CONSTRUCTION	Intensity	Duration	Extent	Consequence	Significance	Intensity	Duration	Extent	Consequence	Significance	Main Mitigation Measures
SHAFT COMPLEX											
Sediment Transport into Wetlands	Medium	Short- term	Medium	Medium	High	Low	Short- term	Medium	Medium	High	Sediment trapping, attenuate stormwater flows, wetlands demarcated as no-go areas. Educate staff regarding the importance of wetlands
Erosion due to stormwater	Medium	Short- term	Medium	Medium	High	Low	Short- term	Medium	Medium	Medium	Stormwater management, attenuate flows, no releases directly into wetlands
Decline in Water quality	Medium	Short- term	Medium	Medium	High	Low	Short- term	Medium	Medium	Medium	Manage spills/leaks, hazardous waste, stormwater
Spread of Alien Fish	High	Long term	High	Very High	Medium	Very Low	Long term	High	Medium	Low	No stocking of alien fish
Spread of alien vegetation	Low	Long term	Medium	Medium	Medium	Very Low	Long term	Medium	Medium	Medium	Alien vegetation Management Plan

 Table 9-1 Impact Assessment, pre- and post-mitigation, for the Alexander Project.

CONSTRUCTION	Intensity	Duration	Extent	Consequence	Significance	Intensity	Duration	Extent	Consequence	Significance	Main Mitigation Measures
Loss of species/Decline in ecological integrity	Low	Medium term	Medium	Medium	Medium	Very Low	Medium term	Medium	Medium	Medium	Manage water quality, habitats and flow. Implement a Biodiversity Management Plan
CONVEYOR											
Decline in pan habitat and biota	Medium	Long-term	Very Low	Medium	High	Low	Long-term	Very Low	Medium	Medium	Consider pan basins (including surrounding buffer) no-go areas. Prevent runoff and sediment transport into pan basin. Runoff to be directed into grassed verges outside of wetland areas. Dust suppression on untarred roads. Protect any habitats identified as Giant bullfog habitat. Implement Biodiversity Management Plan
Sediment transport into wetlands	Mediu m	Short- term	Mediu m	Mediu m	High	Mediu m	Short- term	Mediu m	Mediu m	Medium	Sediment trapping. Ensure attenuated flows of stormwater into grassed verges and not directly into wetland areas. Wetlands and pans demarcated as no-go areas. Avoid wetland crossings, if possible.
Erosion of wetlands due to accelerated flows and stormwater runoff	Low	Short Term	Medium	Medium	Medium	Low	Short Term	Medium	Medium	Medium	Avoid wetland crossings, if possible. Where unavoidable, crossings to span the wetland to minimise disturbance. Culverts must be large enough to avoid disrupting flow patterns. Runoff to be attenuated and directed into grassed verges and not directly into wetlands. Wetlands demarcated as no-go areas.
Deterioration in water quality and loss of sensitive species	Mediu m	Short term	Mediu m	Mediu m	High	Mediu m	Short term	Mediu m	Mediu m	Medium	Cordon off wetlands and pans and prevent access. Manage spills/leaks, hazardous waste. Attenuate stormwater runoff into grassed verges and not directly into wetlands. Trap sediments. Dust suppression.
Loss of Fish and Amphibians	Medium	Very long term	Medium	High	High	Medium	Short term	Medium	Medium	Medium	Manage water quality, habitats and flow. Conveyor footprint and construction activities to remain outside of wetlands and pan basins (including catchment). Runoff to be managed to avoid decline in water quality and habitat deterioration (erosion and sedimentation) within receiving wetlands. Compile and implement a Biodiversity Management Plan.

OPERATIONAL	Intensity	Duration	Extent	Consequence	Significa nce	Intensity	Duration	Extent	Consequence	Significa nce	Main Mitigation Measures
MINING											
Altered flows due to subsidence	Low	Permanent	Medium to High	Medium to High	Medium to high	Very Low	Permanent	Medium	Medium	Medium	No undermining of channelled valley bottom wetlands and floodplaain wetlands (in particular, the Steenkoolspruit and Piekespruit). No total extraction beneath wetlands.
Contamination of groundwater	High to Very High	Very long term	High to Very High	High to Very high	Very High	High	Long term	High	Medium	High	Use appropriate lining for the waste rock dump; Prevent ingress of water into underground workings. Treat mine water to acceptable level and return to the environment.
Decline in water quality (AMD and decant)	Very High	Very Long	Very High	Very High	Very High	Medium to High	Very Long	Medium to High	High	High	Treat mine water to acceptable level and return to the environment. Prevent ingress of surface water into underground workings
Loss of aquatic biota	High	Permanent	High (to Very High)	Very High	High	Medium	Permanent	Medium	High	High	Manage water quality, habitats and flow; Biodiversity Management Plan
Decline in habitats (blasting)	Low	Long term	Low	Medium	Medium	Very Low	Long term	Low	Medium	Medium	Stabilise banks and rehabilitate wetlands

