TSHIPI BORWA MANGANESE MINE

EMP Amendment No.3 Specialist Report: Pit Closure Water Balance and Geochemical Modelling

Prepared for: Tshipi é Ntle Manganese Mining (Pty) Limited

SL

SLR Ref: 405.03471.00039 Version No: 1 March 2019

BASIS OF REPORT

This document has been prepared by SLR Consulting Limited with reasonable skill, care and diligence, and taking account of the manpower, timescales and resources devoted to it by agreement with Tshipi é Ntle Manganese Mining(Pty) Limited (the Client) as part or all of the services it has been appointed by the Client to carry out. It is subject to the terms and conditions of that appointment.

SLR shall not be liable for the use of or reliance on any information, advice, recommendations and opinions in this document for any purpose by any person other than the Client. Reliance may be granted to a third party only in the event that SLR and the third party have executed a reliance agreement or collateral warranty.

Information reported herein may be based on the interpretation of public domain data collected by SLR, and/or information supplied by the Client and/or its other advisors and associates. These data have been accepted in good faith as being accurate and valid.

The copyright and intellectual property in all drawings, reports, specifications, bills of quantities, calculations and other information set out in this report remain vested in SLR unless the terms of appointment state otherwise.

This document may contain information of a specialised and/or highly technical nature and the Client is advised to seek clarification on any elements which may be unclear to it.

Information, advice, recommendations and opinions in this document should only be relied upon in the context of the whole document and any documents referenced explicitly herein and should then only be used within the context of the appointment.

CONTENTS

EXEC	XECUTIVE SUMMARY7			
1.0	TECHNICAL SPECIALISTS	.11		
1.1	Declaration	11		
2.0	INTRODUCTION	.12		
2.1	Scope of this report	12		
2.2	Mine pit lake formation	12		
2.3	Overall objective	13		
2.0				
3.0	SITE SETTING	.13		
3.1	Geological setting	13		
3.1.1	Kalahari Deposits	.14		
3.2	Key sources of background information	15		
4.0	OVERALL MODELLING APPROACH	.17		
4.1.1	Climate model – type and description	. 17		
4.1.2	Geochemistry model – type and description	. 18		
4.1.3	External catchments - surface water runoff method	. 18		
4.1.4	Groundwater model – type and description	. 18		
4.1.5	GoldSim model description	. 18		
4.1.6	Extreme rainfall method (PMP)	. 19		
5.0	KEY MODELLING DATA INPUTS	.20		
5.1	Rainfall and evaporation	20		
5.1.1	PMP estimate	. 20		
5.2	Final pit geometry	22		
5.2.1	Closure geometries and concepts	. 22		
5.3	In-pit waste rock porosity	22		
5.4	Mineralogy	22		
5.5	Surface water inputs	23		
5.5.1	Storm water management	. 23		
5.6	Groundwater inputs	24		
5.6.1	Aquifer types	. 24		
5.6.2	Groundwater levels	. 25		
5.6.3	Groundwater inflow rates	. 25		
5.6.4	Groundwater quality	. 26		

6.0	PIT LAKE WATER BALANCE	34
6.1	Water balance fundamental equations	35
6.2	Pit lake – final water level predictions	
6.2.1	Pit spilling	
6.2.2	Mass balance check	
7.0	WATER QUALITY PREDICTION	40
7.1	Geochemical Source Terms	
7.1.1	Wall Rock Runoff Water Chemistry	41
7.1.2	Groundwater Chemistry Source Term	42
7.1.3	Rainwater Chemistry	45
7.1.4	Redox Conditions	45
7.2	Option 1: Complete Backfill Source Term Generation	46
7.3	Option 2: Partial Backfill Source Term Generation	49
7.4	Option 3: Concurrent Backfill Source Term Generation	49
7.5	Option 4: No Backfill Source Term Generation	51
7.6	Rainwater chemistry	51
8.0	LAYER FORMATION	52
8.1	Layer Development	52
8.2	Geochemical Modelling of Layers	56
8.2.1	Modelling pH	57
9.0	WATER QUALITY RESULTS	59
9.1	Option 1: Complete Backfill and No Pit Lake	59
9.2	Option 2: Partial Backfill and No Pit Lake	61
9.3	Options 3: Concurrent Backfill and Pit Lake Formation	63
9.4	Option 4: No Backfill and Pit Lake Formation	65
9.5	Conclusion for Pit Lake Water Quality	67
9.5.1	Pit Lake Model Uncertainties	68
9.5.2	Porewater Quality and Comparison with Pit lake Quality	68
10.0	SUMMARY RESULTS, DISCUSSION, ASSUMPTIONS AND POSSIBLE PASSIVE TREA	TMENT OF
10.1	Results summary tables (no mitigation)	69
10.2	Discussion	71
10.2.1	Assumptions and caveats	73
10.3	Passive Treatment Options Feasibility	73

10.3.2	Water Budget	. 74
10.3.3	Nitrogen Treatment	. 75
10.3.4	Design Parameters	.77
10.3.5	Floating Wetlands	.77
10.3.6	Degradation Rates	. 78
10.3.7	Preliminary Calculated Nitrogen Reduction	. 79
10.4	Metal Treatment	80
10.4.1	Impacts on Lake Evaporation using Wetland Treatment	. 82
11.0	QUANTITATIVE WATER QUALITY MODELLING OF A FLOATING WETLAND TREATMENT S	SYSTEM – 84
11.1	Predictive modelling water quality results	85
11.1 11.2	Predictive modelling water quality results Proposed wetland system – results discussion	85 87
11.1 11.2 11.2.1	Predictive modelling water quality results Proposed wetland system – results discussion Comparative assessment for Option 3	85 87 .87
11.1 11.2 11.2.1 12.0	Predictive modelling water quality results Proposed wetland system – results discussion Comparative assessment for Option 3 WATER ABSTRACTIONS COMPARISON	85 87 .87 89
 11.1 11.2 11.2.1 12.0 12.1.1 	Predictive modelling water quality results Proposed wetland system – results discussion Comparative assessment for Option 3 WATER ABSTRACTIONS COMPARISON Option 1 – Complete backfill water abstractions	85 87 .87 89 .89
 11.1 11.2 11.2.1 12.0 12.1.1 12.1.2 	Predictive modelling water quality results Proposed wetland system – results discussion Comparative assessment for Option 3 WATER ABSTRACTIONS COMPARISON Option 1 – Complete backfill water abstractions Option 3 – Pit lake water abstractions	85 87 .87 89 .89
 11.1 11.2 11.2.1 12.0 12.1.1 12.1.2 13.0 	Predictive modelling water quality results Proposed wetland system – results discussion Comparative assessment for Option 3 WATER ABSTRACTIONS COMPARISON Option 1 – Complete backfill water abstractions Option 3 – Pit lake water abstractions RECOMMENDATIONS	85 87 .87 89 .90 90

DOCUMENT REFERENCES

TABLES

Table 3-1	Sources of Information	15
Table 5-1	Typical Mineralogy for Lithologies in Tshipi Waste Rock	23
Table 5-2	Head-driven groundwater inflow rates into the Pit	26
Table 5-3	Summary of Groundwater Chemistry	27
Table 6-1	Pit filling rates and final levels	38
Table 7-1	Mean SPLP Chemistry	43
Table 7-2	Mean Groundwater Chemistry (TSH9 and TSH10) Used in the Geochemical Modelling.	43
Table 7-3	Options 1 Source Terms Generated for Goldsim Modelling	47
Table 7-4	Option 1 Post Equilibration Changes in Mole Assemblage	48
Table 7-5	Typical Eh-pH Diagrams for Iron and Manganese	48

Table 7-6 Option 3 Source Terms Generated for Goldsim Modelling	. 49
Table 7-7 Option 3 Post Equilibration Changes in Groundwater Mole Assemblage	. 50
Table 8-1 Predictive Models for Epilimnion Depth (De)	. 52
Table 8-2 Predictive Models for Thermocline Depth (Dt)	. 53
Table 8-3 Thermocline Depth and Pit Lake Depth in South Africa	. 54
Table 8-4 Classification of Lake Mixing using Epilimion (D_e) and Maximum Lake Depth (D_{max})	. 55
Table 8-5 Depth of Thermocline and Mixing Classification	. 55
Table 8-6 Mineral Phases Allowed to Precipitate	. 57
Table 8-7 Input Definition for Calculating pH Using Alkalinity and TIC	. 57
Table 8-8 Input Definition for Calculating pH Using Alkalinity and Atmospheric CO ₂	. 57
Table 9-1 Water quality time slices	. 59
Table 9-2 Results of Predicted Water Quality for Option 1	. 59
Table 9-3 Option 2 Change in Mole Assemblage for Each Phase	. 61
Table 9-4 Results of Predicted Water Quality for Option 2	. 61
Table 9-5 Option 3 Change in Mole Assemblage for Each Phase	. 63
Table 9-6 Results of Predicted Water Chemistry for Option 3	. 63
Table 9-7 Option 3 Change in Mole Assemblage for Each Phase in Layer 2	. 64
Table 9-8 Results of Predicted Water Chemistry for Option 4	. 65
Table 9-9 Option 4 Change in Mole Assemblage for Each Phase in Layer 2	. 67
Table 9-10 Complex Processes not included in the Pit Lake Modelling	. 68
Table 10-1 Modelling results for key objectives – water quantity	. 69
Table 10-2 Modelling results for key objectives – water quality	. 70
Table 10-3 Benefit/liability comparitive assessment	. 72
Table 10-4 Nitrogen Transformation within a Treatment Wetland	. 76
Table 10-5 Rate Coefficients Used In Surface Wetland Sizing	. 77
Table 10-6 Removal Rate Used In Floating Wetland Sizing (assuming anoxic shade)	. 78
Table 10-7 Input Conditions for Wetland Sizing	. 79
Table 10-8 Wetland Sizing Based on Different Flows	. 79
Table 11-1 Key Metal, Metalloid and Inorganic Analyte Reduction in Surface Flow Wetlands	. 84
Table 11-2 Typical Metal and Metalloid Reduction in Surface Flow Wetlands	. 85
Table 11-3 Predictive modelling results for a wetland included for Option 3	. 85
Table 11-4 Comparative assessment	. 87

FIGURES

Figure 3-1 Generic Stratigraphic Column for the Kalahari Manganese Field	14
Figure 3-2 Local Stratigraphic Column for the Kalahari Manganese Field in the Project Area	15
Figure 4-1 Integrated modelling approach	17
Figure 5-1 Average monthly rainfall and evaporation	20
Figure 5-2 Daily Annual Maximum Rainfall Depths for analysed rainfall	21
Figure 5-3 K as a Function of Rainfall Duration and Mean of Annual Series	21
Figure 5-4 Final wireframe pitshell for Tshipi	22
Figure 5-5 External catchment plan	24
Figure 5-6 Water Sampling Locations	25
Figure 5-7 Piper Diagram for Groundwater Sampled September 2018	30
Figure 5-8 Nitrate in Groundwater Sampled 2017 – 2019 Up gradient Wells	31
Figure 5-9 Ammonia in Groundwater Sampled 2017 – 2019 Up gradient Wells	32
Figure 6-1 Goldsim model domain example	34
Figure 6-2 Option 1 - Pit lake filling rates	36
Figure 6-3 Option 2 - Pit lake filling rates	37
Figure 6-4 Option 3 – Pit lake filling rates	37
Figure 6-5 Option 4 - Pit lake filling rates	38
Figure 6-6 Mass balance equation	39
Figure 6-7 Example mass balance error check output from the GoldSim modelling (100 realisatio 200 year period	ons) over a . 39
Figure 6-8 Mass balance calculation implemented in GoldSim	40
Figure 7-1 Piper Diagram for Leach Data	41
Figure 7-2 Piper Diagram for Leach Data and Mean Up-Gradient Groundwater Data	45
Figure 8-1 Predicted vs. measured thermocline depths of pit mine	54
Figure 10-1 Typical Surface Water Flow Wetland Treatment Layout	74
Figure 10-2 Tank IN Series (TIS) Model For Sizing Wetland Treatment Systems (after Kadlec a 2009)	ind Knight 75
Figure 10-3 Examples of Floating Wetlands	78
Figure 10-4 Metal Removal Using Floating Wetlands	81
Figure 10-5 Mercury Mass Balance (1994-1997)	81
Figure 12-1 typical abstraction well design	89
Figure 12-2 Floating submersible pump arrangement on an open water surface	90

APPENDICES

Appendix 01: Example of GOLDSIM Output Appendix 02: Example of PHREEQC Output Appendix 03: Impact Assessment and monitoring requirements Appendix 04: IAP Comments Appendix 05: NEMA table Appendix 06: Proposed site layout

DRAWINGS

Drawing 01 – Conceptual Site Models for Water Quality Prediction and pit lake formation

Executive Summary

Tshipi é Ntle Manganese Mining (Pty) Ltd (Tshipi) operates the Tshipi Borwa manganese opencast mine in the Kalahari Manganese Basin in the Northern Cape Province of the Republic of South Africa. Currently, Tshipi's approved commitment is to restore the surface to pre-mining status i.e. to wilderness and grazing and includes complete backfilling of the open pit. SLR Consulting Limited (SLR) has been appointed to prepare a specialist hydrological and geochemical report to form part of an additional EIA/EMP Amendment (EMP3), to examine the equivalent enviro-socio-economic benefits that can/may be achieved for the mine closure by exploring different (selected) backfilling options.

There are four mine closure backfilling options addressed in this assessment, these are:

- 1. Complete backfill;
- 2. Partial backfill;
- 3. Concurrent Backfill; and
- 4. No backfill.

This has included probabilistic hydrological and geochemical modelling to predict the pit lake water quality generated over closure time scales. Comparison with the livestock drinking water standards was used to measure the comparative success of the various mine closure options. This specialist report has been prepared with due reference to the requirements held in Appendix 6 of National Environment Management Act (NEMA, December 2014). The results of the study conclude:

Backfilling closure option	Water quality summary (Failure analyte (s) - exceed Livestock DWS limits)	Comments
		The water is useable for c. 25 years without treatment. Therefore, is more restrictive than Option 3.
Option 1 Complete backfill	• Fe ≈ 25 years	Water quality will largely remain equivalent to groundwater quality or worse over closure timescales as the pit is flow-through. The iron is in solution due to the anticipated reducing redox conditions.
Option 2 Fill to regional groundwater level	 Fe ≈ 25 years 	The water is useable for c. 25 years without treatment. Therefore, is more restrictive that Option 3.
		Water quality will largely remain equivalent to groundwater quality or

Backfilling closure option	Water quality summary (Failure analyte (s) - exceed Livestock DWS limits)	Comments
		worse over closure timescales as the pit is a partial flow-through. The iron is in solution due to the anticipated reducing redox conditions.
Option 3 Concurrent backfill	 NO₃ ≈ 200 years TDS ≈ 200 years Se ≈ 200 years 	The water is useable for c. 200 years without treatment. TDS will have a restricted use but is still viable as a resource. Therefore the water will have less restrictions on its use for a longer period of time than the other options The longer term modelling trend indicates that water quality will eventually deteriorate over an extended time due to evapoconcentration and eventually fail for most analytes.
Option 4 No Backfill	• Cd \approx 100 years • Cl \approx 100 years • F \approx 50 years • Hg \approx 50 years • Mg \approx 100 years • Mo \approx 50 years • NO ₃ \approx 100 years • Pb \approx 100 years • Se \approx 100 years • TDS \approx 50 years	The water is useable for c. 50 years without treatment. The long term modelling trend indicates that water quality will deteriorate over time due to evapoconcentration and eventually fail for most analytes.

A benefit/liability comparative assessment for short- and long-term water use is provided below:

Backfilling closure option	Short term benefits/liabilities	Long term benefits/liabilities
	Water use benefit for only 25 years before treatment	Requires less treatment for long term use
Option 1 Complete backfill	Water extraction requires wells, pumps etc Wells/screens likely to clog up with Iron	Flow through pit means contamination plumes released to wider groundwater system
Option 2	Water use benefit for only 25 years before treatment	Requires less treatment for long term use
Fill To Regional Groundwater level	Water extraction requires wells, pumps etc. Wells/screens likely to clog up with Iron	Flow through pit means contamination plumes released to wider groundwater system
Option 3 Concurrent backfill	Water use benefit for 200 years before treatment Water extraction requires much less infrastructure than option 1 & 2	Requires more treatment for long term use, but this can potentially include passive treatment (refer section 10.3 and Section 11). Hydraulic sink benefit as cone of depression captures wider pollution plumes from other mine areas and sources (WRDs etc)
Option 4 No Backfill	Water use benefit for 50 years before treatment Water extraction requires much less infrastructure than option 1 & 2	Requires most treatment for long term use. Hydraulic sink benefit as cone of depression captures wider pollution plumes from other mine areas and sources (WRDs etc)

Benefit/liability comparitive assessment

It is apparent that the beneficial use of the pit lake for water supply purposes will be limited to short term use (tens to hundreds of years) before water treatment is likely to be required to continue its use. In the short term, concurrent backfill offers the best water quality solution. Complete backfill of the pit may result in enhanced permeability which may enhance storage of water but water qualities are not necessarily automatically useable and that solution would also need a means of extraction (bores, screens, pumps etc).

Preserving a hydraulic sink (Option 3 and 4) may also in fact be a more sustainable long term solution as water (and any "pollutants" contained within) will be drawn towards the pit and effectively containing them as the cone of depression has its centre at the pit. This may have more regional & widespread benefits to groundwater resources. A passive water treatment solution has the potential to address some of the pit lake closure water quality issues in the long term and it is recommended that this approach is tested further at pilot scale in the pit lake.

1.0 Technical specialists

Matthew Goode BSc MSc

Matt has approximately 17 years of experience with expertise of working on mining projects throughout Europe, Africa, Asia and Australia. Matt is a project manager and technical lead for large scale engineering design, water supply and hydrological projects with particular technical expertise in hydrology, water resources, sediment studies and water balance modelling for mining projects. Matt combines the ability to coordinate complex projects with hands-on experience and is effective in leading high performing, multi-disciplinary teams. He is accomplished at directing multiple operations across the world to achieve project and client objectives. He combines excellent analytical skills (collating and interpreting complex data) with strong verbal and written communication skills at all levels of multinational and smaller scale organisations.

Jamie Robinson BSc MSc C.Geol SILC SQP

As a technical leader in the field of geochemistry Jamie has over 29 years' experience in the prediction and treatment of acidic metalliferous mine drainage and designs passive treatment technologies globally. Jamie also uses a number of hydrochemical and geochemical models to model the pit lakes in Australia and South Africa. Jamie has developed a variety of innovative and award-winning investigation and remediation techniques for the assessment and mitigation of soil and groundwater contamination. This work has led to over twenty publications in the scientific community. Jamie has lectured in Australia and UK and is an examiner for the Specialist in Land Condition (SiLC) qualification and a scrutineer for the Royal Geological Society. Jamie also acted as an external examiner for Strathclyde University and Glasgow University. Jamie was awarded the status of Suitably Qualified Person (through the National Quality Mark Scheme) in 2017 and has also acted as Expert Witness in the UK regarding hydrogen cyanide exposure.

1.1 Declaration

We hereby declare that the specialists listed are independent in a form as may be specified by the competent authority.

Signed

Date:	Jamie 12.	
	Date:	
Matthew Goode	Jamie Robinson	
SLR Consulting Limited	SLR Consulting Limited	

Hydrologist

Geochemist

2.0 Introduction

Tshipi é Ntle Manganese Mining (Pty) Ltd (Tshipi) operates the Tshipi Borwa manganese opencast mine in the Kalahari Manganese Basin in the Northern Cape Province of the Republic of South Africa. Currently the mine produces approximately three million tonnes per annum of Run-of-Mine ore and has a remaining opencast life of approximately twenty-five years.

Tshipi currently holds a Mining Right and an Environmental Management Programme Report (EMPr) approved by the Department of Mineral Resources (DMR) and an Environmental Authorisation for an EIA/EMP Amendment (EMP1) submitted in November 2017 and approved in January 2018. Tshipi also holds a Water Use License (WUL) issued in April 2015.

Currently, Tshipi's approved commitment is to restore the surface to pre-mining status i.e. to wilderness and grazing and includes complete backfilling of the open pit.

2.1 Scope of this report

SLR Consulting Limited (SLR) has been appointed to prepare a specialist report to form part of an additional EIA/EMP Amendment (EMP3), to examine the equivalent enviro-socio-economic benefits that can/may be achieved for the mine closure by exploring different (selected) backfilling options. This report will assess the likely water quality of pit lake water once mining operations have ceased.

There are four mine closure backfilling options addressed in this assessment, these are:

- 5. Complete backfill;
- 6. Partial backfill;
- 7. Concurrent Backfill; and
- 8. No backfill.

This technical report has been prepared to examine these four options regarding the closure of the mine and presents the predicted impact on the hydrological environment, in particular the long term, predicted pit lake water chemistry. This has included probabilistic hydrological and geochemical modelling to predict the pit lake water quality generated over closure time scales.

This specialist report has been prepared with due reference to the requirements held in Appendix 6 of National Environment Management Act (NEMA, December 2014).

2.2 Mine pit lake formation

Mine pit lakes differ physically from natural lakes in having a markedly higher ratio of depth to surface area. This is described by percent relative depth, which is defined as the percentage of a lake's maximum depth compared to its width calculated from its surface area by assuming the lake is approximately circular. A typical natural lake has a relative depth of less than 2%, although some may exceed 5%. Pit lakes commonly have relative depths between 10 and 40%. The Tshipi pit will have a percent relative depth of 13%. This will cause the pit lake to easily stratify with the consequential changes in chemical characteristics with depth (layering). Total dissolved solids and electrolytic conductivity tend to increase with depth; values near the base are often several times those at the surface. The hypolimnion (lower stratum) of a stratified lake has the tendency to contain low dissolved oxygen concentrations, oxygen demand (chemical and/or biological) is high enough. The existence of a sub-oxic or anoxic (no oxygen) layer in a pit lake can have significant effects on the lake's chemical and biological characteristics and thus on its potential for remediation and ongoing use.

More detail on the layering is discussed in the geochemical modelling held in Section 8.0.

2.3 Overall objective

In arid climates, pit lake evaporation rates exceed water influx rates by several times, causing a lake to function as a hydraulic terminal sink if not backfilled. This means that water levels in the pit remaining below surrounding groundwater levels. Determining the rate of pit filling, the quasi-static water level, type of pit (hydraulic sink or flow-through) and the chemistry of the pit for closure timescales are key outcomes for this study.

The predicted quality of the water in this lake is of profound importance, especially in this area of scarce water resources.

3.0 Site setting

The Tshipi Borwa Mine is located in the Kalahari Manganese Field (KMF) in South Africa. It is one of the largest open pit mining projects in the KMF basin. In this climate zone, evaporation rates exceed rainfall by many times. This environment is likely to cause a passive pit closure lake to function as a terminal hydraulic sink with water levels in the pits remaining below surrounding groundwater levels and which will develop evapoconcentrated water quality over time. There are no perennial surface water flows in the area and the annual runoff volume is concentrated in the form of ephemeral and storm water surface water flows during the wet periods; even the natural drainage lines surrounding the mining area are not well defined.

3.1 Geological setting

The Tshipi Borwa Mine is located on the south western outer rim of the Kalahari Manganese Field (KMF). The mine is exploiting the manganese from the Hotazel Formation (Transvaal Supergroup). A general Stratigraphic column for the KMF is presented in Figure 3-1.

Figure 3-1 Generic Stratigraphic Column for the Kalahari Manganese Field

3.1.1 Kalahari Deposits

The site is directly underlain by sands, claystone and calcrete of the Kalahari Group.

The manganese resource is hosted by the Hotazel Formation and consists of three ore bodies (Lower, Middle and Upper) that are intercalated with BIF and rhythmites. The Lower manganese orebody varies in thickness from 5 to 40 m and contains the highest manganese grades. It is the main ore horizon that is mined.

The Middle orebody has a maximum of 2 m thickness, is poorly mineralised and is considered uneconomic. The Upper orebody is moderately mineralised and is stockpiled at the mine for possible future use. The dominant ore minerals are braunite and hausmanite. The ore is carbonate rich and sulphide minerals are rare.

The overburden consists of the 0-84 m thick dolomites of the Mooidraai Formation, which overlies the Hotazel Formation. Above the dolomites is the Dwyka Group, which consists of glacial diamitites/tillites that vary in thickness from 0 m to 90 m. These are covered by 30-100 m thick gravels, clays, calcretes and aeolian sands of the Kalahari Group. The Mooidraai Formation and upper parts of the Hotazel Formation have been eroded in the southern portion of the mine area.

This stratigraphy and the hydrogeological characteristics are captured represented in the groundwater model.

Figure 3-2 Local Stratigraphic Column for the Kalahari Manganese Field in the Project Area

3.2 Key sources of background information

The following sources of background information were reviewed as part of the study.

Project	Document Title	Author and Reference	Document Date
Hydrocensus	Tshipi Hydrocensus field report	Metago Environmental Engineers (Pty) Ltd U002-01	June 2006
Ntsimbintle Groundwater Assessment	Groundwater investigation for Ntsimbintle mine	Water Geosciences Consulting Ntsimbintle 27/02/09	February 2009

Table 3-1 Sources of Information

Project	Document Title	Author and Reference	Document Date
Hydrocensus	Tshipi Borwa Mine:	Knight Pièsold Consulting	August 2012
	Hydrocensus study	RI301-00321/02	
Pit Lake Study	Hydrogeological Assessment	SLR Consulting (Africa) (Pty) Ltd	November 2012
	for Mine Closure Planning - Pit Lake Formation - Site Report and Analytical Model	721.20008.00015	
Geochemical Assessment	Geochemical and Groundwater	SLR Consulting (Africa) (Pty) Ltd	March 2014
	Assessment	710.20008.00008	
Groundwater Risk	Tshipi Borwa New Waste Rock	SLR Consulting (Africa) (Pty) Ltd	April 2015
Assessment	Dump Groundwater Risk Assessment	710.20008.00028	
Waste Type Assessment	Waste classification	Golder Associates Africa (Pty) Ltd	February 2016
	assessment for Tshipe e Ntle Mine	1541973-301423-1	
Environmental Monitoring	4th Quarterly Water	SLR Consulting (Africa) (Pty) Ltd	February 2016
Report	Monitoring Report and Annual Water Quality Report: 2015- 2016.	755.20029.00005	
Environmental Monitoring	Tshipi Borwa Mine: Water	SLR Consulting (Africa) (Pty) Ltd	December 2016
Report	Monitoring Report Quarter 2: October 2016	710.20008.00035	

4.0 **Overall modelling approach**

The individual technical components (Surface water, groundwater, climate and geochemistry) will be integrated into one model as this best represents the likely behaviour of the water environmental conditions at Tshipi under each selected closure scenario. SLR has utilised the GoldSim modelling platform to achieve this. The site-specific GoldSim model will combine and integrate the predicted behaviour into one model. The approach and how each technical element's dependencies are presented in Figure 4-1.

Figure 4-1 Integrated modelling approach

This study has utilised a number of hydrotechnical specialist modelling packages and methods to achieve the project objective, these models and methods are described in the following sections.

4.1.1 Climate model – type and description

Accurate, future rainfall predictions are required for mine closure applications. Mathematical models of the physical processes involved in generating rainfall are often used to make these evaluations. In addressing the response of these processes to weather inputs, it is seldom sufficient to examine only responses to observed weather events. For closure timescales (often measured in centuries from date of closure) It is desirable to have the capability of generating synthetic weather & rainfall data with the same statistical characteristics as the actual weather at the location of the mine. Therefore, the purpose of this study a computer simulation model called WGEN (Weather Generator) has been adopted to generate values for precipitation. WGEN is a stochastic weather generator originally developed in the 1980s in FORTRAN at the US Department of Agriculture Agricultural Research Service (Richardson and Wright 1984). It uses monthly and annual statistics to generate daily time series of precipitation, minimum temperature, maximum temperature and solar radiation into the future. This will be developed in GoldSim and used in the centralised model.

The precipitation component of WGEN is a Markov chain-gamma model. A first order Markov chain is used to generate the occurrence of wet or dry days. When a wet day is generated, the two-parameter gamma distribution is used to generate the precipitation amount. With the first-order Markov chain model, the probability of rain on a given day is conditioned on the wet or dry status of the previous day. A wet day is defined as a day with c. 0.25 mm of rain or more.

Further comparison of modelled vs observed data include:

- Modelled precipitation amounts and seasonal variation were accurately represented in the model
- No significant difference occurred between observed and generated mean monthly and annual precipitation amounts at any location
- Mean numbers of wet days per month accurately simulated
- Persistence of wet days (max length of consecutive wet days for each month) & occurrence of daily precipitation in excess of 50 mm compared favourably
- Mean monthly precipitation amounts are excellent representations of the observed data

The WGEN model has been implemented through the GoldSim modelling platform (section 4.1.5).

4.1.2 Geochemistry model – type and description

The prediction of water quality in the pit lake which will from upon mine closure was completed using PHREEQC Version 3 geochemical modelling software. PHREEQC is a computer program written in the C programming language that is designed to perform a wide variety of aqueous geochemical calculations. PHREEQC is based on an ion-association aqueous model and has capabilities for; speciation and saturation-index calculations, reaction-path and advective-transport calculations involving specified irreversible reactions, mixing of solutions, mineral and gas equilibria, surface-complexation reactions, ion-exchange reactions, and also inverse modelling.

4.1.3 External catchments - surface water runoff method

The SCS Runoff Curve Number (CN) method has been adopted to estimate the rainfall-runoff generated from the external catchments of the Pit which likely discharge into the Pit post closure. The method was developed by the United States Department of Agriculture (USDA) Soil Conservation Service (SCS) and is a method of estimating rainfall excess from rainfall. The SCS method is a widely used and efficient method for determining the approximate amount of runoff from a rainfall event in a particular area. Although the method is designed for a single storm event, it has been used here to find average annual runoff values. The data requirements for this method require only rainfall and CN. The CN is based on the area's hydrologic soil group, land use, hydrologic conditions and professional judgement.

4.1.4 Groundwater model – type and description

FEFLOW has been used to predict the head driven groundwater rebound inflow rates into the Tshipi pit. FEFLOW (Finite Element subsurface FLOW and transport system) is an interactive groundwater modelling software package. FEFLOW is used in the mining industry to describe the spatial and temporal distribution and reactions of groundwater contaminants, to model geothermal processes, to estimate the duration and travel times of chemical species in aquifers, to plan and design remediation strategies and interception techniques, and to assist in designing alternatives and effective monitoring schemes.

4.1.5 GoldSim model description

GoldSim is the premier Monte Carlo simulation software solution for dynamically modelling complex systems for mining projects. GoldSim supports decision-making and risk analysis by simulating future performance

while quantitatively representing the uncertainty and risks inherent in all complex systems associated with pit lake closure situations. Monte Carlo simulations are a class of computational algorithms that rely on repeated random sampling of those components of the model with inherent uncertainty in their estimation when undertaking the simulations. Monte Carlo methods are especially useful for simulating systems with many coupled degrees of freedom, such as water.

GoldSim provides a visual and hierarchical modelling environment, which allows SLR to construct models by adding "elements" (model objects) that represent data, equations, processes or events, and linking them together into graphical representations that resemble influence diagrams that represents the Tshipi conceptual closure scenarios. It is primarily a continuous simulator and is therefore ideal for pit lake closure studies. Because GoldSim was originally developed for complex environmental applications, in which many inputs are uncertain and/or stochastic, in addition to being a dynamic simulator, GoldSim allows inputs defined as distributions and the entire system simulated a large number of times to provide probabilistic outputs (realisations).

4.1.6 Extreme rainfall method (PMP)

The probable maximum precipitation (PMP) is defined as the greatest depth of precipitation for a given duration meteorologically possible for a design watershed. The World Meteorological Organization's (WMO) Manual on Estimation of PMP describes numerous methodologies to estimate the PMP in locations worldwide. The PMP has been used in this study to assess the likelihood of a pit spillage occurring during the most extreme rainfall event.

A robust method for determining the PMP is the statistical method of Herschfield (1965) described in the WMO report¹. This approximate method provides an estimate of PMP for point rainfall or small watersheds up to 1000 km2 in area using the following equation:

PMP = Pmean + K x Sdev

Where:

- Pmean = the mean of the annual maximum 24-h rainfall series (mm) subject to adjustment
- K = a factor dependent on the magnitude of Pmean
- Sdev = the standard deviation of the annual maximum 24-h rainfall series (mm)

Available rainfall records have been used for the analysis and include daily rainfall totals dating back to 1931 providing a total record length of 69 years for PMP analysis. This is deemed sufficient for the purpose as a direct estimation can be made from records lengths of greater than 50 years (record lengths of less than 50 years should be adjusted due to its small sample size).

¹ Section 4 of Manual on Estimation of Probable Maximum Precipitation (PMP); World Meteorological Organization, 2009; [ISBN 978-92-63-11045-9]

5.0 Key modelling data inputs

5.1 Rainfall and evaporation

Rainfall data utilised for this project is provided by the South African Weather Service. The period of record extends from 1931 until 2018. Daily rain (mm) data for station [Number: 0393083 1] is provided in Figure 5-1 displayed as monthly averages. This figure also includes the monthly average evaporation rates (ARC, 2008) which are several times greater than rainfall.

Figure 5-1 Average monthly rainfall and evaporation

5.1.1 PMP estimate

The available rainfall record was analysed to determine the annual maximum 24-h rainfall depth and these results are shown in Figure 5-2. The mean of the annual maximum 24-h rainfall series and the standard deviation were calculated to be approximately 52 and 24 mm respectively.

The final parameter of the equation, K, is determined using the value of Pmean, 52mm. Figure 5-3 shows the relationship between K and Pmean relative to rainfall duration. As the rainfall records are daily totals, the 24-h curve is used to determine the value of K, which is estimated to be 17.5.

With the 3 parameters determined, the PMP at site was estimated to be approximately 470 mm for a 24-h rainfall duration. This was implemented in the model with a probability of occurrence of 1 in 10 000 years.

Figure 5-2 Daily Annual Maximum Rainfall Depths for analysed rainfall

Figure 5-3 K as a Function of Rainfall Duration and Mean of Annual Series

5.2 Final pit geometry

The end of pit wireframe data was provided by the client has been used as the "base" pit shell for modelling purposes. An oblique CAD image of this is provided in

Figure 5-4.

Figure 5-4 Final wireframe pitshell for Tshipi

5.2.1 Closure geometries and concepts

As described previously, there are four mine closure options addressed in this assessment, these are:

- 1. Complete backfill;
- 2. Partial backfill;
- 3. Concurrent Backfill; and
- 4. No backfill.

The concepts and key modelling inputs for these scenarios are provided in Drawing 01.

5.3 In-pit waste rock porosity

Clearly, the porosity of any waste rock backfilled into the pit will affect the rate of water which infills the pore spaces and thus the volume of water allowed into the spaces between each clast of rock. For the purposes of this study, a conservative porosity value of 30% has been used for all the selected closure concepts.

5.4 Mineralogy

Mine waste rock drainage quality is generally a function of mineral present dissolution (or precipitation) during interaction of rocks with water. X-ray Diffraction (XRD) analysis identifies the main crystalline mineral phases in each sample. SLR has collated information from the general area which shows that the following minerals are likely to be present in the waste rock.

 Table 5-1

 Typical Mineralogy for Lithologies in Tshipi Waste Rock

Mineral	Ideal Mineral Compositions	Relative Abundance
Calcite	CaCO ₃	High
Ankerite	$Ca(Fe,Mg,Mn)(CO_3)^2$	Low
Chlorite	$(Mg,Fe)_5AI(AISi_3O_{10})(OH)_8$	Low
Cristobalite	SiO ₂	Moderate
Hematite	Fe ₂ O ₃	High
Magnetite	Fe ₃ O ₄	Moderate
Microcline	KAlSi ₃ O ₈	Moderate
Palygorskite	(Mg,Al) ₂ Si ₄ O ₁₀ (OH) ₄ (H ₂ O)	Moderate to high in clays
Plagioclase	(Na,Ca)(Si,Al) ₄ O ₈	Low
Quartz	SiO ₂	High
Smectite	$(Na,Ca)_{0.33}(Al,Mg)_{2}(Si_{4}O_{10})(OH)_{2} \cdot nH_{2}O$	Moderate to high in clays

5.5 Surface water inputs

5.5.1 Storm water management

It is imperative at an early stage in the modelling process to assess storm water management and how that will flow into or around the closed pit. A brief appraisal for storm water management is provided in the following section as:

- a) The status quo approach where some of the current storm water flows from the surrounding area (veld) and the WRDs into the pit. This option is attractive due to the limited cost, on-going progress of the closure option, the addition of additional storm water infrastructure not being required.
- b) Various passive management solution (s) where the storm water flows from the surrounding area (veld) and the WRDs are maximised to allow maximum storm water flows into the pit. The area contributing storm water into the pit lake is made larger through an updated storm water management system and thus contributing more storm water into the pit lake. The surrounding WRD's are shaped and manipulated so that they drain into the pit lake a s much as possible. The veld area contributing into the pit are also maximised through channels flowing towards the pit. This option does not add any real benefit to the formation of a pit-lake as the storm water runoff is such a small driver in terms of the pit lake formation. The cost of building storm water infrastructure for minimal increase in storm water runoff into the pit is deemed not practical.

The preferred option is with the storm water infrastructure staying the same as the status quo infrastructure. The status quo approach makes use of the current storm water flows from the surrounding area (veld) and the WRDs into the pit. This option is attractive due to the limited cost, on-going progress of the closure option, the addition of additional storm water infrastructure not being required.

The catchment areas draining into the pit were analysed to estimate the volume of storm water runoff that may enter the pit. These areas are available in Figure 5-5 External catchment plan.

Figure 5-5 External catchment plan

The catchment plan was modelled from a storm water perspective showing the amount of storm water that would enter the pit. The model (implemented in the GoldSim platform) was based on the SCS equation and the Curve Number (CN) was area weighted to incorporate all land types. The CN was set to be 50 for veld and 83 for the Waster Rock Dumps (WRD) in their present configuration. The sub-catchment areas used in the model are shown in Figure 5-5. The veld sub-catchments totalled 76.6 ha and the WRD sub-catchments added up to 148.5 ha.

5.6 Groundwater inputs

The monitoring of groundwater and surface water (when it is present) at the site has been undertaken at the following locations shown in Figure 5-6.

5.6.1 Aquifer types

The area within the Tshipi Borwa Mine is located is generally classified as poor/minor aquifer region. Two aquifers are distinguished in the project area and these are:

- Shallow aquifer: Kalahari Beds , sand and calcrete; and
- Deep fractured aquifer II: Dwyka clay and the Mooidraai dolomite formation.

The Kalahari sand and the sediment beds with its associated underlying calcrete layer, overlie the low permeability Dwyka clay bed. Beneath a thick clay layer, which acts as a confining layer, the Mooidraai dolomite formation and Dwyka clay contact forms the deeper fractured bedrock aquifer.

Pumping tests indicated that the average yield for the shallow aquifer system was less than 0.1 l/s and less than 1 l/s for the deeper aquifer. The higher yielding deeper aquifer is of local importance for water supply to farmers in the area.

5.6.2 **Groundwater levels**

The groundwater elevation has been monitored over a number of years; the pre-mining and regional groundwater level is measured at 1045 m AMSL (Above Mean Sea Level). This is approximately 35 m below ground level.

5.6.3 **Groundwater inflow rates**

It is understood that there is no dewatering being undertaken at the currently operating pit via dewatering bores. The sump at the base of the pit collects rainfall runoff and any groundwater. During the site visit (30/01/2019) there was no seepage from the pit wall or discrete fractures within the pit.

Groundwater modelling results have been used to estimate the rate of inflow into the pit as head-driven inflows once mining has ceased and a pit lake begins to form. These rates are provided in Table 5-2.

Hydraulic head (m AMSL)	Inflows (m3/day)
855	396
880	213
910	1631
943	4423
970	10202
995	8851
1009	8915
1019	6628
1027	5974
1032	11381
1038	4552
1041	759
1043	379

Table 5-2 Head-driven groundwater inflow rates into the Pit²

5.6.4 Groundwater quality

Groundwater quality has been monitored from the installed wells around the Tshipi Pit over a number of years. This information is summarised below. In addition, the results have been compared to the relevant South African regulatory standards for water quality. Only those analytes which have corresponding regulatory standards are included in Table 5-3.

Those analytes which have not been detected over the sampling period (2008 - 2018), are not included in the tables or future analysis and predictions. A more extended table of results used in the geochemical modelling is present in section 7.0

² This value considers the influence of the neighbouring Mamatwam pit

Sample Point													Determinan	ds											
		AI	As	В	Ва	Cd	Chloride as Cl	Cr (total)	Cu	Electrical Conductivity	Fe	Fluoride as F	Free & Saline Ammonia	Mn	Na	Ni	Nitrate as N	Pb	рН	Sb	Se	Sulphate as SO4	Total Dissolved Solids	Zn	Nitrite as N
U	Inits	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mS/m	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	ph unit	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
Livestock D Star	prinking Water ndards	5	1		5	0.01	1500 – 3000	1 (CrVI)	0.5 – 5		10	2		10	2000	1	100	0.1			0.05	1000	1000 – 3000	20	
	Count	4	5	21	19		22		6	21	9	17	4	7	22	4	21		21	1	2	22	21	20	
	Min	0.01	0.01	0.024	0.019	n.d	22		0.01	52	0.019	0.2	0.1	0.009	11	0.009	0.7	nd	7.2	0.003	0.014	8	284	0.012	012 0.4 0.7
	Average	0.09	0.012	0.24	0.081		44	n.u	0.041	75	0.093	0.3	0.2	0.027	30	0.022	5.4	n.u	8.1	0.003	0.016	48	463	0.4	
	max	0.24	0.014	2.90	0.13		184		0.11	154	0.29	1	0.3	0.047	153	0.054	12		8.5 0.0	0.003	0.018	336	1010	5.7	
NT13	Count			1	1		1	1	1	1	1	1		1	1		1		1	nd		1	1	1	1).2
	Min		in d	0.017	0.093	n.d 61 61	61	1.09	0.063	80	6.92	0.3		0.17	39	h at	2.2	un al	8.3		in d	58	504	0.2	
	Average	n.d n.d	n.a	0.017	0.093		61	1.09 0.063	80	6.92	0.3	n.u	0.17	39	n.a	2.2	n.u	8.3	n.a	n.a	58	504	0.2	2	
	max	1		0.017	0.093		61	1.09	0.063	80	6.92	0.3		0.17	7 39	2.2		8.3			58	504	0.2		
NT14	Count			1 1	1	1 56	1			1	1	1			1		1		1		1	1	1	1	
	Min	n.d		0.23	0.064		56		nd	101	0.15	0.2			45		16		7.5		0.046	47	592	0.2	
	Average		n.d	0.23	0.064	n.d	56	n.d	n.d	101	0.15	0.2	n.d	n.d	45	n.d	16	n.d	7.5	n.d	0.046	47	592	0.2	n.a
	max	1		0.23	0.064		56			101	0.15	0.2			45		16		7.5		0.046	47	592	0.2	
	Count	2	5	25	26		26	-	1	25	10	18	6	5	26	5	25		25		20	25	24	13	3 012 .6 .4
	Min	0.05	0.02	0.05	0.02		126		0.014	70	0.01	0.2	0.1	0.01	38	0.01	45		6.8		0.01	25	354	0.012	
NT15	Average	0.07	0.06	0.13	0.22	n.a	677	n.a	0.014	357	0.25	0.3	2.4	0.11	63	0.03	168	n.a	7.4	n.a	0.06	45	2712	0.6	
	max	0.09	0.13	0.34	0.51		805		0.014	412	1.90	0.9	14	0.47	98	0.08	197		8.2		0.24	53	4166	3.4	
	Count			1	1		1			1	1	1			1		1		1		1	1		1	
1747	Min	1.		0.27	0.21		172			186	0.11	0.4			85		111		7.4		0.06	52		0.1	
NI17	Average	n.a	n.a	0.27	0.21	n.a	172	n.a	n.a	186	0.11	0.4	n.a	n.a	85	n.a	111	n.a	7.4	n.a	0.06	52	n.a	0.1	n.a
	max]		0.27	0.21		172			186	0.11	0.4			85		111		7.4		0.06	52		0.1	
	Count			1	1		1		1	1	1	1			1		1		1			1		1	
	Min	1.		0.25	0.17		304		0.025	243	0.037	0.4			88		101		7.2			126		0.1	
NT18	Average	n.d	n.a	0.25	0.17	n.d	304	n.a	0.025	243	0.037	0.4	n.a	n.a	88	n.a	101	n.a	7.2	n.a	n.a	126	n.a	0.1	n.a
	max	1		0.25	0.17		304	1	0.025	243	0.037	0.4			88		101		7.2			126		0.1	0.1
	Count	2	1	10	10		11		4	10	10	11		4	11		10		10		1	11	10	9	9
NT6	Min	0.02	0.01	0.07	0.012	n.d	50	n.d	0.015	73	0.014	0.3	n.d	0.001	34	n.d	1.3	n.d	7.3	n.d	0.074	15	432	0.01	n.d
	Average	0.069	0.01	0.70	0.11		82		0.027	99	0.15	0.5		0.012	63		9.7		7.9		0.074	71	631	0.09	

Table 5-3Summary of Groundwater Chemistry

SLR

Samp	le Point												Determinan	ds											
	max	0.12	0.01	2.51	0.20		182		0.045	157	0.52	0.7		0.025	158		21		8.7		0.074	312	1068	0.2	
	Count	4	10	23	19		25		3	24	15	24	7	18	25	5	14		24		10	22	23	20	1
NTO	Min	0.02	0.012	0.14	0.008		62		0.015	56	0.013	0.3	0.6	0.002	45	0.010	0.10	n.d	7.6		0.011	2	314	0.01	0.4
N18	Average	0.09	0.02	1.53	0.091	n.d	171	n.d	0.024	123	0.28	0.7	4.3	0.12	125	0.016	5		8.1	n.d	0.029	227	781	0.2	0.4
	max	0.15	0.043	3.11	0.31		275	1	0.029	179	2.16	1	24	0.41	237	0.022	32		8.7		0.076	481	1158	1.8	0.4
	Count			1			1			1		1			1		1		1		1	1	1	0	
ΝΤΟ	Min	n nd	nd	0.40	nd	nd	40	nd	nd	82	nd	0.2	nd	nd	74	nd	14	nd	7.9	nd	0.042	25	420		
1119	Average	n.u	n.u	0.40	n.u	n.u	40	n.u	n.u	82	n.u	0.2	n.u	n.u	74	11.u	14	n.u	7.9	n.u	0.042	25	420		n.u
	max			0.40			40			82		0.2			74		14		7.9		0.042	25	420		
	Count	6	3	17	17		17			17	7	17	3	10	17	3	16	1	17		8	17	17	16	
тено1	Min	0.070	0.011	0.39	0.01	nd	125	n.d	n.d	88	0.12	0.3	0.1	0.011	63	0.01	18	0.21 0.21	7.6	nd	0.010		384	0.037	n.d
131101	Average	0.20	0.015	1.44	0.082	11.0	141			102	7.58	0.6	0.1	0.56	87	0.014	21		7.9	n.u	0.019	65	594	0.5	
	max	0.33	0.021	2.15	0.27		160			111	21.9	0.8	0.2	3.52	125	0.02	2	0.21	8.3		0.038	78	681	3.2	
TSH02	Count	2		8	9	1	9		1	9	4	8	1	5	9	1	8		9 1	1	3	9	9	5	_
	Min	0.01	nd	0.16	0.011	0.002	106	n d	0.024	86	0.030	0.3	8.9	0.014	65	0.01	0.3	n.d	7.9	0.003	0.011	28	435	0.01	n d
	Average	0.021		0.23	0.103	0.002	165	11.0	0.024	141	0.051	0.4	8.9	0.089	89	0.01	54	11.0	8.4	0.003	0.012	66	875	0.03	11.0
	max	0.032		0.35	0.16	0.002	345		0.024	169	0.092	0.5	8.9	0.27	122	0.01	90		8.8	0.003	0.012	128	1188	0.06	
теноз	Count	3		19	20		20		2	20	16	20	6	20	20	5	12	1	20	3	4	7	20	13	
	Min	0.013	3 5	0.23	0.073	n.d	26	n.d	0.015	38	0.049	0.2	1.2	0.095	14	0.015	0.1	0.015	7.7	0.003	0.013	2	215	0.01	n.d
	Average	0.046		0.38	0.19		110		0.018	64	1.56	0.7	4.3	0.30	50	0.035	0.6	0.015	8.0	0.007	0.025	6	339	0.04	
	max	0.070		0.59	0.59		131		0.021	77	5.18	1.2	7.9	0.74	127	0.10	2.7	0.015	8.9	0.015	0.033	21	444	0.2	
	Count	6		19	20	1	20	1	1	20	17	17	7	19	20	6	10	1	20	1	6	7	20	16	n.d
TSH04	Min	0.101	n.d	0.091	0.01	0.001	33	0.002	0.017	78	0.04	0.2	24	0.042	16	0.002	0.1	0.046	7.5	0.003	0.01	2	268	0.01	
	Average	0.48		0.41	0.16	0.001	139	0.002	0.017	126	4.54	0.4	96	0.89	70	0.052	1.6	0.046	8.1	0.003	0.02	8	494	0.04	
	max	1.37		0.64	0.60	0.001	168	0.002	0.017	233	21.3	0.7	163	3.22	99	0.11	13	0.046	9.4	0.003	0.029	22	734	0.1	
	Count	5		9	10		10			10	8	2		9	10	3	8		10		5	10	10	2	
TSH05	Min	0.098	n.d	0.07	0.021	n.d	321	n.d	n.d	165	0.027	0.2	n.d	0.044	37	0.012	0.2	n.d	7.5	n.d	0.010	44	842	0.01	n.d
	Average	0.24		0.15	0.058		353	-		182	2.80	0.2		0.37	92	0.021	22		8.5	-	0.020	63	994	0.01	
	max	0.67		0.21	0.11		379			204	8.37	0.2		1.01	123	0.030	77		9.4		0.029	76	1362	0.01	
	Count	-	1	7	7		7			7	5	7	6	7	7	2	4	1	7		3	4	7	4	
TSH06	Min	n.d	0.011	0.52	0.047	n.d	167	n.d	n.d	139	0.060	0.3	50	0.089	62	0.002	0.1	0.053	6.9	n.d	0.034	3	350	0.03	n.d
	Average		0.011	0.70	0.12	179	179	-		151	1.57	0.4	100	0.50	64	0.016	14	0.053	7.8	-	0.043	3	469	0.04	
	max		0.011	0.82	0.42		186		ļ	163	4.42	0.6	115	1.82	67	0.030	55	0.053	8.1		0.051	4	4 677	0.04	
	Count	4		4	4		4			4	1	4	4	4	4	1	4		4	1	1	4	4	1	1
TSH07	Min	n.d n.d	n.d	0.33	0.027	n.d	1.d 77.6	n.d	n.d	64	0.44	0.2	0.8	0.056	58	0.003	0.3	n.d	7.5	0.003	0.042	25	430	0.04	5.6
	Average			0.508 0.	0.11		131			120	0.44	0.5	3	0.35	60	0.003	33		7.8	0.003	0.042	34	728	0.04	5.6

Samp	ole Point	Determinands																							
	max			1.01	0.16		153			152	0.44	0.6	8	0.52	64	0.003	60		8.1	0.003	0.042	43	949	0.04	5.6
	Count	n.d		3	3		3		n.d	3	1	3	2	2	3		3		3	2	1	3	3	2	
TSH08	Min		ام مر	0.164	0.006	in d	133	n d		97	0.034	0.2	11	0.022	57		0.4		8.0	0.002	0.033	56	511	0.02	nd
	Average		n.u	0.248	0.027	n.u	138	n.a		103	0.034	0.3	14	0.025	67	n.u	8.7	n.u	8.2	0.002	0.033	87	578	0.03	n.u
	max			0.413	0.068		144			113	0.034	0.5	16	0.027	73		14		8.4	0.002	0.033	105	641	0.04	
	Count		2	5	4		5		n.d	5		3	5	4	5		5		5		2	5	5	3) n.d
TCUOD	Min	n.d	0.015	0.14	0.016	in d	183	n.d		138	n.d	0.4	0.1	0.008	70	, n d	0.1		7	ام مر	0.051	21	802	0.009	
12009	Average		0.015	0.76	0.070	n.u	251			172		0.7	12	0.15	94	n.u	66	n.u	8	-	0.051	74	1065	0.07	
	max		0.015	2.55	0.173		317			237		0.9	20	0.42	158		146		8.5		0.051	231	1608	0.13	
	Count			5	5		5			5		2	4	5	5		5		5	3	2	5	5	3	2
TSH10	Min		0	0.228	0.024	nd	165	n.d n	n d	115	nd	0.5	18	0.005	80	nd	0.3 18	nd	7.7	0.003	0.052	24	601	0.01	0.6
	Average	n.u	0	0.243	0.065	n.u	194		n.a	138	n.u	0.5	21	0.049	83	n.u		n.a	8.2	0.004	0.052	27	754	0.03	0.6
	max			0.272	0.159		210			174		0.5	24	0.14	87		66		8.5	0.004	0.052	29	1014	0.04	0.6

Those results which are shaded exceed the relevant guidance values.

