DECLARATION OF INTEREST BY SPECIALIST

		(For official use only)
Provincial Reference Number	per:	
NEAS Reference Number:		KZN / EIA /
TVEAU Neierence Number.		INZIN / LIA /
Waste Management Licen	` ' ' ' ' ' '	
Date Received by Departm	ient:	
DETAILS OF SP	ECIALIST AND DE	CLARATION OF INTEREST
	waste management licence	Environmental Management Act, 1998 (Act in terms of section 20(b) of the National 59 of 2008).
KINDLY NOTE:		
	oner ("EAP") to ascertain when	esponsibility of the Applicant / Environmental hether subsequent versions of the form have
PROJECT TITLE		
Proposed Establishment of	f a Cemetery within the Da	nnhauser Local Municipality, KwaZulu-Natal
DISTRICT MUNICIPALITY		
Amajuba District Municipal		
	···	
1. SPECIALIST INFO	RMATION	
Specialist name:	Geotechnical Solutions	
Contact person:	Nishen Govender	
Postal address:	PO Box 303, Ladysmith, KZ	N,

Postal code:	3370	Cell:	071 115 6099
Telephone:		Fax:	
E-mail:	nishen@luhlazaconsulting.co.	za	
Professional affiliation(s)	SACNASP – Pr. Sci. Nat.		
(if any)			

Department of Economic Development, Tourism	Details of the Specialist and Declaration of	May 2021
& Environmental Affairs, KwaZulu-Natal	Interest	V1

DECLARATION OF INTEREST BY SPECIALIST

Project Consultant / EAP:	SiVEST SA (Pty) Ltd			
Contact person:	Luvanya Naidoo			
Postal address:	PO Box 1899, Umhlanga I	Rocks		
Postal code:	4320	Cell:	084 081 9308	
Telephone:	031 581 1576	Fax:	n/a	
E-mail:	luvanyan@sivest.co.za			

2. DECLARATION BY THE SPECIALIST

l,	Nishen Govender	,, declare that

General declaration:

- I act as the independent specialist in this application;
- do not have and will not have any vested interest (either business, financial, personal or other) in the undertaking of the proposed activity, other than remuneration for work performed in terms of the Environmental Impact Assessment Regulations, 2014;
- I will perform the work relating to the application in an objective manner, even if this results in views and findings that are not favourable to the applicant;
- I declare that there are no circumstances that may compromise my objectivity in performing such work;
- I have expertise in conducting the specialist report relevant to this application, including knowledge
 of the Act, regulations and any guidelines that have relevance to the proposed activity;
- I will comply with the Act, regulations and all other applicable legislation;
- I have no, and will not engage in, conflicting interests in the undertaking of the activity;
- I undertake to disclose to the applicant and the competent authority all material information in my possession that reasonably has or may have the potential of influencing any decision to be taken with respect to the application by the competent authority; and the objectivity of any report, plan or document to be prepared by myself for submission to the competent authority;
- all the particulars furnished by me in this form are true and correct; and

By Nishen at 4:59 pm, Nov 15, 2021

• I am aware that a person is guilty of an offence in terms of Regulation 48 (1) of the EIA Regulations, 2014, if that person provides incorrect or misleading information. A person who is convicted of an offence in terms of sub-regulation 48(1) (a)-(e) is liable to the penalties as contemplated in section 49B(1) of the National Environmental Management Act, 1998 (Act 107 of 1998).

Derender	
Signature of the specialist:	
Geotechnical Solutions	
Name of company:	
15 November 2021	
Date:	
APPROVED	

Department of Economic Development, Tourism	Details of the Specialist and Declaration of	May 2021
& Environmental Affairs, KwaZulu-Natal	Interest	V1

Geotechnical Solutions (Pty) Ltd

EARTH CIVIL TESTING

Reg.No.- K2011/115681/01 Tax.No.- 9127/374/18/0
Radiation Control – Authority No. 2962/16/1430
106 Francis Road – P.O. Box 303 - Ladysmith – KwaZulu Natal – 3370

Web - www.geo-sol.co.za - Tel - 0715608058 - 0799100920 - Email - projects@geo-sol.co.za

REPORT TO SIVEST ON THE RESULTS OF A GEOTECHNICAL INVESTIGATION FOR THE PROPOSED CEMETERY SITES AT DURNACOL AND TRY AGAIN FARMS IN DANHAUSER, KWAZULU-NATAL

066-2113-01.R01 Revision 0 18 May 2021

Compiled for: SIVEST 4 Pencarrow Crescent, La Lucia Ridge,

Compiled by:

Umhlanga

Author:	Nishen Govender Pr. Sci. Nat. MSc Geohydrology PhD Candidate
Reviewer:	Kumendrie Naidoo Pr. Sci. Nat. MSc Mining Engineering PhD Candidate

Ref: 066-2113-01.R01

REPORT TO SIVEST ON THE RESULTS OF A GEOTECHNICAL INVESTIGATION FOR THE PROPOSED CEMETERY SITES AT DURNACOL AND TRY AGAIN FARMS IN DANHAUSER, KWAZULU-NATAL

066-2113-01.R01 Revision 0 18 May 2021

Prepared For:

SIVEST

Compiled by: Nishen Govender Pr. Sci. Nat. BSc Hon and MSc Geohydrology

Approval of Document							
Date: 18 May 2021							
Reference:	066-2113-01.R01						
Professional Name	SACNASP No	Signature					
Nishen Govender Pr. Sci. Nat. MSc Geohydrology	400138/17	Dool					
Kumendrie Naidoo Pr. Sci. Nat. MSc Mining Engineering	400080/2000	Jada					

TABLE OF CONTENTS

Contents

1.	TERMS OF AGREEMENT AND SCOPE OF SERVICES	1
2.	CODES OF PRACTICE AND STANDARDS	1
3.	REFERENCED INFORMATION	2
4.	INVESTIGATION ACTIVITIES	2
4.1 4.2 4.3	TEST PITTING AND PROFILING DCP TESTING PERCOLATION TEST	3 3 3
5.	DESCRIPTION OF THE STUDY AREA	4
6.	CLIMATIC CONDITIONS	8
7.	GENERAL GEOLOGY	9
7.1 7.2	Durnacol Geology Try Again Geology	10 13
8.	GROUNDWATER SEEPAGE IN TEST PITS	15
9.	SOIL LABORATORY RESULTS	15
10.	DISCUSSION	16
10.1 10.2 10.3 10.4 10.5	PROPOSED DEVELOPMENT EXCAVATABILITY FOR THE GRAVE SITES LEACHATE MIGRATION BASAL BUFFER ZONE SOIL WORKABILITY	16 16 17 17 18
11.	RATING OF CEMETERY SITE	19
11.1 11.2	HANBURY AND HALL (1990) AND DIPPENAAR ET AL. (2018) COUNCIL FOR GEOSCIENCES CEMETERY GUIDELINES	19 22
12.	CONCLUDING REMARKS	22
13.	REFERENCES	23

Appendix A: Test Pit Profiles

Appendix B: DCP Test Results

Appendix C: Laboratory Test Results

Table of Abbreviations

begl	Below existing ground level
ВН	Borehole
cm	centimetre
DCP	Dynamic Cone Penetrometer Test
Ε	East
GM	grading modulus
IMC	insitu moisture content
kN/m²	kilonewtons per metre square
LL	liquid limit
LS	linear shrinkage
m	metre (s)
mamsl	Metres above mean sea level
mm	millimetre
No.	number
N	North
PI	plasticity index
SANS	South African National Standards
S	South
S	second
TP	Test Pits
TLB	Tractor loader backactor
WULA	Water Use License Application

1. TERMS OF AGREEMENT AND SCOPE OF SERVICES

Geotechnical Solutions (Pty) Ltd were approached by Sivest to assist with a geotechnical and hydrogeological report for two cemetery sites in Danhauser, KwaZulu-Natal.

Following the tender process, Sivest was appointed by the local authority in the area to proceed with the Environmental Impact Assessment.

The following work has been proposed by Geotechnical Solutions:

- Hand excavated inspections pits.
- Dynamic cone penetration tests.
- Groundwater Quality Assessment.
- Geotechnical and Hydrogeological Report.

This report referenced 066-2133-01.R01 provides the results of the geotechnical and hydrogeological investigation. Included in the report with be recommendations in terms of suitability for use a cemetery site, aquifer contamination risk.

2. CODES OF PRACTICE AND STANDARDS

The services were carried out in accordance to the current level of geotechnical standards practiced by professionals in Southern Africa.

The documents referenced for use is:

- Site Investigation Code of Practice, 1st Edition, South African Institution of Civil Engineering Geotechnical Division, January, 2010.
- Dippenaar, M.A., Olivier, J., Lorentz, S., Ubomba-Jaswa, E., Abia, A.L.K., and Diamond, R.E. (2018). Environmental Risk Assessment, Monitoring and Management of Cemeteries. Water Research Commission. WRC Report No. 2449/1/18

The nature of geotechnical engineering is such that variations in soil conditions may occur even where sites seem to be consistent. Variations from what is reported here may become evident during construction and it is thus imperative that an appropriately

qualified and experienced competent person inspects all critical stages of development including, but not limited to excavations, to ensure that conditions at variance with those predicted do not occur and to undertake an interpretation of the facts supplied in this report.

It is possible that certain indications of ground stability, contamination, or groundwater levels were latent or otherwise not visible. Opinions are based on what was visible at the time the investigation was conducted.

3. REFERENCED INFORMATION

The following information was used for the project:

- i. Kml files issued by Sivest showing the site boundaries.
- ii. Council for Geosciences Geological Map Sheet "2830 Dundee", to a scale of 1:250 000.
- iii. Department of Water and Sanitation Hydrogeological Map Sheet "2730 Vryheid", to a scale of 1:500 000.
- iv. Low-resolution satellite imagery sourced from Google Earth (202).

4. INVESTIGATION ACTIVITIES

The field portion of the investigation was carried out over the period 21 April 2021 to 22 April 2021 and comprised the following:

- a. Excavation of test pits by hand tools,
- b. CBR Dynamic Cone Penetrometer (DCP) testing,

4.1 Test Pitting and Profiling

DURNACOL SITE

Five test pits were excavated across the site and are designated by prefixes PN101 to PN105. The test pits were excavated using hand tools to approximate refusal/final depths in the range 1.6 metres (m) to 1.8m below existing ground level (begl).

TRY AGAIN SITE

Eight test pits were excavated across the site and are designated by prefixes PN201 to PN208. The test pits were excavated using hand tools to approximate refusal/final depths in the range 1.4 metres (m) to 1.9m below existing ground level (begl).

The test pits were profiled in accordance to the South African Geoterminology Guidelines (Brink and bruin, 2002). The test pit profiles are given in Appendix A at the end of this report.

4.2 DCP Testing

DURNACOL SITE

DCP tests were also carried out adjacent to each test pit. A total of five DCP tests were completed. The DCP tests have been designated by prefixes DCP101 to DCP105 extended to approximate refusal/final depths in the range 1.7m to 1.9m begl.

TRY AGAIN SITE

DCP tests were also carried out adjacent to each test pit. A total of eight DCP tests were completed. The DCP tests have been designated by prefixes DCP201 to DCP208 extended to approximate refusal/final depths in the range 1.7m to 1.9m begl

The DCP test results are given in Appendix B at the end of this report

4.3 Percolation Test

Two percolation tests were carried out in accordance with SANS 0400 (Formerly SABS 0400, 1990). The objective of the percolation test is to determine the percolation rates through the subsoil to identify approximate permeability rates.

5. DESCRIPTION OF THE STUDY AREA

There are two proposed cemetery sites that are located approximately 5km from each other. The Durnacol site is located approximately 3.5km southwest of Dannhauser Town and Try Again Site 3.0km south east of Dannahauser town.

The latitude and longitude of the central portion of the Durnacol site is 28.04343 South and 30.03601 East.

The latitude and longitude of the central portion of the Try Again site is 28.01020 South and 30.09490 East.

Both sites comprise an open plot of land with an abundance of vegetation.

The locality of the study area is shown in Figures 1 and 2, and Figures 3 and 4 shows positions of the field test pits. Indicative view of the site is given in Photographs 1 to 3.

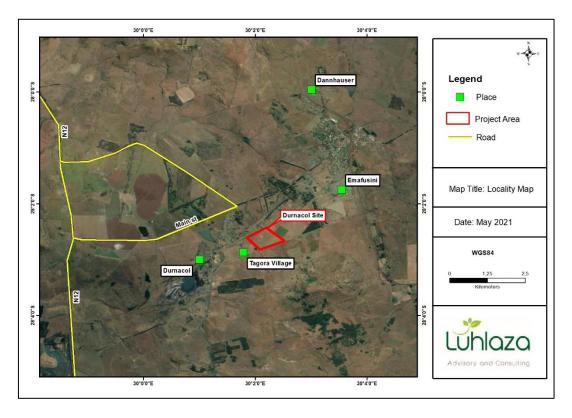


Figure 1: Locality of Durnacol Site

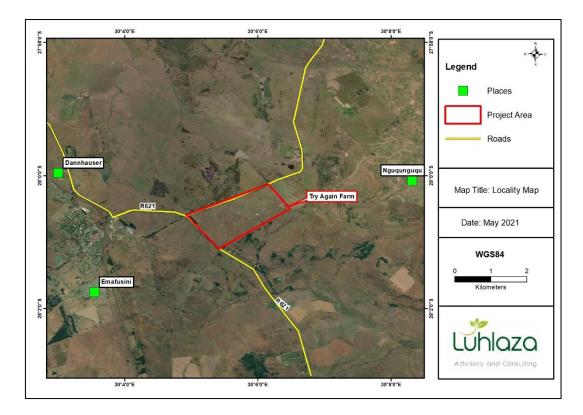


Figure 2: Locality of Try Again Site

Photograph 1: Indicative view of Durnacol Site

Photograph 2: Indicative view of Try Again Site

Photograph 3: Indicative view of the surface water feature close to Durnacol site

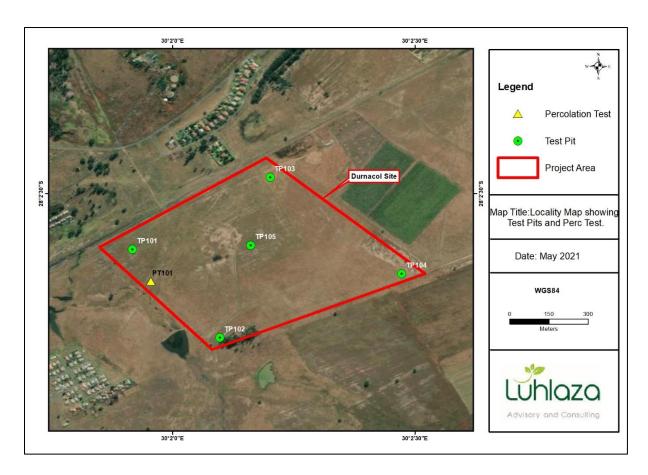


Figure 3: Field Test Positions of Durnacol Site

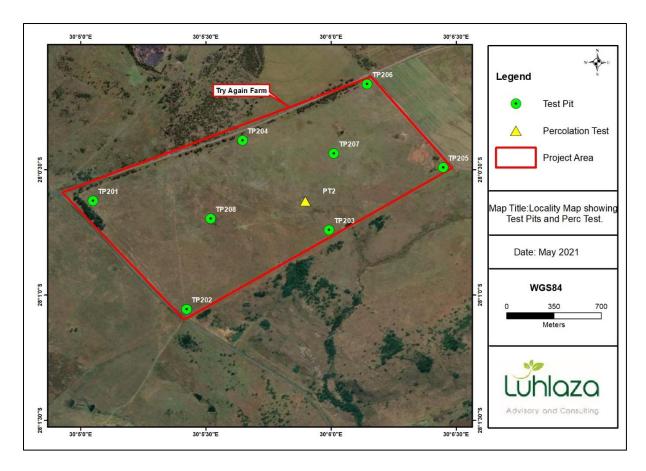


Figure 4: Field Test Positions of Try Again Site

6. CLIMATIC CONDITIONS

The area is associated with relatively hot summer months which lasts from November to March and have temperatures up to 27°C with a low of 16°C. The coldest months are from May to July and have temperatures up to 19°C and low of 4°C. April, August, September and October are relatively warm months.

The wet season is from October to March and dry season is from March to September. The wet season can expect a high of 112mm of rainfall and dry season a low of 3mm.

7. GENERAL GEOLOGY

According to the regional geological map "2830 Dundee" (Refer to Figures 5 and 6), the Durnacol site is underlain by Volksrust Formation shale that was intruded by Jurassic dolerite and the Try Again site is underlain by Vryheid Formation sandstone and shale that was intruded by Jurassic dolerite.

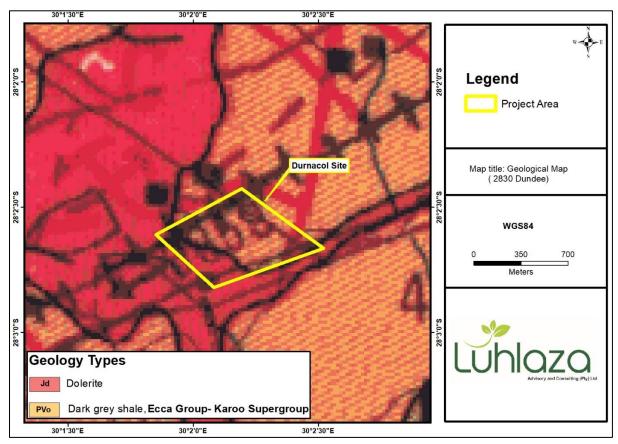


Figure 5: Geological Map of the study area "2830" Showing Durnacol Site

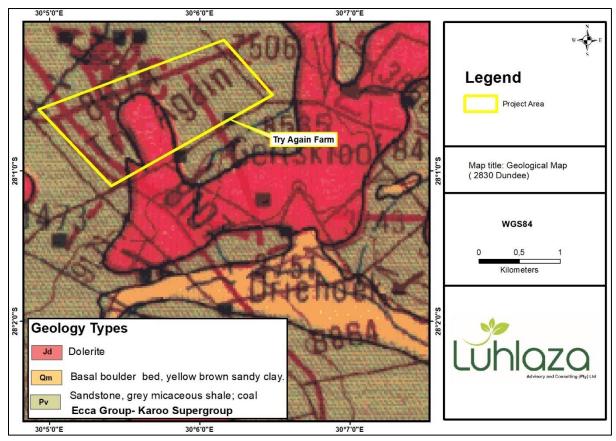
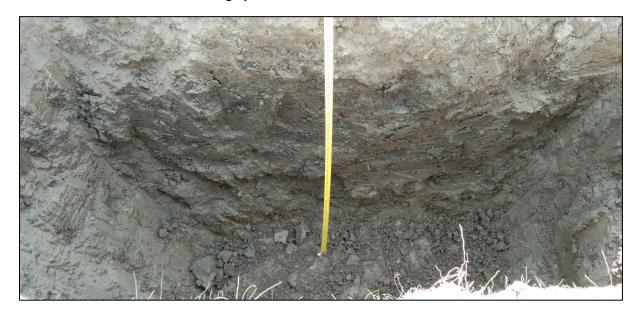


Figure 6: Geological Map of the study area "2830" Showing Try Again Site

7.1 Durnacol Geology

The positions investigated at the site comprised clayey colluvial and residual soils that have been derived from the underlying dolerite rock.

The **colluvial** material can be described as slightly moist, pale brown to light brown, firm, fine grained, silty CLAY with roots and vegetation. The colluvial soils extended to approximate depths in the range 0.5m to 0.7m begl (Refer to test pit profiles for exact depths).


The **residual** material can be described as moist, pale brown to orange, firm, intact, silty CLAY with cobbles and pebbles. The cobbles and pebbles appear to be from dolerite rock. The residual material extended to approximate final depth of 1.9m begl (Refer to test pit profiles for exact depths).

Weathered dolerite rock was only encountered in PN101 from an approximate depth of 1.7m begl. The dolerite rock can be described as brown to pale yellow, completely to highly weathered, fine to medium grained, highly fractured, soft rock.

Photographs of subsurface profiles observed in the inspection pits are given in Photographs 4 to 6.

Photograph 4: Material Encountered in TP101

Photograph 5: Material Encountered in TP103

Photograph 6: Material Encountered in TP105

7.2 Try Again Geology

The positions investigated at the site comprised clayey colluvial and residual soils that have been derived from the underlying sandstone rock.

The **colluvial** material can be described as slightly moist, pale brown to light brown, firm, fine grained, silty CLAY with roots and vegetation. The colluvial soils extended to approximate depths in the range 0.5m to 0.7m begl (Refer to test pit profiles for exact depths).

The **residual** material can be described as moist, pale brown to orange, firm, intact, silty CLAY with cobbles and pebbles. The cobbles and pebbles appear to be from dolerite rock. The residual material extended to approximate final depth of 1.8m begl (Refer to test pit profiles for exact depths).

Weathered dolerite rock was only encountered in PN208 from an approximate depth of 1.3m begl. The dolerite rock can be described as brown to pale yellow, completely to highly weathered, fine to medium grained, highly fractured, soft rock.

Photographs of subsurface profiles observed in the inspection pits are given in Photographs 7 to 9.

Photograph 7: Material Encountered in TP203

Photograph 8: Water Seepage and Material Encountered in TP205

Photograph 9: Material Encountered in TP207

8. GROUNDWATER SEEPAGE IN TEST PITS

Majority of the test pits did not encounter groundwater seepage. Moderate groundwater seepage was only encountered in TP205 at a depth of approximately 1.7m begl at the Try Again site. This could pose a risk for the cemetery site as it could lead to saturated grave sites.

It must be noted that groundwater activity is, however, generally expected across the entire site on an intermittent / periodic basis and is also likely to fluctuate as a result of seasonal rainfall patterns.

There is a possibility for an elevated groundwater condition, particularly during periods of rainfall.

9. SOIL LABORATORY RESULTS

The following laboratory tests were carried out on disturbed samples retrieved from the site:

- i. Grading Analysis to 0,075mm sieve with Atterberg Limit Determinations, and
- ii. Moisture Content.

The results of the soil laboratory tests are attached to the end of this report and summarised in Table 1.

Table 1: Summary of Laboratory Test Results Showing Particle Size Analysis and Material Classification

TP No. Depth (m)		Description	Particle Size %			Atterberg Limits %			IMC (%)	Unified Classification	
			Clay	Silt	Sand	Gravel	ш	PI	LS		Caussincution
	DURNACOL SITE										
TP101	0,8-1,2	Pale brown, silty CLAY - Residual	88	88 10 2			40,6	10,4	5,3	3,3	OL
TP105	1,0-1,4	Pale brown, silty CLAY - Residual	85		15	0	42,2	12,1	6	3,5	OL
	TRY AGAIN SITE										
TP205	1,1-1,5	Dark brown, silty CLAY - Residual	62		37	1	30,6	9,5	4,7	2,7	OL

LL - Liquid Limit Low - Expansiveness According to van der Merwe (1964)

PI - Plasticity Index LS - Linear Shrinkage A-3 (0) - AASHTO Classification GM - Grading Modulus

10. DISCUSSION

10.1 Proposed Development

Information supplied by the client indicates that two sites have been identified as potential cemetery sites which have already been shown in Figures 1 and 2.

10.2 Excavatability For the Grave Sites

The excavations have been assessed based on SANS 1200 (Latest version). Based on the results of the field investigation, it is inferred that the subsurface classifies as soft excavation down to the final depths of the field tests (TP and DCP results refers) and can easily be excavated using hand tools.

Durnacol Site - Based on the site investigation, excavation by hand tools is considered easy down to depths in the range 1.7m to 1.9m begl. Thereafter, intermediate to hard is anticipated, however, with a TLB it should easily excavate the residual soils unless rock is encountered, which will hinder excavations. The sidewalls are considered relatively stable over the short period.

Try Again Site - Based on the site investigation, excavation by hand tools is considered easy down to depths in the range 1.7m to 1.9m begl. There however, certain areas in which test pit refused at 1.4m due to rock being encountered. This is considered as a intermediate to hard excavations. Intermediate to hard is anticipated at depths greater than 1.7m begl, however, with a TLB it should easily excavate the residual soils unless rock is encountered, which will hinder excavations. The sidewalls are considered relatively stable over the short period.

10.3 Leachate Migration

The percolation test is used to determine the subsoil percolation rates.

Table 2: Percolation test results showing drop (mm) in water level for every 5 minutes

TIMES (all a land	PT101	PT201		
TIME (minutes)	DROP IN WATER LEVEL (mm)			
0	300	300		
5	280	271		
10	263	255		
15	229	218		
20	185	190 158		
25	160			
30	135	137		
35	119	96		
Depth to base of percolation test pit	0.6-0.9	0.6-0.9		
Calculated Co-Efficient of Permeability (m/s) (0min to 35min data)	3.30 x 10 ⁻⁵	1.89 x 10 ⁻⁴		

Co-efficient of permeability (K) = $[D_{(radius)} \times ln (h_1 / h_2)]/2(t_2-t_1)$

These soils are inferred to have a permeability of approximately 3.30×10^{-5} to 1.89×10^{-4} m/s, which is classified as semi permeable to impermeable soils for both sites.

According to the Council for Geoscience, Cemetery Site Classification (2004), permeabilities between \times 10⁻⁴ and \times 10⁻⁵ are classified as partially suitable for the site.

10.4 Basal Buffer Zone

Based on the results of the hydrocensus the static groundwater level in the area is roughly at 16m begl. The depth to potable groundwater is roughly 66m begl which is where the groundwater strikes was encountered.

Durnacol Site – No groundwater was encountered in any of the inspection pits on site. However, there are a few water bodies located downgradient from the site. Considering that weathered dolerite rock was encountered at the site, particularly down gradient, and dolerite is generally and impermeable rock. This will form an impermeable layer and limit any contamination to the potable groundwater source.

