THE PROPOSED ELEMENT SIX PV FACILITY, GAUTENG PROVINCE, SOUTH AFRICA

Visual Impact Assessment: Scoping Report

Draft v_1

DATE: 20 February 2023

Document prepared for Ecoledges CC On behalf of Soventix SA (Pty) Ltd

Visual Resource Management Africa cc P O Box 7233, George, 6531 Cell: +27 (83) 560 9911

E-Mail: steve@vrma.co.za Web: <u>www.vrma.co.za</u>

TABLE OF CONTENTS

1	DFFE SPECIALIST REPORTING REQUIREMENTS	
1.1	SPECIALIST DECLARATION OF INDEPENDENCE	6
1.2	SPECIALIST REPORT REQUIREMENTS IN TERMS OF APPENDIX 6 OF THE EIA	_
	GULATIONS (2014), AS AMENDED IN 2017	
1.3	DFFE SCREENING TOOL SITE SENSITIVITY VERIFICATION	/
2	EXECUTIVE SUMMARY	9
3	INTRODUCTION	12
3.1	TERMS OF REFERENCE	
3.2	STUDY TEAM	
3.3	VISUAL ASSESSMENT APPROACH	13
3.4	VIA Process Outline	
3.5	IMPACT ASSESSMENT METHODOLOGY	
3.6	ASSUMPTIONS AND UNCERTAINTIES	17
4	PROJECT DESCRIPTION	17
5	LEGAL FRAMEWORK	21
5.1	INTERNATIONAL GOOD PRACTICE	
	5.1.1 Guidelines for Landscape and Visual Impact Assessment, Second Edition.	21
	5.1.2 International Finance Corporation (IFC)	
	5.1.3 Millennium Ecosystem Assessment	
5.2	NATIONAL AND REGIONAL LEGISLATION AND POLICIES	
	5.2.1 DEA&DP Visual and Aesthetic Guidelines	
	5.2.2 Conservation Planning	
	5.2.3 REDZ Planning	
5.3	LANDSCAPE PLANNING POLICY FIT	
6	BASELINE VISUAL INVENTORY	
6 .1	LANDSCAPE CONTEXT & VISUAL ABSORPTION CAPACITY	
6.2	VEGETATION	
6.3	WETLANDS	
6.4	OTHER RENEWABLE ENERGY PROJECTS	
6.5	LANDSCAPE TOPOGRAPHY	
6.6	PROJECT ZONE OF VISUAL INFLUENCE	
6.7	RECEPTORS AND KEY OBSERVATION POINTS	
6.8	GLINT AND GLARE ANALYSIS	
7	VISUAL RESOURCE MANAGEMENT	
7.1	PHYSIOGRAPHIC RATING UNITS	
7.2	SCENIC QUALITY ASSESSMENT	
7.3	RECEPTOR SENSITIVITY ASSESSMENT	
7.4	VISUAL RESOURCE MANAGEMENT (VRM) CLASSES	
	7.4.1 VRIVI Class I	
	7.4.3 VRM Class III	
	7.4.4 VRM Class IV	
8	SUMMARY OF VISUAL IMPACT FINDINGS	42
8.1	TYPE OF IMPACT	
8.2	EXTENT OF THE IMPACT	
8.3	MAGNITUDE OF THE IMPACT	
8.4	DURATION OF THE IMPACT	42

8.5	PROBABILITY OF THE IMPACT	
8.6	CONFIDENCE OF THE IMPACT	
8.7	REVERSIBILITY OF THE IMPACT	
8.8	RESOURCE IRREPLACEABILITY OF THE IMPACT	
8.9 8.10	MITIGABILITY OF THE IMPACT	
8.10 8.11	CUMULATIVE IMPACT ASSESSMENTVISUAL SIGNIFICANCE OF THE IMPACT	
	PRELIMINARY OPPORTUNITIES AND CONSTRAINTS	
9.1	PV PROJECT & ASSOCIATED INFRASTRUCTURE	
	1 Opportunities	
9.1. 9.2	2 Constraints	
9.2 9.2.		
9.2.		
	CONCLUSION	
11 E	BIBLIOGRAPHY	. 46
12 <i>A</i>	ANNEXURE A: SITE VISIT PHOTOGRAPHS AND COMMENTS	. 47
13 <i>A</i>	ANNEXURE B: DFFE DECLARATION OF INDEPENDENCE	. 51
	ANNEXURE C: SPECIALIST INFORMATION	
14.1	PROFESSIONAL REGISTRATION CERTIFICATE	
14.2	CURRICULUM VITAE (CV)	
	ANNEXURE D: GENERAL LIGHTS AT NIGHT MITIGATIONS	
16 <i>A</i>	ANNEXURE E: GLINT AND GLARE IMPACT DESCRIPTION	. 63
	ANNEXURE F: METHODOLOGY DETAIL	
17.1	Baseline Analysis Stage	
	1.1 Scenic Quality	
	1.2 Receptor Sensitivity	
	1.3 Exposure	
	1.4 Key Observation Points	
17.2	ASSESSMENT AND IMPACT STAGE	
	2.1 Contrast Rating 2.2 Photomontages	
17.2	z.z Priotomontages	. 00
	TABLE OF FIGURES	
FICURE 4	DEFE CORFENING TOOL FOR LANDSCARE	_
	DFFE SCREENING TOOL FOR LANDSCAPE	
	PHOTOGRAPHIC EXAMPLE OF WHAT THE PROPOSED PV COULD LOOK LIKE AS SINGLE-AXIS	12
	CKER.	18
	PROPOSED LAYOUT PLAN MAP PROVIDED BY THE CLIENT.	
FIGURE 5:	SCALE REFERENCE MAP FOR PROVIDED LAYOUT DRAWINGS	20
	PLANNING LOCALITY MAP DEPICTING THE LOCAL, DISTRICT AND NATIONAL PLANNING ZONE	
	SOVENTIX SA SSV APPLICATION GAUTENG PROTECTED AREA EXPANSION STRATEGY SITES W PROPOSED DEVELOPMENT AREA LOCATED OUTSIDE OF THE PLANNED GAUTENG PROTECTED	
	A EXPANSION STRATEGY AREAS	
	SOVENTIX SA SSV APPLICATION ECOLOGICAL SUPPORT AREAS (ESA1) DEPICTING THE PROPOS	
	ELOPMENT FOOTPRINT TO BE OUTSIDE OF THE ESA AREAS.	
	BGIS BIOME AND VEGETATION TYPE MAP (SOUTH AFRICAN NATIONAL BIODIVERSITY INSTITU	
2018	3)	28

	AERIAL PHOTOGRAPH SOVENTIX SA SSV APPLICATION DEPICTING ERRONEOUS CLASSIFIC	
_	TLAND AREAS.	_
	MAP DEPICTING REGIONAL DEA RENEWABLE ENERGY PROJECT STATUS REGIONAL DIGITAL ELEVATION MAPPING AND PROFILES GRAPHS <i>WITH APPROXIMATE EX</i>	
	EDEGIONAL DIGITAL ELEVATION INAFFING AND PROFILES GRAFTIS WITH APPROXIMATE EX	
	/IEWSHED ANALYSIS MAP OF PROPOSED PROJECT	
	RECEPTOR KEY OBSERVATION POINT AND VISUAL EXPOSURE MAP	
	SUNCALC OUTPUT DEPICTING ANGLE OF LOW SUN POSITIONS DURING THE SUMMER AN	
WINDE	R SOLSTICE PERIODS. (SUNCALC.ORG, N.D.)	37
	PHYSIOGRAPHIC RATING UNITS IDENTIFIED WITHIN THE DEFINED STUDY AREA	
	VISUAL RESOURCE MANAGEMENT CLASSES MAP	
	OPPORTUNITIES MAP DEPICTING THE APPROXIMATE LOCATION OF THE AVENUE TO TRE	_
	OULD BE PLANTED ALONG PARRY ROAD.	
	SITE SURVEY POINT MAP MAGES OF GLINT AND GLARE FOR PV PANELS (SACRAMENTO MUNICIPAL UTILITY DISTRI	
FIGURE 20. II	MAGES OF GLINT AND GLARE FOR PV PANELS (SACRAMENTO MUNICIPAL UTILITY DISTRI	CI). 63
	<u>LIST OF TABLES</u>	
TABLE 1. SPE	CIALIST DECLARATION OF INDEPENDENCE	6
TABLE 2: SPE	CIALIST REPORT REQUIREMENTS TABLE	6
	E SSV LANDSCAPE RISK TABLE.	
	THORS AND CONTRIBUTORS TO THIS REPORT.	
	VI CLASS MATRIX TABLE	
	THODOLOGY SUMMARY TABLE	
	DIECT INFORMATION TABLE	
	DIECT DESCRIPTION TABLE	
	ST OF KEY PLANNING INFORMANTS TO THE PROJECT.	
	ROVINCIAL PLANNING REFERENCE TABLE RELEVANT TO THE PROJECT.	
TABLE 12: LO	OCAL PLANNING REFERENCE TABLE RELEVANT TO THE PROJECT	26
	ROPOSED PROJECT HEIGHTS TABLE	
	DP MOTIVATION TABLE	
_	HYSIOGRAPHIC LANDSCAPE RATING UNITS	
	CENIC QUALITY AND RECEPTOR SENSITIVITY RATING.	
TABLE 17: VR	RM AFRICA PROJECTS ASSESSMENTS TABLE	54
	<u>LIST OF ACRONYMS</u>	
APHP	Association of Professional Heritage Practitioners	
BLM	Bureau of Land Management (United States)	
<i>BPE</i> 0	Best Practicable Environmental Option	
CALP	Collaborative for Advanced Landscape Planning	
DEM	Digital Elevation Model	
DoC	Degree of Contrast	
EIA	Environmental Impact Assessment	
EMPr	Environmental Management Plan	
GIS	Geographic Information System	
	· · · · · · · · · · · · · · · · · · ·	
GPS	Global Positioning System	
IDP	Integrated Development Plan	
IEMA	Institute of Environmental Management and Assessment (United King	jdom)
KOP	Key Observation Point	
LVIA	Landscape and Visual Impact Assessment	
MAMSL	Metres above mean sea level	

NELPAG New England Light Pollution Advisory Group

PNR Private Nature Reserve

SDF Spatial Development Framework SEA Strategic Environmental Assessment

Visual Absorption Capacity VAC VIA Visual Impact Assessment VRM Visual Resource Management

Visual Resource Management Africa VRMA

7VI Zone of Visual Influence

GLOSSARY OF TECHNICAL TERMS

Technical Terms Definition (Oberholzer, 2005)

Degree of The measure in terms of the form, line, colour and texture of the

> existing landscape in relation to the proposed landscape modification in relation to the defined visual resource

management objectives.

Visual intrusion Issues are concerns related to the proposed development.

> generally phrased as questions, taking the form of "what will the impact of some activity be on some element of the visual,

aesthetic or scenic environment".

Receptors Individuals, groups or communities who would be subject to the

visual influence of a particular project.

Sense of place The unique quality or character of a place, whether natural, rural

or urban.

Scenic corridor A linear geographic area that contains scenic resources, usually,

but not necessarily, defined by a route.

Viewshed The outer boundary defining a view catchment area, usually

> along crests and ridgelines. Similar to a watershed. This reflects the area, or the extent thereof, where the landscape modification

would probably be seen.

Visual Absorption

Capacity

Contrast

The potential of the landscape to conceal the proposed project.

Technical Term Definition (USDI., 2004)

Key

Point

Observation Receptors refer to the people located in the most critical locations, or key observation points, surrounding the landscape modification, who make consistent use of the views associated with the site where the landscape modifications are proposed. KOPs can either be a single point of view that an observer/evaluator uses to rate an area or panorama, or a linear view along a roadway, trail, or river corridor.

Visual

Management

Resource A map-based landscape and visual impact assessment method development by the Bureau of Land Management (USA).

Zone of Visual The ZVI is defined as 'the area within which a proposed development may have an influence or effect on visual amenity.'

Influence

1 DFFE Specialist Reporting Requirements

1.1 Specialist declaration of independence

Table 1. Specialist declaration of independence.

All intellectual property rights and copyright associated with VRM Africa's services are reserved, and project deliverables, including electronic copies of reports, maps, data, shape files and photographs, may not be modified or incorporated into subsequent reports in any form, or by any means, without the written consent of the author. Reference must be made to this report, should the results, recommendations or conclusions in this report be used in subsequent documentation. Any comments on the draft copy of the Visual Impact Assessment (VIA) must be put in writing. Any recommendations, statements or conclusions drawn from, or based upon, this report, must make reference to it.

This document was completed by Silver Solutions 887 cc trading as VRM Africa, a Visual Impact Study and Mapping organisation located in George, South Africa. VRM Africa cc was appointed as an independent professional visual impact practitioner to facilitate this VIA. I, Stephen Stead, hereby declare that VRM Africa, an independent consulting firm, has no interest or personal gains in this project whatsoever, except receiving fair payment for rendering an independent professional service.

Stephen Stead

APHP accredited VIA Specialist

1.2 Specialist report requirements in terms of Appendix 6 of the EIA Regulations (2014), as amended in 2017

Table 2: Specialist report requirements table

A specialist report prepared in terms of the Environmental Impact Regulations of 2014 (as amended in 2017) must contain:	Relevant section in report
Details of the specialist who prepared the report	Stephen Stead, owner / director of Visual Resource Management Africa. steve@vrma.co.za Cell: 0835609911
The expertise of that person to compile a specialist report including a curriculum vitae	Registration with Association of Professional Heritage Practitioners
A declaration that the person is independent in a form as may be specified by the competent authority	Table 1
An indication of the scope of, and the purpose for which, the report was prepared	Terms of Reference

A specialist report prepared in terms of the Environmental Impact Regulations of 2014 (as amended in 2017) must contain:	Relevant section in report		
A description of existing impacts on the site, cumulative impacts of the proposed development and levels of acceptable change	Baseline Assessment		
The duration, date and season of the site investigation and the relevance of the season to the outcome of the assessment	NA		
A description of the methodology adopted in preparing the report or carrying out the specialised process inclusive of equipment and modelling used;	Methodology		
Details of an assessment of the specific identified sensitivity of the site related to the proposed activity or activities and its associated structures and infrastructure, inclusive of a site plan identifying site alternative;	Baseline Visual Inventory		
An identification of any areas to be avoided, including buffers	Visual Resource Management Classes		
A map superimposing the activity including the associated structures and infrastructure on the environmental sensitivities of the site including areas to be avoided, including buffers;	Not required.		
A description of any assumptions made and any uncertainties or gaps in knowledge;	Assumptions and Limitations		
The duration, date and season of the site investigation and the relevance of the season to the outcome of the assessment	Executive Summary		
A description of the findings and potential implications of such findings on the impact of the proposed activity or activities	Visual Impact Assessment		
Any mitigation measures for inclusion in the EMPr	Environmental Management Plan		
Any conditions for inclusion in the environmental authorisation	NA		
Any monitoring requirements for inclusion in the EMPr or environmental authorisation	NA		
A reasoned opinion as to whether the proposed activity or portions thereof should be authorised	Opportunities and Constraints		
Regarding the acceptability of the proposed activity or activities; and	Conclusion		
If the opinion is that the proposed activity or portions thereof should be authorised, any avoidance, management and mitigation measures that should be included in the EMPr, and where applicable, the closure plan	It is the recommendation that the proposed development should BE AUTHORISED		
A description of any consultation process that was undertaken during the course of carrying out the study	A site visit that was undertaken on the 8th of February 2023		
A summary and copies if any comments that were received during any consultation process	NA		
Any other information requested by the competent authority.	NA		

1.3 DFFE Screening Tool Site Sensitivity Verification

In terms of Part A of the Assessment Protocols published in GN 320 on 20 March 2020, site sensitivity verification is required relevant to the DFFE Screening Tool. As indicated in Figure 1 below, the Map of Relative Landscape (Solar).