Determinands removed from the table as they were not detected at all over the monitoring period: Au, Be, Bi, Cs, Dy, Er, Eu, Gd, Ge, Hg, Ho, In, Ir, La, Lu, Nb, Nd, Pr, Re, Rh, Sm, Sn, Ta, Tb, Te, Th, Tl, U, Yb

SLR Ref No: 405.03471.000	39
June 20	19

When considering the water chemistry of the groundwater that is likely to enter the pit during pit lake development, Piper Plots have been prepared. These help to establish which waters are indicative of the groundwater up-gradient and also which waters are considered part of the same water quality facies. The diagram is presented below.

Figure 5-7 Piper Diagram for Groundwater Sampled September 2018

This coupled with the known locations of the boreholes suggest the up gradient TSH09 and TSH10 are most representative of the likely groundwater which will enter the pit once pumping has ceased. Whilst Nt15 is upgradient, the Piper Diagram indicates this is groundwater has a distinct signature and seems different to the groundwater sampled immediately down gradient. There appears to be some degradation of the nitrogen species from NT15 towards the mine and therefore it is considered this would continue after pumping has ceased. Therefore the NT15 is not used in generating a groundwater quality source term.

The nitrate concentration in the immediate up-gradient wells does appear to be reducing with time during 2017 and 2019 as shown in Figure 5-8. In addition, the unionised ammonia also appears to be reducing with time as shown below. A recent sample of water was taken from the pit pumped water and this had relatively

elevated nitrate. It is possible therefore explosive residues might also be contributing to the nitrogen compounds in the area.

Figure 5-9 Ammonia in Groundwater Sampled 2017 – 2019 Up gradient Wells

The redox condition of the groundwater in this area may be reducing and hence ammonification may be occurring in the groundwater, however overall the nitrogen concentration does appear to be decreasing.

A pre-mining hydro census was conducted in 2009 for the Tshipi mine and included groundwater quality testing. The sampling results showed that the groundwater quality in the area ranged from marginal to dangerous for domestic use (DWAF classification of Class 2 and 4). This was mainly due to elevated nitrate levels. In addition, calcium and magnesium exceeded the resource water quality objectives stipulated in the Tshipi Integrated Water Use Licence.

A review has also been undertaken of the groundwater quality monitored at the adjacent Mamatwan Mine.³ This has concluded that the water quality is classified as "Above Regional Standard" in general due to elevated nitrate (NO3-N), electrical conductivity (EC), magnesium (Mg), sodium (Na), calcium (Ca), boron (B), and chloride (Cl) concentrations. The elevated nitrate concentration is of a natural origin as can be expected for most semi-arid regions. Two background 'hydrocensus' sampling phases of private properties around the mine lease and further away has confirmed the elevated nitrate concentration as a 'natural phenomenon' for the area.

The elevated nitrate concentration could lead to elevated ammonia/ammonium through the process of bacterial nitrate reduction in the presence of natural organic matter. Therefore the ammonia concentrations are also an influence from natural process. This is also relevant given that it is understood that the Mamatwan Sewage Plant and the sewage ponds are lined and are not leaking. It is noted that the treated effluent from the plant is used as irrigation water for the veld which might contribute to the nitrogen loading to the groundwater.

³ GHT (2015) Hotazel Manganese Mines. Assessment Report: Ground/Surface Water monitoring Phase 30 as part of the water management plan. 1st Quarter 2015 for BHP Billiton Pty Ltd. Ref: RVN725.1/1558

Elevated boron (and Mg, Na, Ca and Cl) should not be unexpected in semi-arid regions. Boron is often used as a tracer for saline intrusion studies because it behaves conservatively and is also present at elevated concentrations in sea water.⁴ Therefore their increased concentration in groundwater in the region should not be considered anomalous.

There is also a possibility that elevated nitrogen compounds could be related to the use of explosives in this and other mining areas in the region. Therefore under closure timeframes the nitrogen compounds in the groundwater could be expected to reduce (as has been evidenced in the latest monitoring) to the natural background concentrations. Therefor it is prudent that these "operational" influences have been reconciled out of closure predictive modelling.

⁴ Richter B.C and C.W Kreitler 1991. Identification of sources of groundwater salinization using geochemical techniques. Ref: EPA/600/2-91/064

6.0 Pit lake water balance

A water balance model for each of the closure scenarios was modelled using GoldSim software platform (Version 12.1). An example of the developed Tshipi GoldSim modelling domain is provided in Figure 6-1.

Figure 6-1 Goldsim model domain example

For the Tshipi models, 'Monte Carlo simulations' are used to describe the method for propagating (translating) uncertainties in model inputs (in particular the future climate) into uncertainties in model outputs (results). Hence, it is a type of simulation that explicitly and quantitatively represents uncertainties. Monte Carlo simulation relies on the process of explicitly representing uncertainties by specifying inputs as probability distributions. If the inputs describing a system are uncertain, the prediction of future performance is necessarily uncertain. That is, the result of any analysis based on inputs represented by probability distributions is itself a probability distribution.

The entire Tshipi pit lake closure system has been simulated a large number (100) of times using a monthly time-step. Each simulation is equally likely, referred to as a realization of the system. For each realization, all of the uncertain parameters are sampled (i.e., a single random value is selected from the specified distribution describing each parameter). The system is then simulated through time (given the particular set of input

parameters) such that the performance of the system can be computed until a quasi-static level is reached. This result is a large number of separate and independent results, each representing a possible "future" level for the level of the lake. The results of the independent system realizations are assembled into probability distributions of possible outcomes. As a result, the levels of the lake are not single values, but probability distributions.

6.1 Water balance fundamental equations

The GoldSim modelling platform allows an expert user to build a representative model of the specific integrated water system expected at Tshipi. On cessation of mining, groundwater levels will begin to rebound. The water level will begin to rise back towards the pre-mining level. If there is void space, a pit lake will form and the final water level of the pit lake will be determined by the eventual balance between all water inflows and evaporation and any other losses. A simple water balance is Inflows = Outflows ± Change in storage

The main water sources (inflows) to the proposed pits are:

- Direct rainfall onto the surface of a pit lake/flood of pit;
- Runoff from rainfall falling onto the pit walls (high-wall runoff);
- Groundwater which seeps into the pits;
- Any storm water from external catchments that is directed towards the pit.

Water losses (outflows) occur as follows:

- Evaporation from the pits;
- Seepage to groundwater through the base of the pit (assumed to be zero here in closure timeframes).

If inflows exceed outflows, on average, then a pit lake will form and the level of water in the pit lake will rise. Note that all of these components of the water balance, with the exception of storm water into the pit, are functions of the level of the pit lake. As the pit lake level rises inflows usually diminish until a quasi-stasis is reached. The lake level at which this equilibrium exists (and the quality of that water) is of great importance to closure planning.

There are two basic types of pit lakes (1) Terminal hydraulic sink; and (2) Flow-through. Terminal pit lakes are normally found in arid climates. Initially, inflows will be high, because the hydraulic gradient driving inflows from the aquifer would be at a maximum due to the water level being at base of the pit. Due to evaporative loses and pit geometry the terminal lake becomes a cone of depression in the water table with the groundwater gradient towards the pit (a groundwater discharge zone). As evaporation is the only discharge pathway, soluble metals accumulate due to evapoconcentration.

The rate of infilling of the pit is greatest during early recovery and decreases with time. The pit lake water balance at Tshipi can be described as: $P + SW + PW + GW - E = \Delta S$

Where:

- P = direct precipitation on lake surface
- SW = storm water from external catchments
- PW = Runoff from the pit walls
- GW = Groundwater inflow
- E = Evaporation
- ΔS = change in lake storage volume (determined by the geometry of the final pit void/backfill arrangements)

Closure pit lake analysis consists of two important components:

- estimating the final pit lake elevation; and
- timing of pit lake formation.

The water levels in the Tshipi pit were calculated based on the volume of the pit per depth and accumulated water within them for all four closure scenarios. This calculation was done at monthly time steps until quasistasis conditions were achieved. The "stasis" condition is defined as the hydraulic condition when mean annual, or longer period, outflows equals inflows.

6.2 Pit lake – final water level predictions

The following four figures illustrate the four differing filling scenarios and rates.

Figure 6-2 Option 1 - Pit lake filling rates

Figure 6-3 Option 2 - Pit lake filling rates

Figure 6-4 Option 3 – Pit lake filling rates

Figure 6-5 Option 4 - Pit lake filling rates

Table 6-1 displays the results of the GoldSim modelling and highlights the most important closure information required for planning purposes. These results are discussed in more detail in the summary section.

Backfilling closure option	Time to fill to quasi-static water levels (mean level)	Quasi- static water level in pit (m AMSL)	Regional groundwater level (m AMSL)	Terminal hydraulic sink or flow- through pit	Pit lake spilling
Option 1 Complete Backfill	39 years	1045	1045	Flow- through	-
Option 2 Fill to Regional Groundwater level	36 years	1045	1045	Partial flow- through	-
Option 3 Concurrent backfill	153 years	1039	1045	Hydraulic sink	No
Option 4 No Backfill	42 years	873	1045	Hydraulic sink	No

Table 6-1 Pit filling rates and final levels

6.2.1 Pit spilling

Under all the closure options that preserve a topographical sink, there is no risk of a pit spill from a PMP rainfall event.

6.2.2 Mass balance check

Each model has been checked for mass balance error. Figure 6-7 shows a mass balance output example from a GoldSim model built for this study – the error should be (and is) extremely small over the period indicating that mass is not lost or created in the system. The mass balance equation has been implemented within the model is shown in Figure 6-6, where Q = flow, V = discrete change and S is storage, where:

Figure 6-6 Mass balance equation

Figure 6-7 Example mass balance error check output from the GoldSim modelling (100 realisations) over a 200 year period

Figure 6-8 Mass balance calculation implemented in GoldSim

Figure 6-8 is an example of a mass balance calculation that has been implemented in this GoldSim modelling study. The allowable error was set at 1 litre.

7.0 Water Quality Prediction

The prediction of water quality in the pit lake which will form upon mine closure was completed using PHREEQC Version 3^5 geochemical modelling software coupled with Goldsim. The purpose of the modelling was as follows:

- 1. To generate source terms to be used in the geochemical and GoldSIm modelling. These source terms are populated following the development of a Conceptual Site Model for the pit lake generation; and
- 2. Assessing the likely geochemical changes and layer development in the pit lake upon filling.

There are a number of databases that can be used in the PHREEQC model for the thermodynamic data. For this study the LLNL.dat data base has been used. The source term modelling approach was undertaken as shown in Drawing 01.

These describe the four options which are being considered as part of the project. The preferred option of concurrent infilling and pit lake generation is being modelled in detail. The remaining three options will use the same source terms although certain geochemical reactions will not apply and this is described on each of the figures for each of the options.

⁵ Parkhurst, D.L. and Appelo, C.A.J. (2013) Description of Input and Examples for PHREEQC Version 3 – A Computer Program for Speciation, batchreaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey Techniques and Methods, Book 6, chap. A43, 497 p., available only at http://pubs.usgs.gov/tm/06/a43

7.1 Geochemical Source Terms

7.1.1 Wall Rock Runoff Water Chemistry

The chemistry of the wall rock runoff was established by review of the waste classification work undertaken for the site.⁶ As part of the waste classification 20:1 leach testing was undertaken to predict the leaching of acidity and metals from the waste rock. The results, coupled with whole rock analysis, confirmed the rock is not acid producing with low to moderate leaching of metals.

The leach testing water types are classified as calcium bicarbonate type which reflects the calcrete in the waste rock. The calcrete is likely to comprise calcite and dolomite of varying proportion. This is supported by the major oxides and trace metal analysis of the waste rocks which report inorganic carbon (1% - 3%), calcium oxide (5%-10%) and magnesium oxide (6%-9%). A Piper Diagram for the leach data is presented below:

Figure 7-1 Piper Diagram for Leach Data

The leach testing was undertaken on samples of stockpiled waste rock which is considered indicative of what will be present in the waste rock in the pit and the wall rock of the mine. The ions selected for geochemical modelling comprised the mean of the samples analysed. Where corresponding ions contained detected and non-detected results for different samples, half the detection limit of the non-detected result was used in calculating the mean for the three samples. Where analytes were recorded as non-detected in all three samples, the analyte was not included in the assessment.

⁶ Golder Assocoaites (2016) Waste Classification Assessment for Tshipi E Ntle Mine. Ref: 1541973-301423-1

The equilibration of the water chemistry in the leach with mineralogy in the wall rock will be considered as part of the modelling. The equilibration of minerals with relatively static bodies of water is not instantaneous and take days/weeks/years (depending on the mineral) to reach equilibrium; therefore because any surface runoff is likely to be generated during flashy time rain fall events it is considered less likely that the water chemistry will have sufficient time to equilibrate with the wall rock mineralogy.

7.1.2 Groundwater Chemistry Source Term

The groundwater component source terms involves a slightly different approach. The rising groundwater will interact with the mineralogy of the waste rock in the base of the pit (for options 1 - 3). The chemistry of the up gradient groundwater monitoring well data surrounding the mine has been used as that which infills the pit. The mean concentration of the analytes have been prepared for all analysis from 2008-2018, with on-detects assumed to be half the detection limit when calculating the mean. This information is deemed suitable for use as the water quality source term for the groundwater entering the pit.

									Table 7-1 Mean SPLP Chemistry																			
Analyte	Al	As	В	Ва	HCO3	Ca	Cd	Cl	Со	Cr	Cu	Fe	F	Free NH3	Hg	К	Mg	Mn	Мо	Na	Ni	NO3	Ρ	Pb	Rb	рН	Sb	Se
Units	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	Mg/l	mg/l	mg/l	mg/l	mg/l	mg/L	mg/l	mg/l	mg/l	mg/l	Mg/l	mg/l	mg/l	mg/l		mg/l	Mg/l	рН Unit	mg/l	mg/l
Mean of SPLP Results	0.131	0.0013	0.081	0.109	36	8.5	<0.001	0.98	0.0007	0.002	0.0017	0.146	0.26	NA	0.00017	2.44	4.33	0.019	0.003	4.59	<0.01	3.52	<0.01	0.0023	0.0013	7.95	0.0013	0.0012

<LOD assumed to be 50% of the detection limit when calculating mean of the samples. Where analyte is detected in groundwater and where all results are <LOD, the LOD is recorded as the mean. Analytes removed: Ag,Au, Be, Bi, Ce, Cs, Ga, Ge, Hf, Ho, Ir, La, Li, Nb, Nd, Sn, Te and Th.

NA – not analysed.

Analyte	Al	As	В	Ва	HCO3	Ca	Cd	Cl	Co	Cr	Cu	EC	Fe	F	Free NH3	Hg	К	Mg	Mn	Мо	Na	Ni	NO3	Ρ	Pb	Rb	рН	Sb	Se	Si	SO4	Sr	TDS	Ti	V	Zn
Units	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	Mg/l	mg/l	mg/l	mS/m	mg/l	mg/l	mg/L	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	Mg/l	pH Unit	mg/l	mg/l	mg/l	mg/l	Mg/l	mg/l	Mg/l	mg/l	mg/l
TSH09 and 10 Average Concentration From 4 samples 2017 -2018	0.031	0.006	0.5	0.059	267	21	<0.005	223	<0.001	0.002	<0.005	155	0.011	0.3	14	<0.001	6	104	0.08	0.002*	88	<0.001	42 (1.5)	0.006	0.003	0.01	8.1	0.003	0.014	4	50	0.11	909	0.01	0.002	0.024
Livestock Drinking Water Standard	5	1	5			1000	0.01	1500- 3000	1	1 (as Cr(VI)	0.5-5		10	2		0.001		500	10	0.01	2000	1	100		0.1				0.05		1000		1000- 3000		1	20

Table 7-2 Mean Groundwater Chemistry (TSH9 and TSH10) Used in the Geochemical Modelling

*excludes removal of one outlier over 1000 times higher than running average. Nitrate is seen to be reducing significantly over time and is currently a mean shown in brackets. This may be related to ANFO reduction.

Si	SO4	Sr	Ti	TDS	U	V	W	Zn
mg/l	mg/l	Mg/l	Mg/I	mg/l	Mg/I	mg/l	Mg/l	mg/l
5.32	5.2	0.033	0.0087	79	0.0001	0.616	0.0013	0.014

The minerology of the waste rock has been reviewed and those minerals deemed to be sufficiently reactive have been used to equilibrate with the chemistry of the incoming and rising groundwater. The relatively dissolution or weathering rate of minerals can be used to indicate their long term stability and therefore whether they will equilibrate with the infiltrating groundwater.⁷ The geological information from the site indicates the most likely reactive mineral phases are iron (such as haematite) and carbonates (such as calcite and dolomite).

Whilst other mineral phases are likely to be present, the kinetics of their dissolution (particularly those of silicates and recalcitrant minerals (such as rutile etc) are unlikely to react quickly enough to influence the groundwater chemistry. There is some doubt as to the rate at which dolomite will dissolve, especially when compared to calcite, however given the propensity for the mineral in the waste rock; this has been included in the equilibration modelling.

Comparisons between silicates, carbonates and iron oxide dissolution indicate it is the carbonate and iron oxide which is likely to dominate any mineral equilibration process. Carbonate and iron oxide (haematite) mineral dissolution are higher than common silicates minerals (in some cases by orders of magnitude). The iron minerals most likely to be present in the waste rock are hematite and magnetite. Equilibration with these minerals will be slow, when compared to iron oxides. Studies on solubility controls of iron at other pits lakes ⁸ have shown the most likely form of iron is ferrihydrite and this has been used as the equilibration phase for this modelling.

Therefore, the minerals in the waste rock which will be allowed to equilibrate with the groundwater are:

- Calcite (CaCO₃)
- Dolomite (CaMgCO₃)
- Ferrihydrite (Fe(OH)₃)

The resulting source term has been used in the modelling of the water quality entering the pit from the groundwater interaction with the waste rock mineralogy. The chemistry of the surrounding groundwater has been obtained from regular monitoring over a number of years.

The results of the groundwater investigation has also been used to populate a Piper Diagram and compared to the leach chemistry as shown below. The mean groundwater is presented as a magnesium chloride water type which is likely to be reflective of the dolomite mineralogy in the area.

⁸ Eary, L.E. 1999. Geochemical and equilibrium trends in mine pit lakes. Applied Geochemistry 14, 963-987. <u>http://dx.doi.org/10.1016/S0883-2927(99)00049-9</u>

⁷ http://epsc511.wustl.edu/Mineral_Dissolution_Kinetics.pdf

7.1.3 Rainwater Chemistry

Rainfall, whilst not considered a significant water source, has a chemistry which will enter the pit directly during rain fall events. The chemistry of the rainfall has been reviewed and literature values have been adopted for the model.⁹ In the absence of data for South Africa the rainwater data is for rainwater chemistry in the Africa Region and has been summarised from data collected at Mali, Niger, Benin, Cote D'Avoire and Cameroon.

7.1.4 Redox Conditions

The redox data is measured as redox voltage (Eh) and this needed to be altered to electron activity (pE) to be used in the geochemical modelling. This involves using the following equation:

$$\mathsf{pE} = \frac{Eh.F}{2.303.R.T}$$

Where:

Eh = Redox (mV)

F = Faraday Constant (cal/V)

- R = Gas Constant (cal/degree)
- T = Temperature (degrees Kelvin)

There is no redox data recorded for the SPLP leach testing and the groundwater analysis, although the latter includes nitrogen ion species. Using this as a redox paring - it is possible to estimate the redox for the groundwater entering the pit:

⁹ World Data Centre for Precipitation Chemistry. http://www.wdcpc.org/content/global-assessment-data-sets

The reduction of nitrate in water to form ammonium is shown below:

$$NO_3^- + 10H^+ + 8e^- \leftrightarrow NH_4^+ + 3H_2O_{(I)}$$

The redox or Eh (Volts) can be calculated if the activities of H^+ , NO_3^- , and NH_4^+ are known using the Nernst equation for this reaction:

$$Eh = E^0 - \frac{0.0592}{8} \log \left(\frac{a_{NH_4^+}}{a_{NO_3^-} a_{H^+}^{10}} \right)$$

In addition the E⁰ (Standard Electrode Potential) will need to be calculated using:

$$E^0 = \frac{-\Delta G_r^o}{n\mathfrak{Z}}$$

For the nitrate reduction, the E^0 is calculated to be 0.88 volts.

The Nernst equation then becomes:

$$Eh = 0.88 - \frac{0.0592}{8} \log \left(\frac{a_{NH_4^+}}{a_{NO_3^-} a_{H^+}^{10}} \right)$$

The above can be used to generate a redox value (mV) and this approximates to 0.8mV. When this is converted the pE = 12 and this is used in the modelling which involve the generation of a pit lake where atmospheric interaction is most pronounced. Where options include the absence of a pit lake and water held in pore space of waste rock, the redox conditions are likely to be more reducing and this will be included in the relevant modelling.

7.2 Option 1: Complete Backfill Source Term Generation

This option assumes that there is no pit lake generated because the entire pit is backfilled with waste rock up to ground level. Therefore, the dominant geochemical controls on the water within the backfilled pit will be:

- 1. Infiltrating rainwater equilibrating with the waste rock; and
- 2. Rising groundwater equilibrating with the waste rock.

Consequently, the source terms will be similar to those shown above in Table 7-6. The main difference is that infiltrating rainwater will also equilibrate with the reactive minerals in the water rock. Therefore, the source terms for this option are presented below:

Analyte All mg/l unless shown.	Groundwater pre- Equilibration with minerals	Groundwater Post Equilibration (used in the preferred option model)	Infiltrating Chemistry Pre- Equilibration (SPLP Leach)	Infiltrating Chemistry Post Equilibration
рН	8	7.225	7.95	9.8
Redox (pE)	12	12.6	12	-6.2
Alkalinity	268	282	37	21.5
Bicarbonate (TIC)	267	275	36	29.5
Fluoride	0.3	0.3	0.26	0.26
Chloride	223	223	0.98	0.98
Nitrate	1.5	1.5	3.5	3.5
Sulfate	50	50	5.2	5.2
Aluminium	0.031	0.031	0.13	0.13
Arsenic	0.006	0.006	0.0013	0.0013
Boron	0.5	0.5	0.081	0.081
Barium	0.059	0.059	0.11	0.11
Calcium	21	144	8.46	8.8
Cadmium	<0.001	<0.001	<0.001	<0.001
Copper	<0.001	<0.001	0.0017	0.0017
Chromium	0.002	0.002	0.0023	0.0023
Iron	0.3	0.097	0.15	33
Lead	0.003	0.003	0.0023	0.0023
Mercury	<0.001	<0.001	0.0002	0.0002
Potassium	6	6	2.44	2.44
Magnesium	104	7.55	4.33	0.39
Manganese	0.08	0.08	0.012	0.012
Nickel	<0.001	<0.001	<0.01	<0.01
Sodium	88	88	4.6	4.6
Selenium	0.014	0.014	0.0012	0.0012
Vanadium	0.002	0.002	0.016	0.016
Zinc	0.024	0.024	0.0414	0.041

Table 7-3 Options 1 Source Terms Generated for Goldsim Modelling

Phase	Formula	Changes of Moles in Assemblage
Calcite	CaCO ₃	-0.00017
Dolomite	CaMgCO ₃	0.00016
Ferrihydrite	Fe(OH) ₃	-0.00059

Table 7-4Option 1 Post Equilibration Changes in Mole Assemblage

There is a net gain in calcium ions and magnesium (from dolomite) with increase in iron after the equilibration. The latter has the potential to precipitate, however this has not been included at this stage such that a worst case is presented.

When these pore waters interact and equilibrate with the minerals in the waste rock. Unlike with the pit lake modelling, there is likely to be minimal atmospheric connection/interaction with the pore water in the waste rock- especially when compared to the pit lake interaction with atmosphere. Furthermore, it is likely that reducing conditions will be present or be generated which would most likely prevent precipitation of oxidised mineral phases. This is particularly relevant for iron and manganese species which for which the divalent ion is likely to dominate in reducing conditions at the pH conditions in the waste rock, as shown below Table 7-5 below.

Table 7-5Typical Eh-pH Diagrams for Iron and Manganese

Consequently, the modelling does not include allowance for the iron and manganese oxyhydroxide and sulfate minerals to precipitate. However, carbonate in the form of calcite and aluminium hydroxide (in the form of Gibbsite) will be allowed to precipitate if it becomes oversaturated because it is redox independent.

These source terms were then used in the Goldsim model to mix and predict the chemistry over a number of time steps

7.3 Option 2: Partial Backfill Source Term Generation

This option assumes that the pit is backfilled with waste rock to a level that coincides with the final recovery level of the groundwater in the pit. A pit lake will not form with this option and therefore the source term relates to the interaction between the rising groundwater and the waste rock backfill material.

The geochemical controls within the waste rock will be those described in Option 1 above.

The Goldsim modelling for this option will take into the account that the waste rock backfill will terminate at the level of the anticipated final groundwater level in the pit.

7.4 Option 3: Concurrent Backfill Source Term Generation

This assumes concurrent backfilling (also termed 'in-pit dumping) with the pit lake recovery. Examples of the results of the source term PHREEQC modelling are held in Appendix 02. The results are summarised below in Table 7-6

Analyte All mg/l unless shown.	Groundwater pre- Equilibration with minerals	Groundwater Post Equilibration (used in the preferred option model)	Runoff (SPLP Leach)	Rainwater (2005 – 2007)
рН	8	7.225	7.95	5.3
Redox (pE)	12	12.6	12	12
Alkalinity	268	282	37	7
Bicarbonate (TIC)	267	275	36	*6.6
Fluoride	0.3	0.3	0.26	ND
Chloride	223	223	0.98	0.37
Nitrate	42	42	3.5	0.14
Sulfate	50	50	5.2	0.14
Aluminium	0.031	0.031	0.13	
Arsenic	0.006	0.006	0.0013	
Boron	0.5	0.5	0.081	
Barium	0.059	0.059	0.11	
Calcium	21	144	8.46	0.4

Table 7-6 Option 3 Source Terms Generated for Goldsim Modelling

Cadmium	<0.001	<0.001	<0.001						
Copper	<0.001	<0.001	0.0017						
Chromium	0.002	0.002	0.0023						
Iron	0.3	0.097	0.15						
Lead	0.003	0.003	0.0023						
Mercury	<0.001	<0.001	0.0002						
Potassium	6	6	2.44						
Magnesium	104	7.55	4.33						
Manganese	0.08	0.08	0.012						
Nickel	<0.001	<0.001	<0.01						
Sodium	88	88	4.6	0.24					
Selenium	0.014	0.014	0.0012						
Vanadium	0.002	0.002	0.016						
Zinc	0.024	0.024	0.0414						
	*Calculated	using : 1.7177*Log (_]	pH)+4.1333 ¹⁰						
	Half detection limit used for rainfall data.								

The changes in bulk chemistry which resulted from the equilibration is summarised below:

Table 7-7 Option 3 Post Equilibration Changes in Groundwater Mole Assemblage

Phase	Formula	Changes of Moles in Assemblage
Calcite	CaCO ₃	-0.007105
Dolomite	CaMgCO ₃	0.004
Ferrihydrite	Fe(OH)₃	0.0000037

This indicates that there is a net gain in calcium ions but reduction in iron and magnesium after the equilibration.

These source terms were then used in the GoldSim model to mix and predict the chemistry in the pit. Once entered into the pit, a number of other geochemical processes will operate, and this is related to the potential for layer formation in the pit lake.

¹⁰ http://www.veoliawatertech.com/crownsolutions/ressources/documents/2/21967,Water-pp424-425.pdf

7.5 Option 4: No Backfill Source Term Generation

The final of the four options being considered assumes that there is no backfilling of the pit with waste rock and the pit lake is allowed to form by infiltrating groundwater, pit wall runoff and rainfall. Therefore, the source terms for this option are included as the chemistry of the mean groundwater (with no equilibration with waste rock), rainwater and runoff from the pit walls presented in Table 7-6.

In addition, as the pit lake forms, there will be the same geochemical reactions as described in Section 5.2 to characterise the different layers which will form over time.

It is fully appreciated that the neighbouring mine will have a proportion of backfilled rock and this may alter the chemistry of rising groundwater in this area which may drain into the Tshipi pit (which has no backfill in this scenario). The mineralogy in this waste rock is deemed to be the same as that in the waste rock used in the Tshipi pit and the model equilibrated this mineralogy as described previously.

Notwithstanding, the proportion of groundwater flow into the pit from the neighbouring mine area is relatively low and therefore it is considered less likely that it will have a significant impact on the chemistry of the pit lake being generated. The major dominant chemistry in this scenario is from the pit wall contributions.

7.6 Rainwater chemistry

As part of the assessment, the inclusion of rainwater runoff from the surrounding area will be assessed. The local topography has been mapped and runoff from these areas is included in the Goldsim model. In terms of quality, this runoff is assumed to have chemistry similar to that of rain water albeit it is likely that suspended solids will be more elevated.

Geochemical modelling of this water is not appropriate because the flashy nature and there rapid flow rate of such runoff will not provide sufficient time for minerals in the land surface soils to equilibrate with the rainwater.

8.0 Layer Formation

For the options where pit lakes are generated (Option 3 and 4), the application of geochemical control within the layers formed will be dictated by their formation rate. The water balance suggests that it might take approximately 150 years for the pit lake to reach steady state conditions and therefore the lake dimensions will develop over time. As described below the layer thickness is characterised by empirical calculation from the length of free standing water in the put. This thickness dictates if a layer is likely to form by comparing the thickness of the upper layer with the total lake depth. The calculation process of this stage of the assessment is described below.

8.1 Layer Development

One of the aspects to consider when modelling the chemistry of the pit lake involves the consideration of layer formation as the water rises and approaches steady state. While the water is exposed to solar radiation and thermal contact, deeper layers in the pit are sheltered form the major sources of heat¹¹. This can form an upper layer called an epilimnion with the deeper second layer termed a hypolimnium. The project has undertaken a study to establish the following:

- 1. Is layering likely to occur?; and
- 2. What is the most appropriate method to model the hydrogeochemistry of the layers if they are generated?

The epilimnion thickness is generally determined by wind with few exceptions, the one exception being where light penetrates beyond the mixing depth.. A number of empirical studies have been undertaken which have developed regression equations to calculate the epilimnion thickness and also the thickness of thermoclines in the lake.¹² These studies are summarised and discussed below:

Region	Regression Equation	Correlation (r2)	Number of lakes (n)
Japan ¹³	4.6 f ^{0.304}	-	32
Poland ¹⁴	4.6 F ^{0.41}	0.85	88
Canada ¹⁵	7.0 MEL ^{0.42}	0.79	33
New Zealand ¹⁶	7.69 f ^{0.463}	0.94	33

Table 8-1 Predictive Models for Epilimnion Depth (De)

¹¹ Boehrer B and M Schultze. 2009. Stratification and Circulation of Pit Lakes in Mine Pit lakes: Characteristics, predictive Modelling and Sustainability. Volume 3 ed. D.N Castendyk and L.E Eary. Pp 46-50 Society for Mining Metallurgy and Exploration (SME).

¹² Lyle A.A and A.E Bailey-Watts (1993) Contributions to the Scotland and Northern Ireland Forum for Environmental research (SNIFFER) Programme on Eutrophication Risk Assessment: II Factors Controlling Lake Stratification. Institute of Freshwater Ecology.

¹³ Arai, T (1981) Climatic and geomorphological influences on lake temperature. *Verhandlungen, Internatioanle Vereinigung fur Theoretische und Angewandte Limnologie* Vol 21 130-134

¹⁴ Patalas, K(1984). Mi-summer mixing depths in lakes of different latitudes. *Verhandlungen, Internatioanle Vereinigung fur Theoretische und Angewandte Limnologie* Vol 22 97-102

¹⁵ Green, J.D., Viner, A.B., Lowe.D.J. (29187) The effect of climate on lake mixing patterns and temperatures, in Inalnd Waters if New Zealand (Ed. V.B. Viner) pp65-95 Dept of Sci and Ind Red Bull 241, Wellington.

¹⁶ Davis-Colley, R.J (1988). Mixing depths in New Zealand lakes. New Zealand Journal of Marine and freshwater research Vol 22 pp517-527

	6.85 F ^{0.446}	0.918	22				
f = A ^{0.5} Where A = I	۲ ²						
F = (length + width)/2 in meters							
MEL = Effective Length (m) – this is maximum uninterrupted water length							

Predictive Models for Thermocline Depth (Dt)									
Region	Regression Equation	Correlation (r2)	Number of lakes (n)						
Germany ¹⁷	4.72 F ^{0.39}	-	30						
North America ¹⁸	4.0 f ^{0.5}	-	18						
Japan ¹⁹	6.22 f ^{0.304}	0.53	32						
New Zealand ²⁰	9.52 f ^{0.425}	0.954	22						
	8.58 F ^{0.408}	0.928	22						
Northern Hemisphere ²¹	0.569 MEL ^{0.336}	0.85	123						
f = A ^{0.5} Where A = km2									
F = (length + width)/2 in meters									
MEL = Effective Length (m) – this is maximum uninterrupted water length									

Table 8-2

The Hanna study referend above considered over 100 sites in thermally stable continental climates and is considered relatively close to the likely conditions of the mine pit. However sensitivity will be undertaken using the other models with high correlation coefficients (such as those in New Zealand).

More recent studies of thermoclines²² as shown in Figure 8-1 below, predicts the thermocline and also compares the result from Hanna (1990). In addition recent coal mine pit lake in South Africa²³ have been reviewed and the thermocline/lake depth for four lakes are also presented in Table 8-3

¹⁷ Ventz, D.(1973). Die Einzugsgebietsgrosse, ein Geofaktor fur den Trophiczustand stehender gewasser. Fortschnitte der Easserchemis und ihere

¹⁸ Ragotskie, R.A (1978). Heat budgets of lakes in Lakes (Ed. A. lerman) pp 1-19 Springer-Verlag, new York

¹⁹ Arai, T (1981) Climatic and geomorphological influences on lake temperature. Verhandlungen, Internatioanle Vereinigung fur Theoretische und Angewandte Limnologie Vol 21 130-134 ²⁰ Davis-Colley, R.J (1988). Mixing depths in New Zealand lakes. New Zealand Journal of Marine and freshwater research Vol 22 pp517-527

²¹ Hanna, M.(1990). Evaluation of models predicting mixing depth. Canadian Journal of Fisheries and Aquatic Science. Vol 47 pp940-947

²² Jewell, P.W. 2009 Stratification control of pit lakes, Mining Engineering Technical paper February 2009. Pp40-45

²³ Johnstone, A. and L Kennedy 2017. Coal Pit Lakes in South Africa. Mine Water and Circular Economy IMWA 2017 in Lappeenranta, Finland.

Figure 8-1 Predicted vs. measured thermocline depths of pit mine Lakes (Jewell, 2009)

Table 8-3 Thermocline Depth and Pit Lake Depth in South Africa (Johnstone and Kennedy, 2017)

Lake	Rainfall (mm/years)	Evaporation (mm/year)	Depth of Thermocline (m)	Log Thermocline Depth (m)	Depth of Pit Lake (m)
Α	400	2000	13.93	1.8	68.5
В	711	1730	14.91	1.3	19.25
С	670	1600	1	0.5	3
D	700	1700	2.85	1	10.1

The South African pit lakes are located in areas with negative water balance similar to that at Tshipi. The log thermocline depth is also presented and compares well to the other thermocline depths presented in Figure 3.

The likelihood of stratification forming in the lake depends on there being sufficient depth for such a structure to become established. The studies quoted in Table 3-1 has been compiled²⁴ and the following method has been devised to predict if the epilimnion will form and be stable:

Table 8-4

Classification of Lake Mixing using Epilimion (D_e) and Maximum Lake Depth (D_{max})

Classification Ration	Lake Condition
D _e /D _{max} >2	Turbulent, well mixed lakes
1.0 < D _e /D _{max} <2.0	Mixed isothermal lakes
0.5 < D _e /D _{max} <1.0	Occasional unstable stratification
D _e /D _{max} <0.5	Stable seasonal stratification

The above process will be used to establish the likelihood layers will form but also at what point these might form based on the depth of the lake. Where the epilimnion is predicted to form geochemical modelling will be used to predict the chemistry of this layer as opposed to that in the underlying hypolimnium layer.

For Tshipi the above relationship between thermocline depth and site dimensions has been used. The uninterrupted water length of the pit lake is shown below with the corresponding calculated thermocline depth.

Depth of the moenie and wixing classification					
Uninterrupted Length of Pit Lake (m)	Potential Total Depth of Pit Lake (m)	Calculated Thermocline (m)	Thermocline Calculation Method	Mixing Classification	
400	60	6.31	Figure 8-1	Stable Seasonal Stratification	
400	60	4.3	Hanna et al (1990)	Stable Seasonal Stratification	

Table 8-5Depth of Thermocline and Mixing Classification

These results appear to be similar to those previously recorded in South Africa where there is a negative water balance (Table 8-3).

Jewell (2009) summarises the thermocline depth during summer stratification in pit lakes as a function of the length of the pit lake (see Figure 8-1). Tshipi pit has a length of approximately 400 m, and so based on the relationship of Jewell (2009) the thermocline depth during summer stratification is expected to be approximately 6 m.

²⁴ Lyle A.A and A.E Bailey-Watts (1993) Contributions to the Scotland and Northern Ireland Forum for Environmental research (SNIFFER) Programme on Eutrophication Risk Assessment: II Factors Controlling Lake Stratification. Institute of Freshwater Ecology.

8.2 Geochemical Modelling of Layers

The source terms for the geochemical modelling have been discussed previously. These mixtures will form homogenised lake water for which the modelling of the chemistry within the potential layers requires consideration.

The source terms (rainwater and groundwater) when mixed form a bulk water chemistry which is modelled geochemically as follows:

- 1. Layer 2 (hypolimnium) water chemistry is calculated from the bulk chemistry of the source terms mixture as calculated using Goldsim which is speciated using PHREEQC allowing specific mineral phases to precipitate if they become oversaturated.
- Layer 1 (epilimnium) the Layer 2 chemistry will be equilibrated with atmospheric carbon dioxide (partial pressure = 0.00033 bar or 10^{-3.5} atm) and oxygen gas (partial pressure = 0.21 bar or 10^{-0.68} atm). The equilibration may also result in specific mineral phases becoming oversaturated and these will also be allowed to precipitate.
- 3. Most natural waters ²⁵ have neutral to alkaline pH, where Ca and carbonate alkalinity concentrations are affected by the solubility of calcite [CaCO3]. In pit lakes, the values of saturation indices (SI) for calcite show an increase over the pH range of 6.8 ± 9. Pit lakes with a pH>7 generally have calcite SI values>0, (as is the case for the Tshipi lake) which indicate oversaturation conditions are typical. The apparent oversaturation with calcite is common in natural aqueous systems and is often attributed to slow precipitation kinetics.
- 4. The degree of calcite oversaturation is also related to the solubility of $CO_2(g)$ in solution and the rate of $CO_2(g)$ loss or gain by the solution. Calculations based on measured pH and alkalinity values, show that most pit lakes are oversaturated with $CO_2(g)$ compared to the atmospheric level of $10^{-3.5}$ atm, ranging up to levels of $10^{-2.0}$ atm.
- Other studies into pit lake predictive chemical modelling indicate that gypsum is included in the geochemical model as a mineral phase allowed to precipitate²⁶. This is particularly relevant in waters which have a pH >7 which is the case at Tshipi.

The specific mineral phases which will be allowed to precipitate have been taken from a review²⁷ of solubility controls in 24 No. existing hard-rock pit lakes and 66 No. existing coal mine pit lakes and are shown below. This has been supplemented by other plausible minerals controlling the major ion in the pit lake as the layering develops.

²⁷ Eary, L.E. 1999. Geochemical and equilibrium trends in mine pit lakes. Applied Geochemistry 14, 963-987. <u>http://dx.doi.org/10.1016/S0883-2927(99)00049-9</u>

²⁵ http://www.resolutionmineeis.us/sites/default/files/references/eary-1999.pdf

²⁶ Eary L.E. and W.M Schafer Approaches for Evaluating the Predictive Reliability of Pit Lake Numerical Models in Mine Lakes Characteristics, Predictive Modelling and Sustainability Volume 3 ed D.N Castendykand L.E Eary, Society for Mining, Metallurgy and Exploration 2009 Vol 15 pp 167 - 177

Table 8-6 Mineral Phases Allowed to Precipitate

Phase Name	Equations Used In Modelling
Ferrihydrite [Fe(OH) ₃]	$Fe^{3+} + 3H_2O \rightarrow Fe(OH)_3 + 2H^+$
Manganite [MnO(OH)]	$Mn^{3+} + 2H_2O \rightarrow MnO(OH) + 3H^+$
Amorphous gibbsite [Al(OH) ₃]	$AI^{3+} + 3H_2O \rightarrow AI(OH)_3 + 3H^+$
Barite [BaSO ₄]	$Ba^{2+} + SO_4^{2-} \rightarrow BaSO_4$
Calcite [CaCO₃]	$Ca^{2+} + CO_3^{2-} \rightarrow CaCO_3$
Gypsum [CaSO₄]	$Ca^{2+} + SO_4^{2-} \rightarrow CaSO_4$

8.2.1 Modelling pH

One of the challenges for using Goldsim to evaporate and concentration water chemistry is that pH is ultimately dictated by the composition of the solution and is not a simple numeric calculation based on hydrogen ion enrichment over time. Therefore pH can be calculated in PHREEQ using a number of approaches:

1. Charge Balance

The charge balance can be used to estimate pH, but this is to be sued with caution because all analytical errors and unanalysed species are grouped together (trace elements) into the estimate of pH. In reality it is the major ions alone which will dictate the pH.

2. Using Alkalinity and Total Inorganic Carbon

Alkalinity and total inorganic carbon can be used to calculate pH. Both Alkalinity and TIC are included in the solution definition and pH will be calculated. An example of the input definition is included below:

Table 8-7	
nput Definition for Calculating pH Using Alkalinity and TIC	

SOLUTION		
Alkalinity 1		
C(4) 1.5		
END		

3. Use Partial Pressure Carbon Dioxide

Alkalinity and PCO_2 can be used to calculate the pH. This calculation assumes air equilibrium an example of how this is presented in PHREEQ is shown below

Table 8-8
nput Definition for Calculating pH Using Alkalinity and Atmospheric CO ₂

SOLUTION				
рΗ	7	CO2(g) -3.5		
Alkalinity 1				
END				

Of the three pH modelling options – option 2 and 3 are considered the most robust because it uses the analytical results from the monitoring at the site and therefore the Goldsim result of the mixing are more robust. In addition in terms of developing the chemistry of the upper layer in the pit lake, equilibration with the atmosphere will be undertaken using PHREEQ. It should be noted that monitoring data of the pit lake stratification is always a preferred method for predicting longer term pH values and, with time, geochemical models can be updated with such information.

9.0 Water quality results

The results of the water quality prediction are presented in the following tables. This includes the composition of the layers in the pit lake at the various time steps. This demonstrates the likely changes in composition with time. The time steps used in the pit lake water quality generation have been adopted based on the likely time to achieve quasi steady state of the pit lake water level.

The results presented include those parameters which are required to classify the water in terms of suitability for use as livestock drinking water. In addition, those parameters which are used to determine the bulk chemistry (such bicarbonate and pH) are also presented as these dictate the changes imparted by the equilibration processes being modelled. The water quality result modelling time slices were developed directly from the predicted time to fill to quasi-stasis level as outlined in Table 9-1.

Backfilling closure option	Time to fill to quasi- static water levels (mean level)	Water quality modelling time slices
Option 1 Complete Backfill	39 years	2 (25 and 50 years)
Option 2 Fill To Regional Groundwater level	36 years	2 (25 and 50 years)
Option 3 Concurrent backfill	153 years	4 (50, 100, 150 and 200 years)
Option 4 No Backfill	42 years	2 (50 and 100 years)

Table 9-1 Water quality time slices

9.1 Option 1: Complete Backfill and No Pit Lake

The anticipated pore water chemistry in the backfill is shown below (exceeded parameters highlighted):

	Livestock	25 Years	50 Years
	DWS		
Al	5	0.0007	0.0012
As	1	0.004	0.0032
В	5	0.34	0.28

Table 9-2Results of Predicted Water Quality for Option 1

	Livestock	25 Years	50 Years
Ва		0.08	0.09
HCO ₃		145	107
Са	1000	67	45
Cd	0.01	0.0005	0.0005
Cl	1500 3000	133	95
Cu	0.5 1.0	0.00091	0.0011
Fe	10	12.5	18.1
F	2	0.28	0.27
Hg	0.001	0.0004	0.00034
Mg	500	5	4
Mn	10	0.05	0.04
Мо	0.01	0.0023	0.0024
Na	2000	54	40
Ni	1	0.005	0.005
NO_3 as N	100	10	35
Pb	0.1	0.003	0.003
рН		7.47	7.47
Se	0.05	0.009	0.007
SO ₄	1000	33	25
TDS	1000 2000 3000	407	371
V	1	0.007	0.009
Zn	20	0.03	0.03

The mole assemblage changes indicate that the minerals precipitate in the pore space which increases the concentration of aluminium and reduces that of calcium and bicarbonate with time.

Phase	Change of Moles in Assemblage	Change of Moles in Assemblage
	25 Years	50 Years
Calcite (CaCO₃)	5.737x10 ⁻⁰⁴	1.479x10 ⁻⁰⁴
Gibbsite (Al(OH)₃)	2.461x10 ⁻⁰⁶	1.231x10 ⁻⁰⁶

Table 9-3Option 2 Change in Mole Assemblage for Each Phase

An important consideration when reviewing these results relates to how Goldsim has modelled this scenario. The main assumption being that once pit water level in the rock backfill, reaches regional groundwater, the groundwater contribution becomes negligible in the model to allow functionality. In reality there would be a flow-through scenario. Any chemical mass & water mass then above the pit water level (within the waste rock backfill) is transported out of the system (effectively into the surrounding groundwater and is mixed and diluted) and the only chemical influx from that point onwards within the pit infill comes only from surface water runoff from the pit walls areas and direct rainfall into the fill in the pit. There is, therefore, no evaporation and the time step to fill the waste rock is much quicker than those options which involve a pit lake. Consequently the water quality is better overall. Notwithstanding the reducing conditions will mean the iron is soluble and fails the drinking water limit for livestock.

The chemistry of the pore water would change should this be pumped through a borehole to the surface where evaporation would take pace and the analytes would concentrate.

9.2 Option 2: Partial Backfill and No Pit Lake

The anticipated pore water chemistry in the backfill is shown below:

	Livestock	25 Years	50 Years
	DWS		
Al	5	0.00071	0.0013
As	1	0.004	0.0033
В	5	0.34	0.275
Ва	a 0.0		0.075
HCO ₃		146	107
Ca	1000	66	44
Cd	0.01	0.0004	0.0005

Table 9-4 Results of Predicted Water Quality for Option 2

	Livestock	25 Years	50 Years	
Cl	1500 3000	134	98	
Cu	0.5 1.0	0.0009	0.001	
Fe	10	11	15	
F	2	0.28	0.27	
Hg	0.001	0.0004	0.0003	
Mg	500	5	4	
Mn	10	0.05	0.04	
Mo	0.01	0.0023	0.0022	
Na	2000	55	42	
Ni	1	0.005	0.001	
NO₃ as N	100	10	35	
Pb	0.1	0.003	0.003	
рН		7.49	7.76	
Se	0.05	0.009	0.007	
SO ₄	1000	33	27	
TDS	1000 2000 3000	460	371	
V	1	0.007	0.009	
Zn	20	0.03	0.03	

An important consideration when reviewing these results relates to how Goldsim has modelled this scenario. The main assumption being that once pit water level in the rock backfill, reaches regional groundwater, the groundwater contribution becomes negligible in the model to allow functionality. In reality there would be a complex flow-through scenario. Any chemical mass & water mass then above the pit water level (within the waste rock backfill) is transported out of the system (effectively into the surrounding groundwater and is mixed and diluted) and the only chemical influx from that point onwards within the pit backfill comes only from surface water runoff from the pit walls areas and direct rainfall into the fill in the pit. There is, therefore, no evaporation and the time step to fill the waste rock is much quicker than those options which involve a pit lake. Consequently, the water quality is better overall. Notwithstanding the reducing conditions will mean the iron is soluble and fails the drinking water limit for livestock.

Phase	Change of Moles in Assemblage	Change of Moles in Assemblage
	25 Years	50 Years
Calcite (CaCO₃)	6.024x10 ⁻⁰⁴	2.094x10 ⁻⁰⁴
Gibbsite (Al(OH)₃)	2.439x10 ⁻⁰⁶	1.066x10 ⁻⁰⁶

Table 9-5Option 3 Change in Mole Assemblage for Each Phase

The mole assemblage changes indicate that the minerals precipitate in the pore space which reduces the concentration of aluminium, calcium and bicarbonate with time.

The chemistry of the pore water would change should this be pumped through a borehole to the surface where evaporation would take pace and the analytes would concentrate

9.3 Options 3: Concurrent Backfill and Pit Lake Formation

The results of the assessment for Option 3 are presented below. This includes the concentration of each layer formed as part of the pit lake development. Steady state is likely to form after +150 years and hence geochemical modelling is terminated at 200 years.

Analyte	Livestock	50 Years		100 \	100 Years		150 Years		200 Years	
Layer	DWS	1	2	1	2	1	2	1	2	
AI	5	0.00055	0.00055	0.0003	0.0003	0.00034	0.00034	0.00045	0.00045	
As	1	0.0077	0.0077	0.015	0.015	0.0196	0.0196	0.025	0.025	
В	5	0.64	0.64	1.26	1.26	1.67	1.67	2.17	2.17	
Ва		0.059	0.059	0.041	0.041	0.034	0.034	0.033	0.033	
HCO ₃		207	244	312	421	355	467	415	525	
Ca	1000	61	61	104	104	85	85	61	61	
Cd	0.01	0.00076	0.00076	0.0014	0.0014	0.0018	0.0018	0.002	0.002	
Cl	1500 3000	269	269	523	523	685	685	872	872	
Cu	0.5 1.0	0.001	0.001	0.0019	0.0019	0.0025	0.0025	0.003	0.003	

Table 9-6Results of Predicted Water Chemistry for Option 3

Analyte	Livestock	50 Y	'ears	100 \	Years	150 Years		200 Years	
Fe	10	0.027	0.027	0.03	0.03	0.03	0.03	0.03	0.03
F	2	0.4	0.4	0.79	0.79	1.05	1.05	1.36	1.36
Hg	0.001	0.00064	0.00064	0.0012	0.0012	0.0016	0.0016	0.002	0.002
Mg	500	10	10	19.4	19.4	25	25	32	32
Mn	10	0.000031	0.000031	0.000028	0.000028	0.000021	0.000021	0.000019	0.000019
Mo	0.01	0.002	0.002	0.0043	0.0043	0.0058	0.0058	0.008	0.008
Na	2000	108	108	212	212	280	280	360	360
Ni	1	0.0076	0.0076	0.014	0.014	0.018	0.018	0.023	0.023
NO ₃ as N	100	3	3	15	15	65	65	300	300
Pb	0.1	0.037	0.037	0.072	0.072	0.0095	0.0095	0.12	0.12
рН		8.76	7.32	8.9	7.01	8.95	7.08	9	7.22
Se	0.05	0.017	0.017	0.033	0.033	0.044	0.044	0.056	0.056
SO ₄	1000	64	64	127	127	171	171	224	224
TDS	1000 2000 3000	735	773	1365	1475	1894	2007	2272	2382
V	1	0.19	0.19	0.29	0.29	0.36	0.36	0.46	0.46
Zn	20	0.033	0.033	0.063	0.063	0.083	0.083	0.11	0.11

The extent of changes caused by mineral precipitation can be understood by examining the changes in mole concentrations over time. This is examined in Table 9-7 below.

Table 9-7

Option 3 Change in Mole Assemblage for Each Phase in Layer 2

Phase	Change of Moles in Assemblage 50 Years	Change of Moles in Assemblage 100 Years	Change of Moles in Assemblage 150 Years	Change of Moles in Assemblage 200 Years	
Barite (BaSO ₄)	3.4 x10 ⁻⁰⁷	7.8x10- ⁰⁷	5.0x10- ⁰⁷	4.5x10- ⁰⁷	
Calcite (CaCO₃)	2.9x10 ⁻⁰³	3.3x10 ⁻⁰³	3.4x10 ⁻⁰³	3.4x10 ⁻⁰³	

Phase	Change of Moles in Assemblage 50 Years	Change of Moles in Assemblage 100 Years	Change of Moles in Assemblage 150 Years	Change of Moles in Assemblage 200 Years
Iron Hydroxide Fe(OH)₃	2.4x10 ⁻⁰⁶	2.5x10 ⁻⁰⁶	1.8x10 ⁻⁰⁶	1.7x10 ⁻⁰⁶
Gibbsite (Al(OH)₃)	2.8x10 ⁻⁰⁶	2.3x10 ⁻⁰⁶	1.6x10 ⁻⁰⁶	1.5x10 ⁻⁰⁶
Gypsum (CaSO₄)	0	0	0	0
Manganite (MnOOH)	1.8x10 ⁻⁰⁶	1.9x10 ⁻⁰⁶	1.3x10 ⁻⁰⁶	1.2x10 ⁻⁰⁶

This indicates that with the exception of gypsum, all of the most likely minerals will have the potential to precipitate in pit lake model. Gypsum is undersaturated in the water over time and therefore will not precipitate.

