HUDSON ECOLOGY PTY LTD Reg. No. 2014/268110/07

P.O. Box 19287 Noordbrug 2522 South Africa 280 Beyers Naude Ave, Potchefstroom, 2531 Tel +27 (0) 18 2945448 Mobile +27 (0)82 344 2758 http://www.hudsonecology.co.za

HUDSON ECOLOGY Quality, affordable ecological solutions

February 2017

REPORT ON

ECOLOGICAL STUDY FOR THE BAKABUNG/LEDIG INTEGRATED MIXED USE DEVELOPMENT

Report Number: 2015/022/01/01

Submitted to:

K2M Environmental Pty Ltd

Postnet Suite 509, Private Bag x4 KLOOF 3640

DISTRIBUTION:

- 1 Copy K2M Environmental Pty Ltd
- 1 Copy Hudson Ecology Pty Ltd Library
- 1 Copy Project Folder

EXECUTIVE SUMMARY

K2M Environmental appointed Hudson Ecology Pty Ltd to undertake terrestrial ecology assessment of the proposed development adjacent to Ledig and Sun City. The proposed development is located approximately 25 kilometres north of Rustenburg, in the North-West Province, South Africa.

Based primarily on physiognomy, moisture regime, rockiness, slope, species composition and soil properties, four vegetation communities were recognised. Although, these communities were recorded as such, there is variation within these communities as a result of current and historic anthropogenic disturbance. The communities are:

- Secondary clay thornveld;
- Footslope broadleafed bushveld;
- Secondary turf thornveld; and
- Secondary riparian vegetation.

In addition, areas of complete or severe transformation and disturbance occur throughout the study area. These include inter alia, villages and roads, these areas were noted and delineated but not surveyed intensively.

No flora species of concern were were observed or recorded during the site survey.

A total of 21 arthropod taxa, 4 reptile taxa, 0 amphibians, 19 birds and 5 mammal species were recorded during the 2015 site survey None of the species recorded are listed as species of concern, but a small number of species of concern have a moderate probability of occurrence in the area.

Much, if not all, of the vegetation within the study area has been disturbed, but in general the thornveld is of moderate ecological integrity. In addition, other anthropogenic activities including agriculture, livestock grazing and mining outside the study area have also disturbed large tracts of vegetation. This notwithstanding, at a landscape level these communities are important dispersal habitats, linking the mountainous Pilanesberg to the hills and ridges located in the study area, and to other habitats located north-west of the study area. Where not transformed or heavily degraded, the ecological function of the riparian zones and broadleaf bushveld can be considered high. The transformed and severly degraded areas have low ecological integrity.

The conservation importance of the broadleaf footslope vegetation is considered moderate, as although in large areas it has been transformed and disturbed, the presence of the Red Data species cannot be excluded.

Rivers (including non-perennial streams) are longitudinal ecosystems, and their condition at any point is a reflection of not only upstream activities, but also of those within adjacent and upstream parts of the catchment. River systems are subject to strict legislation (e.g. National Water Act) to protect the water resources in South Africa.

The majority of the area is characterised as being transformed or secondary vegetation communities and therefore have low conservation importance, due to the lack of species of conservation importance being present in, or reliant on these vegetation communities.

TABLE OF CONTENTS

SECTION

PAGE

1	Introduction5		
2	Project description5		
2	2.1	Background and location5	
4	Scope of W	ork5	
2	1.1	Flora component	
2	1.2	Fauna component	
5	Assumption a	nd limitations6	
6	Methodology		
e	5.1	Methodologies6	
	6.1.1	General Floristic Attributes	
	6.1.2	Red Data Floral Assessment7	
	6.1.3	Floristic Sensitivity Analysis7	
	6.1.4	General Faunal Attributes	
	6.1.5	Red Data Faunal Assessment8	
7	Assumption	ns and limitations9	
8	Results	9	
٤	3.1	Physical Setting9	
	8.1.1	Zeerust Thornveld (SVcb3)10	
8	3.2	Flora Assessment11	
	8.2.1	Vegetation Communities	
	8.2.2	Flora species of concern14	
8	3.3	Fauna Assessment14	
	8.3.1	Arthropoda14	
	8.3.2	Herpetofauna15	
	8.3.3	Avifauna16	
	8.3.4	Mammalia17	
8	3.4	Ecological Integrity	
8	3.5	Conservation Importance19	
9	Discussion	and conclusions	
10	REFERENC	ES	

LIST OF FIGURES

Figure 1: Vegetation types occurring in the study area (Mucina and Rutherford, 2006)	10
Figure 2: Study area showing vegetation communities	12
Figure 3: Ecological integrity within the study area	19
Figure 4: Conservation importance within the study area	20

LIST OF TABLES

Bakubung/Ledig Integrated Development – Ecological Study

LIST OF APPENDICES APPENDIX A APPENDIX B APPENDIX C APPENDIX D APPENDIX E APPENDIX F

1 INTRODUCTION

K2M Environmental appointed Hudson Ecology Pty Ltd to undertake terrestrial ecology assessment of the proposed development adjacent to Ledig and Sun City. The proposed development is located approximately 25 kilometres north of Rustenburg, in the North-West Province, South Africa.

2 PROJECT DESCRIPTION

2.1 Background and location

The area under investigation for this development is situated between Ledig, Sun City and Pilanesberg Nature Reserve in the North-West proving and is bordered to the south by the R556 provincial road. The area is approximately 290 ha and is currently not formally utilised.

3 AIMS AND OBJECTIVES

The terms of reference for the terrestrial ecosystems specialist study are:

- To conduct a flora and fauna survey of the site;
- To identify the potential for threatened species (Red Data fauna and flora species) to occupy the study site;
- To conduct a habitat suitability assessment for fauna species, particularly Red Data species;
- To provide an indication of the ecological function of the study site and identify specific areas of sensitivity or conservation importance;
- To assess the impacts of the proposed activity on the species and ecological integrity and processes of the study site; and
- To recommend suitable mitigation and enhancement measures to avoid or reduce any significant adverse impacts.

4 SCOPE OF WORK

4.1 Flora component

The scope of work compromises the following tasks:

- Conduct an initial literature review of vegetation likely to occur in the study area;
- Develop a species list of Red Data and protected plants according to the relevant literature for the IUCN and South Africa;
- Conduct a field survey of the study area (using standard scientific methodology);
- Identify general vegetation communities in the study area;
- Identify dominant plant species;
- Record Red Data and protected species;
- Identify invader or exotic species;
- Identify sensitive landscapes and habitats including wetland and riparian habitats as these are often intricately linked to the surrounding terrestrial habitats; and
- Identify possible impacts of the proposed development.

4.2 Fauna component

The tasks for the fauna component comprise the following:

• Conduct initial literature review of fauna species likely to occur in the study area;

- Develop a species list of Red Data and protected animals according to the IUCN and South African protected and Red Data species lists;
- Conduct a field survey (using standard scientific methodology);
- Identify terrestrial fauna occurring within the study area;
- Record Red Data and protected fauna species;
- Identify any exotic species; and
- Identify possible impacts of the proposed development on fauna populations.

5 ASSUMPTION AND LIMITATIONS

The report is based on the following assumptions:

- The accuracy of GPS points taken in the field is within 15m;
- Delineations and related spatial data generated by GAA can be supplied in GIS (shapefile) format only and will be for use in conceptual planning purposes only and not detailed design;
- The assessment of the impact of past activities on the ecosystems will be based on professional judgement;
- Historical data relating to terrestrial ecosystems provided to GAA by the client is assumed to be correct;
- Data and information obtained through official documents or websites, peer reviewed scientific articles and previous ecological studies are assumed to be correct;
- No review or correction of any data obtained by any means, other than the study itself, will be undertaken by GAA;
- It is noted that unusual environmental conditions (such as unusual high or low rainfall) may cause unusual states of biodiversity during the period of study, which may not normally exist; and
- It is noted that the site survey was conducted during the wet season, although very dry conditions were prevalent due to the persistent drought, and over a single sampling bout and will not account for seasonal variation or long term temporal changes in biodiversity

6 METHODOLOGY

6.1 Methodologies

During November 2015 a field study was conduced in the study area. During this period 10 sites were selected for intensive study of flora and fauna.

6.1.1 General Floristic Attributes

The vegetation assessment was based on a variation of the Braun-Blanquet method (Mueller-Dombois & Ellenberg, 1974; Westhoff & Van der Maarel, 1978) whereby vegetation is stratified, by means of aerial or satellite imagery with physiognomic characteristics as a first approximation. Stratification was further augmented by sites being selected to represent each of the areas that will be impacted by the current development footprint. Representative areas within these stratifications are then surveyed by means of line-point transects for grasses, sedges and forbs, as well as belt transects for shrubs and trees. Data obtained from these surveys are then subject to analysis to establish differences or similarities between observed units. Results and species lists provided should be interpreted with the above mentioned survey limitations in mind.