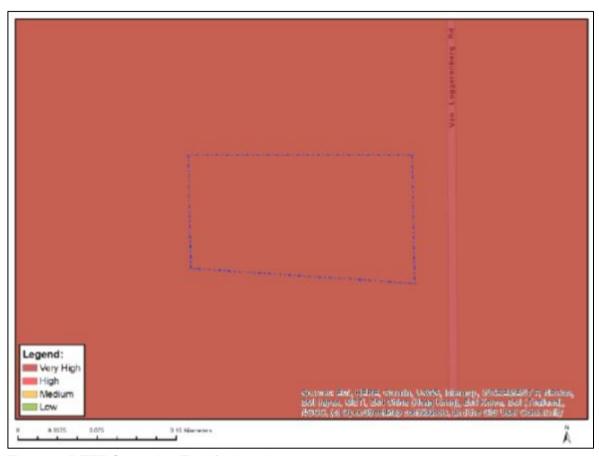


Figure 1. DFFE Screening Tool for Landscape.

SSV as informed by the *site visit that was undertaken on the 8th of February* **2023**During the survey, photographs and comments were recorded and can be viewed in Annexure A, with the associated map of the survey points as well as the survey tracks.

The following table outlines the relevance of the risks raised in the SSV as informed by the site visit.

Table 3. DFFE SSV Landscape Risk table.

DFFE Feature	DFFE Sensitivity	Risk Verification	Motivation
Between 2.5 and 5km of a Ramsar Site or national Park	High	Low	The surrounding industrial built nature of the receiving landscape restricts views to the local area, with a High Visual Absorption Capacity. As such the Ramsar Site or National Park landscapes would not be impacted.
Between 3 and 5 km of a nature reserve	Medium	Low	
Mountain tops and high ridges	Very High	Medium to Low	The topography is regionally elevation but does not form a mountain top of high ridgeline.

2 EXECUTIVE SUMMARY

Visual Resource Management Africa CC (VRMA) was appointed by Ecoledges CC to undertake a *Visual Impact Assessment* for the proposed Element Six Solar PV facility VIA on behalf of Soventix SA (Pty) Ltd. A *site visit that was undertaken on the 8th of February 2023.* During the survey, photographs and comments were recorded and can be viewed in Annexure A, with the associated map of the survey points as well as the survey tracks.

The site is located within an industrial area with a high VAC level, a contained ZVI without receptors sensitive to landscape change. As the Landscape and Visual Impacts are expected to have a Low Significance without mitigation, as detailed impact assessment is not required. The recommendation of the Landscape and Visual Impact Assessment is that development should authorised. Opportunities for landscape enhancement are available with the planting of missing trees from the avenue of trees in Parry Road.

.POLICY FIT High

In terms of regional and local planning fit for planned landscape and visual related themes, the expected visual/ landscape policy fit of the landscape change is rated High.

METHODOLOGY Bureau of Land Management's Visual Resource Management (VRM) method

The methodology for determining landscape significance is based on the United States Bureau of Land Management's Visual Resource Management (VRM) method (USDI., 2004). This GIS-based method allows for increased objectivity and consistency by using standard assessment criteria to classify the landscape type into four VRM Classes, with Class I being the most valued and Class IV, the least. The Classes are derived from *Scenic Quality, Visual Sensitivity Levels*, and *Distance Zones*. Specifically, the methodology involved: site survey; review of legal framework; determination of Zone of Visual Influence (ZVI); identification of Visual Issues and Visual Resources; assessment of Potential Visual Impacts; and formulation of Mitigation Measures.

ZONE OF VISUAL Locally contained INFLUENCE

The visible extent, or viewshed, is "the outer boundary defining a view catchment area, usually along crests and ridgelines" (Oberholzer, 2005). In order to define the extent of the possible influence of the proposed project, a viewshed analysis was undertaken from the proposed site at a specified height above ground level. While the theoretical viewshed does appear to be large, the expected ZVI is likely to be locally contained. This is due to built nature of the surrounding industrial areas, where the expected views of the 4m PV structures would be visually screened by the surrounding structure to the north, west, south, and partially to the east.

RECEPTORS AND KEY Urban context with multiple receptor locations and

OBSERVATION POINTS 1 Key Observation Point

Key Observation Points (KOPs) are the people (receptors) located in strategic locations surrounding the property that make consistent use of the views associated with the site where the landscape modifications are proposed. Due to limited views, only Parry Road was identified as a KOP. As the road is located adjacent to the site (70m), the Visual Exposure is defined as High.

SCENIC QUALITY Low

The scenic quality of the proposed development site is rated Low. Landform is flat terrain without interesting features, with vegetation mainly comprised of lawn. The hedges to the northeast do add some limited value to the local area but are not a dominating visual element in the local landscape. There are no water features and colours are mainly shades of green from the grass and hedge. Adjacent scenery is dominated by large industrial structures with limited visual appeal. Scarcity is rated Low as this is not a significant landscape. Cultural Modifications are rated Medium due to the landscaping that does add some local value to the Element Six landscape.

RECEPTOR SENSITIVITY Low TO LANDSCAPE CHANGE

Receptor sensitivity to landscape changes is rated Low. Type of Users are predominantly associated with the local industrial land uses of the area, where the small loss of lawn and hedge is unlikely to be noticed. Amount of Use is rated Medium as the area is partially screened by trees along Parry Road, as well as the ThruView (fine mesh) fencing that also partially restricts clarity of view from the road. The large concrete wall to the north of the project would also restrict base views to the north. As the area is industrial in nature, Public Interest and Adjacent Land Users are rated Low. No Special Areas were located on the site.

VISUAL RESOURCE MANAGEMENT ASSESSMENT

The BLM has defined four Classes that represent the relative value of the visual resources of an area and are defined making use of the VRM Matrix:

- i. Classes I and II are the most valued.
- ii. Class III represent a moderate value.
- iii. Class IV is of least value.

Class I (No-go)

- Any river / streams and associated flood lines buffers identified as significant in terms of the WULA process.
- Any wetlands identified as significant in terms of the WULA process.
- Any ecological areas (or plant species) identified as having a high significance.
- Any heritage area identified as having a high significance.

Class II (Not

recommended)

Not applicable

recommended)

Class III (suitable with

Not applicable

mitigation)

Class IV (Suitable)

Transformed grasslands

EXPECTED IMPACT SIGNIFICANCE

Low

(Without mitigation)

Due to the low levels of Scenic Quality and Low levels of Receptor Sensitivity to landscape change, the Visual Impact Significance is rated Low (without mitigation).

However, potential for landscape enhancement is available, with the planting of missing trees from the avenue of trees in Parry Road. and further reduce visual intrusion as seen from the road receptors. As such, further impact assessment to mitigate the nature of the landscape change is not required.

CUMULATIVE EFFECTS

Low

(Without mitigation)

As the site is of a small scale in relation to the industrial landscape of the surrounding areas that is dominated by large structures creating a high VAC level, the potential of landscape degradation is limited. Further development of PV in the area would be seen as a component of the industrial landscape

3 Introduction

Visual Resource Management Africa CC (VRMA) was appointed by Ecoledges CC to complete the proposed Element Six Solar PV Facility *Visual Impact Assessment* on behalf of Soventix SA (Pty) Ltd. (Proponent). The site visit was undertaken on the 8th February 2023. The proposed development site is in the Gauteng Province, and within the Ekurhuleni Metropolitan Municipality. The Proponent proposes to construct a 1.8 MW Solar PV Facility at the Element Six Facility.

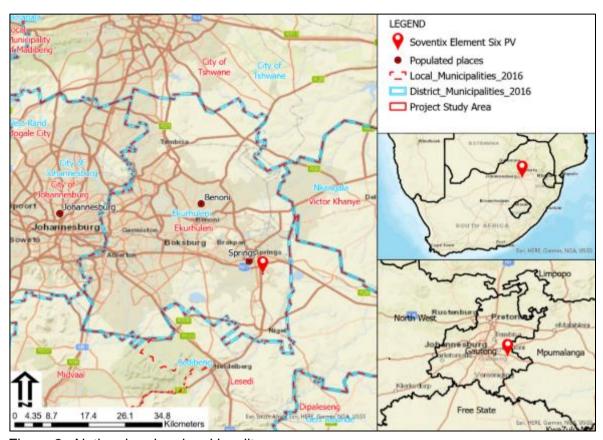


Figure 2: National and regional locality map.

3.1 Terms of Reference

The scope of this study is to cover the entire proposed project area. The broad terms of reference for the study are as follows:

- Collate and analyse all available secondary data relevant to the affected proposed project area. This includes a site visit of the full site extent, as well as of areas where potential impacts may occur beyond the site boundaries.
- Specific attention is to be given to the following:
 - Quantifying and assessing existing scenic resources/visual characteristics on, and around, the proposed site.
 - Evaluation and classification of the landscape in terms of sensitivity to a changing land use.
 - Determining viewsheds, view corridors and important viewpoints in order to assess the visual impacts of the proposed project.
 - Determining visual issues, including those identified in the public participation process.

- Reviewing the legal framework that may have implications for visual/scenic resources.
- Assessing the significance of potential visual impacts resulting from the proposed project for the construction, operation and decommissioning phases of the proposed project.
- Assessing the potential cumulative impacts associated with the visual impact.
- Identifying possible mitigation measures to reduce negative visual impacts for inclusion into the proposed project design, including input into the Environmental Management Programme report (EMPr).

3.2 Study Team

Contributors to this study are summarised in the table below.

Table 4: Authors and Contributors to this Report.

Aspect	Person	•	Qualifications
		/ Company	
•	Stephen Stead B.A	VRMA	Accredited with the Association of
Visual	(Hons) Human		Professional Heritage Practitioner and
Assessment	Geography, 1991		• 16 years of experience in visual
(author of this	(UKZN,		assessments including renewable
report)	Pietermaritzburg)		energy, Power lines, roads, dams
			across southern Africa.
			Registered with the Association of
			Professional Heritage Practitioners
			since 2014.

3.3 Visual Assessment Approach

The full methodology used in the assessment can be found in Annexure B, with this section outlining the key elements of the assessment process. The process that VRM Africa follows when undertaking a VIA is based on the United States Bureau of Land Management (BLM) Visual Resource Management method (USDI., 2004). This mapping and GIS-based method of assessing landscape modifications allows for increased objectivity and consistency by using standard assessment criteria.

- "Different levels of scenic values require different levels of management. For example, management of an area with high scenic value might be focused on preserving the existing character of the landscape, and management of an area with little scenic value might allow for major modifications to the landscape. Determining how an area should be managed first requires an assessment of the area's scenic values".
- "Assessing scenic values and determining visual impacts can be a subjective process.
 Objectivity and consistency can be greatly increased by using the basic design
 elements of form, line, colour, and texture, which have often been used to describe
 and evaluate landscapes, to also describe proposed projects. Projects that repeat
 these design elements are usually in harmony with their surroundings; those that don't
 create contrast. By adjusting project designs so the elements are repeated, visual
 impacts can be minimized" (USDI., 2004).

Baseline Phase Summary

The VRM process involves the systematic classification of the broad-brush landscape types within the receiving environment into one of four VRM Classes. Each VRM Class is associated with management objectives that serve to guide the degree of modification of the proposed site. The Classes are derived by means of a simple matrix with the three variables being the scenic quality, the expected receptor sensitivity to landscape change, and the distance of the proposed landscape modification from key receptor points. The Classes are not prescriptive and are utilised as a guideline to determine visual carrying capacity, where they represent the relative value of the visual resources of an area. Classes I and II are the most valued, Class III represents a moderate value; and Class IV is of least value. The VRM Classes are not prescriptive and are used as a guideline to determine the carrying capacity of a visually preferred landscape as a basis for assessing the suitability of the landscape change associated with the proposed project.

Table 5: VRM Class Matrix Table

able 5. VINIVI Class Matrix			Table							
			VISUAL SENSITIVITY LEVELS							
		High		Medium			Low			
	A (High)	II	II	П	II	II	II	Ш	II	II
SCENIC QUALITY	B (Medium)	II	III	III/ IV *	III	IV	IV	IV	IV	IV
	C (Low)	Ш	IV	IV	IV	IV	IV	IV	IV	IV
DISTANCE ZONES		Fore/middle ground	Background	Seldom seen	Fore/middle ground	Background	Seldom seen	Fore/middle ground	Background	Seldom seen

^{*} If adjacent areas are Class III or lower, assign Class III, if higher, assign Class IV

The visual objectives of each of the classes are listed below:

- The Class I objective is to preserve the existing character of the landscape and the level of change to the characteristic landscape should be very low and must not attract attention. Class I is assigned when a decision is made to maintain a natural landscape.
- The Class II objective is to retain the existing character of the landscape and the level of change to the characteristic landscape should be low. The proposed development may be seen but should not attract the attention of the casual observer, and should repeat the basic elements of form, line, colour and texture found in the predominant natural features of the characteristic landscape.
- The Class III objective is to partially retain the existing character of the landscape, where the level of change to the characteristic landscape should be moderate. The proposed development may attract attention, but should not dominate the view of the casual observer, and changes should repeat the basic elements found in the predominant natural features of the characteristic landscape; and
- The Class IV objective is to provide for management activities that require major modifications of the existing character of the landscape. The level of change to the

landscape can be high, and the proposed development may dominate the view and be the major focus of the viewer's (s') attention without significantly degrading the local landscape character.