The results also indicate the following:

- The difference in the layer chemistry relates to the bicarbonate and pH which is a function of atmospheric equilibration in this surface water and results in a lower total dissolved solid (TDS) content in Layer 1;
- After 100 years the mercury concentration is marginally above the DWS for livestock. However it should be remembered that the mercury is not detected in the groundwater analysis to date and therefore the detection limit was used in the modelling. This concentration is therefore theoretical and based on non-detection in the groundwater. Consequently the modelling is conservative and at 100 years, the mercury may remain non-detectable;
- The lower boundary of TDS suitable for certain livestock is also exceeded after 100 years, although it is lower than the 3000mg/l threshold indicating the water will be suitable for some livestock; and
- After 200 years the nitrogen concentration (as nitrate) and selenium (marginally) exceeds the livestock drinking water standards.

9.4 Option 4: No Backfill and Pit Lake Formation

The results of the assessment for Option 4 are presented below. This includes the concentration of each layer formed as part of the pit lake development. The hydraulic modelling indicates the pit lake will reach steady state at c.100 years and this is where the geochemical modelling is terminated.

Results of Predicted Water Chemistry for Option 4							
Analyte	Livestock	50 Y	ears	100 Years			
Layer	DWS	1	2	1	2		
AI	5	0.003	0.0030	0.012	0.012		

 Table 9-8

 Results of Predicted Water Chemistry for Option 4

Analyte	Livestock	50 Y	ears	100	/ears
As	1	0.021	0.021	0.09	0.09
В	5	1.57	1.57	6.8	6.8
Ва		0.062	0.062	0.043	0.043
HCO ₃		564	678	2222	2879
Са	1000	5.3	5.3	0.99	0.99
Cd	0.01	0.005	0.005	0.02	0.02
Cl	1500 3000	397	397	1698	1698
Cu	0.5 1.0	0.015	0.015	0.065	0.065
Fe	10	0.026	0.026	0.028	0.028
F	2	2.7	2.7	11	11
Hg	0.001	0.0025	0.0025	0.01	0.01
Mg	500	215	215	917	917
Mn	10	2.356E- 06	2.356E- 06	2.061E- 06	2.061E- 06
Мо	0.01	0.028	0.028	0.12	0.12
Na	2000	195	195	839	839
Ni	1	0.05	0.05	0.051	0.051
NO_3 as N	100	33	33	142	142
Pb	0.1	0.024	0.024	0.1	0.1
рН		8.1	9.09	9.4	8.67
Se	0.05	0.034	0.034	0.15	0.15
SO ₄	1000	136	136	597	597
TDS	1000 2000 3000	1550	1664	6436	7093
V	1	0.14	0.14	0.6	0.6
Zn	20	0.4	0.4	1.6	1.6

Phase	Change of Moles in Assemblage 50 Years	Change of Moles in Assemblage 100 Years
Barite (BaSO₄)	6.9x10 ⁻⁰⁶	8.0x10 ⁻⁰⁶
Calcite (CaCO₃)	2.7x10 ⁻⁰³	3.0x10 ⁻⁰³
Iron Hydroxide Fe(OH)₃	3.1x10 ⁻⁰⁵	3.1x10 ⁻⁰⁵
Gibbsite (Al(OH)₃)	4.2x10 ⁻⁰⁵	3.8x10 ⁻⁰⁵
Gypsum (CaSO₄)	0	0
Manganite (MnOOH)	4.4x10 ⁻⁰⁶	4.2x10 ⁻⁰⁶

Table 9-9Option 4 Change in Mole Assemblage for Each Phase in Layer 2

This indicates that that mineral precipitation does occur and control some of the major ions. The only difference in the layer chemistry relates to the bicarbonate and pH which is a function of atmospheric equilibration in this surface water and results in a lower total dissolved solid (TDS) content in Layer 1.

The results indicate that at 50 years some of the analytes fail the relevant livestock drinking water guidance concentrations. After 100 years a wider suite of analytes fail the guidance values.

9.5 Conclusion for Pit Lake Water Quality

There are two scenarios modelled which will generate pit lakes, namely Option 3 and 4. Of these two options the pit lake developed in association with concurrent filling has concentrations which do not exceed the relevant water quality standards for livestock until after 100 years. The mercury concentration is not 'real' because it uses a non-detected concentration in the idle (namely half the detection limit). Likewise, TDS will not restrict the use of the water for livestock until 100 years of pit lake water generation. Indeed, the concentration does not exceed 3000mg/l after 200 years of modelling the threshold beyond which the water cannot be sued for any livestock watering. Option 4 however shows exceedance for a larger number of analytes during the 50-year pit lake generation and therefore the water quality deteriorates more rapidly than Option 3., with TDS making the water unusable for livestock watering after only 50 years.

Hydraulic and geochemical modelling has indicated therefore that of the two options which generate pit lakes, the pit lake water for Option 3 (Concurrent or In-pit Dumping) produces more favourable water quality concentrations for livestock drinking water suitability.

9.5.1 Pit Lake Model Uncertainties

The geochemical modelling will not be able to consider microbial induced changes to the water quality in the pit and these may include:

Table 9-10
complex Processes not included in the Pit Lake Modelling

Geochemical Process Not Included in the ModellingPhotochemical reactions in the epiliminion (Layer 1), (e.g photo-reduction of Fe³⁺ to Fe²⁺)Biological reactions, such as algal photosynthesis (e.g CO2 consumption and O2 production) and
respiration by decomposers (i.e O2 consumption and CO2 production)Uptake or cell wall sorption of metals by microorganisms in the water columnsTrace metal adsorption onto organic surfaces, Al and Mn hydroxide surfaces, and clay surfacesSediment processes including sulfate reduction, sulfide precipitation, hydrogen sulfide formation,
reductive dissolution of Fe and Mn coupled with release of adsorbed metals.

Eddy diffusion that transports dissolved metals between layers.

Removing such processes does not weaken the pit lake model in terms of the water quality prediction, as it produces a conservative model. For example the majority of the processes above will remove potential ions from solution and hence the predicted water quality without including these processes is considered conservative.

The validity of the geochemical model is greatest for the epilimnion and hypolimnion as this is in contact with terrestrial ecology. Deeper layers are unlikely to form but will have larger uncertainty in terms of their geochemical make up and therefore have not be considered in the modelling. If they did form then they will only become important if massive pit slope failure or extreme weather events course turnover.

9.5.2 Porewater Quality and Comparison with Pit lake Quality

Those options which do not generate a pit lake and relate to pore water concentrations (i.e. Options 1 and 2.) indicate that the iron content will prohibit the use of the water for direct livestock dewatering within 50 years. As this water is below ground in the pore space of the rock infill, it will need to be pumped to surface for use. There would be a risk that the iron will clog pipework and this itself will cause issues with distribution.

10.0 Summary results, discussion, assumptions and possible passive treatment options

The predicted quality of the water in this pit lake (s) is of profound importance, especially in this area of scarce water resources. This technical study has been completed and has examined the long-term water quantity and quality predictions that can/may be achieved for the planned mine closure by exploring selected backfilling options of waste rock (or not) within the closed pit.

10.1 Results summary tables (no mitigation)

The four options regarding the closure of the mine and the predicted impact on the hydrological environment, in particular the long term, predicted pit lake water chemistry and how this has been derived has been presented in the previous sections. Determining the rate of pit filling, the quasi-static water level (QSWL), type of pit (hydraulic sink or flow-through) and the chemistry of the pit for closure timescales have now been derived for each option.

The results of the key objectives for this study are available in Table 10-1 and Table 10-2. The water quality results presented include those parameters which are required to classify the water in terms of suitability for use as livestock drinking water (local guideline limits used).

Backfilling closure option	Time to fill to quasi- static water levels (mean level)	Quasi- static water level in pit (m AMSL)	Regional groundwater level (m AMSL)	Terminal hydraulic sink or flow- through pit	Pit lake spilling	Depth to QSWL from ground surface (m)
Option 1 Complete Backfill	39 years	1045	1045	Flow- through	n/a	n/a
Option 2 Fill To Regional Groundwater level	36 years	1045	1045	Partial flow- through	No	n/a
Option 3 Concurrent backfill	153 years	1039	1045	Hydraulic sink	No	41
Option 4 No Backfill	42 years	873	1045	Hydraulic sink	No	207

Table 10-1 Modelling results for key objectives – water quantity

Backfilling closure option	Water quality summary (Failure analyte (s) - exceed Livestock DWS limits)	Comments
		The water is useable for c. 25 years without treatment. Therefore, is more restrictive that Option 3.
Option 1 Complete backfill	• Fe ≈ 25 years	Water quality will largely remain equivalent to groundwater quality or worse over closure timescales as the pit is flow-through. The iron is in solution due to the anticipated reducing redox conditions.
		The water is useable for c. 25 years without treatment. Therefore, is more restrictive that Option 3.
Option 2 Fill to regional groundwater level	• Fe ≈ 25 years	Water quality will largely remain equivalent to groundwater quality or worse over closure timescales as the pit is a partial flow-through. The iron is in solution due to the anticipated reducing redox conditions.
Option 3 Concurrent backfill	 NO₃ ≈ 200 years TDS ≈ 200 years Se ≈ 200 years 	The water is useable for c. 200 years without treatment. TDS will have a restricted use but is still viable as a resource. Therefore the water will have less restrictions on its use for a longer period of time than the other options

Table 10-2 Modelling results for key objectives – water quality

Backfilling closure option	Water quality summary (Failure analyte (s) - exceed Livestock DWS limits)	Comments
		However, the longer term modelling trend indicates that water quality will eventually deteriorate over an extended time due to evapoconcentration and eventually fail for most analytes.
Option 4 No Backfill	Cd \approx 100 yearsCl \approx 100 yearsF \approx 50 yearsHg \approx 50 yearsMg \approx 100 yearsMo \approx 50 yearsNO ₃ \approx 100 yearsPb \approx 100 yearsSe \approx 100 yearsSe \approx 100 yearsTDS \approx 50 years	The water is useable for c. 50 years without treatment. However, the long term modelling trend indicates that water quality will deteriorate over time due to evapoconcentration and eventually fail for most analytes.

10.2 Discussion

Climate is the single most important factor on the hydrologic processes associated with Tshipi pit lake formation. In general, surface hydrologic processes (e.g. direct precipitation, evaporation, surface water runoff) are defined by regional climate. Groundwater inflows are generated from precipitation recharge and tend to buffer short-term climatic changes, but long-term climatic changes will be reflected in groundwater inflows over the long-term. The impacts of a changing climate are largely unknown but have been somewhat incorporated in the climate model as changing patterns of rainfall.

Mine closure is increasingly recognised as a whole-landscape development exercise which must consider all closure landform elements and how they will interact over time. The water quality options presented herein present strong arguments that completely backfilled & partial backfilled pit may not be the best solution to risks presented by pit lakes at mine closure when considering "short term" benefits in a water scarce area. The water quality of the hydraulic sink lake options is expected to deteriorate over time through evaporation and the consequent entrapment of solutes. Although not desirable in itself, this water quality deterioration indicates that the pit lake is functioning as it should as an evaporative 'terminal' sink and would better protect the surrounding groundwater environment from potentially contaminated waters resulting from the surrounding waste rock dumps and other mine facilities that may cause pollution to groundwater.

There are two scenarios modelled which will generate pit lakes, namely Option 3 and 4. Hydraulic and geochemical modelling has indicated that of the two options which generate pit lakes, the pit lake water for Option 3 (Concurrent or In-pit Dumping) produces more favourable water quality concentrations for livestock suitability, than all other options in the short term.

The final pit lake elevation at Tshipi Borwa Mine is projected to reach quasi-equilibrium level at varying heights depending on the backfilling options. The projected pit lake quasi-equilibrium elevation represents long-term

equilibrium conditions and has considered occurrences of drought and floods in the future using WGEN and probabilistic climate modelling. Expectations are that it will take an extremely long time before the pit lake water levels rise to near their final equilibrium elevations for the non-backfilled options. Because the pit lake will be a sink for groundwater it is not expected to impact on regional groundwater quality which is an important long term sustainable consideration.

A benefit/liability comparative assessment for short- and long-term water use is provided in Table 10-3.

Backfilling closure option	Short term benefits/liabilities	Long term benefits/liabilities
	Water use benefit for only 25 years before treatment	Requires less treatment for long term use
Option 1 Complete backfill	Water extraction requires wells, pumps etc Wells/screens likely to clog up with Iron	Flow through pit means contamination plumes released to wider groundwater system
Option 2	Water use benefit for only 25 years before treatment	Requires less treatment for long term use
Fill To Regional Groundwater level	Water extraction requires wells, pumps etc. Wells/screens likely to clog up with Iron	Flow through pit means contamination plumes released to wider groundwater system
Option 3 Concurrent backfill	Water use benefit for 200 years before treatment Water extraction requires much less infrastructure than option 1 & 2	Requires more treatment for long term use, but this can potentially include passive treatment (refer section 10.3 and Section 11). Hydraulic sink benefit as cone of depression captures wider pollution plumes from other mine areas and sources (WRDs
		etc) Requires most treatment
Option 4 No Backfill	Water use benefit for 50 years before treatment Water extraction requires much less infrastructure than option 1 & 2	for long term use. Hydraulic sink benefit as cone of depression captures wider pollution plumes from other mine areas and sources (WRDs etc)

Table 10-3 Benefit/liability comparitive assessment

From the assessment contained in Table 10-3, it is apparent that the beneficial use of the pit lake for water supply purposes will be limited to short term use (<100 years) before water treatment is likely to be required. In the short term, concurrent backfill offers the best water quality solution. Complete backfill of the pit may result in enhanced permeability which may enhance storage of water but water qualities are not necessarily automatically useable and that solution would also need a means of extraction (bores, screens, pumps etc). Preserving a hydraulic sink (Option 3 and 4) may also in fact be a more sustainable long term solution as water (and any pollutants contained within) will be drawn towards the pit and effectively containing them as the cone of depression has its centre at the pit. This may have more regional & widespread benefits to groundwater resources as described in Table 10-3.

It may be that there is a passive water treatment solution to the pit lake closure water quality issues in the long term. The feasibility of this (in particular floating wetlands) is discussed in Section 10.3.

10.2.1 Assumptions and caveats

- Groundwater is currently not entering the open pit. It is assumed that the mining at Mamatwan has dewatered the area and that once mining & dewatering ceases at both pits, groundwater levels will begin to rebound as predicted by groundwater modelling.
- The high nitrate in the pit water samples are nearfield bores is due to ANFO and won't be an issue for long term closure
- An open water evaporation factor of 0.8 has been applied to the pan evaporation data.
- Historical rainfall data has been used to develop a stochastic WGEN climate model
- As Option 3 and 4 has been determined to be hydraulic sinks, Evapoconcentration will continue for ever. This means that eventually the water within the pit will become unfit for human or animal consumption without intervention.
- Water held within the pore spaces in the WRD mass is assumed to be instantaneously mixed with the pit lake water.
- It is assumed that there is an infinite supply of leachable constituents from the waste material and host geology.
- The information and results contained within the report are subject to the availability and integrity of the data sources. The potential impacts of the neighbouring Mamatwan mine was considered from a groundwater inflow and quality perspective. No other neighbouring mine (s) influence has been considered
- The GoldSim and PHREEQC modelling results contained in this report are predictive forecasts of likely future behaviour only.

10.3 Passive Treatment Options Feasibility

The modelling option (3 and 4) that includes the development of a pit lake has indicated that there may be elevated concentrations of nitrogen compounds in the upper layer of the lake over time. A future safeguard regarding the nitrogen concentrations could be to put in place a passive treatment solution to reduce nitrogen compounds in the pit water. The feasibility of using a passive treatment solution is examined such that it can lead to a potential treatment option, if required. It should be noted that water with elevated nitrogen compounds is currently being used for dust suppression at the site and therefore it may not be required to treat the nitrogen compounds in the pit lake. Notwithstanding, a passive approach for the treatment warrants discussion and is included in the following sections.

When considering the treatment of nitrogen in water using passive wetland type systems, a fundamental principle which will need to be considered in the outline design is that passive systems should not dry out completely for significant lengths of time. Therefore, there are two options which might be viable:

- 1. Surface water flow systems (potentially on waste rock beaches); and
- 2. Floating wetland systems.

The former might be developed along benches of the open pit but would not necessarily accommodate a rising pit lake water level over time or indeed the expected fluctuating water levels once quasi-static levels are attained, so this has been discounted and is not considered further.

10.3.1 Traditional Surface Flow Wetlands

A surface flow wetland system can incorporate a number of different treatment zones. A typical system is shown below in Figure 10-1.

Figure 10-1 Typical Surface Water Flow Wetland Treatment Layout

10.3.2 Water Budget

The annual water budget forms the basis for understanding pollutant reductions and the passive wetland area required. Assuming a constant water level in the wetland, the inflow and meteorological data are used to compute the wetland outflows:

$$Qo = Qi + A \cdot (P - ET - I)$$

Where

A = Wetland area, m^2

ET = Evapotranspiration rate (m/d)

I = Infiltration rate (m/d)

P = precipitation rate (m/d)

 $Q = flow rate (m^3/d)$

The infiltration from the wetland will be an important consideration. A constructed system will most probably be lined with low permeability material. For a fully vegetated wetland transpiration can account for up to one half of the evapotranspiration. At this site evaporation is much higher than precipitation and therefore for this study the ET data will be multiplied by a theta value of 0.5

The pollutant mass balance for this wetland will use a cell by cell basis in accordance with the following²⁸. In this model the concentrations (C_1) enters into a cell at a flow rate (Q_1) with the effluent concentration being reduce by the removal mechanisms shown.

Figure 10-2

Tank IN Series (TIS) Model For Sizing Wetland Treatment Systems (after Kadlec and Knight 2009)

The water balance results are distributed or apportioned according to the number of Tank In Series (TIS). USEPA (2000)²⁹ indicate that at least three cells should be used in a wetland and therefore the TIS for this preliminary sizing have been set to 3.

10.3.3 Nitrogen Treatment

The TIS model established above is carried forward using a sequential treatment for each of the 'tanks'. A first order model with a rate constant (k) is used with an associated background wetland concentration (C^*). This follows the P-k-C^{*} design model which has been used in a number of wetland designs ^{30 31}

The concentration exiting the first of the tanks in series is given (assuming no pollutant from rainfall) by:

$$C_{1} = \frac{Qi.Cin+(k.A1.C*)}{Q1+((\alpha ET)A1)+(I.A1)+(k.A1)}$$

²⁸ Kadlec R.H and Wallace, S (2009) Treatment Wetlands, Second Edition, CRC Press, Taylor and Francis Group, US.

²⁹ US EPA (2000) Constructed Wetlands Treatment of Municipal Wastewaters, EPA 625/R-99/010 Office of Research and Development, Washington DC.

³⁰ Kadlec R.H and Wallace, S (2009) Treatment Wetlands, Second Edition, CRC Press, Taylor and Francis Group, US.

³¹ Kadlec R.H and Knight (1996) Treatment Wetlands, First Edition, CRC Press, Taylor and Francis Group, US.

C1	=	Concentration leaving the first tank
C _{in}	=	Input concentration
C*	=	Background concentration
k	=	First Order Rate coefficient
Theta (ά)	=	Transpiration fraction
A ₁	=	Area of tank

There is an interconnection between the biotransformation of the nitrogen species and a further integration of the P-k-C* is required. The wetland degradation can produce ammonium and therefore this needs to be accommodated in the design. Assuming the relatively simple nitrogen biotransformation of:

Table 10-4Nitrogen Transformation within a Treatment Wetland

Nitrogen Controls	Organic N \rightarrow	Ammoniacal N	\rightarrow Oxidise N	→ Nitrogen Gas
Wetland Processes	Ammoni	fication	Nitrification	Denitrification

The mass balance for these become linked such that production terms for ammonification in the ammonia balance – and nitrification in the oxidise nitrogen balance are included. Therefore the outlet concentration of the nitrogen species is dictated by :

$$C_{o1} = \frac{Qin Coin+kA1Co*}{Q1+(\alpha ET)A1+IA1+koA1}$$

$$C_{a1} = \frac{Qin CAin+Ka A1 Ca*+ko(Co1-Co*)}{Q1+(\alpha ET)A1+IA1+KaA1}$$

$$C_{n1} = \frac{Qin Cnin+Ka A1 Cn*+ka(Ca1-Ca*)}{Q1+(\alpha ET)A1+IA1+KnA1}$$

Where

- Co = organic nitrogen concentration, mg/l
- Ca = ammonia N concentration, mg/l
- Cn = oxidised N concentration, mg/l
- ko = organic N rate coefficient, m/d
- ka = ammonia N rate coefficient, m/d

kn = oxidised N rate coefficient, m/d

The above equations are there solved sequentially to account for the potential ammonium production within the wetland.

10.3.4 Design Parameters

The equations provided thus far require a provenance that is clear and well established. The P-k-C* model requires three input parameters which have been sourced from literature. Where and when possible some of this information will be obtained from the site and the existing wetland. For example the back ground concentration of parameters within the existing wetland will be useful in establishing the ultimate treatment goals for any new wetland.

Degradation Rate Coefficients

This preliminary analysis uses rate coefficients which have been calculated from the fitting of annual data from existing wetlands by Kadlec and Wallace (2009). The data has been selected from frequency distribution of the fitted k-value using the 50 percentile of the distribution (median). The selected rate coefficients are shown below.

Table 10-5 Rate Coefficients Used In Surface Wetland Sizing

Parameter	Rate Coefficient			
Organic Nitrogen	17.3 m/yr			
Ammoniacal Nitrogen	14.7 m/yr			
Oxidised Nitrogen	26.5 m/yr			

Organic nitrogen content is estimate by undertaking a Total Kjeldahl Nitrogen content analysis and subtracting the total inorganic nitrogen content (ammonia and nitrate in this site). Currently there is no Total N analysed and therefore this will be estimated from the analyses already presented, but additional analysis would be recommended before design stage is commenced for the wetland.

It is appreciated that such first order decay rates can be site and process water specific. If possible it is recommended that treatability studies should be undertaken using bench scale testing to establish the optimum treatment rate.

10.3.5 Floating Wetlands

In addition floating wetland treatment systems can be very effective in treating nitrogen compounds³². Such systems are an established science which promotes:

• Nitrification & Denitrification;

³² https://www.chesapeakewea.org/docs/Session_1G_-_FloatingWetlandsSolutions_CaseStudies.pdf

- Biological & physical Filtration:
 - Total Suspended Solids (TSS) Filtration
 - Colloidal Particle Filtration
 - Pathogens coliform bacteria, E coli
 - Heavy metals
- Oxygenation & photosynthesis; and
- Nutrient sequestration & plant uptake.

Therefore given the transient nature of the lake infilling, this might be a viable option but it depends on the rate of treatment.

10.3.6 Degradation Rates

As opposed to surface flow systems, the rates used for floating wetlands are based on substance remove per unit area. For floating systems the following is quoted³³

Table 10-6 Removal Rate Used In Floating Wetland Sizing (assuming anoxic shade)

Substance	Removal Rates (US)	Removal Rates (metric)		
	(Llbs per square foot per year)	(mg per square meter per day)		

 $^{33}\,https://www.chesapeakewea.org/docs/Session_1G_-_FloatingWetlandsSolutions_CaseStudies.pdf$

Substance	Removal Rates (US) (Llbs per square foot per year)	Removal Rates (metric) (mg per square meter per day)
Ammonia	0.6	69
Nitrate	0.9	104
Total Nitrogen	1.7	197

Therefore the application relies upon a load of nitrogen being predicted from the concentration and the flow rate in the lake. The latter will need to consider the velocity of the water in the lake to establish the treatment that can be realised.

10.3.7 Preliminary Calculated Nitrogen Reduction

Using the above assumptions the following reduction in nitrogen could be realised following integration of the water budget into the sizing equation. A preliminary assessment has included used site data estimates and examined the areas of wetland that might be required to reduce the nitrogen compound in the pit lake as it evolves.

Given the climate in the area I it is considered that a floating system is most realistic, however the sizing is put into context by comparing the sizing with a surface flow, traditional wetland system. To provide an estimate of wetland size, the nitrogen compounds have been taken from the existing groundwater at the site which will enter the pit. The size of the wetland is calculated based on meeting the requirements of the regulatory standards. The input parameters are shown below:

Annualised Rainfall (m/d)	Annualised Evapotranspirati on (m/d)	Depth of Wetland (m)	Mean Nitrate N (mg/l)	Mean Ammonia —N (mg/l)	Estimated Mean Organic – N (mg/l)	Flow	Flow Rates (m3/d 86 430	
0.001	0.01	0.3	42	14	5	86	430	860

Table 10-7Input Conditions for Wetland Sizing

Table 10-8Wetland Sizing Based on Different Flows

Wetland Type	Size Based (hectares)					
Flow Rate (m3/d)	86	430	860			
Surface Flow	0.5	1.5	2			
Floating	2.4	4.8	7.2			

The likely area of the surface water in the pit will be between 420 000 and 1 400 000 m^2 (Option 3 and 4 respectively) at maximum extent which indicates the fraction of wetland treatment area will be relatively small assuming the flow rates used are realistic. In terms of conceptual design there could be a combination of approaches which are worth exploring:

- 1. Construction of a surface flow system which might be fed by solar pumps;
- 2. Use of surface flow system in combination with floating system; or
- 3. Use of surface flow system alone.

It is considered that these options are explored further as part of future design stage in the closure process if required.

10.4 Metal Treatment

There are some important aspects of the water quality which will require consideration of part of the pit lake development. The key water quality issues are:

- The use of floating and traditional wetlands is a proven technology for reducing the nitrogen species in the pit lake water. Such systems are also well known for removing metals from water in a variety of scenarios ranging from mine drainage, landfill leachate and highway runoff.³⁴
- 2. Heavy metals such as mercury and metalloids such as selenium have been successfully removed form water using wetland treatment technology. It should be remembered that the modelled mercury concentration is only a theoretical risk because the limit of detection was used as a source term in the groundwater (the dominant component) in the modelling. Therefore, it is equally as likely that mercury may remain below the limit of detection after 100 years.
- 3. Notwithstanding there are a number of studies which have shown engineered wetlands and floating wetlands can remove heavy metals from water, through the processes demonstrated diagrammatically in Figure 10-4 below.³⁵ For example over 50% removal of mercury has been has been removed in wetland systems and detailed studies have shown it partitions mostly into solid phase sediment, as shown in Figure 10-5 below.³⁶

³⁶ Mercury mass balances for the Everglades Nutrient Removal Project, 1994–1997. (From South Florida Water Management District (1999a) Everglades Consolidated Report. South Florida Water Management District, West Palm Beach, Florida.)

³⁴ Kadlec R.H and Wallace, S (2009) Treatment Wetlands, Second Edition, CRC Press, Taylor and Francis Group, US.

³⁵ Ladislas S., C.Gérente, F.Chazarenc, J.Brisson and Y.Andrès.2015. Floating treatment wetlands for heavy metal removal in highway stormwater ponds. Ecological Engineering Vol 80, pp 85-91

Figure 10-4 Metal Removal Using Floating Wetlands

Figure 10-5 Mercury Mass Balance (1994-1997)

- 4. There are several studies which show selenium has also been effectively removed in wetland systems³⁷ were up to 89% of the selenium has been successfully removed with inflow concentrations of 20–30 µg L⁻¹ decreased to <5 µg L⁻¹ in the outflow. Most of the selenium was removed by immobilization into sediments and plant tissues where concentrations reached 5 and 15 mg kg⁻¹, respectively. Biological volatilization may have accounted for as much as 10–30% of the Se removed. The highest mean rates of volatilization for vegetated sites were 190, 180, and 150 µg of Se m⁻² day⁻¹ (rabbitfoot grass, cattail, and saltmarsh bulrush, respectively). Rates for the most dominant species, saltmarsh bulrush, varied during the year: the mean rates were 150, 70, and 25 µg of Se m⁻² day⁻¹ in February, June, and October, respectively.
- 5. Some aspects of total dissolved solids such as fluoride and nitrate can be treatment in a wetland. Nitrogen species have been discussed earlier; fluoride partitions more strongly to soils and sediments than do other main contributors to the TDS such as bromide and chloride. The Langmuir adsorption capacities of soils ranges from 100–400 mg/kg for silts and loams³⁸. However, the oxyhydroxides of iron and aluminium have much higher binding capacities, 30,000–50,000 mg/kg and these are likely to be present as precipitates in the pit lake. It is also likely the fluoride would be most efficiently removed in a organic rich anaerobic system, indeed experiment with biochar have demonstrated removal rates of 1-3m²/g.³⁹ Therefore whilst the chloride concentration are unlikely to be removed by the wetland, fluoride and consequently the TDS would be expected to be reduced slightly through introduction of the wetlands.

The biodiversity report for this project⁴⁰ also recommends the use of floating wetland to provide biodiversity enhancement of the pit lake. Therefore, the use of a wetland system for the longer-term management of the water quality accords with best practise in terms of treatment and biodiversity.

10.4.1 Impacts on Lake Evaporation using Wetland Treatment

The presence of vegetation retards evaporation in surface flow wetlands.⁴¹ This is to be expected for several reasons, including shading of the surface, increased humidity near the surface, and reduction of the wind at the surface. The presence of a litter layer can create a mulching effect that reduces open water evaporation. The reported magnitude of this reduction is c. 50%, as indicated by a sample of available reduction percentages when compared to open water of: 47%⁴²; and 41–48%⁴³. Therefore, this would mean that the concentration of substances in the pit lake would decrease because there is effectively more dilution available in the water quality/Goldsim model.

However, this does not necessarily mean that the wetland conserves water, because wetland plant transpiration can offset this reduction. With plant transpiration offsetting reductions in open water evaporation, large surface flow wetland evapotranspiration and lake evaporation are roughly equal. Some studies report⁴⁴ this equality for a low arctic site, and a review⁴⁵ of swamps/bogs transpiration concluded

⁴⁰ Scientific Aquatic Services (2019) Ref: SAS 218211

³⁷ Hansen D, P. J. Duda, A.Zayed and N.Terry 1998. Selenium Removal by Constructed Wetlands: Role of Biological Volatilization. Environmental Science and Technology 32(5)

³⁸ Bower C.A., Hatcher J.T. (1967) Adsorption of fluoride by soils and minerals. Soil Science 103(3): 151–154

³⁹ Mohan D., R Sharma, V K. Singh, P Steele and C U. Pittman Jr. 2012. Fluoride Removal from Water using Bio-Char, a Green Waste, Low-Cost Adsorbent: Equilibrium Uptake and Sorption Dynamics Modeling. *Ind. Eng. Chem. Res.*, **2012**, *51* (2), pp 900–914

⁴¹ Kadlec R.H and Wallace, S (2009) Treatment Wetlands, Second Edition, CRC Press, Taylor and Francis Group, US.

⁴² Bernatowicz S., Leszczynski S., Tyczynska S. (1976) The influence of transpiration by emergent plants on the water balance in lakes. Aquatic Botany 2: 275–288

⁴³ Koerselman W., Beltman B. (1988) Evapotranspiration from fens in relation to Penman's potential free water evaporation (Eo) and pan evaporation. Aquatic Botany 31: 307–320.

⁴⁴ Roulet N.T., Woo M.K. (1986) Wetland and lake evaporation in the low arctic. Arctic and Alpine Research 18: 195–200

rough equality with lakes is probably the most reasonable assumption. More recent studies have indicated that when comparing with open water evaporation, the plant type is important as some promote higher evapotranspiration than open water evaporation and some are equivalent⁴⁶.

Therefore, it is not likely that the inclusion of a wetland will dramatically change the modelling of evaporation. It is clear from the literature that the impact on evaporation is plant type, and site, specific and therefore it is recommended that a trial of wetland system is established once the pit lake has started to recover.

⁴⁶ Jiménez-Rodríguez C.D, C.Esquivel-Vargas, M.Coenders-Gerrits and M.Sasa-Marín (2019). Quantification of the Evaporation Rates from Six Types of Wetland Cover in Palo Verde National Park, Costa Rica. *Water* **2019**, *11*(4), 674

 ⁴⁵ Linacre E.T. (1976) Swamps. In: Vegetation and Atmosphere, Volume II: Case Studies, Monteith J.L. (ed.) Academic Press: London, United Kingdom, pp. 329–347.
 ⁴⁶ Jiménez-Rodríguez C.D, C.Esquivel-Vargas, M.Coenders-Gerrits and M.Sasa-Marín (2019). Quantification of the Evaporation Rates from Six Types of

11.0 Quantitative Water Quality Modelling of a floating wetland treatment system – Option 3

At this stage, Option 3 is seen as the preferred closure option. As part of this assessment, the positive impact of the passive treatment option on the water quality in the pit lake has been made for the selected option (3). This has assumed the following:

- 1. A floating wetland is used in the system. A floating system has been assumed as it is relatively easy to implement and also increase in area if required due to changes in water chemistry;
- 2. The area required has been selected as the earliest it might be possible to apply such that the system will function. This realise upon sufficient coverage of water in the pit and enough depth to propagate the system. To this end an area of 2.4 ha has been selected. The corresponding time for the pit to reach that area has been assessed using Goldsim and the modelled water quality predicted at that point. The time from pit lake formation until wetland installation has been assumed to be 10 years.
- 3. Once implemented the percentage decrease in the nitrate, selenium, mercury (albeit this may not be relevant as it may not be elevated in the pit lake water for reasons described earlier) and TDS has been assessed. These percentage decreases are described in Table 11-1.

Metal/Metalloid	Reduction in Wetland (%)
NO3	74
Se	86
Hg	50
TDS	1.5 % (due to reduction in N and F)

Table 11-1Key Metal, Metalloid and Inorganic Analyte Reduction in Surface Flow Wetlands

It is also evident that there will perhaps be a positive influence on the chemistry of the pit lake water for other water quality parameters. To make a preliminary assessment of the impact of using a wetland system, literature⁴⁷ has been searched to establish the likely reduction of other key water quality parameters. The following median reduction of metals and metalloids through surface flow wetlands has been obtained. These reductions are compiled from a global review of wetland performance and the removal rates published can be used to size surface flow systems. At this stage given that a floating system is envisaged, these removal rates will require confirming at a trial stage in the treatability – however they are a useful guide to estimating the longer-term water quality.

⁴⁷ Kadlec R.H and S.D Wallace. 2009 Treatment Wetlands, 2nd Edition. CRC Press

Table 11-2Typical Metal and Metalloid Reduction in Surface Flow Wetlands

Metal/Metalloid	Reduction in Wetland (%)
Al	50
As	90
В	5
Cd	79
Cu	66
Fe	78
Mn	47
Ni	34
Pb	62
Zn	68
SO4	50*

Sulfate can be reduced by sulfate reducing bacteria to 100-300 moles/m3/d in a wetland and there this reduction can be enhanced significantly under the correct conditions. In addition, this will also enhance the precipitation of insoluble metal sulfides which will also mean the metals in this table could be removed at an enhanced rate if the correct conditions exist.

11.1 Predictive modelling water quality results

The values in Table 11-1 and Table 11-2 are used as part of the predictive water quality modelling in this section but should be viewed as a preliminary assessment. <u>Site specific</u> conditions may improve or reduce the reduction in the wetland and this will need to be established at treatability stages.

The results of the Goldsim & PHREEQC modelling and consequently the predicted chemistry of the pit lake are provided in Table 11-3.

Analyte	Livestock	10 Years		10 Years 50 Years 100 Years		150 Years		200 Years			
Layer	DWS	1	2	1	2	1	2	1	2	1	2
Al	5	0.0025	0.0025	0.00035	0.00035	0.0003	0.0003	0.0003	0.0003	0.00038	0.00038
As	1	0.0027	0.00275	0.001	0.001	0.0015	0.0015	0.002	0.002	0.003	0.003
В	5	0.21	0.21	0.64	0.64	0.99	0.99	1.4	1.4	1.85	1.85
Ва		0.093	0.093	0.11	0.11	0.085	0.085	0.066	0.066	0.033	0.033

Table 11-3 Predictive modelling results for a wetland included for Option 3

Tshipi é Ntle Manganese Mining EMP 3 Specialist Report: Hydrological and Geochemical Modelling Filename: 2019-07-18_405.03471.00039_Tshipi_Report_Final

Analyte	Livestock	10 Y	'ears	50 Y	'ears	100 \	Years 150 Years		200 Years		
HCO ₃		206	217	232	295	371	279	323	428	377	485
Ca	1000	10	10	93	92	101	101	89	89	66	66
Cd	0.01	0.0005	0.0005	0.0002	0.0002	0.0003	0.0003	0.0004	0.0004	0.0005	0.0005
CI	1500 3000	69	69	280	280	433	433	596	596	780	780
Cu	0.5 1.0	0.0013	0.0013	0.0005	0.0005	0.0007	0.0007	0.0009	0.0009	0.001	0.001
Fe	10	0.026	0.026	0.029	0.029	0.03	0.03	0.03	0.03	0.03	0.03
F	2	0.27	0.27	0.46	0.46	0.69	0.69	0.95	0.95	1.25	1.25
Hg	0.001	0.0002	0.0002	0.0007	0.0007	0.001	0.001	0.0013	0.0013	0.002	0.002
Mg	500	5.25	5.25	5.7	5.7	8.5	8.5	11	11	15	15
Mn	10	3.1E-05	3.1E-05	1.3-05	1.3E-05	2.2E-05	2.2E-05	2.13-05	2.13E- 05	1.5E-05	1.5E-05
Mo	0.01	0.00012	0.00012	0.0025	0.0025	0.004	0.004	0.006	0.006	0.007	0.007
Na	2000	31	31	113	113	177	177	245	245	323	323
NO₃ as N	100	2.97	2.97	1.1	1.1	1.39	1.39	1.8	1.8	2.31	2.31
Ni	1	0.0005	0.0005	0.005	0.005	0.0075	0.0075	0.01	0.01	0.013	0.013
Pb	0.1	0.0018	0.0018	0.014	0.014	0.022	0.022	0.03	0.03	0.04	0.04
рН		8.8	8.07	8.8	7.12	8.8	7.03	8.9	7.05	8.9	7.13
Se	0.05	0.005	0.005	0.003	0.003	0.0044	0.0044	0.006	0.006	0.007	0.007
SO ₄	1000	20	20	35	35	54	54	75	75	101	101
TDS	1000 2000 3000	345	356	762	825	1056	1148	1345	1450	1670	1778
V	1	0.19	0.19	0.15	0.15	0.21	0.21	0.28	0.28	0.37	0.37
Zn	20	0.016	0.016	0.013	0.013	0.018	0.018	0.024	0.024	0.037	0.037

11.2 Proposed wetland system – results discussion

The predictive modelling results indicate that the use of wetland treatment may well have a positive impact on the water quality of the pit lake in the long term. The modelling indicates that up to 200 years all analytes are below the assessed relevant quality criteria for livestock⁴⁸.

11.2.1 Comparative assessment for Option 3

Analyte	Livestock	200 \	200 Years		200 Years		
	DWS	No W	etland	With	Wetland		
Layer		1	2	1	2		
Al	5	0.00045	0.00045	0.00038	0.00038		
As	1	0.025	0.025	0.003	0.003		
В	5	2.17	2.17	1.85	1.85		
Ва	n/a	0.033	0.033	0.033	0.033		
HCO ₃	n/a	415	525	377	485		
Ca	1000	61	61	66	66		
Cd	0.01	0.002	0.002	0.0005	0.0005		
Cl	1500 3000	872	872	780	780		
Cu	0.5 1.0	0.003	0.003	0.001	0.001		
Fe	10	0.03	0.03	0.03	0.03		
F	2	1.36	1.36	1.25	1.25		
Hg*	0.001	0.002	0.002	0.002	0.002		
Mg	500	32	32	15	15		
Mn	10	0.000019	0.000019	1.5E-05	1.5E-05		
Mo	0.01	0.008	0.008	0.007	0.007		
Na	2000	360	360	323	323		
NO₃ as N	100	300	300	2.31	2.31		
Ni	1	0.023	0.023	0.013	0.013		

Table 11-4 Comparative assessment

⁴⁸ *The mercury concentration is theoretical because it is not detectable in the groundwater around the site and hence the limit of detection is used in the modelling and, it may never be detectable in the pit lake water over time in any case

Analyte	Livestock	200 \	/ears	200 Years	
Pb	0.1	0.12	0.12	0.04	0.04
рН		9	7.22	8.9	7.13
Se	0.05	0.056	0.056	0.007	0.007
SO ₄	1000	224	224	101	101
TDS	1000 2000 3000	2272	2382	1670	1778
V	1	0.46	0.46	0.37	0.37
Zn	20	0.11	0.11	0.037	0.037

Table 11-4 in the previous section indicates that significant betterment of all modelled water quality parameters in a pit lake for option 3 can be achieved over time utilising a floating wetland as a mitigation measure. This is when compared to not having a wetland. In particular, for the three parameters that exceeded the Livestock DWS standards after 200 years for the no-wetland option; these are Nitrate, TDS and Selenium.

As stated previously, mine closure is a whole-landscape development exercise which must consider all closure landform, engineering and environmental elements and how they will interact over time not just the water quality and quantity. The water quality of the hydraulic sink lake Option 3, even with a wetland as mitigation for a 200 years period described herein, is still expected to deteriorate over time through evaporation and the consequent entrapment of solutes.

Engineered wetland systems require ongoing maintenance to function correctly. However, as far as capitalising on an opportunity to use water, in a water scarce region for Livestock from an open pit lake is perhaps a viable option. Creating and managing a pit lake rather than backfilling will have additional groundwater benefits by creating a groundwater hydraulic sink. However, It should be stressed that a provision in the closure planning process needs to be made for the pit lake when the water quality reaches a water quality standard which renders it not fit for purpose.

12.0 Water abstractions comparison

If water is to be utilised as a resource after closure of the pits, it should be considered that the mechanism for water abstraction will differ depending on whether a pit lake is created for Option 3 or the pit backfilled as for Option 1.

12.1.1 Option 1 – Complete backfill water abstractions

In this closure scenario it would be required that a groundwater abstraction well is drilled and installed following the backfilling of the pit, alternatively a abstraction well could be installed during backfilling. The well would be drilled using either cable tool or rotary techniques, either of which are likely to require the use of advanced casing during drilling and installation due to the unconsolidated nature of the backfilled material.

The dimensions of the well would be dependent upon the hydrogeological conditions of the backfill material, the required yield of the well and the required pumped head but would typically range between 40 cm and 90 cm diameter to allow for the installation of well screen of between 5 cm and 40 cm diameter.

A typical installation is presented in Figure 12-1.

Figure 12-1 typical abstraction well design

To allow for suitable well design it would be proposed that test boreholes are drilled following backfilling of the site to allow for permeability testing of the material to estimate potential yields and to obtain site specific permeabilities to allow for estimates of the appropriate well diameter, slotted screen slot size and suitable gravel pack dimensions.

12.1.2 Option 3 – Pit lake water abstractions

In Option 3 scenario it would be recommended that water abstraction is provided through the use of submersible pumps which would be installed on floating Platform on the water surface. This will allow them to rise and fall with water levels within the pit lake, a typical arrangement is presented in Figure 12-2.

The pumps would be powered via either electric or diesel generator located above the predicted rebound water level within the void. The pump specification required would be dependent upon the head and yield required.

Figure 12-2 Floating submersible pump arrangement on an open water surface

Any water abstraction units will require ongoing monitoring and maintenance.

13.0 Recommendations

Any wetland system should be bench tested in the very first instance. Then as the water enters the pit and the lake starts to form, there will be an opportunity to trial the use of different floating wetland systems once a successful bench test has been completed. The design and implementation of a trial should consider the native vegetation and be established in accordance with international best practise. This may also present an opportunity to engage with the local community to establish the initial maintenance scheme (s) for the wetland system going forwards.

14.0 **REFERENCES**

- ARC. (2008). Soil information for proposed mining operation Ntsimbintle Mining, near Hotazel. Pretoria: ARC Institute for Soil, Climate and Water.
- GoldSim Technology Group LLC. Version 12.1
- Knight Piesold. (2012). Tshipi Borwa Mine Hydrocensus Study. Johannesburg: Knight Piesold.
- Metago Environmental Engineers. (2009). Ntsimbintle mining feasibility study environmental input. Johannesburg: Metago.
- Mine closure of pit lakes as terminal sinks: best available practice when options are limited? Clinton D. Mccullough
- Mine Voids Management Strategy (I): Pit Lake Resources of the Collie Basin By, Dr. Lu Y. L. Zhao Dr. Clint D. McCullough Assoc. Prof. Mark A. Lund
- WGEN: A Model for Generating Daily Weather Variables By C. W. Richardson and D. A. Wright United States Department of Agriculture Agriculture Research Service ARS-8, August 1984
- Tshipi Borwa Mine Stormwater Management and Water Balance for EMPr. SLR Project No.: 710.20029.00011. July2017

APPENDIX 01: EXAMPLE OF GOLDSIM OUTPUT

Option 4 - No Backfill (mean results for pit lake elevation) over 200 years

Option 4 – stochastic variations in groundwater inflows over 200 years

WGEN weather generator model output

APPENDIX 02: EXAMPLE OF PHREEQC OUTPUT

Input file: C:\Users\jrobinson\Documents\Tshipi Study\PHREEQ\Option 1 - Inpit Filling
\Tshipi_Layering_Option1_50 Years.pqi
Output file: C:\Users\jrobinson\Documents\Tshipi Study\PHREEQ\Option 1 - Inpit Filling
\Tshipi_Layering_Option1_50 Years.pqo
Database file: C:\Program Files (x86)\USGS\Phreeqc Interactive 3.3.3-10424\database
\llnl.dat

```
Reading data base.
```

LLNL_AQUEOUS_MODEL_PARAMETERS NAMED_EXPRESSIONS SOLUTION_MASTER_SPECIES SOLUTION_SPECIES PHASES EXCHANGE_MASTER_SPECIES EXCHANGE_SPECIES SURFACE_MASTER_SPECIES SURFACE_SPECIES RATES END

Reading input data for simulation 1.

DATABASE C:\Program Files (x86)\USGS\Phreeqc Interactive 3.3.3-10424\database \llnl.dat SOLUTION 1 Pit Chemistry after 50 Years Before Layering temp 2.5 рΗ pe 12 redox pe units mg/l density 1 Alkalinity 476 Al 0.077 As 0.0077 0.63 В 0.105 Ba C(4) 421 Ca 178 0.00076 Cd 272 C1 Cu 0.0011 F 0.4 Fe 0.16 0.00064 Hg 10.6 Mq 0.1 Mn 0.002 Мо 2.95 N(5) 108 Na Ni 0.0076 0.037 Pb 62.5 S(6) 0.017 Se V 0.185 0.033 Zn water 1 # kg EQUILIBRIUM_PHASES 1-2 Inpitfilling: Layer 2 After 50 Years Fe(OH)3 0 10 precipitate_only Manganite 0 10 precipitate_only Gibbsite 0 10 precipitate_only 0 10 precipitate_only Barite Calcite 0 10 precipitate_only Gypsum 0 10 precipitate_only SAVE SOLUTION 1

END

Beginning of initial solution calculations.

Initial solution 1. Pit Chemistry after 50 Years Before Layering

pH will be adjusted to obtain desired alkalinity.