OPERATIONAL	Intensity	Duration	Extent	Consequence	Significa nce	Intensity	Duration	Extent	Consequence	Significa nce	Main Mitigation Measures
SHAFT COMPLEX											
AMD (waste rock dump)	High	Long-term	High	High	High	Medium	Long-term	High	High	High	Use appropriate lining for the waste rock dump; prevent pooling of water; separate clean and dirty stormwater.
Water quality deterioration (coal contaminants)	Low	Long term	Medium	Medium	High	Very Low	Long term	Medium	Medium	Medium	Prevent spills of coal or coal dust, ensure coal dust is washed into dirty water system
Water quality deterioration (spills/leaks)	Low to High	Short term	Medium to Very	Medium to High	Medium to High	Low	Short term	Medium	Medium	Medium	Manage spills/leaks, hazardous waste, stormwater separation
Water quality deterioration (major spills)	Very High	Short term	High to Very High	Medium to High	Medium to High	Very High	Short term	High to Very High	Medium to High	Medium	Compile emergency preparedness plan
Habitat decline due to stormwater/erosion	Low	Long term	Medium	Medium	Medium	Very Low	Long term	Medium	Medium	Medium	Stormwater management, attenuate flows, no releases directly into wetlands
Habitat decline due to sedimentation	Low	Long term	Medium	Medium	Medium	Very Low	Long term	Medium	Medium	Medium	Sediment trapping, attenuate stormwater flows, wetlands demarcated as no-go areas. Educate staff regarding the importance of wetlands

OPERATIONAL	Intensity	Duration	Extent	Consequence	Significa nce	Intensity	Duration	Extent	Consequence	Significa nce	Main Mitigation Measures
Habitat decline due to alien vegetation	Low	Long term	Medium	Medium	High	Low	Long term	Medium	Medium	Medium	Alien Vegetation Management Plan
Impacts to fish abundance and distribution	High	Long term	High	High	Medium	High	Long term	High	High	Medium	Manage water quality, habitats and flow. Implement a Biodiversity Management Plan. No instream dams or weirs. No introduction of alien fish species.
Conveyor											
Decline in pan habitat and biota	Medium	Medium	Low	Medium	High	Medium	Medium	Low	Medium	Medium	Consider pan basins (including surrounding catchments) as no-go areas. Prevent spills of coal or coal dust. Prevent runoff and sediment transport into pan basin. Dust suppression on untarred roads. Implement Biodiversity Management Plan. Protect Giant bullfrog habitat (where applicable)
Decline in water quality	Mediu m	Long term	Mediu m	Mediu m	High	Low	Long term	Mediu m	Mediu m	Medium	Sediment trapping. Prevent spills of coal or coal dust. Stormwater to be attenuated and directed away from wetland areas. Dust suppression on untarred roads. Emergency preparedness plan in the event of major spills.
Decline in habitat integrity (sedimentation/erosi on) of tributaries	Mediu m	Long term	Mediu m	Mediu m		Low	Long term	Mediu m	Mediu m	Medium	Culverts must be large enough to avoid disrupting flow patterns and should be kept clear to avoid flow obsstructions. Runoff to be attenuated and directed into grassed verges and not directly into wetlands.
Decline in biodiversity	Mediu m	Long term	Mediu m	Mediu m	High	Low	Long term	Mediu m	Mediu m	Medium	Wetlands and pans to be considered no go areas (including buffers). Runoff to be managed to avoid decline in water quality and habitat deterioration (erosion and sedimentation) within receiving wetlands. Implement biodiversity management plan.

DECOMMISSIONIN G AND CLOSURE	Intensity	Duration	Extent	Consequence	Significa nce	Intensity	Duration	Extent	Consequence	Significa nce	Main Mitigation Measures
MINING											
Altered flows due to subsidence	Low	Permanent	Medium to High	Medium to High	Medium to high	Very Low	Permanent	Medium	Medium	Medium	No undermining of channelled valley bottom wetlands and floodplaain wetlands (in particular, the Steenkoolspruit and Piekespruit). No total extraction beneath wetlands.
Groundwater contamination and AMD	High to Very High	Very long term	High to Very High	High to Very high	Medium to High	High	Long term	High	Medium	High	Use appropriate lining for the waste rock dump; Prevent ingress of water into underground workings. Treat mine water to acceptable level and return to the environment.
Decline in water quality (decant)	Very High	Very Long Term	Very High	Very High	Very High	Medium to High	Very Long Term	Medium to High	High	High	Treat mine water to acceptable level and return to the environment. Prevent ingress of surface water into underground workings
Loss of aquatic biota	High	Permane nt	High (to Very	Very High	High	Medium	Permane nt	Medium	High	High	Manage water quality, habitats and flow; Biodiversity Management Plan

DECOMMISSIONIN G AND CLOSURE	Intensity	Duration	Extent	Consequence	Significa nce	Intensity	Duration	Extent	Consequence	Significa nce	Main Mitigation Measures
SHAFT COMPLEX											
Water quality deterioration (due to coal contaminants)	Low	Long- term	Medium	Medium	Medium	Very Low	Short term	Medium	Medium	Medium	Prevent spills of coal or coal dust, ensure coal dust is washed into dirty water system
Water quality deterioration (due to spills/leaks)	Low	Short- term	Medium	Medium	High	Very Low	Short- term	Medium	Medium	Low	Manage spills/leaks, stormwater
Water quality deterioration (due to hazardous waste)	Low	Short- term	Medium	Medium	Medium	Very Low	Short- term	Medium	Medium	Low	Dispose of all solid and hazardous waste at registered facility
Habitat decline due to stormwater/erosion	Low	Short term	Medium	Medium	Medium	Very Low	Short- term	Medium	Medium	Low	Stormwater management, attenuate flows, no releases directly into wetlands
Habitat decline due to sedimentation	Low	Short term	Medium	Medium	Medium	Very Low	Short-term	Medium	Medium	Medium	Sediment trapping, attenuate stormwater flows, wetlands demarcated as no-go areas. Educate staff regarding the importance of wetlands