Impact Phase Summary

To determine impacts, a degree of contrast exercise is undertaken. This is an assessment of the expected change to the receiving environment in terms of the form, line, colour and texture, as seen from the surrounding Key Observation Points. This determines if the proposed project meets the visual objectives defined for each of the Classes. If the expected visual contrast is strong, mitigation recommendations are to be made to assist in meeting the visual objectives. To assist in the understanding of the proposed landscape modifications, visual representation, such as photomontages or photos depicting the impacted areas, can be generated. There is an ethical obligation in the visualisation process, as visualisation can be misleading if not undertaken ethically.

3.4 VIA Process Outline

The following approach was used in understanding the landscape processes and informing the magnitude of the impacts of the proposed landscape modification. The table below lists a number of standardised procedures recommended as a component of best international practice.

Table 6: Methodology Summary Table

Action	Description
Site Survey	The identification of existing scenic resources and sensitive receptors in
	and around the study area to understand the context of the proposed
	development within its surroundings to ensure that the intactness of the
	landscape and the prevailing sense of place are taken into
	consideration.
Project Description	Provide a description of the expected project, and the components that
	will make up the landscape modification.
Reviewing the Legal	The legal, policy and planning framework may have implications for
Framework	visual aspects of the proposed development. The heritage legislation
	tends to be pertinent in relation to natural and cultural landscapes, while
	Strategic Environmental Assessments (SEAs) for renewable energy
	provide a guideline at the regional scale.
Determining the Zone	This includes mapping of viewsheds and view corridors in relation to the
of Visual Influence	proposed project elements, in order to assess the zone of visual
	influence of the proposed project. Based on the topography of the
	landscape as represented by a Digital Elevation Model, an approximate
	area is defined which provides an expected area where the landscape
	modification has the potential to influence landscapes (or landscape
	processes) or receptor viewpoints.
Identifying Visual	Visual issues are identified during the public participation process, which
Issues and Visual	is being carried out by others. The visual, social or heritage specialists
Resources	may also identify visual issues. The significance and proposed
	mitigation of the visual issues are addressed as part of the visual
	assessment.
Assessing Potential	An assessment is made of the significance of potential visual impacts
Visual Impacts	resulting from the proposed project for the construction, operational and
	decommissioning phases of the project. The rating of visual significance

Action	Description			
	is based on the methodology provided by the Environmental			
	Assessment Practitioner (EAP).			
Formulating Mitigation	Possible mitigation measures are identified to avoid or minimise			
Measures	negative visual impacts of the proposed project. The intention is that			
	these would be included in the project design, the Environmental			
	Management Programme report (EMPr) and the authorisation			
	conditions.			

3.5 Impact Assessment Methodology

The following impact criteria were used to assess visual impacts. The criteria were defined by the Western Cape *DEA&DP Guideline for involving Visual and Aesthetic Specialists in EIA Processes* (Oberholzer, 2005).

Table 7. DEA&DP Visual and Aesthetic Guideline Impact Assessment Criteria Table.

Criteria	Definition					
Extent	The spatial or geographic area of influence of the visual impact, i.e.: • site-related: extending only as far as the activity. • local: limited to the immediate surroundings. • regional: affecting a larger metropolitan or regional area. • national: affecting large parts of the country. • international: affecting areas across international boundaries.					
<u>Duration</u>	The predicted lifespan of the visual impact: • short term, (e.g., duration of the construction phase). • medium term, (e.g., duration for screening vegetation to mature). • long term, (e.g., lifespan of the project). • permanent, where time will not mitigate the visual impact.					
Intensity	 The magnitude of the impact on views, scenic or cultural resources. low, where visual and scenic resources are not affected. medium, where visual and scenic resources are affected to a limited extent. high, where scenic and cultural resources are significantly affected. 					
Probability	 The degree of possibility of the visual impact occurring: improbable, where the possibility of the impact occurring is very low. probable, where there is a distinct possibility that the impact will occur. highly probable, where it is most likely that the impact will occur. definite, where the impact will occur regardless of any prevention measures. 					
Significance	 The significance of impacts can be determined through a synthesis of the aspects produced in terms of their nature, duration, intensity, extent and probability, and be described as: low, where it will not have an influence on the decision. medium, where it should have an influence on the decision unless it is mitigated. high, where it would influence the decision regardless of any possible mitigation. 					

3.6 Assumptions and Uncertainties

- Digital Elevation Models (DEM) and viewsheds were generated using ASTER elevation data (NASA, 2009). Although every effort to maintain accuracy was undertaken, as a result of the DEM being generated from satellite imagery and not being a true representation of the earth's surface, the viewshed mapping is approximate and may not represent an exact visibility incidence. Thus, specific features identified from the DEM and derive contours (such as peaks and conical hills) would need to be verified once a detailed survey of the project area has taken place.
- The use of open-source satellite imagery was utilised for base maps in the report.
- Some of the mapping in this document was created using Bing Maps, Open-Source Map, ArcGIS Online and Google Earth Satellite imagery.
- The project deliverables, including electronic copies of reports, maps, data, shape files and photographs are based on the author's professional knowledge, as well as available information.
- VRM Africa reserves the right to modify aspects of the project deliverables if and when new/additional information may become available from research or further work in the applicable field of practice or pertaining to this study.
- As access to farms and private property is often limited due to security reasons, limiting access to private property in order that photographs from specific locations are taken. 3D modelling is used to reflect the expected landscape change area where applicable.
- Mapping makes use of the SANI BGIS webmap (SANBI, 2018)

4 Project Description

The following table outlines the project information that was provided by the client that will be incorporated into the assessment and proposed infrastructure relating to the project.

Table 8: Project Information Table

PROPONENT SPECIFICATIONS			
Applicant Details	Description		
Applicant Name:	Soventix SA		
Project Name:	Element Six Solar PV Facility		

The project involves the development of a 1.8 MW Solar PV Facility on erf 256 Nuffield Township, Springs, Ekurhuleni Metropolitan Municipality. The proposed project will include the following infrastructure:

Table 9: Project Description Table

TECHNOLOGY DETAILS			
PV System	The PV system is made up of the following components: solar		
	panels or modules are connected to form arrays. The arrays are		
	mounted onto a single-axis tracker and supported by steel or		
	aluminium racks approximately 4 m apart. The panels would incline		

to a position of 20 degrees. At full tilt the ground clearance will be 0.6 m with a **maximum height of 4 m** (3.4 m +0.6 m). Several arrays are then connected to an inverter.

(www.hawaiirenewableenergy.org/Villamesias2, n.d.)

(Junior Mining Network, n.d.)

Figure 3: Photographic example of what the proposed PV could look like as single-axis tracker.

Figure 4: Proposed layout plan map provided by the client.

Figure 5: Scale reference map for provided layout drawings.

5 LEGAL FRAMEWORK

In order to comply with the Visual Resource Management requirements, it is necessary to relate the proposed landscape modification in terms of international best practice in understanding landscapes and landscape processes. The proposed project also needs to be evaluated in terms of 'policy fit'. This requires a review of International, National and Regional best practice, policy and planning for the area to ensure that the scale, density and nature of activities or developments are harmonious and in keeping with the planned sense of place and character of the area.

5.1 International Good Practice

For cultural landscapes, the following documentation provides good practice guidelines, specifically:

- Guidelines for Landscape and Visual Impact Assessment (GLVIA), Second Edition.
- International Finance Corporation (IFC).
- Millennium Ecosystem Assessment (MEA).
- United Nations Educational, Scientific and Cultural Organisation (UNESCO) World Heritage Convention (WHC).

5.1.1 Guidelines for Landscape and Visual Impact Assessment, Second Edition The Landscape Institute and the Institute of Environmental Management and Assessment (United Kingdom) have compiled a book outlining best practice in landscape and visual impact assessment. This has become a key guideline for LVIA in the United Kingdom. "The principal aim of the guideline is to encourage high standards for the scope and context of landscape and visual impact assessments, based on the collegiate opinion and practice of the members of the Landscape Institute and the Institute of Environmental Management and Assessment. The guidelines also seek to establish certain principles and will help to achieve consistency, credibility and effectiveness in landscape and visual impact assessment, when carried out as part of an EIA" (The Landscape Institute, 2003);

In the introduction, the guideline states that 'Landscape encompasses the whole of our external environment, whether within village, towns, cities or in the countryside. The nature and pattern of buildings, streets, open spaces and trees — and their interrelationships within the built environment — are an equally important part of our landscape heritage" (The Landscape Institute, 2003: Pg. 9). The guideline identifies the following reasons why landscape is important in both urban and rural contexts, in that it is:

- An essential part of our natural resource base.
- A reservoir of archaeological and historical evidence.
- An environment for plants and animals (including humans).
- A resource that evokes sensual, cultural and spiritual responses and contributes to our urban and rural quality of life; and
- Valuable recreation resources. (The Landscape Institute, 2003).

5.1.2 International Finance Corporation (IFC)

The IFC Performance Standards (IFC, 2012) do not explicitly cover visual impacts or assessment thereof. Under IFC PS 6, ecosystem services are organized into four categories, with the third category related to cultural services which are defined as "the

non-material benefits people obtain from ecosystems" and "may include natural areas that are sacred sites and areas of importance for recreation and aesthetic enjoyment" (IFC, 2012).

However, the IFC Environmental Health and Safety Guidelines for Electric Power Transmission and Distribution (IFC, 2007) specifically identifies the risks posed by power transmission and distribution projects to create visual impacts to residential communities. It recommends mitigation measures to be implemented to minimise visual impact. These should include the siting of powerlines and the design of substations with due consideration to landscape views and important environmental and community features. Prioritising the location of high-voltage transmission and distribution lines in less populated areas, where possible, is promoted.

IFC PS 8 recognises the importance of cultural heritage for current and future generations and aims to ensure that projects protect cultural heritage. The report defines Cultural Heritage as "(i) tangible forms of cultural heritage, such as tangible moveable or immovable objects, property, sites, structures, or groups of structures, having archaeological (prehistoric), paleontological, historical, cultural, artistic, and religious values; (ii) unique natural features or tangible objects that embody cultural values, such as sacred groves, rocks, lakes, and waterfalls" (IFC, 2012). The IFC PS 8 defines Critical Heritage as "one or both of the following types of cultural heritage: (i) the internationally recognized heritage of communities who use or have used within living memory the cultural heritage for long-standing cultural purposes; or (ii) legally protected cultural heritage areas, including those proposed by host governments for such designation" (IFC, 2012).

Legally protected cultural heritage areas are identified as important in the IFC PS 8 report. This is for "the protection and conservation of cultural heritage, and additional measures are needed for any projects that would be permitted under the applicable national law in these areas". The report states that "in circumstances where a proposed project is located within a legally protected area or a legally defined buffer zone, the client, in addition to the requirements for critical cultural heritage, will meet the following requirements:

- Comply with defined national or local cultural heritage regulations or the protected area management plans.
- Consult the protected area sponsors and managers, local communities and other key stakeholders on the proposed project; and
- Implement additional programs, as appropriate, to promote and enhance the conservation aims of the protected area". (IFC, 2012).

5.1.3 Millennium Ecosystem Assessment

In the Ecosystems and Human Well-being document compiled by the Millennium Ecosystem Assessment in 2005, Ecosystems are defined as being "essential for human well-being through their provisioning, regulating, cultural, and supporting services. Evidence in recent decades of escalating human impacts on ecological systems worldwide raises concerns about the consequences of ecosystem changes for human well-being". (Millennium Ecosystem Assessment, 2005)

The Millennium Ecosystem Assessment defined the following non-material benefits that can be obtained from ecosystems:

- Inspiration: Ecosystems provide a rich source of inspiration for art, folklore, national symbols, architecture, and advertising.
- Aesthetic values: Many people find beauty or aesthetic value in various aspects of ecosystems, as reflected in the support for parks, scenic drives, and the selection of housing locations.
- Sense of place: Many people value the "sense of place" that is associated with recognised features of their environment, including aspects of the ecosystem.
- Cultural heritage values: Many societies place high value on the maintenance of either historically important landscapes ("cultural landscapes") or culturally significant species; and
- Recreation and ecotourism: People often choose where to spend their leisure time based in part on the characteristics of the natural or cultivated landscapes in a particular area. (Millennium Ecosystem Assessment, 2005)

The Millennium Ecosystem Assessment Ecosystems and Human Well-being: Synthesis report indicates that there has been a "rapid decline in sacred groves and species" in relation to spiritual and religious values, and aesthetic values have seen a "decline in quantity and quality of natural lands". (Millennium Ecosystem Assessment, 2005)

5.2 National and Regional Legislation and Policies

In order to comply with the Visual Resource Management requirements, it is necessary to clarify which National and Regional planning policies govern the proposed development area to ensure that the scale, density and nature of activities or developments are harmonious and in keeping with the sense of place and character of the area as mapped in Figure 6 below.

- DEA&DP Visual and Aesthetic Guidelines.
- REDZ Planning.
- Regional and Local Municipality Planning and Guidelines.

Table 10: List of key planning informants to the project.

Theme	Requirements
Province	Gauteng Province
Metropolitan Municipality Ekurhuleni	
REDZ	Not applicable

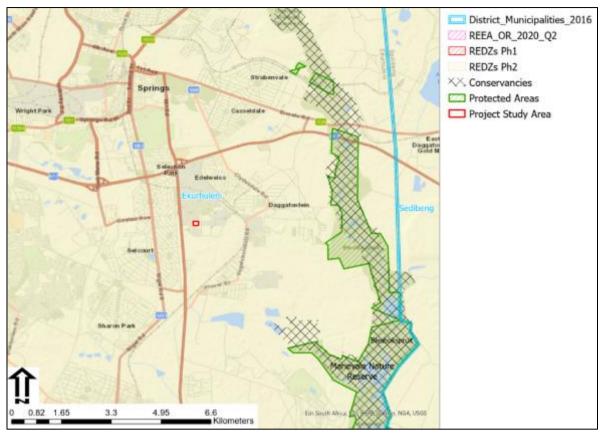


Figure 6: Planning locality map depicting the local, district and national planning zones.

5.2.1 DEA&DP Visual and Aesthetic Guidelines

Reference to the Western Cape Department of Environmental Affairs and Development Planning (DEA&DP) Guideline for involving visual and aesthetic specialists in Environmental Impact Assessment (EIA) processes is provided in terms of southern African best practice in Visual Impact Assessment. The report compiled by Oberholzer states that the Best Practicable Environmental Option (BPEO) should address the following:

- Ensure that the scale, density and nature of activities or developments are harmonious and in keeping with the sense of place and character of the area. The BPEO must also ensure that development must be located to prevent structures from being a visual intrusion (i.e., to retain open views and vistas).
- Long term protection of important scenic resources and heritage sites.
- Minimisation of visual intrusion in scenic areas.
- Retention of wilderness or special areas intact as far as possible.
- Responsiveness to the area's uniqueness, or sense of place." (Oberholzer, 2005)

5.2.2 Conservation Planning

Located approximately 4km to the east of the project area is the Marievale Nature Reserve following the ecological corridor of the Blesbokspruit that is listed as a Conservancy.