		§	Solution cor	mposition			
	Elements	Molal	Lity M	Moles			
	Elements Al Alkalinit As B Ba C(4) Ca Cd Cl Cu F F F e Hg Mg Mn Mo N(5) Na Ni Pb S(6) Se V Zn	Molai 2.861e y 9.537e 1.030e 5.842e 7.665e 6.919e 4.453e 6.778e 7.692e 1.735e 2.111e 2.872e 3.199e 4.372e 1.825e 2.090e 2.111e 4.710e 1.298e 1.790e 6.524e 3.641e 5.059e	Lity 1 =-06 2.863 =-03 9.53 =-07 1.030 =-05 5.842 =-07 7.665 =-03 6.919 =-03 4.453 =-09 6.778 =-03 7.692 =-03 7.692 =-03 7.692 =-04 4.372 =-06 2.872 =-06 2.872 =-06 2.872 =-08 2.090 =-04 4.372 =-08 2.090 =-04 4.372 =-07 1.298 =-07 1.298 =-07 2.158 =-06 3.642 =-07 5.059	Moles Le-06 7e-03 De-07 2e-05 5e-07 De-03 3e-03 3e-09 2e-03 5e-08 Le-05 2e-06 De-09 2e-04 5e-06 De-08 Le-04 De-03 3e-07 De-07 4e-04 3e-07 Le-06 De-07			
Pe	ercent error,	Activi Ior Mass of Total (Tempe Electrical k 100*(Cat- An)	pity of water pity of water f water (kg) CO2 (mol/kg) palance (eg) o/(Cat+ An) Iterations Total f Total ($\begin{array}{rcl} \text{bf solution} \\ \text{d} &=& 9.43 \\ \text{d} &=& 12.00 \\ \text{f} &=& 0.99 \\ \text{h} &=& 1.69 \\ \text{h} &=& 1.69 \\ \text{h} &=& 1.000 \\ \text{h} &=& 25.000 \\ \text{h} &=& -4.26 \\ \text{h} &=& -16.71 \\ \text{s} &=& 39 \\ \text{d} &=& 1.1105 \\ \text{O} &=& 5.6594 \\ \text{of species} \end{array}$	1Adju 31 Adju 31 38e-02 30e+00 39e-03 51e-03 51e-03 552e+02 155e+01	st alkalir	nity
	Species	Molality	Activity	Log Molality	Log Activity	Log Gamma	mole V cm³/mol
Al	ОН- H+ H2O 2	2.936e-05 4.137e-10 5.553e+01 .861e-06	2.574e-05 3.709e-10 9.907e-01	-4.532 -9.383 1.744	-4.589 -9.431 -0.004	-0.057 -0.047 0.000	(0) 0.00 18.07
_	Al02- HAl02 NaAl02 Al(OH)2+ AlOH+2	2.856e-06 2.717e-09 1.962e-09 7.881e-13 1.865e-16	2.510e-06 2.717e-09 1.962e-09 6.925e-13 1.116e-16	-5.544 -8.566 -8.707 -12.103 -15.729	-5.600 -8.566 -8.707 -12.160 -15.952	-0.056 0.000 0.000 -0.056 -0.223	(0) (0) (0) (0) (0)

	AlF2+	5.580e-18	4.902e-18	-17.253	-17.310	-0.056	(0)
	AlF+2	1.132e-18	6.778e-19	-17.946	-18.169	-0.223	(0)
	AlF3	1.121e-18	1.121e-18	-17.950	-17.950	0.000	(0)
	Al+3	1.009e-20	3.731e-21	-19.996	-20.428	-0.432	(0)
	A1F4-	5.824e-21	5.117e-21	-20.235	-20.291	-0.056	(0)
	A1904+	$1 414e^{-21}$	1 242 - 21	-20.850	-20 906	-0.056	(0)
	A1 (SO4) 2_	3 5720-23	3 1300 - 23	-22 447	-22 503	-0.056	(0)
	AI(304)2 =	1 4760 20	$3.139e^{-23}$	-22.447	-22.303	-0.050	(0)
	AIZ(OH)Z+4	1.4/60-29	2.027e-30	-20.031	-29.093	-0.002	(0)
	AL3 (OH) 4+5	/.355e=3/	3.482e-38	-36.133	-37.458	-1.325	(0)
_	AII304 (OH) 2	24+7 0.000e+00	0.000e+00	-60.029	-62.626	-2.597	(0)
As	(-3)	0.000e+00					
	AsH3	0.000e+00	0.000e+00	-206.793	-206.793	0.000	(0)
As	(3)	0.000e+00					
	H2AsO3-	0.000e+00	0.000e+00	-73.058	-73.115	-0.056	(0)
	As02-	0.000e+00	0.000e+00	-73.074	-73.130	-0.056	(0)
	HAsO2	0.000e+00	0.000e+00	-73.269	-73.269	0.000	(0)
	As (OH) 3	0.000e+00	0.000e+00	-73.332	-73.332	0.000	(0)
	As020H-2	0.000e+00	0.000e+00	-74,467	-74.694	-0.227	(0)
As	(5)	1.030e-07				•••==•	(-)
110	Ac03F-2	1 030e - 07	6 1100-08	-6 987	-7 214	-0 227	(0)
	HJCO3E-	1,0300,07 1,0150-11	1 6830 - 11	_10 718	-10 774	-0.056	(0)
		$1,910e^{-11}$	1.0056-11	-10.710	40 072	-0.030	(0)
	HASU4-Z	1.4306-40	0.00000000	-39.645	-40.072	-0.227	(0)
	As04-3	0.000e+00	0.000e+00	-41./20	-42.232	-0.511	(0)
	H2AsO4-	0.000e+00	0.000e+00	-42.666	-42.722	-0.056	(0)
	H3AsO4	0.000e+00	0.000e+00	-49.907	-49.907	0.000	(0)
В(-	-5)	0.000e+00					
	BH4-	0.000e+00	0.000e+00	-231.735	-231.791	-0.056	(0)
в (З	3)	5.842e-05					
	B02-	3.364e-05	2.956e-05	-4.473	-4.529	-0.056	(0)
	B(OH)3	2.025e-05	2.025e-05	-4.693	-4.693	0.000	(0)
	CaB (OH) 4+	3.741e-06	3.287e-06	-5.427	-5.483	-0.056	(0)
	MaB (OH) 4+	5.513e - 07	4.843e-07	-6.259	-6.315	-0.056	(0)
	NaB (OH) 4	2 354e - 07	2 354 - 07	-6 628	-6 628	0 000	(0)
		3 9680-10	3.4860-10	-9 401	-9 158	-0.056	(0)
		1 1900 = 17	1 027 0 17	16 020	16 004	-0.050	(0)
	BFZ (OH) Z-	1.1800-17	1.03/e-1/	-16.928	-16.984	-0.056	(0)
	BZO (OH) 5-	2.599e-19	2.284e-19	-18.585	-18.641	-0.056	(0)
	BF30H-	3.424e-25	3.009e-25	-24.465	-24.522	-0.056	(0)
	BF4-	1.544e-34	1.356e-34	-33.811	-33.868	-0.056	(0)
Ba		7.665e-07					
	Ba+2	6.749e-07	4.077e-07	-6.171	-6.390	-0.219	(0)
	BaCO3	8.952e-08	8.952e-08	-7.048	-7.048	0.000	(0)
	BaCl+	1.046e-09	9.187e-10	-8.981	-9.037	-0.056	(0)
	BaNO3+	6.750e-10	5.931e-10	-9.171	-9.227	-0.056	(0)
	BaB(OH)4+	3.968e-10	3.486e-10	-9.401	-9.458	-0.056	(0)
	BaOH+	4.200e-11	3.690e-11	-10.377	-10.433	-0.056	(0)
	BaF+	5 808 - 12	5 103 - 12	-11 236	-11 292	-0.056	(0)
CL	1)	6 9190-03	5.1000 12	11.200	11.272	0.000	(0)
0(-			2 7570-02	-2 260	2 125	0 056	(0)
	псоз-	4.2700-03	1 (72- 02	-2.309	-2.425	-0.030	(0)
		1.6/3e-03	1.6/3e-03	-2.111	-2.111	0.000	(0)
	03-2	7.50/e-04	4.495e-04	-3.125	-3.34/	-0.223	(0)
	MgCO3	9.456e-05	9.456e-05	-4.024	-4.024	0.000	(0)
	CaHCO3+	8.139e-05	7.151e-05	-4.089	-4.146	-0.056	(0)
	NaHCO3	2.203e-05	2.203e-05	-4.657	-4.657	0.000	(0)
	MgHCO3+	9.879e-06	8.680e-06	-5.005	-5.061	-0.056	(0)
	NaCO3-	7.336e-06	6.446e-06	-5.135	-5.191	-0.056	(0)
	CO2	3.249e-06	3.263e-06	-5.488	-5.486	0.002	(0)
	PbCO3	1.121e-07	1.121e-07	-6.951	-6.951	0.000	(0)
	BaCO3	8.952e-08	8.952e-08	-7.048	-7.048	0.000	(0)
	Pb(CO3)2 = 2	5.932-08	3.518e-08	-7.227	-7.454	-0.227	(0)
	ZnCO3	4 4130-08	4 4130-08	-7 255	-7 255	0 000	(0)
	$C^{11}(C^{12})^{-2}$	9 /120-00	5 5820-00	-2 026	_Q 252	_0 227	(0)
	Cu(COS)Z=Z	9.4128-U9 6.0720.00	5.502 = 03	-0.U20 _0 157	-0.200 _0 157		(0)
		0.9/20-09	0.9/20-09	-0.15/	-0.15/	0.000	(0)
		1.2090-09	1.132e-U9	-8.890	-8.946	-0.056	(0)
	Ca (CO3) 2-2	/.94/e-10	4./13e-10	-9.100	-9.327	-0.227	(0)
	CuCO3 (OH) 2-	-2 7.131e-10	4.229e-10	-9.147	-9.374	-0.227	(0)
	CdCO3	3.949e-10	3.949e-10	-9.404	-9.404	0.000	(0)
	CdHCO3+	1.124e-10	9.874e-11	-9.949	-10.006	-0.056	(0)
	MnCO3	5.923e-13	5.923e-13	-12.227	-12.227	0.000	(0)

	MnHCO3+	1.226e-15	1.077e-15	-14.912	-14.968	-0.056	(0)
	FeCO3+	2.523e-16	2.217e-16	-15.598	-15.654	-0.056	(0)
	FeCO3	2.273e-20	2.273e-20	-19.643	-19.643	0.000	(0)
	FeHCO3+	1.999e-21	1.756e-21	-20.699	-20.755	-0.056	(0)
Ca		4 453e-03					(-)
ou	$C_{2}+2$	2 6130-03	1 6060 - 03	-2 583	-2 79/	-0 211	(0)
		2.013e-03	1.000e-03	-2.505	-2.194	-0.211	(0)
		1.0730-05	1.6/3e-03	-2.111	-2.111	0.000	(0)
	CaHCO3+	8.139e-05	/.151e-05	-4.089	-4.146	-0.056	(0)
	CaSO4	7.635e-05	7.635e-05	-4.117	-4.117	0.000	(0)
	СаВ (ОН) 4+	3.741e-06	3.287e-06	-5.427	-5.483	-0.056	(0)
	CaCl+	2.602e-06	2.287e-06	-5.585	-5.641	-0.056	(0)
	CaNO3+	1.678e-06	1.474e-06	-5.775	-5.831	-0.056	(0)
	CaOH+	6.897e-07	6.060e-07	-6.161	-6.218	-0.056	(0)
	CaF+	1.688e-07	1.483e-07	-6.773	-6.829	-0.056	(0)
	CaCl2	1 806e - 08	1 806e - 08	-7 743	-7 743	0 000	(0)
сd	04012	6 7786-09	1.00000 00	1.110	/./10	0.000	(0)
cu	CACL	3 2290 00	2 9262 00	0 101	0 547	0 056	(0)
		3.2280-09	2.036e-09	-0.491	-0.547	-0.036	(0)
		1.3/5e-09	8.310e-10	-8.862	-9.080	-0.219	(0)
	Cd (CO3) 2-2	7.94/e-10	4./13e-10	-9.100	-9.327	-0.227	(0)
	Cd(OH)Cl	5.504e-10	5.504e-10	-9.259	-9.259	0.000	(0)
	CdCO3	3.949e-10	3.949e-10	-9.404	-9.404	0.000	(0)
	CdOH+	2.125e-10	1.867e-10	-9.673	-9.729	-0.056	(0)
	CdHCO3+	1.124e-10	9.874e-11	-9.949	-10.006	-0.056	(0)
	CdC12	8.259e-11	8.259e-11	-10.083	-10.083	0.000	(0)
	Cd (OH) 2	2.709e - 11	2.709e-11	-10.567	-10.567	0.000	(0)
	CdSO4	2 745 - 13	2.7450-13	-12 561	-12 561	0 000	(0)
		1 6200 - 13	1 4230 - 13	-12.001	-12 847	-0.056	(0)
		$1.020e^{-13}$	$1.425e^{-15}$	12 702	12.047	-0.000	(0)
		1.9810-14	1.9010-14	-13.703	-13.703	0.000	(0)
	Cd (OH) 3-	9.349e-15	8.214e-15	-14.029	-14.085	-0.056	(0)
	Cd2OH+3	2.367e-18	7.600e-19	-17.626	-18.119	-0.493	(0)
	Cd (OH) 4-2	3.335e-19	1.978e-19	-18.477	-18.704	-0.227	(0)
	Cd4 (OH) 4+4	0.000e+00	0.000e+00	-359.879	-360.741	-0.862	(0)
Cl	(-1)	7.692e-03					
	Cl-	7.683e-03	6.717e-03	-2.114	-2.173	-0.058	(0)
	NaCl	4.839e-06	4.839e-06	-5.315	-5.315	0.000	(0)
	CaCl+	2.602e-06	2.287e-06	-5.585	-5.641	-0.056	(0)
	MaCl+	1.187e-06	1.043e-06	-5.926	-5.982	-0.056	(0)
	CaCl2	1 806e - 08	1 806e - 08	-7 743	-7 743	0 000	(0)
	2n (OH) Cl	6 027 - 09	6 027 - 09	-8 220	-8 220	0 000	(0)
		3 2280-09	28360-09	_8 /91	-8 547	-0.056	(0)
		1 046- 09	$2.030e^{-09}$	-0.491	-0.547	-0.050	(0)
	Baci+	1.0466-09	9.18/e-10	-8.981	-9.037	-0.056	(0)
		5.504e-10	5.504e-10	-9.259	-9.259	0.000	(0)
	ZnCI+	1.502e-10	1.319e-10	-9.823	-9.880	-0.056	(0)
	CdC12	8.259e-11	8.259e-11	-10.083	-10.083	0.000	(0)
	NiCl+	6.044e-11	5.310e-11	-10.219	-10.275	-0.056	(0)
	PbCl+	1.369e-11	1.203e-11	-10.864	-10.920	-0.056	(0)
	ZnCl2	1.035e-12	1.035e-12	-11.985	-11.985	0.000	(0)
	HCl	5.595e-13	5.595e-13	-12.252	-12.252	0.000	(0)
	PbCl2	3.075e-13	3.075e-13	-12.512	-12.512	0.000	(0)
	CdCl3-	1.620e-13	1.423e-13	-12.791	-12.847	-0.056	(0)
	$C_{11}C_{1} +$	3.401e - 14	2 988e-14	-13,468	-13.525	-0.056	(0)
	ZnC13-	4.3710-15	3.840e-15	-14.359	-14,416	-0.056	(0)
	DhCl2	1, 1700 - 15	1 0260 - 15	_1/ 020	-14 005	-0.056	(0)
	IDCIJ-	1.1/30-10	T.0206-T2	-15 010	-15 200	-0.050	(0)
	MnCl+	6.1286-16	5.384e-16	-15.213	-15.269	-0.056	(0)
	ZnC14-2	3.29/e-16	1.9550-16	-15.482	-15./09	-0.227	(0)
	CuC12	1.057e-16	1.057e-16	-15.976	-15.976	0.000	(0)
	PbC14-2	7.458e-18	4.423e-18	-17.127	-17.354	-0.227	(0)
	MnCl3-	6.040e-21	5.307e-21	-20.219	-20.275	-0.056	(0)
	CuCl2-	3.029e-21	2.661e-21	-20.519	-20.575	-0.056	(0)
	CuCl3-2	1.936e-22	1.148e-22	-21.713	-21.940	-0.227	(0)
	FeCl+	4.960e-24	4.358e-24	-23.304	-23.361	-0.056	(0)
	FeCl2+	5.915e-25	5.197e-25	-24.228	-24.284	-0.056	(0)
	FeCl+2	1.596e - 25	9.558e-26	-24.797	-25.020	-0.223	(0)
	$C_{11}C_{14-2}$	1 50900 20	8,9490-26	-24 821	-25 048	-0 227	(0)
	Eacl?	1 571~ 20	1 571 - 20	_27.021 _27.001	_27 0040	0.227	(0)
	reciz	T.0/TG-79	T.J/TG-70	-21.004	-21.004	0.000	(0)
	rec14-2	3.453e-32	2.048e-32	-31.462	-31.689	-0.22/	(0)
	rec14-	3.209e-32	2.819e-32	-31.494	-31.550	-0.056	(0)
C1	(⊥)	4.341e-18					

	C10-	4.289e-18	3.768e-18	-17.368	-17.424	-0.056	(0)
	HClO	5.183e-20	5.183e-20	-19.285	-19.285	0.000	(0)
C1	(3)	3 067-26					(-)
OT.	(3)	2 0670-26	26050-26	25 512	25 560	0 056	(0)
		3.0070-20	2.0950-20	-23.313	-23.309	-0.038	(0)
	HCIOZ	1.4/8e-32	1.4/8e-32	-31.830	-31.830	0.000	(0)
Cl	(5)	1.565e-20					
	C103-	1.565e-20	1.371e-20	-19.806	-19.863	-0.057	(0)
	PbClO3+	5.824e-31	5.117e-31	-30.235	-30.291	-0.056	(0)
	Pb(C103)2	0.000e+00	0.000e+00	-50,446	-50,446	0.000	(0)
Cl	(7)	3 97/0-19		00.110	000110		(0)
CT			2 402 - 10	10 401	10 450	0 0 5 7	(0)
	C104-	3.9/4e-19	3.483e-19	-18.401	-18.458	-0.05/	(0)
	ZnClO4+	8.768e-26	7.704e-26	-25.057	-25.113	-0.056	(0)
Cu	(1)	4.235e-21					
	CuCl2-	3.029e-21	2.661e-21	-20.519	-20.575	-0.056	(0)
	C11+	1.013e-21	8.902e-22	-20.994	-21.050	-0.056	(0)
	$C_{11}C_{13}=2$	1 9366-22	1 1/8 = 22	-21 713	-21 9/0	-0 227	(0)
a		1 725 - 00	1.1406 22	21./15	21.940	0.227	(0)
Cu	(Z)	1./35e-08					
	Cu (CO3) 2-2	9.412e-09	5.582e-09	-8.026	-8.253	-0.227	(0)
	CuCO3	6.972e-09	6.972e-09	-8.157	-8.157	0.000	(0)
	CuCO3 (OH) 2-	-2 7.131e-10	4.229e-10	-9.147	-9.374	-0.227	(0)
	CuOH+	2.550 - 10	2.241e-10	-9.593	-9.650	-0.056	(0)
	$C_{11}+2$	2 6162 - 12	1 626 - 12	-11 577	-11 789	-0 211	(0)
		2.0700 - 12	1 010 - 10	10 010	10 010	0.000	(0)
		1.2120-13	1.212e-13	-12.910	-12.910	0.000	(0)
	Cu02-2	5.050e-14	2.995e-14	-13.297	-13.524	-0.227	(0)
	CuCl+	3.401e-14	2.988e-14	-13.468	-13.525	-0.056	(0)
	CuF+	5.330e-16	4.683e-16	-15.273	-15.330	-0.056	(0)
	CuCl2	1.057e-16	1.057e-16	-15.976	-15,976	0.000	(0)
	$C_{11}C_{14} = 2$	1 509e - 25	8 9490-26	-24 821	-25 048	-0 227	(0)
	CUCLY Z	2 111- 05	0.9490 20	24.021	20.040	0.227	(0)
F	_	2.1116-05	1 01 - 05	4 600		0 0 5 5	(0)
	F.—	2.073e-05	1.81/e-05	-4.683	-4./41	-0.057	(0)
	CaF+	1.688e-07	1.483e-07	-6.773	-6.829	-0.056	(0)
	AsO3F-2	1.030e-07	6.110e-08	-6.987	-7.214	-0.227	(0)
	MqF+	9.926e-08	8.721e-08	-7.003	-7.059	-0.056	(0)
	NaF	7.965e-09	7.965e-09	-8.099	-8.099	0.000	(0)
	HACO3E-	1 915e - 11	1.683 - 11	-10 718	-10774	-0.056	(0)
		1.9150-11	1.0030-11	-10.710	10.774	-0.030	(0)
	HF	1.034e-11	1.034e-11	-10.985	-10.985	0.000	(0)
	BaF+	5.808e-12	5.103e-12	-11.236	-11.292	-0.056	(0)
	ZnF+	3.415e-12	3.001e-12	-11.467	-11.523	-0.056	(0)
	PbF+	8.641e-15	7.592e-15	-14.063	-14.120	-0.056	(0)
	C11F+	5.330e-16	4.683e-16	-15,273	-15.330	-0.056	(0)
	UE2_	$5,191_{-17}$	1 5530-17	-16 286	-16 342	-0.056	(0)
	Ma El	$5.101e^{-17}$	4.5556-17	-10.200	-10.342	-0.050	(0)
	MNF+	2.095e-17	1.841e-1/	-16.6/9	-16.735	-0.056	(0)
	BF2 (OH) 2-	1.180e-17	1.037e-17	-16.928	-16.984	-0.056	(0)
	AlF2+	5.580e-18	4.902e-18	-17.253	-17.310	-0.056	(0)
	AlF+2	1.132e-18	6.778e-19	-17.946	-18.169	-0.223	(0)
	AlF3	1.121e-18	1.121e-18	-17.950	-17.950	0.000	(0)
	DhF2	8 1010-19	8 1010-19	-18 076	-18 076	0 000	(0)
			E 1170 21	20.070	20.201	0.000	(0)
	A10 4-	J.024E-ZI	$J \cdot I I / e^{-2I}$	-20.233	-20.291	-0.030	(0)
	VOZE	6.364e-22	6.364e-22	-21.196	-21.196	0.000	(0)
	H2F2	2.661e-22	2.661e-22	-21.575	-21.575	0.000	(0)
	FeF+2	3.886e-23	2.327e-23	-22.410	-22.633	-0.223	(0)
	FeF2+	7.785e-24	6.840e-24	-23.109	-23.165	-0.056	(0)
	VO2F2-	3 7960-24	3 3350 - 21	-23 /21	-23 /77	-0 056	(0)
	VOZI Z	4 2100 25	2 7070 25	23.421	23.477	0.050	(0)
	rer+	4.219e-25	5.707e-25	-24.373	-24.431	-0.056	(0)
	RF. 30H-	3.424e-25	3.009e-25	-24.465	-24.522	-0.056	(0)
	BF4-	1.544e-34	1.356e-34	-33.811	-33.868	-0.056	(0)
	VOF+	3.691e-35	3.243e-35	-34.433	-34.489	-0.056	(0)
	VOF2	3.550e-37	3.550e-37	-36.450	-36.450	0.000	(0)
Fe	(2)	2.710e-20					(-)
	·-, Έρζος	2 2730-20	2 2730-20	-19 6/3	-19 6/3	0 000	(0)
	E COOS	1 000 - 21	1 756 01	-20 600	-20 755	_0 0FC	(0)
	гепс03+	1.9998-21	1./000-21	-20.099	-20./33	-0.036	(0)
	re+2	1.449e-21	8.906e-22	-20.839	-21.050	-0.211	(0)
	FeOH+	8.563e-22	7.524e-22	-21.067	-21.124	-0.056	(0)
	FeSO4	4.594e-23	4.594e-23	-22.338	-22.338	0.000	(0)
	Fe(OH)2	1.596e-23	1.596e-23	-22.797	-22.797	0.000	(0)
	FeCl+	4.960 - 24	4.358e-24	-23.304	-23.361	-0.056	(0)
	Fo(OH)3-	1 9320-24	1 698 - 21	-22 71/	-23 770	-0 056	(0)
			2 707- 05	2J./14 0/ 075	23.110		(0)
	rert	4.ZIYe-ZO	J./U/8-25	-24.3/3	-∠4.43⊥	-0.036	(0)

FeCl2	1.571e-28	1.571e-28	-27.804	-27.804	0.000	(0)
Fe(OH)4-2	7.646e-30	4.535e-30	-29.117	-29.343	-0.227	(0)
FeCl4-2	3.453e-32	2.048e-32	-31.462	-31.689	-0.227	(0)
(3)	2.872e-06					
Fe(OH)3	1.628e-06	1.628e-06	-5.788	-5.788	0.000	(0)
Fe(OH)4-	1.243e-06	1.092e-06	-5.906	-5.962	-0.056	(0)
Fe(OH)2+	1.483e-09	1.303e-09	-8.829	-8.885	-0.056	(0)
FeOH+2	2.460e - 15	1.473e-15	-14.609	-14.832	-0.223	(0)
FeCO3+	2.523e-16	2.217e-16	-15.598	-15.654	-0.056	(0)
Fe+3	2.310e-22	8.539e-23	-21.636	-22.069	-0.432	(0)
FeF+2	3.886e-23	2.327e-23	-22.410	-22.633	-0.223	(0)
FeF2+	7.785e-24	6.840e-24	-23,109	-23.165	-0.056	(0)
$F = S \cap 4 +$	3 060e - 24	2689e - 24	-23 514	-23 570	-0.056	(0)
F = C + 12 + 12	5,0000,21 5,915e-25	5 197 - 25	-24 228	-24 284	-0.056	(0)
FoN03+2	2 612 - 25	1 564e - 25	-24 583	-24 806	-0.223	(0)
F = C + 2	1 5960 - 25	95580-26	-24.505	-25 020	-0.223	(0)
F = C + Z	1 6940-26	1 4700-26	-25 774	25.020	-0.056	(0)
Fe(504)2 =	1.0040-20	1.4/9e-20 5.929a 20	-23.774	-23.030	-0.036	(0)
FeZ (On) Z+4	4.2526-28	$3.030e^{-29}$	-27.371	-20.234	-0.062	(0)
Fect4-	3.209e-32	2.819e-32	-31.494	-31.550	-0.056	(0)
Fe3 (OH) 4+5	3.3568-34	1.5896-35	-33.4/4	-34.799	-1.325	(0)
))	0.000e+00		45 064	45 0.00	0 000	(0)
HZ	0.000e+00	0.000e+00	-45.964	-45.962	0.002	(0)
(1)	7.658e-11					
Hg2+2	3.829e-11	2.271e-11	-10.417	-10.644	-0.227	(0)
(2)	3.122e-09					
Hg+2	3.122e-09	1.886e-09	-8.506	-8.724	-0.219	(0)
	4.372e-04					
Mg+2	3.137e-04	1.989e-04	-3.504	-3.701	-0.198	(0)
MgCO3	9.456e-05	9.456e-05	-4.024	-4.024	0.000	(0)
MgSO4	1.729e-05	1.729e-05	-4.762	-4.762	0.000	(0)
MgHCO3+	9.879e-06	8.680e-06	-5.005	-5.061	-0.056	(0)
MgCl+	1.187e-06	1.043e-06	-5.926	-5.982	-0.056	(0)
MgB(OH)4+	5.513e-07	4.843e-07	-6.259	-6.315	-0.056	(0)
MgF+	9.926e-08	8.721e-08	-7.003	-7.059	-0.056	(0)
Mq4 (OH) 4+4	1.032e-16	1.417e-17	-15.986	-16.849	-0.862	(0)
(2)	6.614e-13					. ,
MnCO3	5.923e-13	5.923e-13	-12.227	-12.227	0.000	(0)
Mn+2	6.125e-14	3.765e-14	-13.213	-13.424	-0.211	(0)
MnSO4	3.023e-15	3.023e-15	-14.520	-14.520	0.000	(0)
MnOH+	2.942e-15	2.585e-15	-14.531	-14.588	-0.056	(0)
MnHCO3+	1.226e-15	1.077e-15	-14.912	-14.968	-0.056	(0)
MnCl+	6.128e-16	5.384e-16	-15,213	-15,269	-0.056	(0)
MnF+	2 095e - 17	1 841e - 17	-16 679	-16 735	-0.056	(0)
Mn(OH) 2	1 695e - 17	1.695 - 17	-16 771	-16 771	0.000	(0)
MnNO3+	1 2/10 - 17	1.093 - 17	-16 905	-16 962	-0.056	(0)
MnSeO/	1 2970 - 18	1.095e 17 1.297e-18	-17 887	-17 887	0.000	(0)
	1 9220-20	1.2070-20	-10 216	-10 272	-0.056	(0)
Mn(OR) = MnC12	$4.033e^{-20}$	$4.247e^{-20}$	-19.310	-19.372	-0.050	(0)
	6.040e-21	5.307e-21	-20.219	-20.275	-0.036	(0)
MII (NOS)Z					0.000	(())
	5.0266-21	5.026e-21	-20.299	-20.299		(0)
Mn2 (OH) 3+	3.871e-23	5.026e-21 3.401e-23	-20.299	-22.468	-0.056	(0)
Mn2 (OH) 3+ Mn (OH) 4-2	5.026e-21 3.871e-23 1.620e-24	5.026e-21 3.401e-23 9.607e-25	-20.299 -22.412 -23.791	-22.468	-0.056 -0.227	(0) (0)
Mn2 (OH) 3+ Mn (OH) 4-2 Mn2OH+3	5.026e-21 3.871e-23 1.620e-24 3.247e-28	5.026e-21 3.401e-23 9.607e-25 1.043e-28	-20.299 -22.412 -23.791 -27.489	-20.299 -22.468 -24.017 -27.982	-0.056 -0.227 -0.493	(0) (0) (0)
Mn2 (OH) 3+ Mn (OH) 4-2 Mn2OH+3 (3)	5.026e-21 3.871e-23 1.620e-24 3.247e-28 3.127e-27	5.026e-21 3.401e-23 9.607e-25 1.043e-28	-20.299 -22.412 -23.791 -27.489	-22.468 -24.017 -27.982	-0.056 -0.227 -0.493	(0) (0) (0)
Mn2 (OH) 3+ Mn (OH) 4-2 Mn2OH+3 (3) Mn+3	5.026e-21 3.871e-23 1.620e-24 3.247e-28 3.127e-27 3.127e-27	5.026e-21 3.401e-23 9.607e-25 1.043e-28 1.004e-27	-20.299 -22.412 -23.791 -27.489 -26.505	-22.468 -24.017 -27.982 -26.998	-0.056 -0.227 -0.493 -0.493	(0) (0) (0) (0)
Mn2 (OH) 3+ Mn (OH) 4-2 Mn2OH+3 (3) Mn+3 (6)	5.026e-21 3.871e-23 1.620e-24 3.247e-28 3.127e-27 3.127e-27 6.104e-09	5.026e-21 3.401e-23 9.607e-25 1.043e-28 1.004e-27	-20.299 -22.412 -23.791 -27.489 -26.505	-22.468 -24.017 -27.982 -26.998	-0.056 -0.227 -0.493 -0.493	(0) (0) (0) (0)
Mn2 (OH) 3+ Mn (OH) 4-2 Mn2OH+3 (3) Mn+3 (6) MnO4-2	5.026e-21 3.871e-23 1.620e-24 3.247e-28 3.127e-27 3.127e-27 6.104e-09 6.104e-09	5.026e-21 3.401e-23 9.607e-25 1.043e-28 1.004e-27 3.620e-09	-20.299 -22.412 -23.791 -27.489 -26.505 -8.214	-22.468 -24.017 -27.982 -26.998 -8.441	-0.056 -0.227 -0.493 -0.493 -0.227	(0) (0) (0) (0) (0)
Mn2 (OH) 3+ Mn (OH) 4-2 Mn2OH+3 (3) Mn+3 (6) MnO4-2 (7)	5.026e-21 3.871e-23 1.620e-24 3.247e-28 3.127e-27 3.127e-27 6.104e-09 6.104e-09 1.819e-06	5.026e-21 3.401e-23 9.607e-25 1.043e-28 1.004e-27 3.620e-09	-20.299 -22.412 -23.791 -27.489 -26.505 -8.214	-22.468 -24.017 -27.982 -26.998 -8.441	-0.056 -0.227 -0.493 -0.493 -0.227	(0) (0) (0) (0) (0)
Mn2 (OH) 3+ Mn (OH) 4-2 Mn2OH+3 (3) Mn+3 (6) MnO4-2 (7) MnO4-	5.026e-21 3.871e-23 1.620e-24 3.247e-28 3.127e-27 3.127e-27 6.104e-09 6.104e-09 1.819e-06 1.819e-06	5.026e-21 3.401e-23 9.607e-25 1.043e-28 1.004e-27 3.620e-09 1.594e-06	-20.299 -22.412 -23.791 -27.489 -26.505 -8.214 -5.740	-22.468 -24.017 -27.982 -26.998 -8.441 -5.797	-0.056 -0.227 -0.493 -0.493 -0.227 -0.057	(0) (0) (0) (0) (0) (0)
Mn2 (OH) 3+ Mn (OH) 4-2 Mn2OH+3 (3) Mn+3 (6) MnO4-2 (7) MnO4-	5.026e-21 3.871e-23 1.620e-24 3.247e-28 3.127e-27 3.127e-27 6.104e-09 6.104e-09 1.819e-06 1.819e-06 2.090e-08	5.026e-21 3.401e-23 9.607e-25 1.043e-28 1.004e-27 3.620e-09 1.594e-06	-20.299 -22.412 -23.791 -27.489 -26.505 -8.214 -5.740	-22.468 -24.017 -27.982 -26.998 -8.441 -5.797	-0.056 -0.227 -0.493 -0.493 -0.227 -0.057	(0) (0) (0) (0) (0) (0)
Mn2 (OH) 3+ Mn (OH) 4-2 Mn2OH+3 (3) Mn+3 (6) MnO4-2 (7) MnO4- MoO4-2	5.026e-21 3.871e-23 1.620e-24 3.247e-28 3.127e-27 3.127e-27 6.104e-09 6.104e-09 1.819e-06 1.819e-06 2.090e-08 2.090e-08	5.026e-21 3.401e-23 9.607e-25 1.043e-28 1.004e-27 3.620e-09 1.594e-06 1.251e-08	-20.299 -22.412 -23.791 -27.489 -26.505 -8.214 -5.740 -7.680	-22.468 -24.017 -27.982 -26.998 -8.441 -5.797 -7.903	-0.056 -0.227 -0.493 -0.493 -0.227 -0.057 -0.223	(0) (0) (0) (0) (0) (0) (0)
Mn2 (OH) 3+ Mn (OH) 4-2 Mn2OH+3 (3) Mn+3 (6) MnO4-2 (7) MnO4- MoO4-2	5.026e-21 3.871e-23 1.620e-24 3.247e-28 3.127e-27 3.127e-27 6.104e-09 6.104e-09 1.819e-06 1.819e-06 2.090e-08 2.090e-08 2.090e-08	5.026e-21 3.401e-23 9.607e-25 1.043e-28 1.004e-27 3.620e-09 1.594e-06 1.251e-08	-20.299 -22.412 -23.791 -27.489 -26.505 -8.214 -5.740 -7.680	-22.468 -24.017 -27.982 -26.998 -8.441 -5.797 -7.903	-0.056 -0.227 -0.493 -0.493 -0.227 -0.057 -0.223	(0) (0) (0) (0) (0) (0) (0)
Mn2 (OH) 3+ Mn (OH) 4-2 Mn2OH+3 (3) Mn+3 (6) MnO4-2 (7) MnO4- MoO4-2 5) NO3-	5.026e-21 3.871e-23 1.620e-24 3.247e-28 3.127e-27 3.127e-27 6.104e-09 6.104e-09 1.819e-06 1.819e-06 2.090e-08 2.090e-08 2.090e-08 2.095e-04	5.026e-21 3.401e-23 9.607e-25 1.043e-28 1.004e-27 3.620e-09 1.594e-06 1.251e-08 1.831e-04	-20.299 -22.412 -23.791 -27.489 -26.505 -8.214 -5.740 -7.680 -3.679	-22.468 -24.017 -27.982 -26.998 -8.441 -5.797 -7.903 -3.737	-0.056 -0.227 -0.493 -0.493 -0.227 -0.057 -0.223 -0.058	(0) (0) (0) (0) (0) (0) (0) (0)
Mn2 (OH) 3+ Mn (OH) 4-2 Mn2OH+3 (3) Mn+3 (6) MnO4-2 (7) MnO4- MoO4-2 5) NO3- CaNO3+	5.026e-21 3.871e-23 1.620e-24 3.247e-28 3.127e-27 3.127e-27 6.104e-09 6.104e-09 1.819e-06 1.819e-06 2.090e-08 2.090e-08 2.090e-08 2.095e-04 1.678e-06	5.026e-21 3.401e-23 9.607e-25 1.043e-28 1.004e-27 3.620e-09 1.594e-06 1.251e-08 1.831e-04 1.474e-06	-20.299 -22.412 -23.791 -27.489 -26.505 -8.214 -5.740 -7.680 -3.679 -5.775	-22.468 -24.017 -27.982 -26.998 -8.441 -5.797 -7.903 -3.737 -5.831	-0.056 -0.227 -0.493 -0.493 -0.227 -0.057 -0.223 -0.058 -0.056	(0) (0) (0) (0) (0) (0) (0) (0)
Mn2 (OH) 3+ Mn (OH) 4-2 Mn2OH+3 (3) Mn+3 (6) Mn04-2 (7) Mn04- Mo04-2 5) NO3- CaNO3+ BaNO3+	5.026e-21 3.871e-23 1.620e-24 3.247e-28 3.127e-27 3.127e-27 6.104e-09 6.104e-09 1.819e-06 1.819e-06 2.090e-08 2.090e-08 2.090e-08 2.095e-04 1.678e-06 6.750e-10	5.026e-21 3.401e-23 9.607e-25 1.043e-28 1.004e-27 3.620e-09 1.594e-06 1.251e-08 1.831e-04 1.474e-06 5.931e-10	-20.299 -22.412 -23.791 -27.489 -26.505 -8.214 -5.740 -7.680 -3.679 -5.775 -9.171	-20.233 -22.468 -24.017 -27.982 -26.998 -8.441 -5.797 -7.903 -3.737 -5.831 -9.227	$\begin{array}{c} -0.056 \\ -0.227 \\ -0.493 \\ -0.493 \\ -0.227 \\ -0.057 \\ -0.223 \\ -0.058 \\ -0.056 \\ -0.056 \\ -0.056 \end{array}$	(0) (0) (0) (0) (0) (0) (0) (0) (0) (0)
Mn2 (OH) 3+ Mn (OH) 4-2 Mn2OH+3 (3) Mn+3 (6) Mn04-2 (7) Mn04- Mo04-2 5) NO3- CaNO3+ BaNO3+ NiNO3+	5.026e-21 3.871e-23 1.620e-24 3.247e-28 3.127e-27 3.127e-27 6.104e-09 6.104e-09 1.819e-06 1.819e-06 2.090e-08 2.090e-08 2.090e-08 2.095e-04 1.678e-06 6.750e-10 3.888e-11	5.026e-21 3.401e-23 9.607e-25 1.043e-28 1.004e-27 3.620e-09 1.594e-06 1.251e-08 1.831e-04 1.474e-06 5.931e-10 3.416e-11	-20.299 -22.412 -23.791 -27.489 -26.505 -8.214 -5.740 -7.680 -3.679 -5.775 -9.171 -10.410	-20.233 -22.468 -24.017 -27.982 -26.998 -8.441 -5.797 -7.903 -3.737 -5.831 -9.227 -10.466	$\begin{array}{c} -0.056 \\ -0.227 \\ -0.493 \\ -0.493 \\ -0.227 \\ -0.057 \\ -0.223 \\ -0.058 \\ -0.056 \\ -0.056 \\ -0.056 \\ -0.056 \end{array}$	(0) (0) (0) (0) (0) (0) (0) (0) (0) (0)
Mn2 (OH) 3+ Mn (OH) 4-2 Mn2OH+3 (3) Mn+3 (6) Mn04-2 (7) Mn04- Mo04-2 (7) NO3- CaNO3+ BaNO3+ NiNO3+ PbNO3+	5.026e-21 3.871e-23 1.620e-24 3.247e-28 3.127e-27 3.127e-27 6.104e-09 6.104e-09 1.819e-06 1.819e-06 2.090e-08 2.090e-08 2.090e-08 2.095e-04 1.678e-06 6.750e-10 3.888e-11 2.181e-13	5.026e-21 3.401e-23 9.607e-25 1.043e-28 1.004e-27 3.620e-09 1.594e-06 1.251e-08 1.831e-04 1.474e-06 5.931e-10 3.416e-11 1.916e-13	-20.299 -22.412 -23.791 -27.489 -26.505 -8.214 -5.740 -7.680 -3.679 -5.775 -9.171 -10.410 -12.661	$\begin{array}{r} -20.239\\ -22.468\\ -24.017\\ -27.982\\ -26.998\\ -8.441\\ -5.797\\ -7.903\\ -3.737\\ -5.831\\ -9.227\\ -10.466\\ -12.717\end{array}$	$\begin{array}{c} -0.056 \\ -0.227 \\ -0.493 \\ -0.493 \\ -0.227 \\ -0.057 \\ -0.223 \\ -0.058 \\ -0.056 \\ -0.056 \\ -0.056 \\ -0.056 \\ -0.056 \\ -0.056 \end{array}$	(0) (0) (0) (0) (0) (0) (0) (0) (0) (0)
Mn2 (OH) 3+ Mn (OH) 4-2 Mn2OH+3 (3) Mn+3 (6) Mn04-2 (7) Mn04- Mo04-2 (7) NO3- CaNO3+ BaNO3+ NiNO3+ PbNO3+ Ni (NO3) 2	5.026e-21 3.871e-23 1.620e-24 3.247e-28 3.127e-27 3.127e-27 6.104e-09 6.104e-09 1.819e-06 1.819e-06 2.090e-08 2.090e-08 2.090e-08 2.095e-04 1.678e-06 6.750e-10 3.888e-11 2.181e-13 3.972e-15	5.026e-21 3.401e-23 9.607e-25 1.043e-28 1.004e-27 3.620e-09 1.594e-06 1.251e-08 1.831e-04 1.474e-06 5.931e-10 3.416e-11 1.916e-13 3.972e-15	-20.299 -22.412 -23.791 -27.489 -26.505 -8.214 -5.740 -7.680 -3.679 -5.775 -9.171 -10.410 -12.661 -14.401	$\begin{array}{c} -20.239\\ -22.468\\ -24.017\\ -27.982\\ -26.998\\ -8.441\\ -5.797\\ -7.903\\ -3.737\\ -5.831\\ -9.227\\ -10.466\\ -12.717\\ -14.401\\ \end{array}$	$\begin{array}{c} -0.056 \\ -0.227 \\ -0.493 \\ -0.493 \\ -0.227 \\ -0.057 \\ -0.223 \\ -0.058 \\ -0.056 \\ -0.056 \\ -0.056 \\ -0.056 \\ -0.056 \\ 0.000 \end{array}$	 (0)
	FeCl2 Fe(OH) 4-2 FeCl4-2 3) Fe(OH) 3 Fe(OH) 4- Fe(OH) 2+ FeOH+2 FeCO3+ Fe+3 FeF+2 FeF2+ FeSO4+ FeCl2+ Fe(SO4) 2- Fe2(OH) 2+4 FeCl4- Fe3(OH) 4+5) H2 1) Hg2+2 2) Hg+2 MgCO3 MgSO4 MgHCO3+ MgCO3 MgSO4 MgHCO3+ MgCO3 MgSO4 MgHCO3+ MgC1+ MgF+ Mg4(OH) 4+ MgF+ Mg4(OH) 4+ MgF+ Mg4(OH) 4+ MnF+ MnCO3+ MnC1+ MnSO4 MnO3+ MnSO4 MnO3+ MnC3+ Mn	FeCl2 $1.571e-28$ Fe(OH) 4-2 $7.646e-30$ FeCl4-2 $3.453e-32$ 3) $2.872e-06$ Fe(OH) 3 $1.628e-06$ Fe(OH) 4- $1.243e-06$ Fe(OH) 2+ $1.483e-09$ FeOH+2 $2.460e-15$ FeCO3+ $2.523e-16$ Fe+3 $2.310e-22$ FeF+2 $3.886e-23$ FeF2+ $7.785e-24$ FeSO4+ $3.060e-24$ FeCl2+ $5.915e-25$ FeCl4- $3.209e-32$ Fe2(OH) 2+4 $4.252e-28$ FeCl4- $3.209e-32$ Fe3(OH) 4+5 $3.356e-34$ 0) $0.000e+00$ H2 $0.000e+00$ 10 $7.658e-11$ Hg2+2 $3.122e-09$ Hg+2 $3.122e-09$ Hg+2 $3.137e-04$ MgC03 $9.456e-05$ MgC04+ $9.879e-06$ MgC1+ $1.87e-06$ MgE(OH) 4+ $5.513e-07$ MgF+ $9.926e-08$ Mg4(OH) 4+4 $1.032e-16$ 2) $6.614e-13$ MnC03 $5.923e-13$ Mn+2 $6.125e-14$ MnS04 $3.023e-15$ MnC1+ $6.128e-16$ MnF+ $2.095e-17$ Mn(OH) 2 $1.695e-17$ MnNO3+ $1.244e-17$ MnSe04 $1.297e-18$ Mn (OH) 3- $4.833e-20$ MnC13- $6.040e-21$	Fec121.571e-281.571e-28Fe(0H) 4-27.646e-304.535e-30Fe(0H) 22.872e-06Fe(0H) 31.628e-061.628e-06Fe(0H) 4-1.243e-061.092e-06Fe(0H) 2+1.483e-091.303e-09FeC0+22.460e-151.473e-15FeC03+2.523e-162.217e-16Fe+23.886e-232.327e-23FeF+23.886e-232.327e-23FeF2+7.785e-246.840e-24FeS04+3.060e-242.689e-24FeC12+5.915e-255.197e-25FeC1+21.596e-259.558e-26Fe(304)2-1.684e-261.479e-26Fe2(0H)2+44.252e-285.838e-29Fe214-3.209e-322.819e-32Fe3(0H)4+53.356e-341.589e-350)0.000e+000.000e+00H20.000e+000.000e+00H23.122e-09Hg+2MgC039.456e-059.456e-05MgC03+9.456e-051.729e-05MgC03+9.456e-051.729e-05MgC03+9.26e-088.721e-08Mg4(0H)4+1.032e-161.417e-172)6.614e-13MnC035.923e-135.923e-13Mn+26.125e-143.765e-14MnC3+1.226e-151.077e-15MnC1+6.128e-165.384e-16MnF+2.095e-171.841e-17MnN03+1.246e-151.077e-15MnC13-6.040e-215.307e-21	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

	MnNO3+	1.244e-17	1.093e-17	-16.905	-16.962	-0.056	(0)
	Mn(NO3)2	5.026e-21	5.026e-21	-20.299	-20.299	0.000	(0)
	FeNO3+2	2.612e-25	1.564e-25	-24.583	-24.806	-0.223	(0)
Na		4.710e-03					
	Na+	4.665e-03	4.099e-03	-2.331	-2.387	-0.056	(0)
	NaHCO3	2.203e-05	2.203e-05	-4.657	-4.657	0.000	(0)
	NaSO4-	1.003e-05	8.814e-06	-4.999	-5.055	-0.056	(0)
	NaCO3-	7.336e-06	6.446e-06	-5.135	-5.191	-0.056	(0)
	NaCl	4.839e-06	4.839e-06	-5.315	-5.315	0.000	(0)
	NaB(OH)4	2.354e-07	2.354e-07	-6.628	-6.628	0.000	(0)
	NaOH	1 820e - 08	1 8200-08	-7 740	-7 740	0 000	(0)
	NaF	7965e-09	7965e-09	-8 099	-8 099	0.000	(0)
	Nallo2	1 9620-09	1.962 = 0.9	-8 707	-8 707	0.000	(0)
NH	NARIOZ	1 2980-07	1.9028 09	0.707	0.707	0.000	(0)
INT	Ni+2	1 2080-07	7 1260-08	-6 919	_7 129	_0 211	(0)
	$N \pm (O \Pi) 2$	5 4200-00	7.420e-00	-0.910	- 7 . 129	-0.211	(0)
	NI (OH) Z	3.420e-09	3.420e-09	-0.200	-0.200	0.000	(0)
	N1SO4	3.3176-09	3.3170-09	-8.4/9	-8.4/9	0.000	(0)
	N1 (OH) 3-	1.66/e-10	1.465e-10	-9.778	-9.834	-0.056	(0)
	NICI+	6.044e-11	5.310e-11	-10.219	-10.275	-0.056	(0)
	NINO3+	3.888e-11	3.416e-11	-10.410	-10.466	-0.056	(0)
	NiSeO4	4.446e-12	4.446e-12	-11.352	-11.352	0.000	(0)
	Ni(NO3)2	3.972e-15	3.972e-15	-14.401	-14.401	0.000	(0)
	Ni2OH+3	9.152e-16	2.939e-16	-15.038	-15.532	-0.493	(0)
	Ni4(OH)4+4	2.354e-18	3.233e-19	-17.628	-18.490	-0.862	(0)
0(())	1.045e+00					
	02	5.225e-01	5.247e-01	-0.282	-0.280	0.002	(0)
Pb	(2)	1.790e-07					
	PbCO3	1.121e-07	1.121e-07	-6.951	-6.951	0.000	(0)
	Pb(CO3)2-2	5.932e-08	3.518e-08	-7.227	-7.454	-0.227	(0)
	PbOH+	3.806e-09	3.344e-09	-8.420	-8.476	-0.056	(0)
	Pb (OH) 2	3.596e-09	3.596e-09	-8.444	-8.444	0.000	(0)
	Pb (OH) 3-	1.106e - 10	9.718e-11	-9.956	-10.012	-0.056	(0)
	Pb+2	1 036e - 10	6 204e - 11	-9 985	-10 207	-0 223	(0)
	PhCl+	1 369e - 11	1 203 - 11	-10 864	-10 920	-0.056	(0)
	PhC12	3 0750-13	3 0750 - 13	_12 512	-12 512	0.000	(0)
	PDCIZ	2 191 - 12	1.0160-12	-12.512	-12.J12 -12.717	0.000	(0)
	PDNUJT	2.181e - 13	1.910e-13 7 502a 15	-12.001	-12.717	-0.056	(0)
	PDF+	0.0410-15	7.592e-15	-14.063	-14.120	-0.056	(0)
	PDCI3-	1.1/9e-15	1.0366-15	-14.928	-14.985	-0.056	(0)
	Pb3 (OH) 4+2	2.6/5e-1/	1.601e-1/	-16.5/3	-16./96	-0.223	(0)
	Pb20H+3	1.289e-17	4.139e-18	-16.890	-17.383	-0.493	(0)
	PbC14-2	7.458e-18	4.423e-18	-17.127	-17.354	-0.227	(0)
	PbF2	8.404e-19	8.404e-19	-18.076	-18.076	0.000	(0)
	Pb4 (OH) 4+4	7.234e-24	9.934e-25	-23.141	-24.003	-0.862	(0)
	Pb6(OH)8+4	2.960e-29	4.064e-30	-28.529	-29.391	-0.862	(0)
	PbClO3+	5.824e-31	5.117e-31	-30.235	-30.291	-0.056	(0)
	Pb(ClO3)2	0.000e+00	0.000e+00	-50.446	-50.446	0.000	(0)
Рb	(4)	0.000e+00					
	Pb+4	0.000e+00	0.000e+00	-42.523	-43.385	-0.862	(0)
S (6	5)	6.524e-04					
	SO4-2	5.487e-04	3.254e-04	-3.261	-3.488	-0.227	(0)
	CaSO4	7.635e-05	7.635e-05	-4.117	-4.117	0.000	(0)
	MaSO4	1.729e-05	1.729e-05	-4.762	-4.762	0.000	(0)
	NaSO4-	1.003e-05	8.814e-06	-4.999	-5.055	-0.056	(0)
	NiSO4	3.317e-09	3.317e-09	-8.479	-8.479	0.000	(0)
	ZnS04	7 995e - 10	7 995e - 10	-9 097	-9 097	0 000	(0)
	H201-	1 388 - 11	1 219 - 11	-10 858	-10 91/	-0.056	(0)
		27450-13	27450-13	-12 561	-12 561	0.000	(0)
	Cuso4	1 2120 - 12	1 2120 12	-12.001	12.001	0.000	(0)
	MpCO4	1.2120 - 15	1.212 = 13 2 022 1 5	14 500	14 500	0.000	(0)
		J.UZ3E-IJ	J.UZJE-1J	-14.320	-14.520		(0)
	ALOU4+	1.4140-21	1 026- 20	-20.000	-20.906		(\mathbf{U})
	VUZSU4-	Z.ZU4e-22	1.9366-22	-21.65/	-21./13	-0.056	(0)
	resU4	4.594e-23	4.594e-23	-22.338	-22.338	0.000	(0)
	A1 (SO4) 2-	3.5/2e-23	3.139e-23	-22.447	-22.503	-0.056	(0)
	H2SO4	4.266e-24	4.266e-24	-23.370	-23.370	0.000	(0)
	FeSO4+	3.060e-24	2.689e-24	-23.514	-23.570	-0.056	(0)
	Fe(SO4)2-	1.684e-26	1.479e-26	-25.774	-25.830	-0.056	(0)
	VOSO4	1.754e-35	1.754e-35	-34.756	-34.756	0.000	(0)
	VSO4+	0.000e+00	0.000e+00	-58.911	-58.967	-0.056	(0)

Se(-2)	0.000e+00						
HSe-	0.000e+00	0.000e+00	-106.498	-106.554	-0.056	(0)	
Se-2	0.000e+00	0.000e+00	-111.843	-112.070	-0.227	(0)	
H2Se	0.000e+00	0.000e+00	-112.163	-112.163	0.000	(0)	
Se(4)	3.128e-21						
Se03-2	3.112e-21	1.846e-21	-20.507	-20.734	-0.227	(0)	
HSeO3-	1.601e-23	1.407e-23	-22.796	-22.852	-0.056	(0)	
H2SeO3	1.982e-30	1.982e-30	-29.703	-29.703	0.000	(0)	
Se(6)	2.158e-07						
Se04-2	2.158e-07	1.280e-07	-6.666	-6.893	-0.227	(0)	
NiSeO4	4.446e-12	4.446e-12	-11.352	-11.352	0.000	(0)	
ZnSeO4	2.318e-13	2.318e-13	-12.635	-12.635	0.000	(0)	
	1.9010-14	1.901e - 14	-13.703	-13.703	-0.056	(0)	
MnSeO4	$4.390e^{-13}$ 1 297e^{-18}	1 297 - 18	-17 887	-17 887	0.000	(0)	
V(3)	0.000e+00	1.2970 10	17.007	1,.00,	0.000	(0)	
V (OH) 2+	0.000e+00	0.000e+00	-45.820	-45.876	-0.056	(0)	
VOH+2	0.000e+00	0.000e+00	-51.420	-51.643	-0.223	(0)	
V+3	0.000e+00	0.000e+00	-58.317	-58.810	-0.493	(0)	
VSO4+	0.000e+00	0.000e+00	-58.911	-58.967	-0.056	(0)	
V2(OH)2+4	0.000e+00	0.000e+00	-101.704	-102.566	-0.862	(0)	
V(4)	1.160e-30						
VOOH+	1.160e-30	1.019e-30	-29.935	-29.992	-0.056	(0)	
VO+2	2.981e-34	1.785e-34	-33.526	-33.748	-0.223	(0)	
VOF+	3.691e-35	3.243e-35	-34.433	-34.489	-0.056	(0)	
VOSO4	1./54e-35 2.550a.27	1./54e-35	-34./56	-34./56	0.000	(0)	
VOF Z (VO) 2 (OH) 2-		3.330e-37	-55 091	-56.430	-0.223	(0)	
V(5)	3 641 - 06	0.00000000	-33.091	-33.313	-0.225	(0)	
V030H-2	3.296e-06	1.955e-06	-5.482	-5.709	-0.227	(0)	
HVO4-2	3.281e-07	1.946e-07	-6.484	-6.711	-0.227	(0)	
H2VO4-	9.971e-09	8.761e-09	-8.001	-8.057	-0.056	(0)	
VO2 (OH) 2-	6.369e-09	5.596e-09	-8.196	-8.252	-0.056	(0)	
VO4-3	9.403e-11	2.897e-11	-10.027	-10.538	-0.511	(0)	
VO (OH) 3	2.075e-14	2.075e-14	-13.683	-13.683	0.000	(0)	
V02+	1.781e-20	1.565e-20	-19.749	-19.806	-0.056	(0)	
VO2F	6.364e-22	6.364e-22	-21.196	-21.196	0.000	(0)	
V02S04-	2.204e-22	1.936e-22	-21.657	-21.713	-0.056	(0)	
V02F2-	3./966-24	3.335e-24	-23.421	-23.4//	-0.056	(0)	
211 7n (OH) 2	$3.039e^{-07}$	3 9180-07	-6 107	-6 407	0 000	(0)	
ZnCO3	4 413e - 08	4 413e - 08	-7 355	-7 355	0.000	(0)	
ZnOH+	3.898e-08	3.425e-08	-7.409	-7.465	-0.056	(0)	
Zn+2	1.902e-08	1.169e-08	-7.721	-7.932	-0.211	(0)	
Zn(OH)Cl	6.027e-09	6.027e-09	-8.220	-8.220	0.000	(0)	
Zn (OH) 3-	3.693e-09	3.244e-09	-8.433	-8.489	-0.056	(0)	
ZnHCO3+	1.289e-09	1.132e-09	-8.890	-8.946	-0.056	(0)	
ZnSO4	7.995e-10	7.995e-10	-9.097	-9.097	0.000	(0)	
ZnCl+	1.502e-10	1.319e-10	-9.823	-9.880	-0.056	(0)	
ZnF+	3.415e-12	3.001e-12	-11.46/	-11.523	-0.056	(0)	
Zn (OH) 4-2	2.491e-12 1.025a.12	1.4/8e-12 1.025a 12	-11.604	-11.830	-0.227	(0)	
	1.055e-12 2.219o-12	1.035e-12	-12 625	-11.905	0.000	(0)	
ZnCl3-	4 371e - 15	2.310e - 15 3.840e - 15	-14 359	-14 416	-0.056	(0)	
ZnCl4-2	3.297e-16	1.955e-16	-15.482	-15.709	-0.227	(0)	
ZnClO4+	8.768e-26	7.704e-26	-25.057	-25.113	-0.056	(0)	
		Saturation	indices				
Phase	SI** log	JIAP log	K(298 K,	l atm)			
Ahlfeldite	-23.37 -2	27.87 -4.5	0 NiSeO3:	2H2O			
	-141.85	8.0/ 149.9					
$A\perp(g)$	-192.55	o.U/ 200.6	\angle AL	12			
AI2 (304) 3	-/U.ZZ -5	1 34 1 5	0 AIZ(SU4	13.13.6420			
AlF3	-17.38 -3	34.65 -17.2	7 Alf3	, 5.01120			
Alstonite	2.24	4.83 2.5	8 BaCa(CO	3)2			

