MORIRI SOLAR PV FACILITY, NORTHERN CAPE

ENVIRONMENTAL MANAGEMENT PROGRAMME

MAY 2022

Prepared for: Great Karoo Renewable Energy (Pty) Ltd, 53 Carlisle Street, Paarden Eiland, Cape Town, 7405

Prepared by: Savannah Environmental (Pty) Ltd First Floor, Block 2, 5 Woodlands Drive Office Park Woodmead Johannesburg, 2191 Tel: +27 (0)11 656 3237 Fax: +27 (0)86 684 0547 E-mail: info@savannahsa.com www.savannahsa.com

EMPR DETAILS

Title	:	Environmental Management Programme: Moriri Solar PV Facility, Northern Cape		
Authors	:	Savannah Environnemental (Pty) Ltc Rendani Rasivhetshele Jo-Anne Thomas	1	
Specialists	:	Specialist	Area of Expertise	
		David Hoare of David Hoare Consulting (Pty) Ltd	Ecology	
		Chris van Rooyen of Chris van Rooyen Consulting	Avifauna	
		Werner Marais of Animalia	Bats	
		Ivan Baker of the Biodiversity Company	Freshwater and Soils	
		Morné de Jager of Enviro-Acoustic Research	Noise	
		Lourens du Plessis of LoGIS	Visual	
		Tony Barbour of Tony Barbour Environmental Consulting	Social	
		Jenna Lavin of CTS Heritage	Heritage (including Archaeology Palaeontology and Cultural Landscape)	
		Adrian Johnston of JG Afrika	Traffic	
Client	:	Great Karoo Renewable Energy (Pty	r) Ltd	
Report Status	:	: Environmental Management Programme submitted as part of the Environmental Impact Assessment Report to for a 30-day review period		
Date	:	May 2022		

When used as a reference this report should be cited as: Savannah Environmental (2022) Environmental Management Programme: Moriri Solar PV Facility, Northern CAPE

COPYRIGHT RESERVED

This technical report has been produced by Savannah Environmental (Pty) Ltd for Great Karoo Renewable Energy (Pty) Ltd. No part of the report may be copied, reproduced or used in any manner without written permission from Great Karoo Renewable Energy (Pty) or Savannah Environmental (Pty) Ltd.

DEFINITIONS AND TERMINOLOGY

Alien species: A species that is not indigenous to the area or out of its natural distribution range.

Alternatives: Alternatives are different means of meeting the general purpose and need of a proposed activity. Alternatives may include location or site alternatives, activity alternatives, process, or technology alternatives, temporal alternatives or the 'do nothing' alternative.

Ambient sound level: The reading on an integrating impulse sound level meter taken at a measuring point in the absence of any alleged disturbing noise at the end of a total period of at least 10 minutes after such meter was put into operation.

Assessment: The process or collecting, organising, analysing, interpreting and communicating information which is relevant.

Biological diversity: The variables among living organisms from all sources including, terrestrial, marine and other aquatic ecosystems and the ecological complexes they belong to.

Commence: The start of any physical activity, including site preparation and any other activity on site furtherance of a listed activity or specified activity, but does not include any activity required for the purposes of an investigation or feasibility study as long as such investigation or feasibility study does not constitute a listed activity or specified activity.

Construction: Construction means the building, erection or establishment of a facility, structure or infrastructure that is necessary for the undertaking of a listed or specified activity as per the EIA Regulations. Construction begins with any activity which requires Environmental Authorisation.

Cumulative impacts: Impacts that result from the incremental impact of the proposed activity on a common resource when added to the impacts of other past, present or reasonably foreseeable future activities (e.g. discharges of nutrients and heated water to a river that combine to cause algal bloom and subsequent loss of dissolved oxygen that is greater than the additive impacts of each pollutant). Cumulative impacts can occur from the collective impacts of individual minor actions over a period and can include both direct and indirect impacts.

Decommissioning: To take out of active service permanently or dismantle partly or wholly, or closure of a facility to the extent that it cannot be readily re-commissioned. This usually occurs at the end of the life of a facility.

Direct impacts: Impacts that are caused directly by the activity and generally occur at the same time and at the place of the activity (e.g. noise generated by blasting operations on the site of the activity). These impacts are usually associated with the construction, operation, or maintenance of an activity and are generally obvious and quantifiable.

Disturbing noise: A noise level that exceeds the ambient sound level measured continuously at the same measuring point by 7 dB or more.

'Do nothing' alternative: The 'do nothing' alternative is the option of not undertaking the proposed activity or any of its alternatives. The 'do nothing' alternative also provides the baseline against which the impacts of other alternatives should be compared.

Ecosystem: A dynamic system of plant, animal and micro-organism communities and their non-living environment interacting as a functional unit.

Endangered species: Taxa in danger of extinction and whose survival is unlikely if the causal factors continue operating. Included here are taxa whose numbers of individuals have been reduced to a critical level or whose habitats have been so drastically reduced that they are deemed to be in immediate danger of extinction.

Endemic: An "endemic" is a species that grows/occur in a particular area (is endemic to that region) and has a restricted distribution. It is only found in a particular place. Whether something is endemic or not depends on the geographical boundaries of the area in question and the area can be defined at different scales.

Environment: the surroundings within which humans exist and that are made up of:

- (i) The land, water and atmosphere of the earth;
- (ii) Micro-organisms, plant and animal life;
- (iii) Any part or combination of (i) and (ii) and the interrelationships among and between them; and
- (iv) The physical, chemical, aesthetic and cultural properties and conditions of the foregoing that influence human health and well-being.

Environmental assessment practitioner (EAP): An individual responsible for the planning, management and coordinating of environmental management plan or any other appropriate environmental instruments introduced by legislation.

Environmental impact: An action or series of actions that have an effect on the environment.

Environmental impact assessment: Environmental Impact Assessment, as defined in the NEMA EIA Regulations, is a systematic process of identifying, assessing and reporting environmental impacts associated with an activity.

Environmental management: Ensuring that environmental concerns are included in all stages of development, so that development is sustainable and does not exceed the carrying capacity of the environment.

Environmental management programme: A plan that organises and co-ordinates mitigation, rehabilitation and monitoring measures in order to guide the implementation of a proposal and its on-going maintenance after implementation.

Habitat: The place in which a species or ecological community occurs naturally.

Hazardous waste: Any waste that contains organic or inorganic elements or compounds that may, owing to the inherent physical, chemical or toxicological characteristics of that waste, have a detrimental impact on health and the environment.

Incident: Section 30 of NEMA defines an 'incident' as "an unexpected sudden occurrence, including a major emission, fire or explosion leading to serious danger to the public or potentially serious pollution of or detriment to the environment, whether immediate or delayed."¹

Indigenous: All biological organisms that occurred naturally within the study area prior to 1800.

Indirect impacts: Indirect or induced changes that may occur because of the activity (e.g. the reduction of water in a stream that supply water to a reservoir that supply water to the activity). These types of impacts include all the potential impacts that do not manifest immediately when the activity is undertaken or which occur at a different place because of the activity.

Interested and affected party: Individuals or groups concerned with or affected by an activity and its consequences. These include the authorities, local communities, investors, work force, consumers, environmental interest groups, and the public.

Mitigation hierarchy: The mitigation hierarchy is a framework for managing risks and potential impacts related to biodiversity and ecosystem services. The mitigation hierarchy is used when planning and implementing development projects, to provide a logical and effective approach to protecting and conserving biodiversity and maintaining important ecosystem services. It is a tool to aid in the sustainable management of living, natural resources, which provides a mechanism for making explicit decisions that balance conservation needs with development priorities

Pollution: A change in the environment caused by substances (radio-active or other waves, noise, odours, dust or heat emitted from any activity, including the storage or treatment or waste or substances.

Pre-construction: The period prior to the commencement of construction, which may include activities which do not require Environmental Authorisation (e.g. geotechnical surveys).

Rare species: Taxa with small world populations that are not at present Endangered or Vulnerable, but are at risk as some unexpected threat could easily cause a critical decline. These taxa are usually localised within restricted geographical areas or habitats or are thinly scattered over a more extensive range. This category was termed Critically Rare by Hall and Veldhuis (1985) to distinguish it from the more generally used word "rare."

Red data species: Species listed in terms of the International Union for Conservation of Nature and Natural Resources (IUCN) Red List of Threatened Species, and/or in terms of the South African Red Data list. In terms of the South African Red Data list, species are classified as being extinct, endangered, vulnerable, rare, indeterminate, insufficiently known or not threatened (see other definitions within this glossary).

Significant impact: An impact that by its magnitude, duration, intensity, or probability of occurrence may have a notable effect on one or more aspects of the environment.

Waste: Any substance, material or object, that is unwanted, rejected, abandoned, discarded or disposed of, or that is intended or required to be discarded or disposed of, by the holder of that substance, material

¹http://ipwis.pgwc.gov.za/ipwisdoc/Public/Publications/ChemicalsMgt/A%20Procedure%20for%20Section%2030%20of%20NEMA.pdf

or object, whether or not such substance, material or object can be re-used, recycled or recovered and includes all wastes as defined in Schedule 3 to the Waste Amendment Act (as amended on June 2014); or any other substance, material or object that is not included in Schedule 3 that may be defined as a waste by the Minister.

ABBREVIATIONS AND ACRONYMS

DFFE	Department of Forestry, Fisheries and the Environment.
DHSWS	Department of Human Settlements, Water and Sanitation
EAP	Environmental Assessment Practitioner
ECO	Environmental Control Officer
EIA	Environmental Impact Assessment
EMPr	Environmental Management Programme
EPC	Engineering Procurement Contractor
ECO	Environmental Control Officer
EO	Environmental Officer
GG	Government Gazette
GN	Government Notice
На	Hectare
I&AP	Interested and Affected Party
km ²	Square kilometres
kV	Kilovolt
m ²	Square meters
m/s	Meters per second
MW	Mega Watt
NEMA	National Environmental Management Act (Act No 107 of 1998)
NHRA	National Heritage Resources Act (Act No 25 of 1577)
NIRP	National Integrated Resource Planning
NWA	National Water Act (Act No 36 of 1998)
PM	Project Manager
SHE	Safety, Health and Environment
Sahra	South African Heritage Resources Agency
SANRAL	South African National Roads Agency Limited

TABLE OF CONTENTS

			rage
EMPR DET	-		
ABBREVIA	TIONS AND ACRONYMS		vi
	CONTENTS		
APPENDIC			
	1: INTRODUCTION		
	2: PROJECT DETAILS		
2.1.	•	nental Impact Assessment	
2.1.1			
2.1.2		blogy	
2.1.3			
2.1.4			
2.1.5		oil and Agricultural Potential	
2.1.6		sources (archaeology, palaeontology and cultural landscape)	
2.1.7	•		
2.1.9	•	ts	
2.1.10			
2.1.11		ve Impacts	
2.2.12.		/ Analysis	
2.2.13.		pact Statement)	
2.2.14.		on	
2.2.	•	ents associated with the Moriri Solar PV Facility	
		es of the empr	
		\Pr	
4.1.	•		
		BILITIES	
	-	orting, communication, and responsibilities during construction in r	
		the EMPr	
	•	orting, communication, and responsibilities during operation in rela	
	•	٨Pr during operation	
		RAMME: PLANNING AND DESIGN	
6.1.		design of the facility responds to the identified environmental cor	
		nt permits and site-specific plans are in place to manage impacts	
		e of required mitigation measures and recommendations by cont	
		e of required minigation measures and recommendations by com	
		communication mechanisms	
		RAMME: CONSTRUCTION	
7.1.			
		nd site establishment	
	-	gement of the construction site and construction workers	
		nployment and business opportunities associated with the const	
		npioyment and business opportunities associated with the const	
Purase	•••••••••••••••••••		

OBJECTIVE 4: Minimise the negative social impacts on family structures and social networks due	e to the
presence of construction workers from outside the area	45
OBJECTIVE 5: Control of noise pollution stemming from construction activities	
OBJECTIVE 6: Management of dust and emissions and damage to roads	48
OBJECTIVE 7: Conservation of the existing soil resource within the site and in the adjacent areas	
OBJECTIVE 8: Minimise the impacts on and loss of indigenous vegetation and control of alien invasiv	e plants
	53
OBJECTIVE 9: Protection of terrestrial fauna	
OBJECTIVE 10: Protection of avifauna	57
OBJECTIVE 11: Protection of bats	59
OBJECTIVE 12: Minimise impacts on heritage sites during the construction of the PV facility	59
OBJECTIVE 13: Minimisation of visual impacts associated with construction	64
OBJECTIVE 14: Appropriate handling and management of waste	65
OBJECTIVE 15: Appropriate handling and storage of chemicals, hazardous substances	68
OBJECTIVE 16: Effective management of concrete batching plant	71
OBJECTIVE 17: Traffic management and transportation of equipment and materials to site	72
OBJECTIVE 18: Ensure appropriate rehabilitation of disturbed areas such that residual enviror	nmental
impacts are remediated or curtailed	
7.2. Detailing Method Statements	
OBJECTIVE 19: Ensure all construction activities are undertaken with the appropriate level of enviror	nmental
awareness to minimise environmental risk	
7.3. Awareness and Competence: Construction Phase of the Moriri Solar PV Facility	
OBJECTIVE 20: To ensure all construction personnel have the appropriate level of environmental aw	areness
and competence to ensure continued environmental due diligence and on-going minimise	ation of
environmental harm	
7.4. Monitoring Programme: Construction Phase of the Moriri Solar PV Facility	
OBJECTIVE 21: To monitor the performance of the control strategies employed against enviror	nmental
objectives and standards	
CHAPTER 8: MANAGEMENT PROGRAMME: OPERATION	82
8.1. Objectives	82
OBJECTIVE 1: Securing the site and general maintenance during operation	82
OBJECTIVE 2: Protection of indigenous natural vegetation, fauna and maintenance of rehabilitation	on 84
OBJECTIVE 3: Erosion management	87
OBJECTIVE 4: Protection of avifauna	
OBJECTIVE 5: Minimisation of visual impact	89
OBJECTIVE 6: Appropriate handling and management of hazardous substances and waste	90
OBJECTIVE 7: Maximise benefits and opportunities for local communities associated wit	h local
employment, skills opportunities, socio-economic development plans and a community trust	
OBJECTIVE 8: Implement an appropriate fire management plan during the operation phase	
8.2. Monitoring Programme: Operation Phase of the Moriri Solar PV Facility	94
OBJECTIVE 9: To monitor the performance of the control strategies employed against environ	nmental
objectives and standards	94
CHAPTER 9: MANAGEMENT PROGRAMME: DECOMMISSIONING	
9.1. Objectives	96

APPENDICES

- Appendix A: Facility Layout and Sensitivity Maps
- Appendix B: Grievance Mechanism for Public Complaints and Issues
- Appendix C: Open Space Management Plan
- Appendix D: Re-Vegetation and Habitat Rehabilitation Plan
- Appendix E: Plant Rescue and Protection Plan
- Appendix F: Traffic and Transportation Management Plan
- Appendix G: Stormwater and Erosion Management Plan
- Appendix H: Waste Management Plan
- Appendix I: Emergency Preparedness, Response and Fire Management Plan
- Appendix J: Curriculum Vitae of the Project Team

CHAPTER 1: INTRODUCTION

This Environmental Management Programme has been compiled for the Moriri Solar PV Facility, Northern Cape. The project site is located on a site located approximately 35km south-west of Richmond, and 80km south- east of Victoria West, within the Ubuntu Local Municipality and the Pixley Ka Seme District Municipality in the Northern Cape Province. The facility will have a contracted capacity of up to 100MW and will be known as the Moriri Solar PV Facility. The project is planned as part of a larger cluster of renewable energy projects, which include one (1) 140MW Wind Energy Facility (known as the Merino WEF) two (2) additional 100MW PV facilities (known as the Kwana Solar PV and Nku Solar PV), and grid connection infrastructure connecting the facilities to the existing Eskom Gamma Substation.

This EMPr has been developed on the basis of the findings of the Environmental Impact Assessment (EIA) undertaken for the project (Savannah, 2022), and must be implemented to protect sensitive on-site and offsite features through controlling construction, operation and decommissioning activities that could have a detrimental effect on the environment, and through avoiding or minimising potential impacts. This EMPr is applicable to all Great Karoo Renewable Energy (Pty) Ltd employees and contractors working on the preconstruction, construction, and operation and maintenance phases of the Moriri Solar PV Facility. The document must be adhered to and updated as relevant throughout the project life cycle. This document fulfils the requirement of the EIA Regulations, 2014 (as amended) and forms part of the EIA report of the project.

In terms of the Duty of Care provision in S28(1) the project proponent must ensure that reasonable measures are taken throughout the life cycle of this project to ensure that any pollution or degradation of the environment associated with this project is avoided, halted or minimised. In terms of NEMA, it has become the legal duty of a project proponent to consider a project holistically, and to consider the cumulative effect of a variety of impacts. While no permitting or licensing requirements arise directly by virtue of the Moriri Solar PV Facility, this section will be applicable throughout the life cycle of the project.

CHAPTER 2: PROJECT DETAILS

In responding to the growing electricity demand within South Africa, the need to promote renewable energy and sustainability within the Northern Cape Province, as well as the country's targets for renewable energy. Great Karoo Renewable Energy (Pty) Ltd is proposing the development of a commercial solar farm and associated infrastructure to add new capacity to the national electricity grid. The Moriri Solar PV Facility will be developed in a single phase and will have a contracted capacity of up to 100MW. The project will make use of fixed-tilt, single-axis tracking, and/or double-axis tracking PV technology. Monofacial or bifacial panels are both considered within this EIA Report.

The Moriri Solar PV Facility will comprise solar panels which, once installed, will stand less than 5m above ground level. The solar panels will include centralised inverter stations, or string inverters mounted above ground. If centralised inverter stations are used, Mega Volt (MV) distribution transformers are located internally, whereas string inverters are containerised with switchgear. The main transformer capacity varies according to detailed design and project-specific requirements.

A preferred project site with an extent of ~577ha has been identified by Great Karoo Renewable Energy (Pty) as a technically suitable area for the development of the Moriri Solar PV Facility. The project site consists of four affected properties:

- » Portion 0 of Farm Rondavel 85
- » Portion 1 of Farm Rondavel 85

A development envelope for the placement of the solar facility infrastructure (i.e. development footprint) has been identified within the project site and assessed as part of the EIA process. The development envelope is ~577ha in extent and the development footprint is proposed to accommodate both the PV panels, as well as most of the associated infrastructure, which is required for such a facility, and will include:

- » Solar PV array comprising PV modules and mounting structures.
- » Inverters and transformers.
- » Cabling between the panels.
- » 33/132kV onsite facility substation.
- » Cabling from the onsite substation to the collector substation (either underground or overhead).
- » Electrical and auxiliary equipment required at the collector substation that serves the solar energy facility, including switchyard/bay, control building, fences, etc.
- » Battery Energy Storage System (BESS).
- » Site offices and maintenance buildings, including workshop areas for maintenance and storage.
- » Laydown areas.
- » Access roads and internal distribution roads.

	Defailed description	of the Mohin Solar i v radinity project site	
Province		Northern Cape	
District Munic	ipality	Pixley Ka Seme District Municipality	
Local Municip	pality	Ubuntu Local Municipality	
Ward number	r(s)	3	

Table 2.1: Detailed description of the Moriri Solar PV Facility project site

Nearest town(s) (measured from the centre of the project site)	Richmond (~35km south-west) and Victoria West (~80km south-east)
Affected Properties: Farm name(s), number(s) and portion numbers	Moriri Solar PV Facility Portion 1 of Farm Rondavel 85 Portion 0 of Farm Rondavel 85
SG 21 Digit Code (s)	Moriri Solar Facility » Portion 1 of Farm Rondavel 85: C063000000008500001 » Portion 0 of Farm Rondavel 85: C063000000008500000
Current zoning and Land Use	Zoning: Agricultural
Site co-ordinates (centre of project site)	31°28'51.59"\$; 23°35'34.10"E

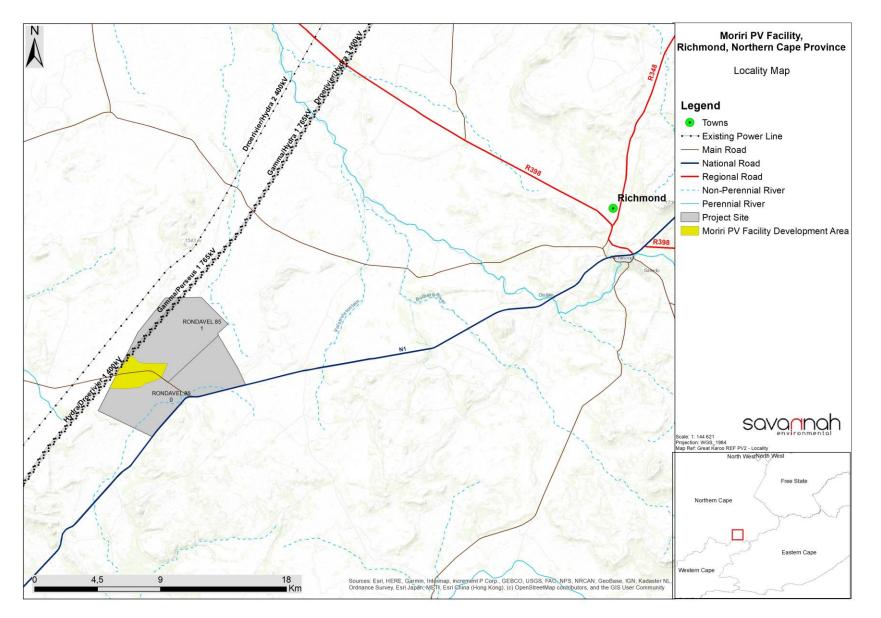


Figure 2.1: Locality map showing the location of the project site and development envelope proposed for the Moriri Solar PV Facility

2.1. Findings of the Environmental Impact Assessment

An Environmental Impact Assessment was undertaken for the proposed project in accordance with the requirements of the EIA Regulations, 2014 (as amended) and GNR114 of February 2018.

No environmental fatal flaws or unacceptable impacts were identified in the detailed specialist studies conducted, provided that the recommended mitigation measures are implemented. These measures include, amongst others, the avoidance of sensitive features within the development footprint as specified by the specialists.

The potential environmental impacts associated with the Moriri Solar PV Facility identified and assessed through the EIA Process include:

- » Impacts on ecology, flora, and fauna.
- » Impacts on aquatic ecology.
- » Impacts on avifauna.
- » Impacts on bats.
- » Impacts on land use, soils, and agricultural potential.
- » Impacts on heritage resources, including archaeology, palaeontology, and the cultural landscape.
- » Visual impacts on the area imposed by the components of the facility.
- » Positive and negative socio- economic impacts.
- » Traffic impacts, including increased pressure on the existing road network.

2.1.1 Impacts on Ecology

There are three plant species listed as Rare (Anisodontea malavastroides, Aloe broomii var. tarkaensis and Tridentea virescens) that could potentially occur on site, but these are all three widespread species that are naturally rare where they are found. None have been previously recorded on this site. There are also two plant species protected according to National legislation (*Crinum bulbispermum* and *Harpagophytum procumbens*) that could potentially occur in the geographical area, but these are also very widespread species. In all five cases the loss of some individuals, if they are found to occur on site, would not affect the conservation status of any of the species. It is, however, unlikely that any of them would be affected.

There are a small number of fauna species of conservation concern that were assessed as having a possibility of occurring on site. The Riverine Rabbit has been previously recorded in the grid in which the site is found and there are some small patches of habitat that are marginally suited to the species, but the known distribution of the species does not include the site and it is not known to occur in this area so it is therefore considered unlikely that it would be found on site. All other species listed here are highly mobile species that are unlikely to be affected by any activities on site.

2.1.2 Impacts on Aquatic Ecology

Construction could result in the encroachment into watercourses and result in the loss or degradation of these systems, most of which are functional and provide ecological services. Watercourses are also likely to be traversed by roads and other linear infrastructure which might create a barrier to flow and biotic movement across the systems. These disturbances could also result in the infestation and establishment of alien vegetation would affect the functioning of the systems.

During construction, earthworks will expose and mobilise earth materials which could result in sedimentation of the receiving systems. A number of machines, vehicles and equipment will be required for the phase, aided by chemicals and concrete mixes for the project. Leaks, spillages or breakages from any of these could result in contamination of the receiving water resources. Contaminated water resources are likely to have an effect on the associated biota.

The following potential impacts were considered:

- » Construction Phase:
 - * Watercourse disturbances/loss: Direct disturbance / degradation / loss to soils or vegetation due to the construction of the facility and associated infrastructure.
 - * Water runoff from construction site: Increased erosion and sedimentation; and
 - * Contamination of receiving water resources; and

It is anticipated to increase stormwater runoff due to the hardened surfaces and the crossings will result in an increase in run-off volume and velocities, resulted in altered flow regimes. The changes could result in physical changes to the receiving systems caused by erosion, run-off and also sedimentation, and the functional changes could result in changes to the vegetative structure of the systems.

The reporting of surface run-off to the systems could also result in the contamination of the systems, transporting (in addition to sediment) diesel, hydrocarbons and soil from the operational areas. The following potential impacts were considered:

- » Operational Phase:
 - * Hardened surfaces: Potential for increased stormwater runoff, leading to increased erosion and sedimentation.
 - * Contamination: Potential for increased contaminants entering the watercourses.

Therefore, based on the results of the Aquatic Impact Assessment, the pre-mitigation impact significance for all considered aspects is expected to be medium. The expected post-mitigation impact significance is expected to be low should all mitigation measures and recommendations be implemented.

Thus, based on the findings of this study no objection to the authorisation of any of the proposed activities is made at this point based on the current layout as provided by the developer.

2.1.3 Impacts on Avifauna

As far as disturbance is concerned, it is likely that all the avifauna, including all the priority species, will be temporarily displaced in the footprint area, either completely or more likely partially (reduced densities) during the construction phase, due to the disturbance associated with the construction activities e.g. increased vehicle traffic, and short-term construction-related noise (from equipment) and visual disturbance.

The SABAP2 data indicates that a total of 164 bird species could potentially occur within the broader area. At the PV facility, the priority species which would be most severely affected by disturbance would be ground nesting species, and those that utilise low shrubs for nesting, which are the following: Ludwig's Bustard, Karoo Korhaan, Black-headed Canary, Sickle-winged Chat, Large-billed Lark, Karoo Prinia, Karoo Eremomela, Fairy Flycatcher, Black-eared Sparrow-Lark, Layard's Warbler and Spotted Eagle-Owl. Large eagles breeding on the transmission lines in close proximity of the PV facility could also be at risk of disturbance i.e. Martial Eagle and Tawny Eagle.

Based on the impact assessment conducted for the Moriri Solar PV Facility (including cumulative impacts) it is the avifaunal specialist's informed opinion that the proposed development will have a range of potential pre-mitigation impacts on priority avifauna ranging from low to high, which is expected to be reduced to medium and low with appropriate mitigation. No fatal flaws were discovered during the investigations. The proposed Moriri Solar PV Facility is therefore acceptable and can be approved from an avifaunal perspective.

2.1.4 Impacts on Bats

The main possible impacts identified includes foraging and roosting habitat destruction due to earthworks and vegetation clearing, increased probability of bat mortalities at nearby WEF's due to normal light pollution, and bat navigation interference due to polarised light pollution (PP). The destruction of foraging and roosting habitat can be mitigated by adhering to the sensitivity map.

The presence of security lights on and around PV facilities (including associated infrastructures) can create significant light pollution that can increase the probability of bats being killed by nearby wind turbines. This can be mitigated by having floodlights down-hooded, installing passive motion sensors onto lights around buildings, and possibly utilising lights with lighting colours that attract fewer insects. The probability of bat mortalities caused by moving turbine blades of nearby WEF's (e.g. the proposed adjacent Merino WEF) may be significantly increased by artificial lighting attracting insects and thereby insect eating bats. Particularly if such lights are placed in close proximity of wind turbines. This applies to insect eating bats that readily forage around lights, cave dwelling species tend to avoid lights.

Evidence exists of bats using polarised light at dusk to calibrate their internal magnetic compasses, and PV solar panels are strong reflectors of horizontally polarised light which can possibly interfere with this method of navigation. Although, the degree of impact on bats needs to be determined for bats foraging near and around their roost, since the study referenced experimented on the homing capabilities of bats released away from their roost. The impact may be medium if not mitigated. This can be mitigated by tilting PV solar panels be away from the direction of sunset directly after sunset, in order to have them facing as far as possible in the opposite direction of sunset during dusk. In this way any remaining light from sunset will fall on the back of the solar panels and not at a reflective angle in relation to the low-lying sunset. Using matte solar panels with anti-reflective coatings can also reduce the range of reflective light angles and therefore reduce PLP.

Thus far, from a bat impact perspective, no reasons have been identified for the Moriri Solar PV Facilitynot to proceed to the approval phase.

2.1.5 Impacts on Land Use, Soil and Agricultural Potential

It is the specialist's opinion that the baseline findings do not concur with the land capabilities identified by means of the DAFF (2017) desktop findings in regard to land capability sensitivities. No "High" land capability sensitivities were identified within proximity to any of the proposed activities. Considering the lack of sensitivity and the measures put in place in regard to stormwater management and erosion control, it is the specialist's opinion that all activities will have an acceptable impact on agricultural productivity. Furthermore, no measures in regard to moving components in their micro-setting were required to avoid or minimise fragmentation and disturbances of agricultural activities.

Various soil forms were identified within the Moriri project area with the most sensitive soils being classified as the Tubatse, Oakleaf and Bethesda soil forms. These soil forms were determined to be associated with one land capability, namely LCIII. This land capability class was then further refined to land potential level 6 by comparing land capability of climatic capabilities of the project area.

This land potential level was used to determine the sensitivities of soil resources. Only "Low" sensitivities were determined throughout the project area by means of baseline findings. Considering the low sensitivities associated with land potential resources, it is the specialist's opinion that the proposed activities will have an acceptable impact on soil resources and that the proposed activities should proceed as have been planned.

2.1.6 Impacts on Heritage Resources (archaeology, palaeontology and cultural landscape)

The assessment of the possible impacts on the archaeological, historical and palaeontological resources has shown a Low impact from the Moriri Solar PV Facilityproject after mitigation measures. It is further considered that the project can have a potential positive influence on such resources in the region when the proposed conservation initiative from the project considers such resources as part of a larger development strategy.

The assessment of the cultural landscape indicated that the project will have a low impact on the cultural landscape. The general mitigation measures for renewable energy development in areas of cultural landscape significance as proposed by Sarah Winter, (2021) as well as Lavin (2021) will still result in a marginal reduction of impact.

Analysis of the findings of the SEIA for this project further reveals that the social and economic benefit for the region outweighs the need for conservation of cultural resources.

The overall impact of the Moriri PV facility, on the heritage resources identified during this report, is considered as acceptable after the recommendations have been implemented and therefore, impacts can be mitigated to acceptable levels allowing for the development to be authorised.

2.1.7 Visual Impacts

The findings of the Visual Impact Assessment undertaken for the proposed 100MW PV facility is that the visual environment surrounding the site, especially within a 1 - 3km radius, may be visually impacted during the anticipated operational lifespan of the facility (i.e. a minimum of 20 years).

This impact is applicable to the individual Moriri Solar PV Facility and to the potential cumulative visual impact of the facility in relation to the proposed PV Facilities, where the combined frequency of visual impact is expected be greater. The potential area of cumulative visual exposure is however still deemed to be within acceptable limits, considering the PV facilities' close proximity to each other.

The following is a summary of impacts remaining, assuming mitigation as recommended, is exercised:

- » During construction, there may be a noticeable increase in heavy vehicles utilising the roads to the development site that may cause, at the very least, a visual nuisance to other road users and landowners in the area. Construction activities may potentially result in a moderate, temporary visual impact both before and after mitigation.
- The PV facility is expected to have a moderate visual impact on observers travelling along the Rondawel-Hutchinson secondary road within a 1km radius of the infrastructure, both before and after mitigation. There are no residences within a 1km radius of the proposed PV facility.
- The operational PV facility could have a moderate visual impact on observers (road users) travelling between a 1 – 3km radius of the PV facility structures. This impact may be mitigated to low. There are no exposed residences within a 1-3km radius of the proposed PV facility.
- The anticipated impact of lighting at the PV facility is likely to be of moderate significance, and may be mitigated to low.
- The anticipated impact of lighting at the PV facility is likely to be of moderate significance, and may be mitigated to low.
- The proposed PV facility is not located near any operational airports/airfields or major roads. The potential visual impact related to solar glint and glare as an air/road travel hazard is expected to be of low significance.
- » There are no residences within a 3km radius of the proposed PV facility. The potential visual impact related to solar glint and glare on static ground-based receptors (residents of homesteads) is therefore expected to be of low significance, both before and after mitigation.
- The anticipated visual impact resulting from the construction of the on-site ancillary infrastructure is likely to be of low significance both before and after mitigation.
- The anticipated visual impact of the proposed PV facility on the regional visual quality (beyond 6km of the proposed infrastructure), and by implication, on the sense of place, is difficult to quantify, but is generally expected to be of low significance.
- The cumulative visual impact of the proposed facilities is expected to be of moderate significance due to their remote locations and the general absence of potential sensitive visual receptors.

The anticipated visual impacts listed above (i.e. post mitigation impacts) range from moderate to low significance. Anticipated visual impacts on sensitive visual receptors (if and where present) in close proximity to the proposed facility are not considered to be fatal flaws for the proposed PV facility.

Considering all factors, it is recommended that the development of the facility as proposed be supported; subject to the implementation of the recommended mitigation measures and management programme recommended within the visual impact assessment (Appendix J).

2.1.9 Socio-economic Impacts

The review of the proposed Moriri Solar PV Facilityis associated with both positive and negative socioeconomic impacts. In order to assess whether the project is beneficial, the additions to the environment brought about by the project need to be evaluated. The additional benefits of the intervention are the difference between the reference case position (i.e., the no-go option) and the position if the intervention is implemented. It involves the evaluation of the net effect and trade-offs associated with the proposed intervention.

The assessment of the proposed facility, and its net effect from a socio-economic perspective, indicates that the project would generate greater socio-economic benefits during both the construction and operational phases than the potential losses that could occur as a result of its establishment. Stimulation of production, employment, government revenue, skills development, and household income as a result of the investment in the project and its subsequent operations will outweigh possible production, employment and household income losses that could be experienced by local businesses affected by changes in the areas aesthetic and visual resources. It should be noted though that the positive and negative impacts will be distributed mostly amongst different receptors but will not result in inequality. Adherence to the proposed mitigation measures, however, would ensure that the offset of impacts is more balanced and that it also takes into account communities and businesses that will be negatively affected.

The positive effects generated by the project will not offset many of the negative impacts. These include impacts on the sense of place and property and business values that could occur during both construction and operation, the effect on social and economic infrastructure, and crime and social conflicts in the area that could be created during only the construction phase. These impacts though will only affect local communities either temporarily or over the long term. These impacts are not highly significant and can be traded off for the net positive impact created by the project in terms of production, employment, government revenue, community benefits and households' earnings. This means that when compared with the no-go option, the proposed project is associated with greater socio-economic benefits.

Recommendations

Based on the information presented in the SEIA report, it is concluded that the net positive impacts associated with the development and operation of the proposed solar energy facility are expected to outweigh the net negative effects. The project is also envisaged to have a positive stimulus on the local economy and employment creation, leading to the economy's diversification and a small reduction in the unemployment rate. The project should therefore be considered for development. It should, however, be acknowledged that any negative impacts would be largely borne by the farms in the immediate vicinity and households residing on them, whilst the positive impacts will be largely concentrated in the local and national economies. Due to this imbalance, it is recommended that the mitigation measures suggested being strictly adhered to. Application of these mitigation measures will ensure that the negative impacts on the nearby farms and businesses are minimised and that the distribution of the potential benefits of the project are more balanced.

2.1.10 Impacts on Traffic

The potential traffic and transport related impacts for the construction, operation and decommissioning phases of the proposed Moriri Solar PV Facilitywere identified and assessed. The main impact on the external road network will be during the construction phase. This phase is temporary in comparison to the operational period. The number of abnormal loads vehicles was estimated and to be found to be able to

be accommodated by the road network. During operation, it is expected that maintenance and security staff will periodically visit the facility. It is assumed that approximately twenty (20) full-time employees will be stationed on site. The traffic generated during this phase will be minimal and will not have an impact on the

surrounding road network.

The traffic generated during the construction phase, although significant, will be temporary and impacts are considered to be negative and of medium significance before and of low significance after mitigation. The traffic generated during the decommissioning phase will be less than the construction phase traffic and the impact on the surrounding road network will also be considered negative and of medium significance before and of low significance after mitigation.

The access road and access point to the proposed site have been assessed and were found to be acceptable from a traffic engineering perspective.

The development is supported from a transport perspective provided that the recommendations and mitigations contained in this report are adhered to.

The potential impacts associated with proposed Moriri Solar PV Facilityand associated infrastructure are acceptable from a transport perspective and it is therefore recommended that the proposed facility be authorised.

2.1.11 Assessment of Cumulative Impacts

Cumulative impacts and benefits on various environmental and social receptors will occur to varying degrees with the development of several renewable energy facilities in South Africa. The degree of significance of these cumulative impacts is difficult to predict without detailed studies based on more comprehensive data/information on each of the receptors and the site-specific developments. The alignment of renewable energy developments with South Africa's National Energy Response Plan and the global drive to move away from the use of non-renewable energy resources and to reduce greenhouse gas emissions is undoubtedly positive. The economic benefits of renewable energy developments at a local, regional and national level have the potential to be significant.

Cumulative impacts are expected to occur with the development of the Moriri Solar PV Facilitythroughout all phases of the project life cycle and within all areas of study considered as part of this EIA report. The main aim for the assessment of cumulative impacts considering the Moriri Solar PV Facilityis to test and determine whether the development will be acceptable within the landscape proposed for the development, and whether the loss, from an environmental and social perspective, will be acceptable without whole-scale change (refer to **Table 11.1** and Chapter 10).