Figure 7: Soventix SA SSV Application Gauteng Protected Area Expansion Strategy sites with the proposed development area located outside of the planned Gauteng Protected Area Expansion Strategy areas.

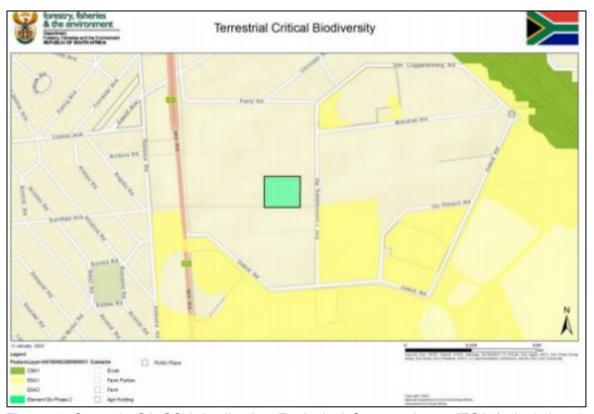


Figure 8: Soventix SA SSV Application Ecological Support Areas (ESA1) depicting the proposed development footprint to be outside of the ESA areas.

Due to the built nature of the project locality that is characterised by many large sized industrial structures and activities, the expected Zone of Visual Influence will not extend to

these conservation areas. As the project is also outside of planned ESA and Ecological Expansion Areas, the **landscape risk to conservation planning is rated Low**.

5.2.3 REDZ Planning

A Strategic Environmental Assessment commissioned by the Department of Environmental Affairs, undertaken by the CSIR, identified Renewable Energy Development Zones (REDZs) (Department of Environment Affairs). These are gazetted geographical areas in which several wind and solar PV development projects will have the lowest negative impact on the environment while yielding the highest possible social and economic benefit to the country. **The project is not located within a REDZ.**

5.2.4 Local and Regional Planning

The following tables list key regional and local planning that has relevance to the project pertaining to landscape-based tourism, and renewable energy projects.

Table 11: Provincial Planning reference table relevant to the project.

Theme	Requirements			
Renewable Energy	National Infrastructure Plan 2050: GSDF 2030 to incorporate existing and planned Top Priority Strategic Integrated Projects (SIPS) reflected in NIP2050 that has bearing on Gauteng Province is outlined below: Energy SIP (no 8) includes: Green energy projects, including procurement of renewable energy under the Independent power Producer Procurement Programme (REIPPPP).			
Landscape	 Focus Area 5: Protect and celebrate natural features as collective spaces and merit-worthy places. Enhance the rural and ecological make-up of the area, especially, within rural/ecological landscapes and rural/ natural or urban interfaces. 			
	Environmental systems, processes and open areas must become particle of the overall planning of any new sustainable city in the form of usal and functional spaces, which contribute to positive and proactive land us within the urban framework. The goal of including the environment sustainable urban planning is to make it an equal partner in overall lat use planning. The role and value of natural environmental systems is vitally importate as they are renewable resources and, if adequately protected managed, and properly utilised, will provide benefits to communities at cities in perpetuity.			

(Gauteng Province, 2022)

Table 12: Local Planning reference table relevant to the project.

Theme	Requirements	Page		
Renewable	Objective 9: Enable the energy sector to better support the local	27		
Energy	economy of EMM. This can be achieved by:			
	 increasing renewable and clean energy contribution to the total energy supply mix. 			
	 energy planning to include full economic cost of energy; and 			

Theme	Requirements	Page
	 providing incentives for increased energy efficiency and use of renewable energy. 	
Landscape	 Principles of sustainable neighbourhood development 1. Adequate space for streets and efficient street network. • The street network shapes the urban structure, which sets the pattern for development. • of blocks, streets, buildings, open spaces and landscape 2. Mixed land-use supports the combination of residential, commercial, industrial, office, social or other land-use. The aim is to have compatible land uses together in appropriate locations 	119

(Ekurhuleni Metropolitan Municipality, 2015)

5.3 Landscape Planning Policy Fit

Policy fit refers to the degree to which the proposed landscape modifications align with International, National, Provincial and Local planning and policy.

In terms of international best practice, there were no significant cultural/ landscape resources found on the site or immediate surrounds that are flagged by international landscape guidelines.

In terms of the *local and regional planning*, while the Marievale Nature Reserve and Blesbokspruit Conservation areas are located within 5km of the project site, the built nature of the project locality is characterised by many large sized industrial structures and activities and the expected Zone of Visual Influence will not extend to these conservation areas. Landscape risk to conservation planning is rated Low.

In terms of regional and local planning fit for planned landscape and visual related themes, the expected visual/ landscape policy fit of the landscape change is rated High.

6 Baseline Visual Inventory

Landscape character is defined by the U.K. Institute of Environmental Management and Assessment (IEMA) as the 'distinct and recognisable pattern of elements that occurs consistently in a particular type of landscape, and how this is perceived by people. It reflects combinations of geology, landform, soils, vegetation, land use and human settlement'. It creates the specific sense of place or essential character and 'spirit of the place' (IEMA, 2002). This section of the VIA identified the main landscape features that define the landscape character, as well as the key receptors that make use of the visual resources created by the landscape.

6.1 Landscape Context & Visual Absorption Capacity

Land use is a crucial factor in determining landscape character, especially regarding the Visual Absorption Capacity (VAC) of the landscapes. Oberholzer defines VAC as the potential of the landscape to conceal the proposed project (Oberholzer, 2005). i.e.

- High VAC e.g., effective screening by topography and vegetation/ structures.
- Moderate VAC e.g., partial screening by topography and vegetation/ structures.
- Low VAC e.g., little screening by topography or vegetation/ structures.

As can be seen in the survey photographs taken in the vicinity of the project site (Annexure Survey Points 4 & 5, the area is strongly defined by industrial type developments. The Visual Absorption Capacity is thus defined as High as the proposed 4m high PV structures would not exceed the surrounding built structures.

6.2 Vegetation

Vegetation type is a large factor in determining the scenic quality or the site in terms of colour and texture, as well as influencing the local ability of the landscape to absorb the landscape change. The map below outlines the vegetation type based on BGIS mapping (South African National Biodiversity Institute, 2018).

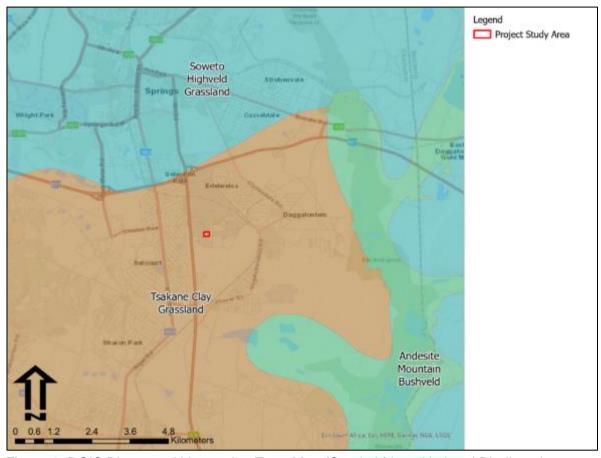


Figure 9. BGIS Biome and Vegetation Type Map (South African National Biodiversity Institute, 2018)

According to the South African National Biodiversity Institute (SANBI) 2012 Vegetation Map of South Africa, Lesotho and Swaziland (South African National Biodiversity Institute, 2012) the project area is located in the Grassland Biome with the main vegetation types being Tsakane Clay Grassland. The following extract from the Ecoledges Site Sensitivity Verification report, supported by the site visit, has relevance to the vegetation:

• The vegetation is mostly homogenous vegetation, dominated by manicured lawn, absent from any functional wetland.

 A low sensitivity is supported due to the heavily manipulated state of the vegetation,
 which is maintained as a manicured lawn, surrounded by predominantly exotic trees.

Of relevance to the visual exposure of the project, surrounding vegetation can influence the expected viewshed by visually obscuring the proposed landscape change, or by being incorporated as a visual screening mitigation to reduce visual intrusion to sensitive receptors or the protection of significant landscapes. Although this area is within the Grassland Biome, there are clear evidence of trees within the urban, industrial landscape that have been incorporated into local landscaping for aesthetic purposes. As there is evidence of this successful planting that will not detract from the cultural landscape, tree planting can be used for screening mitigation for sensitive receptors or to retain surrounding landscaping themes that could be negatively influenced by the proposed PV landscape change.

6.3 Wetlands

According to the Soventix SA Site Assessment SSV form, the proposed development site is zoned within an industrial context according to the Ekurhuleni SDF. However, as depicted in the aerial photograph in Figure 10, the area where a purported NFEPA wetland was categorised, directly adjacent to the proposed development footprint, shows no characteristics typical of a wetland, and which has since been confirmed by SANBI to be erroneous.

Figure 10: Aerial Photograph Soventix SA SSV Application depicting erroneous classification of wetland areas.

6.4 Other Renewable Energy Projects

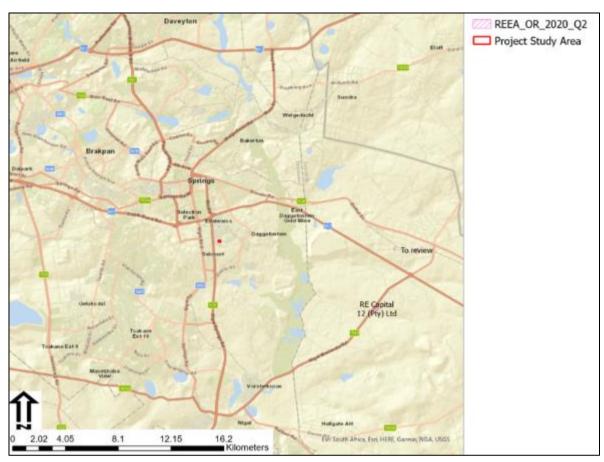


Figure 11: Map depicting regional DEA Renewable Energy project status.

A review of DEA Renewable Energy mapping layers found that **no other RE projects** located within a 15km buffer where intervisibility of the multiple RE projects could result in massing effects that negatively degrade the landscape. However, many of the surrounding industrial structures roofing was used for PV panels. Due to the height of the structures and the flat placement of the PV panels on the roof, the PV panels were mainly visually screened and would not significantly add to visual massing effects.

6.5 Landscape Topography

Landform is a key variable informing the aesthetic nature of the landscape within the VRM methodology. The viewshed is strongly associated with the regional topography where topographic screening from undulating terrain would restrict views of the proposed landscape change. The site-specific characteristics are also analysed by gradient analysis to determine if any steep slopes are located on the proposed development site.

Making use of the NASA STRM digital elevation model, profile lines were generated for the area within 12km on either side of the project area predominantly in the Norther to South and East to West compass reference but orientated to take into account dominant topographic trends that could influence the local landscape and viewscape. The map depicting the regional elevation profile lines can be viewed on the following page.

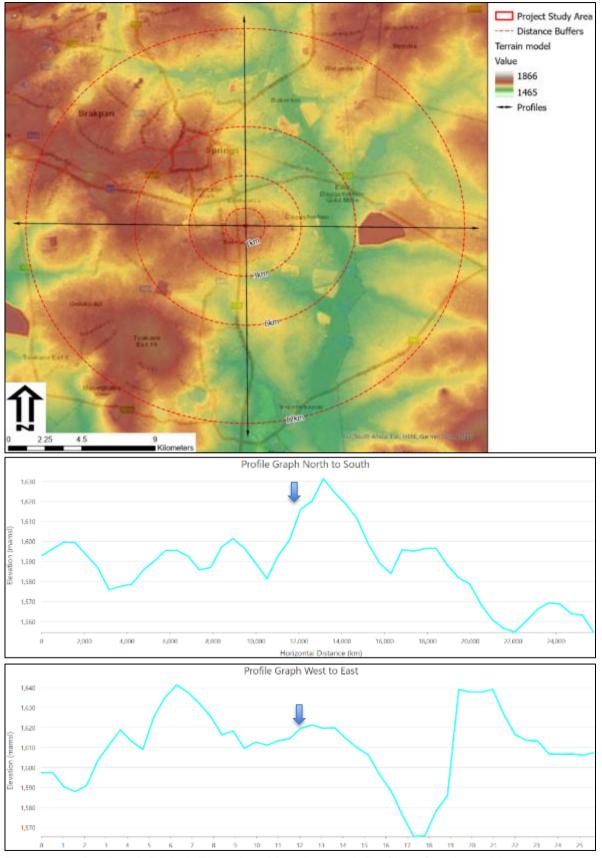


Figure 12: Regional Digital Elevation Mapping and Profiles Graphs with approximate extent depicted.

The general topography of the region is defined as gently undulating, with the variation in height over the 24km only 100m in the North to South Profile, and the same in the West to East Profile. The gentle aspects of the site is to the north and west, with hydrological drainage to the north and then east into the Blesbokspruit. Although the site is located in a position of some regional prominence, the undulating terrain in both profiles indicate that the theoretical viewshed is likely to be locally contained.

Due to the small extent of the project site, a slopes analysis was not undertaken. However, the site visit found no indication of steep slopes.

The following findings for topography are listed:

- No significant landforms within the regional locality.
- No steep slopes on the site.

Topographic significance for the site and surrounding areas is rated as Low as no significant topographic landforms were located in the surrounding areas, and no steep slopes were located on site.

6.6 Project Zone of Visual Influence

The visible extent, or viewshed, is "the outer boundary defining a view catchment area, usually along crests and ridgelines" (Oberholzer, 2005). In order to define the extent of the possible influence of the proposed project, a viewshed analysis was undertaken from the proposed site at a specified height above ground level as indicated in the table below. This is to define the *theoretical extent* where the proposed landscape change could be visible from. This theoretical viewshed excludes vegetation, structural development as well as distance from the location where atmospheric influence would reduce visual clarity over increasing distance.

The viewshed analysis makes use of open-source NASA ASTER Digital Elevation Model data (NASA, 2009). The extent of the viewshed analysis was restricted to a defined distance that represents the approximate zone of visual influence (ZVI) of the proposed activities, which takes the scale, and size of the proposed projects into consideration in relation to the natural visual absorption capacity of the receiving environment. The maps are informative only as visibility tends to diminish exponentially with distance, which is well recognised in visual analysis literature (Hull & Bishop, 1988).

Table 13: Proposed Project Heights Table

Proposed	Height	Model	Motivation
Activity	(m)	Extent	
PV Panels	4	6km	While the terrain does indicate some regional prominence, the built nature of the locality, reflecting both urban and industrial landscapes, significantly reduces the effectively ZVI to within 6km.