Anglesite	-5.79	-13.69	-7.91	PbSO4
Anhvdrite	-1.93	-6.28	-4.35	CaSO4
Antarcticite	-11.26	-7.16	4.09	CaC12:6H2O
Antlerite	-9.88	-1.15	8.73	$C_{11}3(SO4)(OH)4$
Aragonite	2.24	4.21	1.97	CaCO3
Arsenolite	-145.24	-165.08	-19.84	As203
Artinite	-1.18	18.44	19.63	Ma2CO3 (OH) 2:3H2O
As	-125.01	-82.33	42.68	As
As205	-106.43	-104.29	2.14	As205
As406(cubi)	-290 33	-330 16	-39 82	As406
$A \le 406 (mono)$	-290 11	-330 16	-40 05	As406
Atacamite	-9 21	5 06	14 26	$C_{11}4C_{12}(OH) 6$
Azurito	-11 62	-2 50	9 12	$C_{11}3(CO3)2(OH)2$
R	-114 03	-4 48	109 56	B
$B(\alpha)$	-205.32	-4.48	200.84	B
B203	-14 92	-9 37	5 55	B203
Ba	-128 62	12 61	141 23	Ba
Ba (OH) 2 · 8H2O	-12 06	12.01	24 49	$Ba(OH) 2 \cdot 8H2O$
BaC12	-12.00	-10 74	2 2 2 3	BaCl2
BaC12·2H20	-10 95	-10.74	0 21	BaC12·2H2O
BaC12.2020	-11 56	-10.74	0.82	BaC12.H20
BaMnO4	-4 74	-14 83	-10 09	BaMnO4
Ba0	-35 33	12 17	17 80	Ba
Barito	0 1/	_9 88	-10 01	Basol
Barutogalgito	2 09	-9.00	-10.01	Babo4 Babo4
Barycocarcice Baga03	-20 55	-27 12	-6 57	
BaSeOJ	-5 83	_13 28	-7 46	Baseod
Bassanite	-2 58	-6 28	-3 71	$C_{2}SO(1 \cdot 0) = 5H_{2}O$
BE3 (a)	-11 21	-47 20	-2 98	BE3
Birnessite	30 80	-54 75	-85 55	Mn8014.5H20
Bischofite	-12.46	-8.07	4.39	MaC12:6H20
Bixbvite	3.54	2.58	-0.96	Mn2O3
Bloedite	-12.99	-15.47	-2.48	Na2Mg(SO4)2:4H2O
Boehmite	0.31	7.86	7.55	Alo2H
Borax	-16.75	-4.71	12.04	Na2(B405(OH)4):8H2O
Boric_acid	-4.54	-4.69	-0.16	В(ОН) З
Brochantite	-9.50	5.92	15.42	Cu4(SO4)(OH)6
Brucite	-1.13	15.15	16.28	Mg (OH) 2
Bunsenite	-0.73	11.73	12.46	NiO
Burkeite	-23.78	-14.29	9.49	Na6CO3(SO4)2
C	-75.72	-11.57	64.15	C
C (g)	-193.34	-11.57	181.77	C
Ca	-123.63	16.20	139.83	Ca
Ca(g)	-148.87	16.20	165.07	Ca
Ca2A1205:8H20	-11./6	4/.81	59.57	Ca2A1205:8H20
CazCIZ (OH) Z:HZO	-1/.3/	8.92	26.29	
Ca2V207	-5.81	-45.52	-39.71	
Ca3 (ASO4) 2	-/3.91	-56.10	112 02	Ca3(ASO4) Z
	-49.13	63.91	10 22	Ca3A1206
C_{a} (λ) $(\lambda$	-11.14	-29.40	-10.32	Ca3V200
$C_{2}(\lambda)$	-40.00	92.40 70.02	107 25	C_{2} (λ) (207.12420)
Ca4A1207:13H20	-27.34	79.92	107.23	Ca4A1207:13h20
$C_{2}(C_{1}^{2}) = (O_{1}^{2}) = (O_{1}^{2$	-23.73	19.09	T02.00	Ca4A1207;19620
	_15 13	31 78	/ J G 00.5	
Call204 ·10H20	-6 26	31.70	37 99	
CaA1407	-21 10	47 50	68 59	CaA1407
Cadmoselite	-87.29	-121.15	-33.86	CdSe
Calcite	2.39	4,21	1.82	CaCO3
Calomel	2.84	-14.99	-17.83	Hg2C12
CaSeO3:2H2O	-18.90	-23.54	-4.63	CaSe03:2H20
CaSeO4	-6.60	-9.69	-3.09	CaSeO4
CaSO4:0.5H2O(be	ta) -2.75	5 -6.	28 -3.	54 CaSO4:0.5H2O
CaV206	-10.22	-61.59	-51.36	CaV206
Cd	-46.67	9.92	56.59	Cd
Cd (BO2) 2	-9.43	0.40	9.83	Cd (BO2) 2
Cd (g)	-60.21	9.92	70.13	Cd
Cd (OH) 2	-3.96	9.77	13.73	Cd (OH) 2

Cd(OH)Cl	-5.36	-1.83	3.54	Cd(OH)Cl
Cd3 (AsO4) 2	-79.03	-74.96	4.06	Cd3 (AsO4) 2
Cd3(SO4)(OH)4	-15.60	6.98	22.57	Cd3(SO4)(OH)4
Cd3(SO4)2(OH)2	-22.08	-15.36	6.72	Cd3 (SO4) 2 (OH) 2
CdC12	-12.77	-13.43	-0.66	CdC12
CdC12:H20	-11.75	-13.43	-1.68	CdC12:H2O
CdF2	-17.40	-18.56	-1.16	CdF2
CdSeO3	-20.99	-29.81	-8.82	CdSeO3
CdSeO4	-13.75	-15.97	-2.22	CdSeO4
CdSO4	-12.45	-12.57	-0.12	CdSO4
CdSO4:2.667H2O	-10.77	-12.58	-1.81	CdSO4:2.667H2O
CdSO4:H20	-10.91	-12.57	-1.66	CdS04:H20
Cerussite	0.04	-3.20	-3.24	PbC03
Chalcanthite	-12.67	-15.30	-2.63	CuSO4:5H2O
Chalcocyanite	-18.19	-15.28	2.91	CuSO4
Chloromagnesite	-29.86	-8.05	21.82	MgC12
CI2(g)	-26.34	-23.34	2.99	
Claudetite -	-145.28	-165.08	-19.80	ASZU3
Clipochalcomonit	-86.01	-122.28	-30.27	
	_4 02	-32.3		CO2
Colemanite	-4.02	3 98	21 51	$C_{2}2B6011 \cdot 5H20$
Corundum	-17.55	15 72	10 20	A1203
Cotunnite	-2.57	-1/ 55	-1 85	PhC12
Cu	-24 29	7 21	31 50	
	-76 45	7.21	83 66	Cu
	-19 86	-16 13	3 72	
CuF	-32.87	-25.79	7.08	CuF
CuF2	-20.65	-21.27	-0.62	CuF2
CuF2:2H20	-16.73	-21.28	-4.55	CuF2:2H2O
Cuprite	-21.34	-23.24	-1.91	Cu2O
CuSeO3	-24.85	-32.52	-7.68	CuSeO3
Dawsonite	-1.30	3.04	4.34	NaAlCO3(OH)2
Delafossite	1.03	-5.40	-6.44	CuFeO2
Diaspore	0.71	7.86	7.15	AlHO2
Dolomite	5.04	7.52	2.47	CaMg (CO3) 2
Dolomite-dis	3.50	7.52	4.01	CaMg (CO3) 2
Dolomite-ord	5.05	7.52	2.46	CaMg(CO3)2
Downeyite	-32.80	-39.59	-6.79	SeO2
Epsomite	-5.25	-7.22	-1.96	MgSO4:7H2O
Ettringite	-17.53	44.93	62.46	Ca6Al2(SO4)3(OH)12:26H2O
F2(g)	-84.19	-28.48	55.71	F2
Fe	-61.07	-2.05	59.02	Fe
Fe (OH) 2	-16.09	-2.20	13.89	Fe(OH)2
Fe (OH) 3	0.57	6.21	5.64	Fe (OH) 3
Fe2(SO4)3	-57.65	-54.60	3.05	Fe2 (SO4) 3
FeF2	-28.11	-30.53	-2.42	FeF2
FeF3	-17.03	-36.29	-19.26	FeF3
Feu Fermite Co	-15.72	-2.19	13.52	
Ferrite-Ca	7.00	20.50	21.30	
Ferrito-Dicalci	9.22	19.30	10.20 6 56 90	C_{2}^{2}
Ferrite-Ma	6 57	27 59	21 02	Mare 204
Ferrite-Zn	11 66	27.35	11 70	ZnFe204
Ferroselite -	-174.88	-255.71	-80.82	FeSe2
FeSO4	-27.15	-24.54	2.61	FeSO4
FeV204 -	-343.80	-63.24	280.56	FeV204
Fluorite	-2.21	-12.28	-10.07	CaF2
Frankdicksonite	-10.11	-15.87	-5.76	BaF2
Gaylussite	-4.74	6.42	11.16	CaNa2(CO3)2:5H2O
Gibbsite	0.11	7.85	7.74	Al (OH) 3
Glauberite	-9.07	-14.54	-5.47	Na2Ca(SO4)2
Goethite	5.69	6.22	0.53	FeOOH
Gypsum	-1.76	-6.29	-4.53	CaSO4:2H2O
H2(g)	-42.86	-45.96	-3.10	H2
H2O(g)	-1.59	-0.00	1.59	H2O
Halite	-6.12	-4.56	1.56	NaCl
Hausmannite	-2.14	8.01	10.14	Mn304

HCl(g)	-17.91	-11.60	6.30	HCl
Hematite	12.36	12.44	0.08	Fe203
Hercynite	-15.28	13.52	28.80	FeAl204
Hexahydrite	-5.49	-7.21	-1.73	MgSO4:6H2O
Hg(g)	-9.45	10.27	19.73	Hg
Hg(1)	-3.86	10.27	14.14	Hg
Hg2SeU3	-1/.16	-31.38	-14.21	
Hg2504	-0.00	-14.13	-0.13	Hg2504
Huntite	3 91	14 12	10 22	CaMa3(CO3)4
Hydroboracite	-17.29	3.07	20.36	MgCaB6011:6H20
Hydrocerussite	0.39	2.24	1.85	Pb3 (CO3) 2 (OH) 2
Hydromagnesite	-2.39	28.35	30.74	Mq5(CO3)4(OH)2:4H2O
Hydrophilite	-18.89	-7.14	11.75	CaCl2
Hydrozincite	0.60	30.91	30.31	Zn5 (OH) 6 (CO3) 2
Ice	-0.14	-0.00	0.14	H2O
Jarosite-Na	-13.56	-19.01	-5.45	NaFe3(SO4)2(OH)6
Karelianite	-70.99	-61.05	9.95	V203
Katoite	-15.06	63.88	78.94	Ca3A12H12O12
Kieserite	-6.93	-/.19	-0.27	MgSO4:H2O
KIOCKMannite	-82.24	-123.86	-41.62	CuSe
Lammorito	-147.23	-234.93	-107.70	Cusez
Lanarkite	-04.04	-63.09	-0 48	$Ph2(SO4) \Delta$
Lansfordite	-1.56	3.28	4.84	MacO3:5H2O
Lawrencite	-34.45	-25.40	9.05	FeCl2
Lime	-16.51	16.06	32.57	CaO
Litharge	-3.99	8.65	12.64	PbO
Magnesite	1.03	3.30	2.27	MgCO3
Magnetite	-0.18	10.24	10.42	Fe304
Malachite	-3.62	2.28	5.90	Cu2CO3 (OH) 2
Manganite	1.45	1.29	-0.16	MnO(OH)
Manganosite	-12.48	5.43	17.92	MnO
Massicot	-4.17	8.65	12.82	PbO
Matlockite	-7.69	-17.12	-9.43	PbFCl
Mayenite	-191.38	302.//	494.15	Ca12A114033
Melanterite	-22.17	-24.3/	-2.40	resu4:/HZU
Mg Mg (g)	-126 95	15.30	142.52	Mg
Ma1, 25SO4(OH)0	5:0.5H20	-8.60	-3.40	5.20 Mal. 25SO4 (OH) 0.5 \cdot 0.5H2O
Mg1.5SO4(OH)	-8.82	0.39	9.21	Mg1.5SO4 (OH)
Mq2V207	-16.43	-47.34	-30.90	Mg2V207
MgC12:2H2O	-20.79	-8.06	12.73	MgC12:2H2O
MgCl2:4H2O	-15.36	-8.06	7.30	MgCl2:4H2O
MgCl2:H2O	-24.12	-8.05	16.07	MgCl2:H2O
MgOHCl	-12.34	3.55	15.89	MgOHCl
MgSeO3	-26.11	-24.44	1.67	MgSeO3
MgSeO3:6H2O	-21.02	-24.46	-3.44	MgSeO3:6H2O
MgSO4	-12.02	-7.19	4.83	MgSO4
MgV206	-16.65	-62.49	-45.85	MgV206
Minium Mirabilito	-4.63	11.63	10.20	PD304
Milabilile	-77.36	-0.30	-1.13	MazS04:10Hz0
Mn (OH) 2 (am)	-9.88	5.17	02.93 15 31	Mn (OH) 2
Mn (OH) 3	-5.06	1.28	6.34	Mn (OH) 3
MnCl2:2H2O	-21.78	-17.78	4.00	MnCl2:2H2O
MnCl2:4H2O	-20.54	-17.79	2.75	MnCl2:4H2O
MnCl2:H2O	-23.32	-17.77	5.54	MnCl2:H2O
MnO2(gamma)	5.19	-10.93	-16.13	MnO2
MnSe	-114.80	-125.49	-10.70	MnSe
MnSeO3	-26.89	-34.16	-7.27	MnSeO3
MnSeO3:2H2O	-27.83	-34.17	-6.33	MnSeO3:2H2O
MnSO4	-19.52	-16.91	2.61	MnSO4
MnV206	-20.14	-72.22	-52.08	MnV206
Mo	-135.61	-26.34	109.27	Mo
Monohudrossite	-42.06	-28.59	13.47	
Monteponite	_e 1.00 _5 30	4.21 9.72	. 2.08 15 ng	
	0.02	2.10	±0.00	~~~
Montroydite	7.69	10.13	2.44	НдО
------------------	-----------------	----------------	-----------------	--
Morenosite	-8.58	-10.65	-2.06	NiSO4:7H2O
MoSe2	-233.35	-288.47	-55.12	MoSe2
Na	-60.26	7.11	67.37	Na
Na(g)	-73.75	7.11	80.86	Na
Na2CO3	-8.93	2.23	11.16	Na2CO3
Na2CO3:7H2O	-7.74	2.20	9.94	Na2CO3:7H2O
Na2O	-53.33	14.08	67.42	Na2O
Nazse	-128.67	-116.84	11.83 -61.25	Nazse Nazse
	-100.00	-247.91	-01.33	N_{2} S_{2} S_{2
Na4Ca(SO4) 3.2H2	22.00	-22 81	-5 89	Na4Ca(SO4) 3.2H2O
NaFeO2	-6.62	13.26	19.88	NaFeO2
Nahcolite	-4.67	-4.81	-0.14	NaHCO3
Nantokite	-16.46	-23.22	-6.77	CuCl
Natron	-7.40	2.19	9.59	Na2CO3:10H2O
Nesquehonite	-2.00	3.29	5.29	MgCO3:3H2O
Ni	-39.11	11.87	50.98	Ni
Ni(OH)2	-1.02	11.72	12.75	Ni(OH)2
Nickelbischofit	e -14.65	-11.50	3.15	NiCl2:6H2O
NiCl2	-20.08	-11.4/	8.60	NICI2
NICIZ:ZHZO	-15.41	-11.48	3.92	NICIZ: ZHZO
NICIZ:4HZO	-13.34	-11.49	3.00	NICIZ:4HZO
NiF2	-17 43	-16 61	0 82	NiF2
NiF2:4H2O	-12.57	-16.63	-4.06	NiF2:4H2O
NiSO4	-15.89	-10.62	5.28	NiSO4
NiSO4:6H2O(alph	na) -8.62	-10.64	1 -2.02	NiSO4:6H2O
Nitrobarite	-11.37	-13.86	-2.49	Ba(NO3)2
NO2 (g)	-21.44	-13.10	8.35	NO2
02 (g)	2.61	-0.28	-2.89	02
Otavite	-0.30	-2.07	-1.77	CdC03
Oxychloride-Mg	-7.14	18.69	25.83	Mg2C1 (OH) 3:4H2O
Paralaurionite	-3.15	-2.95	0.20	PECIOH
PD Db (m)	-38.38	8.79	4/.1/	PD
PD(9)	-00.02	0./9	-9 62	Pb2C12C03
Ph3S06	-6 97	3 61	10 58	Pb3506
Pb4C12(OH)6	-5.89	11.39	17.28	Pb4C12 (OH) 6
Pb4S07	-9.46	12.26	21.71	Pb4S07
PbCO3.PbO	-4.21	5.45	9.66	PbCO3.PbO
PbF2	-14.43	-19.69	-5.25	PbF2
PbFCl	-8.13	-17.12	-8.99	PbFCl
PbSeO4	-10.15	-17.10	-6.95	PbSeO4
Penroseite	-151.45	-250.27	-98.81	NiSe2
Pentahydrite	-5.82	-7.21	-1.39	MgSO4:5H2O
Periclase	-6.1/	15.16	21.33	MgO
Phosgenite	-8.10	-1/./5	-9.65	PDZ(CO3)C1Z
Plissonice	2 30	-5 67	11.32 _7 97	PhO2
Portlandite	-6.49	16.06	22.55	Ca(OH) 2
Pvrolusite	6.73	-10.93	-17.66	MnO2
Rhodochrosite	-6.20	-6.42	-0.22	MnCO3
Scacchite	-26.51	-17.77	8.74	MnCl2
Se	-65.41	-39.31	26.10	Se
Se205	-74.83	-65.34	9.49	Se205
SeCl4	-100.33	-86.00	14.33	SeCl4
Sellaite	-3.74	-13.18	-9.44	MgF2
Se03	-44.91	-25.75	19.16	SeO3
Sncherbinaite	-19.30	-20.75	-1.45	V205
Siderite	-13.03 _1 27	-14.04	-0.22	recus 7nCO3
Sninel	-1.37 -6 73	-0.93 30 87	37 61	A12Ma04
Starkevite	-6.21	-7.21	-1.00	MaSO4:4H20
Stilleite	-96.02	-120.00	-23.98	ZnSe
Tachyhydrite	-40.43	-23.28	17.14	Mg2CaCl6:12H2O
Tenorite	-0.58	7.07	7.65	CuO
Thenardite	-7.90	-8.26	-0.36	Na2SO4

Thermonatrite	-8.71	2.23	10.94	Na2CO3:H2O		
Tiemannite	-62.56	-120.79	-58.23	HqSe		
Todorokite	26.24	-19.58	-45.82	Mn7012:3H20		
Trevorite	14.38	24.16	9.78	NiFe204		
Umangite	-184.18	-278.03	-93.85	Cu3Se2		
V	-137.26	-30.31	106.94	V		
V204	-38.34	-29.78	8.56	V204		
V305	-89.37	-75.94	13.43	V305		
V407	-109.63	-90.83	18.80	V407		
Wilkmanite	-335.74	-488.66	-152.92	N135e4		
Witherite	3.03	0.62	-3.02	Bac03		
Zincite	-13.39	10 93	12.40	re.9470 ZnO		
Zn	-57.72	11.07	68.79	Zn		
Zn (BO2) 2	-6.76	1.55	8.31	Zn (BO2) 2		
Zn(C1O4)2:6H2O	-50.51	-44.87	5.63	Zn (C104) 2:61	H2O	
Zn (g)	-74.34	11.07	85.41	Zn		
Zn(NO3)2:6H2O	-18.83	-15.43	3.40	Zn(NO3)2:6H2	20	
Zn(OH)2(beta)	-1.01	10.92	11.93	Zn (OH) 2		
Zn(OH)2(epsilor) -0.74	10.9	2 11.66	Zn (OH) 2		
Zn(OH)2(gamma)	-0.96	10.92	11.88	Zn (OH) 2		
Zn2(OH)3C1	-5.05	10.24	15.29	Zn2(OH)3Cl		
Zn2SO4 (OH) 2	-8.08	-0.50	7.58	Zn2SO4 (OH) 2		
Zn3(AsO4)2	-80.83	-71.52	9.31	Zn3(AsO4)2		
$2n_{30}(S04)/2$	-31.00	-11.91	19.09	$2n_{30}(S04) Z$	0 (1	
$2\Pi S(NOS) Z(OH) o$ 7nC12	-19.36	_12_28	42.07	$Z_{\rm III}$ (NOS) Z (Of $Z_{\rm nC}$	1)0	
$2nCO3 \cdot H2O$	-1 07	-0.93	0 14	ZnCO3•H2O		
ZnF2	-16.92	-17.41	-0.49	ZnF2		
ZnSeO3:H2O	-21.92	-28.67	-6.75	ZnSeO3:H2O		
ZnSO4	-14.95	-11.42	3.53	ZnSO4		
ZnSO4:6H2O	-9.74	-11.44	-1.70	ZnSO4:6H2O		
ZnSO4:7H2O	-9.57	-11.45	-1.88	ZnSO4:7H2O		
ZnSO4:H2O	-10.87	-11.42	-0.55	ZnSO4:H2O		
For ideal gases	, phi = 1		Fugacity	= pressure	^ pni / i atr	n .
Beginning of batc	h-reactio	on calcul	ations.			
Reaction step 1.						
Using solution 1.	Pit Chem	istrv af	ter 50 Yea	ars Before La	avering	
Using pure phase	assemblac	re 1.	Inpitfi	lling: Layer	2 After 50 1	Years
	_		_			
		Pha	se assembl	lage		
				M	oles in asser	mblage
Phase	ST lo	a TAP 1	οα K(T, P)) Initial	Final	Delta
Indoc	01 10	·9 ···· ·	og 1((1 / 1)	INTOTAT	1 11101	Derea
Barite	0.00 -	10.01	-10.01	1.000e+01	1.000e+01	3.371e-07
Calcite	0.00	1.82	1.82	1.000e+01	1.000e+01	2.917e-03
Fe(OH)3	0.00	5.64	5.64	1.000e+01	1.000e+01	2.387e-06
Gibbsite	0.00	7.74	7.74	1.000e+01	1.000e+01	2.841e-06
Gypsum	-1.96	-6.49	-4.53	1.000e+01	1.000e+01	0.000e+00
Manganite	0.00	-0.16	-0.16	1.000e+01	1.000e+01	1.824e-06
		Solut	ion compos	sition		
1						
Elements	Μ	orality	Mole	25		
Al	2.	035e-08	2.035e-0	08		
As	1.	030e-07	1.030e-0)'/		
B	5.	842e-05	5.842e-0	15 7		
Ва С	4.	294e-0/	4.294e-() /)		
C	4.	UUZE-U3	4.0020-0			

	Ca Cd Cu F Fe Hg Mg Mn Mo N Na Ni Pb S Se V Zn	1.536e 6.778e 7.692e 1.735e 2.111e 4.856e 3.199e 4.372e 5.633e 2.090e 2.111e 4.710e 1.298e 1.790e 6.521e 2.158e 3.641e 5.059e	-03 1.5364 -09 6.7784 -03 7.6924 -08 1.7354 -05 2.1114 -07 4.8564 -09 3.1994 -04 4.3724 -08 2.0904 -04 2.1114 -03 4.7104 -03 4.7104 -07 1.2984 -07 1.7904 -07 1.7904 -07 2.1584 -07 3.6414 -07 5.0594	e - 03 e - 09 e - 03 e - 08 e - 05 e - 07 e - 09 e - 04 e - 10 e - 08 e - 04 e - 03 e - 07 e - 07 e - 07 e - 07 e - 07 e - 06 e - 07				
		De	scription o	f solution				
Pe	ercent error	Activi Ion Mass of Total alkalin Total C Tempe Electrical b total c Tempe (Cat- An)	pH pe ty of water ic strength water (kg) ity (eq/kg) 02 (mol/kg) rature (°C) alance (eq) /(Cat+ An) Iterations Total H Total O	= 7.35 $= 14.07$ $= 0.99$ $= 1.29$ $= 1.00$ $= 3.69$ $= 4.00$ $= 25.00$ $= -4.26$ $= -20.22$ $= 15$ $= 1.1105$ $= 5.6585$	2 Ch 9 Ad 1 5e-02 0e+00 4e-03 2e-03 1e-03 51e+02 78e+01	arge balance justed to re	dox equilibriu	ım
		Di	stribution (of species				
				Loq	Loq	Loq	mole V	
	Species	Molality	Activity	Molality	Activity	Gamma	cm³/mol	
7. 1	ОН- Н+ Н2О	2.412e-07 4.912e-08 5.553e+01	2.146e-07 4.449e-08 9.908e-01	-6.618 -7.309 1.744	-6.668 -7.352 -0.004	-0.051 -0.043 0.000	(0) 0.00 18.07	
	Al02- HAl02 Al(OH)2+ NaAl02 AlF2+ AlOH+2 AlF3 AlF+2 Al+3 AlF4- AlS04+ Al(S04)2- Al2(OH)2+4 Al3(OH)4+5	1.815e-08 2.101e-09 7.208e-11 1.285e-11 7.587e-12 1.963e-12 1.963e-12 1.453e-12 1.226e-14 8.182e-15 2.038e-15 5.640e-17 1.483e-21 6.159e-27	1.618e-08 2.101e-09 6.423e-11 1.285e-11 6.760e-12 1.242e-12 1.572e-12 9.195e-13 4.979e-15 7.291e-15 1.816e-15 5.026e-17 2.509e-22 3.999e-28	-7.741 -8.678 -10.142 -10.891 -11.120 -11.707 -11.804 -11.838 -13.912 -14.087 -14.691 -16.249 -20.829 -26.210	-7.791 -8.678 -10.192 -10.891 -11.170 -11.906 -11.804 -12.036 -14.303 -14.137 -14.741 -16.299 -21.601 -27.398	$\begin{array}{c} -0.050\\ 0.000\\ -0.050\\ 0.000\\ -0.199\\ 0.000\\ -0.199\\ -0.391\\ -0.391\\ -0.050\\ -0.050\\ -0.050\\ -0.772\\ -1.188\end{array}$	<pre>(0) (0) (0) (0) (0) (0) (0) (0) (0) (0)</pre>	
As (Al1304(OH)2 -3)	24+7 0.000e+00 0.000e+00	0.000e+00	-47.196	-49.52	5 -2.328	(0)	
As (AsH3 3)	0.000e+00 0.000e+00	0.000e+00	-204.705	-204.705	0.000	(0)	
- 1	HASO2 As (OH) 3 H2ASO3-	0.000e+00 0.000e+00 0.000e+00	0.000e+00 0.000e+00 0.000e+00	-71.182 -71.245 -73.056	-71.182 -71.245 -73.106	0.000 0.000 -0.050	(0) (0) (0)	

As	(5)	1.030e-07					
	AsO3F-2	1.007e-07	6.325e-08	-6.997	-7.199	-0.202	(0)
	HAsO3F-	2.345e-09	2.089e-09	-8.630	-8.680	-0.050	(0)
	HAsO4-2	0.000e+00	0.000e+00	-41.941	-42.143	-0.202	(0)
	H2AsO4-	0.000e+00	0.000e+00	-42.664	-42.714	-0.050	(0)
	As04-3	0.000e+00	0.000e+00	-45.927	-46.382	-0.455	(0)
	H3AsO4	0.000e+00	0.000e+00	-47.820	-47.820	0.000	(0)
B(-	-5)	0 0000+00	0.00000.00	17.020	17.020	0.000	(0)
D (5) BU/_		0 0000+00	-233 366	-233 /16	-0 050	(0)
D/3	DII4-	5 9420-05	0.00000000	-233.300	-233.410	-0.030	(0)
D(.		5.8420-05		4 0 4 0	4 0 4 0	0 000	(0)
	B (OH) 3	5./560-05	5./560-05	-4.240	-4.240	0.000	(0)
	B02-	7.858e-07	/.002e-0/	-6.105	-6.155	-0.050	(0)
	CaB(OH)4+	5.058e-08	4.507e-08	-7.296	-7.346	-0.050	(0)
	MgB (OH) 4+	1.710e-08	1.524e-08	-7.767	-7.817	-0.050	(0)
	NaB(OH)4	5.669e-09	5.669e-09	-8.247	-8.247	0.000	(0)
	BaB(OH)4+	6.201e-12	5.525e-12	-11.208	-11.258	-0.050	(0)
	BF2 (OH) 2-	4.100e-15	3.653e-15	-14.387	-14.437	-0.050	(0)
	B20 (0H) 5-	1 726e - 20	1 538e - 20	-19 763	-19 813	-0.050	(0)
	BE30H-	$1 450e^{-20}$	1,292 = 20	-19 839	-19.889	-0.050	(0)
	DF JOII-	7 071 - 20	1.2928-20	-19.039	-19.009	-0.050	(0)
-	Br 4-	7.971e-28	/.103e-28	-27.098	-27.149	-0.050	(0)
ва	_	4.294e-07					
	Ba+2	4.278e-07	2.727e-07	-6.369	-6.564	-0.196	(0)
	BaCl+	7.002e-10	6.239e-10	-9.155	-9.205	-0.050	(0)
	BaNO3+	4.535e-10	4.041e-10	-9.343	-9.393	-0.050	(0)
	BaCO3	4.247e-10	4.247e-10	-9.372	-9.372	0.000	(0)
	BaB(OH)4+	6.201e-12	5.525e-12	-11.208	-11.258	-0.050	(0)
	BaF+	3894e - 12	3 470 - 12	-11 410	-11 460	-0.050	(0)
	Bal -	2 3090 - 13	2.0580 - 13	_12 636	-12 687	-0.050	(0)
~ /		2.3098-13	2.0308-13	-12.030	-12.007	-0.030	(0)
C (-	-2)	0.000e+00	0 000 000			0 0 0 0	(0)
	C2H4	0.000e+00	0.000e+00	-2/3.2/0	-2/3.2/0	0.000	(0)
C (-	-3)	0.000e+00					
	C2H6	0.000e+00	0.000e+00	-247.244	-247.244	0.000	(0)
C (-	-4)	0.000e+00					
	CH4	0.000e+00	0.000e+00	-153.381	-153.381	0.000	(0)
CC	2)	0.000e+00					. ,
0 (2	 		0 0000+00	-51 376	-51 376	0 000	(0)
C ()	1)	4 0020-03	0.00000000	51.570	51.570	0.000	(0)
0(4	±/	4.0020-03	2 107 - 02		0 40F		(0)
	HC03-	3.5886-03	3.1976-03	-2.445	-2.495	-0.050	(0)
	CO2	3.319e-04	3.330e-04	-3.4/9	-3.4/8	0.001	(0)
	CaHCO3+	3.952e-05	3.521e-05	-4.403	-4.453	-0.050	(0)
	NaHCO3	1.905e-05	1.905e-05	-4.720	-4.720	0.000	(0)
	MgHCO3+	1.100e-05	9.806e-06	-4.958	-5.009	-0.050	(0)
	CaCO3	6.867e-06	6.867e-06	-5.163	-5.163	0.000	(0)
	CO3-2	5.037e-06	3.188e-06	-5.298	-5.497	-0.199	(0)
	MaCO3	8.905e-07	8.905e-07	-6.050	-6.050	0.000	(0)
	PhCO3	1 511 - 07	1 5110 - 07	-6 821	-6 821	0 000	(0)
	N=CO2	E 212- 00	1.5110 07	7 202	7 222	0.000	(0)
	Nacos-	3.213e-08	4.6460-08	-7.203	-7.333	-0.050	(0)
	ZnHCO3+	2.6168-08	2.331e-08	-7.582	-7.633	-0.050	(0)
	CuCO3	1.569e-08	1.569e-08	-7.804	-7.804	0.000	(0)
	ZnCO3	7.571e-09	7.571e-09	-8.121	-8.121	0.000	(0)
	Pb(CO3)2-2	5.357e-10	3.365e-10	-9.271	-9.473	-0.202	(0)
	BaCO3	4.247e-10	4.247e-10	-9.372	-9.372	0.000	(0)
	Cu (CO3) 2-2	1.419e-10	8.912e-11	-9.848	-10.050	-0.202	(0)
	CdHC03+	1 353e - 10	1 205e - 10	-9 869	-9 919	-0.050	(0)
	CdCO3	1.0000 ± 10	1.2000 10	-11 396	-11 396	0.000	(0)
	Maco2	-1420 + 12	-1.0100 12	11.550	11.550	0.000	(0)
		2.1420-12	Z.14Ze-1Z	-11.009	-11.009	0.000	(0)
	rec03+	8.154e-13	1.266e-13	-12.089	-12.139	-0.050	(0)
	MnHCO3+	5.244e-13	4.673e-13	-12.280	-12.330	-0.050	(0)
	CuCO3 (OH) 2-	-2 1.053e-13	6.617e-14	-12.977	-13.179	-0.202	(0)
	Cd(CO3)2-2	5.415e-14	3.401e-14	-13.266	-13.468	-0.202	(0)
	FeHCO3+	6.462e-18	5.758e-18	-17.190	-17.240	-0.050	(0)
	FeCO3	6.212e-19	6.212e-19	-18.207	-18.207	0.000	(0)
Ca		1.536e-03					/
20	Ca+2	1.43803	9.295e - 04	-2.842	-3.032	-0.190	(0)
		1 8/0 <u>~</u> 05	4 8/00-05	_/ 215	_/ 215	0 000	(0)
			040 = -0.0	-4.JTJ	-V VED		(0)
		5.95ZE-U5	S.JZIE-US	-4.403	-4.400	-0.050	(0)
	Cacus	6.86/e-U6	0.00/e-U6	-5.163	-5.163	0.000	(0)
	CaCI+	1.508e-06	⊥.344e-06	-5.822	-5.872	-0.050	(0)

	CaNO3+	9.753e-07	8.690e-07	-6.011	-6.061	-0.050	(0)
	CaF+	9.792e-08	8.726e-08	-7.009	-7.059	-0.050	(0)
	CaB(OH)4+	5.058e-08	4.507e-08	-7.296	-7.346	-0.050	(0)
	CaCl2	1.078e-08	1.078e-08	-7.967	-7.967	0.000	(0)
	CaOH+	3.281e-09	2.924e-09	-8.484	-8.534	-0.050	(0)
Cd		6.778e-09					
	CdCl+	4.636e-09	4.131e-09	-8.334	-8.384	-0.050	(0)
	Cd+2	1.870e-09	1.192e-09	-8.728	-8.924	-0.196	(0)
	CdHCO3+	1.353e-10	1.205e-10	-9.869	-9.919	-0.050	(0)
	CdC12	1.222e-10	1.222e-10	-9.913	-9.913	0.000	(0)
	Cd(OH)Cl	6.685e-12	6.685e-12	-11.175	-11.175	0.000	(0)
	CdCO3	4.018e-12	4.018e-12	-11.396	-11.396	0.000	(0)
	CdOH+	2.507e-12	2.234e-12	-11.601	-11.651	-0.050	(0)
	CdSO4	4.314e-13	4.314e-13	-12.365	-12.365	0.000	(0)
	CdCl3-	2.398e-13	2.137e-13	-12.620	-12.670	-0.050	(0)
	Cd(CO3)2-2	5.415e-14	3.401e-14	-13.266	-13.468	-0.202	(0)
	CdSeO4	3.010e - 14	3.010e-14	-13.521	-13.521	0.000	(0)
	Cd (OH) 2	2.701e-15	2.701e-15	-14.568	-14.568	0.000	(0)
	Cd20H+3	3.598e-20	1.304e-20	-19.444	-19.885	-0.441	(0)
	Cd (OH) 3-	7.663e - 21	6.828e-21	-20,116	-20.166	-0.050	(0)
	CdNO2+	4726e-26	4 212e - 26	-25 325	-25 376	-0.050	(0)
	Cd(OH) 4-2	2 182e - 27	1.371 - 27	-26 661	-26 863	-0.202	(0)
	Cd(NH3)+2	$0 0000 \pm 00$	0 000 + 00	-78 787	-78 986	-0 199	(0)
	CdN3+	0.0000+00	0.0000+00	-121 399	-121 //9	-0 050	(0)
	Cd(NH3)2+2		0.0000+00	-1/9 017	-1/19 215	-0 199	(0)
	Cd(NI3)		0.0000+00	-23/ 508	-23/ 508	0.100	(0)
	Cd(NU3)/1+2		0.0000+00	-234.500 -201.779	-201 076	-0 199	(0)
	Cd(NI3)3-		0.0000+00	-291.770	-291.970	-0.159	(0)
	$Cd(NJ)J^{+}$	0.00000000000000000000000000000000000	0.000e+00	-347.013	-347.005	-0.030	(0)
	Cd(N2)/-2	0.00000000000000000000000000000000000	0.000e+00	-307.030	-300.430	-0.772	(0)
C1 ($(10) 4^{-2}$	7 6920-03	0.00000000	-401.510	-401.520	-0.202	(0)
	C1-	7.052005 7.684 -03	6 8200-03	-2 114	-2 166	-0 052	(0)
	NaCl	4 9930-06	4993 - 06	-5 302	-5 302	0.002	(0)
	MaCl+	1.578e - 06	1.9996 00 1.406e-06	-5 802	-5 852	-0.050	(0)
	CaCl+	1 508e - 06	1 344 = 06	-5 822	-5 872	-0.050	(0)
	CaCl2	1.078 - 0.8	1.078 - 08	-7 967	-7 967	0.000	(0)
		4 6369 - 09	4 131 - 09	-8 334	-8 384	-0.050	(0)
	ZnCl+	3 6370-09	3 241 - 09	-8 439	-8 489	-0.050	(0)
	PhCl+	2606e - 09	2 322 - 09	-8 584	-8 634	-0.050	(0)
	$Z_{\rm D}(OH)Cl$	1 234e - 09	1 234 - 09	-8 909	-8 909	0.000	(0)
	BaCl+	7 002e - 10	6 239 - 10	-9 155	-9 205	-0.050	(0)
		1 222 - 10	1 222 - 10	-9 913	-9 913	0.000	(0)
	HCI	6 815e - 11	6 815 - 11	-10 167	-10 167	0.000	(0)
	NiCl+	6 621 - 11	5,010e 11	-10.179	-10.229	-0.050	(0)
	PhC12	6 0.0210 11	6 028 - 11	-10 220	-10.220	0.000	(0)
	7nCl2	25820-11	2582 - 11	-10.588	-10.220	0.000	(0)
		$1 081_{-11}$	2.5020 11	-10.966	_11 016	-0.050	(0)
		6,6850-12	$9.029e^{-12}$	-10.900	-11.010	-0.030	(0)
		3 1290 - 13	2.7880-13	-12 505	-12 555	-0.050	(0)
		2 3980 - 13	$2.700e^{-13}$	-12.503	-12.555	-0.050	(0)
	PhC13-	$2.390e^{-13}$	$2.137e^{-13}$	-12.020	-12.070	-0.050	(0)
	7pCl3-	$2.314e^{-13}$	$2.002e^{-13}$	-12.030	-13 012	-0.050	(0)
		1.0910 - 13	$9.724e^{-14}$	-12.902	-12 461	-0.030	(0)
	CuCIZ	9 0020-15	5.436e - 14 5.0270 - 15	-13.401	-14 200	0.000	(0)
	$2\Pi C I 4 - 2$	1 4220 - 15	J.027e-15	-14.097	-14.299	-0.202	(0)
	PDC14-Z	1.423e - 13 2.170c - 19	2 930 = 10	-14.047	-17 549	-0.202	(0)
	Eacl2+	2,7790-10	2.033e - 10	-10 556	-19 606	-0.050	(0)
	FeCIZT	7 0870-20	2.470e-19	-10.550	-10.000	-0.030	(0)
	FOCI+	1 01/0 20	1 7050 20	-10 710	-10 760	-0.199	(0)
	rectt CuCl2-	1,7148-2U 0 1/0~ 01	1.705e-20	-20 000	-13./00 -20 120	-0.050	(0)
	CuCIZ = 2	0.140E-ZI 5 0620 20	7.2010-21 3 100- 22	-20.009	-20.139	-0.000	(0)
	CuCIJ = 2	J.U038-22	3 0100 22	-21.290	-21,490 -22 F20	-0.202	(0)
	CuCI4-Z	4.000E-23 6 0/10 0F	$3.019e^{-23}$	-24.310	-22.020	-0.202	(0)
	reciz Focia-	U.Z4IE-ZJ 1 554~ 00	0.2410-23 1 3050 90	-24.203	-24.203		(0)
		1,0040-20	1.JOJE-20	-23.809	-23.039	-0.050	(0)
C1 /	rec14-2	1 060c-17	0.30/8-29	-21.0/4	-20.0/0	-0.202	(0)
UΤ (4C10		6 31010	-17 200	-17 200	0 000	(0)
	C10-	4 292 - 18	3.824 - 18	-17 367	-17 417	-0 050	(0)
	~ - ~		0.0 <u>0</u> .00 TO	± , • J U /	_ / • I _ /	0.000	

Cl	(3)	3.068e-26					
	C102-	3.068e-26	2.733e-26	-25.513	-25.563	-0.050	(0)
	HClO2	1.798e-30	1.798e-30	-29.745	-29.745	0.000	(0)
Cl	(5)	1.563e-20					
	C103-	1.563e-20	1.390e-20	-19.806	-19.857	-0.051	(0)
	PbC103+	1.107e-28	9.865e-29	-27.956	-28.006	-0.050	(0)
	Pb(C103)2	0.000e+00	0.000e+00	-48.155	-48.155	0.000	(0)
Cl	(7)	3969e - 19	0.00000.00	10.100	10.100	0.000	(0)
CΤ	(7)	3 9690-19	3 5300-10	_18 /01	_18 /52	_0 051	(0)
		2 1196 - 24	1 0000-21	-10.401	-10.452	-0.051	(0)
<i>a</i>		2.1198-24	1.0008-24	-23.074	-23.724	-0.030	(0)
Cu	(1)	1.1306-20	7 0 6 1 - 0 1		00 100		(0)
	CuCIZ-	8.148e-21	7.261e-21	-20.089	-20.139	-0.050	(0)
	Cu+	2.644e-21	2.356e-21	-20.578	-20.628	-0.050	(0)
	CuC13-2	5.063e-22	3.180e-22	-21.296	-21.498	-0.202	(0)
Cu	(2)	1.735e-08					
	CuCO3	1.569e-08	1.569e-08	-7.804	-7.804	0.000	(0)
	Cu+2	7.987e-10	5.162e-10	-9.098	-9.287	-0.190	(0)
	CuOH+	6.655e-10	5.930e-10	-9.177	-9.227	-0.050	(0)
	Cu (CO3) 2-2	1.419e-10	8.912e-11	-9.848	-10.050	-0.202	(0)
	CuSO4	4.216e-11	4.216e-11	-10.375	-10.375	0.000	(0)
	CuCl+	1.081e-11	9.629e-12	-10.966	-11.016	-0.050	(0)
	CuF+	1.696e-13	1.511e-13	-12.771	-12.821	-0.050	(0)
	CuCO3 (OH) 2-	-2 1.053e-13	6.617e-14	-12.977	-13.179	-0.202	(0)
	CuCl2	3.458e-14	3.458e-14	-13.461	-13.461	0.000	(0)
	Cu02-2	7.310e-20	4.592e-20	-19.136	-19.338	-0.202	(0)
	CuCl4-2	4.806e-23	3.019e-23	-22.318	-22.520	-0.202	(0)
	$C_{11}NO2+$	9.140e-27	8.145e-27	-26.039	-26.089	-0.050	(0)
	C_{11} (NO2) 2	0 000e+00	0.000 + 00	-43 901	-43 901	0 000	(0)
	CuNH3+2	0.0000+00	0.0000+00	-77 640	-77 839	-0 199	(0)
				-1/6 799	_1/6 997	_0 199	(0)
	Cu(NH3)2+2			-216 570	-216 769	_0 199	(0)
E.	Cu (NH3) 372	0.00000000000000000000000000000000000	0.00000000	-210.370	-210.709	-0.199	(0)
Г	E.	2.1110-05	1 0470 05	1 600	1 7 2 1	0 0 5 1	(0)
	r – Marti	2.077e-03	1.0470-03	-4.003	-4.734	-0.051	(0)
	Mgr +	1.3210-07	1.1//e-0/	-6.8/9	-6.929	-0.050	(0)
	ASO3F-2	1.00/e-0/	6.325e-08	-6.997	-7.199	-0.202	(0)
	CaF+	9./92e-08	8./26e-08	-7.009	-7.059	-0.050	(0)
	NaF	8.228e-09	8.228e-09	-8.085	-8.085	0.000	(0)
	HAsO3F-	2.345e-09	2.089e-09	-8.630	-8.680	-0.050	(0)
	HF	1.261e-09	1.261e-09	-8.899	-8.899	0.000	(0)
	ZnF+	8.280e-11	7.378e-11	-10.082	-10.132	-0.050	(0)
	AlF2+	7.587e-12	6.760e-12	-11.120	-11.170	-0.050	(0)
	BaF+	3.894e-12	3.470e-12	-11.410	-11.460	-0.050	(0)
	PbF+	1.647e-12	1.467e-12	-11.783	-11.833	-0.050	(0)
	AlF3	1.572e-12	1.572e-12	-11.804	-11.804	0.000	(0)
	AlF+2	1.453e-12	9.195e-13	-11.838	-12.036	-0.199	(0)
	CuF+	1.696e-13	1.511e-13	-12.771	-12.821	-0.050	(0)
	MnF+	1.071e-14	9.543e-15	-13.970	-14.020	-0.050	(0)
	AlF4-	8.182e-15	7.291e-15	-14.087	-14.137	-0.050	(0)
	HF2-	6.333e-15	5.643e-15	-14.198	-14.249	-0.050	(0)
	BF2 (OH) 2-	4.100e-15	3.653e-15	-14.387	-14.437	-0.050	(0)
	VO2F	7.592e-16	7.592e-16	-15.120	-15.120	0.000	(0)
	PbF2	1.651e-16	1.651e-16	-15.782	-15.782	0.000	(0)
	FoF+2	1 727 - 17	1 093 - 17	-16 763	-16 961	-0 199	(0)
	VO2E2 =	15380 - 18	1.0000 = 17	-17 3/3	-17 393	-0 050	(0)
	VOZFZ U2F2	3 9570-18	3,0570-18	-17 403	_17 403	0.000	(0)
	HZFZ FoF2+	$3.957e^{-10}$	$3.957e^{-10}$	-17.405	-17.403	0.000	(0)
	rerz+	$3.000e^{-10}$	1,200e-10	-17.430	-17.400	-0.030	(0)
	Br SUR-	1.4500-20	1.292e-20	-19.039	-19.009	-0.050	(0)
	TGET	1.03UE-ZI	1.4528-21	-20./08	-20.038	-0.050	(\mathbf{U})
		5.209e-2/	4.041e-2/	-26.283	-26.333	-0.050	(0)
	BF 4-	/.9/1e-28	/.103e-28	-21.098	-21.149	-0.050	(0)
_	VOF2	5.165e-29	5.165e-29	-28.287	-28.287	0.000	(0)
Fe	(2)	1.264e-17				_ _ _ -	
	⊧'еНСО3+	6.462e-18	5./58e-18	-17.190	-17.240	-0.050	(0)
	Fe+2	5.311e-18	3.432e-18	-17.275	-17.464	-0.190	(0)
	FeCO3	6.212e-19	6.212e-19	-18.207	-18.207	0.000	(0)
	FeSO4	1.939e-19	1.939e-19	-18.712	-18.712	0.000	(0)
	FeOH+	2.713e-20	2.417e-20	-19.567	-19.617	-0.050	(0)
	FeCl+	1.914e-20	1.705e-20	-19.718	-19.768	-0.050	(0)

FeF+	1.630e-21	1.452e-21	-20.788	-20.838	-0.050	(0)
Fe(OH)2	4.276e-24	4.276e-24	-23.369	-23.369	0.000	(0)
FeC12	6.241e-25	6.241e-25	-24.205	-24.205	0.000	(0)
Fe(OH)3-	4.254e-27	3.790e-27	-26.371	-26.421	-0.050	(0)
FeCl4-2	1.335e-28	8.387e-29	-27.874	-28.076	-0.202	(0)
Fe(OH)4-2	1.344e-34	8.441e-35	-33.872	-34.074	-0.202	(0)
Fe(3)	4.856e-07					
Fe(OH)3	4.359e-07	4.359e-07	-6.361	-6.361	0.000	(0)
Fe(OH)2+	4.696e-08	4.184e-08	-7.328	-7.378	-0.050	(0)
Fe(OH)4-	2.736e-09	2.438e-09	-8.563	-8.613	-0.050	(0)
FeOH+2	8.967e-12	5.675e-12	-11.047	-11.246	-0.199	(0)
FeCO3+	8.154e-13	7.266e-13	-12.089	-12.139	-0.050	(0)
Fe+3	9.716e-17	3.947e-17	-16.012	-16.404	-0.391	(0)
FeF+2	1.727e-17	1.093e-17	-16.763	-16.961	-0.199	(0)
FeF2+	3.666e-18	3.266e-18	-17.436	-17.486	-0.050	(0)
FeSO4+	1.528e-18	1.361e-18	-17.816	-17.866	-0.050	(0)
FeCl2+	2.779e-19	2.476e-19	-18.556	-18.606	-0.050	(0)
FeNO3+2	1.163e-19	7.362e-20	-18.934	-19.133	-0.199	(0)
FeCl+2	7.087e-20	4.485e-20	-19.150	-19.348	-0.199	(0)
Fe(SO4)2-	9.206e-21	8.203e-21	-20.036	-20.086	-0.050	(0)
Fe2(OH)2+4	5.123e-21	8.667e-22	-20.290	-21.062	-0.772	(0)
Fe3(OH)4+5	1.167e-25	7.577e-27	-24.933	-26.120	-1.188	(0)
FeCl4-	1.554e - 26	1.385e-26	-25.809	-25.859	-0.050	(0)
FeNO2+2	1.327e-32	8.400e-33	-31.877	-32.076	-0.199	(0)
H(0)	0.000e+00	0.1000 00	01000	02.070	0.100	(0)
H2	0.000e+00	0.000e+00	-45,963	-45,962	0.001	(0)
$H\alpha(1)$	5.874e-15		10,000	10.000	0.001	(0)
Hg2+2	2.937e-15	1.845e-15	-14,532	-14.734	-0.202	(0)
$H_{\alpha}(2)$	3.199e-09	10000 10	11000	110,01	0.202	(0)
Ha+2	3.199e-09	2.039e-09	-8.495	-8.691	-0.196	(0)
Mq	4.372e-04					(-)
Mq+2	3.985e-04	2.641e-04	-3.400	-3.578	-0.179	(0)
MqSO4	2.514e-05	2.514e-05	-4.600	-4.600	0.000	(0)
MaHCO3+	1.100e-05	9.806e-06	-4.958	-5.009	-0.050	(0)
MgCl+	1.578e-06	1.406e-06	-5.802	-5.852	-0.050	(0)
MgCO3	8.905e-07	8.905e-07	-6.050	-6.050	0.000	(0)
MaE+	1.321e-07	1.177e-07	-6.879	-6.929	-0.050	(0)
MgB (OH) 4+	1.710e-08	1.524e-08	-7.767	-7.817	-0.050	(0)
Mg4 (OH) 4+4	1.258e-24	2.128e-25	-23,900	-24.672	-0.772	(0)
Mn (2)	3.441e-11					(-)
Mn+2	2.971e-11	1.920e-11	-10.527	-10.717	-0.190	(0)
MnCO3	2.142e-12	2.142e-12	-11.669	-11.669	0.000	(0)
MnSO4	1.689e-12	1.689e-12	-11.772	-11.772	0.000	(0)
MnHCO3+	5.244e-13	4.673e-13	-12.280	-12.330	-0.050	(0)
MnCl+	3.129e-13	2.788e-13	-12.505	-12.555	-0.050	(0)
MnOH+	1.233e-14	1.099e-14	-13.909	-13.959	-0.050	(0)
MnF+	1.071e-14	9.543e-15	-13.970	-14.020	-0.050	(0)
MnNO3+	6.370e - 15	5.676e-15	-14,196	-14.246	-0.050	(0)
MnSeO4	7.006e - 16	7.006e - 16	-15,155	-15,155	0.000	(0)
MnCl3-	3 179e - 18	2 833e - 18	-17 498	-17 548	-0.050	(0)
Mn(NO3)2	2 660 - 18	2.6500 ± 10 2.660 -18	-17 575	-17 575	0.000	(0)
Mn(OH)2	6 007e - 19	6 007 - 19	-18 221	-18 221	0.000	(0)
Mn (OH) 3-	1 408 - 23	1 255 - 23	-22 851	-22 901	-0.050	(0)
$Mn^2 (OH) 3 +$	5,7510-21	$1.235e^{-23}$	-22.001	-23.200	-0.050	(0)
$M_{12} (OH) JT$ $M_{22} OH J2$	5.7510-24	2.2610-25	-23.240	-23.290	-0.030	(0)
MnZOH+3 Mn(OH)/I=2	3 7670-30	2.201e-20	-29.1203	-29.626	-0.202	(0)
$Mn(OII) 4^{-2}$	1.6940-22	2.300e-30	-29.424	-29.020	-0.202	(0)
Mn+3	1 6940-22	6 1/20-23	_21 771	_22 212	_0 //1	(\cap)
Mn (6)	$1.094e^{-22}$	0.1426-23	-21.111	-22.212	-0.441	(0)
MnOA=2	$1.410e^{-14}$	8 9070-15	-13 8/8	-14 050	-0 202	(0)
Mn(7)	5 289 <u>0</u> -10	0.9078 15	13.040	14.030	0.202	(0)
Mn04-	5,289-10	4.704 - 10	-9.277	-9.328	-0.051	(0)
Мо	2.090e-08	1.,010 10	5.211	2.020	0.001	(0)
- MoO4-2	2.090e-08	1.323e-08	-7.680	-7.879	-0.199	(0)
N(-03)	0.000e+00					(-)
N3-	0.000e+00	0.000e+00	-113.973	-114.023	-0.050	(0)
HN3	0.000e+00	0.000e+00	-116.672	-116.672	0.000	(0)
ZnN3+	0.000e+00	0.000e+00	-120.079	-120.129	-0.050	(0)

