## **FAUNA AND FLORA REPORT**

## Weltevreden 381 JT and Zoekop 426 JS, Mpumalanga

Northern Coal (Pty) Ltd

11 May 2009



Randburg, 2125, Tel: +27 (11) 789-9495 Fax : +27 (11) 789-9498 E-Mail : info@digbywells.co.za

Prepared By :

South Africa

Digby Wells & Associates Environmental Solutions Provider

Private Bag X10046,

**Environmental Solutions Provider** 



## This document has been prepared by Digby Wells & Associates (Pty) Ltd © 2009

| Name            | Responsibility         | Signature | Date |
|-----------------|------------------------|-----------|------|
| Ronald Phamphe  | Report Writer          |           |      |
| Botanist        |                        |           |      |
| Rudi Greffrath  | 1 <sup>st</sup> Review |           |      |
|                 |                        |           |      |
| Barbara Wessels | 2 <sup>nd</sup> Review |           |      |

This report is provided solely for the purposes set out in it and may not, in whole or in part, be used for any other purpose without DWA's prior written consent.



## **Executive Summary**

Digby Wells and Associates (DWA) were commissioned by Northern Coal South Africa (Pty) Ltd (Northern Coal) to conduct wet and dry season assessment studies on the farms Weltevreden 381 JT and Zoekop 426 JS.

The aims of this survey were to undertake a basic ecological assessment of the local flora and fauna in the study areas. The objectives are to establish the significance of the impacts of the construction and operation of the proposed opencast mine and associated infrastructure on the fauna and flora. Recommendations will also be made for mitigation actions that may either enhance potential benefits or minimize harmful effects. In order to meet these objectives the aforementioned flora and fauna surveys were conducted.

Weltevreden 381 JT and Zoekop 426 JS form part of the Northern Coal proposed project area, which is located in Mpumalanga Province, South Africa. The study area falls within the Highlands Local Municipality. According to the Mpumalanga Conservation Plan done by Mpumalanga Tourism and Parks Agency, this area is listed as a Least Concern and in No Natural Habitat Remaining (Grassland).

The dry season is typically not ideal for a biodiversity survey as most vegetation is dormant and many animal species are not as active as during the wet season. Fifty-eight plant species were recorded during the wet season as compared to the 38 recorded during the dry season.

The recorded grass species represented pioneer, subclimax and climax species and the areas were all in different states of succession, with areas supporting climax species like *Themeda triandra* and *Heteropogon contortus* showing more advanced stages of plant succession. The stages of succession of the various areas were dependent on the severity of disturbances such as ploughing and invasion of alien plant species. Most areas supported grasses with average to good palatability, indicating that the area could in future support grazing by livestock, which was the pre-mining capability of the area.

Furthermore the area also supported many alien invasive plant species, particularly *Cirsium vulgare, Bidens pilosa, Acacia mearnsii* and *Solanum sisymbrifolium*. An eradication and control program should be included with rehabilitation efforts to ensure that the area becomes free of



these alien invasive species which will, if uncontrolled, alter the landscape and convert the grasslands to Savanna. No endemic or Red Data plant species were recorded.

Many animal species that were observed in the area are adaptable species and by increasing the natural flora diversity during rehabilitation, one will have a natural influx of animals, with smaller animals such as insects moving into the area, followed by birds, frogs and reptiles. No frogs or reptiles (except one lizard) were observed during the field surveys and this could be attributed to temperatures that were below zero. These species tend to hibernate during cold spells

In conclusion, the field studies revealed the area is dominated by alien invasive species, and the fact that most of these species were found in the vicinity of the pan, is of biological concern as they tend to compete with indigenous vegetation.



## TABLE OF CONTENTS

| 1 | TERMS O     | F REFERENCE                                                             | 1  |
|---|-------------|-------------------------------------------------------------------------|----|
| 2 | INTRODU     | CTION                                                                   | 1  |
| 3 | STUDV AI    | REA                                                                     | 3  |
| 3 | STUDIA      | <b>X</b> A                                                              |    |
| 4 | EXPERTIS    | SE OF THE SPECIALIST                                                    | 5  |
| S | PECIALIST D | ECLARATION OF INDEPENDENCE                                              | 5  |
| 5 | METHOD      | OLOGY                                                                   | (  |
| 5 |             | 7<br>ISIT                                                               |    |
|   |             | isii<br>γation and Animal Survey                                        |    |
|   |             |                                                                         |    |
|   |             | sktop Study                                                             |    |
|   | 5.2.2 Fie   | ld Survey                                                               |    |
|   | 5.2.2.1     | Vegetation                                                              |    |
|   | 5.2.2.2     | Mammals                                                                 |    |
|   | 5.2.2.3     | Birds                                                                   |    |
|   | 5.2.2.4     | Invertebrates                                                           |    |
|   | 5.2.2.5     | Reptiles                                                                | 10 |
| 6 | KNOWLE      | DGE GAPS                                                                | 10 |
| 7 | RESULTS     |                                                                         | 11 |
| ' |             | fation Survey                                                           |    |
|   |             | ECIS List                                                               |    |
|   |             |                                                                         |    |
|   |             | nt species recorded during the survey                                   |    |
|   | 7.1.2.1     | Red Data Plant Species                                                  |    |
|   | 7.1.2.2     | Exotic and Invasive Plant Species                                       |    |
|   | 7.1.2.3     | Medicinal Plant Species                                                 |    |
|   | 7.1.2.4     | Description of dry season plant communities                             |    |
|   |             | .1 Bidens pilosa-Hyparrhenia hirta grassland                            |    |
|   | 7.1.2.4     |                                                                         |    |
|   | 7.1.2.5     | Description of dry season plant communities from the farm Zoekop 426 JS |    |
|   | 7.1.2.5     |                                                                         |    |
|   | 7.1.2.5     |                                                                         |    |
|   | 7.1.2.6     | Description of wet season plant communities                             |    |
|   | 7.1.2.6     |                                                                         |    |
|   | 7.1.2.6     |                                                                         |    |
|   | 7.2 ANIM    | AL SURVEY                                                               |    |



| _   |        |                                                                       |    |
|-----|--------|-----------------------------------------------------------------------|----|
|     | 7.2.1  | Mammals                                                               | 31 |
|     | 7.2.1. | 1 Mammal desktop study: Red Data Mammals that could occur in the area | 31 |
|     | 7.2.1. | 2 Mammals observed and recorded in the area                           | 32 |
|     | 7.2.2  | Birds                                                                 | 34 |
|     | 7.2.2. | 1 Bird desktop study: Birds that could occur in the area              | 34 |
|     | 7.2.2. | 2 Birds observed and recorded in the area                             | 34 |
|     | 7.2.2. | 3 Red Data birds                                                      | 35 |
|     | 7.2.3  | Reptiles                                                              | 36 |
|     | 7.2.4  | Terrestrial Invertebrates                                             | 36 |
|     | 7.2.4. | 1 Insects                                                             |    |
| 8   | DISCU  | SSION                                                                 | 40 |
| 8.1 | 1 Ve   | EGETATION                                                             | 40 |
| 8.2 | 2 M.   | AMMALS                                                                | 42 |
| 8.3 | 3 BI   | RDS                                                                   | 42 |
| 8.4 |        | SECTS                                                                 |    |
| 8.5 |        | EPTILES                                                               |    |
| 0   |        |                                                                       |    |
| 9   | ENVIR  | CONMENTAL IMPACT ASSESSMENT AND MITIGATION MEASURES                   | 43 |
| 9.1 | 1 EI   | A METHODOLOGY                                                         | 43 |
|     | 9.1.1  | Impact Identification                                                 | 43 |
|     | 9.1.2  | Impact Rating                                                         | 44 |
| 10  | MAN    | NAGEMENT OF IDENTIFIED ENVIRONMENTAL IMPACTS                          | 55 |
| 11  | REC    | COMMENDATIONS                                                         | 61 |
| 11  | .1 Fl  | ORA                                                                   | 61 |
| 11  | .2 FA  | JUNA                                                                  | 61 |
| 12  | CON    | ICLUSION                                                              | 61 |
| 13  | COM    | IMENTS RECEIVED                                                       | 62 |
| 14  | REF    | ERENCES                                                               | 63 |



# List of Figures

| Figure 1. Study area in Weltevreden consisting of pans, stand of Eucalyptus and mielie fields 4                             |
|-----------------------------------------------------------------------------------------------------------------------------|
| Figure 2. A trap used to catch mammals of less than 2kg                                                                     |
| Figure 3. Exotic <i>Pinus patula</i> next to the pans                                                                       |
| Figure 4: Acacia mearnsii dominate the bottom valleys next to the pans14                                                    |
| Figure 5. <i>Datura stramonium</i> growing next to the miele fields                                                         |
| Figure 6. Dendrogram showing the cut-levels for vegetation communities in Weltevreden during the dry season                 |
| Figure 7. Dendrogram showing plant communities found in Zoekop 426JS24                                                      |
| Figure 8. Depiction of vegetation biodiversity for Weltevreden during wet season using Simpson's index and species richness |
| Figure 9. Depiction of vegetation biodiversity for Weltevreden during dry season using Simpson's index and species richness |

# List of Tables

| Table 1: Plant species typical of the North-eastern Sandy Highveld vegetation type of the |
|-------------------------------------------------------------------------------------------|
| Weltevreden areas                                                                         |
|                                                                                           |
| Table 2. Braun-Blanquet cover-abundance scale    7                                        |
|                                                                                           |
| Table 3. Plant species collcted from Zoekop farm    12                                    |
|                                                                                           |
| Table 4. Phytosociological table for Weltevreden dry season survey    16                  |
|                                                                                           |
| Table 5. Phytosociological table for the farm Zoekop 426 JS    23                         |
|                                                                                           |
| Table 6. Phytosociological table for Weltevreden wet season survey                        |



| Table 7. Red Data mammals that could be found in Weltevreden                                                          |
|-----------------------------------------------------------------------------------------------------------------------|
| Table 8. Mammals observed at the site during the dry season                                                           |
| Table 9. Mammals observed at the site during the wet season                                                           |
| Table 10. Mammals observed in Zoekop farm during the winter survey                                                    |
| Table 11. Bird species recorded during the dry season                                                                 |
| Table 12. Bird species recorded during the wet season                                                                 |
| Table 13. Birds observed in Zoekop farm                                                                               |
| Table 14. Total number of families found in Weltevreden during the dry season                                         |
| Table 15. Total number of families found during the wet season                                                        |
| Table 16. Insects collected from Zoekop farm during dry season                                                        |
| Table 17. Total abundance of insects collected from Zoekop during dry seasn                                           |
| Table 18. Comparison between dry and wet season flora surveys                                                         |
| Table 19. Impact assessment parameter ratings                                                                         |
| Table 20: Significance threshold limits    46                                                                         |
| Table 21: The listed activities described for each phase and the impact description and significance rating thereof   |
| Table 22: The described management plans for the listed activities per phase and the significance      rating thereof |

# List of Appendices



| Appendix 2. Map indicating the Sensitivity areas within the study area67                   |
|--------------------------------------------------------------------------------------------|
| Appendix 3. Precis list for QDS 2530CC                                                     |
| Appendix 4. Sampling points in the study areas71                                           |
| Appendix 5. Plant species recorded during dry season survey in Weltevreden72               |
| Appendix 6. Plant species recorded during wet season survey in Weltevreden74               |
| Appendix 7. Birds that could possibly be found in the area                                 |
| Appendix 8. Insects collected in Weltevreden during the dry season                         |
| Appendix 9. Insects collected in Weltevreden during the wet season                         |
| Appendix 10. Map representing all five major plant communities found in Weltevreden during |
| the dry and wet season                                                                     |

## **1 TERMS OF REFERENCE**

Digby Wells and Associates (DWA) were commissioned by Northern Coal South Africa (Pty) Ltd (Northern Coal) to conduct Fauna and Flora studies on the farms Weltevreden 381 JT and Zoekop 426 JS in order to determine the current status of these farms. The studies were done in accordance to the Mpumalanga Parks Board minimum requirements. These assessments was done by combining the information and results from wet and dry season flora and fauna surveys into a comprehensive Fauna and Flora Report.

This specialist report serves to undertake a basic ecological assessment of the local flora and fauna communities associated with the study areas. Information generated from this survey has been used to address the impacts that the mining activities will have on this environment. The desktop and field results have been included to interpret the results.

This survey was completed in accordance with:

- Section 21 of the Environment Conservation Act, 1989;
- Section 24 of the Constitution Environment (Act 108 of 1996);
- Conservation of Agricultural Resources Act (CARA) no 43 of 1983;
- Section 5 of the National Environmental Management Act (Act 108 of 1998); and
- National Environmental Management Biodiversity Act (NEMBA, Act 10 of 2004).

## **2** INTRODUCTION

The National Environmental Management Biodiversity Act 10 of 2004 defines biodiversity as the variability among living organisms from all sources including terrestrial, marine and other aquatic ecosystems as well as the ecological complexes of which they are part. This includes diversity within species, between species and of ecosystems. Living organisms, for the purpose of this report, include forms of plant life (with the focus on herbs, grasses, shrubs and trees), animal life (with the focus on mammals, birds, reptiles, amphibians) as well as associated environmental factors such as wetlands (water accumulation in streams and pans), soils (land use and land capability) and geology.



South Africa is the third most biologically diverse country in the world, after Indonesia and Brazil. The country occupies about 2% of the world's land area, but supports nearly 10% of the world's plants and 7% of the reptiles, birds and mammals. It also has three globally recognised biodiversity hotspots that fall within its boundaries, namely: the Cape Floristic Region, the Succulent Karroo and Maputaland-Pondoland (Driver et al, 2004).

The Biodiversity Act sets out a framework for planning the conservation and sustainable use of biological diversity within a broader framework of planning for sustainable development. Mining and its associated activities has a significant impact on the soils, land use, land capability, vegetation and animal life. The use of land for mining and agriculture leads to the destruction of vegetation and therefore the loss of suitable habitat for fauna. As a result of the destruction of natural vegetation and wetlands, change in land use and the contamination of the surrounding environment, the level of biodiversity within mining areas is normally diminished. With proper planning, responsible mining with concurrent rehabilitation and through the conscious conservation and protection of resident natural species these impacts and the associated loss of biodiversity can be addressed and minimised.

Loss of biodiversity leads to ecosystem degradation and subsequent loss of important ecological services. This puts aspects of the economy and quality of life at risk, and reduces socio-economic options for future generations. Biodiversity provides an important basis for economic growth and development and it is vital to keep it intact to ensure ongoing provision of ecosystem services (Driver et al, 2004). Mining is a driving force that exerts pressure on the natural habitat and biological diversity. This pressure arises from both current and past activities since there is often a time lag between human actions and environmental responses.

Biomes found in South Africa include desert, fynbos, succulent, Karroo, Nama Karroo, grassland, savanna, Albany thicket, forest and wetland vegetation (Low & Rebelo 1996). The Grassland biome has the highest biodiversity in South Africa after the Fynbos biome (Driver *et al*, 2004). Mpumalanga falls under the Grassland Biome. The Grassland Biome is found mainly on the high central plateau of South Africa, and the inland areas of KwaZulu Natal and the Eastern Cape. The topography is mainly flat and rolling but includes the escarpment itself. Grasslands are dominated by a single layer of grasses and the amount of cover depends on rainfall and the degree of grazing. Trees are absent, except in a few localised habitats and geophytes are often abundant (Low & Rebelo, 1996).

Agricultural and mining activities in the region have lead to habitat fragmentation (Driver et al 2004) and therefore any further loss of natural habitat is viewed as detrimental to biodiversity functioning in this



particular region. The loss of biodiversity leads to ecosystem degradation (Driver et al, 2004) and this study will try to address and identify the species that are found in the area in terms of their Red Data status. The greatest threat to fauna species within this area is the loss of natural habitat, as a direct result of agricultural or mining activities. In an area such as Mpumalanga further habitat loss is critical as bird species are under increasing pressure from mining activities.

The objectives of the Flora and Fauna study, which are contained in the Terms of Reference, will be achieved by conducting a desktop and field investigation of the wetland for both Flora and Fauna, delineating plant communities that are found in the area, and also identifying the rare and endangered species that occur in the wetland.

## **3 STUDY AREA**

The study area is situated in the Mpumalanga Province, in the Highlands Local Municipality between the N4 and R33 roads. The site consists of mielie fields, stands of *Eucalyptus spp.*, pans and grasslands (**Figure 1**). Evidence of agricultural activities that took place on the site (cattle grazing) is evident. A rocky area is present to the north of the pans. Appromimately 219ha will be mined using open cast methods.

The area falls within the Moist Sandy Highveld Grassland vegetation type within the Grassland biome (Low & Rebelo 1996), similar to the North-eastern Sandy Highveld, (Veld type 57) and Eastern Bankenveld (Veld type 61c) of Acocks (1988). Dominant species and less dominant species are listed in **Table 1**. According to the latest vegetation map by Mucina *et al.* (2006), this area is described as both Eastern Highveld Grassland and Eastern Temperate Freshwater Wetlands (**Appendix 1**).

Table 1: Plant species typical of the North-eastern Sandy Highveld vegetation type of the Weltevreden areas

| DOMINANT SPECIES                   |                          |                          |  |  |
|------------------------------------|--------------------------|--------------------------|--|--|
| Alloteropsis semialata             | Andropogon schirensis    | Brachiaria serrata       |  |  |
| Ctenium concinum                   | Digitaria tricholaenoide | Diheteropogon amplectens |  |  |
| Elionurus muticus                  | Eragrostis plana         | Eragrostis racemosa      |  |  |
| Eragrostis sclerantha              | Harpochloa falx          | Helichrysum oreophilum   |  |  |
| Heteropogon contortus              | Loudetia simplex         | Microchloa caffra        |  |  |
| Monocymbium ceresiiforme           | Panicum natalense        | Themeda triandra         |  |  |
| Trachypogon spicatus               | Tristachya leucothrix    | Stoebe vulgaris*         |  |  |
| SPECIES OF LESS GENERAL OCCURRENCE |                          |                          |  |  |
| Aristida aequiglumis               | Aristida junciformis     | Dicoma anomalla          |  |  |
| Diheteropogon filifolius           | Eragrostis patensissima  | Panicum ecklonii         |  |  |
| Schizahyrium sanguineum            | Sporobolus pectinatus    | Rendlia altera           |  |  |



Tristachya rehmannii

\* Alien plant

Mpumalanga province is divided into 6 main areas of sensitivity, namely

- Highly Significant;
- o Important & Necessary;
- o Irreplaceable;
- o Least Concern;
- o No Natural habitat Remaining; and
- o Protected areas (Lötter 2007).

This study area is classified as Least Concern and No Natural Habitat Remaining (Appendix 2).



Figure 1. Study area in Weltevreden consisting of pans, stand of Eucalyptus and mielie fields



## **4** EXPERTISE OF THE SPECIALIST

## SPECIALIST DECLARATION OF INDEPENDENCE

## I, Avhafarei Ronald Phamphe , declare that I -

- Act as the independent specialist for the undertaking of a specialist section for the proposed project <u>Weltevreden Flora and Fauna assessment;</u>
- Do not have and will not have any financial interest in the undertaking of the activity, other than remuneration for work performed in terms of the Environmental Impact Assessment Regulations, 2006;
- Do no have nor will have a vested interest in the proposed activity proceeding;
- Have no, and will not engage in, conflicting interests in the undertaking of the activity;
- Undertake to disclose, to the competent authority, any information that have or may have the potential to influence the decision of the competent authority or the objectivity of any report, plan or document required in terms of the Environmental Impact Assessment Regulations, 2006;

Avhafarei Ronald Phamphe\_\_\_\_\_

Name of the specialist

Signature of the specialist

## DIGBY WELLS & ASSOCIATES

Name of company

Date



## 5 METHODOLOGY

## 5.1 Site Visit

The dry season survey was conducted on 15<sup>th</sup> and 16<sup>th</sup> July 2008 and on the 25<sup>th</sup> and 26<sup>th</sup> May 2009. The wet season survey took place on 09<sup>th</sup> and 10<sup>th</sup> March 2009 in order to sample the species that are found on this site during both wet and dry seasons.

## 5.2 Vegetation and Animal Survey

## 5.2.1 Desktop Study

A desktop study was conducted to ascertain which fauna and flora species could be expected to occur on the site, under natural conditions. This was done for the vegetation by assessing the available literature on the vegetation types of South Africa. A brief description of the natural vegetation type of the area, according to the descriptions in Low & Rebelo (1996) and Acocks (1988) is given. All plants that have Red Data and Endemic status (Hilton-Taylor, 1996) were also investigated. A Pretoria Computerized Information System (PRECIS) List was obtained from the South African National Botanical Institute (SANBI) which lists all the plant species officially recorded by SANBI for QDS 2530 CC (**Appendix 3**). This list of species ranges from Decreaser, Increaser 1, Increaser 2, and Increaser 3. Van Oudtshoorn (1999) described Decreaser as the grasses that are abundant in good veld but that decrease in number when the veld is overgrazed or undergrazed, e.g. *Themeda triandra*, Increaser 1 as grasses that are abundant in overgrazed veld and Increaser 3 as grasses that are commonly found in overgrazed veld and usually unpalatable, e.g. *Sporobolus africanus*.

Mammals that could be found in this study were based on the distribution maps of Skinner & Chimimba (2005) and Friedman & Daly (2004). Roberts (2003), Barnes (1998) and Barnes (2000) were used to identify bird species that may occur in and around the proposed project site as well as their Red Data status. Branch (2001), Passmore & Carruthers (1995), and Henning & Henning (1989), were all used to ascertain the distribution of reptiles and amphibians.



## 5.2.2 Field Survey

## 5.2.2.1 Vegetation

During the field survey, all general observations were noted and trees, shrubs, grasses and herbs (forbs) were recorded using the Braun-Blanquet method (Braun-Blanquet 1964). Plants: Books such as, Pooley (1998), and van Oudtshoorn, (1999) were used during the field survey for identification. The sampling points (**Appendix 4**) were placed in such a way that it covers the whole area, and in cases where the area is homogenous, one or two representative samples were taken. A total of seven sample plots were distributed within the area of interest with some natural vegetation, wetlands, and disturbed areas surveyed. In order to confirm species identification, photographs were recorded of sampled flora and sent to the SANBI for verification purposes.

The sampling points were placed in such that it covers the whole area, and in cases where the area is homogenous, one or two representative samples were taken. Most of the areas were mielie fields and only few samples were taken as these fields were dominated by same species, i.e. *Zea mays*, and mostly weeds. Most of the samples were taken in areas where there were grasses and trees.

A comprehensive floristic and habitat survey was done within each of the sample plots. Taxon names were updated in accordance to the species list contained in the TURBOVEG (Hannekens, 1996b) database. The following cover-abundance scale table (**Table 2**) was therefore used:

| Symbol | Qualitative Braun-Blanquet scale                                                       |
|--------|----------------------------------------------------------------------------------------|
| r      | One or few individual (rare) with less than 1% of total sample plot area               |
| +      | Occasional and less than 1% of total sample plot area                                  |
| 1      | Abundant and with very low cover or less abundant, but with higher cover, 1-5% cover   |
|        | of total sample plot area                                                              |
| 2a     | Covering 5-12% of the sample plot area, irrespective of the number of individuals      |
| 2b     | Covering 12-25% of the sample plot area, irrespective of the number of individuals     |
| 3      | >25-50% cover of the total sample plot area, irrespective of the number of individuals |
| 4      | >50-75% cover of the total sample plot area, irrespective of the number of individuals |
| 5      | >75% cover of the total sample plot area, irrespective of the number of individuals    |

 Table 2. Braun-Blanquet cover-abundance scale

The floristic data, which consists of 47 relevés, were subjected to the Two-Way Indicator Species Analysis technique (TWINSPAN) (Hill 1976b) on two levels of division in the Juice (Tichy 2002). Results of TWINSPAN indicated a first approximation of the major units in the study area.



Due to species diversity and uneven topography, a sample plot size of 10 m x 10 m was chosen. In order to give a clear reflection of the variation of the vegetation, sample plots were, as far as possible, equally distributed within the different stratification units, and one relevé was compiled in each plot. The exact position of each sample plot within the relevant stratification unit was chosen subjectively according to the methodology of the Zurich-Montpellier approach of phytosociology (Braun-Blanquet 1964). The Braun-Blanquette (BB) sampling method (Mueller-Dombois & Ellenberg 1974) has been successfully applied in other phytosociological studies in South African grasslands (e.g. Bredenkamp 1982, Bezeuidenhoudt & Bredenkamp 1990) and also in many other vegetation studies (Du Plessis 2001, Phamphe 2003). This is a standardised method used for vegetation classification within South Africa. Unknown species were taken to the University of Pretoria herbarium and SANBI for identification. A cover abundance value was estimated for each of the identified species according to the Braun-Blanquette scale.

The habitat was evaluated in terms of the topography (crest, midslope, foot slope, plain, river and plateau), aspect (north, south, east and west), slope (in degrees), altitude, soil and erosion (if present).

The following indicators were obtained for the area and for each plant community unit with regard to insects collected:

• Simpson's Species Diversity Index (Index of concentration): used to determine the relative species diversities of vegetation communities, allowing for comparisons between vegetation communities. This method is sample size independent, allowing areas with five sample plots to be compared with areas of two sample plots.

• D or  $\lambda = sum\{(n \ge n-1)/(N \ge N-1)\}$ ; where n = number of individuals of a particular species and N = the sum of all individuals of all species in that sample area. This value ranges between 0 and 1 with values closer to 0 indicating higher biodiversity and therefore the reciprocal, Simpson's Index (1/ D or 1/ $\lambda$ ), is used as a measure of diversity.

• Species Richness: a measure of the number of species that were found to be present at each sampling point, which is linked to species diversity.

• Species Uniqueness: a measure of the differences between the sampling points investigated, taking into account the number of species that were found in one sampling area only and not in others, making them unique to that area. This can be used as an indication of uniqueness of habitat.



The first two indices were determined for the area as a whole and can be used as indicators for the area and can be used for comparison to other areas. All analyses were made for each plant community unit to determine which communities had higher diversities and would therefore be most suitable for preservation.

## 5.2.2.2 Mammals

The mammal survey was conducted during the same time as that of the vegetation survey. All mammals that were seen during the field surveys were noted. This included mammals that were seen at the sample sites and those that were observed in the general area. Signs that would indicate the presence of certain species were also looked for such as spoor and droppings. Although mammals were recorded in areas not specific to the proposed new developments, the ability of mammals to move between areas, means the likelihood of these species occurring in the area of concern is high. Baited wire cages with trap doors were used for small mammal trapping (**Figure 2**). This method is species specific and only small mammals weighing less than 2kg can be captured.



Figure 2. A trap used to catch mammals of less than 2kg.



## 5.2.2.3 Birds

A visit to the proposed project site area to establish visual observations of the birds' species took place in the morning. Three Avifauna field guides were used for identification purposes. According to Barnes (1988), 49 species have been listed as having Red Data status in the Amersfoot-Bethal-Varolina District in terms of the Important Bird areas in Mpumalanga. The Secretary bird (Near Threatened) occurs in grassland habitats and the African grass owl (Vulnerable) occurs in grassland with vlei areas. Both these habitats are present within the area. As these are Red Data birds, they will need to be protected and conserved should they occur on the property.

## 5.2.2.4 Invertebrates

Invertebrates were sampled using a sweep net of 350 mm diameter. At each sample plot 50 sweeps were conducted. Insects were collected from the net using a pooter, placed into a jar filled with 70% ethanol, and were sent to University of Johannesburg (UJ) for identification and species counts. For each sample plot the insects were identified to at least family level and where possible to genus and species level. The number of species within each family was noted as were the number of individuals of each species.

#### 5.2.2.5 Reptiles

Signs of reptile activity were noted such as shed skin, spoor and droppings. Lizard and snake surveys were performed in the late morning and late afternoon, when temperatures are generally conducive to reptile activity and thermoregulation. Snakes, if found, were not going to be captured, but if possible, a picture would have been taken, and specimens were going to be identified in the field. Lizards would have been captured if they could not be identified visually in their natural habitat. Any lizard captured would have been placed briefly in a jar. If identification couldn't be completed in the field, specimens would be released and subsequently identified from pictures taken while individuals were in holding containers, possibly with the help of experts. Data would be recorded in a notebook along with the time, date, habitat, weather conditions and a GPS location

## 6 KNOWLEDGE GAPS

During the dry season, sampling was mainly for grasses, birds, trees and insects and as it was not possible to samples species such as amphibians and reptiles due to their inactivity during this season.



## 7 RESULTS

## 7.1 Vegetation Survey

The results of both the dry and wet season vegetation surveys are summarised below. These results include both the desktop and the field surveys.

## 7.1.1 PRECIS List

The PRECIS List for QDS 2530CC presents all the species of plants that have officially been recorded in this particular grid by the SANBI. In order for a plant species to be included in this list a specimen collected in these grids must be supplied to SANBI. These lists are therefore not a comprehensive list, representing only those species that may occur in these grids, but rather a guideline as to what is likely to occur here. The sites sampled are also only a very small portion of the whole grid and habitats suitable for certain species in these PRECIS lists may not be present at the sites sampled. It is therefore not unusual for species in the PRECIS list to be absent from the sampling sites. From these PRECIS lists we can, therefore, only make inferences about which plant species could potentially occur at any of the sample sites. In this case it could also be used as a guideline for what species should occur here and this could aid in the management of the future rehabilitated areas.