DECOMMISSIONIN G AND CLOSURE	Intensity	Duration	Extent	Consequence	Significa nce	Intensity	Duration	Extent	Consequence	Significa nce	Main Mitigation Measures
Habitat decline due to alien vegetation	Medium	Long term	Medium	Medium	High	Low	Short term	Medium	Medium	Medium	Alien Vegetation Management Plan
Conveyor											
Water quality deterioration (due to spills and leaks)	Low	Short- term	Medium	Medium	Medium	Very Low	Short- term	Medium	Medium	Low	Manage spills/leaks, stormwater
Decline in water quality (due to hazardous waste)	Low	Short- term	Medium	Medium	Medium	Very Low	Short- term	Medium	Medium	Low	Dispose of all solid and hazardous waste at registered facility
Decline in habitat integrity (due to sedimentation/erosi on)	Low	Short term	Medium	Medium	Medium	Very Low	Short-term	Medium	Medium	Medium	wetlands and pans to be considered no-go areas. Stormwater management, attenuate flows, no releases directly into wetlands
Habitat decline due to alien vegetation	Low	Long term	Medium	Medium	High	Low	Short term	Medium	Medium	Medium	Alien Vegetation Management Plan

9.5 Recommendations for Biomonitoring

It is recommended that the sampling sites used in this survey be used during biomonitoring, with the possible addition of sampling sites upstream and downstream of proposed developments.

Biomonitoring protocols should include:

- SASS5, together with a habitat assessment (e.g. IHAS)
- Fish
- Diatoms at sites upstream and downstream of the shaft complex
- Wetland monitoring (This should include monitoring of the main drivers of wetland function water quality, erosion/sedimentation, vegetation and hydrology)

In addition, WET toxicity testing should be conducted on water sampled from pollution control facilities (to determine the risk of causing toxicity in the event of controlled or uncontrolled releases).

Biomonitoring should be conducted biannually (wet and dry season), while toxicity testing should be conducted quarterly. A baseline survey should be conducted prior to the commencement of construction.

10 SUMMARY AND CONCLUSIONS

Summary of Baseline Environment

The Piekespruit had the highest biotic integrity in terms of habitats, aquatic macroinvertebrates and fish. The upstream site was considered Largely Natural (PES B), with a high diversity of fish and aquatic macroinvertebrates and a relatively high prevalence of sensitive taxa. However, the biotic integrity decreased in a downstream direction to a PES C (Moderately Modified condition) upstream of its confluence with the Steenkoolspruit. This was as a result of erosion, particularly below farm dams, which has reduced the availability and suitability of marginal habitats. The decline in biotic integrity was mainly a response to declining habitats and not to water quality impacts. This means that rehabilitation of habitats is likely to be followed by improved integrity.

Otter tracks were recorded along the Piekespruit and the upper reach of the Steenkoolspruit, indicating adequate availability of favourable habitat and their preferred food source (crabs, mussels, fish).

The Steenkoolspruit, upstream of the confluence with the Piekespruit, was considered, for the most part, to be Largely Natural to Moderately Modified (PES B-C) at a reach level, with some variation between individual sites. Biotic responses within this reach were mainly to habitat deterioration as a result of severe erosion and channel incision. Responses to water quality impacts were not pronounced, again indicating that restoration of habitats is likely to be followed by improved biotic conditions.

Downstream of the confluence between the Piekespruit and Steenkoolspruit, habitat integrity declined markedly as the channel becomes deeply incised and marginal habitats decline. The Steenkoolspruit was classified as Largey Modified (PES D) downstream of the confluence with the Piekespruit. The most downstream reach, adjacent and downstream of Kriel Town, was classified as Largely to Seriously Modified (PES D/E). Considerable water quality impacts were observed within this reach and sensitive taxa were completely absent.

Tributaries of the Olifants River and Viskuile River that will be impacted upon by the conveyor (sites SK-Trib, V-Trib and O-Trib) were considered to have good water quality (with a high diversity of aquatic macroinvertebrates), and to provide favourable pool habitats for dragonflies and damselflies, juveniles of indigenous fish species and amphibians, as well as otter. They are thought to play a role in supporting populations of indigenous fish species within the receiving Olifants River, where water quality impacts and predation by exotic species (mostly carp) are problematic. The wetland system that drains into the Viskuile River (Vlakkuilenspruit) to the east is thought to be particularly important in this regards. For this reason, these tributaries are considered sensitive and important in terms of supporting biodiversity within the study area.

Finally, a number of seasonal pans within the study area add to the overall biodiversity by providing suitable conditions for specialised pan-adapted fauna (such as copepods, ostracods and cladocerans). The abundance of crustaceans and planktonic organisms in these pans supports a diversity of water birds, including flamingos (greater and possibly lesser). These pans therefore provide an important habitat and food supply for migratory bird species. It should be noted that, although not all pans within the study area were

sampled, they should be regarded as having high biodiversity importance. Pans 5 and 6 were considered to be the most seasonal in nature. The potential presence of Giant bullfrog in these pans (and others within the study area) should be investigate prior to construction.

