concept of 'cultural landscape' is a way of looking at a place that focuses on the relationship between human activity and the biophysical environment (Breedlove, 2002). The cultural landscape concept is relatively new in the heritage conservation movement across the world. In 1992 the World Heritage Committee adopted the following definition for cultural landscapes:

Cultural landscapes represent the combined worlds of nature and of man illustrative of the evolution of human society and settlement over time, under the influence of the physical constraints and/or opportunities presented by their natural environment and of successive social, economic and cultural forces, both external and internal.

According to the Committee's Operational Guidelines Cultural Landscapes can fall into three (3) categories

- *i)* "a landscape designed and created intentionally by man";
- *ii)* an "organically evolved landscape" which may be a "relict (or fossil) landscape" or a "continuing landscape";

P:\13000/13303 BOITHERM LICHTENBURG PB EIA\ENVIRONMENTAL\Reports\R5 Specialist\Tlisitseng Grid\BA\Visual\Tlisitseng Grid 1\13303_Tlisitseng Grid 1 BA_03 May 2017_Rev3_AG.docx

iii) an "associative cultural landscape" which may be valued because of the "religious, artistic or cultural associations of the natural element"

The greater area surrounding the proposed development site is an important component when assessing visual character and scenic value. The surrounding area can be considered to be typical of a rural farming landscape that consists of relatively flat areas of natural low shrubland and grassland interspersed with farmsteads, windmills, livestock holding pens and agricultural land Livestock farming and other forms of agriculture, such as maize production, are also evident within the surrounding area. This can be attributed to the fact that the nearby town of Lichtenburg is situated in the heart of the maize triangle, which is the main maize growing area in South Africa. Today the town is the centre of a huge farming district where maize, groundnuts and sunflower seeds are the main crops (http://www.places.co.za/html/lichtenburg.html).

The town of Lichtenburg was established in 1873 and is situated in the very western corner of South Africa's maize triangle. Lichtenburg is a farming and industrial town known for the manufacture of cement. (http://showme.co.za/south-africa/north-west/central-district/lichtenburg/). Apart from the agricultural, mining and quarrying activities taking place in the LM, there exists an opportunity for conservation and tourism. It should also be noted that the area surrounding Lichtenburg has a rich diamond mining history. In 1926 a diamond was found on the farm Elandsputte, resulting in a diamond rush where more than 100 000 diggers streamed to Lichtenburg. In 1927, 25 000 runners took part to peg their claims in one of the biggest diamond rushes in history, which resulted in the biggest pure red diamond ("pigeon blood red") in the world being found there (http://www.sa-venues.com/game-reserves/nwp lichtenburg.htm). Popular activities in the area include game viewing, fishing and motor car racing. Lichtenburg is also perfectly positioned to be an ideal stopover for travelers from Johannesburg to Mafikeng and Mmabatho. Tourist attractions situated within the greater area include the Lichtenburg Diggings Museum, Bakerville, Wondergat and the Lichtenburg Game Breeding Centre.

There are several attractions in Lichtenburg that pay homage to the town's rich Boer and prospector history as well as its prosperous farming and manufacturing present. Lichtenburg is the resting place of Anglo-Boer War General Koos de la Rey, and a statue of the General on his horse has been erected in the town square. The town and surrounds feature many heritage homes and a couple of National Monuments. The Lichtenburg Diggings Museum has exhibits of the alluvial diamond diggings which lasted from 1925-1935, then the richest public diggings in the world (http://www.southafrica.com/museums/lichtenburg/). The Ampie Bosman Cultural History Museum can also be found within the town of Lichtenburg and gives an introduction to the history of the town. In addition, a number of historical buildings can also be found within the town of Lichtenburg and gives an introduction to the history of the town. In addition, a number of historical buildings can also be found within the town of Lichtenburg and gives an introduction to the history of the town. In addition, a number of historical buildings can also be found within the town of Lichtenburg and gives an introduction to the history of the town. In addition, a number of historical buildings can also be found within the town of Lichtenburg and include:

- The Dutch Reformed Church in Gerrit Maritz Street erected in 1890 (Declared a National Monument);
- The old magistrate's building which dates from 1895/96;

Revision No. 4

- The home where General De la Rey lived. This was demolished during the Anglo-Boer War but was rebuilt on the original foundations in 1902;
- The home of the founder of Lichtenburg, H.A. Greeff, built in 1875, which is still standing; and
- An old plantation house, home of the pioneer in dry-land farming, Col. H du Toit, erected in 1910.

The nearest known tourist attraction within the study area is the Lichtenburg Game Breeding Centre which is situated 2km north-east of Lichtenburg. The Lichtenburg Game Breeding Centre was operated by the National Zoological Gardens of South Africa and was mainly aimed at furthering the breeding programmes of endangered species already in place by the National Zoo, as well as supplementing the populations of local and international zoos. The reserve has maintained a largely natural character and was used to breed animals such as the addax, scimitar horned and Arabian oryx, and the mohrr gazelle. The centre is also characterised by the presence of a wetland area which used to be home to unique animals such as the pygmy hippo and Pere David's deer. White rhino, blue wildebeest, zebra, impala, gemsbok and many other species could also be found within the breeding centre. In addition, part of this wetland area has been honed into a series of dams and pans that function as a haven for water birds. The centre also features one of the largest bird hides in the country and special night drives can be arranged as the reserve has a network of game drive routes (http://www.sa-venues.com/game-reserves/nwp_lichtenburg.htm).

Approximately 20km north of Lichtenburg lies the world-renowned diamond diggings known as "Bakerville". It was the richest public diggings ever mined and is only one of several "Diggers Towns" developed in Wild West style. Approximately 40km on the Mafikeng road lies "Wondergat", which is one of the deepest sinkholes in South Africa where deep-freshwater diving can be practiced.

Based on the above, the study area can be regarded as a type 'ii' organically evolving cultural landscape. It can be considered both a relict landscape, due to rich history dating back to 1873 and a continuing landscape as the typical rural farming landscape represent how the environment has shaped the predominant land use and economic activity practiced in the area, as well as the patterns of human habitation and interaction. The presence of small towns, such as Lichtenburg, engulfed by an otherwise rural environment, form an integral part of the wider landscape. In addition, the rich history could attract tourists into the area. This is important in the context of potential visual impacts associated with the proposed development of an on-site substation and power line as introducing this type of development could be considered to be a degrading factor in the context of the natural or rural / pastoral character of the study area, as discussed further below.

2.5 Visual Sensitivity

Visual Sensitivity can be defined as the inherent sensitivity of an area to potential visual impacts associated with a proposed development. It is based on the physical characteristics of the area (i.e. topography, landform and land cover), spatial distribution of potential receptors, and the likely value judgements of these receptors towards a new development (Oberholzer, 2005). A viewer's perception is usually based on the perceived aesthetic appeal of an area and on the presence of economic activities (such as recreational tourism) which may be based on this aesthetic appeal.

In order to assess the visual sensitivity of the area SiVEST has developed a matrix based on the characteristics of the receiving environment which, according to the Guidelines for Involving Visual and Aesthetic Specialists in the BA Processes, indicate that visibility and aesthetics are likely to be 'key issues' (Oberholzer, 2005).

Based on the criteria in the matrix (**Table 1**), the visual sensitivity of the area is broken up into a number of categories, as described below:

- i) High The introduction of a new development such as the erection of an on-site substation or power line would be likely to be perceived negatively by receptors in this area; it would be considered to be a visual intrusion and may elicit opposition from these receptors
- ii) Moderate Presence of receptors, but due to the nature of the existing visual character of the area and likely value judgements of receptors, there would be limited negative perception towards the new development as a source of visual impact.
- iii) **Low** The introduction of a new development would not be perceived to be negative, there would be little opposition or negative perception towards it.

The table below outlines the factors used to rate the visual sensitivity of the study area. The ratings are specific to the visual context of the receiving environment within the study area.

FACTORS	RATING									
	1	2	3	4	5	6	7	8	9	10
Pristine / natural character of the environment										
Presence of sensitive visual receptors										
Aesthetic sense of place / scenic visual character										
Value to individuals / society										
Irreplaceability / uniqueness / scarcity value										
Cultural or symbolic meaning										
Scenic resources present in the study area										
Protected / conservation areas in the study area										
Sites of special interest present in the study area										
Economic dependency on scenic quality										

Table 1: Environmental factors used to define visual sensitivity of the study area

BIOTHERM ENERGY PTY (LTD)

Tlisitseng 1 Substation and 132kV Power Line – Visual Impact Assessment Report Revision No. 4

Local jobs created by scenic quality of the area					
International status of the environment					
Provincial / regional status of the environment					
Local status of the environment					
**Scenic quality under threat / at risk of change					

**A rating above '5' for this factor will trigger the need to undertake an assessment of cumulative visual impacts.

Low	Low Moderate							High							
10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	1

Based on the above factors, the study area is rated as having a low visual sensitivity. This is mainly owing to the relatively uninhabited character of the area and the presence of road, rail and electricity transmission infrastructure which would likely reduce the scenic quality of the area. An important factor contributing to the visual sensitivity of an area is the presence, or absence of visual receptors that may value the aesthetic quality of the landscape and depend on it to produce revenue and create jobs. As described below, a number of potentially sensitive receptors are present in the study area.

It should be noted that several solar energy facilities are proposed within relatively close proximity to the proposed project.

2.6 Sensitive Visual Receptor Locations

BIOTHERM ENERGY PTY (LTD)

A sensitive receptor location is defined as a location, from where receptors would potentially be adversely impacted by a proposed development. This takes into account a subjective factor on behalf of the viewer – i.e. whether the viewer would consider the impact as a negative impact. As described above, the adverse impact is often associated with the alteration of the visual character of the area in terms of the intrusion of the proposed on-site substation and 132kV power line into a 'view', which may affect the 'sense of place'. The identification of sensitive receptors is typically undertaken based on a number of factors which include:

- the visual character of the area, especially taking into account visually scenic areas and areas of visual sensitivity;
- the presence of leisure-based (esp. nature-based) tourism or sites with historical and cultural value in an area;
- the presence of sites / routes that are valued for their scenic quality and sense of place;
- the presence of homesteads / farmsteads in a largely natural settings where the development may influence the typical character of their views; and

 feedback from interested and affected parties, as raised during the public participation process conducted as part of the BA study.

A distinction must be made between a receptor location and a sensitive receptor location. Receptor locations are sites from where the proposed on-site substation and 132kV power line may be visible, but the receptor may not necessarily be adversely affected by any visual intrusion associated with the development. Receptor locations include locations of commercial activities and certain movement corridors, such as roads that are not tourism routes. Sensitive receptor locations typically include sites that are likely to be adversely affected by the visual intrusion of the proposed development. They include; tourism facilities, scenic sites and residential dwellings in natural settings.

Generally, the visibility of the development would diminish exponentially over distance. In order to account for this distance bands were used to assign zones of visual impact from the proposed development site. As such, the proposed development would be more visible to receptors located within a short distance and these would experience a higher adverse visual impact than those located at a moderate or long distance from the proposed development. The distance of a sensitive receptor location from the proposed development site was taken into account when rating the visual impact of the proposed development on these potential receptors.

Based on the height and scale of the project, as well as the investigations undertaken during the fieldwork, the radii chosen to assign these zones of visual impact are as follows:

- 0 < 500m (high impact zone);
- 500m < 2km (moderate impact zone); and
- 2km < 5km (low impact zone)

BIOTHERM ENERGY PTY (LTD)

A number of potentially sensitive visual receptors were identified. These are indicated in **Figure 23** below and each receptor is identified by a specific number (e.g. VR 1 = Visual Receptor 1). Of the potentially sensitive visual receptors identified, only three (3) receptor locations were identified as being sensitive within the study area due to their current and potential tourism significance, namely the Lichtenburg Vakansie Oord, the Lichtenburg Game Breeding Centre and the Rafters Pub (VR 62, VR 64 and VR 14 respectively). The Lichtenburg Vakansie Oord is situated approximately 3.6km south-east of the proposed 132kV power line corridor, adjacent to the Lichtenburg Game Breeding Centre, and is an ideal place for relaxation, adventure and scenic beauty. This holiday resort is an attractive destination for tourists and people on vacation and offers accommodation in the form of equipped chalets (**Figure 16**) and camping facilities. Other facilities that can be found within the holiday resort include lapa facilities with a boma, an in-house warm pool, an outside pool with slides (**Figure 17**), a day resort with 90m "Supertube" and 45m "Lane-Racer", and an Olympic swimming pool with shaded island (<u>http://lichtenburgvakansieoord.co.za/index2.htm</u>).

Figure 16: The tiled roof chalets that are found within the Lichtenburg Vakansie Oord

Figure 17: The outside swimming pool area with slides which is found within the Lichtenburg Vakansie Oord

In addition, a tower which looks out over the adjacent Lichtenburg Game Breeding Centre can also be found within the resort (**Figure 18**). Due to the relatively tall nature of this structure, it is likely that individuals standing on the lookout tower might have views of the proposed development. The area surrounding the holiday resort has maintained a relatively natural or scenic character, with transformation limited mainly to the holiday resort area itself. This is most likely due to the fact that the Lichtenburg Vakansie Oord is situated adjacent to the largely natural area of the Lichtenburg Game Breeding Centre. It should however be noted that certain anthropogenic elements, such as telephone poles and a large cement factory (**Figure 19**), can be seen from within the holiday resort and are expected to lessen the visual sensitivity of the surrounding area. Although the abovementioned cement factory is situated outside of the visual assessment zone, it is still expected to alter the visual character of the views from the Lichtenburg Vakansie Oord and will ultimately lessen the visual impact associated with the proposed development.

prepared by: SiVEST

BIOTHERM ENERGY PTY (LTD)

Figure 18: Lookout Tower found in the Lichtenburg Vakansie Oord which looks out over the adjacent Lichtenburg Game Breeding Centre

Figure 19: Large cement factory which can be seen from inside the Lichtenburg Vakansie Oord

The Lichtenburg Game Breeding Centre (VR 64) has maintained a largely natural character (**Figure 20**). It should however be noted that a series of telephone poles can be found throughout the game breeding centre. In addition, other existing linear elements, such as a large cement factory and the tall steel structures that make up the Watersed MTS, are also visible from certain areas of the game breeding centre (**Figure 21**). The game breeding centre is also characterised by the presence of a wetland area which used to be home to unique animals such as the pygmy hippo and Pere David's deer.

prepared by: SiVEST

BIOTHERM ENERGY PTY (LTD)

Figure 20: View from one of the game drive routes in the Lichtenburg Game Breeding Centre showing the largely natural character of the area.

Figure 21: The tall steel structures of the Watershed MTS which can be seen from certain parts of the Lichtenburg Game Breeding Centre.

Part of the wetland area has been honed into a series of dams and pans that function as a haven for water birds. The centre also features one of the largest bird hides in the country and a network of game drive routes (http://www.sa-venues.com/game-reserves/nwp lichtenburg.htm). The Lichtenburg Game Breeding Centre was therefore considered to be an attractive tourist destination and would be adversely affected by the visual intrusion of the proposed development should it be visible from this location. It is however important to note that at this stage, the game breeding centre is no longer operated by the National Zoological Gardens of South Africa and is currently not operational. During the site visit it was also noted that all wetland areas, dams and pans were completely dry and burning had taken place within these areas (**Figure 22**). It is estimated that the restoration and construction process of the game breeding centre will last another year, however there is currently no definite decision on whether or not the centre will be opened for tourists (Steynberg, 2016). Despite this, the Lichtenburg Game Breeding Centre has still been regarded as a sensitive visual receptor for the purpose of this study as the game breeding centre will be reopened and could be operated as a tourism facility in the future.

prepared by: SiVEST

BIOTHERM ENERGY PTY (LTD)

Figure 22: View of one of the dried up wetland/dam/pan areas within the Lichtenburg Game Breeding Centre where burning has taken place.

The Rafters Pub (referred to as plots locally) has been operating on Portion 1 of the Farm Talene 25 for approximately eight years. It is estimated that the pub receives between 300 and 340 visitors per month and when special events (i.e. pool tournaments etc.) are hosted, the visitor numbers are higher. The owner of the farm has expressed his intention to start a bird breeding programme focused on African Greys on the farm. It is also the intention of the owner to offer overnight accommodation and build four chalets on the property (Steynberg, 2016). The owner of the farm has expressed his concern about the possible negative visual impact and the effect that the project could have on the potential for tourism development as well as the sense of place on his farm (Steynberg, 2016). In addition at the Landowner Focus Group Meeting held in March 2016, the owner expressed his concern regarding the possible impact that the proposed development would have on their existing business. Patrons visit their establishment to escape the town in order to experience the calm atmosphere and nature on the farm. As such, the farm is regarded as a sensitive visual receptor due to its current economic activities which in part rely on the scenic nature of the surrounding area and due to the future potential of the farm as a tourism facility.

During the site visit, several scattered farmsteads / homesteads were identified within the study area. These dwellings are located within a mostly rural or pastoral setting and the proposed development will likely alter the natural vistas experienced from these dwellings. It is important to

BIOTHERM ENERGY PTY (LTD)

note that these visual receptor locations are regarded as <u>potentially</u> sensitive to the proposed development as the degree of visual impact experienced from these locations will vary from one inhabitant to another, as it is largely based on the viewer's perception and sentiments toward the development. Factors influencing the degree of visual impact experienced by viewers at these locations include the following:

- Value placed by the viewer on the rural characteristics of the area.
- The viewer's sentiments toward the proposed structures. These may be positive (a symbol of progression) or negative (foreign objects degrading the natural landscape).
- Degree to which the viewer will accept a change in the typical pastoral character of the surrounding area.

Only three (3) sensitive visual receptor locations were identified within the rural parts of the study area, these being the Lichtenburg Game Breeding Centre (VR 64) which occupies a large tract of land directly east of the proposed 132kV power line corridor, the Lichtenburg Vakansie Oord (VR 62) which can be found to the south-east of the proposed 132kV power line corridor, adjacent to the game breeding centre and the Rafters Pub which is located adjacent to the application site for the PV energy facility directly south-west of the power line corridor. This is mainly due to low levels of leisure-based or nature based tourism activities in the assessment area. In addition, the only significant concentration of human habitation in the study area is the agricultural town of Lichtenburg, most of which lies outside the 5km assessment area. The northern sector of Lichtenburg which lies just inside the assessment area largely comprises of a mix of land uses with some receptors present. Although there is a relatively high concentration of receptors in this area, they are not all regarded as sensitive to the visual impact of the proposed development due to the existing visual degradation within these areas.

A list of the visually sensitive and potentially sensitive receptor locations (including coordinates) that were identified during the investigation are provided in **Appendix B**.

In many cases, roads, along which people travel, are considered to be sensitive receptor locations. The R505 main road which traverses the study area is considered to be a visually sensitive road as it is the main access road between Lichtenburg and the N18 national route to the north. This road can be used to access tourism attractions to the north of the study area such as the diamond diggings at Bakerville and the Wondergat sinkhole (<u>http://www.tourismnorthwest.co.za</u>). The relatively high volumes of motorists travelling along this road would therefore be visually exposed to the proposed power line and substation as the road traverses the power line corridor.

 Table 2 below provides details of the sensitive visual receptor locations and roads that were identified within the study area.

Table 2: Visual receptor locations sensitive to the proposed on-site Tlisitseng 1 Substation and

 132kV power line

	Distance from the proposed Tlisitseng 1 Substation site or	Visual Impact Zone
Name	132kV power line corridor route	
VR 62 – Lichtenburg	Approximately 3.7km	Low
Vakansie Oord		
VR 64 – Lichtenburg	Approximately 1.5km	Moderate
Game Breeding Centre		
VR 14 – Rafters Pub	Approximately 445m	High
R505 Secondary Road	Varies (directly traverses the power	Varies (High, Moderate and
	line corridor at the closest point)	Low)

Other thoroughfares in the study area are primarily used by local farmers travelling to and from Lichtenburg. They are therefore not regarded as visually sensitive as they do not form part of any scenic tourist routes, and are not specifically valued or utilised for their scenic or tourism potential.

The sensitive / potentially sensitive visual receptor locations in relation to the zones of visual impact are indicted in **Figure 23** below.

BIOTHERM ENERGY PTY (LTD)

Figure 23: Visually sensitive receptors within the study area

prepared by: SiVEST

Tlisitseng 1 Substation and 132kV Power Line – Visual Impact Assessment Report Revision No. 4

REVISION NO. 4
22 May 2017
Page 38
P:\13000\13303 BOITHERM LICHTENBURG PB EIA\ENVIRONMENTAL\Reports\R5 Specialist\Tisitseng Grid\BA\Visual\Tisitseng Grid 1\13303_Tisitseng Grid 1 BA _03 May 2017_Rev3_AG.docx

3 TYPICAL VISUAL IMPACTS ASSOCIATED WITH ON-SITE SUBSTATIONS AND POWER LINES

In this section, the typical visual issues / impacts related to the establishment of an on-site substation and 132kV power line as proposed are discussed.

Power line towers and on-site substations are by their nature very large objects and thus highly visible. The standard tower height of the proposed 132kV power line is approximately 28m (equivalent in height to a 9 storey building). Although pylon structure would be less visible than a building, the height of a tower / pylon thus means that the pylon would still typically be visible for a relatively large radius around it. A 132kV power line consists of a series of towers spaced approximately 250m to 400m apart in a linear alignment, thus increasing its visibility.

The degree of visibility of an object informs the level and intensity of the visual impact, but other factors also influence the nature of the visual impact. The landscape and aesthetic context of the environment in which the object is placed, as well as the perception of the viewer are also important factors. In the context of the 132kV power line, the type of tower used as well as the degree to which the towers would impinge upon or obscure a view is also a factor that will influence the experience of the visual impacts.

As described above, power lines and substations are not features of the natural environment, but are rather representative of human (anthropogenic) alteration of the natural environment. Thus when placed in a largely natural landscape, a substation and/or power line can be perceived to be highly incongruous in this context. The height and linear nature of the power line will exacerbate this incongruity within a natural landscape, as the towers may impinge on views within the landscape. In addition, the practice of clearing the taller vegetation under the power line servitude in certain vegetation types can worsen the visibility and incongruity of the power line in a largely natural bushier setting, by causing fragmentation of natural vegetation, thus making the power line more visible. The cleared strip of land is often highly visible and draws the viewer's attention to the power line servitude, especially when it occurs within a context of natural thicket / bushveld vegetation where bushes or trees commonly occur.