Specialist assessment		Cumulative significance of impact of the project and other projects in the area
Ecology	High	Medium
Aquatic Ecology	Low	Medium
Avifauna	Low	Medium

 Table 11.1:
 Summary of the cumulative impact significance for the Moriri Solar PV Facility

Specialist assessment		Cumulative significance of impact of the project and other projects in the area
Bats	Medium	High
Land use, soil and agricultural potential	Low	Low
Heritage (archaeology, palaeontology and cultural landscape)	Low	Low
Visual	Medium	Medium
Socio-Economic	Positive impacts:	Positive impacts:
	Low	Medium
	Negative impacts:	Negative impacts:
	Low	Medium
Traffic	Low	Medium

Based on the specialist cumulative assessment and findings, the development of the Moriri Solar PV Facility and its contribution to the overall impact of all renewable energy facilities to be developed within a 30km radius, it can be concluded that the Moriri Solar PV Facility cumulative impacts will be of low to medium significance, with impacts of a high significance mainly relating to bats impacts. It was concluded that the development of the Moriri Solar PV Facility in unacceptable, cumulative impacts and will not result in a whole-scale change of the environment.

2.2.12. Environmental Sensitivity Analysis

As part of the specialist investigations undertaken within the project development area, specific environmental features and areas were identified. The environmental features identified within and directly adjacent to the development area and development footprint are illustrated in Figure 2.2. The following points provide a description of the sensitivities identified within the development area:

» Ecological features:

The lower slopes of the PV area consist of open plains considered to be low sensitivity while the upper slopes of the PV area are steeper of have a higher woody component and are considered to be medium sensitivity. Along the power line route to the MTS, there are some high sensitivity drainage features, but these can easily be spanned by the power line and are not likely to be significantly impacted by the power line. The drainage feature which occurs along the south-eastern boundary of the PV area would be vulnerable to impact and it is recommended that a freshwater specialist should demarcate the boundary of this feature in the field before construction to ensure that the PV area does not encroach into this area unnecessarily. In terms of fauna, the PV area does not have any habitats present that would be of particularly high value and no specific impact of high magnitude on fauna are expected. However, given the size of the facility and the location within an ESA it is recommended that specific measures are put in place with regards to the design of the fence around the facility to facilitate the movement of smaller fauna in and out of the PV area. Similarly, no plant species of high concern were observed within the PV and impacts on plant SCC are likely to be low. Perhaps the greatest area of concern regarding the PV facility would be the location of the facility on a fairly steep slope with soils that appear to have high erodibility. The panels would generate a lot of runoff and combined with the high levels of disturbance that would occur after construction, the potential for erosion problems at the

site are very high. Consequently, specific mitigation measures to reduce and manage erosion and runoff at the site are recommended.

» Aquatic Ecology:

The results of the habitat assessment indicates natural (class A) and largely natural (class B) instream and riparian conditions for the catchment respectively. The overall ecological importance and sensitivity for the area was determined to be moderate. The overall ecosystem service benefit for the system is intermediate. The recommended buffer was calculated to be 22 m for the drainage lines for the construction and operational phases.

» Avifauna:

At the PV facility, the priority species which would be most severely affected by disturbance would be ground nesting species, and those that utilise low shrubs for nesting. the proposed development will have a range of potential pre-mitigation impacts on priority avifauna ranging from low to high, which is expected to be reduced to medium and low with appropriate mitigation. No fatal flaws were discovered during the investigations and no any buffer zones recommended.

» Bats:

The main possible impacts identified includes foraging and roosting habitat destruction due to earthworks and vegetation clearing, increased probability of bat mortalities at nearby WEF's due to normal light pollution, and bat navigation interference due to polarised light pollution (PP). The destruction of foraging and roosting habitat can be mitigated by adhering to the sensitivity map. No no-go areas have been identified and no buffers have been recommended.

» Soils:

The solar panel bases will typically be installed into the soil surface with vegetation expected to be kept intact yet maintained. The "Low" pre- and post-mitigation significance ratings are expected.

» Heritage Resources:

The assessment of the possible impacts on the archaeological, historical and palaeontological resources has shown a Low impact from the Moriri Solar PV Facilityproject after mitigation measures. There are limited impacts anticipated to heritage resources from this proposed development. There are no any "no-go" areas that have been identified and no buffers have been recommended for the PV facility.

» Visual:

During construction, there may be a noticeable increase in heavy vehicles utilising the roads to the development site that may cause, at the very least, a visual nuisance to other road users and landowners in closer proximity (< 1 km) to the construction activities. No no-go areas have been identified and no buffers have been recommended. The PV facility is expected to have a moderate visual impact on observers travelling along the Rondawel-Hutchinson secondary road, both before and after mitigation. There are no residences within a 1km radius of the proposed PV facility.

» Socio-economic:

Sensitive receptors from a socio-economic perspective are similar to those identified from a visual perspective, as detailed above. The assessment of the proposed facility, and its net effect from a socio-economic perspective, indicates that the project would generate greater socio-economic benefits during both the construction and operational phases than the potential losses that could occur as a

result of its establishment. No no-go areas have been identified and no buffers have been recommended.

» Traffic:

The main impact on the external road network will be during the construction phase. This phase is temporary in comparison to the operational period. The number of abnormal loads vehicles was estimated and to be found to be able to be accommodated by the road network. During operation, it is expected that maintenance and security staff will periodically visit the facility. It is assumed that approximately twenty (20) full-time employees will be stationed on site. The traffic generated during this phase will be minimal and will not have an impact on the surrounding road network.

Based on an analysis of the identified sensitivities for the project development area, no optimisation of the layout is required. The layout as presented within Figure 2.2 is therefore considered to be the most appropriate from an environmental perspective.

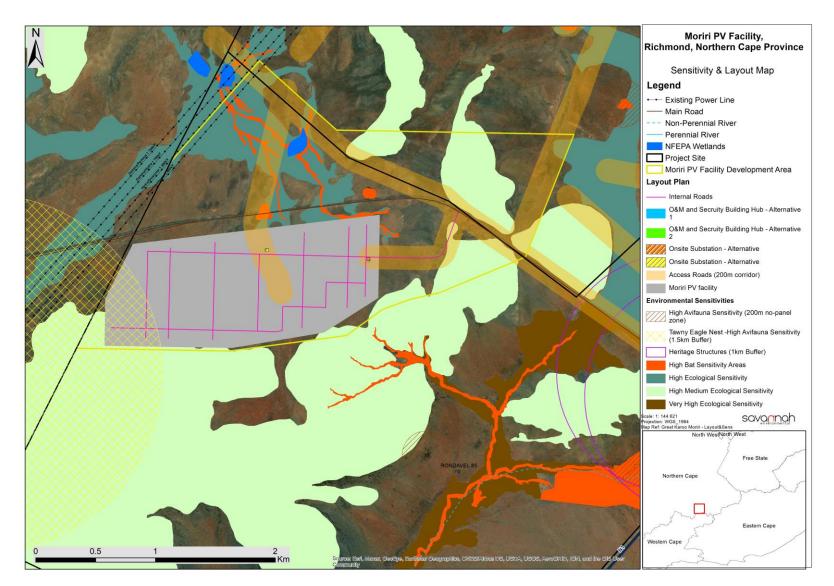


Figure 2.2: The development footprint (~577ha) of the Moriri Solar PV Facility, as assessed within this EIA report, overlain on the identified environmental sensitive features

2.2.13. Overall Conclusion (Impact Statement)

The preferred activity was determined by the developer to be the development of a renewable energy facility on site using solar irradiation as the preferred technology, due to the availability of a suitable solar resource. Independent specialists appointed to undertake the assessment of potential impacts associated with the project assessed a larger area in order to inform the best location for the solar facility infrastructure. The Specialists considered desktop data, results from field work, existing literature and the National Webbased Environmental Screening Tool to inform the identification of sensitivities. A proposed layout was designed after provision of sensitivity data by the specialists with the aim of avoiding sensitive areas identified.

Based on the specialist investigations of the larger area, a technically viable development footprint was proposed by the developer and assessed as part of the EIA process. The findings of the assessment of the development footprint undertaken by independent specialists have informed the results of this EIA report. The specialist findings have indicated that there are no identified fatal flaws associated with the implementation of the project within the project site.

From a review of the relevant policy and planning framework, it was concluded that the project is well aligned with the policy framework, and a clear need for the project is seen from a policy perspective at a local, provincial and National level. The project development area is located outside of any protected area and outside of any Critical Biodiversity Areas (CBAs) as defined in the Provincial Conservation Plan. When considering biodiversity and socio-economic benefits and impacts on the affected and surrounding areas, the following is concluded from the specialist studies undertaken within this EIA Process.

From a biodiversity perspective, the site is not located within a protected area. The site is located within an extensive ESA. However, overall, there are no specific long-term impacts likely to be associated with the development of the Moriri Solar PV Facility that cannot be reduced to a low significance. There are no fatal flaws associated with the development and no terrestrial ecological considerations that should prevent it from proceeding. No sensitivities were identified from a bat and avifauna perspective, and the layout proposed ensures that all aquatic sensitivities identified through the EIA Process are avoided and recommended buffer areas are honoured. This approach is in line with the application of the mitigation hierarchy, where all the sensitive areas which could be impacted by the development have been avoided (i.e. tier 1 of the mitigation hierarchy). Where impacts could not be avoided, appropriate mitigation has been proposed to minimise impacts. It follows therefore that the project does not adversely impact on the ecological integrity of the area.

In addition, consideration must also be given to the positive and negative socio-economic impact. Impacts on cultural landscape are expected to be high. It must be considered that the addition of the infrastructure of the Moriri Solar PV Facilitywill constitute an additional layer to the cultural landscape and must be considered as such within a gazetted REDZ area. Through the implementation of the economically feasible recommendations as set out in the Heritage impact Assessment and contained in this report it will be possible to preserve older layers of the cultural landscape and in some cases even enhance them through consideration such as the use of older name places in the naming of infrastructure and enhancing local heritage through the incorporation of such structures in project conservation initiatives to name a few.

The Socio-economic Impact Assessment has identified short-term (construction related) impact indicators and operational related socio-economic impact indicators. The assessment of the proposed facility, and its

net effect from a socio-economic perspective, indicates that the project would generate greater socioeconomic benefits during both the construction and operational phases than the potential losses that could occur as a result of its establishment.

As detailed in the cost-benefit analysis, the benefits of the Moriri Solar PV Facilityare expected to occur at a national, regional and local level. As the costs to the environment at a site-specific level have been largely limited through the appropriate placement of infrastructure on the project site within lower sensitive areas through the avoidance of features and areas considered to be sensitive, the benefits of the project are expected to partially offset the localised environmental costs of the PV facility. From an economic perspective, both positive and negative impacts are expected.

Based on the conclusions of the specialist studies undertaken, it can be concluded that the development of the Moriri Solar PV Facilitybased on the current layout as provided by the developer will not result in unacceptable environmental impacts (subject to the implementation of the recommended mitigation measures).

2.2.14. Overall Recommendation

Considering the findings of the independent specialist studies, the impacts identified, the development footprint proposed by the developer within the development envelope, the avoidance of the sensitive environmental features within the project site, as well as the potential to further minimise the impacts to acceptable levels through mitigation, it is the reasoned opinion of the EAP that the Moriri Solar PV Facility is acceptable within the landscape and can reasonably be authorised. The proposed layout as provided by the developer (**Figure 2.2**) is considered to be the most appropriate from an environmental perspective as it avoids identified sensitivities and recommended buffer areas.

The following infrastructure would be included within an authorisation issued for the project:

- » Solar PV array comprising PV modules and mounting structures.
- » Inverters and transformers.
- » Cabling between the panels.
- » 33/132kV onsite facility substation.
- » Cabling from the onsite substation to the collector substation (either underground or overhead).
- » Electrical and auxiliary equipment required at the collector substation that serves the solar energy facility, including switchyard/bay, control building, fences, etc.
- » Battery Energy Storage System (BESS).
- » Site offices and maintenance buildings, including workshop areas for maintenance and storage.
- » Laydown areas.
- » Access roads and internal distribution roads.

2.2. Activities and Components associated with the Moriri Solar PV Facility

The main activities/components associated with the Moriri Solar PV Facilityare detailed in Table 2.2.

Table 2.2:	Activities associated with Planning,	Construction, Operation an	d Decommissioning of the Moriri Solar PV	Facility
------------	--------------------------------------	----------------------------	--	----------

	Pre-construction
Requirements	» Planning and Design of facility
Activities to be undertak	en
Site preparation	 Confirming the integrity of site access to accommodate the required equipment. Preparation of the site (e.g. laydown areas). Mobilisation of construction equipment.
Conduct surveys prior to construction	Including, but not limited to: a geotechnical survey, site survey and confirmation of the panel micro-siting footprint, and survey of the on-site collector substation site to determine and confirm the locations of all associated infrastructure.
	Construction Phase
Requirements	 Project receives Environmental Authorisation from the DFFE, preferred bidder allocation granted by DMRE (or other offtaker), a generating license issued by NERSA, and a Power Purchase Agreement secured with Eskom (or private entity). Expected to be 15-18 months for Moriri Solar PV Facility. Create direct construction employment opportunities. Approximately 350 employment opportunities will be created. No on-site labour camps. Employees to be accommodated in the nearby towns such as Richmond and Victoria West and transported to and from site on a daily basis. Overnight on-site worker presence would be limited to security staff. Waste removal and sanitation will be undertaken by a suitably qualified sub-contractor. Waste containers, including containers for hazardous waste, will be located at easily accessible locations on site when construction activities are undertaken. Electricity required for construction activities will be generated by a generator. Where low voltage connections are possible, these will be considered. Water required for the construction phase will be supplied by the municipality. In addition, where possible, borehole water will be used. Should water availability at the time of construction be limited, water will be transported to site via water tanks. Water will be used for sanitation and potable water on site as well as construction works.
Activities to be undertak	en
Establishment of access roads to the Site	

	 Access roads to be established for construction and/or maintenance activities within the development footprint. Internal service road alignment will be approximately 4,5m wide. Location is to be determined by the final micro-siting or positioning of the PV panels.
Undertake site preparation	 i) Including the clearance of vegetation at the footprint of PV panel supports, establishment of the laydown areas, the establishment of internal access roads and excavations for foundations. ii) Stripping of topsoil to be stockpiled, for use during rehabilitation. iii) Vegetation clearance to be undertaken in a systematic manner to reduce the risk of exposed ground being subjected erosion. iv) Include search and rescue of floral species of concern (where required) and the identification and excavation of any sites of cultural/heritage value (where required).
Establishment of laydown areas and batching plant on site	 A laydown area for the storage of PV panels components and civil engineering construction equipment. The laydown will also accommodate building materials and equipment associated with the construction of buildings. No borrow pits will be required. Infilling or depositing materials will be sourced from licenced borrow pits within the surrounding areas. A temporary concrete batching plant of 50m x 50m in extent to facilitate the concrete requirements for foundations, if required.
Transport of components and equipment to and within the site	 The components for the solar PV facility and onsite substation will be transported to site in sections on flatbed trucks by the PV supplier. Imported components to be transported from the most feasible port of entry, which is deemed to be the Port of Ngqura in the Eastern Cape Province. Alternatively, components can be imported via the Port of Saldanha in the Western Cape. Some of the components (i.e. substation transformer) may be defined as abnormal loads in terms of the Road Traffic Act (Act No. 29 of 1989) by virtue of the dimensional limitations. Typical civil engineering construction equipment will need to be brought to the site (e.g. excavators, trucks, graders, compaction equipment, cement trucks, etc.) as well as components required for the mounting of the PV support structures, construction of the substation and site preparation.
Erect PV Panels and Construct Substation, Invertors and BESS	The construction phase involves installation of the solar PV panels and the structural and electrical infrastructure to make the plant operational. In addition, preparation of the soil and improvement of the access roads would continue for most of the construction phase. For array installation, typically vertical support posts are driven into the ground. Depending on the results of the geotechnical report a different foundation method, such as screw pile, helical pile, micro-pile or drilled post/pile could be used. The posts will hold the support structures (tables) on which PV arrays would be mounted. Brackets attach the PV modules to the tables. Trenches are dug for the underground AC and DC cabling and the foundations of the inverter enclosures and transformers are prepared. While cables are being laid and combiner boxes are being installed, the PV tables are erected. Wire harnesses connect the PV modules to the electrical collection systems. Underground cables and overhead circuits connect the Power Conversion Stations (PCS) to the on-site AC electrical infrastructure and ultimately the project's on-site substation. This process also involves the installation of the BESS facility.
Connection of PV panels to the substation	 PV arrays to be connected to the on-site substation via underground electrical cables. Excavation of trenches is required for the installation of the cables. Trenches will be approximately 1.5m deep. Underground cables are planned to follow the internal access roads, as far as possible.

	 Onsite substation to be connected to the collector substation via underground cables.
Establishment of	» Site offices and maintenance buildings, including workshop areas for maintenance and storage will be required.
ancillary infrastructure	» Establishment will require the clearing of vegetation, levelling, and the excavation of foundations prior to construction.
Connect substation to	» A new 132kV single- or double-circuit power line will run from the central collector substation and tie into the existing Eskom Gamma Substation.
the power grid	
Undertake site	Commence with rehabilitation efforts once construction completed in an area, and all construction equipment is removed.
rehabilitation	On commissioning, access points to the site not required during the operation phase will be closed and prepared for rehabilitation.
Undertake site	» Commence with rehabilitation efforts once construction is completed in an area, and all construction equipment is removed.
rehabilitation	» On commissioning, access points to the site that will not be required for the operation phase will be closed and prepared for rehabilitation.
	Operation Phase
Requirements	» Duration will be 20-25 years.
	» Requirements for security and maintenance of the project.
	» Employment opportunities relating mainly to operation activities and maintenance. Approximately 15 - 20 full-time employment opportunities will
	be available during the operation of the solar facility.
Activities to be undertal	ken land som
Operation and	
Maintenance	» All PV panels will be operational except under circumstances of mechanical breakdown, inclement weather conditions, or maintenance activities.
	» Solar PV to be subject to periodic maintenance and inspection.
	» It is anticipated that the PV panels will be washed twice a year during operation using clean water with no cleaning products, or non-hazardous biodegradable cleaning products.
	» Disposal of waste products (e.g., oil) in accordance with relevant waste management legislation.
	» Areas which were disturbed during the construction phase to be utilised, should a laydown area be required during operation.
	Decommissioning Phase
Requirements	» Decommissioning of the Moriri Solar PV Facility infrastructure at the end of its economic life.
	» Potential for repowering of the facility, depending on the condition of the facility at the time.
	» Expected lifespan of approximately 20 - 25 years (with maintenance) before decommissioning is required.
	» Decommissioning activities to comply with the legislation relevant at the time.
Activities to be undertail	(en
Site preparation	» Confirming the integrity of site access to the site to accommodate the required decommissioning equipment.
	» Preparation of the site (e.g., laydown areas and construction platform).
	» Mobilisation of construction equipment.

Disassemble and	Components to be	reused, recycled, or disposed of in accordance with regulatory requirements.
remove PV panels	Much of the above	e ground wire, steel, and PV panels of which the system is comprised are recyclable materials and would be recycled to the
	extent feasible.	
	» Concrete will be removed to a depth as defined by an agricultural specialist and the area rehabilitated.	
	Cables will be exco	avated and removed, as may be required

It is expected that the areas of the project site affected by the Solar PV infrastructure (development footprint) will revert back to their original land-use (i.e. primarily grazing) once the Moriri PV has reached the end of its economic life and all infrastructure has been decommissioned

CHAPTER 3: PURPOSE AND OBJECTIVES OF THE EMPR

An Environmental Management Programme (EMPr) is defined as "an environmental management tool used to ensure that undue or reasonably avoidable adverse impacts of the construction, operation and decommissioning of a project are prevented or mitigated, and that the positive benefits of the projects are enhanced". The objective of this EMPr is to provide consistent information and guidance for implementing the management and monitoring measures established in the permitting process and help achieve environmental policy goals. The purpose of an EMPr is to help ensure continuous improvement of environmental performance, reducing negative impacts and enhancing positive effects during the construction and operation of the facility. An effective EMPr is concerned with both the immediate outcome as well as the long-term impacts of the project.

The EMPr provides specific environmental guidance for the construction and operation phases of a project, and is intended to manage and mitigate construction and operation activities so that unnecessary or preventable environmental impacts do not result. These impacts range from those incurred during start up (site clearing and site establishment) through to those incurred during the construction activities themselves (erosion, noise, dust) to those incurred during site rehabilitation (soil stabilisation, re-vegetation) and operation. The EMPr also defines monitoring requirements in order to ensure that the specified objectives are met.

This EMPr is applicable to all employees and contractors working on the pre-construction, construction, and operation and maintenance phases of the Moriri Solar PV Facility. The document must be adhered to and updated as relevant throughout the project life cycle.

This EMPr has been compiled in accordance with Appendix 4 of the EIA Regulations, 2014 (as amended). This is a dynamic document and will be further developed in terms of specific requirements listed in any authorisations issued for the Moriri Solar PV Facility and/or as the project develops. The EMPr has been developed as a set of environmental specifications (i.e. principles of environmental management). The specifications have been developed on the basis of the findings of the Environmental Impact Assessment (EIA), and must be implemented to protect sensitive on-site and off-site features through controlling construction, operation and decommissioning activities that could have a detrimental effect on the environment, and through avoiding or minimising potential impacts.

The EMPr has the following objectives:

- » Outline mitigation measures and environmental specifications which are required to be implemented for the planning, construction, rehabilitation and operation phases of the project in order to minimise the extent of environmental impacts, and to manage environmental impacts associated with the Moriri Solar PV Facility.
- » Ensure that the construction and operation phases do not result in undue or reasonably avoidable adverse environmental impacts, and ensure that any potential environmental benefits are enhanced.
- » Identify entities who will be responsible for the implementation of the measures and outline functions and responsibilities.
- » Propose mechanisms and frequency for monitoring compliance, and prevent long-term or permanent environmental degradation.

» Facilitate appropriate and proactive responses to unforeseen events or changes in project implementation that were not considered in the EIA Process.

The mitigation measures identified within the EIA Process are systematically addressed in the EMPr, ensuring the minimisation of adverse environmental impacts to an acceptable level.

Great Karoo Renewable Energy (Pty) must ensure that the implementation of the project complies with the requirements of all environmental authorisations, permits, and obligations emanating from relevant environmental legislation. This obligation is partly met through the development and the implementation of this EMPr, and through its integration into the relevant contract documentation provided to parties responsible for construction and/or operation activities on the site. The adequacy and efficacy of implementation is to be monitored by an independent Environmental Control Officer (ECO). Since this EMPr is part of the EIA Process for the Moriri Solar PV Facility, it is important that this document be read in conjunction with the EIA report compiled for this project. This will contextualise the EMPr and enable a thorough understanding of its role and purpose in the integrated environmental management process. Should there be a conflict of interpretation between this EMPr and the EMPr, unless otherwise agreed by the authorities in writing. Similarly, any provisions in legislation overrule any provisions or interpretations within this EMPr.

This EMPr shall be binding on all the parties involved in the planning, construction and operational phases of the project, and shall be enforceable at all levels of contract and operational management within the project. The document must be adhered to and updated as relevant throughout the project life cycle.

CHAPTER 4: STRUCTURE OF THIS EMPR

The first three chapters provide background to the EMPr and the Moriri Solar PV Facility , while the chapters which follow consider the following:

- » Planning and design activities;
- » Construction activities;
- » Operation activities; and
- » Decommissioning activities.

These chapters set out the procedures necessary for Great Karoo Renewable Energy (Pty) as the project owner, to minimise environmental impacts and achieve environmental compliance. For each of the phases of implementation, an over-arching environmental **goal** is stated. In order to meet this goal, a number of **objectives** are listed. The EMPr has been structured in table format in order to show the links between the goals for each phase and their associated objectives, activities/risk sources, mitigation actions, monitoring requirements and performance indicators. A specific EMPr table has been established for each environmental objective. The information provided within the EMPr table for each objective is illustrated below:

OBJECTIVE: Description of the objective, which is necessary to meet the overall goals; which take into account the findings of the EIA specialist studies

Project component/s	List of project components affecting the objective, i.e.: > PV panels; > Facility substation; > Access roads; and > Associated infrastructure.				
Potential Impact	Brief description of potential environmental impact if objective is not met.				
Activity/risk source	Description of activities which could impact on achieving objective.				
Mitigation: Target/Objective	Description of the target; include quantitative measures and/or dates of completion.				

Mitigation: Action/control						Responsibility	Timeframe				
List	specific	action(s)	required	to	meet	the	mitigation	Who is responsible for	Time	periods	for
target/objective described above.					the measures	implementation		of			
									measu	res	

Performance	Description of key indicator(s) that track progress/indicate the effectiveness of the management
Indicator	plan.
Monitoring	Mechanisms for monitoring compliance; the key monitoring actions required to check whether the objectives are being achieved, taking into consideration responsibility, frequency, methods and reporting.

The objectives and EMPr tables are required to be reviewed and possibly modified throughout the life of the PV facility whenever changes, such as the following, occur:

- » Planned activities change (i.e. in terms of the components of the solar facility).
- » Modification to or addition to environmental objectives and targets.
- » Additional or unforeseen environmental impacts are identified and additional measures are required to be included in the EMPr to prevent deterioration or further deterioration of the environment.
- » Relevant legal or other requirements are changed or introduced.
- » Significant progress has been made in achieving an objective or target such that it should be reexamined to determine if it is still relevant or should be modified, etc.

4.1. Project Team

This EMP was compiled by:

EMP Compilers					
Rendani Rasivhetshele	Savannah Environmental				
Jo-Anne Thomas					
Input from Specialist Consultants					
Terrestrial Ecology (including fauna and flora)	Simon Todd of 3foxes Biodiversity Solutions				
Avifauna (including monitoring)	Owen Davies of Arcus Consultancy Services South Africa and Dr Steve Percival of Ecology Consulting				
Bats (including monitoring)	Craig Campbell of Arcus Consultancy Services South Africa				
Aquatic	Dr Brian Colloty of EnviroSci				
Soil, Land Use, Land Capability and Agricultural Potential	Andrew Husted of The Biodiversity Company				
Heritage (including archaeology, palaeontology and cultural landscape)	Cherene de Bruyn and Wouter Fourie of PGS Heritage				
Noise	Morné de Jager of Enviro Acoustic Research (EAR)				
Visual	Lourens du Plessis of LOGIS				
Socio-economic	Matthew Keeley of Urban-Econ				
Traffic	Iris Wink and Adrian Johnson of JG Africa				

The Savannah Environmental team have extensive knowledge and experience in environmental impact assessment and environmental management, having been involved in EIA processes for more than fifteen (15) years. They have managed and drafted Environmental Management Programmes for other power generation projects throughout South Africa, including numerous wind and solar energy facilities.

CHAPTER 5: ROLES AND RESPONSIBILITIES

OBJECTIVE 1: Establish clear reporting, communication, and responsibilities during construction in relation to the overall implementation of the EMPr

For the purposes of the EMPr, the generic roles that need to be defined are those of the:

- » Project Developer;
- » Project Manager/Site Manager;
- » Environmental Control Officer;
- » Contractors; and
- » Contractor's Safety, Health and Environment Representative/Environmental Officer.

It is acknowledged that the specific titles for these functions may vary once the project is implemented. The purpose of this section of the EMPr is to give a generic outline of what these roles typically entail. It is expected that this will be further defined during project implementation.

i) The Developer

As the Proponent, Great Karoo Renewable Energy (Pty) must ensure that the implementation of the project complies with the requirements of all environmental authorisations and all other permits, and obligations emanating from other relevant environmental legislation.

ii) Project Manager/Site Manager

The Project Manager/Site Manager is responsible for overall management of project and EMPr implementation. The following tasks will fall within his/her responsibilities:

- » Be fully conversant with the EIA for the project, the EMPr, the conditions of the Environmental Authorisation (once issued), and all relevant environmental legislation.
- » Be fully knowledgeable with the contents of all relevant licences and permits.
- » Be familiar with the recommendations and mitigation measures of this EMP, and implement these measures.
- » Ensure all specifications and legal constraints specifically with regards to the environment are highlighted to the Contractor(s) so that they are aware of these.
- » Monitor site activities on a daily basis for compliance.
- » Ensure that the EMPr is correctly implemented throughout the project by means of site inspections and meetings. This must be documented as part of the site meeting minutes.
- » Conduct internal audits of the construction site against the EMPr.
- » Confine the construction site to the demarcated area.
- » Rectify transgressions through the implementation of corrective action.

iii) Environmental Control Officer

A suitably qualified Environmental Control Officer (ECO)² must be appointed by the project proponent prior to the commencement of any authorised activities and will be responsible for monitoring, reviewing and verifying compliance by the Contractor with the environmental specifications of the EMPr and the conditions of the Environmental Authorisation. Accordingly, the ECO will:

- » Be fully knowledgeable of the contents of the EIA.
- » Be fully knowledgeable of the contents of the conditions of the EA (once issued).
- » Be fully knowledgeable of the contents of the EMPr.
- » Be fully knowledgeable of all the licences and permits issued to the site.
- » Be fully knowledgeable of the contents of all relevant environmental legislation.
- » Ensure that the contents of the EMPr are communicated to the Contractors site staff and that the Site Manager and Contractors are constantly made aware of the contents through ongoing discussion.
- » Ensure that the compliance of the EMPr, EA and the legislation is monitored through regular and comprehensive inspection of the site and surrounding areas.
- » Ensure that the Site Manager has input into the review and acceptance of construction methods and method statements or site-specific plans.
- » Ensure that if the EMPr, EA and/or the legislation conditions, regulations or specifications are not followed then appropriate measures are undertaken to address any non-compliances (for example an ECO may cease construction or an activity to prevent a non-compliance from continuing).
- » Ensure that any non-compliance or remedial measures that need to be applied are reported.
- » Keep records of all activities on site, problems identified, transgressions noted and a task schedule of tasks undertaken by the ECO.
- » Independently report to the DFFE in terms of compliance with the specifications of the EMPr and conditions of the EA (once issued).
- » Keep records of all reports submitted to DFFE.

The ECO must be present full-time on site for the site preparation and initial clearing activities to ensure the correct demarcation of no-go areas, to facilitate environmental induction with construction staff and supervise any flora relocation and faunal rescue activities that may need to take place during the site clearing (i.e. during site establishment, and excavation of foundations). Thereafter, monthly compliance audits can be undertaken, provided that adequate compliance with the EA, environmental permits and EMPr is achieved. The developer should appoint a designated Environmental Officer (EO) to be present on-site to deal with any environmental issues as the arise. The ECO shall remain employed until all rehabilitation measures, as required for implementation due to construction damage, are completed and the site handed over for operation.

iv) Contractors

The Lead Contractor is responsible for the following:

- » Ensure compliance with the EA, environmental permits and the EMPr at all times during construction.
- » Have the overall responsibility of the EMPr and its implementation.

² The ECO should have a relevant degree or technical diploma in environmental management and at least 2 years' experience in the field

- » Ensure that all appointed contractors and sub-contractors are aware of the EMPr and their respective responsibilities.
- » Provide all necessary supervision during the execution of the project.
- » Comply with any special conditions as stipulated by landowners.
- Inform and educate all employees about the environmental risks associated with the various activities to be undertaken, and highlight those activities which should be avoided during the construction process in order to minimise significant impacts to the environment.
- » Maintain an environmental register which keeps a record of all incidents which occur on the site during construction. These incidents include:
 - * Public involvement / complaints
 - * Health and safety incidents
 - * Hazardous materials stored on site
 - * Non-compliance incidents
 - * Ensure that no actions are taken which will harm or may indirectly cause harm to the environment, and take steps to prevent pollution on the site.
- » Where construction activities are undertaken is close to any inhabited area, the necessary precautions shall be taken by the Contractor to safeguard the lives and property of the inhabitants.
- » Conduct audits to ensure compliance to the EMPr.
- » Ensure there is communication with the Project Manager, the ECO, and relevant discipline engineers on matters concerning the environment.
- » Should the Contractor require clarity on any aspect of the EMPr the Contractor must contact the Environmental Consultant/Officer for advice.

Contractors and Service Providers must be aware of the responsibilities in terms of the relevant environmental legislation and the contents of this EMPr. The contractor is responsible for informing employees and subcontractors of their environmental obligations in terms of the environmental specifications, and for ensuring that employees are adequately experienced and properly trained in order to execute the works in a manner that will minimise environmental impacts. The contractor's obligations in this regard include the following:

- » Employees must have a basic understanding of the key environmental features of the construction site and the surrounding environment.
- » A copy of the EMPr must be easily accessible to all on-site staff members.
- » Employees must be familiar with the requirements of this EMPr and the environmental specifications as they apply to the construction of the solar facility.
- » Prior to commencing any site works, all employees and sub-contractors must have attended an environmental awareness training course which must provide staff with an appreciation of the project's environmental requirements, and how they are to be implemented.
- » Staff will be informed of environmental issues as deemed necessary by the ECO.

All contractors (including sub-contractors and staff) and service providers are ultimately responsible for:

- » Ensuring adherence to the environmental management specifications
- » Ensuring that Method Statements are submitted to the Site Manager (and ECO) for approval before any work is undertaken
- » Any lack of adherence to the above will be considered as non-compliance to the specifications of the EMPr
- » Ensuring that any instructions issued by the Site Manager on the advice of the ECO are adhered to

- » Ensuring that a report is tabled at each site meeting, which will document all incidents that have occurred during the period before the site meeting
- » Ensuring that a register is kept in the site office, which lists all transgressions issued by the ECO
- » Ensuring that a register of all public complaints is maintained
- » Ensuring that all employees, including those of sub-contractors receive training before the commencement of construction in order that they can constructively contribute towards the successful implementation of the EMPr (i.e. ensure their staff are appropriately trained as to the environmental obligations)

v) Contractor's Safety, Health and Environment Representative/Environmental Officer

The Contractor's Safety, Health and Environment (SHE) Representative/Environmental Officer (EO), employed by the Contractor, is responsible for managing the day-to-day on-site implementation of this EMPr, and for the compilation of regular (usually weekly) Monitoring Reports. In addition, the SHE/EO must act as liaison and advisor on all environmental and related issues and ensure that any complaints received from the public are duly recorded and forwarded to the Site Manager and Contractor.

The Contractor's SHE/EO should:

- » Be well versed in environmental matters.
- » Understand the relevant environmental legislation and processes.
- » Understand the hierarchy of Environmental Compliance Reporting, and the implications of Non-Compliance.
- » Know the background of the project and understand the implementation programme.
- » Be able to resolve conflicts and make recommendations on site in terms of the requirements of this Specification.
- » Keep accurate and detailed records of all EMPr-related activities on site.

OBJECTIVE 2: Establish clear reporting, communication, and responsibilities during operation in relation to overall implementation of the EMPr during operation

Formal responsibilities are necessary to ensure that key procedures are executed during operation. Several professionals will form part of the operation team. For the purposes of the EMPr, the generic roles that need to be defined are those of the:

- » Operations Manager; and
- » Environmental Manager

It is acknowledged that the specific titles for these functions may vary once the project is implemented. The purpose of this section of the EMPr is to give a generic outline of what these roles typically entail. It is expected that this will be further defined during project implementation.

i) Operations Manager

The Plant Manager will:

- » Ensure that adequate resources (human, financial, technology) are made available and appropriately managed for the successful implementation of the operational EMPr.
- » Conduct annual basis reviews of the EMPr to evaluate its effectiveness.
- » Take appropriate action as a result of findings and recommendations in management reviews and audits.
- » Provide forums to communicate matters regarding environmental management.

ii) Environmental Manager

The Environmental Manager will:

- » Develop and Implement an Environmental Management System (EMS) for the solar facility and associated infrastructure.
- » Manage and report on the solar facility's environmental performance.
- » Maintain a register of all known environmental impacts and manage the monitoring thereof.
- » Conduct internal environmental audits and co-ordinate external environmental audits.
- » Liaise with statutory bodies (such as the National and Provincial Department of Environmental Affairs and conservation authorities) on environmental performance and other issues.
- » Conduct environmental training and awareness for the employees who operate and maintain the solar facility.
- » Compile environmental policies and procedures.
- » Liaise with interested and affected parties on environmental issues of common concern.
- » Track and control the lodging of any complaints regarding environmental matters.

The Environmental Manager must provide fourteen (14) days written notification to the DFFE that the Moriri Solar PV Facility operation phase will commence.

Overall Goal: undertake the pre-construction (planning and design) phase in a way that:

- » Ensures that the design of the solar facility responds to the identified environmental constraints and opportunities.
- » Ensures that pre-construction activities are undertaken in accordance with all relevant legislative requirements.
- » Ensures that adequate regard has been taken of identified environmental sensitivities, as well as any landowner and community concerns and that these are appropriately addressed through design and planning (where applicable).
- » Enables the construction activities to be undertaken without significant disruption to other land uses and activities in the area.
- » Ensures that the best environmental options are selected for the solar facility.

In order to meet this goal, the following objectives have been identified, together with necessary actions and monitoring requirements.

6.1. Objectives

OBJECTIVE 1: To ensure that the design of the facility responds to the identified environmental constraints and opportunities

Subject to final facility micro-siting and subsequent acceptance from DFFE, the development footprint detailed in **Figure 2.2** must be implemented. Cognisance of sensitive areas defined in **Figure 2.2** and within the EIA report should be considered when undertaking the final design of the facility.

Project component/s	 » PV panels. » Access roads. » Cabling between project components. » Onsite facility substation. » Power line. » Battery Energy Storage System (BESS) » Laydown areas » All other associated infrastructure.
Potential Impact	 Design fails to respond optimally to the identified environmental considerations. Employment creation for the construction, operation and decommissioning activities. Design fails to respond optimally to the environmental considerations.
Activities/risk sources	 Positioning of PV panels and alignment of access roads and underground cabling. Positioning of substation and power line. Positioning of balance of plant. Pre-construction activities, e.g. geotechnical investigations.
Mitigation: Target/Objective	» To ensure that the design of the PV facility responds to the identified environmental constraints and opportunities, including the constraints identified through the EIA Process.