Impact Assessment and Management Recommendations

The most significant impacts associated with the proposed development include:

- The Steenkoolspruit is already severely eroded and channelized and it is expected that runoff from the shaft area will exacerbate this problem.
- Should subsidence occur in wetland areas, there may be a loss of surface water to groundwater, resulting in decreased flows in the receiving watercourses. This, in turn, will exacerbate water quality issues and habitat integrity (e.g. exposure of banks to erosion).
- It is likely that some degree of AMD will occur although the severity and extent are uncertain (see geohydrology study for further detail). Contaminated groundwater is likely to emerge in wetlands, causing a decline in water quality. Exactly where the contamination will occur cannot be exactly predicted.
- Surface water is likely to become more acidic, saline and metal-rich as a result of contaminated runoff (containing, for example, coal dust) and possible groundwater contamination.
- The greatest risk associated with any mining project is that of decant once the underground workings have filled with water post-closure. The potential decant points are not known. Depending on where the decant takes place, there is a risk that surface water will become contaminated over a large extent, extending well into the Olifants River system.
- There are likely to be impacts to biodiversity within the seasonal pans adjacent to the conveyor, mostly as a result of dust, spills and possible stormwater inputs. These can be easily mitigated by ensuring that pans, together with their catchment areas, be considered no-go areas and that vehicular access is prevented.
- The conveyor route will also affect water quality and habitats within wetland tributaries of the Olifants River and Viskuile River. Sensitive species will be lost and habitats (e.g. for amphibians, dragonflies and damselflies, fish and otter) will be compromised. Overall biodiversity will therefore decline. Fish are particularly sensitive to changes in pH to below 6.5.

Recommendations for mitigation of the above impacts include:

Contamination of groundwater, as well as subsidence and decant, are impacts that are difficult to predict and effectively mitigate. It is therefore recommended that the focus should be placed on preventing ingress of surface water into underground workings. Ideally, wetlands should not be undermined at all. In particular, channelled valley bottom and floodplain wetlands should not be undermined. Total extraction should be avoided beneath all wetlands (together with their recommended buffer zones). It is recommended that the risks of subsidence and ingress be determined and that ground water-surface water links be identified, where possible. Potential decant points should be identified and the long term treatment of mine water must be considered.

AMD associated with the waste rock dump must be mitigated by using an appropriate lining and ensuring that dirty water is effectively channeled into the dirty water stormwater system.

Disturbance of seasonal pans and their biota, must be kept to a minimum. Pans, including their catchment areas, should be considered no-go areas and vehicular access must be prevented. The potential presence of giant bullfrog within pans in the study area should be investigated (especially in Pans 5 and 6). A biodiversity management plan should be compiled and implemented for all aquatic ecosystems.

Additional mitigation measures that have been proposed include:

- Wetlands should be considered no-go areas to construction vehicles. Habitat corridors for fish, amphibians and otter should be maintained by avoiding construction in wetland areas and by ensuring the availability of good quality water and habitat.
- Minimize sediment transport into wetlands (e.g. by using sediment traps)
- Avoid leaks and spills (including of coal and of contaminated mine water) that can contaminate surface waterbodies
- Manage stormwater so as to prevent erosion in receiving wetlands
- Manage waste, including hazardous waste responsibly
- Manage biodiversity by preventing introduction of alien bass or carp, compiling and implementing a biodiversity management plan, compiling and implementing an alien vegetation management plan, conducting regular monitoring and biomonitoring, with follow up actions taken on recommendations made (biomonitoring cannot be regarded as mitigation if no follow up action is taken) and ensuring habitat and water quality impacts are managed.
- Minimise abstraction from boreholes (to prevent a lowering of the water table and reduced flows in receiving watercourses)

It is additionally recommended that a wetland rehabilitation plan be compiled for wetlands within the Alexander study area. This should focus on managing erosion and sedimentation within channelled systems.

Conclusion

Most impacts can be mitigated to an acceptable level. However, contamination of groundwater, as well as subsidence and ingress, are impacts that are difficult to predict and effectively mitigate. The significance of this impacts are therefore rated as High due to lack of certainty. Impacts due to decanting mine water are likely to be highly significant.

Despite implementation of all the recommended mitigation, some degree of water quality deterioration (through spills, leaks, seepage, etc.) and habitat loss or deterioration (mainly through erosion and sedimentation) will be inevitable. Surface water is likely to become increasingly acidic, saline and metal-rich. This will cause a decline in aquatic biota, particularly those with a high requirement for good water quality. There may be a decline both in terms of abundance and diversity, with possible impacts on animals higher up in the food chain (such as otter and birds). It is likely that the PES of the Steenkoolspruit (upstream of the confluence with the Piekespruit) will decline in integrity from a Category C (Moderately Modified) to a Category D (Largely Modified). The Olifants and Viskuile Tributaries are likely

to decline from a PES B to a PES C/D (based on SASS5), with impacts transferred to the receiving Olifants River.

Should contamination of groundwater or decant occur, the deterioration in the quality of water in receiving watercourses will be far higher and extend far further into the Olifants River system.