As mentioned above, how the viewer / receptor perceives the impact is also very important, as certain receptors may not consider the development of a substation and/or power line to be a visual impact. The scenic / aesthetic value of an area, and the types of land use practices also tend to affect people's perception of whether a substation and/or power line is an unwelcome intrusion, and thus the sensitivity of receptors to the erection of a substation and/or power line in an area. Power lines and substations are often perceived as visual impacts where value is placed on the scenic or aesthetic character of an area, and where activities, which are based upon the enjoyment of, or exposure to, the scenic or aesthetic features of the area are practiced. Sensitivity to visual

BIOTHERM ENERGY PTY (LTD)

impacts is typically most pronounced in areas set aside for conservation of the natural environment (such as protected natural areas or conservancies), or in areas in which the natural character or scenic beauty of the area attracts visitors (tourists) to the area. Residents and visitors to these areas may perceive substations and/or power lines to be an unwelcome intrusion that would degrade the natural character and scenic beauty of the area, and which would potentially even compromise the practicing of tourism activities in the area.

Conversely, the presence / existence of other anthropogenic objects associated with the built environment may influence the perception of whether a substation and/or power line is a visual impact. Where buildings and other linear structures such as roads, railways and especially other power lines and substations exist the visual environment could be considered to be "degraded" and thus the introduction of a new power line and substation in this setting may be considered to be less of a visual impact if there was no existing built infrastructure visible.

Other factors, as listed below, can also impact the nature and intensity of a potential visual impact associated with a substation and power line:

- The location of a substation and power line in the landform setting i.e. in a valley bottom or on a ridge top. In the latter example the substation and/or power line would be much more visible and would "break" the horizon:
- The presence of macro- or micro-topographical features, such as buildings or vegetation that would screen views of the substation and power line from a receptor location;
- The presence of existing substations and power lines in the area and alignment in relation to these substations and power lines; and
- Temporary factors such as weather conditions (presence of haze, or heavy mist) which . would affect visibility.

IMPACT ASSESSMENT 4

4.1 **Visual Compatibility / Contrast**

The visual compatibility of the proposed development refers to the degree to which the development would be congruent with the surrounding environment. It is based on whether or not the development would conform with the land use, settlement density, structural scale, form and pattern of elements that define the structure of the surrounding landscape. The visual compatibility is an important factor to be considered when assessing the impact of the development within a specific context. A development that is incongruent with the surrounding area may change the character of the landscape, which could have a significant visual impact from key scenic views within the study area. Where a development corresponds with the surrounding environment the development would

Page 40

be easily absorbed by the surrounding environment and would result in little to no change in the visual character of the area.

As previously mentioned, the proposed development includes the construction of a 132kV on-site substation (namely the Tlisitseng 1 Substation), a 132kV power line and associated infrastructure which are aimed at feeding the electricity generated by the proposed Tlisitseng 1 solar PV energy facility (part of separate on-going EIA process) back into Eskom's national grid. In general, the development would not be consistent with the prevailing residential and pastoral land use within the surrounding area. However, the anthropogenic elements and built-up areas present within parts of the study area are expected to lessen the degree to which the proposed development would be considered incongruent with the surrounding landscape. As mentioned above, the presence of other linear and vertical structures such as roads, railways and especially other power lines and substations would influence the perception of whether a power line and substation would visually contrast with the elements already present within the landscape. Where existing electrical infrastructure is present the visual environment would already be visually 'degraded' and thus the introduction of a new power line or substation in this setting would result in less visual contrast than if no existing built infrastructure were visible.

The existing electrical infrastructure within the study area, includes three (3) high voltage power lines and Watershed MTS. These elements have already degraded the natural environment to some extent and will significantly reduce the visual impact as the proposed development would conform with these elements. It is also important to note that the on-site substation and power line are being proposed to serve the Tlisitseng 1 solar PV energy facility. Thus, the substation and power line would only be constructed if the PV energy facility was developed as well. The visual contrast would therefore be dwarfed by the large number of visible PV panels. As such, the substation and power line are not expected to result in a significant visual contrast.

4.2 Receptor Impact Rating

In order to assess the potential visual impact of the proposed development on the sensitive / potentially sensitive receptor locations identified during the field investigation, a matrix that takes into account a number of factors has been developed (**Table 3**), and is applied to each receptor location.

The matrix has been based on a number of factors as listed below:

- Distance of receptor away from the proposed development (distance banding)
- Presence of potential screening factors (topography, vegetation etc.)
- Location of the receptor in terms of zones of visual contrast

These factors are considered to be the most important factors when assessing the visual impact of a proposed development on a sensitive / potentially sensitive visual receptor within this context. It must be remembered that the experiencing of visual impacts is a complex and gualitative phenomenon, and thus difficult to accurately quantify; thus the matrix should be seen as a representation of the likely visual impact at a receptor location. This rating matrix is a relatively simplified way to assign a likely representative visual impact, which allows a number of factors to be considered. Part of its limitation lies in the quantitative assessment of what is largely a qualitative or subjective impact.

BIOTHERM ENERGY PTY (LTD)

		VISUAL IMPACT F	RATING	
				OVERRIDING FACTOR:
VISUAL FACTOR	HIGH	MEDIUM	LOW	NIL
Distance of receptor	0 < 500m	500m < 2km	2km < 5km	5km <
away from proposed				
development	Score: 3	Score: 2	Score: 1	
Presence of screening	Limited or no screening factors	Screening factors likely to partially	Screening factors likely to	Screening factors
factors	 development highly visible 	obscure the development	obscure most of the	completely block any
			development	views towards the
				development, i.e. the
				development is not within
	Score: 3	Score: 2	Score: 1	the viewshed
Zone of Visual	High: The development would	Moderate: The development	Low: The development	
Contrast	contrast highly with the typical	would contrast moderately with the	would correspond with the	
	land use and/or pattern and	typical land use and/or pattern and	typical land use and/or	
	form of human elements	form of human elements	pattern and form of human	
	(infrastructural form). Typically	(infrastructural form) and existing	elements (infrastructural	
	a natural / pastoral environment	level of visual transformation.	form) and existing level of	
	with low-density rural	Typically areas within close	visual transformation.	
	infrastructure present (low	proximity to other prominent	Presence of urban form and	
	voltage power lines and farm	infrastructure (high voltage power	industrial-type	
	boundary fences).	lines and railway lines) and within	infrastructure. The area is	
		intensive agricultural lands /	not highly valued or	
		cultivated fields	sensitive to change (e.g.	
			the outskirts of urban and	
			built-up areas).	
	Score: 3	Score: 2	Score: 1	

Table 3: Visual assessment matrix used to rate the impact of the proposed development on sensitive / potentially sensitive visual receptors

4.2.1 Distance

As described above, distance of the viewer / receptor location away from the development is an important factor in the context of experiencing of visual impacts. A high impact rating has thus been assigned to receptor locations that are located within 0<500m of the proposed development. Beyond 5km, the visual impact would be virtually nil, as the development would appear to merge with the elements on the horizon. Any receptor location beyond this distance has therefore been assigned an overriding nil impact rating. As such, despite the impact rating assigned to the other visual factors, the overall impact rating would remain nil, as the proposed development would not visually influence any receptors located more than 5km from the development. Where a receptor is located within more than one distance band, such as a receptor road, it is assigned the score according to the closest distance it will get from the proposed development i.e. the highest visual impact experienced.

As previously mentioned, distance bands were used to assign zones of visual impact from the proposed development site. Based on the height and scale of the project, as well as the investigations undertaken during the fieldwork, the radii chosen to assign the zones of visual impact are as follows:

- 0 < 500m (high impact zone);
- 500m < 2km (moderate impact zone); and
- 2km < 5km (low impact zone).

4.2.2 Screening factors

The presence of screening factors is equally important in this context as the distance away from the development. Screening factors can be vegetation, buildings, as well as topography. For example, a grove of trees located between a receptor location and an object could completely shield the object from the receptor location. Topography (relative elevation and aspect) plays a similar role as a receptor location in a deep or incised valley will have a very limited viewshed and may not be able to view an object that is in close proximity, but not in its viewshed. As such, the complete screening of the development has also been assigned an overriding nil impact rating, as the development would not impose any impact on the receptor.

4.2.3 Zones of visual contrast

BIOTHERM ENERGY PTY (LTD)

The degree to which the proposed development would appear to contrast with the surrounding land use, settlement density, forms and patterns of elements that define the structure of the surrounding landscape is also considered in the matrix. The visual contrast is an important factor to be considered when assessing the impact of the proposed development from a specific location, as a development that appears contrasts with the visual backdrop may change the visual character of that landscape. This could have a significant visual impact on potentially sensitive visual receptors within the study area.

Based on the land use and visual character in the surrounding landscape, the area was assessed to determine the level of transformation and degree to which the proposed development would appear to be visually compatible with the surrounding environment when viewed from a particular location. In the context of this proposed development, the presence or absence of existing electrical infrastructure, dense settlement or other urban built-up form is an important factor influencing the level of visual contrast. For example, if the development was located adjacent to an existing substation or power line it would result in significantly less visual contrast. The development site was therefore classified into the following zones of visual contrast:

• **High** – undeveloped / natural / rural areas;

BIOTHERM ENERGY PTY (LTD)

- Moderate Intensive agricultural lands / cultivated fields or areas within 500m of existing power line, road or rail infrastructure in undeveloped / natural / rural area; and
- Low within 1km from visually transformed urban / built-up areas.

The outcome of the visual contrast classification in relation to the sensitive / potentially sensitive visual receptor locations is provided in **Figure 24** below.

Tlisitseng 1 Substation and 132kV Power Line - Visual Impact Assessment Report

Figure 24: Zones of visual contrast

Table 4 below presents the results of the visual impact matrix

Categories of impact:

Rating	Overall Score				
High Visual Impact	8-9				
Moderate Visual Impact	5-7				
Low Visual Impact	3-4				
Negligible Visual Impact	(overriding factor)				

Table 4: Visual impact of the proposed development on sensitive / potentially sensitive visual

 receptors within the study area

Receptor	Distance	Screening	Contrast	OVERALL
Location				IMPACT RATING
VR 1	Moderate (2)	High (3)	Moderate (2)	MODERATE
VR 2	Moderate (2)	Moderate (2)	Moderate (2)	MODERATE
VR 3	Low (1)	High (3)	Moderate (2)	MODERATE
VR 4	Low (1)	Low (1)	Moderate (2)	LOW
VR 5	Low (1)	Low (1)	Moderate (2)	LOW
VR 7	Low (1)	Low (1)	Moderate (2)	LOW
VR 8	Low (1)	Moderate (2)	Moderate (2)	MODERATE
VR 9	Low (1)	Low (1)	Moderate (2)	LOW
VR 10	Low (1)	Low (1)	Moderate (2)	LOW
VR 11	Low (1)	Moderate (2)	Moderate (2)	MODERATE
VR 12	Moderate (2)	Moderate (2)	High (3)	MODERATE
VR 13	Moderate (2)	Moderate (2)	High (3)	MODERATE
VR 14 –	High (3)	Moderate (2)	Moderate (2)	MODERATE
Rafters Pub				
VR 15	Moderate (2)	Moderate (2)	Moderate (2)	MODERATE
VR 16	Moderate (2)	Moderate (2)	Moderate (2)	MODERATE
VR 17	High (3)	Low (1)	Moderate (2)	MODERATE
VR 18	Moderate (2)	Low (1)	Moderate (2)	MODERATE
VR 19	Moderate (2)	Low (1)	Moderate (2)	MODERATE
VR 20	Moderate (2)	Low (1)	Moderate (2)	MODERATE
VR 21	Moderate (2)	Low (1)	Moderate (2)	MODERATE
VR 22	High (3)	Low (1)	Moderate (2)	MODERATE
VR 23	High (3)	Low (1)	Low (1)	MODERATE
VR 24	Moderate (2)	Low (1)	Low (1)	LOW
VR 25	Moderate (2)	Low (1)	Low (1)	LOW
VR 26	High (3)	Moderate (2)	Low (1)	MODERATE
VR 27	Moderate (2)	Low (1)	Low (1)	LOW

BIOTHERM ENERGY PTY (LTD)

prepared by: SiVEST

Tlisitseng 1 Substation and 132kV Power Line – Visual Impact Assessment Report Revision No. 4

22 May 2017 Page 47
P:\13000\13303 BOITHERM LICHTENBURG PB EIA\ENVIRONMENTAL\Reports\R5 Specialist\Tlisitseng Grid\BA\Visual\Tlisitseng Grid 1\13303_Tlisitseng Grid 1
BA_03 May 2017_Rev3_AG.docx

Receptor	Distance	Screening	Contrast	OVERALL
Location				IMPACT RATING
VR 28	Moderate (2)	Low (1)	Low (1)	LOW
VR 29	Moderate (2)	Negligible	Low (1)	LOW
VR 30	Moderate (2)	Low (1)	Low (1)	LOW
VR 31	Low (1)	Low (1)	Moderate (2)	LOW
VR 32	Moderate (2)	Low (1)	Low (1)	LOW
VR 33	Moderate (2)	Low (1)	Low (1)	LOW
VR 34 –				
Lichtenburg	Moderate (2)	High (3)	Low (1)	MODERATE
Drive-in				
Theatre				
VR 35	Low (1)	Low (1)	Low (1)	LOW
VR 36	Low (1)	Moderate (2)	Moderate (2)	MODERATE
VR 37	Low (1)	Low (1)	Moderate (2)	LOW
VR 38	Low (1)	High (3)	Low (1)	MODERATE
VR 39	Low (1)	High (3)	Low (1)	MODERATE
VR 40	Low (1)	Low (1)	Low (1)	LOW
VR 41	Low (1)	High (3)	Low (1)	MODERATE
VR 42	Low (1)	Low (1)	Low (1)	LOW
VR 43	Low (1)	Moderate (2)	Low (1)	LOW
VR 44	Low (1)	Moderate (2)	Moderate (2)	MODERATE
VR 45	Low (1)	Low (1)	Moderate (2)	LOW
VR 46	Low (1)	Low (1)	Moderate (2)	LOW
VR 47	Low (1)	Low (1)	Moderate (2)	LOW
VR 48	Low (1)	Low (1)	Moderate (2)	LOW
VR 49	Low (1)	High (3)	Moderate (2)	MODERATE
VR 51	Low (1)	Moderate (2)	Low (1)	LOW
VR 52	Low (1)	Low (1)	Low (1)	LOW
VR 53	Low (1)	Low (1)	Low (1)	LOW
VR 54	Low (1)	Moderate (2)	Low (1)	LOW
VR 55	Low (1)	Low (1)	Low (1)	LOW
VR 56	Low (1)	Low (1)	Low (1)	LOW
VR 57	Low (1)	Moderate (2)	Low (1)	LOW
VR 58	Low (1)	High (3)	Low (1)	MODERATE
VR 62 –				
Lichtenburg	Low (1)	Moderate (2)	Low (1)	LOW
Vakansie				
Oord				
VR 63	Low (1)	Low (1)	Low (1)	LOW

BIOTHERM ENERGY PTY (LTD) Tlisitseng 1 Substation and 132kV Power Line – Visual Impact Assessment Report Revision No. 4

22 May 2017

Page 48 P:\13000/13303 BOITHERM LICHTENBURG PB EIA\ENVIRONMENTAL\Reports\R5 Specialist\Tlisitseng Grid\BA\Visual\Tlisitseng Grid 1\13303_Tlisitseng Grid 1 BA_03 May 2017_Rev3_AG.docx

Receptor Location	Distance	Screening	Contrast	OVERALL IMPACT RATING
VR 64 – Lichtenburg Game Breeding Centre	Moderate (2)	Moderate (2)	Moderate (2)	MODERATE

As indicated above, the proposed development would result in a low visual impact on majority of the potentially sensitive visual receptor locations with the study area (32 in total). It is important to note that the proposed development would result in a moderate visual impact on the Lichtenburg Game Breeding Centre (VR 64) and Rafters Pub (VR 14) and have a low visual impact on the Lichtenburg Vakansie Oord (VR 62). Although the development would be visible (to a degree) from all of the potentially sensitive / sensitive visual receptor locations, it would not result in a high impact on any of the potentially sensitive receptor locations. In addition, the proposed development is likely to exert a moderate impact on twenty five (25) of the potentially sensitive visual receptor locations.

4.3 Night-time Impacts

BIOTHERM ENERGY PTY (LTD)

The visual impact of lighting on the nightscape is largely dependent on the existing lighting present in the surrounding area at night. The night scene in areas where there are numerous light sources will be visually degraded by the existing light pollution and therefore additional light sources are unlikely have a significant impact on the nightscape. In contrast, introducing light sources into a relatively dark night sky will impact on the visual quality of the area at night. It is thus important to identify a night-time visual baseline before exploring the potential visual impact of the proposed onsite Tlisitseng 1 Substation at night.

The area surrounding the proposed development site is mostly uninhabited and as a result, relatively few light sources are present. The town of Lichtenburg is the main source of light within the surrounding area, however it is located more than 6km away and are therefore expected to have a limited impact on the night scene. It must be noted that the Lichtenburg Game Breeding Centre, Lichtenburg Vakansie Oord and Lichtenburg Drive-in Theatre can be found within relatively close proximity to the application site and will most likely require some form of lighting for security reasons. At this stage, it is uncertain whether the Lichtenburg Drive-in Theatre is still operational and the impact of it on the night scene. It should also be noted that majority of the Lichtenburg Game Breeding Came Breeding Centre has maintained a largely natural / undisturbed character as it was used to breed animals for local and international zoos. The natural / undisturbed areas within the breeding centre are therefore not expected to be characterised by a large amount of lighting. The Lichtenburg Vakansie Oord is however expected to be illuminated at night and require lighting for security

reasons as it is used as a holiday resort and offers accommodation and recreational facilities. In addition, another prominent light source within the study area at night is the security lighting at the Eskom Watershed MTS which the power lines are proposed to connect to. According to local farmers, the Watershed MTS can be seen at night from relatively far away. Other sources of light are limited to, isolated lighting from the surrounding farmsteads and residential dwellings. In general the study area is characterised by a picturesque dark starry sky and the visual character of the night environment is considered to be generally 'unpolluted' and pristine.

Due to the fact that the larger area is generally renowned as a tourist destination, the relatively natural dark character of the nightscape will be sensitive to the impact of additional lighting at night, particularly from nearby farmhouses. The security lighting required for the proposed project is likely to intrude on the nightscape and create glare, which will contrast with the dark backdrop of the surrounding area. Existing night time views from potentially sensitive receptors are characteristic of a relatively dark night scene with some light sources visible in the distance as well as those from the nearby Watershed MTS and Lichtenburg Vakansie Oord, as a result lighting impacts from the proposed substation will increase the existing light pollution in the surrounding area.

4.4 Visual Impact Summary

4.4.1 Access Roads

A network of gravel access roads will also be constructed to provide access to the power line. Roads are typically only associated with significant visual impact if they traverse sloping ground on an aspect that is visible to the surrounding area. Considering the flat nature of the terrain on the site, it is likely that the visual impact associated with these roads would be limited to the impact of clearing the vegetation. However, if these roads are not maintained correctly during the construction phase, construction vehicles travelling along the gravel access roads could expose surrounding farmstead to dust plumes.

4.4.2 Power Line

As previously mentioned, one (1) power line corridor is being assessed in order to provide grid access from the proposed 132kV on-site Tlisitseng 1 Substation to Eskom's Watershed MTS (**Figure 25**). The proposed power line corridor has been aligned to traverse the R505 in a south-eastern direction towards the Watershed MTS. Here it will join up with three (3) existing 132kV power lines. It must however be noted that the proposed power line corridor is aligned within a part of the study area which is not characterised by existing electrical infrastructure and has remained largely natural (**Figure 26**). The tall steel structures that make up the Watershed MTS are however visible from parts of the proposed power line corridor.

Figure 25: View of the Watershed MTS

Figure 26: View from the proposed power line corridor showing the largely natural character of the area. The tall steel structures that make up the Watershed MTS are however visible from parts of the power line corridor

Power lines are anthropogenic elements that are typically found in the landscape, both in urban or industrial and in more natural rural settings. The visual impact of a power line would largely be related to the physical characteristics of the area, land use and the spatial distribution of potential receptors. When combining this with the distribution and likely value judgements of visual receptors, the visual impact of the proposed power line can be determined. In areas, where the power line would contrast with the surrounding area it may change the visual character of the landscape and be perceived negatively by visual receptors.

A summary of the visual impact of the proposed power line corridor in relation to the physical characteristics, land use, visual character, presence of visual receptors and existing power lines or other infrastructure in the surrounding landscape, are discussed in **Table 5** below. These factors have been investigated in order to determine the degree to which the proposed power line corridor would be visually compatible with the surrounding environment and to determine its overall visual impact.

prepared by: SiVEST

BIOTHERM ENERGY PTY (LTD)

Physical and Land Use	Visual Character	Visual Contrast	Presence of Visual	Overall Visual Impact
Characteristics			Receptors	
Topography: The	The area has a largely	Although the area is largely	Potentially sensitive visual	Due to the large number of
proposed power line would	natural rural or pastoral	natural or rural / pastoral and the	receptors within viewing	visual receptors present
typically be highly visible	visual character. The most	prevailing agricultural activities	distance (5km) from the	within viewing distance
due to the very flat terrain	prominent anthropogenic	have left the vegetation mostly	power line corridor are	from the proposed power
and wide-ranging vistas in	elements and built	intact, the presence of the	limited to approximately	line corridors, and the fact
the study area. Localised	infrastructure in the study	existing 132kV power lines have	fifty six (56) scattered	that the alignment runs in
topographical undulations	area include the R505 main	introduced a distinct linear	farmsteads and one (1)	close proximity to existing
would offer minimal visual	road, gravel access roads,	element into the landscape. As	Drive-in Theatre. In	132kV power lines, the
screening.	existing 132kV power lines,	such, the addition of a power line	addition, three (3) receptor	power line would result in a
Vegetation: The	the Watershed MTS, the	which would be aligned in close	locations, namely VR 62 -	medium visual impact.
predominant very low	Lichtenburg Vakansie	proximity to the existing power	The Lichtenburg Vakansie	Refer to Section 4.5 for the
shrub layer and open areas	Oord, the Lichtenburg	lines would contrast moderately	Oord, VR 64 – The	overall visual impact rating.
of cultivated fields /	Game Breeding Centre,	with the existing linear elements.	Lichtenburg Game	
grasslands results in wide-	isolated farmhouses and	However, the presence of the	Breeding Centre and VR 14	
open vistas across most of	other linear elements, such	proposed Tlisitseng solar 1 PV	– Rafters Pub, were	
the study area. Only in	as telephone poles,	energy facilities (part of separate	deemed to be sensitive	
areas where artificial	communication poles,	on-going EIA process) would	receptors due to their	
wooded vegetation has	windmills and farm	lessen the visual contrast.	significance as tourism	
been established around	boundary fences.		facilities. It must be noted	
farmhouses, would the			that a significant number of	
vegetation provide visual			the farmsteads identified	
screening.			are located within 2km from	
Land use: Much of the			the power line corridors.	
assessment area is			From these distances the	
characterised by natural			visual impact associated	
unimproved vegetation.				