- » To ensure that pre-construction activities are undertaken in an environmentally friendly manner by e.g. avoiding identified sensitive areas.
 - » Optimal planning of visual infrastructure to minimise visual impact.

Mitigation: Action/control	Responsibility	Timeframe
Plan and conduct pre-construction activities in an environmentally responsible manner and in a manner that does not lead to unnecessary impacts and disturbance.	Developer EPC Contractor	Pre-construction
Consider design level mitigation measures recommended by the specialists, as detailed within the EIA report and relevant appendices.	Developer EPC Contractor	Design phase
All roads and other hardened surfaces should have runoff control features which redirect water flow and dissipate any energy in the water which may pose an erosion risk	Developer EPC Contractor	Design phase
In terms of the boundary fence, no electrified strands should be placed within 30cm of the ground as some species such as tortoises are susceptible to electrocution from electric fences because they do not move away when electrocuted but rather adopt defensive behaviour and are killed by repeated shocks. Alternatively, the electrified strands should be placed on the inside of the fence and not the outside as is the case on the majority of already constructed PV plants. The boundary fence should have access points for smaller fauna to enter and exit the PV area.	Developer EPC Contractor	Design phase
Access to the grid connection should not cross any systems, resulting in additional new tracks to reach the pylons/towers.	Developer EPC Contractor	Design phase
Where practical, powerlines/cables on the project site should be underground.	Developer EPC Contractor	Design phase
Where practical, grid connection infrastructure should follow existing servitudes such as existing powerlines, roads and fences.	Developer EPC Contractor	Design phase
Pylon positions should be placed in a staggered manner in relation to adjacent parallel transmission lines to increase the overall visibility of transmission infrastructure to avifauna such as bustards.	Developer EPC Contractor	Design phase
Any new overhead power lines must be of a design that minimises electrocution risk by using adequately insulated 'bird friendly' monopole structures, with clearances between live components and possible bird perches (e.g. cross arms) of 1.8 m or greater.	Developer EPC Contractor	Design phase
Plan to install appropriate marking devices (BFDs – bird friendly devices) on all new overhead power lines to increase visibility. The advice of a specialist should be sought regarding the type, placement and spacing of the BFDs to be used and the type of pylon structure to be used.	Developer EPC Contractor	Design phase
The minimum footprint areas of infrastructure should be used wherever possible, including road widths and lengths.	Developer EPC Contractor	Design phase
Temporary laydown areas should be located within previously transformed areas or areas that have been identified as being of low sensitivity. These areas should be rehabilitated after use.	Developer EPC Contractor	Design phase

Mitigation: Action/control	Responsibility	Timeframe
High traffic areas and buildings such as offices, batching plants, storage areas etc. should, where possible, be situated in areas that are already disturbed.	Developer EPC Contractor	Design phase
Make use of existing roads where possible when planning the access road layout for the PV facility. Take cognisance of the topography and limit cut and fill requirements.	Developer EPC Contractor	Design phase
the number of roads should be reduced to the minimum possible and routes should also be adjusted to avoid areas of high sensitivity as far as possible.	Developer EPC Contractor	Design phase
Plan as little lighting as possible, and only where essential for operation of the facility.	Developer EPC Contractor	Design phase
Design the facility such that no runoff is directed into the Pans, as these are not tolerant of excessive / regular volumes of water and would then change in nature and attributes, i.e. stormwater detention pond.	Developer EPC Contractor	Design phase
Following the final design of the Moriri Solar PV Facility , a revised layout must be submitted to DFFE for review and approval prior to commencing with construction. No development is permitted within the identified no-go areas as detailed in Figure 2.2.	Developer	Design phase

Performance Indicator	 » Design meets the objectives and does not degrade the environment. » Design and layouts respond to the mitigation measures and recommendations in the EIA report.
Monitoring	Ensure that the design implemented meets the objectives and mitigation measures in the EIA report through review of the facility design by the Project Manager and ECO prior to the commencement of construction.

OBJECTIVE 2: Ensure that relevant permits and site-specific plans are in place to manage impacts on the environment

Project Component/s	 » PV panels. » Access roads. » Cabling between project components. » Onsite facility substation.
	 Power line. Battery Energy Storage System (BESS) Laydown areas All other associated infrastructure.
Potential Impact	 » Impact on identified sensitive areas. » Design fails to respond optimally to the environmental considerations.
Activities/Risk Sources	 Positioning of all project components Pre-construction activities, e.g. geotechnical investigations, site surveys of substation footprint, power line servitude and internal access roads and environmental walk-through surveys. Positioning of temporary sites.

Mitigation:	»	To ensure that the design of the power plant responds to the identified environmental
Target/Objective		constraints and opportunities.
	»	To ensure that pre-construction activities are undertaken in an environmentally friendly
		manner.
	»	To ensure that the design of the power plant responds to the identified constraints
		identified through pre-construction surveys.

Mitigation: Action/Control	Responsibility	Timeframe
Obtain any additional environmental permits required prior to the commencement of construction.	Developer	Pre-construction
Obtain abnormal load permits for transportation of project components to site (if required).	Contractor(s)	Prior to construction
Pre-construction walk-through of the facility's final layout in order to locate species of conservation concern that can be translocated as well as comply with the provincial permit conditions.	Developer Specialist	Pre-construction
Prior to construction, an avifaunal specialist should conduct a site walkthrough, covering the final road and power line routes as well as temporary laydown areas and facilities, to identify any nests/breeding/roosting activity of sensitive species. The results of which may inform the final construction schedule in close proximity to that specific area, including abbreviating construction time, scheduling activities around breeding activity, and lowering levels of associated noise.	Developer Specialist	Pre-construction
The necessary biodiversity permits must be obtained prior to removal of any species of concern.	Project developer	Pre-construction
Search and rescue of species of conservation concern should be conducted prior to clearing activities.	Developer Contractor	Pre-construction
A detailed geotechnical investigation is required for the design phase for all infrastructure components.	Developer	Design phase
Obtain any additional environmental permits required (e.g. water use license, protected plant permits, faunal relocation permit, etc.). Copies of permits/licenses must be submitted to the Director: Environmental Impact Evaluation at the DFFE, and kept on site during the construction and operation phases of the project.	Developer	Design phase
A stormwater management plan must be developed in the pre- construction phase, detailing the stormwater structures and management interventions that must be installed to manage the increase of surface water flows directly into any natural systems. The stormwater control systems must be inspected on an annual basis to ensure these are functional. Effective stormwater management must include effective stabilisation (gabions and Reno mattresses) of exposed soil and the re- vegetation of any disturbed riverbanks.	Contractor(s)	Design phase
Develop a detailed method statement for the implementation of the alien invasive management plan and open space management plan for the site (refer to Appendix C).	Developer	Pre-construction

Mitigation: Action/Control	Responsibility	Timeframe	
Develop a detailed method statement for the implementation of the plant rescue and protection plan for the site (refer to Appendix E).	Developer	Pre-construction	
Develop a detailed method statement for the implementation of the re-vegetation and habitat rehabilitation plan for the site (refer to Appendix D).	Developer	Pre-construction	
Develop a detailed method statement for the implementation of the traffic and transportation management plan for the site (refer to Appendix F).	Developer	Pre-construction	
Develop an effective monitoring system to detect any leakage or spillage of all hazardous substances during their transportation, handling, use and storage. This must include precautionary measures to limit the possibility of oil and other toxic liquids from entering the soil or storm water systems.	Developer	Pre-construction	
Prepare a detailed Fire Management Plan in collaboration with surrounding landowners.	Developer	Pre-construction	
Develop and implement an alien, invasive and weeds eradication/control plan.	Developer Specialist	Pre-construction	
A comprehensive rehabilitation / monitoring plan must be developed in consultation with a specialist, and must be implemented from the project onset i.e. during the detailed design phase prior to construction, to ensure a net benefit to the environment within all areas that will remain undisturbed.	Developer Contractor Specialist	Pre-construction	

Performance	 Layout does not destroy/degrade no-go areas. No disturbance of no go areas.
Indicator	 No disturbance of no-go areas. Permits are obtained and relevant conditions complied with. Relevant management plans and Method Statements prepared and implemented.
Monitoring	 Review of the design by the Project Manager and the ECO prior to the commencement of construction. Monitor ongoing compliance with the EMPr.

OBJECTIVE 3: Ensure compliance of required mitigation measures and recommendations by contractors

Project Component/s	» PV panels.
	» Access roads.
	» Cabling between project components.
	» Onsite facility substation.
	» Power line.
	 » Battery Energy Storage System (BESS)
	» Laydown areas
	» All other associated infrastructure.
Potential Impact	» Impact on identified sensitive areas.
	» Planning fails to respond optimally to the environmental considerations.

Activities/Risk	 Positioning of all project components
Sources	» Pre-construction activities.
	» Positioning of temporary sites.
	» Employment and procurement procedures.
Mitigation:	» To ensure that appropriate planning is undertaken by the contractor to ensure
Target/Objective	compliance with the conditions of the EA and EMPr.
	» To ensure that pre-construction and construction activities are undertaken in an
	environmentally friendly manner.

Mitigation: Action/Control	Responsibility	Timeframe
The terms of this EMPr and the Environmental Authorisation must be included in all tender documentation and Contractors contracts.	Developer Contractor	Pre-construction
Create awareness of skills through posters and media announcements and set-up a skills desk at a central and accessible location. The skills desk should serve to record local job seeker skills.	Developer Contractor	Pre-construction
Develop a local community safety forum to establish monitoring methods for the surrounding community.	Developer Contractor	Pre-construction
The developer should encourage the EPC contractor to increase the local procurement practices and promote the employment of people from local communities, as far as feasible, to maximise the benefits to the local economies.	Developer Contractor	Pre-construction
The developer should engage with local authorities and business organisations to investigate the possibility of procuring construction materials, goods and products from local suppliers were feasible.	Developer Contractor	Pre-construction

Performance	»	Conditions of the EA and EMPr form part of all contracts.
Indicator	»	Local employment and procurement is encouraged.
Monitoring	»	Monitor ongoing compliance with the EMPr and method statements.

OBJECTIVE 4: To ensure effective communication mechanisms

It is important to maintain on-going communication with the public (including affected and surrounding landowners) during the construction and operation phases of the Moriri Solar PV Facility . Any issues and concerns raised should be addressed as far as possible in as short a timeframe as possible.

Project component/s	*	PV panels.
	»	Access roads.
	»	Cabling between project components.
	»	Onsite facility substation.
	»	Power line.
	»	Battery Energy Storage System (BESS)
	»	Laydown areas
	»	All other associated infrastructure.

Potential Impact	» Impacts on affected and surrounding landowners and land uses.
Activity/risk source	 Activities associated with pre-construction phase. Activities associated with construction of the PV facility. Activities associated with operation.
Mitigation: Target/Objective	 » Effective communication with affected and surrounding landowners. » Addressing any issues and concerns raised as far as possible in as short a timeframe as possible.

Mitigation: Action/control	Responsibility	Timeframe
Compile and implement a grievance mechanism procedure for the public (including the affected and surrounding landowners) (using Appendix B) to be implemented during both the construction and operation phases of the PV facility and if applicable during decommissioning. This procedure should include the details of the contact person who will be receiving issues raised by interested and affected parties, and the process that will be followed to address issues. The mechanism must also include procedures to lodge complaints in order for the local community to express any complaints or grievances with the construction process. A Public Complaints register must be maintained by the Contractor to record all complaints and queries relating to the project and the actions taken to resolve the issue. A Project Specific Grievance Mechanism will be developed and implemented prior to construction.	Developer Contractor O&M Operator	Pre-construction (construction procedure) Pre-operation (operation procedure)
Develop and implement a grievance mechanism for the construction, operation and closure phases of the PV facility for all employees, contractors, subcontractors and site personnel. This procedure should be in line with the South African Labour Law.	Developer Contractor O&M Operator	Pre-construction (construction procedure) Pre-operation (operation procedure)
Develop a public relations (PR) campaign prior to commencement of construction to communicate to com- munity members the construction programme, inclusive of regular updates to generate excitement in the community.	Developer	Pre-construction
Meet with the affected owners and discuss their concerns over property and land values, as well as educate and inform them on the potential environmental impacts that could ensue.	Developer	Pre-construction
Create partnerships with local tourism and game farm industry to promote the development of green energy in the community and for these establishments to communicate to their guests the benefits of green energy	Developer	Pre-construction
Develop an incident reporting system to record non- conformances to the EMPr.	Contractor	Pre-construction Duration of construction

Performance Indicator	» Effective communication procedures in place for all phases as required.
Monitoring	 An incident reporting system used to record non-conformances to the EMPr. Grievance mechanism procedures implemented.

»

Public complaints register developed and maintained.

CHAPTER 7: MANAGEMENT PROGRAMME: CONSTRUCTION

Overall Goal: Undertake the construction phase in a way that:

- » Ensures that construction activities are properly managed in respect of environmental aspects and impacts.
- » Enables construction activities to be undertaken without significant disruption to other land uses and activities in the area, in particular concerning noise impacts, farming practices, traffic and road use, and effects on local residents.
- » Minimises the impact on the indigenous natural vegetation, protected tree species, and habitats of ecological value.
- » Minimises impacts on fauna using the site.
- » Minimises the impact on heritage sites should they be uncovered.
- » Ensures rehabilitation of disturbed areas following the execution of the works, such that residual environmental impacts are remediated or curtailed.

An environmental baseline must be established during the undertaking of construction activities, where possible.

7.1. Objectives

In order to meet the overall goal for construction, the following objectives, actions, and monitoring requirements have been identified.

OBJECTIVE 1: Securing the site and site establishment

Project component/s	 » PV panels. » Access roads. » Cabling between project components. » Onsite facility substation. » Power line. » Battery Energy Storage System (BESS) » Laydown areas » All other associated infrastructure.
Potential Impact	 » Hazards to landowners and public. » Security of materials. » Substantially increased damage to natural vegetation. » Potential impact on fauna and avifauna habitat.
Activities/risk sources	 » Open excavations (foundations and cable trenches). » Movement of construction employees, vehicles and plant equipment in the area and on- site.
Mitigation: Target/Objective	 » To secure the site against unauthorised entry. » To protect members of the public/landowners/residents.

Mitigation: Action/control	Responsibility	Timeframe
Secure the site, working areas and excavations in an appropriate manner. Adequate protective measures must be implemented to prevent unauthorised access to the working area and the internal access/haul routes.	Contractor EO	During site establishment Maintenance: for duration of Contract
The Contractor must take all reasonable measures to ensure the safety of the public in the surrounding area. Where the public could be exposed to danger by any of the works or site activities, the Contractor must, as appropriate, provide suitable flagmen, barriers and/or warning signs in English and any other relevant indigenous languages, all to the approval of the Site Manager. All unattended open excavations shall be adequately demarcated and/or fenced.	Contractor	During site establishment Maintenance: for duration of Contract
Where necessary to control access, fence and secure the area and implement access control procedures.	Contractor	During site establishment Maintenance: for duration of Contract
Establish SABS 089: 1577 Part 1 approved bunded areas for the storage of hazardous materials and hazardous waste.	Contractor	During site establishment and during construction
Establish the necessary ablution facilities with chemical toilets and provide adequate sanitation facilities and ablutions for construction workers (1 toilet per every 15 workers) at appropriate locations on site. These must be situated outside of any delineated watercourses and pans/depressions or the buffers shown.	Contractor	During site establishment and during construction
Water consumption requirements for the site for the construction if not obtained from an authorised water user within the area, must be authorised by the Department of Water and Sanitation.	Developer	Prior to water use
Supply adequate weather and vermin proof waste collection bins and skips (covered at minimum with secured netting or shade cloth) at sites where construction is being undertaken. Separate bins should be provided for general and hazardous waste. As far as possible, provision should be made for separation of waste for recycling.	Contractor	Site establishment, and duration of construction

Performance Indicator	 Site is secure and there is no unauthorised entry. No members of the public/ landowners injured as a result of construction activities. Fauna and flora is protected as far as practically possible. Appropriate and adequate waste management and sanitation facilities provided at construction site.
Monitoring	 Regular visual inspection of the fence for signs of deterioration/forced access. An incident reporting system must be used to record non-conformances to the EMPr. Public complaints register must be developed and maintained on site. ECO/ EO to monitor all construction areas on a continuous basis until all construction is completed; immediate reporting back to the site manager. ECO/ EO to address any infringements with responsible contractors as soon as these are recorded.

OBJECTIVE 2: Appropriate management of the construction site and construction workers

Project Component/s	» PV panels.
	» Access roads.
	 Cabling between project components.
	» Onsite facility substation.
	» Power line.
	 » Battery Energy Storage System (BESS)
	» Laydown areas
	» All other associated infrastructure.
Potential Impact	» Damage to indigenous natural vegetation and sensitive areas.
	» Damage to and/or loss of topsoil (i.e. pollution, compaction etc.).
	 Impacts on the surrounding environment due to inadequate sanitation and waste removal facilities.
	 Pollution/contamination of the environment.
Activities/Risk	» Vegetation clearing and levelling of equipment storage area/s.
Sources	» Access to and from the equipment storage area/s.
	» Ablution facilities.
	» Contractors not aware of the requirements of the EMPr, leading to unnecessary impacts
	on the surrounding environment.
Mitigation:	» Limit equipment storage within demarcated designated areas.
Target/Objective	» Ensure adequate sanitation facilities and waste management practices.
	Ensure appropriate management of actions by on-site personnel in order to minimise impacts to the surrounding environment.

Mitigation: Action/Control	Responsibility	Timeframe
To minimise impacts on the surrounding environment, contractors must be required to adopt a certain Code of Conduct and commit to restricting construction activities to areas within the development footprint. Contractors and their sub-contractors must be familiar with the conditions of the Environmental Authorisation, the EIA report, and this EMPr, as well as the requirements of all relevant environmental legislation.	Contractors	Construction
Contractors must ensure that all workers are informed at the outset of the construction phase of the conditions contained on the Code of Conduct.	Contractor and sub- contractor/s	Pre-construction
Restrict the activities and movement of construction workers and vehicles to the immediate construction site and existing access roads.	Contractor	Construction
All construction vehicles must adhere to clearly defined and demarcated roads. No driving outside of the development boundary must be permitted.	Contractor	Construction
Ensure all construction equipment and vehicles are properly maintained at all times.	Contractor	Construction
Minimise the development footprint within high sensitivity areas	Contractor	Construction
Develop an integrated management plan for the development area, which is beneficial to fauna and flora.	Specialist	Pre-construction

Mitigation: Action/Control	Responsibility	Timeframe
Ensure that construction workers are clearly identifiable. All workers must carry identification cards and wear identifiable clothing.	Contractor	Construction
Pre-construction environmental induction must be undertaken for all construction staff on site to ensure that basic environmental principles are adhered to. This includes awareness of no littering, appropriate handling of pollution and chemical spills, avoiding fire hazards, remaining within demarcated construction areas etc.	Contractor	Construction
Regular toolbox talks should be undertaken to ensure appropriate levels of environmental awareness.	Contractor	Construction
Contact details of emergency services must be prominently displayed on site.	Contractor	Construction
Contractor must provide adequate firefighting equipment on site and provide firefighting training to selected construction staff.	Contractor	Construction
Personnel trained in first aid must be on site to deal with smaller incidents that require medical attention.	Contractor	Construction
Road borders must be regularly maintained to ensure that vegetation remains short to serve as an effective firebreak. An emergency fire plan must be developed with emergency procedures in the event of a fire.	Contractor	Duration of construction
Strict control of the behaviour of construction workers must be implemented in terms of works near watercourses.	Contractor	Construction
Ensure waste storage facilities are maintained and emptied on a regular basis.	Contractor	Duration of construction
Ensure that rubble, litter, and disused construction materials are appropriately stored (if not removed daily) and then disposed regularly at licensed waste facilities.	Contractor	Duration of Contract
No liquid waste, including grey water, may be discharged into any water body or drainage line. All sewage disposal to take place at a registered and operational wastewater treatment works. Proof of disposal to be retained as proof of responsible disposal.	Contractor	Duration of construction
All contaminated water must be contained by means of careful run-off management on site.	Contractor	Construction
Ensure compliance with all national, regional and local legislation with regard to the storage, handling and disposal of hydrocarbons, chemicals, solvents and any other harmful and hazardous substances and materials.	Contractor	During construction.
Ensure ablution facilities are appropriately maintained. Ablutions must be cleaned regularly and associated waste disposed of at a registered/permitted waste disposal site. Ablutions must be removed from site when construction is completed.	Contractor and sub- contractor/s	Duration of contract
Cooking and eating of meals must take place in a designated area. No fires are allowed on site. No firewood or kindling may be gathered from the site or surrounds.	Contractor and sub- contractor/s	Duration of contract

Mitigation: Action/Control	Responsibility	Timeframe
All litter must be deposited in a clearly marked, closed, animal- proof disposal bin in the construction area. Particular attention needs to be paid to food waste.	Contractor and sub- contractor/s	Duration of contract
Keep a record of all hazardous substances stored on site. Clearly label all the containers storing hazardous waste.	Contractor	Duration of contract
A Method Statement must be compiled for the management of pests and vermin within the site, specifically relating to the canteen area if applicable.	Contractor	Construction
Ensure proper health and safety plans in place during the construction period to ensure safety on and around site during construction, including fencing of the property and site access restriction.	Contractor and sub- contractor/s	Pre-construction
All disturbed areas that are not used such as excess road widths, should be rehabilitated with locally occurring shrubs and grasses after construction to reduce the overall footprint of the development.	Contractor and sub- contractor/s	Construction
On completion of the construction phase, all construction workers must leave the site within one week of their contract ending.	Contractor and sub- contractor/s	Construction

Performance	» Code of Conduct drafted before commencement of the construction phase.
Indicator	Appropriate training of all staff is undertaken prior to them commencing work on the construction site.
	» Ablution and waste removal facilities are in a good working order and do not pollute the environment due to mismanagement.
	» All areas are rehabilitated promptly after construction in an area is complete.
	» Excess vegetation clearing and levelling is not undertaken.
	» No complaints regarding contractor behaviour or habits.
Monitoring	 Regular audits of the construction camps and areas of construction on site by the EO. Proof of disposal of sewage at an appropriate licensed wastewater treatment works. Proof of disposal of waste at an appropriate licensed waste disposal facility. An incident reporting system must be used to record non-conformances to the EMPr. Observation and supervision of Contractor practices throughout the construction phase by the EO.
	» Complaints will be investigated and, if appropriate, acted upon.

OBJECTIVE 3: Maximise local employment and business opportunities associated with the construction phase

The construction phase of 100 MW SEF will extend over a period of approximately 18-24 months and create in the region of 350 employment opportunities. Based on information provided by the proponent, approximately 75% of the jobs will benefit low-skilled workers, 25% semi-skilled and 5% high skilled.

Beyond the direct employment opportunities that will be created by the project during the construction phase, the development will also have a positive spin-off effect on the employment situation in other sectors of the national and local economies. Through the procurement of local goods (i.e., consumption induced effects) the project will support employment in the sectors such as construction, business services and trade.

Project component/s	 Construction activities associated with the establishment of the PV facility, including associated infrastructure.
Potential Impact	The opportunities and benefits associated with the creation of local employment and business should be maximised.
Activities/risk sources	The employment of outside contractors to undertake the work and who make use of their own labour will reduce the employment and business opportunities for locals. Employment of local labour will maximise local employment opportunities.
Mitigation: Target/Objective	 The Developer, in discussions with the local municipality, should aim to employ as many workers (skilled, semi-skilled / low-skilled) from the local areas/ towns, as possible. The Developer should also develop a database of local BBBEE service providers.

Mitigation: Action/control	Responsibility	Timeframe
Recruit local labour as far as feasible to increase the benefits to the local households.	Contractor	Construction
Create a local skills database.	Contractor	Construction
Employ labour intensive methods in construction where feasible.	Contractor	Construction
Co-ordinate with the local municipality and relevant labour unions to inform the local labour force about the project that is planned to be established and the jobs that can potentially be applied for.	Contractor	Construction
Establish a local skills desk in the local area to determine the potential skills that could be sourced in the area.	Contractor	Construction
Establish a local skills desk (in Somerset East, Riebeek East and Cookhouse) to determine the potential skills that could be sourced in the area	Contractor	Construction
Employ labour-intensive methods in construction where feasible.	Contractor	Construction
Sub-contract to local construction companies particularly SMMEs and BBBEE compliant enterprises where possible.	Contractor	Construction
Use local suppliers where feasible and arrange with the local SMMEs to provide transport, catering and other services to the construction crews.	Contractor	Construction
Facilitate knowledge and skills transfer between foreign technical experts and South African professionals during the pre- establishment and construction phases.	Contractor	Construction
Set up apprenticeship programmes to build onto existing skill levels or develop new skills amongst construction workers, especially those from local communities.	Contractor	Construction
Facilitate broader skills development programme as part of socio-economic development commitments.	Contractor	Construction
Sub-contract to local construction companies where possible.	Contractor	Construction
Use local suppliers where feasible and arrange with local SMMEs and BBBEE compliant enterprises to provide transport, catering, and other services to the construction crews.	Contractor	Construction

Performance	»	Maximum amount of semi and unskilled labour locally sourced where possible.
Indicator	»	Local suppliers and SMMEs contracted where possible.
	»	Skills transfer facilitated where required

		*	Apprenticeship programmes established
Monitoring Reporting	and	*	Contractors and appointed ECO must monitor indicators listed above to ensure that they have been met for the construction phase.
keponing			nuve beermer for me considerior price.

OBJECTIVE 4: Minimise the negative social impacts on family structures and social networks due to the presence of construction workers from outside the area

The migration of people to the area could result in social conflicts between the local population and the migrant work force as the local population could perceive these migrant workers as "stealing" their employment opportunities. Likewise, the influx of people into the area, could potentially lead to a temporary increase in the level of crime, illicit activity and possibly a deterioration of the health of the local community through the spread of infectious diseases. Without any form of income these individuals run the risk of exacerbating the level of poverty within the area. Aside from the broader community issues the increase in the number of people in the area is likely to have an adverse effect on crime levels, incidents of trespassing, development of informal trading and littering. There is also potentially a likelihood of increased stock theft.

The low and semi-skilled workers are likely to be local residents and will therefore from part of the local family and social network.

Project component/s	 Construction and establishment activities associated with the establishment of the PV facility, including associated infrastructure. Construction work force.
Potential Impact	 The presence of construction workers who live outside the area and who are housed in local towns can impact on family structures and social networks. Presence of construction workers on site may result in loss of livestock due to stock theft and damage to farm infrastructure, such as gates and fences. Poaching of wild animals may also occur. Impacts on the surrounding environment due to inadequate sanitation and waste removal facilities. Impact on the safety of farmers and communities (increased crime etc.) by construction workers and also damage to farm infrastructure such as gates and fences. Increase in production and GDP-R.
Activities/risk sources	 Increase in production and GDP-R. The presence of construction workers can impact negatively on family structures and social networks, especially in small, rural communities. The presence of construction workers on the site can result in stock thefts or illegal hunting/ trapping of fauna and or game and damage to farm infrastructure.
Mitigation: Target/Objective	 Avoid and/or minimise the potential impact of construction workers on the local community and their livelihoods. To minimise impacts on the social and biophysical environment. Maximise the economic benefit to the local municipality. Prohibit theft of stock and valuables on impacted and adjacent farm portions. Procure goods and services, as far as practically possible, from the local municipality. Initiate site access control and monitor movement to and from the site.

Mitigation: Action/control	Responsibility	Timeframe
Establish a management forum comprising key stakeholders to monitor and identify potential problems that may arise due to the influx of job seekers to the area	Contractor	Construction
Ensure that any damages or losses to nearby affected farms that can be linked to the conduct of construction workers are adequately reimbursed	Contractor	Construction
Assign a dedicated person to deal with complaints and concerns of affected parties	Contractor	Construction
The construction of on-site accommodation will likely mitigate some social conflicts from taking place. The developer should, however, organise appropriate transport for the workers from the site to the nearest towns in order to access services or to buy goods. This will reduce the amount of time the staff spend walking to or from the site.	Contractor	Construction
Engage with local authorities and inform them of the development as well as discuss with them their ability to meet the additional demands on social and basic services created by the in migration of workers	Contractor	Construction
Where feasible, assist the municipality in ensuring that the quality of the local social and economic infrastructure does not deteriorate through the use of social responsibility allocations	Contractor	Construction
Implement a policy that no employment will be available at the gate.	Contractor	Pre-construction/ construction
Engage with local authorities and inform them of the development as well as discuss with them their ability to meet the additional demands on social and basic services created by the in migration of workers. Where feasible, assist the municipality in ensuring that the quality of the local social and economic infrastructure does not deteriorate through the use of social responsibility allocations.	Developer Contractor	Pre-construction/ construction

Performance	»	No criminal activities attributable to the construction workers are reported.
Indicator	*	No complaints received from landowners or the general public.
Monitoring and	*	An incident reporting system must be used to record non-conformances to the EMPr.
Reporting	*	Public complaints register must be developed and maintained on site.

OBJECTIVE 5: Control of noise pollution stemming from construction activities

Various construction activities would be taking place during the development of the facility and may pose a noise risk to the closest receptors. These activities could include temporary or short-term activities where small equipment is used (such as the digging of trenches to lay underground power lines). The impact of such activities is generally very low. Impacts may however occur where activities are undertaken at night.

Project component/s » PV po » PV po

PV panels. PV panels.

	 Access roads. Cabling between project components. Onsite facility substation. Power line. Battery Energy Storage System (BESS) Laydown areas All other associated infrastructure.
Potential Impact	» Increased noise levels at potentially sensitive receptors.
Activity/risk source	 Any construction activities taking place within 500m from potentially noise sensitive developments (NSD). Site preparation and earthworks. Construction-related transport. Foundations or plant equipment installation. Building activities.
Mitigation: Target/Objective	 Ensure that maximum noise levels at potentially sensitive receptors are less than 65dBA. Prevent the generation of disturbing or nuisance noises. Ensure acceptable noise levels at surrounding stakeholders and potentially sensitive receptors. Ensure compliance with the National Noise Control Regulations. Ensure night-time noise levels less than 45 dBA.

Mitigation: Action/control	Responsibility	Timeframe
Establish a line of communication and notify all stakeholders and NSDs of the means of registering any issues, complaints or comments.	Developer	Construction
Night-time construction activities (closer than 800 m from Noise Sensitive Developments (NSDs)) are not recommended and must be minimised where possible, and only if these activities can be minimised to one location using minimum equipment.	Developer	Construction
Roads must not be constructed within 150m from occupied dwellings used for residential purposes (to reduce noise levels below 42 dBA if construction traffic may use the road at night).	Developer	Construction
Ensure that all equipment is maintained and fitted with the required noise abatement equipment.	EPC Contractor	Weekly inspection
The construction crew must abide by the local by-laws regarding noise.	EPC Contractor	Construction phase

Performance Indicator	*	Construction activities do not change the existing ambient sound levels with more than 7dB.
	» »	Ensure that maximum noise levels at potentially sensitive receptors are less than 65 dBA. No noise complaints are registered
Monitoring and Reporting	»	Ambient sound measurements are recommended to take place prior to the construction of the PV facility.

OBJECTIVE 6: Management of dust and emissions and damage to roads

During the construction phase, limited gaseous or particulate emissions (and dust) is anticipated from exhaust emissions from construction vehicles and equipment on-site, as well as vehicle entrained dust from the movement of vehicles on the internal access roads.

Project component/s	 » PV panels. » Access roads. » Cabling between project components. » Onsite facility substation. » Power line. » Battery Energy Storage System (BESS) » Laydown areas » All other associated infrastructure.
Potential Impact	 » Dust impacts can occur from cleared areas and from vehicle movement along gravel roads. » Release of minor amounts of air pollutants (for example NO₂, CO and SO₂) from vehicles and construction equipment.
Activities/risk sources	 The movement of construction vehicles and their activities on the site. Clearing of vegetation and topsoil. Excavation, grading and scraping. Transport of materials, equipment and components. Re-entrainment of deposited dust by vehicle movements. Wind erosion from topsoil and spoil stockpiles and unsealed roads and surfaces. Fuel burning from construction vehicles with combustion engines.
Mitigation: Target/Objective	 To avoid and or minimise the potential dust impacts associated with heavy vehicles, and also minimise damage to roads. To ensure emissions from all vehicles are minimised, where possible, for the duration of the construction phase. To minimise nuisance to the community and adjacent landowners from dust emissions and to comply with workplace health and safety requirements for the duration of the construction phase.

Mitigation: Action/control	Responsibility	Timeframe
Reduce and control construction dust using approved dust suppression techniques as and when required (i.e. whenever dust becomes apparent).	Contractor	Construction phase
Vehicles and equipment must be maintained in a road-worthy condition at all times. Road worthy certificates must be in place for all heavy vehicles at the outset of the construction phase and updated on a monthly basis.	Contractor	Construction phase
Vehicles used to transport sand and building materials must be fitted with tarpaulins or covers when travelling on roads.	Contractor	Construction phase
Ensure vehicles adhere to speed limits on public roads and speed limits set within the site by the Site Manager.	Contractor Transportation contractor	Duration of contract

Mitigation: Action/control	Responsibility	Timeframe
Ensure that damage to gravel public roads and access roads attributable to construction vehicles is repaired before completion of the construction phase.	EPC Contractor	Before completion of construction phase
Disturbed areas must be re-vegetated as soon as practicable after construction is complete in an area.	EPC Contractor	At completion of the construction phase

Performance Indicator	 Appropriate dust suppression measures implemented on site during the construction phase. Drivers made aware of the potential safety issues and enforcement of strict speed limits when they are employed or before entering the site. Road worthy certificates in place for all heavy vehicles at the outset of the construction phase and updated on a monthly basis.
Monitoring and Reporting	 The Developer and appointed EO must monitor indicators listed above to ensure that they have been met for the construction phase. Immediate reporting by personnel of any potential or actual issues with nuisance dust or emissions to the Site Manager. An incident reporting system must be used to record non-conformances to the EMPr. Public complaints register must be developed and maintained on site.

OBJECTIVE 7: Conservation of the existing soil resource within the site and in the adjacent areas

The natural soil on the site needs to be preserved as far as possible to minimise impacts on the environment. Soil degradation including erosion (by wind and water) and subsequent deposition elsewhere is of a concern. Uncontrolled run-off relating to construction activities (excessive wetting, etc.) will also lead to accelerated erosion. Degradation of the natural soil profile due to excavation, stockpiling, compaction, pollution and other construction activities will affect soil forming processes and associated ecosystems.

A set of strictly adhered to mitigation measures are required to be implemented in order to effectively limit the impact on the environment. The disturbed areas where human impact is likely are the focus of the mitigation measures laid out below.

Project component/s	 » PV panels. » Access roads. » Cabling between project components. » Onsite facility substation. » Power line. » Battery Energy Storage System (BESS) » Laydown areas » All other associated infrastructure. 	
Potential Impact	 » Erosion and soil loss. » Increased runoff. » Downstream sedimentation. 	
Activities/risk sources	 Rainfall and wind erosion of disturbed areas. Excavation, stockpiling and compaction of soil. Concentrated discharge of water from construction activity. 	