Try Again Site – Groundwater seepage was encountered in a single test pit on site at a depth of approximately 1.7m begl. This is a concern for the site. Based on this it appears that the north eastern part of this site should be avoided for any cemetery development. Also, considering that weathered dolerite rock was encountered at the

site, and dolerite is generally and impermeable rock. This will form an impermeable layer and limit any contamination to the potable groundwater source.

The recommended buffer zone between the base of the grave and the top of the water table should be at least 2.5m for similar environments.

Based on the recommendations of the Department of Environmental affairs, a grave approximately 1.8m deep with a 2.5m buffer zone should not encounter any groundwater within 4.3m begl of the subsurface profile.

The elevated groundwater seepage on site is a concern, however, it should be noted that this is from the perched aquifer and not the potable water aquifer. The potable groundwater source is located at a depth of 66m begl (based on hydrocensus data).

However, there is no conclusive evidence that there is at least a 2.5m buffer zone between the base of the grave and the water table in the area.

It is suggested that further investigations be carried out at the site comprising boreholes to determine the actual groundwater depth.

Tentatively, based on the existing data the Durnacol site is the most feasible in terms of buffer zone.

10.5 Soil Workability

Due to the clay content in soils the materials classify as OL. These are not the best soils in terms of building standards, however, for general backfill for a grave site is considered as acceptable as there are not alternatives in the area with different soils.

There is still the risk of subsidence at both sites and the requirement of relevelling before any memorial structure is constructed over the grave.

11. RATING OF CEMETERY SITE

11.1 Hanbury and Hall (1990) and Dippenaar et al. (2018)

The alternative cemetery sites have been rated based on the Hall and Hanbury (1990) and revised document by Matthys Dippenaar in 2018 for cemetery site classifications and are summarised in Table 3.

Table 3: Summary of Cemetery Site Classification

Description	Assessment	Rating	Durnacol	Try Again	
Easy Spade	Geological pick pushed in 50mm with ease	15			
Pick and Spade	Geological Pick has slight indentation	10	13	12	
Machine	Geological pick has firm blows (1-3mm)	5	13	13	
Blasting	Backactor refusal	0			
	Stability Ratings				
Stable	Little overbreak and safe for profiling	20			
Overbreak	Over breaks between 1,3 and 1,8m	15	20	20	
Slightly Unstable	Minor falls of material	8	20	20	
Unstable	Collapse of excavation likely	1			
	Workability Ratings				
	Unified Class				
Excellent to good	GW,SW, GP	10			
Fair	SP, SM	5		_	
Poor	OL, CL, ML	2	2	2	
Very Poor	ry Poor OH, CH, MH 0				
	Water Table Depth (m begl)				
Deep water table	>8	25			
Intermediate	4 to 8	15			
Possible perched water table	0 to 4	5	15	5	
water logged soil	0 to 4	Fail			
	Subsoil Permeability Rating				
	Approximate permeability (cm/sec)				
Impermeable	<10 ⁻⁵	15			
Relatively impermeable	10 ⁻⁴ to 10 ⁻⁵	20	1		
Relatively Permeable	10 ⁻³ to 10 ⁻⁴	10	20	20	
Permeable	>10 ⁻³	0			
	Unified Class				
Impermeable	OH/CL/CH	5			
Relatively impermeable	GC/SC/MH	10			
Relatively Permeable	GP/SP/GW	7	5 5		
Permeable	SW/SP	0]		
	Total Score 75 65				

Table 4 provides the final ranking classification and the suitability for use as a cemetery site.

Table 4: Suitability of Cemetery Site

Final Ranking	Suitability	Site Classifications
>90	Very Good	Durnacol appears to provide
75 to 90	Satisfactory	as satisfactory whilst, Try
60 to 75	Poor	Again classifies as poor.
<60	Unacceptable	

At present it appears that Durnacol site is the most feasible site for a cemetery. But there is a concern with the groundwater level, and before the final site is selected it is suggested that additional investigations such as boreholes be drilled to confirm the water table and geology down to at least 15m begl. The object is mainly to identify the dolerite depth across the sites as this will form the impermeable membrane that prevents contamination and, also to identify the groundwater levels.

11.2 Council for Geosciences Cemetery Guidelines

The alternative cemetery sites have been rated based on the Council for Geosciences document for cemetery site classifications and are summarised in Table 5.

Table 5: Summary of Cemetery Site Classification

Description	Acceptable Limits	Durnacol Site	Try Again Site	
Site Topography	Less than 6°	Suitable	Partially Suitable	
Soil Excavatibility	Easy	Partially Suitable	Partially Suitable	
Site Drainage	Good	Suitable	Issues with drainage due	
Soil Permeability	5x10 ⁻⁵	Suitable	Suitable	
Distance from Domestic Water Supply	465m	55m Suitable		
Distance from Drainage Feature	415m	Partially Suitable	Partially Suitable	
Basal Buffer Zone	2.5m	Partially suitable pending outcome of further investigation	Not suitable shallow groundwater table	
Grave Stability	Firm to Stiff	Suitable	Suitable	
Soil Workability	Easily workable	Suitable	Suitable	
Cemetery Size	Depending on population size	Considered suitable	Considered Suitable	

Based on the classification of the site, the area is deemed suitable for a cemetery site.

Both the Hanbury and Hall, and Council for Geoscience Guidelines cover geotechnical and groundwater stability of the site and are found that the most suitable site for the cemetery is Durnacol. However, this is subject to additional groundwater studies comprising boreholes and following recommendation given in this report.

12. CONCLUDING REMARKS

- i. The ground conditions identified refer to the investigated positions on site.
- ii. The subsurface soil profile comprises mainly clayey soils derived from the weathering of the dolerite bedrock.
- iii. The depth to groundwater in the area is considered to vary and the depth is not confirmed beneath the site. Thus it is recommended that a supplementary investigation comprising boreholes be carried out to confirm this.

- iv. The cemetery site has been classified according to various guidelines which take into consideration geotechnical and groundwater parameters.
- v. Geotechnically, and Hydrogeologically the Durnacol site is acceptable as a cemetery site, provided that further investigations are carried out to confirm groundwater levels.

The ground conditions given in this report refer specifically to the field tests carried out on site. It is therefore, quite possible that conditions at variance with those given in this report may be encountered elsewhere on site.

13. REFERENCES

- 1) Brink, A., & Bruin, R. (2002). Guidelines for Soil and Rock Logging in South Africa. Proceedings of the Geoterminology Workshop. South Africa: Association of Engineering Geologists, South African Institute of Civil Engineering and South African Institute for Engineering and Environmental Geologists.
- 2) Dippenaar, M.A., Olivier, J., Lorentz, S., Ubomba-Jaswa, E., Abia, A.L.K., and Diamond, R.E. (2018). Environmental Risk Assessment, Monitoring and Management of Cemeteries. Water Research Commission. WRC Report No. 2449/1/18
- 3) Hall, B.M. and Hanbury, R. (1990). Some Geotechnical Considerations in the Selection of Cemetery Sites. IMIESA March 1990: 2125
- 4) Richards, N.P and Croukamp, L. (2004). Guidelines for Cemetery Site Selection. Preliminary Report. Council for Geosciences, Pretoria, South Africa.
- 5) South African Bureau of Standards. (1990). Standard Specification for Civil Engineering Construction, D: Earthworks. South Africa: South African Bureau of Standards.

PROJECT NUMBER: 066-2113-01 TEST PIT DATE: 21/04/2021 cordinates - x 28° 2.602'S Durnacol Cemetery GEOTECHNICIAN: SJ - NM - ZB **CORDINATES - Y 30° 1.915'E** PROJECT NAME:

Sivest **EXCAVATION ME Manual Excavation** ELEVATION - Z- 1341m CLIENT:

4 Pencarrow Crescertotal Depth: 1,8m Nilesh Mahadew ADDRESS: LOGGED BY: La Lucia Ridge - Umhlanga - 4320 slope drainage North West James Harvey Ewusi CHECKED BY:

PROFILE NUMBER - 101

		E NUMBER - 101		T
Depth (m)	Samples	Material Description	Soil Horizon	PHOTOS
0 0,1 0,2 0,3		Slightly moist, pale brown to light brown, fine grained, firm silty clay - colluvium	А	
0,5				
0,6				
0,7				
0,8				
0,9	1014	Moist pale brown to orange, firm, silty clay -		
1	IUIA	residual with cobbles and pebbles	В	
1,1				
1,3				
1,4				
1,5				
1,6				
1,7				
1,8		Brown to pale orange, completely to highly weathered, fine to medium grained, highly		
1,9		fractured, soft rock - Dolerite (Jurassic Age)		
2,0				
Manu	ıal Refu:	l sal @1,8m	1	Undisturbed Sample
		ater in Test Pit		Disturbed Sample
		Limitations: This report shall not be reproduced with	out prio	or written approval of the Laboratory

CHECKED BY:

James Harvey Ewusi

PROJECT NUMBER: 066-2113-01 TEST PIT DATE: 21/04/2021 CORDINATES - x 28° 2.786'S
PROJECT NAME: Durnacol Cemetery Geotechnician: SJ - NM - ZB CORDINATES - y 30° 2.096'E
CLIENT: Sivest Excavation me Manual Excavation Elevation - z- 1345m

ADDRESS: 4 Pencarrow Crescertotal depth: 1,8m LOGGED BY: Nilesh Mahadew

La Lucia Ridge - Umhlanga - 4320 slope drainage North West

PROFILE NUMBER - 102

Depth (m)	Samples	Material Description	Soil Horizon	PHOTOS
0 0,1 0,2 0,3 0,4 0,5		Slightly moist, pale brown to light brown, fine grained, firm silty clay - colluvium	А	
0,7 0,8 0,9 1 1,1 1,2 1,3 1,4		Moist pale brown to orange, firm, silty clay - residual with cobbles and pebbles	В	
1,6 1,7 1,8				
2,0				
No Ma	anual R	Refusal @1.8m		Undisturbed Sample Disturbed Sample

PROJECT NUMBER: 066-2113-01 TEST PIT DATE: 21/04/2021 CORDINATES - x 28° 2.455'S
PROJECT NAME: Durnacol Cemetery Geotechnician: SJ - NM - ZB CORDINATES - y 30° 2.198'E
CLIENT: Sivest Excavation me Manual Excavation Elevation - z- 1350m

ADDRESS: 4 Pencarrow Crescertotal Depth: 1,6m LOGGED BY: Nilesh Mahadew

La Lucia Ridge - Umhlanga - 4320 slope drainage North West checked BY: James Harvey Ewusi

PROFILE NUMBER - 103

Depth (m)	Samples	Material Description	Soil Horizon	PHOTOS
0 0,1 0,2 0,3 0,4		Slightly moist, pale brown to light brown, fine grained, firm silty clay - colluvium	A	
0,6 0,7 0,8 0,9 1		Moist pale brown to dark brown, firm, silty clay - residual with cobbles and pebbles	В	
1,2 1,3 1,4 1,5 1,6				
1,7				
1,9				
2,0 No Ma	ınııal R	l efusal @1,6m		Undisturbed Sample
		ater in Test Pit		Disturbed Sample

PROJECT NUMBER: 066-2113-01 TEST PIT DATE: 21/04/2021 CORDINATES - X 28° 2.657'S
PROJECT NAME: Durnacol Cemetery Geotechnician: SJ - NM - ZB CORDINATES - Y 30° 2.475'E
CLIENT: Sivest Excavation me Manual Excavation Elevation - z- 1354m

ADDRESS: 4 Pencarrow Crescertotal Depth: 1,8m LOGGED BY: Nilesh Mahadew

La Lucia Ridge - Umhlanga - 4320 slope drainage North West checked BY: James Harvey Ewusi

PROFILE NUMBER - 104

0		Soil Horizon	PHOTOS
0,1 0,2 0,3 0,4	Slightly moist, pale brown to light brown, fine grained, firm silty clay - colluvium	А	
0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9	Moist pale brown to dark brown, firm, silty clay - residual with cobbles and pebbles	В	
	efusal @1,8m ater in Test Pit		Undisturbed Sample Disturbed Sample

PROJECT NUMBER: 066-2113-01 TEST PIT DATE: 21/04/2021 CORDINATES - X 28° 2.598'S
PROJECT NAME: Durnacol Cemetery Geotechnician: SJ - NM - ZB CORDINATES - Y 30° 2.158'E
CLIENT: Sivest Excavation me Manual Excavation Elevation - z- 1348m

ADDRESS: 4 Pencarrow Crescertotal Depth: 1,8m LOGGED BY: Nilesh Mahadew

La Lucia Ridge - Umhlanga - 4320 slope drainage North West checked BY: James Harvey Ewusi

PROFILE NUMBER - 105

Depth (m)	Samples	Material Description	Soil Horizon	PHOTOS
0 0,1 0,2 0,3 0,4 0,5		Slightly moist, pale brown to light brown, fine grained, firm silty clay - colluvium	А	
0,7 0,8 0,9 1 1,1 1,2 1,3 1,4 1,5 1,6	105B	Moist pale brown to brown, firm, silty clay - residual with cobbles and pebbles	В	
1,8				
	roundwa	efusal @1,8m ater in Test Pit Limitations: This report shall not be reproduced with	out prio	Undisturbed Sample Disturbed Sample Disturbed Sample

PROJECT NUMBER: 066-2113-01 TEST PIT DATE: 21/04/2021 CORDINATES - x 28° 2.673'S

PROJECT NAME: Durnacol Cemetery Geotechnician: SJ - NM - ZB CORDINATES - y 30° 1.954'E

CLIENT: Sivest EXCAVATION ME Manual Excavation ELEVATION - 2- 1338m

ADDRESS: 4 Pencarrow Crescertotal Depth: 0.6m LOGGED BY: Nilesh Mahadew

La Lucia Ridge - Umhlanga - 4320 slope Drainage North West checked BY: James Harvey Ewusi

PROFILE NUMBER - Percolation Test P101

Depth (m)	Samples	Material Description	Soil Horizon	PHOTOS
0 0,1				
0,2				
0,3		Slightly moist, pale brown to light brown, fine grained, firm silty clay - colluvium		
0,4				
0,5				
0,6		Moist pale brown to orange, firm, silty clay - residual with cobbles and pebbles		
0,7		residual with cobbles and pebbles		
0,8				
0,9				
1				
1,1				
1,2				
1,3				
1,4				
1,5				
1,6				
1,7				
1,8				
1,9				
2,0				
		L Test Drop After 2 Hours of Soaking - 119mm/11.9cm	<u> </u>	Undisturbed Sample
No Gr	roundw	ater in Test Pit		Disturbed Sample

PROJECT NUMBER: 067-2114-01 TEST PIT DATE: 22/04/2021 CORDINATES - X 28° 0.623'S
PROJECT NAME: Try Again GEOTECHNICIAN: SJ - NM - ZB CORDINATES - Y 30° 5.052'E
CLIENT: Sivest EXCAVATION ME Manual Excavation ELEVATION - Z- 1380m

ADDRESS: 4 Pencarrow Crescertotal Depth: 1,9m LOGGED BY: Nilesh Mahadew

La Lucia Ridge - Umhlanga - 4320 slope drainage Southeast checked BY: James Harvey Ewusi

PROFILE NUMBER - 201

Depth (m)	Samples	Material Description	Soil Horizon	PHOTOS
0 0,1 0,2 0,3 0,4 0,5		Slightly moist pale to light brown firm, fine grained, silty clay - colluvium with roots and vegetation	А	
0,7 0,8 0,9 1 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9		Moist pale brown to orange, firm, intact silty clay with cobbles and pebbles - residual	В	
2,0 No M	anual R	efusal @1,9m		■ Undisturbed Sample
		ater in Test Pit		Disturbed Sample

PROJECT NUMBER: 067-2114-01 TEST PIT DATE: 22/04/2021 CORDINATES - x 28° 1.055'S
PROJECT NAME: Try Again Geotechnician: SJ - NM - ZB CORDINATES - y 30° 5.423'E
CLIENT: Sivest Excavation me Manual Excavation Elevation - z- 1384m

ADDRESS: 4 Pencarrow Crescertotal Depth: 1,9m LOGGED BY: Nilesh Mahadew

La Lucia Ridge - Umhlanga - 4320 slope drainage Southeast checked BY: James Harvey Ewusi

Depth (m)	Samples	Material Description	Soil Horizon	PHOTOS
0,1				
0,2		Slightly moist pale to light brown firm, fine grained, silty clay - colluvium with roots and	А	
0,3		vegetation		
0,4				
0,5				
0,6				
0,7				
0,8				
0,9				
1				
1,1		Majot vala huavva ta huavva fiyas jatast siltv		
1,2		Moist pale brown to brown, firm, intact silty clay with cobbles and pebbles - residual	В	
1,3				
1,4				
1,5				
1,6				
1,7				
1,8				
1,3			1	
2,0				
		efusal @ 1,9m		Undisturbed Sample
No Gr		ater in Test Pit		Disturbed Sample
		Limitations: This report shall not be reproduced with	out prio	r written approval of the Laboratory

PROJECT NUMBER: 067-2114-01 TEST PIT DATE: 22/04/2021 CORDINATES - x 28° 0.737'S
PROJECT NAME: Try Again GEOTECHNICIAN: SJ - NM - ZB CORDINATES - y 30° 5.992'E
CLIENT: Sivest EXCAVATION ME Manual Excavation ELEVATION - z- 1367m

ADDRESS: 4 Pencarrow Crescertotal Depth: 1,8m LOGGED BY: Nilesh Mahadew

La Lucia Ridge - Umhlanga - 4320 slope drainage Southeast checked BY: James Harvey Ewusi

Slightly moist pale to light brown firm, fine grained, silty clay - colluvium with roots and vegetation Slightly moist pale to light brown firm, fine grained, silty clay - colluvium with roots and vegetation Moist pale brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist pale brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist pale brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist pale brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist pale brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist pale brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist pale brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist pale brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist pale brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual	Depth (m)	Samples	Material Description	Soil Horizon	PHOTOS
Slightly moist pale to light brown firm, fine grained, silty clay - colluvium with roots and vegetation Solution Moist pale brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist pale brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist pale brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist pale brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist pale brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist pale brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist pale brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist pale brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist pale brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist pale brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist pale brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist pale brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist pale brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist pale brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist pale brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual	0				
grained, silty clay - colluvium with roots and vegetation 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 Moist pale brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual 1,4 1,5 1,6 1,7 1,8 1,9 2,0 No Manual Refusal @1.8m Undisturbed Sample	0,1		Clighthy maint pale to light brown firm fine	_	
0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 Moist pale brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual 1,4 1,5 1,6 1,7 1,8 1,9 2,0 No Manual Refusal @1.8m Undisturbed Sample	0,2		grained, silty clay - colluvium with roots and	A	
0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 Initiact silty clay with cobbles and pebbles - residual 1,4 1,5 1,6 1,7 1,8 1,9 2,0 No Manual Refusal @1.8m Undisturbed Sample	0,3		vegetation		
0,6 0,7 0,8 0,9 1 1,1 1,2 Moist pale brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual 1,4 1,5 1,6 1,7 1,8 1,9 2,0 No Manual Refusal @1.8m Undisturbed Sample	0,4				
0.7 0.8 0.9 1 1.1 1.2 Moist pale brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual 1.4 1.5 1.6 1.7 1.8 1.9 2.0 No Manual Refusal @1.8m Undisturbed Sample	0,5				
0.7 0.8 0.9 1 1.1 1.2 Moist pale brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual 1.4 1.5 1.6 1.7 1.8 1.9 2.0 No Manual Refusal @1.8m Undisturbed Sample	0,6				
0,8 0,9 1 1,1 1,2 Moist pale brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual 1,4 1,5 1,6 1,7 1,8 1,9 2,0 No Manual Refusal @1.8m Undisturbed Sample					
0,9 1 1,1 1,2 Moist pale brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual 1,4 1,5 1,6 1,7 1,8 1,9 2,0 No Manual Refusal @1.8m Undisturbed Sample					
1					
1,1 1,2 Moist pale brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual 1,4 1,5 1,6 1,7 1,8 1,9 2,0 No Manual Refusal @1.8m Moist pale brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual B Undisturbed Sample					
1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0 No Manual Refusal @1.8m Moist pale brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual B B B B B B B B B B B B B B B B B B	1				
intact silty clay with cobbles and pebbles - residual 1,4 1,5 1,6 1,7 1,8 1,9 2,0 No Manual Refusal @1.8m Intact silty clay with cobbles and pebbles - residual Undisturbed Sample	1,1				132 218 233 24
1,3 residual	1,2		Moist pale brown to dark brown, firm, intact silty clay with cobbles and pebbles -	В	
1,5 1,6 1,7 1,8 1,9 2,0 No Manual Refusal @1.8m Undisturbed Sample	1,3		residual		
1,6 1,7 1,8 1,9 2,0 No Manual Refusal @1.8m Undisturbed Sample	1,4				
1,7 1,8 1,9 2,0 No Manual Refusal @1.8m Undisturbed Sample	1,5				
1,8 1,9 2,0 No Manual Refusal @1.8m Undisturbed Sample	1,6				
1,9 2,0 No Manual Refusal @1.8m Undisturbed Sample	1,7				
2,0 Undisturbed Sample	1,8				
No Manual Refusal @1.8m Undisturbed Sample	1,9				
No Groundwater in Test Pit Disturbed Sample					
Limitations: This report shall not be reproduced without prior written approval of the Laboratory	No Gr				

PROJECT NUMBER: 067-2114-01 TEST PIT DATE: 22/04/2021 CORDINATES - x 28° 0.377'S
PROJECT NAME: Try Again Geotechnician: SJ - NM - ZB CORDINATES - y 30° 5.643'E
CLIENT: Sivest Excavation me Manual Excavation Elevation - z- 1385m

ADDRESS: 4 Pencarrow Crescertotal Depth: 1,9m LOGGED BY: Nilesh Mahadew

La Lucia Ridge - Umhlanga - 4320 slope drainage Southeast checked BY: James Harvey Ewusi

Depth (m)	Samples	Material Description	Soil Horizon	PHOTOS
0 0,1 0,2 0,3 0,4 0,5		Slightly moist pale to light brown firm, fine grained, silty clay - colluvium with roots and vegetation	A	
0,8 0,9 1 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9		Moist brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual	В	
2,0 No M	anual R	 efusal @1.9m		Undisturbed Sample
		ater in Test Pit		Disturbed Sample
		Limitations: This report shall not be reproduced with	nout prio	r written approval of the Laboratory

PROJECT NUMBER: 067-2114-01 TEST PIT DATE: 22/04/2021 CORDINATES - x 28° 0.492'S
PROJECT NAME: Try Again GEOTECHNICIAN: SJ - NM - ZB CORDINATES - y 30° 6.442'E
CLIENT: Sivest Excavation me Manual Excavation ELEVATION - z- 1388m

ADDRESS: 4 Pencarrow Crescertotal Depth: 1,7m LOGGED BY: Nilesh Mahadew

La Lucia Ridge - Umhlanga - 4320 slope Drainage Southeast checked BY: James Harvey Ewusi

FROFILL NUMBER - 203						
Depth (m)	Samples	Material Description	Soil Horizon	PHOTOS		
0 0,1 0,2 0,3		Slightly moist orange to light brown firm, fine grained, silty clay - colluvium with roots and vegetation	А			
0,5						
0,7				March 1		
0,8						
0,9	205C	Light brown to pale grey highly weathered	В			
1,1	2030	and fractured sandstone soft rock				
1,2						
1,3						
1,5						
1,6						
1,7						
1,8		【 Waterstrike @1.7m }	-			
1,9						
2,0	<u> </u>			<u> </u>		
		efusal @1.7m - Far End Corner Hole		Undisturbed Sample		
Groui		r in Test Pit - 1.7mbNGL		Disturbed Sample		
	Limitations: This report shall not be reproduced without prior written approval of the Laboratory					

PROJECT NUMBER: 067-2114-01 TEST PIT DATE: 22/04/2021 CORDINATES - X 28° 0.157'S
PROJECT NAME: Try Again GEOTECHNICIAN: SJ - NM - ZB CORDINATES - Y 30° 6.145'E
CLIENT: Sivest Excavation me Manual Excavation ELEVATION - Z- 1393m

ADDRESS: 4 Pencarrow Crescertotal Depth: 1,8m LOGGED BY: Nilesh Mahadew

La Lucia Ridge - Umhlanga - 4320 slope drainage Southeast checked BY: James Harvey Ewusi

Depth (m)	Samples	Material Description	Soil Horizon	PHOTOS
0 0,1 0,2 0,3 0,4 0,5 0,6		Slightly moist pale to light brown firm, fine grained, silty clay - colluvium with roots and vegetation	А	
0,8 0,9 1 1,1 1,2 1,3 1,4 1,5 1,6 1,7		Moist brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual	В	
		efusal @1.8m		■ Undisturbed Sample
No Gr		ater in Test Pit Limitations: This report shall not be reproduced with		Disturbed Sample

PROJECT NUMBER: 067-2114-01 TEST PIT DATE: 22/04/2021 CORDINATES - x 28° 0.431'S
PROJECT NAME: Try Again GEOTECHNICIAN: SJ - NM - ZB CORDINATES - y 30° 6.006'E
CLIENT: Sivest Excavation me Manual Excavation Elevation - z- 1384m

ADDRESS: 4 Pencarrow Crescertotal DEPTH: 1,9m LOGGED BY: Nilesh Mahadew

La Lucia Ridge - Umhlanga - 4320 slope drainage Southeast checked BY: James Harvey Ewusi

PR	PROFILE NUMBER - 207							
Depth (m)	Samples	Material Description	Soil Horizon	PHOTOS				
0 0,1								
0,2		Slightly moist pale to light brown firm, fine grained, silty clay - colluvium with roots and	А					
0,3		vegetation						
0,5				a from the same				
0,6				STATE OF THE PARTY				
0,7			1					
0,8								
0,9								
1								
1,1								
1,2		Moist brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual	В					
1,3		,						
1,4								
1,5								
1,6								
1,7								
1,8								
1,9			1					
2,0								
		efusal @1.9m		Undisturbed Sample				
No Gr		ater in Test Pit		Disturbed Sample				
		Limitations: This report shall not be reproduced with	out prio	r written approval of the Laboratory				