Table 5: Visual impact summary of the proposed power line corridor in relation to surrounding environment

BIOTHERM ENERGY PTY (LTD) Tlisitseng 1 Substation and 132kV Power Line – Visual Impact Assessment Report

Revision No. 4

Cultivated land is largely		with the pow	er line is	
concentrated on the		expected to be	significant.	
western boundary of the				
study area, with smaller,				
scattered patches of				
cultivation evident				
throughout the study area.				
The power line would				
contrast within this setting.				

4.4.3 On-site Substation

A new 132kV on-site substation (namely the Tlisitseng 1 Substation) is being proposed in order to supply the electricity generated by the proposed Tlisitseng 1 solar PV energy facility (part of separate on-going EIA process) to Eskom's national grid. In isolation, the proposed Tlisitseng 1 Substation may be considered to be visually intrusive; however, it must be assumed that the on-site substation would be built to serve the needs of the power generated from the proposed Tlisitseng 1 solar PV energy facility. Thus the substation would only be constructed if the proposed PV energy facility was developed as well. The substation would likely form part of the PV complex, as viewed from the surrounding farmsteads. Views of the substation would therefore be dwarfed by the large number of PV panels that would be visible. As such, the substation is not expected to be associated with a significant visual impact, or even a measurable cumulative impact.

4.5 Cumulative Impacts

BIOTHERM ENERGY PTY (LTD)

Although it is important to assess the visual impacts of the proposed development on its own, it is equally important to assess the cumulative visual impact that could materialise in the area should other similar developments be granted authorisation to proceed. Cumulative impacts are the impacts, which combine from different developments / facilities and result in significant impacts that may be larger than sum of all the impacts.

It is important to note that onsite substation and power line developments are associated with other renewable energy facility developments such as solar PV energy facilities. Onsite substation and power line developments are proposed in order to supply electricity generated by their associated renewable energy facility developments to the national grid. As such, most onsite substation and power line developments proposed in the area would only be constructed should their associated renewable energy facilities be granted EA and ultimately be constructed / developed as well. The cumulative impacts associated with the substation and power line developments are therefore intrinsically linked to those identified for renewable energy facility developments and the impacts cannot be separated. The literature review undertaken for the two (2) proposed Tlisitseng PV energy facilities has therefore been utilised to assess the cumulative impact in the area.

The area has seen some interest from developers of various renewable energy projects, which is likely associated with the solar energy resource potential found in the region, proximity to the existing sub-station and its evacuation capacity, as well as other factors. Such developments, whether already approved or only proposed, need to be considered as they have the potential to create numerous cumulative impacts, whether positive or negative, if implemented.

These renewable energy developments and their potential for large scale visual impacts could significantly alter the sense of place and visual character in the study area, if constructed. For the purpose of this study, renewable energy developments which are proposed within a 30km radius from the Tlisitseng 1 substation and 132kV power line were identified.

Table 6 lists the projects that will need to be considered when examining the cumulative impacts.

BIOTHERM ENERGY PTY (LTD)

Table 6: Renewable energy developments proposed within a 30km radius from the Tlisitseng 1

 Substation site and 132kV Power Line Corridor

Proposed Development	DEA Reference Number	Current Status of EIA	Proponent	Proposed Capacity	Farm Details
Tlisitseng Solar 1 PV Energy Facility	14/12/16/3/3/2/8 89	EIA ongoing	BioTherm Energy	75MW	Portion 25 of the Farm Houthaalboomen No 31
Tlisitseng Solar 2 PV Energy Facility	14/12/16/3/3/2/8 90	EIA ongoing	BioTherm Energy	75MW	Portion 25 of the Farm Houthaalboomen No 31
Lichtenburg Solar Park	14/12/16/3/3/3/2 70	Project has received environment al authorisation	Matrigenix (Pty) Ltd	70MW	A portion of portion 10 of the Farm Lichtenburg Town and Townlands No. 27
Watershed Solar Energy Facility Phase 1	14/12/16/3/3/2/5 56	Project has received environment al authorisation	FVR Energy South Africa (Pty) Ltd	75MW	Portions 1, 9, 10 and 18 of the Farm Houthaalboomen No. 31
Watershed Solar Energy Facility Phase 2	14/12/16/3/3/2/5 57	Project has received environment al authorisation	FVR Energy South Africa (Pty) Ltd	75MW	Portions 1, 9, 10 and 18 of the Farm Houthaalboomen No. 31
Hibernia PV Solar Energy Facility	14/12/16/3/3/2/1 062	Project has received environment al authorisation	Megawatt One Photovoltai c (Pty) Ltd	5MW	Portions 9 and 31 of the Farm Hibernia No. 52

Based on the Department of Environmental Affairs' (DEAs) comments on the Draft Basic Assessment Report (DBAR), the DEA requested that a cumulative environmental impact assessment be conducted including a literature review of other specialist assessments / studies on the neighbouring adjacent properties for other similar developments in a 30km radius of the project site. This is to be undertaken in order to ascertain any additional cumulative impacts associated with the other developments in general..

In an effort to meet this requirement, SiVEST undertook every effort to obtain the information (including specialist studies, BA / EIA / Scoping and EMPr Reports) for the above mentioned developments. The steps taken to acquire the relevant documents for the above mentioned projects is detailed in **Table 7** below.

prepared by: SiVEST

BIOTHERM ENERGY PTY (LTD)

Proposed	EAP	Steps taken to obtain relevant documents	Documents Obtained
Development			
Tlisitseng Solar 1 PV Energy Facility	SiVEST SA (Pty) Ltd	SiVEST is the EAP for the proposed development. The proposed development Final Scoping Report (FSR) has been accepted by the DEA and the Final Environmental Impact Assessment Report (FEIAr) has been submitted to the DEA for decision making. Additionally, the specialist impact assessments have been conducted to form part of the FEIAr. All the relevant documents	 Biodiversity Impact Assessment Report; Avifaunal Impact Assessment Report; Surface Water Impact Assessment Report; Soils and Agricultural potential Impact Assessment Report;
		were therefore available for the cumulative assessment.	 Visual Impact Assessment Report; Heritage Impact Assessment Report; Socio-economic Impact Assessment Report; Geotechnical Impact Assessment Report; and Traffic Impact Assessment Report

Table 7: Proposed renewable energy projects in the area, steps taken to obtain the relevant information and documents obtained.
Tlisitseng Solar 2 PV	SiVEST SA (Pty)	SiVEST is the EAP for the proposed development. The proposed	•	Biodiversity Impact Assessment Report;
Energy Facility	Ltd	development FSR has been accepted by the DEA and the FEIAr	•	Avifaunal Impact Assessment Report;
		has been submitted to the DEA for decision making. Additionally,	•	Surface Water Impact Assessment
		the specialist impact assessments have been conducted to form		Report;
		part of the FEIAr. All the relevant documents were therefore	•	Soils and Agricultural potential Impact
		available for the cumulative assessment.		Assessment Report;
			•	Visual Impact Assessment Report;
			•	Heritage Impact Assessment Report;
			•	Socio-economic Impact Assessment
				Report;
			•	Geotechnical Impact Assessment
				Report; and
			•	Traffic Impact Assessment Report
Lichtenburg Solar	Africa Geo-	Google Search for PV facilities near Lichtenberg North West	•	Archaeological Impact Assessment
Park	Environmental	Province;		Report
	Services (AGES)	• Proposed Development was found on Leads 2 Business	•	Heritage Impact Assessment Report
		website (www.l2b.co.za/project-region/North-West).		
		Google search of the proposed development project name		
		was undertaken.		
		Consulted the SAHRA Website for Heritage and PIA Report		
		(http://sahra.org.za/sahris/cases/lichtenburg-solar-park).		
		• Attempted to download reports from the AGES Website		
		(http://ages-group.com/)		
		• Reports were not available for publically available to		
		download		
		Contacted AGES in an effort to obtain outstanding specialist		
		reports that were not available for public download.		

		 AGES responded to SiVEST request for the FBAR and 	
		specialist reports noting that the proposed developmen	t
		has not been awarded preferred Bidder Status in terms	6
		on the DoE's IPP programme.	
		 AGES further stated that they are not in a position to send 	1
		any of the reports through to SiVEST. However, the	/
		were able to provide SiVEST with the locality map for the	
		proposed Lichtenburg Solar Park as well as layout plans	
		 Additionally, SiVEST attempted to contact the developers of 	f
		the proposed development, however contact details were no	t
		publically available.	
Watershed Solar	Savannah	Google Search for PV facilities near Lichtenberg North Wes	t • Watershed PV (phase I and II) FEIR
Energy Facility Phase	Environmental	Province;	 Visual Scoping Report
1	(Pty) Ltd	The proposed Development was found on Leads 2 Business	 Social Scoping report
Watershed Solar	Savannah	website (www.l2b.co.za/project-region/North-West).	 Draft EMPr (Phase 1)
Energy Facility Phase	Environmental	- Google search of the proposed development project name	 Draft EMPr (Phase 2)
2	(Pty) Ltd	was undertaken. FEIR (excluding appendices) was able to be	• Archaeological Impact Assessment
		downloaded as a PDF.	Report
		Consulted the SAHRA Website for Heritage Report	Background Information Documents
		(http://sahra.org.za/sahris/heritage-reports/heritage-report-	EAs
		watershed-solar-facility).	
		From the SAHRA website other documents were available to	
		be downloaded. (http://sahra.org.za/sahris/cases/watershed	_
		solar-energy-facilities-556-557).	
		- Attempted to download reports from the Savannal	1
		Environmental Website	
		 Reports were not publically available to download. 	

Hibernia PV Solar Energy Facility	Savannah Environmental (Pty) Ltd	 Contacted Savannah Environmental in an effort to obtain outstanding specialist reports that we not available for public download. Savannah Environmental noted that the project has already been archived and handed over to the developers. Savannah Environmental noted that it is against their company policy to give out developers contact details. However, they were able to provide SiVEST with the EA's for the proposed development. Google Search for PV facilities near Lichtenberg North West Province; The proposed Development was found on Leads 2 Business website (www.l2b.co.za/project-region/North-West). 	 Heritage Assessment Report Final BAR BID
		 Consulted the SAHRA Website for Heritage Report (http://sahra.org.za/sahris/heritage-reports/aia-paleo-reports- hibernia). From the SAHRA website other documents were available to be downloaded. FEIR (excluding appendices) was able to be downloaded as a PDF. http://sahra.org.za/sahris/cases/hibernia-solar-facility-1062). Attempted to download reports from the Savannah Environmental Website Reports were not publically available to download 	

 Contacted Savannah Environmental in an effort to obtain outstanding specialist reports that we not available for public download. Savannah Environmental noted that the project has already been archived and handed over to the developers. Savannah Environmental noted that it is against their company policy to give out developers contact details. However, they were able to provide SiVEST with the EA's for the proposed development. Additionally, SiVEST attempted to contact the developers of the proposed development.
 Additionally, SiVEST attempted to contact the developers of the proposed development, however contact details were not publically available.

In response to the DEA's request, a literature review of other visual impact assessments / studies compiled for the renewable energy facilities in the area was subsequently undertaken. It should be noted that some of the project sites are at a very advanced stage, and the initial studies were undertaken in 2012. As a result, many of the documents are not currently publically available to download. Nonetheless, SiVEST was able to source some of information that was available. The relevant information (including visual impact specialist studies, EIA / Scoping and EMPr Reports) that could be obtained for the surrounding proposed renewable energy developments that was taken into account is shown in **Table 8** below.

Project	Relevant Impacts to be	Proposed Mitigation	Impacts Significance
	Taken into Consideration	Measures	Rating after Mitigation
	from a Visual Perspective		
Tlisitseng	 The following visual 	The following mitigation	 The visual impacts
Solar 1 PV	impacts are expected	measures are	expected during the
Energy	during the construction of	recommended:	construction of the
Facility	the proposed PV energy		proposed PV energy
	facility and associated	- Carefully plan to reduce	facility and associated
	infrastructure:	the construction period.	infrastructure will be
		- Minimise vegetation	negative low after the
	1) Large construction	clearing and rehabilitate	implementation of
	vehicles and equipment	cleared areas as soon	mitigation measures;
	during the construction	as possible.	
	phase will alter the natural	- Vegetation clearing	 The cumulative visual
	character of the study	should take place in a	impacts expected as a
	area and expose visual	phased manner.	result of the other
	receptors to visual	- Maintain a neat	proposed renewable
	impacts associated with	construction site by	energy developments
	the construction phase.	removing rubble and	and their associated
	The construction activities	waste materials	infrastructure during
	may be perceived as an	regularly.	construction will be
	unwelcome visual	- Make use of existing	negative low after the
	intrusion, particularly in	gravel access roads	implementation of
	more natural undisturbed	where possible.	mitigation measures;
	settings. In addition,	- Limit the number of	
	vehicles and trucks	vehicles and trucks	 The visual impacts
	travelling to and from the	travelling to and from	expected during the
	proposed site on gravel	the proposed site.	operation of the
	access roads would	- Ensure that dust	proposed PV energy
	increase dust emissions.	suppression techniques	facility will be medium

Table 8: Literature Review of Visual Impacts for Surrounding Renewable Energy Developments

BIOTHERM ENERGY PTY (LTD)

Tlisitseng 1 Substation and 132kV Power Line – Visual Impact Assessment Report Revision No. 4

The increased traffic on		are implemented on		negative after the
the gravel roads and the		gravel access roads,		implementation of
dust plumes could create		where possible.		mitigation measures;
a visual impact and may	-	Ensure that dust		
evoke negative		suppression is	•	The visual impacts
sentiments from		implemented in all areas		expected during the
surrounding viewers. The		where vegetation		operation of the
visual intrusion of the		clearing has taken		infrastructure
construction activities		place.		associated with the
could adversely affect	-	Ensure that dust		proposed PV energy
farmsteads / homesteads		suppression techniques		facility will be low
within the visual		are implemented on all		negative after the
assessment zone,		soil stockpiles.		implementation of
motorists travelling along	-	Re-vegetate all		mitigation measures;
the R505 and visitors at		reinstated cable		and
Rafters Pub and the		trenches with the same		
Lichtenburg Game		vegetation that existed	•	The cumulative visual
Breeding Centre. Surface		prior to the cable being		impacts expected as a
disturbance during		laid.		result of the other
construction would also	-	Temporarily fence-off		proposed renewable
expose bare soil which		the construction site (for		energy developments
could visually contrast		the duration of the		and their associated
with the surrounding		construction period).		infrastructure during
environment. Additionally,	-	Establish erosion		operation will be
temporarily stockpiling		control measures on		medium negative after
soil during construction		areas which will be		the implementation of
may alter the generally flat		exposed for long		mitigation measures.
landscape. Wind blowing		periods of time. This is		
over these disturbed		to reduce the potential		
areas could therefore		impact heavy rains may		
result in dust which would		have on the bare soil.		
have a visual impact. The	-	Light fittings for security		
clearing of vegetation will		at the PV energy facility		
be required for the		and proposed		
installation of the PV		substation at night		
panels. This is also		should reflect the light		
expected to result in the		toward the ground and		
generation of dust, alter		prevent light spill.		
the natural character of	-	As far as possible, limit		
the surrounding area and		the amount of security		

	therefore create a visual		and operational lighting	
	impact.		present on site.	
		-	As far as possible, limit	
•	The following cumulative		the number of	
	visual impacts are		maintenance vehicles	
	expected as a result of the		which are allowed to	
	other proposed renewable		access the site.	
	energy facilities and their	-	Ensure that dust	
	associated infrastructure		suppression techniques	
	during construction:		are implemented on	
			gravel access roads,	
1)	The cumulative impacts		where possible.	
	during the construction	-	Only clear vegetation on	
	phase will only be realised		site and adjacent to the	
	if the construction		site which is required to	
	timelines of one or more of		be cleared for the	
	the nearby renewable		correct operation of the	
	energy facilities are		facility.	
	aligned. Large	-	Ensure that the PV	
	construction vehicles and		arrays are not located	
	equipment during the		within 500m from any of	
	construction phase of the		the surrounding	
	other proposed renewable		farmhouses, in order to	
	energy developments		limit the visual impact of	
	may further alter the		the solar facility on	
	natural character of the		these dwellings.	
	study area and expose	-	The O&M buildings	
	visual receptors to visual		should not be	
	impacts associated with		illuminated at night.	
	the construction phase.	-	it overnead power lines	
	The construction activities		are required, align	
	may be perceived as an		power lines to run	
	unweicome visual		parallel to other linear	
	intrusion, particularly in		elements and the farm	
			boundaries, where	
	settings. in addition,		pussible.	
	troughing to and from the	-	Bury caples under the	
	travening to and from the		The ORM huilding	
	oner proposed renewable	-	should be painted with	
			should be painted with	
	access roads could		natural tones that ht with	

increase dust emissions.		the surrounding	
The increased traffic on		environment.	
the gravel roads and the	-	Select the alternatives	
dust plumes as a result of		that will have the least	
the other proposed		impact on visual	
renewable energy		receptors	
developments could	-	Ensure that dust	
create a larger visual		suppression techniques	
impact and may evoke		are implemented on	
further negative		gravel access roads,	
sentiments from		where possible.	
surrounding viewers. The	-	Non-reflective surfaces	
visual intrusion of the		should be utilised where	
construction activities		possible.	
associated with the other	-	Ensure that the	
proposed renewable		associated	
energy developments		infrastructure are not	
could adversely affect		located within 500m	
farmsteads / homesteads		from any of the	
within certain visual		surrounding	
assessment zones,		farmhouses, in order to	
motorists travelling along		limit the visual impact on	
the R505 and visitors at		these dwellings.	
identified sensitive visual			
receptors. Surface			
disturbance during			
construction of the other			
proposed renewable			
energy developments			
could also increase the			
exposure of bare soil			
which could increase the			
visual contrast with the			
surrounding environment.			
Additionally, temporarily			
stockpiling soil during			
construction may alter the			
generally flat landscape			
further. Wind blowing over			
these disturbed areas			
could therefore result in a			

areater amount of dust
which would have a larger
visual impact. The
clearing of vegetation will
also be required during
the construction of the
other renewable energy
facilities. This is expected
to result in an increase in
the generation of dust.
alter the natural character
of the surrounding area
further and therefore
ereste e greater vieuel
impact.
The following visual
impacts are expected
during the operation of the
proposed PV energy
facility:
1) The proposed Tlisitseng
Solar 1 PV energy facility
could exert a visual impact
by altering the visual
character of the
surrounding area and
exposing sensitive visual
receptor locations to
visual impacts. I ne
development may be
perceived as an
unwelcome visual
intrusion, particularly in
more natural undisturbed
settings. Maintenance
vehicles may need to
access the PV energy
facility via gravel access
roads and are expected to

	increase dust emissions
	indicase dust ethissions
	troffic on the gravel reade
	and the dust plumes could
	create a visual impact and
	may evoke negative
	sentiments from
	surrounding viewers.
	Security and operational
	lighting at the proposed
	PV energy facility could
	result in light pollution and
	glare, which could be an
	annoyance to surrounding
	viewers. The visual
	intrusion of the proposed
	PV energy facility could
	adversely affect
	farmsteads / homesteads
	within the visual
	assessment zone,
	motorists travelling along
	the R505 and visitors at
	Rafters Pub and the
	Breeding Centre
	Diccuing Centre.
	impacts are expected
	during the expected
	with the proposed PV
	energy facility:
	1) I ne infrastructure
	associated with the
	proposed l'lisitseng Solar
	1 PV energy facility could
	exert a visual impact by
	further altering the visual
	character of the
<u> </u>	

22 May 2017 Page 68
P:\13000\13303 BOITHERM LICHTENBURG PB EIA\ENVIRONMENTAL\Reports\R5 Specialist\Tlisitseng Grid\BA\Visual\Tlisitseng Grid 1\13303_Tlisitseng Grid 1
BA_03 May 2017_Rev3_AG.docx

ourrounding area and	
exposing sensitive visual	
receptors to visual	
impacts. The	
development may be	
perceived as an	
unwelcome visual	
intrusion, particularly in	
more natural undisturbed	
settings. Maintenance	
vehicles may need to	
access the application site	
via gravel access roads in	
order to perform	
maintenance activities on	
the associated	
infrastructure and are	
expected to increase dust	
emissions in doing so.	
The increased traffic on	
the gravel roads and the	
dust plumes could create	
a visual impact and may	
evoke pegative	
sentiments from	
sentreunding	
Surfounding viewers.	
lighting at the	
Intrastructure associated	
energy facility could result	
In light pollution and glare,	
which could be an	
annoyance to surrounding	
viewers. The visual	
intrusion of the associated	
infrastructure could	
adversely affect	
farmsteads / homesteads	
within the visual	
assessment zone,	