## 7.1.2 Plant species recorded during the survey

The dry season survey resulted in 38 plant species recorded (**Appendix 5**). This included three tree, five shrubs, twenty grasses and eight herb species. Four species relating to the Bankenveld vegetation type (Acocks, 1988) were recorded from this site. Five Decreaser grasses were observed in the area. Five grasses are Increaser I species, usually climax grasses occurring in underutilised veld (van Oudtshoorn, 1999), and seven Increaser II grasses were recorded in the area. There were two Increaser III grass species (*Aristida junciformis* Gangoni three-awn and *Sporobolus africanus* Ratstail dropseed) observed in the area. Increaser II grasses are abundant in overgrazed veld and include pioneer and subclimax species which will establish quickly on exposed ground (van Oudtshoorn, 1999). Two of the grasses recorded in the area were Exotics (*Pennisetum clandestinum* Kikuyu grass and *Paspalum dilatatum* Dallis grass) (**Appendix 5**).

During the wet season survey, 58 plant species were recorded (**Appendix 6**). These species included three tree, five shrub, twenty five grass and nineteen herb species. Five Decreaser grasses were observed in the area. Three grasses are Increaser I species, usually climax grasses occurring in underutilised veld (van



Oudtshoorn, 1999), and ten Increaser II grasses were recorded in the area. There was one Increaser III grasses species (*Sporobolus africanus* Ratstail dropseed) observed in the area. Two grasses recorded in the area were Exotics (*Pennisetum clandestinum* Kikuyu grass and *Stenotaphrum secundatum* Buffalo-turf grass) (**Appendix 6**). Six species relating to the North-eastern Sandy Highveld (Table 2) vegetation type (Acocks, 1988) were recorded from this site.

A total of 37 species (**Table 3**) were sampled from the farm Zoekop. Of these, 16 species were grasses, 10 were herbs, one reed, five shrubs, and five trees.

| Scientific Name          | English Name                     | Ecological<br>Status | Form  |
|--------------------------|----------------------------------|----------------------|-------|
| Acacia mearnsii          | Black Wattle                     | Alien Invasive       | Tree  |
| Aloe species             |                                  | medicinal            | Herb  |
| Amaranthus hybridus      | Pigweed                          | Alien Invasive       | Herb  |
| Andropogon eucomus       | Snowflake grass                  | Increaser 2          | Grass |
| Asparagus virgatus       | Broom Asparagus                  | Medicinal            | Shrub |
| Berkheya setifera        | Buffalo-tongue Berkheya          | Medicinal            | Herb  |
| Bidens pilosa            | Common Black-jack                | Alien Invasive       | Herb  |
| Cirsium vulgare          | Scotch Thistle                   | Alien invasive       | Herb  |
| Conyza bonariensis       |                                  |                      | Herb  |
| Ctenium concinnum        | Sickle grass                     | increaser 1          | Grass |
| Cymbopogon excavatus     | Broad-leaved Turpentine<br>Grass | Increaser 1          | Grass |
| Diospyros mespiliformis  | We want I am Court               | 1                    |       |
| Eragrostis curvula       | Weepong Love Grass               | Increaser 2          | Grass |
| Eragrostis racemosa      | Narrow Heart Love Grass          | Increaser 2          | Grass |
| Eragrostis superba       | Saw-tooth Love Grass             | Increaser 2          | Grass |
| Eucalyptus camaldulensis | Red River Gum                    | Alien<br>Invasive**  | Tree  |
| Helichrysum aureonitens  | Golden everlasting               | Medicinal            | Herb  |
| Hyparrhenia hirta        | Common Thatching<br>Grass        | Increaser 1          | Grass |
| Imperata cylindrica      | Cotton Wool Grass                | Increaser 1          | Grass |
| Leonotis leonurus        |                                  |                      | Herb  |
| Melinis repens           | Natal Red Top                    | Increaser 2          | Grass |
| Panicum maximum          | Guinea Grass                     | Decreaser            | Grass |

Table 3. Plant species collcted from Zoekop farm



| Scientific Name                    | English Name                                 | Ecological<br>Status   | Form  |
|------------------------------------|----------------------------------------------|------------------------|-------|
| Phragmites australis               | Common Reed                                  | decreaser              | Grass |
| Pinus patula                       | Patula pine                                  | Alien invader          | Tree  |
| Populus canescens                  | grey poplar                                  | Alien invader          | Tree  |
| Pseudognaphalium luteo-album       | Jersey Cudweed                               | Medicinal;<br>Cultural | Herb  |
| Rhus species                       |                                              | medicinal              | Shrub |
| Salix babylonica                   | Weeping Willow                               | Alien Invasive         | Tree  |
| Schoenoplectus corymbosus          |                                              |                        | Reed  |
| Setaria sphacelata var. sphacelata | Common Bristle Grass                         | Decreaser              | Grass |
| Setaria verticillata               | Bur Bristle Grass                            | Increaser 2            | Grass |
| Sporobolus africanus               | Ratstail Dropseed                            | Increaser 3            | Grass |
| Tagetes minuta                     | Tall Khaki Weed                              | Invasive               | Herb  |
| Themeda triandra                   | Red Grass                                    | Decreaser              | Grass |
| Tristachya leucothrix              | Hairy Trident Grass                          | Increaser 1            | Grass |
| Verbena bonariensis                | Tall Verbens/Dumla Tan                       | Alien invasive         | Shrub |
| _                                  | Tall Verbena/Purple Top           Maize meal | Allen invasive         | shrub |
| Zea mays                           | Maize mean                                   |                        | sinub |

## 7.1.2.1 Red Data Plant Species

No Red Data plant species were recorded during the both surveys.

## 7.1.2.2 Exotic and Invasive Plant Species

A total of 11 alien invasive species were observed during the dry season survey (**Appendix 5**) and 15 species were observed during the wet season (**Appendix 6**). Alien invasive species tend to out compete the indigenous vegetation and this is due to the fact that they usually are vigorous growers that are adaptable and able to invade a wide range of ecological niches (Bromilow, 1995). They are tough, can withstand unfavourable conditions and are easily spread. This is indicative of early stages of succession and although these species are invasive they do aid in the prevention of erosion. Tree species like *Pinus patula* (**Figure 3**) and *Acacia mearnsii* dominate the bottom valleys of the site (**Figure 4**) whereas species such as *Datura stramonium* (**Figure 5**) is found in mielie fields areas.





Figure 3. Exotic *Pinus patula* next to the pans



Figure 4: Acacia mearnsii dominate the bottom valleys next to the pans

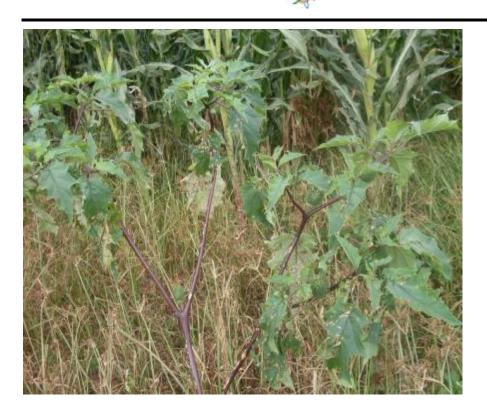



Figure 5. Datura stramonium growing next to the miele fields

A total of nine alien invasive species were found on Zoekop farm. The same species were also found in Weltevreden farm, except *Populus canescens* and *Salix babylonica*.

## 7.1.2.3 Medicinal Plant Species

During the dry season, 14 medicinal plants were observed and same amount were observed during the wet season. *Boophane disticha* (Fan-leaved Boophane) is used in traditional medicine to treat pain, wounds and as a narcotic and *Pseudognaphalium luteo-album* (Jersey Cudweed) is traditionally used to fumigate a room where a child is feverish and to make a 'mattress' on which skins are cured (Pooley 1998).

Five medicinal plants were collected from Zoekop farm, with *Asparagus virgatus* being used as a charm and also to treat syphilis and intestinal worms (Pooley 1988).

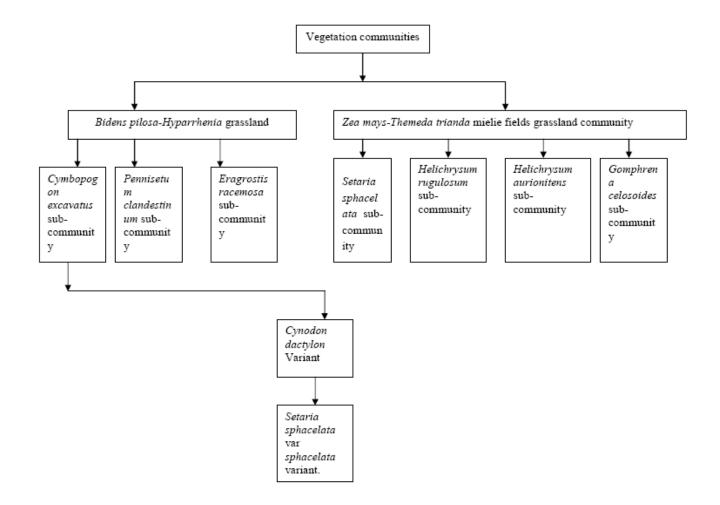
## 7.1.2.4 Description of dry season plant communities

The dry season results yields two main vegetation types, i.e *Bidens pilosa-Hyparrhenia hirta* grassland and *Zea mays-Themeda triandra* mielie fields (**Table 4**). The yellow blocks represent the communities and sub-communities.



| Table 4. Phytosociological | table for Weltevreden | dry season survey |
|----------------------------|-----------------------|-------------------|
|                            |                       |                   |

| Table number                     | 1    | 2          | 3        | 4          | 5  | 6       | 7   | 8      | 9  | 10 | 11               | 12 | 13         |
|----------------------------------|------|------------|----------|------------|----|---------|-----|--------|----|----|------------------|----|------------|
| Species Group A                  |      |            |          |            |    |         |     |        |    |    |                  |    |            |
| Hyparrhenia hirta                | 4    | 4          | 2a       | 3          | 3  | 3       | 2m  |        | 3  |    | 2a               |    |            |
| Verbena bonariensis              |      | 3          | 3        | 3          | 1  |         | 3   | 1      | 3  | 3  | 1                | 1  |            |
| Bidens pilosa                    | 2m   | 3          | 2b       | 3          |    | 1       |     | 1      | 3  | 2m |                  |    | 3          |
| Panicum natalense                |      |            | 3        | 3          | 2m | 2m      | 3   |        | 2a |    | 3                |    |            |
| Sporobolus africanus             | 3    | 3          |          | 2a         | 4  |         |     | 2a     | 4  | 3  | 4                | 3  |            |
| Species Group B                  |      |            |          |            |    |         |     |        |    |    |                  |    |            |
| Stenotaphrum secundatum          | 2a   | 3          |          |            | 3  |         |     |        |    |    |                  |    |            |
| Sporobolus pyramidalis           | 2b   | 3          |          |            |    |         | 2a  |        |    |    |                  |    |            |
| Cymbopogon excavatus             | 4    | 3          | 3        |            |    |         |     |        |    |    |                  |    |            |
| Species Group C                  |      |            |          |            |    |         |     | -      |    |    |                  |    |            |
| Cynodon dactylon                 | 1    | 2a         |          |            | 3  |         | 1   |        | 2a |    |                  |    |            |
| Pseudognaphalium luteo-album     | -    | 2a         |          | -          | 0  | •       |     |        |    |    |                  |    |            |
| Eragrostis curvula               | 3    | 2a<br>2a   | · ·      | 2a         |    | •       |     | •      | •  | •  | •                | 1  | •          |
| Species Group D                  | 5    | <u>2</u> u | •        | Δu         | •  | •       | •   | •      | •  | •  | •                |    | · ·        |
| Berkheya setifera                | 2a   |            |          |            |    |         |     |        |    |    |                  | 1  |            |
| Setaria sphacelata v. sphacelata | 3    | •          | •        | •          | •  | •       | •   | •      | •  |    | •                | 1  | •          |
| Eucalyptus camaldulensis         | 2m   | •          | •        | •          | •  | •       | •   | •      | •  | •  | . 1              | •  | •          |
| Species Group E                  | 2111 | •          | •        | •          | •  | •       | •   | •      | •  | •  | 1                | •  | •          |
| Bewsia biflora                   |      | 2a         |          | 3          |    |         | 3   |        |    |    |                  |    |            |
| Aristida junciformis             | •    | 2a         | 3        | 2a         | •  | •       | 5   | •      | •  | •  | •                | •  | •          |
| Eragrostis gummiflua             | •    | 3          | 5        | 2a<br>3    | •  | •       | •   | •      | •  | •  | •                | •  | •          |
| Pennisetum clandestinum          | •    | 3          | 3        | 2a         | 2а | •       | • 4 | ·<br>1 | 2a | 1  | •                | 3  | ·          |
|                                  | •    | 5          | 5        | <u>2</u> a | Za | •       | 4   | 1      | Za | 1  | •                | 3  | •          |
| Species Group F                  |      |            |          |            | 3  | 4       |     |        |    |    |                  |    |            |
| Eragrostis racemosa              | •    | •          | •        | •          | 3  | 4<br>2a | •   | •      | •  | •  | •                | •  | •          |
| Eragrostis superba               | •    | •          | •        | •          | •  |         | •   | •      | •  | •  | •                | •  | •          |
| Helichrysum kraussii             | •    | •          | •        | •          | •  | 2m      | •   | •      | •  | •  | •                | •  | •          |
| Stoebe vulgaris                  | •    | •          | •        | •          | •  | 3       | •   | •      | •  | •  | 1                | •  | •          |
| Species Group G                  |      |            |          |            |    |         | -01 |        |    |    | 1                | 2  |            |
| Acacia mearnsii                  | •    | •          | •        | •          | •  | •       | 2b  | •      | •  |    | 1                | 2a | •          |
| Pinus patula                     | •    | •          | •        | •          |    | •       | •   | •      | •  | 2a | 1                | 1  | •          |
| Panicum maximum                  | •    | •          | •        | 1          | 2a | •       | •   | 1      | •  | •  | •                | 3  | •          |
| Zea mays                         | •    |            | •        | •          | •  | •       | •   | •      | 4  | 3  |                  | 3  | 4          |
| Themeda triandra                 | •    | 3          | •        | •          | •  | •       | •   | •      | 2a | •  | 3                | 4  | •          |
| Tagetes minuta                   | 3    | •          | •        | •          | •  | •       | •   | •      | 3  |    |                  | 1  | 3          |
| Datura stramonium                | •    | •          | •        | •          | •  | •       | •   | •      | •  | 2a | 1                | 2m | 2a         |
| Hypoxis hemerocallidea           | •    |            | •        | •          | •  | •       | 1   | 1      | 1  |    | <mark>2</mark> a | 2a |            |
| Species Group H                  |      |            | <u> </u> |            |    |         |     |        |    |    |                  |    |            |
| Cyperus longus                   | •    | •          | •        | •          | •  | •       | •   | 2a     | 2m | 3  |                  | •  | <u> </u> ∙ |
| Schoenoplectus corymbosus        | •    |            |          |            |    |         |     | 3      |    |    |                  |    |            |
| Setaria sphacelata               | •    | •          | •        | •          |    |         | 3   | 1      | 3  | 2a | •                | •  |            |
| Imperata cylindrica              |      | •          | •        | •          |    |         |     | 3      |    |    | •                |    |            |
| Solanum sisymbrifolium           |      | •          | •        | 2b         |    |         |     | 2a     |    | 2m | •                |    |            |
| Miscanthus junceus               |      |            |          |            |    |         |     |        | 3  | 3  |                  |    |            |
| Species Group I                  |      |            |          |            |    |         |     |        |    |    |                  |    |            |




| Gerbera piloselloides       | Ι. | . | Ι. | Ι. | 2b               | Ι. | .  |
|-----------------------------|----|----|----|----|----|----|----|---|----|----|------------------|----|----|
| Helichrysum rugulosum       |    |    |    |    |    |    |    |   |    |    | 3                |    |    |
| Stachys aethiopica          |    |    |    |    |    |    |    |   |    |    | <mark>2</mark> a |    |    |
| Gerbera ambigua             |    |    |    |    |    |    |    |   |    |    | 1                |    |    |
| Oxalis obliquifolia         |    |    |    |    |    |    |    |   |    |    | 1                |    |    |
| Species Group J             |    |    |    |    |    |    |    |   |    |    |                  |    |    |
| Helichrysum aureonitens     |    | 1  |    |    |    |    |    |   |    |    |                  | 3  |    |
| Boophane disticha           |    |    |    |    |    |    |    |   |    |    |                  | 2a |    |
| Haplocarpha scaposa         |    |    |    |    |    |    |    |   |    |    |                  | 1  |    |
| Species Group K             |    |    |    |    |    |    |    |   |    |    |                  |    |    |
| Gomphrena celosioides       |    |    |    |    |    |    |    |   |    |    |                  |    | 2b |
| Species Group L             |    |    |    |    |    |    |    |   |    |    |                  |    |    |
| Nicandra physalodes         |    |    |    |    |    |    |    |   | 1  |    |                  |    |    |
| Andropogon huillensis       | 1  |    |    |    |    |    |    |   |    |    |                  |    |    |
| Pogonarthria squarrosa      |    |    |    | 1  |    |    |    |   |    |    |                  |    |    |
| Sutherlandia montana        |    |    |    |    |    |    | 1  |   |    |    |                  |    |    |
| Elephantorrhiza elephantina | 1  |    |    |    |    | •  |    | • | •  | •  |                  |    |    |

The dendrogram (Figure 6) shows how the communities divided and sub-divided

•





**Figure 6.** Dendrogram showing the cut-levels for vegetation communities in Weltevreden during the dry season



## 7.1.2.4.1 Bidens pilosa-Hyparrhenia hirta grassland

This grassland community is found in areas where the vegetation is highly disturbed. The diagnostic species are the invasive alien plants such as *Bidens pilosa* and *Verbena bonariensis*. Most of the herbs found in this grassland are mainly alien invasives.

The diagnostic species of this community are the grasses, *Sporobolus africanus* and *Panicum natalense*, and the herbs such *Verbena bonariensis* and *Bidens pilosa* (Species Group A).

The prominent grasses are *Sporobolus pyramidalis* (Species Group B), *Eragrostis curvula* (Species Group C), and *Pennisetum clandestinum* (Species Group E).

The herbaceous layer is dominated by species such as *Berkheya setifera* (Species Group D), alien invasive *Stoebe vulgaris* (Species Group F), *Tagetes minuta, Zea mays,* (Species Group G), *Helichrysum rugulosum* (Species Group I). The tree layer is dominated by the alien invasive *Pinus patula* (Species Group G).

This grassland community is sub-divided into three sub communities and two variants, namely *Cymbopogon excavatus* sub-community, *Pennisetum clandestinum* sub-community, *Eragrostis racemosa* sub-community and *Cynodon dactylon* Variant and *Setaria sphacelata* var *sphacelata* variant.

## 7.1.2.4.1.1 Cymbopogon excavatus sub-community

This sub-community is found in flat grasslands areas. The diagnostic species are grasses such as *Sporobolus pyramidalis* and *Stenotaphrum secundatum* (Species Group B).

The prominent species are the grasses *Hyparrhenia hirta*, *Sporobolus africanus* (Species Group A), *Eragostis curvula* (Species Group C), *Setaria sphacelatha* var *sphacelatha* (Species Group D), and *Eragrostis gummiflua* (Species Group E).

#### 7.1.2.4.1.1.1 Cynodon dactylon Variant

This variant is found in highly disturbed and in flat areas. This variant is characterised by Species Group C. The diagnostic species are *Eragrostis curvula* and *Pseudognaphalium luteo-album*.



The prominent species in the grass layer are *Sporobolus africanus*, *Hyparrhenia hirta* (Species Group A), *Sporobolus pyramidalis*, *Cymbopogon excavatus* and *Stenotaphrum secundatum* (Species Group B), *Setaria sphacelatha* var *sphacelatha* (Species Group D), and *Eragrostis gummiflua* (Species Group E), *Themeda triandra* (Species Group G).

The herbaceous layer is dominated by species such as *Bidens pilosa* (Species Group A), *Berkheya setifera* (Species group D), *Tagetes minuta*, (Species Group G).

The tree layer is dominated by Eucalyptus camaldulensis.

7.1.2.4.1.1.1.1 Setaria sphacelata var sphacelata variant

This variant is characterised by Species Group D. The diagnostic species are *Berkheya setifera*, and *Eucalyptus camaldulensis*.

The dominant species are the grasses *Hyparrhenia hirta* (Species Group A), *Sporobolus pyramidalis, Cymbopogon excavatus* and *Stenotaphrum secundatum* (Species Group B), *Abdropogon huilensis* (Species Group L). The herbaceous layer is dominated by species such as *Bidens pilosa* (Species Group A), *Tagetes minuta,* (Species Group G), and *Elephantorhiza elephantine* (Species Group L).

#### 7.1.2.4.1.2 Pennisetum clandestinum sub-community

This sub community is also found in highly disturbed grasslands and is represented by Species Group E. The diagnpostic species are *Eragrostis gummiflua*, *Bewsia biflora*, and *Aristida junciformis*.

The dominant species in the grass layer are *Hyparrhenia hirta, Panicum natalense, Sporobolus africanus* (Species Group A), *Sporobolus pyramidalis, Cymbopogon excavatus* and *Stenotaphrum secundatum* (Species Group B), *Eragostis curvula, Pseudognaphalium luteo-album, Cynodon dactylon* (Species Group C), *Eragrostis racemosa* (Species Group F), *Panicum maximum, Themeda triandra* (Species Group G). The herbaceous layer is dominated by species such as *Bidens pilosa, Verbena bonariensis* (Species Group A) and *Solanum sisymbifolium* (Species GroupH).



## 7.1.2.4.1.3 Eragrostis racemosa sub-community

This sub-community is Species Group F. The diagnostic species are *Eragrostis superba*, *Helichrysum kraussii* and *Stoebe vulgaris*. The prominent species in this grass layer are *Hyparrhenia hirta* and *Panicum natalense* (Species Group A),

There are no species in the herbaceous layer.

## 7.1.2.4.2 Zea mays-Themeda triandra mielie fields

This community is found next to the meilie fields. It is characterised by Species Group G with the diagnostis species being the grasses *Panicum maximum* and *Themeda triandra* and the herbs such as *Zea mays, Tagetes minuta, Datuta stramonium,* and *Hypoxis hemerocallidea*.

The prominent grasses are *Hyparrhenia hirta, Panicum natalense, Sporobolus africanus* (Species Group A), *Cynodon dactylon* (Species Group C), Bewsia *biflora, Pennisetum clandestinum* (Species Group E), *Setaria sphacelata* and *Imperata cylindrica* (Species Group H). The herbaceous layer is dominated by *pilosa, Verbena bonariensis* (Species Group A), *Cyperus longus, Solanum sisymbifolium* (Species GroupH), *Gerbera piloselloides, Helichrysum rugulosum, Stachys aethiopica, Helichrysum aurionitens, Boophane disticha* (Species Group I) and *Gomphrena celosoides* (Species Group K).

This community is dived into four sub-communities, namely *Setaria sphacelata* sub-community, *Helichrysum rugulosum* sub-community, *Helichrysum aurionitens* sub-community, and *Gomphrena celosoides* sub-community.

#### 7.1.2.4.2.1 Setaria sphacelata sub-community

This sub-community is found in grassland areas and is characterised by Species Group H. The diagnostic species are the grasses *Setaria sphacelata*, *Imperata cylindrica* and the herbs such as *Cyperus longus*, *Solanum sisymbifolium* and *Miscanthus junceus*.

The prominent species in the grass layer are *Hyparrhenia hirta, Panicum natalense, Sporobolus africanus* (Species Group A) *Cynodon dactylon* (Species Group C) *Pennisetum clandestinum* (Species Group E). The herbaceous layer is dominated by *Bidens pilosa, Verbena bonariensis, Bidens pilosa* (Species Group A), *Zea mays* (Species Group C), *Themeda triandra, Datura* 



*stramonium* and *Hypoxis hemerocallidea* (Species Group G). The tree layer is dominated by *Acacia mearnsii* and *Pinus patula* (Species Group G).

#### 7.1.2.4.2.2 Helichrysum rugulosum sub-community

This sub-community is characterized by Species Group I. The diagnostic species are *Gerbera* piloselloides, Stachys aethiopica, Gerbera ambigua, and Oxalis obliquifolia.

The prominent species in grass layer are *Hyparrhenia hirta, Panicum natalense, Sporobolus africanus* (Species Group A) and *Themeda triandra* (Species Group G). The herbaceous layer is dominated by *Stoebe vulgaris* (Species Group F), *Datura stramonium* and *Hupoxis hemerocallidea* (Species Group G). The tree layer is dominated by *Eucalyptus camaldulensis* (Species Group D), and *Acacia mearnsii* (Species Group G).

#### 7.1.2.4.2.3 Helichrysum aurionitens sub-community

This sub-community is characterized by Species Group J. The diagnostic species are *Boophane disticha* and *Haplocarpha scaposa*.

The prominent species in grass layer are *Sporobolus africanus* (Species Group A), *Eragrostis curvula* (Species group C), *Pennsisetum clandestinum* (Species Group E), *Panicum maximum* and *Themeda triandra* (Species Group G).

The herbaceous layer is dominated by *Verbena bonariensis* (Species Group A), *Berkhera setifera* (Species Group D), *Zea mays, Tagetes minuta, Datura stramonium* and *Hypoxis hemerocallidea* (Species Group G).

The tree layer is dominated by Acacia mearnsii, and Pinus patula (Species Group G).

7.1.2.4.2.4 Gomphrena celosoides *sub-community* 

This sub-community is characterized by Species Group K. It is only species that characterized this group. It is found in highly disturbed and overgrazed areas.

No grasses are prominent in this group.

The herbaceous layer is dominated by Zea mays, Tagetes minuta, and Datura stramonium (Species Group G).



## 7.1.2.5 Description of dry season plant communities from the farm Zoekop 426 JS

Due to time constrains, only dry season survey was done on this farm and the following two main vegetation types were found, namely *Ctenium concinnum- Andropogon eucomus* grassland and *Pinus patula- Eucalyptus camaldulensis* woodland. **Table 5** shows the phytosociological table created after species were analysed using the Juice 7.0 program. This table can also be represented graphical by a dendrogram (**Figure 7**). Detail descriptions of all plant communities follows below:

| Table number                 | 1  | 4 | 2  | 3  | 5 |
|------------------------------|----|---|----|----|---|
| Species Group A              |    |   |    |    |   |
| Phragmites australis         | 3  |   |    |    |   |
| Imperata cylindrica          | 2a |   |    |    |   |
| Helichrysum aureonitens      | 2b |   |    |    |   |
| Populus alba                 | 3  |   |    |    |   |
| Verbena bonariensis          | 2b |   |    |    |   |
| Themeda triandra             | 3  |   |    |    |   |
| Setaria verticillata         | 2a |   |    |    |   |
| Ctenium concinnum            | 3  |   |    |    |   |
| Andropogon eucomus           | 3  |   |    |    |   |
| Eragrostis racemosa          | 3  |   |    |    |   |
| Eragrostis superba           | 3  |   |    |    |   |
| Species Group B              |    |   |    |    |   |
| Rhus species                 |    |   | 2b |    |   |
| Asparagus virgatus           |    |   | 3  |    |   |
| Aloe species                 |    |   | 3  |    |   |
| Species Group C              |    |   |    |    |   |
| Tristachya leucothrix        |    | 4 |    |    |   |
| Diospyros mespiliformis      |    | 1 |    |    |   |
| Species Group D              |    |   |    |    |   |
| Melinis repens               |    |   | 2b |    |   |
| Leonotis leonurus            |    |   | 4  |    |   |
| Berkheya setifera            |    | 3 | 4  |    |   |
| Species Group E              |    |   |    |    |   |
| Sporobolus africanus         | 3  |   | 3  |    |   |
| Acacia mearnsii              | 2b | 4 |    |    |   |
| Hyparrhenia hirta            | 3  |   | 2b |    |   |
| Pseudognaphalium luteo-album | 3  | 3 | 3  |    |   |
| Species Group F              |    |   |    |    |   |
| Eragrostis curvula           |    |   |    | 2b |   |
| Salix babylonica             |    |   |    | 1  |   |
| Cirsium vulgare              |    |   |    | 2b |   |
| Cymbopogon excavatus         |    |   | 3  | 3  |   |

Table 5. Phytosociological table for the farm Zoekop 426 JS



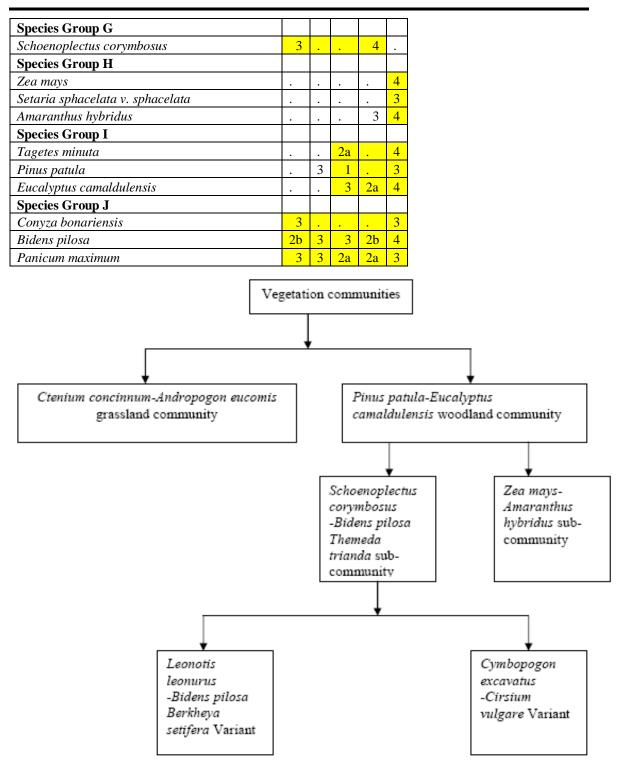



Figure 7. Dendrogram showing plant communities found in Zoekop 426JS.