PROJECT NUMBER: 067-2114-01 TEST PIT DATE: 22/04/2021 CORDINATES - x 28° 0.696'S
PROJECT NAME: Try Again GEOTECHNICIAN: SJ - NM - ZB CORDINATES - y 30° 5.519'E
CLIENT: Sivest Excavation me Manual Excavation ELEVATION - z- 1394m

ADDRESS: 4 Pencarrow Crescertotal depth: 1,9m LOGGED BY: Nilesh Mahadew

La Lucia Ridge - Umhlanga - 4320 slope drainage Southeast checked BY: James Harvey Ewusi

Depth (m)	Samples	Material Description	Soil Horizon	PHOTOS	
0 0,1 0,2 0,3 0,4 0,5		Slightly moist pale to light brown firm, fine grained, silty clay - colluvium with roots and vegetation	A		
0,7					
0,8					
1					
1,1					
1,2		Moist pale brown to orange, firm, intact silty clay with cobbles and pebbles - residual	В		
1,3		ciay with cobbles and pebbles - residual			
1,4					
1,5		Brown to pale orange, completely to highly weathered, fien to medium grained, highly	С		
1,6		fractured. Soft rock - dolerite			
1,7					
1,8					
1,9					
Manu	al Refu	L sal @ 1.4m		■ Undisturbed Sample	
	Manual Refusal @ 1.4m No Groundwater in Test Pit Undisturbed Sample Sa				
		Limitations: This report shall not be reproduced with	out prio		

PROJECT NUMBER: 066-2113-01 TEST PIT DATE: 21/04/2021 cordinates - x 28° 2.673'S Try Again GEOTECHNICIAN: SJ - NM - ZB cordinates - y 30° 1.954'E PROJECT NAME:

Sivest **EXCAVATION ME Manual Excavation** ELEVATION - Z- 1338m CLIENT:

4 Pencarrow Crescertotal Depth: 0.6m Nilesh Mahadew ADDRESS: LOGGED BY: La Lucia Ridge - Umhlanga - 4320 slope drainage North West James Harvey Ewusi CHECKED BY:

PROFILE NUMBER - Percolation Test P201

Depth (m)	Samples	Material Description	Soil Horizon	PHOTOS
0				
0,1				
0,2		Slightly moist pale to light brown firm, fine grained, silty clay - colluvium with roots and		
0,3		vegetation		
0,4				
0,6		Maist note brown to aronge firm intest silty		
		Moist pale brown to orange, firm, intact silty clay with cobbles and pebbles - residual		A Secret Section 1
0,7				
0,8				
0,9				
1,1				
1,1				
1,3				
1,4				
1,5				
1,6				
1,7				
1,8				
1,9				
2,0				
	lation	est Drop After 2 Hours of Soaking - 96mm/9.6cm		■ Undisturbed Sample
		ater in Test Pit		Disturbed Sample

Limitations: This report shall not be reproduced without prior written approval of the Laboratory

EARTH CIVIL TESTING

Reg.No.- K2011/115681/01 Tax.No.- 9127/374/18/0
Radiation Control – Authority No. 2962/16/1430
106 Francis Road – P.O. Box 303 - Ladysmith – KwaZulu Natal – 3370
Web – <u>www.geo-sol.co.za</u> – Tel – 0715608058 – 0799100920 - Email – <u>projects@geo-sol.co.za</u>

DCP INVESTIGATION DATA

Test Date	06/05/2021	DCP No.	101
Site:	Durnacol	Hole No.	Side – TP101

No. Blows	DCP01 - Side TP101	NGL		
0	1950	0		
5	1820	130		
10	1710	240		
15	1595	355		
20	1433	517		
25	1393	557		
30	1343	607		
35	1293	657		
40	1243	707		
45	1173	777		
50	1103	847		
55	978	972		
60	923	1027		
65	868	1082		
70	813	1137		
75	758	1192		
80	703	1247		
85	660	1290		
90	617	1333		
95	574	1376		
100	531	1419		
105	488	1462		
110	445	1505		
115	413	1537		
120	381	1569		
125	349	1601		
130	317	1633		
135	285	1665		
140	253	1697		
145	221	1729		
150	191	1759		
155	176	1774		
160	161	1789		
165	146	1804		
170	131	1819		
No Refusal				

Test Date	06/05/2021	DCP No.	102	
Site:	Durnacol	Hole No.	Side – TP102	

No. Blows	DCP02 - Side TP102	NGL
0	1889	0
5	1794	95
10	1694	195
15	1555	334
20	1432	457
25	1352	537
30	1275	614
35	1193	696
40	1122	767
45	1055	834
50	1017	872
55	975	914
60	932	957
65	895	994
70	856	1033
75	811	1078
80	770	1119
85	684	1205
90	654	1235
95	620	1269
100	597	1292
105	575	1314
110	535	1354
115	511	1378
120	494	1395
125	474	1415
130	454	1435
135	430	1459
140	402	1487
145	355	1534
150	323	1566
155	297	1592
160	270	1619
165	245	1644
170	211	1678
175	195	1694
180	176	1713
185	158	1731
190	130	1759
	No Refusal	

 Test Date
 06/05/2021
 DCP No.
 103

 Site:
 Durnacol
 Hole No.
 Side – TP103

No. Blows	DCP03 - Side TP103	NGL
0	1923	0
5	1811	112
10	1701	222
15	1586	337
20	1511	412
25	1433	490
30	1359	564
35	1284	639
40	1213	710
45	1136	787
50	1081	842
55	1024	899
60	971	952
65	916	1007
70	860	1063
75	811	1112
80	749	1174
85	694	1229
90	639	1284
95	587	1336
100	531	1392
105	473	1450
110	433	1490
115	392	1531
120	351	1572
125	310	1613
130	269	1654
135	228	1695
140	187	1736
145	165	1758
150	143	1780
155	121	1802
160	99	1824
	No Refusal	

 Test Date
 06/05/2021
 DCP No.
 104

 Site:
 Durnacol
 Hole No.
 Side – TP104

No. Blows DCP04 - Side TP104 NGL 0 1947 0 5 1836 111 10 1721 226 15 1612 335 20 1519 428 25 1429 518 30 1339 608 35 1249 698 40 1159 788 45 1069 878 50 975 972 55 881 1066 60 829 1118 65 778 1169 70 727 1220 75 676 1271 80 625 1322 85 574 1373 90 523 1424 95 472 1475 100 421 1526 105 368 1579 110 319 1628 125 232			
5 1836 111 10 1721 226 15 1612 335 20 1519 428 25 1429 518 30 1339 608 35 1249 698 40 1159 788 45 1069 878 50 975 972 55 881 1066 60 829 1018 65 778 1169 70 727 1220 75 676 1271 80 625 1322 85 574 1373 90 523 1424 95 472 1475 100 421 1526 105 368 1579 110 319 1628 115 284 1663 120 252 1695 125 232 1715 130 211 1736 135 196	No. Blows	DCP04 - Side TP104	NGL
10 1721 226 15 1612 335 20 1519 428 25 1429 518 30 1339 608 35 1249 698 40 1159 788 45 1069 878 50 975 972 55 881 1066 60 829 1118 65 778 1169 70 727 1220 75 676 1271 80 625 1322 85 574 1373 90 523 1424 95 472 1475 100 421 1526 105 368 1579 110 319 1628 115 284 1663 120 252 1695 125 232 1715 140 181 1766 <td>0</td> <td>1947</td> <td>0</td>	0	1947	0
15 1612 335 20 1519 428 25 1429 518 30 1339 608 35 1249 698 40 1159 788 45 1069 878 50 975 972 55 881 1066 60 829 1118 65 778 1169 70 727 1220 75 676 1271 80 625 1322 85 574 1373 90 523 1424 95 472 1475 100 421 1526 105 368 1579 110 319 1628 115 284 1663 120 252 1695 125 232 1715 130 211 1736 135 196 1751 <td>5</td> <td>1836</td> <td>111</td>	5	1836	111
20 1519 428 25 1429 518 30 1339 608 35 1249 698 40 1159 788 45 1069 878 50 975 972 55 881 1066 60 829 1118 65 778 1169 70 727 1220 75 676 1271 80 625 1322 85 574 1373 90 523 1424 95 472 1475 100 421 1526 105 368 1579 110 319 1628 115 284 1663 120 252 1695 125 232 1715 130 211 1736 135 196 1751 140 181 1766 145 166 1781 150 151	10	1721	226
25 1429 518 30 1339 608 35 1249 698 40 1159 788 45 1069 878 50 975 972 55 881 1066 60 829 1118 65 778 1169 70 727 1220 75 676 1271 80 625 1322 85 574 1373 90 523 1424 95 472 1475 100 421 1526 105 368 1579 110 319 1628 115 284 1663 120 252 1695 125 232 1715 130 211 1736 135 196 1751 140 181 1766 145 166 1781 150 151 1796 155 130	15	1612	335
30 1339 608 35 1249 698 40 1159 788 45 1069 878 50 975 972 55 881 1066 60 829 1118 65 778 1169 70 727 1220 75 676 1271 80 625 1322 85 574 1373 90 523 1424 95 472 1475 100 421 1526 105 368 1579 110 319 1628 115 284 1663 120 252 1695 125 232 1715 130 211 1736 135 196 1751 140 181 1766 145 166 1781 150 151 1796 155 130 1817 160 120	20	1519	428
35 1249 698 40 1159 788 45 1069 878 50 975 972 55 881 1066 60 829 1118 65 778 1169 70 727 1220 75 676 1271 80 625 1322 85 574 1373 90 523 1424 95 472 1475 100 421 1526 105 368 1579 110 319 1628 115 284 1663 120 252 1695 125 232 1715 130 211 1736 135 196 1751 140 181 1766 145 166 1781 150 151 1796 155 130 1817 160 120 1827	25	1429	518
40 1159 788 45 1069 878 50 975 972 55 881 1066 60 829 1118 65 778 1169 70 727 1220 75 676 1271 80 625 1322 85 574 1373 90 523 1424 95 472 1475 100 421 1526 105 368 1579 110 319 1628 115 284 1663 120 252 1695 125 232 1715 130 211 1736 135 196 1751 140 181 1766 145 166 1781 150 151 1796 155 130 1817 160 120 1827	30	1339	608
45 1069 878 50 975 972 55 881 1066 60 829 1118 65 778 1169 70 727 1220 75 676 1271 80 625 1322 85 574 1373 90 523 1424 95 472 1475 100 421 1526 105 368 1579 110 319 1628 115 284 1663 120 252 1695 125 232 1715 130 211 1736 135 196 1751 140 181 1766 145 166 1781 150 151 1796 155 130 1817 160 120 1827	35	1249	698
50 975 972 55 881 1066 60 829 1118 65 778 1169 70 727 1220 75 676 1271 80 625 1322 85 574 1373 90 523 1424 95 472 1475 100 421 1526 105 368 1579 110 319 1628 115 284 1663 120 252 1695 125 232 1715 130 211 1736 135 196 1751 140 181 1766 145 166 1781 150 151 1796 155 130 1817 160 120 1827	40	1159	788
55 881 1066 60 829 1118 65 778 1169 70 727 1220 75 676 1271 80 625 1322 85 574 1373 90 523 1424 95 472 1475 100 421 1526 105 368 1579 110 319 1628 115 284 1663 120 252 1695 125 232 1715 130 211 1736 135 196 1751 140 181 1766 145 166 1781 150 151 1796 155 130 1817 160 120 1827	45	1069	878
60 829 1118 65 778 1169 70 727 1220 75 676 1271 80 625 1322 85 574 1373 90 523 1424 95 472 1475 100 421 1526 105 368 1579 110 319 1628 115 284 1663 120 252 1695 125 232 1715 130 211 1736 135 196 1751 140 181 1766 145 166 1781 150 151 1796 155 130 1817 160 120 1827	50	975	972
65 778 1169 70 727 1220 75 676 1271 80 625 1322 85 574 1373 90 523 1424 95 472 1475 100 421 1526 105 368 1579 110 319 1628 115 284 1663 120 252 1695 125 232 1715 130 211 1736 135 196 1751 140 181 1766 145 166 1781 150 151 1796 155 130 1817 160 120 1827	55	881	1066
70 727 1220 75 676 1271 80 625 1322 85 574 1373 90 523 1424 95 472 1475 100 421 1526 105 368 1579 110 319 1628 115 284 1663 120 252 1695 125 232 1715 130 211 1736 135 196 1751 140 181 1766 145 166 1781 150 151 1796 155 130 1817 160 120 1827	60	829	1118
75 676 1271 80 625 1322 85 574 1373 90 523 1424 95 472 1475 100 421 1526 105 368 1579 110 319 1628 115 284 1663 120 252 1695 125 232 1715 130 211 1736 135 196 1751 140 181 1766 145 166 1781 150 151 1796 155 130 1817 160 120 1827	65	778	1169
80 625 1322 85 574 1373 90 523 1424 95 472 1475 100 421 1526 105 368 1579 110 319 1628 115 284 1663 120 252 1695 125 232 1715 130 211 1736 135 196 1751 140 181 1766 145 166 1781 150 151 1796 155 130 1817 160 120 1827	70	727	1220
85 574 1373 90 523 1424 95 472 1475 100 421 1526 105 368 1579 110 319 1628 115 284 1663 120 252 1695 125 232 1715 130 211 1736 135 196 1751 140 181 1766 145 166 1781 150 151 1796 155 130 1817 160 120 1827	75	676	1271
90 523 1424 95 472 1475 100 421 1526 105 368 1579 110 319 1628 115 284 1663 120 252 1695 125 232 1715 130 211 1736 135 196 1751 140 181 1766 145 166 1781 150 151 1796 155 130 1817 160 120 1827	80	625	1322
95 472 1475 100 421 1526 105 368 1579 110 319 1628 115 284 1663 120 252 1695 125 232 1715 130 211 1736 135 196 1751 140 181 1766 145 166 1781 150 151 1796 155 130 1817 160 120 1827	85	574	1373
100 421 1526 105 368 1579 110 319 1628 115 284 1663 120 252 1695 125 232 1715 130 211 1736 135 196 1751 140 181 1766 145 166 1781 150 151 1796 155 130 1817 160 120 1827	90	523	1424
105 368 1579 110 319 1628 115 284 1663 120 252 1695 125 232 1715 130 211 1736 135 196 1751 140 181 1766 145 166 1781 150 151 1796 155 130 1817 160 120 1827	95	472	1475
110 319 1628 115 284 1663 120 252 1695 125 232 1715 130 211 1736 135 196 1751 140 181 1766 145 166 1781 150 151 1796 155 130 1817 160 120 1827	100	421	1526
115 284 1663 120 252 1695 125 232 1715 130 211 1736 135 196 1751 140 181 1766 145 166 1781 150 151 1796 155 130 1817 160 120 1827	105	368	1579
120 252 1695 125 232 1715 130 211 1736 135 196 1751 140 181 1766 145 166 1781 150 151 1796 155 130 1817 160 120 1827	110	319	1628
125 232 1715 130 211 1736 135 196 1751 140 181 1766 145 166 1781 150 151 1796 155 130 1817 160 120 1827	115	284	1663
130 211 1736 135 196 1751 140 181 1766 145 166 1781 150 151 1796 155 130 1817 160 120 1827	120	252	1695
135 196 1751 140 181 1766 145 166 1781 150 151 1796 155 130 1817 160 120 1827	125	232	1715
140 181 1766 145 166 1781 150 151 1796 155 130 1817 160 120 1827	130	211	1736
145 166 1781 150 151 1796 155 130 1817 160 120 1827	135	196	1751
150 151 1796 155 130 1817 160 120 1827	140	181	1766
155 130 1817 160 120 1827	145	166	1781
160 120 1827	150	151	1796
	155	130	1817
No Refusal	160	120	1827
	No Refusal		

 Test Date
 06/05/2021
 DCP No.
 105

 Site:
 Durnacol
 Hole No.
 Side – TP105

-		
No. Blows	DCP05 - Side TP105	NGL
0	1997	0
5	1874	123
10	1749	248
15	1629	368
20	1514	483
25	1404	593
30	1302	695
35	1227	770
40	1152	845
45	1077	920
50	1002	995
55	925	1072
60	859	1138
65	791	1206
70	723	1274
75	655	1342
80	589	1408
85	519	1478
90	451	1546
95	395	1602
100	340	1657
105	284	1713
110	229	1768
115	173	1824
120	138	1859
125	108	1889
130	78	1919
No Refusal		

EARTH CIVIL TESTING

Reg.No.- K2011/115681/01 Tax.No.- 9127/374/18/0
Radiation Control – Authority No. 2962/16/1430
106 Francis Road – P.O. Box 303 - Ladysmith – KwaZulu Natal – 3370
Web – <u>www.geo-sol.co.za</u> – Tel – 0715608058 – 0799100920 - Email – <u>projects@geo-sol.co.za</u>

DCP INVESTIGATION DATA

Test Date	06/05/2021	DCP No.	201
Site:	Try Again	Hole No	Side – TP201

No. Blows DCP01 - Side TP201 NGL 0 1998 0 5 1873 125 10 1763 235 15 1663 335 20 1559 439 25 1439 559 30 1378 620 35 1303 695 40 1223 775 45 1163 835 50 1093 905 55 1033 965 60 978 1020 65 928 1070 70 878 1120 75 813 1185 80 765 1233 85 720 1278 90 675 1323 95 630 1368 100 585 1413 105 540 1458 110 495 1503 115 450			
5 1873 125 10 1763 235 15 1663 335 20 1559 439 25 1439 559 30 1378 620 35 1303 695 40 1223 775 45 1163 835 50 1093 905 55 1033 965 60 978 1020 65 928 1070 70 878 1120 75 813 1185 80 765 1233 85 720 1278 90 675 1323 95 630 1368 100 585 1413 105 540 1458 110 495 1503 115 450 1548 120 415 1583 125 385 1613	No. Blows	DCP01 - Side TP201	NGL
10 1763 235 15 1663 335 20 1559 439 25 1439 559 30 1378 620 35 1303 695 40 1223 775 45 1163 835 50 1093 905 55 1033 965 60 978 1020 65 928 1070 70 878 1120 75 813 1185 80 765 1233 85 720 1278 90 675 1323 95 630 1368 100 585 1413 105 540 1458 110 495 1503 115 450 1548 120 415 1583 125 385 1613 130 360 1638 <td>0</td> <td>1998</td> <td>0</td>	0	1998	0
15 1663 335 20 1559 439 25 1439 559 30 1378 620 35 1303 695 40 1223 775 45 1163 835 50 1093 905 55 1033 965 60 978 1020 65 928 1070 70 878 1120 75 813 1185 80 765 1233 85 720 1278 90 675 1323 95 630 1368 100 585 1413 105 540 1458 110 495 1503 115 450 1548 120 415 1583 125 385 1613 130 360 1638 135 335 1663 </td <td>5</td> <td>1873</td> <td>125</td>	5	1873	125
20 1559 439 25 1439 559 30 1378 620 35 1303 695 40 1223 775 45 1163 835 50 1093 905 55 1033 965 60 978 1020 65 928 1070 70 878 1120 75 813 1185 80 765 1233 85 720 1278 90 675 1323 95 630 1368 100 585 1413 105 540 1458 110 495 1503 115 450 1548 120 415 1583 125 385 1613 130 360 1638 135 335 1663 140 310 1688<	10	1763	235
25 1439 559 30 1378 620 35 1303 695 40 1223 775 45 1163 835 50 1093 905 55 1033 965 60 978 1020 65 928 1070 70 878 1120 75 813 1185 80 765 1233 85 720 1278 90 675 1323 95 630 1368 100 585 1413 105 540 1458 110 495 1503 115 450 1548 120 415 1583 125 385 1613 130 360 1638 135 335 1663 140 310 1688 145 285 1713	15	1663	335
30 1378 620 35 1303 695 40 1223 775 45 1163 835 50 1093 905 55 1033 965 60 978 1020 65 928 1070 70 878 1120 75 813 1185 80 765 1233 85 720 1278 90 675 1323 95 630 1368 100 585 1413 105 540 1458 110 495 1503 115 450 1548 120 415 1583 125 385 1613 130 360 1638 135 335 1663 140 310 1688 145 285 1713 150 265 1733 155 250 1748 160 210	20	1559	439
35 1303 695 40 1223 775 45 1163 835 50 1093 905 55 1033 965 60 978 1020 65 928 1070 70 878 1120 75 813 1185 80 765 1233 85 720 1278 90 675 1323 95 630 1368 100 585 1413 105 540 1458 110 495 1503 115 450 1548 120 415 1583 125 385 1613 130 360 1638 135 335 1663 140 310 1688 145 285 1713 150 265 1733 155 250 1748 160 210 1788 165 175 <td>25</td> <td>1439</td> <td>559</td>	25	1439	559
40 1223 775 45 1163 835 50 1093 905 55 1033 965 60 978 1020 65 928 1070 70 878 1120 75 813 1185 80 765 1233 85 720 1278 90 675 1323 95 630 1368 100 585 1413 105 540 1458 110 495 1503 115 450 1548 120 415 1583 125 385 1613 130 360 1638 135 335 1663 140 310 1688 145 285 1713 150 265 1733 155 250 1748 160 210 1788 165 175 1823 170 131 <td>30</td> <td>1378</td> <td>620</td>	30	1378	620
45 1163 835 50 1093 905 55 1033 965 60 978 1020 65 928 1070 70 878 1120 75 813 1185 80 765 1233 85 720 1278 90 675 1323 95 630 1368 100 585 1413 105 540 1458 110 495 1503 115 450 1548 120 415 1583 125 385 1613 130 360 1638 135 335 1663 140 310 1688 145 285 1713 150 265 1733 155 250 1748 160 210 1788 165 175 1823 170 131 1867	35	1303	695
50 1093 905 55 1033 965 60 978 1020 65 928 1070 70 878 1120 75 813 1185 80 765 1233 85 720 1278 90 675 1323 95 630 1368 100 585 1413 105 540 1458 110 495 1503 115 450 1548 120 415 1583 125 385 1613 130 360 1638 135 335 1663 140 310 1688 145 285 1713 150 265 1733 155 250 1748 160 210 1788 165 175 1823 170 131 <td< td=""><td>40</td><td>1223</td><td>775</td></td<>	40	1223	775
55 1033 965 60 978 1020 65 928 1070 70 878 1120 75 813 1185 80 765 1233 85 720 1278 90 675 1323 95 630 1368 100 585 1413 105 540 1458 110 495 1503 115 450 1548 120 415 1583 125 385 1613 130 360 1638 135 335 1663 140 310 1688 145 285 1713 150 265 1733 155 250 1748 160 210 1788 165 175 1823 170 131 1867	45	1163	835
60 978 1020 65 928 1070 70 878 1120 75 813 1185 80 765 1233 85 720 1278 90 675 1323 95 630 1368 100 585 1413 105 540 1458 110 495 1503 115 450 1548 120 415 1583 125 385 1613 130 360 1638 135 335 1663 140 310 1688 145 285 1713 150 265 1733 155 250 1748 160 210 1788 165 175 1823 170 131 1867	50	1093	905
65 928 1070 70 878 1120 75 813 1185 80 765 1233 85 720 1278 90 675 1323 95 630 1368 100 585 1413 105 540 1458 110 495 1503 115 450 1548 120 415 1583 125 385 1613 130 360 1638 135 335 1663 140 310 1688 145 285 1713 150 265 1733 155 250 1748 160 210 1788 165 175 1823 170 131 1867	55	1033	965
70 878 1120 75 813 1185 80 765 1233 85 720 1278 90 675 1323 95 630 1368 100 585 1413 105 540 1458 110 495 1503 115 450 1548 120 415 1583 125 385 1613 130 360 1638 135 335 1663 140 310 1688 145 285 1713 150 265 1733 155 250 1748 160 210 1788 165 175 1823 170 131 1867	60	978	1020
75 813 1185 80 765 1233 85 720 1278 90 675 1323 95 630 1368 100 585 1413 105 540 1458 110 495 1503 115 450 1548 120 415 1583 125 385 1613 130 360 1638 135 335 1663 140 310 1688 145 285 1713 150 265 1733 155 250 1748 160 210 1788 165 175 1823 170 131 1867	65	928	1070
80 765 1233 85 720 1278 90 675 1323 95 630 1368 100 585 1413 105 540 1458 110 495 1503 115 450 1548 120 415 1583 125 385 1613 130 360 1638 135 335 1663 140 310 1688 145 285 1713 150 265 1733 155 250 1748 160 210 1788 165 175 1823 170 131 1867	70	878	1120
85 720 1278 90 675 1323 95 630 1368 100 585 1413 105 540 1458 110 495 1503 115 450 1548 120 415 1583 125 385 1613 130 360 1638 135 335 1663 140 310 1688 145 285 1713 150 265 1733 155 250 1748 160 210 1788 165 175 1823 170 131 1867	75	813	1185
90 675 1323 95 630 1368 100 585 1413 105 540 1458 110 495 1503 115 450 1548 120 415 1583 125 385 1613 130 360 1638 135 335 1663 140 310 1688 145 285 1713 150 265 1733 155 250 1748 160 210 1788 165 175 1823 170 131 1867	80	765	1233
95 630 1368 100 585 1413 105 540 1458 110 495 1503 115 450 1548 120 415 1583 125 385 1613 130 360 1638 135 335 1663 140 310 1688 145 285 1713 150 265 1733 155 250 1748 160 210 1788 165 175 1823 170 131 1867	85	720	1278
100 585 1413 105 540 1458 110 495 1503 115 450 1548 120 415 1583 125 385 1613 130 360 1638 135 335 1663 140 310 1688 145 285 1713 150 265 1733 155 250 1748 160 210 1788 165 175 1823 170 131 1867	90	675	1323
105 540 1458 110 495 1503 115 450 1548 120 415 1583 125 385 1613 130 360 1638 135 335 1663 140 310 1688 145 285 1713 150 265 1733 155 250 1748 160 210 1788 165 175 1823 170 131 1867	95	630	1368
110 495 1503 115 450 1548 120 415 1583 125 385 1613 130 360 1638 135 335 1663 140 310 1688 145 285 1713 150 265 1733 155 250 1748 160 210 1788 165 175 1823 170 131 1867	100	585	1413
115 450 1548 120 415 1583 125 385 1613 130 360 1638 135 335 1663 140 310 1688 145 285 1713 150 265 1733 155 250 1748 160 210 1788 165 175 1823 170 131 1867	105	540	1458
120 415 1583 125 385 1613 130 360 1638 135 335 1663 140 310 1688 145 285 1713 150 265 1733 155 250 1748 160 210 1788 165 175 1823 170 131 1867	110	495	1503
125 385 1613 130 360 1638 135 335 1663 140 310 1688 145 285 1713 150 265 1733 155 250 1748 160 210 1788 165 175 1823 170 131 1867	115	450	1548
130 360 1638 135 335 1663 140 310 1688 145 285 1713 150 265 1733 155 250 1748 160 210 1788 165 175 1823 170 131 1867	120	415	1583
135 335 1663 140 310 1688 145 285 1713 150 265 1733 155 250 1748 160 210 1788 165 175 1823 170 131 1867	125	385	1613
140 310 1688 145 285 1713 150 265 1733 155 250 1748 160 210 1788 165 175 1823 170 131 1867	130	360	1638
140 310 1688 145 285 1713 150 265 1733 155 250 1748 160 210 1788 165 175 1823 170 131 1867	135	335	1663
150 265 1733 155 250 1748 160 210 1788 165 175 1823 170 131 1867	140	310	1688
155 250 1748 160 210 1788 165 175 1823 170 131 1867	145	285	1713
160 210 1788 165 175 1823 170 131 1867	150	265	1733
165 175 1823 170 131 1867	155	250	1748
170 131 1867	160	210	1788
	165	175	1823
No Refusal	170	131	1867
		No Refusal	