	 Stormwater run-off from sealed surfaces. Mobile construction equipment movement on site. Roadside drainage ditches. Project related infrastructure, such as buildings, PV panels and fences.
Mitigation: Target/Objective	 » To minimise erosion of soil from site during construction. » To minimise damage to vegetation by erosion or deposition. » To retain all topsoil with a stable soil surface

Mitigation: Action/control	Responsibility	Timeframe
Erosion management at the site should take place according to the Erosion Management Plan and Rehabilitation Plan	Contractor	Construction
All erosion problems observed must be rectified as soon as possible, using the appropriate erosion control structures and revegetation techniques.	Contractor	Construction
Only the proposed access roads as per the development footprint are to be used to reduce any unnecessary compaction.	Contractor	Construction
Prevent any spills from occurring. Machines must be parked within hard park areas and must be checked daily for fluid leaks.	Contractor	Construction
Stockpile topsoil for re-use in rehabilitation phase. Maintain stockpile shape and protect from erosion.	Contractor	Construction
 Salvaging topsoil: Topsoil must always be salvaged and stored separately from subsoil and lower-lying parent rock or other spoil material. Topsoil stripping removes up to 30 cm or less of the upper soils. In cultivated areas, depth of topsoil may increase and needs to be confirmed with the land owner. Prior to salvaging topsoil the depth, quality and characteristics of topsoil should be known for every management area. This will give an indication of total volumes of topsoil that need to be stored to enable the proper planning and placement of topsoil storage. Different types of topsoil – rocky soils and sands or loams must be stored separately. Topsoil should be removed (and stored) under dry conditions to avoid excessive compaction whenever topsoil will have to be stored for longer than one year. 	Contractor	Construction
 Storing topsoil: Viability of stored topsoil depends on moisture, temperature, oxygen, nutrients and time stored. Rapid decomposition of organic material in warm, moist topsoil rapidly decreases microbial activity necessary for nutrient cycling, and reduces the amount of beneficial microorganisms in the soil. Stockpile location should ideally be in a disturbed but weed-free area. 	Contractor	Construction

Mitigation: Action/control	Responsibility	Timeframe
Storage of all topsoil that is disturbed should be of a maximum height of 2m and the maximum length of time before re-use is 18 months.		
» Topsoil handling should be reduced to stripping, piling (once), and re-application. Between the stockpiling and reapplication, stored topsoil should not undergo any further handling except control of erosion and (alien) invasive vegetation.		
Where topsoil can be reapplied within six months to one year after excavation, it will be useful to store the topsoil as close as possible to the area of excavation and re-application, e.g. next to cabling trenches.		
» Do not mix overburden with topsoil stockpiles, as this will dilute the proportion of fertile soil (with less fertile subsoil or rock material).		
Employ wind nets made from Hessian or similarly fibrous and biodegradable material, where required, to stabilise newly placed topsoil stockpiles and to reduce wind erosion.		
 In cases where topsoil has to be stored longer than 6 months or during the rainy season, soils should be kept as dry as possible and protected from erosion and degradation by: Preventing ponding on or between heaps of topsoil Covering topsoil berms Preventing all forms of contamination or pollution Preventing any form of compaction Monitoring the establishment of all invasive vegetation and removing such if it appears Keeping slopes of topsoil at a maximal 2:1 ratio Monitoring and mitigating erosion where it appears 		
» Where topsoil needs to be stored in excess of one year, it is recommended to either cover the topsoil or allow an indigenous grass cover to grow on it – if this does not happen spontaneously, seeding should be considered.		
Identify and demarcate construction areas for general construction work and restrict construction activity to these areas.	Contractor	Construction
Spillages of cement to be cleaned up immediately and disposed or re-used in the construction process.	Contractor	Construction
Spill kits to be kept on active parts of the construction site and at site offices.	Contractor	Construction
Cement batching to take place in designated areas only, as approved on site layout (if applicable).	Contractor	Construction
When preparing the hard setting area, cuts should be used for fill with little or no wastages.	Contractor	Construction
Implement erosion control measures denuded areas as required and monitor erosion and manage all occurrences according to the erosion management plan (refer to Appendix G). Erosion control measures should be implemented in areas where slopes have been disturbed.	Contractor	Construction

Mitigation: Action/control	Responsibility	Timeframe
Control depth of all excavations and stability of cut faces/sidewalls.	Contractor	Construction
 Reapplying topsoil: Spoil materials and subsoil must be back-filled first, then covered with topsoil. Immediate replacement of topsoil after the undertaking of construction activities within an area. Generally, topsoil should be re-applied to a depth slightly greater than the topsoil horizon of a pre-selected undisturbed reference site. The minimum depth of topsoil needed for re-vegetation to be successful is approximately 20 cm. If the amount of topsoil available is limited, a strategy must be devised to optimise re-vegetation efforts with the topsoil available. Reapplied topsoil should be landscaped in a way that creates a variable microtopography of small ridges and valleys that run parallel to existing contours of the landscape. The valleys become catch-basins for seeds and act as run-on zones for rainfall, increasing moisture levels where the seeds are likely to be more concentrated. This greatly improves the success rate of re-vegetation efforts. To stabilise reapplied topsoil and minimise raindrop impact and erosion: Use organic material from cleared and shredded woody vegetation where possible Alternatively, suitable geotextiles or organic erosion mats can be used as necessary Continued monitoring will be necessary to detect any sign of erosion early enough to allow timeous mitigation. 	Contractor	Construction
Re-applied topsoil needs to be re-vegetated as soon as possible.	Contractor	Construction
 Implement general erosion control measures/practises: Runoff control and attenuation can be achieved by using any or a combination of sand bags, logs, silt fences, storm water channels and catch-pits, shade nets, geofabrics, seeding or mulching as needed on and around cleared and disturbed areas. * Ensure that all soil surfaces are protected by vegetation or a covering to avoid the surface being eroded by wind or water. > Ensure that heavy machinery does not compact areas that are not meant to be compacted as this will result in compacted hydrophobic, water repellent soils which increase the erosion potential of the area. > Prevent the concentration or flow of surface water or storm water down cut or fill slopes or along pipeline routes or roads 	Contractor	Construction
and ensure measures to prevent erosion are in place prior to construction.		

Mitigation: Action/control	Responsibility	Timeframe
 Minimise and restrict site clearing to areas required for construction purposes only and restrict disturbance to adjacent undisturbed natural vegetation. Vegetation clearing should occur in parallel with the construction progress to minimise erosion and/or run-off. Large tracts of bare soil will either cause dust pollution or quickly erode and then result in sedimentation. 		
 When implementing dust control measures, prevent over- wetting, saturation, and run-off that may cause erosion and sedimentation. 		
Conservation measures should be applied to ensure that soil does not get unusable or unproductive and to ensue soil stabilisation.	Contractor	Construction
Regular monitoring for erosion should be undertaken after construction to ensure that no erosion problems have developed as result of the disturbance must be undertaken, as per the Erosion Management and Rehabilitation Plans for the project.	Contractor	Construction

Performance Indicator	 Minimal level of soil erosion around site. Minimal level of soil degradation. No activity outside demarcated areas. Acceptable state of excavations. No activity in restricted areas. Acceptable state of excavations, as determined by EO and ECO. Progressive return of disturbed and rehabilitated areas to the desired end state (refer also to the Plant Rescue and Protection Plan in Appendix E). No indications of visible topsoil loss.
Monitoring and	 Continual inspections of the site by the EO. Reporting of ineffective sediment control systems and rectification as soon as possible. If soil loss is suspected, acceleration of soil conservation and rehabilitation measures must
Reporting	be implemented.

OBJECTIVE 8: Minimise the impacts on and loss of indigenous vegetation and control of alien invasive plants

The development of the Moriri Solar PV Facilityand associated infrastructure, is likely to result in a variety of impacts, associated largely with the disturbance, loss and transformation of intact vegetation and faunal habitat to PV arrays, roads and associated infrastructure. The following impacts are identified as the major impacts that are likely to be associated with the development and which are assessed for the Moriri PV Facility, for the preconstruction, construction and operation phases of the development.

Project component/s	»	PV panels.
	»	Access roads.
	»	Cabling between project components.
	»	Onsite facility substation.

	 Power line. Battery Energy Storage System (BESS) Laydown areas All other associated infrastructure.
Potential Impact	 » Loss of plant cover leading to loss of faunal habitat and loss of specimens of protected plants. » Soil erosion. » Increased fire hazards. » Increased water use.
Activity/risk source	 Site preparation and clearing. Soil disturbance Introduction of plant propagules with people and vehicles. Activities outside of designated construction areas. Driving off designated routes.
Mitigation: Target/Objective	» To limit construction activities to designated areas.» Implement invasive plant clearing prior to construction, but after site demarcation.

Responsibility	Timeframe
Contractor	Construction
Contractor	Construction
Contractor CEO	Construction
Contractor CEO	Construction
CEO	Construction
Contractor CEO	Construction
Contractor	Construction
	Contractor Contractor CEO Contractor CEO CEO CONtractor CEO Contractor CEO Contractor CONtractor Contractor Contractor

Mitigation: Action/control	Responsibility	Timeframe
Regular alien clearing should be conducted using the best-practice methods for the species concerned. The use of herbicides should be avoided as far as possible.	Contractor	Construction
Vegetation clearing should occur in a phased manner in accordance with the construction programme to minimise erosion and/or run-off.	Contractor	Construction
Unnecessary impacts on surrounding natural vegetation must be avoided, The construction impacts must be contained to the footprint of the PV facility.	Contractor	Construction
 Avoid creating conditions in which alien plants may become established: » Keep disturbance of indigenous vegetation to a minimum » Rehabilitate disturbed areas as quickly as possible once construction is complete in an area » Do not import soil from areas with alien plants. 	Contractor	Construction
Establish an on-going monitoring programme to detect, quantify and remove any alien species that may become established and identify the problem species (as per Conservation of Agricultural Resources Act and Act 43 of 1983 and NEM: Biodiversity Act).	Contractor	Construction
Immediately control any alien plants that become established using registered control methods appropriate for the particular species in question. Where necessary, obtain an opinion from a registered Pest Control Officer.	Contractor	Construction
All alien plant re-growth must be monitored and should these alien plants reoccur these plants should be re-eradicated. The scale of the development does however not warrant the use of a Landscape Architect and / or Landscape Contractor.	Contractor	Construction
The use of herbicides and pesticides and other related horticultural chemicals should be carefully controlled and only applied by personnel adequately certified to apply pesticides and herbicides (a registered Pest Control Officer). It must be ensured that WHO Recommended Classification of Pesticides by Hazard Class 1a (extremely hazardous) or 1b (highly hazardous) are not purchased, stored or used on site along with any other nationally or internationally similarly restricted/banned products.	Contractor	Construction
A registered Pest Control Officer must be appointed to implement the invasive alien plants and weeds management plan. The Pest Control Officer must supervise the clearing team to ensure compliance with the invasive alien plants and weeds management plan.	Contractor	Construction
All cleared areas should be revegetated with indigenous perennial species from the local area.	Contractor	Construction

Performance Indicator	 No disturbance outside of designated work areas. Limited alien infestation within project control area. Construction activities restricted to the development footprint.
Monitoring and Reporting	 Observation of vegetation clearing activities by ,the EO throughout the construction phase Monitoring of alien plant establishment within the site on an on-going basis.

OBJECTIVE 9: Protection of terrestrial fauna

Project component/s	» PV panels.
	» Access roads.
	» Cabling between project components.
	» Onsite facility substation.
	» Power line.
	 Battery Energy Storage System (BESS)
	» Laydown areas
	» All other associated infrastructure.
Potential Impact	» Vegetation clearance and associated impacts on faunal habitats.
	» Traffic to and from site.
Activity/risk source	» Site preparation and earthworks.
	» Foundations or plant equipment installation.
	» Mobile construction equipment movement on site.
	» Access road construction activities.
	» Substation construction facilities.
Mitigation:	» To minimise footprints of habitat destruction.
Target/Objective	» To minimise disturbance to resident and visitor faunal species.

The extent of clearing and disturbance to the vegetation must be kept to a minimum so that impact on fauna and their habitats is restricted.ContractorConstructionDuring construction any fauna threatened by the construction activities should be removed to safety by an appropriately qualified environmental officer.ContractorConstructionThe illegal collection, hunting or harvesting of any plants or animols at the site should be strictly forbidden. Personnel should not be allowed to wander off of the construction site.ContractorConstructionAll personnel should undergo environmental induction with harming or collecting species such as snakes, tortoises and owls, which are often persecuted out of superstition.ContractorConstructionIf trenches need to be dug for electrical cabling or other purpose, these should not be left open for extended periods of time as fauna may fall in and become trapped in them. Trenches which are standing open should have places where there are soil ramps allowing fauna to escape the trench.ContractorConstructionThe illegal collection, hunting or harvesting of any plants or animals at the site should be strictly forbidden. Personnel should not be allowed to wander off of the construction site.ContractorConstructionCEOConstructionCEOConstructionCEOIf any parts of the site such as construction camps must be lit at night, this should be done with low-UV type lights (such as most LEDs or HPS bulbs) as far as practically possible, which do not attract insects and which should be directed downwards.ContractorConstructionAll construction vehicles should achere to a low speed limit (30km/h) to avoid collisions wi	Mitigation: Action/control	Responsibility	Timeframe
activities should be removed to safety by an appropriately qualified environmental officer.CEOThe illegal collection, hunting or harvesting of any plants or animals at the site should be strictly forbidden. Personnel should not be allowed to wander off of the construction site.ContractorConstructionAll personnel should undergo environmental induction with regards to fauna and, in particular, awareness about not harming or collecting species such as snakes, tortoises and owls, which are often persecuted out of superstition.Contractor CEOConstructionIf trenches need to be dug for electrical cabling or other purpose, these should not be left open for extended periods of there are soil ramps allowing fauna to escape the trench.Contractor CEOConstructionThe illegal collection, hunting or harvesting of any plants or animals at the site should be strictly forbidden. Personnel should not be allowed to wander off of the construction site.Contractor CEOConstructionIf any parts of the site such as construction camps must be lit at night, this should be done with low-UV type lights (such as most LEDs or HPS bulbs) as far as practically possible, which do not attract insects and which should be directed downwards.Contractor ContractorConstructionAll construction vehicles should adhere to a low speed limit (30km/h) to avoid collisions with susceptible species such asContractorConstruction	be kept to a minimum so that impact on fauna and their habitats	Contractor	Construction
animals at the site should be strictly forbidden. Personnel should not be allowed to wander off of the construction site.ContractorConstructionAll personnel should undergo environmental induction with regards to fauna and, in particular, awareness about not harming or collecting species such as snakes, tortoises and owls, which are often persecuted out of superstition.ContractorConstructionIf trenches need to be dug for electrical cabling or other purpose, these should not be left open for extended periods of time as fauna may fall in and become trapped in them. Trenches which are standing open should have places where there are soil ramps allowing fauna to escape the trench.Contractor CEOConstructionThe illegal collection, hunting or harvesting of any plants or on the allowed to wander off of the construction site.Contractor CEOConstructionIf any parts of the site such as construction camps must be lit at night, this should be done with low-UV type lights (such as most LEDs or HPS bulbs) as far as practically possible, which do not attract insects and which should be directed downwards.Contractor ContractorConstructionAll construction vehicles should adhere to a low speed limit (30km/h) to avoid collisions with susceptible species such asContractorConstruction	activities should be removed to safety by an appropriately		Construction
regards to fauna and, in particular, awareness about not harming or collecting species such as snakes, tortoises and owls, which are often persecuted out of superstition.CEOIf trenches need to be dug for electrical cabling or other purpose, these should not be left open for extended periods of time as fauna may fall in and become trapped in them. Trenches which are standing open should have places where there are soil ramps allowing fauna to escape the trench.Contractor CEOConstructionThe illegal collection, hunting or harvesting of any plants or animals at the site should be strictly forbidden. Personnel should not be allowed to wander off of the construction site.Contractor CEOConstructionIf any parts of the site such as construction camps must be lit at night, this should be done with low-UV type lights (such as most LEDs or HPS bulbs) as far as practically possible, which do not attract insects and which should be directed downwards.ContractorConstructionAll construction vehicles should adhere to a low speed limit (30km/h) to avoid collisions with susceptible species such asContractorConstruction	animals at the site should be strictly forbidden. Personnel should	Contractor	Construction
purpose, these should not be left open for extended periods of time as fauna may fall in and become trapped in them. Trenches which are standing open should have places where there are soil ramps allowing fauna to escape the trench.CEOCEOThe illegal collection, hunting or harvesting of any plants or animals at the site should be strictly forbidden. Personnel should not be allowed to wander off of the construction site.Contractor CEOConstructionIf any parts of the site such as construction camps must be lit at night, this should be done with low-UV type lights (such as most LEDs or HPS bulbs) as far as practically possible, which do not attract insects and which should be directed downwards.ContractorConstructionAll construction vehicles should adhere to a low speed limit (30km/h) to avoid collisions with susceptible species such asContractorConstruction	regards to fauna and, in particular, awareness about not harming or collecting species such as snakes, tortoises and owls,		Construction
animals at the site should be strictly forbidden. Personnel should not be allowed to wander off of the construction site.CEOIf any parts of the site such as construction camps must be lit at night, this should be done with low-UV type lights (such as most LEDs or HPS bulbs) as far as practically possible, which do not 	purpose, these should not be left open for extended periods of time as fauna may fall in and become trapped in them. Trenches which are standing open should have places where		Construction
night, this should be done with low-UV type lights (such as most LEDs or HPS bulbs) as far as practically possible, which do not attract insects and which should be directed downwards. All construction vehicles should adhere to a low speed limit (30km/h) to avoid collisions with susceptible species such as	animals at the site should be strictly forbidden. Personnel should		Construction
(30km/h) to avoid collisions with susceptible species such as	night, this should be done with low-UV type lights (such as most LEDs or HPS bulbs) as far as practically possible, which do not	Contractor	Construction
	(30km/h) to avoid collisions with susceptible species such as	Contractor	Construction

Mitigation: Action/control	Responsibility	Timeframe
In terms of the boundary fence, no electrified strands should be placed within 30cm of the ground as some species such as	Contractor	Duration of contract
tortoises are susceptible to electrocution from electric fences		
because they do not move away when electrocuted but rather		
adopt defensive behaviour and are killed by repeated shocks. Alternatively, the electrified strands should be placed on the		
inside of the fence and not the outside as is the case on the		
majority of already constructed PV plants. The boundary fence		
should have access points for smaller fauna to enter and exit the		
PV area.		

Performance Indicator	 No disturbance outside of designated work areas. Minimised clearing of existing/natural vegetation and habitats for fauna. Limited impacts on faunal species (i.e. noted/recorded fatalities), especially those of conservation concern.
Monitoring and Reporting	 » Observation of vegetation clearing activities by the EO throughout construction phase. » Supervision of all clearing and earthworks by the EO.

OBJECTIVE 10: Protection of avifauna

Potential Impact Activity/risk source	 » Laydown areas » All other associated infrastructure. » Disturbance of birds (e.g. destruction of habitat). » Displacement of birds. » Collision with project components. » Traffic to and from site. » Site preparation and earthworks. » Displacement of priority species due to habitat and destruction associated with construction of the PV plant and associated infrastructure. » Mortality of priority species due to collisions with solar panels. » Entrapment of large-bodied birds in the double perimeter fence.
Mitigation:	 » Entrapment of large-bodied birds in the double perimeter tence. » Mortality of priority species due to collision and electrocution on the medium voltage internal reticulation network » To minimise footprints of habitat destruction.
Target/Objective	 To minimise disturbance to resident and visitor avifaunal species.

Mitigation: Action/control	Responsibility	Timeframe
The extent of clearing and disturbance to the vegetation must	Contractor	Construction
be kept to a minimum so that impact on avifauna and their		
habitats is restricted.		

Mitigation: Action/control	Responsibility	Timeframe
Speed limits (30 km/h) should be strictly enforced on site to reduce probability of vehicle collisions.	Contractor	Construction
No dogs or cats other than those of the landowners should be allowed on site.	Contractor	Construction
Construction camps should be lit with as little light as practically possible, with the lights directed downwards where appropriate.	Contractor	Construction
Each pylon for new overhead power lines must be fitted with a safe bird perch.	Contractor	Construction
The appointed Environmental Officer must be trained to identify the potential Red Data species as well as the signs that indicate possible breeding by these species. The Environmental Officer must then, during audits/site visits, make a concerted effort to look out for such breeding activities of Red Data species, and such efforts may include the training of construction staff (e.g. in Toolbox talks) to identify Red Data species, followed by regular questioning of staff as to the regular whereabouts on site of these species.	Contractor	Construction
If any of the Red Data species are confirmed to be breeding (e.g. if a nest site is found), construction activities within 500 m of the breeding site must cease, and an avifaunal specialist is to be contacted immediately for further assessment of the situation and instruction on how to proceed.	Contractor	Construction
Any holes dug e.g. for foundations of pylons should not be left open for extended periods of time to prevent entrapment by ground dwelling avifauna or their young and only be dug when required and filled in soon thereafter.	Contractor	Construction
Temporary fencing must be suitably constructed, e.g. if double layers of fencing are required for security purposes they should be positioned at least 2 m apart to reduce the probability of entrapment by larger bodied species that may find themselves between the two fences.	Contractor	Construction
Roadkill is to be reported to the ECO and removed as soon as possible to reduce the attraction of the site to crows and other scavengers.	Contractor	Construction
Organic waste is to be disposed of in an appropriate manner to reduce the attraction of the site to crows and other scavengers.	Contractor	Construction
Appropriate bird flight diverters (BFDs) to be installed on all lengths of new overhead power lines;	Contractor	Construction

Performance Indicator	 No disturbance outside of designated work areas. Minimised clearing of existing/natural vegetation and habitats for avifauna. Limited impacts on avifaunal species (i.e. noted/recorded fatalities), especially those of conservation concern.
Monitoring and Reporting	 > Observation of vegetation clearing activities by the EO throughout construction phase. > Supervision of all clearing and earthworks by the EO.

OBJECTIVE 11: Protection of bats

Project component/s	» PV panels.
	» Access roads.
	» Cabling between project components.
	» Onsite facility substation.
	» Power line.
	 » Battery Energy Storage System (BESS)
	» Laydown areas
	» All other associated infrastructure.
Potential Impact	» Disturbance of bats (e.g. destruction of habitat).
	» Displacement of bats.
	» Traffic to and from site.
Activity/risk source	» Site preparation and earthworks.
	» Foundations or plant equipment installation.
	» Mobile construction equipment movement on site.
	» Access road construction activities.
	» Substation construction facilities.
Mitigation:	» To minimise footprints of habitat destruction.
Target/Objective	» To minimise disturbance to resident and visitor bat species.

Mitigation: Action/control	Responsibility	Timeframe
All construction activities should be restricted to the immediate project footprint as far as possible.	Contractor	Construction
Avoid the construction of new roads by using existing roads as far as possible.	Contractor	Construction
Avoid excessive removal of existing vegetation as far possible and do not remove any vegetation outside of the project boundaries that have been assessed.	Contractor	Construction
Avoid the destruction of important vegetation and agricultural land in the north of the site as far as possible.	Contractor	Construction
»Site Access should be strictly controlled, to avoid unnecessary disturbance.	Contractor	Construction
Minimise lighting at night as far as possible.	Contractor	Construction
Avoid the destruction of existing buildings as far as possible.	Contractor	Construction

Performance Indicator		No disturbance outside of designated work areas. Minimised clearing of existing/natural vegetation and habitats for bats. Limited impacts on bat species, especially those of conservation concern.
Monitoring and	»	Observation of vegetation clearing activities by the EO throughout construction phase.
Reporting	»	Supervision of all clearing and earthworks by the EO.

OBJECTIVE 12: Minimise impacts on heritage sites during the construction of the PV facility

Project component/s » Excavations of foundations.

	» Excavations of trenches for the installation of cabling and infrastructure.
Potential Impact	 » Loss of archaeological artefacts. » Impact to palaeontological resources. » Impacts on cultural landscapes.
Activity/risk source	» All bulk earthworks.
Mitigation: Target/Objective	 A 1km no-go development buffer be maintained around Site GK038 and a 500m no-go development buffer be maintained around Site GK037 to ensure that no impact occurs. A 50m no development buffer area must be implemented around site GK048 This no-go development buffer refers to new infrastructure and not the existing roads to be used by the PV facilities. Should any significant archaeological resources be uncovered during the course of the construction phase, work must cease in the area of the find and SAHRA must be contacted regarding an appropriate way forward.

Aitigation: Action/control	Responsibility	Timeframe
Contractors must be informed before construction starts on the possible types of heritage sites and cultural material they may encounter and the procedures to follow if they find sites. All staff must also be familiarised with procedures for dealing with heritage objects/sites.	Contractor	Construction
Chance Find Procedure:	Contractor	Construction
 If a chance find is made the person responsible for the find must immediately stop working and all work must cease in the immediate vicinity of the find. The person who made the find must immediately report the find to his/her direct supervisor which in turn must report the find to his/her manager and the Environmental Officer (EO) (if appointed) or site manager . The EO must report the find to the relevant Heritage Agency (South African Heritage Research Agency, SAHRA). (Contact details: SAHRA, 111 Harrington Street, Cape Town. PO Box 4637, Cape Town 8000, South Africa. Tel: 021 462 4502. Fax: +27 (0)21 462 4509. Web: www.sahra.org.za). The information to the Heritage Agency must include photographs of the find, from various angles, as well as the GPS co-ordinates. 		
A preliminary report must be submitted to the Heritage Agency within 24 hours of the find and must include the following: 1) date of the find; 2) a description of the discovery and a 3) description of the fossil and its context (depth and position of the fossil), GPS co-ordinates.		
Photographs (the more the better) of the discovery must be of high quality, in focus, accompanied by a scale. It is also important to have photographs of the vertical section (side) where the fossil was found.		
Ipon receipt of the preliminary report, the Heritage Agency will nform the EO (or site manager) whether a rescue excavation or escue collection by a palaeontologist is necessary.		

Mitigation: Action/control	Responsibility	Timeframe
 damage. No attempt should be made to remove material from their environment. The exposed finds must be stabilised and covered by a plastic sheet or sand bags. The Heritage agency will also be able to advise on the most suitable method of protection of the find. » In the event that the fossil cannot be stabilised the fossil may be collected with extreme care by the EO (or site manager). Fossils finds must be stored in tissue paper and in an appropriate box while due care must be taken to remove all fossil material from the rescue site. » Once Heritage Agency has issued the written authorisation, 		
the developer may continue with the development.		
 Measures to minimise impacts on Cultural Landscape: Ecological: Species and ecosystem loss should be prevented by limiting fragmentation in the landscape, and should therefore adhere to the following general recommendations: Remaining areas of endemic and endangered natural vegetation should be conserved. High and Very High Sensitivity Ecological areas (crest lines and drainage lines), should be protected from development. Areas of habitat are found among the rocky outcrops and contribute to the character, as well as biodiversity of the area. Care should be taken that habitats are not needlessly destroyed. Careful planning should incorporate areas for stormwater runoff where the base of the structure disturbed the natural soil. Local rocks found on the site could be used to slow stormwater (instead of concrete, or standard edge treatments), and prevent erosion that would be an unfortunate consequence that would alter the character of the site. By using rocks from site, it helps to sensitively keep to the character. The principle of 'tread lightly' must be applied for any activity (and associated development requirements e.g. toilets for the construction process) should be emphasised. Aesthetic: Encourage mitigation measures (for instance use of vegetation) to 'embed' or disguise the proposed structures within the surrounding tourism and agricultural landscape at ground level, road edges etc: The continuation of the traditional use of material could be enhanced with the use of the rocks on the site as building material. This would also help to embed structures into the 	Contractor	Construction
landscape that does not have to be standard containers that clutter the landscape.		

Mi	igation: Action/control	Responsibility	Timeframe
»	Using material found on the site adds to the sense of place	. ,	
	and reduces transportation costs of bringing materials to		
	site.		
»	Where additional infrastructure (i.e. roads) is needed, the		
	upgrade of existing roads to accommodate the		
	development should be the first consideration. The local		
	material such as the rocks found within the area could be		
	applied to address stormwater runoff from the road to		
	prevent erosion.		
»	Infrastructure improvement, including new roads and		
	upgrades to the road network, should be appropriate to the		
	rural context (scale, material etc.).		
»	The layout of the facility should have an emphasis on place-		
	making, i.e. landscape-related heritage considerations, as		
	opposed to standard infrastructure driven requirements;		
»	Prevent the construction of new buildings/structures on		
	visually sensitive, steep, elevated or exposed slopes,		
	ridgelines and hillcrests. Retain the integrity of the distinctive		
	landscape character;		
»	Scale and massing should be sensitive to the surrounding		
	landscape, although this is challenging with regard to the		
	development of WEFs.		
»	Avoid visual clutter in the landscape by intrusive signage,		
	and the intrusion of commercial corporate development		
	along roads		
*	Avoid development of infrastructure (such as buildings and		
	power lines), on crests or ridgelines due to the impact on the		
	visual sensitivity of skylines.		
*	Retain view-lines and vistas focused on prominent natural		
	features such as mountain peaks or hills, as these are		
	important place-making and orientating elements for		
	experiencing the cultural landscape.		
His	toric:		
»	The integrity of the historic farm werfs should be maintained		
	and protected.		
»	Names of routes and watercourses that refer to traditional		
	use during the time of the hunter-gatherers and herders, as		
	well as the colonial era, should be celebrated.		
»	Traditional planting patterns should be protected by		
	ensuring that existing trees are not needlessly destroyed, as		
	these signify traces of cultural intervention in a harsh		
	environment. These planting patterns include the trees		
	planted around the werfs.		
»	In some cases, remnant planting patterns (even single trees)		
	uphold the historic character of an area. Interpretation of		
	these landscape features as historic remnants should occur.		
»	Mountain slopes have been used for traditional practices for		
	many years, and care should be taken that any significant		
	cultural sites, such as burials and veldkos/medicinal plant		
	resources, are not disturbed.		

Mi	igation: Action/control	Responsibility	Timeframe
»	Where the historic function of a building/site is still intact, the function has heritage value and should be protected. Please take note of the items listed below:		
*	Surviving examples (wagon routes, outspans, and commonage), where they are owned in some public or communal way (or by a body responsible for acting in the public interest) and where they are found to be actively operating in a communal way, will have cultural and heritage value and should be enhanced and retained.		
*	The new roads should display minimum scale designs where possible.		
*	Maintain traditional movement patterns across rural landscapes or to places of socio-historical value. (a) Avoid privatization or the creation of barriers to traditional access routes. (b) Retain old roadways, which have been replaced by newer roads, for use as recreation trails.		
»	Respect existing patterns, typologies and traditions of settlement-making by promoting the continuity of heritage features. These include: (a) indigenous; (b) colonial; and (c) current living heritage in the form of tangible and intangible associations to place.		
*	Respect traditional werf settlement patterns by considering the entire werf as the component of significance. This includes the backdrop of the natural landscape against which it is sited, as well as its spatial structure. Any development that impacts the inherent character of the werf component should be discouraged.		
<u>So</u> »	cial: Care should be taken that existing functions such as outspan areas (see criteria for these under historic) are not lost in the development stages, as it fulfils an important function within the cultural landscape.		
*	The local community around the development should benefit from job opportunities created by the proposed development.		
<u>Ec</u> »	<u>onomic</u> : Sheep or game farming should be allowed to continue in the area and between the panels where feasible. Care should be taken to reduce visual impact from surrounding tourism areas, by following the		
	recommendations included in the VIA.		

Performance	»	Reporting of and liaison about possible finds of heritage resources.
Indicator	»	Heritage resources noticed and rescued.
	»	All heritage items located are dealt with as per the legislative guidelines.
	*	Measures to reduce impacts on cultural landscape are implemented.
Monitoring and	*	Ensure staff are aware of heritage resources and the procedure to follow when found.
Reporting	»	EO to conduct inspections of open excavations.
	_	

OBJECTIVE 13: Minimisation of visual impacts associated with construction

During construction heavy vehicles, components, cranes, equipment and construction crews will frequent the area and may cause, at the very least, a visual nuisance to landowners and residents in the area as well as road users.

Project component/s	» Construction site.» Transportation of staff and equipment.
Potential Impact	 » Visual impact of general construction activities, and the potential scarring of the landscape due to vegetation clearing and the resulting erosion. » Construction traffic.
Activity/risk source	The viewing of visual scarring by observers in the vicinity of the PV facility or from the roads in the surrounding area.
Mitigation: Target/Objective	 Minimal disturbance to vegetation cover in close vicinity of the PV facility and its related infrastructure. Minimised construction traffic, where possible. Minimal visual intrusion by construction activities and intact vegetation cover outside of the immediate construction work areas.

Mitigation: Action/control	Responsibility	Timeframe
Retain and maintain natural vegetation in all areas outside of the development footprint.	Contractor	Construction
Ensure that vegetation is not unnecessarily removed during the construction period.	Contractor	Construction
Restrict the activities and movement of construction workers and vehicles to the immediate construction site and existing access roads.	Contractor	Construction
Restrict construction activities to daylight hours whenever possible in order to reduce lighting impacts.	Contractor	Construction
Ensure that rubble, litter, and disused construction materials are appropriately stored (if not removed daily) and then disposed regularly at licensed waste facilities.	Contractor	Construction
Rehabilitate all disturbed areas, construction areas, servitudes etc. immediately after the completion of construction works.	Contractor	Construction

Performance	» Construction site maintained in a neat and tidy condition.	
Indicator	 Site appropriately rehabilitated after construction is complete. 	
Monitoring>>Monitoring of vegetation clearing during construction by EO.>>Monitoring of rehabilitated areas quarterly for at least a year follow construction (by contractor as part of construction contract).		

OBJECTIVE 14: Appropriate handling and management of waste

The construction of the PV facility and associated infrastructure will involve the generation of various wastes. In order to manage the wastes effectively, guidelines for the assessment, classification, and management of wastes, along with industry principles for minimising construction wastes must be implemented. The main wastes expected to be generated by the construction activities include:

- » general solid waste
- » hazardous waste
- » inert waste (rock and soil)
- » liquid waste (including grey water and sewage)

Project Component/s	 » PV panels. » Access roads. » Cabling between project components. » Onsite facility substation. » Power line. » Battery Energy Storage System (BESS) » Laydown areas » All other associated infrastructure.
Potential Impact	 » Inefficient use of resources resulting in excessive waste generation. » Litter or contamination of the site or water through poor waste management practices.
Activity/Risk Source	 Packaging. Other construction wastes. Hydrocarbon use and storage. Spoil material from excavation, earthworks and site preparation.
Mitigation: Target/Objective	 » To comply with waste management legislation. » To minimise production of waste. » To ensure appropriate waste storage and disposal. » To avoid environmental harm from waste disposal.

Mitigation: Action/Control	Responsibility	Timeframe
Implement an integrated waste management approach that is based on waste minimisation and incorporates reduction, recycling, re-use and disposal where appropriate. Where solid waste is disposed of, such disposal shall only occur at an appropriately licensed landfill.	Contractor	Construction
Construction method and materials must be carefully considered in view of waste reduction, re-use, and recycling opportunities.	Contractor	Construction
Construction contractors must provide specific detailed waste management plans to deal with all waste streams.	Contractor	Construction
Ensure that no litter, refuse, wastes, rubbish, rubble, debris and builders wastes generated on the premises is placed, dumped or deposited on adjacent/surrounding properties.	Contractor	Construction
Specific areas must be designated on-site for the temporary management of various waste streams, i.e. general refuse, construction waste (wood and metal scrap), and contaminated waste as required. Location of such areas must seek to minimise	Contractor	Construction

Mitigation: Action/Control	Responsibility	Timeframe
the potential for impact on the surrounding environment, including prevention of contaminated runoff, seepage, and vermin control.		
Where practically possible, construction and general wastes on- site must be reused or recycled. Bins and skips must be available on-site for collection, separation, and storage of waste streams (such as wood, metals, general refuse etc.).	Contractor	Construction
Disposal of waste must be in accordance with relevant legislative requirements, including the use of licensed contractors.	Contractor	Construction
Uncontaminated waste must be removed at least weekly for disposal, if feasible; other wastes must be removed for recycling/ disposal at an appropriate frequency.	Contractor	Construction
Hydrocarbon waste must be contained and stored in sealed containers within an appropriately bunded area and clearly labelled. This must be regularly removed and recycled (where possible) or disposed of at an appropriately licensed landfill site.	Contractor	Construction
Waste must be stored in accordance with the relevant legislative requirements.	Contractor	Construction
Waste must be kept to a minimum and must be transported by approved waste transporters to sites designated for their disposal.	Contractor	Construction
No liquid waste, including grey water, may be discharged into any water body or drainage line. All sewage disposal to take place at a registered and operational wastewater treatment works.	Contractor	Construction
All liquid wastes must be contained in appropriately sealed vessels/ponds within the footprint of the development, and be disposed of at a designated waste management facility.	Contractor	Construction
Documentation (waste manifest) must be maintained detailing the quantity, nature, and fate of any regulated waste. Waste disposal records must be available for review at any time.	Contractor	Construction
Regularly serviced chemical toilet facilities and/or septic tank must be used to ensure appropriate control of sewage.	Contractor	Construction
Daily inspection of all chemical toilets and septic tanks must be performed by environmental representatives on site.	Contractor	Construction
In the event where sewage is discharged into the environment, all contaminated vegetation/ rock and soil must be removed immediately and treated as hazardous waste.	Contractor	Construction
Under no circumstances may waste be burnt or buried on site.	Contractor	Construction
Litter generated by the construction crew must be collected in rubbish bins and disposed of weekly, or at an appropriate frequency, at registered waste disposal sites.	Contractor	Construction
Upon the completion of construction, the area must be cleared of potentially polluting materials (including chemical toilets). Spoil stockpiles must also be removed and appropriately disposed of or the materials re-used for an appropriate purpose.	Contractor	Construction

Performance	»	No complaints received regarding waste on site or indiscriminate dumping.
Indicator	»	Internal site audits ensuring that waste segregation, recycling and reuse is occurring
		appropriately.
	»	Provision of all appropriate waste manifests for all waste streams.

Monitoring	*	Observation and supervision of waste management practices throughout construction
		phase.
	»	Waste collection will be monitored on a regular basis.
	»	Waste documentation completed.
	»	Proof of disposal of sewage at an appropriate wastewater treatment works.
	»	A complaints register will be maintained, in which any complaints from the community
		will be logged. Complaints will be investigated and, if appropriate, acted upon.
	»	An incident reporting system will be used to record non-conformances to the EMPr.

OBJECTIVE 15: Appropriate handling and storage of chemicals, hazardous substances

The construction phase may involve the storage and handling of a variety of chemicals including adhesives, abrasives, oils and lubricants, paints and solvents.

Project Component/s	 » PV panels. » Access roads. » Cabling between project components. » Onsite facility substation. » Power line. » Battery Energy Storage System (BESS) » Laydown areas » All other associated infrastructure.
Potential Impact	 Release of contaminated water from contact with spilled chemicals. Generation of contaminated wastes from used chemical containers. Soil pollution.
Activity/Risk Source	 Vehicles associated with site preparation and earthworks. Construction activities of area and linear infrastructure. Hydrocarbon spills by vehicles and machinery during levelling, vegetation clearance and transport of workers, materials and equipment and fuel storage tanks. Accidental spills of hazardous chemicals. Polluted water from wash bays and workshops. Pollution from concrete mixing.
Mitigation: Target/Objective	 To ensure that the storage and handling of chemicals and hydrocarbons on-site does not cause pollution to the environment or harm to persons. To ensure that the storage and maintenance of machinery on-site does not cause pollution of the environment or harm to persons. Prevent and contain hydrocarbon leaks. Undertake proper waste management. Store hazardous chemicals safely in a bunded area.