7.1.2.5.1 Ctenium concinnum- Andropogon eucomus grassland



This community is found in the open grassland near the pan. It is characterized by Species Group A. The diagnostic species are *Phragmites australis*, *Imperata cylindrica*, *Helichrysum aureonitens*, *Populus alba*, *Verbena bonariensis*, *Themeda triandra*, *Setaria verticillata*, *Eragrostis racemosa*, and *Eragrostis superba*.

The grass layer is dominated by *Sporobolus africanus, Hyparrhenia hirta* (Species Group E) and *Panicum maximum* (Species Group J).

The herbaceous layer is dominated by *Pseudognaphalium luteo-album* (Species Group E), *Schoenoplectus corymbosus* (Species Group G), *Conyza bonariensis* and *Bidens pilosa* (Species Group J).

The tree layer is dominated by Acacia mearnsii (Species Group E).

#### 7.1.2.5.2 Pinus patula- Eucalyptus camaldulensis woodland community

This community is dominated by alien invasive species and is characterized by Species Group I. The diagnostic species are *Pinus patula*, *Eucalyptus camaldulensis* and *Tagetes minuta*. This community is divided into 2 sub-communities, namely *Schoenoplectus corymbosus-Bidens pilosa* sub-community and *Zea mays- Amaranthus hybridus* sub-community.

The grass layer is dominated by *Tristachya leucothrix* (Species Group C), *Melinis repens* (Species Group D), *Sporobolus africanus, Hyparrhenia hirta* (Species Group E), *Ergagrostis curvula, Cymbopogon excavatus* (Species Group F), *Setaria sphacelata v. sphacelata* (Species Group H) and *Panicum maximum* (Species Group J).

The herbaceous layer is dominated by *Asparagus virgatus, Aloe sp.*(Species Group B), *Leonotis leonurus, Berkheya setifera* (Species Group D), *Pseudognaphalium luteo-album* (Species Group E), *Circium vulgare* (Species Group F), *Schoenoplectus corymbosus* (Species Group G), *Zea mays, Amaranthus hybridus* (Species Group H), *Conyza bonariensis* and *Bidens pilosa* (Species Group J).

The shrub or tree layer is dominated by *Rhus* sp (Species Group B), *Diospyros mespiliformis* (Species Group C), *Acacia mearnsii* (Species Group E), and *Salix babylonica* (Species Group F).

7.1.2.5.2.1 Schoenoplectus corymbosus-Bidens pilosa sub-community



This sub-community is characterized by Species Group G. The diagnostic species is the sedge *Schoenoplectus corymbosus*. There are two variants in this sub-community, namely *Leonotis leonurus-Berkheya setifera* Variant and *Cymbopogon excavatus- Circium vulgare* Variant.

The grass layer is dominated by *Tristachya leucothrix* (Species Group C), *Melinis repens* (Species Group D), *Sporobolus africanus, Hyparrhenia hirta* (Species Group E), *Ergagrostis curvula, Cymbopogon excavatus* (Species Group F), *Circium vulgare* (Species Group F) and *Panicum maximum* (Species Group J).

The herbaceous layer is dominated by *Asparagus virgatus, Aloe sp* (Species Group B, *Leonotis leonurus, Berkheya setifera* (Species Group D), *Pseudognaphalium luteo-album* (Species Group E), *Amaranthus hybridus* (Species Group H) and *Tagetes minuta* (Species Group I).

The shrub or tree layer is dominated by *Rhus* sp (Species Group B), *Diospyros mespiliformis* (Species Group C), *Acacia mearnsii* (Species Group E), and *Salix babylonica* (Species Group F), *Pinus patula* and *Eucalyptus camaldulensis* (Species Group I).

## 7.1.2.5.2.2 Zea mays- Amaranthus hybridus sub-community

This variant is dominated by mielie fields. It is characterized by Species Group H. the diagnostic species are *Zea mays, Amaranthus hybridus* and *Setaria sphacelata var. sphacelata*.

The grass layer is dominated by *Panicum maximum* (Species Group J). The herbaceous layer is dominated by *Tagetes minuta* (Species Group I). The shrub or tree layer is dominated by *Pinus patula*, *Eucalyptus camaldulensis* (Species Group I).

#### 7.1.2.6 Description of wet season plant communities

The wet season survey is divided into two main grasslands vegetation types (**Table 6**), namely *Tristachya leucothrix-Monocymbium ceresiiforme* grassland and *Setaria sphacelata v. sphacelata- Hyparrhenia hirta* grassland. The two main grassland communities will be discussed in detail below.

| Table number        | 12 | 10 | 6 | 11 | 2 | 1 | 4 | 3 | 5 | 7 | 8 | 9 |
|---------------------|----|----|---|----|---|---|---|---|---|---|---|---|
| Species Group A     |    |    |   |    |   |   |   |   |   |   |   |   |
| Bidens bipinnata    | 3  |    | • |    | • |   |   |   | • | • |   | • |
| Melinis nerviglumis | 2b |    |   |    |   |   |   |   |   |   |   |   |

Table 6. Phytosociological table for Weltevreden wet season survey



| Species Group B                           |                                               |    |    |    |            |     |     |     |    |                |    |   |
|-------------------------------------------|-----------------------------------------------|----|----|----|------------|-----|-----|-----|----|----------------|----|---|
| Typha capensis                            |                                               | 4  |    |    |            |     |     |     |    |                |    |   |
| Setaria pumila                            | · ·                                           | 2b | •  | •  | •          | •   | •   | •   | •  | •              | •  | • |
| Cyperus esculentus                        |                                               | 3  | •  | •  | •          | •   | •   | •   | •  | •              | •  | • |
| Bothriochloa radicans                     | 2b                                            | 2b | •  | •  | •          | •   | •   | •   | •  | •              | •  | • |
| Species Group C                           | 20                                            | 20 | •  | •  | •          | •   | •   | •   | •  | •              | •  | • |
| Berkheya setifera                         |                                               |    |    | 3  |            |     |     |     |    |                |    |   |
| Eragrostis superba                        | · ·                                           | •  | 2b | 5  | •          | •   | •   | •   | •  | •              | •  | • |
|                                           | •                                             | •  |    | •  | •          | •   | •   | •   | •  | •              | •  | • |
| Pseudognaphalium luteo-album              | •                                             | •  | 2a | 2a | •          | •   | •   | •   | •  | •              | •  | • |
| Diospyros mespiliformis                   | •                                             | •  | •  | 2b | •          | •   | •   | •   | •  | •              | •  | • |
| Gerbera ambigua                           | •                                             | •  | 2a | •  | •          | •   | •   | •   | •  | •              | •  | • |
| Species Group D                           | 2                                             |    | -  | 2  |            |     |     |     |    |                |    |   |
| Tristachya leucothrix                     | 3                                             | •  | 2a | 3  | •          | •   | •   | •   | •  | •              | •  | • |
| Monocymbium ceresiiforme                  | 2b                                            |    | •  | 3  | •          | •   | •   | •   | •  | •              | •  | • |
| Species Group E                           |                                               |    |    |    |            |     |     |     |    |                |    |   |
| Schoenoplectus corymbosus                 | ·                                             | •  |    | •  |            | 2a  | •   | •   | •  | •              |    | • |
| Sebaea grandis                            | · _                                           | •  | •  | •  | •          | 2b  |     | •   | •  | •              | •  | • |
| Aloe arborescens                          | · _                                           | •  |    |    | •          | 2a  |     | •   | •  |                | •  | • |
| Hypoxis hemerocallidea                    |                                               |    |    |    |            | r   |     | •   |    |                |    |   |
| Pinus patula                              |                                               | •  |    | •  |            | 1   |     |     |    |                |    | • |
| Zea mays                                  | · _                                           | •  |    | •  |            | 3   |     |     |    |                |    | • |
| Heteropogon contortus                     |                                               |    | •  | •  | 2a         | 2b  |     |     |    | •              |    |   |
| Species Group F                           |                                               |    |    |    |            |     |     |     |    |                |    |   |
| Verbena officinalis                       |                                               |    |    |    | 2a         |     |     |     |    |                |    |   |
| Stoebe vulgaris                           |                                               |    |    | 2a |            | 2b  |     |     |    |                |    |   |
| Eragrostis gummiflua                      |                                               |    | 2b |    | 2a         |     |     |     |    |                |    |   |
| Eragrostis racemosa                       |                                               | 2b | 2b |    |            |     |     | 2b  |    |                |    |   |
| Themeda triandra                          | 3                                             |    | 4  | 3  | 3          | 3   |     |     |    |                |    |   |
| Species Group G                           |                                               |    |    |    |            |     |     |     | -  |                |    |   |
| Cynodon dactylon                          |                                               |    |    |    |            |     |     |     | 3  |                |    |   |
| Chamaesyce inaequilatera                  | 1                                             |    | •  | •  | -          | · · | 2b  |     |    | •              | -  |   |
| Pennisetum clandestinum                   | · ·                                           |    | •  | •  | •          | •   | 4   | 3   |    | •              | •  | • |
| Species Group H                           | · ·                                           | •  | •  | •  | •          | •   | •   | 5   | •  | •              | •  | • |
| Sutherlandia frutescens                   |                                               |    |    |    |            |     |     |     |    | 2b             |    |   |
| Enneapogon cenchroides                    | •                                             | •  | •  | •  | •          | •   | •   | •   | •  | 20<br>2b       | •  | • |
| Lippia javanica                           | •                                             | •  | •  | •  | •          | · · | · · | · · | •  | r              | •  | • |
| Gomphocarpus fruticosus                   | ŀ                                             | •  | •  | •  | 2а         | •   | •   | •   | •  | $\frac{1}{2a}$ | •  | • |
|                                           | ŀ                                             | •  | •  | •  | ∠a         | 2b  | •   | •   | •  | 2a<br>3        | •  | • |
| Andropogon appendiculatus Species Group I | ŀ                                             | •  | •  | •  | •          | 20  | •   | •   | •  | 5              | •  | • |
|                                           |                                               |    |    | 20 | <u>2</u> h | 2b  |     | 2b  |    | 24             |    |   |
| Helichrysum aureonitens                   | •                                             | 2h | •  | 2a | 2b         |     |     |     | •  | 2b             | •  | • |
| Aristida congesta s. congesta             | •                                             | 2b | •  | •  |            | 2b  | 2a  | 2b  |    | 2b             | •  | • |
| Acacia mearnsii                           | 3                                             |    | •  |    | •          | 1   | •   | •   | •  | 2a             | •  | • |
| Species Group J                           | -                                             |    |    |    |            |     |     |     |    |                |    |   |
| Gladiolus dalenii                         | • _                                           | •  | •  | •  |            | •   | •   | •   |    | •              | 2b | • |
| Hibiscus trionum                          | <u>                                      </u> | •  | •  | •  | 2b         | •   | •   |     | 2a |                | r  | • |
| Andropogon eucomus                        | · _                                           | •  | •  | •  | •          | 2b  | •   | 2a  | 2b | •              | 2b |   |
| Helichrysum acutatum                      | <u> .</u>                                     | •  | 2b | •  | •          | 3   | •   | •   | 3  | •              | 2b | • |
| Cortaderia selloana                       |                                               | 3  |    |    |            |     | •   | •   |    | 1              | 2b |   |
| Species Group K                           |                                               |    |    |    |            |     |     |     |    |                |    |   |
| Cirsium vulgare                           | 3                                             | 2b |    |    |            |     |     |     | 2b | 2a             | 2b |   |
|                                           | 2b                                            |    | 2a | 3  | 2b         | 2b  | 3   | 2a  | 2a | 2a             | 2b |   |
| Hypochaeris radicata                      | 20                                            |    |    |    |            |     |     |     |    |                | r  |   |
| Hypochaeris radicata<br>Species Group L   | 20                                            |    |    |    |            |     |     |     |    |                |    |   |



| Digitaria eriantha               |    | 4  |    |    |    |    |    |    |    |    |    | 3  |
|----------------------------------|----|----|----|----|----|----|----|----|----|----|----|----|
| Brachiaria brizantha             |    |    |    |    |    |    |    |    |    |    |    | 2a |
| Datura stramonium                |    |    |    |    |    |    |    |    |    |    |    | 2b |
| Species Group M                  |    |    |    |    |    |    |    |    |    |    |    |    |
| Setaria sphacelata v. sphacelata |    |    |    |    | 2b | 3  |    |    | 2a | 3  |    | 3  |
| Hyparrhenia hirta                |    | •  | 2a | 3  | 3  | 3  | 3  | 2a | 3  |    | 2a | 4  |
| Conyza bonariensis               |    | 2b | •  |    |    | 2b | 3  |    | 3  | 3  | 3  | 3  |
| Species Group O                  |    |    |    |    |    |    |    |    |    |    |    |    |
| Paspalum dilatatum               |    | 2b | 2a |    |    |    |    |    |    | 2b | 3  | 2b |
| Oxalis obliquifolia              |    | 3  | 3  |    | 3  | 2a |    | 2a | 2b |    | r  | 2a |
| Cyperus longus                   |    | 2b | 2a |    |    | 2a |    | 2a | 2a | 2a | 3  | 2a |
| Bidens pilosa                    | 3  |    |    |    | 2b | 2a | 2a |    |    |    | •  | 2b |
| Sporobolus africanus             | 2b |    |    | 2b | 2b | 4  | 2a | 2b | 2b |    | 2b | 2a |
| Sporobolus pyramidalis           | 2b |    |    | 3  |    |    |    | 2a |    |    | 2b | 2b |
| Panicum maximum                  | 2b |    | 2b | 2b | 2a | 2b | 2b | 2a | 3  | 2a | 2b | 2b |
| Verbena bonariensis              | 3  | 3  | 2a | 2b | 3  | 3  | 3  | 3  | 4  | 2b | 2b | 2a |

#### 7.1.2.6.1 Tristachya leucothrix- Monocymbium ceresiiforme grassland

This grassland community is found in disturbed and overgrazed areas. The presence of alien invasive species such as *Bidens bipinnata* (Commom Black-jack), which is a widespread weed (Pooley 1998), is an indication of disturbed areas. The diagnostic species are in Species Group D. This community has two sub-communities, namely *Bidens bipinnatus-Melinis nerviglumis* sub-community and *Berkheya setifera-Diospyros mespiliformis* sub-community.

The prominent species in grass layer are *Melinis nerviglumis* (Species Group A), *Typha capensis Bothriochloa radicans* (Species Group B), *Eragrostis superba* (Species Group C), *Eragrostis gummiflua, Eragrostis racemosa, Themeda triandra* (Species Group F), *Aristida congesta s. congesta*(Species Group I) and exotic grass *Cortaderia selloana*(Species Group J).

The herbaceous layer is dominated by *Bidens bipinnata* (Species Group A), reed *Cyperus esculentus* (Species Group B), *Berkheya setifera* (Species Group C) and *Cirsium vulgare* (Species Group K).

The tree or shrub layer is characterized by *Diospyros mespiliformis* (Species Group C) and *Acacia mearnsii* (Species Group I).

#### 7.1.2.6.1.1 Bidens bipinnatus-Melinis nerviglumis sub-community

This sub-community is characterized by Species Group A. The diagnostic species are *Bidens bipinnatus* and *Melinis nerviglumis*.



The prominent species in the grass layer are *Bothriochloa radicans* (Species Group B), *Tristachya leucothrix, Monocymbium ceresiiforme* (Species Group D), *Themeda triandra* (Species Group F), *Sporobolus africanus, Sporobolus pyramidalis* and *Panicum maximum* (Species Group O).

The herbaceous layer is dominated by *Cirsium vulgare, Hypochaeris radicata* (Species Group K), *Bidens pilosa* and *Verbena bonariensis* (Species Group O).

Tree or shrub layer is characterized by Acacia mearnsii (Species Group I).

#### 7.1.2.6.1.2 Berkheya setifera-Diospyros mespiliformis sub-community

The prominent species in the grass layer are *Typha capensis*, *Bothriochloa radicans* (Species Group B), *Tristachya leucothrix, Monocymbium ceresiiforme* (Species Group D), *Eragrostis racemosa, Themeda triandra* (Species Group F), *Aristida congesta s. congesta*(Species Group I), *Cortaderia selloana*(Species Group J), *Digitaria eriantha*(Species Group L), *Hyparrhenia hirta*(Species Group M), *Paspalum dilatatum, Sporobolus pyramidalis* and *Panicum maximum* (Species Group O).

The herbaceous layer is dominated by *Cyperus esculentus* (Species Group B), *Helichrysum acutatum* (Species Group J), *Cirsium vulgare, Hypochaeris radicata* (Species Group K), *Conyza bonariensis* (Species Group M), *Oxalis obliquifolia, Cyperus longus and Verbena bonariensis* (Species Group O).

No tree or shrub layer is present in this sub-community.

#### 7.1.2.6.2 Setaria sphacelata v. sphacelata- Hyparrhenia hirta grassland

This community is found in tall grassland and it is not highly disturbed and undergrazed. It is charaterized by Species Group M. The diagnostic species are *Hyparrhenia hirta, Setaria sphacelata v. sphacelata* and *Conyza bonariensis*. This community has two sub-communities, namely *Amaranthus hybridus-Datura stramonium* sub-community and *Helichrysum aureonitens-Aristida congesta s. congesta* sub-community.

The prominent species in the grass layer are *Heteropogon contortus* (Species Group E), *Eragrostis gummiflua Themeda triandra* (Species Group F), *Pennisetum clandestinum* (Species Group G), *Andropogon appendiculatus* (Species Group H), *Aristida congesta s. congesta* 



(Species Group I), Andropogon eucomus(Species Group J), Digitaria eriantha (Species Group L), Paspalum dilatatum, Sporobolus africanus, Sporobolus pyramidalis and Panicum maximum (Species Group O).

The herbaceous layer is dominated by *Stoebe vulgaris* (Species Group F), *Gomphocarpus fruticosus* (Species Group H), *Helichrysum aureonitens* (Species Group I), *Hibiscus trionum, Helichrysum acutatum* (Species Group J), *Cirsium vulgare, Hypochaeris radicata* (Species Group K), *Oxalis obliquifolia, Cyperus longus, Bidens pilosa* and *Verbena bonariensis* (Species Group O).

Tree or shrub layer is characterized by Acacia mearnsii (Species Group I).

#### 7.1.2.6.2.1 Amaranthus hybridus-Datura stramonium sub-community

This sub-community is characterized by Species Group L. The diagnostic species in the grass layer are *Digitaria eriantha* and *Brachiaria brizantha*, while the diagnostic species in herbaceous layer are alien invasive species *Amaranthus hybridus* and *Datura stramonium*.

The prominent species in the grass layer are Andropogon eucomus, Cortaderia selloana (Species Group J), Setaria sphacelata v. sphacelata, Hyparrhenia hirta (Species Group M), Paspalum dilatatum, Sporobolus africanus, Sporobolus pyramidalis and Panicum maximum (Species Group O).

The herbaceous layer is dominated by *Gladiolus dalenii*, *Helichrysum acutatum* (Species Group J), *Cirsium vulgare, Hypochaeris radicata* (Species Group K), *Conyza bonariensis* (Species Group M), *Oxalis obliquifolia, Cyperus longus, Bidens pilosa* and *Verbena bonariensis* (Species Group O).

No tree or shrub layer is present in this sub-community.

7.1.2.6.2.2 Helichrysum aureonitens-Aristida congesta s. congesta sub-community

This sub-community is characterized by Species Group I. The diagnostic species are *Helichrysum aureonitens, Aristida congesta s. congesta* and *Acacia mearnsii*.

The prominent species in the grass layer are *Heteropogon contortus* (Species Group E), *Eragrostis racemosa, Themeda triandra* (Species Group F), *Cynodon dactylon, Pennisetum* 



*clandestinum* (Species Group G), *Andropogon appendiculatus* (Species Group H), *Andropogon eucomus* (Species Group J), *Setaria sphacelata v. sphacelata* and *Hyparrhenia hirta*(Species Group M).

The herbaceous layer is dominated by *Sebaea grandis*, *Zea mays* (Species Group E), *Stoebe vulgaris*(Species Group F), *Sutherlandia frutescens*, *Enneapogon cenchroides*(Species Group H), *Hibiscus trionum, Helichrysum acutatum* (Species Group J), *Cirsium vulgare, Hypochaeris radicata* (Species Group K) and *Conyza bonariensis*(Species Group M).

Tree or shrub layer is characterized by Pinus patula (Species Group E).

## 7.2 Animal Survey

#### 7.2.1 Mammals

7.2.1.1 Mammal desktop study: Red Data Mammals that could occur in the area

**Table 7** below indicates the Red Data species that could be found in the area of interest. The species in bold are species of the high status, and if found, measures should be put in place to conserve them and minimise the threats posed to them.

| Order        | Scientific Name                  | Common Name           | Status          |
|--------------|----------------------------------|-----------------------|-----------------|
| Artiodactyla | Antidorcas marsupialis           | Springbok             | Least concern   |
| Artiodactyla | Damaliscus pygargus<br>phillipsi | Blesbok               | Least concern   |
| Artiodactyla | Raphicerus campestris            | Steenbok              | Least concern   |
| Artiodactyla | Redunca arundinum                | Reedbuck              | Least concern   |
| Artiodactyla | Sylvicapra grimmia               | Grey /Common Duiker   | Least concern   |
| Carnivora    | Aonyx capensis                   | Common Clawless Otter | Least concern   |
| Carnivora    | Atilax paludinosus               | Water Mongoose        | Least concern   |
| Carnivora    | Canis adustus                    | Side-striped Jackal   | Near Threatened |
| Carnivora    | Canis mesomelas                  | Black-backed Jackal   | Least concern   |
| Carnivora    | Caracal caracul                  | Caracal               | Least concern   |
| Carnivora    | Cynictis penicillata             | Yellow Mongoose       | Least concern   |
| Carnivora    | Felis nigripes                   | Black-footed Cat      | Least concern   |
| Carnivora    | Felis silvestris                 | African Wild Cat      | Least concern   |
| Carnivora    | Galerella sanguinea              | Slender Mongoose      | Least concern   |
| Carnivora    | Genetta genetta                  | Small-spotted Genet   | Least concern   |
| Carnivora    | Genetta tigrina                  | Large-spotted Genet   | Least concern   |
| Carnivora    | Ictonyx striatus                 | Striped Polecat       | Least concern   |



| Order         | Scientific Name         | Common Name            | Status          |
|---------------|-------------------------|------------------------|-----------------|
| Carnivora     | Leptailurus serval      | Serval                 | Near Threatened |
| Carnivora     | Suricata suricatta      | Suricate               | Least concern   |
| Carnivora     | Vulpes chama            | Cape Fox               | Least concern   |
| Insectivora   | Atelerixs frontalis     | South African Hedgehog | Near Threatened |
| Lagomorpha    | Lepus capensis          | Cape/desert Hare       | Least concern   |
| Lagomorpha    | Lepus saxatilis         | Scrub/Savannah Hare*   | Least concern   |
| Rodentia      | Cryptomys hottentotus   | Common Molerat         | Least concern   |
| Rodentia      | Hystrix africeaustralis | Porcupine              | Least concern   |
| Rodentia      | Otomys angoniensis      | Angoni Vlei Rat        | Least concern   |
| Rodentia      | Otomys irroratus        | Vlei Rat               | Least concern   |
| Rodentia      | Pedetes capensis        | Springhare             | Least concern   |
| Rodentia      | Rhabdomys pumilio       | Striped Mouse          | Least concern   |
| Rodentia      | Tatera brantsi          | Highveld Gerbil        | Least concern   |
| Tubulidentata | Orycteropus afer        | Aardvark               | Least concern   |

## 7.2.1.2 Mammals observed and recorded in the area

Actual sightings, spoor, calls, dung and nesting sites were used to establish the presence of animals on the proposed project site. The evidence of dung and spoor suggests that these animals were in the area even though very few were observed during the surveys. Traps were also placed in front of fresh burrows in an attempt to identify smaller animals in the area. **Table8** and **Table 9** list all animals observed during both dry and wet season surveys respectively. Only two mammals (**Table 10**) were observed on Zoekop farm.

**Table 8**. Mammals observed at the site during the dry season

| Order:       | Family:    | Genus      | Species  | English name  | Status        |
|--------------|------------|------------|----------|---------------|---------------|
|              |            |            |          |               |               |
| Artiodactyla | Bovidae    | Sylvicapra | grimmia  | Common duiker | Least concern |
| Hyracoidea   | Procavidae | Procavia   | capensis | Rock dassie   | Least concern |
| Rodentia     | Pedetidae  | Pedetes    | capensis | Springhare    | Least concern |
| Rodentia     |            | Unknown    |          |               |               |

**Table 9.** Mammals observed at the site during the wet season

|              |             |            | -         | 8                     | Status        |
|--------------|-------------|------------|-----------|-----------------------|---------------|
| Carnivora    | Herpestidae | Ichneumia  | albicauda | White-tailed Mongoose | Least concern |
| Artiodactyla | Bovidae     | Sylvicapra | grimmia   | Grey /Common Duiker   | Least concern |



| Table 10. Mammals observed in Zoekop farm during the winter su | ırvey |
|----------------------------------------------------------------|-------|
|                                                                |       |

| Order:       | Family: | Genus      | Species | English name  | Status        |
|--------------|---------|------------|---------|---------------|---------------|
| Artiodactyla | Bovidae | Sylvicapra | grimmia | Common duiker | Least concern |
| Rodentia     |         | Unknown    |         |               |               |



# 7.2.2 Birds

# 7.2.2.1 Bird desktop study: Birds that could occur in the area

A list of all the birds that could possibly be found in the area is provided in **Appendix 7.** Roberts (2003) lists 388 species for grid reference 2530CC. This list is compiled using historical data and recorded sightings for the entire grid.

# 7.2.2.2 Birds observed and recorded in the area

A total of 15 bird species were identified during the dry season survey (**Table 11**) and 20 were observed during the wet season survey (**Table12**). Most of these birds were observed in the vicinity of less disturbed areas where bush clumps of *Acacia mearnsii* and *Pinus patula* occur. A total of six bird species were observed on Zoekop farm (**Table 13**), and most of these birds were found in and around the pan.

| Robert's No. | English name:             | Scientific name:      |
|--------------|---------------------------|-----------------------|
| 203          | Helmeted Guineafowl       | Numida meleagris      |
| 415          | Whiterumped Swift         | Apus caffer           |
| 71           | Cattle Egret              | Bubulcus ibis         |
| 349          | Rock pigeon               | Columba guinea        |
| 548          | Pied Crow                 | Corvus albus          |
| 601          | Cape Robin-Chat           | Cossypha caffra       |
| 520          | Whitethroated Swallow     | Hirundo albigularis   |
| 732          | Fiscal shrike             | Lanius collaris       |
| 713          | Cape Wagtail              | Motacilla capensis    |
| 801          | House sparrow             | Passer domesticus     |
| 803          | Cape sparrow              | Passer melanurus      |
| 811          | Spottedbacked Weaver      | Ploceus cucullatus    |
| 814          | Southern Masked<br>Weaver | Ploceus velatus       |
| 354          | Cape Turtle Dove          | Streptopelia capicola |
| 619          | Garden Warbler            | Sylvia borin          |

Table 11. Bird species recorded during the dry season



| NUMBER | COMMON NAME            | SCIENTIFIC NAME           |
|--------|------------------------|---------------------------|
| 58     | Reed Cormorant         | Phalacrocorax africanus   |
| 63     | Black-headed Heron     | Ardea melanocephala       |
| 71     | Cattle Egret           | Bubulcus ibis             |
| 95     | African Spoonbill      | Platalea alba             |
| 102    | Egyptian Goose         | Alopochen aegyptiacus     |
| 104    | Yellow-billed Duck     | Anas undulata             |
| 116    | Spur-winged Goose      | Plectropterus gambensis   |
| 127    | Black-shouldered Kite  | Elanus caeruleus          |
| 203    | Helmeted Guineafowl    | Numida meleagris          |
| 228    | Red-knobbed Coot       | Fulica cristata           |
| 355    | Laughing Dove          | Streptopelia senegalensis |
| 520    | White-throated Swallow | Hirundo albigularis       |
| 527    | Lesser Striped Swallow | Hirundo abyssinica        |
| 814    | Southern Masked-Weaver | Ploceus velatus           |
| 824    | Southern Red Bishop    | Euplectes orix            |
| 826    | Yellow-crowned Bishop  | Euplectes afer            |
| 832    | Long-tailed Widowbird  | Euplectes progne          |
| 68     | Yellow-billed Egret    | Egretta intermedia        |
| 99     | White-faced Duck       | Dendrocygna viduata       |
| 352    | Red-eyed Dove          | Streptopelia semitorquata |

 Table 12. Bird species recorded during the wet season

#### **Table 13.** Birds observed in Zoekop farm

| NUMBER | COMMON NAME            | SCIENTIFIC NAME         |
|--------|------------------------|-------------------------|
| 228    | Red-knobbed Coot       | Fulica cristata         |
| 732    | Fiscal shrike          | Lanius collaris         |
| 102    | Egyptian Goose         | Alopochen aegyptiacus   |
| 58     | Reed Cormorant         | Phalacrocorax africanus |
| 677    | Levaillant's Cisticola | Cisticola tinniens      |
| 94     | Hadeda Ibis            | Bostrychia hagedash     |

## 7.2.2.3 Red Data birds

No rare or endangered species were observed during the wet and dry season's survey.



# 7.2.3 Reptiles

Only one lizard was observed during the dry season survey on Zoekop farm but could not be identified.