 Test Date
 06/05/2021
 DCP No.
 202

 Site:
 Try Again
 Hole No.
 Side – TP202

No. Blows	DCP02 - Side TP202 1995	NGL
0	1995	
		0
5	1870	125
10	1745	250
15	1620	375
20	1509	486
25	1398	597
30	1287	708
35	1176	819
40	1067	928
45	958	1037
50	849	1146
55	740	1255
60	631	1364
65	522	1473
70	457	1538
75	392	1603
80	350	1645
85	308	1687
90	266	1729
95	224	1771
100	182	1813
105	140	1855
110	98	1897
No Refusal		

 Test Date
 06/05/2021
 DCP No.
 203

 Site:
 Try Again
 Hole No.
 Side – TP203

No. Blows	DCP03 - Side TP203	NGL
0	1993	0
5	1876	117
10	1759	234
15	1642	351
20	1522	471
25	1436	557
30	1347	646
35	1258	735
40	1169	824
45	1080	913
50	991	1002
55	902	1091
60	813	1180
65	724	1269
70	635	1358
75	580	1413
80	525	1468
85	470	1523
90	415	1578
95	382	1611
100	349	1644
105	316	1677
110	283	1710
115	250	1743
120	217	1776
125	184	1809
130	151	1842
135	118	1875
No Refusal		

Test Date	06/05/2021	DCP No.	204
Site:	Try Again	Hole No.	Side – TP204

No. Blows	DCP04 - Side TP204	NGL		
0	1897	0		
5	1790	107		
10	1695	202		
15	1594	303		
20	1493	404		
25	1392	505		
30	1291	606		
35	1187	710		
40	1095	802		
45	1007	890		
50	919	978		
55	831	1066		
60	743	1154		
65	655	1242		
70	620	1277		
75	585	1312		
80	550	1347		
85	515	1382		
90	480	1417		
95	445	1452		
100	410	1487		
105	375	1522		
110	340	1557		
115	305	1592		
120	270	1627		
125	235	1662		
130	200	1697		
135	163	1734		
140	144	1753		
145	104	1793		
	No Refusal	No Refusal		

Test Date	06/05/2021	DCP No.	205
Site:	Try Again	Hole No.	Side – TP205

No. Blows	DCP05 - Side TP205	NGL
0	1985	0
5	1878	107
10	1771	214
15	1664	321
20	1557	428
25	1450	535
30	1343	642
35	1236	749
40	1129	856
45	1022	963
50	915	1070
55	829	1156
60	746	1239
65	663	1322
70	580	1405
75	535	1450
80	490	1495
85	445	1540
90	400	1585
95	335	1650
100	310	1675
105	265	1720
110	220	1765
115	175	1810
120	135	1850
125	95	1890
No Refusal		

 Test Date
 06/05/2021
 DCP No.
 206

 Site:
 Try Again
 Hole No.
 Side – TP206

No. Blows	DCP06 - Side TP206	NGL
0	1993	0
5	1890	103
10	1791	202
15	1692	301
20	1593	400
25	1494	499
30	1395	598
35	1296	697
40	1197	796
45	1098	895
50	999	994
55	900	1093
60	844	1149
65	791	1202
70	738	1255
75	685	1308
80	632	1361
85	597	1396
90	526	1467
95	473	1520
100	420	1573
105	379	1614
110	338	1655
115	297	1696
120	256	1737
125	174	1819
130	133	1860
135	92	1901

Test Date	06/05/2021	DCP No.	207
Site:	Try Again	Hole No.	Side – TP207

No. Blows	DCP07 - Side TP207	NGL
0	1949	0
5	1850	99
10	1751	198
15	1652	297
20	1553	396
25	1454	495
30	1355	594
35	1256	693
40	1157	792
45	1058	891
50	959	990
55	860	1089
60	788	1161
65	718	1231
70	648	1301
75	573	1376
80	511	1438
85	446	1503
90	385	1564
95	344	1605
100	303	1646
105	262	1687
110	221	1728
115	180	1769
120	139	1810
125	1851	
	No Refusal	

 Test Date
 06/05/2021
 DCP No.
 208

 Site:
 Try Again
 Hole No.
 Side – TP208

No. Blows	DCP08 - Side TP208	NGL
0	1979	0
5	1878	101
10	1777	202
15	1676	303
20	1575	404
25	1474	505
30	1373	606
35	1272	707
40	1172	807
45	1070	909
50	969	1010
55	893	1086
60	817	1162
65	741	1238
70	665	1314
75	589	1390
80	513	1466
85	439	1540
90	361	1618
95	285	1694
100	209	1770
105	164	1815
110	119	1860
115	74	1905
	No Refusal	

EARTH CIVIL TESTING

Reg.No.- K2011/115681/01 Tax.No.- 9127/374/18/0
Radiation Control – Authority No. 2962/16/1430
106 Francis Road – P.O. Box 303 - Ladysmith – KwaZulu Natal – 3370

Web - www.geo-sol.co.za - Tel - 0715608058 - 0799100920 - Email - projects@geo-sol.co.za

Date	10/05/2021	Client		Sivest		Sample No.	101 A
WN	2113-01	Project	Dura	ancol Ceme	tery	Depth	0,8-1,2m
LN	L01-MN01	Description	Pale Br	to Orange S	ilty Clay	Lab Tech	S. July
	Soil Gra	ding Analysis	- Mechanic	al Analysis	- SANS 30	01 – GR1	
	Sieve Analysis	Mass Ret	% Ret	% Passing	1	% Sample Conte	nt
	37,500	0	0	100		Gravel	1,4
	26,500	0	0	100		Sand	12,8
	19,000	0	0	100		Fines	85,8
	13,200	0	0	100		Total	100,0
	4,750	7	1,4	98,6			
	2,000	3	0,6	98	S	oil Mortar Gradi	ng
	0,425	18	3,6	94,4	Coa	arse Sand	3,7
	0,250	12	2,4	92	Coars	e Fine Sand	2,4
	0,150	15	3	89	Mediu	ım Fine Sand	3,1
	0,075	16	3,2	85,8	Fine	Fine Sand	3,3
	<0,075	429	85,8	0	Si	lt & Clay	87,6
	Total	500				Total	100,0
		Nat	ural Moist	ure Content			
Container	No. 7		Contai	660			
Dry Samp	le: 500g		638				
	Container Wei	ght 160g - Mass recorded in grams Moisture %					3,3
	Pla	sticity Atterbe	erg Limits –	SANS 3001	– GR1 – G	R12	
Samp	ole Number	Moisture (Content	Plastic	Limit	Calculat	ion
Trou	gh Number	1	2	3	4	L.L	40,6
Mass	of container	17,6	17,3	17,3	17,2	P.L	30,1
Mass Co	ontainer +Wet	18,7	19,6	19,3	19,5	P.I	10,4
	Mass Container + Dry		19,1	18,9	18,9		
Mass of Dry Material		0,75	1,8	1,6	1,7		
Mass of Moisture		0,4 53,3	0,5	0,4	0,6	1	
	% Moisture		27,8	25,0	35,3		1
	kage (mm)	8	Linear	Shrinkage		5,3	%
	ough No.	1		(f= 0.			
	ssification	Unifi	ed	0	L - Organic	Silt - Oraganic Cl	ay
I Can Caata -	haiaal Calusiana Ds	1 4 -1.					

For Geotechnical Solutions Pty Ltd:

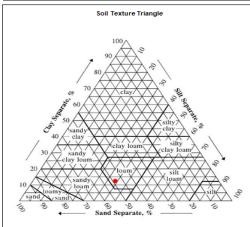
(Technical Signatory - Nilesh Mahadew)

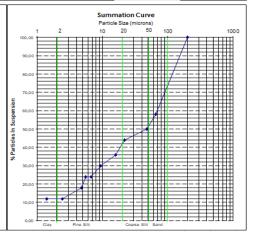
Limitations: This report shall not be reproduced except in full without prior written approval of the laboratory.

Results in this report relate only to the samples as taken, and the condition received by the laboratory.

EARTH CIVIL TESTING

Reg.No.- K2011/115681/01 Tax.No.- 9127/374/18/0
Radiation Control – Authority No. 2962/16/1430
106 Francis Road – P.O. Box 303 - Ladysmith – KwaZulu Natal – 3370


Web - www.geo-sol.co.za - Tel - 0715608058 - 0799100920 - Email - projects@geo-sol.co.za


Date	10/05/2021	021 Client Sivest		Sample No.	101 A
WN	2113-01	Project	Durancol Cemetery	Depth	0,8-1,2m
LN	L01-MN01	Description	Pale Br to Orange Silty Clay	Lab Tech	S. July

Hydrometer Analysis - (ASTM D422)

Elapsed Time (min)	Time	Hydrometer Reading R	Temp *C
0	8:00:00 AM		
0,5	8:00:30 AM	29	20
1	8:01:00 AM	25	20
5	8:05:00 AM	22	20
10	8:10:00 AM	18	20
30	8:30:00 AM	15	20
60	9:00:00 AM	12	20
90	9:30:00 AM	12	20
120	10:00:00 AM	9	21
480	4:00:00 PM	6	21
1440	8:00:00 AM	6	21

Elapsed Time (min)	R	C (Corrected R)	Р	t^0.5	Theta	Effective Diameter	Viscosity	Density
0			100,00	0,000		200		
0,5	29	29	58,00	0,707	46,83403778	66,2333	0,010232925	1,001351452
1	25	25	50,00	1,000	48,14634885	48,1463	0,010232925	1,001351452
5	22	22	44,00	2,236	49,10757342	21,9616	0,010232925	1,001351452
10	18	18	36,00	3,162	50,36067493	15,9254	0,010232925	1,001351452
30	15	15	30,00	5,477	51,2804099	9,3625	0,010232925	1,001351452
60	12	12	24,00	7,746	52,18393717	6,7369	0,010232925	1,001351452
90	12	12	24,00	9,487	52,18393717	5,5007	0,010232925	1,001351452
120	9	9	18,00	10,954	52,44080866	4,7872	0,009992224	1,001139186
480	6	6	12,00	21,909	53,30394545	2,4330	0,009992224	1,001139186
1440	6	6	12,00	37,947	53,30394545	1,4047	0,009992224	1,001139186

For Geotechnical Solutions Pty Ltd:

(Technical Signatory – Nilesh Mahadew)

Limitations: This report shall not be reproduced except in full without prior written approval of the laboratory.

EARTH CIVIL TESTING

Reg.No.- K2011/115681/01 Tax.No.- 9127/374/18/0
Radiation Control – Authority No. 2962/16/1430
106 Francis Road – P.O. Box 303 - Ladysmith – KwaZulu Natal – 3370

Web - www.geo-sol.co.za - Tel - 0715608058 - 0799100920 - Email - projects@geo-sol.co.za

Date	10/05/2021	Client		Sivest		Sample No.	105 B		
WN	2113-01	Project	Dura	ancol Ceme	tery	Depth	1,0-1,4m		
LN	L01-MN01	Description	Pale Br	to Brown S	ilty Clay	Lab Tech	S. July		
	Soil Grading Analysis - Mechanical Analysis - SANS 3001 - GR1								
	Sieve Analysis	Mass Ret	% Ret	% Passing		% Sample Conte	nt		
	37,500	0	0	100		Gravel	0,0		
	26,500	0	0	100		Sand	16,0		
	19,000	0	0	100		Fines	84,0		
	13,200	0	0	100		Total	100,0		
	4,750	0	0	100					
	2,000	7	1,4	98,6	S	oil Mortar Gradi	ng		
	0,425	22	4,4	94,2	Coa	arse Sand	4,5		
	0,250	15	3	91,2	Coars	se Fine Sand	3,0		
	0,150	18	3,6	87,6	Mediu	ım Fine Sand	3,7		
	0,075	18	3,6	84	Fine	Fine Sand	3,7		
	<0,075	420	84	0	Silt & Clay		85,2		
	Total	500				Total	100,0		
		Nat	ural Moist	ure Content	t				
Container	No. 7	Container + Sample (Wet)					660		
Dry Samp	le: 500g		637						
	Container Wei	ight 160g - Mas	s recorded	in grams		Moisture %	3,5		
	Pla	sticity Atterbe	erg Limits –	SANS 3001	. – GR1 – G	R12			
Samp	ole Number	Moisture (Content	Plastic	Limit	Calculat	tion		
Trou	gh Number	5	6	7	8	L.L	42,2		
Mass	of container	17,7	17,7	18,0	17,6	P.L	30,1		
Mass Co	ontainer +Wet	19,1	19,0	19,2	19,4	P.I	12,1		
Mass Co	ontainer + Dry	18,7	18,6	18,9	19,0	_			
Mass of Dry Material		1	0,9	0,95	1,4	1			
Mass of Moisture		0,4	0,4	0,3	0,4]			
% Moisture		40	44,4	31,6	28,6		_		
Shrinkage (mm)		9	Linear	Shrinkage	= _x(f)	6,0	%		
Tre	ough No.	2		(f= 0.	.579)				
Clas	ssification	Unific	ed	0	L - Organic	Silt - Oraganic Cl	ay		
For Geotec	For Geotechnical Solutions Pty I td:								

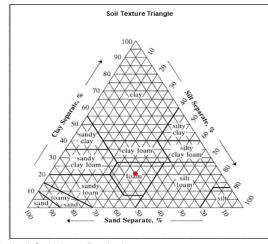
For Geotechnical Solutions Pty Ltd:

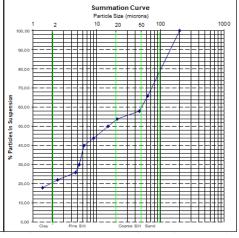
(Technical Signatory - Nilesh Mahadew)

 $Limitations: This \ report \ shall \ not \ be \ reproduced \ except \ in \ full \ without \ prior \ written \ approval \ of \ the \ laboratory.$

EARTH CIVIL TESTING

Reg.No.- K2011/115681/01 Tax.No.- 9127/374/18/0
Radiation Control – Authority No. 2962/16/1430
106 Francis Road – P.O. Box 303 - Ladysmith – KwaZulu Natal – 3370


Web - www.geo-sol.co.za - Tel - 0715608058 - 0799100920 - Email - projects@geo-sol.co.za


Date	10/05/2021	Client	Client Sivest		105 B
WN	2113-01	Project	Durancol Cemetery	Depth	1,0-1,4m
LN	L01-MN01	Description	Pale Br to Brown Silty Clay	Lab Tech	S. July

Hydrometer Analysis - (ASTM D422)

Elapsed Time (min)	Time	Hydrometer Reading R	Temp *C
0	8:00:00 AM		
0,5	8:00:30 AM	33	21
1	8:01:00 AM	29	21
5	8:05:00 AM	27	21
10	8:10:00 AM	25	21
30	8:30:00 AM	22	21
60	9:00:00 AM	20	21
90	9:30:00 AM	15	21
120	10:00:00 AM	13	21
480	4:00:00 PM	11	19
1440	8:00:00 AM	9	19

Elapsed Time (min)	R	C (Corrected R)	Р	t^0.5	Theta	Effective Diameter	Viscosity	Density
0			100,00	0,000		200		
0,5	33	33	66,00	0,707	44,94286281	63,5588	0,009992224	1,001139186
1	29	29	58,00	1,000	46,27696151	46,2770	0,009992224	1,001139186
5	27	27	54,00	2,236	46,92979109	20,9876	0,009992224	1,001139186
10	25	25	50,00	3,162	47,57366305	15,0441	0,009992224	1,001139186
30	22	22	44,00	5,477	48,52345415	8,8591	0,009992224	1,001139186
60	20	20	40,00	7,746	49,14645183	6,3448	0,009992224	1,001139186
90	15	15	30,00	9,487	50,67044542	5,3411	0,009992224	1,001139186
120	13	13	26,00	10,954	51,26735964	4,6800	0,009992224	1,001139186
480	11	11	22,00	21,909	53,18729849	2,4277	0,010508663	1,001553186
1440	9	9	18,00	37,947	53,78566531	1,4174	0,010508663	1,001553186

For Geotechnical Solutions Pty Ltd:

(Technical Signatory – Nilesh Mahadew)

Limitations: This report shall not be reproduced except in full without prior written approval of the laboratory.

EARTH CIVIL TESTING

Reg.No.- K2011/115681/01 Tax.No.- 9127/374/18/0
Radiation Control – Authority No. 2962/16/1430
106 Francis Road – P.O. Box 303 - Ladysmith – KwaZulu Natal – 3370

Web - www.geo-sol.co.za - Tel - 0715608058 - 0799100920 - Email - projects@geo-sol.co.za

Date	10/05/2021	Client		Sivest		Sample No.	205 C
WN	2114-01	Project	Try	Again Ceme	tery	Depth	1,1-1,5m
LN	L01-MN01	Description	Dark to	o Pale Or Sil	lty Clay	Lab Tech	S. July
	Soil Gra	ding Analysis -	- Mechanic	al Analysis	- SANS 30	01 – GR1	
	Sieve Analysis	Mass Ret	% Ret	% Passing		% Sample Conte	nt
	37,500	0	0	100		Gravel	0,6
	26,500	0	0	100		Sand	39,4
	19,000	0	0	100		Fines	60,0
	13,200	0	0	100		Total	100,0
	4,750	3	0,6	99,4			
	2,000	9	1,8	97,6	S	oil Mortar Gradi	ng
	0,425	70	14	83,6	Coa	arse Sand	14,3
	0,250	51	10,2	73,4	Coars	e Fine Sand	10,5
	0,150	39	7,8	65,6	Mediu	ım Fine Sand	8,0
	0,075	28	5,6	60	Fine	Fine Sand	5,7
	<0,075	300	60	0	Silt & Clay		61,5
	Total	500				Total	100,0
		Nat	ural Moist	ure Content	ţ		
Container	No. 7		Container + Sample (Wet)				
Dry Sampl	e: 500g	Container + Sample (Dry)					642
	Container Wei	ght 160g - Mas	s recorded	in grams		Moisture %	2,7
	Pla	sticity Atterbe	erg Limits –	SANS 3001	. – GR1 – G	R12	
Samp	ole Number	Moisture (Content	Plastic	Limit	Calculat	ion
Trou	gh Number	9	10	11	12	L.L	30,6
Mass	of container	17,5	17,2	17,1	17,1	P.L	21,1
Mass Co	ontainer +Wet	18,9	18,8	19,3	18,9	P.I	9,5
Mass Co	ontainer + Dry	18,5	18,5	18,9	18,6		
Mass of Dry Material		1,05	1,3	1,8	1,5		
Mass of Moisture		0,4	0,3	0,4	0,3		
% Moisture		38,1	23,1	22,2	20		
	kage (mm)	7	Linear	Shrinkage		4,7	%
	ough No.	3	(f= 0.579)				
Clas	sification	Unifie	ed	0	L - Organic	Silt - Oraganic Cl	ay
For Geotec	For Geotechnical Solutions Ptv I td:						

For Geotechnical Solutions Pty Ltd:

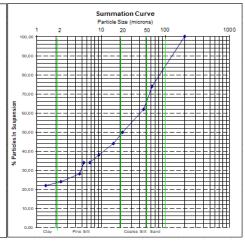
(Technical Signatory - Nilesh Mahadew)

Limitations: This report shall not be reproduced except in full without prior written approval of the laboratory.

EARTH CIVIL TESTING

Reg.No.- K2011/115681/01 Tax.No.- 9127/374/18/0
Radiation Control – Authority No. 2962/16/1430
106 Francis Road – P.O. Box 303 - Ladysmith – KwaZulu Natal – 3370


Web - www.geo-sol.co.za - Tel - 0715608058 - 0799100920 - Email - projects@geo-sol.co.za


Date	10/05/2021	Client	Sivest	Sample No.	205 C
WN	2114-01	Project	Try Again Cemetery	Depth	1,1-1,5m
LN	L01-MN01	Description	Dark to Pale Or Silty Clay	Lab Tech	S. July

Hydrometer Analysis - (ASTM D422)

Elapsed Time (min)	Time	Hydrometer Reading R	Temp *C
0	8:00:00 AM		
0,5	8:00:30 AM	37	20
1	8:01:00 AM	31	20
5	8:05:00 AM	25	20
10	8:10:00 AM	22	20
30	8:30:00 AM	19	19
60	9:00:00 AM	17	19
90	9:30:00 AM	17	19
120	10:00:00 AM	14	21
480	4:00:00 PM	12	20
1440	8:00:00 AM	11	20

Elapsed Time (min)	R	C (Corrected R)	Р	t^0.5	Theta	Effective Diameter	Viscosity	Density
0			100,00	0,000		200		
0,5	37	37	74,00	0,707	44,09239695	62,3561	0,010232925	1,001351452
1	31	31	62,00	1,000	46,16389486	46,1639	0,010232925	1,001351452
5	25	25	50,00	2,236	48,14634885	21,5317	0,010232925	1,001351452
10	22	22	44,00	3,162	49,10757342	15,5292	0,010232925	1,001351452
30	19	19	38,00	5,477	50,72329283	9,2608	0,010508663	1,001553186
60	17	17	34,00	7,746	51,35037981	6,6293	0,010508663	1,001553186
90	17	17	34,00	9,487	51,35037981	5,4128	0,010508663	1,001553186
120	14	14	28,00	10,954	50,96977635	4,6529	0,009992224	1,001139186
480	12	12	24,00	21,909	52,18393717	2,3819	0,010232925	1,001351452
1440	11	11	22,00	37,947	52,48165634	1,3830	0,010232925	1,001351452

For Geotechnical Solutions Pty Ltd:

(Technical Signatory – Nilesh Mahadew)

Limitations: This report shall not be reproduced except in full without prior written approval of the laboratory.

EARTH CIVIL TESTING

Reg.No.- K2011/115681/01 Tax.No.- 9127/374/18/0
Radiation Control – Authority No. 2962/16/1430
106 Francis Road – P.O. Box 303 - Ladysmith – KwaZulu Natal – 3370

Web - www.geo-sol.co.za - Tel - 0715608058 - 0799100920 - Email - projects@geo-sol.co.za

REPORT TO SIVEST ON THE RESULTS OF A HYDROGEOLOGICAL INVESTIGATION FOR THE PROPOSED CEMETERY SITES AT DURNACOL AND TRY AGAIN FARMS IN DANHAUSER, KWAZULU-NATAL

066-2113-01.R02 Revision 0 18 May 2021

Compiled for: SIVEST 4 Pencarrow Cre

4 Pencarrow Crescent, La Lucia Ridge, Umhlanga

Compiled by:

Author:	Nishen Govender Pr. Sci. Nat. MSc Geohydrology PhD Candidate
Reviewer:	Kumendrie Naidoo Pr. Sci. Nat. MSc Mining Engineering PhD Candidate

REPORT TO SIVEST ON THE RESULTS OF A HYDROGEOLOGICAL INVESTIGATION FOR THE PROPOSED CEMETERY SITES AT DURNACOL AND TRY AGAIN FARMS IN DANHAUSER, KWAZULU-NATAL

066-2113-01.R02 Revision 0 18 May 2021

Prepared For:

SIVEST

Compiled by: Nishen Govender Pr. Sci. Nat. BSc Hon and MSc Geohydrology

Approval of Document			
Date:	18 May 2021		
Reference:	066-2113-01.R01		
Professional Name	SACNASP No Signature		
Nishen Govender Pr. Sci. Nat. MSc Geohydrology	400138/17	Dood	
Kumendrie Naidoo Pr. Sci. Nat. MSc Mining Engineering	400080/2000	Janobis	

TABLE OF CONTENTS

Contents

1.	TERMS OF AGREEMENT AND SCOPE OF SERVICES	1
2.	CODES OF PRACTICE AND STANDARDS	1
3.	REFERENCED INFORMATION	2
4.	INVESTIGATION ACTIVITIES	2
4.1 4.2 4.3 4.4	TEST PITTING AND PROFILING DCP TESTING HYDROGEOLOGICAL MAPPING, HYDROCENSUS AND WATER SAMPLING PERCOLATION TEST	3 3 3 4
5.	DESCRIPTION OF THE STUDY AREA	4
6.	CLIMATIC CONDITIONS	8
7.	GENERAL GEOLOGY	9
7.1 7.2	Durnacol Geology Try Again Geology	10 13
8.	HYDROGEOLOGY	15
8.1 8.2	GENERAL HYDROGEOLOGY OF THE AREA HYDROCENSUS	15 17
9.	GROUNDWATER SEEPAGE IN TEST PITS	19
10.	WATER LABORATORY RESULTS	19
11.	GROUNDWATER RISK ASSESSMENT	21
12.	GROUNDWATER MONITORING RECOMMENDATIONS	24
13.	CONCLUDING REMARKS	25
14.	REFERENCES	26

Appendix A: Test Pit Profiles
Appendix B: DCP Test Results

Appendix C: Laboratory Test Results

Appendix D: Aquifer Classification and Vulnerability Maps

Table of Abbreviations

begl	Below existing ground level
ВН	Borehole
cm	centimetre
DCP	Dynamic Cone Penetrometer Test
Ε	East
GM	grading modulus
IMC	insitu moisture content
kN/m²	kilonewtons per metre square
LL	liquid limit
LS	linear shrinkage
m	metre (s)
mamsl	Metres above mean sea level
mm	millimetre
No.	number
N	North
PI	plasticity index
SANS	South African National Standards
S	South
S	second
TP	Test Pits
TLB	Tractor loader backactor
WULA	Water Use License Application

1. TERMS OF AGREEMENT AND SCOPE OF SERVICES

Geotechnical Solutions (Pty) Ltd were approached by Sivest to assist with a geotechnical and hydrogeological report for two cemetery sites in Danhauser, KwaZulu-Natal.