Page 69

motorists travelling along	
the R505 and visitors at	
Rafters Pub and the	
Lichtenburg Game	
Breeding Centre.	
Jan San San San San San San San San San S	
The following cumulative	
visual impacts are	
expected as a result of the	
expected as a result of the	
other proposed renewable	
energy developments	
and their infrastructure	
associated during	
operation:	
1) The other proposed	
renewable energy	
developments and their	
associated infrastructure	
could result in a greater	
visual impact by altering	
the visual character of the	
surrounding area and	
further expering more	
sensitive visual receptor	
locations to visual	
impacts. The	
developments and their	
associated infrastructure	
may be perceived as	
unwelcome visual	
intrusions, particularly in	
more natural undisturbed	
settings. Maintenance	
vehicles may need to	
access the other	
proposed renewable	
energy developments and	
their associated	
infrastructure via gravel	

22 May 2017 Page 70
P:\13000\13303 BOITHERM LICHTENBURG PB EIA\ENVIRONMENTAL\Reports\R5 Specialist\Tlisitseng Grid\BA\Visual\Tlisitseng Grid 1\13303_Tlisitseng Grid 1
BA_03 May 2017_Rev3_AG.docx

		expected to increase dust				
		emissions in doing so.				
		The increased traffic on				
		the gravel roads and the				
		dust plumes could create				
		a greater visual impact				
		and may evoke more				
		negative sentiments from				
		surrounding viewers.				
		Security and operational				
		lighting at the other				
		proposed renewable				
		energy developments and				
		their associated				
		infrastructure could result				
		in an increase in light				
		pollution and glare, which				
		could be a significant				
		annoyance to surrounding				
		viewers. The visual				
		intrusion of the other				
		proposed renewable				
		energy developments and				
		their associated				
		infrastructure could				
		adversely affect				
		farmsteads / homesteads				
		within certain visual				
		assessment zones,				
		motorists travelling along				
		the R505 and visitors at				
		identified visual receptors.				
Tlisitseng	•	The following visual	•	The following mitigation	-	The visual impacts
Solar 2 PV		impacts are expected		measures are		expected during the
Energy		during the construction of		recommended:		construction of the
Facility		the proposed PV energy				proposed PV energy
		facility and associated	-	Carefully plan to reduce		facility and associated
		infrastructure:		the construction period.		infrastructure will be
			-	Minimise vegetation		negative low after the
	2)	Large construction		clearing and rehabilitate		implementation of
		vehicles and equipment				mitigation measures;

BIOTHERM ENERGY PTY (LTD) Tlisitseng 1 Substation and 132kV Power Line – Visual Impact Assessment Report Revision No. 4

during the construction		cleared areas as soon		
phase will alter the natural		as possible.	•	The cumulative visual
character of the study	-	Vegetation clearing		impacts expected as a
area and expose visual		should take place in a		result of the other
receptors to visual		phased manner.		proposed renewable
impacts associated with	-	Maintain a neat		energy developments
the construction phase.		construction site by		and their associated
The construction activities		removing rubble and		infrastructure during
may be perceived as an		waste materials		construction will be
unwelcome visual		regularly.		negative low after the
intrusion, particularly in	-	Make use of existing		implementation of
more natural undisturbed		gravel access roads		mitigation measures;
settings. In addition,		where possible.		
vehicles and trucks	-	Limit the number of	•	The visual impacts
travelling to and from the		vehicles and trucks		expected during the
proposed site on gravel		travelling to and from		operation of the
access roads would		the proposed site.		proposed PV energy
increase dust emissions.	-	Ensure that dust		facility will be medium
The increased traffic on		suppression techniques		negative after the
the gravel roads and the		are implemented on		implementation of
dust plumes could create		gravel access roads,		mitigation measures;
a visual impact and may		where possible.		
evoke negative	-	Ensure that dust	•	The visual impacts
sentiments from		suppression is		expected during the
surrounding viewers. The		implemented in all areas		operation of the
visual intrusion of the		where vegetation		infrastructure
construction activities		clearing has taken		associated with the
could adversely affect		place.		proposed PV energy
farmsteads / homesteads	-	Ensure that dust		facility will be low
within the visual		suppression techniques		negative after the
assessment zone,		are implemented on all		implementation of
motorists travelling along		soil stockpiles.		mitigation measures;
the R505 and visitors at	-	Re-vegetate all		and
Rafters Pub, the		reinstated cable		
Lichtenburg Game		trenches with the same	•	The cumulative visual
Breeding Centre as well		vegetation that existed		impacts expected as a
as the Lichtenburg		prior to the cable being		result of the other
Vakansie Oord. Surface				proposed renewable
disturbance during	-	remporarily tence-off		energy developments
construction would also		the construction site (for		and their associated
expose bare soil which				infrastructure during

BIOTHERM ENERGY PTY (LTD) Tlisitseng 1 Substation and 132kV Power Line – Visual Impact Assessment Report Revision No. 4

	could visually contrast		the duration of the	operation will be
	with the surrounding		construction period).	medium negative after
	environment. Additionally,	-	Establish erosion	the implementation of
	temporarily stockpiling		control measures on	mitigation measures.
	soil during construction		areas which will be	
	may alter the generally flat		exposed for long	
	landscape. Wind blowing		periods of time. This is	
	over these disturbed		to reduce the potential	
	areas could therefore		impact heavy rains may	
	result in dust which would		have on the bare soil.	
	have a visual impact. The	-	Light fittings for security	
	clearing of vegetation will		at the PV energy facility	
	be required for the		and proposed	
	installation of the PV		substation at night	
	panels. This is also		should reflect the light	
	expected to result in the		toward the ground and	
	generation of dust, alter		prevent light spill.	
	the natural character of	-	As far as possible, limit	
	the surrounding area and		the amount of security	
	therefore create a visual		and operational lighting	
	impact.		present on site.	
		-	As far as possible, limit	
•	The following cumulative		the number of	
	visual impacts are		maintenance vehicles	
	expected as a result of the		which are allowed to	
	other proposed renewable		access the site.	
	energy facilities and their	-	Ensure that dust	
	associated infrastructure		suppression techniques	
	during construction:		are implemented on	
			gravel access roads,	
2)	The cumulative impacts		where possible.	
	during the construction	-	Only clear vegetation on	
	phase will only be realised		site and adjacent to the	
	if the construction		site which is required to	
	timelines of one or more of		be cleared for the	
	the nearby renewable		correct operation of the	
	energy facilities are		facility.	
	aligned. Large	-	Ensure that the PV	
	construction vehicles and		arrays are not located	
	equipment during the		within 500m from any of	
	construction phase of the		the surrounding	

BIOTHERM ENERGY PTY (LTD) Tlisitseng 1 Substation and 132kV Power Line – Visual Impact Assessment Report Revision No. 4

other proposed renewable		farmhouses, in order to	
energy developments		limit the visual impact of	
may further alter the		the solar facility on	
natural character of the		these dwellings.	
study area and expose	-	The O&M buildings	
visual receptors to visual		should not be	
impacts associated with		illuminated at night.	
the construction phase.	-	If overhead power lines	
The construction activities		are required, align	
may be perceived as an		power lines to run	
unwelcome visual		parallel to other linear	
intrusion, particularly in		elements and the farm	
more natural undisturbed		boundaries, where	
settings. In addition,		possible.	
vehicles and trucks	-	Bury cables under the	
travelling to and from the		ground where possible.	
other proposed renewable	-	The O&M buildings	
energy facilities on gravel		should be painted with	
access roads could		natural tones that fit with	
increase dust emissions.		the surrounding	
The increased traffic on		environment.	
the gravel roads and the	-	Select the alternatives	
dust plumes as a result of		that will have the least	
the other proposed		impact on visual	
renewable energy		receptors	
developments could	-	Ensure that dust	
create a larger visual		suppression techniques	
impact and may evoke		are implemented on	
further negative		gravel access roads,	
sentiments from		where possible.	
surrounding viewers. The	-	Non-reflective surfaces	
visual intrusion of the		should be utilised where	
construction activities		possible.	
associated with the other	-	Ensure that the	
proposed renewable		associated	
energy developments		infrastructure are not	
could adversely affect		located within 500m	
farmsteads / homesteads		trom any of the	
within certain visual		surrounding	
assessment zones,		tarmhouses, in order to	
motorists travelling along			

BIOTHERM ENERGY PTY (LTD) Tlisitseng 1 Substation and 132kV Power Line – Visual Impact Assessment Report Revision No. 4

the R505 and visitors at	limit the visual impact on	
identified sensitive visual	these dwellings.	
receptors. Surface		
disturbance during		
construction of the other		
proposed renewable		
energy developments		
could also increase the		
exposure of bare soil		
which could increase the		
visual contrast with the		
surrounding environment.		
Additionally, temporarily		
stockpiling soil during		
construction may alter the		
generally flat landscape		
further. Wind blowing over		
these disturbed areas		
could therefore result in a		
greater amount of dust		
which would have a larger		
visual impact. The		
clearing of vegetation will		
also be required during		
the construction of the		
other renewable energy		
facilities. This is expected		
to result in an increase in		
the generation of dust,		
alter the natural character		
of the surrounding area		
further and therefore		
create a greater visual		
impact.		
—		
I he tollowing visual		
impacts are expected		
during the operation of the		
proposed PV energy		
facility:		

Page 75

2) The proposed Tlisitseng	
Solar 2 PV energy facility	
could exert a visual impact	
by altering the visual	
character of the	
surrounding area and	
exposing sensitive visual	
receptor locations to	
visual impacts. The	
development may be	
perceived as an	
unwelcome visual	
intrusion, particularly in	
more natural undisturbed	
settings. Maintenance	
vehicles may need to	
access the PV energy	
facility via gravel access	
roads and are expected to	
increase dust emissions	
in doing so. The increased	
traffic on the gravel roads	
and the dust plumes could	
create a visual impact and	
may evoke negative	
sentiments from	
surrounding viewers.	
Security and operational	
lighting at the proposed	
PV energy facility could	
result in light pollution and	
glare, which could be an	
annoyance to surrounding	
viewers. The visual	
intrusion of the proposed	
PV energy facility could	
adversely affect	
tarmsteads / homesteads	
within the visual	
assessment zone,	
motorists travelling along	

	the R505 and visitors at	
	Rafters Pub the	
	Lichtenburg Game	
	Brooding Contro as well	
	breeding Centre as well	
	as the Lichtenburg	
	Vakansie Oord.	
•	The following visual	
	impacts are expected	
	during the operation of the	
	infrastructure associated	
	with the proposed PV	
	energy facility:	
	<u>,</u>	
2)	The infrastructure	
	associated with the	
	proposed Tlisitsong Solar	
	2 DV aparati facility could	
	2 PV energy facility could	
	exert a visual impact by	
	further altering the visual	
	character of the	
	surrounding area and	
	exposing sensitive visual	
	receptors to visual	
	impacts. The	
	development may be	
	perceived as an	
	unwelcome visual	
	intrusion, particularly in	
	more natural undisturbed	
	settings. Maintenance	
	vehicles may need to	
	access the application site	
	via gravel access roads in	
	order to perform	
	maintenance activities on	
	the	
	minastructure and are	
	expected to increase dust	
	emissions in doing so.	
	The increased traffic on	

the gravel roads and the	
dust plumes could create	
a visual impact and may	
evoke negative	
sentiments from	
surrounding viewers	
Security and operationa	
lighting at the	
infrastructure associated	
with the proposed PV	
energy facility could resul	
in light pollution and glare	
which could be ar	
annoyance to surrounding	
viewers. The visua	
intrusion of the associated	
infrastructure could	
adversely affect	
farmsteads / homesteads	
within the visua	
assessment zone	
motorists travelling along	
the R505 and visitors a	
Rafters Pub, the	
Lichtenburg Game	
Breeding Centre as wel	
as the Lichtenburg	
Vakansie Oord.	
-	
The following cumulative	
visual impacts are	
expected as a result of the	
other proposed renewable	
energy developments	
associated during	
 1) The other proposed	
renewable energy	
developments and their	

and a state of the function of	
associated intrastructure	
could result in a greater	
visual impact by altering	
the visual character of the	
surrounding area and	
further exposing more	
sensitive visual receptor	
locations to visual	
impacts. The	
developments and their	
associated infrastructure	
may be perceived as	
unwelcome visual	
intrusions, particularly in	
more natural undisturbed	
settings. Maintenance	
vehicles may need to	
access the other	
proposed renewable	
energy developments and	
their associated	
infrastructure via gravel	
access roads and are	
expected to increase dust	
emissions in doing so.	
The increased traffic on	
the gravel roads and the	
dust plumes could create	
a greater visual impact	
and may evoke more	
negative sentiments from	
surrounding viewers.	
Security and operational	
lighting at the other	
proposed renewable	
energy developments and	
their associated	
infrastructure could result	
in an increase in light	
nollution and glare which	
could be a significant	

Page 79

Wetershed	annoyance to surrounding viewers. The visual intrusion of the other proposed renewable energy developments and their associated infrastructure could adversely affect farmsteads / homesteads within certain visual assessment zones, motorists travelling along the R505 and visitors at identified visual receptors.	The following mitigation	- The viewal impact of
Watershed Solar Energy Facility Phase 1 and Phase 2	It should be noted that the visual impact assessments for the Watershed (Phase I & II) Solar Energy Facility were combined because the main visual receptors within a 2 km radius are located around phase II of the project.	 The following mitigation measures are recommended for the visual impact of construction on sensitive visual receptors: 	 The visual impact of construction on sensitive visual receptors will be moderate after the implementation of mitigation measures;
	 Anticipated issues related to the potential visual impact of the proposed Solar PV project include the following: 1) The visibility of the facility to, and potential visual impact on, observers travelling along the R503 and R505 arterial roads and the major local roads traversing near the proposed facility; 2) The visibility of the facility to, and potential visual impact on observers residing at homesteads (farm residences) located 	 Ensure that vegetation is not unnecessarily cleared or removed during the construction period; Reduce the construction period through careful logistical planning and productive implementation of resources; Plan the placement of lay-down areas and temporary construction equipment camps in order to minimise vegetation clearing (i.e. already in disturbed 	 The visual impact on users of arterial roads in close proximity to the proposed solar energy facility will be low after the implementation of mitigation measures; The visual impact on residents of homesteads and settlements in close proximity to the proposed solar energy facility will be moderate after the implementation of mitigation measures;

BIOTHERM ENERGY PTY (LTD) Tlisitseng 1 Substation and 132kV Power Line – Visual Impact Assessment Report Revision No. 4

	within close proximity of		areas) wherever	•	The visual impact on
	the site;		possible;		sensitive visual
3)	Potential cumulative	-	Restrict the activities		receptors within the
	visual impacts (or		and movement of		region will be low after
	alternately, consolidation		construction workers		the implementation of
	of visual impacts) with		and vehicles to the		mitigation measures;
	specific reference to the		immediate construction		and
	existing power line		site and existing access		
	infrastructure traversing		roads;	•	The visual impact of
	the development site;	-	Ensure that rubble, litter,		lighting on sensitive
4)	The potential visual		and disused		visual receptors will be
	impact of the construction		construction materials		moderate after the
	of ancillary infrastructure		are appropriately stored		implementation of
	(i.e. the substation at the		(if not removed daily)		mitigation measures.
	facility, associated power		and then disposed		
	line and access roads) on		regularly at licensed		
	observers in close		waste facilities;		
	proximity of the facility;	-	Reduce and control		
5)	The potential visual		construction dust		
	impact of operational,		through the use of		
	safety and security		approved dust		
	lighting of the facility at		suppression techniques		
	night on observers		as and when required,		
	residing in close proximity		especially on the dirt		
	of the facility;		road giving access to		
6)	The visual absorption		the site (i.e. whenever		
	capacity of natural or		dust becomes		
	planted vegetation (if		apparent);		
	applicable);	-	Restrict construction		
7)	Potential visual impacts		activities to daylight		
	associated with the		hours in order to negate		
	construction phase; and		or reduce the visual		
8)	The potential to mitigate		impacts associated with		
	visual impacts.		lighting; and		
		-	Rehabilitate all		
It is	s envisaged that the issues		disturbed areas,		
list	ed above may constitute a		construction areas,		
sig	nificant visual impact at a		roads, slopes etc.		
IOC	ai and/or regional scale.		immediately after the		
			completion of		
			construction works.		

The following mitigation measures are recommended for the visual impact on users of arterial roads in close proximity to the proposed solar energy facility:
Planning:
- Retain and maintain natural vegetation in all areas outside of the development footprint.
Operations:
- Maintain the general appearance of the facility as a whole.
Decommissionina:
 Remove infrastructure not required for the post- decommissioning use of the facility; Rehabilitate all areas. Consult an ecologist regarding rehabilitation specifications; and Monitor rehabilitated areas post- decommissioning and implement remedial actions.
Site specific mitigation
measures:
- Plant vegetation barriers along the south western (Phase I)

BIOTHERM ENERGY PTY (LTD) Tlisitseng 1 Substation and 132kV Power Line – Visual Impact Assessment Report Revision No. 4 22 May 2017 P:\13000/13303 BOITHERM LICHTENBURG PB EIA\ENVIRONMENTAL\Reports\R5 Specialist\Tlisitseng Grid\BA\Visual\Tlisitseng Grid 1\13303_Tlisitseng Grid 1 BA_03 May 2017_Rev3_AG.docx

prepared by: SiVEST

Page 82

borders of the solar
energy facility in order to
shield the structures
from observers
travelling along these
roads: and
- Plant vegetation
barriers along the south-
eastern (Phase II)
borders of the solar
energy facility in order to
shield the structures
from observers
travelling eleng these
reade
IUduS.
- The following mitigation
measures are
recommended for the
visual impact on
residents of
homesteads and
settlements in close
proximity to the
proposed solar energy
facility:
<u>Planning:</u>
- Retain and maintain
natural vegetation in all
areas outside of the
development footprint.
Operations
Meintein the general
- Maintain the general
appearance or the
iacility as a whole.
Decommissioning:
Demove infrastructure
- remove initiastructure
not required for the post-

decommissioning use of
the facility:
Debebilitate ell'erece
- Renabilitate all areas.
regarding rehabilitation
specifications; and
- Monitor rehabilitated
areas post-
decommissioning and
implement remedial
actions.
Site specific mitigation
measures:
- Plant vegetation
barriers along the
western borders of the
Phase I PV plant in
order to shield the
structures from
observers residing at
the abovementioned
homesteads:
- Plant vegetation
barriers along the
parters along the
Dheen II DV right in
Phase II PV plant in
structures from
observers residing at
the abovementioned
homesteads; and
- Engage with
landowners in order to
inform, plan and
execute mitigation
measures.
The following mitigation
measures are
recommended for the
recommended for the