During the floral surveys conducted during the August 2015 survey, cognisance was taken of the following environmental attributes and general information:

- Biophysical environment (geology, topography, aspect, slope etc.);
- Regional vegetation;
- Current status of habitats;

- Red Data habitat suitability;
- Digital photographs; and
- GPS reference points.

Phytosociological data accumulated include the following:

- Plant species and growth forms;
- Dominant plant species;
- Cover abundance values; and
- Samples or digital images of unidentified plant species.

The desktop analysis of data was used to establish differences or similarities between vegetation communities, which were then described in terms of floristic species composition as well as driving environmental parameters. Results and species lists provided should be interpreted with the abovementioned survey limitations in mind.

6.1.2 Red Data Floral Assessment

- Compared data collected during the surveys and the IUCN Red Data plant species list and South African Threatened and Protected species (TOPS) list to compile a list of plant species of concern that may potentially occur within the study area and that were recorded in the study area.
- A survey of this kind (instantaneous sampling bout or "snapshot" investigations) poses limitations to the identification of Red Data plant species. Therefore, emphasis was placed on the identification of habitat that would be suitable for sustaining Red Data plant species, by associating available habitat to known habitat requirements of Red Data plant species.

6.1.3 Floristic Sensitivity Analysis

Floristic sensitivity analysis was determined by taking two factors into account namely ecological function and conservation importance. This sensitivity was quantified by subjectively assessing the ecological function and conservation importance of the vegetation. These were defined as follows:

Ecological Function:

- High ecological function: Sensitive ecosystems with either low inherent resistance or resilience towards disturbance factors or highly dynamic systems considered to be stable and important for the maintenance of ecosystems integrity (e.g. pristine grasslands, pristine wetlands and pristine ridges);
- Medium ecological function: Relatively important ecosystems at gradients of intermediate disturbances.
 An area may be considered of medium ecological function if it is directly adjacent to sensitive/pristine ecosystem; and
- Low ecological function: Degraded and highly disturbed systems with little or no ecological function.

Conservation Importance:

- High conservation importance: Ecosystems with high species richness and usually provide suitable habitat for a number of threatened species. Usually termed 'no-go' areas and unsuitable for development, and should be protected;
- Medium conservation importance: Ecosystems with intermediate levels of species diversity without any threatened species. Low-density development may be allowed, provided the current species diversity is conserved; and
- Low conservation importance: Areas with little or no conservation potential and usually species poor (most species are usually exotic).

The Precautionary Principle was applied throughout this investigation (COMEST, 2005).

6.1.4 General Faunal Attributes

6.1.4.1 Reptilia

Suitable areas were identified and sampled using active search and capture methods, searches were concentrated in rocky areas and disused ant hills were investigated for the presence of snakes. Snakes and other reptiles are identified visually and only captured if visual identification is hampered by swift-moving snakes or if the snake is obscured from view. Branch (1996) and Broadley (1971) were used as identification guides, where necessary.

6.1.4.2 Amphibia

Suitable areas for frogs were sampled by means of active search and capture and acoustic identification methods, especially at night when highest amphibian activity is expected. Areas were also netted for tadpoles and amphibian species identified by means of tadpoles. Du Preez and Carruthers (2009) was used to confirm identification where necessary.

6.1.4.3 Aves

Avifauna were surveyed by means of transects and point counts (Bibby, et al., 1993) and visual identification and the calls of bird species were used to identify species. Wherever possible, visual identification was used to confirm call identifications. Bird ranges were confirmed using Harrison *et al* (1997). Other guides were also utilised (Hockey, et al., 2005) (BirdLife International, 2000) (Sinclair & Ryan, 2003)

6.1.4.4 Mammalia

Visual sightings and ecological indications were used to identify the small mammal inhabitants of the study area. Scats were also collected and used for identification of nocturnal small mammals. A number of reference sources *inter alia* Stuart and Stuart (2007) and Smithers (1983) were used for identification purposes.

6.1.5 Red Data Faunal Assessment

The following parameters were used to assess the Probability of Occurrence of each Red Data species:

- Habitat requirements (HR) Most Red Data animals have very specific habitat requirements and the presence of these habitat characteristics in the study area was evaluated;
- Habitat status (HS) The status or ecological condition of available habitat in the area is assessed. Often a
 high level of habitat degradation prevalent in a specific habitat will negate the potential presence of Red
 Data species (this is especially evident in wetland habitats); and
- Habitat linkage (HL) Movement between areas for breeding and feeding forms an essential part of the existence of many species. Connectivity of the study area to surrounding habitat and the adequacy of these linkages are evaluated for the ecological functioning of Red Data species within the study area.

Probability of occurrence is presented in four categories, namely:

- Low;
- Medium;
- High; and
- Recorded.

In order to assess the status of fauna species of concern in the study area, the following sources were used:

- IUCN Red List Categories and Criteria (IUCN, 2001);
- IUCN Red List of Threatened Species (IUCN, 2011); and
- South African Threatened and Protected species (TOPS) list (Republic of South Africa, 2004).

7 ASSUMPTIONS AND LIMITATIONS

- Accuracy of the maps, ecosystems, routes and desktop assessments were made using Google earth and converting the .kml files to .shp files and are subject to the accuracy of Google Earth imagery with some loss of accuracy during the conversion process;
- GPS co-ordinates are accurate to within 10m and lines drawn on maps can only be assumed to be accurate to within a distance of 100m;
- Data obtained from published articles, reference books, field guides, official databases or any other official published or electronic sources are assumed to be correct and no review of such data was undertaken by Hudson Ecology Pty Ltd;
- Satellite imagery obtained was limited to imagery on Google Earth, thus the ability to accurately map vegetation communities was limited;
- Time and budget constraints do not allow for an intensive survey of the entire study area, and as with any survey of this kind, rare and cryptic species may be overlooked during the study; and
- Every possible precaution was taken to reduce the effect of the above-mentioned limitations on the data collected for this study.
- The fact that a species or Red Data species is not recorded during a survey cannot support the assumption that the species in question does not occur in the area, it can only indicate a decreased probability of the species occurring in the area. This is particularly pertinent if the species has been recently or historically recorded in the area; and
- Ecological studies should be undertaken over a number of seasons in order to obtain long term ecological data. Studies are usually conducted in this way in order to eliminate the effects of unusual climatic conditions or other unusual conditions prevailing at the study area during the time of study. The results of this study are based on a literature review and a single wet season field survey, conducted in November 2015.

8 RESULTS

This section provides a discussion of the terrestrial ecology baseline environment and context in which the proposed project will take place.

8.1 Physical Setting

The development falls completely within Mucina & Rutherford's (2006) Zeerust Thornveld (SVcb3) vegetation type of the savanna biome. The site varies in altitude from 1123 m to 1220 m, with the northern portion dominated by a series of hills and ridges forming the border with Pilanesberg Nature Reserve. The NW Biodiversity Inventory and Database (2003) describes the habitat type occurring on these hills and ridges as Mabeskraal Ridge Bushveld. The east is dominated by flat, open thornveld of the Lekubu Mixed Thornveld habitat type (NW Biodiversity Inventory and Database 2003).

According to the NW Biodiversity Inventory and Database (2003), the region in which the study area is located has an overall biodiversity ranking of high.

Figure 1: Vegetation types occurring in the study area (Mucina and Rutherford, 2006)

8.1.1 Zeerust Thornveld (SVcb3)

Zeerust Thornveld extends in a broad band along the plains from Zeerust and Groot Marico in the west through to the flats between the western end of the Magaliesberg Mountains and the Pilanesberg National Park in the east. This vegetation type is dominated by elements of Low & Robelo's (1996) Mixed Bushveld and Acocks (1953) Sourish Mixed Bushveld (Mucina & Rutherford, 2006). The following notes summarise the characteristics of this vegetation type:

8.1.1.1 Vegetation and Landscape features

Zeerust Thornveld is characterised by deciduous, open to dense short thorny woodland, dominated by Acacia species and a dense grass layer (Mucina & Rutherford, 2006).

8.1.1.2 Geology and Soils

The sediments of the Pretoria Group that underlie this vegetation type, particularly the Silverton and Rayton Formations, are mostly shale, while carbonates, volcanic rocks, breccias and diamicites are also present. Bronzite, harzburgite, gabbro and norite of the Rustenburg Layered Suite (Bushveld Igneous Complex) are also frequently found underlying areas of Zeerust Thornevld (Mucina & Rutherford, 2006).

Soils are mostly deep, red and yellow apedal, which drain freely and have a high base status. Both vertic and melanic clays also occur in certain areas (Mucina & Rutherford, 2006).