Following the tender process, Sivest was appointed by the local authority in the area to proceed with the Environmental Impact Assessment.

The following work has been proposed by Geotechnical Solutions:

- Hand excavated inspections pits.
- Dynamic cone penetration tests.
- Groundwater Quality Assessment.
- Geotechnical and Hydrogeological Report.

This report referenced 066-2133-01.R01 provides the results of the geotechnical and hydrogeological investigation. Included in the report with be recommendations in terms of suitability for use a cemetery site, aquifer contamination risk.

2. CODES OF PRACTICE AND STANDARDS

The services were carried out in accordance to the current level of geotechnical standards practiced by professionals in Southern Africa.

The documents referenced for use is:

- Site Investigation Code of Practice, 1st Edition, South African Institution of Civil Engineering Geotechnical Division, January, 2010.
- Dippenaar, M.A., Olivier, J., Lorentz, S., Ubomba-Jaswa, E., Abia, A.L.K., and Diamond, R.E. (2018). Environmental Risk Assessment, Monitoring and Management of Cemeteries. Water Research Commission. WRC Report No. 2449/1/18

The nature of geotechnical engineering is such that variations in soil conditions may occur even where sites seem to be consistent. Variations from what is reported here may become evident during construction and it is thus imperative that an appropriately

qualified and experienced competent person inspects all critical stages of development including, but not limited to excavations, to ensure that conditions at variance with those predicted do not occur and to undertake an interpretation of the facts supplied in this report.

It is possible that certain indications of ground stability, contamination, or groundwater levels were latent or otherwise not visible. Opinions are based on what was visible at the time the investigation was conducted.

3. REFERENCED INFORMATION

The following information was used for the project:

- i. Kml files issued by Sivest showing the site boundaries.
- ii. Council for Geosciences Geological Map Sheet "2830 Dundee", to a scale of 1:250 000.
- iii. Department of Water and Sanitation Hydrogeological Map Sheet "2730 Vryheid", to a scale of 1:500 000.
- iv. Low-resolution satellite imagery sourced from Google Earth (202).

4. INVESTIGATION ACTIVITIES

The field portion of the investigation was carried out over the period 21 April 2021 to 22 April 2021 and comprised the following:

- a. Hydrogeological Mapping,
- b. Hydrocensus and verification of Boreholes, and
- c. Collection of groundwater samples.

4.1 Test Pitting and Profiling

DURNACOL SITE

Five test pits were excavated across the site and are designated by prefixes PN101 to PN105. The test pits were excavated using hand tools to approximate refusal/final depths in the range 1.6 metres (m) to 1.8m below existing ground level (begl).

TRY AGAIN SITE

Eight test pits were excavated across the site and are designated by prefixes PN201 to PN208. The test pits were excavated using hand tools to approximate refusal/final depths in the range 1.4 metres (m) to 1.9m below existing ground level (begl).

The test pits were profiled in accordance to the South African Geoterminology Guidelines (Brink and bruin, 2002). The test pit profiles are given in Appendix A at the end of this report.

4.2 DCP Testing

DURNACOL SITE

DCP tests were also carried out adjacent to each test pit. A total of five DCP tests were completed. The DCP tests have been designated by prefixes DCP101 to DCP105 extended to approximate refusal/final depths in the range 1.7m to 1.9m begl.

TRY AGAIN SITE

DCP tests were also carried out adjacent to each test pit. A total of eight DCP tests were completed. The DCP tests have been designated by prefixes DCP201 to DCP208 extended to approximate refusal/final depths in the range 1.7m to 1.9m begl

The DCP test results are given in Appendix B at the end of this report.

4.3 Hydrogeological Mapping, Hydrocensus and Water Sampling

A hydrocensus within a 3km radius of each site was assessed, with no boreholes identified. A 4km and 5km was then utilized and 4 boreholes were identified. There are some drainage features such as ponds/dams within close proximity to the site.

Five groundwater samples were collected from site was and submitted to Talbot Laboratories in Pietermaritzburg for testing.

The water quality results are given in Appendix C.

4.4 Percolation Test

Two percolation tests were carried out in accordance with SANS 0400 (Formerly SABS 0400, 1990). The objective of the percolation test is to determine the percolation rates through the subsoil to identify approximate permeability rates.

5. DESCRIPTION OF THE STUDY AREA

There are two proposed cemetery sites that are located approximately 5km from each other. The Durnacol site is located approximately 3.5km southwest of Dannhauser Town and Try Again Site 3.0km south east of Dannahauser town.

The latitude and longitude of the central portion of the Durnacol site is 28.04343 South and 30.03601 East.

The latitude and longitude of the central portion of the Try Again site is 28.01020 South and 30.09490 East.

Both sites comprise an open plot of land with an abundance of vegetation.

The locality of the study area is shown in Figures 1 and 2, and Figures 3 and 4 shows positions of the field test pits. Indicative view of the site is given in Photographs 1 to 3.

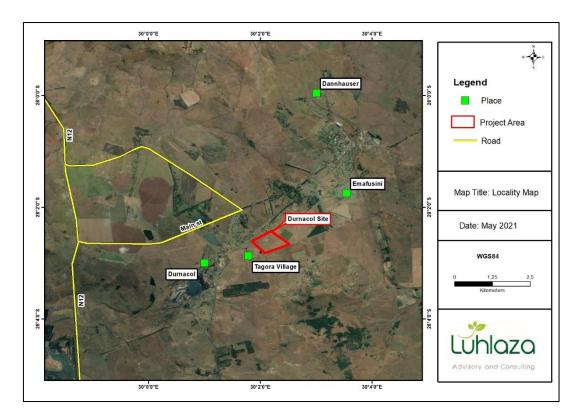


Figure 1: Locality of Durnacol Site

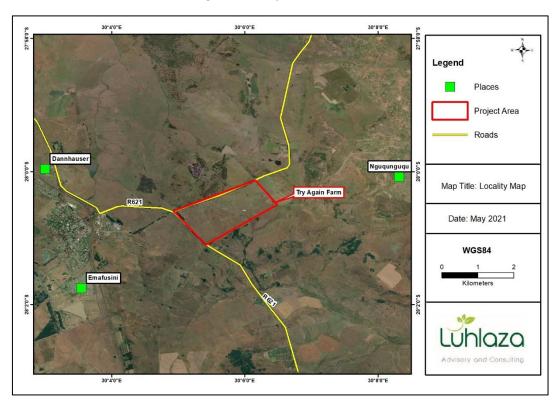


Figure 2: Locality of Try Again Site

Photograph 1: Indicative view of Durnacol Site

Photograph 2: Indicative view of Try Again Site

Photograph 3: Indicative view of the surface water feature close to Durnacol site

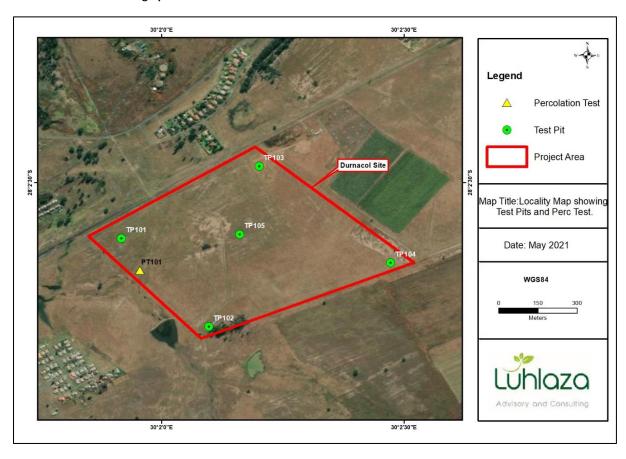


Figure 3: Field Test Positions of Durnacol Site

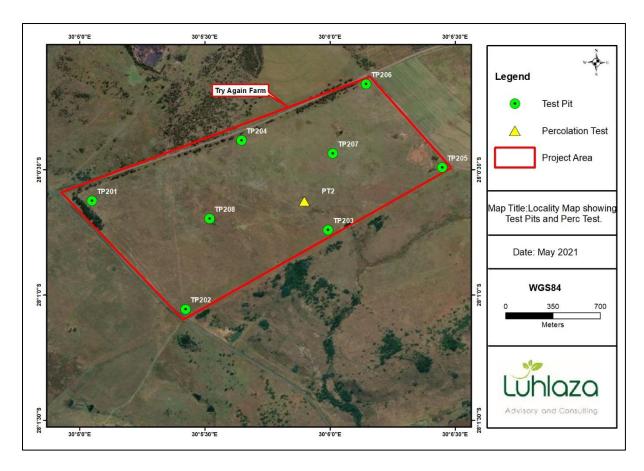


Figure 4: Field Test Positions of Try Again Site

6. CLIMATIC CONDITIONS

The area is associated with relatively hot summer months which lasts from November to March and have temperatures up to 27°C with a low of 16°C. The coldest months are from May to July and have temperatures up to 19°C and low of 4°C. April, August, September and October are relatively warm months.

The wet season is from October to March and dry season is from March to September. The wet season can expect a high of 112mm of rainfall and dry season a low of 3mm.

7. GENERAL GEOLOGY

According to the regional geological map "2830 Dundee" (Refer to Figures 5 and 6), the Durnacol site is underlain by Volksrust Formation shale that was intruded by Jurassic dolerite and the Try Again site is underlain by Vryheid Formation sandstone and shale that was intruded by Jurassic dolerite.

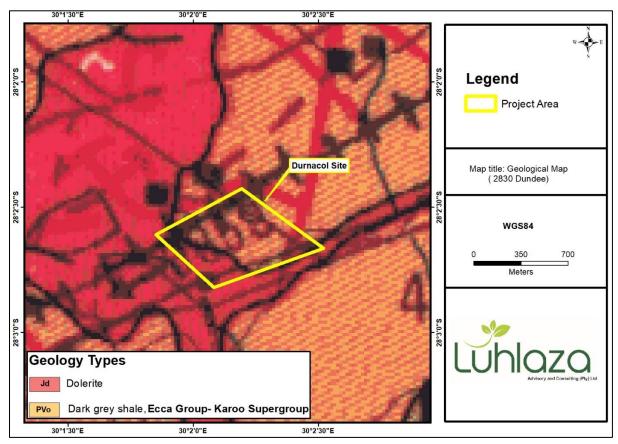


Figure 5: Geological Map of the study area "2830" Showing Durnacol Site

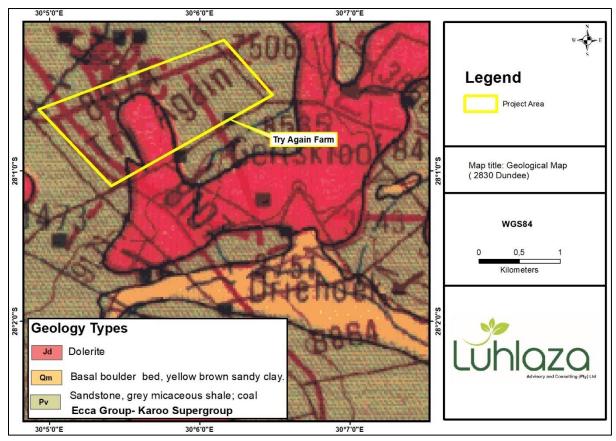


Figure 6: Geological Map of the study area "2830" Showing Try Again Site

7.1 Durnacol Geology

The positions investigated at the site comprised clayey colluvial and residual soils that have been derived from the underlying dolerite rock.

The **colluvial** material can be described as slightly moist, pale brown to light brown, firm, fine grained, silty CLAY with roots and vegetation. The colluvial soils extended to approximate depths in the range 0.5m to 0.7m begl (Refer to test pit profiles for exact depths).

The **residual** material can be described as moist, pale brown to orange, firm, intact, silty CLAY with cobbles and pebbles. The cobbles and pebbles appear to be from dolerite rock. The residual material extended to approximate final depth of 1.9m begl (Refer to test pit profiles for exact depths).

Weathered dolerite rock was only encountered in PN101 from an approximate depth of 1.7m begl. The dolerite rock can be described as brown to pale yellow, completely to highly weathered, fine to medium grained, highly fractured, soft rock.

Photographs of subsurface profiles observed in the inspection pits are given in Photographs 4 to 6.

Photograph 4: Material Encountered in TP101

Photograph 5: Material Encountered in TP103

Photograph 6: Material Encountered in TP105

7.2 Try Again Geology

The positions investigated at the site comprised clayey colluvial and residual soils that have been derived from the underlying sandstone rock.

The **colluvial** material can be described as slightly moist, pale brown to light brown, firm, fine grained, silty CLAY with roots and vegetation. The colluvial soils extended to approximate depths in the range 0.5m to 0.7m begl (Refer to test pit profiles for exact depths).

The **residual** material can be described as moist, pale brown to orange, firm, intact, silty CLAY with cobbles and pebbles. The cobbles and pebbles appear to be from dolerite rock. The residual material extended to approximate final depth of 1.8m begl (Refer to test pit profiles for exact depths).

Weathered dolerite rock was only encountered in PN208 from an approximate depth of 1.3m begl. The dolerite rock can be described as brown to pale yellow, completely to highly weathered, fine to medium grained, highly fractured, soft rock.

Photographs of subsurface profiles observed in the inspection pits are given in Photographs 7 to 9.

Photograph 7: Material Encountered in TP203

Photograph 8: Water Seepage and Material Encountered in TP205

Photograph 9: Material Encountered in TP207

8. HYDROGEOLOGY

8.1 General Hydrogeology of the Area

According to the Hydrogeological Map Sheet "2730 Vryheid" (Refer to Figures 7 and 8), the site is underlain by an Intergranular aquifer system with approximate yields in the range 0.5 to 2.0 litres/second (I/s).

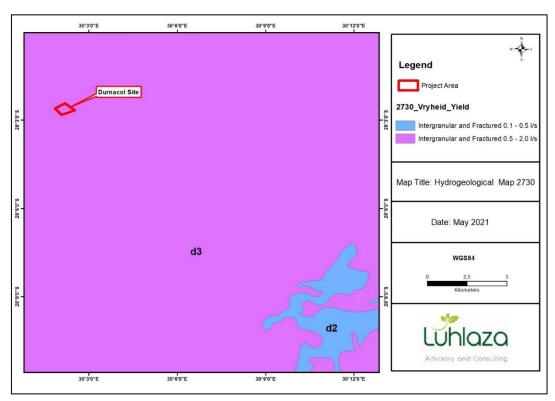


Figure 7: Hydrogeological Map of the Durnacol Site (2730 Vryheid)

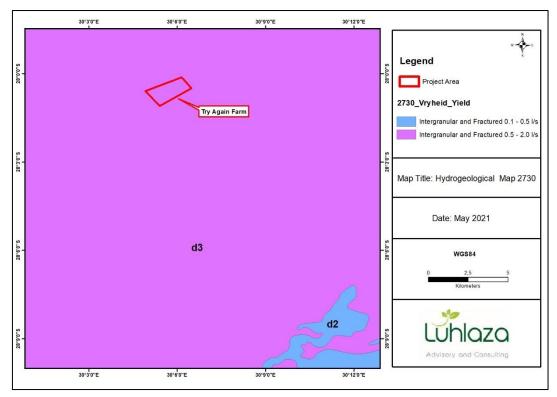


Figure 8: Hydrogeological Map of the Durnacol Site (2730 Vryheid)

According to the groundwater level map of the area, groundwater within the aquifer is anticipated to be between 10 to 25m begl as shown in Figure 9.

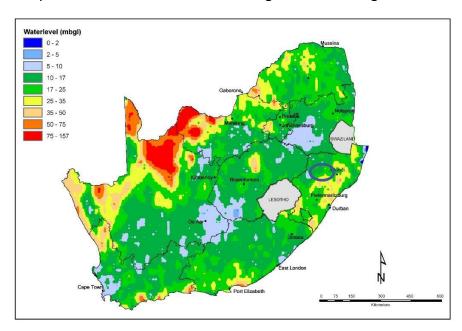


Figure 9: Groundwater Level Map of South Africa

8.2 Hydrocensus

A hydrocensus was carried out at a 4km and 5km radius as no boreholes where identified within a 3km radius. The results are shown in Table 1.

Based on the results of the hydrocensus study, the static groundwater level is between depths 0.15m and 60m begl. Based on the drilling data, the groundwater strikes was only encountered between approximate depths 66m and 82m begl. Although the static groundwater level shows groundwater close to the surface, these boreholes are within at least 4km from the site.

There was no available groundwater quality data for each borehole, however, the field team did collect a single sample from BH 2830AA00068 and BH2830AA00069, the results are discussed in the laboratory section.

Figure 10 shows the hydrocensus for the sites.

Table 1: Summary of Hydrocensus Information within 5km radius

	Durnacol Site and Try Again Site with 4km to 5km Radius								
Borehole ID	Latitude	Longitude	Water level (m begl)	Depth of BH (m begl)	Water Strike Depth (m begl)				
2830AA00069	-28.01407	30.05808	15.24	92.65	82.29				
2830AA00068	-28.01406	30.05807	60.96	104.85	66.14				
KZN100030	-28.04613	30.12727	0.15	51.00					
KZN100031	-28.04468	30.10614	16.50	52.00					

Photograph 10: View of BH 2830AA00068

Photograph 11: View of BH 2830AA00069

Figure 10: Hydrocensus within a 5km radius

9. GROUNDWATER SEEPAGE IN TEST PITS

Majority of the test pits did not encounter groundwater seepage. Moderate groundwater seepage was only encountered in TP205 at a depth of approximately 1.7m begl. This could pose a risk for the cemetery site as it could lead to saturated grave sites.

It must be noted that groundwater activity is, however, generally expected across the entire site on an intermittent / periodic basis and is also likely to fluctuate as a result of seasonal rainfall patterns.

There is a possibility for an elevated groundwater condition, particularly during periods of rainfall.

10. WATER LABORATORY RESULTS

The results of the water quality laboratory tests are attached to the end of this report and summarised in Table 2.

Table 2: Summary of Water Quality Result

5		SANS	BH3830	BH3830		14/004	14/504
Determinants	Units	241	AA00068	AA00069	TP205	WS01	WS04
Calcium	mg/l	-	90	61	-	-	-
Magnesium	mg/l	-	40	35	-	-	-
Sodium	mg/l	<200	64	30	-	-	-
Copper	mg/l	<2000	<5	<5	-	-	-
Iron	μg/l	<2000	42	6.7	<5	31	267
Manganese	μg/l	<400	242	8.6	-	-	-
Lead	μg/l	<10	<5	<5	-	-	-
Total Alkalinity	mg/l	-	279	120	-	-	-
Chloride	mg/l	<300	87	29	-	-	-
Free Chlorine	mg/l	<5	<0.1	<0.1	-	-	-
Monochloramine	mg/l	<3	<3	<3	-	-	-
Colour	mg/l	<15	<10	<10	-	-	-
Electrical	mS/m	<170	97.7	66.9	6.0	33	5.3
Conductivity	1113/111	<170	97.7	00.9	0.0	33	5.5
Fluoride	mg/l	<1.5	0.15	0.07	-	-	-
Nitrate	mg/l	<11	<0.25	11.5	-	-	-
Nitrite	mg/l	<0.9	<0.05	<0.05	-	-	-
Nitrate/Nitrite		<1	<0.12	1.1	<0.25	<0.25	0.28
Ratio		\1	\0.12	1.1	\0.23	V0.25	0.28
Turbidity	NTU	<5	1.2	0.92	416	2.5	22
рН		5-9.7	6.8	6.9	5.9	6.9	7.3
Sulphate	mg/l	500	65.3	115	-	ı	-
Total Hardness	mg/l	17.9	389	298	12	85	17
E Coli	MPN/100ml	0	Not	Not	Not	22	63
	IVIF IV/ TOOIIII	U	Detected	Detected	Detected	22	03
Total Coliforms	MPN/100ml	<10	47	2	-	-	-
Standard Plate	Colonies/ml	<1000	2040	>10000	_	-	_
Count	201011123/1111	11000	2040	7 1000			

These results are indicative of a baseline for the study area. Based on the laboratory results the groundwater in the area does not appear to be in a pristine condition. There is currently some contamination particularly from nitrates/nitrites and microbial organisms.

11. GROUNDWATER RISK ASSESSMENT

According to the Department of Water and Sanitation "Aquifer Classification Map" (Refer to Figure 11) for the site, the area comprises a minor aquifer system and according to the "Aquifer Vulnerability Map" (Refer to Figure 12) the area comprises a moderate vulnerability aquifer.

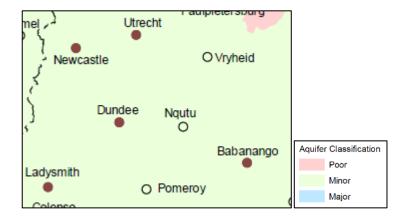


Figure 11: Aquifer Classification of the site

Table 3: Aquifer Classification System (Parsons, 1998)

Aquifer Type	Description
Sole Source Aquifer	An aquifer used to supply 50% or more of urban domestic water for a given area and for which there is no reasonably available alternative sources of water.
Major Aquifer Region	A high yielding aquifer system of good water quality.
Minor Aquifer Region	A moderately yielding aquifer system of variable water quality.
Poor Aquifer Region	A low to negligible yielding aquifer system of moderate to poor water quality.

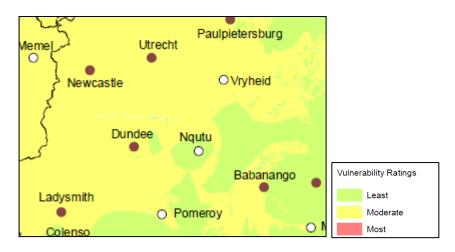


Figure 12: Aquifer Vulnerability Map of the site

The groundwater contamination assessment is based on two factors:

- i. Aquifer System Management Classification and Aquifer Vulnerability Classification (Parsons, 1995); and
- ii. Groundwater Quality Management (GQM) Index (Parsons, 1995).

Tables 4 and 5 show the determinants for the above aquifer classification and GQM Index.

Table 4: Aquifer System Classification and Aquifer Vulnerability Classification

Aquifer System Management Classification	Aquifer System Management Classification		
Class	Points	Class	Points
Sole Source Aquifer System	6	High	3
Major Aquifer System	4	Medium	2
Minor Aquifer System	2	Low	1
Non Aquifer System	0		
Special Aquifer System	0-6		

Table 5: Groundwater Protection Level based on GQM Index

GQM Index	Level of Protection
<1	Limited Protection
1-3	Low Level Protection
3-6	Medium Level Protection
6-10	High Level Protection
>10	Strictly non-degradation

The aquifer in the area is considered as a minor aquifer system, therefore **2 points** are allocated and the vulnerability of the site is considered to be medium, therefore, **2 points** are allocated.

The GQM index (Table 7) is calculated by multiplying the two values to obtain a GQM value. The equation provides a result of 4 and referring to Table 7 medium level of protection is required for the site.

The most common contamination associated with cemetery sites are decompositions of corpses which produce leachate, and the chemical substances that are used in embalming process, metals and jewellery, etc.

Usually human remains comprise the following in the leachate, at least 60% of water and 30% of salts such as N, P, Cl, HCO₃, Ca, Na, metals, and 10% organic matter.

Additional contamination maybe associated with diseases from which the individual may have contracted. Table 8 below is a summary of the potential impacts of the contamination on the groundwater.

Table 6: Summary of Potential Risk for Groundwater on Site

Potential Impact and Risk:	Decomposition of Human Remains	Embalming Process	Paints, Metal Corrosion and other chemical	
Nature of Impact	Negative	Negative	Negative	
Duration	Medium (Few months/Years)	Short (Weeks)	Medium (Few months/Years)	
Extent	Local (surrounding area)	Local (surrounding area)	Local (surrounding area)	
Probability of Occurrence	Low to moderate	Low to moderate	Medium	
Impact can lead to significant loss of resource	Minimal	Minimal	A degree of loss	
Can the impact be reversed	Yes	Yes	Partially (Depending on contaminant)	
Rating of impact pre mitigation	Low to moderate	Low	Medium to high	
Can the impact be managed or mitigated	Yes	Yes	Yes	
Proposed Mitigation	 Burial to be above water table Make sure at least 3m between water table and base of burial pit Avoid groundwater supply boreholes down gradient of cemetery site within at least 100m Monitoring boreholes recommended for site, at least 2 down gradient from site. 	 Formaldehyde is the chemical used in embalming and can breakdown to form methanol, amino acids and several other chemical. Monitor chemicals in boreholes 	 Coffin materials should be made of wood or biodegradable material. Avoid excessive metals, plastics and paints Jewellery, dentures, batteries, etc. should be removed prior to burial. 	
Impact after mitigation	Low	Low	Low	

12. GROUNDWATER MONITORING RECOMMENDATIONS

It is strongly advised that groundwater monitoring boreholes be drilled. It is recommended that two boreholes be drilled downgradient of the site and a single borehole upgradient to a depth of approximately 15m.