visual impact on sensitive visual receptors within the region: <u>Planning:</u> - Retain and maintain natural vegetation in all areas outside of the development footprint. <u>Operations:</u> - Maintain the general appearance of the facility as a whole. <u>Decommissioning:</u> - Remove infrastructure not required for the post- decommissioning use of the facility; - Rehabilitate all areas. Consult an ecologist regarding rehabilitation specifications; and - Monitor rehabilitated areas post- decommissioning and implement remedial actions. <u>Site specific mitigation</u> measures:			
sensitive visual receptors within the region: Planning: - Retain and maintain natural vegetation in all areas outside of the development footprint. Operations: - Maintain the general appearance of the facility as a whole. Decommissioning: - Remove infrastructure not required for the post- decommissioning use of the facility; - Rehabilitate all areas. Consult an ecologist regarding rehabilitation specifications; and - Monitor rehabilitated areas post- decommissioning and implement remedial actions. Site specific mitigation measures:		visual impact on	
receptors within the region: Planning: - Retain and maintain natural vegetation in all areas outside of the development footprint. Operations: - Maintain the general appearance of the facility as a whole. Decommissioning: - Remove infrastructure not required for the post- decommissioning use of the facility; - Rehabilitate all areas. Consult an ecologist regarding rehabilitation specifications; and - Monitor rehabilitated areas post- decommissioning and implement remedial actions. Site specific mitigation measures:		sensitive visual	
region: Planning: - Retain and maintain natural vegetation in all areas outside of the development footprint. Operations: - Maintain the general appearance of the facility as a whole. Decommissioning: - Remove infrastructure not required for the post- decommissioning use of the facility; - Rehabilitate all areas. Consult an ecologist regarding rehabilitation specifications; and - Monitor rehabilitated areas post- decommissioning and implement remedial actions. Site specific mitigation measures:		receptors within the	
Planning: - Retain and maintain natural vegetation in all areas outside of the development footprint. Operations: - Maintain the general appearance of the facility as a whole. Decommissioning: - Remove infrastructure not required for the post-decommissioning use of the facility; - Rehabilitate all areas. Consult an ecologist regarding rehabilitation specifications; and - Monitor rehabilitated areas post-decommissioning and implement remedial actions. Site specific mitigation measures:		region:	
Planning: - Retain and maintain natural vegetation in all areas outside of the development footprint. Operations: - Maintain the general appearance of the facility as a whole. Decommissioning: - Remove infrastructure not required for the post-decommissioning use of the facility; - Rehabilitate all areas. Consult an ecologist regarding rehabilitation specifications; and - Monitor rehabilitated areas post-decommissioning and implement remedial actions. Site specific mitigation measures:			
 Retain and maintain natural vegetation in all areas outside of the development footprint. Operations: Maintain the general appearance of the facility as a whole. Decommissioning: Remove infrastructure not required for the post- decommissioning use of the facility; Rehabilitate all areas. Consult an ecologist regarding rehabilitation specifications; and Monitor rehabilitated areas post- decommissioning and implement remedial actions. Site specific mitigation measures: 	<u> </u>	Planning:	
natural vegetation in all areas outside of the development footprint.	-	- Retain and maintain	
areas outside of the development footprint.		natural vegetation in all	
 and a construct of the development footprint. Operations: Maintain the general appearance of the facility as a whole. Decommissioning: Remove infrastructure not required for the post-decommissioning use of the facility; Rehabilitate all areas. Consult an ecologist regarding rehabilitation specifications; and Monitor rehabilitated areas post-decommissioning and implement remedial actions. Site specific mitigation measures: 		areas outside of the	
Operations: - Maintain the general appearance of the facility as a whole. Decommissioning: - Remove infrastructure not required for the post-decommissioning use of the facility; - Rehabilitate all areas. Consult an ecologist regarding rehabilitation specifications; and - Monitor rehabilitated areas post-decommissioning and implement remedial actions. Site specific mitigation measures:		development footprint	
Operations: - Maintain the general appearance of the facility as a whole. Decommissioning: - Remove infrastructure not required for the post-decommissioning use of the facility; - Rehabilitate all areas. Consult an ecologist regarding rehabilitation specifications; and - Monitor rehabilitated areas post-decommissioning and implement remedial actions. Site specific mitigation measures:			
Maintain the general appearance of the facility as a whole. Decommissioning: - Remove infrastructure not required for the post- decommissioning use of the facility; - Rehabilitate all areas. Consult an ecologist regarding rehabilitation specifications; and - Monitor rehabilitated areas post- decommissioning and implement remedial actions. Site specific mitigation measures:		Operations:	
 Maintain the general appearance of the facility as a whole. <u>Decommissioning:</u> Remove infrastructure not required for the post-decommissioning use of the facility; Rehabilitate all areas. Consult an ecologist regarding rehabilitation specifications; and Monitor rehabilitated areas post-decommissioning and implement remedial actions. Site specific mitigation measures: 	<u>-</u>	Maintain the constal	
appearance or the facility as a whole. Decommissioning: - Remove infrastructure not required for the post- decommissioning use of the facility; - Rehabilitate all areas. Consult an ecologist regarding rehabilitation specifications; and - Monitor rehabilitated areas post- decommissioning and implement remedial actions. Site specific mitigation <u>measures:</u>	-		
facility as a whole. Decommissioning: - Remove infrastructure not required for the post- decommissioning use of the facility; - Rehabilitate all areas. Consult an ecologist regarding rehabilitation specifications; and - Monitor rehabilitated areas post- decommissioning and implement remedial actions. Site specific mitigation measures:		appearance or the	
Decommissioning: - Remove infrastructure not required for the post-decommissioning use of the facility; - Rehabilitate all areas. Consult an ecologist regarding rehabilitation specifications; and - Monitor rehabilitated areas post-decommissioning and implement remedial actions. Site specific mitigation measures:		facility as a whole.	
Decommissioning: - Remove infrastructure not required for the post-decommissioning use of the facility; - Rehabilitate all areas. Consult an ecologist regarding rehabilitation specifications; and - Monitor rehabilitated areas post-decommissioning and implement remedial actions. Site specific mitigation measures:			
 Remove infrastructure not required for the post- decommissioning use of the facility; Rehabilitate all areas. Consult an ecologist regarding rehabilitation specifications; and Monitor rehabilitated areas post- decommissioning and implement remedial actions. <u>Site specific mitigation</u> <u>measures:</u> 	<u> </u>	Decommissioning:	
not required for the post- decommissioning use of the facility; - Rehabilitate all areas. Consult an ecologist regarding rehabilitation specifications; and - Monitor rehabilitated areas post- decommissioning and implement remedial actions. Site specific mitigation measures:	-	- Remove infrastructure	
decommissioning use of the facility; - Rehabilitate all areas. Consult an ecologist regarding rehabilitation specifications; and - Monitor rehabilitated areas post- decommissioning and implement remedial actions. <u>Site specific mitigation</u> <u>measures:</u>		not required for the post-	
the facility; - Rehabilitate all areas. Consult an ecologist regarding rehabilitation specifications; and - Monitor rehabilitated areas post- decommissioning and implement remedial actions. <u>Site specific mitigation</u> <u>measures:</u>		decommissioning use of	
 Rehabilitate all areas. Consult an ecologist regarding rehabilitation specifications; and Monitor rehabilitated areas post- decommissioning and implement remedial actions. <u>Site specific mitigation</u> <u>measures:</u> 		the facility;	
Consult an ecologist regarding rehabilitation specifications; and - Monitor rehabilitated areas post- decommissioning and implement remedial actions. Site specific mitigation measures:	-	- Rehabilitate all areas.	
regarding rehabilitation specifications; and - Monitor rehabilitated areas post- decommissioning and implement remedial actions. Site specific mitigation measures:		Consult an ecologist	
specifications; and - Monitor rehabilitated areas post- decommissioning and implement remedial actions. <u>Site specific mitigation</u> <u>measures:</u>		regarding rehabilitation	
- Monitor rehabilitated areas post- decommissioning and implement remedial actions. <u>Site specific mitigation</u> <u>measures:</u>		specifications: and	
areas post- decommissioning and implement remedial actions. <u>Site specific mitigation</u> <u>measures:</u>		- Monitor rehabilitated	
decommissioning and implement remedial actions. <u>Site specific mitigation</u> <u>measures:</u>		areas	
implement remedial actions. Site specific mitigation <u>measures:</u>		docommissioning and	
Site specific mitigation <u>measures:</u>		implement remediat	
actions. <u>Site specific mitigation</u> <u>measures:</u>			
Site specific mitigation measures:		actions.	
Site specific mitigation measures:		.	
measures:	<u></u>	Site specific mitigation	
	<u>1</u>	measures:	
- Plant vegetation	-	- Plant vegetation	
barriers (where		barriers (where	
required) along the		required) along the	
borders of the solar		borders of the solar	
energy facility in order to		energy facility in order to	
shield the structures		shield the structures	
from observers residing		from observers residing	

		at the abovementioned	
		homesteads	
		nomestedds.	
		- The following mitigation	
		 The following mitigation 	
		measures are	
		recommended for the	
		visual impact of lighting	
		on sensitive visual	
		receptors:	
		Planning:	
		- Shielding the sources of	
		light by physical barriers	
		(walls vegetation or the	
		structure itsen),	
		- Limiting mounting	
		heights of lighting	
		fixtures, or alternatively	
		using foot-light or	
		bollard level lights;	
		- Making use of minimum	
		lumen or wattage in	
		fixtures;	
		- Making use of Low	
		Pressure Sodium	
		lighting or other types of	
		low impact lighting; and	
		Making use of motion	
		lighting. This will allow	
		the site to remain in	
		relative darkness, until	
		lighting is required for	
		security or maintenance	
		purposes.	
Hibernia PV	The following impacts are	The following mitigation	The direct and indirect
Solar Energy	expected during the	measures have been	impacts expected
Facility	construction of the PV	provided for the impacts	during the construction
	array, access roads and	expected during the	of the PV array. access
	associated infrastructure.	construction of the PV	roads and associated
		array access roads and	infrastructure will be
		allay, access IUdus allu	

Direct impacts:	associated	medium after the
1) Impact of initial site works	infractructura	implementation of
1) Impact of Imitial Site works,	innastructure.	mitigation moscuraci
construction camp, site	Direct impacts.	miligation measures,
set up, setting out, laying	1) Establish corooning	The direct and indirect
2) Construction of access	1) Establish screening	
2) Construction of access	construction works from	during the operation of
loads, from junction at		the D) (arrow access
local road to site and	sensitive receptors,	the PV array, access
(nrough site, and	good trainc and site	
3) Impact of the building	management and	
construction works to	keeping local people	medium after the
completion.	informed regarding	implementation of
In the ofference of a	construction activities;	mitigation measures;
Indirect Impacts:		and
1) Hauling and delivery of	2) No working after 6pm.	
construction materials		I he cumulative
regularly on local roads	Indirect impacts:	impacts expected
during contract period.	1) Protection of existing	during the operation of
	local trees where	the PV array, access
Cumulative impacts:	needed; and	roads and associated
- None	2) Operate site within	infrastructure will be
	construction industry	medium after the
	management	implementation of
 The following impacts are 	guidelines.	mitigation measures.
expected during the		
operation of the PV array,	Cumulative impacts:	
access roads and	- None	
associated infrastructure:		
Direct impacts:	 The following mitigation 	
1) Effect on people living	measures have been	
and working locally,	provided for the impacts	
change of local site	expected during the	
character from agriculture	operation of the PV	
to industrial;	array, access roads and	
2) Impact from regular	associated	
maintenance visits to	infrastructure:	
clean the panels, etc. The		
operatives would be on	Direct impacts:	
site for a period of time to		
allow the cleaning of the		

BIOTHERM ENERGY PTY (LTD) Tlisitseng 1 Substation and 132kV Power Line – Visual Impact Assessment Report Revision No. 4

panels with a water based	1) Protection afforded to	
solution and to undertake	shielding objects such	
infrastructure repairs if	as the trees.	
required. The visual		
impact would likely be	Indirect impacts:	
minimal; and	- None	
3) Impact of the colours,		
finishes and heights of the	Cumulative impacts:	
buildings.	- None	
Indirect impacts:		
- None		
Cumulative impacts:		
1) Based on the present		
information the		
cumulative impacts are		
associated with the		
substation and power		
lines in the area.		

A literature review of other visual specialist studies, which were conducted for the other renewable energy developments being proposed and/or constructed in the area, was undertaken as part of this VIA. This was done in order to clearly define the identified cumulative impacts, and to indicate how the appropriate recommendations, mitigation measures and conclusions of the other visual impact assessment reports have been taken into consideration when drafting this visual impact assessment report.

In terms of the review undertaken on the above reports, it can be noted that the findings of the other specialist studies identified similar impacts for each of the renewable energy developments mentioned above. These include the visual impacts on users of arterial and secondary roads, the visual impacts on residents of homesteads and settlements, the visual impacts on sensitive visual receptors, the visual impacts of lighting at night on sensitive visual receptors, the visual impacts of construction on sensitive visual receptors and the visual impacts on the visual quality of the landscape and sense of place. As such, this VIA is deemed to have adequately defined, identified and assessed the cumulative visual impacts which could arise as a result of the development of the renewable energy facilities.

The visual impact assessment undertaken for the proposed Tlisitseng 1 substation and 132kV power line development has provided mitigation measures which are in-line with the applicable and relevant recommendations noted in the other specialist studies consulted above. As such, the

mitigation measures provided in this visual impact assessment are considered to be sufficient to reduce the visual impacts experienced within the study area. Should all of the recommended mitigation measures be implemented, it is anticipated that the visual impacts associated with the renewable energy developments could be mitigated to acceptable levels. This will also reduce the significance of the identified visual impacts and will aid in reducing the cumulative impacts experienced as a result of the other renewable energy developments and their associated electrical infrastructure being proposed and/or constructed within the surrounding area. This was evident during the review of the other specialist studies as the significance rating for most of the identified impacts were deemed to be of medium to low significance after the implementation of mitigation measures. Additionally, with the correct mitigation and integrating planning, the significance rating of majority of the cumulative impacts will be relatively low.

It should also be noted that the Watershed MTS and the associated electrical infrastructure can be found within close proximity to the proposed on-site substation and power line development. As such, the proposed on-site substation and power line development is considered to conform with the current developments present within the study area and will not significantly alter the visual character of the surrounding area.

The visual specialists provided certain site-specific recommendations / mitigation measures which are aimed at reducing the visual impact associated with the proposed solar PV developments. These above-mentioned site specific mitigation measures will however not apply to the proposed 132kV power line and substation as the nature of the impact is different. As mentioned above, the 132kV power line and substation would be built to serve the needs of the power generated from the solar PV energy facility, they would only be constructed if the solar PV energy facility was also developed. Views of the substation and power line would therefore be dwarfed by the large number of PV arrays that would be visible. As such, the substation and power line are not expected to be associated with a significant visual impact, or even a measurable cumulative impact on their own. The cumulative impact experienced in the area would therefore largely related to the impact of the surrounding renewable energy facilities.

This VIA is deemed to have clearly defined the identified cumulative impacts. It should however be noted that it is not possible to quantify or provide the spatial extent of the anticipated visual impacts as these impacts would not be site-specific and would be significantly influenced by a number of factors such as the presence of sensitive visual receptors, the amount of screening present, the orientation of the sensitive visual receptors and the visual character of the study area.

4.6 Overall Visual Impact Rating

The BA requires that an overall rating for visual impact be provided to allow the visual impact to be assessed alongside other environmental parameters. SiVEST has developed an impact rating **BIOTHERM ENERGY PTY (LTD)** prepared by: SiVEST Tlisitseng 1 Substation and 132kV Power Line – Visual Impact Assessment Report Revision No. 4 Page 89

matrix for this purpose. The tables below present the impact matrix for visual impacts associated with the proposed construction and operation of the 132kV on-site Tlisitseng 1 Substation, 132kV power line and the associated infrastructure.

Please refer to **Appendix A** below for an explanation of the impact rating methodology.

4.6.1 Planning

No visual impacts are expected during planning.

4.6.2 Construction

Table 9: Rating of visual impacts of the proposed on-site Tlisitseng 1 Substation and 132kV power line (including associated infrastructure) during construction

IMPACT TABLE			
Environmental Parameter	Visual Impact		
Issue/Impact/Environmental	Large construction vehicles and equipment during the		
Effect/Nature	construction phase will alter the natural character of the		
	study area and expose visual receptors to visual impacts		
	associated with the construction phase. The construction		
	activities may be perceived as an unwelcome visual		
	intrusion, particularly in more natural undisturbed settings.		
	A network of gravel access roads will be required in order		
	to provide access to the proposed power line. Considering		
	the flat nature of the terrain on the site, it is likely that the		
	visual impact associated with these roads would be limited		
	to the impact of clearing the vegetation. However, if these		
	roads are not maintained correctly during the construction		
	phase, maintenance vehicles travelling along the gravel		
	access roads could increase dust emissions and expose		
	surrounding farmstead to dust plumes. In addition, vehicles		
	and trucks travelling to and from the proposed Substation		
	site on gravel access roads would increase dust emissions.		
	The increased traffic on the gravel roads and the dust		
	plumes could therefore also create a visual impact and may		
	evoke negative sentiments from surrounding viewers. The		
	visual intrusion of the construction activities associated with		

prepared by: SiVEST

Page 90

	the proposed substation and	power line could adversely		
	affect farmsteads / homesteads within the visual			
	assessment zone, motorists travelling along the R505 and			
	visitors at the Lichtenburg Game Breeding Centre,			
	Lichtenburg Vakansie Oord and Rafters Pub. Surface			
	disturbance during construction would also expose bare			
	soil which could visually co	ontrast with the surrounding		
	environment. Additionally,	temporarily stockpiling soil		
	during construction may alter	the generally flat landscape.		
	Wind blowing over these dis	turbed areas could therefore		
	result in dust which would	have a visual impact. The		
	clearing of vegetation will	also be required for the		
	installation of the proposed T	lisitseng 1 Substation. This is		
	expected to result in the gene	ration of dust, alter the natural		
	character of the surrounding	area and therefore create a		
	visual impact.			
Extent	Local / District (2)			
Probability	Probable (3)			
Reversibility	Completely reversible (1)			
Irreplaceable loss of resources	Marginal loss (2)			
Duration	Short form (1)			
Duration	Short term (1)			
Cumulative effect	Medium cumulative effects (3			
		")		
Intensity/magnitude	Medium (2)			
Significance Rating	Prior to mitigation measure	s: Low negative impact		
	After mitigation measures:	Low negative impact		
	Pre-mitigation impact rating	Post mitigation impact rating		
Extent	2	2		
Probability	3	2		
Reversibility	1	1		
Irreplaceable loss	2	1		
Duration	1	1		
Cumulative effect	3	3		
Intensity/magnitude	2	2		
Significance rating	-24 (negative low)	-20 (negative low)		

	 Plan carefully to reduce the construction period.
	 Minimise vegetation clearing and rehabilitat
	cleared areas as soon as possible, in accordanc
	with the recommendations of the biodiversit
	specialist.
	 Vegetation clearing should take place in a phase
	manner.
	 Make use of nurseries to speed up recovery of
	vegetation.
	 Maintain a neat construction site by removin
	rubble and waste materials regularly.
	 Make use of existing gravel access roads when
	possible.
	 Limit the number of vehicles and trucks travellin
	to and from the proposed site.
	 Ensure that dust suppression techniques ar
	implemented on gravel access roads, wher
	possible.
	 Ensure that dust suppression is implemented in a
	areas where vegetation clearing has taken place.
	 Ensure that dust suppression techniques ar
	implemented on all soil stockpiles.
	 Re-vegetate all reinstated cable trenches with th
	same vegetation that existed prior to the cabl
	being laid.
	 Select the substation alternative that will have th
	least impact on visual receptors (i.e. Substatio
	Alternative 1).
	 Establish erosion control measures on areas which with the state of th
	will be exposed for long periods of time. This is t
	reduce the potential impact heavy rains may hav
	on the bare soil.
	 vvnere possible, laydown areas and temporar
	construction equipment and camps should b
	placed in alleady in disturbed areas in order t
	Destrict construction activities to doutight hours
	- Restrict construction activities to daylight hours I
Mitigation management	order to negate or reduce the visual impact
iviligation measures	associated with lighting.

•	Where p	ossible, p	rotect existing	local trees	and
	maintain	natural	vegetation	outside	the
development footprint.					

* Please note in the context of the visual environment 'resources' are defined as scenic / natural views that are almost impossible to replace.

IMPACT TABLE Environmental Parameter Cumulative Visual Impact Issue/Impact/Environmental The cumulative impacts during the construction phase will Effect/Nature only be realised if the construction timelines of one or more of the nearby renewable energy developments are aligned. Large construction vehicles and equipment during the construction phase of the other proposed renewable energy developments may further alter the natural character of the study area and expose visual receptors to visual impacts associated with the construction phase. The construction activities may be perceived as an unwelcome visual intrusion, particularly in more natural undisturbed settings. In addition, vehicles and trucks travelling to and from the other proposed renewable energy developments on gravel access roads could increase dust emissions. The increased traffic on the gravel roads and the dust plumes as a result of the other proposed renewable energy developments could create a larger visual impact and may evoke further negative sentiments from surrounding viewers. The visual intrusion of the construction activities associated with the other proposed renewable energy developments could adversely affect farmsteads / homesteads within certain visual assessment zones, motorists travelling along the R505 and visitors at identified sensitive visual receptors. Surface disturbance during construction of the other proposed renewable energy developments could also increase the exposure of bare soil which could increase the visual contrast with the surrounding environment. Additionally, temporarily stockpiling soil during construction may alter the generally flat landscape further. Wind blowing over these disturbed areas could therefore result in a greater amount of dust

Table 10: Rating of cumulative visual impacts as a result of the other proposed renewable energy

 developments (including associated infrastructure) during construction

BIOTHERM ENERGY PTY (LTD) Tlisitseng 1 Substation and 132kV Power Line – Visual Impact Assessment Report Revision No. 4 22 May 2017 P:\1300013303 BOITHERM LICHTENBURG PB EIA\ENVIRONMENTAL\Reports\R5 Specialist\Tlisitseng Grid\BA\V

	which would have a larger visual impact. The clearing of			
	vegetation will also be required during the construction of			
	the other renewable energy developments. This is			
	expected to result in an increase in the generation of dust,			
	alter the natural character of	alter the natural character of the surrounding area further		
	and therefore create a greate	r visual impact.		
Extent	Local / District (2)			
Probability	Possible (2)			
Reversibility	Partly reversible (2)			
Irreplaceable loss of resources	Marginal loss (2)			
Duration	Medium term (2)			
Cumulative effect	Medium cumulative effects (3	·)		
Intensity/magnitude	Medium (2)			
Significance Rating	Prior to mitigation measures: Low negative impact			
	After mitigation measures: Low negative impact			
	Pre-mitigation impact rating	Post mitigation impact rating		
	2	2		
Probability	2	2		
Reversibility	2	1		
Irreplaceable loss	2	2		
Duration	2	2		
Cumulative effect	3	3		
Intensity/magnitude	2	2		
Significance rating	-26 (low negative)	-24 (negative low)		
	 Plan carefully to redu 	ce the construction period.		
	 Minimise vegetation 	ı clearing and rehabilitate		
	cleared areas as soo	on as possible, in accordance		
	with the recommendations of the biodiversity			
	specialist.			
	 Vegetation clearing should take place in a phased 			
	manner.			
	 Make use of nurseries to speed up recovery of 			
	vegetation.			
	 Maintain a neat co 	nstruction site by removing		
Mitigation measures	rubble and waste materials regularly.			
•	Make use of existing gravel access roads where			
-----	---			
	possible.			
· ·	Limit the number of vehicles and trucks travelling			
	to and from the proposed site.			
•	Ensure that dust suppression techniques are			
	implemented on gravel access roads, where			
	possible.			
•	Ensure that dust suppression is implemented in all			
	areas where vegetation clearing has taken place.			
•	Ensure that dust suppression techniques are			
	implemented on all soil stockpiles.			
•	Re-vegetate all reinstated cable trenches with the			
	same vegetation that existed prior to the cable			
	Deling Iaid.			
•	Establish erosion control measures on areas which			
	will be exposed for long periods of time. This is to			
	on the bare soil			
	Where possible laydown areas and temporary			
	construction equipment and camps should be			
	placed in already in disturbed areas in order to			
	minimise vegetation clearing.			
•	Restrict construction activities to daylight hours in			
	order to negate or reduce the visual impacts			
	associated with lighting.			
	Where possible, protect existing local trees and			
	maintain natural vegetation outside the			
	development footprint.			