# 7.2.4 Terrestrial Invertebrates

# 7.2.4.1 Insects

The area is highly disturbed with most parts covered with mielie fields. The vegetation is characteristic of the grassland biome, with herbs and grasses making up the major plant groups. Some invasive trees also occur in the area. It would be expected that with the vegetation type of the area one would find members of the Orthoptera (grasshoppers, locusts and crickets), Hemiptera (bugs, cicadas, and leaf hoppers), Lepidoptera (butterflies and moths), Coleoptera (beetles), Hymenoptera (wasps and ants) and flies (Diptera) (Picker, *et al.*, 2002). Appendix 8 and Appendix 9 shows the insects that were collected during the dry and wet season surveys respectively. The Chironomidae family had the highest species richness (Table 14) and Reduviidae family had the highest species richness during the wet season (Table 15). Table 16 shows the insects collected from Zoekop farm and their abundances is shown in Table 17, with Mantidae and Pieridae showing the highest species abundances.

| Family           | Total number | Family         | Total number |
|------------------|--------------|----------------|--------------|
| Acanthosomatidae | 1            | Issidae        | 2            |
| Acrididae        | 10           | Lygaeidae      | 5            |
| Anthicidae       | 2            | Mantidae       | 2            |
| Apionidae        | 6            | Meloidae       | 2            |
| Aradidae         | 1            | Muscidae       | 16           |
| Asilidae         | 29           | Pentatomidae   | 2            |
| Calliphoridae    | 7            | Pompilidae     | 2            |
| Cerambycidae     | 1            | Reduviidae     | 4            |
| Ceratopogonidae  | 5            | Sepsidae       | 8            |
| Chironomidae     | 172          | Sphecidae      | 12           |
| Chrysomelidae    | 8            | Staphylinidae  | 1            |
| Cicadellidae     | 42           | Syrphidae      | 7            |
| Cixiidae         | 10           | Tabanidae      | 2            |
| Coccinellidae    | 11           | Tachinidae     | 3            |
| Coreidae         | 6            | Tachnidae      | 1            |
| Culicidae        | 4            | Tenebrionidae  | 1            |
| Cydnidae         | 1            | Tenthredinidae | 8            |
| Dolichopodidae   | 9            | Tephritidae    | 8            |

Table 14. Total number of families found in Weltevreden during the dry season



|        | Different      | Total     |        | Different     | Total     |
|--------|----------------|-----------|--------|---------------|-----------|
| Number | Families       | Abundance | Number | Families      | Abundance |
| 1      | Acrididae      | 12        | 20     | Pentatomidae  | 4         |
| 2      | Alydidae       | 4         | 21     | Pompilidae    | 1         |
| 3      | Aradidae       | 4         | 22     | Reduviidae    | 151       |
| 4      | Asilidae       | 4         | 23     | Scarabaeidae  | 5         |
| 5      | Carabidae      | 2         | 24     | Sepsidae      | 8         |
| 6      | Cercopidae     | 1         | 25     | Sphecidae     | 2         |
| 7      | Chironomidae   | 17        | 26     | Staphylinidae | 4         |
| 8      | Chrysomelidae  | 20        | 27     | Tenebrionidae | 18        |
| 9      | Cicadellidae   | 4         | 28     | Tipulidae     | 16        |
| 10     | Coccinellidae  | 6         |        |               |           |
| 11     | Coenagrionidae | 7         |        |               |           |
| 12     | Curculionidae  | 43        |        |               |           |
| 13     | Dictyopharidae | 4         |        |               |           |
| 14     | Elateridae     | 1         |        |               |           |
|        |                |           |        |               |           |

Table 16. Insects collceted from Zoekop farm during dry season

Formicidae

Languriidae

Mantidae

Meloidae

Muscidae

| Site   | Family        | Abundance |
|--------|---------------|-----------|
| KOOS 1 | Acrididae     | 1         |
|        | Chironomidae  | 1         |
|        | Chrysomelidae | 1         |
|        | Mantidae      | 3         |
| KOOS 2 | Alydidae      | 2         |
|        | Mantidae      | 4         |
|        | Notodontidae  | 2         |
|        | Pompilidae    | 1         |
|        | Reduviidae    | 1         |
|        |               |           |
| KOOS 3 | Coccinellidae | 1         |
|        | Mantidae      | 1         |
|        | Pieridae      | 2         |
|        | Pompilidae    | 3         |
| KOOS 4 | Acrididae     | 1         |
|        | Cercopidae    | 1         |
|        | Cicadellidae  | 1         |
|        | Chrysomelidae | 1         |
|        | Pentatomidae  | 1         |
|        | Pieridae      | 6         |



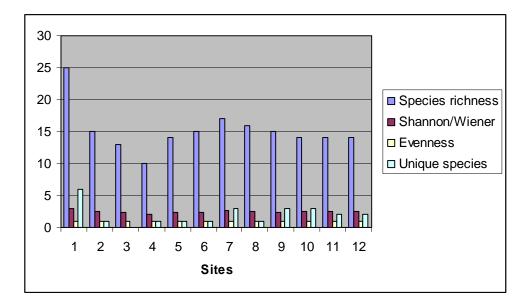
|        | Reduviidae    | 2 |
|--------|---------------|---|
|        | Tenebrionidae | 1 |
|        |               |   |
| KOOS 5 | Alydidae      | 2 |
|        | Muscidae      | 1 |
|        | Sepsidae      | 1 |
|        | Sphecidae     | 1 |



| Table 17. Total abundance of insects collected from Zoekop during dry seasn |
|-----------------------------------------------------------------------------|
|-----------------------------------------------------------------------------|

| Different Families Found Throughout all Samples | Total Abundance |
|-------------------------------------------------|-----------------|
| Acrididae                                       | 2               |
| Alydidae                                        | 4               |
| Cercopidae                                      | 1               |
| Chironomidae                                    | 1               |
| Chrysomelidae                                   | 2               |
| Cicadellidae                                    | 1               |
| Coccinellidae                                   | 1               |
| Mantidae                                        | 8               |
| Muscidae                                        | 1               |
| Notodontidae                                    | 2               |
| Pentatomidae                                    | 1               |
| Pieridae                                        | 8               |
| Pompilidae                                      | 4               |
| Reduviidae                                      | 3               |
| Sepsidae                                        | 1               |
| Sphecidae                                       | 1               |
| Tenebrionidae                                   | 1               |

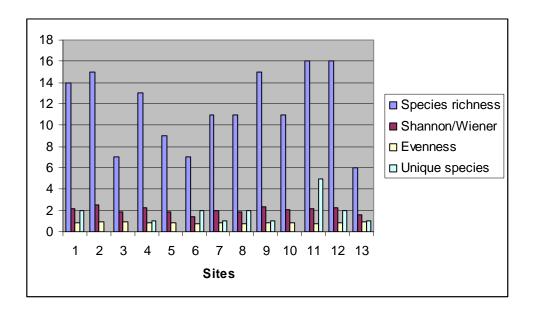



# 8 DISCUSSION

The typical vegetation in this region is savanna, containing both a tree, shrub layer and a grass layer. Due to the extensive grazing by livestock in some areas, the relationship between these two layers has become unbalanced, resulting in the tree and shrub layer becoming dominant over the grass layer. This then allows the tree and shrub layer to continually out-compete the grass layer, resulting in a dense tree and shrub layer and limited grass cover.

## 8.1 Vegetation

Grass plays an essential role as a food source and shelter in most habitats. The main reason for this is that grass occurs widely over the sub-continent and is almost always edible. Grass usually forms the basis of food chains with animals at the bottom of the food chain being directly dependent on it and therefore predators indirectly dependent on it.


Simpson's Index (SI) was used to measure vegetation biodiversity for the area. From **Figure 8** it was evident that the vegetation sample plots with the highest biodiversity during the wet season are plots 1, 2, 7, 8 and 9 with an SI value of 15.00 or above. Those plots with medium biodiversity are 3, 4, 5, 6, 10, 11 and 12 with an SI value of between 10.00 and 15.



**Figure 8.** Depiction of vegetation biodiversity for Weltevreden during wet season using Simpson's index and species richness



**Figure 9** shows that the vegetation sample plots with the highest biodiversity during the dry season are plots 2,9,11 and 12 with a SI value of 15.00 or above. Those plots with low biodiversity are 3, 6 and 13 with an SI value of below 8.



**Figure 9.** Depiction of vegetation biodiversity for Weltevreden during **dry** season using Simpson's index and species richness

**Table 18** below compares the species found during the dry season and wet season surveys. The three species identified during the dry season were *Acacia mearnsii, Eucalyptus camaldulensis* and *Pinus patula* whereas the three trees identified during summer were *Acacia mearnsii, Diospyros mespiliformis* and *Pinus patula*. The *Eucalyptus camaldulensis* species which was identified during the dry season were chopped down during the wet season survey and *Diospyros mespiliformis* was collected next to the mielie fields.

|                         | Dry season | Wet season | Zoekop farm |
|-------------------------|------------|------------|-------------|
|                         |            |            |             |
| Trees                   | 3          | 3          | 5           |
| Shrubs                  | 5          | 5          | 4           |
| Grasses                 | 20         | 25         | 16          |
| Herbs                   | 8          | 19         | 10          |
| Total number of species | 38         | 58         | 35          |

 Table 18. Comparison between dry and wet season flora surveys

It is difficult to identify herbs and grasses during winter or dry season and this is due to the fact that grasses do not have inflorscences and herbs are not flowering. The high numbers of herbs and grasses during the wet season is a testimony to that. The dry and wet season communities are



represented in **Appendix 10**, and this map only shows the major communities and excludes the sub-communities and variants. This map also includes the Cherry orchard in Zoekop farm.

#### 8.2 Mammals

Common/Grey duiker was observed during both he dry and wet seasons surveys. These species can survive and flourish in a wide range of habitats (Skinner & Chimimba 2005) and the fact that it could be identified in both seasons proves that point. The local people also hunt in these areas. As a result very few wild animals were expected to occur here. The very low numbers of actual wild animal sightings confirmed this. The pans provide watering points for the existing wildlife.

#### 8.3 Birds

Fifteen bird species were observed during the dry season survey as compared to 20 that were observed during the wet season survey. The two birds species, namely Cattle Egret *Bubulcus ibis* and White throated swallow *Hirundo albigularis* were observed during both the seasons. Birds migrate during the seasons as a result of food availability and the threats posed to them.

#### 8.4 Insects

Interestingly the high species richness was in dry season with 429 species whereas in wet season there were 421species. Insects are normally found in abundance after big rains and they stay dormant during colder or winter season (Elzinga 2000). Of the 429 species found during dry season, 172 (40%) fall under Chironomidae family, mostly dominated by flies. The larvae need water and as there are two pans in the study area, water is not an issue, and hence lots of these species were found during winter. During the wet season, Reduviidae family has 151 (35.8%) and species in this family, especially the nymph feed on green leaves and also on mielie fields, and that explains why there were abundant during the wet season.

#### 8.5 Reptiles

No reptiles were found during the field surveys. One lizard was seen during the dry season survey and ran away before the picture could be taken.



# 9 ENVIRONMENTAL IMPACT ASSESSMENT AND MITIGATION MEASURES

## 9.1 EIA Methodology

In order to clarify the purpose and limitations of the impact assessment methodology, it is necessary to address the issue of subjectivity in the assessment of the significance of environmental impacts. Even though DWA, and the majority of environmental impact assessment practitioners, propose a numerical methodology for impact assessment, one has to accept that the process of environmental significance determination is inherently subjective. The weight assigned to the each factor of a potential impact, and also the design of the rating process itself, is based on the values and perception of risk of members of the assessment team, as well as that of the interested and affected parties (IAPs) and authorities who provide input into the process. Whereas the determination of the spatial scale and the duration of impacts are to some extent amenable to scientific enquiry, the severity value assigned to impacts is highly dependent on the perceptions and values of all involved.

It has to be stressed that the purpose of the EIA process is not to provide an incontrovertible rating of the significance of various aspects, but rather to provide a structured, traceable and defendable methodology of rating the relative significance of impacts in a specific context. The methodology employed for environmental impact assessment is divided into two distinct phases, namely, impact identification and impact assessment.

#### 9.1.1 Impact Identification

Impact identification is performed by use of an Input-Output model which serves to guide the assessor in assessing all the potential instances of ecological and socio-economic change, pollution and resource consumption that may be associated with the activities required during the construction, operational, closure and post-closure phases of the project.

Outputs may generally be described as any changes to the biophysical and socio-economic environments, both positive and negative in nature, and also include the product and waste produced by the activity. Negative impacts could include gases, effluents, dust, noise, vibration, other pollution and changes to the bio-physical environment such as damage to habitats or reduction in surface water quantity. Positive impacts may include the removal of invasive



vegetation, construction of infrastructure, skills transfer or benefits to the socio-economic environment. During the determination of outputs, the effect of outputs on the various components of the environment (e.g. topography, water quality, etc.) is considered.

## 9.1.2 Impact Rating

The impact rating process is designed to provide a numerical rating of the various environmental impacts identified by use of the Input-Output model. As discussed above, it has to be stressed that the purpose of the EIA process is not to provide an incontrovertible rating of the significance of various aspects, but rather to provide a structured, traceable and defendable methodology of rating the relative significance of impacts in a specific context. This gives the project proponent a greater understanding of the impacts of his project and the issues which need to be addressed by mitigation and also give the regulators information on which to base their decisions.

The significance rating process follows the established impact/risk assessment formula:

*Significance* = *Consequence x Probability* 

Where

*Consequence* = *Severity* + *Spatial Scale* + *Duration* 

And

*Probability* = *Likelihood of an impact occurring* 

The matrix first calculates the rating out of 75, and then converts this into a percentage out of 100. The percentage is the figure quoted in the matrix. The weight assigned to the various parameters for positive and negative impacts in the formula is presented in (**Table 19**) below.



| Table 19. | Impact assessment | parameter ratings |
|-----------|-------------------|-------------------|
|-----------|-------------------|-------------------|

|        |                                                                                                                                                                                              | Severity                                                                                                                                                                                                                                                      | Spatial                                                                   | Duratio                                                          | Probabilit                                                                                                               |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Rating | Environmental                                                                                                                                                                                | Social, cultural and<br>heritage                                                                                                                                                                                                                              | scale                                                                     | n                                                                | y                                                                                                                        |
| 55     | Very significant<br>impact/total<br>destruction of a<br>highly valued<br>species, habitat or<br>ecosystem or<br>extremely<br>positive impact<br>over baseline<br>environmental<br>condition. | Irreparable damage<br>to/destruction of highly<br>valued items of great<br>cultural significance or<br>complete breakdown of<br>social order or Extremely<br>positive impact on social,<br>economic and cultural<br>environment.                              | National/<br>Internati<br>onal                                            | Permane<br>nt/<br>Irreversi<br>ble<br>(more<br>than 50<br>years) | Certain/<br>Normally<br>happens in<br>cases of<br>this nature<br>(80-100%<br>chance of<br>happening)                     |
| 54     | Serious<br>impairment of<br>ecosystem<br>function. or very<br>positive impact<br>over baseline<br>environmental<br>condition                                                                 | Serious social<br>issues/Permanent damage<br>to items of cultural<br>significance or very<br>positive impact on social,<br>economic and cultural<br>environment.                                                                                              | Provinci<br>al/<br>Regional                                               | Long<br>Term<br>(25 to 49<br>years or<br>beyond<br>closure)      | Will more<br>than likely<br>happen<br>(60-79%<br>chance)                                                                 |
| 33     | Moderate<br>negative<br>alteration of<br>ecosystem<br>functioning or<br>Moderately<br>positive impact<br>over baseline<br>environmental<br>condition                                         | Moderately important<br>social issues and/or<br>moderately significant<br>damage to items of<br>cultural significance or<br>Moderately positive<br>impact on social,<br>economic and cultural<br>environment.                                                 | Regional<br>(substant<br>ially<br>beyond<br>site<br>boundary<br>)         | Medium<br>Term<br>(5-24<br>years)                                | Could<br>happen and<br>has<br>happened<br>here or<br>elsewhere<br>(40-59%<br>chance)                                     |
| 22     | Minor effects not<br>affecting<br>ecosystem<br>functioning or<br>Slightly positive<br>impact over<br>baseline<br>environmental<br>condition                                                  | Minor Impacts on the<br>local population,<br>repairable over time.<br>Temporary impairment of<br>the availability of items<br>of cultural significance or<br>Minor positive impact on<br>social, economic and<br>cultural environment                         | Local<br>(beyond<br>site<br>boundary<br>and<br>affects<br>neighbou<br>rs) | Medium-<br>Short<br>Term<br>(1-4<br>years)                       | Has not<br>happened<br>yet, but<br>could<br>(20-39%<br>chance)                                                           |
| 11     | Insignificant<br>effects on the<br>biophysical<br>environment or<br>Insignificantly<br>positive impact<br>over baseline<br>environmental<br>condition                                        | Insignificant social issues<br>/ low-level repairable<br>damage to commonplace<br>structures. positive<br>impact on social,<br>economic and cultural<br>environment or<br>Insignificant positive<br>impact on social,<br>economic and cultural<br>environment | Site<br>(does not<br>extend<br>beyond<br>site<br>boundary<br>)            | Short<br>term<br>(Less<br>than a<br>year)                        | Conceivabl<br>e, but only<br>in a set of<br>very<br>specific<br>and<br>extreme<br>circumstan<br>ces<br>(0-19%<br>chance) |



Impacts are rated prior to mitigation and again after consideration of the mitigation measure proposed in the EMP. The significance of an impact is then determined and categorised into one of four categories, as indicated in (**Table 20**). In accordance with Regulation 51 of the MPRDA, management actions will be assigned for all impacts, irrespective of significance. The environmental impact assessment for each relevant activity is presented in Table 21. Additionally, the suggested management for each identified impact is presented in Table 22.

Table 20: Significance threshold limits

| Category      | Description | Colour |
|---------------|-------------|--------|
| High          | 76 %- 100%  |        |
| Medium – High | 51% - 75%   |        |
| Medium - Low  | 26% - 50%   |        |
| Low           | 0% - 25%    |        |



# Table 21: The listed activities described for each phase and the impact description and significance rating thereof

|    | Activity                                           |              |                                                             |                                                                                                                                                       |                                |               | Impa     |               | gnifica<br>itigat |             | befoi       | e.                 | Mitigation                                                                                                                                                                                                                    |  |
|----|----------------------------------------------------|--------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------|----------|---------------|-------------------|-------------|-------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| No | Description                                        | Phase        | Affected<br>environment                                     | Impact                                                                                                                                                | Positive or Negative<br>Impact | EIA Reference | Severity | Spatial Scale | Duration          | CONSEQUENCE | PROBABILITY | Significance / 100 | Management/Mitigation N                                                                                                                                                                                                       |  |
|    |                                                    |              |                                                             | CONSTRUCTION PHASE                                                                                                                                    |                                |               |          |               |                   |             | 1           |                    | 1                                                                                                                                                                                                                             |  |
| 1  | Removal of topsoil                                 |              |                                                             |                                                                                                                                                       |                                |               |          |               |                   |             |             |                    |                                                                                                                                                                                                                               |  |
|    |                                                    | Construction | Natural vegetation                                          | Removal of topsoil will lead to the removal of vegetation that is binding the soil and this activity will increase the erosion potential of the area. | N                              |               | 4        | 3             | 3                 | 10          | 5           | <u>67</u>          | Removal of vegetation during strip<br>construction will be minimised<br>erosion potential. Topsoil will onl<br>off areas proposed for immediat<br>soils should be stored and manage<br>rehabilitation                         |  |
|    |                                                    | Construction | Fauna (mammals,<br>birds, amphibians,<br>reptiles, insects) | topsoil removal results in the destruction of natural habitats for animals                                                                            | N                              |               | 4        | 3             | 3                 | 10          | 5           | 67                 | Removal of vegetation during strip<br>construction will be minimised<br>erosion potential. Topsoil will onl<br>off areas proposed for immediat<br>soils should be stored and manage<br>rehabilitation to create natural habit |  |
| 2  | Construction of haul roads                         |              |                                                             |                                                                                                                                                       |                                |               |          |               |                   |             |             |                    |                                                                                                                                                                                                                               |  |
|    |                                                    | Construction | Natural vegetation                                          | When the haul road is constructed, vegetation will be removed.                                                                                        | N                              |               | 4        | 3             | 3                 | 10          | 4           | <u>53</u>          | All construction activities will be<br>managed to ensure that there will n<br>vegetation clearing. Efforts will be<br>the construction of haul roads ne<br>Haul roads will be low in gradient<br>runoff velocity.             |  |
|    |                                                    | Construction | Fauna (mammals,<br>birds, amphibians,<br>reptiles, insects) | removal of vegetation will destroy the natural habitats of animals                                                                                    | N                              |               | 4        | 3             | 3                 | 10          | 4           | 53                 | All construction activities will be<br>managed to ensure that there will n<br>vegetation clearing. Efforts will be<br>the construction of haul roads ne<br>where mammals and birds depen<br>water.                            |  |
| 3  | Construction of<br>hydrocarbon<br>storage facility |              |                                                             |                                                                                                                                                       |                                |               |          |               |                   |             |             |                    |                                                                                                                                                                                                                               |  |
|    |                                                    | Construction | Natural vegetation                                          | Potential contamination of soil due to<br>hydrocarbon spillage and leaks could lead to<br>death of plants.                                            | N                              |               | 3        | 3             | 3                 | 9           | 3           | 36                 | In the event of hydrocarbon contaminated soil will be removed of                                                                                                                                                              |  |

| Measure                                                                                       |
|-----------------------------------------------------------------------------------------------|
|                                                                                               |
|                                                                                               |
| pping and dump<br>to reduce the<br>aly be removed<br>ate mining. All<br>ged correctly for     |
| to reduce the<br>nly be removed<br>ate mining. All<br>ed correctly for<br>itats for animals   |
| be planned and<br>not be dramatic<br>be made to limit<br>ext to the pan.<br>t to limit reduce |
| be planned and<br>not be dramatic<br>be made to limit<br>next to the pan<br>end on pan for    |
| spillage, the off-site                                                                        |



| r  |                                                   |              |                                                             |                                                                                                                                   |                                |               |          |               |                  |             |             |                    |                                                                                                                                                                        |
|----|---------------------------------------------------|--------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------|----------|---------------|------------------|-------------|-------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Activity                                          |              |                                                             |                                                                                                                                   |                                |               | Impa     |               | nific:<br>itigat |             | oefor       | e                  | Mitigation                                                                                                                                                             |
| No | Description                                       | Phase        | Affected<br>environment                                     | Impact                                                                                                                            | Positive or Negative<br>Impact | EIA Reference | Severity | Spatial Scale | Duration         | CONSEQUENCE | PROBABILITY | Significance / 100 | Management/Mitigation Measure                                                                                                                                          |
|    |                                                   | Construction | Fauna (mammals,<br>birds, amphibians,<br>reptiles, insects) | Potential contamination of soil due to<br>hydrocarbon spillage and leaks could lead to<br>death of plants and habitats.           | N                              |               | 3        | 3             | 3                | 9           | 3           | 36                 | In the event of hydrocarbon spillage, the contaminated soil will be removed off-site                                                                                   |
| 4  | Construction of<br>offices and<br>change houses   |              |                                                             |                                                                                                                                   |                                |               |          |               |                  |             |             |                    |                                                                                                                                                                        |
|    |                                                   | Construction | Natural vegetation                                          | construction of offices and change house will<br>lead to clearing of vegetation                                                   | N                              |               | 4        | 3             | 3                | 10          | 4           | 53                 | Removal of vegetation due to construction of<br>house should only be restricted to the area where<br>the houses will be built to avoid excess removal<br>of vegetation |
|    |                                                   | Construction | Fauna (mammals,<br>birds, amphibians,<br>reptiles, insects) | construction of offices and change house will<br>lead to clearing of vegetation and destroying<br>the natural habitats of animals | N                              |               | 4        | 3             | 3                | 10          | 4           | 53                 | Natural habitats will be destroyed, houses should<br>only be restricted to areas where duiker<br>population does not exist                                             |
| 5  | Construction of<br>pollution control<br>dams      |              |                                                             |                                                                                                                                   |                                |               |          |               |                  |             |             |                    |                                                                                                                                                                        |
|    |                                                   | Construction | Natural vegetation                                          | construction of pollution control dams could<br>lead to removal of vegetation on site                                             | N                              |               | 3        | 3             | 3                | 9           | 3           | 36                 | pollution control dams should not be constructed<br>near the pan as this will destroy the natural<br>vegetation                                                        |
|    |                                                   | Construction | Fauna (mammals,<br>birds, amphibians,<br>reptiles, insects) | habitat loss of animals due to vegetation removal                                                                                 | N                              |               | 3        | 3             | 3                | 9           | 3           | 36                 | pollution control dams should not be constructed<br>near the pan as this will destroy the natural<br>vegetation and also the habitats for animals                      |
| 6  | Construction of<br>storm water<br>diversion berms |              |                                                             |                                                                                                                                   |                                |               |          |               |                  |             |             |                    |                                                                                                                                                                        |
|    |                                                   | Construction | Natural vegetation                                          | Loss of vegetation due to construction of storm water and diversion berms.                                                        | N                              |               | 3        | 3             | 3                | 9           | 4           | 48                 | construction of storm water and diversion berms<br>should be limited to designated avoid to avoid<br>further vegetation loss                                           |
|    |                                                   | Construction | Fauna (mammals,<br>birds, amphibians,<br>reptiles, insects) | Loss of habitat due to construction of storm water and diversion berms.                                                           | N                              |               | 3        | 3             | 3                | 9           | 4           | 48                 | construction of storm water and diversion berms<br>should be limited to designated avoid to avoid<br>further habitat loss                                              |
| 7  | Construction of<br>portable crusher<br>plant      |              |                                                             |                                                                                                                                   |                                |               |          |               |                  |             |             |                    |                                                                                                                                                                        |
|    |                                                   | Construction | Natural vegetation                                          | loss of vegetation due to construction of portable crasher                                                                        | N                              |               | 3        | 2             | 2                | 7           | 3           | 28                 | construction should be limited to areas where the vegetation is already disturbed                                                                                      |



|    |                                                 |              |                                                             |                                                                                   |                                |                      | <b>r</b> |               | • 6•     |             |             |                    |                                                                                                        |
|----|-------------------------------------------------|--------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------|----------------------|----------|---------------|----------|-------------|-------------|--------------------|--------------------------------------------------------------------------------------------------------|
|    | Activity                                        |              |                                                             |                                                                                   |                                |                      | Impa     |               | itigat   |             | befor       | e                  | Mitigation                                                                                             |
| No | Description                                     | Phase        | Affected<br>environment                                     | Impact                                                                            | Positive or Negative<br>Impact | <b>EIA Reference</b> | Severity | Spatial Scale | Duration | CONSEQUENCE | PROBABILITY | Significance / 100 | Management/Mitigation Measure                                                                          |
|    |                                                 | Construction | Fauna (mammals,<br>birds, amphibians,<br>reptiles, insects) | loss of habitat due to construction of portable crasher                           | N                              |                      | 3        | 2             | 2        | 7           | 3           | 28                 | construction vehicles should adhere to the required speed                                              |
| 8  | Construction of<br>a workshop                   |              |                                                             |                                                                                   |                                |                      |          |               |          |             |             |                    |                                                                                                        |
|    |                                                 | Construction | Natural vegetation                                          | loss of vegetation due to construction of workshop                                | N                              |                      | 3        | 3             | 3        | 9           | 3           | 36                 | construction should be limited to areas where the vegetation is already disturbed                      |
|    |                                                 | Construction | Fauna (mammals,<br>birds, amphibians,<br>reptiles, insects) | loss of habitat due to construction of workshop                                   | N                              |                      | 3        | 3             | 3        | 9           | 3           | <u>36</u>          | construction vehicles should adhere to the required speed                                              |
| 11 | Development of<br>initial open cast<br>cuts     |              |                                                             |                                                                                   |                                |                      |          |               |          |             |             |                    |                                                                                                        |
|    |                                                 | Construction | Natural vegetation                                          | vegetation will be cleared and removed during the development of opencast         | N                              |                      | 4        | 3             | 3        | 10          | 4           | 53                 | Minimise the removal of vegetation, especially in wetland areas                                        |
|    |                                                 | Construction | Fauna (mammals,<br>birds, amphibians,<br>reptiles, insects) | habitats will be destroyed during the development of opencast                     | N                              |                      | 4        | 3             | 3        | 10          | 4           | 53                 | Minimise the removal of vegetation, especially in wetland areas                                        |
| 12 | Stockpilingofsoilandoverburden frominitial cuts |              |                                                             |                                                                                   |                                |                      |          |               |          |             |             |                    |                                                                                                        |
|    |                                                 | Construction | Natural vegetation                                          | movement of trucks will create dust that could<br>lead to the closure of stomatas | N                              |                      | 2        | 3             | 3        | 8           | 3           | 32                 | Soil and overburden stockpiles will be vegetated to prevent erosion                                    |
|    |                                                 | Construction | Fauna (mammals,<br>birds, amphibians,<br>reptiles, insects) | Compaction of soil during stockpiling could lead due habitat loss.                | N                              |                      | 2        | 3             | 3        | 8           | 3           | 32                 | Soil and overburden stockpiles will be vegetated<br>to prevent erosion and create habitats for animals |