Groundwater monitoring should be carried out on a quarterly basis and the upgradient borehole should be used as a general indicative marker. Should any

contamination occur, the downgradient boreholes in theory should reflect this in their results whilst the upgradient borehole has a baseline of the area.

The boreholes should be drilled by a reputable contractor and designed according to the current groundwater standards by the regulatory authority in the area. A hydrogeologist is recommended to supervise the drilling activity, such that, adequate information about, geology, groundwater strikes, groundwater levels, and water samples are collected.

The borehole design should comprise the following:

- Borehole adequately drilled.
- PVC Casing needs to be installed within the borehole.
- Perforated PVC Casing will need to be installed from at least 3m begl.
- The space between the PVC casing and borehole side walls need to be filled with a gravel pack.
- A bentonite seal will need to be placed on the top 3m.
- A concrete plinth at the top with a borehole marker.
- The boreholes need to be adequate diameter to allow for easy sampling.

The following parameters are recommended for testing, pH, conductivity, Potassium (K), Chloride (Cl), Nitrate (NO₃), Ammonia (NH₄), Phosphorus (P), Sodium (Na), Calcium (Ca), Carbonates (HCO₃), Iron (Fe), Manganese (Mn), Titanium (Ti), Chrome (Cr), Cadium (Cd), Lead (Pb), Nickel (Ni), Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Coliforms, and E. Coli.

It should be noted that should there be a no-go alternative site, the impacts mentioned in Table 8 will still be applicable to the current cemetery site.

13. CONCLUDING REMARKS

- i. The ground conditions identified refer to the investigated positions on site.
- ii. The subsurface soil profile comprises mainly clayey soils derived from the weathering of the dolerite bedrock.
- iii. The depth to groundwater in the area is considered to vary and the depth is not confirmed beneath the site. Thus it is recommended that a supplementary investigation comprising boreholes be carried out to confirm this.
- iv. The cemetery site has been classified according to various guidelines which take

- into consideration geotechnical and groundwater parameters.
- v. Geotechnically, and Hydrogeologically the Durnacol site is acceptable as a cemetery site, provided that further investigations are carried out to confirm groundwater levels.

The ground conditions given in this report refer specifically to the field tests carried out on site. It is therefore, quite possible that conditions at variance with those given in this report may be encountered elsewhere on site.

14. REFERENCES

- 1) Brink, A., & Bruin, R. (2002). Guidelines for Soil and Rock Logging in South Africa. Proceedings of the Geoterminology Workshop. South Africa: Association of Engineering Geologists, South African Institute of Civil Engineering and South African Institute for Engineering and Environmental Geologists.
- 2) Dippenaar, M.A., Olivier, J., Lorentz, S., Ubomba-Jaswa, E., Abia, A.L.K., and Diamond, R.E. (2018). Environmental Risk Assessment, Monitoring and Management of Cemeteries. Water Research Commission. WRC Report No. 2449/1/18
- 3) Hall, B.M. and Hanbury, R. (1990). Some Geotechnical Considerations in the Selection of Cemetery Sites. IMIESA March 1990: 2125
- 4) Richards, N.P and Croukamp, L. (2004). Guidelines for Cemetery Site Selection. Preliminary Report. Council for Geosciences, Pretoria, South Africa.
- 5) South African Bureau of Standards. (1990). Standard Specification for Civil Engineering Construction, D: Earthworks. South Africa: South African Bureau of Standards.

PROJECT NUMBER: 066-2113-01 TEST PIT DATE: 21/04/2021 cordinates - x 28° 2.602'S Durnacol Cemetery GEOTECHNICIAN: SJ - NM - ZB **CORDINATES - Y 30° 1.915'E** PROJECT NAME:

Sivest **EXCAVATION ME Manual Excavation** ELEVATION - Z- 1341m CLIENT:

4 Pencarrow Crescertotal Depth: 1,8m Nilesh Mahadew ADDRESS: LOGGED BY: La Lucia Ridge - Umhlanga - 4320 slope drainage North West James Harvey Ewusi CHECKED BY:

		E NUMBER - 101		Т
Depth (m)	Samples	Material Description	Soil Horizon	PHOTOS
0 0,1 0,2 0,3		Slightly moist, pale brown to light brown, fine grained, firm silty clay - colluvium	А	
0,5				
0,6				
0,7				
0,8				
0,9	101 1	Moist pale brown to orange, firm, silty clay -		
1	1014	residual with cobbles and pebbles	В	
1,1				
1,3				
1,4				
1,5				
1,6				
1,7				
1,8		Brown to pale orange, completely to highly weathered, fine to medium grained, highly		
1,9		fractured, soft rock - Dolerite (Jurassic Age)		
2,0				
Manu	al Refu	sal @1,8m		■ Undisturbed Sample
		ater in Test Pit		Disturbed Sample
		Limitations: This report shall not be reproduced with	out prio	r written approval of the Laboratory

CHECKED BY:

James Harvey Ewusi

PROJECT NUMBER: 066-2113-01 TEST PIT DATE: 21/04/2021 CORDINATES - x 28° 2.786'S
PROJECT NAME: Durnacol Cemetery Geotechnician: SJ - NM - ZB CORDINATES - y 30° 2.096'E
CLIENT: Sivest Excavation me Manual Excavation Elevation - z- 1345m

ADDRESS: 4 Pencarrow Crescertotal depth: 1,8m LOGGED BY: Nilesh Mahadew

La Lucia Ridge - Umhlanga - 4320 slope drainage North West

PROFILE NUMBER - 102

Depth (m)	Samples	Material Description	Soil Horizon	PHOTOS
0 0,1 0,2 0,3 0,4 0,5		Slightly moist, pale brown to light brown, fine grained, firm silty clay - colluvium	А	
0,7 0,8 0,9 1 1,1 1,2 1,3 1,4		Moist pale brown to orange, firm, silty clay - residual with cobbles and pebbles	В	
1,6 1,7 1,8				
2,0		language Ad Stra		Updistrib of Counts
NO M	anual R	tefusal @1.8m ater in Test Pit		Undisturbed Sample Disturbed Sample

PROJECT NUMBER: 066-2113-01 TEST PIT DATE: 21/04/2021 CORDINATES - x 28° 2.455'S
PROJECT NAME: Durnacol Cemetery Geotechnician: SJ - NM - ZB CORDINATES - y 30° 2.198'E
CLIENT: Sivest Excavation me Manual Excavation Elevation - z- 1350m

ADDRESS: 4 Pencarrow Crescertotal Depth: 1,6m LOGGED BY: Nilesh Mahadew

La Lucia Ridge - Umhlanga - 4320 slope drainage North West checked BY: James Harvey Ewusi

PROFILE NUMBER - 103

0 0,1			Soil Horizon	PHOTOS
0,2 0,3 0,4		Slightly moist, pale brown to light brown, fine grained, firm silty clay - colluvium	А	
0,6 0,7 0,8 0,9 1		Moist pale brown to dark brown, firm, silty clay - residual with cobbles and pebbles	В	
1,2 1,3 1,4 1,5				
1,7				
1,9				
2,0 No Mar	nual P	L efusal @1,6m		■ Undisturbed Sample
		ater in Test Pit		Disturbed Sample

PROJECT NUMBER: 066-2113-01 TEST PIT DATE: 21/04/2021 CORDINATES - X 28° 2.657'S
PROJECT NAME: Durnacol Cemetery Geotechnician: SJ - NM - ZB CORDINATES - Y 30° 2.475'E
CLIENT: Sivest Excavation me Manual Excavation Elevation - z- 1354m

ADDRESS: 4 Pencarrow Crescertotal Depth: 1,8m LOGGED BY: Nilesh Mahadew

La Lucia Ridge - Umhlanga - 4320 slope drainage North West checked BY: James Harvey Ewusi

PROFILE NUMBER - 104

0		Soil Horizon	PHOTOS
0,1 0,2 0,3 0,4	Slightly moist, pale brown to light brown, fine grained, firm silty clay - colluvium	А	
0,5 0,6 0,7	Moist pale brown to dark brown, firm, silty clay - residual with cobbles and pebbles	В	
	efusal @1,8m ter in Test Pit	<u> </u>	Undisturbed Sample Disturbed Sample

PROJECT NUMBER: 066-2113-01 TEST PIT DATE: 21/04/2021 CORDINATES - X 28° 2.598'S
PROJECT NAME: Durnacol Cemetery Geotechnician: SJ - NM - ZB CORDINATES - Y 30° 2.158'E
CLIENT: Sivest Excavation me Manual Excavation Elevation - z- 1348m

ADDRESS: 4 Pencarrow Crescertotal Depth: 1,8m LOGGED BY: Nilesh Mahadew

La Lucia Ridge - Umhlanga - 4320 slope drainage North West checked BY: James Harvey Ewusi

Depth (m)	Samples	Material Description	Soil Horizon	PHOTOS
0 0,1 0,2 0,3 0,4 0,5		Slightly moist, pale brown to light brown, fine grained, firm silty clay - colluvium	А	
0,7 0,8 0,9 1 1,1 1,2 1,3 1,4 1,5 1,6	105B	Moist pale brown to brown, firm, silty clay - residual with cobbles and pebbles	В	
1,8				
	roundwa	efusal @1,8m ater in Test Pit Limitations: This report shall not be reproduced with	out prio	Undisturbed Sample Disturbed Sample Disturbed Sample

PROJECT NUMBER: 066-2113-01 TEST PIT DATE: 21/04/2021 CORDINATES - x 28° 2.673'S

PROJECT NAME: Durnacol Cemetery Geotechnician: SJ - NM - ZB CORDINATES - y 30° 1.954'E

CLIENT: Sivest EXCAVATION ME Manual Excavation ELEVATION - 2- 1338m

ADDRESS: 4 Pencarrow Crescertotal Depth: 0.6m LOGGED BY: Nilesh Mahadew

La Lucia Ridge - Umhlanga - 4320 slope Drainage North West checked BY: James Harvey Ewusi

PROFILE NUMBER - Percolation Test P101

Depth (m)	Samples	Material Description	Soil Horizon	PHOTOS
0 0,1				
0,2				
0,3		Slightly moist, pale brown to light brown, fine grained, firm silty clay - colluvium		
0,4				
0,5				
0,6		Moist pale brown to orange, firm, silty clay - residual with cobbles and pebbles		
0,7		residual with cobbles and pebbles		
0,8				
0,9				
1				
1,1				
1,2				
1,3				
1,4				
1,5				
1,6				
1,7				
1,8				
1,9				
2,0				
		Lorop After 2 Hours of Soaking - 119mm/11.9cm	<u> </u>	Undisturbed Sample
No Gr	roundw	ater in Test Pit		Disturbed Sample

PROJECT NUMBER: 067-2114-01 TEST PIT DATE: 22/04/2021 CORDINATES - X 28° 0.623'S
PROJECT NAME: Try Again GEOTECHNICIAN: SJ - NM - ZB CORDINATES - Y 30° 5.052'E
CLIENT: Sivest EXCAVATION ME Manual Excavation ELEVATION - Z- 1380m

ADDRESS: 4 Pencarrow Crescertotal Depth: 1,9m LOGGED BY: Nilesh Mahadew

La Lucia Ridge - Umhlanga - 4320 slope drainage Southeast checked BY: James Harvey Ewusi

PROFILE NUMBER - 201

Depth (m)	Samples	Material Description	Soil Horizon	PHOTOS
0 0,1 0,2 0,3 0,4 0,5		Slightly moist pale to light brown firm, fine grained, silty clay - colluvium with roots and vegetation	А	
0,7 0,8 0,9 1 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8		Moist pale brown to orange, firm, intact silty clay with cobbles and pebbles - residual	В	
2,0 No M	anual R	efusal @1,9m		■ Undisturbed Sample
		ater in Test Pit	Disturbed Sample	

PROJECT NUMBER: 067-2114-01 TEST PIT DATE: 22/04/2021 CORDINATES - x 28° 1.055'S
PROJECT NAME: Try Again Geotechnician: SJ - NM - ZB CORDINATES - y 30° 5.423'E
CLIENT: Sivest Excavation me Manual Excavation Elevation - z- 1384m

ADDRESS: 4 Pencarrow Crescertotal Depth: 1,9m LOGGED BY: Nilesh Mahadew

La Lucia Ridge - Umhlanga - 4320 slope drainage Southeast checked BY: James Harvey Ewusi

Slightly moist pale to light brown firm, fine grained, silty clay - colluvium with roots and vegetation A Slightly moist pale to light brown firm, fine grained, silty clay - colluvium with roots and vegetation A A Moist pale brown to brown, firm, intact silty clay with cobbles and pebbles - residual A Moist pale brown to brown, firm, intact silty clay with cobbles and pebbles - residual A Disturbed Sample Disturbed Sample	Depth (m)	Samples	Material Description	Soil Horizon	PHOTOS
grained, silty clay - colluvium with roots and vegetation 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 1,1 Clay with cobbles and pebbles - residual 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0 No Manual Refusal @ 1,9m Indisturbed Sample Undisturbed Sample					
0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 1,1 1,2 Clay with cobbles and pebbles - residual 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0 No Manual Refusal @ 1,9m Undisturbed Sample	0,2		grained, silty clay - colluvium with roots and	A	
0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 No Manual Refusal @ 1,9m Undisturbed Sample	0,3		vegetation		
0.6 0.7 0.8 0.9 1 1.1 1.1 1.2 clay with cobbles and pebbles - residual 1.5 1.6 1.7 1.8 1.9 2.0 No Manual Refusal @ 1,9m Undisturbed Sample	0,4				的 基有多类
0.7 0.8 0.9 1 1.1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 No Manual Refusal @ 1,9m Moist pale brown to brown, firm, intact silty clay with cobbles and pebbles - residual	0,5				
0,8 0,9 1 1,1 1,1 1,2 Clay with cobbles and pebbles - residual 1,4 1,5 1,6 1,7 1,8 1,9 2,0 No Manual Refusal @ 1,9m Undisturbed Sample	0,6				
0,9 1 1,1 1,1 1,2 Clay with cobbles and pebbles - residual 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0 No Manual Refusal @ 1,9m Moist pale brown to brown, firm, intact silty clay with cobbles and pebbles - residual B Undisturbed Sample	0,7				
Moist pale brown to brown, firm, intact silty clay with cobbles and pebbles - residual 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0 No Manual Refusal @ 1,9m Undisturbed Sample	0,8				
1,1 1,2 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0 No Manual Refusal @ 1,9m Moist pale brown to brown, firm, intact silty clay with cobbles and pebbles - residual B Undisturbed Sample	0,9				
Moist pale brown to brown, firm, intact silty clay with cobbles and pebbles - residual 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0 No Manual Refusal @ 1,9m Moist pale brown to brown, firm, intact silty clay with cobbles and pebbles - residual B Undisturbed Sample	1				
1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0 No Manual Refusal @ 1,9m Clay with cobbles and pebbles - residual Undisturbed Sample	1,1		Maiet pala braum ta braum firm intact ciltu		
1,4 1,5 1,6 1,7 1,8 1,9 2,0 No Manual Refusal @ 1,9m Undisturbed Sample	1,2			В	
1,5 1,6 1,7 1,8 1,9 2,0 No Manual Refusal @ 1,9m Undisturbed Sample	1,3				
1,6 1,7 1,8 1,9 2,0 No Manual Refusal @ 1,9m Undisturbed Sample					
1,7 1,8 1,9 2,0 No Manual Refusal @ 1,9m Undisturbed Sample					
1,8 1,9 2,0 No Manual Refusal @ 1,9m Undisturbed Sample					
1,9 2,0 No Manual Refusal @ 1,9m Undisturbed Sample					
2,0 Undisturbed Sample					
No Manual Refusal @ 1,9m Undisturbed Sample	1,9				
	_				
No Groundwater in Test Pit Disturbed Sample					
Limitations: This report shall not be reproduced without prior written approval of the Laboratory	No Gr				-

PROJECT NUMBER: 067-2114-01 TEST PIT DATE: 22/04/2021 CORDINATES - x 28° 0.737'S
PROJECT NAME: Try Again GEOTECHNICIAN: SJ - NM - ZB CORDINATES - y 30° 5.992'E
CLIENT: Sivest EXCAVATION ME Manual Excavation ELEVATION - z- 1367m

ADDRESS: 4 Pencarrow Crescertotal Depth: 1,8m LOGGED BY: Nilesh Mahadew

La Lucia Ridge - Umhlanga - 4320 slope drainage Southeast checked BY: James Harvey Ewusi

Slightly moist pale to light brown firm, fine grained, slity clay - colluvium with roots and vegetation A Slightly moist pale to light brown firm, fine grained, slity clay - colluvium with roots and vegetation A A A A A B A B A A A L A A L A A A A A A	Depth (m)	Samples	Material Description	Soil Horizon	PHOTOS
Slightly moist pale to light brown firm, fine grained, silty clay - colluvium with roots and vegetation O,S O,6 O,7 O,8 O,9 1 1,1 1,2 Moist pale brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual B Moist pale brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual	0				
0,2 0,3 0,4 grained, silty clay - colluvium with roots and vegetation 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 Moist pale brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual 1,4 1,5 1,6 1,7	0,1		Slightly maict hale to light brown firm fine	_	
0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 I,3 I,4 1,5 I,6 I,7	0,2		grained, silty clay - colluvium with roots and		
0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 Moist pale brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual 1,4 1,5 1,6 1,7	0,3		vegetation		
0,6 0,7 0,8 0,9 1 1,1 1,2 Moist pale brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual 1,4 1,5 1,6 1,7	0,4				
0,7 0,8 0,9 1 1,1 1,2 Moist pale brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual 1,4 1,5 1,6 1,7	0,5				
0,7 0,8 0,9 1 1,1 1,2 Moist pale brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual 1,4 1,5 1,6 1,7	0,6				
0,8 0,9 1 1,1 1,2 Moist pale brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual 1,4 1,5 1,6 1,7					
1,1 1,2 Moist pale brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual 1,4 1,5 1,6 1,7					
1					
1,1 1,2 Moist pale brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual 1,4 1,5 1,6 1,7	0,9				
1,2 Moist pale brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual 1,4 1,5 1,6 1,7	1				
intact silty clay with cobbles and pebbles - residual 1,4 1,5 1,6 1,7	1,1				12 11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1,3 residual 1,4 1,5 1,6 1,7	1,2		Moist pale brown to dark brown, firm, intact silty clay with cobbles and pebbles -	В	
1,5 1,6 1,7	1,3		residual		
1,6	1,4				
1,7	1,5				
	1,6				
1,8	1,7				
1 1 1	1,8				
1,9	1,9				
2,0					
No Manual Refusal @1.8m Undisturbed Sample					
No Groundwater in Test Pit Limitations: This report shall not be reproduced without prior written approval of the Laboratory	No Grou				

PROJECT NUMBER: 067-2114-01 TEST PIT DATE: 22/04/2021 CORDINATES - x 28° 0.377'S
PROJECT NAME: Try Again Geotechnician: SJ - NM - ZB CORDINATES - y 30° 5.643'E
CLIENT: Sivest Excavation me Manual Excavation Elevation - z- 1385m

ADDRESS: 4 Pencarrow Crescertotal Depth: 1,9m LOGGED BY: Nilesh Mahadew

La Lucia Ridge - Umhlanga - 4320 slope drainage Southeast checked BY: James Harvey Ewusi

Depth (m)	Samples	Material Description	Soil Horizon	PHOTOS
0 0,1 0,2 0,3 0,4 0,5		Slightly moist pale to light brown firm, fine grained, silty clay - colluvium with roots and vegetation	A	
0,8 0,9 1 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9		Moist brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual	В	
2,0 No Ma	anual R	 efusal @1.9m		Undisturbed Sample
		ater in Test Pit		Disturbed Sample
		Limitations: This report shall not be reproduced witl	hout prio	or written approval of the Laboratory

PROJECT NUMBER: 067-2114-01 TEST PIT DATE: 22/04/2021 CORDINATES - x 28° 0.492'S
PROJECT NAME: Try Again GEOTECHNICIAN: SJ - NM - ZB CORDINATES - y 30° 6.442'E
CLIENT: Sivest Excavation me Manual Excavation ELEVATION - z- 1388m

ADDRESS: 4 Pencarrow Crescertotal Depth: 1,7m LOGGED BY: Nilesh Mahadew

La Lucia Ridge - Umhlanga - 4320 slope Drainage Southeast checked BY: James Harvey Ewusi

1 17	<u> </u>	L NOMBER 200	FROFILE NOWIBER - 203						
Depth (m)	Samples	Material Description	Soil Horizon	PHOTOS					
0 0,1 0,2 0,3		Slightly moist orange to light brown firm, fine grained, silty clay - colluvium with roots and vegetation	А						
0,5									
0,6									
0,7				March Land					
0,8									
0,9	205.0								
1,1	205C	Light brown to pale grey highly weathered and fractured sandstone soft rock	В	TAIL TO SE					
1,2									
1,3									
1,4									
1,5									
1,7									
•		-{ Waterstrike @1.7m }							
1,8									
1,9									
2,0									
		efusal @1.7m - Far End Corner Hole		Undisturbed Sample					
Groui		r in Test Pit - 1.7mbNGL		Disturbed Sample					
	Limitations: This report shall not be reproduced without prior written approval of the Laboratory								

PROJECT NUMBER: 067-2114-01 TEST PIT DATE: 22/04/2021 CORDINATES - X 28° 0.157'S
PROJECT NAME: Try Again GEOTECHNICIAN: SJ - NM - ZB CORDINATES - Y 30° 6.145'E
CLIENT: Sivest Excavation me Manual Excavation ELEVATION - Z- 1393m

ADDRESS: 4 Pencarrow Crescertotal Depth: 1,8m LOGGED BY: Nilesh Mahadew

La Lucia Ridge - Umhlanga - 4320 slope drainage Southeast checked BY: James Harvey Ewusi

Depth (m)	Samples	Material Description	Soil Horizon	PHOTOS
0 0,1 0,2 0,3 0,4 0,5		Slightly moist pale to light brown firm, fine grained, silty clay - colluvium with roots and vegetation	A	
0,8 0,9 1 1,1 1,2 1,3 1,4 1,5 1,6 1,7		Moist brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual	В	
	oundwa	efusal @1.8m ater in Test Pit Limitations: This report shall not be reproduced with	out prio	Undisturbed Sample Disturbed Sample or written approval of the Laboratory

PROJECT NUMBER: 067-2114-01 TEST PIT DATE: 22/04/2021 CORDINATES - x 28° 0.431'S
PROJECT NAME: Try Again GEOTECHNICIAN: SJ - NM - ZB CORDINATES - y 30° 6.006'E
CLIENT: Sivest Excavation me Manual Excavation ELEVATION - z- 1384m

ADDRESS: 4 Pencarrow Crescertotal DEPTH: 1,9m LOGGED BY: Nilesh Mahadew

La Lucia Ridge - Umhlanga - 4320 slope drainage Southeast checked BY: James Harvey Ewusi

Material Description A PHOTOS PHOTOS PHOTOS A A Moist brown to dark brown, firm, fine grained, silty clay - colluvium with roots and vegetation Moist brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist brown to dark brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist brown to dark brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist brown to dark brown to dar	rk(PROFILE NUMBER - 207						
Slightly moist pale to light brown firm, fine grained, silty clay - colluvium with roots and vegetation Slightly moist pale to light brown firm, fine grained, silty clay - colluvium with roots and vegetation Moist brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist brown to dark brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist brown to dark brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist brown to dark brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual Moist brown to dark brown to dar	Depth (m)	Samples	Material Description	Soil Horizon	PHOTOS			
Slightly moist pale to light brown firm, fine grained, silty clay - colluvium with roots and vegetation A A vegetation A A vegetation A A A vegetation A A A A A A A A A A A A A A A A A A A								
Slightly moist pale to light brown firm, fine grained, silty clay - colluvium with roots and vegetation A Slightly moist pale to light brown firm, fine grained, silty clay - colluvium with roots and vegetation A No A Slightly moist pale to light brown firm, fine grained, silty clay - colluvium with roots and vegetation A A A A A A A Distributed Sample Disturbed Sample	0,1							
grained, silty clay - colluvium with roots and vegetation 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 Clay with cobbles and pebbles - residual 1,4 1,5 1,6 1,7 1,8 1,9 2,0 No Manual Refusal @1.9m No Groundwater in Test Pit property of the property of	0,2		Slightly moist hale to light brown firm fine	_				
0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 Moist brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0 No Manual Refusal @1.9m No Groundwater in Test Pit Disturbed Sample	0,3		grained, silty clay - colluvium with roots and		The state of the s			
0.6 0.7 0.8 0.9 1 1.1 1.2 Moist brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 No Manual Refusal @1.9m No Groundwater in Test Pit Disturbed Sample Disturbed Sample	0,4		vegetation					
0.7 0.8 0.9 1 1.1 1.2 Moist brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 No Manual Refusal @1.9m No Groundwater in Test Pit Moist brown to dark brown, firm, intact silty and pebbles - residual B Undisturbed Sample Disturbed Sample	0,5				Was a second			
0.7 0.8 0.9 1 1.1 1.2 Moist brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 No Manual Refusal @1.9m No Groundwater in Test Pit Moist brown to dark brown, firm, intact silty and pebbles - residual B Undisturbed Sample Disturbed Sample	0.6							
0,8 0,9 1 1,1 1,1 1,2 Moist brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0 No Manual Refusal @1.9m No Groundwater in Test Pit Moist brown to dark brown, firm, intact silty and pebbles - residual B Undisturbed Sample Disturbed Sample								
0,9 1 1,1 1,2 Moist brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual 1,4 1,5 1,6 1,7 1,8 1,9 2,0 No Manual Refusal @1.9m No Groundwater in Test Pit Moist brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual B Undisturbed Sample Disturbed Sample								
Moist brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0 No Manual Refusal @1.9m No Groundwater in Test Pit Moist brown to dark brown, firm, intact silty B Clay with cobbles and pebbles - residual B Undisturbed Sample Disturbed Sample	0,8							
1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0 No Manual Refusal @1.9m No Groundwater in Test Pit Moist brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual B B Clay with cobbles and pebbles - residual B B Clay with cobbles and pebbles - residual L Clay with co	0,9							
1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0 No Manual Refusal @1.9m No Groundwater in Test Pit Moist brown to dark brown, firm, intact silty clay with cobbles and pebbles - residual B B Clay with cobbles and pebbles - residual D Clay with cobbles	1							
clay with cobbles and pebbles - residual 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0 No Manual Refusal @1.9m No Groundwater in Test Pit Clay with cobbles and pebbles - residual Log	1,1							
clay with cobbles and pebbles - residual 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0 No Manual Refusal @1.9m No Groundwater in Test Pit Clay with cobbles and pebbles - residual Log	1,2		Moist brown to dark brown, firm, intact silty	В				
1,4 1,5 1,6 1,7 1,8 1,9 2,0 No Manual Refusal @1.9m No Groundwater in Test Pit Undisturbed Sample Disturbed Sample	1.3		clay with cobbles and pebbles - residual					
1,5 1,6 1,7 1,8 1,9 2,0 No Manual Refusal @1.9m No Groundwater in Test Pit Disturbed Sample Disturbed Sample								
1,6 1,7 1,8 1,9 2,0 No Manual Refusal @1.9m No Groundwater in Test Pit Undisturbed Sample Disturbed Sample								
1,7 1,8 1,9 2,0 No Manual Refusal @1.9m No Groundwater in Test Pit Undisturbed Sample Disturbed Sample	1,5							
1,8 1,9 2,0 No Manual Refusal @1.9m No Groundwater in Test Pit Undisturbed Sample Disturbed Sample	1,6							
1,9 2,0 No Manual Refusal @1.9m No Groundwater in Test Pit Undisturbed Sample Disturbed Sample	1,7							
2,0 No Manual Refusal @1.9m No Groundwater in Test Pit Undisturbed Sample Disturbed Sample	1,8							
2,0 No Manual Refusal @1.9m No Groundwater in Test Pit Undisturbed Sample Disturbed Sample	1,9							
No Manual Refusal @1.9m No Groundwater in Test Pit Undisturbed Sample Disturbed Sample								
No Groundwater in Test Pit Disturbed Sample		anual R	efusal @1.9m	Undisturbed Sample				
				out prio				