4.6.3 Operation

Table 11: Rating of visual impacts of the proposed on-site Tlisitseng 1 Substation and 132kV power

 line (including associated infrastructure) during operation

IMPACT TABLE		
Environmental Parameter	Visual Impact	
Issue/Impact/Environmental	The proposed Tlisitseng 1 Substation and 132kV power line	
Effect/Nature	could exert a visual impact by altering the visual character	
	of the surrounding area and exposing sensitive visual	
	receptor locations to visual impacts. The development may	

BIOTHERM ENERGY PTY (LTD) Tlisitseng 1 Substation and 132kV Power Line – Visual Impact Assessment Report

	be perceived as an unwelcome visual intrusion, particularly		
	in more natural undisturbed settings. This is especially true		
	for the power line towers, which are tall structures and will		
	most likely be visible for greater distances. However, where		
	existing power lines are present the visual environment		
	would already be visually 'degraded' and thus the		
	introduction of a new power line in this setting may be		
	considered to be less of a visual impact than if no existing		
	built infrastructure were visible. A network of gravel access		
	roads will be required in order to provide access to the		
	proposed power line. Considering the flat nature of the		
	terrain on the site it is likely that the visual impact		
	associated with these reads would be limited to the impact		
	of clearing the vegetation. However, if these reads are not		
	maintained correctly maintanance vehicles travelling along		
	the gravel eccess reade could increase dust emissions and		
	the graver access roads could increase dust emissions and		
	expose surrounding farmstead to dust plumes. In addition,		
	maintenance vehicles may also need to access the		
	proposed on-site Tlisitseng T Substation via gravel access		
	roads and are also expected to increase dust emissions in		
	doing so. The increased traffic on the gravel roads and the		
	dust plumes could create a visual impact and may evoke		
	negative sentiments from surrounding viewers. Security		
	and operational lighting at the proposed Tlisitseng 1		
	Substation could result in light pollution and glare, which		
	could be an annoyance to surrounding viewers. The visual		
	intrusion of the proposed Tlisitseng 1 Substation and 132kV		
	power line could also adversely affect farmsteads /		
	homesteads within the visual assessment zone, motorists		
	travelling along the R505 and visitors at the Lichtenburg		
	Game Breeding Centre, Lichtenburg Vakansie Oord and		
	Rafters Pub.		
Extent	Local/district (2)		
Probability	Definite (4)		
Reversibility	Barely reversible (3)		
Irreplaceable loss of resources	Marginal (2)		
Duration	Long term (3)		
Cumulative effect	Medium cumulative effects (3)		

prepared by: SiVEST

BIOTHERM ENERGY PTY (LTD) Tlisitseng 1 Substation and 132kV Power Line – Visual Impact Assessment Report Revision No. 4

	Medium (2)		
Significance Rating	Prior to mitigation measures: Medium negative impact		
	After mitigation measures: Medium negative impact		
Extent	Pre-mitigation impact rating Post mitigation impact rating		
Brobability			
Probability	4 4		
	3	3	
Duration	2	2	
	3	3	
	2	2	
Significance rating	2 34 (medium negative)	2 34 (medium negative)	
Mitigation measures	2 2 3 3 3 3 2 2 -34 (medium negative) -34 (medium negative) • Light fittings for security at night should reflect the light toward the ground and prevent light spill. • As far as possible, limit the amount of security and operational lighting present at the on-site substation. • If possible, the O&M buildings should not be illuminated at night. Alternatively, light sources should be shielded by physical barriers (walls, vegetation, or the structure itself). • If possible, light sources should be shielded by physical barriers (walls, vegetation, or the structure itself). • If possible, light sources should be shielded by physical barriers (walls, vegetation, or the structure itself). • If possible, light sources should be shielded by physical barriers (walls, vegetation, or the structure itself); • Make use of minimum lumen or wattage in fixtures; • Limiting mounting heights of lighting fixtures, or alternatively using foot-light or bollard level lights; • If possible, make use of motion detectors on security lighting. • As far as possible, limit the number of maintenance vehicles which are allowed to access the substation site and power line access roads. • Ensure that dust suppression techniques are implemented on gravel access roads, where possible. • Only clear vegetation which is required to be cleared for the correct operation of the development.		

 Ensure that the associated infrastructure are not located within 500m from any of the surrounding farmhouses, in order to limit the visual impact of the development on these dwellings. Align the power line within the authorised corridor as far away from Rafters Pub as possible i.e. in the northern and eastern parts of the corridor. Non-reflective surfaces should be utilised where possible. If overhead power lines are required, align power lines to run parallel to other linear elements and the farm boundaries, where possible. Bury cables under the ground where possible. The O&M buildings should be painted with natural tones that fit with the surrounding environment. Select the alternatives that will have the least impact on visual receptors (i.e. Substation Alternative 1). 	
 located within 500m from any of the surrounding farmhouses, in order to limit the visual impact of the development on these dwellings. Align the power line within the authorised corridor as far away from Rafters Pub as possible i.e. in the northern and eastern parts of the corridor. Non-reflective surfaces should be utilised where possible. If overhead power lines are required, align power lines to run parallel to other linear elements and the farm boundaries, where possible. Bury cables under the ground where possible. The O&M buildings should be painted with natural tones that fit with the surrounding environment. Select the alternatives that will have the least impact on visual receptors (i.e. Substation Alternative 1). 	 Ensure that the associated infrastructure are not
 farmhouses, in order to limit the visual impact of the development on these dwellings. Align the power line within the authorised corridor as far away from Rafters Pub as possible i.e. in the northern and eastern parts of the corridor. Non-reflective surfaces should be utilised where possible. If overhead power lines are required, align power lines to run parallel to other linear elements and the farm boundaries, where possible. Bury cables under the ground where possible. The O&M buildings should be painted with natural tones that fit with the surrounding environment. Select the alternatives that will have the least impact on visual receptors (i.e. Substation Alternative 1). 	located within 500m from any of the surrounding
 development on these dwellings. Align the power line within the authorised corridor as far away from Rafters Pub as possible i.e. in the northern and eastern parts of the corridor. Non-reflective surfaces should be utilised where possible. If overhead power lines are required, align power lines to run parallel to other linear elements and the farm boundaries, where possible. Bury cables under the ground where possible. The O&M buildings should be painted with natural tones that fit with the surrounding environment. Select the alternatives that will have the least impact on visual receptors (i.e. Substation Alternative 1). 	farmhouses, in order to limit the visual impact of the
 Align the power line within the authorised corridor as far away from Rafters Pub as possible i.e. in the northern and eastern parts of the corridor. Non-reflective surfaces should be utilised where possible. If overhead power lines are required, align power lines to run parallel to other linear elements and the farm boundaries, where possible. Bury cables under the ground where possible. The O&M buildings should be painted with natural tones that fit with the surrounding environment. Select the alternatives that will have the least impact on visual receptors (i.e. Substation Alternative 1). 	development on these dwellings.
 as far away from Rafters Pub as possible i.e. in the northern and eastern parts of the corridor. Non-reflective surfaces should be utilised where possible. If overhead power lines are required, align power lines to run parallel to other linear elements and the farm boundaries, where possible. Bury cables under the ground where possible. The O&M buildings should be painted with natural tones that fit with the surrounding environment. Select the alternatives that will have the least impact on visual receptors (i.e. Substation Alternative 1). 	• Align the power line within the authorised corridor
 northern and eastern parts of the corridor. Non-reflective surfaces should be utilised where possible. If overhead power lines are required, align power lines to run parallel to other linear elements and the farm boundaries, where possible. Bury cables under the ground where possible. The O&M buildings should be painted with natural tones that fit with the surrounding environment. Select the alternatives that will have the least impact on visual receptors (i.e. Substation Alternative 1). 	as far away from Rafters Pub as possible i.e. in the
 Non-reflective surfaces should be utilised where possible. If overhead power lines are required, align power lines to run parallel to other linear elements and the farm boundaries, where possible. Bury cables under the ground where possible. The O&M buildings should be painted with natural tones that fit with the surrounding environment. Select the alternatives that will have the least impact on visual receptors (i.e. Substation Alternative 1). 	northern and eastern parts of the corridor.
 possible. If overhead power lines are required, align power lines to run parallel to other linear elements and the farm boundaries, where possible. Bury cables under the ground where possible. The O&M buildings should be painted with natural tones that fit with the surrounding environment. Select the alternatives that will have the least impact on visual receptors (i.e. Substation Alternative 1). 	Non-reflective surfaces should be utilised where
 If overhead power lines are required, align power lines to run parallel to other linear elements and the farm boundaries, where possible. Bury cables under the ground where possible. The O&M buildings should be painted with natural tones that fit with the surrounding environment. Select the alternatives that will have the least impact on visual receptors (i.e. Substation Alternative 1). 	possible.
 lines to run parallel to other linear elements and the farm boundaries, where possible. Bury cables under the ground where possible. The O&M buildings should be painted with natural tones that fit with the surrounding environment. Select the alternatives that will have the least impact on visual receptors (i.e. Substation Alternative 1). 	 If overhead power lines are required, align power
 farm boundaries, where possible. Bury cables under the ground where possible. The O&M buildings should be painted with natural tones that fit with the surrounding environment. Select the alternatives that will have the least impact on visual receptors (i.e. Substation Alternative 1). 	lines to run parallel to other linear elements and the
 Bury cables under the ground where possible. The O&M buildings should be painted with natural tones that fit with the surrounding environment. Select the alternatives that will have the least impact on visual receptors (i.e. Substation Alternative 1). 	farm boundaries, where possible.
 The O&M buildings should be painted with natural tones that fit with the surrounding environment. Select the alternatives that will have the least impact on visual receptors (i.e. Substation Alternative 1). 	 Bury cables under the ground where possible.
 tones that fit with the surrounding environment. Select the alternatives that will have the least impact on visual receptors (i.e. Substation Alternative 1). 	 The O&M buildings should be painted with natural
 Select the alternatives that will have the least impact on visual receptors (i.e. Substation Alternative 1). 	tones that fit with the surrounding environment.
impact on visual receptors (i.e. Substation Alternative 1).	• Select the alternatives that will have the least
Alternative 1).	impact on visual receptors (i.e. Substation
	Alternative 1).

* Please note in the context of the visual environment 'resources' are defined as scenic / natural views that are almost impossible to replace.

IMPACT TABLE			
Environmental Parameter	Cumulative Visual Impact		
Issue/Impact/Environmental	The other proposed renewable energy developments and		
Effect/Nature	their associated infrastructure could result in a greater		
	visual impact by altering the visual character of the		
	surrounding area and further exposing more sensitive		
	visual receptor locations to visual impacts. The		
	developments and their associated infrastructure may be		
	perceived as unwelcome visual intrusions, particularly in		
	more natural undisturbed settings. Maintenance vehicles		
	may need to access the other proposed renewable energy		
	developments and their associated infrastructure via gravel		
	access roads and are expected to increase dust emissions		
	in doing so. The increased traffic on the gravel roads and		
	the dust plumes could create a greater visual impact and		
	may evoke more negative sentiments from surrounding		
	viewers. Security and operational lighting at the other		

Table 12: Rating of cumulative visual impacts as a result of the other proposed renewable energy developments (including associated infrastructure) during operation

BIOTHERM ENERGY PTY (LTD) Tlisitseng 1 Substation and 132kV Power Line – Visual Impact Assessment Report Revision No. 4 22 May 2017

	proposed renewable energy developments and their		
	associated infrastructure could result in an increase in light		
	pollution and glare, which could be a significant annoyance		
	to surrounding viewers. The visual intrusion of the other		
	proposed renewable energy developments and their		
	associated infrastructure could adversely affect farmsteads		
	/ homesteads within certain visual assessment zones, motorists travelling along the R505 and visitors at identified		
	visual receptors.		
Extent	Local / District (2)		
Probability	Probable (3)		
Reversibility	Irreversible (4)		
Irreplaceable loss of resources	Significant loss of resources	(3)	
Duration			
Duration	Long term (3)		
Cumulative effect	Medium cumulative impact (3	3)	
		- /	
Intensity/magnitude	Medium (2)		
Significance Rating	Prior to mitigation measure	es: Medium negative impact	
Significance Rating	Prior to mitigation measure After mitigation measures:	es: Medium negative impact Medium negative impact	
Significance Rating	Prior to mitigation measure After mitigation measures: Pre-mitigation impact rating	es: Medium negative impact Medium negative impact Post mitigation impact rating	
Significance Rating Extent	Prior to mitigation measures: After mitigation measures: Pre-mitigation impact rating 2	es: Medium negative impact Medium negative impact Post mitigation impact rating 2	
Significance Rating Extent Probability	Prior to mitigation measure After mitigation measures: Pre-mitigation impact rating 2 3	es: Medium negative impact Medium negative impact Post mitigation impact rating 2 3	
Significance Rating Extent Probability Reversibility	Prior to mitigation measure After mitigation measures: Pre-mitigation impact rating 2 3 4	es: Medium negative impact Medium negative impact Post mitigation impact rating 2 3 4	
Significance Rating Extent Probability Reversibility Irreplaceable loss	Prior to mitigation measure After mitigation measures: Pre-mitigation impact rating 2 3 4 3	 Post mitigation impact rating 2 3 4 2 	
Significance Rating Extent Probability Reversibility Irreplaceable loss Duration	Prior to mitigation measure After mitigation measures: Pre-mitigation impact rating 2 3 4 3 3	es: Medium negative impact Medium negative impact Post mitigation impact rating 2 3 4 2 3	
Significance Rating Extent Probability Reversibility Irreplaceable loss Duration Cumulative effect	Prior to mitigation measure After mitigation measures: Pre-mitigation impact rating 2 3 4 3 3 3 3 3	es: Medium negative impact Medium negative impact Post mitigation impact rating 2 3 4 2 3 3 3 3	
Significance Rating Extent Probability Reversibility Irreplaceable loss Duration Cumulative effect Intensity/magnitude	Prior to mitigation measure After mitigation measures: Pre-mitigation impact rating 2 3 4 3 3 3 3 2	es: Medium negative impact Medium negative impact Post mitigation impact rating 2 3 4 2 3 3 3 2	
Significance Rating Extent Probability Reversibility Irreplaceable loss Duration Cumulative effect Intensity/magnitude Significance rating	Prior to mitigation measure After mitigation measures: Pre-mitigation impact rating 2 3 4 3 3 3 3 2 -36 (medium negative)	es: Medium negative impact Medium negative impact Post mitigation impact rating 2 3 4 2 3 3 3 2 -34 (medium negative)	
Significance Rating Extent Probability Reversibility Irreplaceable loss Duration Cumulative effect Intensity/magnitude Significance rating	Prior to mitigation measure After mitigation measures: Pre-mitigation impact rating 2 3 4 3 3 3 3 2 -36 (medium negative) • Light fittings for secu	es: Medium negative impact Medium negative impact Post mitigation impact rating 2 3 4 2 3 3 3 2 -34 (medium negative) mity at night should reflect the	
Significance Rating Extent Probability Reversibility Irreplaceable loss Duration Cumulative effect Intensity/magnitude Significance rating	Prior to mitigation measure After mitigation measures: Pre-mitigation impact rating 2 3 4 3 3 3 3 2 -36 (medium negative) • Light fittings for secu- light toward the ground	es: Medium negative impact Medium negative impact Post mitigation impact rating 2 3 4 2 3 3 2 -34 (medium negative) rrity at night should reflect the nd and prevent light spill.	
Significance Rating Extent Probability Reversibility Irreplaceable loss Duration Cumulative effect Intensity/magnitude Significance rating	Prior to mitigation measures After mitigation measures: Pre-mitigation impact rating 2 3 4 3 3 2 -36 (medium negative) • Light fittings for seculight toward the grout • As far as possible, lir	es: Medium negative impact Medium negative impact Post mitigation impact rating 2 3 4 2 3 3 2 -34 (medium negative) writy at night should reflect the nd and prevent light spill. mit the amount of security and	
Significance Rating Extent Probability Reversibility Irreplaceable loss Duration Cumulative effect Intensity/magnitude Significance rating	Prior to mitigation measures After mitigation impacts Pre-mitigation impact rating 2 3 4 3 3 3 2 -36 (medium negative) • Light fittings for seculight toward the group • As far as possible, ling operational lighting p	es: Medium negative impact Medium negative impact Post mitigation impact rating 2 3 4 2 3 2 3 2 3 2 -34 (medium negative) rrity at night should reflect the nd and prevent light spill. mit the amount of security and oresent on the site.	
Significance Rating Extent Probability Reversibility Irreplaceable loss Duration Cumulative effect Intensity/magnitude Significance rating	Prior to mitigation measures After mitigation impact rating 2 3 4 3 3 2 -36 (medium negative) • Light fittings for seculight toward the group • As far as possible, light source • If possible, light source	es: Medium negative impact Medium negative impact Post mitigation impact rating 2 3 4 2 3 3 2 -34 (medium negative) mity at night should reflect the nd and prevent light spill. mit the amount of security and present on the site. urces should be shielded by	
Significance Rating Extent Probability Reversibility Irreplaceable loss Duration Cumulative effect Intensity/magnitude Significance rating	Prior to mitigation measures After mitigation impact rating 2 3 4 3 3 3 3 2 -36 (medium negative) • Light fittings for seculight toward the group • As far as possible, light sour operational lighting p • If possible, light sour ophysical barriers (wall	es: Medium negative impact Medium negative impact Post mitigation impact rating 2 3 4 2 3 3 2 -34 (medium negative) mity at night should reflect the nd and prevent light spill. mit the amount of security and present on the site. urces should be shielded by lls, vegetation, or the structure	
Significance Rating Extent Probability Reversibility Irreplaceable loss Duration Cumulative effect Intensity/magnitude Significance rating	Prior to mitigation measure After mitigation measures: Pre-mitigation impact rating 2 3 4 3 3 3 2 -36 (medium negative) • Light fittings for secu- light toward the groun • As far as possible, lirr operational lighting p • If possible, light sou- physical barriers (wan itself);	es: Medium negative impact Medium negative impact Post mitigation impact rating 2 3 4 2 3 3 2 -34 (medium negative) mity at night should reflect the nd and prevent light spill. mit the amount of security and present on the site. urces should be shielded by lls, vegetation, or the structure	

BIOTHERM ENERGY PTY (LTD) Tlisitseng 1 Substation and 132kV Power Line – Visual Impact Assessment Report Revision No. 4 22 May 2017

-	Limiting mounting heights of lighting fixtures, or
	alternatively using foot-light or bollard level lights;
-	If possible, make use of motion detectors on
	security lighting.
•	As far as possible, limit the number of maintenance
	vehicles which are allowed to access the sites.
•	Ensure that dust suppression techniques are
	implemented on gravel access roads, where
	possible.
-	Only clear vegetation on the sites and adjacent to
	the sites which is required to be cleared for the
	correct operation of the facilities.
-	Ensure that the on-site substation is not located
	within 500m from any of the surrounding
	farmhouses, in order to limit the visual impact of the
	development on these dwellings.
-	Light fittings for security at the proposed
	substations at night should reflect the light toward
	the ground and prevent light spill.
•	Align power lines to run parallel to other linear
	elements and the farm boundaries, where
	possible.
•	Bury cables under the ground where possible.
-	Select the alternatives that will have the least
	Alternative 1)
_	Limit the number of maintenance vehicles which
-	are allowed to access the sites
	Ensure that dust suppression techniques are
_	implemented on gravel access roads where
	nossible
	Non-reflective surfaces should be utilised where
_	nossible

4.6.4 Decommissioning

BIOTHERM ENERGY PTY (LTD)

Visual impacts during the decommissioning phase are potentially similar to those during the construction phase. It is however recommended that the following mitigation be implemented during decommissioning:

- All infrastructure that is not required for the post-decommissioning use should be removed;
- Rehabilitate all cleared areas as soon as possible, in accordance with the recommendations of the biodiversity specialist; and
- Monitor rehabilitated areas post-decommissioning and implement remedial actions, as required.

5 COMPARATIVE ASSESSMENT OF ALTERNATIVES

As previously mentioned, only two (2) on-site substation site alternatives are being investigated at this stage.

The preference rating for each alternative is provided in **Table 13** below. The alternatives are rated as being either preferred (the alternative will result in a low visual impact / reduce the visual impact), not-preferred (the alternative will result in relatively high visual impact / increase the visual impact), favourable (the visual impact will be relatively insignificant) and no-preference (each alternative would result in an equal visual impact).

The degree of visual impact and rating has been determined based on the following factors:

- The location of the on-site substation site in relation to areas of high elevation, especially ridges, koppies or hills;
- The location of the on-site switching substation site in relation to sensitive receptor locations; and
- The location of the on-site substation site in relation to areas of natural bushveld vegetation (clearing site for the development worsens the visibility).

Kov	
rtey	

PREFERRED	The alternative will result in a low impact / reduce the impact
FAVOURABLE	The impact will be relatively insignificant
NOT PREFERRED	The alternative will result in a high impact / increase the impact
NO PREFERENCE	The alternative will result in equal impacts

Table 13: Comparative Assessment of Alternatives

Alternative	Preference	Reasons		
SUBSTATION				
Alternative 1	Preferred	The proposed substation site alternative is situated in a largely natural area and no other existing		

BIOTHERM ENERGY PTY (LTD)

prepared by: SiVEST

Tlisitseng 1 Substation and 132kV Power Line – Visual Impact Assessment Report Revision No. 4

Alternative	Preference	Reasons
		electrical infrastructure and significant
		anthropogenic features are located
		within close proximity. The Watershed
		MTS can be found approximately
		2.4km to the south-east of the
		proposed substation site alternative.
		No sensitive or potentially sensitive
		visual receptors can be found within
		500m of this alternative. Twelve (12)
		potentially sensitive receptor locations
		can be found within 2km of the
		proposed substation site alternative,
		within the moderate impact zone. In
		addition, one (1) sensitive visual
		receptor, namely VR 14 – Rafters
		Pub, can be found within 2km of this
		alternative. It must be noted that one
		(1) sensitive visual receptor, namely
		VR 64 – Lichtenburg Game Breeding
		Centre, can be found further than 2km
		from the substation site alternative,
		within the low impact zone, while one
		(1) sensitive visual receptor, namely
		VR 62 – Lichtenburg Vakansie Oord,
		can be found further than 5km from
		the alternative and is considered to be
		negligible from a visual perspective.
		As such, Substation Site Alternative 1
		is considered to be the preferred
		option as it would impact on slightly
		fewer potentially sensitive receptor
		locations. In addition, the substation
		would only be constructed if the
		proposed Tlisitseng solar 1 PV energy
		facility was developed as well. The
		impact of the substation would
		therefore be dwarfed by the large
		number of PV panels that would be
		visible.

Alternative	Preference	Reasons
Alternative 2	Favourable	The proposed substation site
		alternative is situated in a largely
		natural area and no other existing
		electrical infrastructure and significant
		anthropogenic features are located
		within close proximity. The Watershed
		MTS can be found approximately
		2.4km to the south-east of Substation
		Site Alternative 2. No sensitive or
		potentially sensitive visual receptors
		can be found within 500m of this
		alternative. Thirteen (13) potentially
		sensitive receptor locations can be
		found within 2km of the proposed
		substation site alternative, within the
		moderate impact zone. In addition,
		one (1) sensitive visual receptor,
		namely VR 14 – Rafterrs Pub, can be
		found within 2km of Substation Site
		Alternative 2. It must be noted that one
		(1) sensitive visual receptor, namely
		VR 64 – Lichtenburg Game Breeding
		Centre, can be found further than 2km
		from the substation site alternative,
		within the low impact zone, while one
		(1) sensitive visual receptor, namely
		VR 62 – Lichtenburg Vakansie Oord,
		can be found further than 5km from
		the alternative and is considered to be
		negligible from a visual perspective.
		Although Substation Site Alternative 2
		is located slightly closer to only one (1)
		or the potentially sensitive visual
		receptors it is still considered to be a
		avourable option as it would impact
		on rewer potentially sensitive receptor
		iocations. In addition, the substation
		proposed Theitsong solar 1 DV anarry
		proposed i lisitseng solar 1 PV energy
		tacility was developed as well. The

Alternative	Preference	Reasons
		impact of the substation would
		therefore be dwarfed by the large
		number of PV panels that would be
		visible.