|    | Activity                                                        |              |                                                 |                                                                                        |                                | ]             | Impa     |               | nifica<br>tigat |             | befor       | ·e                 | Mitigation                                                                                                             |
|----|-----------------------------------------------------------------|--------------|-------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------|---------------|----------|---------------|-----------------|-------------|-------------|--------------------|------------------------------------------------------------------------------------------------------------------------|
| No | Description                                                     | Phase        | Affected<br>environment                         | Impact                                                                                 | Positive or Negative<br>Impact | EIA Reference | Severity | Spatial Scale | Duration        | CONSEQUENCE | PROBABILITY | Significance / 100 | Management/Mitigation Mea                                                                                              |
|    | Perceived<br>significance of<br>impacts<br>according to<br>IAPs |              | Affected<br>Environment                         |                                                                                        |                                |               |          |               |                 |             |             |                    | Proposed management/mitigation n                                                                                       |
|    | Fauna and Flora                                                 | Construction | Fauna and Flora                                 | The mining development will have a significant impact on the biodiversity of the area. | N                              |               | 5        | 3             | 1               | 9           | 5           | 60                 | The area has been disturbed by<br>activities such as grazing and mai<br>Impacts on small mammals and bin<br>monitored. |
|    |                                                                 |              |                                                 | OPERATIONAL PHASE                                                                      |                                |               |          |               |                 |             |             |                    |                                                                                                                        |
| 1  | Removal of<br>topsoil                                           |              |                                                 |                                                                                        |                                |               |          |               |                 |             |             |                    |                                                                                                                        |
|    |                                                                 | Operational  | Natural environment                             | Removal of topsoil will lead to vegetation loss                                        | N                              |               | 4        | 3             | 3               | 10          | 4           | 53                 | Topsoil will only be removed off are for immediate mining.                                                             |
|    |                                                                 | Operational  | Fauna (mammals,<br>birds, reptiles,<br>insects) | Habitat will be destructed by the removal of topsoil                                   | N                              |               | 4        | 3             | 3               | 10          | 4           | <u>53</u>          | Topsoil will only be removed off are for immediate mining.                                                             |
| 13 | Transportation of coal                                          |              |                                                 |                                                                                        |                                |               |          |               |                 |             |             |                    |                                                                                                                        |
|    |                                                                 | Operational  | Natural environment                             | Coal dust could cause detrimental effects on the growth of plants                      | N                              |               | 3        | 3             | 3               | 9           | 3           | 36                 | cover the transportation trucks                                                                                        |
| 14 | Use and<br>maintenance of<br>haul roads                         |              |                                                 |                                                                                        |                                |               |          |               |                 |             |             |                    |                                                                                                                        |
|    |                                                                 | Operational  | Natural environment                             | Dust emitted from the haul roads could cause blockage to stomatas                      | N                              |               | 3        | 3             | 3               | 9           | 3           | 36                 | Trucks should be covered to minimi-<br>haul roads should be frequently water                                           |
|    |                                                                 | Operational  | Fauna (mammals,<br>birds, reptiles,<br>insects) | Accidental death of animals caused by trucks                                           | N                              |               | 3        | 3             | 3               | 9           | 3           | 36                 | speed limit should be adhered to so shouldn't be killed on these roads,                                                |

| Measure                                            |  |
|----------------------------------------------------|--|
| n measures                                         |  |
| by agricultural<br>maize farming.<br>birds must be |  |
|                                                    |  |
|                                                    |  |
| areas proposed                                     |  |
| areas proposed                                     |  |
|                                                    |  |
|                                                    |  |
|                                                    |  |
| nimise dust and atered.                            |  |
| so that animals                                    |  |



|    | Activity                                    |             |                                                 |                                                                                                                                               |                                | ]             | Impa     |               | gnific:<br>itigat |             | befor       | e                  | Mitigation                                                                                                                                                                                                                                      |
|----|---------------------------------------------|-------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------|----------|---------------|-------------------|-------------|-------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No | Description                                 | Phase       | Affected<br>environment                         | Impact                                                                                                                                        | Positive or Negative<br>Impact | EIA Reference | Severity | Spatial Scale | Duration          | CONSEQUENCE | PROBABILITY | Significance / 100 | Management/Mitigation Measure                                                                                                                                                                                                                   |
| 15 | Domesticandindustrialwastestorageandremoval |             |                                                 |                                                                                                                                               |                                |               |          |               |                   |             |             |                    |                                                                                                                                                                                                                                                 |
|    |                                             | Operational | Natural environment                             | Potential contamination of soil due to incorrect<br>handling of industrial wastes could have<br>negative impacts on the growth of the plants. | Ν                              |               | 3        | 3             | 3                 | 9           | 4           | 48                 | Appropriate waste management system must be<br>implemented. In the event of soil contamination,<br>the contaminated soil should be removed off-site                                                                                             |
|    |                                             | Operational | Fauna (mammals,<br>birds, reptiles,<br>insects) | Incorrect handling of chemicals could cause death to animals                                                                                  | N                              |               | 3        | 3             | 3                 | 9           | 4           | 48                 | Appropriate waste management system must be implemented                                                                                                                                                                                         |
| 16 | Hazardous waste<br>storage and<br>removal   |             |                                                 |                                                                                                                                               |                                |               |          |               |                   |             |             |                    |                                                                                                                                                                                                                                                 |
|    |                                             | Operational | Natural environment                             | Potential wilting and eventual death of vegetation due to leakage of fuels and lubricants                                                     | N                              |               | 3        | 3             | 3                 | 9           | 3           | 36                 | Fuel and lubricant management will be ongoing<br>throughout the life of the mine. This will ensure<br>that the potential pollution of the water to natural<br>vegetation due to the incorrect handling of<br>hazardous wastes will be minimised |
|    |                                             | Operational | Fauna (mammals,<br>birds, reptiles,<br>insects) | Incorrect handling of hazardous, industrial and<br>domestic wastes and sewerage may impact<br>negatively on the animal's diet                 | N                              |               | 3        | 3             | 3                 | 9           | 3           | 36                 | Fuel and lubricant management will be ongoing<br>throughout the life of the mine. This will ensure<br>that the potential pollution of the water to natural<br>vegetation due to the incorrect handling of<br>hazardous wastes will be minimised |
| 18 | Operation of fuel depot                     |             |                                                 |                                                                                                                                               |                                |               |          |               |                   |             |             |                    |                                                                                                                                                                                                                                                 |
|    |                                             | Operational | Natural environment                             | Potential wilting and eventual death of vegetation due to leakage of fuels and lubricants                                                     |                                |               | 3        | 2             | 2                 | 7           | 3           | 28                 | Fuel and lubricant management will be ongoing<br>throughout the life of the mine. This will ensure<br>that the potential pollution of the water to natural<br>vegetation due to the incorrect handling of<br>hazardous wastes will be minimised |
|    |                                             | Operational | Fauna (mammals,<br>birds, reptiles,<br>insects) | Incorrect handling of hazardous, industrial and<br>domestic wastes and sewerage may impact<br>negatively on the animal's diet                 |                                |               | 3        | 2             | 2                 | 7           | 3           | 28                 | Fuel and lubricant management will be ongoing<br>throughout the life of the mine. This will ensure<br>that the potential pollution of the water to natural<br>vegetation due to the incorrect handling of<br>hazardous wastes will be minimised |



|    | Activity                                                        |             |                                                 |                                                                                                                  |                                | ]             | Impa     |               | nifica<br>itigat |             | befor       | e                  | Mitigation                                                                                                                                                               |
|----|-----------------------------------------------------------------|-------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------|----------|---------------|------------------|-------------|-------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No | Description                                                     | Phase       | Affected<br>environment                         | Impact                                                                                                           | Positive or Negative<br>Impact | EIA Reference | Severity | Spatial Scale | Duration         | CONSEQUENCE | PROBABILITY | Significance / 100 | Management/Mitigation Measure                                                                                                                                            |
| 20 | Removal of<br>overburden and<br>backfilling                     |             |                                                 |                                                                                                                  |                                |               |          |               |                  |             |             |                    |                                                                                                                                                                          |
|    |                                                                 | Operational | Natural vegetation                              | Removal of vegetation due to topsoil removal<br>and overburden stripping                                         | N                              |               | 3        | 2             | 2                | 7           | 3           | 28                 | Removal of vegetation during stripping will be<br>minimised to reduce the erosion potential. Topsoil<br>will only be removed off areas proposed for<br>immediate mining. |
| 21 | Mining process<br>removal of coal                               |             |                                                 |                                                                                                                  |                                |               |          |               |                  |             |             |                    |                                                                                                                                                                          |
|    |                                                                 | Operational | Natural environment                             | Coal dust could suppress the growth of the plants by closing stomatas                                            | N                              |               | 3        | 3             | 3                | 9           | 3           | 36                 | trucks should be covered to reduce the coal dust from the trucks                                                                                                         |
| 25 | Rehabilitation as<br>mining<br>progresses                       |             |                                                 |                                                                                                                  |                                |               |          |               |                  |             |             |                    |                                                                                                                                                                          |
|    |                                                                 | Operational | Natural environment                             | Rehabilitation will improve the growth of natural vegetation and limit the erosion                               | Р                              |               | 2        | 3             | 3                | 8           | 3           | 32                 | removal of alien invasive species and also maintaining the erosion gullies                                                                                               |
|    |                                                                 | Operational | Fauna (mammals,<br>birds, reptiles,<br>insects) | Rehabilitation could increase the natural habitat and thereby increase the animals influx back to their habitats | Р                              |               | 2        | 3             | 3                | 8           | 3           | 32                 | removal of alien invasive species and also maintaining the erosion gullies                                                                                               |
|    | Perceived<br>significance of<br>impacts<br>according to<br>IAPs |             | Affected<br>Environment                         |                                                                                                                  |                                |               |          |               |                  |             |             |                    | Proposed management/mitigation measures                                                                                                                                  |
|    | Fauna & Flora                                                   | Operational | Fauna & Flora                                   | The mining development will have a significant impact on the biodiversity of the area.                           | N                              |               | 5        | 3             | 3                | 11          | 5           | 73                 | The area has been disturbed by agricultural activities such as grazing and maize farming. Impacts on small mammals and birds must be monitored.                          |



|    | A                                        |                             |                                              |                                                                                               |                                |               | [mpa     | ct sig        | nifica   | nce         | befor       | e                  |                                                                                                                   |
|----|------------------------------------------|-----------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------|---------------|----------|---------------|----------|-------------|-------------|--------------------|-------------------------------------------------------------------------------------------------------------------|
|    | Activity                                 |                             |                                              |                                                                                               |                                |               | •        |               | itigat   |             |             | 1                  | Mitigation                                                                                                        |
| No | Description                              | Phase                       | Affected<br>environment                      | Impact                                                                                        | Positive or Negative<br>Impact | EIA Reference | Severity | Spatial Scale | Duration | CONSEQUENCE | PROBABILITY | Significance / 100 | Management/Mitigation Measure                                                                                     |
|    |                                          |                             |                                              | DECOMMISIONING PHAS                                                                           | E                              |               |          |               |          |             |             |                    |                                                                                                                   |
| 26 | Removal of infrastructure                |                             |                                              |                                                                                               |                                |               |          |               |          |             |             |                    |                                                                                                                   |
|    |                                          | Eauna (mammals Potential de |                                              | Heavy trucks could destroy the vegetation                                                     | N                              |               | 2        | 2             | 2        | 6           | 2           | 16                 | Heavy vehicles will be restricted to areas where infrastructure is to be removed.                                 |
|    |                                          | Decommissioning             | Fauna (mammals, birds, reptiles, insects)    | Potential destruction of small mammals' habitats when infrastructures are removed.            | N                              |               | 2        | 2             | 2        | 6           | 2           | 16                 | Heavy vehicles will be restricted to areas where infrastructure is to be removed.                                 |
| 28 | Spreading of<br>sub-soils and<br>topsoil |                             |                                              |                                                                                               |                                |               |          |               |          |             |             |                    |                                                                                                                   |
|    |                                          | Decommissioning             | Natural environment                          | Spreading of sub-soil and topsoil would restore the vegetation                                | Р                              |               | 2        | 2             | 2        | 6           | 2           | 16                 | during rehabilitation, topsoil will be placed<br>according to the recommended soil profiles and<br>specifications |
|    |                                          | Decommissioning             | Fauna (mammals,<br>birds, reptiles, insects) | spreading of sub-soil and topsoil would restore<br>the vegetation and the habitats of animals | Р                              |               | 2        | 2             | 2        | 6           | 2           | 16                 | during rehabilitation, topsoil will be placed<br>according to the recommended soil profiles and<br>specifications |
| 29 | <b>Re-vegetation</b> of disturbed areas  |                             |                                              |                                                                                               |                                |               |          |               |          |             |             |                    |                                                                                                                   |
|    |                                          | Decommissioning             | Natural environment                          | Revegetating areas will improve the natural environment                                       | Р                              |               | 3        | 3             | 3        | 9           | 3           | <u>36</u>          | revegetate the disturbed areas according to topsoil specifications and profiles to minimise soil erosion          |
|    |                                          | Decommissioning             | Fauna (mammals, birds, reptiles, insects)    | Revegetating areas will improve the natural habitats                                          | Р                              |               | 3        | 3             | 3        | 9           | 3           | 36                 | revegetate the disturbed areas according to topsoil specifications and profiles to minimise soil erosion          |



|    |                                                                                     |                 |                                              |                                                                                           |                                | 1             | T        | <b>at ai a</b> |          |             | hafan       |                    |                                                                                                                          |
|----|-------------------------------------------------------------------------------------|-----------------|----------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------|---------------|----------|----------------|----------|-------------|-------------|--------------------|--------------------------------------------------------------------------------------------------------------------------|
|    | Activity                                                                            |                 |                                              |                                                                                           |                                |               | Impa     |                | itigat   |             | Defor       | e                  | Mitigation                                                                                                               |
| No | Description                                                                         | Phase           | Affected<br>environment                      | Impact                                                                                    | Positive or Negative<br>Impact | EIA Reference | Severity | Spatial Scale  | Duration | CONSEQUENCE | PROBABILITY | Significance / 100 | Management/Mitigation Measure                                                                                            |
| 30 | Profiling and<br>contouring of the<br>area to preserve<br>natural drainage<br>lines |                 |                                              |                                                                                           |                                |               |          |                |          |             |             |                    |                                                                                                                          |
|    |                                                                                     | Decommissioning | Natural environment                          | Contouring of the area will prevent soil erosion and water run-offs                       | Р                              |               | 3        | 2              | 2        | 7           | 3           | 28                 | Contours will be created to match the original contour profiles for the area. Alien plants will be removed.              |
|    |                                                                                     | Decommissioning | Fauna (mammals,<br>birds, reptiles, insects) | Contouring of the area will prevent soil erosion and water run-offs                       | Р                              |               | 3        | 2              | 2        | 7           | 3           | 28                 | Contours will be created to match the original contour profiles for the area.                                            |
| 31 | Environmental<br>monitoring of<br>decommissioning<br>activities                     |                 |                                              |                                                                                           |                                |               |          |                |          |             |             |                    |                                                                                                                          |
|    |                                                                                     | Decommissioning | Natural environment                          | Monitoring will increase the natural vegetation                                           | Р                              |               | 3        | 3              | 3        | 9           | 3           | 36                 | monitoring programme should include the<br>removal of alien invasive species and also<br>maintaining the erosion gullies |
|    |                                                                                     | Decommissioning | Fauna (mammals,<br>birds, reptiles, insects) | Monitoring will increase the natural habitats of animals                                  | Р                              |               | 3        | 3              | 3        | 9           | 3           | 36                 | monitoring programme should include the<br>removal of alien invasive species and also<br>maintaining the erosion gullies |
|    | Perceived<br>significance of<br>impacts<br>according to<br>I&Aps                    |                 | Affected<br>Environment                      |                                                                                           |                                |               |          |                |          |             |             |                    | Proposed management/mitigation measures                                                                                  |
|    | Fauna & Flora                                                                       | Decommissioning | Fauna & Flora                                | Small mammals and birds may return to the site after closure if efficiently rehabilitated | Р                              |               | 5        | 2              | 2        | 9           | 3           | 36                 | Ensure efficient rehabilitation                                                                                          |



# **10 MANAGEMENT OF IDENTIFIED ENVIRONMENTAL IMPACTS**

 Table 22: The described management plans for the listed activities per phase and the significance rating thereof

|    | Activity                                           |              | Activity and Im                                                      | pact Description                                                                                                                                                  | Mitigation                                                                                                                                                                                                                                                                                                         | Responsible<br>Person         | Frequency/<br>Duration              | Significan           | ce Rating           | Financia   | ıl Plan |
|----|----------------------------------------------------|--------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------|----------------------|---------------------|------------|---------|
| No | Description                                        | Phase        | Affected<br>environment                                              | Impact                                                                                                                                                            | Management/Mitigation Measure                                                                                                                                                                                                                                                                                      |                               |                                     | Before<br>Mitigation | After<br>Mitigation | Concurrent | Final   |
|    |                                                    |              |                                                                      |                                                                                                                                                                   | CONSTRUCTION PHASE                                                                                                                                                                                                                                                                                                 |                               |                                     |                      |                     |            |         |
| 1  | Removal of topsoil                                 |              |                                                                      |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                    |                               |                                     |                      |                     |            |         |
|    |                                                    | Construction | Natural<br>vegetation                                                | Removal of topsoil will lead to the<br>removal of vegetation that is<br>binding the soil and this activity<br>will increase the erosion potential<br>of the area. | Removal of vegetation during stripping and<br>dump construction will be minimized to<br>reduce the erosion potential. Topsoil will only<br>be removed off areas proposed for immediate<br>mining. All soils should be stored and<br>managed correctly for rehabilitation                                           | environmental<br>co-ordinator | Throughout<br>construction<br>phase | Medium-<br>high      | Medium-<br>low      |            |         |
|    |                                                    | Construction | Fauna<br>(mammals,<br>birds,<br>amphibians,<br>reptiles,<br>insects) | Topsoil removal results in the<br>destruction of natural habitats for<br>animals                                                                                  | Removal of vegetation during stripping and<br>dump construction will be minimized to<br>reduce the erosion potential. Topsoil will only<br>be removed off areas proposed for immediate<br>mining. All soils should be stored and<br>managed correctly for rehabilitation to create<br>natural habitats for animals | environmental<br>co-ordinator | Throughout<br>construction<br>phase | Medium-<br>high      | Medium-<br>low      |            |         |
| 2  | Construction of haul roads                         |              |                                                                      |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                    |                               |                                     |                      |                     |            |         |
|    |                                                    | Construction | Natural<br>vegetation                                                | When the haul road is constructed, vegetation will be removed.                                                                                                    | All construction activities will be planned and<br>managed to ensure that there will not be<br>dramatic vegetation clearing. Efforts will be<br>made to limit the construction of haul roads<br>next to the pan. Haul roads will be low in<br>gradient to limit reduce runoff velocity.                            | environmental<br>co-ordinator | Throughout<br>construction<br>phase | Medium-<br>high      | Medium-<br>low      |            |         |
|    |                                                    | Construction | Fauna<br>(mammals,<br>birds,<br>amphibians,<br>reptiles,<br>insects) | Removal of vegetation will destroy<br>the natural habitats of animals                                                                                             | All construction activities will be planned and<br>managed to ensure that there will not be<br>dramatic vegetation clearing. Efforts will be<br>made to limit the construction of haul roads<br>next to the pan where mammals and birds<br>depend on pan for water.                                                | environmental<br>co-ordinator | Throughout<br>construction<br>phase | Medium-<br>high      | Medium-<br>low      |            |         |
| 3  | Construction of<br>hydrocarbon storage<br>facility |              |                                                                      |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                    |                               |                                     |                      |                     |            |         |
|    |                                                    | Construction | Natural vegetation                                                   | Potential contamination of soil due<br>to hydrocarbon spillage and leaks<br>could lead to death of plants.                                                        | In the event of hydrocarbon spillage, the contaminated soil will be removed off-site                                                                                                                                                                                                                               | Environmental<br>co-ordinator | Throughout<br>construction<br>phase | Medium -<br>low      | Medium -<br>low     |            |         |
|    |                                                    | Construction | Fauna<br>(mammals,<br>birds,<br>amphibians,<br>reptiles,<br>insects) | Potential contamination of soil due<br>to hydrocarbon spillage and leaks<br>could lead to death of plants and<br>habitats.                                        | In the event of hydrocarbon spillage, the contaminated soil will be removed off-site                                                                                                                                                                                                                               | Environmental<br>co-ordinator | Throughout<br>construction<br>phase | Medium -<br>low      | Medium -<br>low     |            |         |



|    | Activity                                          |              | Activity and Im                                                      | pact Description                                                                                                                     | Mitigation                                                                                                                                                             | Responsible<br>Person         | Frequency/<br>Duration               | Significan           | ce Rating           | Financi    | al Plan |
|----|---------------------------------------------------|--------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------|----------------------|---------------------|------------|---------|
| No | Description                                       | Phase        | Affected<br>environment                                              | Impact                                                                                                                               | Management/Mitigation Measure                                                                                                                                          |                               |                                      | Before<br>Mitigation | After<br>Mitigation | Concurrent | Final   |
| 4  | Construction of<br>offices and change<br>houses   |              |                                                                      |                                                                                                                                      |                                                                                                                                                                        |                               |                                      |                      |                     |            |         |
|    |                                                   | Construction | Natural<br>vegetation                                                | Construction of offices and change<br>house will lead to clearing of<br>vegetation                                                   | Removal of vegetation due to construction of<br>house should only be restricted to the area<br>where the houses will be built to avoid excess<br>removal of vegetation | Environmental<br>co-ordinator | Throughout<br>construction<br>phase  | Medium-<br>high      | Medium-<br>low      |            |         |
|    |                                                   | Construction | Fauna<br>(mammals,<br>birds,<br>amphibians,<br>reptiles,<br>insects) | Construction of offices and change<br>house will lead to clearing of<br>vegetation and destroying the<br>natural habitats of animals | Natural habitats will be destroyed, houses<br>should only be restricted to areas where duiker<br>population does not exist                                             | Environmental<br>co-ordinator | Throughout<br>construction<br>phase  | Medium-<br>high      | Medium-<br>low      |            |         |
| 5  | Construction of<br>pollution control<br>dams      |              |                                                                      |                                                                                                                                      |                                                                                                                                                                        |                               |                                      |                      |                     |            |         |
|    |                                                   | Construction | Natural vegetation                                                   | Construction of pollution control<br>dams could lead to removal of<br>vegetation on site                                             | Pollution control dams should not be<br>constructed near the pan as this will destroy<br>the natural vegetation                                                        | Environmental<br>co-ordinator | Throughout<br>construction<br>phase  | Medium -<br>low      | Medium-<br>low      |            |         |
|    |                                                   | Construction | Fauna<br>(mammals,<br>birds,<br>amphibians,<br>reptiles,<br>insects) | Habitat loss of animals due to vegetation removal                                                                                    | Pollution control dams should not be<br>constructed near the pan as this will destroy<br>the natural vegetation and also the habitats for<br>animals                   | Environmental<br>co-ordinator | Throughout<br>construction<br>phase  | Medium -<br>low      | Medium-<br>low      |            |         |
| 6  | Construction of<br>storm water diversion<br>berms |              |                                                                      |                                                                                                                                      |                                                                                                                                                                        |                               |                                      |                      |                     |            |         |
|    |                                                   | Construction | Natural vegetation                                                   | Loss of vegetation due to<br>construction of storm water and<br>diversion berms.                                                     | Construction of storm water and diversion<br>berms should be limited to designated avoid to<br>avoid further vegetation loss                                           | Environmental<br>co-ordinator | Throughtout<br>construction<br>phase | Medium -<br>low      | Medium-<br>low      |            |         |
|    |                                                   | Construction | Fauna<br>(mammals,<br>birds,<br>amphibians,<br>reptiles,<br>insects) | Loss of habitat due to construction of storm water and diversion berms.                                                              | Construction of storm water and diversion<br>berms should be limited to designated avoid to<br>avoid further habitat loss                                              | Environmental<br>co-ordinator | Throughout<br>construction<br>phase  | Medium -<br>low      | Medium-<br>low      |            |         |
| 7  | Construction of<br>portable crusher<br>plant      |              |                                                                      |                                                                                                                                      |                                                                                                                                                                        |                               |                                      |                      |                     |            |         |
|    |                                                   | Construction | Natural vegetation                                                   | Loss of vegetation due to construction of portable crasher                                                                           | Construction should be limited to areas where<br>the vegetation is already disturbed                                                                                   | Environmental<br>co-ordinator | Throughtout<br>construction<br>phase | Medium -<br>low      | Low                 |            |         |
|    |                                                   | Construction | Fauna<br>(mammals,<br>birds,<br>amphibians,<br>reptiles,<br>insects) | Loss of habitat due to construction of portable crasher                                                                              | Construction vehicles should adhere to the required speed                                                                                                              | Environmental<br>co-ordinator | Throughout<br>construction<br>phase  | Medium -<br>low      | Low                 |            |         |



|    | Activity                                                   |              | Activity and Im                                                      | pact Description                                                                     | Mitigation                                                                                                | Responsible<br>Person         | Frequency/<br>Duration               | Significar           | nce Rating          | Financi    | al Plan |
|----|------------------------------------------------------------|--------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------|----------------------|---------------------|------------|---------|
| No | Description                                                | Phase        | Affected<br>environment                                              | Impact                                                                               | Management/Mitigation Measure                                                                             |                               |                                      | Before<br>Mitigation | After<br>Mitigation | Concurrent | Final   |
| 8  | Construction of a workshop                                 |              |                                                                      |                                                                                      |                                                                                                           |                               |                                      |                      |                     |            |         |
|    |                                                            | Construction | Natural vegetation                                                   | Loss of vegetation due to construction of workshop                                   | Construction should be limited to areas where<br>the vegetation is already disturbed                      | Environmental<br>co-ordinator | Throughtout<br>construction<br>phase | Medium -<br>low      | Low                 |            |         |
|    |                                                            | Construction | Fauna<br>(mammals,<br>birds,<br>amphibians,<br>reptiles,<br>insects) | Loss of habitat due to construction of workshop                                      | Construction vehicles should adhere to the required speed                                                 | Environmental<br>co-ordinator | Throughout<br>construction<br>phase  | Medium -<br>Iow      | Low                 |            |         |
| 11 | Development of initial open cast cuts                      |              |                                                                      |                                                                                      |                                                                                                           |                               |                                      |                      |                     |            |         |
|    |                                                            | Construction | Natural vegetation                                                   | Vegetation will be cleared and<br>removed during the development of<br>opencast      | Minimize the removal of vegetation, especially in wetland areas                                           | Environmental<br>co-ordinator | Throughtout<br>construction<br>phase | Medium-<br>high      | Medium-<br>low      |            |         |
|    |                                                            | Construction | Fauna<br>(mammals,<br>birds,<br>amphibians,<br>reptiles,<br>insects) | Habitats will be destroyed during the development of opencast                        | Minimise the removal of vegetation, especially in wetland areas                                           | Environmental<br>co-ordinator | Throughout<br>construction<br>phase  | Medium-<br>high      | Medium-<br>low      |            |         |
| 12 | Stockpiling of soil<br>and overburden from<br>initial cuts |              |                                                                      |                                                                                      |                                                                                                           |                               |                                      |                      |                     |            |         |
|    |                                                            | Construction | Natural vegetation                                                   | Movement of trucks will create dust<br>that could lead to the closure of<br>stomatas | Soil and overburden stockpiles will be vegetated to prevent erosion                                       | Environmental<br>co-ordinator | Throughout<br>construction<br>phase  | Medium-<br>low       | Low                 |            |         |
|    |                                                            | Construction | Fauna<br>(mammals,<br>birds,<br>amphibians,<br>reptiles,<br>insects) | Compaction of soil during<br>stockpiling could lead due habitat<br>loss.             | Soil and overburden stockpiles will be<br>vegetated to prevent erosion and create<br>habitats for animals | Environmental<br>co-ordinator | Throughout<br>construction<br>phase  | Medium-<br>low       | Low                 |            |         |
|    |                                                            |              |                                                                      |                                                                                      | OPERATIONAL PHASE                                                                                         |                               |                                      |                      |                     |            |         |
| 1  | Removal of topsoil                                         |              |                                                                      |                                                                                      |                                                                                                           |                               |                                      |                      |                     |            |         |
|    |                                                            | Operational  | Natural<br>environment                                               | Removal of topsoil will lead to vegetation loss                                      | Topsoil will only be removed off areas proposed for immediate mining.                                     | Environmental<br>co-ordinator | Throughout<br>operational<br>phase   | Medium-<br>high      | Medium-<br>low      |            |         |
|    |                                                            | Operational  | Fauna<br>(mammals,<br>birds, reptiles,<br>insects)                   | Habitat will be destructed by the removal of topsoil                                 | Topsoil will only be removed off areas proposed for immediate mining.                                     | Environmental<br>co-ordinator | Throughout<br>operational<br>phase   | Medium-<br>high      | Medium-<br>low      |            |         |
| 13 | Transportation of coal                                     |              |                                                                      |                                                                                      |                                                                                                           |                               |                                      |                      |                     |            |         |
|    |                                                            | Operational  | Natural environment                                                  | Coal dust could cause detrimental effects on the growth of plants                    | Cover the transportation trucks                                                                           | Environmental co-ordinator    | Throughout operational               | Medium-<br>high      | Low                 |            |         |