Excavation Test Pit Profile

PROJECT NUMBER: 067-2114-01 TEST PIT DATE: 22/04/2021 CORDINATES - x 28° 0.696'S
PROJECT NAME: Try Again GEOTECHNICIAN: SJ - NM - ZB CORDINATES - y 30° 5.519'E
CLIENT: Sivest Excavation me Manual Excavation ELEVATION - z- 1394m

ADDRESS: 4 Pencarrow Crescertotal depth: 1,9m LOGGED BY: Nilesh Mahadew

La Lucia Ridge - Umhlanga - 4320 slope drainage Southeast checked BY: James Harvey Ewusi

PROFILE NUMBER - 208

Depth (m)	Samples	Material Description	Soil Horizon	PHOTOS
0 0,1 0,2 0,3 0,4 0,5		Slightly moist pale to light brown firm, fine grained, silty clay - colluvium with roots and vegetation	A	
0,7				
0,8				
1				
1,1				
1,2		Moist pale brown to orange, firm, intact silty clay with cobbles and pebbles - residual	В	
1,3		ciay with cobbles and pebbles - residual		
1,4				
1,5		Brown to pale orange, completely to highly weathered, fien to medium grained, highly	С	
1,6		fractured. Soft rock - dolerite		
1,7				
1,8				
1,9				
Manu	al Refu	sal @ 1.4m		■ Undisturbed Sample
		ater in Test Pit		Disturbed Sample
		Limitations: This report shall not be reproduced with	out prio	

Excavation Test Pit Profile

PROJECT NUMBER: 066-2113-01 TEST PIT DATE: 21/04/2021 cordinates - x 28° 2.673'S Try Again GEOTECHNICIAN: SJ - NM - ZB cordinates - y 30° 1.954'E PROJECT NAME:

Sivest **EXCAVATION ME Manual Excavation** ELEVATION - Z- 1338m CLIENT:

4 Pencarrow Crescertotal Depth: 0.6m Nilesh Mahadew ADDRESS: LOGGED BY: La Lucia Ridge - Umhlanga - 4320 slope drainage North West James Harvey Ewusi CHECKED BY:

PROFILE NUMBER - Percolation Test P201

Depth (m)	Samples	Material Description	Soil Horizon	PHOTOS
0				
0,1				
0,2		Slightly moist pale to light brown firm, fine grained, silty clay - colluvium with roots and		
0,3		vegetation		
0,4				
0,6		Maist note brown to aronge firm intest silty		
		Moist pale brown to orange, firm, intact silty clay with cobbles and pebbles - residual		A Secret Section 1
0,7				
0,8				
0,9				
1,1				
1,1				
1,3				
1,4				
1,5				
1,6				
1,7				
1,8				
1,9				
2,0				
	lation	est Drop After 2 Hours of Soaking - 96mm/9.6cm		■ Undisturbed Sample
		ater in Test Pit		Disturbed Sample

Limitations: This report shall not be reproduced without prior written approval of the Laboratory

EARTH CIVIL TESTING

Reg.No.- K2011/115681/01 Tax.No.- 9127/374/18/0
Radiation Control – Authority No. 2962/16/1430
106 Francis Road – P.O. Box 303 - Ladysmith – KwaZulu Natal – 3370
Web – <u>www.geo-sol.co.za</u> – Tel – 0715608058 – 0799100920 - Email – <u>projects@geo-sol.co.za</u>

DCP INVESTIGATION DATA

Test Date	06/05/2021	DCP No.	101
Site:	Durnacol	Hole No.	Side – TP101

No. Blows	DCP01 - Side TP101	NGL
0	1950	0
5	1820	130
10	1710	240
15	1595	355
20	1433	517
25	1393	557
30	1343	607
35	1293	657
40	1243	707
45	1173	777
50	1103	847
55	978	972
60	923	1027
65	868	1082
70	813	1137
75	758	1192
80	703	1247
85	660	1290
90	617	1333
95	574	1376
100	531	1419
105	488	1462
110	445	1505
115	413	1537
120	381	1569
125	349	1601
130	317	1633
135	285	1665
140	253	1697
145	221	1729
150	191	1759
155	176	1774
160	161	1789
165	146	1804
170	131	1819
	No Refusal	

Test Date	06/05/2021	DCP No.	102	
Site:	Durnacol	Hole No.	Side – TP102	

No. Blows	DCP02 - Side TP102	NGL
0	1889	0
5	1794	95
10	1694	195
15	1555	334
20	1432	457
25	1352	537
30	1275	614
35	1193	696
40	1122	767
45	1055	834
50	1017	872
55	975	914
60	932	957
65	895	994
70	856	1033
75	811	1078
80	770	1119
85	684	1205
90	654	1235
95	620	1269
100	597	1292
105	575	1314
110	535	1354
115	511	1378
120	494	1395
125	474	1415
130	454	1435
135	430	1459
140	402	1487
145	355	1534
150	323	1566
155	297	1592
160	270	1619
165	245	1644
170	211	1678
175	195	1694
180	176	1713
185	158	1731
190	130	1759
	No Refusal	

 Test Date
 06/05/2021
 DCP No.
 103

 Site:
 Durnacol
 Hole No.
 Side – TP103

No. Blows	DCP03 - Side TP103	NGL
0	1923	0
5	1811	112
10	1701	222
15	1586	337
20	1511	412
25	1433	490
30	1359	564
35	1284	639
40	1213	710
45	1136	787
50	1081	842
55	1024	899
60	971	952
65	916	1007
70	860	1063
75	811	1112
80	749	1174
85	694	1229
90	639	1284
95	587	1336
100	531	1392
105	473	1450
110	433	1490
115	392	1531
120	351	1572
125	310	1613
130	269	1654
135	228	1695
140	187	1736
145	165	1758
150	143	1780
155	121	1802
160	99	1824
	No Refusal	

 Test Date
 06/05/2021
 DCP No.
 104

 Site:
 Durnacol
 Hole No.
 Side – TP104

No. Blows DCP04 - Side TP104 NGL 0 1947 0 5 1836 111 10 1721 226 15 1612 335 20 1519 428 25 1429 518 30 1339 608 35 1249 698 40 1159 788 45 1069 878 50 975 972 55 881 1066 60 829 1118 65 778 1169 70 727 1220 75 676 1271 80 625 1322 85 574 1373 90 523 1424 95 472 1475 100 421 1526 105 368 1579 110 319 1628 125 232			
5 1836 111 10 1721 226 15 1612 335 20 1519 428 25 1429 518 30 1339 608 35 1249 698 40 1159 788 45 1069 878 50 975 972 55 881 1066 60 829 1018 65 778 1169 70 727 1220 75 676 1271 80 625 1322 85 574 1373 90 523 1424 95 472 1475 100 421 1526 105 368 1579 110 319 1628 115 284 1663 120 252 1695 125 232 1715 130 211 1736 135 196	No. Blows	DCP04 - Side TP104	NGL
10 1721 226 15 1612 335 20 1519 428 25 1429 518 30 1339 608 35 1249 698 40 1159 788 45 1069 878 50 975 972 55 881 1066 60 829 1118 65 778 1169 70 727 1220 75 676 1271 80 625 1322 85 574 1373 90 523 1424 95 472 1475 100 421 1526 105 368 1579 110 319 1628 115 284 1663 120 252 1695 125 232 1715 140 181 1766 <td>0</td> <td>1947</td> <td>0</td>	0	1947	0
15 1612 335 20 1519 428 25 1429 518 30 1339 608 35 1249 698 40 1159 788 45 1069 878 50 975 972 55 881 1066 60 829 1118 65 778 1169 70 727 1220 75 676 1271 80 625 1322 85 574 1373 90 523 1424 95 472 1475 100 421 1526 105 368 1579 110 319 1628 115 284 1663 120 252 1695 125 232 1715 130 211 1736 135 196 1751 <td>5</td> <td>1836</td> <td>111</td>	5	1836	111
20 1519 428 25 1429 518 30 1339 608 35 1249 698 40 1159 788 45 1069 878 50 975 972 55 881 1066 60 829 1118 65 778 1169 70 727 1220 75 676 1271 80 625 1322 85 574 1373 90 523 1424 95 472 1475 100 421 1526 105 368 1579 110 319 1628 115 284 1663 120 252 1695 125 232 1715 130 211 1736 135 196 1751 140 181 1766 145 166 1781 150 151	10	1721	226
25 1429 518 30 1339 608 35 1249 698 40 1159 788 45 1069 878 50 975 972 55 881 1066 60 829 1118 65 778 1169 70 727 1220 75 676 1271 80 625 1322 85 574 1373 90 523 1424 95 472 1475 100 421 1526 105 368 1579 110 319 1628 115 284 1663 120 252 1695 125 232 1715 130 211 1736 135 196 1751 140 181 1766 145 166 1781 150 151 1796 155 130	15	1612	335
30 1339 608 35 1249 698 40 1159 788 45 1069 878 50 975 972 55 881 1066 60 829 1118 65 778 1169 70 727 1220 75 676 1271 80 625 1322 85 574 1373 90 523 1424 95 472 1475 100 421 1526 105 368 1579 110 319 1628 115 284 1663 120 252 1695 125 232 1715 130 211 1736 135 196 1751 140 181 1766 145 166 1781 150 151 1796 155 130 1817 160 120	20	1519	428
35 1249 698 40 1159 788 45 1069 878 50 975 972 55 881 1066 60 829 1118 65 778 1169 70 727 1220 75 676 1271 80 625 1322 85 574 1373 90 523 1424 95 472 1475 100 421 1526 105 368 1579 110 319 1628 115 284 1663 120 252 1695 125 232 1715 130 211 1736 135 196 1751 140 181 1766 145 166 1781 150 151 1796 155 130 1817 160 120 1827	25	1429	518
40 1159 788 45 1069 878 50 975 972 55 881 1066 60 829 1118 65 778 1169 70 727 1220 75 676 1271 80 625 1322 85 574 1373 90 523 1424 95 472 1475 100 421 1526 105 368 1579 110 319 1628 115 284 1663 120 252 1695 125 232 1715 130 211 1736 135 196 1751 140 181 1766 145 166 1781 150 151 1796 155 130 1817 160 120 1827	30	1339	608
45 1069 878 50 975 972 55 881 1066 60 829 1118 65 778 1169 70 727 1220 75 676 1271 80 625 1322 85 574 1373 90 523 1424 95 472 1475 100 421 1526 105 368 1579 110 319 1628 115 284 1663 120 252 1695 125 232 1715 130 211 1736 135 196 1751 140 181 1766 145 166 1781 150 151 1796 155 130 1817 160 120 1827	35	1249	698
50 975 972 55 881 1066 60 829 1118 65 778 1169 70 727 1220 75 676 1271 80 625 1322 85 574 1373 90 523 1424 95 472 1475 100 421 1526 105 368 1579 110 319 1628 115 284 1663 120 252 1695 125 232 1715 130 211 1736 135 196 1751 140 181 1766 145 166 1781 150 151 1796 155 130 1817 160 120 1827	40	1159	788
55 881 1066 60 829 1118 65 778 1169 70 727 1220 75 676 1271 80 625 1322 85 574 1373 90 523 1424 95 472 1475 100 421 1526 105 368 1579 110 319 1628 115 284 1663 120 252 1695 125 232 1715 130 211 1736 135 196 1751 140 181 1766 145 166 1781 150 151 1796 155 130 1817 160 120 1827	45	1069	878
60 829 1118 65 778 1169 70 727 1220 75 676 1271 80 625 1322 85 574 1373 90 523 1424 95 472 1475 100 421 1526 105 368 1579 110 319 1628 115 284 1663 120 252 1695 125 232 1715 130 211 1736 135 196 1751 140 181 1766 145 166 1781 150 151 1796 155 130 1817 160 120 1827	50	975	972
65 778 1169 70 727 1220 75 676 1271 80 625 1322 85 574 1373 90 523 1424 95 472 1475 100 421 1526 105 368 1579 110 319 1628 115 284 1663 120 252 1695 125 232 1715 130 211 1736 135 196 1751 140 181 1766 145 166 1781 150 151 1796 155 130 1817 160 120 1827	55	881	1066
70 727 1220 75 676 1271 80 625 1322 85 574 1373 90 523 1424 95 472 1475 100 421 1526 105 368 1579 110 319 1628 115 284 1663 120 252 1695 125 232 1715 130 211 1736 135 196 1751 140 181 1766 145 166 1781 150 151 1796 155 130 1817 160 120 1827	60	829	1118
75 676 1271 80 625 1322 85 574 1373 90 523 1424 95 472 1475 100 421 1526 105 368 1579 110 319 1628 115 284 1663 120 252 1695 125 232 1715 130 211 1736 135 196 1751 140 181 1766 145 166 1781 150 151 1796 155 130 1817 160 120 1827	65	778	1169
80 625 1322 85 574 1373 90 523 1424 95 472 1475 100 421 1526 105 368 1579 110 319 1628 115 284 1663 120 252 1695 125 232 1715 130 211 1736 135 196 1751 140 181 1766 145 166 1781 150 151 1796 155 130 1817 160 120 1827	70	727	1220
85 574 1373 90 523 1424 95 472 1475 100 421 1526 105 368 1579 110 319 1628 115 284 1663 120 252 1695 125 232 1715 130 211 1736 135 196 1751 140 181 1766 145 166 1781 150 151 1796 155 130 1817 160 120 1827	75	676	1271
90 523 1424 95 472 1475 100 421 1526 105 368 1579 110 319 1628 115 284 1663 120 252 1695 125 232 1715 130 211 1736 135 196 1751 140 181 1766 145 166 1781 150 151 1796 155 130 1817 160 120 1827	80	625	1322
95 472 1475 100 421 1526 105 368 1579 110 319 1628 115 284 1663 120 252 1695 125 232 1715 130 211 1736 135 196 1751 140 181 1766 145 166 1781 150 151 1796 155 130 1817 160 120 1827	85	574	1373
100 421 1526 105 368 1579 110 319 1628 115 284 1663 120 252 1695 125 232 1715 130 211 1736 135 196 1751 140 181 1766 145 166 1781 150 151 1796 155 130 1817 160 120 1827	90	523	1424
105 368 1579 110 319 1628 115 284 1663 120 252 1695 125 232 1715 130 211 1736 135 196 1751 140 181 1766 145 166 1781 150 151 1796 155 130 1817 160 120 1827	95	472	1475
110 319 1628 115 284 1663 120 252 1695 125 232 1715 130 211 1736 135 196 1751 140 181 1766 145 166 1781 150 151 1796 155 130 1817 160 120 1827	100	421	1526
115 284 1663 120 252 1695 125 232 1715 130 211 1736 135 196 1751 140 181 1766 145 166 1781 150 151 1796 155 130 1817 160 120 1827	105	368	1579
120 252 1695 125 232 1715 130 211 1736 135 196 1751 140 181 1766 145 166 1781 150 151 1796 155 130 1817 160 120 1827	110	319	1628
125 232 1715 130 211 1736 135 196 1751 140 181 1766 145 166 1781 150 151 1796 155 130 1817 160 120 1827	115	284	1663
130 211 1736 135 196 1751 140 181 1766 145 166 1781 150 151 1796 155 130 1817 160 120 1827	120	252	1695
135 196 1751 140 181 1766 145 166 1781 150 151 1796 155 130 1817 160 120 1827	125	232	1715
140 181 1766 145 166 1781 150 151 1796 155 130 1817 160 120 1827	130	211	1736
145 166 1781 150 151 1796 155 130 1817 160 120 1827	135	196	1751
150 151 1796 155 130 1817 160 120 1827	140	181	1766
155 130 1817 160 120 1827	145	166	1781
160 120 1827	150	151	1796
	155	130	1817
No Refusal	160	120	1827
		No Refusal	

 Test Date
 06/05/2021
 DCP No.
 105

 Site:
 Durnacol
 Hole No.
 Side – TP105

r					
No. Blows	DCP05 - Side TP105	NGL			
0	1997	0			
5	1874	123			
10	1749	248			
15	1629	368			
20	1514	483			
25	1404	593			
30	1302	695			
35	1227	770			
40	1152	845			
45	1077	920			
50	1002	995			
55	925	1072			
60	859	1138			
65	791	1206			
70	723	1274			
75	655	1342			
80	589	1408			
85	519	1478			
90	451	1546			
95	395	1602			
100	340	1657			
105	284	1713			
110	229	1768			
115	173	1824			
120	138	1859			
125	108	1889			
130	78	1919			
	No Refusal	No Refusal			

EARTH CIVIL TESTING

Reg.No.- K2011/115681/01 Tax.No.- 9127/374/18/0
Radiation Control – Authority No. 2962/16/1430
106 Francis Road – P.O. Box 303 - Ladysmith – KwaZulu Natal – 3370
Web – <u>www.geo-sol.co.za</u> – Tel – 0715608058 – 0799100920 - Email – <u>projects@geo-sol.co.za</u>

DCP INVESTIGATION DATA

Test Date	06/05/2021	DCP No.	201
Site:	Try Again	Hole No	Side – TP201

No. Blows DCP01 - Side TP201 NGL 0 1998 0 5 1873 125 10 1763 235 15 1663 335 20 1559 439 25 1439 559 30 1378 620 35 1303 695 40 1223 775 45 1163 835 50 1093 905 55 1033 965 60 978 1020 65 928 1070 70 878 1120 75 813 1185 80 765 1233 85 720 1278 90 675 1323 95 630 1368 100 585 1413 105 540 1458 110 495 1503 115 450			
5 1873 125 10 1763 235 15 1663 335 20 1559 439 25 1439 559 30 1378 620 35 1303 695 40 1223 775 45 1163 835 50 1093 905 55 1033 965 60 978 1020 65 928 1070 70 878 1120 75 813 1185 80 765 1233 85 720 1278 90 675 1323 95 630 1368 100 585 1413 105 540 1458 110 495 1503 115 450 1548 120 415 1583 125 385 1613	No. Blows	DCP01 - Side TP201	NGL
10 1763 235 15 1663 335 20 1559 439 25 1439 559 30 1378 620 35 1303 695 40 1223 775 45 1163 835 50 1093 905 55 1033 965 60 978 1020 65 928 1070 70 878 1120 75 813 1185 80 765 1233 85 720 1278 90 675 1323 95 630 1368 100 585 1413 105 540 1458 110 495 1503 115 450 1548 120 415 1583 125 385 1613 130 360 1638 <td>0</td> <td>1998</td> <td>0</td>	0	1998	0
15 1663 335 20 1559 439 25 1439 559 30 1378 620 35 1303 695 40 1223 775 45 1163 835 50 1093 905 55 1033 965 60 978 1020 65 928 1070 70 878 1120 75 813 1185 80 765 1233 85 720 1278 90 675 1323 95 630 1368 100 585 1413 105 540 1458 110 495 1503 115 450 1548 120 415 1583 125 385 1613 130 360 1638 135 335 1663 </td <td>5</td> <td>1873</td> <td>125</td>	5	1873	125
20 1559 439 25 1439 559 30 1378 620 35 1303 695 40 1223 775 45 1163 835 50 1093 905 55 1033 965 60 978 1020 65 928 1070 70 878 1120 75 813 1185 80 765 1233 85 720 1278 90 675 1323 95 630 1368 100 585 1413 105 540 1458 110 495 1503 115 450 1548 120 415 1583 125 385 1613 130 360 1638 135 335 1663 140 310 1688<	10	1763	235
25 1439 559 30 1378 620 35 1303 695 40 1223 775 45 1163 835 50 1093 905 55 1033 965 60 978 1020 65 928 1070 70 878 1120 75 813 1185 80 765 1233 85 720 1278 90 675 1323 95 630 1368 100 585 1413 105 540 1458 110 495 1503 115 450 1548 120 415 1583 125 385 1613 130 360 1638 135 335 1663 140 310 1688 145 285 1713	15	1663	335
30 1378 620 35 1303 695 40 1223 775 45 1163 835 50 1093 905 55 1033 965 60 978 1020 65 928 1070 70 878 1120 75 813 1185 80 765 1233 85 720 1278 90 675 1323 95 630 1368 100 585 1413 105 540 1458 110 495 1503 115 450 1548 120 415 1583 125 385 1613 130 360 1638 135 335 1663 140 310 1688 145 285 1713 150 265 1733 155 250 1748 160 210	20	1559	439
35 1303 695 40 1223 775 45 1163 835 50 1093 905 55 1033 965 60 978 1020 65 928 1070 70 878 1120 75 813 1185 80 765 1233 85 720 1278 90 675 1323 95 630 1368 100 585 1413 105 540 1458 110 495 1503 115 450 1548 120 415 1583 125 385 1613 130 360 1638 135 335 1663 140 310 1688 145 285 1713 150 265 1733 155 250 1748 160 210 1788 165 175 <td>25</td> <td>1439</td> <td>559</td>	25	1439	559
40 1223 775 45 1163 835 50 1093 905 55 1033 965 60 978 1020 65 928 1070 70 878 1120 75 813 1185 80 765 1233 85 720 1278 90 675 1323 95 630 1368 100 585 1413 105 540 1458 110 495 1503 115 450 1548 120 415 1583 125 385 1613 130 360 1638 135 335 1663 140 310 1688 145 285 1713 150 265 1733 155 250 1748 160 210 1788 165 175 1823 170 131 <td>30</td> <td>1378</td> <td>620</td>	30	1378	620
45 1163 835 50 1093 905 55 1033 965 60 978 1020 65 928 1070 70 878 1120 75 813 1185 80 765 1233 85 720 1278 90 675 1323 95 630 1368 100 585 1413 105 540 1458 110 495 1503 115 450 1548 120 415 1583 125 385 1613 130 360 1638 135 335 1663 140 310 1688 145 285 1713 150 265 1733 155 250 1748 160 210 1788 165 175 1823 170 131 1867	35	1303	695
50 1093 905 55 1033 965 60 978 1020 65 928 1070 70 878 1120 75 813 1185 80 765 1233 85 720 1278 90 675 1323 95 630 1368 100 585 1413 105 540 1458 110 495 1503 115 450 1548 120 415 1583 125 385 1613 130 360 1638 135 335 1663 140 310 1688 145 285 1713 150 265 1733 155 250 1748 160 210 1788 165 175 1823 170 131 <td< td=""><td>40</td><td>1223</td><td>775</td></td<>	40	1223	775
55 1033 965 60 978 1020 65 928 1070 70 878 1120 75 813 1185 80 765 1233 85 720 1278 90 675 1323 95 630 1368 100 585 1413 105 540 1458 110 495 1503 115 450 1548 120 415 1583 125 385 1613 130 360 1638 135 335 1663 140 310 1688 145 285 1713 150 265 1733 155 250 1748 160 210 1788 165 175 1823 170 131 1867	45	1163	835
60 978 1020 65 928 1070 70 878 1120 75 813 1185 80 765 1233 85 720 1278 90 675 1323 95 630 1368 100 585 1413 105 540 1458 110 495 1503 115 450 1548 120 415 1583 125 385 1613 130 360 1638 135 335 1663 140 310 1688 145 285 1713 150 265 1733 155 250 1748 160 210 1788 165 175 1823 170 131 1867	50	1093	905
65 928 1070 70 878 1120 75 813 1185 80 765 1233 85 720 1278 90 675 1323 95 630 1368 100 585 1413 105 540 1458 110 495 1503 115 450 1548 120 415 1583 125 385 1613 130 360 1638 135 335 1663 140 310 1688 145 285 1713 150 265 1733 155 250 1748 160 210 1788 165 175 1823 170 131 1867	55	1033	965
70 878 1120 75 813 1185 80 765 1233 85 720 1278 90 675 1323 95 630 1368 100 585 1413 105 540 1458 110 495 1503 115 450 1548 120 415 1583 125 385 1613 130 360 1638 135 335 1663 140 310 1688 145 285 1713 150 265 1733 155 250 1748 160 210 1788 165 175 1823 170 131 1867	60	978	1020
75 813 1185 80 765 1233 85 720 1278 90 675 1323 95 630 1368 100 585 1413 105 540 1458 110 495 1503 115 450 1548 120 415 1583 125 385 1613 130 360 1638 135 335 1663 140 310 1688 145 285 1713 150 265 1733 155 250 1748 160 210 1788 165 175 1823 170 131 1867	65	928	1070
80 765 1233 85 720 1278 90 675 1323 95 630 1368 100 585 1413 105 540 1458 110 495 1503 115 450 1548 120 415 1583 125 385 1613 130 360 1638 135 335 1663 140 310 1688 145 285 1713 150 265 1733 155 250 1748 160 210 1788 165 175 1823 170 131 1867	70	878	1120
85 720 1278 90 675 1323 95 630 1368 100 585 1413 105 540 1458 110 495 1503 115 450 1548 120 415 1583 125 385 1613 130 360 1638 135 335 1663 140 310 1688 145 285 1713 150 265 1733 155 250 1748 160 210 1788 165 175 1823 170 131 1867	75	813	1185
90 675 1323 95 630 1368 100 585 1413 105 540 1458 110 495 1503 115 450 1548 120 415 1583 125 385 1613 130 360 1638 135 335 1663 140 310 1688 145 285 1713 150 265 1733 155 250 1748 160 210 1788 165 175 1823 170 131 1867	80	765	1233
95 630 1368 100 585 1413 105 540 1458 110 495 1503 115 450 1548 120 415 1583 125 385 1613 130 360 1638 135 335 1663 140 310 1688 145 285 1713 150 265 1733 155 250 1748 160 210 1788 165 175 1823 170 131 1867	85	720	1278
100 585 1413 105 540 1458 110 495 1503 115 450 1548 120 415 1583 125 385 1613 130 360 1638 135 335 1663 140 310 1688 145 285 1713 150 265 1733 155 250 1748 160 210 1788 165 175 1823 170 131 1867	90	675	1323
105 540 1458 110 495 1503 115 450 1548 120 415 1583 125 385 1613 130 360 1638 135 335 1663 140 310 1688 145 285 1713 150 265 1733 155 250 1748 160 210 1788 165 175 1823 170 131 1867	95	630	1368
110 495 1503 115 450 1548 120 415 1583 125 385 1613 130 360 1638 135 335 1663 140 310 1688 145 285 1713 150 265 1733 155 250 1748 160 210 1788 165 175 1823 170 131 1867	100	585	1413
115 450 1548 120 415 1583 125 385 1613 130 360 1638 135 335 1663 140 310 1688 145 285 1713 150 265 1733 155 250 1748 160 210 1788 165 175 1823 170 131 1867	105	540	1458
120 415 1583 125 385 1613 130 360 1638 135 335 1663 140 310 1688 145 285 1713 150 265 1733 155 250 1748 160 210 1788 165 175 1823 170 131 1867	110	495	1503
125 385 1613 130 360 1638 135 335 1663 140 310 1688 145 285 1713 150 265 1733 155 250 1748 160 210 1788 165 175 1823 170 131 1867	115	450	1548
130 360 1638 135 335 1663 140 310 1688 145 285 1713 150 265 1733 155 250 1748 160 210 1788 165 175 1823 170 131 1867	120	415	1583
135 335 1663 140 310 1688 145 285 1713 150 265 1733 155 250 1748 160 210 1788 165 175 1823 170 131 1867	125	385	1613
140 310 1688 145 285 1713 150 265 1733 155 250 1748 160 210 1788 165 175 1823 170 131 1867	130	360	1638
140 310 1688 145 285 1713 150 265 1733 155 250 1748 160 210 1788 165 175 1823 170 131 1867	135	335	1663
150 265 1733 155 250 1748 160 210 1788 165 175 1823 170 131 1867	140	310	1688
155 250 1748 160 210 1788 165 175 1823 170 131 1867	145	285	1713
160 210 1788 165 175 1823 170 131 1867	150	265	1733
165 175 1823 170 131 1867	155	250	1748
170 131 1867	160	210	1788
	165	175	1823
No Refusal	170	131	1867
		No Refusal	