	CdN3+	0.000e+00	0.000e+00	-121.399	-121.449	-0.050	(0)
	Zn(N3)2	0.000e+00	0.000e+00	-233.398	-233.398	0.000	(0)
	Cd(N3)2	0.000e+00	0.000e+00	-234.508	-234.508	0.000	(0)
	Cd(N3)3-	0.000e+00	0.000e+00	-347.815	-347.865	-0.050	(0)
	Cd(N3)4-2	0.000e+00	0.000e+00	-461.318	-461.520	-0.202	(0)
N (-	-3)	0.000e+00					
	NH4+	0.000e+00	0.000e+00	-70.651	-70.704	-0.053	(0)
	NH3	0.000e+00	0.000e+00	-72.592	-72.592	0.000	(0)
	Zn(NH3)+2	0.000e+00	0.000e+00	-76.889	-77.088	-0.199	(0)
	CuNH3+2	0.000e+00	0.000e+00	-77.640	-77.839	-0.199	(0)
	Cd(NH3)+2	0.000e+00	0.000e+00	-78.787	-78.986	-0.199	(0)
	NH4SO4-	0.000e+00	0.000e+00	-82.402	-82.452	-0.050	(0)
	Cu (NH3) 2+2	0.000e+00	0.000e+00	-146.799	-146.997	-0.199	(0)
	Ni (NH3) 2+2	0.000e+00	0.000e+00	-146.993	-147.192	-0.199	(0)
	Zn (NH3) 2+2	0.000e+00	0.000e+00	-147.275	-147.473	-0.199	(0)
	Cd (NH3) 2+2	0.000e+00	0.000e+00	-149.017	-149.215	-0.199	(0)
	C_{11} (NH3) 3+2	0.000e+00	0.000e+00	-216.570	-216.769	-0.199	(0)
	Zn (NH3) 3+2	0.000e+00	0.000e+00	-217.660	-217.859	-0.199	(0)
	2n(NH3)4+2	0 000e+00	0.000 + 00	-288 320	-288 518	-0 199	(0)
	Cd(NH3)4+2	0.0000+00	0.0000+00	-291 778	-291 976	-0 199	(0)
	Ni (NH3) 6+2	0.0000+00	0.0000+00	-133 676	-/33 875	-0 199	(0)
N ((NT (10112) 012	1 4690-29	0.0000000	433.070	433.075	0.199	(0)
14 ((7 2462 20	20 124	20 124	0 000	(0)
NT / 3		1 600 10	7.3468-30	-29.134	-29.134	0.000	(0)
IN ()		1.6986-19	1 507- 10	10 770	10 000		(0)
	NOZ-	1.698e-19	1.50/e-19	-18.770	-18.822	-0.052	(0)
	HNO2	1.144e-23	1.144e-23	-22.942	-22.942	0.000	(0)
	CdNO2+	4./26e-26	4.212e-26	-25.325	-25.376	-0.050	(0)
	CuNO2+	9.140e-27	8.145e-27	-26.039	-26.089	-0.050	(0)
	FeNO2+2	1.327e-32	8.400e-33	-31.877	-32.076	-0.199	(0)
	Cu(NO2)2	0.000e+00	0.000e+00	-43.901	-43.901	0.000	(0)
N (5	5)	2.111e-04					
	NO3-	2.102e-04	1.865e-04	-3.677	-3.729	-0.052	(0)
	CaNO3+	9.753e-07	8.690e-07	-6.011	-6.061	-0.050	(0)
	BaNO3+	4.535e-10	4.041e-10	-9.343	-9.393	-0.050	(0)
	NiNO3+	4.273e-11	3.808e-11	-10.369	-10.419	-0.050	(0)
	PbNO3+	4.166e-11	3.712e-11	-10.380	-10.430	-0.050	(0)
	HNO3	4.341e-13	4.341e-13	-12.362	-12.362	0.000	(0)
	MnNO3+	6.370e-15	5.676e-15	-14.196	-14.246	-0.050	(0)
	Ni(NO3)2	4.510e-15	4.510e-15	-14.346	-14.346	0.000	(0)
	Mn (NO3)2	2.660e-18	2.660e-18	-17.575	-17.575	0.000	(0)
	FeNO3+2	1.163e-19	7.362e-20	-18.934	-19.133	-0.199	(0)
Na		4.710e-03					
	Na+	4.675e-03	4.165e-03	-2.330	-2.380	-0.050	(0)
	NaHCO3	1.905e-05	1.905e-05	-4.720	-4.720	0.000	(0)
	NaSO4-	1.101e-05	9.810e-06	-4.958	-5.008	-0.050	(0)
	NaCl	4.993e-06	4.993e-06	-5.302	-5.302	0.000	(0)
	NaCO3-	5.213e-08	4.646e-08	-7.283	-7.333	-0.050	(0)
	NaF	8.228e-09	8.228e-09	-8.085	-8.085	0.000	(0)
	NaB(OH)4	5.669e-09	5.669e-09	-8.247	-8.247	0.000	(0)
	NaOH	1.542e-10	1.542e-10	-9.812	-9.812	0.000	(0)
	NaAlO2	1.285e-11	1.285e-11	-10.891	-10.891	0.000	(0)
Ni		1.298e-07					(-)
	Ni+2	1 257e - 07	8 1260-08	-6 901	-7 090	-0 190	(0)
	NiSO4	39769-09	3,976-09	-8 401	-8 401	0 000	(0)
	NiCl+	$6 621 e^{-11}$	5.900 - 11	-10 179	-10 229	-0.050	(0)
	NiNO3+	4 273 - 11	3.808 - 11	-10 369	-10.229	-0.050	(0)
	Nison	5 153 - 12	5.0000 II 5.153 a - 12	-11 288	_11 288	0.000	(0)
	NT2604	1 1220 - 13	1220-13	-12 385	-12 385	0.000	(0)
	$N \neq (0 \Pi) \ge$	4.1228-15	4.1226-15	14 246	14 246	0.000	(0)
	$N = (N \cup S) Z$	$4.510e^{-15}$	4.JIUE-IJ	-14.340	-14.340	0.000	(0)
		1.U420-10 0.002- 10	2.2000-1/	-13.982	-17 F22		(0)
	$IN \perp Z \cup H + 3$	0.U93E-18 1 202- 00	2.9340-18	-11.092	-11.033	-0.441	(0)
	$N \pm 4 (UH) 4 \pm 4$	1.3230-20	2.2398-2/	-23.8/8	-20.030	-0.112	(0)
	$IN \perp (INH3) \angle + \angle$			-140.993	-14/.19Z	-0.199	(0)
~	ит (инз) р+5	U.UUUE+UU	0.0000+00	-433.0/0	-433.8/5	-0.133	(0)
0((<i></i>	1.U45e+UU	E 040- 01	0 000	0 001	0 001	(0)
-1 م	\cup	3.225e-Ul	J.2420-01	-0.282	-0.281	0.001	(0)
Чр	(2) Dh 000	1./YUE-U/	1 511 - 05	C 001	C 001	0 000	())
	FDCU3	I.JIIE-U/	⊥.JLTE-U/	-6.821	-0.821	0.000	(U)

Pb+2	1.864e-08	1.180e-08	-7.730	-7.928	-0.199	(0)
PbOH+	5,949e-09	5.301e-09	-8.226	-8.276	-0.050	(0)
	26060-09	2 3220-09	_8 58/	_8 63/	_0 050	(0)
	2.0000-09	2.3220-09	-0.004	-0.034	-0.030	(0)
Pb (CO3) 2-2	5.35/e-10	3.365e-10	-9.2/1	-9.4/3	-0.202	(0)
PbC12	6.028e-11	6.028e-11	-10.220	-10.220	0.000	(0)
Pb(OH)2	4.753e-11	4.753e-11	-10.323	-10.323	0.000	(0)
	1 1660-11	37120-11	_10 380	_10 430	-0.050	(0)
PDN03+	4.1000-11	3./IZE-II	-10.380	-10.430	-0.030	(0)
PDF+	1.64/e-12	1.46/e-12	-11./83	-11.833	-0.050	(0)
PbCl3-	2.314e-13	2.062e-13	-12.636	-12.686	-0.050	(0)
Pb(OH)3-	1.202e-14	1.071e-14	-13.920	-13.970	-0.050	(0)
Dh2OU+2	2 4420 - 15	1 2/9 - 15	-14 462		-0 441	(0)
	5.4426-15	1.2400-15	-14.405	-14.904	-0.441	(0)
PbC14-2	1.423e-15	8.938e-16	-14.84/	-15.049	-0.202	(0)
PbF2	1.651e-16	1.651e-16	-15.782	-15.782	0.000	(0)
Pb3(OH)4+2	8.404e-19	5.318e-19	-18.076	-18.274	-0.199	(0)
Ph4(OH)4+4	3 7080-23	6 274 - 24	-22 431	-23 202	-0 772	(0)
	1 107- 20	0.2/40 24	22.451	20.202	0.772	(0)
PDC103+	1.10/e-28	9.8656-29	-27.956	-28.006	-0.050	(0)
Pb6(OH)8+4	2.650e-32	4.483e-33	-31.577	-32.348	-0.772	(0)
Pb(C103)2	0.000e+00	0.000e+00	-48.155	-48.155	0.000	(0)
Pb(4)	6 661e - 37					. ,
		1 107 - 07	26 176	26 040	0 770	(0)
PD+4	6.661e-3/	1.12/e-3/	-30.1/0	-36.948	-0.772	(0)
S(-2)	0.000e+00					
HS-	0.000e+00	0.000e+00	-148.470	-148.521	-0.051	(0)
H29	0 000 + 00	0 0000+00	-1/8 863	-1/8 863	0 000	$\dot{(0)}$
112.5	0.00000000	0.00000000	152 000	154 005	0.000	(0)
5-2	0.000e+00	0.000e+00	-153.900	-154.095	-0.196	(0)
S2-2	0.000e+00	0.000e+00	-263.719	-263.921	-0.202	(0)
HAsS2	0.000e+00	0.000e+00	-361.712	-361.712	0.000	(0)
\$3-2	0 000 + 00	0 000 + 00	-373 586	-373 788	-0 202	(0)
55 2	0.00000000	0.00000000	102 000	102.000	0.202	(0)
54-2	0.000e+00	0.000e+00	-483.680	-483.882	-0.202	(0)
S5-2	0.000e+00	0.000e+00	-593.991	-594.193	-0.202	(0)
S(2)	0.000e+00					
\$203-2	0 000 + 00	0 0000+00	-154 306	-154 508	-0 202	(0)
	0.00000000	0.00000100	109.300	100.040	0.202	(0)
HS203-	0.000e+00	0.000e+00	-160./96	-160.846	-0.050	(0)
S(3)	0.000e+00					
S2O4-2	0.000e+00	0.000e+00	-139.381	-139.577	-0.196	(0)
S(A)	0 0000+00					. ,
	0.0000000000000000000000000000000000000	0 000-100	10 707	10 000	0 1 0 0	(0)
503-2	0.000e+00	0.000e+00	-49.727	-49.926	-0.199	(0)
HSO3-	0.000e+00	0.000e+00	-49.996	-50.046	-0.050	(0)
H2SO3	0.000e+00	0.000e+00	-55.416	-55.416	0.000	(0)
502	0 000 + 00	0 000 + 00	-55 512	-55 512	0 000	ini
502	0.00000000	0.00000100	70 (22)	70 004	0.000	(0)
5206-2	0.00000000	0.0000+00	-/2.022	-/2.824	-0.202	(0)
S306-2	0.000e+00	0.000e+00	-184.971	-185.173	-0.202	(0)
S406-2	0.000e+00	0.000e+00	-281.416	-281.618	-0.202	(0)
\$506-2	0 000 + 00	0 000 + 00	-406 739	-406 941	-0 202	$\dot{(0)}$
S (E)	0.000000000	0.00000100	100.755	100.911	0.202	(0)
5(5)	0.0000000					
S205-2	0.000e+00	0.000e+00	-104.716	-104.918	-0.202	(0)
S(6)	6.521e-04					
SO4-2	5.675e-04	3.565e-04	-3.246	-3,448	-0.202	(0)
	4 940 - 05	4 9400-05	4 215	-1 215	0 000	(0)
CaSO4	4.8400-05	4.8400-05	-4.313	-4.313	0.000	(0)
MgSO4	2.514e-05	2.514e-05	-4.600	-4.600	0.000	(0)
NaSO4-	1.101e-05	9.810e-06	-4.958	-5.008	-0.050	(0)
ZnSO4	2.119e-08	2.119e-08	-7.674	-7.674	0.000	(0)
Nicod	20760-00	20760-00	-0 101	0 101	0 000	(0)
N1504	3.9768-09	3.9/60-09	-0.401	-0.401	0.000	(0)
HSO4-	1.798e-09	1.602e-09	-8.745	-8.795	-0.050	(0)
CuSO4	4.216e-11	4.216e-11	-10.375	-10.375	0.000	(0)
MnSO4	1.689e - 12	1.689e - 12	-11.772	-11,772	0.000	(0)
	1 2140 - 12	4 2140 - 12	-12 265	-12 265	0 000	(0)
	4.3140-13	4.5146-13	-12.303	-12.303	0.000	(0)
ALSO4+	2.038e-15	1.816e-15	-14.691	-14.741	-0.050	(0)
V02S04-	2.793e-16	2.489e-16	-15.554	-15.604	-0.050	(0)
Al(SO4)2-	5.640 - 17	5.026e-17	-16.249	-16.299	-0.050	(0)
	1 529 - 10	1 361 - 10	_17 01 <i>6</i>	_17 966	-0 050	(0)
1 2004+	1.0200-10	T. 2016-10	-1/.010	-11.000	-0.050	(0)
res04	1.939e-19	1.939e-19	-18.712	-18.712	0.000	(0)
H2SO4	6.725e-20	6.725e-20	-19.172	-19.172	0.000	(0)
Fe(SO4)2-	9.206e-21	8.203e-21	-20.036	-20.086	-0.050	(0)
$V \cap S \cap A$	27060-27	2706 - 27	-26 568	-26 568	0 000	(0)
	2.7000-27		40.000	20.000	0.000	(0)
VS04+	U.UUUe+00	0.000e+00	-48.650	-48./00	-0.050	(U)
NH4SO4-	0.000e+00	0.000e+00	-82.402	-82.452	-0.050	(0)
S(7)	0.000e+00					
S208-2	0.000e+00	0.000e+00	-43.989	-44.191	-0.202	(0)

S(8)	7.071e-29					
HSO5-	7.071e-29	6.301e-29	-28.151	-28.201	-0.050	(0)
Se(-2)	0.000e+00					
HSe-	0.000e+00	0.000e+00	-104.399	-104.449	-0.050	(0)
H2Se	0.000e+00	0.000e+00	-107.979	-107.979	0.000	(0)
50-2	0 0000+00	0 000 + 00	-111 842	-112 044	-0 202	(0)
So (1)	5 1202-21	0.0000100	111.042	112.044	0.202	(0)
Se(4)	J.120E-21	1 05 6 - 01		00 700	0 000	(0)
Se03-2	3.114e-21	1.9566-21	-20.507	-20.709	-0.202	(0)
HSeO3-	2.007e-21	1.788e-21	-20.697	-20.748	-0.050	(0)
H2SeO3	3.023e-26	3.023e-26	-25.520	-25.520	0.000	(0)
Se(6)	2.158e-07					
Se04-2	2.158e-07	1.356e-07	-6.666	-6.868	-0.202	(0)
ZnSeO4	5.939e-12	5.939e-12	-11.226	-11.226	0.000	(0)
NiSe04	5 153 - 12	5 153 - 12	-11 288	-11 288	0 000	(0)
HSOO4	5.1550 12	5 1200-12	-12 240	-12 200	-0.050	(0)
	2.010-14	$3.130e^{-13}$	-12.240	-12.290	-0.030	(0)
CaSe04	3.010e-14	3.010e-14	-13.521	-13.521	0.000	(0)
MnSeO4	7.006e-16	7.006e-16	-15.155	-15.155	0.000	(0)
V(3)	1.754e-40					
V(OH)2+	1.754e-40	1.563e-40	-39.756	-39.806	-0.050	(0)
VOH+2	0.000e+00	0.000e+00	-43.296	-43.494	-0.199	(0)
V+3	0.000e+00	0.000e+00	-48.141	-48.582	-0.441	(0)
VSO4+	0 0000+00	0 000 + 00	-48 650	-48 700	-0.050	(0)
	0.00000100	0.0000100	40.000	40.700	0.000	(0)
VZ(OH)Z+4	0.000000000	0.0000+00	-85.497	-86.269	-0.772	(0)
∨(4)	1.391e-24					
VOOH+	1.343e-24	1.197e-24	-23.872	-23.922	-0.050	(0)
VO+2	3.971e-26	2.513e-26	-25.401	-25.600	-0.199	(0)
VOF+	5.209e-27	4.641e-27	-26.283	-26.333	-0.050	(0)
VOSO4	2.706e-27	2.706e-27	-26.568	-26.568	0.000	(0)
VOF2	5.165e-29	5.165e-29	-28.287	-28.287	0.000	(0)
(VO) 2 (OH)	2+2 0 0000+00		-12 975	-13 17/	-0 199	(0)
(VO)2(011)		0.0000000	42.975	10.1/1	0.199	(0)
V ()	3.6410-06	1 200 00			0 000	(0)
V030H-2	2.116e-06	1.329e-06	-5.6/4	-5.8/6	-0.202	(0)
H2VO4-	8.018e-07	7.145e-07	-6.096	-6.146	-0.050	(0)
VO2 (OH) 2-	5.122e-07	4.564e-07	-6.291	-6.341	-0.050	(0)
HVO4-2	2.106e-07	1.323e-07	-6.676	-6.878	-0.202	(0)
VO (OH) 3	2.031e-10	2.031e-10	-9.692	-9.692	0.000	(0)
$V \cap 4 - 3$	4 681e - 13	1 642e - 13	-12 330	-12 785	-0 455	(0)
VO1 5	2.0610-14	1.0260 - 14	-12.606	12.705	-0.050	(0)
VOZT	$2.001e^{-14}$	7 502- 16	-15.000	-15.750	-0.030	(0)
VOZE	7.592e-16	7.592e-16	-15.120	-15.120	0.000	(0)
V02S04-	2./93e-16	2.489e-16	-15.554	-15.604	-0.050	(0)
VO2F2-	4.538e-18	4.044e-18	-17.343	-17.393	-0.050	(0)
Zn	5.059e-07					
Zn+2	4.376e-07	2.828e-07	-6.359	-6.548	-0.190	(0)
ZnHCO3+	2.616e-08	2.331e-08	-7.582	-7.633	-0.050	(0)
ZnSO4	2.119e-08	2.119e-08	-7.674	-7.674	0.000	(0)
ZnOH+	7 752e-09	6908e-09	-8 111	-8 161	-0.050	(0)
2n0n1	7.5710-09	7 5710-00	0.111	_0 121	0.000	(0)
	7.5716-09	7.J/1e-09	-0.121	-0.121	0.000	(0)
ZnCI+	3.63/e-09	3.241e-09	-8.439	-8.489	-0.050	(0)
Zn (OH) Cl	1.234e-09	1.234e-09	-8.909	-8.909	0.000	(0)
Zn (OH) 2	6.588e-10	6.588e-10	-9.181	-9.181	0.000	(0)
ZnF+	8.280e-11	7.378e-11	-10.082	-10.132	-0.050	(0)
ZnCl2	2.582e-11	2.582e-11	-10.588	-10.588	0.000	(0)
ZnSeO4	5.939e - 12	5.939e-12	-11.226	-11.226	0.000	(0)
ZnC13-	1 091 - 13	9724 - 14	-12 962	-13 012	-0.050	(0)
7n (OU) 2	5 102 - 14	$\int \cdot / 2 = - 1 4$	-13 202	-12 240	-0 050	(0)
			11 007	14 000	0.000	(0)
	0.UU2e-15	5.UZ/e-15	-14.09/	-14.299	-0.202	(0)
∠n(OH)4-2	2./48e-19	1./26e-19	-18.561	-18./63	-0.202	(U)
ZnClO4+	2.119e-24	1.888e-24	-23.674	-23.724	-0.050	(0)
Zn(NH3)+2	0.000e+00	0.000e+00	-76.889	-77.088	-0.199	(0)
ZnN3+	0.000e+00	0.000e+00	-120.079	-120.129	-0.050	(0)
Zn(NH3)2+	2 0.000e+00	0.000e+00	-147.275	-147.473	-0.199	(0)
Zn (NH3) 3+	2 0.000e+00	0.000e+00	-217.660	-217.859	-0.199	(0)
Zn (N3) 2	0,0000+00	0.000 + 00	-2.33.398	-233 398	0.000	(0)
Zn (NU3)/1	$2 \qquad 0 0 0 0 0 0 0 0 0 0$	$0 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	-288 320	-288 518	_0 100	(\circ)
211 (INILS) 4T	2 0.00000000	0.000000000	200.520	200.010	0.199	(0)
		Coherry	1 m al 1			
		-saturation	indices			

Phase SI** log IAP log K(298 K, 1 atm)

Ahlfeldite	-23.31	-27.81	-4.50	NiSeO3:2H2O
Al	-141.96	7.96	149.91	Al
$Al(\alpha)$	-192 66	7 96	200 62	Δ1
112(9)	-57 85	-38 95	18 90	$\lambda 12(SO(1))3$
A12 (SO4) 2 . EH2O	_10 52	-20 07	1 56	A12 (SO4) 2 · 6H2O
AIZ (SO4) S. OIIZO	1 5 1 1 7	151 00	1.30	A12 (504) 5.01120
	11 24	-131.09	17 27	
ALF 3	-11.24	-28.50	-1/.2/	ALF 3
Alstonite	-2.4/	0.12	2.58	BaCa (CO3) 2
Anglesite	-3.4/	-11.38	-/.91	PbS04
Anhydrite	-2.13	-6.48	-4.35	CaSO4
Antarcticite	-11.48	-7.39	4.09	CaC12:6H2O
Antlerite	-10.65	-1.92	8.73	Cu3(SO4)(OH)4
Aragonite	-0.15	1.82	1.97	CaCO3
Arsenolite	-141.06	-160.90	-19.84	As203
Arsenopyrite	-286.76	-301.21	-14.45	FeAsS
Artinite	-7.24	12.38	19.63	Mg2CO3(OH)2:3H2O
As	-122.92	-80.24	42.68	As
As205	-102.26	-100.12	2.14	As205
As406(cubi)	-281.98	-321.81	-39.82	As406
As406 (mono)	-281.76	-321.81	-40.05	As406
Atacamite	-11.66	2.61	14.26	$C_{11}4C_{12}(OH) 6$
Azurito	-12 57	-3 45	9 12	$C_{11}3(CO3)2(OH)2$
D	_113 50	_4 02	109 56	P
	-113.30	-4.02	200 94	
B(9)	-204.00	-4.02	200.04	B D202
BZU3	-14.02	-8.4/	2.00	BZU3
Ba	-132.96	8.28	141.23	Ba
Ba (OH) 2:8H2O	-16.39	8.10	24.49	Ba (OH) 2:8H2O
BaC12	-13.13	-10.90	2.23	BaC12
BaCl2:2H2O	-11.11	-10.90	0.21	BaC12:2H2O
BaC12:H2O	-11.73	-10.90	0.82	BaC12:H2O
BaMnO4	-10.52	-20.61	-10.09	BaMnO4
BaO	-39.66	8.14	47.80	BaO
Barite	0.00	-10.01	-10.01	BaSO4
Barytocalcite	-2.63	0.12	2.74	BaCa (CO3) 2
BaS	-163.98	-147.73	16.24	BaS
BaSeO3	-20.70	-27.27	-6.57	BaSeO3
BaSeO4	-5.97	-13.43	-7.46	BaSeO4
Bassanite	-2.78	-6.48	-3.71	CaSO4:0.5H2O
BF3 (g)	-37.50	-40.48	-2.98	BF3
Birnessite	19.19	-66.36	-85.55	Mn8014:5H20
Bischofite	-12 33	-7 93	4 39	MaC12.6H20
Bixbuite	0 64	-0 33	-0.96	Mn203
Ploodito	_12 77	-15 25	-2 48	$N_2 2M_{\alpha} (SO(1)) 2 \cdot 4H_{2O}$
Bioeuite	-12.77	-13.23	-2.40	Nazny (304) 2.41120
Doenmitte	10 09	7.74	12 04	
BOLAX	-19.08	-7.04	12.04	Naz (B405 (OH) 4):0H20
Boric_acid	-4.08	-4.24	-0.16	B (OH) 3
Bornite	-5/1.41	-6/3.94	-102.53	Cu5FeS4
Brochantite	-11.93	3.49	15.42	Cu4 (SO4) (OH) 6
Brucite	-5.17	11.12	16.28	Mg (OH) 2
Bunsenite	-4.85	7.61	12.46	NiO
Burkeite	-25.81	-16.32	9.49	Na6CO3(SO4)2
C	-73.71	-9.56	64.15	С
C(g)	-191.33	-9.56	181.77	С
Ca	-128.02	11.81	139.83	Ca
Ca(g)	-153.26	11.81	165.07	Ca
Ca2A1205:8H20	-20.77	38.80	59.57	Ca2A12O5:8H2O
Ca2Cl2(OH)2:H2O	-21.99	4.30	26.29	Ca2Cl2(OH)2:H2O
Ca2V207	-6.62	-46.33	-39.71	Ca2V207
Ca3 (As04) 2	-82.92	-65.12	17.80	Ca3(As04)2
Ca3A1206	-62 54	50 50	113 03	Ca3A1206
Ca3V208	-16 34	-34 66	-18 32	Ca3V208
$C_{a}4\Delta 12F_{c}200$	-67 03	73 15	140 /8	$C_{a}4\Delta 12F_{a}2010$
C_{2}/Λ $1007 \cdot 1000$	_/5 1/	60 11	107 25	C_{2}/λ $2O_{1}$
C_{a}	-4J.14 11 EO	62 00	102 (0	$Ca4A1207:13\pi20$
Ca4A120/:19H20	-41.59	62.09	68	Ca4AIZU/:I9HZU
Ca4C12(OH)6:13H	20 -40.75	27.5	/ 68.3	3 Ca4C12(OH)6:13H2O
CaAl204	-19.75	27.16	46.91	CaAl204
CaAl204:10H20	-10.87	27.12	37.99	CaA1204:10H2O

CaAl407	-25.94	42.65	68.59	CaAl407
Cadmoselite	-87.11	-120.97	-33.86	CdSe
Calcite	0.00	1.82	1.82	CaCO3
Calomel	-1.23	-19.07	-17.83	Hg2C12
CaSeO3·2H2O	-19 11	-23 75	-4 63	$CaSeO3 \cdot 2H2O$
	-6.81	-9 90	-3 09	
$CaSO4 \cdot 0$ 5H2O (be	().01 ().01	5.50	48 -3 5	54 Caso4 · 0 5H20
CaU206	-6 61	-58 00	-51 36	CoV206
Cav200	-0.04 E0.69	-38.00	-JI.JU	Cav200
	-30.00	2.92	10.19	
	-12.52	-2.69	9.03	
	-64.21	5.92	/0.13	
	-7.96	5.//	13./3	
Cd (OH) CI	-7.28	-3./4	3.54	Cd (OH) CI
Cd3 (AsO4) 2	-86.86	-82.79	4.06	Cd3 (AsO4) 2
Cd3(SO4)(OH)4	-23.40	-0.83	22.57	Cd3 (SO4) (OH) 4
Cd3(SO4)2(OH)2	-25.69	-18.97	6.72	Cd3 (SO4) 2 (OH) 2
CdC12	-12.60	-13.26	-0.66	CdC12
CdCl2(NH3)2	-149.64	-158.44	-8.80	CdC12(NH3)2
CdCl2(NH3)4	-296.81	-303.62	-6.82	CdCl2(NH3)4
CdCl2(NH3)6	-444.05	-448.81	-4.76	CdCl2(NH3)6
CdC12:H20	-11.58	-13.26	-1.68	CdCl2:H2O
CdF2	-17.23	-18.39	-1.16	CdF2
CdS	-134.18	-150.09	-15.92	CdS
CdSeO3	-20.81	-29.63	-8.82	CdSeO3
CdSeO4	-13.57	-15.79	-2.22	CdSeO4
CdSO4	-12.25	-12.37	-0.12	CdSO4
CdSO4:2.667H2O	-10.57	-12.38	-1.81	CdSO4:2.667H2O
CdS04:H20	-10.71	-12.38	-1.66	CdSO4:H2O
Cerussite	0 17	-3 07	-3 24	PbC03
	-150 54	-153 38	-2 84	CH4
Chalcanthite	-10 13	-12 76	-2 63	$C_{11}SO(1+5H2O)$
Chalconito	-147 68	_182.70	-34 74	
Chalcocycapito	-15 65	-12 74	2 01	
Chalconyrite	-13.05	-12.74	-32 60	Cures
Chlanamagnacita	-270.49	-309.09	-32.00	Curesz Maclo
Chinochagnesite	110 07	-/.91	21.82	MgC12
	-110.87	-149.86	-38.99	HgS
CIZ(g)	-ZZ.I/	-19.17	2.99	
Claudetite	-141.11	-160.90	-19.80	AS203
Clausthalite	-83./1	-119.97	-36.27	PbSe
Clinochalcomeni	te -23.20	-30.0	-6.80	CuSe03:2H20
CO (g)	-48.38	-51.38	-3.00	CO
CO2 (g)	-2.01	-9.84	-7.83	C02
Colemanite	-23.60	-2.09	21.51	Ca2B6011:5H2O
Corundum	-2.80	15.49	18.29	A1203
Cotunnite	-7.41	-12.26	-4.85	PbC12
Covellite	-127.60	-150.46	-22.86	CuS
Cu	-25.94	5.55	31.50	Cu
Cu(g)	-78.10	5.55	83.66	Cu
CuCl2	-17.34	-13.62	3.72	CuCl2
CuF	-32.44	-25.36	7.08	CuF
CuF2	-18.13	-18.75	-0.62	CuF2
CuF2:2H2O	-14.21	-18.76	-4.55	CuF2:2H2O
Cuprite	-24.65	-26.56	-1.91	Cu20
CuSeO3	-22.32	-30.00	-7.68	CuSeO3
Dawsonite	-1.47	2.87	4.34	NaAlCO3(OH)2
Delafossite	-1.20	-7.63	-6.44	CuFeO2
Diaspore	0.60	7.74	7.15	A1HO2
Dolomite	0.63	3.10	2.47	CaMg(CO3) 2
Dolomite-dis	-0.91	3 10	4 01	$C_{a}M_{a}(CO3)^{2}$
Dolomite-ord	0 61	2.10 2.10	UI 2 /6	$CaMa(CO3)^2$
Downeyite	-28 62	_3.10 _35 /1	_6 70	SeO2
Encomito	20.02 _5 00	_7 OF	_1 06	Masol • 7H20
Ettringita	-31 54	= 7.03	-1.90 62 /6	$(2 \times 1)^{2} (2 \times$
ECCLINGICE	-31.34	20.93	02.40 55 71	CAUAIZ (SU4) S (UR) IZ: 20HZU
rz(y) Eo		-24.31	JJ./T	r Z
re Fe (OU) 2	-01.04	-2.62	59.0Z	
re(OH)2	-10.00	-2.11	13.89	
re(UH)3	0.00	5.64	5.64	re(UH) 3
rez(SU4)3	-40.20	-43.15	3.05	rez(SU4)3

FeF2	-24.51	-26.93	-2.42	FeF2
FeF3	-11.35	-30.60	-19.26	FeF3
FeO	-16.29	-2.76	13.52	FeO
Ferrite-Ca	1.46	22.96	21.50	CaFe204
Ferrite-Cu	6.42	16.70	10.28	CuFe204
Ferrite-Dicalci	um -22.17	34.0	53 56.80	0 Ca2Fe2O5
Ferrite-Mg	1.39	22.41	21.02	MgFe204
Ferrite-Zn	7.74	19.44	11.70	ZnFe204
Ferroselite	-167.09	-247.91	-80.82	FeSe2
FeSO4	-23.52	-20.91	2.61	FeSO4
FeV204	-336.39	-55.83	280.56	FeV204
Fluorite	-2.43	-12.50	-10.07	CaF2
Frankdicksonite	-10.27	-16.03	-5.76	Baf'2
Galena	-134.22	-149.10	-14.88	PDS
Gaylussite	-9.26	1.90	11.10	Canaz (CU3) Z: 5HZU
Glaubarita	0.00	1.14	-5 47	$M_{2}(O_{1}) = S$
Glaubelice	-9.22	-14.09	-3.47	
Guechille	J.II _1 96	-6 19	-4 53	
H2 (a)	-12 86	-45 96	-4.55	H2
$H_{2}^{112}(g)$	-1 59	-0.00	1 59	H2O
$H_{2S}(q)$	-147 88	-155 87	-7 99	H2S
Halite	-6 11	-4 55	1 56	NaCl
Hausmannite	-6.49	3.66	10.14	Mn 304
HCl (a)	-15.82	-9.52	6.30	HCl
Heazlewoodite	-316.95	-288.77	28.18	Ni3S2
Hematite	11.22	11.29	0.08	Fe203
Hercynite	-16.08	12.73	28.80	FeAl204
Hexahydrite	-5.32	-7.05	-1.73	MqSO4:6H2O
Hq(q)	-13.58	6.15	19.73	Hq
Hg(1)	-7.99	6.15	14.14	Hg
Hg2SeO3	-21.23	-35.44	-14.21	Hg2SeO3
Hg2SO4	-12.05	-18.18	-6.13	Hg2SO4
HgSeO3	-15.50	-29.40	-13.90	HgSeO3
Huntite	-4.56	5.66	10.22	CaMg3 (CO3) 4
Hydroboracite	-23.00	-2.64	20.36	MgCaB6011:6H2O
Hydrocerussite	-1.22	0.62	1.85	Pb3 (CO3) 2 (OH) 2
Hydromagnesite	-14.53	16.21	30.74	Mg5(CO3)4(OH)2:4H2O
Hydrophilite	-19.11	-7.36	11.75	CaCl2
Hydrozincite	-9.25	21.06	30.31	Zn5 (OH) 6 (CO3) 2
Ice	-0.14	-0.00	0.14	H2O
Jarosite-Na	-8.95	-14.40	-5.45	NaFe3 (SO4) 2 (OH) 6
Karelianite	-63.01	-53.07	9.95	V203
Katoite	-28.47	50.47	/8.94	
Kleserite	-6.76	-7.03	-0.27	MgSO4:HZO
KIOCKMannile	-/9./1	-121.33	-41.02	CuSe
Lammorito	-140.52	-240.21	-107.70	
Lanumerite	-03.44	-03.00	_0_48	$\frac{Cus(As04)2}{Pb2(so4)0}$
Lansfordite	-3 58	1 26	4 84	$M_{\alpha}CO_{3} \cdot 5H_{2}O$
Lawrencite	-30 85	-21 80	9 05	FeC12
Lime	-20.90	11.67	32.57	CaO
Litharge	-5.86	6.77	12.64	PbO
Magnesite	-1.00	1.28	2.27	MaCO3
Magnetite	-1.89	8.53	10.42	Fe304
Malachite	-4.92	0.98	5.90	Cu2CO3 (OH) 2
Manganite	0.00	-0.16	-0.16	MnO (OH)
Manganosite	-13.93	3.98	17.92	MnO
Massicot	-6.05	6.77	12.82	PbO
Matlockite	-5.40	-14.83	-9.43	PbFCl
Mayenite	-245.69	248.46	494.15	Ca12Al14O33
Melanterite	-18.54	-20.94	-2.40	FeSO4:7H2O
Metacinnabar	-111.24	-149.86	-38.62	HgS
Mg	-111.26	11.26	122.52	Мд
Mg(g)	-130.98	11.26	142.25	Mg
Mg1.25SO4(OH)0.	5:0.5H2O	-9.44	-4.25	5.20 Mg1.25SO4(OH)0.5:0.5H2O
Mg1.5SO4(OH)	-10.68	-1.47	9.21	Mg1.5SO4 (OH)
Mg2V207	-16.52	-47.43	-30.90	Mg2V207

MgCl2:2H2O	-20.65	-7.92	12.73	MgCl2:2H2O
MgCl2:4H2O	-15.23	-7.93	7.30	MgCl2:4H2O
MgCl2:H2O	-23.99	-7.91	16.07	MgCl2:H2O
MgOHCl	-14.29	1.60	15.89	MgOHCl
MgSeO3	-25.96	-24.29	1.67	MgSeO3
MgSeO3:6H2O	-20.88	-24.31	-3.44	MgSeO3:6H2O
MgSO4	-11.85	-7.03	4.83	MgSO4
MgV206	-12.70	-58.55	-45.85	MgV206
Millerite	-140.20	-148.26	-8.06	NiS
Minium	-10.27	5.99	16.26	Pb304
Mirabilite	-7.09	-8.25	-1.15	Na2SO4:10H2O
Mn	-78.81	4.12	82.93	Mn
Mn(OH)2(am)	-11.33	3.98	15.31	Mn (OH) 2
Mn (OH) 3	-6.51	-0.17	6.34	Mn (OH) 3
MnCl2:2H2O	-19.05	-15.06	4.00	MnCl2:2H2O
MnCl2:4H2O	-17.82	-15.07	2.75	MnCl2:4H2O
MnCl2:H2O	-20.59	-15.05	5.54	MnCl2:H2O
MnO2(gamma)	3.74	-12.38	-16.13	MnO2
MnSe	-112.06	-122.76	-10.70	MnSe
MnSeO3	-24.16	-31.43	-7.27	MnSeO3
MnSeO3:2H2O	-25.10	-31.43	-6.33	MnSeO3:2H2O
MnSO4	-16.77	-14.16	2.61	MnSO4
MnV206	-13.61	-65.68	-52.08	MnV2O6
Мо	-131.43	-22.16	109.27	Мо
Molysite	-36.37	-22.90	13.47	FeCl3
Monohydrocalcit	ce -0.86	1.82	2.68	CaCO3:H2O
Monteponite	-9.32	5.78	15.09	CdO
Montroydite	3.57	6.01	2.44	НдО
Morenosite	-8.50	-10.57	-2.06	NiSO4:7H2O
MoSe2	-220.80	-275.92	-55.12	MoSe2
N2(g)	-25.96	-29.13	-3.18	N2
Na	-62.33	5.04	67.37	Na
Na(g)	-75.82	5.04	80.86	Na
Na2CO3	-11.07	0.10	11.16	Na2CO3
Na2CO3:7H2O	-9.87	0.07	9.94	Na2CO3:7H2O
Na2O	-57.48	9.94	67.42	Na2O
Na2Se	-128.63	-116.80	11.83	Na2Se
Na2Se2	-182.33	-243.69	-61.35	Na2Se2
Na3H(SO4)2	-20.50	-21.39	-0.89	Na3H(SO4)2
Na4Ca(SO4)3:2H2	20 -17.01	-22.91	-5.89	Na4Ca(SO4)3:2H2O
NaFeO2	-9.27	10.61	19.88	NaFeO2
Nahcolite	-4.73	-4.88	-0.14	NaHCO3
Nantokite	-16.03	-22.79	-6.77	CuCl
Natron	-9.53	0.06	9.59	Na2CO3:10H2O
Nesquehonite	-4.02	1.27	5.29	MgCO3:3H2O
NH3(g)	-74.39	-72.59	1.80	NH3
NH4HSe	-177.28	-199.34	-22.06	NH4HSe
Ni	-43.23	7.75	50.98	Ni
Ni(OH)2	-5.14	7.61	12.75	Ni(OH)2
Nickelbischofit	ce -14.60	-11.45	3.15	NiCl2:6H2O
NiCl2	-20.02	-11.42	8.60	NiCl2
NiCl2:2H2O	-15.35	-11.43	3.92	NiCl2:2H2O
NiCl2:4H2O	-15.29	-11.44	3.85	NiCl2:4H2O
NiCO3	-5.75	-2.23	3.51	NiCO3
NiF2	-17.38	-16.56	0.82	NiF2
NiF2:4H2O	-12.51	-16.57	-4.06	NiF2:4H2O
NiSO4	-15.81	-10.54	5.28	NiSO4
NiSO4:6H2O(alph	na) -8.54	-10.56	-2.02	2 NiSO4:6H2O
Nitrobarite	-11.53	-14.02	-2.49	Ba(NO3)2
NO(g)	-26.84	-26.10	0.74	NO
NO2 (g)	-19.36	-11.01	8.35	NO2
02 (g)	2.61	-0.28	-2.89	02
Orpiment	-549.03	-628.51	-79.49	As2S3
Otavite	-2.30	-4.07	-1.77	CdCO3
Oxychloride-Mg	-13.13	12.70	25.83	Mg2Cl(OH)3:4H2O
Paralaurionite	-2.94	-2.75	0.20	PbClOH
Pb	-40.26	6.91	47.17	Pb
Pb(g)	-68.69	6.91	75.61	Pb

Pb(N3)2(mono)	-227.60	-235.97	-8.37	Pb(N3)2
Pb(N3)2(orth)	-227.16	-235.97	-8.81	Pb(N3)2
Pb2Cl2CO3	-5.71	-15.33	-9.62	Pb2C12C03
Pb2Cl5NH4	-87.00	-106.63	-19.63	Pb2C15NH4
Pb20(N3)2	-215.50	-229.20	-13.71	Pb20(N3)2
Pb3SO6	-8.41	2.17	10.58	Pb3SO6
Pb4C12(OH)6	-9.24	8.04	17.28	P64C12(OH)6
PD4SU/	-12.78	8.94	21./1	Pb4SU/
PDCUS.PDU PhF2	-3.96	-17 10	9.00	PDCUS.PDU PhF2
Phrcl	-12.14	-1/ 83	-3.23	PDFC1
PhSeO4	-7 85	-14 80	-6 95	PbSeO4
PbS04 (NH3) 2	-154.53	-156.56	-2.03	PbS04 (NH3) 2
PbS04 (NH3) 4	-303.23	-301.74	1.49	PbS04 (NH3) 4
Penroseite	-147.21	-246.02	-98.81	NiSe2
Pentahydrite	-5.66	-7.05	-1.39	MgSO4:5H2O
Periclase	-10.20	11.12	21.33	MgO
Phosgenite	-5.68	-15.33	-9.65	Pb2(CO3)C12
Pirssonite	-9.41	1.91	11.32	Na2Ca(CO3)2:2H2O
Plattnerite	0.42	-7.55	-7.97	PbO2
Polydymite	-518.60	-567.53	-48.93	Ni3S4
Portlandite	-10.88	11.66	22.55	Ca (OH) 2
Pyrite	-255.37	-280.07	-24.70	FeS2
Pyrolusite	5.28	-12.38	-17.66	MnO2
Pyrrhotite	-154.89	-158.63	-3./4	FeS
Realgar	-221.56	-281.84	-60.28	ASS Macoo
c	-5.64	-156 01	-0.22	MILCOS
$S^{2}(\alpha)$	-235 69	-242 88	-43.11	5 92
Scacchite	-23.79	-15.05	8.74	MnCl2
Se	-61.22	-35.13	26.10	Se
Se205	-66.46	-56.98	9.49	Se205
SeCl4	-87.81	-73.47	14.33	SeCl4
Sellaite	-3.60	-13.05	-9.44	MgF2
SeO3	-40.73	-21.57	19.16	SeO3
Shcherbinaite	-11.32	-12.77	-1.45	V205
Siderite	-12.39	-12.61	-0.22	FeCO3
Smithsonite	-2.14	-1.69	0.44	ZnCO3
SOZ(g)	-55.69	-55.51	0.18	SU2
Sphalerite	-136.25	-147.72	-11.4/	
Starkevite	-10.99	-7 04	-1 00	Masol·/H20
Stilleite	-94 61	-118 59	-23 98	ZnSe
Tachvhvdrite	-40.38	-23.23	17.14	Mg2CaCl6:12H2O
Tenorite	-2.23	5.41	7.65	CuO
Thenardite	-7.85	-8.21	-0.36	Na2SO4
Thermonatrite	-10.84	0.09	10.94	Na2CO3:H2O
Tiemannite	-62.51	-120.73	-58.23	HgSe
Todorokite	16.09	-29.74	-45.82	Mn7012:3H20
Trevorite	9.12	18.90	9.78	NiFe2O4
Troilite	-154.79	-158.63	-3.84	FeS
Umangite	-180.78	-274.63	-93.85	Cu3Se2
V	-133.27	-26.32	106.94	V
V204	-30.36	-21.80	8.56	V204
V303 V407	-77.39	-03.97	18 80	V303
Vaosito	-242 92	-269 70	-26 77	NiS2
Wilkmanite	-331 36	-484 29	-152 92	Ni3Se4
Witherite	1.31	-1.71	-3.02	BaCO3
Wurtzite	-138.55	-147.72	-9.17	ZnS
Wustite	-14.13	-1.73	12.40	Fe.9470
Zincite	-3.05	8.15	11.20	ZnO
Zn	-60.50	8.29	68.79	Zn
Zn (BO2) 2	-8.63	-0.32	8.31	Zn (BO2) 2
Zn(ClO4)2:6H2O	-49.11	-43.48	5.63	Zn(ClO4)2:6H2O
Zn(g)	-77.12	8.29	85.41	Zn
Zn (NO3) 2:6H2O	-17.43	-14.03	3.40	Zn (NO3) 2:6H2O
Zn(OH)2(beta)	-3.79	8.15	11.93	Zn(OH)2

Zn (OH) 2 (epsilon)-3.518.1511.66Zn (OH) 2Zn (OH) 2 (gamma)-3.748.1511.88Zn (OH) 2Zn2 (OH) 3C1-8.516.7815.29Zn2 (OH) 3C1Zn2SO4 (OH) 2-9.43-1.857.58Zn2SO4 (OH) 2Zn3 (AsO4) 2-84.98-75.679.31Zn3 (AsO4) 2

 Zn3 (AsO4) 2
 -84.98
 -75.67
 9.31
 Zn3 (AsO4) 2

 Zn30 (SO4) 2
 -30.93
 -11.84
 19.09
 Zn30 (SO4) 2

 Zn5 (NO3) 2 (OH) 8
 -24.09
 18.58
 42.67
 Zn5 (NO3) 2 (OH) 8

 -17.96 -10.88 7.08 ZnCl2 ZnCl2 ZnCl2(NH3)2 -149.06 -156.06 -7.01 ZnCl2(NH3)2

 ZnCl2 (NH3) 4
 -294.54
 -301.25
 -6.71
 ZnCl2 (NH3) 4

 ZnCl2 (NH3) 6
 -441.69
 -446.43
 -4.74
 ZnCl2 (NH3) 6

 ZnC03:H20
 -1.84
 -1.70
 0.14
 ZnC03:H20

 ZnF2
 -15.52
 -16.02
 -0.49
 ZnF2

 -15.52 -27.26 -6.75 ZnSeO3:H2O -20.51 ZnSeO3:H2O -10.00 3.53 ZnSO4 -13.53 ZnSO4 ZnSO4:6H2O -8.32 -10.02 -1.70 ZnSO4:6H2O ZnSO4:7H2O -8.15 -10.02 -1.88 ZnSO4:7H2O ZnSO4:H2O -9.45 -10.00 -0.55 ZnSO4:H2O **For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm. For ideal gases, phi = 1. _____ End of simulation. _____ ______ Reading input data for simulation 2. _____ EQUILIBRIUM_PHASES 3-4 Inpit Fillng: Layer 1 Equilibration with Atmosphere CO2 (g) -3.5 O2 (g) -0.68 USE Solution 1 END _____ Beginning of batch-reaction calculations. _____ Reaction step 1. Using solution 1. Solution after simulation 1. Using pure phase assemblage 3. Inpit Fillng: Layer 1 Equilibration with Atmosphere -----Phase assemblage-----Moles in assemblage SI log IAP log K(T, P) Initial Final Delta Phase CO2 (g) -3.50 -11.33 -7.83 1.000e+01 1.000e+01 6.024e-04 02 (g) -0.68 -3.57 -2.89 1.000e+01 1.052e+01 5.222e-01 -----Solution composition------Elements Molality Moles Al 2.035e-08 2.035e-08 1.030e-07 1.030e-07 As 5.842e-05 5.842e-05 В 4.294e-07 4.294e-07 Ba 3.400e-03 3.400e-03 С 1.536e-03 Ca 1.536e-03 Cd 6.778e-09 6.778e-09 7.692e-03 7.692e-03 Cl 1.735e-08 1.735e-08 Cu F 2.111e-05 2.111e-05 Fe 4.856e-07 4.856e-07 Нg 3.199e-09 3.199e-09

	Mg Mn Na Ni Pb S Se V Zn	4.372e 5.633e 2.090e 2.111e 4.710e 1.298e 1.790e 6.521e 2.158e 3.641e 5.059e	-04 4.372 -10 5.633 -08 2.090 -04 2.111 -03 4.710 -07 1.298 -07 1.790 -04 6.521 -07 2.158 -06 3.641 -07 5.059	e-04 e-10 e-08 e-04 e-03 e-07 e-07 e-04 e-07 e-06 e-07			
Pe	ercent erroi	Activi Ion Mass of Total alkalin Total C Tempe Electrical b r, 100*(Cat- An)	pH pe ty of water ic strength water (kg) ity (eq/kg) 02 (mol/kg) rature (°C) alance (eq) /(Cat+ An) Iterations Total H Total O	= 8.76 $= 11.84$ $= 1.00$ $= 1.26$ $= 1.00$ $= 3.69$ $= 3.40$ $= 25.00$ $= -4.26$ $= -20.78$ $= 6$ $= 1.1105$ $= 5.5540$	5 Chard 1 Adju: 0 4e-02 0e+00 4e-03 0e-03 1e-03 51e+02 09e+01	ge balance sted to re	dox equilibrium
	Species	Molality	Activity	Log Molality	Log Activity	Log Gamma	mole V cm³/mol
	04-	6 2980-06	5 6080-06	-5 201	-5 251	_0 050	(0)
	ОН- Н+	1 894 = -09	1 717e - 09	-3.201 -8.723	-3.251	-0.030	
	H2O	5.553e+01	9.997e-01	1.744	-0.000	0.000	18.07
Al		2.035e-08					
	A102-	2.025e-08	1.806e-08	-7.694	-7.743	-0.050	(0)
	HAlO2	9.056e-11	9.056e-11	-10.043	-10.043	0.000	(0)
	NaAlO2	1.437e-11	1.437e-11	-10.842	-10.842	0.000	(0)
	Al(OH)2+	1.198e-13	1.069e-13	-12.922	-12.971	-0.050	(0)
	AlOH+2	1.243e-16	7.906e-17	-15.905	-16.102	-0.197	(0)
	AlF2+	1.852e-17	1.652e-17	-16.732	-16.782	-0.050	(0)
	ALF'3	3.849e-18	3.849e-18	-17.415	-17.415	0.000	(0)
	ALE+Z	3.528e-18 2.961e-20	2.243e-18 1.212e-20	-17.452	-17.649	-0.197	(0)
	AL+S Al=4	2.9610-20	1.7900-20	-19.529	-19.910	-0.300	(0)
	Alr4 = Als04+	2.005e-20 5.015e-21	1.789e-20	-19.090 -20.300	-20 349	-0.050	(0)
	Al (SO4) 2-	1.404e-22	1.253e-22	-21.853	-21.902	-0.050	(0)
	A12 (OH) 2+4	5.902e-30	1.016e-30	-29.229	-29.993	-0.764	(0)
	Al3(OH)4+5	4.040e-38	2.695e-39	-37.394	-38.569	-1.176	(0)
	Al1304(OH)2	24+7 0.000e+00	0.000e+00	-74.857	-77.162	-2.305	(0)
As	(-3)	0.000e+00					
	AsH3	0.000e+00	0.000e+00	-199.520	-199.520	0.000	(0)
As	(3)	0.000e+00		70 000	70 000	0 000	(0)
	HASO2	0.000e+00	0.000e+00	-70.939	-70.939	0.000	(0)
	AS (OH) 3	0.000e+00	0.000e+00	-70.997	-70.997	0.000	(0)
	HZASUS-	0.00000+00	0.0000+00	-71.416	-71.440	-0.050	(0)
	ASO2-	0.0000+00	0.0000 ± 00	-73 <u>4</u> 91	-73 691		(0)
	HASS2		0.0000+00	-353,952	-353.952	0.000	(0)
As	(5)	1.030e-07	3.0000100		000.002		
	AsO3F-2	1.029e-07	6.498e-08	-6.987	-7.187	-0.200	(0)
	HAsO3F-	9.287e-11	8.286e-11	-10.032	-10.082	-0.050	(0)
	HAsO4-2	0.000e+00	0.000e+00	-40.515	-40.714	-0.200	(0)
	H2AsO4-	0.000e+00	0.000e+00	-42.650	-42.700	-0.050	(0)
	As04-3	0.000e+00	0.000e+00	-43.090	-43.540	-0.450	(0)
	H3AsO4	0.000e+00	0.000e+00	-49.219	-49.219	0.000	(0)