6 CONCLUSIONS

The Visual Impact Assessment (VIA) conducted for the proposed on-site Tlisitseng 1 Substation, 132kV power line and associated infrastructure has demonstrated that much of the study area has a natural visual character, with certain areas displaying a distinctly rural or pastoral component where maize cultivation and farmsteads occur. In addition, the study area is generally not valued for its tourism significance and is rated as having a low visual sensitivity. It should however be noted that the larger area might be valued for its tourism significance as the rich history of the area and the presence of several tourist attractions could attract tourists into the area. It was ascertained that due to the dominant farming practices and the relatively limited human habitation in the surrounding area, only three (3) sensitive receptors are present in the study area, namely the Lichtenburg Vakansie Oord (VR 62), the Lichtenburg Game Breeding Centre (VR 64) and Rafters Pub (VR 14). These three (3) visually sensitive receptors are regarded as facilities with current and future tourism potential and are therefore expected to experience the most significant visual impacts as a result of the proposed development. It should however be noted that at this stage, the game breeding centre is not operational. However, it is estimated that the restoration and construction process of the game breeding centre will last another year and it may be operated as a tourism facility in the future. Despite the tourism significance of the three (3) sensitive visual receptor locations, the proposed development is expected to have a low visual impact on the Lichtenburg Vakansie Oord while it will have a moderate visual impact on the Lichtenburg Game Breeding Centre and Rafters Pub. It must also be noted that the R505 main road, which traverses the power line corridor as well as the study area, is considered to be a visually sensitive road and the relatively high volumes of motorists travelling along this road would be visually exposed to the proposed development. Several scattered farmsteads / homesteads which are used to house the local farmers as well as their farm workers were also identified within the study area and are regarded as potentially sensitive visual receptors. Upon further investigation, it was established that the proposed development would have a low visual impact on majority of the potentially visual receptors. The proposed development was not deemed to have a high visual impact on any of the receptor locations identified within the study area.

The overall significance of the visual impacts as a result of the proposed development during construction and operation was assessed according to SiVEST's impact rating matrix. The assessment revealed that overall the proposed on-site Tlisitseng 1 Substation and 132kV power BIOTHERM ENERGY PTY (LTD) prepared by: SiVEST

line would have a low visual impact during construction and a medium visual impact during operation, with a number of mitigation measures available.

As part of the VIA, the proposed on-site substation site alternatives were also comparatively assessed. The comparative assessment of alternatives revealed that the proposed On-site Substation Site Alternative 1 would be the preferred option, while On-site Substation Site Alternative 2 was deemed to be a favourable option from a visual perspective.

A literature review of other visual specialist studies, which were conducted for the other renewable energy developments being proposed and/or constructed in the area, was undertaken as part of this VIA. This was done in order to clearly define the identified cumulative impacts, and to indicate how the appropriate recommendations, mitigation measures and conclusions of the other visual impact assessment reports have been taken into consideration when drafting this visual impact assessment report. The VIA is deemed to have clearly defined the identified cumulative impacts that would be experienced in the surrounding area.

Overall it can be concluded that the visual impact of the proposed on-site Tlisitseng 1 Substation and 132kV power line would be reduced due to the presence of existing electrical infrastructure and linear elements in the study area, as well as the lack of sensitive visual receptors present. In addition, the on-site substation and power line are being proposed in order to supply the electricity generated by the two (2) proposed Tlisitseng PV energy facilities to Eskom's national grid. Thus the substation and power line would only be constructed if the proposed Tlisitseng PV energy facilities are developed as well. The substation and power line would likely form part of the PV complex, as viewed from the surrounding farmsteads and the impact would therefore be dwarfed by the large number of PV panels that would be visible.

6.1 Environmental Impact Statement

BIOTHERM ENERGY PTY (LTD)

It is SiVEST's opinion that the visual impacts are not significant enough to prevent the project from proceeding and that an Environmental Authorisation (EA) should be granted. From a visual impact perspective only three (3) sensitive visual receptors have been identified within the study area. In addition, the existing electrical infrastructure and other linear elements already present within the study area have already altered the natural character of the surrounding environment to a degree and are expected to lower the visual sensitivity of the area. The visual impacts associated with the proposed development is expected to have a low visual impact on most of the sensitive and potentially sensitive visual receptors identified within the study area. It must also be noted that SiVEST believe that the impacts associated with the construction and operation phases can be mitigated to acceptable levels provided the recommended mitigation measures are implemented.

7 REFERENCES

BIOTHERM ENERGY PTY (LTD)

- Barthwal, R. 2002. Environmental Impact Assessment. New Age International Publishes, New Delhi.
- Breedlove, G., 2002. A systematic for the South African Cultural Landscapes with a view to implementation. Thesis – University of Pretoria.
- Geoterraimage. 2015. 2013 2014 South African National Land-Cover Dataset: Data User Report and MetaData.
- Lichtenburg Vakansie Oord Website: <u>http://lichtenburgvakansieoord.co.za/index2.htm</u>
- Mitchell, P., 2002. The Archaeology of Southern Africa. Cambridge University Press, Cambridge.
- Mucina L., and Rutherford M.C., (eds) 2006. The Vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19. South African National Biodiversity Institute, Pretoria.
- The North West Parks and Tourism Board Official Site: <u>http://www.tourismnorthwest.co.za</u>
- Oberholzer, B. 2005. Guideline for involving visual & aesthetic specialists in EIA processes: *Edition 1.* CSIR Report No ENV-S-C 2005 053 F. Republic of South Africa, Provincial Government of the Western Cape, Department of Environmental Affairs & Development Planning, Cape Town.
- SA Places website: <u>http://www.places.co.za/html/lichtenburg.html</u>
- SA Venues.com website: <u>http://www.sa-venues.com/game-reserves/nwp_lichtenburg.htm</u>
- Show Me website: http://showme.co.za/south-africa/north-west/central-district/lichtenburg/
- South Africa.com Official Website: http://www.southafrica.com/museums/lichtenburg/
- Steynberg, M. 2016. Basic Assessment for the Tlisitseng 1 132kV Substatoion and 132kV Powerline near Lichtenburg, North West: Socio-Economic Assessment. Urban-econ Development Economists, Hatfield.
- UNESCO., 2005. Operational Guidelines for the Implementation of the World Heritage Convention. UNESCO World Heritage Centre. Paris.

I, **Stephan Jacobs**, declare that I am an independent specialist consultant and have no financial, personal or other interest in the proposed development, nor the developers or any of their subsidiaries, apart from fair remuneration for work performed in the delivery of visual assessment services. There are no circumstances that compromise the objectivity of my performing such work.

Stephan Jacobs Environmental Consultant SiVEST Environmental Division

I, **Andrea Gibb**, declare that I am an independent specialist consultant and have no financial, personal or other interest in the proposed development, nor the developers or any of their subsidiaries, apart from fair remuneration for work performed in the delivery of visual assessment services. There are no circumstances that compromise the objectivity of my performing such work.

Andrea Gibb Environmental Consultant SiVEST Environmental Division

BIOTHERM ENERGY PTY (LTD)

Tlisitseng 1 Substation and 132kV Power Line – Visual Impact Assessment Report

Appendix A IMPACT RATING METHODOLOGY

IMPACT RATING METHODOLOGY

The determination of the effect of an environmental impact on an environmental parameter (in this instance, wetlands) is determined through a systematic analysis of the various components of the impact. This is undertaken using information that is available to the environmental practitioner through the process of the environmental impact assessment. The impact evaluation of predicted impacts was undertaken through an assessment of the significance of the impacts.

Determination of Significance of Impacts

Significance is determined through a synthesis of impact characteristics which include context and intensity of an impact. Context refers to the geographical scale (i.e. site, local, national or global) whereas intensity is defined by the severity of the impact (e.g. the magnitude of deviation from background conditions, the size of the area affected, the duration of the impact and the overall probability of occurrence). Significance is calculated as per the example shown in **Table 1**.

Significance is an indication of the importance of the impact in terms of both physical extent and time scale, and therefore indicates the level of mitigation required. The total number of points scored for each impact indicates the level of significance of the impact.

Impact Rating System Methodology

Impact assessments must take account of the nature, scale and duration of effects on the environment whether such effects are positive (beneficial) or negative (detrimental). Each issue / impact is usually assessed according to the project stages:

- planning
- construction
- operation
- decommissioning

In this case, a unique situation is present whereby various scenarios have been posed and evaluated accordingly. A brief discussion of the impact and the rationale behind the assessment of its significance has also been included.

Rating System Used To Classify Impacts

The rating system is applied to the potential impact on the receiving environment and includes an objective evaluation of the mitigation of the impact. Impacts have been consolidated into one rating. In assessing the significance of each issue, the following criteria (including an allocated point system) is used:

Table 1: Example of the significance impact rating table.

		NATURE
Includes a brief description of the impact of environmental parameter being assessed in the context		
of the p	project. This criterion includes a brie	f written statement of the environmental aspect being
impacte	ed upon by a particular action or activ	vity.
	GEOGR	APHICAL EXTENT
This is	defined as the area over which the	impact will be expressed. Typically, the severity and
signific	ance of an impact have different sca	les and as such bracketing ranges are often required.
This is	often useful during the detailed ass	sessment of a project in terms of further defining the
determ	ined.	
1	Site	The impact will only affect the site
2	Local/district	Will affect the local area or district
3	Province/region	Will affect the entire province or region
4	International and National	Will affect the entire country
	PF	ROBABILITY
This describes the chance of occurrence of an impact		
		The chance of the impact occurring is extremely low
1	Unlikely	(Less than a 25% chance of occurrence).
		The impact may occur (Between a 25% to 50%
2	Possible	chance of occurrence).
		The impact will likely occur (Between a 50% to 75%
3	Probable	chance of occurrence).
		Impact will certainly occur (Greater than a 75%
4	Definite	chance of occurrence).
REVERSIBILITY		
This de	escribes the degree to which an impa	ct on an environmental parameter can be successfully
reverse	ed upon completion of the proposed a	activity.
		The impact is reversible with implementation of minor
1	Completely reversible	mitigation measures
		The impact is partly reversible but more intense
2	Partly reversible	mitigation measures are required.

		The impact is unlikely to be reversed even with	
3	Barely reversible	intense mitigation measures.	
		The impact is irreversible and no mitigation measures	
4	Irreversible	exist.	
	IRREPLACEABI	E LOSS OF RESOURCES	
This de	escribes the degree to which resource	ces will be irreplaceably lost as a result of a proposed	
activity	1.		
1	No loss of resource.	The impact will not result in the loss of any resources.	
2	Marginal loss of resource	The impact will result in marginal loss of resources.	
3	Significant loss of resources	The impact will result in significant loss of resources.	
		The impact is result in a complete loss of all	
4	Complete loss of resources	resources.	
	1	DURATION	
This de	escribes the duration of the impacts o	on the environmental parameter. Duration indicates the	
lifetime	of the impact as a result of the prop	osed activity	
		The impact and its effects will either disappear with	
		mitigation or will be mitigated through natural process	
		in a span shorter than the construction phase $(0 - 1)$	
		years), or the impact and its effects will last for the	
		period of a relatively short construction period and a	
		limited recovery time after construction, thereafter it	
1	Short term	will be entirely negated $(0 - 2 \text{ years})$.	
		The impact and its effects will continue or last for	
		some time after the construction phase but will be	
		mitigated by direct human action or by natural	
2	Medium term	processes thereafter $(2 - 10 \text{ years})$.	
		The impact and its effects will continue or last for the	
		entire operational life of the development, but will be	
		mitigated by direct human action or by natural	
3	Long term	processes thereafter (10 – 50 years).	
		The only class of impact that will be non-transitory.	
		Mitigation either by man or natural process will not	
		occur in such a way or such a time span that the	
4	Permanent	impact can be considered transient (Indefinite).	
	CUMU	LATIVE EFFECT	
This de	escribes the cumulative effect of the i	mpacts on the environmental parameter. A cumulative	
effect/impact is an effect which in itself may not be significant but may become significant if added			
to othe	to other existing or potential impacts emanating from other similar or diverse activities as a result		
of the project activity in question.			

		The impact would result in negligible to no cumulative
1	Negligible Cumulative Impact	effects
		The impact would result in insignificant cumulative
2	Low Cumulative Impact	effects
3	Medium Cumulative impact	The impact would result in minor cumulative effects
		The impact would result in significant cumulative
4	High Cumulative Impact	effects
	INTENS	ITY / MAGNITUDE
Descr	ibes the severity of an impact	
		Impact affects the quality, use and integrity of the
		system/component in a way that is barely
1	Low	perceptible.
		Impact alters the quality, use and integrity of the
		system/component but system/ component still
		continues to function in a moderately modified way
		and maintains general integrity (some impact on
2	Medium	integrity).
		Impact affects the continued viability of the
		system/component and the quality, use, integrity and
		functionality of the system or component is severely
		impaired and may temporarily cease. High costs of
3	High	rehabilitation and remediation.
		Impact affects the continued viability of the
		functionality of the system or component
		permanently ceases and is irreversibly impaired
		(system collapse) Rebabilitation and remediation
		often impossible If possible rehabilitation and
		remediation often unfeasible due to extremely high
4	Very high	costs of rehabilitation and remediation.
		1
SIGNIFICANCE		

Significance is determined through a synthesis of impact characteristics. Significance is an indication of the importance of the impact in terms of both physical extent and time scale, and therefore indicates the level of mitigation required. This describes the significance of the impact on the environmental parameter. The calculation of the significance of an impact uses the following formula:

(Extent + probability + reversibility + irreplaceability + duration + cumulative effect) x magnitude/intensity.

The summation of the different criteria will produce a non-weighted value. By multiplying this value with the magnitude/intensity, the resultant value acquires a weighted characteristic which can be measured and assigned a significance rating.

Points	Impact Significance Rating	Description
6 to 28	Negative Low impact	The anticipated impact will have negligible negative effects and will require little to no mitigation.
6 to 28	Positive Low impact	The anticipated impact will have minor positive effects.
29 to 50	Negative Medium impact	The anticipated impact will have moderate negative effects and will require moderate mitigation measures.
29 to 50	Positive Medium impact	The anticipated impact will have moderate positive effects.
51 to 73	Negative High impact	The anticipated impact will have significant effects and will require significant mitigation measures to achieve an acceptable level of impact.
51 to 73	Positive High impact	The anticipated impact will have significant positive effects.
74 to 96	Negative Very high impact	The anticipated impact will have highly significant effects and are unlikely to be able to be mitigated adequately. These impacts could be considered "fatal flaws".
74 to 96	Positive Very high impact	The anticipated impact will have highly significant positive effects.

Appendix B

LIST OF VISUALLY SENSITIVE AND POTENTIALLY SENSITIVE RECEPTOR LOCATIONS

			Zone of
			visual
Name	Туре	Coordinates	exposure
VR 1	Houthaalboomen Farmhouse	26° 4'12.82"S	Moderate
		26° 7'30.12"E	
VR 2	Houthaalboomen Farmhouse	26° 4'9.67"S	Moderate
		26° 7'48.32"E	
VR 3	Houthaalboomen Farmhouse	26° 3'37.12"S	Low
		26° 7'34.57"E	
VR 4	Houthaalboomen Farmhouse	26° 3'32.67"S	Low
		26° 7'12.12"E	
VR 5	Houthaalboomen Farmhouse	26° 3'31.90"S	Low
		26° 6'49.78"E	
VR 7	Houthaaldoorns Farmhouse (Sensako)	26° 3'2.28"S	Low
		26° 5'14.55"E	
VR 8	Houthaaldoorns Farmhouse (Sensako)	26° 3'3.96"S	Low
		26° 5'11.37"E	
VR 9	Houthaaldoorns Farmhouse (Sensako)	26° 3'6.79"S	Low
		26° 5'4.42"E	
VR 10	Houthaaldoorns Farmhouse (Sensako)	26° 3'6.37"S	Low
		26° 5'13.13"E	
VR 11	Houthaalboomen Farmhouse	26° 4'50.57"S	Low
		26° 5'15.03"E	
VR 12	Houthaalboomen Farmhouse	26° 5'13.10"S	Moderate
		26° 5'57.13"E	
VR 13	Houthaalboomen Farmhouse	26° 5'53.32"S	Moderate
		26° 5'56.97"E	
VR 14	Talene Farmhouse and Rafters Pub	26° 5'42.74"S	High
		26° 6'44.71"E	
VR 15	Houthaalboomen Farmhouse	26° 6'15.12"S	Moderate
		26° 6'53.49"E	
VR 16	Elandsfontein Farmhouse	26° 6'26.07"S	Moderate
		26° 6'45.92"E	
VR 17	Talene Farmhouse	26° 5'45.27"S	High
		26° 7'10.49"E	
VR 18	Houthaalboomen Farmhouse	26° 6'5.41"S	Moderate
		26° 7'14.36"E	
VR 19	Houthaalboomen Farmhouse	26° 6'7.51"S	Moderate
		26° 7'35.37"E	
VR 20	Elandsfontein Farmhouse	26° 6'13.00"S	Moderate
		26° 7'41.02"E	

Table i: Visually sensitive / potentially sensitive receptor locations within the study area

			Zone of
			visual
Name	Туре	Coordinates	exposure
VR 21	Houthaalboomen Farmhouse	26° 6'2.84"S	Moderate
		26° 7'48.74"E	
VR 22	Talene Farmhouse	26° 5'40.57"S	High
		26° 7'32.71"E	
VR 23	Talene Farmhouse	26° 5'30.63"S	High
		26° 7'56.63"E	
VR 24	Priem Farmhouse	26° 5'42.17"S	Moderate
		26° 7'58.07"E	
VR 25	Priem Farmhouse	26° 5'52.54"S	Moderate
		26° 8'5.17"E	
VR 26	Priem Farmhouse	26° 5'47.07"S	High
		26° 8'23.48"E	
VR 27	Elandsfontein Farmhouse	26° 5'58.23"S	Moderate
		26° 8'21.92"E	
VR 28	Elandsfontein Farmhouse	26° 5'59.46"S	Moderate
		26° 8'15.53"E	
VR 29	Elandsfontein Farmhouse	26° 6'12.00"S	Moderate
		26° 8'32.09"E	
VR 30	Elandsfontein Farmhouse	26° 6'17.60"S	Moderate
		26° 8'22.83"E	
VR 31	Elandsfontein Farmhouse	26° 7'2.71"S	Low
		26° 8'19.94"E	
VR 32	Elandsfontein Farmhouse (Boskoppie)	26° 6'24.04"S	Moderate
		26° 8'22.83"E	
VR 33	Elandsfontein Farmhouse	26° 6'36.89"S	Moderate
		26° 8'24.30"E	
VR 34	Lichtenburg Drive-in Theatre	26° 6'38.28"S	
		26° 8'45.61"E	Moderate
VR 35	Elandsfontein Farmhouse	26° 6'53.21"S	Low
		26° 8'19.33"E	
VR 36	Elandsfontein Farmhouse	26° 7'11.22"S	Low
		26° 8'17.02"E	
VR 37	Elandsfontein Farmhouse	26° 7'32.70"S	Low
		26° 8'19.87"E	
VR 38	Elandsfontein Farmhouse	26° 7'33.72"S	Low
		26° 8'36.66"E	
VR 39	Elandsfontein Farmhouse	26° 7'31.97"S	Low
		26° 8'47.57"E	
VR 40	Elandsfontein Farmhouse	26° 7'43.44"S	Low

			Zone of
			visual
Name	Туре	Coordinates	exposure
		26° 8'55.14"E	
VR 41	Elandsfontein Farmhouse	26° 7'49.21"S	Low
		26° 8'55.71"E	
VR 42	Elandsfontein Farmhouse (Elandsfontein)	26° 7'48.81"S	Low
		26° 8'40.81"E	
VR 43	Elandsfontein Farmhouse	26° 7'41.96"S	Low
		26° 8'40.52"E	
VR 44	Elandsfontein Farmhouse	26° 7'42.01"S	Low
		26° 8'7.67"E	
VR 45	Elandsfontein Farmhouse	26° 7'45.34"S	Low
		26° 8'3.46"E	
VR 46	Elandsfontein Farmhouse	26° 7'46.47"S	Low
		26° 8'6.12"E	
VR 47	Elandsfontein Farmhouse	26° 7'54.67"S	Low
		26° 7'47.65"E	
VR 48	Elandsfontein Farmhouse	26° 7'50.58"S	Low
		26° 7'33.20"E	
VR 49	Elandsfontein Farmhouse	26° 7'53.23"S	Low
		26° 7'11.21"E	
VR 51	Elandsfontein Farmhouse	26° 8'10.44"S	Low
		26° 8'38.10"E	
VR 52	Elandsfontein Farmhouse	26° 8'10.29"S	Low
		26° 8'45.99"E	
VR 53	Elandsfontein Farmhouse	26° 8'5.95"S	Low
		26° 8'47.70"E	
VR 54	Elandsfontein Farmhouse	26° 8'7.24"S	Low
		26° 8'50.98"E	
VR 55	Elandsfontein Farmhouse	26° 8'9.14"S	Low
		26° 8'52.41"E	
VR 56	Elandsfontein Farmhouse	26° 8'10.95"S	Low
		26° 8'55.66"E	
VR 57	Elandsfontein Farmhouse	26° 8'12.30"S	Low
		26° 9'0.90"E	
VR 58	Lichtenburg Town and Townlands Farmhouse	26° 7'45.88"S	Low
		26° 9'26.55"E	
VR 62	Lichtenburg Vakansie Oord (Vacation Resort)	26° 7'23.23"S	
		26° 9'57.12"E	Low
VR 63	Pub near the entrances of the Lichtenburg Game	26° 7'49.84"S	Low
	Breeding Centre and Lichtenburg Vakansie Oord	26°10'6.46"E	

			Zone of visual
Name	Туре	Coordinates	exposure
VR 64	Lichtenburg Game Breeding Centre (Tourism Facility)	26° 4'52.19"S	
		26° 9'33.45"E	Moderate

Appendix C SPECIALIST CVS

Stephan Hendrik Jacobs

Name	Stephan Hendrik Jacobs
Profession	Environmentalist
Name of Firm	SiVEST SA (Pty) Ltd
Present Appointment	Graduate Environmental Consultant
Years with Firm	Joined May 2015
Date of Birth	28 May 1991
ID Number	9105285065080
Nationality	South African

Education

Pretoria Boys High, Pretoria, South Africa, Matriculated 2009.