8.1.1.3 Climate

As with all vegetation types in the savanna biome, areas of Zeerust Thornveld experience summer rainfall with dry, very cold winters. Frost occurs frequently in winter with temperatures as low as -4oC being recorded in the region. Summer temperatures peak at 36oC. Mean annual precipitation for this vegetation type ranges from 550-600 mm (Mucina & Rutherford, 2006).

8.1.1.4 Important Plant Taxa

Based on Mucina & Rutherford's (2006) vegetation classification, important plant taxa are those species that have a high abundance, a frequent occurrence (not being particularly abundant) or are prominent in the landscape within a particular vegetation type. They note the following species are important taxa in the Zeerust Thornveld vegetation type:

Trees: Acacia burkei, A. erioloba, A. mellifera subsp. detinens, A nilotica, A. tortilis subsp. heteracantha, A. fleckii, Rhus lancea, Peltophorum africanum, Terminalia sericea

Shrubs: Diospyros lycioides subsp. lycioides, grewia flava, Mystroxylon aethiopicum, subsp. burkenum, Agathisanthemum bojeri, Chaetacanthus costatus, Clerodendrum ternatum, Indigoferaq filipes, Rhus grandidens, Sida chrysantha, Stylosanthes fruticosa.

Graminoids: Eragrostis lehmanniana, Panicum maximum, Aristida congesta, Cymbopogon pospischilii.

Herbs: Blepharis integrifolia, Chaemecrista absus, C. Mimosoides, Cleome Maculata, Dicoma anomala, Kyphocarpa angustifolia, Limeum viscosum, Lophiocarpus tenuissimus.

Endemic Taxon: The low shrub Rhus maricoana is endemic to this region.

8.1.1.5 Conservation

According to Mucina & Rutherford (2006) Zeerust Thornveld is classified as Least Threatened. Although the target for conservation is 19%, only 4% of this vegetation type is currently under statutory conservation in reserves such as Pienaar Game Reserve and Marico Bushveld Nature Reserve. Cultivation and to a lesser extend urbanisation have resulted in the transformation of approximately 16% of Zeerust Thornveld. Exotic invasive plants, particularly Cereus jamacaru are present. Incidences of erosion are low to very low (Mucina & Rutherford, 2006).

8.2 Flora Assessment

According to the NW Biodiversity Inventory and Database (2003) the region in which the study area is located has a floral diversity ranking of high. A total of 56 plant species were recorded during the floristic survey of the study area (Appendix A). This is marginally higher than the number plant species presented in the PRECIS dataset by SANBI for the 2527AC quarter degree square and can be attributed to the level of degradation in the area and a number of exotic species occurring in all of the vegetation communities recorded in the study area.

8.2.1 Vegetation Communities

The area under investigation for this study is severly impacted and appears to have been cultivated in the past, for this reason most vegetation communities can be described as secondary vegetation communities. Based primarily on physiognomy, moisture regime, rockiness, slope, species composition and soil properties, four vegetation communities were recognised (Table 1 and Figure 2). Although, these communities were recorded as such, there is variation within these communities as a result of current and historic anthropogenic disturbance. The communities are:

- Secondary clay thornveld;
- Footslope broadleafed bushveld;
- Secondary turf thornveld; and
- Secondary riparian vegetation.

In addition, areas of complete or severe transformation and disturbance occur throughout the study area. These include inter alia, villages and roads, these areas were noted and delineated but not surveyed intensively.

Vegetation Community	Area in ha	% of total study area
Transformed areas (Urban)	77.9	27%
Secondary Clay Thornveld	140.43	49%

Table 1: Sptial scale of vegetation communities recorded within the study area

Bakubung/Ledig Integrated Development – Ecological Study

Footslope broadleaf bushveld	10.4	4%
Secondary turf thornveld	40.4	14%
Degraded riparian vegetation	16.9	6%
Total	286.03	100%

Figure 2: Study area showing vegetation communities

A list of plant species known to occur in the region are given in APPENDIX recorded species are highlighted in the Appendix. A complete list of recorded species will be given after the wet season survey.

8.2.1.1 Secondary Clay bushveld

The vegetation community that occurs to the north of the Eland's River is found on gravelly deposits, possibly originating from the slopes of the Pilanesberg, where these have created landscape with high rock cover, but relatively flat slopes. The species composition is intermediate between open savanna and rocky outcrop vegetation, but with many of the woody species typical of rocky outcrops, e.g. *Pappea capensis, Olea europea* subsp. *africana, Dichrostachys cinerea, Acacia nilotica, Acacia karroo, Acacia caffra, Rhus lancea, Tarchonanthus camphoratus, Ziziphus mucronata* and *Ehretia rigida*. The vegetation here is severly degraded due to past and present anthropogenic impacts and a large number of exotic species were recorded in this vegetation community.

Sensitivity aspects

• This vegetation occurs between Pilanesberg National Park and the Elands River, thus forming a buffer zone and connecting zone between these two systems.

• Currently the level of degradation needs to be considered and this area shows a very high level of degradation.

8.2.1.2 Broadleaf footslope bushveld

This is a broad-leaved deciduous bushveld dominated by trees and shrubs with the grass layer dominating mostly on the footslopes of mountains and hills. Common and dominant species include the small trees, *Combretum apiculatum, Combretum molle, Combretum zeyheri, Strychnos cocculoides, Croton gratissimus, Englerophytum magalismontanum, Rhus leptodictya and Vangueria parvifolia,* the tall shrubs, *Diplorhynchus condylocarpon, Elephantorrhiza burkei, Grewia flava, Hibiscus calyphyllus, Mundulea sericea, Steganotaenia araliacea* and Vitex *rehmannii,* the grasses, *Chrysopogon serrulatus, Elionurus muticus, Panicum maximum, Themeda triandra, Enneapogon scoparius, Hyperthelia dissoluta and Panicum deustum, and the herbaceous species, Polygala hottentotta, Abutilon pycnodon, Chamaesyce inaequilatera, Hermannia depressa, Nidorella resedifolia, Xerophyta retinervis* and *Crassula lanceolata* subsp. transvaalensis.

Sensitivity aspects

- The vegetation of these areas contains a relatively high diversity of plant species.
- Although no Red List plant species were encountered during the present survey, those that have been historically recorded in the region have a higher likelihood of occurrence in this vegetation type.
- This bushveld forms a preferred habitat for a number of possible rare and protected animal species due to the availability of shelter amongst the rocks as well as more dense woody cover than surrounding areas.

8.2.1.3 Secondary turf thornveld

There are a few areas where black turf soils tend to occur near to the non-perennial drainage lines and in other places where the soil depth was too shallow or surface stoniness too high for cultivation. As a result, the species composition is not typical of the original vegetation. These occur on slightly sloping areas adjacent to the non-perennial streams where the soil is gravelly and shallow. This vegetation community is characterised by the species *Acacia mellifera* (dominant), *Bothriochloa insculpta, Aristida bipartita, Enneapogon cenchroides, Tephrosia multijuga, Ischaemum afrum and Urochloa panicoides.and the absence of Heteropogon contortus, Melinis repens, Eragrostis rigidior, Panicum maximum, Themeda triandra, Tragus berteronianus and Acacia caffra.*

Sensitivity aspects

- The remaining patches of untransformed vegetation in the study area contain a relatively high diversity of plant species.
- Due to its suitability for agriculture, very little of this vegetation type still remains intact and, at a national level, it has been assessed as an endangered vegetation type

8.2.1.4 Secondary riparian vegetation

There are two of the Elands River that occur in the study area. These are severly impacted and impounded upstream of the study area species occurring in these drainage lines include: *Cyperus sexangularis, *Flaveria bidentis, Tagetes minuta, *Cyperus esculentus* and **Persicaria lapathifolia*. The drainage lines are further characterised by the presence of the graminoids *lschaemum fasciculatum, Imperata cylindrica, Setaria sphacelata, Schoenoplectus corymbosus, Cynodon dactylon, Bothriochloa insculpta* and *Urochloa panicoides*. The exotic grass **Pennisetum clandestinum* was also widespread in these habitats. All these systems have been impacted upon in places through cultivation in the past, current mining activities and the effects of the local inhabitants (grazing, wood harvesting, water pollution, trampling and bank erosion. **Sensitivity aspects**

- Rivers (including non-perennial streams) are longitudinal ecosystems, and their condition at any point is a reflection of not only upstream activities, but also of those within adjacent and upstream parts of the catchment.
- River systems are subject to strict legislation (e.g. National Water Act) to protect the water resources in South Africa.

8.2.2 Flora species of concern

Based on Hahn's (2011) study, 13 species of Red Data plant occur within the Bojanala Platinum District of the North West Province. According to reviewed literature, three of these species potentially occur in the study area, while five species of protected tree may occur in the study area Table 2.

No species of concern were were observed or recorded during the site survey.