11 REFERENCES

- CEMAGREF.1982. Etude des méthodes biologiques quantitatives d'appréciation de la qualité des eaux. Rapport Division Qualité des Eaux Lyon - Agence Financiére de Bassin Rhône- Méditerranée- Corse. Pierre-Benite
- Clean Stream Biological Services 2013. Biomonitoring and toxicity testing of the receiving water bodies in the vicinity of Lonmin Platinum (Marikana operations) May 2013 survey.
- Dallas, H.F., Day, D. E., 1993. The effect of water quality variables on riverine ecosystems: a review. WRC Report No. TT 61/93. Water Research Commission, Pretoria.
- Davies, B. and Day, J. (1998). Vanishing Waters. University of Cape Town Press, Cape Town, South Africa. 487pp.
- De Moor IJ and Bruton MN (1988). Atlas of alien and translocated indigenous aquatic animals in southern Africa. South African National Scientific Programmes Report No 144/1988. South Africa. 310pp.
- Department of Water Affairs and Forestry. 1999. *Resource Directed Measures for Protection of Water Resources.* Volume 1. River Ecosystems Version 1.0, Pretoria.
- Dickens, C.W.S. and Graham, P.M. (1998). Biomonitoring for effective management of wastewater discharges and health of the river environment. J. Aquat. Ecosyst. Health. 1 199-217.
- Dickens, C.W.S., Graham, P.M., 2002. The South African Scoring System version 5 rapid bioassessment system for rivers. African Journal of Aquatic Science 27, 1-10.
- IUCN. 2012. International Union for Conservation of Nature and Natural Resources. Red list of threatened species. <u>www.iucnredlist.org</u>.
- Kemspter, P.L, Hattingh, W.A.J. & Van Vliet, H.R. 1980. Summarized water quality criteria. Department of Water Affairs, forestry and environmental Conservation, Pretoria. Technical Report No TR 108. 45pp.
- Kleynhans, C.J. 1996. A qualitative procedure for the assessment of the habitat integrity status of the Luvuvhu River. *Journal of Aquatic Ecosystem Healt*h 5: 41 54.
- Kleynhans, CJ (1997). An exploratory investigation of the Instream Biological Integrity of the Crocodile River, Mpumalanga, as based on the Assessment of Fish Communities. Draft Report, Department of Water Affairs and Forestry, Institute for Water Quality Studies. 61 pp.
- Kleynhans, CJ (1999). The development of a fish Index to assess the biological integrity of South African rivers. Water SA 25(3): 265-278.

- Kleynhans CJ (2003). National Aquatic Ecosystem Biomonitoring Programme: Report on a National Workshop on the use of Fish in Aquatic System Health Assessment. NAEBP Report Series No. 16. Institute for Water Quality Studies, DWAF, Pretoria. South Africa.
- Kleynhans, CJ, Thirion, C and Moolman, J (2005). A Level I River Ecoregion classification System for South Africa, Lesotho and Swaziland. Report No. N/0000/00/REQ0104. Resource Quality Services, Department of Water Affairs and Forestry, Pretoria, South Africa.
- Kleynhans CJ (2008). Module D: Fish Response Assessment Index in River EcoClassification: Manual for EcoStatus Determination (version 2) Joint Water Research Commission and Department of Water Affairs and Forestry report. WRC Report No. TT330/08.
- Kleynhans CJ, Louw MD, Moolman J. (2007). Reference frequency of occurrence of fish species in South Africa. Report produced for the Department of Water Affairs and Forestry (Resource Quality Services) and the Water Research Commission.
- Kleynhans CJ & Louw, MD (2008). Module A: Ecoclassification and Ecostatus determination: River Ecoclassification Manual for EcoStatus Determination (version 2) Joint Water Research Commission and Department of Water Affairs and Forestry report. WRC Report No. TT329/08.
- Koekemoer. S. and J. Taylor. 2011. Rapid methodology for inferring wetland water quality based on diatom analysis. Manual for the Rapid Ecological Reserve Determination of Wetlands (Version 2.0). Department of Water Affairs.
- Krammer, K. and H. Lange-Bertalot. 2000. Süßwasserflora von Mitteleuropa, Bd. 2/2: Bacillariophyceae: Teil 2: Bacillariaceae, Epithemiaceae, Surirellaceae. Spektrum Akademischer Verlag GmbH. Berlin Ed.
- Lecointe, C, Coste, M and Prygiel, J (1993). "Omnidia": Software for taxonomy, calculation of diatom indices and inventories management. Hydrobiologia 269/270: 509-513.
- Odum, E.P. (1971). Fundamentals of Ecology. Third Edition. W. B. Saunders Co. London. 310pp
- Roux, D.J. (1999). Incorporating technologies for the monitoring and assessment of biological indicators into a holistic resource-based water quality management approach - conceptual models and some case studies. Ph.D Thesis. Rand Afrikaans University, Johannesburg, South Africa.
- Skelton, P.H. 2001. A Complete Guide to the Freshwater Fishes of Southern Africa. Struik Publishers, Cape Town. 395pp.

- Taylor, JC, Harding, WR and Archibald, CGM 2007. A methods manual for the collection, preparation and analysis of diatom samples. Water Research Commission Report TT281/07. Water Research Commission. Pretori
- Uys, M.C., Goetch, P. A., & O'Keeffe, J. H., 1996. National Biomonitoring Program for Riverine Ecosystems: Ecological Indicators, a review and recommendations. NBP Report Series No. Institute for Water Quality Studies, Department of Water Affairs and Forestry, Pretoria. South Africa.
- Wolhuter L.E. & Impson D. (2007). The state of the Yellowfishes in South Africa, 2007. WRC Report no. TT 302/07, Pretoria, South Africa.

12 APPENDIX 1: SASS5 RESULTS

Table 12-1. SASS5 results for Alexander aquatic sampling sites. (Sensitive taxa are highlighted in blue).