Mitigation: Action/Control	Responsibility	Timeframe
Implement an emergency preparedness plan during the construction phase.	Contractor	Construction
Any liquids stored on site, including fuels and lubricants, must be stored in accordance with applicable legislation.	Contractor	Construction
Spill kits must be made available on-site for the clean-up of spills and leaks of contaminants. These must be maintained regularly.	Contractor	Construction
Losses of fuel and lubricants from the oil sumps and steering racks of vehicles and equipment must be contained using a drip tray with plastic sheeting filled with absorbent material when not parked on hard standing.	Contractor	Construction
All hazardous materials should be stored in the appropriate manner to prevent contamination of the site. Any accidental chemical, fuel and oil spills that occur at the site should be cleaned up in the appropriate manner as related to the nature of the spill.	Contractor	Construction

Mitigation: Action/Control	Responsibility	Timeframe
Establish an appropriate Hazardous Stores and fuel storage area which is in accordance with the Hazardous Substance Amendment Act, No. 53 of 1992. This must include but not be limited to: > Designated area; > All applicable safety signage; > Firefighting equipment; > Enclosed by an impermeable bund as per the requirements of the relevant standards and any relevant by-laws; > Protected from the elements, > Lockable; > Ventilated; and > Has adequate capacity to contain 110% of the largest container contents.	Contractor	Construction
The storage of flammable and combustible liquids such as oils must be stored in compliance with Material Safety Data Sheets (MSDS) files.	Contractor	Construction
Corrective action must be undertaken immediately if a complaint is made, or potential/actual leak or spill of polluting substance identified. This includes stopping the contaminant from further escaping, cleaning up the affected environment as much as practically possible and implementing preventive measures. Where required, a NEMA Section 30 report must be submitted to DFFE within 14 days of the incident.	Contractor	Construction
In the event of a major spill or leak of contaminants, the relevant administering authority must be immediately notified as per the notification of emergencies/incidents.	Contractor	Construction
Spilled concrete must be cleaned up as soon as possible and disposed of at a suitably licensed waste disposal site.	Contractor	Construction
Accidental spillage of potentially contaminating liquids and solids must be cleaned up immediately in line with procedures by trained staff with the appropriate equipment.	Contractor	Construction
Any contaminated/polluted soil removed from the site must be disposed of at a licensed hazardous waste disposal facility.	Contractor	Construction
All machinery and equipment must be inspected regularly for faults and possible leaks,	Contractor	Construction
Routine servicing and maintenance of vehicles must not to take place on-site (except for emergencies). If repairs of vehicles must take place, an appropriate drip tray must be used to contain any fuel or oils.	Contractor	Construction
Construction machinery must be stored in an appropriately sealed area.	Contractor	Construction
Any storage and disposal permits/approvals which may be required must be obtained, and the conditions attached to such permits and approvals will be compiled with.	Contractor	Construction
Transport of all hazardous substances must be in accordance with the relevant legislation and regulations.	Contractor	Construction

Mitigation: Action/Control	Responsibility	Timeframe
The sediment control and water quality structures used on-site must be monitored and maintained in an operational state at all times.	Contractor	Construction
An effective monitoring system must be put in place to detect any leakage or spillage of all hazardous substances during their transportation, handling, installation and storage.	Contractor	Construction
Precautions must be in place to limit the possibility of oil and other toxic liquids from entering the soil or clean stormwater system.	Contractor	Construction
As much material must be pre-fabricated and then transported to site to avoid the risks of contamination associated with mixing, pouring and the storage of chemicals and compounds on site.	Contractor	Construction
Have appropriate action plans on site, and training for contactors and employees in the event of spills, leaks and other potential impacts to the aquatic systems. All waste generated on-site during construction must be adequately managed.	Contractor	Construction
Minimise fuels and chemicals stored on site.	Contractor	Construction
Implement a contingency plan to handle spills, so that environmental damage is avoided.	Contractor	Construction
Drip trays must be used during all fuel/chemical dispensing and beneath standing machinery/plant.	Contractor	Construction
In the case of petrochemical spillages, the spill must be collected immediately and stored in a designated area until it can be disposed of in accordance with the Hazardous Chemical Substances Regulations, 1995 (Regulation 15).	Contractor	Construction

Performance	» No chemical spills outside of designated storage areas.
Indicator	 No water or soil contamination by spills.
	 Safe storage of hazardous chemicals.
	» Proper waste management.
Monitoring	» Observation and supervision of chemical storage and handling practices and vehicle maintenance throughout construction phase.
	» A complaints register must be maintained, in which any complaints from the community will be logged.
	» An incident reporting system must be used to record non-conformances to the EMPr.
	» On-going visual assessment to detect polluted areas and the application of clean-up and preventative procedures.
	» Monitor hydrocarbon spills from vehicles and machinery during construction continuously and record volume and nature of spill, location and clean-up actions.
	» Monitor maintenance of drains and intercept drains weekly.
	Analyse soil samples for pollution in areas of known spills or where a breach of containment is evident when it occurs.
	» Records of accidental spills and clean-up procedures and the results thereof must be audited on an annual basis by the ECO.
	Records of all incidents that caused chemical pollution must be kept and a summary of the results must be reported to management annually.

OBJECTIVE 16: Effective management of concrete batching plant

Concrete is required during the construction of the PV facility. In this regard there could be a need to establish a temporary batching plant within the site. Batching plants are facilities/installations that combine various ingredients to form concrete. Some of these inputs include sand, water, aggregate (rocks, gravel, etc.), fly ash, potash, and cement.

Turbid and highly alkaline wastewater, dust emissions and noise are the key potential impacts associated with concrete batching plants. Concrete batching plants, cement, sand and aggregates can produce dust. Potential pollutants in batching plant wastewater and stormwater include cement, sand, aggregates, chemical additive mixtures, fuels and lubricants.

Project component/s	» Concrete batching plant.
Potential Impact	 » Dust emissions. » Release of contaminated water. » Generation of contaminated wastes from used chemical containers » Inefficient use of resources resulting in excessive waste generation.
Activity/risk source	 > Operation of the batching plant. > Packaging and other construction wastes. > Hydrocarbon use and storage. > Spoil material from excavation, earthworks and site preparation.
Mitigation: Target/Objective	» To ensure that the operation of the batching plant does not cause pollution to the environment or harm to persons.

Mitigation: Action/control	Responsibility	Timeframe
Where possible concrete batching plants should be sited such that impacts on the environment or the amenity of the local community from noise, odour or polluting emissions are minimised.	Contractor	Construction phase
The provision of natural or artificial wind barriers such as trees, fences and landforms may help control the emission of dust from the plant.	Contractor	Construction phase
Where there is a regular movement of vehicles. Access and exit routes for heavy transport vehicles should be planned to minimise noise and dust impacts on the environment.	Contractor	Construction phase
The concrete batching plant site should demonstrate good maintenance practices, including regular sweeping to prevent dust build-up.	Contractor	Construction phase
The prevailing wind direction should be considered to ensure that bunkers and conveyors are sited in a sheltered position to minimise the effects of the wind.	Contractor	Construction phase
Aggregate material should be delivered in a damp condition, and water sprays or a dust suppression agent should be correctly applied to reduce dust emissions and reduce water usage.	Contractor	Construction phase

Mitigation: Action/control	Responsibility	Timeframe
Conveyors must be designed and constructed to prevent fugitive dust emissions. This may include covering the conveyor with a roof, installing side protection barriers and equipping the conveyor with spill trays, which directs material to a collection point. Belt cleaning devices at the conveyor head may also assist to reduce spillage.	Contractor	Construction phase
The site should be designed and constructed such that clean stormwater, including roof runoff, is diverted away from contaminated areas and directed to the stormwater discharge system.	Contractor	Construction phase
Contaminated stormwater and process wastewater should be captured and recycled where possible. A wastewater collection and recycling system should be designed to collect contaminated water.	Contractor	Construction phase
Areas where spills of oils and chemicals may occur should be equipped with easily accessible spill control kits to assist in prompt and effective spill control.	Contractor	Construction phase
Ensure that all practicable steps are taken to minimise the adverse effect of noise emissions. This responsibility includes not only the noise emitted from the plant and equipment but also associated noise sources, such as radios, loudspeakers and alarms.	Contractor	Construction phase
Where possible, waste concrete should be used for construction purposes at the batching plant or project site.	Contractor	Construction phase

Performance Indicator	 » No complaints regarding dust. » No water or soil contamination by chemical spills. » No complaints received regarding waste on site or indiscriminate dumping.
Monitoring and Reporting	 > Observation and supervision of chemical storage and handling practices and vehicle maintenance throughout the construction phase. > A complaints register must be maintained, in which any complaints from the community must be logged. Complaints will be investigated and, if appropriate, acted upon. > An incident reporting system must be used to record non-conformances to the EMPr. > The Developer or appointed ECO/EO must monitor indicators listed above to ensure that they have been met for the construction phase.

OBJECTIVE 17: Traffic management and transportation of equipment and materials to site

The construction and decommissioning phases of the project will be the most significant in terms of traffic impacts resulting from the transport of equipment (including PV facility components) and materials and construction crews to the site and the return of the vehicles after delivery of materials. Potential impacts associated with transportation and access relate mostly to works within the site boundary (i.e. the PV facility and ancillary infrastructure) and the external road network. This section should be read in conjunction with the Traffic and Transportation Plan attached as **Appendix F**.

Project component/s » PV panels.

	 Access roads. Cabling between project components. Onsite facility substation. Power line. Battery Energy Storage System (BESS) Laydown areas All other associated infrastructure.
Potential Impact	 Traffic congestion, particularly on narrow roads or on road passes where overtaking is not permitted. Risk of accidents. Deterioration of road pavement conditions (i.e. both surfaced and gravel road) due to abnormal loads.
Activity/risk source	 Construction vehicle movement. Speeding on local roads. Degradation of local road conditions. Site preparation and earthworks. Foundations or plant equipment installation. Mobile construction equipment movement on-site. Substation construction activities.
Mitigation: Target/Objective	 Minimise impact of traffic associated with the construction of the PV facility on the local traffic volume, existing infrastructure, property owners, animals, and road users. To minimise the potential for negative interaction between pedestrians or sensitive users and traffic associated with the PV facility construction. To ensure all vehicles are roadworthy and all materials/equipment are transported appropriately and within any imposed permit/licence conditions. Stagger component delivery to site Reduce the construction period The use of mobile batch plants and quarries in close proximity to the site Staff and general trips should occur outside of peak traffic periods. Regular maintenance of gravel roads by the Contractor during the construction phase and by Client/Facility Manager during operation phase.

Mitigation: Action/control	Responsibility	Timeframe
Develop and implement a detailed method statement for the implementation of the traffic and transportation management plan (refer to Appendix F).	Contractor(s), (Transportation sub- contractor)	Construction
Heavy vehicles travelling on secondary roads should adhere to low-speed limits to minimise noise and dust pollution.	Contractor(s), (Transportation sub- contractor)	Construction
If feasible, no construction activities should be carried out during weekends and outside day time working hours	Contractor	Construction
Provide adequate signage along the R335 and R400 to warn motorists of the construction activities taking place on the site. Signage must be maintained on an on-going basis.	Contractor	Construction
Stagger component delivery to the site.	Contractor	Construction
tagger the construction period. Contractor		Construction
The use of mobile batching plants and quarries in close proximity to the project site would decrease the impact on the surrounding road network.	Contractor	Construction

Mitigation: Action/control	Responsibility	Timeframe
Staff and general trips should occur outside of peak traffic periods.	Contractor	Construction
Regular maintenance of gravel roads by the contractor during the construction phase.	Contractor	Construction
A designated access (or accesses) to the proposed site must be created to ensure safe entry and exit.	Contractor	Construction
Provide adequate signage along the N10, R355 & R400 to warn motorists of the construction activities taking place on the site.	Contractor	Construction
Appropriate road management strategies must be implemented on external and internal roads with all employees and contractors required to abide by standard road and safety procedures.	Contractor(s), (Transportation sub- contractor)	Duration of contract
Construction vehicles carrying material to the site should avoid using roads through densely populated built-up areas.	Contractor(s), (Transportation sub- contractor)	Duration of contract
The movement of all vehicles (barring clearing machinery) within the site must be on designated roadways.	Contractor(s)	Duration of contract
All hazardous substances must be transported in accordance with the relevant legislation and regulations.	Contractor(s)	Duration of contract
Roads must be designed so that changes to surface water runoff are avoided and erosion is not initiated.	Contractor(s)	Duration of contract

Performance Indicator	 No traffic incidents involving project personnel or appointed contractors. Appropriate signage in place. No complaints resulting from traffic congestion, delays or driver negligence associated with construction of the PV facility.
Monitoring	 Visual monitoring of traffic control measures to ensure they are effective. A complaints register will be maintained, in which any complaints from the community will be logged. Complaints will be investigated and, if appropriate, acted upon. An incident reporting system will be used to record non-conformances to the EMPr.

OBJECTIVE 18: Ensure appropriate rehabilitation of disturbed areas such that residual environmental impacts are remediated or curtailed

Areas requiring rehabilitation will include all areas disturbed during the construction phase and that are not required for regular operation and maintenance operations. Rehabilitation should be undertaken in an area as soon as possible after the completion of construction activities within that area.

1			
	Project component/s	*	PV panels.
		»	Access roads.
. I		*	Cabling between project components.
		*	Onsite facility substation.
		*	Power line.
		*	Battery Energy Storage System (BESS)
		»	Laydown areas

	» All other associated infrastructure.
Potential Impact	Environmental integrity of the site undermined resulting in reduced visual aesthetics, erosion, compromised land capability and the requirement for on-going management intervention.
Activity/risk source	 Site preparation and earthworks. Excavation of foundations and trenches. Temporary laydown areas. Temporary access roads/tracks. Other disturbed areas/footprints.
Mitigation: Target/Objective	 To ensure and encourage site rehabilitation of disturbed areas. To ensure that the site is appropriately rehabilitated following the execution of the works, such that residual environmental impacts (including erosion) are remediated or curtailed.

Mitigation: Action/control	Responsibility	Timeframe
A site rehabilitation programme should be compiled and implemented (refer to Appendix D).	EPC Contractor in consultation with Specialist	Construction
Following construction, rehabilitation of all areas disturbed (e.g. temporary access tracks and laydown areas) must be undertaken.	Contractor	Following execution of the works
All cleared areas must be revegetated with indigenous perennial shrubs and succulents from the local area. These can be cut when dry and placed on the cleared areas if natural recovery is slow.	Contractor	Following execution of the works
All disturbed areas that are not used such as excess road widths, should be rehabilitated with locally occurring shrubs and grasses after construction to reduce the overall footprint of the development.	Contractor	Following execution of the works
Rehabilitation of the working areas must be concurrent with the construction of the project.	Contractor	Construction
All temporary facilities, equipment and waste materials must be removed from site and appropriately disposed of.	Contractor	Following execution of the works
Necessary drainage works and anti-erosion measures must be installed, where required, to minimise loss of topsoil and control erosion.	Contractor	Following execution of the works
Re-vegetated areas may have to be protected from wind erosion and maintained until an acceptable plant cover has been achieved.	Contractor	Following execution of the works
On-going alien plant monitoring and removal should be undertaken on all areas of natural vegetation on an annual basis.	Contractor	Construction

Performance	» All portions of site, including construction camp and working areas, cleared of equipment
Indicator	and temporary facilities.
	» Topsoil replaced on all areas and stabilised.
	» Disturbed areas rehabilitated and acceptable plant cover achieved on rehabilitated
	sites.
	» Closed site free of erosion and alien invasive plants.

Monitoring	and	»	On-going inspection of rehabilitated areas in order to determine the effectiveness of the
Reporting			rehabilitation measures implemented during the operational lifespan of the PV facility.
		»	On-going alien plant monitoring and removal should be undertaken on an annual basis.
		»	An incident reporting system must be used to record non-conformances to the EMPr.

7.2. Detailing Method Statements

OBJECTIVE 19: Ensure all construction activities are undertaken with the appropriate level of environmental awareness to minimise environmental risk

The environmental specifications are required to be underpinned by a series of Method Statements, within which the Contractors and Service Providers are required to outline how any identified environmental risks will practically be mitigated and managed for the duration of the contract, and how specifications within this EMPr will be met. That is, the Contractor will be required to describe how specified requirements will be achieved through the submission of written Method Statements to the Site Manager and ECO.

A Method Statement is defined as "a written submission by the Contractor in response to the environmental specification or a request by the Site Manager, setting out the plant, materials, labour and method the Contractor proposes using to conduct an activity, in such detail that the Site Manager is able to assess whether the Contractor's proposal is in accordance with the Specifications and/or will produce results in accordance with the Specifications". The Method Statement must cover applicable details with regard to:

- » Details of the responsible person/s
- » Construction procedures
- » Materials and equipment to be used
- » Getting the equipment to and from site
- » How the equipment/material will be moved while on-site
- » How and where material will be stored
- » The containment (or action to be taken if containment is not possible) of leaks or spills of any liquid or material that may occur
- » Timing and location of activities
- » Compliance/non-compliance with the Specifications
- » Any other information deemed necessary by the Site Manager

Method Statements must be compiled for all activities which affect any aspect of the environment and should be applied consistently to all activities. Specific areas to be addressed in the method statement: pre, during and post construction include:

- » Site establishment (which explains all activities from induction training to offloading, construction sequence for site establishment and the different amenities and to be established etc., including a site camp plan indicating all of these).
- » Preparation of the site (i.e. clearing vegetation, compacting soils and removing existing infrastructure and waste).
- » Soil management/stockpiling and erosion control.
- » Excavations and backfilling procedure.

- » Stipulate norms and standards for water supply and usage (i.e. comply strictly to licence and legislation requirements and restrictions).
- » Stipulate the stormwater management procedures recommended in the stormwater management method statement.
- » Ablution facilities (placement, maintenance, management and servicing).
- » Solid Waste Management:
 - * Description of the waste storage facilities (on site and accumulative).
 - * Placement of waste stored (on site and accumulative).
 - * Management and collection of the waste process.
 - * Recycle, re-use and removal process and procedure.
- » Liquid waste management:
 - * Design, establish, maintain and operate suitable pollution control facilities necessary to prevent discharge of water containing polluting matter or visible suspended materials into rivers, streams or existing drainage systems.
 - * Should grey water (i.e. water from basins, showers, baths, kitchen sinks etc.) need to be disposed of, link into existing facilities or sewerage systems where possible. Where no facilities are available, grey water runoff must be controlled to ensure there is no unacceptable seepage occurs.
- » Dust and noise pollution:
 - * Describe the necessary measures to ensure that noise from construction activities is maintained within lawfully acceptable levels.
 - * Procedure to control dust at all times on the site, access roads, borrow pits and spoil sites (dust control shall be sufficient so as not to have significant impacts in terms of the biophysical and social environments). These impacts include visual pollution, decreased safety due to reduced visibility, negative effects on human health and the ecology due to dust particle accumulation.
- » Hazardous substance storage (ensure compliance with all national, regional and local legislation with regard to the storage of oils, fuels, lubricants, solvents, wood treatments, bitumen, cement, pesticides and any other harmful and hazardous substances and materials. South African National Standards apply):
 - * Lists of all potentially hazardous substances to be used.
 - * Appropriate handling, storage and disposal procedures.
 - * Prevention protocol of accidental contamination of soil at the storage and handling areas.
 - * All storage areas, (i.e. for harmful substances appropriately bunded with a suitable collection point for accidental spills must be implemented and drip trays underneath dispensing mechanisms including leaking engines/machinery).
- » Fire prevention and management measures on site.
- » Fauna and flora protection process on and off site (i.e. removal to reintroduction or replanting, if necessary):
 - * Rehabilitation, re-vegetation process and bush clearing.
- » Incident and accident reporting protocol.
- » General administration.
- » Designate access road and the protocol for when roads are in use.
- » Requirements on gate control protocols.

The Contractor may not commence with the activity covered by the Method Statement until it has been reviewed by the Site Manager, except in the case of emergency activities and then only with the consent of the Site Manager. Approval of the Method Statement will not absolve the Contractor from their obligations or responsibilities in terms of their contract.

Failure to submit a method statement may result in suspension of the activity concerned until such time as a method statement has been submitted and approved.

7.3. Awareness and Competence: Construction Phase of the Moriri Solar PV Facility

OBJECTIVE 20: To ensure all construction personnel have the appropriate level of environmental awareness and competence to ensure continued environmental due diligence and on-going minimisation of environmental harm

To achieve effective environmental management, it is important that Contractors are aware of the responsibilities in terms of the relevant environmental legislation and the contents of this EMPr. The Contractor is responsible for informing employees and sub-contractors of their environmental obligations in terms of the environmental specifications, and for ensuring that employees are adequately experienced and properly trained in order to execute the works in a manner that will minimise environmental impacts. The Contractors obligations in this regard include the following:

- » All employees must have a basic understanding of the key environmental features of the construction site and the surrounding environment. This includes the discussion/explanation of site environmental matters during toolbox talks.
- The content and requirements of Method Statements are to be clearly explained to all plant operators and general workers. All staff acting in a supervisory capacity is to have copies of the relevant Method Statements and be aware of the content thereof.
- » Ensuring that a copy of the EMPr is readily available on-site, and that all senior site staff is aware of the location and have access to the document. Senior site staff will be familiar with the requirements of the EMPr and the environmental specifications as they apply to the construction of the PV facility.
- » Ensuring that, prior to commencing any site works, all employees and sub-contractors have attended an Environmental Awareness Training session. The training session must provide the site staff with an appreciation of the project's environmental requirements, and how they are to be implemented.
 - * Records must be kept of those that have completed the relevant training.
 - * Training should be done either in a written or verbal format but must be appropriate for the receiving audience.
 - * Refresher sessions must be held to ensure the contractor staff are aware of their environmental obligations as practically possible.
- All sub-contractors must have a copy of the EMPr and sign a declaration/ acknowledgement that they are aware and familiar with the contents and requirements of the EMPr and that they will conduct work in such a manner as to ensure compliance with the requirements of the EMPr.
- » Contractors and main sub-contractors should have basic training in the identification of archaeological sites/objects, and protected flora and fauna that may be encountered on the site.
- » Awareness of any other environmental matters, which are deemed to be necessary by the ECO.
- » Ensuring that employee information posters, outlining the environmental "do's" and "don'ts" (as per the environmental awareness training course) are erected at prominent locations throughout the site.

Therefore, prior to the commencement of construction activities on site and before any person commences with work on site thereafter, adequate environmental awareness and responsibility are to be appropriately

presented to all staff present on-site, clearly describing their obligations towards environmental controls and methodologies in terms of this EMPr. This training and awareness will be achieved in the following ways:

7.3.1 Environmental Awareness Training

Environmental Awareness Training must be undertaken by the EPC Contractor and must take the form of an on-site talk and demonstration by the EO before the commencement of site establishment and construction on site. The education/awareness programme should be aimed at all levels of management and construction workers within the contractor team. A record of attendance of this training must be maintained by the SHE Officer on site.

7.3.2 Induction Training

Environmental induction training must be presented to all persons who are to work on the site – be it for short or long durations; Contractor's or Engineer's staff; administrative or site staff; sub-contractors or visitors to site.

This induction training should be undertaken by the Contractor's EO and should include discussing the developer's environmental policy and values, the function of the EMPr and Contract Specifications and the importance and reasons for compliance to these. The induction training must highlight the overall "do's" and "don'ts" on site and clarify the repercussions of not complying with these. The non-conformance reporting system must be explained during the induction as well. Opportunity for questions and clarifications must form part of this training. A record of attendance of this training must be maintained by the SHE Officer on site.

7.3.3 Toolbox Talks

Toolbox talks should be held on a scheduled and regular basis (at least once a week) where foremen, environmental and safety representatives of different components of the works and sub-consultants hold talks relating to environmental practices and safety awareness on site. These talks should also include discussions on possible common incidents occurring on site and the prevention of the reoccurrence thereof. Records of attendance and the awareness talk subject must be kept on file.

7.4. Monitoring Programme: Construction Phase of the Moriri Solar PV Facility

OBJECTIVE 21: To monitor the performance of the control strategies employed against environmental objectives and standards

A monitoring programme must be in place not only to ensure conformance with the EMPr, but also to monitor any environmental issues and impacts which have not been accounted for in the EMPr that are, or could result in significant environmental impacts for which corrective action is required. Monitoring during construction must be on-going for the duration of this phase. The Project Manager must ensure that the monitoring is conducted and reported.

The aim of the monitoring and auditing process will be to monitor the implementation of the specified environmental specifications, in order to:

- » Monitor and audit compliance with the prescriptive and procedural terms of the environmental specifications
- » Ensure adequate and appropriate interventions to address non-compliance
- » Ensure adequate and appropriate interventions to address environmental degradation
- » Provide a mechanism for the lodging and resolution of public complaints
- » Ensure appropriate and adequate record keeping related to environmental compliance
- » Determine the effectiveness of the environmental specifications and recommend the requisite changes and updates based on audit outcomes, in order to enhance the efficacy of environmental management on site
- » Aid in communication and feedback to authorities and stakeholders

All documentation e.g. audit/monitoring/compliance reports and notifications, required to be submitted to the DFFE in terms of the Environmental Authorisation, must be submitted to the Director: Compliance Monitoring of the Department.

Records relating to monitoring and auditing must be kept on site and made available for inspection to any relevant and competent authority in respect of this development.

7.4.1. Non-Conformance Reports

All supervisory staff including Foremen, Resident Engineers, and the ECO must be provided with the means to be able to submit non-conformance reports to the Site Manager. Non-conformance reports will describe, in detail, the cause, nature and effects of any environmental non-conformance by the Contractor. Records of penalties imposed may be required by the relevant authority within 48 (forty eight) hours.

The non-conformance report will be updated on completion of the corrective measures indicated on the finding sheet. The report must indicate that the remediation measures have been implemented timeously and that the non-conformance can be closed-out to the satisfaction of the Site Manager and ECO.

7.4.2. Incident Reports

According to Section 30 of National Environmental Management Act (NEMA), an "Incident" is defined as an unexpected sudden occurrence, including a major emission, fire or explosion leading to serious danger to the public or potentially serious pollution of or detriment to the environment, whether immediate or delayed.

In terms of the requirements of NEMA, the responsible person must, within 14 days of the incident, report to the Director General, provincial head of department and municipality such information as is available to enable an initial evaluation of the incident, including:

- (a) the nature of the incident;
- (b) the substances involved and an estimation of the quantity released and their possible acute effect on persons and the environment and data needed to assess these effects;
- (c) initial measures taken to minimise impacts;
- (d) causes of the incident, whether direct or indirect, including equipment, technology, system, or management failure; and

(e) measures taken and to be taken to avoid a recurrence of such incident.

7.4.3. Monitoring Reports

A monitoring report will be compiled by the ECO on a monthly basis (or as dictated by the conditions of the EA) and must be submitted to the Director: Compliance Monitoring at DFFE for their records. This report should include details of the activities undertaken in the reporting period, any non-conformances or incidents recorded, corrective action required, and details of those non-conformances or incidents which have been closed out, or any other aspect as per the Appendix 7 of the EIA Regulations (2014, as amended 2017). The EPC contractor must ensure that all waste manifests are provided to the ECO on a monthly basis in order to inform and update the DFFE regarding waste related activities.

7.4.4. Audit Report

The Developer must ensure that project compliance with the conditions of the Environmental Authorisation is audited by an independent auditor, and that the audit reports are submitted to the Director: Compliance Monitoring at the DFFE at intervals as dictated by the conditions of the EA. Such audits must be undertaken during both the construction and operation phases of the PV facility. The effectiveness of the mitigation measures and recommendations for amongst others the following: grievance incidents; waste management, alien and open space management, re-vegetation and rehabilitation, plant rescue and protection and traffic and transportation should be audited. The results must form part of the project monitoring and audit reports.

7.4.5. Final Audit Report

A final environmental audit report must be compiled by an independent external auditor and be submitted to DFFE upon completion of the construction and rehabilitation activities (within 30 days of completion of the construction phase. This report must indicate the date of the audit, the name of the auditor and the outcome of the audit in terms of compliance with the environmental authorisation conditions and the requirements of the EMPr.

CHAPTER 8: MANAGEMENT PROGRAMME: OPERATION

Overall Goal: To ensure that the operation of the PV facility does not have unforeseen impacts on the environment and to ensure that all impacts are monitored and the necessary corrective action taken in all cases. In order to address this goal, it is necessary to operate the Moriri Solar PV Facility in a way that:

- » Ensures that operation activities are properly managed in respect of environmental aspects and impacts.
- » Enables the PV facility operation activities to be undertaken without significant disruption to other land uses in the area, in particular with regard to farming practices, traffic and road use, and effects on local residents.
- » Minimises impacts on fauna using the site.

An environmental manager must be appointed during operation whose duty will be to ensure the implementation of the operational EMPr.

8.1. Objectives

In order to meet this goal, the following objectives have been identified, together with necessary actions and monitoring requirements.

OBJECTIVE 1: Securing the site and general maintenance during operation

Safety issues may arise with public access to the PV facility (e.g. unauthorised entry to the site) or to the substation. Prevention and control measures to manage public access are therefore important.

General maintenance at the Moriri Solar PV Facilitywill be required during the operation phase. The maintenance required may also include the replacement of PV panels, if required during the operation lifetime of the facility.

Project component/s	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	PV panels. Access roads. Cabling between project components. Onsite facility substation. Power line. Battery Energy Storage System (BESS) Laydown areas All other associated infrastructure.
Potential Impact	»	Hazards to landowners and public.
Activities/risk sources	»	Uncontrolled access to the PV facility and associated infrastructure.
Mitigation: Target/Objective	» »	To secure the site against unauthorised entry. To protect members of the public/landowners/residents.

Mitigation: Action/control	Responsibility	Timeframe
General onsite maintenance of the PV panels during the operation phase must in no way impact or negatively affect the environment, and contractors or other service providers providing onsite maintenance must be made aware of this EMPr and the content thereof.	O&M Operator	Operation phase
Secure access to the site and entrances.	O&M Operator	Operation phase
Post information boards about public safety hazards and emergency contact information.	O&M Operator	Operation phase
A grievance and consultation plan must be developed and kept on the site at all times during operation of the PV facility. All grievances between landowners and Great Karoo Renewable Energy (Pty) and between Great Karoo Renewable Energy (Pty) or any service provider or other entity should be recorded and dealt with in the appropriate grievance channels are outlined in the grievance plan which must be established. Community consultation with surrounding landowners and community members must continue through the life cycle of the project, and must be reported on as such in the grievance and consultation plan. This will allow the receipt of - and facilitate resolution of concerns and grievances about the project's social and environmental issues raised by individuals or groups during the project operational period.	O&M Operator	Operation phase
Should PV panels be required to be replaced, the following will apply: Site access must be confirmed for the transportation of the	O&M Operator	Operation phase
required components and equipment to the site and location of the infrastructure to be replaced.		
» Materials and components are to be stored within the previously disturbed construction laydown area. No disturbance of areas outside of these areas should occur.		
Full clean-up of all materials must be undertaken after the removal and replacement of the PV panels and associated infrastructure is complete, and disturbed areas appropriately rehabilitated.		
 Most of the materials used for PV panels can be recycled. The majority of the panel can be recovered and re-used or recycled. Recyclable materials must be transported off-site by truck and managed at appropriate facilities in accordance with relevant waste management regulations. No waste materials may be left on-site following the replacement. Waste material which cannot be recycled shall be disposed 		
of at an appropriately licensed waste disposal site or as required by the relevant legislation.		

Performance Indicator

Site is secure and there is no unauthorised entry. No members of the public/landowners injured.

≫

≫

		»	No complaints from landowners/ public.
Monitoring	and	»	Regular visual inspection of fence for signs of deterioration/forced access.
Reporting		»	An incident reporting system must be used to record non-conformances to the EMPr.
		»	A public complaints register must be developed and maintained on site.
		»	Landowners should be consulted regularly.

OBJECTIVE 2: Protection of indigenous natural vegetation, fauna and maintenance of rehabilitation

Indirect impacts on vegetation and terrestrial fauna during operation could result from maintenance activities and the movement of people and vehicles on site. In order to ensure the long-term environmental integrity of the site following the construction, maintenance of the areas rehabilitated post-construction must be undertaken until these areas have successfully re-established.

Project component/s	 Areas requiring regular maintenance. Route of the security team. PV facility including access roads and laydown areas. Areas disturbed during the construction phase and subsequently rehabilitated at its completion.
Potential Impact	 » Disturbance to or loss of vegetation and/or habitat. » Alien plant invasion. » Environmental integrity of site undermined resulting in reduced visual aesthetics, erosion, compromised land capability and the requirement for on-going management intervention.
Activity/Risk Source	» Movement of employee vehicles within and around site.
Mitigation: Target/Objective	 Maintain minimised footprints of disturbance of vegetation/ habitats on-site. Ensure and encourage plant regrowth in non-operational areas of post-construction rehabilitation.

Mitigation: Action/Control	Responsibility	Timeframe
An integrated management plan for the development area during operation, which is beneficial to fauna and flora, should be developed and implemented.	O&M Operator	Operation phase
Any potentially dangerous fauna such as snakes or fauna threatened by the maintenance and operational activities should be removed to a safe location.	O&M Operator	Operation phase
The collection, hunting or harvesting of any plants or animals at the site should be strictly forbidden by anyone except landowners or other individuals with the appropriate permits and permissions where required.	O&M Operator	Operation phase
If the site must be lit at night for security purposes, this should be done with downward-directed low-UV type lights (such as most LEDs), which do not attract insects.	O&M Operator	Operation phase
All vehicles accessing the site should adhere to a low speed limit (30km/h max for heavy vehicles and 40km/h for light vehicles) to	O&M Operator	Operation phase

Mitigation: Action/Control	Responsibility	Timeframe
avoid collisions with susceptible species such as snakes and tortoises.		
Noise and disturbance on the site should be kept to a minimum during operation and maintenance activities.	O&M Operator	Operation phase
If In terms of the boundary fence, no electrified strands should be placed within 30cm of the ground as some species such as tortoises are susceptible to electrocution from electric fences because they do not move away when electrocuted but rather adopt defensive behaviour and are killed by repeated shocks. Alternatively, the electrified strands should be placed on the inside of the fence and not the outside as is the case on the majority of already constructed PV plants. The boundary fence should have access points for smaller fauna to enter and exit the PV area.	O&M Operator	Operation phase
Site Access should be strictly controlled, to avoid unnecessary disturbance.	O&M Operator	Operation phase
Minimise lighting at night as far as possible.	O&M Operator	Operation phase
Maintain maintenance activities only around relevant PV infrastructures and avoid disturbance around undisturbed natural vegetation and existing buildings.	O&M Operator	Operation phase
All roads and other hardened surfaces should have runoff control features which redirect water flow and dissipate any energy in the water which may pose an erosion risk.	O&M Operator	Operation phase
Regular monitoring for erosion after construction to ensure that no erosion problems have developed as result of the disturbance must be undertaken, as per the Erosion Management and Rehabilitation Plans for the project.	O&M Operator	Operation phase
All erosion problems observed must be rectified as soon as possible, using the appropriate erosion control structures and revegetation techniques.	O&M Operator	Operation phase
Due to the disturbance at the site as well as the increased runoff generated by the hard infrastructure, alien plant species are likely to be a long-term problem at the site and a long-term control plan will need to be implemented. Problem plant species are already present in the area and are likely to increase rapidly if not controlled.	O&M Operator	Operation phase
Regular monitoring for alien plants within the development footprint as well as adjacent areas which receive runoff from the facility must be undertaken as these are also likely to be prone to invasion problems.	O&M Operator	Operation phase
Regular alien clearing should be conducted using the best- practice methods for the species concerned. The use of herbicides should be avoided as far as possible.	O&M Operator	Operation phase
All alien plant re-growth must be monitored and should these alien plants reoccur these plants should be re-eradicated. The scale of the development does however not warrant the use of a Landscape Architect and / or Landscape Contractor.	O&M Operator	Operation phase
Vehicle movements must be restricted to designated roadways.	O&M Operator	Operation phase

Mitigation: Action/Control	Responsibility	Timeframe
In order to increase general faunal protection, the use of any pesticide in the PV facility area should be prohibited.	O&M Operator	Operation phase
Existing roads must be maintained to ensure limited erosion and impact on areas adjacent to roadways.	O&M Operator	Operation phase
Vegetation control within the PV facility should be by manual clearing and herbicides should not be used except to control alien plants in the prescribed manner if necessary.	O&M Operator Specialist	Operation phase
All alien plant re-growth must be monitored and should these alien plants reoccur these plants should be re-eradicated. The scale of the development does however not warrant the use of a Landscape Architect and / or Landscape Contractor.	O&M Operator	Operation phase
The use of herbicides and other related horticultural chemicals should be carefully controlled and only applied by personnel adequately certified to apply pesticides and herbicides. It must be ensured that WHO Recommended Classification of Pesticides by Hazard Class 1a (extremely hazardous) or 1b (highly hazardous) are not purchased, stored or used on site along with any other nationally or internationally similarly restricted/banned products.	O&M Operator	Operation phase
Implement an animal removal plan to ensure safety of workers and fauna.	O&M Operator	Operation phase
Fire breaks should be established, where appropriate and as discussed with the landowners. Access roads could also act as fire breaks.	O&M Operator Specialist	Duration of contract
There should be follow-up rehabilitation and revegetation of any remaining bare areas with indigenous perennial shrubs and succulents from the local area.	O&M Operator	Operation phase
Annual site inspection for erosion with follow up remedial action where problems are identified.	Specialist	Annual monitoring untilsuccessfulre-establishmentofvegetation in an area
Noise and disturbance on the site should be kept to a minimum during operation and maintenance activities.	O&M Operator	Operation phase

Performance Indicator	 No further disturbance to vegetation or terrestrial faunal habitats. No erosion problems resulting from operational activities within the PV facility. Low abundance of alien plants within affected areas. Maintenance of a ground cover that resist erosion. Continued improvement of rehabilitation efforts.
Monitoring	 > Observation of vegetation on-site by environmental manager. > Regular inspections to monitor plant regrowth/performance of rehabilitation efforts and weed infestation compared to natural/undisturbed areas. > Annual monitoring with records of alien species presence and clearing actions. > Annual monitoring with records of erosion problems and mitigation actions taken with photographs.