Table 2: Red Data floral species possibly occurring in the area

Species	South African Red Data List (2009)	IUCN Red Data List (2011)	Protected Tree Species (National Forest Act No. 84 of 1998)
Ledeboria atrobrunnea	Vulnerable		
Delosperma macellum	Endangered	CE	
Erythrophysa transvaalensis		Least Concern	Protected
Sclerocarya birrea subsp. caffra			Protected
Boscia albitrunca			Protected
Combretum imberbe			Protected
Acacia erioloba			Protected
Pittosporum viridiflorum			Protected

* Conservation Status Category assessment according to IUCN Ver. 3.1 (IUCN, 2001), as evaluated by the Threatened Species Programme of the South African National Biodiversity Institute in Pretoria. *IUCN (3.1) Categories: VU = Vulnerable, EN = Endangered, CR = Critically Endangered, NT = Near Threatened.

8.3 Fauna Assessment

8.3.1 Arthropoda

A total of 21 arthropod taxa were recorded during the 2015 site survey (Table 3). The low diversity may be attributable to the largenumber of anthropogenic impacts currently persisting on site. All recorded species are common to savanna areas and have widespread distributions. These species are generally subtropical and reflect the southern extension of the Afrotropical range (Picker et al 2004).

Order	Family	Species Name
Lepidoptera	Nymphalidae	Vanessa cardui
		Danaus chrysippus aegyptius
		Acraea eponina eponina
		Junonia hierta cebrene
	Pieridae	Mylothris rueppellii haemus
		Eurema brigitta
Coleoptera	Coccinellidae	Henosepilachna bifasciata
Thysanura	Lepismatidae	
Odonata	Protoneuridae	
	Libellulidae	
Blattodea	Blattidae	Periplaneta americana
Isoptera	Hodotermitidae	Hodotermes mossambicus

Table 3: Arthropod species recorded

Orthoptera	Gryllidae	
	Acrididae	
Phasmatodea	Bacillidae	
Diptera	Muscidae	Musca domestica
Hymenoptera	Vespidae	Belonogaster dubia
	Apidae	Apis mellifera
	Anthophoridae	Amegilla caelestina
	Formicidae	Pachycondyla tarsata
		Dorylus helvolus

8.3.1.1 Red Data and Protected Arthropoda

Four species of Red Data and Protected arthropods may occur within the study area (Table 4). Both species of flat rock scorpions from the genus *Hadogenes* occur in rocky habitats, such as that found in the study area. The probability of these species occurring in the study area is therefore high.

Scientific Name	Common name	NEM:BA Threatened and Protected Species List (2007)	Probability of occurrence
Hadogenes gracilis	Rock Scorpion	Protected	High
Hadogenes troglodytes	Rock Scorpion	Protected	High
Metisella meninx	Marsh Sylph	Vulnerable	Low
Spialia paula	Mite Sandman	Vulnerable	Low

Table 4: Herpetofauna species of concern possibly occurring in the study area

As the name suggests the Marsh Slyph (Metisella meninx) is a wetland specialist favouring marshy grassland (Henning & Roos, 2001). The probability of this species occurring on site is considered low. Spalia paula is a savanna species, occurring on the slopes of hills (Henning & Henning, 1989).

8.3.2 Herpetofauna

According to the NW Biodiversity Inventory and Database (2003) the region in which the study area is located has a reptile and amphibian biodiversity ranking of medium. Only four species, namely the Stripe-bellied Sand Snake (Psammophis subtaeniatus), Puff Adder (Bitis arietans), Mozambique Spitting cobra (Naja mossambica) and the Variable Skink (Mabuya varia) were recorded during the 2015 site survey. Both these species have wide distributions. The Stripe-bellied Sand Snake favours open, dry savanna and Thornveld, while the Variable Skink favours grassland habitats (Branch, 1994). No amphibians were recorded during the site survey.

8.3.2.1 Red Data and Protected Herpetofauna

Based on the reptile list of the adjacent Pilanesberg National Park, a total of 65 species could potentially occur in the study area. Of these, only the African Rock Python (Python sebae natalensis) is categorised as a Protected species, according to the NEM:BA TOPS List (2007). The African Rock Python favours open savannas and rocky areas (Branch, 1994), both of which occur in the study area. The probability of this species being present on site is therefore high.

The amphibian list for the Pilanesberg National Park indicates that 28 species occur in that protected area and could potentially occur in the study area. Of these, only the Giant Bullfrog (Pyxicephalus adspersus) is listed as Near Threatened by the IUCN (2011) and categorised as Protected on the NEM:BA TOPS List (2007). This species breeds in the shallows of temporary rain filled depressions in grasslands and dry savanna, and spends much of the year buried (Carruthers, 2001). Although no evidence of the presence of Giant Bullfrogs was

observed during the site survey, there is potential for this species to occur in the bottomland areas. These areas are characterised by poorly drained soils which allow for the formation of temporary pools during the wet season.

Table 5: Herpetofauna species of concern possibly occurring in the study area

Scientific Name	Common Name	NEM:BA Threatened and Protected Species List (2007)	IUCN Red Data List (2011)	Probability of occurrence
Python sebae natalensis	African Rock Python	Protected		High
Pyxicephlus adspersus	Giant Bullfrog	Protected	Near Threatened	Low

8.3.3 Avifauna

The NW Biodiversity Inventory and Database (2003) categorises the region in which the study area is located as having low-medium bird diversity. Data presented on SANBI's SIBIS database (SIBIS:SABIF, 2009, internet) indicates that a total of 140 bird species have been recorded in the 2526BB quarter degree grid square. This is substantially more than the 19 bird species recorded during the site survey (Table 6). This low diversity can be attributed to 1) dry conditions persisting in the area; 2) Anthropogenic disturbance of the vegetation, and 3) Egg collecting by adjacent land users may reduce the abundance and diversity of resident bird species.

Scientific Name	Common Name
Mirafra sabota	Sabota Lark
Fancolinus swainsonii	Swainson's Spurfowl
Fancolinus sephaena	Crested Francolin
Vanellus coronatus	Crowned Lapwing
Streptopelia senegalensis	Laughing Dove
Urocolinus indicus	Redfaced Mousebird
Upupa africana	African Hoopoe
Corvus albus	Pied Crow
Pyconotus barbatus	Common Bulbul
Cossypha humeralis	Whitethroated Robin-Chat
Zosterops pallidus	Cape White-eye
Acridotheres tristis*	Indian Myna
Nectarinia mariquensis	Marico Sunbird
Passer domesticus	House Sparrow
Ploceus velatus	Southern Masked Weaver
Uraeginthus angolensis	Blue Waxbill
Lagonosticta senegala	Redbilled Firefinch
Batis molitor	Chinspot Batis

Table 6: Species recorded during the study

Bubuculus ibis	Cattle Egret

8.3.3.1 Red Data and Protected avifauna

No bird species recorded during the 2015 survey are listed as Red Data or Protected species. This notwithstanding, of the 285 species recorded in the 2527AC quarter degree grid square and on SANBI's SIBIS database, six species are listed (Table 7). Although it is unlikely that any of these species would actively nest in the study area, considering the proximity of the Pilanesberg National Pak their probability of occurrence is high.

Table 7:	Avifauna	species of	concern	nossibly	occurring	in the	stud	, area
Table /.	Aviiaulia	species of	concern	possibly	occurring		socuu	aica

Scientific Name	Common name	IUCN Red Data List (2011)	NEM:BA Threatened and Protected Species List (2007)	Probability of occurrence
Buphagus erythrorhynchus	Red billed Oxpecker	Near threatened		High
Gyps africanus	African White- backed Vulture	Vulnerable	Endangered	High
Gyps coprotheres	Cape Griffon Vulture	Vulnerable	Endangered	High
Polemaetus bellicosus	Martial Eagle	Vulnerable	Vulnerable	High
Pterocles gutturalis	Yellow throated Sandgrouse	Near threatened		High
Torgos tracheliotus	Lappet-faced Vulture	Vulnerable	Endangered	High

8.3.4 Mammalia

A total of 5 mammal species were recorded during the survey of the study area (Table 8). Based on species distribution maps documented in Stuart & Stuart (1997), and considering the existing land uses in the general region, 83 species of mammal could potentially occur in the study area which has a mammal diversity ranking of medium-high (NW Biodiversity Inventory and Database 2003). The low mammal species diversity recorded during the survey can be attributed to direct and indirect disturbances resulting from anthropogenic impacts, as well as historic land uses such as agriculture and hunting. In addition, the poaching of small mammals by local communities in the study area and on the land may further reduce the diversity of mammals.