|    | Activity                                                |             | Activity and Im                                    | pact Description                                                                                                                                 | Mitigation                                                                                                                                                                                                                                         | Responsible<br>Person           | Frequency/<br>Duration             | Significar           | nce Rating          | Financia   | al Plan |
|----|---------------------------------------------------------|-------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------|----------------------|---------------------|------------|---------|
| No | Description                                             | Phase       | Affected<br>environment                            | Impact                                                                                                                                           | Management/Mitigation Measure                                                                                                                                                                                                                      |                                 |                                    | Before<br>Mitigation | After<br>Mitigation | Concurrent | Final   |
|    |                                                         |             |                                                    |                                                                                                                                                  |                                                                                                                                                                                                                                                    |                                 | phase                              |                      |                     |            |         |
| 14 | Use and maintenance<br>of haul roads                    |             |                                                    |                                                                                                                                                  |                                                                                                                                                                                                                                                    |                                 |                                    |                      |                     |            |         |
|    |                                                         | Operational | Natural<br>environment                             | Dust emitted from the haul roads could cause blockage to stomatas                                                                                | Trucks should be covered to minimise dust<br>and haul roads should be frequently watered.                                                                                                                                                          | Environmental<br>co-ordinator   | Throughout<br>operational<br>phase | Medium-<br>low       | Low                 |            |         |
|    |                                                         | Operational | Fauna<br>(mammals,<br>birds, reptiles,<br>insects) | Accidental death of animals caused by trucks                                                                                                     | Speed limit should be adhered to so that<br>animals shouldn't be killed on these roads,                                                                                                                                                            | Environmental<br>co-ordinator   | Throughout<br>operational<br>phase | Medium-<br>low       | Low                 |            |         |
| 15 | Domestic and<br>industrial waste<br>storage and removal |             |                                                    |                                                                                                                                                  |                                                                                                                                                                                                                                                    |                                 |                                    |                      |                     |            |         |
|    |                                                         | Operational | Natural<br>environment                             | Potential contamination of soil due<br>to incorrect handling of industrial<br>wastes could have negative impacts<br>on the growth of the plants. | Appropriate waste management system must<br>be implemented. In the event of soil<br>contamination, the contaminated soil should<br>be removed off-site                                                                                             | Environmental<br>co-ordinator   | Throughout<br>operational<br>phase | Medium-<br>low       | Low                 |            |         |
|    |                                                         | Operational | Fauna<br>(mammals,<br>birds, reptiles,<br>insects) | Incorrect handling of chemicals could cause death to animals                                                                                     | Appropriate waste management system must be implemented                                                                                                                                                                                            | Environmental<br>co-ordinator   | Throughout<br>operational<br>phase | Medium-<br>low       | Low                 |            |         |
| 16 | Hazardous waste storage and removal                     |             |                                                    |                                                                                                                                                  |                                                                                                                                                                                                                                                    |                                 |                                    |                      |                     |            |         |
|    |                                                         | Operational | Natural<br>environment                             | Potential wilting and eventual death<br>of vegetation due to leakage of<br>fuels and lubricants                                                  | Fuel and lubricant management will be<br>ongoing throughout the life of the mine. This<br>will ensure that the potential pollution of the<br>water to natural vegetation due to the incorrect<br>handling of hazardous wastes will be<br>minimised | Environmental<br>co-ordinator   | Throughout<br>operational<br>phase | Medium-<br>low       | Low                 |            |         |
|    |                                                         | Operational | Fauna<br>(mammals,<br>birds, reptiles,<br>insects) | Incorrect handling of hazardous,<br>industrial and domestic wastes and<br>sewerage may impact negatively on<br>the animal's diet                 | Fuel and lubricant management will be<br>ongoing throughout the life of the mine. This<br>will ensure that the potential pollution of the<br>water to natural vegetation due to the incorrect<br>handling of hazardous wastes will be<br>minimized | Environmental<br>co-ordinator   | Throughout<br>operational<br>phase | Medium-<br>low       | Low                 |            |         |
| 18 | Operation of fuel<br>depot                              |             |                                                    |                                                                                                                                                  |                                                                                                                                                                                                                                                    |                                 |                                    |                      |                     |            |         |
|    |                                                         | Operational | Natural<br>environment                             | Potential wilting and eventual death<br>of vegetation due to leakage of<br>fuels and lubricants                                                  | Fuel and lubricant management will be<br>ongoing throughout the life of the mine. This<br>will ensure that the potential pollution of the<br>water to natural vegetation due to the incorrect<br>handling of hazardous wastes will be<br>minimized | Environmental<br>co-coordinator | Throughout<br>operational<br>phase | Medium-<br>low       | Low                 |            |         |
|    |                                                         | Operational | Fauna<br>(mammals,<br>birds, reptiles,<br>insects) | Incorrect handling of hazardous,<br>industrial and domestic wastes and<br>sewerage may impact negatively on<br>the animal's diet                 | Fuel and lubricant management will be<br>ongoing throughout the life of the mine. This<br>will ensure that the potential pollution of the<br>water to natural vegetation due to the incorrect<br>handling of hazardous wastes will be<br>minimized | Environmental<br>co-coordinator | Throughout<br>operational<br>phase | Medium-<br>low       | Low                 |            |         |



|    | Activity                                    | Activity and Impact Description |                                                    |                                                                                                                           | Mitigation                                                                                                        | Responsible<br>Person         | Frequency/<br>Duration                  | Significance Rating  |                     | Financial Plan |       |
|----|---------------------------------------------|---------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------|----------------------|---------------------|----------------|-------|
| No | Description                                 | Phase                           | Affected<br>environment                            | Impact                                                                                                                    | Management/Mitigation Measure                                                                                     |                               |                                         | Before<br>Mitigation | After<br>Mitigation | Concurrent     | Final |
| 20 | Removal of<br>overburden and<br>backfilling |                                 |                                                    |                                                                                                                           |                                                                                                                   |                               |                                         |                      |                     |                |       |
|    |                                             | Operational                     | Natural<br>environment                             | Coal dust could suppress the growth of the plants by closing stomatas                                                     | Trucks should be covered to reduce the coal dust from the trucks                                                  | Environmental<br>co-ordinator | Throughout<br>operational<br>phase      | Medium-<br>low       | Low                 |                |       |
| 21 | Mining process<br>removal of coal           | Operational                     |                                                    |                                                                                                                           |                                                                                                                   |                               |                                         |                      |                     |                |       |
|    |                                             | Operational                     | Natural<br>environment                             | Coal dust could suppress the growth of the plants by closing stomatas                                                     | Trucks should be covered to reduce the coal dust from the trucks                                                  | Environmental<br>co-ordinator | Throughout<br>operational<br>phase      | Medium-<br>low       | Low                 |                |       |
| 25 | Rehabilitation as<br>mining progresses      |                                 |                                                    |                                                                                                                           |                                                                                                                   |                               |                                         |                      |                     |                |       |
|    |                                             | Operational                     | Natural<br>environment                             | Rehabilitation will improve the growth of natural vegetation and limit the erosion                                        | Removal of alien invasive species and also maintaining the erosion gullies                                        | Environmental<br>co-ordinator | During<br>rehabilitatio<br>n            | Medium-<br>low       | Low                 |                |       |
|    |                                             | Operational                     | Fauna<br>(mammals,<br>birds, reptiles,<br>insects) | Rehabilitation could increase the<br>natural habitat and thereby increase<br>the animals influx back to their<br>habitats | Removal of alien invasive species and also maintaining the erosion gullies                                        | Environmental<br>co-ordinator | During<br>rehabilitatio<br>n            | Medium-<br>low       | Low                 |                |       |
|    |                                             |                                 |                                                    | Γ                                                                                                                         | DECOMMISSIONING PHASE                                                                                             | ·                             |                                         |                      |                     |                |       |
| 26 | Removal of all infrastructure               |                                 |                                                    |                                                                                                                           |                                                                                                                   |                               |                                         |                      |                     |                |       |
|    |                                             | Decommissioning                 | Natural<br>environment                             | Heavy trucks could destroy the vegetation                                                                                 | Heavy vehicles will be restricted to areas where infrastructure is to be removed.                                 | Environmental<br>co-ordinator | Throughout<br>decommissio<br>ning phase | Low                  | Low                 |                |       |
|    |                                             | Decommissioning                 | Fauna<br>(mammals,<br>birds, reptiles,<br>insects) | Potential destruction of small<br>mammals' habitats when<br>infrastructures are removed.                                  | Heavy vehicles will be restricted to areas where infrastructure is to be removed.                                 | Environmental<br>co-ordinator | Throughout<br>decommissio<br>ning phase | Low                  | Low                 |                |       |
| 28 | Spreading of sub-soils and topsoil          |                                 |                                                    |                                                                                                                           |                                                                                                                   |                               |                                         |                      |                     |                |       |
|    |                                             | Decommissioning                 | Natural<br>environment                             | Spreading of sub-soil and topsoil would restore the vegetation                                                            | During rehabilitation, topsoil will be placed<br>according to the recommended soil profiles<br>and specifications | Environmental<br>co-ordinator | Throughout<br>decommissio<br>ning phase | Low                  | Low                 |                |       |
|    |                                             | Decommissioning                 | Fauna<br>(mammals,<br>birds, reptiles,<br>insects) | Spreading of sub-soil and topsoil<br>would restore the vegetation and<br>the habitats of animals                          | During rehabilitation, topsoil will be placed<br>according to the recommended soil profiles<br>and specifications | Environmental<br>co-ordinator | Throughout<br>decommissio<br>ning phase | Low                  | Low                 |                |       |
| 29 | Re-vegetation of<br>disturbed areas         |                                 |                                                    |                                                                                                                           |                                                                                                                   |                               |                                         |                      |                     |                |       |
|    |                                             | Decommissioning                 | Natural<br>environment                             | Revegetating areas will improve the natural environment                                                                   | Revegetate the disturbed areas according to<br>topsoil specifications and profiles to minimise<br>soil erosion    | Environmental<br>co-ordinator | During<br>rehabilitatio<br>n            | Medium-<br>low       | Low                 |                |       |
|    |                                             | Decommissioning                 | Fauna<br>(mammals,<br>birds, reptiles,<br>insects) | Revegetating areas will improve the natural habitats                                                                      | Revegetate the disturbed areas according to topsoil specifications and profiles to minimise soil erosion          | Environmental<br>co-ordinator | During<br>rehabilitatio<br>n            | Medium-<br>low       | Low                 |                |       |



|    | Activity                                                                         | Activity and Impact Description |                                                    |                                                                     | Mitigation                                                                                                               | Responsible<br>Person         | Frequency/<br>Duration       | Frequency/<br>Duration Significan |                     | Financial Plan |       |
|----|----------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------|-----------------------------------|---------------------|----------------|-------|
| No | Description                                                                      | Phase                           | Affected<br>environment                            | Impact                                                              | Management/Mitigation Measure                                                                                            |                               |                              | Before<br>Mitigation              | After<br>Mitigation | Concurrent     | Final |
| 30 | Profiling and<br>contouring of the<br>area to preserve<br>natural drainage lines |                                 |                                                    |                                                                     |                                                                                                                          |                               |                              |                                   |                     |                |       |
|    |                                                                                  | Decommissioning                 | Natural<br>environment                             | Contouring of the area will prevent soil erosion and water run-offs | Contours will be created to match the original<br>contour profiles for the area. Alien plants will<br>be removed.        | Environmental co-ordinator    | During<br>rehabilitatio<br>n | Medium-<br>low                    | Low                 |                |       |
|    |                                                                                  | Decommissioning                 | Fauna<br>(mammals,<br>birds, reptiles,<br>insects) | Contouring of the area will prevent soil erosion and water run-offs | Contours will be created to match the original contour profiles for the area.                                            | Environmental<br>co-ordinator | During<br>rehabilitatio<br>n | Medium-<br>low                    | Low                 |                |       |
| 31 | Environmental<br>monitoring of<br>decommissioning<br>activities                  |                                 |                                                    |                                                                     |                                                                                                                          |                               |                              |                                   |                     |                |       |
|    |                                                                                  | Decommissioning                 | Natural<br>environment                             | Monitoring will increase the natural vegetation                     | Monitoring programme should include the<br>removal of alien invasive species and also<br>maintaining the erosion gullies | Environmental co-ordinator    | During<br>rehabilitatio<br>n | Medium-<br>low                    | Low                 |                |       |
|    |                                                                                  | Decommissioning                 | Fauna<br>(mammals,<br>birds, reptiles,<br>insects) | Monitoring will increase the natural habitats of animals            | Monitoring programme should include the<br>removal of alien invasive species and also<br>maintaining the erosion gullies | Environmental<br>co-ordinator | During<br>rehabilitatio<br>n | Medium-<br>low                    | Low                 |                |       |



# **11 RECOMMENDATIONS**

#### 11.1 Flora

When removing alien invasive species and weeds, care must be taken to eradicate the plants fully. According to the Conservation of Agricultural Resources Act (Act 43 of 1983) *eradicate* means to treat plants by any suitable method in order to prevent such plants from growing, multiplying and propagating. Therefore, when removing plants from the site it should be done at such a time when they are not producing seeds that could easily be spread by wind during cutting and transportation. Plants that are known to grow back easily need to be uprooted in order to remove all possible avenues for re-growth and any juvenile plants spotted growing during the operation need to be removed before they become a problem.

### 11.2 Fauna

The animal survey revealed a very poor abundance and diversity of fauna in the area. For this reason management of fauna during the operation will be minimal. It is likely that small mammals such as mongoose or hares are living on the site, as there was evidence of dung found. However, should any such animals be disturbed by the activities, the operators will be required to call in qualified people to handle and relocate the animals in question. The same methodology must be applied to bird life. A number of birds were spotted during the site visit but the species were of the common garden variety thereby making it easier for them to relocate naturally to nearby residential areas.

# **12 CONCLUSION**

The study areas are mostly dominated by maize fields and pans. The alien invasive species which were found indicate how disturbed this environment is and as such a proper eradication programme should be implemented. Alien species have negative impacts on the natural vegetation as they tend to be more efficient in terms of water and sunlight use.

The pan provides a natural habitat for many bird species. Birds play critical roles in wetland systems by acting as herbivores, predators and prey, and being facilitators for plant dispersal as well as providing aesthetic values for bird watchers and other nature enthusiasts.



In terms of mammal surveys, only common duiker species was visually observed and proposed mining could destroy the natural habitats where this species occur.

Reptiles and amphibians were not found due to low temperatures but the pan provides suitable habitat for frogs. The wet season surveys could have proved more efficient in terms of reptiles and amphibian sampling as these species are dormant during cold or winter seasons. It appears that most frog species are closely associated to the habitat in which they breed. Thus the preservation of this pan which will include viable breeding sites as well as areas for foraging can be very effective in maintaining and protecting frog species. In addition to this some frog species have very specific breeding requirements and thus any impact or alteration to the breeding environment could be significant.

Insects are normally found in abundance after big rains and they stay dormant during colder or winter season (Elzinga 2000). Even though there were no rains and the temperatures were below zero, insects species from the family Reduviidae were abundant.

# **13 COMMENTS RECEIVED**

No comments were received for this project from the authorities



# **14 REFERENCES**

ACOCKS, J.H.P, 1988. Veld types of South Africa. 3<sup>rd</sup> edn. *Memoirs of the Botanical Survey of South Africa* **57**: 1-147

BARNES K. N. (ed) 2000. *The Eskom Red data Book of Birds of South Africa, Lesotho & Swaziland.* Birdlife South Africa, Johannesburg

BEZEUIDENHOUDT, H.& BREDENKAMP, J.G. 1990, A reconnaissance survey of the vegetation of the dolomite region in the Potchefstroom-Ventersdorp-Randfontein area, South Africa. *Phytocoenologia* 18: 387-403

BRANCH, B. 2001. *Snakes and Other Reptiles of Southern Africa*. Struik Publishers, South Africa.

BRAUN-BLANQUET, J. 1964. Pflanzensociologie. 3 Aulf. Weien. Springer

BREDENKAMP, J.G. 1982. *'n Plantekologiese studie van die ManyeletinWildtuin*. D.Sc. thesis, University of Pretoria, Pretoria.

BROMILOW, C. 1995. Problem Plants of South Africa. Briza Publications, Pretoria.

DU PLESSIS, F. 2001. A phytosociological synthesis of Mopaneveld. M.Sc. thesis, University of Pretoria, Pretoria.).

DRIVER, A., MAZE, K., LOMBARD A.T., NEL, J., ROUGET, M., TURPIE, J.K., COWLING, R.M., DESMET, P., GOODMAN, P., HARRIS, J., JONAS, Z., REYERS, B., SINK, K. & STRAUSS, T. 2004. *South African National Spatial Biodiversity Assessment 2004: Summary Report.* South African National Biodiversity Institute, Pretoria.

ELZINGA, R.J. 2000. Fundamentals of Entomology. Prentice Hall, Upper Saddle River, New Jersey.

FRIEDMAN, Y. AND DALY, B. 2004 *Red Data Book of the Mammals of South Africa: A Conservation Assessment.* CBSG Southern Africa, Conservation Breeding Specialist Group (SSC/IUCN), Endangered Wildlife Trust. South Africa.



HANNEKENS, S.M. 1996b. TURBOVEG – Software package for input, processing and presentation of phytosociological data. Users guide. University of Lancaster, Lancaster.

HENNING, S.F. & HENNING, G.A. 1989. *South African Red Data Book – Butterflies*. Sasolburg Litho, Vanderbijlpark.

HILL, M.O. 1979b. TWINSPAN. A Fortran program for arranging multivariate data in an ordered two-way table by classification of individuals and attributes. Ithaca, New York: Cornell University.

HILTON-TAYLOR, C. 1996. *Red Data List of Southern African Plants*. Strilitzia 4. Aurora Printers, Pretoria.

LÖTTER, M. 2007. Biodiversity status of the Mpumalanga Lakes District. Scientific Services. Mpumalanga Tourism & Parks Agency. Proceedings of the Mpumalanga Lakes District, Chrissiesmeer, 31 August 2007

LOW, A.B. & REBELO, A.G. 1996. *Vegetation of South Africa, Lesotho and Swaziland*. Department of Environmental Affairs and Tourism, Pretoria.

MUCINA, L, RUTHERFORD, M.C. & POWRIE, L. 2006. Vegetation Map of South Africa, Lesotho & Swaziland. SANBI, Pretoria.

MUELLER-DOMBOIS, D. & ELLENBERG, H. 1974. Aims and methods of vegetation ecology. John Wiley & Sons, New York

PASSMORE N.I., & CARRUTHERS, V.C. 1995. *South African Frogs: A complete Guide.* Southern Book Publishers, Witwatersrand University Press, South Africa

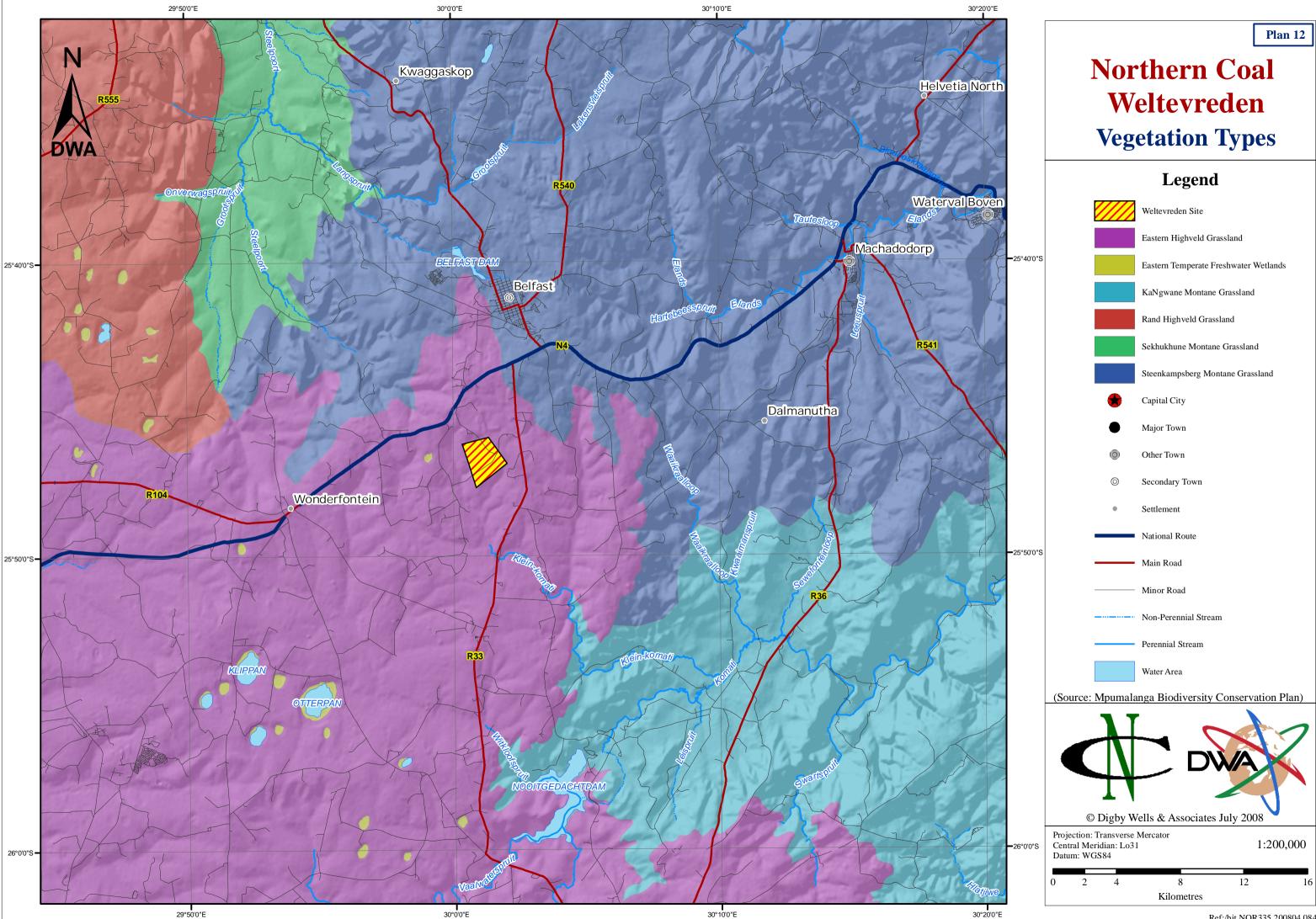
PHAMPHE, A.R. 2003. Phytosociology of Transkei grasslands. M.Sc. thesis, University of Pretoria, Pretoria).

POOLEY, E.S. 1998. *A Field Guide to Wildflowers Kwazulu-Natal and the eastern region*.Natal Flora Publishers Trust: Durban, South Africa.

PICKER, M., GRIFFITHS, C & WEAVING, A. 2002. *Field Guide to Insects of South Africa*. Struik Publishers, Cape Town.



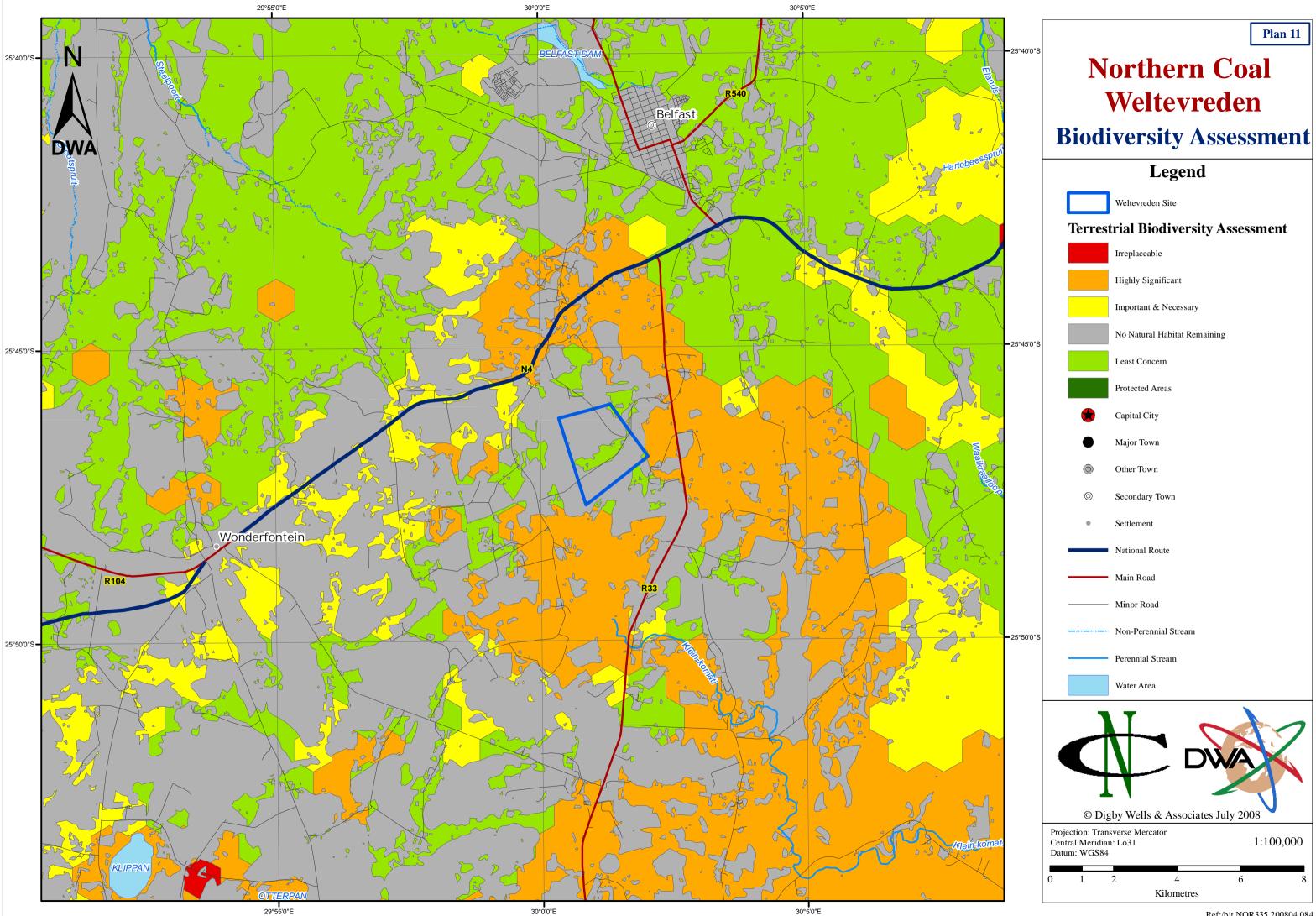
ROBERTS 2003. Roberts' Multimedia Birds of Southern Africa.


SKINNER J.D. & CHIMIMBA C.T. 2005. *The Mammals of the Southern African Subregion (3<sup>rd</sup> Ed.)*. Cambridge University Press, Cape Town.

TICHÝ, L. 2002. JUICE software for vegetation classification. *Journal of Vegetation Science* 13(3): 451–453.

VAN OUTSHOORN, F. 1999. *Guide to grasses of Southern Africa*. Briza Publications, Pretoria, South Africa.




Appendix 1. Vegetation types found in the study area (Mucina *et al* 2006).



Ref:/bjt.NOR335.200804.084



Appendix 2. Map indicating the Sensitivity areas within the study area.