OBJECTIVE 3: Erosion management

The large amount of disturbance created during construction would leave the site highly vulnerable to erosion. The site is steep in some areas and along with friable soils, the disturbance created at construction will render the impacted areas highly vulnerable to erosion and measures to limit erosion will need to be implemented. This impact is likely to manifest during construction and would persist into the operation phase and should therefore be assessed for both phases.

Project component/s	 » PV facility, including access roads. » Areas disturbed during the construction phase and subsequently rehabilitated at its completion.
Potential Impact	 » Disturbance to or loss of vegetation and/or habitat. » Loss of soil resources. » Sedimentation of water resources
Activity/Risk Source	» Stormwater runoff from panels and roads.» Runoff of wash water during cleaning of panels
Mitigation: Target/Objective	» Implement appropriate erosion control measures to minimise risk of erosion.

Mitigation: Action/Control	Responsibility	Timeframe
Erosion management at the site should take place according to the Erosion Management Plan and Rehabilitation Plan.	O&M Operator	Operation phase
All roads and other hardened surfaces should have runoff control features which redirect water flow and dissipate any energy in the water which may pose an erosion risk.	O&M Operator	Operation phase
It may be necessary to construct ponds in some areas to capture and process runoff from the site. If this is necessary, this should take place in consultation with a freshwater specialist. Any ponds constructed should not be lined with smooth plastic as fauna tend to fall into such ponds and are unable to escape due to the slippery sides of the pond.	O&M Operator	Operation phase
Regular monitoring for erosion after construction to ensure that no erosion problems have developed as result of the disturbance must be undertaken, as per the Erosion Management and Rehabilitation Plans for the project.	O&M Operator	Operation phase
All erosion problems observed must be rectified as soon as possible, using the appropriate erosion control structures and revegetation techniques.	O&M Operator	Operation phase
All cleared areas must be revegetated with indigenous perennial shrubs and succulents from the local area. These can be cut when dry and placed on the cleared areas if natural recovery is slow.	O&M Operator	Operation phase

Performance Indicator	*	No erosion problems resulting from operational activities within the PV facility.
Monitoring	*	Regular inspections to monitor erosion within the site and along access roads.

OBJECTIVE 4: Protection of avifauna

Project component/s	» PV panels.
	» Access roads.
	» Cabling between project components.
	» Onsite facility substation.
	» Power line.
	 Battery Energy Storage System (BESS)
	» Laydown areas
	» All other associated infrastructure.
Potential Impact	» Disturbance to or loss of birds as a result of collision with the PV panels and project components.
	» Destruction of habitat.
	» Displacement of birds.
	» Electrocution on power line.
	» Traffic to and from site.
Activity/risk source	» PV panels.
	» Substation.
	» Power line.
Mitigation:	» More accurately determine the impact of the operating PV facility on collision-prone Red
Target/Objective	Data species.
	» Minimise impacts associated with the power line and the substation.

Mitigation: Action/control	Responsibility	Timeframe
Aerial assessment or maintenance of the powerline (e.g. by helicopter) should not be conducted within 1 000 m of any located SCC nest (e.g. a newly constructed Martial Eagle nest on the transmission infrastructure) during the relevant breeding season where possible.	Operator	Operation phase
All vehicles should adhere to clearly defined and demarcated roads, no off-road driving should be allowed.	Operator	Operation phase
Speed limits (30 km/h) should be strictly enforced to reduce unnecessary noise.	Operator	Operation phase
The movement of personnel should be restricted to the servitudes and access roads on the project site.	Operator	Operation phase
No dogs or cats other than those of the landowners should be allowed on site.	Operator	Operation phase
Any No-go areas identified should be adhered to.	Operator	Operation phase
Lighting should be kept to a minimum to avoid attracting insects and birds, light sensors/switches should be utilised to keep lights off when not required; and	Operator	Operation phase
Lighting fixtures should be hooded and directed downward where possible, to minimize the skyward and horizontal illumination, lighting should be motion activated where possible.	Operator	Operation phase
The operational monitoring programme for the overhead powerline route must be implemented to locate potential	Operator	Operation phase

Mitigation: Action/control	Responsibility	Timeframe
collision (and electrocution) fatalities. Any fatalities located		
should be reported to Birdlife South Africa (BLSA) and the		
Endangered Wildlife Trust (EWT).		

Performance Indicator	 Minimal additional disturbance to bird populations on the PV facility site. Continued improvement of bird protection devices, as informed by the operational monitoring. 	
Monitoring and Reporting	 > Observation of avifaunal populations and incidence of injuries/death from collisions with PV panels and power line. > Monitoring of facility and reporting where fatalities do occur. 	

OBJECTIVE 5: Minimisation of visual impact

Project component/s	 » PV panels. » Access roads. » Cabling between project components. » Onsite facility substation. » Power line. » Battery Energy Storage System (BESS) » Laydown areas » All other associated infrastructure.
Potential Impact	 » Visual intrusion. » Visual impact of the solar facility degradation and vegetation rehabilitation failure.
Activity/risk source	 » PV panels and other infrastructure. » Access roads. » Viewing of the degradation and vegetation rehabilitation failure by observers on or near the site.
Mitigation: Target/Objective	 To minimise the potential for visual impact. Minimise the contrast with the surrounding environment and visibility of the PV facility to humans. The containment of light emitted from the substation in order to eliminate the risk of additional night-time visual impacts. Well maintained and neat facility.

Mitigation: Action/control	Responsibility	Timeframe
Maintain the general appearance of the facility as a whole, including the PV panels, servitudes and the ancillary buildings.	O&M Operator	Operation and maintenance
Lighting of the facility (for example security lights) should be kept to a minimum. Lights should be directed downwards.	O&M Operator	Operation phase
 Management of lighting impacts: Shield the sources of light by physical barriers (walls, vegetation, or the structure itself). Limit mounting heights of lighting fixtures, or alternatively use foot-lights or bollard level lights. Make use of minimum lumen or wattage in fixtures. 	O&M Operator	Operation phase

Mi	tigation: Action/control	Responsibility	Timeframe
»	Make use of down-lighters, or shielded fixtures.		
»	Make use of Low Pressure Sodium lighting or other types		
	of low impact lighting.		
»	Make use of motion detectors on security lighting. This		
	will allow the site to remain in relative darkness, until		
	lighting is required for security or maintenance		
	purposes.		

Performance	»	Appropriate visibility of infrastructure to aircraft.
Indicator	»	Well maintained and neat facility with intact vegetation on and in the vicinity of the PV facility.
Monitoring and	»	Ensure that aviation warning lights or other measures are installed before construction is completed and are fully functional at all times.
Reporting	»	Monitoring of the entire site on an ongoing basis by the operator.

OBJECTIVE 6: Appropriate handling and management of hazardous substances and waste

The operation of the PV facility will involve the generation of limited waste products. The main wastes expected to be generated by the operation activities includes general solid waste and hazardous waste.

Project component/s	» PV panels.
	» Access roads.
	» Cabling between project components.
	» Onsite facility substation.
	» Power line.
	 Battery Energy Storage System (BESS)
	» Laydown areas
	» All other associated infrastructure.
Potential Impact	» Inefficient use of resources resulting in excessive waste generation.
	» Litter or contamination of the site or water through poor waste management practices.
Activity/risk source	» Transformers and switchgear – substation.
	» Fuel and oil storage.
Mitigation:	» To comply with waste management legislation.
Target/Objective	» To minimise production of waste.
	» To ensure appropriate waste disposal.
	» To avoid environmental harm from waste disposal.

Mitigation: Action/control	Responsibility	Timeframe
All hazardous materials should be stored in the appropriate	0&M Operator	Operation phase
manner to prevent contamination of the site. Any accidente	l i i i i i i i i i i i i i i i i i i i	
chemical, fuel and oil spills that occur at the site should be		
cleaned up in the appropriate manner as related to the nature	•	
of the spill.		

Mitigation: Action/control	Responsibility	Timeframe
Storage areas for hazardous substances must be conducted within a secured and clearly demarcated area.	O&M Operator	Operation phase
All structures and/or components replaced during maintenance activities must be appropriately disposed of at an appropriately licensed waste disposal site or sold to a recycling merchant for recycling.	O&M Operator	Operation phase
Care must be taken to ensure that spillage of oils and other hazardous substances are limited during maintenance. Handling of these materials should take place within an appropriately sealed and bunded area. Should any accidental spillage take place, it must be cleaned up according to specified standards regarding bioremediation.	O&M Operator	Operation and maintenance
Waste handling, collection and disposal operations must be managed and controlled by a waste management contractor.	O&M Operator / waste management contractor	Operation phase
 Used oils and chemicals: Where these cannot be recycled, appropriate disposal must be arranged with a licensed facility in consultation with the administering authority. Waste must be stored and handled according to the relevant legislation and regulations. 	O&M Operator	Operation phase
General waste must be recycled where possible or disposed of at an appropriately licensed landfill.	O&M Operator	Operation phase
Spill kits must be made available on-site for the clean-up of spills and leaks of contaminants.	O&M Operator	Operation and maintenance
Hazardous waste (including hydrocarbons) and general waste must be stored and disposed of separately.	O&M Operator	Operation phase
Disposal of waste must be in accordance with relevant legislative requirements, including the use of licensed contractors.	O&M Operator/ waste management contractor	Operation phase
No waste may be burned or buried on site.	O&M Operator	Operation phase

Performance Indicator	 No complaints received regarding waste on site or dumping. Internal site audits identifying that waste segregation, recycling and reuse is occurring appropriately. Provision of all appropriate waste manifests. No contamination of soil.
Monitoring and Reporting	 Waste collection must be monitored internally on a regular basis. Waste documentation must be completed and made available for inspection on request. An incidents/complaints register must be maintained, in which any complaints from the community must be logged. Complaints must be investigated and, if appropriate, acted upon. Regular reports on exact quantities of all waste streams exiting the site must be compiled by the waste management contractor and monitored by the environmental manager. All appropriate waste disposal certificates must accompany the monthly reports.

OBJECTIVE 7: Maximise benefits and opportunities for local communities associated with local employment, skills opportunities, socio-economic development plans and a community trust

The construction phase of 100 MW SEF will extend over a period of approximately 18-24 months and create in the region of 350 employment opportunities. Based on information provided by the proponent, approximately 75% of the jobs will benefit low-skilled workers, 25% semi-skilled and 5% high skilled. which is a small but positive contribution towards addressing the high unemployment rates observed in Ward 3 of the Ubuntu Local Municipality and Northern Cape Province.

Aside from the direct employment opportunities, the facility will support an estimated 13 FTE employment positions created through the production and consumption indirect and induced effects. Due to the spatial allocation of procurement spending and direct employment created, most of the indirect and induced positions will also be created within the local area. The trade, agriculture and community and personal services sectors will benefit the most from these new employment opportunities.

In addition to the planned employment creation during operation and maintenance of the PV facility, the developer intends to make a positive contribution to employment opportunities in other non-solar related industries.

Project component/s	» »	PV facility. Day to day operational activities associated with the PV facility including maintenance.
Potential Impact	*	The opportunities and benefits associated with the creation of local employment and business should be maximised as far as possible.
Activity/risk source	» »	The operation phase of the PV facility will create permanent employment opportunities. The establishment of a PV facility has the potential to create an attraction for visitors to the area. The development also has the potential to promote the benefits of renewable energy projects.
Mitigation: Target/Objective	»	Create medium- to long-term full time employment opportunities for locals.

Mitigation: Action/control	Responsibility	Timeframe
The operator of the solar energy facility should be encouraged to, as far as possible, procure materials, goods and products required for the operation and maintenance of the facility from local suppliers to increase the positive impact in the local economy.	O&M Operator	Operation phase
Where possible, local labour should be considered for employment so as to increase the positive impact on the local economy.	O&M Operator	Operation phase
As far as possible, local small and medium enterprises should be approached to investigate the opportunities for supply inputs required for the maintenance and operation of the facility.	O&M Operator	Operation phase
The developer should consider establishing vocational training programmes for the local labour force to promote the development of skills required by the solar energy facility and	Developer O&M Operator	Operation phase

Mitigation: Action/control	Responsibility	Timeframe
thus provide for the opportunities for these people to be employed in other similar facilities elsewhere in the future.		
A social development and economic development programme should be devised by the developer and	Developer	Operation phase
implemented throughout the project's lifespan. The plan should be developed in consultation with local authorities and local communities to identify community projects that would result in the greatest social benefits. These plans should be reviewed on an annual basis and, where necessary, updated.	O&M Operator	
When identifying enterprise development initiatives, the focus should be on creating sustainable and self-sufficient	Developer	Operation phase
enterprises.	O&M Operator	
In devising the programmes to be implemented, the developer should take into account the local Integrated Development	Developer	Operation phase
Plans and Local Economic Development Strategy (Blue Crane Route, 2020).	O&M Operator	
Performance » Maximum amount of semi and unskilled labour locally sourced where possible.		

Performance Indicator	 Maximum amount of semi and unskilled labour locally sourced where possible. Local suppliers and SMMEs contracted where possible. Skills transfer facilitated where required. A social development and economic development programme developed and
Monitoring and Reporting	implemented.» Indicators listed above must be met for the operation phase.

OBJECTIVE 8: Implement an appropriate fire management plan during the operation phase

The vegetation on the site may be at risk of fire, especially during drought conditions experienced in the area. The increased presence of people on the site could increase the risk of veld fires, particularly in the dry season.

Project Component/s	»	Operation and maintenance of the PV facility and associated infrastructure.
Potential Impact	»	Veld fires can pose a personal safety risk to local farmers and communities, and their homes, crops, livestock and farm infrastructure, such as gates and fences. In addition, fire can pose a risk to the PV facility infrastructure.
Activities/Risk Sources	*	The presence of operation and maintenance personnel and their activities on the site can increase the risk of veld fires.
Mitigation: Target/Objective	»	To avoid and or minimise the potential risk of veld fires on local communities and their livelihoods.

Mitigation: Action/Control		Responsibility	Timeframe
	Provide adequate firefighting equipment on site. Apply for membership to the local Fire Protection Association, should there	O&M Operator	Operation phase
	be one.		

Mitigation: Action/Control	Responsibility	Timeframe
Provide fire-fighting training to selected operation and maintenance staff.	O&M Operator	Operation phase
Ensure that appropriate communication channels are established to be implemented in the event of a fire.	O&M Operator	Operation phase
Fire breaks should be established where and when required. Cognisance must be taken of the relevant legislation when planning and burning firebreaks (in terms of timing, etc.). Access roads may also act as fire breaks.	O&M Operator	Operation phase
Upon completion of the construction phase, an emergency evacuation plan must be drawn up to ensure the safety of the staff and surrounding land users in the case of an emergency.	O&M Operator	Operation phase
Contact details of emergency services should be prominently displayed on site.	O&M Operator	Operation phase

Performance	»	Firefighting equipment and training provided before the construction phase commences.
Indicator	»	Appropriate fire breaks in place.
Monitoring and Reporting	»	The Developer must monitor indicators listed above to ensure that they have been met.

8.2. Monitoring Programme: Operation Phase of the Moriri Solar PV Facility

OBJECTIVE 9: To monitor the performance of the control strategies employed against environmental objectives and standards

A monitoring programme must be in place not only to ensure conformance with the EMPr, but also to monitor any environmental issues and impacts which have not been accounted for in the EMPr that are, or could result in significant environmental impacts for which corrective action is required. An internal environmental audit must be conducted every 6 months and an external audit must be conducted once a year in order to confirm compliance with the requirements of all environmental permits (including the Environmental Authorisation, once issued) for the project, this EMPr, and all relevant legislation. The results of the audit reports must be made available to the DFFE and the relevant authorities on request, and must be part of monitoring and audit reports. An annual audit report must be compiled and submitted to DFFE. The aim of the auditing process would be to routinely monitor the implementation of the specified environmental specifications, in order to:

- » Monitor and audit compliance with the prescriptive and procedural terms of the environmental specifications.
- » Ensure adequate and appropriate interventions to address non-compliance.
- » Ensure adequate and appropriate interventions to address environmental degradation.
- » Provide a mechanism for the lodging and resolution of public complaints.
- » Ensure appropriate and adequate record keeping related to environmental compliance.
- » Determine the effectiveness of the environmental specifications and recommend the requisite changes and updates based on audit outcomes, in order to enhance the efficacy of environmental management on site.

» Aid in the communication and feedback to authorities and stakeholders.

CHAPTER 9: MANAGEMENT PROGRAMME: DECOMMISSIONING

The PV infrastructure which will be utilised for the Moriri Solar PV Facility is expected to have a lifespan of 25 to 30 years (with maintenance). Equipment associated with this PV facility would only be decommissioned once it has reached the end of its economic life. It is most likely that decommissioning activities of the infrastructure of the PV facility would comprise the dismantling and replacement of the PV panels and supporting structures with more appropriate technology/infrastructure available at that time. It must be noted that decommissioning activities will need to be undertaken in accordance with the legislation applicable at that time, which may require this section of the EMPr to be revisited and amended.

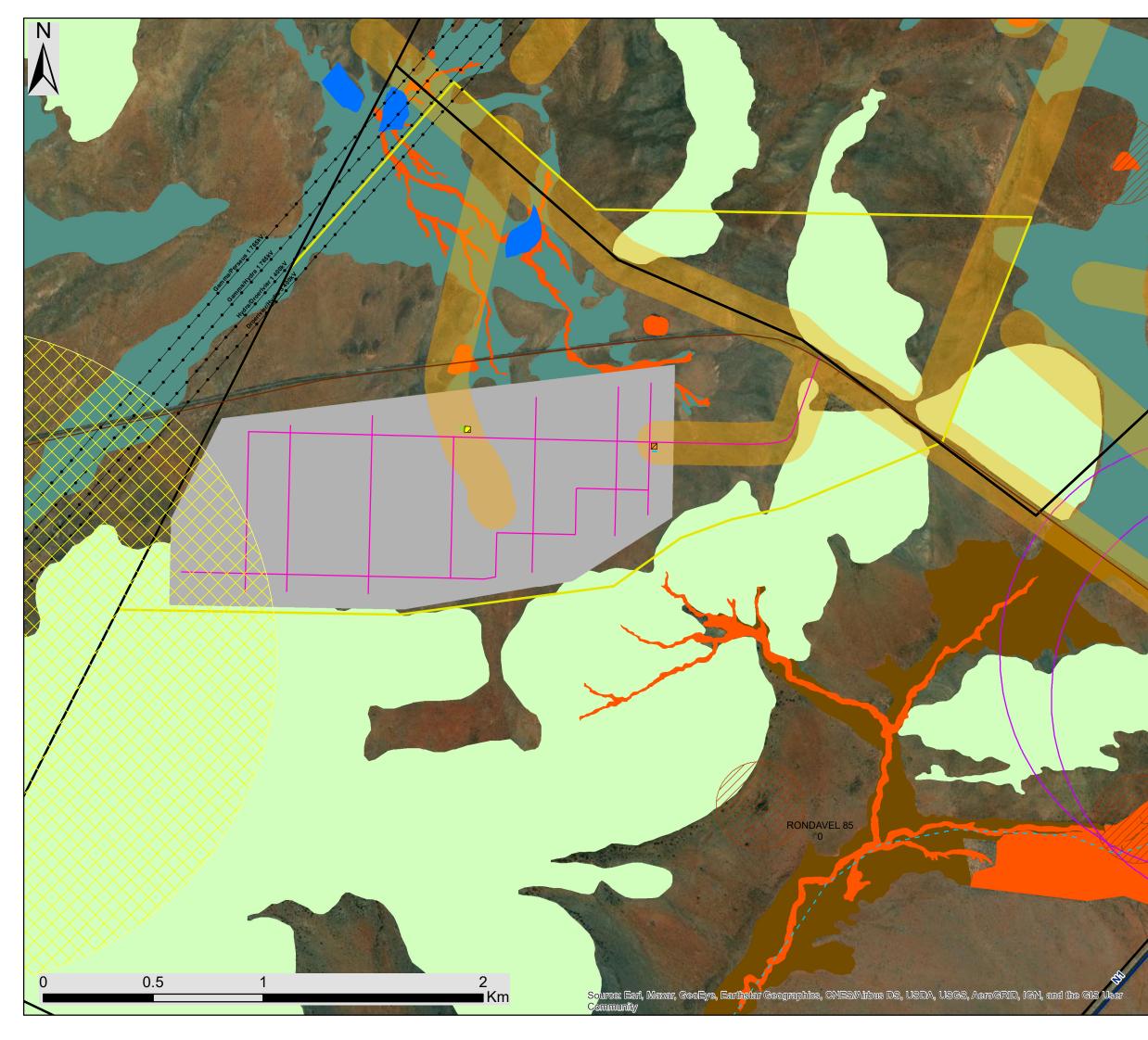
The relevant mitigation measures contained under the construction section should be applied during decommissioning and therefore are not repeated in this section.

» Site Preparation

Site preparation activities will include confirming the integrity of the access to the site to accommodate the required equipment, preparation of the site (e.g. laydown areas, construction platform) and the mobilisation of construction equipment.

» Dismantle and Remove Infrastructure

The PV facility infrastructure (panels and supporting structure, inverters, etc) will be dismantled once it reaches the end of its economic lifespan. Once dismantled, the components will be reused, recycled, or disposed of in accordance with regulatory requirements (NEMA / NEM:WA). All parts of the facility would be considered reusable or recyclable except for the blades.


9.1. Objectives

In decommissioning the Moriri Solar PV Facility, Great Karoo Renewable Energy (Pty) must ensure that:

- » All structures not required for the post-decommissioning use of the site (may include the PV panels, substation, ancillary buildings, monitoring masts) are dismantled and/or demolished, removed and waste material disposed of at an appropriately licensed waste disposal site or as required by the relevant legislation.
- » Rehabilitate access/service roads and servitudes not required for the post-decommissioning use of the site. If necessary, an ecologist should be consulted to give input into rehabilitation specifications.
- » All disturbed areas are compacted, sloped and contoured to ensure drainage and runoff and to minimise the risk of erosion.
- » Monitor rehabilitated areas quarterly for at least a year following decommissioning, and implement remedial action as and when required.
- » Any fauna encountered during decommissioning activities should be removed to safety by a suitably qualified person.
- » All vehicles to adhere to low speed limits (i.e. 30km/h max) on the site, to reduce risk of faunal collisions as well as reduce dust.
- » Retrenchments should comply with South African Labour legislation of the day.

The general specifications of Chapter 6 (Construction) are also relevant to the decommissioning of the Moriri Solar PV Facility and must be adhered to.

APPENDIX A: FACILITY OPTIMISED LAYOUT AND SENSITIVITY MAPS

Moriri PV Facility, Richmond, Northern Cape Province

Sensitivity & Layout Map

Legend

- Existing Power Line
- Main Road
- Non-Perennial River
- Perennial River
- NFEPA Wetlands
- Project Site
 - Moriri PV Facility Development Area

Layout Plan

- Internal Roads
- O&M and Secruity Building Hub Alternative

O&M and Secruity Building Hub - Alternative 2

Onsite Substation - Alternative

Onsite Substation - Alternative

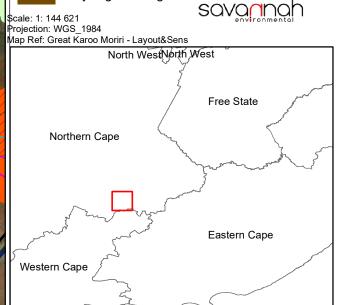
Access Roads (200m corridor)

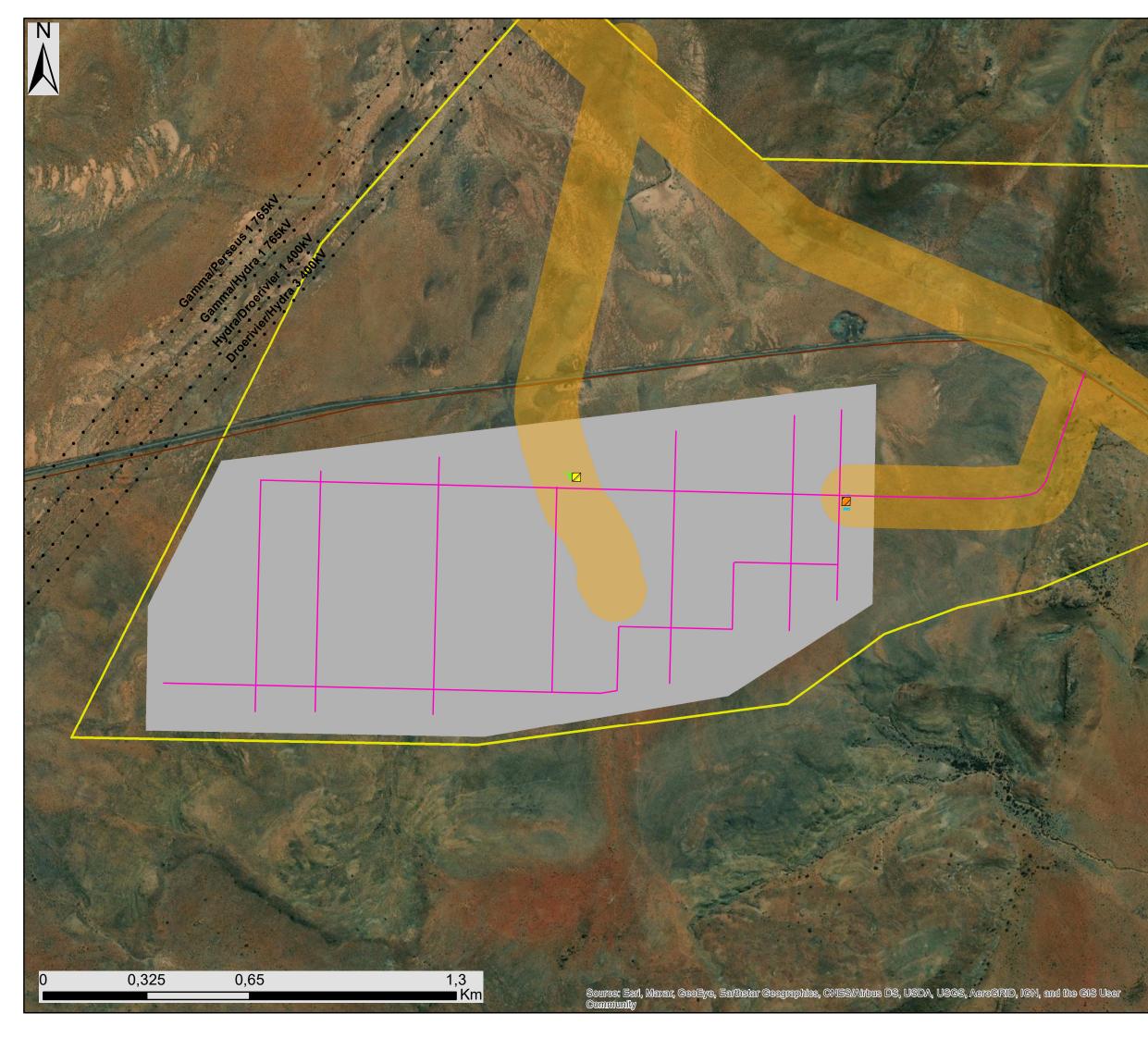
Moriri PV facility

Environmental Sensitivities

High Avifauna Sensitivity (200m no-panel zone)

Tawny Eagle Nest -High Avifauna Sensitivity (1.5km Buffer)


Heritage Structures (1km Buffer)


High Bat Sensitivity Areas

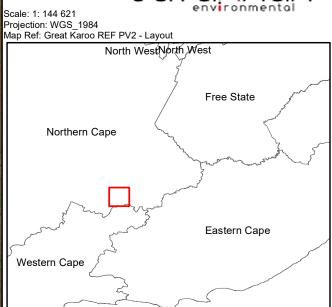
High Ecological Sensitivity

High Medium Ecological Sensitivity

Very High Ecological <u>Consitivity</u>

Moriri PV Facility, Richmond, Northern Cape Province

Layout Map


Legend

- Existing Power Line
- Main Road
- Non-Perennial River
- Perennial River
- Moriri PV Facility Development Area

Layout Plan

- Internal Roads
- Access Roads (200m corridor)
- Moriri PV facility
- O&M and Secruity Building Hub Alternative 1
- O&M and Secruity Building Hub Alternative 2
 - Onsite Substation Alternative 1
 - Onsite Substation Alternative 2

APPENDIX B: GRIEVANCE MECHANISM FOR COMPLAINTS AND ISSUES

GRIEVANCE MECHANISM / PROCESS

PURPOSE

This Grievance Mechanism has been developed to receive and facilitate the resolution of concerns and grievances regarding the project's environmental and social performance. The aim of the grievance mechanism is to ensure that grievances or concerns are raised by stakeholders and to ensure such grievances are addressed in a manner that:

- » Provides a predictable, accessible, transparent, and credible process to all parties, resulting in outcomes that are fair and equitable, accountable and efficient.
- » Promotes trust as an integral component of broader community relations activities.
- » Enables more systematic identification of emerging issues and trends, facilitating corrective action and pre-emptive engagement.

The aim of this Grievance Mechanism is to address grievances in a manner that does not require a potentially costly and time-consuming legal process.

PROCEDURE FOR RECEIVING AND RESOLVING GRIEVANCES

The following proposed grievance procedures are to be complied with throughout the construction, operation and decommissioning phases of the project:

- » Local landowners, communities and authorities must be informed in writing by the Developer of the grievance mechanism and the process by which grievances can be brought to the attention of the Developer through its designated representative. This must be undertaken with the commencement of the construction phase.
- » A company representative must be appointed as the contact person in order for grievances to be addressed. The name and contact details of the contact person must be provided to local landowners, communities and authorities when requested.
- Project related grievances relating to the construction, operation and or decommissioning phases must be addressed in writing to the contact person. The contact person should assist local landowners and or communities who may lack resources to submit/prepare written grievances, by recording grievances and completing written grievance notices where applicable, translating requests or concerns or by facilitating contact with the nominated contact person. The following information should be obtained, as far as possible, regarding each written grievance, which may act as both acknowledgement of receipt as well as record of grievance received:
 - a. The name and contact details of the complainant;
 - b. The nature of the grievance;
 - c. Date raised, received, and for which the meeting was arranged;
 - d. Persons elected to attend the meeting (which will depend on the grievance); and
 - e. A clear statement that the grievance procedure is, in itself, not a legal process. Should such avenues be desired, they must be conducted in a separate process and do not form part of this grievance mechanism.
- » The grievance must be registered with the contact person who, within 2 working days of receipt of the grievance, must contact the Complainant to discuss the grievance and, if required, agree on suitable

date and venue for a meeting in order to discuss the grievances raised. Unless otherwise agreed, the meeting should be held within 2 weeks of receipt of the grievance.

- The contact person must draft a letter to be sent to the Complainant acknowledging receipt of the grievance, the name and contact details of Complainant, the nature of the grievance, the date that the grievance was raised, and the date and venue for the meeting (once agreed and only if required).
- » A grievance register must be kept on site (in electronic format, so as to facilitate editing and updating), and shall be made available to all parties wishing to gain access thereto.
- Prior to the meeting being held the contact person must contact the Complainant to discuss and agree on the parties who should attend the meeting, as well as a suitable venue. The people who will be required to attend the meeting will depend on the nature of the grievance. While the Complainant and or Developer are entitled to invite their legal representatives to attend the meeting/s, it should be made clear to all the parties involved in the process that the grievance mechanism process is not a legal process, and that if the Complainant invites legal representatives, the cost will be their responsibility. It is therefore recommended that the involvement of legal representatives be limited as far as possible, as a matter of last resort, and that this process be primarily aimed at stakeholder relationship management as opposed to an arbitration or litigation mechanism
- The meeting should be chaired by the Developer's representative appointed to address grievances. The Developer must supply and nominate a representative to capture minutes and record the meeting/s.
- Draft copies of the minutes must be made available to the Complainant and the Developer within 5 working days of the meeting being held. Unless otherwise agreed, comments on the Draft Minutes must be forwarded to the company representative appointed to manage the grievance mechanism within 5 working days of receipt of the draft minutes.
- The meeting agenda must be primarily the discussion of the grievance, avoidance and mitigation measures available and proposed by all parties, as well as a clear indication of the future actions and responsibilities, in order to put into effect the proposed measures and interventions to successfully resolve the grievance.
- In the event of the grievance being resolved to the satisfaction of all the parties concerned, the outcome must be recorded and signed off by the relevant parties. The record should provide details of the date of the meeting/s, the names of the people that attended the meeting/s, the outcome of the meeting/s, and where relevant, the measures identified to address the grievance, the party responsible for implementing the required measures, and the agreed upon timeframes for the measures to be implemented.
- In the event of a dispute between the Complainant and the Developer regarding the grievance, the option of appointing an independent mediator to assist with resolving the issue should be discussed. The record of the meeting/s must note that a dispute has arisen and that the grievance has not been resolved to the satisfaction of all the parties concerned.
- In the event that the parties agree to appoint a mediator, the Developer will be required to identify three (3) mediators and forward the names and CVs to the Complainant within 2 weeks of the dispute being declared. The Complainant, in consultation with the Developer, must identify the preferred mediator and agree on a date for the next meeting. The cost of the mediator must be borne by the Developer. The Developer must supply and nominate a representative to capture minutes and record the meeting/s.
- In the event of the grievance, with the assistance of the mediator, being resolved to the satisfaction of all the parties concerned, the outcome must be recorded and signed off by the relevant parties, including the mediator. The record should provide details on the date of the meeting/s, the names of

the people that attended the meeting/s, the outcome of the meeting/s, and where relevant, the measures identified to address the grievance, the party responsible for implementing the required measures, and the agreed upon timeframes for the measures to be implemented.

- In the event of the dispute not being resolved, the mediator must prepare a draft report that summaries the nature of the grievance and the dispute. The report should include a recommendation by the mediator on the proposed way forward with regard to the addressing the grievance.
- The draft report must be made available to the Complainant and the Developer for comment before being finalised and signed by all parties, which signature may not be unreasonably withheld by either party. Unless otherwise agreed, comments on the draft report must be forwarded to the company representative appointed to manage the grievance mechanism within 5 working days. The way forward will be informed by the recommendations of the mediator and the nature of the grievance.

A Complaint is closed out when no further action is required, or indeed possible. Closure status must be classified and captured following mediation or successful resolution in the Complaints Register as follows:

- » Resolved. Complaints where a resolution has been agreed and implemented and the Complainant has signed the Confirmation Form.
- » Unresolved. Complaints where it has not been possible to reach an agreed resolution despite mediation.
- » Abandoned. Complaints where the Complainant is not contactable after one month following receipt of a Complaint and efforts to trace his or her whereabouts have been unsuccessful.

The grievance mechanism does not replace the right of an individual, community, group or organization to take legal action should they so wish. In the event of the grievance not being resolved to the satisfaction of Complainant and or the Developer, either party may be entitled to legal action if an appropriate option, however, this grievance mechanisms aims to avoid such interactions by addressing the grievances within a short timeframe, and to mutual satisfaction, where possible. APPENDIX C: OPEN SPACE MANAGEMENT PLAN

ALIEN PLANT AND OPEN SPACE MANAGEMENT PLAN

1. PURPOSE

Invasive alien plant species pose the second largest threat to biodiversity after direct habitat destruction. The purpose of this Alien Plant and Open Space Management Plan is to provide a framework for the management of alien and invasive plant species during the construction and operation of the Moriri Solar PV Facility and the associated infrastructure. The broad objectives of the plan include the following:

- » Ensure alien plants do not become dominant in parts of the site, or the whole site, through the control and management of alien and invasive species presence, dispersal, and encroachment.
- » Develop and implement a monitoring and eradication programme for alien and invasive plant species.
- » Promote the natural re-establishment and planting of indigenous species in order to retard erosion and alien plant invasion.

This plan should be updated throughout the life cycle of the wind farm, as required in order to ensure that appropriate measures are in place to manage and control the establishment of alien and invasive plant species and to ensure compliance with relevant legislation.

2. LEGISLATIVE CONTEXT

Conservation of Agricultural Resources Act (Act No. 43 of 1983)

In terms of the amendments to the regulations under the Conservation of Agricultural Resources Act (Act No. 43 of 1983), all declared alien plant species must be effectively controlled. Landowners are legally responsible for the control of invasive alien plants on their properties. In terms of this Act, alien invasive plant species are ascribed to one of the following categories:

- » Category 1: Prohibited and must be controlled.
- » Category 2 (commercially used plants): May be grown in demarcated areas provided that there is a permit and that steps are taken to prevent their spread.
- » Category 3 (ornamentally used plants): May no longer be planted. Existing plants may be retained as long as all reasonable steps are taken to prevent the spreading thereof, except within the flood line of watercourses and wetlands.

National Environmental Management: Biodiversity Act, 2004 (Act No.10 of 2004)

The National Environmental Management: Biodiversity Act (NEM:BA) regulates all invasive organisms in South Africa, including a wide range of fauna and flora. Regulations have been published in Government Notices R.506, R.507, R.508 and R.509 of 2013 under NEM:BA. According to this Act and the regulations, any species designated under Section 70 cannot be propagated, grown, bought or sold without a permit. Below is an explanation of the three categories:

» **Category 1a:** Invasive species requiring compulsory control. Any specimens of Category 1a listed species need, by law, to be eradicated from the environment. No permits will be issued.

- » Category 1b: Invasive species requiring compulsory control as part of an invasive species control programme. Remove and destroy. These plants are deemed to have such a high invasive potential that infestations can qualify to be placed under a government sponsored invasive species management programme. No permits will be issued.
- Category 2: Invasive species regulated by area. A demarcation permit is required to import, possess, grow, breed, move, sell, buy or accept as a gift any plants listed as Category 2 plants. No permits will be issued for Category 2 plants to exist in riparian zones.
- Category 3: Invasive species regulated by activity. An individual plant permit is required to undertake any of the following restricted activities (import, possess, grow, breed, move, sell, buy or accept as a gift) involving a Category 3 species. No permits will be issued for Category 3 plants to exist in riparian zones.

The following guide is a useful starting point for the identification of alien plant species: Bromilow, C. 2010. Problem Plants and Alien Weeds of South Africa. Briza, Pretoria.