Based on the theoretical viewshed and the site visit appraisal of the nature of the landscape, an assessment of the **Zone of Visual Influence (ZVI)** is made. The ZVI is the area where the proposed landscape change is most likely to be noticed by the casual observer, taking the site visit into account where vegetation, existing development and

distance is taken into consideration. This is a subjective appraisal but informed by the viewshed and the other factors mentioned.

The viewshed is mapped and can be viewed in Figure 13 on the next page. This depicts the theoretical area where the proposed landscape change could be visible. The viewshed is does appear to extend over a wider area, extending beyond the 3km midground distance areas. A slight local prominence is reflecting in the mapping, with the Foreground areas (1km buffer) depicting visual incidence, but then falling away on the surrounding lower lying lands, to the once again reflect a visual incidence to the north after the 3km distance. While the theoretical viewshed does appear to be large, the expected ZVI is likely to be locally contained. This is due to built nature of the surrounding industrial areas, where the expected views of the 4m PV structures would be visually screened by the surrounding structure to the north, west, south, and partially to the east. Some local exposure to the NE and SE could occur, but with limited intensity due to exiting

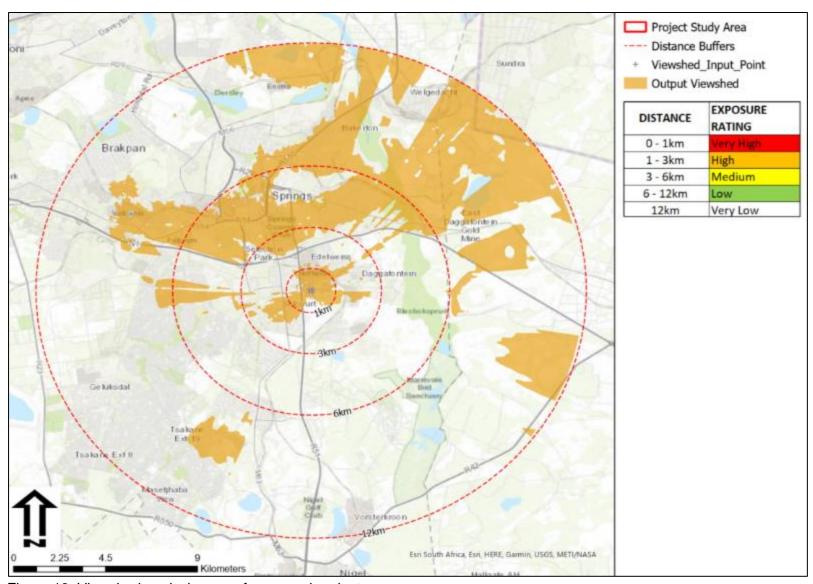


Figure 13: Viewshed analysis map of proposed project

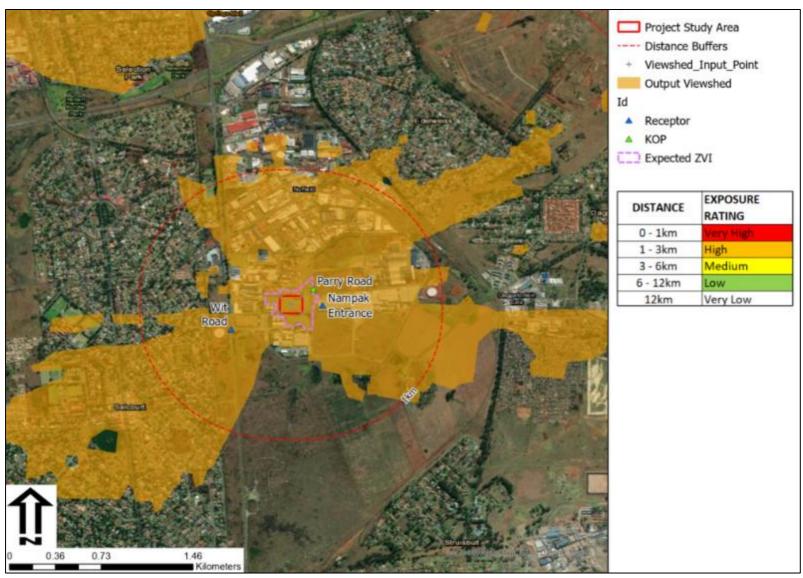


Figure 14: Receptor Key Observation Point and Visual Exposure Map.

6.7 Receptors and Key Observation Points

As defined in the methodology, KOPs are defined by the Bureau of Land Management as the people (receptors) located in strategic locations surrounding the property that make consistent use of the views associated with the site where the landscape modifications are proposed. The following table identifies the receptors identified within the ZVI, as well as motivates if they have significance and should be defined as KOP. The receptors located within the ZVI, and KOPs view lines are indicated on the map on the following page. As motivated and mapped in Table 14 below and mapped in Figure 14 on the previous page, the following receptors have been identified as Key Observation Points and should be used as locations to assess the suitability of the landscape change.

Table 14: KOP Motivation Table.

Name	Theme	Exposure	Motivation
Parry Road	Public road	Very High	As seen from the entrance to the Nampak buildings, the casual observers using the road would see the proposed PV landscape change.

6.8 Glint and Glare Analysis

The diagram in Annexure E illustrates the potential effect of Glint and Glare from 'Sacramento Solar Highways Initial Study and Mitigated Negative Declaration.' (Sacramento Municipal Utility District). In large PV coverage areas where there are elevated receptors (multi-story buildings) and no adjacent vegetation, this effect can cause some temporary discomfort. To assess the potential areas for low sun position impacts, the computations path of the sun generated by SunCalc,org (suncalc.org, n.d.)was used. As depicted in the images below, this effect only takes place for a very limited period of time in the early morning or late afternoon when the angle of the sun is low in the sky. For the proposed development, *the potential risk for Glint and Glare is rated as Low* for the following reasons:

- There are no residential receptors located to the east and west of the PV panel area that could be impacted by the Glint and Glare.
- There are no receptors residing in multi-story dwellings with increased view of the panels.
- Existing tree vegetation to the west of the site located in front of the Element Six building will provide early morning GGI screening from the workers in the building.
- Existing tree vegetation to the east along Parry Road will provide late afternoon GGI screening from the commuters driving along the road. However, there are gaps in the tree line where planting of similar tree type would assist in reduce any residual GGI as seen from these receptors.
- Given the industrial context of the locality, receptors accessing these GGI areas in early morning and late afternoon are likely to be limited.

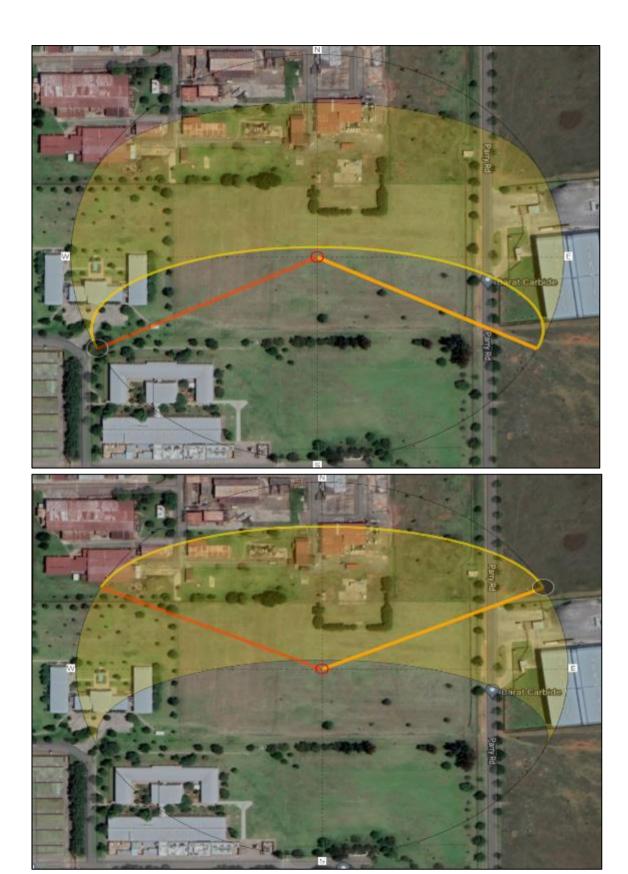


Figure 15: SunCalc output depicting angle of low sun positions during the Summer and Winder Solstice periods. (suncalc.org, n.d.)

7 VISUAL RESOURCE MANAGEMENT

In terms of the VRM methodology, landscape character is derived from a combination of scenic quality, receptor sensitivity to landscape change, and distance of the proposed landscape modification from key receptor points. Making use of the key landscape elements defined in the landscape contextualisation sections above, landscape units are defined which are then rated to derive their intrinsic scenic value, as well as how sensitive people living in the area would be to changes taking place in these landscapes.

7.1 Physiographic Rating Units

The Physiographic Rating Units are the areas within the proposed development area that reflect specific physical and graphic elements that define a particular landscape character. These unique landscapes within the project development areas are rated to assess the scenic quality and receptor sensitivity to landscape change, which is then used to define a Visual Resource Management Class for each of the site's unique landscape/s. The exception is Class I, which is determined based on national and international policy / best practice and landscape significance and as such are not rated for scenic quality and receptor sensitivity to landscape change. Based on the SANBI vegetation mapping and the site visit to define key landscape features, the following broad-brush areas were tabled and mapped in Figure 16 below.

Table 15: Physiographic Landscape Rating Units.

Landscapes	Motivation
Transformed	The project area has been transformed and landscaped as a lawn with
grasslands	some tree plantings as landscape features.

Figure 16: Physiographic Rating Units identified within the defined study area.

Table 16: Scenic Quality and Receptor Sensitivity Rating.

Landscape Rating Units		Scenic Quality						Receptor Sensitivity				VRM					
		A= scenic quality rating of ≥19; B = rating of 12 – 18, C= rating of ≤11						H = High; M = Medium; L = Low									
Attribute	Landform	Vegetation	Water	Colour	Scarcity	Adjacent Landscape	Cultural Modifications	uns	Rating	Type of Users	Amount of Use	Public Interest	Adjacent Land Uses	Special Areas	Rating	Inventory Class	Management Class
Significant Heritage / Ecological / Hydrology. Steep slopes (pending survey).						I											
Transformed grasslands	1	2	0	2	2	0	2	9	С	L	М	L	L	L	L	IV	IV

Red colour indicates change in rating from Visual Inventory to Visual Resource Management Classes motivated in the following section.

The **Scenic Quality** scores are totalled and assigned an A (High scenic quality), B (Moderate scenic quality) or C (Low scenic quality) category based on the following split: A = scenic quality rating of ≥ 19 ; B = rating of 12 - 18, C = rating of ≤ 11 (USDI., 2004).

Receptor Sensitivity levels are a measure of public concern for scenic quality. Receptor sensitivity to landscape change is determined by rating the key factors relating to the perception of landscape change in terms of Low to High.

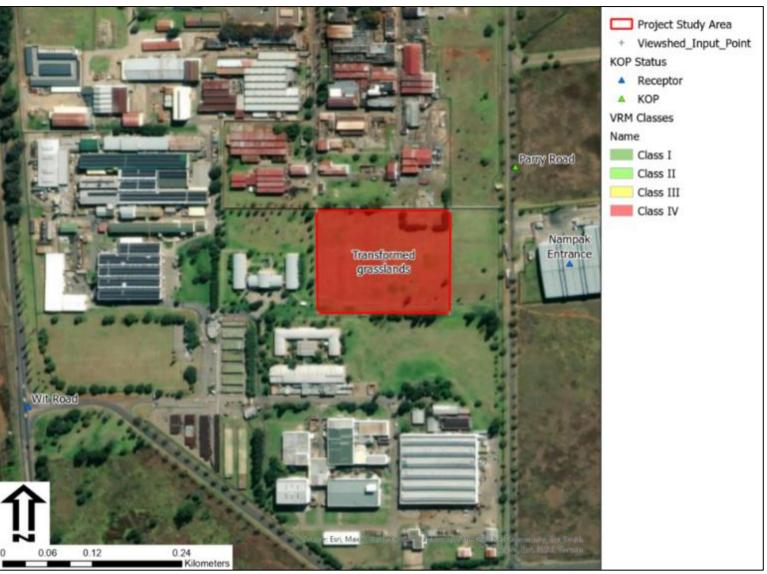


Figure 17: Visual Resource Management Classes map.

7.2 Scenic Quality Assessment

The scenic quality of the proposed development site is rated Low. Landform is flat terrain without interesting features, with vegetation mainly comprised of lawn. The hedges to the northeast do add some limited value to the local area but are not a dominating visual element in the local landscape. There are no water features and colours are mainly shades of green from the grass and hedge. Adjacent scenery is dominated by large industrial structures with limited visual appeal. Scarcity is rated Low as this is not a significant landscape. Cultural Modifications are rated Medium due to the landscaping that does add some local value to the Element Six landscape.

7.3 Receptor Sensitivity Assessment

Receptor sensitivity to landscape changes is rated Low. Type of Users are predominantly associated with the local industrial land uses of the area, where the small loss of lawn and hedge is unlikely to be noticed. Amount of Use is rated Medium as the area is partially screened by trees along Parry Road, as well as the ThruView (fine mesh) fencing that also partially restricts clarity of view from the road. The large concrete wall to the north of the project would also restrict base views to the north. As the area is industrial in nature, Public Interest and Adjacent Land Users are rated Low. No Special Areas were located on the site.

7.4 Visual Resource Management (VRM) Classes

The BLM has defined four Classes that represent the relative value of the visual resources of an area and are defined in terms of the VRM Matrix as follows:

- i. Classes I and II are the most valued.
- ii. Class III represent a moderate value.
- iii. Class IV is of least value.

7.4.1 VRM Class I

Class I is assigned when legislation restricts development in certain areas. The visual objective is to preserve the existing character of the landscape. The level of change to the characteristic landscape should be very low and must not attract attention. A Class I visual objective was assigned to the following features within the proposed development area due to their protected status within the South African legislation:

- Any river / streams and associated flood lines buffers identified as significant in terms of the WULA process.
- Any wetlands identified as significant in terms of the WULA process.
- Any ecological areas (or plant species) identified as having a high significance.
- Any heritage area identified as having a high significance.

7.4.2 VRM Class II

The Class II objective is to retain the existing character of the landscape and the level of change to the characteristic landscape should be low. The proposed development may be seen but should not attract the attention of the casual observer, and should repeat the basic elements of form, line, colour and texture found in the predominant natural features of the characteristic landscape.

Not applicable

7.4.3 VRM Class III

The Class III objective is to partially retain the existing character of the landscape, where the level of change to the characteristic landscape should be moderate. Management activities may attract attention but should not dominate the view of the casual observer, and changes should repeat the basic elements found in the predominant natural features of the characteristic landscape. The following landscape was defined as having Class III Visual Objectives where development would be most suitable:

Not applicable

7.4.4 VRM Class IV

The Class IV objective is to provide for management activities that require major modifications of the existing character of the landscape. The level of change to the landscape can be high, and the proposed development may dominate the view and be the major focus of the viewer's (s') attention without significantly degrading the local landscape character. Due to the degraded sense of place, the following areas were rated Class IV:

Transformed grasslands.