	Table 8: Mammal sp	pecies recorded
--	--------------------	-----------------

Scientific Name	Common Name	NEM:BA Threatened and Protected Species List (2007)	IUCN Red List of Threatened Species (2011)
Lemniscomys rosalia	Striped Mouse		Least concern
Mastomys coucha	Multimammate Mouse		Least concern
Saccostomus campestris	Pouched Mouse		Least concern
Lepus saxatili	Scrub Hare		Not listed
Hystrix africaeaustralis	Porcupine		Least concern

8.3.4.1 Red Data and Protected mammal species

Species recorded during the survey are common, with generally widespread distributions, and have accordingly been categorised as Least Concern on the IUCN Red Data List (2011).

Species of concern not observed during the site survey, but which show a regional distribution that includes the study area according to Stuart & Stuart (1997) are listed in Table 9.

Scientific Name	Common Name	NEM:BA Threatened and Protected Species List (2007)	IUCN Red Data List (2011)	Probability of occurrence
Neamblysomus julianae	Juliana's Golden Mole	Vulnerable	Vulnerable	Low
Amblysomus septentionalis	Highveld Golden Mole	Near Threatened		Low
Eidolon helvum	Straw-coloured Fruit-bat	Near Threatened		Low
Parahyaena brunnea	Brown Hyaena	Protected	Near Threatened	Low
Mellivora capensis	Honey Badger	Protected	Near Threatened	Low

Table 9: Mammal species of concern possibly occurring in the area

8.4 Ecological Integrity

The precautionary principle was applied throughout the determination of the ecological function of the various vegetation communities. In instances where ecological function was found to be borderline between two categories, the community was classified in the higher category.

Much, if not all, of the vegetation within the study area has been disturbed, but in general the thornveld is of moderate ecological integrity. In addition, other anthropogenic activities including agriculture, livestock grazing and mining outside the study area have also disturbed large tracts of vegetation. This notwithstanding, at a landscape level these communities are important dispersal habitats, linking the mountainous Pilanesberg to the hills and ridges located in the study area, and to other habitats located north-west of the study area. Where not transformed or heavily degraded, the ecological function of the riparian zones and broadleaf bushveld can be considered high. The transformed and severly degraded areas have low ecological integrity.

Figure 3: Ecological integrity within the study area

8.5 Conservation Importance

The precautionary principle was applied throughout the determination of the conservation importance of the various vegetation communities. In instances where conservation importance was found to be borderline between two categories, the community was classified in the higher category.

The conservation importance of the broadleaf footslope vegetation is considered moderate, as although in large areas it has been transformed and disturbed, the presence of the Red Data species cannot be excluded (Figure 5).

Rivers (including non-perennial streams) are longitudinal ecosystems, and their condition at any point is a reflection of not only upstream activities, but also of those within adjacent and upstream parts of the catchment. River systems are subject to strict legislation (e.g. National Water Act) to protect the water resources in South Africa.

The majority of the area is characterised as being transformed or secondary vegetation communities and therefore have low conservation importance, due to the lack of species of conservation importance being present in, or reliant on these vegetation communities.

Figure 4: Conservation importance within the study area

9 DISCUSSION AND CONCLUSIONS

Based primarily on physiognomy, moisture regime, rockiness, slope, species composition and soil properties, four vegetation communities were recognised. Although, these communities were recorded as such, there is variation within these communities as a result of current and historic anthropogenic disturbance. The communities are:

- Secondary clay thornveld;
- Footslope broadleafed bushveld;
- Secondary turf thornveld; and
- Secondary riparian vegetation.

In addition, areas of complete or severe transformation and disturbance occur throughout the study area. These include inter alia, villages and roads, these areas were noted and delineated but not surveyed intensively.

No flora species of concern were were observed or recorded during the site survey.

A total of 21 arthropod taxa, 4 reptile taxa, 0 amphibians, 19 birds and 5 mammal species were recorded during the 2015 site survey None of the species recorded are listed as species of concern, but a small number of species of concern have a moderate probability of occurrence in the area.

Much, if not all, of the vegetation within the study area has been disturbed, but in general the thornveld is of moderate ecological integrity. In addition, other anthropogenic activities including agriculture, livestock grazing and mining outside the study area have also disturbed large tracts of vegetation. This notwithstanding, at a landscape level these communities are important dispersal habitats, linking the mountainous Pilanesberg to the hills and ridges located in the study area, and to other habitats located north-west of the study area.

Where not transformed or heavily degraded, the ecological function of the riparian zones and broadleaf bushveld can be considered high. The transformed and severly degraded areas have low ecological integrity.

The conservation importance of the broadleaf footslope vegetation is considered moderate, as although in large areas it has been transformed and disturbed, the presence of the Red Data species cannot be excluded (Figure 5).

Rivers (including non-perennial streams) are longitudinal ecosystems, and their condition at any point is a reflection of not only upstream activities, but also of those within adjacent and upstream parts of the catchment. River systems are subject to strict legislation (e.g. National Water Act) to protect the water resources in South Africa.

The majority of the area is characterised as being transformed or secondary vegetation communities and therefore have low conservation importance, due to the lack of species of conservation importance being present in, or reliant on these vegetation communities.

It is unlikely that development of this area will have any significantly detrimental effect on biodiversity of the area.

Vd

Adrian Hudson (Senior Ecologist)

10 REFERENCES

Bibby, C., Burgess, N. & Hill, D., 1993. Bird Census Techniques. London: Harcourt Brace & Company.

BirdLife International, 2000. *Threatened birds of the world*. Barcelona and Cambridge: Lynx Edicions and BirdLife International.

Branch, W., 1996. Snakes and other reptiles of Southern Africa. 2nd Edition ed. Cape Town: Struik.

Broadley, D., 1971. The reptiles and amphibians of Zambia. s.l.:Puku.

COMEST, 2005. *The Precautionary Principle*. Paris: United Nations Educational Scientific and Cultural Organization.

Du Preez, L. & Carruthers, V., 2009. A Complete Guide to the Frogs of Southern Africa. Cape Town: Struik.

Harrison, J. et al., 1997. The Atlas of Southern African Birds. Johannesburg: BirdLife South Africa.

Hockey, P., Dean, W. & Ryan, P., 2005. *Roberts Birds of Southern Africa*. 7th Edition ed. Cape Town: The Trustees of the John Voelker Bird Book Fund.

IUCN, 2001. IUCN Red List Categories and Criteria.. In: *Red Data Book of the Mammals of South Africa: A Conservation Assessment..* s.l.:s.n.

IUCN, 2010. *IUCN Red List of Threatened Species*. [Online] Available at: <u>http://www.iucnredlist.org</u> [Accessed November 2010].

IUCN, 2011. [Online] Available at: <u>http://www.iucnredlist.org</u> [Accessed 08 July 2011].

IUCN, 2013. [Online] Available at: <u>http://www.iucnredlist.org</u> [Accessed 08 July 2013].

Mucina, L. & Rutherford, M., 2006. *The vegetation of South Africa, Lesotho and Swaziland*. Pretoria: Strelitzia.

Mueller-Dombois, D. & Ellenberg, H., 1974. Aims and methods of vegetation ecology.. New York: Wiley.

Picker, M., Griffiths, C. & Weaving, A., 2002. Field Guide to Insects of South Africa. Cape Town: Struik.

Republic of South Africa, 2004. Threatened or Protected Species List. Cape Town: s.n.

Sinclair, I. & Ryan, P., 2003. A comprhensive illustrated field guides to Birds of Africa south of the Sahara. Cape Town : Struik.

Smithers, R., 1983. The mammals of the Southern African subregion. Pretoria: University of Pretoria.

Stuart, C. & Stuart, M., 2007. *Field Guide to the Mammals of Southern Africa*. 4th Edition ed. Cape Town: Struik Publishers.

Van Wyk, A. & Smith, G., 2001. Regions of floristic endemism in southern Africa. Hatfield.: Umdaus press.

Vitt, L. & Caldwell, J., 2009. *Herpetology, Fourth Edition: An Introductory Biology of Amphibians and Reptiles.* 4th ed. Oklahoma: Elsevier. ISBN-13: 978-0123869197.

Westhoff, V. & Van der Maarel, E., 1978. The Braun-Blanquet approach. In: R. (. Whittaker, ed. *Classification of plant communities*. The Hague: W. Junk.