Professional Qualification

- BSc Hons Environmental Management and Analysis, (Post Graduate) University Of Pretoria Honours (2014).
- BSc Environmental Sciences (Undergraduate) University Of Pretoria (2012-2013)

Employment Record

May 2015 – current	SiVEST SA (Pty) Ltd – Graduate Environmental Consultant
Nov 2014 – Feb 2015	Sodwana Bay Fishing Charters – Assistant Manager
Oct 2014 – Mar 2015	Ufudu Turtle Tours – Tour Guide

Language Proficiency

LANGUAGE	SPEAK	READ	WRITE
English	Excellent	Excellent	Excellent
Afrikaans	Good	Good	Good

Key Experience

Stephan joined SiVEST in May 2015 and holds the position of Graduate Environmental Consultant in the Johannesburg office.

Stephan specialises in the field of Environmental Management and has been involved in the compilation of Environmental Impact Assessments (EIAs) and Basic Assessments (BAs). Stephan has also assisted extensively in the undertaking of field work and the compilation of reports for specialist studies such as surface water and visual impact assessments. Stephan also has experience in Environmental Compliance and Auditing and has acted as an Environmental Control Officer (ECO) for several infrastructure projects.

Stephan has been educated and achieved his degrees (BSc and BSc Hons) at the University of Pretoria in Environmental Sciences (Environmental Management & Analysis).

Throughout his time at SiVEST, Stephan has acquired the following skills:

- Strong computer skills (Work, excel, powerpoint etc);
- Strong Proposal and report writing skills;
- Report compilation skills for Environmental Impact Assessments (EIAs) and Basic Assessments (BAs);

- Report compilation skills for Environmental Management Plans/Programmes (EMPr);
- Compilation and conducting Visual Impact Assessments;
- Assisting in Surface Water / Wetland Delineations and Assessments.

Key experience includes:

- Environmental Impact Assessment (EIA) of small, medium and large-scale infrastructure projects,
- Basic Assessment (BA), of small, medium and large-scale infrastructure projects,
- Environmental Management Plans (EMPr), of small, medium and large-scale infrastructure projects,
- Proposal and tender compilation,
- Environmental Compliance and Auditing (ECO);
- Various site inspections, and
- Visual Impact Assessments (Field work and report compilation).

Projects Experience

Stephan is responsible for the following activities: report writing, proposal writing, assisting in specialist surface water delineation and functional assessments, assisting in visual impact assessments and environmental compliance and auditing procedures. Current and completed projects / activities are outlined in detail below:

- Environmental Control Officer (ECO) for the Polokwane Integrated Rapid Public Transport System (IRPTS), Limpopo Province.
- Basic Assessment (BA) for the construction of a Non-Motorised Transport (NMT) Training and Recreational Park adjacent to the Peter Mokaba Stadium in Polokwane, Limpopo Province.
- Basic Assessment (BA) for the Proposed Expansion of the Tissue Manufacturing Capacity at the Twinsaver Kliprivier Operations Base, Gauteng Province.
- Environmental Control Officer (ECO) for Phase 1 and Phase 2 of the Newmarket Retail Development, Gauteng Province.
- Environmental Review of the Xakwa Coal Operations, adjacent to the proposed Eastside Junction Development.
- Environmental Due Diligence for the Woodlands and Harrowdene Office Parks in Woodmead, Gauteng Province.
- Visual Impact Assessment for the Helena Solar PV Plant, Northern Cape Province.
- Visual Impact Assessment for the Nsoko Msele Integrated Sugar Project, Swaziland.
- Visual Impact Assessments for the proposed construction of the Sendawo Solar 1, Sendawo Solar 2 and Sendawo Solar 3 Photovoltaic (PV) Energy Facilities near Vryburg, North West Province.
- Visual Impact Assessments for the proposed construction of the Sendawo Substation and Associated 400kV Power Line near Vryburg, North West Province.
- Visual Impact Assessments for the proposed construction of the Tlisitseng Solar 1 and Tlisitseng Solar 2 Photovoltaic (PV) Energy Facilities near Lichtenburg, North West Province.
- Visual Impact Assessment for the proposed construction of the 3000MW PhilCo Green Energy Wind Farm and Associated Infrastructure near Richmond, Northern Cape Province.

- Visual Impact Assessment for the proposed construction of the Aletta 140MW Wind Energy Facility neat Copperton, Northern Cape Province.
- Visual Impact Assessment for the proposed construction of the Eureka 140MW Wind Energy Facility and associated Infrastructure near Copperton, Northern Cape Province.
- Visual Impact Assessment for the proposed construction of the Eureka 400kV Substation and 400kV Power Line neat Copperton, Northern Cape Province.
- Basic Visual Impact Assessments for the proposed construction of the Tlisitseng 1 and Tlisitseng 2 Substations and Associated 132kV Power Lines near Lichtenburg, North West Province.
- Basic Visual Impact Assessment for the proposed construction of up to a 132kV Power Line and Associated Infrastructure for the Rooipunt Solar Thermal Power Plant near Upington, Northern Cape Province.
- Basic Visual Impact Assessment for the proposed construction of up to a 132kV Power Line and Associated Infrastructure for the proposed Kalkaar Solar Thermal Power Plant near Kimberly, Free State and Northern Cape Provinces.
- Surface Water Assessment for the Steve Thswete Local Municipality, Mpumalanga Province.
- Surface Water Delineation and Assessment for the proposed coal Railway Siding at the Welgedacht Marshalling Yard and associated Milner Road Upgrade near Springs, Ekurhuleni Metropolitan Municipality.

M07/16

CURRICULUM VITAE

Andrea Gibb

Name	Andrea Gibb
Profession	Environmental Practitioner
Name of Firm	SiVEST SA (Pty) Ltd
Present Appointment	Environmental Practitioner and Visual Specialist: Environmental Division
Years with Firm	6 Years
Date of Birth	29 January 1985
ID Number	8501290020089
Nationality	South African

Education

Matriculated 2003, Full Academic Colours, Northcliff High School, Johannesburg, South Africa

Professional Qualifications

BSc (Hons) Environmental Management (University of South Africa 2008-2010)

<u>Coursework</u>: Project Management, Environmental Risk Assessment and Management, Ecological and Social Impact Assessment, Fundamentals of Environmental Science, Impact Mitigation and Management, Integrated Environmental Management Systems & Auditing, Integrated Environmental Management, Research Methodology.

Research Proposal: Golf Courses and the Environment

BSc Landscape Architecture (with distinction) (University of Pretoria 2004-2007)

<u>Coursework:</u> Core modules focused on; design, construction, environmental science, applied sustainability, shifts in world paradigms and ideologies, soil and plant science, environmental history, business law and project management.

<u>Awards:</u> Cave Klapwijk prize for highest average in all modules in the Landscape Architecture programme, ILASA book prize for the best Landscape Architecture student in third year design, Johan Barnard planting design prize for the highest distinction average in any module of plant science.

ArcGIS Desktop 1 (ESRI South Africa December 2010) Environmental Impact Assessment (EIA) 2014 Legal Regime Workshop (Imbewu 2015)

Employment Record

Aug 2010 – to date	SiVEST SA (Pty) Ltd: Environmental Practitioner
Jan 2008 – July 2010	Cave Klapwijk and Associates: Environmental Assistant and
-	Landscape Architectural Technologist
Feb 2006 – Dec 2006	Cave Klapwijk and Associates: Part time student

Language Proficiency

LANGUAGE	SPEAK	READ	WRITE
English	Fluent	Fluent	Fluent

Key Experience

Specialising in the field of Environmental Management and Visual Assessment.

Andrea joined SiVEST in August 2010 and holds the position of Environmental Practitioner in the Johannesburg Office. She has 8.5 years' work experience and specialises in managing large scale multifaceted EIAs and Basic Assessment (BAs), primarily related to renewable energy generation and electrical distribution. She also specialises in undertaking visual impact and landscape assessments. She has extensive experience in overseeing public participation and stakeholder engagement processes and has been involved in environmental baseline assessments, fatal flaw / feasibility assessments and environmental negative mapping / sensitivity analyses. From a business and administrative side, Andrea is actively involved in maintaining good client relationships, mentoring junior staff and maintaining the financial performance of the projects she leads.

Skills include:

- Project Management (MS Project)
- Environmental Impact Assessment (EIA)
- Basic Assessment (BA)
- Public Participation Management
- Visual Impact Assessment (VIA)
- Landscape Assessment
- Strategic Environmental Planning
- Documentation / Quality Control
- Project Level Financial Management

Projects Experience

<u> Aug 2010 – to date</u>

ENVIRONMENTAL IMPACT ASSESSMENT (EIA) / BASIC ASSESSMENT (BA)

- EIA for the proposed development of the Tlisitseng 1 and 2 75MW Solar Photovoltaic (PV) Energy Facilities near Lichtenburg, North West Province.
- EIAs for the proposed development of the Sendawo 1, 2, and 3 75MW Solar PV Energy Facilities near Vryburg, North West Province.
- EIA for the proposed construction of the Sendawo Common Collector Substation and power line near Vryburg, North West Province.
- EIA for the proposed construction of the Aletta 140MW Wind Energy Facility near Copperton, Northern Cape Province.
- Application for an Amendment of the Environmental Authorisation (EA) for the proposed construction of the 100MW Limestone Solar Thermal Power Project near Danielskuil, Northern Cape Province.
- Applications for the Amendment of the EAs for the proposed construction of three 75MW solar PV facilities near Prieska, Northern Cape Province.
- Applications for the Amendment of the EAs for the proposed construction of the 75MW Arriesfontein and Wilger Solar Power Plants near Danielskuil, Northern Cape Province.
- Completion and submission of the final EIA report for the proposed Rooipunt PV Solar Power Park Phase 1 and proposed Rooipunt PV Solar Power Park Phase 2 near Upington, Northern Cape Province.
- EIAs for the proposed construction of the Helena 1, 2 and 3 75MW Solar PV Energy Facilities near Copperton, Northern Cape Province.
- EIA for the proposed construction of the Nokukhanya 75MW Solar PV Power Plant near Dennilton, Limpopo Province.
- EIA for the proposed development of the Dwarsrug Wind Farm near Loeriesfontein, Northern Cape Province.

- BA for the proposed construction of two 132kV power lines and associated infrastructure from the Redstone Solar Thermal Power Project site to the Olien MTS near Line Acres, Northern Cape Province.
- BA for the proposed construction of two 132kV power lines and associated infrastructure from Silverstreams DS to the Olien MTS near Lime Acres, Northern Cape Province.
- BA for the proposed Construction of the SSS1 5MW Solar PV Plant on the Western Part of Portion 6 (Portion of Portion 5) of Farm Spes Bona 2355 near Bloemfontein, Free State Province.
- BA for the proposed Construction of the SSS2 5MW Solar PV Plant on the Eastern Part of Portion 6 (Portion of Portion 5) of Farm Spes Bona 2355 near Bloemfontein, Free State Province.
- BA for the proposed Mookodi Integration Phase 2: Proposed Construction of a 132kV power line from the proposed Bophirima Substation to the existing Schweizer-Reneke Substation, North West Province.
- BA for the proposed Mookodi Integration Phase 2: Proposed Construction of a 132kV power line from the Mookodi Substation to the existing Magopela Substation, North West Province.
- BA for the proposed Mookodi Integration Phase 2: Proposed Construction of the Mookodi -Ganyesa 132kV power line, proposed Ganyesa Substation and Havelock LILO, North West Province.
- Amendment of the Final Environmental Impact Report for the Proposed Mookodi 1 Integration Project near Vryburg, North West Province.
- BA for the proposed 132kV power line and associated infrastructure for the proposed Redstone Solar Thermal Energy Plant near Lime Acres, Northern Cape Province.
- BA for the proposed construction of a 132kV power line and substation associated with the 75MW PV Plant on the Farm Droogfontein (PV 3) in Kimberley, Northern Cape Province.
- BA for the proposed establishment of a Learning and Development Retreat and an Executive Staff and Client Lodge at Mogale's Gate, Gauteng Province.
- Application for an Amendment of the EA to increase the output of the proposed 40MW PV Facility on the farm Mierdam to 75MW, Northern Cape Province.
- BA for the proposed construction of a power line and substation near Postmasburg, Northern Cape Province.
- BA for the proposed West Rand Strengthening Project 400kV double circuit power line and substation extension in the West Rand, Gauteng.
- EIA for the proposed construction of a wind farm and PV plant near Prieska, Northern Cape Province.
- Public Participation assistance as part of the EIA for the proposed Thyspunt Transmission Lines Integration Project – EIA for the proposed construction of 5 x 400kV transmission power lines between Thyspunt to Port Elizabeth, Eastern Cape Province.
- EIA assistance for the proposed construction of three Solar Power Plants in the Northern Cape Province.
- Public Participation as part of the EIA for the proposed Delareyille Kopela Power Line and Substation, North West Province.
- Public Participation as part of the EIA for the Middelburg Water Reclamation Project, Mpumalanga Province.

VISUAL IMPACT ASSESSMENT (VIA)

- VIA (Scoping Phase) for the proposed construction of a 3000MW Wind Farm and associated infrastructure near Richmond, Northern Cape Province.
- VIA for the proposed construction of a power line and associated infrastructure for the proposed Kalkaar Solar Thermal Power Plant near Kimberley, Free State and Northern Cape Provinces.
- VIA for the proposed construction of a power line and associated infrastructure for the proposed Rooipunt Solar Thermal Power Plant near Upington, Northern Cape Province.
- VIAs (Impact Phase) for the proposed construction of the Sendawo 1, 2 and 3 solar PV energy facilities near Vryburg, North West Province.

- VIA (Impact Phase) for the proposed construction of the Sendawo substation and associated power line near Vryburg, North West Province.
- VIAs (Impact Phase) for the proposed construction of the Tlisitseng 1 and 2 solar PV energy facilities near Lichtenburg, North West Province.
- VIA for the proposed construction of the Tlisitseng substation and associated 132kV power line near Lichtenburg, North West Province.
- VIA (Scoping Phase) for the proposed construction of the Sendawo substation and associated power line near Vryburg, North West Province.
- VIA (Scoping Phase) for the proposed construction of the Sendawo 1, 2 and 3 solar PV energy facilities near Vryburg, North West Province.
- VIA (Scoping Phase) for the proposed construction of the Tlisitseng 1 and 2 solar PV energy facilities near Lichtenburg, North West Province.
- Visual recommendations for Phase 1 of the proposed Renishaw Estate Mixed Use Development, KwaZulu-Natal Province.
- VIA for the proposed Tinley Manor South Banks Development, KwaZulu-Natal Province.
- VIAs (Impact Phase) for the proposed construction of the Helena 1, 2 and 3 75MW Solar PV Energy Facilities near Copperton, Northern Cape Province.
- VIA (Scoping Phase) for the proposed construction of the Helena 1, 2 and 3 75MW Solar PV Energy Facilities near Copperton, Northern Cape Province.
- Visual Due Diligence Report for the possible rapid rail extensions to the Gauteng network, Gauteng Province.
- Visual Status Quo and Constraints Report for the possible rapid rail extensions to the Gauteng network, Gauteng Province.
- VIA for the proposed agricultural components of the Integrated Sugar Project in Nsoko, Swaziland.
- VIA for the proposed Tweespruit to Welroux power lines and substation, Free State Province.
- VIA for the proposed construction of the Nokukhanya 75MW Solar PV Power Plant near Dennilton, Limpopo Province.
- VIA (Impact Phase) for the proposed development of the Dwarsrug Wind Farm near Loeriesfontein, Northern Cape Province.
- VIA for the proposed amendment to the authorised power line route from Hera Substation to Westgate Substation, Gauteng Province.
- VIA (Impact Phase) for the Eastside Junction Mixed Use Development near Delmas, Mpumalanga Province.
- VIA for the proposed construction of two 132kV power lines and associated infrastructure from the Redstone Solar Thermal Power Project site to the Olien MTS near Line Acres, Northern Cape Province.
- VIA for the proposed construction of two 132kV power lines and associated infrastructure from Silverstreams DS to the Olien MTS near Lime Acres, Northern Cape Province.
- VIA (Scoping Phase) for the proposed development of the Dwarsrug Wind Farm near Loeriesfontein, Northern Cape Province.
- VIA for the proposed Rorqual Estate Development near Park Rynie on the South Coast of KwaZulu Natal.
- VIA (Scoping Phase) for the proposed construction of a Coal-fired Power Station, Coal Mine and Associated Infrastructure near Colenso, KwaZulu-Natal Province.
- VIA for the proposed Mookodi Integration Phase 2: Proposed Construction of the Mookodi -Ganyesa 132kV power line, proposed Ganyesa Substation and Havelock LILO, North West Province.
- VIA for the proposed construction of the Duma transmission substation and associated Eskom power lines, KwaZulu-Natal Province.
- VIA for the proposed construction of the Madlanzini transmission substation and associated Eskom power lines, Mpumalanga Province.
- VIA for the proposed rebuild of the 88kV power line from Normandie substation to Hlungwane substation, Mpumalanga and KwaZulu-Natal Provinces.
- VIA for the proposed construction of the Nzalo transmission substation and associated Eskom power lines, KwaZulu-Natal Province.

- VIA for the proposed construction of the Sheepmoor traction substation with two 20MVA transformer bays and a new associated 88kV turn-in power line, Mpumalanga Province.
- VIA for the proposed rebuild of the 88kV power line from Uitkoms substation to Antra T-off, Mpumalanga Province.
- VIA for the proposed rebuild of the 88kV power line from Umfolozi substation to Eqwasha traction substation including an 88kV turn-in power line to Dabula traction substation, Kwazulu-Natal Province.
- VIA for the proposed construction of the new 88/25kV Vryheid traction substation with two 20MVA transforma bays and a new associated 88kV turn-in power line, KwaZulu-Natal Province.
- VIA for the proposed construction of a 132kV power line and substation associated with the 75MW PV Plant on the Farm Droogfontein (PV 3) in Kimberley, Northern Cape Province.
- VIA (Impact Phase) for the proposed Construction of a Solar PV Power Plant near De Aar, Northern Cape Province.
- VIA for the (Impact Phase) proposed Construction of the Renosterberg Wind Farm near De Aar, Northern Cape Province.
- VIA for the (Impact Phase) proposed Construction of the Renosterberg Solar PV Power Plant near De Aar, Northern Cape Province.
- VIA for the proposed construction of a 132kV power line for the Redstone Thermal Energy Plant near Lime Acres, Northern Cape Province.
- VIA for the proposed Mookodi Integration phase 2 132kV power lines and Ganyesa substation near Vryburg, North West Province.
- VIA for the proposed 132kV power lines associated with the PV Plants on Droogfontein Farm near Kimberley, Northern Cape Province.
- VIA (Scoping phase) for the Eastside Junction Mixed Use Development near Delmas, Mpumalanga Province.
- VIA for the proposed development of a learning and development retreat and an executive and staff lodge at Mogale's Gate, Gauteng Province.
- VIA for the proposed construction of a substation and 88kV power line between Heilbron (via Frankfort) and Villiers, Free State Province.
- Visual Status Quo Assessment for the Moloto Development Corridor Feasibility Study in the Gauteng Province, Limpopo Province and Mpumalanga Province.
- VIA the West Rand Strengthening Project 400kV double circuit power line and substation extension in the West Rand, Gauteng.
- VIA for the proposed construction of a wind farm and solar photovoltaic plant near Loeriesfontein, Northern Cape Province.
- Visual sensitivity mapping exercise for the proposed Mogale's Gate Expansion, Gauteng.
- VIA (Scoping Phase) for the proposed Renosterberg Solar PV Power Plant and Wind Farm near De Aar, Northern Cape Province.
- Scoping level VIAs for the proposed construction of three Solar Power Plants in the Northern Cape Province.
- VIAs for the Spoornet Coallink Powerline Projects in KZN and Mpumalanga.
- Visual Constraints Analysis for the proposed establishment of four Wind Farms in the Eastern and Northern Cape Province.
- VIA (Scoping Phase) for the proposed development of a solar energy facility in De Aar, Northern Cape.
- VIA (Scoping Phase) for the proposed development of a solar energy facility in Kimberley, Northern Cape.

STRATEGIC ENVIRONMENTAL PLANNING

- Assistance with the Draft Environmental Management Framework for the Mogale City Local Municipality, Gauteng Province.
- Sensitivity Negative Mapping Analysis for the proposed Mogale's Gate Development, Gauteng Province.

<u>OTHER</u>

Jan 2008 - July 2010

Environmental management, research, report writing, and landscape design for several development projects:

- Report writing, coordination and public participation for several BAs.
- Planting design (including rehabilitation) in accordance with natural ecological processes, endemic species and appropriate techniques.
- Graphic presentations and mapping for several VIAs and landscape architectural designs, including three-dimensional imagery.

Feb 2006 - Dec 2006

Landscape Architectural drafting, rendering and planting design for a variety of projects including the Oprah Winfrey Academy for girls and the New UNISA Student Entrance Building.

SiVEST Environmental Division 51 Wessels Road, Rivonia. 2128. South Africa PO Box 2921, Rivonia. 2128. South Africa

Tel + 27 11 798 0600 Fax +27 11 803 7272 Email info@sivest.co.za www.sivest.co.za

Contact Person: Stephan Jacobs Tel No.: +27 11 798 0677 Email: <u>stephanj@sivest.co.za</u>