Ref:/bjt.NOR335.200804.084



# Appendix 3. Precis list for QDS 2530CC

|                                                  | <b>D</b>                         | Ecological   |        |       |
|--------------------------------------------------|----------------------------------|--------------|--------|-------|
| Minis for: 2530CC                                | English                          | status       | Hilton | Form  |
| Aeollanthus rehmannii                            |                                  |              |        | Herb  |
| Alepidea peduncularis                            |                                  |              |        | Herb  |
| *Amaranthus hybridus ssp. hybridus var. hybridus | Pigweed                          | weed         |        | Herb  |
| Argyrolobium transvaalense                       |                                  |              |        | Herb  |
| Asplenium rutifolium                             |                                  |              |        |       |
| Brachylaena transvaalensis                       |                                  |              |        | Herb  |
| Brachystelma coddii                              |                                  |              |        | Herb  |
| Brachystelma dyeri                               |                                  |              |        | Herb  |
| Brachystelma macropetalum                        |                                  |              |        | Herb  |
| Bryum andicola                                   |                                  |              |        |       |
| Bryum argenteum                                  |                                  |              |        |       |
| Bersama transvaalensis                           |                                  |              |        |       |
| Campylopus flaccidus                             |                                  |              |        |       |
| Cineraria geraniifolia                           |                                  |              | 1      | Herb  |
| 0                                                | Fishbone Dwarf                   | <u> </u>     | 1      |       |
| Chamaecrista mimosoides                          | Cassia                           |              |        | Herb  |
| Cheilanthes multifida                            |                                  |              |        |       |
| Chloris virgata                                  | feather-top<br>chloris           | increaser II |        | Grass |
| Chloris virgata<br>Corycium dracomontanum        | cilions                          | increaser in |        | Herb  |
| Crassula setulosa var. rubra                     | Furry Crassula                   |              |        | Herb  |
| Crassula vaginata ssp. vaginata                  | white stonecrop                  |              |        | Herb  |
| Crotalaria recta                                 | white stonecrop                  |              |        | Herb  |
| Cyperus esculentus var. esculentus               |                                  |              |        | Reed  |
|                                                  |                                  |              |        | -     |
| Cyperus keniensis                                |                                  |              |        | Reed  |
| Dicerocaryum senecioides                         |                                  |              |        | C     |
| Digitaria sp.                                    | <b>F</b> ( <b>D</b> )            |              |        | Grass |
| Disa fragrans ssp. fragrans                      | Fragrant Disa                    |              |        | Herb  |
| Endostemon obtusifolius                          |                                  | ·            |        |       |
| Eragrostis plana N                               | tough love grass<br>Heart-leaved | increaser II |        | Grass |
| Eriosema cordatum                                | Eriosema                         | Medicinal    |        | Herb  |
| Erica caffrorum var. caffrorum                   | Li ioseina                       | Weutennai    |        | TIELO |
| Eriocaulon africanum                             |                                  |              |        | Herb  |
| * · · · · · · · · · · · · · · · · · · ·          |                                  |              |        |       |
| Euryops pedunculatus                             | Fine-leaved                      |              |        | Herb  |
| Felicia filifolia ssp. filifolia                 | Felicia                          | Medicinal    |        | Herb  |
| Fissidens ovatus                                 |                                  |              |        |       |
| Freesia laxa ssp. laxa                           | small red iris                   | garden plant |        | Herb  |
| Funaria hygrometrica                             |                                  |              |        |       |
|                                                  | pink and white                   |              |        |       |
| Gerbera ambigua                                  | gerbera                          | 1            |        | Herb  |
| Gerbera galpinii                                 |                                  |              |        | Herb  |
| Gnidia albosericea                               |                                  |              |        | Herb  |




| Haemanthus humilis ssp. hirsutus   | rabbit's ears      | Medicinal     | Herb    |
|------------------------------------|--------------------|---------------|---------|
| Harveya sp.                        |                    |               | Herb    |
| Hermannia oblongifolia             |                    |               | Herb    |
| Helichrysum acutatum               | sticky everlasting | Medicinal     | Herb    |
| Helichrysum argyrolepis            |                    |               | Herb    |
| Helichrysum obductum               |                    |               | Herb    |
| Helichrysum reflexum               |                    |               | Herb    |
| Helichrysum spiralepis             |                    |               | Herb    |
| Helichrysum subglomeratum          |                    |               | Herb    |
| Helichrysum truncatum              |                    |               | Herb    |
|                                    | spindly            |               | TICLO   |
| Hypericum lalandii                 | hypericum          | Medicinal     | Herb    |
| Hypericum revolutum ssp. revolutum |                    |               | Herb    |
|                                    |                    | used as       |         |
| *Hypochaeris radicata              | hairy wild lettuce | spinach       | Herb    |
| Ipomoea oblongata                  |                    |               | Herb    |
| Juncus dregeanus ssp. dregeanus    |                    |               | Sedge   |
| Juncus oxycarpus                   |                    |               | Sedge   |
| Kiggelaria africana                |                    |               |         |
|                                    | dwarf red-hot      |               |         |
| Kniphofia porphyrantha             | poker              | Medicinal     | Herb    |
| Kniphofia rigidifolia              |                    |               | Herb    |
| Ledebouria cooperi                 | cooper's squill    | Medicinal     | Herb    |
|                                    | common             |               |         |
| Ledebouria revoluta                | ledebouria         | Medicinal     | Herb    |
| Leptochloa fusca                   |                    |               | Grass   |
| Lotononis mucronata                |                    |               | Herb    |
| Lotononis pulchra                  |                    |               | Herb    |
| Lycopodium clavatum                |                    |               |         |
| Melanospermum transvaalense        |                    |               |         |
| Melhania prostrata                 |                    |               |         |
| Microcharis galpinii               |                    |               |         |
| Monocymbium ceresiiforme           | boat grass         | decreaser     | Grass   |
| Monsonia angustifolia              | pink monsonia      |               | Herb    |
| Monsonia attenuata                 |                    |               | Herb    |
|                                    | robust pioneer     | browsed by    |         |
| Neonotonia wightii                 | creeper            | bushbuck      | Creeper |
| Panicum sp.                        |                    |               | Grass   |
| Panicum natalense                  | natal panicum      | decreaser     | Grass   |
| Paspalum scrobiculatum             | veld paspalum      | increaser II  | Grass   |
| Pavonia columella                  | pink panonia       | garden plant  | Herb    |
| Phylica paniculata                 |                    |               | Herb    |
| Pimpinella transvaalensis          |                    |               |         |
| 4 000 0000                         | forest spur-       |               |         |
| Plectranthus fruticosus            | flower             | fly repellent | Herb    |
|                                    | citronella spur-   |               |         |
| Plectranthus laxiflorus            | flower             | Medicinal     | Herb    |
| Plectranthus madagascariensis var. | madagascar spur-   |               |         |
| ramosior                           | flower             | Medicinal     | Herb    |
| Podocarpus latifolius              |                    |               | Tree    |



| Pycreus rehmannianus                              |                  |              | Herb    |
|---------------------------------------------------|------------------|--------------|---------|
| Rhus tumulicola var. meeuseana                    |                  |              | Tree    |
| Rhynchosia caribaea                               |                  | medicinal    | Herb    |
|                                                   | yellow carpet    |              |         |
| Rhynchosia totta var. totta                       | bean             | edible       | Herb    |
| Rumex acetosella ssp. angiocarpus                 |                  |              | Herb    |
| Selaginella mittenii                              |                  |              |         |
|                                                   | common bristle   | ,            | G       |
| Setaria sphacelata var. torta                     | grass            | decreaser    | Grass   |
| Schizochilus cecilii ssp. culveri                 |                  |              | Herb    |
| Schizochilus zeyheri                              |                  |              | Herb    |
| Sporobolus centrifugus                            | olive dropseed   | increaser I  | Grass   |
| Stachys natalensis var. galpinii                  | white stachys    |              | Herb    |
| Stachys natalensis var. natalensis                | white stachys    |              | Herb    |
| Syncolostemon albiflorus                          |                  |              | Herb    |
| Teedia lucida                                     |                  |              |         |
| Tetraselago longituba                             |                  |              | Herb    |
| Teramnus labialis ssp. labialis                   |                  |              |         |
| Tephrosia longipes ssp. longipes var.<br>longipes |                  |              | Creeper |
| Trichostomum brachydontium                        |                  |              | 1       |
|                                                   | narrow-leaved    |              |         |
| Vigna vexillata var. vexillata                    | wild sweetpea    | Medicinal    | Creeper |
| Wahlenbergia epacridea                            |                  |              | Herb    |
| ~ ^                                               |                  | making beer  |         |
| Xyris capensis                                    | common xyris     | strainers    | Herb    |
| Zantedeschia albomaculata ssp.                    | arrow-leaved     |              |         |
| macrocarpa                                        | arum             | Medicinal    | Herb    |
| Zantedeschia rehmannii                            | pink arum        | garden plant | Herb    |
| Zornia capensis ssp. capensis                     | caterpillar bean |              | Herb    |



**Appendix 4**. Sampling points in the study areas.



Ref:/bjt.NOR335.200806.001



| Scientific names                 | Common Name             | Form     | Ecological<br>Importance | Succession<br>Status |
|----------------------------------|-------------------------|----------|--------------------------|----------------------|
| Acacia mearnsii                  | Black wattle            | Tree     | Category 2 invasive      |                      |
| Andropogon huillensis            | Large silver andropogon | Grass    | Increaser 1              | Climax               |
| Aristida junciformis             | Gangoni three-awn       | Grass    | Increaser 3              | Climax               |
| Berkheya setifera *              | Buffalo-tongue          | Herb     |                          |                      |
| Bewsia biflora                   | False love grass        | Grass    |                          | Climax               |
| Bidens pilosa                    | Common black-jack       | Weed     | Alien invasive           |                      |
| Boophane disticha                | Fan-leaved boophane     | Herb     |                          |                      |
| *                                | Broad-leaved turpentine | Grass    | Increaser 1              | Climax               |
| Cymbopogon excavatus             | grass<br>Couch gross    | Grass    |                          | Pioneer              |
| Cynodon dactylon                 | Couch grass             |          | Increaser 2              | Pioneer              |
| Cyperus longus                   | Waterbiesie             | Reed     |                          |                      |
| Datura stramonium                | Common thorn apple      | Herb     | Declared weed            |                      |
| Elephantorrhiza                  | Elephant's root         | Uarb     |                          |                      |
| elephantina                      | Elephant's root         | Herb     |                          | Sub-climax           |
| Eragrostis curvula               | Weeping love grass      | Grass    | Increaser 2              | climax               |
| Eucalyptus                       |                         |          | Category 2/3             |                      |
| camaldulensis                    | Red gum                 | Tree     | invasive                 |                      |
| Eragrostis gummiflua             | Gum grass               | Grass    | Increaser 2              | Sub-climax           |
| Eragrostis racemosa              | Narrow heart love grass | Grass    | Increaser 2              | Sub-climax           |
| Eragrostis superba               | Saw-tooth love grass    | Grass    | Increaser 2              | sub-climax           |
| Gerbera ambigua                  | Pink and white gerbera  | Herb     |                          |                      |
| Gerbera piloselloides            | Small yellow gerbera    | Herb     |                          |                      |
| Gomphrena celosioides            | Batchelor's button      | Herb     | Alien invasive           |                      |
| Haplocarpha scaposa              | False gerbera           | Herb     |                          |                      |
| Helichrysum aureonitens          | Golden everlasting      | Herb     |                          |                      |
| Helichrysum kraussii             | Straw everlasting       | Shrublet |                          |                      |
| Helichrysum rugulosum            | Marotole                | Herb     |                          |                      |
|                                  |                         |          |                          | Sub-climax           |
| Hyparrhenia hirta                | Common thatching grass  | Grass    | Increaser 1              | climax               |
| Hypoxis hemerocallidea           | Star-flower             | Herb     |                          |                      |
| Imperata cylindrica              | Cottonwool grass        | Grass    | Increaser 1              |                      |
| Miscanthus junceus               | Wireleaf daba grass     | Grass    | Increaser 1              | Climax               |
| Nicandra physalodes              | Apple of Peru           | Herb     | Alien invasive           |                      |
| Oxalis obliquifolia              | Oblique-leaved sorrel   | Herb     |                          |                      |
| Panicum natalense                | Natal panicum           | Grass    | Decreaser                | Climax               |
|                                  | -                       |          |                          | Sub-climax           |
| Panicum maximum                  | Guinea grass            | Grass    | Decreaser                | climax               |
| Pennisetum clandestinum          | Kikuyu grass            | Grass    | Exotic grass             |                      |
| Pinus patula                     | Patula pine             | Tree     |                          |                      |
| Pogonarthria squarrosa           | Herringbone grass       | Grass    | Increaser 2              | sub climax           |
| Pseudognaphalium luteo-<br>album | Jersey cudweed          | Herb     |                          |                      |
| Schoenoplectus                   |                         | 11010    |                          |                      |
| corymbosus                       |                         | Herb     |                          |                      |
| Setaria sphacelata               | Bristle grass           | Grass    | Decreaser                | Climax               |

## Appendix 5. Plant species recorded during dry season survey in Weltevreden



|                        |                      |       | Ecological     | Succession |
|------------------------|----------------------|-------|----------------|------------|
| Scientific names       | Common Name          | Form  | Importance     | Status     |
| Setaria sphacelata v.  |                      |       |                |            |
| sphacelata             | Bristle grass        | Grass | Decreaser      | Climax     |
| Solanum sisymbrifolium |                      | Herb  | Invasive       |            |
| Sporobolus africanus   | Ratstail dropseed    | Grass | Increaser 3    | sub climax |
| Sporobolus pyramidalis | Catstail dropseed    | Grass | Increaser 2    | sub climax |
| Stachys aethiopica     | African stachys      | Herb  |                |            |
| Stenotaphrum           |                      |       |                |            |
| secundatum             | Buffalo-turf grass   | Grass | Exotic grass   | Pioneer    |
| Stoebe vulgaris        | Bankrupt bush        | Herb  | Alien invasive |            |
| Sutherlandia montana   | Mountain balloon pea | Shrub |                |            |
| Tagetes minuta         | Tall khakhi weed     | Herb  | Alien invasive |            |
| Themeda triandra       | Red grass            | Grass | Decreaser      | Climax     |
| Verbena bonariensis    | Tall verbena         | Herb  |                |            |
| Zea mays               | Mielies              | Herb  |                |            |

Bold –species of general occurrence of the Near-Bankenveld Variation (Acocks, 1988). \* - species of less general occurrence of the Near-Bankenveld variation



| Species<br>no | Scientific Name                 | Common Name                | Ecological Status                    | Form      |
|---------------|---------------------------------|----------------------------|--------------------------------------|-----------|
| 72            | Acacia mearnsii                 | Black Wattle               | Alien Invasive**                     | Tree      |
| 935           | Aloe arborescens                | Kransaalwyn                | Medicinal                            | Herb      |
| 1175          | Amaranthus hybridus             | Pigweed                    | Alien Invasive                       | Succulent |
| 1385          | Andropogon appendiculatus       | Vlei Bluestem              | Decreaser - Climax                   | Grass     |
| 1389          | Andropogon eucomus              | Snowflake grass            | Increaser 2 -<br>Subclimax           | Grass     |
| 1937          | Aristida congesta ssp. congesta | Tassel Tree-awn            | Increaser 2 - Pioneer                | Grass     |
| 3178          | Berkheya setifera               | Buffalo-tongue<br>Berkheya | Medicinal                            | Herb      |
| 3237          | Bidens formosa                  | Cosmos                     | Alien Invasive                       | Herb      |
| 3239          | Bidens pilosa                   | Common Black-jack          | Alien Invasive                       | Herb      |
| 3422          | Bothriochloa radicans           | Stinking grass             | Subclimax Increaser 2                | Grass     |
| 3438          | Brachiaria brizantha            | Common signal grass        | Climax Increaser 1                   | Grass     |
| 4566          | Chamaesyce inaequilatera        |                            |                                      | Herb      |
| 4952          | Cirsium vulgare                 | Scotch Thistle             | Alien Invasive*                      | Herb      |
| 5741          | Conyza bonariensis              | Flax-leaf fleabane         |                                      | Herb      |
| 5807          | Cortaderia selloana             |                            | Alien invasive                       | Grass     |
| 6686          | Cynodon dactylon                | Couch Grass                | Increaser 2 - Pioneer                | Grass     |
| 6789          | Cyperus esculentus              | Yellow Nut Sedge           | Medicinal/Edible/Alien<br>Invasive   | Sedge     |
| 6791          | Cyperus longus                  |                            | Medicinal                            | Sedge     |
| 7037          | Datura stramonium               | Common Thorn<br>Apple      | Alien Invasive*                      | Herb      |
| 7578          | Digitaria eriantha              | Common Finger<br>Grass     | Decreaser - Climax                   | Grass     |
| 7733          | Diospyros mespiliformis         | Jakkalsbessie              |                                      | Tree      |
| 8644          | Enneapogon cenchroides          | Nine awned grass           | Pioneer Subclimax<br>Increaser 2     | Grass     |
| 8734          | Eragrostis gummiflua            | Gum Grass                  | Increaser 2 -<br>Subclimax           | Grass     |
| 8770          | Eragrostis racemosa             | Narrow Heart Love<br>Grass | Increaser 2 -<br>Subclimax           | Grass     |
| 8783          | Eragrostis superba              | Saw-tooth love grass       | Subclimax Increaser 2                | Grass     |
| 11672         | Gerbera ambigua                 | Pink and white gerbera     | Medicial                             | Herb      |
| 11822         | Gladiolus dalenii               | African gladiolus          | Medicinal                            | Herb      |
| 12203         | Gomphocarpus fruticosus         | Milkweed                   |                                      | Herb      |
| 12759         | Helichrysum acutatum            |                            | Medicinal                            | herb      |
| 12791         | Helichrysum aureonitens         | Golden everlasting         | Medicinal                            | Herb      |
| 13581         | Heteropogon contortus           | Spear grass                | Subclimax Increaser<br>2             | Grass     |
| 13670         | Hibiscus trionum                | Bladder Hibiscus           | Medicinal                            | Herb      |
| 14001         | Hyparrhenia hirta               | Common Thatching<br>Grass  | Increaser 1 -<br>Subclimax to climax | Grass     |

## Appendix 6. Plant species recorded during wet season survey in Weltevreden



| Species<br>no | Scientific Name                       | Common Name                         | Ecological Status     | Form  |
|---------------|---------------------------------------|-------------------------------------|-----------------------|-------|
| 110           |                                       |                                     | Leonogical Status     | Torm  |
|               |                                       | Hairy wild<br>lettuce/Spotted cat's |                       |       |
| 14060         | Hypochaeris radicata                  | ear                                 | Alien Invasive/Edible | Herb  |
| 14116         | Hypoxis hemerocallidea                | Star-flower                         | Medicinal             | Herb  |
| 16380         | Lippia javanica                       | Fever-tea                           | Medicinal             | Shrub |
| 17401         | Melinis nerviglumis                   | Bristle leaved red top              | Climax Increaser 1    | Grass |
| 17865         | Monocymbium ceresiiforme              | Boat grass                          | Decreaser - Climax    | Grass |
|               |                                       | Oblique-leaved                      |                       |       |
| 19373         | Oxalis obliquifolia                   | Sorrel                              |                       | Herb  |
| 19641         | Panicum maximum                       |                                     | Decreaser             | Grass |
| 19730         | Paspalum dilatatum                    | Dallis Grass                        | Exotic                | Grass |
| 20130         | Pennisetum clandestinum               | Kikuyu Grass                        | Exotic                | Grass |
| 20829         | Pinus patula                          | Patula pine                         | Alien invader         | Tree  |
| 21585         | Pseudognaphalium luteo-album          | Jersey Cudweed                      | Medicinal/Cultural    | Herb  |
| 23796         | Schoenoplectus corymbosus             |                                     | Cultural-weaving      | Reed  |
|               |                                       | Large-Flowered                      |                       |       |
|               |                                       | Sebaea/Primrose                     |                       |       |
| 23964         | Sebaea grandis                        | Gentian                             | Charm                 | Herb  |
| 24635         | Setaria pallide-fusca                 | garden bristle grass                | Pioneer increaser 2   | Grass |
| 24641         | Setaria sphacelata var. sphacelata    | Bristle Grass                       | Decreaser - Climax    | Grass |
| 25166         | Sporobolus africanus                  | Ratstail dropseed                   | Subclimax Increaser 3 | Grass |
| 25191         | Sporobolus pyramidalis                | Catstail dropseed                   | Subclimax increaser 2 | Grass |
| 25504         | Stoebe vulgaris                       | Bankrupt Bush                       | Alien invader         | Shrub |
| 25876         | Sutherlandia frutescens               | Balloon pea                         | Medicinal             | Shrub |
| 26416         | Themeda triandra                      | Red Grass                           | Decreaser - Climax    | Grass |
| 27126         | Tristachya leucothrix                 | Hairy Trident<br>Grass              | Increaser 1 - Climax  | Grass |
|               |                                       | Bulrush                             | Medicinal             | Reed  |
| 27376         | Typha capensis<br>Verbena bonariensis |                                     | Alien invasive        |       |
| 27573         |                                       | Tall Verbena                        |                       | Shrub |
| 27576         | Verbena officinalis                   |                                     | Alien invasive        | Herb  |
| 55604         | Zea mays                              | Maize meal                          |                       | Shrub |

Bold -species of general occurrence of the Near-Bankenveld Variation (Acocks, 1988).



| Title:   | QDS                      | 2530CC                   |
|----------|--------------------------|--------------------------|
| Species: | 388                      |                          |
| Rob      | English Name             | Scientific               |
| 1        | Ostrich                  | Struthio camelus         |
| 6        | Great Crested Grebe      | Podiceps cristatus       |
| 8        | Dabchick                 | Tachybaptus ruficollis   |
| 55       | Whitebreasted Cormorant  | Phalacrocorax lucidus    |
| 58       | Reed Cormorant           | Phalacrocorax africanus  |
| 60       | Darter                   | Anhinga rufa             |
| 62       | Grey Heron               | Ardea cinerea            |
| 63       | Blackheaded Heron        | Ardea melanocephala      |
| 64       | Goliath Heron            | Ardea goliath            |
| 65       | Purple Heron             | Ardea purpurea           |
| 66       | Great White Egret        | Egretta alba             |
| 67       | Little Egret             | Egretta garzetta         |
| 68       | Yellowbilled Egret       | Egretta intermedia       |
| 69       | Black Egret              | Egretta ardesiaca        |
| 71       | Cattle Egret             | Bubulcus ibis            |
| 72       | Squacco Heron            | Ardeola ralloides        |
| 74       | Greenbacked Heron        | Butorides striatus       |
| 76       | Blackcrowned Night Heron | Nycticorax nycticorax    |
| 78       | Little Bittern           | Ixobrychus minutus       |
| 80       | Bittern                  | Botaurus stellaris       |
| 81       | Hamerkop                 | Scopus umbretta          |
| 83       | White Stork              | Ciconia ciconia          |
| 84       | Black Stork              | Ciconia nigra            |
| 85       | Abdim's Stork            | Ciconia abdimii          |
| 89       | Marabou Stork            | Leptoptilos crumeniferus |
| 90       | Yellowbilled Stork       | Mycteria ibis            |
| 91       | Sacred Ibis              | Threskiornis aethiopicus |
| 92       | Bald Ibis                | Geronticus calvus        |
| 93       | Glossy Ibis              | Plegadis falcinellus     |
| 94       | Hadeda Ibis              | Bostrychia hagedash      |
| 95       | African Spoonbill        | Platalea alba            |
| 96       | Greater Flamingo         | Phoenicopterus ruber     |
| 97       | Lesser Flamingo          | Phoenicopterus minor     |
| 99       | Whitefaced Duck          | Dendrocygna viduata      |
| 100      | Fulvous Duck             | Dendrocygna bicolor      |
| 101      | Whitebacked Duck         | Thalassornis leuconotus  |
| 102      | Egyptian Goose           | Alopochen aegyptiacus    |
| 103      | South African Shelduck   | Tadorna cana             |
| 104      | Yellowbilled Duck        | Anas undulata            |
| 105      | African Black Duck       | Anas sparsa              |
| 106      | Cape Teal                | Anas capensis            |
| 107      | Hottentot Teal           | Anas hottentota          |
| 108      | Redbilled Teal           | Anas erythrorhyncha      |

| <b>Appendix 7.</b> Birds that could possibly be found in the area |
|-------------------------------------------------------------------|
|-------------------------------------------------------------------|



| 112   | Cape Shoveller            | Anas smithii             |
|-------|---------------------------|--------------------------|
| 112   | Southern Pochard          | Netta erythrophthalma    |
| 113   | Pygmy Goose               | Nettapus auritus         |
| 114   | Knobbilled Duck           | Sarkidiornis melanotos   |
| 115   | Spurwinged Goose          | Plectropterus gambensis  |
| 110   | Maccoa Duck               | · · ·                    |
| -     |                           | Oxyura maccoa            |
| 118   | Secretarybird             | Sagittarius serpentarius |
| 122   | Cape Vulture              | Gyps coprotheres         |
| 126   | Black Kite                | Milvus migrans           |
| 126.1 | Yellowbilled Kite         | Milvus aegyptius         |
| 127   | Blackshouldered Kite      | Elanus caeruleus         |
| 128   | Cuckoo Hawk               | Aviceda cuculoides       |
| 130   | Honey Buzzard             | Pernis apivorus          |
| 131   | Black Eagle               | Aquila verreauxii        |
| 133   | Steppe Eagle              | Aquila nipalensis        |
| 136   | Booted Eagle              | Hieraaetus pennatus      |
| 137   | African Hawk Eagle        | Hieraaetus spilogaster   |
| 138   | Ayres' Eagle              | Hieraaetus ayresii       |
| 140   | Martial Eagle             | Polemaetus bellicosus    |
| 141   | Crowned Eagle             | Stephanoaetus coronatus  |
| 142   | Brown Snake Eagle         | Circaetus cinereus       |
| 143   | Blackbreasted Snake Eagle | Circaetus pectoralis     |
| 148   | African Fish Eagle        | Haliaeetus vocifer       |
| 149   | Steppe Buzzard            | Buteo vulpinus           |
| 150   | Forest Buzzard            | Buteo trizonatus         |
| 152   | Jackal Buzzard            | Buteo rufofuscus         |
| 155   | Redbreasted Sparrowhawk   | Accipiter rufiventris    |
| 157   | Little Sparrowhawk        | Accipiter minullus       |
| 158   | Black Sparrowhawk         | Accipiter melanoleucus   |
| 159   | Little Banded Goshawk     | Accipiter badius         |
| 160   | African Goshawk           | Accipiter tachiro        |
| 161   | Gabar Goshawk             | Melierax gabar           |
| 164   | Eurasian Marsh Harrier    | Circus aeruginosus       |
| 165   | African Marsh Harrier     | Circus ranivorus         |
| 166   | Montagu's Harrier         | Circus pygargus          |
| 167   | Pallid Harrier            | Circus macrourus         |
| 168   | Black Harrier             | Circus maurus            |
| 169   | Gymnogene                 | Polyboroides typus       |
| 170   | Osprey                    | Pandion haliaetus        |
| 171   | Peregrine Falcon          | Falco peregrinus         |
| 172   | Lanner Falcon             | Falco biarmicus          |
| 173   | Northern Hobby Falcon     | Falco subbuteo           |
| 179   | Western Redfooted Kestrel | Falco vespertinus        |
| 180   | Eastern Redfooted Kestrel | Falco amurensis          |
| 181   | Rock Kestrel              | Falco rupicolis          |
| 182   | Greater Kestrel           | Falco rupicoloides       |
| 183   | Lesser Kestrel            | Falco naumanni           |
| 188   | Coqui Francolin           | Peliperdix coqui         |



| 190     | Greywing Francolin         | Scleroptila africanus    |
|---------|----------------------------|--------------------------|
| 191     | Shelley's Francolin        | Scleroptila shelleyi     |
| 192     | Redwing Francolin          | Scleroptila levaillantii |
| 196     | Natal Francolin            | Pternistis natalensis    |
| 198     | Rednecked Francolin        | Pternistis afer          |
| 199     | Swainson's Francolin       | Pternistis swainsonii    |
| 200     | Common Quail               | Coturnix coturnix        |
| 200     | Harlequin Quail            | Coturnix delegorguei     |
| 203     | Helmeted Guineafowl        | Numida meleagris         |
| 205     | Kurrichane Buttonquail     | Turnix sylvatica         |
| 203     | Wattled Crane              | Grus carunculatus        |
| 208     | Blue Crane                 | Anthropoides paradisea   |
| 200     | Crowned Crane              | Balearica regulorum      |
| 210     | African Rail               | Rallus caerulescens      |
| 210     | Corncrake                  | Crex crex                |
| 211 213 | Black Crake                | Amaurornis flavirostris  |
| 215     | Baillon's Crake            | Porzana pusilla          |
| 213     | Redchested Flufftail       | Sarothrura rufa          |
| 217     |                            | Sarothrura ayresi        |
|         | Whitewinged Flufftail Rare | Porphyrio                |
| 223     | Purple Gallinule           | madagascariensis         |
| 226     | Common Moorhen             | Gallinula chloropus      |
| 228     | Redknobbed Coot            | Fulica cristata          |
| 229     | African Finfoot            | Podica senegalensis      |
| 231     | Stanley's Bustard          | Neotis denhami           |
| 233     | Whitebellied Korhaan       | Eupodotis barrowii       |
| 234     | Blue Korhaan               | Eupodotis caerulescens   |
| 238     | Blackbellied Korhaan       | Eupodotis melanogaster   |
| 240     | African Jacana             | Actophilornis africanus  |
| 242     | Old World Painted Snipe    | Rostratula benghalensis  |
| 245     | Ringed Plover              | Charadrius hiaticula     |
| 248     | Kittlitz's Plover          | Charadrius pecuarius     |
| 249     | Threebanded Plover         | Charadrius tricollaris   |
| 252     | Caspian Plover             | Charadrius asiaticus     |
| 255     | Crowned Plover             | Vanellus coronatus       |
| 257     | Blackwinged Plover         | Vanellus melanopterus    |
| 258     | Blacksmith Plover          | Vanellus armatus         |
| 260     | Wattled Plover             | Vanellus senegallus      |
| 262     | Ruddy Turnstone            | Arenaria interpres       |
| 264     | Common Sandpiper           | Actitis hypoleucos       |
| 265     | Green Sandpiper            | Tringa ochropus          |
| 265     | Wood Sandpiper             | Tringa glareola          |
| 269     | Marsh Sandpiper            | Tringa stagnatilis       |
| 270     | Greenshank                 | Tringa nebularia         |
| 270     | Curlew Sandpiper           | Calidris ferruginea      |
| 272     | Little Stint               | Calidris minuta          |
|         | Sanderling                 | Calidris alba            |
| 281     |                            |                          |



| 286 | Ethiopian Snipe                | Gallinago nigripennis                |
|-----|--------------------------------|--------------------------------------|
| 290 | Whimbrel                       | Numenius phaeopus                    |
| 294 | Pied Avocet                    | Recurvirostra avosetta               |
| 295 | Blackwinged Stilt              | Himantopus himantopus                |
| 293 | Spotted Dikkop                 | Burhinus capensis                    |
| 297 | Water Dikkop                   | Burhinus vermiculatus                |
| 300 | Temminck's Courser             | Cursorius temminckii                 |
| 305 | Blackwinged Pratincole         | Glareola nordmanni                   |
| 303 |                                |                                      |
| 313 | Greyheaded Gull                | Larus cirrocephalus                  |
| 322 | Caspian Tern<br>Whiskered Tern | Sterna caspia<br>Chlidonias hybridus |
|     |                                | Chlidonias hybridus                  |
| 339 | Whitewinged Tern               | Chlidonias leucopterus               |
| 348 | Feral Pigeon                   | Columba livia                        |
| 349 | Rock Pigeon                    | Columba guinea                       |
| 350 | Rameron Pigeon                 | Columba arquatrix                    |
| 352 | Redeyed Dove                   | Streptopelia semitorquata            |
| 354 | Cape Turtle Dove               | Streptopelia capicola                |
| 355 | Laughing Dove                  | Streptopelia senegalensis            |
| 356 | Namaqua Dove                   | Oena capensis                        |
| 358 | Greenspotted Dove              | Turtur chalcospilos                  |
| 359 | Tambourine Dove                | Turtur tympanistria                  |
| 361 | African Green Pigeon           | Treron calva                         |
| 271 | Developments 11 and            | Musophaga                            |
| 371 | Purplecrested Lourie           | porphyreolopha                       |
| 373 | Grey Lourie                    | Corythaixoides concolor              |
| 374 | Eurasian Cuckoo                | Cuculus canorus                      |
| 375 | African Cuckoo                 | Cuculus gularis                      |
| 377 | Redchested Cuckoo              | Cuculus solitarius                   |
| 378 | Black Cuckoo                   | Cuculus clamosus                     |
| 380 | Great Spotted Cuckoo           | Clamator glandarius                  |
| 381 | Striped Cuckoo                 | Clamator levaillantii                |
| 382 | Jacobin Cuckoo                 | Clamator jacobinus                   |
| 385 | Klaas's Cuckoo                 | Chrysococcyx klaas                   |
| 386 | Diederik Cuckoo                | Chrysococcyx caprius                 |
| 391 | Burchell's Coucal              | Centropus burchellii                 |
| 392 | Barn Owl                       | Tyto alba                            |
| 393 | Grass Owl                      | Tyto capensis                        |
| 395 | Marsh Owl                      | Asio capensis                        |
| 397 | Whitefaced Owl                 | Ptilopsus granti                     |
| 400 | Cape Eagle Owl                 | Bubo capensis                        |
| 401 | Spotted Eagle Owl              | Bubo africanus                       |
| 404 | Eurasian Nightjar              | Caprimulgus europaeus                |
| 405 | Fierynecked Nightjar           | Caprimulgus pectoralis               |
| 408 | Freckled Nightjar              | Caprimulgus tristigma                |
| 411 | Eurasian Swift                 | Apus apus                            |
| 412 | Black Swift                    | Apus barbatus                        |
|     | 1                              |                                      |
| 415 | Whiterumped Swift              | Apus caffer                          |