 Test Date
 06/05/2021
 DCP No.
 202

 Site:
 Try Again
 Hole No.
 Side – TP202

No. Blows	DCP02 - Side TP202 1995	NGL
0	1995	
		0
5	1870	125
10	1745	250
15	1620	375
20	1509	486
25	1398	597
30	1287	708
35	1176	819
40	1067	928
45	958	1037
50	849	1146
55	740	1255
60	631	1364
65	522	1473
70	457	1538
75	392	1603
80	350	1645
85	308	1687
90	266	1729
95	224	1771
100	182	1813
105	140	1855
110	98	1897
	No Refusal	

 Test Date
 06/05/2021
 DCP No.
 203

 Site:
 Try Again
 Hole No.
 Side – TP203

No. Blows	DCP03 - Side TP203	NGL				
0	1993	0				
5	1876	117				
10	1759	234				
15	1642	351				
20	1522	471				
25	1436	557				
30	1347	646				
35	1258	735				
40	1169	824				
45	1080	913				
50	991	1002				
55	902	1091				
60	813	1180				
65	724	1269				
70	635	1358				
75	580	1413				
80	525	1468				
85	470	1523				
90	415	1578				
95	382	1611				
100	349	1644				
105	316	1677				
110	283	1710				
115	250	1743				
120	217	1776				
125	184	1809				
130	151	1842				
135	118	1875				
	No Refusal					

Test Date	06/05/2021	DCP No.	204
Site:	Try Again	Hole No.	Side – TP204

No. Blows	DCP04 - Side TP204	NGL				
0	1897	0				
5	1790	107				
10	1695	202				
15	1594	303				
20	1493	404				
25	1392	505				
30	1291	606				
35	1187	710				
40	1095	802				
45	1007	890				
50	919	978				
55	831	1066				
60	743	1154				
65	655	1242				
70	620	1277				
75	585	1312				
80	550	1347				
85	515	1382				
90	480	1417				
95	445	1452				
100	410	1487				
105	375	1522				
110	340	1557				
115	305	1592				
120	270	1627				
125	235	1662				
130	200	1697				
135	163	1734				
140	144	1753				
145	104	1793				
	No Refusal					

Test Date	06/05/2021	DCP No.	205
Site:	Try Again	Hole No.	Side – TP205

No. Blows	DCP05 - Side TP205	NGL		
0	1985	0		
5	1878	107		
10	1771	214		
15	1664	321		
20	1557	428		
25	1450	535		
30	1343	642		
35	1236	749		
40	1129	856		
45	1022	963		
50	915	1070		
55	829	1156		
60	746	1239		
65	663	1322		
70	580	1405		
75	535	1450		
80	490	1495		
85	445	1540		
90	400	1585		
95	335	1650		
100	310	1675		
105	265	1720		
110	220	1765		
115	175	1810		
120	135	1850		
125	95	1890		
No Refusal				

 Test Date
 06/05/2021
 DCP No.
 206

 Site:
 Try Again
 Hole No.
 Side – TP206

No. Blows	DCP06 - Side TP206	NGL
0	1993	0
5	1890	103
10	1791	202
15	1692	301
20	1593	400
25	1494	499
30	1395	598
35	1296	697
40	1197	796
45	1098	895
50	999	994
55	900	1093
60	844	1149
65	791	1202
70	738	1255
75	685	1308
80	632	1361
85	597	1396
90	526	1467
95	473	1520
100	420	1573
105	379	1614
110	338	1655
115	297	1696
120	256	1737
125	174	1819
130	133	1860
135	92	1901

Test Date	06/05/2021	DCP No.	207
Site:	Try Again	Hole No.	Side – TP207

No. Blows	DCP07 - Side TP207	NGL
0	1949	0
5	1850	99
10	1751	198
15	1652	297
20	1553	396
25	1454	495
30	1355	594
35	1256	693
40	1157	792
45	1058	891
50	959	990
55	860	1089
60	788	1161
65	718	1231
70	648	1301
75	573	1376
80	511	1438
85	446	1503
90	385	1564
95	344	1605
100	303	1646
105	262	1687
110	221	1728
115	180	1769
120	139	1810
125	98	1851
	No Refusal	

 Test Date
 06/05/2021
 DCP No.
 208

 Site:
 Try Again
 Hole No.
 Side – TP208

No. Blows	DCP08 - Side TP208	NGL
0	1979	0
5	1878	101
10	1777	202
15	1676	303
20	1575	404
25	1474	505
30	1373	606
35	1272	707
40	1172	807
45	1070	909
50	969	1010
55	893	1086
60	817	1162
65	741	1238
70	665	1314
75	589	1390
80	513	1466
85	439	1540
90	361	1618
95	285	1694
100	209	1770
105	164	1815
110	119	1860
115	74	1905
	No Refusal	

EARTH CIVIL TESTING

Reg.No.- K2011/115681/01 Tax.No.- 9127/374/18/0
Radiation Control – Authority No. 2962/16/1430
106 Francis Road – P.O. Box 303 - Ladysmith – KwaZulu Natal – 3370

Web - www.geo-sol.co.za - Tel - 0715608058 - 0799100920 - Email - projects@geo-sol.co.za

Date	10/05/2021	Client		Sivest		Sample No.	101 A
WN	2113-01	Project	Dura	ancol Ceme	tery	Depth	0,8-1,2m
LN	L01-MN01	Description	Pale Br	to Orange S	ilty Clay	Lab Tech	S. July
	Soil Gra	ding Analysis	- Mechanic	al Analysis	- SANS 30	01 – GR1	
	Sieve Analysis	Mass Ret	% Ret	% Passing	1	% Sample Conte	nt
	37,500	0	0	100		Gravel	1,4
	26,500	0	0	100		Sand	12,8
	19,000	0	0	100		Fines	85,8
	13,200	0	0	100		Total	100,0
	4,750	7	1,4	98,6			
	2,000	3	0,6	98	S	oil Mortar Gradi	ng
	0,425	18	3,6	94,4	Coa	arse Sand	3,7
	0,250	12	2,4	92	Coars	e Fine Sand	2,4
	0,150	15	3	89	Mediu	ım Fine Sand	3,1
	0,075	16	3,2	85,8	Fine	Fine Sand	3,3
	<0,075	429	85,8	0	Si	lt & Clay	87,6
	Total	500				Total	100,0
		Nat	ural Moist	ure Content			
Container	No. 7		Contai	iner + Samp	le (Wet)		660
Dry Samp	le: 500g		Conta	iner + Samp	ole (Dry)		638
	Container Wei	ight 160g - Mas	s recorded	in grams		Moisture %	3,3
	Pla	sticity Atterbe	erg Limits –	SANS 3001	– GR1 – G	R12	
Samp	ole Number	Moisture (Content	Plastic	Limit	Calculat	ion
Trou	gh Number	1	2	3	4	L.L	40,6
Mass	of container	17,6	17,3	17,3	17,2	P.L	30,1
Mass Co	ontainer +Wet	18,7	19,6	19,3	19,5	P.I	10,4
	ontainer + Dry	18,3	19,1	18,9	18,9		
	Dry Material	0,75	1,8	1,6	1,7		
	of Moisture	0,4	0,5	0,4	0,6	1	
	Moisture	53,3	27,8	25,0	35,3		1
	kage (mm)	8	Linear	Shrinkage		5,3	%
	ough No.	1		(f= 0.			
	ssification		olfied OL - Organic Silt - Oraganic Clay		ay		
IFan Caataa	For Oracle sharing Colodina Physical						

For Geotechnical Solutions Pty Ltd:

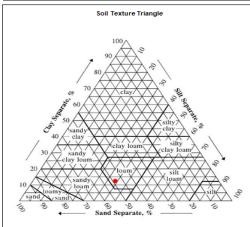
(Technical Signatory - Nilesh Mahadew)

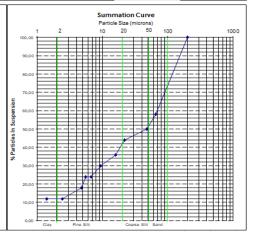
Limitations: This report shall not be reproduced except in full without prior written approval of the laboratory.

Results in this report relate only to the samples as taken, and the condition received by the laboratory.

EARTH CIVIL TESTING

Reg.No.- K2011/115681/01 Tax.No.- 9127/374/18/0
Radiation Control – Authority No. 2962/16/1430
106 Francis Road – P.O. Box 303 - Ladysmith – KwaZulu Natal – 3370


Web - www.geo-sol.co.za - Tel - 0715608058 - 0799100920 - Email - projects@geo-sol.co.za


Date	10/05/2021	Client	Sivest	Sample No.	101 A
WN	2113-01	Project	Durancol Cemetery	Depth	0,8-1,2m
LN	L01-MN01	Description	Pale Br to Orange Silty Clay	Lab Tech	S. July

Hydrometer Analysis - (ASTM D422)

Elapsed Time (min)	Time	Hydrometer Reading R	Temp *C
0	8:00:00 AM		
0,5	8:00:30 AM	29	20
1	8:01:00 AM	25	20
5	8:05:00 AM	22	20
10	8:10:00 AM	18	20
30	8:30:00 AM	15	20
60	9:00:00 AM	12	20
90	9:30:00 AM	12	20
120	10:00:00 AM	9	21
480	4:00:00 PM	6	21
1440	8:00:00 AM	6	21

Elapsed Time (min)	R	C (Corrected R)	Р	t^0.5	Theta	Effective Diameter	Viscosity	Density
0			100,00	0,000		200		
0,5	29	29	58,00	0,707	46,83403778	66,2333	0,010232925	1,001351452
1	25	25	50,00	1,000	48,14634885	48,1463	0,010232925	1,001351452
5	22	22	44,00	2,236	49,10757342	21,9616	0,010232925	1,001351452
10	18	18	36,00	3,162	50,36067493	15,9254	0,010232925	1,001351452
30	15	15	30,00	5,477	51,2804099	9,3625	0,010232925	1,001351452
60	12	12	24,00	7,746	52,18393717	6,7369	0,010232925	1,001351452
90	12	12	24,00	9,487	52,18393717	5,5007	0,010232925	1,001351452
120	9	9	18,00	10,954	52,44080866	4,7872	0,009992224	1,001139186
480	6	6	12,00	21,909	53,30394545	2,4330	0,009992224	1,001139186
1440	6	6	12,00	37,947	53,30394545	1,4047	0,009992224	1,001139186

For Geotechnical Solutions Pty Ltd:

(Technical Signatory – Nilesh Mahadew)

Limitations: This report shall not be reproduced except in full without prior written approval of the laboratory.

EARTH CIVIL TESTING

Reg.No.- K2011/115681/01 Tax.No.- 9127/374/18/0
Radiation Control – Authority No. 2962/16/1430
106 Francis Road – P.O. Box 303 - Ladysmith – KwaZulu Natal – 3370

Web - www.geo-sol.co.za - Tel - 0715608058 - 0799100920 - Email - projects@geo-sol.co.za

Date	10/05/2021	Client		Sivest		Sample No.	105 B			
WN	2113-01	Project	Dura	ancol Ceme	tery	Depth	1,0-1,4m			
LN	L01-MN01	Description	Pale Br	to Brown S	ilty Clay	Lab Tech	S. July			
	Soil Gra	ding Analysis -	Mechanic	al Analysis	- SANS 30	01 – GR1				
	Sieve Analysis	Mass Ret	% Ret % Passing % Sample Co			% Sample Conte	nt			
	37,500	0	0	100		Gravel	0,0			
	26,500	0	0	100		Sand	16,0			
	19,000	0	0	100		Fines	84,0			
	13,200	0	0	100	Total		100,0			
	4,750	0	0	100						
	2,000	7	1,4	98,6	S	oil Mortar Gradi	ng			
	0,425	22	4,4	94,2	Coa	arse Sand	4,5			
	0,250	15	3	91,2	Coarse Fine Sand		3,0			
	0,150	18	3,6	87,6	Mediu	Medium Fine Sand				
	0,075	18	3,6	84	Fine Fine Sand		3,7			
	<0,075	420	84	0	Si	85,2				
	Total	500			Total		100,0			
		Nat	ural Moist	ure Content	t					
Container	No. 7		660							
Dry Samp	le: 500g		637							
	Container We	ght 160g - Mass recorded in grams Moisture %					3,5			
	Pla	sticity Atterbe	erg Limits –	SANS 3001	. – GR1 – G	R12				
Samp	ole Number	Moisture (Content	Plastic	Limit	Calculat	ion			
Trou	gh Number	5	6	7	8	L.L	42,2			
Mass	of container	17,7	17,7	18,0	17,6	P.L	30,1			
Mass Co	ontainer +Wet	19,1	19,0	19,2	19,4	P.I	12,1			
Mass Co	ontainer + Dry	18,7	18,6	18,9	19,0	_				
Mass of	Mass of Dry Material		0,9	0,95	1,4	1				
Mass	Mass of Moisture		0,4	0,3	0,4]				
% Moisture		40	44,4	31,6	28,6					
Shrinkage (mm)		9	9 Linear Shrinkage = _x(f)		= _x(f)	6,0	%			
Tre	ough No.	2	(f= 0.579)							
Clas	ssification	Unifie	ed	0	L - Organic	Silt - Oraganic Cl	ay			
For Geotec	For Geotechnical Solutions Pty Ltd:									

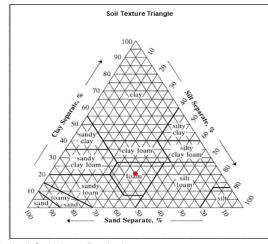
For Geotechnical Solutions Pty Ltd:

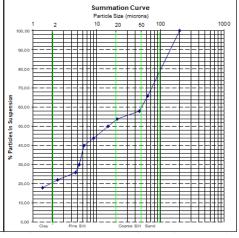
(Technical Signatory - Nilesh Mahadew)

 $Limitations: This \ report \ shall \ not \ be \ reproduced \ except \ in \ full \ without \ prior \ written \ approval \ of \ the \ laboratory.$

EARTH CIVIL TESTING

Reg.No.- K2011/115681/01 Tax.No.- 9127/374/18/0
Radiation Control – Authority No. 2962/16/1430
106 Francis Road – P.O. Box 303 - Ladysmith – KwaZulu Natal – 3370


Web - www.geo-sol.co.za - Tel - 0715608058 - 0799100920 - Email - projects@geo-sol.co.za


Date	10/05/2021	Client	Sivest	Sample No.	105 B
WN	2113-01	Project	Durancol Cemetery	Depth	1,0-1,4m
LN	L01-MN01	Description	Pale Br to Brown Silty Clay	Lab Tech	S. July

Hydrometer Analysis - (ASTM D422)

Elapsed Time (min)	Time	Hydrometer Reading R	Temp *C
0	8:00:00 AM		
0,5	8:00:30 AM	33	21
1	8:01:00 AM	29	21
5	8:05:00 AM	27	21
10	8:10:00 AM	25	21
30	8:30:00 AM	22	21
60	9:00:00 AM	20	21
90	9:30:00 AM	15	21
120	10:00:00 AM	13	21
480	4:00:00 PM	11	19
1440	8:00:00 AM	9	19

Elapsed Time (min)	R	C (Corrected R)	Р	t^0.5	Theta	Effective Diameter	Viscosity	Density
0			100,00	0,000		200		
0,5	33	33	66,00	0,707	44,94286281	63,5588	0,009992224	1,001139186
1	29	29	58,00	1,000	46,27696151	46,2770	0,009992224	1,001139186
5	27	27	54,00	2,236	46,92979109	20,9876	0,009992224	1,001139186
10	25	25	50,00	3,162	47,57366305	15,0441	0,009992224	1,001139186
30	22	22	44,00	5,477	48,52345415	8,8591	0,009992224	1,001139186
60	20	20	40,00	7,746	49,14645183	6,3448	0,009992224	1,001139186
90	15	15	30,00	9,487	50,67044542	5,3411	0,009992224	1,001139186
120	13	13	26,00	10,954	51,26735964	4,6800	0,009992224	1,001139186
480	11	11	22,00	21,909	53,18729849	2,4277	0,010508663	1,001553186
1440	9	9	18,00	37,947	53,78566531	1,4174	0,010508663	1,001553186

For Geotechnical Solutions Pty Ltd:

(Technical Signatory – Nilesh Mahadew)

Limitations: This report shall not be reproduced except in full without prior written approval of the laboratory.

EARTH CIVIL TESTING

Reg.No.- K2011/115681/01 Tax.No.- 9127/374/18/0
Radiation Control – Authority No. 2962/16/1430
106 Francis Road – P.O. Box 303 - Ladysmith – KwaZulu Natal – 3370

Web - www.geo-sol.co.za - Tel - 0715608058 - 0799100920 - Email - projects@geo-sol.co.za

Date	10/05/2021	Client		Sivest		Sample No.	205 C		
WN	2114-01	Project	Try	Again Ceme	tery	Depth	1,1-1,5m		
LN	L01-MN01	Description	Dark to	o Pale Or Sil	lty Clay	Lab Tech	S. July		
	Soil Gra	ding Analysis -	- Mechanic	al Analysis	- SANS 30	01 – GR1			
	Sieve Analysis	Mass Ret	Mass Ret		% Sample Conte	nt			
	37,500	0	0	100		Gravel	0,6		
	26,500	0	0	100		Sand	39,4		
	19,000	0	0	100	Fines		60,0		
	13,200	0	0	100	Total		100,0		
	4,750	3	0,6	99,4					
	2,000	9	1,8	97,6	S	oil Mortar Gradi	ng		
	0,425	70	14	83,6	Coa	arse Sand	14,3		
	0,250	51	10,2	73,4	Coarse Fine Sand		10,5		
	0,150	39	7,8	65,6	Medium Fine Sand		8,0		
	0,075	28	5,6	60	Fine Fine Sand		5,7		
	<0,075	300	60	0	Si	61,5			
	Total	500			Total		100,0		
		Nat	ural Moist	ure Content	t				
Container	No. 7		Contai	iner + Samp	le (Wet)		660		
Dry Sampl	e: 500g		642						
	Container Wei	ght 160g - Mass recorded in grams Moisture %					2,7		
	Pla	sticity Atterbe	erg Limits –	SANS 3001	. – GR1 – G	R12			
Samp	ole Number	Moisture (Content	Plastic Limit		Calculation			
Trou	gh Number	9	10	11	12	L.L	30,6		
Mass	of container	17,5	17,2	17,1	17,1	P.L	21,1		
Mass Co	ontainer +Wet	18,9	18,8	19,3	18,9	P.I	9,5		
Mass Co	ontainer + Dry	18,5	18,5	18,9	18,6				
Mass of	Dry Material	1,05	1,3	1,8	1,5				
Mass	Mass of Moisture		0,3	0,4	0,3				
% Moisture		38,1	23,1	22,2	20				
Shrin	kage (mm)	7	Linear Shrinkage		= _x(f)	4,7	%		
	ough No.	3	(f= 0.579)		.579)				
Clas	ssification	Unifie	ed	0	L - Organic	Silt - Oraganic Cl	ay		
For Geotec	For Geotechnical Solutions Ptv Ltd·								

For Geotechnical Solutions Pty Ltd:

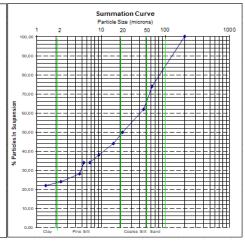
(Technical Signatory - Nilesh Mahadew)

Limitations: This report shall not be reproduced except in full without prior written approval of the laboratory.

EARTH CIVIL TESTING

Reg.No.- K2011/115681/01 Tax.No.- 9127/374/18/0
Radiation Control – Authority No. 2962/16/1430
106 Francis Road – P.O. Box 303 - Ladysmith – KwaZulu Natal – 3370


Web - www.geo-sol.co.za - Tel - 0715608058 - 0799100920 - Email - projects@geo-sol.co.za


Date	10/05/2021	Client	Sivest	Sample No.	205 C
WN	2114-01	Project	Try Again Cemetery	Depth	1,1-1,5m
LN	L01-MN01	Description	Dark to Pale Or Silty Clay	Lab Tech	S. July

Hydrometer Analysis - (ASTM D422)

Elapsed Time (min)	Time	Hydrometer Reading R	Temp *C
0	8:00:00 AM		
0,5	8:00:30 AM	37	20
1	8:01:00 AM	31	20
5	8:05:00 AM	25	20
10	8:10:00 AM	22	20
30	8:30:00 AM	19	19
60	9:00:00 AM	17	19
90	9:30:00 AM	17	19
120	10:00:00 AM	14	21
480	4:00:00 PM	12	20
1440	8:00:00 AM	11	20

Elapsed Time (min)	R	C (Corrected R)	Р	t^0.5	Theta	Effective Diameter	Viscosity	Density
0			100,00	0,000		200		
0,5	37	37	74,00	0,707	44,09239695	62,3561	0,010232925	1,001351452
1	31	31	62,00	1,000	46,16389486	46,1639	0,010232925	1,001351452
5	25	25	50,00	2,236	48,14634885	21,5317	0,010232925	1,001351452
10	22	22	44,00	3,162	49,10757342	15,5292	0,010232925	1,001351452
30	19	19	38,00	5,477	50,72329283	9,2608	0,010508663	1,001553186
60	17	17	34,00	7,746	51,35037981	6,6293	0,010508663	1,001553186
90	17	17	34,00	9,487	51,35037981	5,4128	0,010508663	1,001553186
120	14	14	28,00	10,954	50,96977635	4,6529	0,009992224	1,001139186
480	12	12	24,00	21,909	52,18393717	2,3819	0,010232925	1,001351452
1440	11	11	22,00	37,947	52,48165634	1,3830	0,010232925	1,001351452

For Geotechnical Solutions Pty Ltd:

(Technical Signatory – Nilesh Mahadew)

Limitations: This report shall not be reproduced except in full without prior written approval of the laboratory.