Plant species recorded

Family	Species	Life Cycle	Growth Form
Poaceae	Aristida canescens	Perennial	Graminoid
Poaceae	Aristida congesta subsp. barbicollis	Annual	Graminoid
Poaceae	Bothriochloa insculpta	Annual	Graminoid
Poaceae	Brachiaria eruciformis	Annual	Graminoid
Poaceae	Chrysopogon serrulatus	Perennial	Graminoid
Poaceae	Digitaria eriantha	Perennial	Graminoid
Poaceae	Enneapogon cenchroides	Annual	Graminoid
Poaceae	Eragrostis lehmanniana	Perennial	Graminoid
Poaceae	Eragrostis rigidior	Annual	Graminoid
Poaceae	Eustachys paspaloides	Perennial	Graminoid
Poaceae	Heteropogon contortus	Perennial	Graminoid
Poaceae	Hyparrhenia filipendula	Perennial	Graminoid
Poaceae	Hyparrhenia hirta	Perennial	Graminoid
Poaceae	Loudetia simplex	Perennial	Graminoid
Poaceae	Melinis repens	Annual	Graminoid
Poaceae	Panicum maximum	Perennial	Graminoid
Poaceae	Setaria pallide-fusca	Annual	Graminoid
Poaceae	Setaria verticillata	Annual	Graminoid
Poaceae	Themeda triandra	Perennial	Graminoid
Poaceae	Trachypogon spicatus	Perennial	Graminoid
Poaceae	Tricholaena monachne	Annual	Graminoid
Poaceae	Urochloa mosambicensis	Perennial	Graminoid
Malavaceae	Sida cordifolia	Annual	Forb
Asteraceae	Tagetes minuta*	Annual	Herb
Velloziaceae	Xerophyta retinervis	Deciduous	Forb
Asparagaceae	Asparagus laricinus	Perennial	Forb
Asteraceae	Bidens pilosa*	Annual	Forb
Malavaceae	Sida cordifolia	Annual	Forb
Solanaceae	Solanum panduriforme	Perennial	Herb
Mimosaceae	Acacia burkei	Perennial	Tree
Mimosaceae	Acacia caffra	Perennial	Tree
Mimosaceae	Acacia karroo	Perennial	Tree

Mimosaceae	Acacia tortilis	Perennial	Tree
			-
Combretaceae	Combretum imberbeØ	Perennial	Iree
Combretaceae	Combretum molle	Perennial	Tree
Burseraceae	Commiphora pyracanthoides	Perennial	Tree
Euphorbiaceae	Croton gratissimus	Perennial	Tree
Mimosaceae	Dichrostachys cinerea	Perennial	Tree
Sterculiaceae	Dombeya rotundifolia	Perennial	Tree
Ebenaceae	Euclea natalensis	Perennial	Tree
Euphorbiaceae	Euphorbia ingens	Succulent	Tree
Tiliaceae	Grewia flavescens	Perennial	Tree
Tiliaceae	Grewia monticola	Perennial	Tree
Celastraceae	Gymnosporia buxifolia	Evergreen	Tree
Fabaceae	Mundulea sericea	Perennial	Tree
Santalaceae	Osyris quadripartita	Evergreen	Tree
Anacardiaceae	Ozoroa paniculosa	Deciduous	Tree
Sapindaceae	Papea capensis	Deciduous	Tree
Caesalpiniaceae	Peltophorum africanum	Deciduous	Tree
Anacardiaceae	Rhus pyroides	Deciduous	Tree
Anacardiaceae	Scelocarya birrea Φ	Deciduous	Tree
Asteraceae	Tarconanthus camphoratus	Deciduous	Tree
Rubiaceae	Vangueria infausta	Deciduous	Tree
Verbenaceae	Vitex zeyheri	Deciduous	Tree
Rhamnacea	Ziziphus mucronata	Deciduous	Tree

Reptile species occurring in the region of the study area

Scientific Name	Common name
Reptiles	l
Homopholis wahlbergi	Velvety Gecko
Hemidactylus mabouia	Tropical Gecko
Lygodactylus c. capensis	Common Dwarf Gecko
Pachydactylus affinis	Transvaal Thicktoed Gecko
Pachydactylus capensis	-Cape Thicktoed Gecko
Pachydactylus turneri	Turners Thicktoed Gecko
Acanthocercus atricollis	Tree Agama
Agama aculeata distanti	Spiny Agama
Agama atra atra	Southern Rock Agama
Chamaeleo d. dilepis	Flap-necked Chameleon
Mabuya varia varia	-Variegated Skink
Mabuya striata punctatissimus	Stripped Skink
Mabuya capensis	Three-lined Skink
Lygosoma s. sundevallii	Sundeval's Skink
Panaspis wahlbergii	Snake-eyed Skink
Acontias percevalli occidentalis	Percival's Legless Skink
Nucras holobi	Holob's Sand Lizard
Nucras intertexta	Spotted Sand Lizard
Ichnotropis squamulosa	Rough-scaled Lizard

HUDSON ECOLOGY Quality, affordable ecological solutions

GBM – Ecological Study and Impact Assessment

Ichnotropis capensis	Cape Rough-scaled Sand Lizard
Cordylus tropidosternum jonesii	Jones' Girdled Lizard
Cordylus vittifer	Transvaal Girdled Lizard
Gerrhosaurus flavigularis	Yellow-throated Plated Lizard
Varanus albigularis albigularis	Rock / Tree Leguaan
Varanus niloticus	Water Leguaan
Monopeltis infuscata	Cape Worm-lizard
Typhlops bibronii	Bibron's Blind Snake
Rhinotyphlops lalandei	Lalande's Blind Snake
Leptotyphlops s. scutifrons	Peters' Thread Snake
Leptotyphlops distanti	Distant's Tread Snake
Python sebae natalensis	African Python
Lycodonomorphus rufulus	Brown Water Snake
Lamprophis fuliginosus	Brown House Snake
Lycophidion c. capense	Cape Wolf Snake
Mehelya c. capensis	Cape File Snake
Mehelya nyassae	Black File Snake
Philothamnus semivariegatus	Spotted Bush Snake
Philothamnus hoplogaster	Green Water Snake
Philothamnus natalensis occidentalis	Natal Green Snake
Prosymna bivittata	Twinstriped Shovel-snout

HUDSON ECOLOGY Quality, affordable ecological solutions

GBM – Ecological Study and Impact Assessment

Prosymna s. sundevallii	Lined Shovel-snout
Pseudaspis cana	Mole Snake
Dasypeltis scabra	Common Egg-eater
Telescopus s. semiannulatus	Eastern Tiger Snake
Crotaphopeltis hotamboeia	Herald Snake
Dispholidus t. typus	Tree Snake
Thelotornis c. capensis	Vine Snake
Psammophylax tritaeniatus	Striped Skaapsteker
Psammophis s. subtaeniatus	Yellow-bellied Sand Snake
Psammophis b. brevirostris	Short-snouted Sand Snake
Psammophis leightoni trinasalis	Fork-marked Sand Snake
Psammophis angolensis	Pygmy Sand Snake
Aparallactus capensis	Black-headed Centipede-eater
Atractaspis bibronii	Side-stabbing Snake
Aspidelaps s. scutatus	Shield-nose snake
Elapsoidea boulengeri	Half-banded Garter Snake
Naja a. annulifera	Snouted Cobra
Naja mossambica	Mozambique Spitting Cobra

HUDSON ECOLOGY Quality, affordable ecological solutions

GBM – Ecological Study and Impact Assessment

Dendroaspis polylepis	Black Mamba
Causus rhombeatus	Rhombic Night Adder
Bitis a. arietans	Puff-adder
Geochelone pardalis babcocki	Leopard tortoise
Kinixys lobatsiana	Lobatse Hinged-back Tortoise
Pelomedusa subrufa	MarshTerrapin
Pelusios sinuatus	Serrated Terrapin

APPENDIX C

Amphibian species occurring in the region of the study area

Amphibians	
Xenopus laevis laevis	Common Platanna
Bufo gutturalis	Common Toad
Bufo garmani	Olive Toad
Schismaderma carens	Red Toad
Bufo fenoulheti	Northern Pygmy Toad
Breviceps adspersus adspersus	Bushveld Rainfrog
Phrynomantis bifasciatus	Red-banded rubber Frog
Pyxicephalus adspersus	Bullfrog
Pyxicephalus edulis	African Bullfrog
Tomopterna cryptotis	Tremelo Sand Frog
Tomopterna natalensis	Natal Sand Frog
Afrana angolensis	Common Rana
Ptychadena anchietae	Plain Grass Frog
Ptychadena mossambica	Broad-banded Grass Frog
Phrynobatrachus natalensis	Snoring Puddle Frog
Cacosternum boettgeri	Common Caco
Chiromantis xerampelina	Foam Nest Frog
Kassina senegalensis	Bubbling Kassina