| 417   | Little Swift             | Apus affinis             |
|-------|--------------------------|--------------------------|
| 418   | Alpine Swift             | Tachymarptis melba       |
| 421   | Palm Swift               | Cypsiurus parvus         |
| 424   | Speckled Mousebird       | Colius striatus          |
| 426   | Redfaced Mousebird       | Urocolius indicus        |
| 428   | Pied Kingfisher          | Ceryle rudis             |
| 429   | Giant Kingfisher         | Megaceryle maxima        |
| 430   | Halfcollared Kingfisher  | Alcedo semitorquata      |
| 431   | Malachite Kingfisher     | Alcedo cristata          |
| 432   | Pygmy Kingfisher         | Ispidina picta           |
| 433   | Woodland Kingfisher      | Halcyon senegalensis     |
| 435   | Brownhooded Kingfisher   | Halcyon albiventris      |
| 438   | Eurasian Bee-eater       | Merops apiaster          |
| 443   | Whitefronted Bee-eater   | Merops bullockoides      |
| 444   | Little Bee-eater         | Merops pusillus          |
| 446   | Eurasian Roller          | Coracias garrulus        |
| 451   | African Hoopoe           | Upupa africana           |
| 452   | Redbilled Woodhoopoe     | Phoeniculus purpureus    |
| 432   | Scimitarbilled           | Rhinopomastus            |
| 454   | Woodhoopoe               | cyanomelas               |
| 464   | Blackcollared Barbet     | Lybius torquatus         |
| 465   | Pied Barbet              | Tricholaema leucomelas   |
| 105   | Yellowfronted Tinker     |                          |
| 470   | Barbet                   | Pogoniulus chrysoconus   |
| 473   | Crested Barbet           | Trachyphonus vaillantii  |
| 474   | Greater Honeyguide       | Indicator indicator      |
| 475   | Scalythroated Honeyguide | Indicator variegatus     |
| 476   | Lesser Honeyguide        | Indicator minor          |
| 478   | Sharpbilled Honeyguide   | Prodotiscus regulus      |
| 480   | Ground Woodpecker        | Geocolaptes olivaceus    |
| 483   | Goldentailed Woodpecker  | Campethera abingoni      |
| 486   | Cardinal Woodpecker      | Dendropicos fuscescens   |
|       |                          | Dendropicos              |
| 488   | Olive Woodpecker         | griseocephalus           |
| 489   | Redthroated Wryneck      | Jynx ruficollis          |
| 494   | Rufousnaped Lark         | Mirafra africana         |
| 495.2 | Eastern Clapper Lark     | Mirafra fasciolata       |
| 496   | Flappet Lark             | Mirafra rufocinnamomea   |
| 498   | Sabota Lark              | Calendulauda sabota      |
| 499   | Rudd's Lark              | Heteromirafra ruddi      |
| 500.2 | Eastern Longbilled Lark  | Certhilauda semitorquata |
| 506   | Spikeheeled Lark         | Chersomanes albofasciata |
| 507   | Redcapped Lark           | Calandrella cinerea      |
| 508   | Pinkbilled Lark          | Spizocorys conirostris   |
| 518   | Eurasian Swallow         | Hirundo rustica          |
| 520   | Whitethroated Swallow    | Hirundo albigularis      |
|       |                          |                          |
| 523   | Pearlbreasted Swallow    | Hirundo dimidiata        |
| 524   | Redbreasted Swallow      | Hirundo semirufa         |
| 526   | Greater Striped Swallow  | Hirundo cucullata        |



| 528 | South African Cliff    | <b>77</b> • 1 •1 1           |
|-----|------------------------|------------------------------|
| 528 | Swallow                | Hirundo spilodera            |
| 529 | Rock Martin            | Hirundo fuligula             |
| 530 | House Martin           | Delichon urbica              |
| 531 | Greyrumped Swallow     | Pseudhirundo griseopyga      |
| 532 | Sand Martin            | Riparia riparia              |
| 533 | Brownthroated Martin   | Riparia paludicola           |
| 534 | Banded Martin          | Riparia cincta               |
| 536 | Black Sawwing Swallow  | Psalidoprocne<br>holomelaena |
| 538 | Black Cuckooshrike     | Campephaga flava             |
| 541 | Forktailed Drongo      | Dicrurus adsimilis           |
| 542 | Squaretailed Drongo    | Dicrurus ludwigii            |
| 545 | Blackheaded Oriole     | Oriolus larvatus             |
| 547 | Black Crow             | Corvus capensis              |
| 548 | Pied Crow              | Corvus albus                 |
| 554 | Southern Black Tit     | Parus niger                  |
| 558 | Grey Penduline Tit     | Anthoscopus caroli           |
| 560 | Arrowmarked Babbler    | Turdoides jardineii          |
| 568 | Blackeyed Bulbul       | Pycnonotus tricolor          |
| 576 | Kurrichane Thrush      | Turdus libonyanus            |
| 577 | Olive Thrush           | Turdus olivaceus             |
| 579 | Orange Thrush          | Zoothera gurneyi             |
| 580 | Groundscraper Thrush   | Psophocichla litsipsirupa    |
| 581 | Cape Rockthrush        | Monticola rupestris          |
| 582 | Sentinel Rockthrush    | Monticola explorator         |
| 586 | Mountain Chat          | Oenanthe monticola           |
| 587 | Capped Wheatear        | Oenanthe pileata             |
| 588 | Buffstreaked Chat      | Oenanthe bifasciata          |
| 589 | Familiar Chat          | Cercomela familiaris         |
|     |                        | Thamnolaea                   |
| 593 | Mocking Chat           | cinnamomeiventris            |
|     |                        | Myrmecocichla                |
| 595 | Anteating Chat         | formicivora                  |
| 596 | Stonechat              | Saxicola torquata            |
| 598 | Chorister Robin        | Cossypha dichroa             |
| 600 | Natal Robin            | Cossypha natalensis          |
| 601 | Cape Robin             | Cossypha caffra              |
| 602 | Whitethroated Robin    | Cossypha humeralis           |
| 613 | Whitebrowed Robin      | Cercotrichas leucophrys      |
| 619 | Garden Warbler         | Sylvia borin                 |
| 621 | Titbabbler             | Parisoma subcaeruleum        |
| 625 | Icterine Warbler       | Hippolais icterina           |
|     |                        | Acrocephalus                 |
| 628 | Great Reed Warbler     | arundinaceus                 |
| 631 | African Marsh Warbler  | Acrocephalus baeticatus      |
| 633 | Eurasian Marsh Warbler | Acrocephalus palustris       |
|     |                        | Acrocephalus                 |
| 634 | Eurasian Sedge Warbler | schoenobaenus                |



| 635   | Cape Reed Warbler       | Acrocephalus gracilirostris |
|-------|-------------------------|-----------------------------|
| 637   | Yellow Warbler          | Chloropeta natalensis       |
| 638   | African Sedge Warbler   | Bradypterus baboecala       |
| 643   | Willow Warbler          | Phylloscopus trochilus      |
| 645   | Barthroated Apalis      | Apalis thoracica            |
| 648   | Yellowbreasted Apalis   | Apalis flavida              |
| 651   | Longbilled Crombec      | Sylvietta rufescens         |
| 661   | Grassbird               | Sphenoeacus afer            |
| 664   | Fantailed Cisticola     | Cisticola juncidis          |
| 665   | Desert Cisticola        | Cisticola aridulus          |
| 666   | Cloud Cisticola         | Cisticola textrix           |
| 667   | Ayres' Cisticola        | Cisticola ayresii           |
| 668   | Palecrowned Cisticola   | Cisticola cinnamomeus       |
| 670   | Wailing Cisticola       | Cisticola lais              |
| 677   | Levaillant's Cisticola  | Cisticola tinniens          |
| 678   | Croaking Cisticola      | Cisticola natalensis        |
| 679   | Lazy Cisticola          | Cisticola aberrans          |
| 681   | Neddicky                | Cisticola fulvicapillus     |
| 683   | Tawnyflanked Prinia     | Prinia subflava             |
| 685   | Blackchested Prinia     | Prinia flavicans            |
| 686.1 | Spotted Prinia          | Prinia hypoxantha           |
| 689   | Spotted Flycatcher      | Muscicapa striata           |
| 690   | Dusky Flycatcher        | Muscicapa adusta            |
| 693   | Fantailed Flycatcher    | Myioparus plumbeus          |
| 694   | Black Flycatcher        | Melaenornis pammelaina      |
| 698   | Fiscal Flycatcher       | Sigelus silens              |
| 700   | Cape Batis              | Batis capensis              |
| 706   | Fairy Flycatcher        | Stenostira scita            |
| 708   | Bluemantled Flycatcher  | Trochocercus cyanomelas     |
| 710   | Paradise Flycatcher     | Terpsiphone viridis         |
| 711   | African Pied Wagtail    | Motacilla aguimp            |
| 712   | Longtailed Wagtail      | Motacilla clara             |
| 713   | Cape Wagtail            | Motacilla capensis          |
| 714   | Yellow Wagtail          | Motacilla flava             |
| 716   | Grassveld Pipit         | Anthus cinnamomeus          |
| 717   | Longbilled Pipit        | Anthus similis              |
| 718   | Plainbacked Pipit       | Anthus leucophrys           |
| 719   | Buffy Pipit             | Anthus vaalensis            |
| 720   | Striped Pipit           | Anthus lineiventris         |
| 725   | Yellowbreasted Pipit    | Anthus chloris              |
| 727   | Orangethroated Longclaw | Macronyx capensis           |
| 728   | Yellowthroated Longclaw | Macronyx croceus            |
| 731   | Lesser Grey Shrike      | Lanius minor                |
| 732   | Fiscal Shrike           | Lanius collaris             |
| 733   | Redbacked Shrike        | Lanius collurio             |
| 736   | Southern Boubou         | Laniarius ferrugineus       |
| 740   | Puffback                | Dryoscopus cubla            |



| 741 | Brubru                              | Nilaus afer                |
|-----|-------------------------------------|----------------------------|
| 743 | Threestreaked Tchagra               | Tchagra australis          |
| 744 | Blackcrowned Tchagra                | Tchagra senegala           |
| 746 | Bokmakierie                         | Telophorus zeylonus        |
|     | Orangebreasted Bush                 |                            |
| 748 | Shrike                              | Telophorus sulfureopectus  |
| 750 | Olive Bush Shrike                   | Telophorus olivaceus       |
| 751 | Greyheaded Bush Shrike              | Malaconotus blanchoti      |
| 753 | White Helmetshrike                  | Prionops plumatus          |
| 758 | Indian Myna                         | Acridotheres tristis       |
| 759 | Pied Starling                       | Spreo bicolor              |
| 760 | Wattled Starling                    | Creatophora cinerea        |
| 761 | Plumcoloured Starling               | Cinnyricinclus leucogaster |
| 764 | Glossy Starling                     | Lamprotornis nitens        |
| 769 | Redwinged Starling                  | Onychognathus morio        |
| 772 | Redbilled Oxpecker                  | Buphagus erythrorhynchus   |
| 775 | Malachite Sunbird                   | Nectarinia famosa          |
|     | Lesser Doublecollared               |                            |
| 783 | Sunbird                             | Cinnyris chalybea          |
|     | Greater Doublecollared              |                            |
| 785 | Sunbird                             | Cinnyris afra              |
| 787 | Whitebellied Sunbird                | Cinnyris talatala          |
| 791 | Scarletchested Sunbird              | Chalcomitra senegalensis   |
| 792 | Black Sunbird                       | Chalcomitra amethystina    |
| 796 | Cape White-eye                      | Zosterops virens           |
| 799 | Whitebrowed                         | Plocepasser mahali         |
| 801 | Sparrowweaver<br>House Sparrow      | Passer domesticus          |
| 803 | *                                   | Passer melanurus           |
| 805 | Cape Sparrow<br>Southern Greyheaded |                            |
| 804 | Sparrow                             | Passer diffusus            |
| 805 | Yellowthroated Sparrow              | Petronia superciliaris     |
| 807 | Thickbilled Weaver                  | Amblyospiza albifrons      |
| 810 | Spectacled Weaver                   | Ploceus ocularis           |
| 811 | Spottedbacked Weaver                | Ploceus cucultatus         |
| 813 | Cape Weaver                         | Ploceus capensis           |
| 814 | Masked Weaver                       | Ploceus velatus            |
| 815 | Lesser Masked Weaver                | Ploceus intermedius        |
| 816 | Golden Weaver                       | Ploceus xanthops           |
| 819 | Redheaded Weaver                    | Anaplectes rubriceps       |
| 820 | Cuckoofinch                         | Anomalospiza imberbis      |
| 821 | Redbilled Quelea                    | Quelea quelea              |
| 824 | Red Bishop                          | Euplectes orix             |
| 826 | Golden Bishop                       | Euplectes afer             |
| 820 | Yellowrumped Widow                  | Euplectes capensis         |
| 827 | Redshouldered Widow                 | Euplectes axillaris        |
| 828 | Whitewinged Widow                   | Euplectes albonotatus      |
| 829 | Redcollared Widow                   | Euplectes ardens           |
| 831 | Longtailed Widow                    | *                          |
| 032 | Longtaned widow                     | Euplectes progne           |



| 840 | Bluebilled Firefinch   | Lagonosticta rubricata |
|-----|------------------------|------------------------|
| 842 | Redbilled Firefinch    | Lagonosticta senegala  |
| 844 | Blue Waxbill           | Uraeginthus angolensis |
| 845 | Violeteared Waxbill    | Granatina granatina    |
| 846 | Common Waxbill         | Estrilda astrild       |
| 850 | Swee Waxbill           | Estrilda melanotis     |
| 852 | Quail Finch            | Ortygospiza atricollis |
| 854 | Orangebreasted Waxbill | Amandava subflava      |
| 855 | Cutthroat Finch        | Amadina fasciata       |
| 856 | Redheaded Finch        | Amadina erythrocephala |
| 857 | Bronze Mannikin        | Lonchura cucullata     |
| 860 | Pintailed Whydah       | Vidua macroura         |
| 862 | Paradise Whydah        | Vidua paradisaea       |
| 864 | Black Widowfinch       | Vidua funerea          |
| 867 | Steelblue Widowfinch   | Vidua chalybeata       |
| 869 | Yelloweyed Canary      | Serinus mozambicus     |
| 870 | Blackthroated Canary   | Serinus atrogularis    |
| 872 | Cape Canary            | Serinus canicollis     |
| 877 | Bully Canary           | Serinus sulphuratus    |
| 881 | Streakyheaded Canary   | Serinus gularis        |
| 884 | Goldenbreasted Bunting | Emberiza flaviventris  |
| 885 | Cape Bunting           | Emberiza capensis      |
| 886 | Rock Bunting           | Emberiza tahapisi      |



| Site Name | Family                    | Abundance |
|-----------|---------------------------|-----------|
| Site 1    | Acrididae                 | 2         |
|           | Muscidae                  | 2         |
|           | Sepsidae                  | 4         |
|           | Tachnidae                 | 1         |
|           | Chironomidae              | 15        |
|           | Asilidae                  | 2         |
|           | Cixiidae                  | 10        |
|           | Cicadellidae              | 8         |
|           | Syrphidae                 | 3         |
|           | Dolichopodidae            | 8         |
|           | Tingidae                  | 1         |
| ~         |                           |           |
| Site 2    | Acrididae                 | 2         |
|           | Chironomidae              | 41        |
|           | Sphecidae                 | 8         |
|           | Asilidae                  | 8         |
|           | Staphylinidae             | 1         |
|           | Issidae                   | 2         |
|           | Tingidae                  | 3         |
|           | Dolichopodidae            | 1         |
| Site 3    | Chironomidae              | 12        |
| Site 5    | Meloidae                  | 2         |
|           | Pentatomidae              | 1         |
|           | Asilidae                  | 2         |
|           | Coreidae                  | 1         |
|           | Cicadellidae              | 6         |
|           |                           | 2         |
|           | Chrysomelidae<br>Muscidae | 2         |
|           |                           | 2         |
|           | Calliphoridae             | 2         |
| Site 4    | Coccinellidae             | 1         |
|           | Chrysomelidae             | 2         |
|           | Pentatomidae              | 1         |
|           | Mantidae                  | 1         |
|           | Asilidae                  | 9         |
|           | Chironomidae              | 11        |
|           | Cicadellidae              | 4         |
|           | Calliphoridae             | 2         |
|           | Sphecidae                 | 1         |
|           | Tephritidae               | 3         |
|           | Sepsidae                  | 4         |
|           |                           |           |
| Site 5    | Acrididae                 | 2         |
|           | Coreidae                  | 5         |
|           | Sphecidae                 | 2         |
|           | Syrphidae                 | 2         |
|           | Cicadellidae              | 4         |
|           | Chrysomelidae             | 1         |

## Appendix 8. Insects collected in Weltevreden during the dry season



| Site Name | Family          | Abundance |
|-----------|-----------------|-----------|
|           | Anthicidae      | 1         |
|           | Chironomidae    | 3         |
|           | Tabanidae       | 2         |
|           |                 |           |
| Site 6    | Acrididae       | 1         |
|           | Chironomidae    | 7         |
|           | Coccinellidae   | 1         |
|           | Tingidae        | 2         |
|           | Cicadellidae    | 7         |
|           | Tephritidae     | 3         |
|           | Tenebrionidae   | 1         |
|           | Cerambycidae    | 1         |
|           | Syrphidae       | 2         |
|           | Aradidae        | 1         |
|           | Thudidue        | 1         |
| Site 7    | Cicadellidae    | 3         |
|           | Chironomidae    | 15        |
|           | Coccinellidae   | 3         |
|           | Reduviidae      | 3         |
|           | Apionidae       | 3         |
|           | Anthicidae      | 1         |
|           | Muscidae        | 2         |
|           | Cydnidae        | 1         |
|           |                 | 1         |
| Site 8    | Cicadellidae    | 4         |
| Site 0    | Apionidae       | 1         |
|           | Coccinellidae   | 1         |
|           | Chironomidae    | 2         |
|           | Culicidae       | 4         |
|           | Muscidae        | 4         |
|           | Ceratopogonidae | 5         |
|           | Chrysomelidae   | 2         |
|           | Tipulidae       | 1         |
|           | Calliphoridae   | 2         |
|           | Tachinidae      | 3         |
|           | Tuchiniauc      | 3         |
| Site 9    | Coccinellidae   | 4         |
|           | Acrididae       | 1         |
|           | Lygaeidae       | 5         |
|           | Reduviidae      | 1         |
|           | Chironomidae    | 2         |
|           | Apionidae       | 1         |
|           | Cicadellidae    | 2         |
|           | Muscidae        | 2         |
|           | Thripidae       | 5         |
|           |                 |           |
| Site 10   | Tingidae        | 5         |
|           | Cicadellidae    | 2         |
|           | Chironomidae    | 6         |
|           | Coccinellidae   | 1         |
|           | Tenthredinidae  | 8         |
|           | Tephritidae     | 2         |
|           | repiiridae      | 4         |



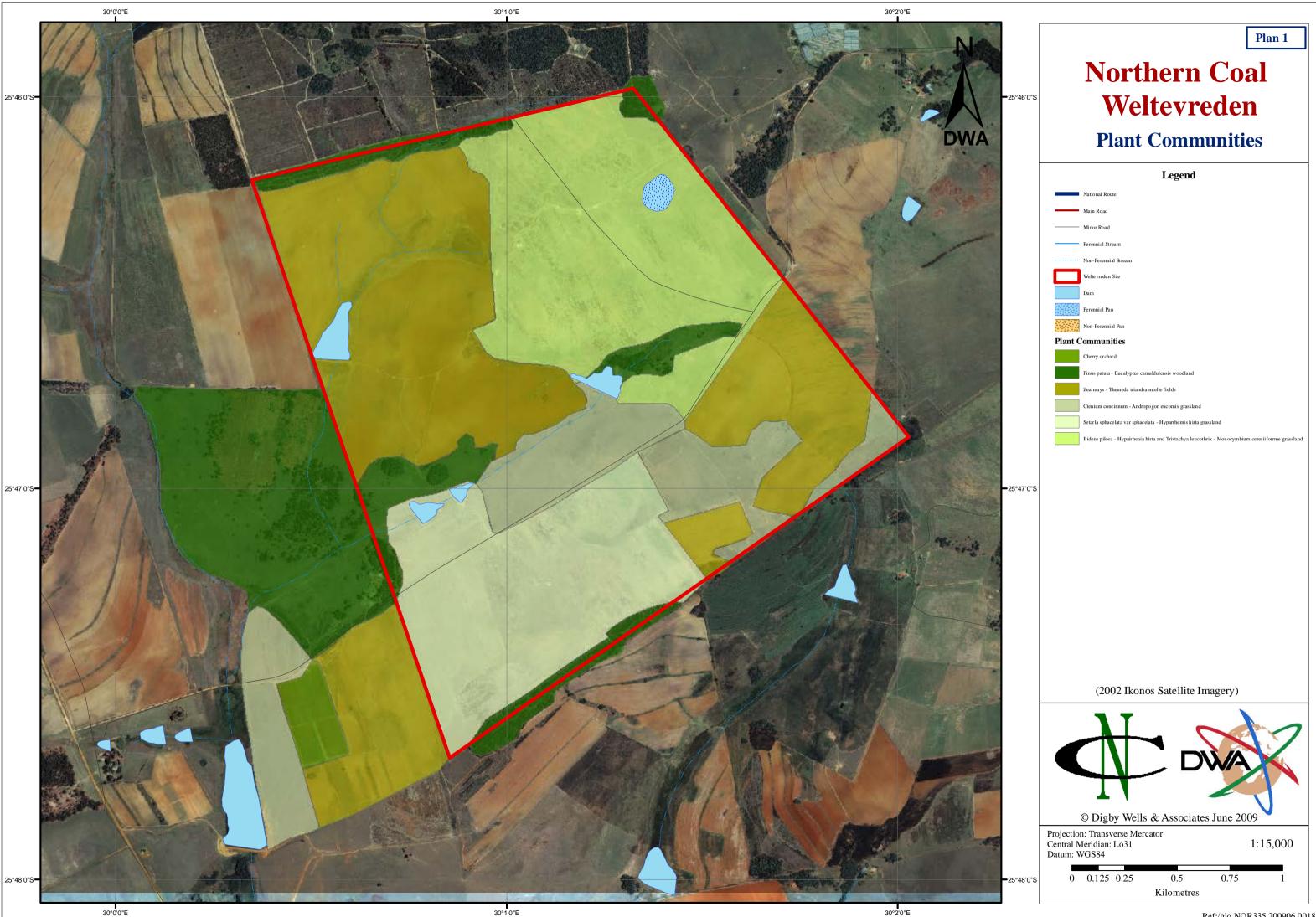
| Site Name | Family           | Abundance |
|-----------|------------------|-----------|
|           | Asilidae         | 7         |
|           | Sphecidae        | 1         |
|           | Muscidae         | 3         |
|           | Calliphoridae    | 1         |
|           |                  |           |
| Site 11   | Chironomidae     | 20        |
|           | Mantidae         | 1         |
|           | Acrididae        | 1         |
|           | Pompilidae       | 2         |
|           | Acanthosomatidae | 1         |
|           |                  |           |
| Site 12   | Acrididae        | 1         |
|           | Asilidae         | 1         |
|           | Chironomidae     | 38        |
|           | Muscidae         | 1         |
|           | Tipulidae        | 1         |
|           | Apionidae        | 1         |
|           | Cicadellidae     | 2         |
|           | Chrysomelidae    | 1         |
|           |                  |           |
| Site 13   | No insects       |           |



| Site Name | Family         | Abundance |
|-----------|----------------|-----------|
| WELTE 1   | Acrididae      | 4         |
|           | Asilidae       | 1         |
|           | Cercopidae     | 1         |
|           | Chironomidae   | 2         |
|           | Cicadellidae   | 3         |
|           | Mantidae       | 4         |
|           | Meloidae       | 2         |
|           | Muscidae       | 6         |
|           | Reduviidae     | 20        |
|           |                | 43        |
| WELTE 2   | Chironomidae   | 4         |
|           | Coenagrionidae | 2         |
|           | Curculionidae  | 4         |
|           | Formicidae     | 3         |
|           | Meloidae       | 1         |
|           | Reduviidae     | 10        |
|           | Tenebrionidae  | 1         |
|           |                | 25        |
| WELTE 3   | Acrididae      | 1         |
|           | Chironomidae   | 3         |
|           | Curculionidae  | 5         |
|           | Elateridae     | 1         |
|           | Formicidae     | 1         |
|           | Meloidae       | 1         |
|           | Muscidae       | 6         |
|           | Reduviidae     | 5         |
|           | Sepsidae       | 2         |
|           | Tenebrionidae  | 4         |
|           | Tipulidae      | 2         |
|           | -              | 31        |
| WELTE 4   | Chironomidae   | 4         |
|           | Chrysomelidae  | 8         |
|           | Coccinellidae  | 1         |
|           | Coenagrionidae | 1         |
|           | Curculionidae  | 4         |
|           | Muscidae       | 1         |
|           | Reduviidae     | 11        |
|           | Scarabaeidae   | 1         |
|           | Staphylinidae  | 2         |
|           | Tenebrionidae  | 3         |
|           |                | 36        |
| WELTE 5   | Acrididae      | 1         |
|           | Alydidae       | 1         |
|           | Chironomidae   | 1         |

## Appendix 9. Insects collected in Weltevreden during the wet season




| Site Name | Family         | Abundance |
|-----------|----------------|-----------|
| Site Name | Chrysomelidae  | 3         |
|           | Coenagrionidae | 1         |
|           | Curculionidae  | 1         |
|           | Formicidae     | 2         |
|           |                |           |
|           | Muscidae       | 2         |
|           | Pentatomidae   | 1         |
|           | Reduviidae     | 13        |
|           | Sepsidae       | 1         |
|           | Tenebrionidae  | 3         |
|           | Tipulidae      | 4         |
|           |                | 34        |
| WELTE 6   | Acrididae      | 2         |
|           | Aradidae       | 2         |
|           | Asilidae       | 1         |
|           | Chironomidae   | 1         |
|           | Chrysomelidae  | 2         |
|           | Coenagrionidae | 1         |
|           | Dictyopharidae | 4         |
|           | Formicidae     | 4         |
|           | Muscidae       | 12        |
|           | Reduviidae     | 7         |
|           | Sepsidae       | 3         |
|           | Staphylinidae  | 2         |
|           | Tenebrionidae  | 2         |
|           | Tipulidae      | 8         |
|           | 1              | 51        |
| WELTE 7   | Alydidae       | 2         |
|           | Carabidae      | 1         |
|           | Chrysomelidae  | 5         |
|           | Curculionidae  | 6         |
|           | Formicidae     | 2         |
|           | Meloidae       | 1         |
|           | Muscidae       | 5         |
|           | Reduviidae     | 7         |
|           | Sepsidae       | 2         |
|           | Sphecidae      | 1         |
|           | Tenebrionidae  | 2         |
|           |                | 34        |
| WELTE 8   | Acrididae      | 1         |
|           | Aradidae       | 2         |
|           | Chrysomelidae  | 2         |
|           | Curculionidae  | 15        |
|           | Muscidae       | 15        |
|           |                |           |
|           | Pentatomidae   | 1         |
|           | Pompilidae     | 1         |
|           | Reduviidae     | 4         |
|           | Scarabaeidae   | 3         |



| Site Name | Family         | Abundance |
|-----------|----------------|-----------|
|           | Tenebrionidae  | 1         |
|           |                | 31        |
| WELTE 9   | Acrididae      | 3         |
|           | Chironomidae   | 1         |
|           | Coccinellidae  | 1         |
|           | Coenagrionidae | 1         |
|           | Curculionidae  | 7         |
|           | Formicidae     | 2         |
|           | Meloidae       | 2         |
|           | Muscidae       | 2         |
|           | Pentatomidae   | 1         |
|           | Reduviidae     | 23        |
|           | Scarabaeidae   | 1         |
|           |                | 44        |
| WELTE 10  | Alydidae       | 1         |
|           | Asilidae       | 1         |
|           | Carabidae      | 1         |
|           | Chironomidae   | 1         |
|           | Cicadellidae   | 1         |
|           | Coccinellidae  | 3         |
|           | Curculionidae  | 1         |
|           | Languriidae    | 1         |
|           | Meloidae       | 10        |
|           | Muscidae       | 4         |
|           | Pentatomidae   | 1         |
|           | Tenebrionidae  | 2         |
|           | Tipulidae      | 2         |
|           |                | 29        |
| WELTE 11  | Asilidae       | 1         |
|           | Chironomidae   | 1         |
|           | Coccinellidae  | 1         |
|           | Coenagrionidae | 1         |
|           | Muscidae       | 8         |
|           | Reduviidae     | 51        |
|           | Sphecidae      | 1         |
|           |                | 64        |



**Appendix 10.** Map representing all five major plant communities found in Weltevreden during the dry and wet season



Ref:/glo.NOR335.200906.0018