It is important to note that alien plant species that are regulated in terms of the Conservation of Agricultural Resources Act (Act 43 of 1983) (CARA) as weeds and invader plants are exempted from NEM:BA. This implies that the provisions of the CARA in respect of listed weed and invader plants supersede those of NEM: BA.

3. ALIEN PLANT MANAGEMENT PRINCIPLES

3.1. Prevention and early eradication

A prevention strategy should be considered and established, including regular surveys and monitoring for invasive alien plants, effective rehabilitation of disturbed areas and prevention of unnecessary disturbance of natural areas.

Monitoring plans should be developed which are designed to identify Invasive Alien Plant Species already on site, as well as those that are introduced to the site by the construction activities. Keeping up to date on which weeds are an immediate threat to the site is important, but efforts should be planned to update this information on a regular basis. When additional Invasive Alien Plant Species are recorded on site, an immediate response of locating the site for future monitoring and either hand-pulling the weeds or an application of a suitable herbicide (where permissible only) should be planned. It is, however, better to monitor regularly and act swiftly than to allow invasive alien plants to become established on site.

3.2. Containment and control

If any alien invasive plants are found to become established on site, action plans for their control should be developed, depending on the size of the infestations, budgets, manpower considerations and time. Separate plans of control actions should be developed for each location and/or each species. Appropriate registered chemicals and other possible control agents should be considered in the action plans for each site/species. The use of chemicals are not recommended for any wetland areas. Herbicides should be applied directly to the plant and not to the soil. The key is to ensure that no invasions get out of control. Effective containment and control will ensure that the least energy and resources are required to maintain this status over the long-term. This will also be an indicator that natural systems are impacted to the smallest degree possible.

3.3. General Clearing and Guiding Principles

Alien species control programmes are long-term management projects and should consist of a clearing plan which includes follow up actions for rehabilitation of the cleared area. The lighter infested areas should be cleared first to prevent the build-up of seed banks. Pre-existing dense mature stands ideally should be left for last, as they probably won't increase in density or pose a greater threat than they are currently. Collective management and planning with neighbours may be required in the case of large woody invaders as seeds of alien species are easily dispersed across boundaries by wind or watercourses. All clearing actions should be monitored and documented to keep records of which areas are due for follow-up clearing.

i. <u>Clearing Methods</u>

Different species require different clearing methods such as manual, chemical or biological methods or a combination of both. Care should however be taken so that the clearing methods used do not encourage further invasion and that they are appropriate to the specific species of concern. As such, regardless of the methods used, disturbance to the soil should be kept to a minimum.

Fire should not be used for alien species control or vegetation management at the site. The best-practice clearing method for each species identified should be used.

» Mechanical control

This entails damaging or removing the plant by physical action. Different techniques could be used, e.g. uprooting, felling, slashing, mowing, ringbarking or bark stripping. This control option is only really feasible in sparse infestations or on a small scale, and for controlling species that do not coppice after cutting. Species that tend to coppice, need to have the cut stumps or coppice growth treated with herbicides following the mechanical treatment. Mechanical control is labour intensive and therefore expensive and could cause severe soil disturbance and erosion.

» Chemical Control

Although it is usually preferable to use manual clearing methods where possible, such methods may create additional disturbance which stimulates alien plant invasion and may also be ineffective for many woody species which re-sprout. Where herbicides are to be used, the impact of the operation on the natural environment should be minimised by observing the following:

- * Area contamination must be minimised by careful, accurate application with a minimum amount of herbicide to achieve good control.
- * All care must be taken to prevent contamination of any water bodies. This includes due care in storage, application, cleaning equipment and disposal of containers, product and spray mixtures.
- * Equipment should be washed where there is no danger of contaminating water sources and washings carefully disposed of at a suitable site.
- To avoid damage to indigenous or other desirable vegetation, products should be selected that will have the least effect on non-target vegetation.
- * Coarse droplet nozzles should be fitted to avoid drift onto neighbouring vegetation.
- * The appropriate health and safety procedures should also be followed regarding the storage, handling and disposal of herbicides.
- * The use of chemicals is not recommended for wetland areas.

For all herbicide applications, the following Regulations and guidelines should be followed:

- * Working for Water: Policy on the Use of Herbicides for the Control of Alien Vegetation.
- * Pesticide Management Policy for South Africa published in terms of the Fertilizers, Farm Feeds, Agricultural Remedies and Stock Remedies Act, 1947 (Act No. 36 of 1947) – GNR 1120 of 2010.
- * South African Bureau of Standards, Standard SANS 10206 (2010).

According to Government Notice No. 13424 dated 26 July 1992, it is an offence to "acquire, dispose, sell or use an agricultural or stock remedy for a purpose or in a manner other than that specified on the label on a container thereof or on such a container".

Contractors using herbicides need to have a valid Pest Control Operators License (limited weeds controller) according to the Fertilizer, Farm Feeds, Agricultural Remedies and Stock Remedies Act (Act No. 36 of 1947). This is regulated by the Department of Environment, Forestry and Fisheries.

» Biological control

Biological weed control consists of the use of natural enemies to reduce the vigour or reproductive potential of an invasive alien plant. Biological control agents include insects, mites, and micro-organisms such as fungi or bacteria. They usually attack specific parts of the plant, either the reproductive organs directly (flower buds, flowers or fruit) or the seeds after they have dropped. The stress caused by the biological control agent may kill a plant outright or it might impact on the plant's reproductive capacity. In certain instances, the reproductive capacity is reduced to zero and the population is effectively sterilised. All of these outcomes will help to reduce the spread of the species.

To obtain biocontrol agents, provincial representatives of the Working for Water Programme or the Directorate: Land Use and Soil Management (LUSM), Department of Environment, Forestry and Fisheries (DEFF) can be contacted.

3.4. General management practices

The following general management practices should be encouraged or strived for:

- » Establish an on-going monitoring programme for the construction phase to detect and quantify any alien species that may become established.
- » Alien vegetation regrowth on areas disturbed by construction must be immediately controlled.
- » Care must be taken to avoid the introduction of alien invasive plant species to the site. Particular attention must be paid to imported material such as building sand or dirty earth-moving equipment.
- » Stockpiles should be checked regularly and any weeds emerging from material stockpiles should be removed.
- » Cleared areas that have become invaded by alien species can be sprayed with appropriate herbicides provided that these herbicides break down on contact with the soil. Residual herbicides should not be used.
- The effectiveness of vegetation control varies seasonally, and this is also likely to impact alien species. Control early in the wet season will allow species to regrow, and follow-up control is likely to be required. It is tempting to leave control until late in the wet season to avoid follow-up control. However, this may allow alien species to set seed before control, and hence will not contribute towards reducing alien species abundance. Therefore, vegetation control should be aimed at the

middle of the wet season, with a follow-up event towards the end of the wet season. There are no exact dates that can be specified here as each season is unique and management must therefore respond according to the state and progression of the vegetation.

- Alien plant management is an iterative process, and it may require repeated control efforts to significantly reduce the abundance of a species. This is often due to the presence of large and persistent seed banks. However, repeated control usually results in rapid decline once seed banks become depleted.
- » Some alien species are best individually pulled by hand. Regular vegetation control to reduce plant biomass within the site should be conducted. This should be timed so as to coincide with the critical growth phases of the most important alien species on site. This will significantly reduce the cost of alien plant management as this should contribute towards the control of the dominant alien species and additional targeted control will be required only for a limited number of species.
- » No alien species should be cultivated on-site. If vegetation is required for aesthetic purposes, then non-invasive, water-wise locally occurring species should be used.
- During operation, surveys for alien species should be conducted regularly. It is recommended that this be undertaken every 6 months for the first two years after construction and annually thereafter. All alien plants identified should be cleared using appropriate means.

3.5. Monitoring

In order to assess the impact of clearing activities, follow-ups and rehabilitation efforts, monitoring must be undertaken. This section provides a description of a possible monitoring programme that will provide an assessment of the magnitude of alien plant invasion on site, as well as an assessment of the efficacy of the management programme.

In general, the following principles apply for monitoring:

- » Photographic records must be kept of areas to be cleared prior to work starting and at regular intervals during initial clearing activities. Similarly, photographic records should be kept of the area from immediately before and after follow-up clearing activities. Rehabilitation processes must also be recorded.
- » Simple records must be kept of daily operations, e.g., area/location cleared, labour units and, if ever used, the amount of herbicide used.
- » It is important that, if monitoring results in detection of invasive alien plants, that this leads to immediate action.

The following monitoring should be implemented to ensure management of alien invasive plant species.

Construction Phase

Monitoring Action	Indicator	Timeframe
Document alien species present at	List of alien plant species	Preconstruction
the site		Monthly during Summer and Autumn
		3 Monthly during Winter and Spring
Document alien plant distribution	Alien plant distribution map within	3 Monthly
	priority areas	
Document and record alien plant	Record of clearing activities	3 Monthly
control measures implemented		0

Operation Phase

Monitoring Action	Indicator	Timeframe
Document alien plant species	Alien plant distribution map	Biannually
distribution and abundance over		
time at the site		
Document alien plant control	Records of control measures and	Biannually
measures implemented, and success	their success rate	
rate achieved	A decline in alien distribution and	
	cover over time at the site	
Document rehabilitation measures	Decline in vulnerable bare areas over	Biannually
implemented, and success achieved	time	
in problem areas		

APPENDIX D: RE-VEGETATION AND HABITAT REHABILITATION PLAN

1. PURPOSE

The purpose of the Revegetation and Rehabilitation Plan is to ensure that areas cleared or impacted during construction activities within the development footprint for the Moriri Solar PV Facility, and that are not required for operation, are rehabilitated to their original state before the operation phase commences, and that the risk of erosion from these areas is reduced. The purpose of the Rehabilitation Plan for the site can be summarised as follows:

- » Achieve long-term stabilisation of all disturbed areas.
- » Re-vegetate all disturbed areas with suitable local plant species.
- » Minimise visual impact of disturbed areas.
- » Ensure that disturbed areas are rehabilitated to a condition similar to that found prior to disturbance.

This Revegetation and Rehabilitation Plan must be read in conjunction with other relevant site-specific plans. Prior to the commencement of construction, a detailed Revegetation and Rehabilitation Plan and Method Statement for the site must be compiled with the aid of a suitably qualified and professionally registered specialist (with a botanical or equivalent qualification).

2. RELEVANT ASPECTS OF THE SITE

There are three plant species listed as Rare (Anisodontea malavastroides, Aloe broomii var. tarkaensis and Tridentea virescens) that could potentially occur on site, but these are all three widespread species that are naturally rare where they are found. None have been previously recorded on this site. There are also two plant species protected according to National legislation (*Crinum bulbispermum* and *Harpagophytum procumbens*) that could potentially occur in the geographical area, but these are also very widespread species. In all five cases the loss of some individuals, if they are found to occur on site, would not affect the conservation status of any of the species. It is, however, unlikely that any of them would be affected.

There are a small number of fauna species of conservation concern that were assessed as having a possibility of occurring on site. The Riverine Rabbit has been previously recorded in the grid in which the site is found and there are some small patches of habitat that are marginally suited to the species, but the known distribution of the species does not include the site and it is not known to occur in this area so it is therefore considered unlikely that it would be found on site. All other species listed here are highly mobile species that are unlikely to be affected by any activities on site.

3. REHABILITATION METHODS AND PRACTISES

The following general management practices should be encouraged or strived for:

- » Clearing of invaded areas must be conducted as per the Alien Management Plan, included in the EMPr.
- » No harvesting of vegetation may be undertaken outside the area to be disturbed by construction activities.
- » Indigenous plant material must be kept separate from alien material.

- » Indigenous seeds may be harvested for purposes of revegetation in areas that are free of alien invasive vegetation, either at the site prior to clearance or from suitable neighbouring sites.
- » Topsoil must be reserved wherever possible on site, to be utilised during rehabilitation.
- » Sods used for revegetation must be obtained directly from the site, but not from the sensitive areas. Sods must contain at least a 50mm topsoil layer and be minimally disturbed, in particular to existing root systems. Sods must ideally be obtained from areas as close as possible to the region that is to be rehabilitated.
- » Water used for the irrigation of re-vegetated areas must be free of chlorine and other pollutants that might have a detrimental effect on the plants.
- » All seeded, planted or sodded grass areas and all shrubs or trees planted are to be irrigated at regular intervals.
- » On steep slopes and areas where seed and organic matter retention is low, it is recommended that soil savers are used to stabilise the soil surface. Soil savers are man-made materials, usually constructed of organic material such as hemp or jute and are usually applied in areas where traditional rehabilitation techniques are not likely to succeed.
- » In areas where soil saver is used, it must be pegged down to ensure that it captures soil and organic matter flowing over the surface.
- » The final rehabilitated area must resemble the current composition and structure of the soil as far as practicably possible.
- » Progressive rehabilitation is an important element of the rehabilitation strategy and must be implemented where feasible.
- » No construction equipment, vehicles or unauthorised personnel must be allowed onto areas that have been rehabilitated.
- » Where rehabilitation sites are located within actively grazed areas, they must be fenced off, this must be undertaken in consultation with the landowner.
- » Any runnels, erosion channels or wash-aways developing after revegetation must be backfilled and consolidated and the areas restored to a proper stable condition.
- » Re-vegetated areas must be monitored frequently and prepared and revegetation from scratch should inadequate signs of surface coverage or grown be evident after two growth seasons. Adequate recovery must be assessed by a qualified botanist or rehabilitation specialist.
- » The stockpiled vegetation from the clearing operations must be reduced to mulch where possible and retained along with topsoil to encourage seedbank regrowth and soil fertility.
- » Mulches must be collected in such a manner as to restrict the loss of seed.
- » Mulch must be stored for as short a period as possible.
- » Mulch is to be harvested from areas that are to be denuded of vegetation during construction activities, provided that they are free of seed-bearing alien invasive plants.
- Where herbicides are used to clear vegetation, species-specific chemicals must be applied to individual plants only. General spraying must be strictly prohibited, and only the correct herbicide type must be applied.
- » Once rehabilitated, areas must be protected to prevent trampling and erosion.
- » Fencing must be removed once a sound vegetative cover has been achieved.

4. MONITORING AND FOLLOW-UP ACTION

Throughout the lifecycle of the development, regular monitoring and adaptive management must be in place to detect any new degradation of rehabilitated areas. During the construction phase, the Environmental Officer (EO) and EPC Contractor will be responsible for initiating and maintaining a suitable

monitoring system. Once the development is operational, the Developer will need to identify a suitable entity that will be able to take over and maintain the monitoring cycle and initiate adaptive management as soon as it is required. Monitoring personnel must be adequately trained. The following are the minimum criteria that must be monitored:

- » Associated nature and stability of surface soils.
- » Re-emergence of alien and invasive plant species. If noted, remedial action must be taken immediately, as per the alien management plan and mitigation measures contained within the EMPr.

Rehabilitation success, monitoring and follow-up actions are important to achieve the desired cover and soil protection. The following monitoring protocol is recommended:

- » Rehabilitation areas must be monitored every 4 months for the first 12 months following construction, or as per the recommendations of specialist.
- » Ensure that steep slopes are not de-vegetated unnecessarily and subsequently become hydrophobic (i.e. have increased runoff and a decreased infiltration rate) increasing the erosion potential.
- » Soil loss is related to the length of time that soils are exposed prior to rehabilitation or stabilisation. Therefore, the timeframe between construction activities and rehabilitation must be minimised. Phased construction and progressive rehabilitation, where practically possible, are therefore important elements of the erosion control and rehabilitation strategy.
- » Any areas showing erosion, must be adaptively managed with particular erosion control measures, depending on the situation.

If the current state of the environment prior to construction (which will be disturbed during the construction phase) is not achieved post impact, within the specified rehabilitation period, maintenance of these areas must continue until an acceptable state is achieved (excluding alien plant species or weeds). Additional rehabilitation methods may be necessary to achieve the current state before construction commences.

Monitoring of the rehabilitation success, as well as follow-up adaptive management, combined with the clearing of emerging alien plant species must all continue for as long as is considered necessary, depending on regrowth rates.

APPENDIX E: PLANT RESCUE AND PROTECTION PLAN

PLANT RESCUE AND PROTECTION PLAN

1. PURPOSE

The purpose of the Plant Rescue and Protection Plan is to implement avoidance and mitigation measures, in addition to the mitigations included in the Environmental Management Programme (EMPr) to reduce the impact of the development of the wind farm and associated infrastructure on listed and protected plant species and their habitats during construction and operation. This subplan is required in order to ensure compliance with national and provincial legislation for vegetation clearing and any required destruction or translocation of provincially and nationally protected species within the footprint of the development.

The Plan first provides some legislative background on the regulations relevant to listed and protected species, under the Nature and Environmental Conservation Ordinance (Act 19 of 1974) and trees protected under the National List of Protected Tree Species. This is followed by an identification of protected species present within the development footprint and actions that should be implemented to minimise impact on these species and comply with legislative requirements.

2. IDENTIFICATION OF SPECIES OF CONSERVATION CONCERN

There are a small number of fauna species of conservation concern that were assessed as having a possibility of occurring on site. The Riverine Rabbit has been previously recorded in the grid in which the site is found and there are some small patches of habitat that are marginally suited to the species, but the known distribution of the species does not include the site and it is not known to occur in this area so it is therefore considered unlikely that it would be found on site. All other species listed here are highly mobile species that are unlikely to be affected by any activities on site.

3. IDENTIFICATION OF LISTED SPECIES

There are three plant species listed as Rare (*Anisodontea malavastroides, Aloe broomii* var. *tarkaensis* and *Tridentea virescens*) that could potentially occur on site, but these are all three widespread species that are naturally rare where they are found. None have been previously recorded on this site.

There are also two plant species protected according to National legislation (*Crinum bulbispermum* and *Harpagophytum procumbens*) that could potentially occur in the geographical area, but these are also very widespread species. In all five cases the loss of some individuals, if they are found to occur on site, would not affect the conservation status of any of the species. It is, however, unlikely that any of them would be affected.

4. MITIGATION & AVOIDANCE OPTIONS

The primary mitigation and avoidance measure that must be implemented at the pre-construction phase is the Pre-construction Walk-Through of the development footprint. This defines which and how many individuals of listed and protected species are found within the development footprint.

Where listed plant species fall within the development footprint and avoidance is not possible, then it may be possible to translocate the affected individuals outside of the development footprint. However, not all species are suitable for translocation. Recommendations in this regard would be made following the walkthrough of the facility development footprint before construction, where all listed and protected species within the development footprint will be identified and located.

5. RESCUE AND PROTECTION PLAN

5.1. Pre-construction

- » Identification of all listed species which may occur within the site, based on the SANBI POSA database as well as the specialist BA studies for the site and any other relevant literature.
- » Before construction commences at the site, the following actions should be taken:
 - A walk-through of the final development footprint by a suitably qualified botanist/ecologist to locate and identify all listed and protected species which fall within the development footprint. This should happen during the flowering season at the site.
 - A walk-through report following the walk-through which identifies areas where minor deviations to
 roads and other infrastructure can be made to avoid sensitive areas and important populations of
 listed species. The report should also contain a full list of localities where listed species occur within
 the development footprint and the number of affected individuals in each instance, so that this
 information can be used to comply with the permit conditions required by the relevant legislation.
 Those species suitable for search as rescue should be identified in the walk-through report.
 - A permit to clear the site and relocate species of concern is required from Provincial Eastern Cape Department of Economic Development, Environmental Affairs and Tourism (DEDEAT) before construction commences. A tree clearing permit is also required from DEFF to clear protected trees from the site.
 - Once the permits have been issued, there should be a search and rescue operation of all listed species that cannot be avoided, which have been identified in the walk-through report as being suitable for search and rescue within the development footprint. Affected individuals should be translocated to a similar habitat outside of the development footprint and marked for monitoring purposes.

5.2. Construction

- » Vegetation clearing should take place in a phased manner, so that large cleared areas are not left standing with no activity for long periods of time and pose a wind and water erosion risk. This will require coordination between the contractor and EO, to ensure that the EO is able to monitor activities appropriately.
- » All cleared material must be handled according to the Revegetation and Rehabilitation Plan and used to encourage the recovery of disturbed areas.
- » EO to monitor vegetation clearing at the site. Any deviations from the plans that may be required should first be checked for listed species by the EO and any listed species present which are able to survive translocation should be translocated to a safe site.
- » All areas to be cleared should be demarcated with construction tape, survey markers or similar. All construction vehicles should work only within the designated area.
- » Plants suitable for translocation or for use in rehabilitation of already cleared areas should be identified and relocated before general clearing takes place.
- » Any listed species observed within the development footprint that were missed during the preconstruction plant sweeps must be translocated to a safe site before clearing commences.

- » Many listed species are also sought after for traditional medicine or by collectors and so the EO and ECO must ensure that all staff attend environmental induction training in which the legal and conservation aspects of harvesting plants from the wild are discussed.
- » The EO must monitor construction activities in sensitive habitats such as in dune areas carefully to ensure that impacts to these areas are minimised.

5.3. Operation

- » Access to the site should be strictly controlled and all personnel entering or leaving the site must be required to sign in and out with the security officers.
- » The collecting of plants of their parts must be strictly forbidden and signs stating so must be placed at the entrance gates to the site.

6. MONITORING AND REPORTING REQUIREMENTS

The following reporting and monitoring requirements are recommended as part of the plant rescue and protection plan:

- Pre-construction walk-through report detailing the location and distribution of all listed and protected species. This must include a walk-through of all infrastructure including all new access roads, cables, buildings and the substation. The report must include recommendations of route adjustments where necessary, as well as provide a full account of how many individuals of each listed species will be impacted by the development. Details of plants suitable for search and rescue must also be included.
- Permit applications to Deoartment of Enviroenmenta nd Nature Concervation Northen Cape and DEFF. This requires the walk-through report as well as the identification and quantification of all listed and protected species within the development footprint. The permit is required before any search and rescue or vegetation clearance can take place. All documentation associated with this process needs to be retained and the final clearing permit must be kept at the site.
- » Active daily monitoring of clearing during construction by the EO to ensure that listed species and sensitive habitats are avoided. All incidents must be recorded along with the remedial measures implemented.
- » Post-construction monitoring of plants translocated during search and rescue to evaluate the success of the intervention. Monitoring for a year post-transplant should be sufficient to gauge success.

APPENDIX F: TRAFFIC AND TRANSPORTATION MANAGEMENT PLAN

1. PURPOSE

The purpose of this Traffic Management Plan (TMP) is to address regulatory compliance, traffic management practices, and protection measures to help reduce impacts related to transportation and the construction of temporary and long-term access within the vicinity of the Wind Farm Wind Farm project site. The objectives of this plan include the following:

- » To ensure compliance with all legislation regulating traffic and transportation within South Africa (National, Provincial, Local & associated guidelines).
- » To avoid incidents and accidents while vehicles are being driven and while transporting personnel, materials, and equipment to and from the project site.
- » To raise greater safety awareness in each driver and to ensure the compliance of all safe driving provisions for all the vehicles.
- » To raise awareness to ensure drivers respect and follow traffic regulations.
- » To avoid the deterioration of access roads and the pollution that can be created due to noise and emissions produced by equipment, machinery, and vehicles.

2. RELEVANT ASPECTS OF THE PROJECT

The project site is located on a site located approximately 35km south-west of Richmond, and 80km southeast of Victoria West, within the Ubuntu Local Municipality and the Pixley Ka Seme District Municipality in the Northern Cape Province.

The potential traffic and transport related impacts for the construction, operation and decommissioning phases of the proposed Moriri Solar PV Facility were identified and assessed. The main impact on the external road network will be during the construction phase. This phase is temporary in comparison to the operational period. The number of abnormal loads vehicles was estimated and to be found to be able to be accommodated by the road network. During operation, it is expected that maintenance and security staff will periodically visit the facility. It is assumed that approximately twenty (20) full-time employees will be stationed on site. The traffic generated during this phase will be minimal and will not have an impact on the surrounding road network.

The traffic generated during the construction phase, although significant, will be temporary and impacts are considered to be negative and of medium significance before and of low significance after mitigation. The traffic generated during the decommissioning phase will be less than the construction phase traffic and the impact on the surrounding road network will also be considered negative and of medium significance before and of low significance after mitigation.

3. TRAFFIC AND TRANSPORTATION MANAGEMENT PRINCIPLES

Prior to the commencement of construction, the contractor must develop their own detailed Transport Management Plan (TMP) based on traffic volumes and road carry capacity outlines.

- The transport contractor must ensure that all required permits for the transportation of abnormal loads are in place prior to the transportation of equipment and project components to the project site. Specific abnormal load routes must be developed with environmental factors taken into consideration.
- » Before construction commences, authorised access routes must be clearly marked in the field with signs or flagging.
 - * Traffic signs used must conform to the National Road Traffic Act and South African National Standards.
 - * Appropriate signs must be installed at locations as deemed necessary.
 - * Signage must be placed at intersections, speed limit alterations, severe changes in road grading, where road hazards are located and where usual traffic flow changes abruptly.
 - * All traffic signs must be obeyed by all staff and visitors on site, without exception.
- The EPC Contractor must review the location of the designated access and will be responsible for ensuring construction travel is limited to designated routes. The entrance of the main access road must not be constructed before a blind rise or on a bend of the public road.
- » All employees must attend an environmental training program (e.g., toolbox talks) by the Environmental Officer (EO). Through this program, employees will be instructed to use only approved access roads, drive within the delineated road limits, and obey jurisdictional and posted speed limits to minimise potential impacts to the environment and other road users.
- » The contractor will be responsible for making sure that their suppliers, vendors, and subcontractors strictly comply with the principles of this TMP and the contractor's TMP.
- » Adjacent landowners must be notified of the construction schedule.
- » Access roads and entrances to the site should be carefully planned to limit any intrusion on the neighbouring property owners and road users.
- » Signs must be posted in the project area to notify landowners and others of the construction activity.
- » Flagging must be provided at access points to the project site and must be maintained until construction is completed on the site.
- » Speed limits must be established prior to commencement of construction and enforced for all construction traffic. The following limits are suggested for internal roads:
 - * 60 km/hour where sign posted.
 - * 40 km/hour where sign posted.
 - * 20km/hour around workshop areas, in all car parks and yards.
 - * A warning system, penalties or fines must be put in place where speed limits are not adhered to.
- » Speed controls and implementation of appropriate dust suppression measures must be enforced to minimise dust pollution.
- Throughout construction the contractor will be responsible for monitoring the condition of roads used by project traffic and for ensuring that roads are maintained in a condition that is comparable to the condition they were in before the construction began.
- » Inspect traffic/road signs regularly for cleanliness, condition and appropriateness. Take immediate action to rectify any problems with signage.
- » Drivers must have an appropriate valid driver's license and other operation licences required by applicable legislation.
- All vehicles must be maintained in good mechanical, electrical, and electronic condition, including but not limited to the brake systems, steering, tires, windshield wipers, side mirrors and rear view mirror, safety belts, signal indicators, and lenses.
- » Any traffic delays attributable to construction traffic must be co-ordinated with the appropriate authorities.

- » No deviation from approved transportation routes must be allowed, unless roads are closed for reasons outside the control of the contractor.
- » Impacts on local communities must be minimised. Consideration should be given to limiting construction vehicles travelling on public roadways during the morning and late afternoon commute time.
- » A driver must not use the vehicle's horn except on the grounds of safety.
- » Drivers of vehicles must always keep to the left and must be observant of other road users.
- » Drivers must follow communication procedures and shall where applicable be trained in the correct use of two-way radios.
- » Ensure all staff are trained upon entering the site regarding the meaning and correct response to each traffic sign utilised on site.
- » All light vehicles must be fitted with a flashing amber strobe or revolving light.
- » Persons authorized to operate on site must have a legal valid appropriate code provincial driver's license and competency certificate where applicable.
- » No passengers allowed in any construction vehicles. If an assistant is required, they must obtain permission
- » Vehicles must be maintained at approved intervals and must be inspected daily before use to ensure safe operation.
- » All vehicles must only be used within the design specifications and limits set by the manufacturer.
- All construction vehicles will be used according to the Health & Safety Plan and related Method Statements and/or Risk Assessments.
- » Weather and road conditions must be sufficient to allow safe operation to proceed. Head lights must be turned on at all times.
- » No vehicle will be driven with any defect that may impact on the safe operation of that vehicle.
- » Two-way radios shall only be used for official/work related matters.
- » The use of mobile phones while driving a vehicle is prohibited.
- » All vehicles shall carry a fire extinguisher (Dry Powder); 2.5kg for light vehicles, 4.5kg for haul trucks and 9kg for machinery.

4. MONITORING

- » The principal contractor must ensure that all vehicles adhere to the speed limits.
- » A speeding register must be kept with details of the offending driver.
- » Repeat offenders must be penalised.

APPENDIX G: STORMWATER AND EROSION MANAGEMENT PLAN

STORMWATER MANAGEMENT PLAN

1. PURPOSE

By taking greater cognisance of natural hydrological patterns and processes it is possible to develop storm water management systems in a manner that reduces these potentially negative impacts and mimic nature. The main risks associated with inappropriate storm water management are increased erosion risk and risks associated with flooding. Therefore, this Storm water Management Plan and the Erosion Management Plan are closely linked to one another and should be managed together.

This Storm water Management Plan addresses the management of storm water runoff from the development site and significant impacts relating to resultant impacts such as soil erosion and downstream sedimentation. The main factors influencing the planning of storm water management measures and infrastructure are:

- » Topography and slope gradients;
- » Placing of infrastructure and infrastructure design;
- » Annual average rainfall; and
- » Rainfall intensities.

The objective of the plan is therefore to provide measures to address runoff from disturbed portions of the site, such that they:

- » Do not result in concentrated flows into natural watercourses i.e. provision should be made for temporary or permanent measures that allow for attenuation, control of velocities and capturing of sediment upstream of natural watercourses.
- » Do not result in any necessity for concrete or other lining of natural watercourses to protect them from concentrated flows off the development if not necessary.
- » Do not divert flows out of their natural flow pathways, thus depriving downstream watercourses of water.

This Storm water Management Plan must be updated and refined once the construction/ civil engineering plans have been finalised following detailed design.

2. RELEVANT ASPECTS OF THE SITE

The study area occurs on land that ranges in elevation from approximately 1 170m (in the south-western corner of the study area) to 1 830m (at the top of the mountains to the east). The terrain of the site is predominantly flat to the north with small hills to the south. Other mountains and hills in closer proximity to the site include Bobbejaankran, Kamberg, Bulberg, Klipspringerkop, Kromhoek se Berg, Blouberg and Platberg. The overall terrain morphological description of the study area is described as *undulating plains* (lowlands), with *ridges, hills* and *mountains*. These hills and mountains are often referred to as *inselbergs* (island mountains) due to their isolated nature, or mesas (table mountains) due to their flat-topped summits.

The scope percentage of the development area has been calculated and most of the development area is characterised by a slope percentage between 0 and 20%, with some smaller patches within the development area characterised by a slope percentage in excess of 80%.

3. STORMWATER MANAGEMENT PRINCIPLES

In the design phase, various storm water management principles should be considered including:

- » Prevent concentration of storm water flow at any point where the ground is susceptible to erosion.
- Reduce storm water flows as far as possible by the effective use of attenuating devices (such as swales, berms, and silt fences). As construction progresses, the storm water control measures are to be monitored and adjusted to ensure complete erosion and pollution control at all times.
- » Silt traps must be used where there is a danger of topsoil or material stockpiles eroding and entering streams and other sensitive areas.
- » Construction of gabions and other stabilisation features on steep slopes may be undertaken to prevent erosion, if deemed necessary.
- » Minimise the area of exposure of bare soils to minimise the erosive forces of wind, water and all forms of traffic.
- » Ensure that development does not increase the rate of storm water flow above that which the natural ground can safely accommodate at any point in the sub-catchments.
- » Ensure that all storm water control works are constructed in a safe and aesthetic manner in keeping with the overall development.
- » Plan and construct storm water management systems to remove contaminants before they pollute surface waters or groundwater resources.
- » Contain soil erosion, whether induced by wind or water forces, by constructing protective works to trap sediment at appropriate locations. This applies particularly during construction.
- » Avoid situations where natural or artificial slopes may become saturated and unstable, both during and after the construction process.
- » Design and construct roads to avoid concentration of flow along and off the road. Where flow concentration is unavoidable, measures to incorporate the road into the pre-development storm water flow should not exceed the capacity of the culvert. To assist with the storm water run-off, gravel roads should typically be graded and shaped with a 2-3% cross fall back into the slope, allowing storm water to be channelled in a controlled manner towards the, natural drainage lines and to assist with any sheet flow on the site.
- » Design culvert inlet structures to ensure that the capacity of the culvert does not exceed the predevelopment storm water flow at that point. Provide detention storage on the road and/or upstream of the storm water culvert.
- » Design outlet culvert structures to dissipate flow energy. Any unlined downstream channel must be adequately protected against soil erosion.
- Where the construction of a building causes a change in the vegetative cover of the site that might result in soil erosion, the risk of soil erosion by storm water must be minimised by the provision of appropriate artificial soil stabilisation mechanisms or re-vegetation of the area. Any inlet to a piped system should be fitted with a screen or grating to prevent debris and refuse from entering the storm water system.
- » Preferably all drainage channels on site and contained within the larger area of the property (i.e. including buffer zone) should remain in the natural state so that the existing hydrology is not disturbed.

3.1. Engineering Specifications

Detailed engineering specifications for a Storm water Management Plan describing and illustrating the proposed storm water control measures must be prepared by the Civil Engineers during the detailed design phase and should be based on the underlying principles of this Storm water Management Plan. This should

» Erosion control measures to be implemented before and during the construction period, including the final storm water control measures (post construction) must be indicated within the Final/Updated Storm water Management Plan.

include erosion control measures. Requirements for project design include:

- » All temporary and permanent water management structures or stabilisation methods must be indicated within the Final/Updated Storm water Management Plan.
- The drainage system for the site should be designed to specifications that can adequately deal with a 1:50 year intensity rainfall event or more to ensure sufficient capacity for carrying storm water around and away from infrastructure.
- » Procedures for storm water flow through a project site need to take into consideration both normal operating practice and special circumstances. Special circumstances in this case typically include severe rainfall events.
- » An on-site Engineer or Environmental Officer is to be responsible for ensuring implementation of the erosion control measures on site during the construction period.
- » The EPC Contractor holds ultimate responsibility for remedial action in the event that the approved storm water plan is not correctly or appropriately implemented and damage to the environment is caused.

During the construction phase, the contractor must prepare a Storm water Control Method Statement to ensure that all construction methods adopted on site do not cause, or precipitate soil erosion and shall take adequate steps to ensure that the requirements of the Storm water Management Plan are met before, during and after construction. The designated responsible person on site, must be indicated in the Storm water Control Method Statement and shall ensure that no construction work takes place before the relevant storm water control measures are in place.

An operation phase Storm water Management Plan should be designed and implemented if not already addressed by the mitigations implemented as part of construction, with a view to preventing the passage of concentrated flows off hardened surfaces and onto natural areas.

PRINCIPLES FOR EROSION MANAGEMENT

1. PURPOSE

Exposed and unprotected soils are the main cause of erosion in most situations. Therefore, this Erosion Management Plan, the Storm water Management Plan and the Revegetation and Rehabilitation Plan are closely linked to one another and should not operate independently, but should rather be seen as complementary activities within the broader environmental management of the site and should therefore be managed together.

This Erosion Management Plan addresses the management and mitigation of potential impacts relating to soil erosion. The objective of the plan is to provide:

- » A general framework for soil erosion and sediment control, which enables the contractor to identify areas where erosion can occur and is likely to be accelerated by construction related activities.
- » An outline of general methods to monitor, manage and rehabilitate erosion prone areas, ensuring that all erosion resulting from all phases of the development is addressed.

This plan must be updated and refined once the construction/ civil engineering plans have been finalised following detailed design.

2. RELEVANT ASPECTS OF THE SITE

Various soil forms were identified within the Moriri project area with the most sensitive soils being classified as the Tubatse, Oakleaf and Bethesda soil forms. These soil forms were determined to be associated with one land capability, namely LCIII. This land capability class was then further refined to land potential level 6 by comparing land capability of climatic capabilities of the project area.

This land potential level was used to determine the sensitivities of soil resources. Only "Low" sensitivities were determined throughout the project area by means of baseline findings. Considering the low sensitivities associated with land potential resources, it is the specialist's opinion that the proposed activities will have an acceptable impact on soil resources and that the proposed activities should proceed as have been planned.

Soil erosion is a frequent risk associated with solar facilities on account of the vegetation clearing and disturbance associated with the construction phase of the development and may continue occurring throughout the operation phase. Service roads and installed infrastructure will generate increased direct runoff during intense rainfall events and may exacerbate the loss of topsoil and the effects of erosion. These eroded materials may enter the nearby watercourses and may potentially impact these systems through siltation and change in chemistry and turbidity of the water.

During construction, there will be a lot of disturbed and loose soil at the site which will render the area vulnerable to erosion. During the operation phase the impacts related to loss of land use and land capability will remain the same. Areas under permanent buildings, substations, transformers and other covered surfaces are no longer susceptible to erosion, but hard surfaces will increase run-off during rain storms onto bare soil surfaces.

3. EROSION AND SEDIMENT CONTROL PRINCIPLES

The goals of erosion control during and after construction at the site should be to:

- » Protect the land surface from erosion;
- » Intercept and safely direct run-off water from undisturbed upslope areas through the site without allowing it to cause erosion within the site or become contaminated with sediment; and
- » Progressively revegetate or stabilise disturbed areas.

These goals can be achieved by applying the management practices outlined in the following sections.