		F	Piekespr	uit			Steenk	oolspruit	t		Olifa	ants	Visl	kuile
Taxon	SASS Score	PS1	PS2	DC2		01/0	SK3	0144	OVE	SK-DS	Olifants	Otrile	\/:=l!l.	Marile
		-		PS3	SK-US			SK4	SK5		Olifants	Otrib	Viskuile	
Oligochaeta	1	1	1	A	-	-	А	A	-	-	-	-	-	A
Potamonautidae*	3	-	1	1	-	1	-	A	-	А	-	-	-	1
Atyidae	8	A	A	A	A	-	1	A	В	-	A	-	В	А
HYDRACARINA	8	В	1	A	-	-	-	-	-	-	-	1	-	A
Baetidae 1 sp.	4	A	-	-	-	A	Α	-	В	1	A	-	-	Α
Baetidae 2 spp.	6	-	-	В	В	В	-	В	-	-	В	А	В	В
Baetidae >2 spp.	12	-	-	В	-	-	-	-	-	-	A	-	-	-
Caenidae	6	1	-	A	A	A		A	A	-	-	-	-	-
Oligoneuridae	15	-	-	-	-	A	-	-	-	-	-	-	-	-
Coenagrionidae	4	В	A	В	A	В	А	A	Α	А	A	Α	A	А
Lestidae	8	A	1	А	1	А	-	-	-	-	-	-	-	-
Aeshnidae	8	-	-	1	-	-	-	-	-	-	-	А	-	А
Belostomatidae*	3	A	-	A	A	1	1	A	A	A	1	A	A	А
Corixidae*	3	В	В	В	A	В	Α	В	В	В	С	А	В	В
Gerridae*	5	A	Α	А	-	-	Α	Α	-	-	В	А	В	А
Naucoridae*	7	-	-	-	-	A	1	1	-	-	-	-	-	-
Nepidae*	3	1	-	-	-	-	1	-	1	-	Α	-	1	-
Notonectidae*	3	Α	В	В	А	-	В	В	-	В	Α	В	1	1
Pleidae*	4	Α	-	А	-	-	-	-	Α	Α	-	Α	Α	1
Veliidae*	5	-	-	-	Α	-	1	Α	В	1	1	1	-	1
Hydropsychidae 1sp.	4	-	-	А	-	-	-	-	1	-	-	-	-	-
Hydropsychidae 2spp.	6	-	-	-	-	-	-	Α	-	-	-	-	-	-
Hydroptilidae	6	-	Α	-	-	-	-	-	-	-	-	-	-	-
Dytiscidae (adults*)	5	А	Α	-	-	-	-	Α	Α	1	Α	1	Α	Α
Gyrinidae (adults*)	5	А	Α	В	А	А	-	Α	Α	-	1	-	-	-
Hydrophilidae (adults*)	5	-	Α	-	-	-	1	Α	-	1	1	1	Α	Α
Ceratopogonidae	5	А	-	-	1	А	1	А	1	1	А	-	1	1
Chironomidae	2	В	А	А	Α	В	-	А	А	В	В	А	В	В
Dixidae*	10	-	-	-	-	-	-	-	-	-	-	-	1	-
Simuliidae	5	А	А	В	А	В	-	В	А	-	А	-	-	-
Ancylidae	6	А	-	-	-	-	1	-	-	-	-	-	Α	А
Lymnaeidae*	3	-	А	-	-	-	-	-	-	-	-	-	-	-
Physidae*	3	А	А	А	-	-	-	-	-	-	А	А	А	А
Planorbinae*	3	-	1	-	-	-	-	-	-	-	-	-	-	-
Sphaeridae	3	-	А	1	А	-	-	-	-	-	-	-	-	-
Unionidae	6	-	-	-	-	-	-	1	-	-	-	-	-	-
Total SASS5 score		95	91	98	66	76	62	97	66	46	76	64	75	93
No. of families		21	20	20	14	14	14	21	15	12	16	14	16	20
ASPT		4.52	4.55	4.90	4.71	5.43	4.43	4.62	4.40	3.83	4.75	4.57	4.69	4.65
Habitat Suitability Score (m	ax 45)	15	14	17	10	19	14	18	12	9	11	9	10	10
PES (Dallas 2007)	,	В	В	В	С	В	С	В	С	E	С	C	В	В

13 APPENDIX 2. FRAI RESULTS

Table 13-1: Fish Response Assessment Index (FRAI) results for sub-quaternary reach B11C-1501 (upper Piekespruit reach).

METRIC GROUP	METRIC	*RATING (CHANGE)	METRIC GROUP WEIGHT (%)
	Response of species with high to very high preference for FAST- DEEP conditions	0.0	
VELOCITY- DEPTH CLASSES METRICS	Response of species with high to very high preference for FAST- SHALLOW conditions	0.0	95.6
VELOCIT DEPTH CLASSE: METRICS	Response of species with high to very high preference for SLOW- DEEP conditions	-1.0	33.0
-	Response of species with high to very high preference for SLOW- SHALLOW conditions	-1.0	
S	Response of species with a very high to high preference for overhanging vegetation	-1.0	
COVER METRICS	Response of species with a very high to high preference for undercut banks and root wads	0.0	
R M E	Response of species with a high to very high preference for a particular substrate type	0.0	100
OVE	Response of species with a high to very high preference for instream vegetation	-1.0	
0	Response of species with a very high to high preference for the water column	-2.0	
o ک	Response of species intolerant of no-flow conditions	0.0	
FLOW DEPENDA NCE METRICS	Response of species moderately intolerant of no-flow conditions	0.0	77.0
ETRIC ETRIC	Response of species moderately tolerant of no-flow conditions	-1.0	77.9
ŏ≥	Response of species tolerant of no-flow conditions	0.0	
	Response of species intolerant of modified physico-chemical conditions	0.0	
PHYSICO- CHEMICAL METRICS	Response of species moderately intolerant of modified physico- chemical conditions	0.0	63.2
PHY(CHEA MET	Response of species moderately tolerant of modified physico- chemical conditions	-1.0	00.2
	Response of species tolerant of modified physico-chemical conditions	-1.0	
6 S	Response in terms of distribution/abundance of spp with catchment scale movements		
MIGRATIO N METRICS	Response in terms of distribution/abundance of spp with requirement for movement between reaches or fish habitat segments	1.0	51.5
N N	Response in terms of distribution/abundance of spp with requirement for movement within reach or fish habitat segment	1.0	
B	The impact/potential impact of introduced competing/predaceous spp?	0.5	
INTRODUCED SPECIES METRICS	How widespread (frequency of occurrence) are introduced competing/predaceous spp?	0.5	64.7
SPE	The impact/potential impact of introduced habitat modifying spp?	3.0	
	How widespread (frequency of occurrence) are habitat modifying spp?	3.0	
FRAI SCORE (%)		84	
FRAI CATEGORY	ESCRIPTION	B	
FRAI CATEGORY D	EGURIFIION	Largely	Naturai