Avifauna species occurring in the region of the study area

Sasol Page No	Full Name	Scientific Name	RD (Regional, Global)	S	E
62	Western Cattle Egret	Bubulcus ibis			
72	Hamerkop	Scopus umbretta			
86	White-backed Vulture	Gyps africanus	EN, EN		
86	Cape Vulture	Gyps coprotheres	EN, VU		
86	Lappet-faced Vulture	Torgos tracheliotos	EN, VU		
94	Brown Snake Eagle	Circaetus cinereus			
94	Black-chested Snake Eagle	Circaetus pectoralis			
100	Verreauxs' Eagle	Aquila verreauxii	VU, LC		
100	Martial Eagle	Polemaetus bellicosus	EN, VU		
106	Common (Steppe) Buzzard	Buteo buteo			
112	Black-shouldered Kite	Elanus caeruleus			
112	Pale Chanting Goshawk	Melierax canorus			
118	Gabar Goshawk	Melierax gabar			
128	Greater Kestrel	Falco rupicoloides			
136	Natal Spurfowl	Pternistis natalensis			
136	Swainson's Spurfowl	Pternistis swainsonii			
140	Crested Francolin	Dendroperdix sephaena			
142	Helmeted Guineafowl	Numida meleagris			
144	Common (Kurrichane) Buttonquail	Turnix sylvaticus			
168	Crowned Lapwing	Vanellus coronatus			

170	Blacksmith Lapwing	Vanellus armatus		
218	Yellow-throated Sandgrouse	Pterocles gutturalis	NT, LC	
220	Speckled Pigeon	Columba guinea		
222	Cape Turtle Dove	Streptopelia capicola		
222	Red-eyed Dove	Streptopelia semitorquata		
222	Laughing Dove	Streptopelia senegalensis		
224	Namaqua Dove	Oena capensis		
230	Grey Go-away-bird	Corythaixoides concolor		
236	Diederik Cuckoo	Chrysococcyx caprius		
240	Western Barn Owl	Tyto alba		
242	Pearl-spotted Owlet	Glaucidium perlatum		
250	Little Swift	Apus affinis		
250	White-rumped Swift	Apus caffer		
250	Horus Swift	Apus horus		
252	Red-faced Mousebird	Urocolius indicus		
256	Brown-hooded Kingfisher	Halcyon albiventris		
256	Striped Kingfisher	Halcyon chelicuti		
256	Grey-headed Kingfisher	Halcyon leucocephala		
258	European Bee-eater	Merops apiaster		
260	Little Bee-eater	Merops pusillus		
262	Lilac-breasted Roller	Coracias caudatus		

266	Southern Yellow-billed Hornbill	Tockus leucomelas		
266	African Grey Hornbill	Tockus nasutus		
266	Southern Red-billed Hornbill	Tockus rufirostris		
268	Common Scimitarbill	Rhinopomastus cyanomelas		
270	Greater Honeyguide	Indicator indicator		
272	Black-collared Barbet	Lybius torquatus		
272	Crested Barbet	Trachyphonus vaillantii		
274	Acacia Pied Barbet	Tricholaema leucomelas		
278	Cardinal Woodpecker	Dendropicos fuscescens		
278	Bearded Woodpecker	Dendropicos namaquus		
284	Sabota Lark	Calendulauda sabota		
290	Chestnut-backed Sparrow-lark	Eremopterix leucotis		
292	Lesser Striped Swallow	Cecropis abyssinica		
292	Red-breasted Swallow	Cecropis semirufa		
300	Fork-tailed Drongo	Dicrurus adsimilis		
304	Pied crow	Corvus albus		
304	Cape Crow	Corvus capensis		

306	Ashy Tit	Parus cinerascens		
306	Southern Black Tit	Parus niger		
308	Southern Pied Babbler	Turdoides bicolor		
308	Arrow-marked Babbler	Turdoides jardineii		
310	Dark-capped Bulbul	Pycnonotus tricolor		
314	Kurrichane Thrush	Turdus libonyanus		
314	Groundscraper Thrush	Turdus litsitsirupa		
316	Short-toed Rock Thrush	Monticola brevipes		
318	Familiar Chat	Cercomela familiaris		
320	African StoneChat	Saxicola torquatus		
322	Mocking Cliff Chat	Thamnolaea cinnamomeiventris		
324	White-throated Robin-Chat	Cossypha humeralis		
326	White-browed Scrub Robin	Erythropygia leucophrys		
326	Kalahari Scrub Robin	Erythropygia paena		
332	Grey Penduline-Tit	Anthoscopus minutus		
332	Yellow-bellied Eremomela	Eremomela icteropygialis		
332	Burnt-necked Eremomela	Eremomela usticollis		
340	Grey-backed Camaroptera	Camaroptera brevicaudata		
342	Chestnut-vented Tit-Babbler	Sylvia subcaerulea		

342	Long-billed crombec	Sylvietta rufescens		
344	Bar-throated Apalis	Apalis thoracica		
346	Neddicky	Cisticola fulvicapilla		
348	Rattling Cisticola	Cisticola chiniana		
352	Black-chested Prinia	Prinia flavicans		
352	Tawny-flanked Prinia	Prinia subflava		
354	Fiscal Flycatcher	Sigelus silens		(*)
356	Marico flycatcher	Bradornis mariquensis		
360	Chinspot Batis	Batis molitor		
362	Cape Wagtail	Motacilla capensis		
366	African Pipit	Anthus cinnamomeus		
366	Buffy Pipit	Anthus vaalensis		
368	Striped Pipit	Anthus lineiventris		
372	Crimson-breasted Shrike	Laniarius atrococcineus		
372	Southern (Common) Fiscal	Lanius collaris		
374	Brown-crowned Tchagra	Tchagra australis		
374	Black-crowned Tchagra	Tchagra senegalus		
376	Orange-breasted Bush-Shrike	Chlorophoneus sulfureopectus		
378	Black-backed Puffback	Dryoscopus cubla		
378	Brubru	Nilaus afer		
380	Cape Glossy Starling	Lamprotornis nitens		

384	Red-billed Oxpecker	Buphagus erythrorhynchus		
384	Wattled Starling	Creatophora cinerea		
388	Amethyst Sunbird	Chalcomitra amethystina		
390	White-bellied Sunbird	Cinnyris talatala		
392	Marico Sunbird	Cinnyris mariquensis		
394	Yellow-throated Petronia	Gymnoris superciliaris		
394	Southern Grey-headed Sparrow	Passer diffusus		
394	House Sparrow	Passer domesticus	1	
394	Cape Sparrow	Passer melanurus		
394	Great Sparrow	Passer motitensis		
396	Red-billed Buffalo Weaver	Bubalornis niger		
396	White-browed Sparrow-Weaver	Plocepasser mahali		
398	Southern Masked Weaver	Ploceus velatus		
402	Red-billed Quelea	Quelea quelea		
404	White-winged Widowbird	Euplectes albonotatus		
406	Pin-tailed Whydah	Vidua macroura		
406	Broad-tailed Paradise Whydah	Vidua obtusa	V	
406	Shaft-tailed Whydah	Vidua regia		
410	Jameson's Firefinch	Lagonosticta rhodopareia		
410	Red-billed Firefinch	Lagonosticta senegala		
412	Black-faced Waxbill	Estrilda erythronotos		

412	Blue Waxbill	Uraeginthus angolensis		
412	Violet-eared Waxbill	Uraeginthus granatinus		
414	Red-headed Finch	Amadina erythrocephala		
414	Cut-throat Finch	Amadina fasciata		
414	Scaly-feathered Finch	Sporopipes squamifrons		
416	Green-winged Pytilia	Pytilia melba		
420	Yellow-fronted Canary	Crithagra mozambica		
424	Golden-breasted Bunting	Emberiza flaviventris		
424	Cinnamon-breasted Bunting	Emberiza tahapisi		
Red Data (R	D); Regional*, Global	Status in South Africa (S)	Endemism in south Africa (E)	
CR = Critical	y Endangered	V = vagrant	Endemism in South Africa (E) (not southern Africa as	
EN = Endang	ered	I = introduced	in field guides)	
VU = Vulner	able		* = endemic	
NT = Near Th	nreatened			
LC = Least Co	oncern		SLS = endemic to South Africa, Lesotho and Swaziland	
EX = Extinct (regionally)			(*) = near endemic (i.e. ~70% or more of population in RSA)	
DD= Data Deficient			B* = breeding endemic	
NR= Not Recognised by BirdLife International			BSLS = breeding South Africa, Lesotho and Swaziland endemic	
NA = Not Assessed			W* = winter endemic	

§ = Refer to footnote

*The 2014 Eskom Red Data Book of Birds of South Africa, Lesotho and Swaziland

Mammal species occurring in the region of the study area

Scientific Name	Common name
Neamblysomus julianae	Juliana's Golden Mole
Amblysomus septentrionalis	Highveld Golden Mole
Elephantulus brachyrhynchus	Short-snouted Sengi
Elephantulus myurus	Eastern Rock Sengi
Atelerix frontalis	Southern African Hedgehog
Mysorex varius	Forest Shrew
Crocidura mariquensis	Swamp Musk Shrew
Crocidura fuscomurina	Tiny Musk Shrew
Crocidura cyanea	Reddish-grey Musk Shrew
Crocidura silacea	Lesser Grey Musk Shrew
Crocidura hirta	Lesser Red Musk Shrew
Eidolon helvum	Straw-coloured Fruit-bat
Hipposideros caffer	Sundevall's Leaf-nosed Bat
Cloeotis percivali	Short-eared Trident Bat
Nycteris thebiaca	Egyptian Slit-faced Bat
Rhinolophus clivosus	Geoffrey's Horseshoe Bat
Rhinolophus darlingi	Darling's Horseshoe Bat
Rhinolophus blasii	Peak-saddle Horseshoe Bat
Rhinolophus simulator	Bushveld Horseshoe Bat
Miniopterus schriebersii	Schrieber's Long-fingered Bat
Myotis welwitschii	Welwitch's Hairy Bat
Myotis tricolor	Temminck's Hairy Bat