The level of change to the landscape can be high, and the proposed development may dominate the view and be the major focus of the viewer's (s') attention without significantly degrading the local landscape character and would be suitable without mitigation. However, this should not restrict the potential for landscape enhancement.

8 SUMMARY OF VISUAL IMPACT FINDINGS

A summary of the visual impacts assessed in located on the following page. The headings below refer to the identified impact assessment criteria.

8.1 Type of Impact

The nature of the impact will be **Neutral** without and with mitigation, as residual impacts to the visual and landscape resources will remain the same with limited potential to change the existing industrial landscape character during the lifetime of the project.

8.2 Extent of the Impact

The Extent of the expected ZVI is rated Locally Contained with the expected theoretical viewshed for the 4m height PV panels extending into the Mid-ground areas.

8.3 Magnitude of the Impact

The higher VAC levels created by the surrounding industrial land uses allows the relatively small development to be incorporated into the industrial landscape without generating Strong levels of visual contrast.

8.4 Duration of the Impact

Construction Phase is likely to be Short-term, with Long-term Operational Phase (plus 20years).

8.5 Probability of the Impact

The probability of the impact taking place is rated Low, as the area is already industrially developed, with limited receptors. While Element Six workers (Proponent) will have the highest levels of Visual Exposure, the trees located adjacent to the building will provide visual screening, as well as screening for early morning GGI.

8.6 Confidence of the Impact

A site visit was undertaken, with a review of planning for the area. As such, confidence is rated High.

8.7 Reversibility of the Impact

The reversibility of the impact is rated High as the PV panels can be removed and the relawning of the area can effectively be undertaken.

8.8 Resource Irreplaceability of the Impact

The impact area as a landscape resource is rated Low due to the small scale of the development in relation to the industrial landscape of the surrounding receiving environment.

8.9 Mitigability of the Impact

Mitigation potential does exist in the form of tree planting and is rated High.

8.10 Cumulative Impact Assessment

As the site is of a small scale in relation to the industrial landscape of the surrounding areas that is dominated by large structures creating a high VAC level, the potential of landscape degradation is limited. Further development of PV in the area would be seen as a component of the industrial landscape.

8.11 Visual Significance of the Impact

Due to the low levels of Scenic Quality and Low levels of Receptor Sensitivity to landscape change, the Visual Impact Significance is rated Low (without mitigation). However, potential for landscape enhancement is available, with the planting of missing trees from the avenue of trees in Parry Road. and further reduce visual intrusion as seen from the road receptors. As such, further impact assessment to shape the nature of the landscape change is not required.

However, opportunities for landscape enhancement are available with the planting of trees missing from the Parry Road, avenue of trees as depicted in Figure 18 on the following page.

Figure 18: Opportunities map depicting the approximate location of the avenue to trees that could be planted along Parry Road.

9 PRELIMINARY OPPORTUNITIES AND CONSTRAINTS

9.1 PV Project & Associated Infrastructure

9.1.1 Opportunities

- Industrial zoning and positive landscape planning fit.
- Local area renewable energy generation.
- Existing industrial sense of place has the capacity to visually absorb the landscape change without significantly detracting from local landscape or visual resources.
- No residential receptors within the expected ZVI.

9.1.2 Constraints

Not applicable.

9.2 No-Go Option

9.2.1 Opportunities

• Some low-level landscape enhancement from the lawn and the small hedge.

9.2.2 Constraints

Not applicable.

10 CONCLUSION

As the site is located within an industrial area with a high VAC level, a contained ZVI without receptors sensitive to landscape change, the recommendation of the Landscape and Visual Impact Assessment is that development should authorised. Opportunities for landscape enhancement are available with the planting of missing trees from the avenue of trees in Parry Road. As the Landscape and Visual Impacts are expected to have a Low Significance without mitigation, as detailed impact assessment is not required.

11 BIBLIOGRAPHY

- Department of Environment Affairs. (2013). DEA National Wind and Solar PV Strategic Environmenal Assessment.
- Ekurhuleni Metropolitan Municipality. (2015). *Ekurhuleni Metropolitan Municipality SDF.*Gauteng Province. (2022). *Draft Reviewed Gauteng Spatial Development Framework 2030.*
- Hull, R. B., & Bishop, I. E. (1988). Scenic Impacts of Electricity Power Mine: The Influence of Landscape Type and Observer Distance. Journal of Environmental Management. (27) Pg 99-108.
- IEMA. (2002). U.K Institute of Environmental Management and Assessment (IEMA). 'Guidelines for Landscape and Visual Impact Assessment' Second Edition, Spon Press. Pg 44.
- IFC. (2012). International Finance Corporation (IFC) prescribes eight performance standards (PS) on environmental and social sustainability. Millennium Ecosystem Assessment.
- Junior Mining Network. (n.d.). https://www.juniorminingnetwork.com/junior-miner-news/press-releases/2961-cse/sgd/.
- Millennium Ecosystem Assessment. (2005). *Ecosystems and Human Well-Being: Synthesis.* Washington D.C: Island Press.
- NASA, A. G. (2009). Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model Version 2 (GDEM V2 2011). Ministry of Economy, Trade, and Industry (METI) of Japan and United States National Aeronauti.
- NELPAG. (n.d.). New England Light Pollution Advisory Group (NELPAG) http://cfa/www.harvard.edu/cfa/ps/nelpag.html) and Sky & Telescope http://SkyandTelescope.com/). NELPAG and Sky & Telescope support the International Dark-Sky Association (IDA) (http://www.darksky.o.
- Oberholzer, B. (2005). Guideline for involving visual and aesthetic specialists in EIA processes: Edition 1. CSIR Report No ENV-S-C 2005 053 F. Republic of South Africa, Provincial Government of the Western Cape, Department of Environmental Affairs and Deve.
- Sacramento Municipal Utility District. (n.d.). Sacramento Solar Highways Initial Study and Mitigated Negative Declaration, SCH 011032036. . Sacramento Municipal Utility District.
- SANBI. (2018). www.sanbi.org. Retrieved from 2018 National Biodiversity Assessment (NBA): https://www.sanbi.org/link/bgis-biodiversity-gis/
- Sheppard, D. S. (2000). Guidance for crystal ball gazers: Developing a code of ethics for landscape visualization. Department of Forest Resources Management and Landscape Architecture Program, University of British Columbia, Vancouver, Canada
- South African National Biodiversity Institute. (2018). *Vegetation Map of South Africa, Lesotho and Swaziland.*
- suncalc.org. (n.d.). www.suncalc.org.
- The Landscape Institute. (2003). *Guidelines for Landscape and Visual Impact Assessment* (Second ed.). Spon Press.
- USDI., B. (2004). Bureau of Land Management, U.S. Department of Interior. 2004. Visual Resource Management Manual 8400.
- www.hawaiirenewableenergy.org/Villamesias2. (n.d.).

12 ANNEXURE A: SITE VISIT PHOTOGRAPHS AND COMMENTS

The following photographs were taken during the field survey as mapped below. The text below the photograph describes the landscape and visual issues of the locality, if applicable.

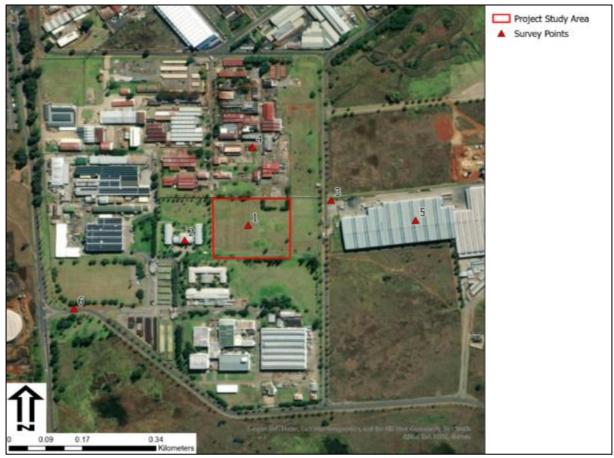


Figure 19: Site Survey Point Map

ID	1
NAME	Proposed development area.
DESCRIPTION	Perspective view of the site towards the Southeast depicting the transformed grassland on industrial lands, with the Element Six building in the foreground right. (Drone footage provided by Ecoledges)

ID	2
NAME	Local industrial landscape context of Element Six (Proponent)
DESCRIPTION	Oblique image of the Element Six building complex located directly to the west of
DESCRIPTION	the proposed site (Drone footage provided by Ecoledges)

ID	3
NAME	Nampak Key Observation Point
DESCRIPTION	View from the Nampak entrance towards the proposed PV site that would be located in the midground.

ID	4
NAME	Industrial landscape character.
DESCRIPTION	View from Parry Road of the adjacent property industrial complex to the north of the site.
	the site.

ID	5
NAME	Nampak industrial landscape context.
DESCRIPTION	View from Parry Road of the adjacent property industrial complex to the east of the site.

ID	6
NAME	Debid Road Receptor
DESCRIPTION	Null view as seen from Debid Road looking northeast to towards the site.

13 ANNEXURE B: DFFE DECLARATION OF INDEPENDENCE

Project: ##

14 ANNEXURE C: SPECIALIST INFORMATION

14.1 Professional Registration Certificate

Association of Professional Heritage Practitioners

MEMBERSHIP CERTIFICATE

THIS CERTIFIES THAT

Stephen Stead

MEMBERSHIP NUMBER: 0063

has been awarded membership as a

PROFESSIONAL HERITAGE PRACTITIONER (PHP)

This membership is subject to the Standards for Membership and Code of Conduct, referred to in Sections 2 and 3 of the APHP Constitution respectively. The definition of a PHP may be found at: www.aphp.org.za/membership

Please contact us via info@aphp.org.za should further information be required.

THIS CERTIFICATE IS VALID FROM 1 JUNE 2022 - 1 JULY 2023

CHAIRPERSON

[Issued by the Association of Professional Heritage Practitioners Executive Committee] Image Source: Photographer G McLachian at central Kouga Mountains

> Association of Professional Heritage Practitioners info@aphp.org.za www.aphp.org.za

14.2 Curriculum Vitae (CV)

1. Position: Owner / Director

2. Name of Firm: Visual Resource Management Africa cc (www.vrma.co.za)

3. Name of Staff: Stephen Stead

4. Date of Birth: 9 June 1967

5. Nationality: South African

6. Contact Details: Tel: +27 (0) 44 876 0020

Cell: +27 (0) 83 560 9911 Email: steve@vrma.co.za

7. Educational qualifications:

University of Natal (Pietermaritzburg):

- Bachelor of Arts: Psychology and Geography
- Bachelor of Arts (Hons): Human Geography and Geographic Information Management Systems

8. Professional Accreditation

- Association of Professional Heritage Practitioners (APHP) Western Cape
 - Accredited VIA practitioner member of the Association (2011)

9. Association involvement:

- International Association of Impact Assessment (IAIA) South African Affiliate
 - o Past President (2012 2013)
 - o President (2012)
 - o President-Elect (2011)
 - o Conference Co-ordinator (2010)
 - National Executive Committee member (2009)
 - Southern Cape Chairperson (2008)

10. Conferences Attended:

- IAIAsa 2012
- IAIAsa 2011
- IAIA International 2011 (Mexico)
- IAIAsa 2010
- IAIAsa 2009
- IAIAsa 2007

11. Continued Professional Development:

- Integrating Sustainability with Environment Assessment in South Africa (IAIAsa Conference, 1 day)
- Achieving the full potential of SIA (Mexico, IAIA Conference, 2 days 2011)
- Researching and Assessing Heritage Resources Course (University of Cape Town, 5 days, 2009)

12. Countries of Work Experience:

South Africa, Mozambique, Malawi, Lesotho, Kenya and Namibia

13. Relevant Experience:

Stephen gained six years of experience in the field of Geographic Information Systems mapping and spatial analysis working as a consultant for the KwaZulu-Natal Department of Health and then with an Environmental Impact Assessment company based in the Western Cape. In 2004 he set up the company Visual Resource Management Africa that specializes in visual resource management and visual impact assessments in Africa. The company makes use of the well-documented Visual Resource Management methodology developed by the Bureau of Land Management (USA) for assessing the suitability of landscape modifications. Stephen has assessed of over 150 major landscape modifications throughout southern and eastern Africa. The business has been operating for eighteen years and has successfully established and retained a large client base throughout Southern Africa which include amongst other, Rio Tinto (Pty) Ltd, Bannerman (Pty) Ltd, Anglo Coal (Pty) Ltd, Eskom (Pty) Ltd, NamSolar and Vale (Pty) Ltd, Ariva (Pty) Ltd, Harmony Gold (Pty) Ltd, Millennium Challenge Account (USA), Pretoria Portland Cement (Pty) Ltd

14. Languages:

- English First Language
- Afrikaans fair in speaking, reading and writing

15. Projects:

A list of **some** of the large-scale projects that VRMA has assessed has been attached below with the client list indicated per project (Refer to www.vrma.co.za for a full list of projects undertaken).