В(-	-5)	0.000e+00					
	BH4-	0.000e+00	0.000e+00	-225.499	-225.549	-0.050	(0)
В(З	3)	5.842e-05					
	В(ОН)З	4.230e-05	4.230e-05	-4.374	-4.374	0.000	(0)
	B02-	1.481e-05	1.321e-05	-4.830	-4.879	-0.050	(0)
	CaB(OH)4+	8.921e-07	7.958e-07	-6.050	-6.099	-0.050	(0)
	MqB (OH) 4+	3.163e-07	2.822e-07	-6.500	-6.550	-0.050	(0)
	NaB(OH)4	1.090e-07	1.090e-07	-6.962	-6.962	0.000	(0)
	BaB (OH) 4+	1.170e-10	1.044e-10	-9.932	-9.981	-0.050	(0)
	BF2 (OH) 2-	1.155e-16	1.031e-16	-15.937	-15.987	-0.050	(0)
	B20 (0H) 5-	2 411e - 19	2 151 - 19	-18 618	-18 667	-0.050	(0)
	BF30H-	1 567e - 23	1 398 - 23	-22 805	-22 855	-0.050	(0)
	BF4-	3 3006-32	2944p - 32	-31 481	-31 531	-0.050	(0)
Ba	DIA	1 2946-07	2.9440 92	51.401	51.551	0.050	(0)
Ба	Bot?	1 1890-07	26830-07	-6 378	-6 571	_0 19/	(0)
	Da+2 PaCO2	$4.109e^{-07}$	$2.003e^{-07}$	-0.370	-0.371	-0.194	(0)
	DaCUS	9.2400-09	9.240e-09	-0.034	-0.034	0.000	(0)
	BaCI+	6.8886-10	6.145e-10	-9.162	-9.211	-0.050	(0)
	Banus+	4.463e-10	3.982e-10	-9.350	-9.400	-0.050	(0)
	BaB (OH) 4+	1.1/Ue-10	1.044e-10	-9.932	-9.981	-0.050	(0)
	BaOH+	5.931e-12	5.291e-12	-11.227	-11.276	-0.050	(0)
	BaF+	3.833e-12	3.419e-12	-11.417	-11.466	-0.050	(0)
С(-	-2)	0.000e+00					
	C2H4	0.000e+00	0.000e+00	-266.358	-266.358	0.000	(0)
С(-	-3)	0.000e+00					
	C2H6	0.000e+00	0.000e+00	-238.682	-238.682	0.000	(0)
C (-	-4)	0.000e+00					
	CH4	0.000e+00	0.000e+00	-148.276	-148.276	0.000	(0)
C (2	2)	0.000e+00					
	CO	0.000e+00	0.000e+00	-51.216	-51.216	0.000	(0)
C (4	1)	3.400e-03					
	HCO3-	3.061e-03	2.731e-03	-2.514	-2.564	-0.050	(0)
	CaCO3	1.397e-04	1.397e-04	-3.855	-3.855	0.000	(0)
	CO3-2	1.110e-04	7.055e-05	-3.955	-4.151	-0.197	(0)
	CaHCO3+	3.100e-05	2.766e-05	-4.509	-4.558	-0.050	(0)
	MaCO3	1.900e-05	1.900e-05	-4.721	-4.721	0.000	(0)
	NaHCO3	1 630e - 05	1.630 - 05	-4 788	-4 788	0 000	(0)
	CO2	1 085e - 05	1.088 - 05	-4 965	-4 963	0 001	(0)
	MaHCO3+	9 0530-06	8 0760-06	-5 0/3	-5 093	-0.050	(0)
	NaCO3-	1 154e - 06	1 030 = 06	-5 938	-5 987	-0.050	(0)
	PhCO3	1, 1340, 00	1.030e 00 1.570e 07	-6 804	-6 804	0.000	(0)
		$1.370e^{-07}$	1.3700-07	-0.004	-0.004	0.000	(0)
	211003	0.3430-00	0.343e-00	-7.190	-7.190	0.000	(0)
		1.3820-08	1.382e-08	-7.860	-7.860	0.000	(0)
	Pb (CO3) 2-2	1.225e-08	7.735e-09	-7.912	-8.112	-0.200	(0)
	Baco3	9.246e-09	9.246e-09	-8.034	-8.034	0.000	(0)
	ZnHCO3+	8.449e-09	/.53/e-09	-8.0/3	-8.123	-0.050	(0)
	Cu (CO3) 2-2	2.751e-09	1./36e-09	-8.561	-8./60	-0.200	(0)
	CdHCO3+	1.103e-10	9.838e-11	-9.958	-10.007	-0.050	(0)
	CdCO3	8.497e-11	8.497e-11	-10.071	-10.071	0.000	(0)
	CuCO3 (OH) 2-	-2 6.305e-11	3.980e-11	-10.200	-10.400	-0.200	(0)
	MnCO3	3.348e-11	3.348e-11	-10.475	-10.475	0.000	(0)
	Cd(CO3)2-2	2.522e-11	1.592e-11	-10.598	-10.798	-0.200	(0)
	MnHCO3+	3.160e-13	2.819e-13	-12.500	-12.550	-0.050	(0)
	FeCO3+	9.626e-16	8.588e-16	-15.017	-15.066	-0.050	(0)
	FeCO3	1.271e-19	1.271e-19	-18.896	-18.896	0.000	(0)
	FeHCO3+	5.098e-20	4.548e-20	-19.293	-19.342	-0.050	(0)
Ca		1.536e-03					
	Ca+2	1.317e-03	8.545e-04	-2.881	-3.068	-0.188	(0)
	CaCO3	1.397e-04	1.397e-04	-3.855	-3.855	0.000	(0)
	CaSO4	4.502e-05	4.502e-05	-4.347	-4.347	0.000	(0)
	CaHCO3+	3.100e-05	2.766e-05	-4.509	-4.558	-0.050	(0)
	CaCl+	1.386 - 06	1.2370-06	-5,858	-5,908	-0.050	(0)
	CaNO3+	8,970-07	8.003 = 07	-6 047	-6 097	-0.050	(0)
	CaB (OH) 4+	8 921 - 07	7 958 - 07	-6 050	-6 099	-0 050	(0)
	CaF+	0 0000-00	8 0376-08	-7 0/5	-7 095	-0 050	(0)
		7 076~ 00	7 0260 00	-7.04J	_7.09J	_0 050	(0)
				-/.104	-1.133	-0.050	(0)
02	CACIZ	J.JJ40-UJ	2.2340-09	-0.003	-0.003	0.000	(\mathbf{U})
ιa	CdCl :	0.//08-09	2 052- 00		0 400		(0)
	CaCI+	4.430e-09	3.952e-09	-0.304	-8.403	-0.050	(U)

Cd	l+2	1.779e-09	1.139e-09	-8.750	-8.943	-0.194	(0)
Cd	L(OH)Cl	1.671e-10	1.671e-10	-9.777	-9.777	0.000	(0)
Cd		1.170e - 10	1.170e-10	-9.932	-9.932	0.000	(0)
Cd	HCO3+	1.103e - 10	9.838e-11	-9.958	-10.007	-0.050	(0)
C d	1003	8 497 - 11	8 497 <u>0</u> -11	-10 071	-10 071	0 000	(0)
Cd Cd	юн+ 10н+	6 252 - 11	5,578-11	-10.204	-10.071	-0.050	(0)
Cu Cd		$0.252e^{-11}$	$1.570e^{-11}$	10.204	10.234	-0.030	(0)
Cu	(CU3) Z = Z	2.3220-11	1.392e-11	-10.398	-10.790	-0.200	(0)
Ca		1.763e-12	1.763e-12	-11.754	-11./54	0.000	(0)
Cd	ISO4	4.1/0e-13	4.1/0e-13	-12.380	-12.380	0.000	(0)
Cd	IC13-	2.29/e-13	2.049e-13	-12.639	-12.688	-0.050	(0)
Cd	lSeO4	2.890e-14	2.890e-14	-13.539	-13.539	0.000	(0)
Cd	l(OH)3-	1.306e-16	1.165e-16	-15.884	-15.934	-0.050	(0)
Cd	l20H+3	8.496e-19	3.112e-19	-18.071	-18.507	-0.436	(0)
Cd	l(OH)4-2	9.685e-22	6.113e-22	-21.014	-21.214	-0.200	(0)
Cd	lNO2+	1.999e-24	1.783e-24	-23.699	-23.749	-0.050	(0)
Cd	l(NH3)+2	0.000e+00	0.000e+00	-73.634	-73.831	-0.197	(0)
Cd	N3+	0.000e+00	0.000e+00	-111.081	-111.130	-0.050	(0)
Cd	(NH3)2+2	0.0000+00	0 0000+00	-138 689	-138 886	-0.197	(0)
C d	(N13)2	0.0000+00	0.0000+00	-213 851	-213 851	0 000	(0)
Cd Cd		0.0000+00		_271 100	_271 297	_0 197	(0)
Cu Cd	I(NDJ)4TZ	0.00000000	0.00000000	-2/1.100	-2/1.29/	-0.197	(0)
Ca	I(N3) 3 -	0.00000000	0.000e+00	-316.819	-316.869	-0.050	(0)
Cd	14 (OH) 4+4	0.000e+00	0.000e+00	-362.076	-362.840	-0./64	(0)
Cd	l(N3)4-2	0.000e+00	0.000e+00	-419.985	-420.185	-0.200	(0)
Cl(-1	.)	7.692e-03					
Cl	.–	7.684e-03	6.829e-03	-2.114	-2.166	-0.051	(0)
Na	Cl	5.007e-06	5.007e-06	-5.300	-5.300	0.000	(0)
Mg	rCl+	1.521e-06	1.357e-06	-5.818	-5.867	-0.050	(0)
Ca	Cl+	1.386e-06	1.237e-06	-5.858	-5.908	-0.050	(0)
Zn	(OH) C1	1.223e-08	1.223e-08	-7.913	-7.913	0.000	(0)
Ca	C12	9 9340-09	9 934 - 09	-8 003	-8 003	0 000	(0)
Cd Cd		1 1300-09	3 9520-09	-8 35/	-8 403	-0.050	(0)
Cu Zn		1 2770-00	1 2280 - 00	-0.554	-0.403	-0.050	(0)
<u>2</u> П		1.3776-09	1.2200-09	-0.001	-0.911	-0.050	(0)
ва		6.888e-10	6.145e-10	-9.162	-9.211	-0.050	(0)
Cd	I(OH)CL	1.671e-10	1.671e-10	-9.777	-9.777	0.000	(0)
Pb	Cl+	1.223e-10	1.091e-10	-9.913	-9.962	-0.050	(0)
Cd	IC12	1.170e-10	1.170e-10	-9.932	-9.932	0.000	(0)
Ni	.Cl+	6.632e-11	5.917e-11	-10.178	-10.228	-0.050	(0)
Zn	C12	9.798e-12	9.798e-12	-11.009	-11.009	0.000	(0)
Pb	C12	2.836e-12	2.836e-12	-11.547	-11.547	0.000	(0)
HC	:1	2.634e-12	2.634e-12	-11.579	-11.579	0.000	(0)
Cu		1 298 - 13	3 8350 - 13	-12 367	-12 /16	-0.050	(0)
Cd Cd		2 2970 - 13	2.0490 - 13	_12 639	_12 688	-0.050	(0)
Cu Mrs		$2.297e^{-13}$	2.049e - 13	-12.039	-12.000	-0.030	(0)
MU		2.2096-13	1.9/1e-13	-12.656	-12.705	-0.050	(0)
Zn		4.142e-14	3.6950-14	-13.383	-13.432	-0.050	(0)
Pb	CT3-	1.089e-14	9.711e-15	-13.963	-14.013	-0.050	(0)
Zn	C14-2	3.030e-15	1.913e-15	-14.519	-14.718	-0.200	(0)
Cu	IC12	1.379e-15	1.379e-15	-14.860	-14.860	0.000	(0)
Pb	C14-2	6.678e-17	4.215e-17	-16.175	-16.375	-0.200	(0)
Mn	C13-	2.251e-18	2.008e-18	-17.648	-17.697	-0.050	(0)
Cu	C12-	5.617e-20	5.011e-20	-19.250	-19.300	-0.050	(0)
Cu	C13-2	3.482e-21	2.198e-21	-20.458	-20.658	-0.200	(0)
F0	C1+	1 769e - 22	1 578e - 22	-21 752	-21 802	-0.050	(0)
I C	C12+	1 4960-22	1 2260-22		21.002	-0.050	(0)
re Ee		2 772- 24	2.200-24	-22.020	-22.070	-0.030	(0)
ге		3.7720-24	2.3968-24	-23.423	-23.620	-0.197	(0)
Cu		1.912e-24	1.20/e-24	-23.719	-23.918	-0.200	(0)
F,e	CI2	5./84e-2/	5./84e-2/	-26.238	-26.238	0.000	(0)
Fe	eC14-2	1.235e-30	7.794e-31	-29.908	-30.108	-0.200	(0)
Fe	C14-	8.331e-31	7.432e-31	-30.079	-30.129	-0.050	(0)
Cl(1)		1.025e-19					
Cl	.0-	9.700e-20	8.654e-20	-19.013	-19.063	-0.050	(0)
HC	:10	5.511e-21	5.511e-21	-20.259	-20.259	0.000	(0)
Cl(3)		1.567e-29					
C1	.02-	1.567e-29	1.398e-29	-28.805	-28.855	-0.050	(0)
нс	102	3.549e-35	3.549e-35	-34,450	-34,450	0.000	(0)
C1 (5)	_~_	1 804e - 25		51.100	51.100	3.000	(0)
CT (J)	03-	1 QA/~_2F	1 607-25	-21 711	-21 701	_0 050	(0)
UL Dh	.00 C103+	1.004E-2J 5.0050-25	5 3/00-25	_31 000	24.124 _31 070		(0)
PD T		J. JJJUE-33	0.000-000	-34.222	-34.2/2	-0.050	(0)
dЧ	(CTO2)2	U.UUUE+UU	u.uuue+00	-27.328	-27.328	0.000	(U)

Cl	(7)	1.035e-25					
	C104-	1.035e-25	5 9.219e-26	-24.985	-25.035	-0.050	(0)
	ZnClO4+	2.093e-31	1.867e-31	-30.679	-30.729	-0.050	(0)
C11	(1)	7784e - 20					(- /
cu	(1)	F 6170 20	E 011a 20	10 250	10 200	0 0 5 0	(0)
	CuCIZ-	5.6176-20	5.011e-20	-19.250	-19.300	-0.050	(0)
	Cu+	1.818e-20	1.622e-20	-19./40	-19./90	-0.050	(0)
	CuCl3-2	3.482e-21	2.198e-21	-20.458	-20.658	-0.200	(0)
Cu	(2)	1.735e-08					
	CuCO3	1.382e-08	3 1.382e-08	-7.860	-7.860	0.000	(0)
	$C_{11}(C_{03}) 2 - 2$	2.751e-09	1.736e-09	-8.561	-8.760	-0.200	(0)
		6 0100 10	f = 164 - 10	0.161	0.210	0.200	(0)
		6.9108-10	0.164e-10	-9.161	-9.210	-0.030	(0)
	CuCO3 (OH) 2-	-2 6.305e-1	3.980e-11	-10.200	-10.400	-0.200	(0)
	Cu+2	3.163e-11	2.053e-11	-10.500	-10.688	-0.188	(0)
	CuSO4	1.696e-12	2 1.696e-12	-11.771	-11.771	0.000	(0)
	CuCl +	4.298e - 13	3, 835e-13	-12.367	-12.416	-0.050	(0)
	CuF+	6 7480-15	6 0200 - 15	_14 171	_14 220	-0.050	(0)
		0.7400-10	0.020e-15	-14.171	-14.220	-0.030	(0)
	CuC12	1.3/9e-15	b 1.3/9e-15	-14.860	-14.860	0.000	(0)
	CuO2-2	1.327e-15	5 8.374e-16	-14.877	-15.077	-0.200	(0)
	CuCl4-2	1.912e-24	1.207e-24	-23.719	-23.918	-0.200	(0)
	$C_{11}NO2 +$	1.609e-26	1,436e-26	-25.793	-25.843	-0.050	(0)
	C_{11} (NO2) 2			_12 008	-42 008	0 000	(0)
		0.0000000000	0.0000000000000000000000000000000000000	-42.000	-42.000	0.000	(0)
	CUNH3+2	0.000e+00	0.000e+00	-/3.868	-/4.065	-0.19/	(0)
	Cu(NH3)2+2	0.000e+00	0.000e+00	-137.852	-138.048	-0.197	(0)
	Cu(NH3)3+2	0.000e+00	0.000e+00	-202.448	-202.645	-0.197	(0)
ਜ		2.111e-05					· · ·
-	v _	2 0780-05	5 1 8500-05	-1 682	_1 733	_0 050	(0)
	L -	2.0788-00	$1.030e^{-03}$	-4.002	-4.755	-0.050	(0)
	MGF.+	1.2/4e-0	/ 1.13/e-0/	-6.895	-6.944	-0.050	(0)
	AsO3F-2	1.029e-07	7 6.498e-08	-6.987	-7.187	-0.200	(0)
	CaF+	9.009e-08	8.037e-08	-7.045	-7.095	-0.050	(0)
	NaF	8.256e-09	8,256e-09	-8.083	-8.083	0.000	(0)
	HARO3E-	9 2870-11	8 2860-11	-10 032	_10 082	-0.050	(0)
	IIASUSI -	9.2078-11	$1 0.200e^{-11}$	-10.032	-10.002	-0.030	(0)
	HF.	4.8/8e-11	4.8/8e-11	-10.312	-10.312	0.000	(0)
	ZnF+	3.137e-11	2.798e-11	-10.504	-10.553	-0.050	(0)
	BaF+	3.833e-12	2 3.419e-12	-11.417	-11.466	-0.050	(0)
	PbF+	7.732e-14	6.898e - 14	-13,112	-13,161	-0.050	(0)
	MpE+	7 5670-15	67510-15	1/ 101	14 171		(0)
		7.5076-10	0.7510-15	-14.121	-14.1/1	-0.030	(0)
	CuF+	6./48e-15	6.020e-15	-14.1/1	-14.220	-0.050	(0)
	HF2-	2.451e-16	5 2.186e-16	-15.611	-15.660	-0.050	(0)
	BF2 (OH) 2-	1.155e-16	5 1.031e-16	-15.937	-15.987	-0.050	(0)
	Alf2+	1.852e-17	7 1.652e-17	-16.732	-16.782	-0.050	(0)
	DbE2	7 7760-10	7 7760 - 10	17 100	17 100	0 000	(0)
	PDFZ	7.7700-10	, <i>1.110</i> e=10	-17.109	-17.109	0.000	(0)
	Alf 3	3.849e-18	3.849e-18	-1/.415	-1/.415	0.000	(0)
	AlF+2	3.528e-18	3 2.243e-18	-17.452	-17.649	-0.197	(0)
	VO2F	6.612e-20	0 6.612e-20	-19.180	-19.180	0.000	(0)
	A]F4-	2.005e-20	1.789e-20	-19.698	-19.747	-0.050	(0)
		5 9180-21	5 9180-21	-20 228	-20 228	0 000	(0)
		5.9106-21	$J.910e^{-21}$	-20.220	-20.220	0.000	(0)
	rer+Z	9.198e-22	2 5.848e-22	-21.036	-21.233	-0.197	(0)
	VO2F2-	3.955e-22	2 3.528e-22	-21.403	-21.452	-0.050	(0)
	FeF2+	1.963e-22	2 1.751e-22	-21.707	-21.757	-0.050	(0)
	BF3OH-	1.567e-23	3 1.398e-23	-22.805	-22.855	-0.050	(0)
	FoF+	1 508e - 23	3 1 345 - 23	-22 822	-22 871	-0 050	(0)
	VOEL	1 1500 21	1 022 021	20.022	22.071	0.050	(0)
	VOF +	1.1586-31	1.033e-31	-30.936	-30.986	-0.050	(0)
	BF4-	3.300e-32	2 2.944e-32	-31.481	-31.531	-0.050	(0)
	VOF2	1.152e-33	3 1.152e-33	-32.939	-32.939	0.000	(0)
Fe	(2)	2.355e-19					
-	FeCO3	1.27110) 1,2710-19	-18,896	-18.896	0.000	(0)
	Foucosi		$ 1 = 10^{-10}$	_10 000	_10 240		(0)
		5.0986-20	4.040e-20	-13.233	-19.342	-0.050	(0)
	re+2	4.888e-20	J 3.173e-20	-19.311	-19.499	-0.188	(0)
	FeOH+	6.547e-21	5.841e-21	-20.184	-20.234	-0.050	(0)
	FeSO4	1.814e-21	1.814e-21	-20.741	-20.741	0.000	(0)
	FeCl+	1.769-22	2 1.578e-22	-21.752	-21 802	-0.050	(0)
		2 701 - 22	$2 - \frac{1}{2} - $	-22 560	-22 560	0 000	(0)
		Z./UIE-Z:	2.70 ± 2.3	-22.009	-22.009	0.000	(\mathbf{U})
	г.ег.+	1.508e-23	∆ 1.345e-23	-22.822	-22.871	-0.050	(0)
	Fe(OH)3-	7.015e-25	6.258e-25	-24.154	-24.204	-0.050	(0)
	FeC12	5.784e-27	5.784e-27	-26.238	-26.238	0.000	(0)
	FeC14-2	1.2350-30) $7,794 - 31$	-29.908	-30 108	-0.200	(0)
		L.2000 00	$\begin{array}{c} 2 \\ 2 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1$	_20 020	-20 420	_0 200	(0)
-	re(Un)4-2	5.//IE-31	5.0436-31	-30.239	-30.439	-0.200	(0)
Ŀе	(3)	4.8566-0/					

Fe(OH)3	4.157e-07	4.157e-07	-6.381	-6.381	0.000	(0)
Fe (OH) 4-	6 813e - 08	6 0780-08	-7 167	-7 216	-0.050	(0)
	1 7110-09	1 5270-00	-8 767	-9 916	-0.050	(0)
	1.2460.14	$1.527e^{-09}$	12 005	-0.010	-0.030	(0)
FeOH+Z	1.246e-14	7.921e-15	-13.905	-14.101	-0.197	(0)
FeCO3+	9.626e-16	8.588e-16	-15.017	-15.066	-0.050	(0)
Fe+3	5.147e-21	2.108e-21	-20.288	-20.676	-0.388	(0)
FeF+2	9.198e-22	5.848e-22	-21.036	-21.233	-0.197	(0)
FeF2+	1.963e-22	1.751e-22	-21.707	-21.757	-0.050	(0)
FeSO4+	8.244e-23	7.354e-23	-22.084	-22.133	-0.050	(0)
FeC12+	1 /860-23	1 3260 - 23	-22.828	-22.878	-0.050	(0)
Feci2+	1.4000-23	1.520e-25	-22.020	-22.070	-0.030	(0)
FeNO3+2	6.194e-24	3.938e-24	-23.208	-23.405	-0.197	(0)
FeC1+2	3.772e-24	2.398e-24	-23.423	-23.620	-0.197	(0)
Fe(SO4)2-	5.026e-25	4.484e-25	-24.299	-24.348	-0.050	(0)
Fe2(OH)2+4	9.806e-27	1.689e-27	-26.008	-26.772	-0.764	(0)
FeC14-	8.331e-31	7.432e-31	-30.079	-30.129	-0.050	(0)
Fe3(OH)4+5	8 0776-33	5 3870-34	-32 093	-33 269	-1 176	(0)
	2 127- 25	1 000- 25	24 505	24 702	1.170	(0)
Fenoz+z	3.12/e-35	1.9886-35	-34.505	-34.702	-0.197	(0)
H(0)	0.000e+00					
H2	0.000e+00	0.000e+00	-44.313	-44.312	0.001	(0)
Hg(1)	1.596e-10					
Hq2+2	7.979e-11	5.036e-11	-10.098	-10.298	-0.200	(0)
Hq (2)	3 0390-09					(-)
пу (27 Ца+2	3 0300-00	10460-00	0 517	0 711	0 104	(0)
пд+2	3.0396-09	1.9466-09	-0.517	-0./11	-0.194	(0)
Mg	4.3/2e-04					
Mg+2	3.827e-04	2.546e-04	-3.417	-3.594	-0.177	(0)
MgSO4	2.452e-05	2.452e-05	-4.610	-4.610	0.000	(0)
MqCO3	1.900e-05	1.900e-05	-4.721	-4.721	0.000	(0)
MaHCO3+	9.053e-06	8.076e-06	-5.043	-5.093	-0.050	(0)
Macl+	1 5210 - 06	1 3570-06	_5 919	-5 867	-0.050	(0)
	1.5210-00	1.3376-00	-3.010	-J.007	-0.050	(0)
MGB (OH) 4+	3.1636-07	Z.8ZZE-07	-6.500	-6.550	-0.050	(0)
MGF.+	1.2/4e-0/	1.13/e-0/	-6.895	-6.944	-0.050	(0)
Mg4 (OH) 4+4	4.982e-19	8.580e-20	-18.303	-19.066	-0.764	(0)
Mn(2)	5.635e-11					
MnCO3	3.348e-11	3.348e-11	-10.475	-10.475	0.000	(0)
Mn+2	2.088e-11	1.356e-11	-10.680	-10.868	-0.188	(0)
MnSO/	1 206e - 12	1 206 - 12	-11 919	_11 919	0 000	(0)
Min UCO2 I	$1.200e^{-12}$	$1.200e^{-12}$	-11.919	-11.919 10 FEO	0.000	(0)
MnHCO3+	3.1600-13	2.819e-13	-12.500	-12.550	-0.050	(0)
MnOH+	2.273e-13	2.028e-13	-12.643	-12.693	-0.050	(0)
MnCl+	2.209e-13	1.971e-13	-12.656	-12.705	-0.050	(0)
MnF+	7.567e-15	6.751e-15	-14.121	-14.171	-0.050	(0)
MnNO3+	4.500e-15	4.014e-15	-14.347	-14.396	-0.050	(0)
MnSeO4	4 971e - 16	4 9710-16	-15 304	-15 304	0 000	(0)
	2 9090 - 16	2,0000-16	15 520	15.501	0.000	(0)
	2.8980-10	2.090 = 10	-13.550	-13.330	0.000	(0)
MnC13-	2.251e-18	2.008e-18	-1/.648	-1/.69/	-0.050	(0)
Mn (NO3)2	1.884e-18	1.884e-18	-17.725	-17.725	0.000	(0)
Mn (OH) 3-	1.774e-19	1.582e-19	-18.751	-18.801	-0.050	(0)
Mn2(OH)3+	5.115e-20	4.563e-20	-19.291	-19.341	-0.050	(0)
Mn2OH+3	8.043e - 24	2.946e - 24	-23.095	-23.531	-0.436	(0)
Mn(OH)/1-2	1 236e - 24	7 800 - 25	-23 908	-24 108	-0.200	(0)
$\operatorname{Min}(\operatorname{OII}) \operatorname{4-2}$	1.2308-24	7.0008-23	-23.900	-24.100	-0.200	(0)
Mn (3)	6.8396-25					
Mn+3	6.839e-25	2.505e-25	-24.165	-24.601	-0.436	(0)
Mn(6)	2.334e-12					
MnO4-2	2.334e-12	1.473e-12	-11.632	-11.832	-0.200	(0)
Mn(7)	5.047e-10					
Mn04-	5 047e - 10	4 494 - 10	-9 297	-9 347	-0 050	(0)
Mo	2 0000 08	1.1710 10	5.251	5.547	0.000	(0)
MO	2.0906-08	1 200 00	7 (00	- 0	0 1 0 7	(0)
M004-2	2.090e-08	1.329e-08	-/.680	-/.8//	-0.197	(0)
N(-03)	0.000e+00					
N3-	0.000e+00	0.000e+00	-103.634	-103.684	-0.050	(0)
HN3	0.000e+00	0.000e+00	-107.747	-107.747	0.000	(0)
ZnN3+	0.000 + 00	0.000 + 00	-110 163	-110 212	-0.050	(0)
CGM3T		0 0 0 0 0 0 0 0 0 0	_111 001	_111 120	-0 050	(0)
			-111.001	-11.130	-0.050	(0)
Zn(N3)2	U.UUUe+00	0.000e+00	-213.143	-213.143	0.000	(0)
Cd(N3)2	0.000e+00	0.000e+00	-213.851	-213.851	0.000	(0)
Cd(N3)3-	0.000e+00	0.000e+00	-316.819	-316.869	-0.050	(0)
Cd(N3)4-2	0.000e+00	0.000e+00	-419.985	-420.185	-0.200	(0)
N(-3)	0.000e+00					
NH4+	0.000e+00	0.000e+00	-66.890	-66.942	-0.052	(0)
						(~)

	NH3	0.000e+00	0.000e+00	-67.417	-67.417	0.000	(0)
	Zn(NH3)+2	0.000e+00	0.000e+00	-72.138	-72.335	-0.197	(0)
	Cd(NH3)+2	0.000e+00	0.000e+00	-73.634	-73.831	-0.197	(0)
	CuNH3+2	0.000e+00	0.000e+00	-73.868	-74.065	-0.197	(0)
	NH4SO4-	0.000e+00	0.000e+00	-78.636	-78.685	-0.050	(0)
	Ni(NH3)2+2	0.000e+00	0.000e+00	-136.645	-136.842	-0.197	(0)
	Zn(NH3)2+2	0.000e+00	0.000e+00	-137.349	-137.546	-0.197	(0)
	Cu(NH3)2+2	0.000e+00	0.000e+00	-137.852	-138.048	-0.197	(0)
	Cd(NH3)2+2	0.000e+00	0.000e+00	-138.689	-138.886	-0.197	(0)
	Cu(NH3)3+2	0.000e+00	0.000e+00	-202.448	-202.645	-0.197	(0)
	Zn(NH3)3+2	0.000e+00	0.000e+00	-202.560	-202.756	-0.197	(0)
	Zn(NH3)4+2	0.000e+00	0.000e+00	-268.044	-268.241	-0.197	(0)
	Cd(NH3)4+2	0.000e+00	0.000e+00	-271.100	-271.297	-0.197	(0)
	Ni(NH3)6+2	0.000e+00	0.000e+00	-402.628	-402.825	-0.197	(0)
N (())	3.692e-24					
	N2	1.846e-24	1.846e-24	-23.734	-23.734	0.000	(0)
N (3	3)	7.515e-18					
	NO2-	7.515e-18	6.678e-18	-17.124	-17.175	-0.051	(0)
	HNO2	1.957e-23	1.957e-23	-22.708	-22.708	0.000	(0)
	CdNO2+	1.999e-24	1.783e-24	-23.699	-23.749	-0.050	(0)
	CuNO2+	1.609e-26	1.436e-26	-25.793	-25.843	-0.050	(0)
	FeNO2+2	3.127e-35	1.988e-35	-34.505	-34.702	-0.197	(0)
	Cu(NO2)2	0.000e+00	0.000e+00	-42.008	-42.008	0.000	(0)
N (5)	2.111e-04					
	NO3-	2.102e-04	1.869e-04	-3.677	-3.729	-0.051	(0)
	CaNO3+	8.970e-07	8.003e-07	-6.047	-6.097	-0.050	(0)
	BaNO3+	4.463e-10	3.982e-10	-9.350	-9.400	-0.050	(0)
	NiNO3+	4.282e-11	3.820e-11	-10.368	-10.418	-0.050	(0)
	PbNO3+	1.955e-12	1.745e-12	-11.709	-11.758	-0.050	(0)
	HNO3	1.678e-14	1.678e-14	-13.775	-13.775	0.000	(0)
	Ni(NO3)2	4.532e-15	4.532e-15	-14.344	-14.344	0.000	(0)
	MnNO3+	4.500e-15	4.014e-15	-14.347	-14.396	-0.050	(0)
	Mn (NO3)2	1.884e-18	1.884e-18	-17.725	-17.725	0.000	(0)
	FeNO3+2	6.194e-24	3.938e-24	-23.208	-23.405	-0.197	(0)
Na		4.710e-03					. ,
	Na+	4.676e-03	4.172e-03	-2.330	-2.380	-0.050	(0)
	NaHCO3	1.630e-05	1.630e-05	-4.788	-4.788	0.000	(0)
	NaSO4-	1.114e-05	9.940e-06	-4.953	-5.003	-0.050	(0)
	NaCl	5.007e-06	5.007e-06	-5.300	-5.300	0.000	(0)
	NaCO3-	1.154e-06	1.030e-06	-5.938	-5.987	-0.050	(0)
	NaB (OH) 4	1.090e-07	1.090e-07	-6.962	-6.962	0.000	(0)
	NaE (OII) I	8 256e - 09	8 2560-09	-8 083	-8 083	0 000	(0)
	NaOH	4 036e - 09	4 036e - 09	-8 394	-8 394	0.000	(0)
	NaAlO2	1 437e - 11	1.0300 00 1.437e - 11	-10842	-10 842	0.000	(0)
Ni	NameOZ	1 298e - 07	1.10/0 11	10.012	10.012	0.000	(0)
111	Ni+2	1 254e - 07	8 1390-08	-6 902	-7 089	-0 188	(0)
	Nisol	1 0290-09	1 029 - 09	-8 395	-8 395	0.100	(0)
	NI (OH) 2	2821e-10	2 821 - 10	-9 550	-9 550	0.000	(0)
	NiCl+	6 632 - 11	$5 \ 917 = 11$	-10 178	-10.228	-0.050	(0)
	NTCT+	4 2820 - 11	$3.917e^{-11}$	-10.178	-10.220	-0.050	(0)
	Ninost	4.202 = 11 5 1970 - 12	$5.020e^{-11}$	-10.300	-10.410	-0.030	(0)
	NISEU4	1.962 - 12	1.661 - 12	-11.205	-11.205	0.000	(0)
	NI (UA) 3-	1.0020-12	1.0010-12	-11.730	-11.700	-0.030	(0)
	N1(NU3)Z	4.5326-15	4.532e-15	-14.344	-14.344	0.000	(0)
	N1ZOH+3	2.101e-16	/.694e-1/	-15.678	-16.114	-0.436	(0)
	N14(OH)4+4	6.108e-21	1.052e-21	-20.214	-20.978	-0./64	(0)
	N1 (NH3) 2+2	0.000e+00	0.000e+00	-136.645	-136.842	-0.197	(0)
~ //	N1 (NH3) 6+2	0.000e+00	0.000e+00	-402.628	-402.825	-0.197	(0)
0(())	5.338e-04			0 550		(
	02	2.669e-04	2.677e-04	-3.574	-3.572	0.001	(0)
ЧD	(∠) Dh GG2	1./9Ue-U/	1 5 7 0 0 5	<i>c</i>	C 004	0 000	
	PDCO3	1.570e-07	1.5/0e-07	-6.804	-6.804	0.000	(0)
	PD (CO3) 2-2	1.225e-08	1.135e-09	-/.912	-8.112	-0.200	(0)
	PDUH+	/.28/e-09	6.501e-09	-8.137	-8.187	-0.050	(0)
	PD (OH) 2	1.524e-09	1.524e-09	-8.817	-8.817	0.000	(0)
	Pb+2	8.704e-10	5.535e-10	-9.060	-9.257	-0.197	(0)
	PbC1+	1.223e-10	1.091e-10	-9.913	-9.962	-0.050	(0)
	Pb(OH)3-	1.006e-11	8.972e-12	-10.998	-11.047	-0.050	(0)
	PbC12	2.836e-12	2.836e-12	-11.547	-11.547	0.000	(0)

PbNO3+	1.955e-12	1.745e-12	-11.709	-11.758	-0.050	(0)
PbF+	7.732e-14	6.898e-14	-13.112	-13.161	-0.050	(0)
PbCl3-	1.089e-14	9.711e-15	-13.963	-14.013	-0.050	(0)
Pb2OH+3	1.960e-16	7.179e-17	-15.708	-16.144	-0.436	(0)
PbCl4-2	6.678e-17	4.215e-17	-16.175	-16.375	-0.200	(0)
Pb3(OH)4+2	4.033e-17	2.564e-17	-16.394	-16.591	-0.197	(0)
PbF2	7.776e-18	7.776e-18	-17.109	-17.109	0.000	(0)
Pb4 (OH) 4+4	8.241e-23	1.419e-23	-22.084	-22.848	-0.764	(0)
Pb6(OH)8+4	6.051e-29	1.042e-29	-28.218	-28.982	-0.764	(0)
PbClO3+	5.995e-35	5.349e-35	-34.222	-34.272	-0.050	(0)
Pb(ClO3)2	0.000e+00	0.000e+00	-59.358	-59.358	0.000	(0)
Pb(4)	0.000e+00					
Pb+4	0.000e+00	0.000e+00	-41.990	-42.753	-0.764	(0)
S(-2)	0.000e+00					
HS-	0.000e+00	0.000e+00	-143.296	-143.346	-0.050	(0)
H2S	0.000e+00	0.000e+00	-145.102	-145.102	0.000	(0)
S-2	0.000e+00	0.000e+00	-147.313	-147.507	-0.194	(0)
S2-2	0.000e+00	0.000e+00	-255.021	-255.220	-0.200	(0)
HAsS2	0.000e+00	0.000e+00	-353.952	-353.952	0.000	(0)
S3-2	0.000e+00	0.000e+00	-362.775	-362.975	-0.200	(0)
S4-2	0.000e+00	0.000e+00	-470.757	-470.957	-0.200	(0)
S5-2	0.000e+00	0.000e+00	-578.956	-579.156	-0.200	(0)
S(2)	0.000e+00					(-)
S203-2	0.000e+00	0.000e+00	-150.545	-150.745	-0.200	(0)
HS203-	0.000e+00	0.000e+00	-158.447	-1.58,496	-0.050	(0)
S(3)	0.000e+00	0.00000000	100.11/	100.190	0.000	(0)
S204-2	0.000e+00	0.000 + 00	-137.266	-137,459	-0.194	(0)
S(4)	0.000e+00		10/1200	1010100	0.101	(0)
503-2	0.000e+00	0 0000+00	-48 078	-48 275	-0 197	(0)
HSO3-	0.000e+00	0.000 + 00	-49 759	-49 808	-0.050	(0)
H2SO3	0.000e+00	0.0000 + 00	-56 592	-56 592	0 000	(0)
502	0.000e+00	0.0000 + 00	-56 692	-56 692	0 000	(0)
5206-2	0.000e+00	0.0000 + 00	-73 799	-73 998	-0 200	(0)
S200 2 S306-2	0.0000+00	0.0000+00	-184 036	-184 236	-0 200	(0)
5106-2	0.0000+00	0.0000+00	-278 368	-278 568	-0 200	(0)
S506-2		0.0000+00	-401 580	-101 779	-0.200	(0)
SJ00 Z S(5)	0.000000000	0.0000100	401.000	401.775	0.200	(0)
\$205-2		0 0000+00	-10/ 2/6	-101 116	-0 200	(0)
S(6)	6.521e - 04	0.0000100	104.240	101.110	0.200	(0)
504-2	5714e-04	3607e-04	-3 243	-3 443	-0 200	(0)
CaS04	4 502e - 05	4 502e - 05	-4 347	-4 347	0 000	(0)
Mas04	2 452e - 05	2 452e - 05	-4 610	-4 610	0.000	(0)
NaSO4-	1 114e - 05	9 940 - 06	-4 953	-5 003	-0.050	(0)
7nSO/	8 11/0-09	9.940e 00 8 11/0-09	-8 091	-8 091	0.000	(0)
NiSOA	1 0290-09	1 0290 - 09	-8 395	-8 395	0.000	(0)
	7 0130 - 11	4.0250 - 11	-10 154	-10 204	-0.050	(0)
	1 6960 - 12	1.6960-12	11 771	11 771	0.000	(0)
Cu304 MnSO4	$1.090e^{-12}$	$1.090e^{-12}$	-11.010	_11 010	0.000	(0)
CdSO4	$1.200e^{-12}$	$1.200e^{-12}$	-12 380	-12 380	0.000	(0)
	$4.170e^{-13}$	4.170e-13 2.190o-20	-12.300	-12.300	0.000	(0)
VUZ5U4-	2.433e-20	2.109e-20	-19.010	-19.000	-0.050	(0)
ALSO4+	5.015e-21	4.4/4e-21	-20.300	-20.349	-0.050	(0)
FeSO4	1.814e-21	1.814e-21	-20.741	-20.741	0.000	(0)
AI (SO4) 2-	1.404e-22	1.253e-22	-21.853	-21.902	-0.050	(0)
HZSO4	1.014e-22	1.014e-22	-21.994	-21.994	0.000	(0)
FeSU4+	8.244e-23	/.354e-23	-22.084	-22.133	-0.050	(0)
Fe(S04)2-	5.026e-25	4.484e-25	-24.299	-24.348	-0.050	(0)
VOSO4	6.083e-32	6.083e-32	-31.216	-31.216	0.000	(0)
VS04+	0.000e+00	0.000e+00	-53.891	-53.941	-0.050	(0)
NH4SO4- S(7)	0.000e+00 0.000e+00	0.000e+00	-78.636	-78.685	-0.050	(0)
S208-2	0.000e+00	0.000e+00	-48.457	-48.657	-0.200	(0)
S(8)	6.233e-32					
HSO5-	6.233e-32	5.561e-32	-31.205	-31.255	-0.050	(0)
Se(-2)	U.UUUe+00		00 005	00 077	0 050	101
нзе-	U.UUUe+UU	U.UUUe+00	-99.227	-99.2//	-0.050	(0)
п∠ре			-104.22U	-105 /50		(U) (O)
Se^{-2}	$1 412e^{-19}$	0.0000+00	-103.230	-103.430	-0.200	(0)
~~ (¬)						

Se03-2	1.378e-19	8.697e-20	-18.861	-19.061	-0.200	(0)
HSeO3-	3.440e-21	3.069e-21	-20.463	-20.513	-0.050	(0)
H2SeO3	2.003e-27	2.003e-27	-26.698	-26.698	0.000	(0)
Se(6)	2.158e-07					
Se04-2	2.158e-07	1.362e-07	-6.666	-6.866	-0.200	(0)
NiSeO4	5.187e-12	5.187e-12	-11.285	-11.285	0.000	(0)
ZnSeO4	2.259e-12	2.259e-12	-11.646	-11.646	0.000	(0)
CdSeO4	2.890e-14	2.890e-14	-13.539	-13.539	0.000	(0)
HSeO4-	2.230e-14	1.990e-14	-13.652	-13.701	-0.050	(0)
MnSeO4	4.971e-16	4.971e-16	-15.304	-15.304	0.000	(0)
V(3)	0.000e+00					
V(OH)2+	0.000e+00	0.000e+00	-42.167	-42.217	-0.050	(0)
VOH+2	0.000e+00	0.000e+00	-47.126	-47.323	-0.197	(0)
V+3	0.000e+00	0.000e+00	-53.392	-53.828	-0.436	(0)
VSO4+	0.000e+00	0.000e+00	-53.891	-53.941	-0.050	(0)
V2 (OH) 2+4	0.000e+00	0.000e+00	-93.161	-93.925	-0.764	(0)
V(4)	7.801e-28					. ,
VOOH+	7.791e-28	6.950e-28	-27.108	-27.158	-0.050	(0)
V0+2	8.783e-31	5.585e-31	-30.056	-30.253	-0.197	(0)
VOF+	1.158e-31	1.033e-31	-30,936	-30,986	-0.050	(0)
VOSO4	6.083e-32	6.083e-32	-31.216	-31.216	0.000	(0)
VOF2	1.152e-33	1.152e-33	-32,939	-32,939	0.000	(0)
(VO) 2 (OH) 2-	+2 0.000e+00	0.000e+00	-49.449	-49.646	-0.197	(0)
V(5)	3.641e-06	0.0000100		12.010	· · · / /	(0)
VO30H-2	3.240-06	2.045e-06	-5.489	-5.689	-0.200	(0)
HV04-2	3,2250-07	2.036e - 07	-6.491	-6.691	-0.200	(0)
H2VO4-	4757e-08	4 244e - 08	-7 323	-7 372	-0.050	(0)
VO2 (OH) 2-	3 039 = 08	2711e - 08	-7 517	-7 567	-0.050	(0)
VOZ (011) Z	1 8/60 - 11	65150-12	-10731	-11 18/	-0.450	(0)
VO (OH) 3	$1.040e^{-11}$	$0.545e^{-12}$	-10.734	-12 332	-0.430	(0)
VO(011)3	$4.050e^{-15}$ 1 7890-18	1.5960-18	-12.552	-12.332	-0.050	(0)
VO2+ VO2F	6 6120 - 20	$1.590e^{-10}$	-19 180	-19 190	-0.030	(0)
VOZE	2,4520-20	2.1990-20	-19.100	-19.100	0.000	(0)
V02504-	2.4556-20	2.1090-20	-19.010	-19.000	-0.050	(0)
V02F2-	5.955e-22	3.5268-22	-21.403	-21.452	-0.030	(0)
	5.059e-07	1 7040 07	6 760	6 760	0 000	(0)
Zn (OH) Z	1.7040-07	1.704e-07	-6.769	-6.769	0.000	(0)
	1.6496-07	1.0/1e-0/	-6./83	-6.970	-0.188	(0)
ZnOH+	7.661e-08	6.835e-08	-7.116	-7.165	-0.050	(0)
ZnCO3	6.343e-08	6.343e-08	-7.198	-7.198	0.000	(0)
Zn (OH) CL	1.223e-08	1.223e-08	-7.913	-7.913	0.000	(0)
ZnHCO3+	8.449e-09	7.53/e-09	-8.0/3	-8.123	-0.050	(0)
ZnSO4	8.114e-09	8.114e-09	-8.091	-8.091	0.000	(0)
ZnCl+	1.3//e-09	1.228e-09	-8.861	-8.911	-0.050	(0)
Zn (OH) 3-	3.446e-10	3.074e-10	-9.463	-9.512	-0.050	(0)
ZnF+	3.137e-11	2.798e-11	-10.504	-10.553	-0.050	(0)
ZnC12	9.798e-12	9.798e-12	-11.009	-11.009	0.000	(0)
ZnSeO4	2.259e-12	2.259e-12	-11.646	-11.646	0.000	(0)
Zn (OH) 4-2	4.834e-14	3.051e-14	-13.316	-13.516	-0.200	(0)
ZnCl3-	4.142e-14	3.695e-14	-13.383	-13.432	-0.050	(0)
ZnCl4-2	3.030e-15	1.913e-15	-14.519	-14.718	-0.200	(0)
ZnClO4+	2.093e-31	1.867e-31	-30.679	-30.729	-0.050	(0)
Zn (NH3) +2	0.000e+00	0.000e+00	-72.138	-72.335	-0.197	(0)
ZnN3+	0.000e+00	0.000e+00	-110.163	-110.212	-0.050	(0)
Zn (NH3) 2+2	0.000e+00	0.000e+00	-137.349	-137.546	-0.197	(0)
Zn (NH3) 3+2	0.000e+00	0.000e+00	-202.560	-202.756	-0.197	(0)
Zn(N3)2	0.000e+00	0.000e+00	-213.143	-213.143	0.000	(0)
Zn (NH3) 4+2	0.000e+00	0.000e+00	-268.044	-268.241	-0.197	(0)
		-Saturation	indices			
Phase	SI** loc	g IAP log	K(298 K,	l atm)		
Ahlfeldite	-21.65 -2	26.15 -4.5	0 NiSe03:	2H2O		

Anifetatte	-21.65	-20.15	-4.50	NISEUS:ZHZU	
Al	-140.86	9.06	149.91	Al	
Al(g)	-191.56	9.06	200.62	Al	
Al2(SO4)3	-69.06	-50.16	18.90	Al2(SO4)3	
Al2(SO4)3:6H2O	-51.72	-50.16	1.56	Al2(SO4)3:6H2O	
Alabandite	-145.03	-145.45	-0.42	MnS	

Alf3	-16.85	-34.11	-17.27	Alf3
Alstonite	0.18	2.76	2.58	BaCa (CO3) 2
Anglesite	-4.79	-12.70	-7.91	PbSO4
Anhydrite	-2.16	-6.51	-4.35	CaSO4
Antarcticite	-11.49	-7.40	4.09	CaCl2:6H2O
Antlerite	-9.18	-0.45	8.73	Cu3(SO4)(OH)4
Aragonite	1.16	3.13	1.97	CaCO3
Arsenolite	-140.58	-160.42	-19.84	As203
Arsenopyrite	-2/9.50	-293.94	-14.45	FeAss
Artinite	-3.08	16.54	19.63	Mg2CO3 (OH) 2:3H2O
AS Ac205	-120.21	-102 93	42.00	AS Ac205
$As_{406}(cubi)$	-281 02	-320 84	-39 82	AS205
As406 (mono)	-280.79	-320.84	-40.05	As406
Atacamite	-8.76	5.51	14.26	Cu4Cl2 (OH) 6
Azurite	-11.25	-2.13	9.12	Cu3 (CO3) 2 (OH) 2
В	-111.25	-1.69	109.56	В
B(g)	-202.54	-1.69	200.84	В
B2O3	-14.29	-8.75	5.55	B2O3
Ba	-128.49	12.74	141.23	Ва
Ba(OH)2:8H2O	-13.53	10.96	24.49	Ba(OH)2:8H2O
BaCl2	-13.13	-10.90	2.23	BaCl2
BaC12:2H2O	-11.11	-10.90	0.21	BaC12:2H2O
BaC12:H2O	-11.73	-10.90	0.82	BaC12:H2O
BaMnO4	-8.31	-18.40	-10.09	BaMnO4
Bau	-36.84	10.96	4/.80	Bau
Barytocalcite	-0.00	-10.01	-10.01	Baco (CO3) 2
Bag	-157 39	-141 15	16 24	Baca (COS) Z
BaSe03	-19.06	-25.63	-6.57	BaSeO3
BaSeO4	-5.98	-13.44	-7.46	BaSeO4
Bassanite	-2.81	-6.51	-3.71	CaSO4:0.5H2O
BF3(q)	-41.89	-44.87	-2.98	BF3
Birnessite	30.77	-54.78	-85.55	Mn8014:5H20
Bischofite	-12.32	-7.93	4.39	MgCl2:6H2O
Bixbyite	4.35	3.39	-0.96	Mn203
Bloedite	-12.76	-15.24	-2.48	Na2Mg(SO4)2:4H2O
Boehmite	-1.17	6.38	7.55	Alo2H
Borax	-16.77	-4.72	12.04	Na2 (B405 (OH) 4) :8H2O
Boric_acid	-4.22	-4.37	-0.16	B (OH) 3
Bornite	-545.14	-64/.6/	-102.53	
Brucite	-2.35	13 9/	16 28	$M_{\alpha}(OH)^{2}$
Bunsenite	-2.02	10 44	12 46	NiO
Burkeite	-24.45	-14.96	9.49	Na6CO3 (SO4) 2
C	-71.90	-7.76	64.15	C
C (q)	-189.52	-7.76	181.77	C
Ca	-123.58	16.25	139.83	Ca
Ca(g)	-148.82	16.25	165.07	Ca
Ca2A12O5:8H2O	-17.89	41.68	59.57	Ca2A12O5:8H2O
Ca2Cl2(OH)2:H2C	-19.23	7.06	26.29	Ca2Cl2(OH)2:H2O
Ca2V207	-6.32	-46.03	-39.71	Ca2V207
Ca3(AsO4)2	-77.35	-59.54	17.80	Ca3(AsO4)2
Ca3A1206	-56.89	56.14	113.03	Ca3A12O6
Ca3V208	-13.25	-31.57	-18.32	Ca3V208
Ca4A12Fe2O10	-58.64	81.84	140.48	
$C_{2}(A) = 207 \cdot 19 = 20$	-33.08	70.60	107.25	$C_{2}(A) = 207 \cdot 19 H = 20$
$C_{2}/C_{12}(OH) 6.13H$	-32.00	70.00	702.00	$C_{2}/C_{1}^{2}/(OH) 6.13H2O$
Call204	-19 69	27 22	46 91	
CaAl204:10H20	-10.78	27.22	37,99	CaA1204 · 10H20
CaAl407	-28.61	39.98	68.59	CaAl407
Cadmoselite	-80.55	-114.40	-33.86	CdSe
Calcite	1.31	3.13	1.82	CaCO3
Calomel	3.20	-14.63	-17.83	Hg2Cl2
CaSeO3:2H2O	-17.50	-22.13	-4.63	CaSeO3:2H2O
CaSeO4	-6.84	-9.93	-3.09	CaSeO4
CaSO4:0.5H2O(be	ta) -2.98	3 -6.	51 -3.5	54 CaSO4:0.5H2O