Neoromicia capensis	Cape Serotine Bat
Pipistrellus hesperidus	African Pipistrelle
Scotophilus dinganii	Yellow House Bat
Tadarida aegyptiaca	Egyptian Free-tailed Bat
Papio cynocephalus ursinus	Savanna Baboon
Cercopithecus pygerythrus	Vervet Monkey
Galago moholi	Southern Lesser Galago
Manis temminckii	Ground Pangolin
Lepus saxatillis	Scrub Hare
Pronolagus randensis	Jameson's Red Rock Rabbit
Paraxerus cepapi	Tree Squirrel
Cryptomys hottentotus	Common (African) Mole-rat
Hystrix africaeaustralis	Cape Porcupine
Thryonomys swinderianus	Greater Cane-rat
Saccostomus campestris	Pouched Mouse
Steatomys pratensis	Fat Mouse
Dendromus melanotis	Grey Climbing Mouse
Desmodillus auricularis	Cape Short-tailed Gerbil
Tatera leucogaster	Bushveld Gerbil
Tatera brantsii	Highveld Gerbil
Acomys spinosissimus	Spiny Mouse
Michaelamys namaquensis	Namaqua Rock Mouse
Aethomys chrysophilus	Red Veld Rat

Rhabdomys pumilio	Four-striped Grass Mouse
Lemniscomys rosalia	Single-striped Grass Mouse
Mus minutoides	Pygmy Mouse
Mus musculus*	House Mouse
Thallomys paedulcus	Acacia Rat
Mastomys coucha	Southern Multimammate Mouse
Rattus rattus*	House Rat
Otomys angoniensis	Angoni Vlei Rat
Otomys irroratus	Vlei Rat
Vulpes chama	Cape Fox
Otocyon megalotis	Bat-eared Fox
Canis mesomelas	Black-backed Jackal
Aonyx capensis	Cape Clawless Otter
Mellivora capensis	Honey Badger (Ratel)
Poecilogale albinucha	African Striped Weasel
Ictonyx striatus	Striped Polecat
Mungos mungo	Banded Mongoose
Gallerella sanguinea	Slender Mongoose
Attilax paludinosus	Water (Marsh) Mongoose
Helogale parvula	Dwarf Mongoose

Ichneumia albicauda	White-tailed Mongoose		
Cynictis penicillata	Yellow Mongoose		
Genetta genetta	Small-spotted Genet		
Genetta tigrina	South African Large-spotted Genet		
Civettictis civetta	African Civet		
Parahyaena brunnea	Brown Hyaena		
Proteles cristatus	Aardwolf		
Felis silvestris lybica	African Wild Cat		
Leptailurus serval	Serval		
Caracal caracal	Caracal		
Procavia capensis	Rock Dassie (Hyrax)		
Phacochoerus africanus	Common Warthog		
Potamochoerus larvatus	Bushpig		
Redunca fulvorufula	Mountain Reedbuck		
Redunca arundinum	Common (Southern) Reedbuck		
Pelea capreolus	Grey Rhebok		
Oreotragus oreotragus	Klipspringer		
Raphicerus campestris	Steenbok		
Sylvicapra grimmia	Common Duiker		
Source: (Stuart & Stuart, 1997) and (Skinner & Smithers, 1990)			

Appointment of specialist

Hudson Ecology Pty Ltd was commissioned by K2M Environmental (Pty) Ltd to provide specialist consulting services for the Environmental Impact Assessment for the proposed Bakubung Ledig Project in the North West Province. The consulting services comprise an assessment of potential impacts on the flora, fauna, vegetation and ecology in the study area by the proposed project.

Details of specialist

Adrian HUdson Hudson Ecology Pty Ltd P.O. Box 19287 Noordbrug Potchefstroom 2522 Telephone: 018 294 5448 Cell: 082 344 2758 Email: <u>adrian@hudsonecology.co.za</u>

Summary of expertise

Adrian Hudson is the owner, director and senior ecologist Hudson Ecology Pty Ltd. In this role, he provides assessments which encompass all aspects of terrestrial and wetland ecological studies including (but not limited to) baseline ecological assessments, ecological impact assessments and biodiversity management plans. He also has considerable experience in conservation, and conducted studies in veld management, stocking rates (wildlife and domestic) for a number of companies and organisations. Projects, unless otherwise requested by the client, are conducted according to the IFC Performance standard 6 criteria and Adrian Hudson is, therefore, au fait with the requirements and criteria of the Standard. Adrian has reviewed a number of projects throughout Africa for IFC Performance Standard 6 compliance, including Hassai Gold Mine in Sudan and Konkola North Copper mine in Zambia.

Adrian Hudson is a qualified ecologist and ornithologist who holds a Master's of Science degree in Ecology from the North West University and is currently completing his PhD in Ecology at the same institution. Adrian is currently still closely associated with the university as a supervisor for Honours and Masters degree students, lecturing of short courses at the university and co-authoring of scientific articles with faculty members of the university. Adrian is a member of the Zoological Society of Southern Africa and the International Society of Conservation Biology. Adrian is also a member of the Department of Environmental Affairs and Tourism (South African Government Department) roster of experts on ecology and desertification and a reviewer for a number of internationally accredited scientific journals. He is also accredited with authorship of a number of articles published in scientific journals.

Before founding Hudson Ecology Pty Ltd. in September 2014, Adrian worked for 18 years for a diverse range of organizations, including Natal Parks Board, North West University, United Nations Environmental Program /Global Environment Facility, ECOSUN cc and Golder Associates Africa Pty Ltd. In these roles, Adrian was responsible for anti- poaching, lecturing, research and consulting respectively. Thus far Adrian has worked as a consulting ecologist on more than 90 projects in 20 countries, including projects in Angola, South Africa, Lesotho, Swaziland, Namibia, Botswana, Mozambique, Zambia, Tanzania, Central African Republic, Democratic Republic of Congo, Sudan, Guinea, Guinea-Bissau, Uzbekistan and Liberia.

Independence

Hudson Ecology Pty Ltd and its Directors have no connection with K2M Environmental is not a subsidiary, legally or financially, of the proponent. Remuneration for services by the proponent in relation to this project is not linked to approval by decision-making authorities responsible for authorising this proposed project and the consultancy has no interest in secondary or downstream developments as a result of the authorisation of this project. Adrian Hudson is an independent consultant to K2M Environmental and has no business, financial, personal or other interest in the activity, application or appeal in respect of which he was appointed other than fair remuneration for work performed in connection with the activity, application or appeal. There are no circumstances that compromise the objectivity of this specialist performing such work. The percentage work received directly or indirectly from the proponent in the last twelve months is approximately 0% of turnover.

Scope and purpose of report

The scope and purpose of the report are reflected in the —Terms of reference section of this report

Conditions relating to this report

This report as well as the information contained therein remains the property of Hudson Ecology Pty Ltd until such time as Hudson Ecology Pty Ltd has been remunerated in full for the report and preceding field investigation. As such, until payment is received this report may not be used for insertion in orther reports, placed in the public domain or be passed on to- or reproduced for any third party.

The findings, results, observations, conclusions and recommendations given in this report are based on the author's best scientific and professional knowledge as well as available information. HudsonEcology Pty Ltd and its staff reserve the right to modify aspects of the report, including the recommendations, if and when new information may become available from ongoing research or further work in this field, or pertaining to this investigation.

This report must not be altered or added to without the prior written consent of the author. This also refers to electronic copies of this report which are supplied for the purposes of inclusion as part of other reports, including main reports. Similarly, any recommendations, statements or conclusions drawn from or based on this report must make reference to this report. If these form part of a main report relating to this investigation or report, this report must be included in its entirety as an appendix or separate section to the main report.

HUDSON ECOLOGY Quality, affordable ecological 280 Beyers Naude Ave Potchefstroom 2531 solutions

HUDSON ECOLOGY PTY LTD Reg. No. 2014/268110/07

P.O. Box 19287 Noordbrug 2522 South Africa

Tel +27 (0) 18 2945448 Mobile +27 (0)82 344 2758 http://www.hudsonecology.co.za