METRIC GROUP	METRIC	*RATING	METRIC
		(CHANGE)	GROUP WEIGHT (%)
	Response of species with high to very high preference for FAST- DEEP conditions	0	
VELOCITY. DEPTH CLASSES METRICS	Response of species with high to very high preference for FAST- SHALLOW conditions	0	95.6
VELO	Response of species with high to very high preference for SLOW- DEEP conditions Response of species with high to very high preference for SLOW-	-2.0	
	SHALLOW conditions Response of species with a very high to high preference for	-1.0	
S	overhanging vegetation Response of species with a very high to high preference for undercut	-1.0	
COVER METRICS	banks and root wads Response of species with a high to very high preference for a	-2.0	
M	Particular substrate type Response of species with a high to very high preference for instream	-4.0	100
COVE	vegetation Response of species with a very high to high preference for the	-1.0	
	water column Response of species intolerant of no-flow conditions	-3.0	
CS S	Response of species moderately intolerant of no-flow conditions	0.0	
FLOW DEPENDA NCE METRICS	Response of species moderately tolerant of no-flow conditions	-4.0	77.9
E E E	Response of species tolerant of no-flow conditions	0.0	
	Response of species intolerant of modified physico-chemical conditions	0.0	
PHYSICO- CHEMICAL METRICS	Response of species moderately intolerant of modified physico- chemical conditions	-4.0	63.2
PHY: MET	Response of species moderately tolerant of modified physico- chemical conditions	-1.0	00.2
	Response of species tolerant of modified physico-chemical conditions	-1.0	
	Response in terms of distribution/abundance of spp with catchment scale movements		
MIGRATIO N METRICS	Response in terms of distribution/abundance of spp with requirement for movement between reaches or fish habitat segments	1.0	51.5
Ξź	Response in terms of distribution/abundance of spp with requirement for movement within reach or fish habitat segment	1.0	
s s S	The impact/potential impact of introduced competing/predaceous spp?	0.5	
INTRODUCED SPECIES METRICS	How widespread (frequency of occurrence) are introduced competing/predaceous spp?	0.5	64.7
SPI	The impact/potential impact of introduced habitat modifying spp? How widespread (frequency of occurrence) are habitat modifying	1.0	
	spp?	1.0	
FRAI SCORE (%) FRAI CATEGORY		68. C	8
FRAI CATEGORY D	ESCRIPTION	Moderately	Modified

Table 13-2: Fish Response Assessment Index (FRAI) results for sub-quaternary reach B11C-1472 (lower Piekespruit reach).

METRIC GROUP	METRIC	*RATING	METRIC
		(CHANGE)	GROUP WEIGHT (%)
	Response of species with high to very high preference for FAST- DEEP conditions	0.0	
VELOCITY- DEPTH CLASSES METRICS	Response of species with high to very high preference for FAST- SHALLOW conditions	0.0	95.6
	Response of species with high to very high preference for SLOW- DEEP conditions	-1.0	0010
	Response of species with high to very high preference for SLOW- SHALLOW conditions	-1.0	
S	Response of species with a very high to high preference for overhanging vegetation	-1.0	
COVER METRICS	Response of species with a very high to high preference for undercut banks and root wads	-2.0	
R ME	Response of species with a high to very high preference for a particular substrate type	-4.0	100
OVE	Response of species with a high to very high preference for instream vegetation	0.0	
0	Response of species with a very high to high preference for the water column	0.0	
α o	Response of species intolerant of no-flow conditions	0.0	
Ng	Response of species moderately intolerant of no-flow conditions	-4.0	
FLOW DEPENDA NCE METRICS	Response of species moderately tolerant of no-flow conditions	0.0	77.9
	Response of species tolerant of no-flow conditions	0.0	
	Response of species intolerant of modified physico-chemical conditions	0.0	
PHYSICO- CHEMICAL METRICS	Response of species moderately intolerant of modified physico- chemical conditions	-4.0	63.2
PHYS CHEN MET	Response of species moderately tolerant of modified physico- chemical conditions	-1.0	00.2
	Response of species tolerant of modified physico-chemical conditions	0.0	
0 S	Response in terms of distribution/abundance of spp with catchment scale movements		
MIGRATIO N METRICS	Response in terms of distribution/abundance of spp with requirement for movement between reaches or fish habitat segments	1.0	51.5
ΞZ	Response in terms of distribution/abundance of spp with requirement for movement within reach or fish habitat segment	1.0	
s s E	The impact/potential impact of introduced competing/predaceous spp?	0.5	
INTRODUCED SPECIES METRICS	How widespread (frequency of occurrence) are introduced competing/predaceous spp?	0.5	64.7
ME	The impact/potential impact of introduced habitat modifying spp?	1.0	
	How widespread (frequency of occurrence) are habitat modifying spp?	1.0	
FRAI SCORE (%)		81.	
FRAI CATEGORY FRAI CATEGORY D	ESCRIPTION	B/0 Larg	
		Natural/Mo Modi	oderately

Table 13-3: Fish Response Assessment Index (FRAI) results for sub-quaternary reach B11C-1449 (upper Steenkoolspruit reach).