Table 17: VRM Africa Projects Assessments Table

YEAR	NAME	DESCRIPTION	LOCATION
2022	Sea Vista St Francis Bay	Resort	Eastern Cape (SA)
2022	Houthaalboomen PV	Solar Energy	North West (SA)
2022	Pofadder Wind x 3	Wind Energy	Northern Cape (SA)
2022	Lunsklip Wind Amend	Wind Energy	Western Cape (SA)
2022	Lunsklip Wind Grid Connect	Power line	Western Cape (SA)
2022	Elandsfontein PV	Solar Energy	North West (SA)
2022	Erf 1713 1717 UISP	Settlement	Western Cape (SA)
2022	Roan PV x 2	Solar Energy	North West (SA)
2021	Avondale Gordonia 132kV Power Line	Infrastructure	Northern Cape (SA)
2021	Maitland Mines Wedding Venue	Resort	Eastern Cape (SA)
2020	Humansdorp BESS	Battery Storage	Northern Cape (SA)
2020	Bloemsmond PV BESS x 5	Battery Storage	Northern Cape (SA)
2020	Mulilo Prieska BESS x 5	Battery Storage	Northern Cape (SA)

2020	Mulilo De Arr BESS x 3	Battery Storage	Northern Cape (SA)
2020	Sandpiper Estate	Residential	Western Cape (SA)
2020	Obetsebi Lampley Interchange	Infrastructure	Ghana
2019	Wolvedans Megadump Facility	Mining	Mpumalanga (SA)
2019	Port Barry Residential	Settlement	Western Cape (SA)
2019	Gamsberg Smelter	Plant	Northern Cape (SA)
2019	Sandpiper Nature Reserve Lodge	Residential	Western Cape (SA)
2019	Bloemsmond PV 4 - 5	Solar Energy	Northern Cape (SA)
2019	Mphepo Wind (Scoping Phase)	Wind Energy	Zambia
2018	Mogara PV	Solar Energy	Northern Cape (SA)
2018	Gaetsewe PV	Solar Energy	Northern Cape (SA)
2017	Kalungwishi Hydroelectric (2) and power line	Hydroelectric	Zambia
2017	Mossel Bay UISP (Kwanoqaba)	Settlement	Western Cape (SA)
2017	Pavua Dam and HEP	Hydroelectric	Mozambique (SA)
2017	Penhill UISP Settlement (Cape Town)	Settlement	Western Cape (SA)
2016	Kokerboom WEF * 3	Wind Energy	Northern Cape (SA)
2016	Hotazel PV	Solar Energy	Northern Cape (SA)
2016	Eskom Sekgame Bulkop Power Line	Infrastructure	Northern Cape (SA)
2016	Ngonye Hydroelectric	Hydroelectric	Zambia
2016	Levensdal Infill	Settlement	Western Cape (SA)
2016	Arandis CSP	Solar Energy	Namibia
2016	Bonnievale PV	Solar Energy	Western Cape (SA)
2015	Noblesfontein 2 & 3 WEF (Scoping)	Wind Energy	Eastern Cape (SA)
2015	Ephraim Sun SEF	Solar Energy	Northern Cape (SA)
2015	Dyasonsklip and Sirius Grid TX	Solar Energy	Northern Cape (SA)
2015	Dyasonsklip PV	Solar Energy	Northern Cape (SA)
2015	Zeerust PV and transmission line	Solar Energy	North West (SA)
2015	Bloemsmond SEF	Solar Energy	Northern Cape (SA)
2015	Juwi Copperton PV	Solar Energy	Northern Cape (SA)
2015	Humansrus Capital 14 PV	Solar Energy	Northern Cape (SA)
2015	Humansrus Capital 13 PV	Solar Energy	Northern Cape (SA)
2015	Spitzkop East WEF (Scoping)	Solar Energy	Western Cape (SA)
2015	Lofdal Rare Earth Mine and Infrastructure	Mining	Namibia
2015	AEP Kathu PV	Solar Energy	Northern Cape (SA)
2014	AEP Mogobe SEF	Solar Energy	Northern Cape (SA)
2014	Bonnievale SEF	Solar Energy	Western Cape (SA)
2014	AEP Legoko SEF	Solar Energy	Northern Cape (SA)
2014	Postmasburg PV	Solar Energy	Northern Cape (SA)
2014	Joram Solar	Solar Energy	Northern Cape (SA)
2014	RERE PV Postmasberg	Solar Energy	Northern Cape (SA)
2014	RERE CPV Upington	Solar Energy	Northern Cape (SA)

2014	Rio Tinto RUL Desalinisation Plant	Industrial	Namibia
2014	NamPower PV * 3	Solar Energy	Namibia
2014	Pemba Oil and Gas Port Expansion	Industrial	Mozambique
2014	Brightsource CSP Upington	Solar Energy	Northern Cape (SA)
2014	Witsand WEF (Scoping)	Wind Energy	Western Cape (SA)
2014	Kangnas WEF	Wind Energy	Western Cape (SA)
2013	Cape Winelands DM Regional Landfill	Industrial	Western Cape (SA)
2013	Drennan PV Solar Park	Solar Energy	Eastern Cape (SA)
2013	Eastern Cape Mari-culture	Mari-culture	Eastern Cape (SA)
2013	Eskom Phantom Pass Substation	Substation /Tx lines	Western Cape (SA)
2013	Frankfort Paper Mill	Plant	Free State (SA)
2013	Gibson Bay Wind Farm Transmission lines	Transmission lines	Eastern Cape (SA)
2013	Houhoek Eskom Substation	Substation /Tx lines	Western Cape (SA)
2013	Mulilo PV Solar Energy Sites (x4)	Solar Energy	Northern Cape (SA)
2013	Namies Wind Farm	Wind Energy	Northern Cape (SA)
2013	Rossing Z20 Pit and WRD	Mining	Namibia
2013	SAPPI Boiler Upgrade	Plant	Mpumalanga (SA)
2013	Tumela WRD	Mine	North West (SA)
2013	Weskusfleur Substation (Koeburg)	Substation /Tx lines	Western Cape (SA)
2013	Yzermyn coal mine	Mining	Mpumalanga (SA)
2012	Afrisam	Mining	Western Cape (SA)
2012	Bitterfontein	Solar Energy	Northern Cape (SA)
2012	Kangnas PV	Solar Energy	Northern Cape (SA)
2012	Kangnas Wind	Solar Energy	Northern Cape (SA)
2012	Kathu CSP Tower	Solar Energy	Northern Cape (SA)
2012	Kobong Hydro	Hydro & Powerline	Lesotho
2012	Letseng Diamond Mine Upgrade	Mining	Lesotho
2012	Lunsklip Windfarm	Wind Energy	Western Cape (SA)
2012	Mozambique Gas Engine Power Plant	Plant	Mozambique
2012	Ncondezi Thermal Power Station	Substation /Tx lines	Mozambique
2012	Sasol CSP Tower	Solar Power	Free State (SA)
2012	Sasol Upington CSP Tower	Solar Power	Northern Cape (SA)
2011	Beaufort West PV Solar Power Station	Solar Energy	Western Cape (SA)
2011	Beaufort West Wind Farm	Wind Energy	Western Cape (SA)
2011	De Bakke Cell Phone Mast	Structure	Western Cape (SA)
2011	ERF 7288 PV	Solar Energy	Western Cape (SA)
2011	Gecko Industrial park	Industrial	Namibia
2011	Green View Estates	Residential	Western Cape (SA)
2011	Hoodia Solar	Solar Energy	Western Cape (SA)
2011	Kalahari Solar Power Project	Solar Energy	Northern Cape (SA)
2011	Khanyisa Power Station	Power Station	Western Cape (SA)

2011	Olvyn Kolk PV	Solar Energy	Northern Cape (SA)
2011	Otjikoto Gold Mine	Mining	Namibia
2011	PPC Rheebieck West Upgrade	Industrial	Western Cape (SA)
2011	George Southern Arterial	Road	Western Cape (SA)
2010	Bannerman Etango Uranium Mine	Mining	Namibia
2010	Bantamsklip Transmission	Transmission	Eastern Cape (SA)
2010	Beaufort West Urban Edge	Mapping	Western Cape (SA)
2010	Bon Accord Nickel Mine	Mining	Mpumalanga (SA)
2010	Etosha National Park Infrastructure	Housing	Namibia
2010	Herolds Bay N2 Development Baseline	Residential	Western Cape (SA)
2010	MET Housing Etosha	Residential	Namibia
2010	MET Housing Etosha Amended MCDM	Residential	Namibia
2010	MTN Lattice Hub Tower	Structure	Western Cape (SA)
2010	N2 Herolds Bay Residental	Residential	Western Cape (SA)
2010	Onifin(Pty) Ltd Hartenbos Quarry Extension	Mining	Western Cape (SA)
2010	Still Bay East	GIS Mapping	Western Cape (SA)
2010	Vale Moatize Coal Mine and Railway	Mining / Rail	Mozambique
2010	Vodacom Mast	Structure	Western Cape (SA)
2010	Wadrif Dam	Dam	Western Cape (SA)
2009	Asazani Zinyoka UISP Housing	Residential Infill	Western Cape (SA)
2009	Eden Telecommunication Tower	Structure	Western Cape (SA)
2009	George SDF Landscape Characterisation	GIS Mapping	Western Cape (SA)
2009	George SDF Visual Resource Management	GIS Mapping	Western Cape (SA)
2009	George Western Bypass	Road	Western Cape (SA)
2009	Knysna Affordable Housing Heidevallei	Residential Infill	Western Cape (SA)
2009	Knysna Affordable Housing Hornlee Project	Residential Infill	Western Cape (SA)
2009	Rossing Uranium Mine Phase 2	Mining	Namibia
2009	Sun Ray Wind Farm	Wind Energy	Western Cape (SA)
2008	Bantamsklip Transmission Lines Scoping	Transmission	Western Cape (SA)
2008	Erf 251 Damage Assessment	Residential	Western Cape (SA)
2008	Erongo Uranium Rush SEA	GIS Mapping	Namibia
2008	Evander South Gold Mine Preliminary VIA	Mining	Mpumalanga (SA)
2008	George SDF Open Spaces System	GIS Mapping	Western Cape (SA)
2008	Hartenbos River Park	Residential	Western Cape (SA)
2008	Kaaimans Project	Residential	Western Cape (SA)
2008	Lagoon Garden Estate	Residential	Western Cape (SA)
2008	Moquini Beach Hotel	Resort	Western Cape (SA)
2008	NamPower Coal fired Power Station	Power Station	Namibia
2008	Oasis Development	Residential	Western Cape (SA)
2008	RUL Sulpher Handling Facility Walvis Bay	Mining	Namibia
2008	Stonehouse Development	Residential	Western Cape (SA)

2008	Walvis Bay Power Station	Structure	Namibia
2007	Calitzdorp Retirement Village	Residential	Western Cape (SA)
2007	Calitzdorp Visualisation	Visualisation	Western Cape (SA)
2007	Camdeboo Estate	Residential	Western Cape (SA)
2007	Destiny Africa	Residential	Western Cape (SA)
2007	Droogfontein Farm 245	Residential	Western Cape (SA)
2007	Floating Liquified Natural Gas Facility	Structure tanker	Western Cape (SA)
2007	George SDF Municipality Densification	GIS Mapping	Western Cape (SA)
2007	Kloofsig Development	Residential	Western Cape (SA)
2007	OCGT Power Plant Extension	Structure Power Plant	Western Cape (SA)
2007	Oudtshoorn Municipality SDF	GIS Mapping	Western Cape (SA)
2007	Oudtshoorn Shopping Complex	Structure	Western Cape (SA)
2007	Pezula Infill (Noetzie)	Residential	Western Cape (SA)
2007	Pierpoint Nature Reserve	Residential	Western Cape (SA)
2007	Pinnacle Point Golf Estate	Golf/Residential	Western Cape (SA)
2007	Rheebok Development Erf 252 Appeal	Residential	Western Cape (SA)
2007	Rossing Uranium Mine Phase 1	Mining	Namibia
2007	Ryst Kuil/Riet Kuil Uranium Mine	Mining	Western Cape (SA)
2007	Sedgefield Water Works	Structure	Western Cape (SA)
2007	Sulpher Handling Station Walvis Bay Port	Industrial	Namibia
2007	Trekkopje Uranium Mine	Mining	Namibia
2007	Weldon Kaya	Residential	Western Cape (SA)
2006	Farm Dwarsweg 260	Residential	Western Cape (SA)
2006	Fynboskruin Extension	Residential	Western Cape (SA)
2006	Hanglip Golf and Residential Estate	Residential	Western Cape (SA)
2006	Hansmoeskraal	Slopes Analysis	Western Cape (SA)
2006	Hartenbos Landgoed Phase 2	Residential	Western Cape (SA)
2006	Hersham Security Village	Residential	Western Cape (SA)
2006	Ladywood Farm 437	Residential	Western Cape (SA)
2006	Le Grand Golf and Residential Estate	Residential	Western Cape (SA)
2006	Paradise Coast	Residential	Western Cape (SA)
2006	Paradyskloof Residential Estate	Residential	Western Cape (SA)
2006	Riverhill Residential Estate	Residential	Western Cape (SA)
2006	Wolwe Eiland Access Route	Road	Western Cape (SA)
2005	Harmony Gold Mine	Mining	Mpumalanga (SA)
2005	Knysna River Reserve	Residential	Western Cape (SA)
2005	Lagoon Bay Lifestyle Estate	Residential	Western Cape (SA)
2005	Outeniquabosch Safari Park	Residential	Western Cape (SA)
2005	Proposed Hotel Farm Gansevallei	Resort	Western Cape (SA)
2005	Uitzicht Development	Residential	Western Cape (SA)
2005	West Dunes	Residential	Western Cape (SA)

2005	Wilderness Erf 2278	Residential	Western Cape (SA)
2005	Wolwe Eiland Eco & Nature Estate	Residential	Western Cape (SA)
2005	Zebra Clay Mine	Mining	Western Cape (SA)
2004	Gansevallei Hotel	Residential	Western Cape (SA)
2004	Lakes Eco and Golf Estate	Residential	Western Cape (SA)
2004	Trekkopje Desalination Plant	Structure	Namibia (SA)
1995	Greater Durban Informal Housing Analysis	Photogrammetry	KwaZulu-Natal (SA)

15 ANNEXURE D: GENERAL LIGHTS AT NIGHT MITIGATIONS

Mitigation:

- Effective light management needs to be incorporated into the design of the lighting to ensure that the visual influence is limited to the mine, without jeopardising project operational safety and security (See lighting mitigations by The New England Light Pollution Advisory Group (NELPAG) and Sky Publishing Corp in 14.2).
- Utilisation of specific frequency LED lighting with a green hue on perimeter security fencing.
- Directional lighting on the more exposed areas of operation, where point light source is an issue.
- No use of overhead lighting and, if possible, locate the light source closer to the operation.

Mesopic Lighting

Mesopic vision is a combination of photopic vision and scotopic vision in low, but not quite dark, lighting situations. The traditional method of measuring light assumes photopic vision and is often a poor predictor of how a person sees at night. The light spectrum optimized for mesopic vision contains a relatively high amount of bluish light and is therefore effective for peripheral visual tasks at mesopic light levels. (CIE, 2012)

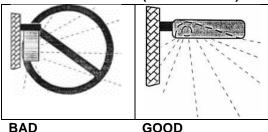
The Mesopic Street Lighting Demonstration and Evaluation Report by the Lighting Research Centre (LRC) in New York found that the 'replacement of white light sources (induction and ceramic metal halide) were tuned to optimize human vision under low light levels while remaining in the white light spectrum. Therefore, outdoor electric light sources that are tuned to how humans see under mesopic lighting conditions can be used to reduce the luminance of the road surface while providing the same, or better, visibility. Light sources with shorter wavelengths, which produce a "cooler" (bluer and greener) light, are needed to produce better mesopic vision. Based on this understanding, the LRC developed a means of predicting visual performance under low light conditions. This system is called the unified photometry system. Responses to surveys conducted on new installations revealed that area residents perceived higher levels of visibility, safety, security, brightness, and colour rendering with the new lighting systems than with the standard High-Purity Standards (HPS) systems. The new lighting systems used 30% to 50% less energy than the HPS systems. These positive results were achieved through tuning the light source to optimize mesopic vision. Using less wattage and photopic luminance also reduces the reflectance of the light off the road surface. Light reflectance is a major contributor to light pollution (sky glow).' (Lighting Research Centre. New York. 2008)

'Good Neighbour - Outdoor Lighting'

Presented by the New England Light Pollution Advisory Group (NELPAG) (http://cfa/ www.harvard .edu /cfa/ps/nelpag.html) and Sky & Telescope (http://SkyandTelescope.com/). NELPAG and Sky & Telescope support the International Dark-Sky Association (IDA) (http://www.darksky.org/). (NELPAG)

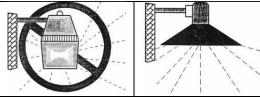
What is good lighting? Good outdoor lights improve visibility, safety, and a sense of security, while minimizing energy use, operating costs, and ugly, dazzling glare.