CaV206	-9.14	-60.50	-51.36	CaV206
Cd	-46.22	10.37	56.59	Cd
Cd(BO2)2	-9.99	-0.16	9.83	Cd (BO2) 2
Cd(g)	-59.76	10.37	70.13	Cd
Cd (OH) 2	-5.15	8.59	13.73	Cd (OH) 2
Cd(OH)Cl	-5.88	-2.34	3.54	Cd(OH)Cl
Cd3 (AsO4) 2	-81.23	-77.17	4.06	Cd3 (AsO4) 2
Cd3(SO4)(OH)4	-17.79	4.79	22.57	Cd3 (SO4) (OH) 4
Cd3(SO4)2(OH)2	-22.90	-16.19	6.72	Cd3 (SO4) 2 (OH) 2
	-12.62	-13.27	-0.66	
CdC12(NH3)Z	-139.31	-148.11	-8.80	
CdC12 (NH3) 4	-276.13	-282.94	-6.82	CdC12 (NH3) 4
	-413.02 11 50	-41/./8	-4.76	CdCl2(NH3)6
CdE2	-17 25	-13.27	-1.00	
CdS	-127.61	-1/3 52	-1.10	CdS
CdSeO3	_19 18	-28 00	-8 82	CdSeO3
CdSe04	-13 58	-15 81	-2 22	CdSe04
CdSO4	-12 27	-12 39	-0 12	CdS04
CdSO4:2.667H2O	-10.57	-12.39	-1.81	CdSO4:2.667H2O
CdS04:H20	-10.72	-12.39	-1.66	CdS04:H20
Cerussite	0.18	-3.06	-3.24	PbC03
CH4 (a)	-145.43	-148.28	-2.84	CH4
Chalcanthite	-11.50	-14.13	-2.63	CuSO4:5H2O
Chalcocite	-139.42	-174.16	-34.74	Cu2S
Chalcocyanite	-17.04	-14.13	2.91	CuSO4
Chalcopyrite	-266.74	-299.35	-32.60	CuFeS2
Chloromagnesite	-29.74	-7.93	21.82	MgCl2
Cinnabar	-104.30	-143.29	-38.99	HgS
Cl2(g)	-26.64	-23.65	2.99	C12
Claudetite	-140.63	-160.42	-19.80	As203
Clausthalite	-78.45	-114.72	-36.27	PbSe
Clinochalcomeni	te -22.95	-29.7	5 -6.80) CuSeO3:2H2O
CO(g)	-48.22	-51.22	-3.00	CO
CO2 (g)	-3.50	-11.33	-7.83	C02
Colemanite	-18.83	2.68	21.51	Ca2B6011:5H20
Corundum	-5.53	12.76	18.29	A1203
Cotunnite	-8.74	-13.59	-4.85	PbC12
Covellite	-122.41	-145.27	-22.86	CuS
Cu Cu (m)	-22.87	8.63	31.50	
Cu(g)	-/5.03	8.63	83.00	Cu Cu Cu C
CUELZ	-10.74	-13.02	J./Z	
CuF2	-19 53	-24.52	-0.62	CuF2
CuF2 · 2H20	-15 60	-20.15	-4 55	$CuF2 \cdot 2H2O$
Cuprite	-20 14	-22 05	-1 91	Cu20
Cuse03	-22 07	-29 75	-7 68	C11SeO3
Dawsonite	-2.91	1.44	4.34	NaAlCO3(OH)2
Delafossite	1.03	-5.41	-6.44	CuFeO2
Diaspore	-0.77	6.38	7.15	Alho2
Dolomite	3.27	5.74	2.47	CaMg (CO3) 2
Dolomite-dis	1.73	5.74	4.01	CaMg (CO3) 2
Dolomite-ord	3.28	5.74	2.46	CaMg (CO3) 2
Downeyite	-29.80	-36.59	-6.79	Se02
Epsomite	-5.08	-7.04	-1.96	MgSO4:7H2O
Ettringite	-25.86	36.61	62.46	Ca6Al2(SO4)3(OH)12:26H2O
F2(g)	-84.49	-28.78	55.71	F2
Fe	-59.20	-0.18	59.02	Fe
Fe(OH)2	-15.86	-1.97	13.89	Fe (OH) 2
Fe(OH)3	-0.02	5.62	5.64	Fe(OH)3
Fe2(SO4)3	-54.73	-51.68	3.05	Fe2(SO4)3
FeF2	-26.54	-28.96	-2.42	FeF2
rеr,3 П=О	-15.62	-34.87	-19.26	FeF3
reu Territ - G	-15.49	-1.9/	13.52	
Ferrite-Ca	4.20	25.70	21.50	Cure204
rerrite-Cu Forrito-Disal-i	/.8U	10.07 TX.08	LU.28	CurezO4
Ferrite-Ma	uııı -⊥0.04 ⊿ 15	40.⊥ 25 17	0 JO.OU 21 A2	MaFe2O4
LOTTTOC NA	1 • 1 J	∠ J • ⊥ /	L I • V L	

	10 10	01 00	11 70	
Ferrite-Zn	10.10	21.80	11.70	ZnFe204
Ferroselite	-160.43	-241.25	-80.82	FeSe2
FeSO4	-25.55	-22.94	2.61	FeSO4
FeV204	-337 59	-57 03	280 56	FeV204
	2 47	10 50	10 07	CaE2
	-2.4/	-12.55	-10.07	
Frankdicksonit	e -10.28	-16.04	-5./6	Bar2
Galena	-128.96	-143.84	-14.88	PbS
Gaylussite	-6.59	4.57	11.16	CaNa2(CO3)2:5H2O
Gibbsite	-1.36	6.38	7.74	A1 (OH) 3
Clauberite	-9 24	-1/71	-5 17	$N_{2}(C_{2}(S_{0}/1))^{2}$
Grathite	5.24	11./1	0.52	
Goetnite	5.09	5.62	0.53	Feooh
Gypsum	-1.98	-6.51	-4.53	CaSO4:2H2O
H2(g)	-41.21	-44.31	-3.10	Н2
H2O(q)	-1.59	-0.00	1.59	H2O
$H_{2S}(\alpha)$	-144.12	-152.11	-7.99	H2S
	-6 11	_1 55	1 56	NaCl
	0.11	10.05	10 14	NaCi Malan
Hausmannite	-0.09	10.05	10.14	Mn304
HCl(g)	-17.23	-10.93	6.30	HCl
Heazlewoodite	-299.30	-271.11	28.18	Ni3S2
Hematite	11.16	11.24	0.08	Fe203
Hercynite	-18.01	10.79	28.80	Feal204
Hovobydrito	-5 31	-7 04	_1 73	Magod · 6H2O
	-5.51	-7.04	-1.73	Ng504.01120
Hg(g)	-9.12	10.61	19./3	Hg
Hg(l)	-3.53	10.61	14.14	Нд
Hg2SeO3	-15.15	-29.36	-14.21	Hg2SeO3
Hg2SO4	-7.61	-13.74	-6.13	Hg2SO4
HaseO3	-13 88	-27 77	-13 90	HaseO3
Ilyptite	13.00	10 06	10 22	$G_{2}M_{2}$
HUIILLE	0.74	10.96	10.22	
Hydroboracite	-18.21	2.16	20.36	MgCaB6011:6H2O
Hydrocerussite	0.31	2.16	1.85	РЬЗ (СОЗ) 2 (ОН) 2
Hydromagnesite	-6.37	24.36	30.74	Mq5(CO3)4(OH)2:4H2O
Hvdrophilite	-19.15	-7.40	11.75	CaC12
Hydrozincite	-0 17	30 14	30 31	7n5(OH) 6(CO3) 2
	0.1/	0.00	0 14	
Ice	-0.14	-0.00	0.14	HZU
Jarosite-Na	-13.26	-18.70	-5.45	NaFe3(SO4)2(OH)6
Karelianite	-65.01	-55.06	9.95	V203
Katoite	-22.80	56.14	78.94	Ca3A12H12O12
Kieserite	-6.77	-7.04	-0.27	Ma204:H20
Klockmannite	-74 52	-116 15	-41 62	C1150
Krut o i t o	122 22	240.02	107 70	
	-133.22	-240.92	-107.70	
Lammerite	-83.96	-82.40	1.55	Cu3 (AsO4) 2
Lanarkite	-3.94	-4.43	-0.48	Pb2 (SO4) O
Lansfordite	-2.23	2.61	4.84	MqCO3:5H2O
Lawrencite	-32.88	-23.83	9.05	FeC12
Time	-18 11	14 46	32 57	Ca0
I i t h a mara	10.11	0 07	10 (1	Ca0 Rh O
Litharge	-4.56	0.27	12.04	PDO
Magnesite	0.33	2.61	2.27	MgCO3
Magnetite	-1.15	9.27	10.42	Fe304
Malachite	-3.54	2.36	5.90	Cu2CO3 (OH) 2
Manganite	1.86	1.69	-0.16	MnO(OH)
Manganosite	-11 25	6 66	17 92	$Mn \cap$
Manganosice	-1 51	0.00	12 02	Rh0
Massicol	-4.54	0.27	12.02	PDO
Matlockite	-6.73	-16.16	-9.43	PbFCl
Mayenite	-231.31	262.85	494.15	Ca12A114O33
Melanterite	-20.54	-22.94	-2.40	FeSO4:7H2O
Metacinnabar	-104.67	-143.29	-38.62	HaS
 Ма	-106 80	15 72	122 52	Ma
$M_{\alpha}(\alpha)$	100.00	15 72	142.02	M~
Mg (g)	-126.52	15.72	142.23	
Mg1.25SO4(OH)0	.5:0.5H2O	-8.75	-3.55	5.20 Mg1.25SO4(OH)0.5:0.5H2O
Mg1.5SO4(OH)	-9.28	-0.07	9.21	Mg1.5SO4(OH)
Mg2V207	-16.18	-47.09	-30.90	Mg2V207
MgC12:2H20	-20.66	-7.93	12.73	MgC12:2H2O
Mac12.4420	-15 22	_7 Q2	7 20	$Macl2 \cdot 4H2O$
Macl 2 . 1120	24 00	7.93	16 07	Mac12.020
MYCIZ:HZU	-24.00	-1.93	10.0/	
MGOHCI	-12.89	3.01	15.89	MgOHCL
MgSeO3	-24.33	-22.65	1.67	MgSeO3
MgSeO3:6H2O	-19.22	-22.66	-3.44	MgSeO3:6H2O
MqSO4	-11.87	-7.04	4.83	MqSO4

		~ ~ ~ ~ ~		
MgV206	-15.18	-61.02	-45.85	MgV206
Millerite	-133.61	-141.67	-8.06	NiS
Minium	 7 /1	0 0 5	16 26	Dh204
MITUTU	-/.41	0.00	10.20	PD304
Mirabilite	-7.05	-8.20	-1.15	Na2SO4:10H2O
Mn	-74 48	8 4 5	82 93	Mn
	0 (5		1 5 21	
Mn (OH) 2 (am)	-8.65	6.66	15.31	Mn (OH) Z
Mn (OH) 3	-4.65	1.69	6.34	Mn (OH) 3
MnC12.2H20	-19 20	-15 20	4 0 0	MnC12.2H20
M-G12.400	17 05	15.20	2.00	M-G12.4020
MnCIZ:4HZO	-1/.95	-15.20	2.75	MnC12:4HZO
MnCl2:H2O	-20.74	-15.20	5.54	MnCl2:H2O
MnO2 (gamma)	4 78	-11 35	-16 13	MnO2
	105 (0	116 00	10.10	MIC2
MnSe	-105.63	-116.33	-10.70	MnSe
MnSeO3	-22.66	-29.93	-7.27	MnSeO3
$MnSeO3 \cdot 2H2O$	-23 60	-29 93	-6 33	$MnSeO3 \cdot 2H2O$
1115005.21120	25.00	20.00	0.55	
MnSO4	-16.92	-14.31	2.61	MnSO4
MnV2O6	-16.22	-68.30	-52.08	MnV2O6
Mo	-129 32	-20 05	109 27	Mo
	129.52	20.03	100.27	
Molysite	-40.64	-2/.1/	13.4/	FeC13
Monohydrocalci	te 0.46	3.13	2.68	CaCO3:H2O
Montenonite	-6 51	8 5 9	15 09	CdO
homeeponiee	0.01	0.00	10.00	
Montroydite	6.38	8.82	2.44	HgO
Morenosite	-8.47	-10.53	-2.06	NiSO4:7H2O
Maga2	21/ /7	260 60	55 12	Maga2
MOSEZ	-214.47	-209.00	-33.12	MOSEZ
N2(g)	-20.55	-23.73	-3.18	N2
Na	-60.09	7.28	67.37	Na
$N_{\alpha}(\alpha)$	72 50	7 20	00 00	No
Na(g)	-73.30	1.20	00.00	Na
Na2CO3	-9.72	1.44	11.16	Na2CO3
Na2CO3:7H2O	-8.50	1.44	9.94	Na2CO3:7H2O
Na2O	E 4 6 E	10 77	67 40	No 20
Nazo	-54.65	12.11	07.42	Nazo
Na2Se	-122.05	-110.22	11.83	Na2Se
Na2Se2	-173.64	-234.99	-61.35	Na2Se2
	21 00	22 70	0 00	$N_{2} 2 U (C \cap A) 2$
Nash (504) 2	-21.90	-22.19	-0.09	Nash (504) Z
Na4Ca(SO4)3:2H	20 -17.02	-22.92	-5.89	Na4Ca(SO4)3:2H2O
NaFeO2	-7.88	12.00	19.88	NaFeO2
Nahaalita	1 0 0	1 0 1	0 1 4	Nauco2
Nancolle	-4.00	-4.94	-0.14	Narcos
Nantokite	-15.19	-21.96	-6.77	CuCl
Natron	-8.15	1.44	9.59	Na2CO3:10H2O
Nacruchanita	2 60	2 61	5.05	M~CO2,21120
Nesquenonite	-2.68	2.01	5.29	MgCO3:3HZO
NH3 (g)	-69.21	-67.42	1.80	NH3
NH4HSe	-168.35	-190.41	-22.06	NH4HSe
N12	200.75	10 00	E0 00	N12
Nl	-38.75	12.23	50.98	N1
Ni(OH)2	-2.31	10.44	12.75	Ni(OH)2
Nickelbischofi	te -14.58	-11.42	3.15	NiC12:6H2O
Nichcipibeneii	20.00	11 40	0 (0	NLC10
NICIZ	-20.02	-11.42	8.60	NICIZ
NiCl2:2H2O	-15.34	-11.42	3.92	NiCl2:2H2O
NiC12:4H20	-15.27	-11.42	3.85	NiC12:4H20
NH CO2	1 10		2 E 1	NH CO2
N1C03	-4.40	-0.89	3.51	NICO3
NiF2	-17.38	-16.55	0.82	NiF2
NiF2:4H20	-12.50	-16.56	-4.06	NiF2:4H20
NHCOA	1 5 0 1	10 52	E 20	Nicod
NISO4	-10.01	-10.55	5.20	NIS04
NiSO4:6H2O(alp)	ha) -8.51	-10.53	3 -2.02	2 NiSO4:6H2O
Nitrobarite	-11.54	-14.03	-2.49	Ba (NO3) 2
$N \cap (\alpha)$	25 70	25 05	0 74	
NO(g)	-25.70	-25.05	0.74	NO
NO2 (g)	-19.95	-11.60	8.35	NO2
02(q)	-0.68	-3.57	-2.89	02
Ornimont	-527 27	616 75	-70 40	7 2 2 2 2
orbrineit	-331.21	-010.70	- 1 3 . 4 9	A3233
Otavite	-0.97	-2.74	-1.77	CdC03
Oxychloride-Ma	-8.89	16.94	25.83	Mg2Cl(OH)3:4H2O
Paralaurianit-	_2 0 5	_2 66	0 20	PhC104
rararaurronite	-2.00	-2.00	0.20	
Pb	-37.11	10.06	47.17	Pb
Pb(q)	-65.55	10.06	75.61	Pb
Db(N3)2(mana)	-200 25	-216 60	_0 27	Db(N3)
	-200.20	-210.02	-0.3/	
Pb(N3)2(orth)	-207.82	-216.62	-8.81	Pb (N3) 2
Pb2C12CO3	-7.03	-16.64	-9.62	Pb2C12C03
	0 = 00	105 50	10 (2	
PDZCIJNH4	-03.09	-103.52	-19.03	FDZCIONH4
Pb20(N3)2	-194.64	-208.35	-13.71	Pb20 (N3) 2
Pb3SO6	-6.73	3.85	10.58	Pb3S06
$Dh(C12)(OTT) \in$		11 00	17 00	Db A C (0 U) C
	-0.03	11.ZJ	エ / • 乙〇	

Pb4SO7	-9.59	12.12	21.71	Pb4SO7
PbCO3.PbO	-4.44	5.22	9.66	PbCO3.PbO
PbF2	-13.47	-18.72	-5.25	PbF2
PbFCl	-7.16	-16.16	-8.99	PbFCl
PbSeO4	-9.17	-16.12	-6.95	PbSeO4
PbSO4 (NH3) 2	-145.50	-147.53	-2.03	PbS04 (NH3) 2
PbSO4 (NH3) 4	-283.86	-282.37	1.49	PbSO4 (NH3) 4
Penroseite	-138.51	-237.32	-98.81	NiSe2
Pentahvdrite	-5.65	-7.04	-1.39	MgS04:5H20
Periclase	-7.39	13.94	21.33	MaO
Phosgenite	-6.99	-16.64	-9.65	Pb2 (CO3) C12
Pirssonite	-6.75	4.58	11.32	Na2Ca (CO3) 2:2H2O
Plattnerite	0.27	-7.69	-7.97	Pb02
Polvdymite	-496.72	-545.65	-48.93	Ni3S4
Portlandite	-8.08	14.46	22.55	Ca (OH) 2
Pvrite	-248.71	-273.41	-24.70	FeS2
Pyrolusite	6.31	-11.35	-17.66	Mn02
Pvrrhotite	-150.34	-154.08	-3.74	FeS
Realgar	-216.74	-277.02	-60.28	Ass
Rhodochrosite	-4.45	-4.67	-0.22	MnCO3
S	-108.79	-153.90	-45.11	S
$S_{2}(\alpha)$	-2.31.47	-238.65	-7.19	- 52
Scacchite	-23.94	-15.20	8.74	MnCl2
Se	-59.11	-33.02	26.10	Se
Se205	-70.48	-60.99	9.49	Se205
SeC14	-94.65	-80.31	14.33	SeC14
Sellaite	-3.62	-13.06	-9.44	MaF2
SeO3	-43.56	-24.40	19.16	SeO3
Shcherbinaite	-16.61	-18.06	-1.45	V205
Siderite	-13.08	-13.30	-0.22	FeCO3
Smithsonite	-1.21	-0.77	0.44	ZnCO3
SO2 (q)	-56.87	-56.69	0.18	SO2
Sphalerite	-130.08	-141.55	-11.47	ZnS
Spinel	-10.91	26.69	37.61	Al2MgO4
Starkeyite	-6.04	-7.04	-1.00	MgSO4:4H2O
Stilleite	-88.44	-112.43	-23.98	ZnSe
Tachyhydrite	-40.40	-23.25	17.14	Mg2CaCl6:12H2O
Tenorite	-0.80	6.84	7.65	CuO
Thenardite	-7.84	-8.20	-0.36	Na2SO4
Thermonatrite	-9.49	1.44	10.94	Na2CO3:H2O
Tiemannite	-55.94	-114.17	-58.23	HgSe
Todorokite	26.63	-19.20	-45.82	Mn7012:3H20
Trevorite	11.90	21.68	9.78	NiFe2O4
Troilite	-150.24	-154.08	-3.84	FeS
Umangite	-167.33	-261.18	-93.85	Cu3Se2
V	-131.80	-24.85	106.94	V
V204	-34.00	-25.45	8.56	V204
V305	-81.22	-67.79	13.43	V305
V407	-99.31	-80.51	18.80	V407
Vaesite	-234.22	-261.00	-26.77	NISZ
Withomito	-309.50	-462.42	-152.92	N135e4
Witherite	2.65	-0.37	-3.02	Bacus Rec
Wurtzite	-132.38	-141.55	-9.17	205
Vustite	-13.46	-1.06	12.40	re.9470
ZINCILE	-0.64	10.00 10.00	11.20	200
211 7n(PO2)2	-6 50	1 91	Q 31	$Z_{\rm D}$
$2 \ln (BOZ) Z$ $7 n (C104) 2 \cdot 6 H20$	-62 68	-57 04	5 63	$2\pi (C104) 2 \cdot 6H20$
$2\pi (c104) 2.01120$	-73 06	12 35	95 J1	Zn (C104) Z. 01120
$Z_{n}(9)$ $Z_{n}(NO3) 2 \cdot 6H2O$	-17 83	-14 43	3 40	2n (NO3) 2.6H2O
Zn(OH) 2 (beta)	-1 37	10 56	11 93	Zn(OH) 2
Zn (OH) 2 (ensilor	(1) -1 10	10.56	11 66	Zn(OH) 2
Zn (OH) 2 (Gamma)	-1.32	10.56	11.88	Zn (OH) 2
Zn2 (OH) 3C1	-5.10	10.19	15.29	Zn2 (OH) 3C1
Zn2SO4 (OH) 2	-7.44	0.15	7.58	Zn2SO4 (OH) 2
Zn3 (AsO4) 2	-80.56	-71.25	9.31	Zn3 (AsO4) 2
Zn30 (S04) 2	-29.36	-10.27	19.09	Zn30(S04)2
Zn5(NO3)2(OH)8	-14.86	27.81	42.67	Zn5 (NO3) 2 (OH) 8

ZnCl2	-18.38	-11.30	7.08	ZnCl2
ZnCl2(NH3)2	-139.13	-146.14	-7.01	ZnCl2(NH3)2
ZnCl2(NH3)4	-274.26	-280.97	-6.71	ZnCl2(NH3)4
ZnCl2(NH3)6	-411.06	-415.80	-4.74	ZnCl2(NH3)6
ZnCO3:H2O	-0.91	-0.77	0.14	ZnCO3:H2O
ZnF2	-15.94	-16.44	-0.49	ZnF2
ZnSeO3:H2O	-19.28	-26.03	-6.75	ZnSeO3:H2O
ZnSO4	-13.95	-10.41	3.53	ZnSO4
ZnSO4:6H2O	-8.71	-10.41	-1.70	ZnSO4:6H2O
ZnSO4:7H2O	-8.54	-10.41	-1.88	ZnSO4:7H2O
ZnSO4:H2O	-9.86	-10.41	-0.55	ZnSO4:H2O

**For a gas, SI = log10(fugacity). Fugacity = pressure * phi / 1 atm.
For ideal gases, phi = 1.

End of simulation.

Reading input data for simulation 3.

End of Run after 0.719 Seconds.

APPENDIX 03: IMPACT ASSESSMENT AND MONITORING REQUIREMENTS

ISSUES: ALTERATION OF NATURAL DRAINAGE PATTERNS

Information in this section was sourced from the approved EMPr's (SLR, August 2017 and April 2019) and the pit lake study compiled for the proposed project (SLR, June 2019).

Introduction

During the closure phase, stormwater management infrastructure to contain dirty water as required by legislation will be required around the perimeter of the waste rock dumps. In this regard the collection of rainfall and runoff will be via toe paddocks. The toe paddocks will remain until such time as the waste rock dumps have been rehabilitated successfully, after which they can be removed. Further to this, natural surface water run-off and rainfall will also be collected in the partially open pit. The collected rain-fall and run-off will therefore be lost to the catchment and can result in the alteration of drainage patterns in a similar manner to what is currently occurring on site and will perpetuate during the decommissioning phase.

All decommissioning and post closure activities and infrastructure will be located within the Tshipi Borwa Mine area and as such will not result in the physical alteration of any nearby water resources such as the ephemeral Vlermuisleegte and Witleegte Rivers.

Link to project specific activities/infrastructure

Key decommissioning and post closure infrastructure associated with the impact includes:

- Partially open pit (result of in-pit dumping); and
- Waste rock dumps remaining on surface.

Rating of impact

Severity/ nature

Rainfall and surface water run-off will be collected in all areas that have been designed with water containment infrastructure and through collection into the partially open pit. The collected rainfall and run-off will therefore be lost to the catchment and can result in the alteration of drainage patterns. The total MAR for the quaternary catchment D41K is 6.53 million cubic meters (mcm). The proposed project will result in a loss to the quaternary catchment by less than one percent (<1%). In the unmitigated scenario the severity is medium to low because although the reduction is measurable, it will remain in the current range. In the mitigated scenario the severity is low.

Duration

In the unmitigated scenario, the alteration of drainage patterns associated with the waste rock dumps is long term. In the mitigated scenario, the duration of the alterations is short term as the toe paddocks will be removed once vegetation has been established. This is a low duration in the mitigated scenario.

In terms of the open pit, in the unmitigated and mitigated scenarios the loss of run-off to the catchment through the collection in the partially open pit is long term. This is a high duration.

Spatial scale / extent

In the mitigated and unmitigated scenario the physical alteration of drainage patterns will extend beyond the site boundary as flow reduction impacts could extend further downstream. This is a medium spatial scale.

Consequence

In the unmitigated scenario the consequence is high to medium and low in the mitigated scenario with management actions.

Probability

The probability of the alteration of drainage patterns is definite, but the magnitude of the reduced flows is unlikely to result in substantial deterioration and related flow impacts downstream due to the relatively flat topography and high infiltration rates therefore the probability is low in both the mitigated and unmitigated scenarios.

Significance

The significance of this potential impact is medium to low in the unmitigated scenario and low in the mitigated scenario.

No cumulative or additional latent impacts have been identified.

Unmitigated and Mitigated – summary of the impact

Severity / nature	Duration	Spatial scale / extent	Consequence	Probability of Occurrence	Significance	
		Unm	itigated			
M-L	Н	Μ	H-M	L	M-L	
Mitigated/Residual impact						
L	H (Low for waste rock dumps)	Μ	Μ	L	L	

Project impact within the context of approved closure commitments

The impact associated with the alteration of natural drainage patterns was assessed as part of the approved EMPr's (SLR, August 2017 and April 2019). In this regard, the significance of the impact was rated medium in the unmitigated scenario and reduced to low with mitigation given that rehabilitation at closure will allow for the restoration of drainage patterns. In terms of the proposed project, the impact rating is similar. Although the alteration of natural drainage patterns for the partially open pit cannot be mitigated, it is important to note that the collection of rainfall and run-off in the partially open pit does contribute to the development of the pit lake which can be used for alternative uses. This is discussed in further detail in the section below.

Summary of the impact significance rating in the context of the approved commitments

Management	Approved EMPr (August 2017)	Proposed project
Unmitigated	Medium	Medium to Low
Mitigated	Low	Low

Management objective

The objective is to prevent unacceptable alteration of drainage patterns and related reduction of downstream surface water flow.

Management actions

Implement the following management actions:

• Once all infrastructure, equipment and services have been removed, the remaining surface areas will be landscaped, topsoiled and revegetated to promote natural drainage patterns. This is mainly in the decommissioning phase; and

• Once the waste rock dumps have been rehabilitated successfully, the toe paddocks will be removed. This will happen in both the decommissioning and closure phases.

ISSUE: CONTAMINATION OF SURFACE WATER RESOURCES

Information in this section was sourced from the approved EMPr's (SLR, August 2017 and April 2019), the pit lake study compiled for the proposed project (SLR, June 2019).

Introduction

There are a number of pollution sources that have the potential to pollute surface water, particularly in the unmitigated scenario. In the decommissioning phase these potential pollution sources are temporary in nature. Although these sources may be temporary, the potential pollution may be long term. The closure phase will present final land forms such as the waste rock dumps that may have the potential to contaminate surface water through long term seepage and/or run-off.

Link to project specific activities/infrastructure

Decommissioning activities and post closure infrastructure associated with the impact includes waste rock dumps remaining on surface and partially open pit (access to pit lake).

Rating of impact

Severity/nature

The decommissioning and closure infrastructure and activities present numerous sources of pollution that can contaminate surface water resources. In the unmitigated scenario, potential decommissioning phase pollution sources associated include:

- Sedimentation from erosion;
- Spillage of waste material, dirty water, fuel, lubricants and leaks from vehicles and equipment
- Contaminated soil areas; and
- Run-off from waste rock dumps

Potential closure phase pollution sources include:

- Contaminated pit lake water quality;
- Sedimentation from erosion; and
- Run-off from waste rock dumps.

At elevated concentrations contaminants can exceed the relevant surface water quality limits imposed by DWS and can be harmful to humans, livestock and biodiversity (Refer to the biodiversity section in this appendix for the potential biodiversity impacts. This impact will not be re-assessed in this section).

In the unmitigated scenario this is a high severity. In the mitigated scenario, where decommissioning activities are controlled according to the existing approved EMPr and the closure plan is effectively implemented, the severity reduces to low. It must be noted that this conclusion is drawn in the context of successfully achieving the stated end pit lake quality objective which is suitable for livestock watering and a functional biodiversity system but not for domestic use.

Duration

In the unmitigated scenario the sources of the contamination will extend beyond closure which is a high duration. With management actions, pollution can be prevented and/or managed and as such the impacts can be limited to the pre-closure phase. It must be noted that the pit lake water quality modelling extended to 200 years post closure.

Spatial scale / extent

In the unmitigated scenario contaminates could migrate off site, which is a medium spatial scale. In the mitigated scenario, all potential surface contamination sources will have been removed or mitigated preventing any possibility of offsite surface water contamination. This is a low spatial scale.

Consequence

In the unmitigated scenario the consequence is high and in the mitigated scenario it is low with management actions.

Probability

The probability of the impact occurring relies on a causal chain that comprises three main elements:

- Does contamination reach surface water resources;
- Will people and livestock utilise this contaminated water; and
- Is the contamination level harmful?

The first element is that contamination reaches the surface water resources. Due to the distance of the Tshipi Borwa Mine to the closest surface water resource (Vlermuisleegte River), which is located two kilometres west of the mine, it is unlikely that pollution sources will reach surface water resources. It should also be noted that the Vlermuisleegte is ephemeral in nature and therefore is associated with long periods of no flow. In the unmitigated scenario, the pit lake will become a surface water resource that is contaminated.

The second element is that third parties and/or livestock use this contaminated water for drinking purposes. In the unmitigated scenario this is a definite possibility because one of the stated end uses is grazing and use of the pit lake for livestock watering.

The third element in the unmitigated scenario, it is that it likely that some contaminants will be at a level which is harmful to humans and livestock. In the unmitigated scenario, this is possible particularly for the pit lake.

As a combination, the unmitigated probability is high, reducing to low with management actions.

Significance

In the unmitigated scenario, the significance of this potential impact is high. In the mitigated scenario, the significance is reduced to low.

It is however important to note that a potential latent impact could be associated with long term deterioration of pit lake water quality subject to the success of the ongoing floating wetland water treatment. If this latent impact manifests and cannot be mitigated through treatment adaptations then the use of/access to the pit lake will have to be reconsidered. The associated default management measure will be to fence and/or berm off access to the pit lake.

No cumulative impact has been identified.

Unmitigated and Mitigated – summary of the impact

Severity / nature	Duration	Spatial scale / extent	Consequence	Probability of Occurrence	Significance	
Unmitigated						
н	н	Μ	н	Н	н	
Mitigated/residual impact						
L	L	L	L	L	L	

Project impact within the context of approved closure commitments

The impact associated with the contamination of surface water resources was assessed as part of the approved EMPr's (SLR, August 2017 and April 2019). In this regard, the significance of the impact was rated medium in the unmitigated scenario and reduced to low with mitigation. It is however important to note that the assessment focussed on the contamination of the Vlermuisleegte River only. The proposed project introduces issues associated with the pit lake which changes the assessment, particularly in the unmitigated scenario. **Summary of the impact significance rating in the context of the approved commitments**

Management	Approved EMPr (August 2017)	Proposed project
Unmitigated	Medium	High
Mitigated	Low	Low

Management objective

The objective is to prevent pollution of surface water resources.

Management actions

Implement the following management actions:

- In order to address various potential pollution sources associated with decommissioning activities, Tshipi will implement the management actions for the decommissioning phase as outlined in the approved EMPr's (SLR, August 2017 and April 2019). These management actions focus on pollution prevention (collection, storage and disposal of hazardous waste), implement the stormwater management plan, regular inspection and maintenance of water management facilities and waste rock dumps and maintenance and servicing equipment and vehicles;
- During operations, decommissioning and the initial part of the closure phase, surface water run-off and seepage paddocks will be installed and maintained around all waste rock dumps;
- Tshipi will implement the topography/topsoil and revegetation plans during the decommissioning phase. Once rehabilitated the final land forms are unlikely to erode and/or contribute to pollution run-off. Once this is confirmed, the run-off containment toe paddocks around the waste rock dumps can be removed and rehabilitated;
- During the decommissioning phase and the initial monitoring and aftercare part of the closure phase, Tshipi will continue to implement a monitoring programme for surface water resources. This includes monitoring both up and downstream of the Vlermuisleegte when possible (the possibility of monitoring water in the Vlermuisleegte River may only arise during heavy periods of rain);
- Once mining activities cease in the pit and sufficient water is available (during the closure phase), a floating wetland system will be implemented using a combination of vegetation types and surface area coverage that will enable the treatment of the pit lake water to meet DWS livestock watering objectives. Research, references and modelling indicate that this can be a successful treatment solution, but final design, maintenance requirements and related monitoring will be determined only on the basis of implementation on site. In this regard, final closure planning will be sufficiently flexible to allow for the following:
 - Ongoing optimisation and improvement of the floating wetland system;
 - Adaptation to changing circumstances that might require implementation of alternative and/or additional treatment technologies; and
 - Contingency planning in the event that water treatment becomes ineffective at some point in future and access to/use of the pit lake requires reconsideration.
- During the closure phase, monitoring the pit lake water quality will be undertaken. Details of the surface water monitoring programme;
- During the decommissioning and the monitoring and aftercare part of the closure phases, should any
 surface water resource contamination be detected, the mine will immediately notify DWS. Tshipi, in
 consultation with DWS and an appropriately qualified person, will then notify potentially affected users
 (eg. farmers using the water for livestock watering), identify the source of contamination, identify
 measures for the prevention of this contamination (in the short term and the long term) and then

implement these measures. Any related loss caused by Tshipi (in the short and long term) will be addressed through compensation, which may include an alternative water supply of equivalent quality and quantity; and

• Implement the emergency response procedure in the event of a potentially polluting discharge incident.

ISSUE: LOWERING OF GROUNDWATER LEVELS

Information in this section was sourced from the approved EMPr's (SLR, August 2017 and April 2019), the pit lake study compiled for the proposed project (SLR, June 2019).

Introduction

Dewatering of the open pit during operations has the potential to lower groundwater levels. Lowering of groundwater levels through dewatering may cause a loss in water supply to surrounding borehole users if they are in the impact zone. Once dewatering activities cease, groundwater levels will start to rebound.

Link to project specific activities/infrastructure

Activities associated with this impact include the cessation of dewatering.

Discussion

Prior to mining the natural depth of the water in surrounding boreholes ranged from 25 to 55 m below ground level. Groundwater level monitoring data currently shows water depths ranging from 41 to 75 m below ground level. At decommissioning, although dewatering activities will cease, the modelled cone of drawdown developed due to dewatering is predicted to be at a maximum extent of 5.5 km to the east and 8.3 km to the west of the Tshipi Borwa Mine. Third parties within the simulated cone of depression may therefore experience a drop in water levels. When mining and dewatering cease, groundwater levels will start to rebound and the water level in the pit will increase. Initially, inflows will be high, because the hydraulic gradient driving inflows from the aquifer into the pit would be at a maximum due to the water level being at base of the pit which will be approximately 250m below ground level. Over time, as the pit lake level rises inflows will diminish until a steady state level is reached. Due to evaporative loses and pit geometry; the partially filled pit will continue to be a hydraulic sink in perpetuity because the steady state pit lake level will remain approximately 6m below the natural groundwater level which is approximately 35 below ground level. The associated cone of depression hydraulic gradient will be significantly reduced (the depth to the base of the cone of depression reduces by 97%). It follows that groundwater levels at off-site third party boreholes are predicted to rebound to natural groundwater level. This impact has therefore not been assessed further and has been rated as being insignificant.

No additional latent impacts have been identified. If surrounding mining operations dewater it is possible that cumulative impacts on groundwater levels will be experienced.

Project impact within the context of approved closure commitments

The impact associated with the lowering of groundwater levels was not assessed at closure as part of the approved EMPr's (SLR, August 2017 and April 2019) given that it was assumed groundwater levels rebounded to natural ground level. The proposed project does not alter the impact finding.

Summary of the impact significance rating in the context of the approved commitments

Management	Approved EMPr (August 2017)	Proposed project
Unmitigated	Insignificant	Insignificant
Mitigated	Insignificant	Insignificant

Management objective

The objective is to prevent water losses to third party water users.

Management actions

Implement the following management actions:

- Tshipi will continue to monitor groundwater levels (refer to Section Error! Reference source not found. for the monitoring programme); and
- In the unlikely event that borehole users experience any additional post closure mine related water loss, Tshipi will provide compensation, which could include an alternative water supply of equivalent water quality and quantity. This will happen during the closure phase.

ISSUE: CONTAMINATION OF GROUNDWATER RESOURCES

Information in this section was sourced from the approved EMPr's (SLR, August 2017 and April 2019), the pit lake study compiled for the proposed project (SLR, June 2019) included in Error! Reference source not found...

Introduction

The closure phase will present final land forms such as waste rock dumps remaining on surface and the waste rock backfilled into the open pit that may have the potential to pollute water resources through long term seepage and/or run-off.

Link to project specific activities/infrastructure

Post closure activities and infrastructure associated with the impact include:

- Waste rock backfilled into the open pit as part of in-pit dumping; and
- Waste rock dumps remaining on surface.

Rating of impacts

Severity/nature

Groundwater modelling undertaken for Tshipi makes provision for a worse case theoretical scenario which includes a completely backfilled open pit and all waste rock dumps remaining on surface. This allows for multiple pollution sources and re-establishment of close to normal groundwater flow. In reality, the proposed closure option will include the partially backfilled pit acting as a hydraulic sink with a draw down cone toward the pit lake in perpetuity. The reason for using the conservative theoretical modelling scenario is the precautionary principle which is relevant because of the importance of understanding groundwater risk in this particular arid region.

A chloride source concentration of 2200 mg/e was simulated for the waste rock and simulated for 100 years. The worst case theoretical modelled results indicate that the pollution plume migrates off site but is unlikely to impact third party boreholes (Figure 14-1

). When applying these conservative results to the specific context of the proposed project, the extent of the pollution plume will reduce because the partially backfilled pit will act as a hydraulic sink and associated draw down cone will draw some of the pollution plume into the pit. No impact on any off-site third party boreholes is predicted. In both the mitigated and unmitigated scenarios the severity of the impact is low.

Duration

Groundwater contamination is long term in nature, occurring post closure in both the unmitigated and mitigated scenarios. This is a high duration in the unmitigated scenario. In the mitigated scenario, the contamination source will significantly reduce once the topsoiling and revegetation of the remaining waste rock dumps is complete because rainfall infiltration through the waste rock dump into the underlying ground will significantly reduce. This is a medium duration.

Spatial scale / extent

No impact on any off-site third party boreholes is predicted. In both the mitigated and unmitigated scenarios the spatial extent is low.

Consequence

The consequence is medium in the unmitigated scenario and reduces to low with mitigation.

Probability

The probability of the impact occurring relies on a causal chain that comprises three main elements:

- Does contamination reach groundwater resources;
- Will people and animals utilise this contaminated water; and
- Is the contamination level harmful?

The first element is that contamination reaches the groundwater resources underneath or adjacent to the site. Pollution plume modelling shows that contaminants could reach groundwater resources.

The second element is that third parties and/or livestock use this contaminated water for drinking purposes. There are no known third party boreholes located within the contaminant plume.

The third element is whether contamination is at concentrations which are harmful to users. Based on groundwater modelling predictions, potential contamination will be at low concentrations for a small area outside of the Tshipi Borwa Mine area.

As a combination, the unmitigated and mitigated probability is low.

Significance

The significance of this potential impact in both the unmitigated and mitigated scenarios is low.

No additional latent impacts have been identified. Modelling includes contributions from off-site sources in the context of current water quality. The predictive modelled results are therefore cumulative in nature.

Unmitigated and Mitigated – summary of the impact

Severity / nature	Duration	Spatial scale / extent	Consequence	Probability of Occurrence	Significance	
Unmitigated						
L	Н	L	М	L	L	
Mitigated/Residual impact						
L	Μ	L	L	L	L	

Project impact within the context of approved closure commitments

The impact associated with the contamination of groundwater resources was assessed as part of the approved EMPr's (SLR, August 2017 and April 2019). In this regard, the significance of the impact was rated low in the mitigated and unmitigated scenarios. The proposed project does not change the significant impact ratings, however the proposed project minimises the extent of the pollution plume because of the hydraulic sink associated with the partially backfilled pit.

Summary of the impact significance rating in the context of the approved commitments

Management	Approved EMPr (August 2017)	Proposed project
Unmitigated	Low	Low
Mitigated	Low	Low

Management objective

The objective is to prevent pollution of groundwater resources and related harm to other water users.

Management actions

Implement the following management actions:

- Tshipi will implement the management actions for the decommissioning phase as outlined in the approved EMPr's (SLR, August 2017 and April 2019). These management actions focus on implementing the stormwater management plan, pollution prevention through appropriate infrastructure design of waste rock dumps and updating the groundwater model;
- Post closure ground water monitoring will be undertaken until it is no longer deemed necessary. The post closure monitoring programme is included in Section **Error! Reference source not found.**; and
- If water users experience any Tshipi related contamination, Tshipi will provide compensation, which could include an alternative water supply of equivalent water quality. This commitment extends into the closure phase.

Figure 14-1: Predicted chloride plume – year 100 of simulation (SLR, 2018)

Monitoring requirements						
Activity Impacts requiring monitoring	Functional requirements for monito	oring	Monitoring and reporting frequency and time period for management actions			
		WATER ASPECTS				
Contamination of surface	Ephemeral surface water courses a	nd pit lake water quality				
water	Monitoring of surface water quality water flow is present in the Vlermu be taken from both upstream and addition to this, the sampling of undertaken. Refer to Figure 15 for points. Water quality analyses results sho (2015) Water Quality Standards and Watering (1996), or whichever is a should be assessed by a suitably-qu African Council for Natural Scienti that need to be analysed are summa pH Conductivity in mS/m at 25 ° c Temperature Dissolved oxygen Total dissolved solids (TDS) at 180 ° c Alkalinity as CaCO3 Carbonate as HCO3 Boron as B Nitrate as N	will be undertaken in the event that surface nisleegte River. In this regard, samples should downstream of the Vlermuisleegte River. In F the pit lake water quality must also be the location of the surface water monitoring ould be classified in terms of the SANS 241 the DWAF Target Quality Range for Livestock pplicable at the time. The monitoring results nalified professional registered with the South fic Professional (SACNASP). The parameters arised in the table below. Surface water flow in the Vlermuisleegte Pit lake Surface water flow in the Vlermuisleegte Pit lake Pit lake Surface water flow in the Vlermuisleegte Surface water flow in the Vlermuisleegte	Monitoring will be undertaken when the Vlermuisleegte River is in flow. Monitoring of the pit lake water quality will be undertaken for a minimum of 25 years . In this regard, quarterly monitoring will be required for the first 5 years, reducing to bi-annually for the next 10 years. Monitoring reports need to be submitted to the DWS.			
		Pit lake				

Activity Impacts requiring monitoring	Functional requirements for monitoring		Monitoring and reporting frequency and time period for management actions
	Chloride as Cl Sulphate as SO4	Surface water flow in the Vlermuisleegte Surface water flow in the Vlermuisleegte Pit lake	
	Fluoride as F Sodium as Na Potassium as K	Surface water flow in the Vlermuisleegte Surface water flow in the Vlermuisleegte Surface water flow in the Vlermuisleegte	
	Calcium as Ca Magnesium as Mg Manganese as Mn Full metal scan - Inter Coupled Plasma Scan (ICP) (via Mass	Surface water flow in the Vlermuisleegte Surface water flow in the Vlermuisleegte Surface water flow in the Vlermuisleegte Surface water flow in the Vlermuisleegte Pit lake	
	Floating wetlands		
	Monitoring of the effectiveness of by a qualified specialist. Monitorin minimum of 25 years because the fl and the size of the wetland needs to meet DWS livestock watering object	the floating wetland needs to be undertaken ng of the floating wetland is required for a oating wetland system takes time to establish o be appropriate to treat the pit lake water to vives.	Monitoring should be undertaken for a minimum of 25 years.
Contamination of groundwater resources	Post closure groundwater quality m 15 for the location of the groundwa after the first 5 years of monitoring to determine the possibility of re monitored.	nonitoring will be undertaken. Refer to Figure ter monitoring points. It is recommended that is complete, a qualified specialist is contacted educing the number of boreholes that are	Groundwater quality must be monitored will be undertaken for a minimum of 10 years . In this regard, monitoring is bi-annually monitoring is required for the first 5 years, reducing to annually for the next 5 years. Monitoring reports need to be submitted to the
	Water quality analyses results sho (2015) Water Quality Standards and Watering (1996) or whichever is an should be assessed by a suitably-qu African Council for Natural Scienti	DWS on an annual basis.	

Activity Impacts requiring monitoring	Functional requirements for monitoring	Monitoring and reporting frequency and time period for management actions
	that need to be analysed are summarised in the table below. pH Conductivity in mS/m at 25 ° c Total dissolved solids (TDS) at 180 ° c Alkalinity as CaCO3 Carbonate as CO3 Bicarbonate as HCO3 Boron as B Nitrate as N Chloride as Cl Sulphate as SO4 Fluoride as F Sodium as Na * Potassium as K * Calcium as Ca * Magnesium as Mg * Manganese as Mn * Full metal scan - Inter Coupled Plasma Scan (ICP) (via Mass Spectrometry (MS)	

APPENDIX 04: IAP COMMENT

A public consultation process was undertaken for the proposed project. In this regard, the public participation process was undertaken in accordance with the requirements of Chapter 6 of Regulations 982 of 4 December 2014 (EIA Regulations), as amended. In addition to this, consideration was also given to the public participation guideline in terms of the NEMA (2017). The purpose of the public participation process was to notify landowners, land users and other key stakeholders of the proposed project and to provide them with opportunity to raise any initial issues or concerns regarding the proposed project.

The details of the public participation process are outlined in the Basic Assessment Report compiled in support of the proposed project, however a summary of the comments raised during the public participation process of the proposed project coupled with the response is included in the table below.

Interested and affected party	Date comment received	Issues raised	Response provided
Fhatuwani Magonono	tuwani Magonono Comments raised at a The pit lake water focussed meeting held on 21 June 2019 because of the WRI will end up infiltr to the groundwater		The waste rock has been subjected to leaching tests and these show results are comparable to the concentrations in the groundwater. The modelling has also shown however, that the amount of runoff that would enter the pit lake scenario is much lower than the volume of groundwater that will collect and therefore the influence from the waste rock runoff is very low compared to the groundwater chemistry. The selected options of the closure will mean that the pit lake will act as a sink and prevent the groundwater chemistry migrating beyond the pit lake boundary and therefore any influence on the surrounding groundwater quality is low.
		Will the pit spill?	The modelling has indicated the pit will never over top.
		The most critical part in terms of this application will be the geohydrological report, which must cover the modelling of the plume and the monitoring boreholes (post closure monitoring) both near and downstream.	This is explained below

Summary of Comments

APPENDIX 05: NEMA TABLE

This specialist report was compiled taking into consideration the requirements for specialist reports as outlined in Appendix 6 of Regulations 982 of 4 December 2014 (EIA Regulations), as amended. The table below provides a summary of the requirements, with cross references to the report sections where these requirements have been addressed.

No.	Requirement	Section in report
a)	Details of -	
(i)	The specialist who prepared the report	Section 1.0
(ii)	The expertise of that specialist to compile a specialist report including a curriculum vitae	Section 1.0
b)	A declaration that the specialist is independent	Section 1.1
c)	An indication of the scope of, and the purpose for which, the report was prepared	Section 2.1
cA)	An indication of the quality and age of base data used for the specialist report	Section 5.0
cB)	A description of existing impacts on the site, cumulative impacts of the proposed development and levels of acceptable change	Covered in other documents
d)	The duration, date and season of the site investigation and the relevance of the season to the outcome of the assessment	Section 5.6.3
e)	A description of the methodology adopted in preparing the report or carrying out the specialised process inclusive of equipment and modelling used	Section 4.0
f)	Details of an assessment of the specific identified sensitivity of the site related to the proposed activity or activities and its associated structures and infrastructure, inclusive of a site plan identifying site alternatives	Appendix 03
g)	An identification of any areas to be avoided, including buffers	Covered in other documents
h)	A map superimposing the activity including the associated structure and infrastructure on the environmental sensitivities of the site including areas to be avoided, including buffers	Appendix 06. Please note that there are no sensitive water courses located within the Tshipi surface use area and as such no buffers are applicable.
i)	A description of any assumption made and any uncertainties or gaps in knowledge	Section 10.2.1
j)	A description the findings and potential implication\s of such findings on the impact of the proposed activity, including identified alternatives on the environment or activities	Section 9.0
k)	Any mitigation measures for inclusion in the EMPr	Appendix 03
I)	Any conditions for inclusion in the environmental authorisation	Covered in other documents
m)	Any monitoring requirements for inclusion in the EMPr or environmental authorisation	Appendix 03
n)	A reasoned opinion -	Section 13.0
(i)	As to whether the proposed activity, activities or portions thereof should be authorised	

No.	Requirement	Section in report
(iA)	Regarding the acceptability of the proposed activity or activities	Section 13.0
(ii)	If the opinion is that the proposed activity, activities or portions thereof should be authorised, any avoidance, management and mitigation measures that should be included in the EMPr, and where applicable, the closure plan	
o)	A description of any consultation process that was undertaken during the course of preparing the specialist report	Appendix 04
p)	A summary and copies of any comments received during any consultation process and where applicable all responses thereto; and	Appendix 04
q)	Any other information requested by the competent authority	Not applicable

APPENDIX 06: PROPOSED SITE LAYOUT

SLR Ref No: 405.03471.00039 June 2019

DRAWINGS

Drawing 01

3. CONCURRENT BACKFILL

7. LAYER 2 IS BULK CHEMISTRY WITH PRECIPITATION OF MAIN PHASES

2. <u>PARTIAL BACKFILL</u>	
2. <u>PARTIAL BACKFILL</u>	
FACE WATER OFF INTO PIT RAINFALL EVAPORATION POST REBOUND GROUNDWATER LEVEL (CHEMISTRY FROM MONITORING)	
WASTE ROCK INERALOGY FROM CK DESCRIPTIONS	
 NOTES: 1. USE PHREEQ TO EQUILIBRATE GW CHEMISTRY WITH REACTIVE MINERALS IN WASTE ROCK 2. A SMALL COMPONENT OF THE SATURATED ROCK WILL HAVE RUNOFF - AMOUNT DEPENDS ON RISING GW RATE VS RUNOFF 3. IF APPLICABLE USE SPLP DATA TO MIX WITH EQUILATE GW DATA 	
4. <u>NO BACKFILL</u>	
SURFACE WATER RUNOFF INTO PIT RAINFALL EVAPORATION	
POST REBOUND GROUNDWATER LEVEL	
HYDRAULIC SINK PIT L1 GW FLOW DIRECTION DIRECTION (CHEMISTRY FROM MONITORING) L2 D0 AB JR 02.19 Revision By Chk'd By Date Comment	nts.
NOTES: 1. NO EQUILIBRATION OF GW AND SPLP BEFORE USING GOLDSIM 2. BULK CHEMISTRY FROM A (GOLDSIM) AND FOULL UPPATEWITH Q. AND CO. IN ATMOSPHERE ALLOW	
PRECIPITATION OF MINERAL PHASES 3. THICKNESS OF LAYER 1 BASED ON PIT DIMENSIONS - IF IT FORMS 4. THERMOCLINE THICKNESS BASED ON LAKE DIMENSIONS 5. LAYER 2 IS BULK CHEMISTRY WITH PRECIPITATION OF MAIN PHASES 4. THERMOCLINE THICKNESS BASED ON LAKE DIMENSIONS 5. LAYER 2 IS BULK CHEMISTRY WITH PRECIPITATION OF MAIN PHASES	LOCHSIDE VIEW DINBURGH PARK EDINBURGH EH12 9DH 14 (0)131 335 6830 w.sirconsulting.com
Site TSHIPI PIT BORWA MANGANESE MIN	NE
Project SPECIALIST HYDROLOGICAL AND GE EMP3 MODELLING Drawing Title	EOCHEMICAL
CONCEPTUAL SITE MODEL WATER QUALITY PREDICT	l for 'Ion
Scale Date NTS FEBRUARY 2	2019
Drawing Number	D0
© This drawing and its content are the copyright of SLR Consulting Ltd and may not be reproduced or amended except by prior written permission. SLR Consulting Ltd accepts no liability for any amendments m	made by other persons

•

EUROPEAN OFFICES

United Kingdom

AYLESBURY T: +44 (0)1844 337380

T: +44 (0)113 258 0650

T: +44 (0)203 805 6418

T: +44 (0)1622 609242

T: +44 (0)161 872 7564

NEWCASTLE UPON TYNE T: +44 (0)191 261 1966

T: +44 (0)115 964 7280

T: +44 (0)114 245 5153

T: +44 (0)1743 23 9250

T: +44 (0)1786 239900

T: +44 (0)1905 751310

LEEDS

LONDON

MAIDSTONE

MANCHESTER

NOTTINGHAM

SHEFFIELD

SHREWSBURY

STIRLING

WORCESTER

BELFAST T: +44 (0)28 9073 2493

BRADFORD-ON-AVON T: +44 (0)1225 309400

BRISTOL T: +44 (0)117 906 4280

CAMBRIDGE T: + 44 (0)1223 813805

CARDIFF T: +44 (0)29 2049 1010

CHELMSFORD T: +44 (0)1245 392170

EDINBURGH T: +44 (0)131 335 6830

EXETER T: + 44 (0)1392 490152

GLASGOW T: +44 (0)141 353 5037

GUILDFORD T: +44 (0)1483 889800

Ireland

DUBLIN T: + 353 (0)1 296 4667 France

GRENOBLE T: +33 (0)**6 23 37 14 14**

www.slrconsulting.com