1455 (Steenkoolspruit reach, downstream of the confidence with the Piekespruit).				
METRIC GROUP	METRIC	*RATING (CHANGE)	METRIC GROUP WEIGHT (%)	
VELOCITY- DEPTH CLASSES METRICS	Response of species with high to very high preference for FAST- DEEP conditions	-5.0	95.6	
	Response of species with high to very high preference for FAST- SHALLOW conditions	-5.0		
	Response of species with high to very high preference for SLOW- DEEP conditions	-3.0		
	Response of species with high to very high preference for SLOW- SHALLOW conditions	-3.0		
COVER METRICS	Response of species with a very high to high preference for overhanging vegetation	-3.0	100	
	Response of species with a very high to high preference for undercut banks and root wads	-4.0		
	Response of species with a high to very high preference for a particular substrate type Response of species with a high to very high preference for instream	-5.0		
	Response of species with a high to very high preference for instream vegetation Response of species with a very high to high preference for the	-2.0		
	water column	-3.0		
a b	Response of species intolerant of no-flow conditions	0.0	77.9	
FLOW DEPENDA NCE METRICS	Response of species moderately intolerant of no-flow conditions	-5.0		
	Response of species moderately tolerant of no-flow conditions	-3.0		
ĭ≥	Response of species tolerant of no-flow conditions	-2.0		
	Response of species intolerant of modified physico-chemical conditions	0.0	63.2	
PHYSICO- CHEMICAL METRICS	Response of species moderately intolerant of modified physico- chemical conditions	-5.0		
	Response of species moderately tolerant of modified physico- chemical conditions	-5.0		
	Response of species tolerant of modified physico-chemical conditions	-2.0		
MIGRATIO N METRICS	Response in terms of distribution/abundance of spp with catchment scale movements		51.5	
	Response in terms of distribution/abundance of spp with requirement for movement between reaches or fish habitat segments	2.0		
	Response in terms of distribution/abundance of spp with requirement for movement within reach or fish habitat segment	1.0		
INTRODUCED SPECIES METRICS	The impact/potential impact of introduced competing/predaceous spp?	3.0	64.7	
	How widespread (frequency of occurrence) are introduced competing/predaceous spp?	3.0		
	The impact/potential impact of introduced habitat modifying spp?	3.0		
	How widespread (frequency of occurrence) are habitat modifying spp?	3.0		
FRAI SCORE (%) FRAI CATEGORY		35. E	2	
FRAICATEGORY DESCRIPTION			Modified	
		201104019		

 Table 13-4: Fish Response Assessment Index (FRAI) results for sub-quaternary reach B11D-1435 (Steenkoolspruit reach, downstream of the confluence with the Piekespruit).

METRIC GROUP	METRIC	*RATING (CHANGE)	METRIC GROUP WEIGHT (%)
VELOCITY- DEPTH CLASSES METRICS	Response of species with high to very high preference for FAST- DEEP conditions	-5.0	95.6
	Response of species with high to very high preference for FAST- SHALLOW conditions	-5.0	
	Response of species with high to very high preference for SLOW- DEEP conditions	-4.0	
	Response of species with high to very high preference for SLOW- SHALLOW conditions	-3.0	
COVER METRICS	Response of species with a very high to high preference for overhanging vegetation	-3.0	100
	Response of species with a very high to high preference for undercut banks and root wads	-2.0	
	Response of species with a high to very high preference for a particular substrate type	-5.0	
	Response of species with a high to very high preference for instream vegetation	-3.0	
	Response of species with a very high to high preference for the water column	-4.0	
FLOW DEPENDA NCE METRICS	Response of species intolerant of no-flow conditions	0.0	77.9
	Response of species moderately intolerant of no-flow conditions	-5.0	
	Response of species moderately tolerant of no-flow conditions	-4.0	
ä≥	Response of species tolerant of no-flow conditions	-1.0	
PHYSICO- CHEMICAL METRICS	Response of species intolerant of modified physico-chemical conditions	0.0	63.2
	Response of species moderately intolerant of modified physico- chemical conditions	-5.0	
	Response of species moderately tolerant of modified physico- chemical conditions	-5.0	
	Response of species tolerant of modified physico-chemical conditions	-2.0	
MIGRATIO N METRICS	Response in terms of distribution/abundance of spp with catchment scale movements		51.5
	Response in terms of distribution/abundance of spp with requirement for movement between reaches or fish habitat segments	2.0	
	Response in terms of distribution/abundance of spp with requirement for movement within reach or fish habitat segment	1.0	
INTRODUCED SPECIES METRICS	The impact/potential impact of introduced competing/predaceous spp?	3.0	64.7
	How widespread (frequency of occurrence) are introduced competing/predaceous spp?	3.0	
	The impact/potential impact of introduced habitat modifying spp?	3.0	
	How widespread (frequency of occurrence) are habitat modifying spp?	3.0	
FRAI SCORE (%) FRAI CATEGORY		32. E	0
FRAI CATEGORY FRAI CATEGORY DESCRIPTION			Modified
		cenedaly	

Table 13-5: Fish Response Assessment Index (FRAI) results for sub-quaternary reach B11D-1366 (Steenkoolspruit downstream reach).