Why should we be concerned? Many outdoor lights are poorly designed or improperly aimed. Such lights are costly, wasteful, and distractingly glary. They harm the night-time environment and neighbours' property values. Light directed uselessly above the horizon creates murky skyglow — the "light pollution" that washes out our view of the stars.


Glare Here's the basic rule of thumb: If you can see the bright bulb from a distance, it's a bad light. With a good light, you see lit ground instead of the dazzling bulb. "Glare" is light that beams directly from a bulb into your eye. It hampers the vision of pedestrians, cyclists, and drivers.

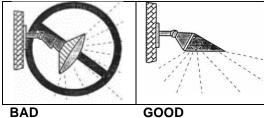
Light Trespass Poor outdoor lighting shines onto neighbours' properties and into bedroom windows, reducing privacy, hindering sleep, and giving the area an unattractive, trashy look.

Energy Waste Many outdoor lights waste energy by spilling much of their light where it is not needed, such as up into the sky. This waste results in high operating costs. Each year we waste more than a billion dollars in the United States needlessly lighting the night sky.


Excess Lighting Some homes and businesses are flooded with much stronger light than is necessary for safety or security.

Good and Bad Light Fixtures Typical "Wall Typical "Shoe Pack" Box" (forward throw)

Waste light goes up Directs all light and sideways down

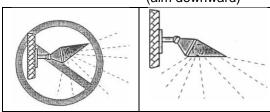

Typical "Yard Opaque Reflector Light" (lamp inside)

BAD GOOD

Waste light goes up Directs all light and sideways down

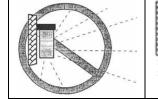
Area Flood Light Area Flood Light with Hood

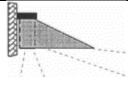
Waste light goes up Directs all light and sideways down

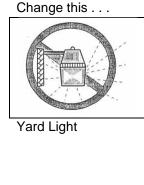

How do I switch to good lighting?

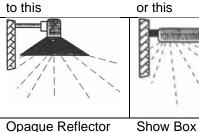
Provide only enough light for the task at hand; don't over-light, and don't spill light off your property. Specifying enough light for a job is sometimes hard to do on paper. Remember that a full Moon can make an area quite bright. Some lighting systems illuminate areas 100 times more brightly than the full Moon! More importantly, by choosing properly shielded lights, you can meet your needs without bothering neighbours or polluting the sky.

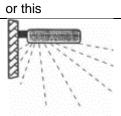
- Aim lights down. Choose "full-cut-off shielded" fixtures that keep light from going uselessly up or sideways. Fullcut-off fixtures produce minimum glare. They create a pleasant-looking environment. They increase safety because you see illuminated people, cars, and terrain, not dazzling bulbs.
- Install fixtures carefully to maximize their effectiveness on the targeted area and minimize their impact elsewhere. Proper aiming of fixtures is crucial. Most are aimed too high. Try to install them at night, when you can see where all the rays actually go. Properly aimed and shielded lights may cost more initially, but they save you far more in the long run. They can illuminate your target with a lowwattage bulb just as well as a wasteful light does with a high-wattage bulb.
- colour discrimination is not important, choose energy- efficient fixtures utilising yellowish highpressure sodium (HPS) bulbs. If "white" light is needed, fixtures using compact fluorescent or metal-halide (MH) bulbs are more energy-efficient than those using incandescent, halogen, or mercury-vapour bulbs.
- Where feasible, put lights on timers to turn them off each night after they are no longer needed. Put home security lights on a motiondetector switch, which turns them only when someone enters the area; this provides a great deterrent effect!


What You Can Do To Modify Existing **Fixtures**


to this Change this . . . (aim downward)




Floodlight:


to this Change this . . . (aim downward)

Replace bad lights with good lights.

You'll save energy and money. You'll be a good neighbour. And you'll help preserve our view of the stars.

16 ANNEXURE E: GLINT AND GLARE IMPACT DESCRIPTION

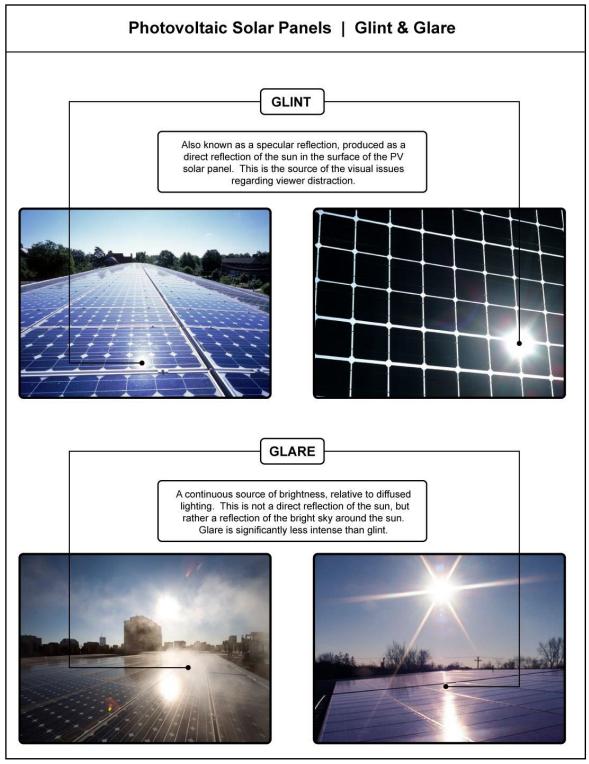


Figure 20. Images of Glint and Glare for PV panels (Sacramento Municipal Utility District).

17 ANNEXURE F: METHODOLOGY DETAIL

17.1 Baseline Analysis Stage

In terms of VRM methodology, landscape character is derived from a combination of **scenic quality**, **receptor sensitivity** to landscape change and **distance** from the proposed landscape change. The objective of the analysis is to compile a mapped inventory of the visual resources found in the receiving landscape, and to derive a mapped Visual Resource sensitivity layer from which to evaluate the suitability of the landscape change.

17.1.1 Scenic Quality

The scenic quality is determined making use of the VRM Scenic Quality Checklist that identifies seven scenic quality criteria which are rated with 1 (low) to 5 (high) scale. The scores are totalled and assigned an A (High), B (Moderate) or C (low) based on the following split:

A= scenic quality rating of ≥19;

B = rating of 12 - 18,

 $C = rating of \leq 11$

The seven scenic quality criteria are defined below:

- Land Form: Topography becomes more of a factor as it becomes steeper, or more severely sculptured.
- **Vegetation**: Primary consideration given to the variety of patterns, forms, and textures created by plant life.
- **Water**: That ingredient which adds movement or serenity to a scene. The degree to which water dominates the scene is the primary consideration.
- **Colour**: The overall colour(s) of the basic components of the landscape (e.g., soil, rock, vegetation, etc.) are considered as they appear during seasons or periods of high use.
- **Scarcity**: This factor provides an opportunity to give added importance to one, or all, of the scenic features that appear to be relatively unique or rare within one physiographic region.
- Adjacent Land Use: Degree to which scenery and distance enhance, or start to influence, the overall impression of the scenery within the rating unit.
- **Cultural Modifications**: Cultural modifications should be considered and may detract from the scenery or complement or improve the scenic quality of an area.

17.1.2 Receptor Sensitivity

Receptor sensitivity to landscape change is determined by rating the following factors in terms of Low to High:

- **Type of Users**: Visual sensitivity will vary with the type of users, e.g. recreational sightseers may be highly sensitive to any changes in visual quality, whereas workers who pass through the area on a regular basis may not be as sensitive to change.
- Amount of Use: Areas seen or used by large numbers of people are potentially more sensitive.
- Public Interest: The visual quality of an area may be of concern to local, or regional, groups. Indicators of this concern are usually expressed via public controversy created in response to proposed activities.

- Adjacent Land Uses: The interrelationship with land uses in adjacent lands. For example, an area within the viewshed of a residential area may be very sensitive, whereas an area surrounded by commercially developed lands may not be as visually sensitive.
- **Special Areas**: Management objectives for special areas such as Natural Areas, Wilderness Areas or Wilderness Study Areas, Wild and Scenic Rivers, Scenic Areas, Scenic Roads or Trails, and Critical Biodiversity Areas frequently require special consideration for the protection of their visual values.
- Other Factors: Consider any other information such as research or studies that include indicators of visual sensitivity.

17.1.3 Exposure

The area where a landscape modification starts to influence the landscape character is termed the Zone of Visual Influence (ZVI) and is defined by the U.K. Institute of Environmental Management and Assessment's (IEMA) 'Guidelines for Landscape and Visual Impact Assessment' as 'the area within which a proposed development may have an influence or effect on visual amenity (of the surrounding areas).'

The inverse relationship of distance and visual impact is well recognised in visual analysis literature (*Hull, R.B. and Bishop, I.E., 1988*). According to Hull and Bishop, exposure, or visual impact, tends to diminish exponentially with distance. The areas where most landscape modifications would be visible are located within 2 km from the site of the landscape modification. Thus, the potential visual impact of an object diminishes at an exponential rate as the distance between the observer and the object increases due to atmospheric conditions prevalent at a location, which causes the air to appear greyer, thereby diminishing detail. For example, viewed from 1000 m from a landscape modification, the impact would be 25% of the impact as viewed from 500 m from a landscape modification. At 2000m it would be 10% of the impact at 500 m.

<u>Distance</u> from a landscape modification influences the size and clarity of the landscape modification viewing. The Bureau of Land Management defines three distance categories:

- i. *Foreground / Middle ground*, up to approximately 6km, which is where there is potential for the sense of place to change.
- ii. **Background areas**, from 6km to 24km, where there is some potential for change in the sense of place, but where change would only occur in the case of very large landscape modifications; and
- iii. **Seldom seen areas**, which fall within the Foreground / Middle ground area but, as a result of no receptors, are not viewed or are seldom viewed.

17.1.4 Key Observation Points

During the Baseline Inventory Stage, Key Observation Points (KOPs) are identified. KOPs are defined by the Bureau of Land Management as the people (receptors) located in strategic locations surrounding the property that make consistent use of the views associated with the site where the landscape modifications are proposed. These locations are important in terms of the VRM methodology, which requires that the Degree of Contrast (DoC) that the proposed landscape modifications will make to the existing landscape be measured from these most critical locations, or receptors, surrounding the property. To define the KOPs, potential receptor locations were identified in the viewshed analysis, and screened, based on the following criteria:

- Angle of observation.
- Number of viewers.
- Length of time the project is in view.
- Relative project size.
- Season of use.
- Critical viewpoints, e.g., views from communities, road crossings; and
- Distance from property.

17.2 Assessment and Impact Stage

The analysis stage involves determining whether the potential visual impacts from proposed surface-disturbing activities or developments will meet the management objectives established for the area, or whether design adjustments will be required. This requires a contrast rating to assess the expected DoC the proposed landscape modifications would generate within the receiving landscape in order to define the Magnitude of the impact.

17.2.1 Contrast Rating

The contrast rating is undertaken to determine if the VRM Class Objectives are met. The suitability of landscape modification is assessed by comparing and contrasting existing receiving landscape to the expected contrast that the proposed landscape change will generate. This is done by evaluating the level of change to the existing landscape by assessing the line, colour, texture and form, in relation to the visual objectives defined for the area. The following criteria are utilised in defining the DoC:

- None: The element contrast is not visible or perceived.
- Weak: The element contrast can be seen but does not attract attention.
- **Moderate**: The element contrast begins to attract attention and begins to dominate the characteristic landscape.
- **Strong**: The element contrast demands attention, will not be overlooked, and is dominant in the landscape.

As an example, in a Class I area, the visual objective is to preserve the existing character of the landscape, and the resultant contrast to the existing landscape should not be notable to the casual observer and cannot attract attention. In a Class IV area example, the objective is to provide for proposed landscape activities that allow for major modifications of the existing character of the landscape. Based on whether the VRM objectives are met, mitigations, if required, are defined to avoid, reduce or mitigate the proposed landscape modifications so that the visual impact does not detract from the surrounding landscape sense of place.

Based on the findings of the contrast rating, the Magnitude of the Landscape and Visual Impact Assessment is determined.

17.2.2 Photomontages

As a component in this contrast rating process, visual representation, such as photo montages are vital in large-scale modifications, as this serves to inform Interested & Affected Parties and decision-making authorities of the nature and extent of the impact associated with the proposed project/development. There is an ethical obligation in this process, as visualisation can be misleading if not undertaken ethically. In terms of adhering to standards for ethical representation of landscape modifications, VRMA subscribes to the Proposed

Interim Code of Ethics for Landscape Visualisation developed by the Collaborative for Advanced Landscape Planning (CALP) (Sheppard, 2000). This code states that professional presenters of realistic landscape visualisations are responsible for promoting full understanding of proposed landscape changes, providing an honest and neutral visual representation of the expected landscape, by seeking to avoid bias in responses and demonstrating the legitimacy of the visualisation process. Presenters of landscape visualisations should adhere to the principles of:

- Access to Information
- Accuracy
- Legitimacy
- Representativeness
- Visual Clarity and Interest

The Code of Ethical Conduct states that the presenter should:

- Demonstrate an appropriate level of qualification and experience.
- Use visualisation tools and media that are appropriate to the purpose.
- Choose the appropriate level of realism.
- Identify, collect and document supporting visual data available for, or used in, the visualisation process.
- Conduct an on-site visual analysis to determine important issues and views.
- Seek community input on viewpoints and landscape issues to address in the visualisations.
- Provide the viewer with a reasonable choice of viewpoints, view directions, view angles, viewing conditions and timeframes appropriate to the area being visualised.
- Estimate and disclose the expected degree of uncertainty, indicating areas and possible visual consequences of the uncertainties.
- Use more than one appropriate presentation mode and means of access for the affected public.
- Present important non-visual information at the same time as the visual presentation, using a neutral delivery.
- Avoid the use, or the appearance of, 'sales' techniques or special effects.
- Avoid seeking a particular response from the audience.
- Provide information describing how the visualisation process was conducted and how key decisions were taken (Sheppard, 2000).