3.1. On-Site Erosion Management

Soil erosion is a frequent risk associated with solar facilities on account of the vegetation clearing and disturbance associated with the construction phase of the development and may continue occurring throughout the operation phase. Service roads and installed infrastructure will generate increased direct runoff during intense rainfall events and may exacerbate the loss of topsoil and the effects of erosion. These eroded materials may enter the nearby watercourses and may potentially impact these systems through siltation and change in chemistry and turbidity of the water. General factors to consider regarding erosion risk at the site includes the following:

- » Due to the sandy nature of soils in the study area, soil loss will be greater during dry periods as it is more prone to wind erosion. Therefore, precautions to prevent erosion should be present throughout the year.
- Reduction of a stable vegetation cover and associated below-ground biomass that currently increases soil surface porosity, water infiltration rates and thus improves the soil moisture availability. Without the vegetation, the soil will be prone to extensive surface capping, leading to accelerated erosion and further loss of organic material and soil seed reserves from the local environment.
- Soil loss is related to the length of time that soils are exposed prior to rehabilitation or stabilisation. Therefore, the gap between construction activities and rehabilitation should be minimised. Phased construction and progressive rehabilitation, where practically possible, are therefore important elements of the erosion control strategy.
- The extent of disturbance will influence the risk and consequences of erosion. Therefore, site clearing should be restricted to areas required for construction purposes only. As far as possible, large areas should not be cleared all at once, especially in areas where the risk of erosion is higher.
- » Roads should be planned and constructed in a manner which minimises their erosion potential. Roads should therefore follow the natural contour as far as possible. Roads parallel to the slope direction should be avoided as far as possible.
- » Where necessary, new roads constructed should include water diversion structures with energy dissipation features present to slow and disperse the water into the receiving area.
- » Roads used for project-related activities and other disturbed areas should be regularly monitored for erosion. Any erosion problems recorded should be rectified as soon as possible and monitored thereafter to ensure that they do not re-occur.
- » Runoff may have to be specifically channelled or storm water adequately controlled to prevent localised rill and gully erosion.
- » Compacted areas should have adequate drainage systems to avoid pooling and surface flow. Heavy machinery should not compact those areas which are not intended to be compacted as this will result in compacted hydrophobic, water repellent soils which increase the erosion potential of the area. Where compaction does occur, the areas should be ripped.

- » All bare areas should be revegetated with appropriate locally occurring species, to bind the soil and limit erosion potential.
- » Silt fences should be used where there is a danger of topsoil or material stockpiles eroding and entering streams and other sensitive areas.
- » Gabions and other stabilisation features must be used on steep slopes and other areas vulnerable to erosion to minimise erosion risk as far as possible.
- » Activity at the site after large rainfall events when the soils are wet and erosion risk is increased should be reduced. No driving off of hardened roads should occur at any time, and particularly immediately following large rainfall events.
- Topsoil should be removed and stored in a designated area separately from subsoil and away from construction activities (as per the recommendations in the EMPr). Topsoil should be reapplied where appropriate as soon as possible in order to encourage and facilitate rapid regeneration of the natural vegetation in cleared areas.
- Regular monitoring of the site for erosion problems during construction (on-going) and operation (at least twice annually) is recommended, particularly after large summer thunderstorms have been experienced. The ECO will determine the frequency of monitoring based on the severity of the impacts in the erosion prone areas.

3.1.1 Erosion control mechanisms

The contractor may use the following mechanisms (whichever proves more appropriate/ effective) to combat erosion when necessary:

- » Reno mattresses;
- » Slope attenuation;
- » Hessian material;
- » Shade catch nets;
- » Gabion baskets;
- » Silt fences;
- » Storm water channels and catch pits;
- » Soil bindings;
- » Geofabrics;
- » Hydro-seeding and/or re-vegetating;
- » Mulching over cleared areas;
- » Boulders and size varied rocks; and
- » Tilling.

3.2 Engineering Specifications

A detailed engineering specifications Storm water Management Plan describing and illustrating the proposed stormwater control measures must be prepared by the Civil Engineers during the detailed design phase and should be based on the underlying principles of the Storm water Management Plan and this should include erosion control measures. Requirements for project design include:

- » Erosion control measures to be implemented before and during the construction period, including the final storm water control measures (post construction).
- » All temporary and permanent water management structures or stabilisation methods must be indicated within the Storm water Management Plan.

- An on-site Engineer or Environmental Officer (EO)/ SHE Representative to be responsible for ensuring implementation of the erosion control measures on site during the construction period. The ECO should monitor the effectiveness of these measures on the interval agreed upon with the Site Manager and EO.
- The EPC Contractor holds ultimate responsibility for remedial action in the event that the approved Storm water Management Plan is not correctly or appropriately implemented and damage to the environment is caused.

3.3 Monitoring

The site must be monitored continuously during construction and operation in order to determine any indications of erosion. If any erosion features are recorded as a result of the activities on-site the Environmental Officer (EO)/ SHE Representative (during construction) or Environmental Manager (during operation) must:

- » Assess the significance of the situation.
- » Take photographs of the soil degradation.
- » Determine the cause of the soil erosion.
- Inform the contractor/operator that rehabilitation must take place and that the contractor/operator is to implement a rehabilitation method statement and management plan to be approved by the Site/Environmental Manager in conjunction with the ECO.
- » Monitor that the contractor/operator is taking action to stop the erosion and assist them where needed.
- » Report and monitor the progress of rehabilitation weekly and record all the findings in a site register (during construction).
- All actions with regards to the incidents must be reported on a monthly compliance report which should be kept on file for if/when the Competent Authority requests to see it (during construction) and kept on file for consideration during the annual audits (during construction and operation).

The Contractor (in consultation with an appropriate specialist, e.g. an engineer) must:

- » Select a system/mechanism to treat the erosion.
- » Design and implement the appropriate system/mechanism.
- » Monitor the area to ensure that the system functions like it should. If the system fails, the method must be adapted or adjusted to ensure the accelerated erosion is controlled.
- » Continue monitoring until the area has been stabilised.

3 CONCLUSION

The Erosion Management Plan is a document to assist the Proponent/ EPC Contractor with guidelines on how to manage erosion during all phases of the project. The implementation of management measures is not only good practice to ensure minimisation of degradation, but also necessary to ensure compliance with legislative requirements. This document forms part of the EMPr, and is required to be considered and adhered to during the design, construction, operation and decommissioning phases of the project (if and where applicable). During the construction phase, the contractor must prepare an Erosion Control Method Statement to ensure that all construction methods adopted on site do not cause, or precipitate soil erosion and shall take adequate steps to ensure that the requirements of this plan are met before, during and after construction. The designated responsible person on site, must be indicated in the Method Statement and shall ensure that relevant erosion control measures are in place throughout the construction phase.

An operation phase Erosion Management Plan should be designed and implemented if not already addressed by the mitigations implemented as part of construction, with a view to preventing the passage of concentrated flows off hardened surfaces and onto natural areas.

APPENDIX H: WASTE MANAGEMENT PLAN

WASTE MANAGEMENT PLAN

1. PURPOSE

A Waste Management Plan (WMP) plays a key role in achieving sustainable waste management throughout all phases of the project. The plan prescribes measures for the collection, temporary storage and safe disposal of the various waste streams associated with the project and includes provisions for the recovery, re-use and recycling of waste. The purpose of this plan is therefore to ensure that effective procedures are implemented for the handling, storage, transportation, and disposal of waste generated from the project activities on site.

This WMP has been compiled as part of the project EMPr and is based on waste stream information available at the time of compilation. Construction and operation activities must be assessed on an ongoing basis in order to determine the efficacy of the plan and whether further revision of the plan is required. This plan should be updated should further detail regarding waste quantities and categorisation become available, during the construction and/or operation stages.

2. RELEVANT ASPECTS OF THE SITE

It is expected that the development of the Moriri Solar PV Facility will generate construction solid waste, general waste and hazardous waste during the lifetime of the wind farm.

Waste generated on site, originates from various sources, including but not limited to:

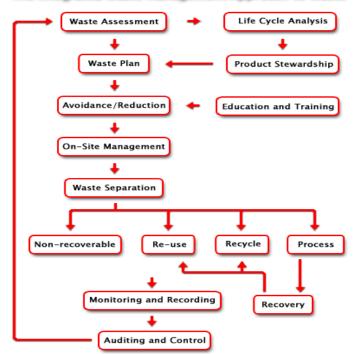
- » Concrete waste generated from spoil and excess concrete.
- » Contaminated water, soil, rocks, and vegetation due to hydrocarbon spills.
- » Hazardous waste from vehicle, equipment and machinery parts and servicing, fluorescent tubes, used hydrocarbon containers, and waste ink cartridges.
- » Recyclable waste in the form of paper, glass, steel, aluminium, wood/ wood pallets, plastic (PET bottles, PVC, LDPE) and cardboard.
- » Organic waste from food waste as well as alien and endemic vegetation removal.
- » Sewage from portable toilets and septic tanks.
- » Inert waste from spoil material from site clearance and trenching works.

3. LEGISLATIVE REQUIREMENTS

Waste in South Africa is currently governed by several regulations, including:

- » National Environmental Management: Waste Act (NEM:WA), 2008 (Act 59 of 2008);
- » National Environmental Management: Waste Amendment Act, 2014 (Act 26 of 2014);
- » The South African Constitution (Act 108 of 1996);
- » Hazardous Substances Act (Act 5 of 1973);
- » Health Act (Act 63 of 1977);
- » Environment Conservation Act (Act 73 of 1989);
- » Occupational Health and Safety Act (Act 85 of 1993);
- » National Water Act (Act 36 of 1998);
- » The National Environmental Management Act (Act 107 of 1998) (as amended);

- » Municipal Structures Act (Act 117 of 1998);
- » Municipal Systems Act (Act 32 of 2000);
- » Mineral and Petroleum Resources Development Act (Act 28 of 2002); and
- » Air Quality Act (Act 39 of 2004).


Storage of waste must be conducted in accordance with the National Norms and Standards for the Storage of Waste, published in GNR 926.

4. WASTE MANAGEMENT PRINCIPLES

An integrated approach to waste management is needed on site. Such an approach is illustrated in Figure 1.

It is important to ensure that waste is managed with the following objectives in mind during all phases of the project:

- » Reducing volumes of waste is the greatest priority;
- » If reduction is not feasible, the maximum amount of waste is to be recycled; and
- » Waste that cannot be recycled is to be disposed of in the most environmentally responsible manner.

The Integrated Waste Management Approach to Waste

Figure 1: Integrated Waste Management Flow Diagram

(Source: http://www.enviroserv.co.za/pages/content.asp?SectionId=496)

4.1. Construction phase

A plan for the management of waste during the construction phase is detailed below. A Method Statement detailing specific waste management practices during construction should be prepared by the Contractor prior to the commencement of construction, for approval by the Resident Engineer and/or ECO.

4.1.1. Waste Assessment / Inventory

- » The Environmental Officer (EO), or designated staff member, must develop, implement, and maintain a waste inventory reflecting all waste generated during construction for both general and hazardous waste streams.
- » Construction methods and materials should be carefully considered in view of waste reduction, re-use, and recycling opportunities, to be pro-actively implemented.
- » Once a waste inventory has been established, targets for the recovery of waste (minimisation, re-use, recycling) should be set.
- » The EO must conduct waste classification and rating in terms of SANS 10288 and Government Notice 634 published under the NEM: WA.

4.1.2. Waste collection, handling, and storage

- » It is the responsibility of the EO to ensure that each subcontractor implements their own waste recycling system, i.e., separate bins for food waste, plastics, paper, wood, glass cardboard, metals, etc. Such practises must be made contractually binding upon appointment of the subcontractors.
- » Waste manifests and waste acceptance approvals (i.e., receipts) from designated waste facilities must be kept on file at the site office, in order to record and prove continual compliance for future auditing.
- » Septic tanks and portable toilets must be monitored by the EO or responsible subcontractor and maintained regularly. Below ground storage of septic tanks must withstand the external forces of the surrounding environment. The area above the tank must be demarcated to prevent any vehicles or heavy machinery from moving around in the surrounding area.
- » Waste collection bins and hazardous waste containers must be provided by the principal contractor and subcontractors and placed at strategic locations around the site for the storage of organic, recyclable and hazardous waste.
- » A dedicated waste area must be established on site for the storage of all waste streams before removal from site. The storage period must not trigger listed waste activities as per the NEMWA, GN 921 of November 2013.
- » Signage/ colour coding must be used to differentiate disposal areas for the various waste streams (i.e. paper, cardboard, metals, food waste, glass etc.).
- » Hazardous waste must be stored within a bunded area constructed according to SABS requirements and must ensure complete containment of the spilled material in the event of a breach. As such, appropriate bunding material, design, capacity and type must be utilised to ensure that no contamination of the surrounding environment will occur despite a containment breach. The net capacity of a bunded compound in a storage facility should be at least 120% of the net capacity of the largest tank.
- Take into consideration the capacity displaced by other tanks within the same bunded area and any foundations.

- » Treat interconnected tanks as a single tank of equivalent total volume for the purposes of the bund design criteria
- The location of all temporary waste storage areas must aim to minimise the potential for impact on the surrounding environment, including prevention of contaminated runoff, seepage, and vermin control, while being reasonably placed in terms of centrality and accessibility on site. Where required, an additional temporary waste storage area may be designated, provided identical controls are exercised for these locations.
- » Waste storage shall be in accordance with all Regulations and best-practice guidelines and under no circumstances may waste be burnt on site.
- » A dedicated waste management team must be appointed by the principal contractors' SHE Officer, who will be responsible for ensuring the continuous sorting of waste and maintenance of the area. The waste management team must be trained in all areas of waste management and monitored by the SHE Officer.
- All waste removed from site must be done by a registered/ licensed subcontractor, who must supply information regarding how waste recycling/ disposal will be achieved. The registered subcontractor must provide waste manifests for all removals at least once a month or for every disposal made, records of which must be kept on file at the site camp for the duration of the construction period.

4.1.3. Management of waste storage areas

- The position of all waste storage areas must be located so as to ensure minimal degradation to the environment. The main waste storage area must have a suitable stormwater system separating clean and contaminated stormwater.
- » Collection bins placed around the site and at subcontractors' camps (if at a different location than the main site camp) must be maintained and emptied on a regular basis by the principal contractor to avoid overflowing receptacles.
- » Inspections and maintenance of the main waste storage area must be undertaken daily. Skips and storage containers must be clearly marked, or colour coded and well-maintained. Monitor for rodents and take corrective action if they become a problem.
- » Waste must be stored in designated containers and not on the ground.
- » Inspections and maintenance of bunds must be undertaken regularly. Bunds must be inspected for leaks or cracks in the foundation and walls.
- » It is assumed that any rainwater collected inside the bund is contaminated and must be treated by oil/water separation (or similar method) prior to dewatering, or removed and stored as hazardous waste, and not released into the environment.
- » If any leaks occur in the bund, these must be removed immediately.
- » Bund systems must be designed to avoid dewatering of contaminated water, but to rather separate oil and hydrocarbons from water prior to dewatering.
- » Following rainfall event bunds must always be dewatered in order to maintain a sufficient storage capacity in the event of a breach.
- » No mixing of hazardous and general waste is allowed.

4.1.4. Disposal

» Waste generated on site must be removed on a regular basis. This frequency may change during construction depending on waste volumes generated at different stages of the construction process,

however removal must occur prior to the storage capacity being reached to avoid overflow of containers and poor waste storage.

» Waste must be removed by a suitably qualified contractor and disposed of at an appropriately licensed landfill site. Proof of appropriate disposal must be provided by the contractor to the EO and ECO.

4.1.5. Record keeping

The success of the Waste Management Plan is determined by measuring criteria such as waste volumes, cost recovery from recycling and cost of disposal. Recorded data can indicate the effect of training and education, or the need for education. It will provide trends and benchmarks for setting goals and standards. It will provide clear evidence of the success or otherwise of the plan.

- » Documentation (waste manifest, certificate of issue or safe disposal) must be kept detailing the quantity, nature, and fate of any regulated waste for audit purposes.
- » Waste management must form part of the monthly reporting requirements in terms of volumes generated, types, storage and final disposal.

4.1.6. Training

Training and awareness regarding waste management shall be provided to all employees and contractors as part of the toolbox talks or on-site awareness sessions with the EO and at the frequency as set out by the ECO.

4.2. Operation phase

It is expected that the operation phase will result in the production of limited amounts of general waste consisting mostly of cardboard, paper, plastic, tins, metals, and a variety of synthetic compounds. Hazardous wastes (including grease, oils) will also be generated. All waste generated will be required to be temporarily stored at the facility in appropriate sealed containers prior to disposal at a permitted landfill site or other facilities.

The following waste management principles apply during the operation phase:

- » The SHE Manager must develop, implement, and maintain a waste inventory reflecting all waste generated during operation for both general and hazardous waste streams.
- » Adequate waste collection bins at site must be supplied. Separate bins should be provided for general and hazardous waste.
- » Recyclable waste must be removed from the waste stream and stored separately.
- » All waste must be stored in appropriate temporary storage containers (separated between different operation wastes, and contaminated or wet waste).
- » Waste storage shall be in accordance with all best-practice guidelines and under no circumstances may waste be burnt on site.
- » Waste generated on site must be removed on a regular basis throughout the operation phase.
- » Waste must be removed by a suitably qualified contractor and disposed at an appropriately licensed landfill site. Proof of appropriate disposal must be provided by the contractor and kept on site.

5. Monitoring of Waste Management Activities

Records must be kept of the volumes/ mass of the different waste streams that are collected from the site throughout the life of the project. The appointed waste contractor is to provide monthly reports to the operator containing the following information:

- » Monthly volumes/ mass of the different waste streams collected.
- » Monthly volumes/ mass of the waste that is disposed of at a landfill site;
- » Monthly volumes/ mass of the waste that is recycled; and
- » Data illustrating progress compared to previous months.

This report will aid in monitoring the progress and relevance of the waste management procedures that are in place. If it is found that the implemented procedures are not as effective as required, this WMP is to be reviewed and amended accordingly. This report must from part of the EO's reports to the ECO on a monthly basis.

APPENDIX I: EMERGENCY PREPARDENESS, RESPONSE AND FIRE MANAGEMENT PLAN

EMERGENCY PREPAREDNESS, RESPONSE AND FIRE MANAGEMENT PLAN

1. PURPOSE

The purpose of the Emergency Preparedness and Response Plan is:

- » To assist contractor personnel to prepare for and respond quickly and safely to emergency incidents, and to establish a state of readiness which will enable prompt and effective responses to possible events.
- » To control or limit any effect that an emergency or potential emergency may have on site or on neighbouring areas.
- » To facilitate emergency responses and to provide such assistance on the site as is appropriate to the occasion.
- » To ensure communication of all vital information as soon as possible.
- » To facilitate the reorganisation and reconstruction activities so that normal operations can be resumed.
- » To provide for training so that a high level of preparedness can be continually maintained.

This plan outlines response actions for potential incidents of any size. It details response procedures that will minimise potential health and safety hazards, environmental damage, and clean-up efforts. The plan has been prepared to ensure quick access to all the information required in responding to an emergency event. The plan will enable an effective, comprehensive response to prevent injury or damage to the construction personnel, public, and environment during the project. Contractors are expected to comply with all procedures described in this document. A Method Statement should be prepared at the commencement of construction detailing how this plan is to be implemented as well as details of relevant responsible parties for the implementation. The method statement must also reflect conditions of the IFC Performance Standard 1 and include the following:

- » Identification of areas where accidents and emergency situations may occur;
- » Communities and individuals that may be impacted;
- » Response procedure;
- » Provisions of equipment and resources;
- » Designation of responsibilities;
- » Communication; and
- » Periodic training to ensure effective response to potentially affected communities.

2. PROJECT-SPECIFIC DETAILS

The project site is located on a site located approximately 35km south-west of Richmond, and 80km southeast of Victoria West, within the Ubuntu Local Municipality and the Pixley Ka Seme District Municipality in the Northern Cape Province. The facility will have a contracted capacity of up to 100MW and will be known as the Moriri Solar PV Facility. The development envelope is ~577ha in extent and the development footprint is proposed to accommodate both the PV panels, as well as most of the associated infrastructure, which is required for such a facility, and will include:

» Solar PV array comprising PV modules and mounting structures.

- » Inverters and transformers.
- » Cabling between the panels.
- » 33/132kV onsite facility substation.
- » Cabling from the onsite substation to the collector substation (either underground or overhead).
- » Electrical and auxiliary equipment required at the collector substation that serves the solar energy facility, including switchyard/bay, control building, fences, etc.
- » Battery Energy Storage System (BESS).
- » Site offices and maintenance buildings, including workshop areas for maintenance and storage.
- » Laydown areas.
- » Access roads and internal distribution roads.

Due to the scale and nature of this development, it is anticipated that the following risks could potentially arises during the construction and operation phases:

- » Fires;
- » Leakage of hazardous substances;
- » Storage of flammable materials and substances;
- » Flood events;
- » Accidents; and
- » Natural disasters.

3. EMERGENCY RESPONSE PLAN

There are three levels of emergency as follows:

- » Local Emergency: An alert confined to a specific locality.
- » Site Emergency: An alert that cannot be localised and which presents danger to other areas within the site boundary or outside the site boundary.
- » Evacuation: An alert when all personnel are required to leave the affected area and assemble in a safe location.

If there is any doubt as to whether any hazardous situation constitutes an emergency, then it must be treated as an Evacuation.

Every effort must be made to control, reduce or stop the cause of any emergency provided it is safe to do so. For example, in the event of a fire, isolate the fuel supply and limit the propagation of the fire by cooling the adjacent areas. Then confine and extinguish the fire (where appropriate) making sure that re-ignition cannot occur.

3.1. Emergency Scenario Contingency Planning

3.1.1. Scenario: Spill which would result in the contamination of land, surface or groundwater

i. Spill Prevention Measures

Preventing spills must be the top priority at all operations which have the potential of endangering the environment. The responsibility to effectively prevent and mitigate any scenario lies with the Contractor

and the ECO. In order to reduce the risk of spills and associated contamination, the following principles should be considered during construction and operation activities:

- » All equipment refuelling, servicing and maintenance activities should only be undertaken within appropriately sealed/contained or bunded designated areas.
- » All maintenance materials, oils, grease, lubricants, etc. should be stored in a designated area in an appropriate storage container.
- » No refuelling, storage, servicing, or maintenance of equipment should take place within sensitive environmental resources in order to reduce the risk of contamination by spills.
- » No refuelling or servicing should be undertaken without absorbent material or drip pans properly placed to contain spilled fuel.
- » Any fluids drained from the machinery during servicing should be collected in leak-proof containers and taken to an appropriate disposal or recycling facility.
- » If these activities result in damage or accumulation of product on the soil, the contaminated soil must be disposed of as hazardous waste. Under no circumstances shall contaminated soil be added to a spoils pile and transported to a regular disposal site.
- » Chemical toilets used during construction must be regularly cleaned. Chemicals used in toilets are also hazardous to the environment and must be controlled. Portable chemical toilets could overflow if not pumped regularly or they could spill if dropped or overturned during moving. Care and due diligence should be taken at all times.
- » Contact details of emergency services and HazMat Response Contractors are to be clearly displayed on the site. All staff are to be made aware of these details and must be familiar with the procedures for notification in the event of an emergency.

ii. Procedures

The following action plan is proposed in the event of a spill:

- 1. Spill or release identified.
- 2. Assess person safety, safety of others and environment.
- 3. Stop the spill if safely possible.
- 4. Contain the spill to limit entering surrounding areas.
- 5. Identify the substance spilled.
- 6. Quantify the spill (under or over guideline/threshold levels).
- 7. Notify the Site Manager and emergency response crew and authorities (in the event of major spill).
- 8. Inform users (and downstream users) of the potential risk.
- 9. Clean up of the spill using spill kit or by HazMat team.
- 10. Record of the spill incident on company database.

a) Procedures for containing and controlling the spill (i.e., on land or in water)

Measures can be taken to prepare for quick and effective containment of any potential spills. Each contractor must keep sufficient supplies of spill containment equipment at the construction sites, at all times during and after the construction phase. These should include specialised spill kits or spill containment equipment. Other spill containment measures include using drip pans underneath vehicles and equipment every time refuelling, servicing, or maintenance activities are undertaken.

Specific spill containment methods for land and water contamination are outlined below.

Containment of Spills on Land

Spills on land include spills on rock, gravel, soil and/or vegetation. It is important to note that soil is a natural sorbent, and therefore spills on soil are generally less serious than spills on water as contaminated soil can be more easily recovered. It is important that all measures be undertaken to avoid spills reaching open water bodies. The following methods could be used:

- » Dykes Dykes can be created using soil surrounding a spill on land. These dykes are constructed around the perimeter or down slope of the spilled substance. A dyke needs to be built up to a size that will ensure containment of the maximum quantity of contaminant that may reach it. A plastic tarp can be placed on and at the base of the dyke such that the contaminant can pool up and subsequently be removed with sorbent materials or by pump into barrels or bags. If the spill is migrating very slowly, a dyke may not be necessary, and sorbents can be used to soak up contaminants before they migrate away from the source of the spill.
- » Trenches Trenches can be dug out to contain spills. Spades, pick axes or a front-end loader can be used depending on the size of the trench required. Spilled substances can then be recovered using a pump or sorbent materials.

b) Procedures for transferring, storing, and managing spill related wastes

Used sorbent materials are to be placed in plastic bags for future disposal. All materials mentioned in this section are to be available in the spill kits. Following clean up, any tools or equipment used must be properly washed and decontaminated or replaced if this is not possible.

Spilled substances and materials used for containment must be placed into empty waste oil containers and sealed for proper disposal at an approved disposal facility.

c) Procedures for restoring affected areas

Criteria that may be considered include natural biodegradation of oil, replacement of soil and revegetation. Once a spill of reportable size has been contained, the ECO and the relevant Authority must be consulted to confirm that the appropriate clean up levels are met.

3.1.2. Scenario: Fire (and fire water handling)

i. Action Plan

The following action plan is proposed in the event of a fire:

- 1. Quantify risk.
- 2. Assess person safety, safety of others and environment.
- 3. If safe attempt to extinguish the fire using appropriate equipment.
- 4. If not safe to extinguish, contain fire.
- 5. Notify Site Manager and emergency response crew and authorities.

- 6. Inform users of the potential risk of fire.
- 7. Record the incident on the company database or filing register.

ii. Procedures

Because large scale fires may spread very fast in the environment it is most advisable that the employee/contractor not put his/her life in danger in the case of an uncontrolled fire.

Portable firefighting equipment must be provided at strategic locations throughout the site, in line with the Building Code of South Africa and the relevant provincial building code. All emergency equipment including portable fire extinguisher, hose reels and hydrants must be maintained and inspected by a qualified contractor in accordance with the relevant legislation and national standards.

Current evacuation signs and diagrams for the building or site that are compliant to relevant state legislation must be provided in a conspicuous position, on each evacuation route. Contact details for the relevant emergency services should be clearly displayed on site and all employees should be aware of procedures to follow in the case of an emergency.

a) Procedures for initial actions

Persons should not fight the fire if any of the following conditions exist:

- » They have not been trained or instructed in the use of a fire extinguisher.
- » They do not know what is burning.
- » The fire is spreading rapidly.
- » They do not have the proper equipment.
- » They cannot do so without a means of escape.
- » They may inhale toxic smoke.

b) Reporting procedures

In terms of the requirements of NEMA, the responsible person must, within 14 days of the incident, report to the Director General, provincial head of department and municipality.

- » Report fire immediately to the site manager, who will determine if it is to be reported to the relevant emergency services and authorities.
- » The site manager must have copies of the Report form to be completed.

SUMMARY: RESPONSE PROCEDURE

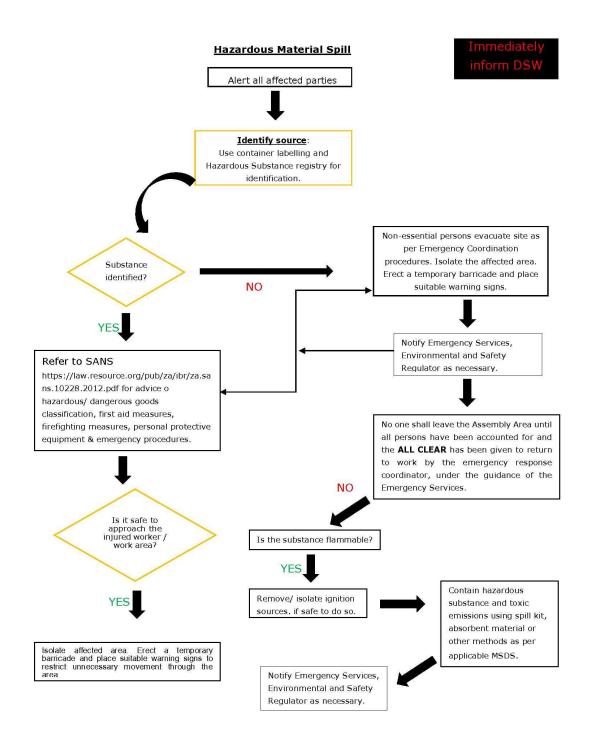


Figure 1: Hazardous Material Spill

Fire/Medical Emergency Situation

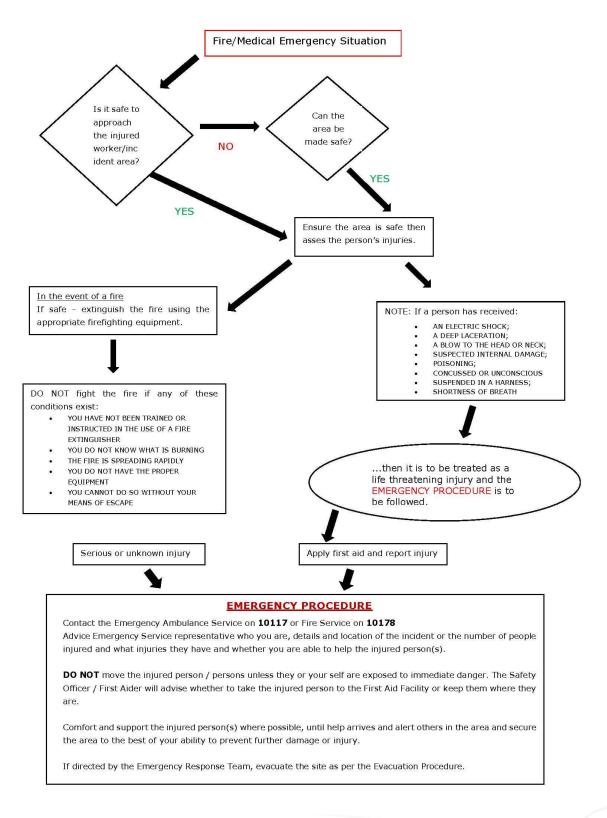


Figure 2: Emergency Fire/Medical

4. PROCEDURE RESPONSIBILITY

The Contractor's Safety, Health and Environment (SHE) Representative, employed by the Contractor, is responsible for managing the day-to-day on-site implementation of this EMPr, and for the compilation of regular (usually weekly) Monitoring Reports. In addition, the SHE must act as liaison and advisor on all environmental and related issues.

The local authorities will provide their assistance when deemed necessary, or when it has been requested and/or indicated in Section 30 (8) of NEMA. The provincial authority will provide assistance and guidance where required and conduct awareness programmes.

APPENDIX J: CURRICULCUM VITAE OF THE PROJECT TEAM

Email: joanne@savannahsa.com Tel: +27 (11) 656 3237

CURRICULUM VITAE OF JO-ANNE THOMAS

Profession:	Environmental Management and Compliance Consultant; Environmental Assessment
	Practitioner
Specialisation:	Environmental Management; Strategic environmental advice; Environmental compliance
	advice & monitoring; Environmental Impact Assessments; Policy, strategy & guideline
	formulation; Project Management; General Ecology
Work experience:	Twenty four (24) years in the environmental field

VOCATIONAL EXPERIENCE

Provide technical input for projects in the environmental management field, specialising in Strategic Environmental Advice, Environmental Impact Assessment studies, environmental auditing and monitoring, environmental permitting, public participation, Environmental Management Plans and Programmes, environmental policy, strategy and guideline formulation, and integrated environmental management. Key focus on integration of the specialist environmental studies and findings into larger engineering-based projects, strategic assessment, and providing practical and achievable environmental management solutions and mitigation measures. Responsibilities for environmental studies include project management (including client and authority liaison and management of specialist teams); review and manipulation of data; identification and assessment of potential negative environmental impacts and benefits; review of specialist studies; and the identification of mitigation measures. Compilation of the reports for environmental studies is in accordance with all relevant environmental legislation.

Undertaking of numerous environmental management studies has resulted in a good working knowledge of environmental legislation and policy requirements. Recent projects have been undertaken for both the public- and private-sector, including compliance advice and monitoring, electricity generation and transmission projects, various types of linear developments (such as National Road, local roads and power lines), waste management projects (landfills), mining rights and permits, policy, strategy and guideline development, as well as general environmental planning, development and management.

SKILLS BASE AND CORE COMPETENCIES

- Project management for a range of projects
- Identification and assessment of potential negative environmental impacts and benefits through the review and manipulation of data and specialist studies
- Identification of practical and achievable mitigation and management measures and the development of appropriate management plans
- Compilation of environmental reports in accordance with relevant environmental legislative requirements
- External and peer review of environmental reports & compliance advice and monitoring
- Formulation of environmental policies, strategies and guidelines
- Strategic and regional assessments; pre-feasibility & site selection
- Public participation processes for a variety of projects
- Strategic environmental advice to a wide variety of clients both in the public and private sectors
- Working knowledge of environmental planning processes, policies, regulatory frameworks and legislation

EDUCATION AND PROFESSIONAL STATUS

Degrees:

- B.Sc Earth Sciences, University of the Witwatersrand, Johannesburg (1993)
- B.Sc Honours in Botany, University of the Witwatersrand, Johannesburg (1994)
- M.Sc in Botany, University of the Witwatersrand, Johannesburg (1996)

Short Courses:

- Environmental Impact Assessment, Potchefstroom University (1998)
- Environmental Law, Morgan University (2001)
- Environmental Legislation, IMBEWU (2017)
- Mining Legislation, Cameron Cross & Associates (2013)
- Environmental and Social Risk Management (ESRM), International Finance Corporation (2018)

Professional Society Affiliations:

- Registered EAP with the Environmental Assessment Practitioners Association of South Africa (EAPASA) (2019/726)
- Registered with the South African Council for Natural Scientific Professions as a Professional Natural Scientist: Environmental Scientist (400024/00)
- Registered with the International Associated for Impact Assessment South Africa (IAIAsa): 5601
- Member of the South African Wind Energy Association (SAWEA)

EMPLOYMENT

Date	Company	Roles and Responsibilities
January 2006 - Current:	Savannah Environmental (Pty) Ltd	Director
		Project manager
		Independent specialist environmental consultant,
		Environmental Assessment Practitioner (EAP) and
		advisor.
1997 – 2005:	Bohlweki Environmental (Pty) Ltd	Senior Environmental Scientist at. Environmental
		Management and Project Management
January – July 1997:	Sutherland High School, Pretoria	Junior Science Teacher

PROJECT EXPERIENCE

Project experience includes large infrastructure projects, including electricity generation and transmission, wastewater treatment facilities, mining and prospecting activities, property development, and national roads, as well as strategy and guidelines development.

RENEWABLE POWER GENERATION PROJECTS: PHOTOVOLTAIC SOLAR ENERGY FACILITIES

Environmental Impact Assessments and Environmental Management Programmes

Project Name & Location	Client Name	Role
Christiana PV 2 SEF, North West	Solar Reserve South Africa	Project Manager & EAP
De Aar PV facility, Northern Cape	iNca Energy	Project Manager & EAP
Everest SEF near Hennenman, Free State	FRV Energy South Africa	Project Manager & EAP
Graafwater PV SEF, Western Cape	iNca Energy	Project Manager & EAP
Grootkop SEF near Allanridge, Free State	FRV Energy South Africa	Project Manager & EAP
Hertzogville PV 2 SEF with 2 phases, Free State	SunCorp / Solar Reserve	Project Manager & EAP

Project Name & Location	Client Name	Role
Karoshoek CPV facility on site 2 as part of the larger	FG Emvelo	Project Manager & EAP
Karoshoek Solar Valley Development East of		
Upington, Northern Cape		
Kgabalatsane SEF North-East for Brits, North West	Built Environment African	Project Manager & EAP
	Energy Services	
Kleinbegin PV SEF West of Groblershoop, Northern	MedEnergy Global	Project Manager & EAP
Саре		
Lethabo Power Station PV Installation, Free State	Eskom Holdings SoC Limited	Project Manager & EAP
Majuba Power Station PV Installation, Mpumalanga	Eskom Holdings SoC Limited	Project Manager & EAP
Merapi PV SEF Phase 1 – 4 South-East of Excelsior,	SolaireDirect Southern Africa	Project Manager & EAP
Free State		
Sannaspos Solar Park, Free State	SolaireDirect Southern Africa	Project Manager & EAP
Ofir-Zx PV Plant near Keimoes, Northern Cape	S28 Degrees Energy	Project Manager & EAP
Oryx SEF near Virginia, Free State	FRV Energy South Africa	Project Manager & EAP
Project Blue SEF North of Kleinsee, Northern Cape	WWK Development	Project Manager & EAP
S-Kol PV Plant near Keimoes, Northern Cape	S28 Degrees Energy	Project Manager & EAP
Sonnenberg PV Plant near Keimoes, Northern Cape	S28 Degrees Energy	Project Manager & EAP
Tutuka Power Station PV Installation, Mpumalanga	Eskom Transmission	Project Manager & EAP
Two PV sites within the Northern Cape	MedEnergy Global	Project Manager & EAP
Two PV sites within the Western & Northern Cape	iNca Energy	Project Manager & EAP
Upington PV SEF, Northern Cape	MedEnergy Global	Project Manager & EAP
Vredendal PV facility, Western Cape	iNca Energy	Project Manager & EAP
Waterberg PV plant, Limpopo	Thupela Energy	Project Manager & EAP
Watershed Phase I & II SEF near Litchtenburg, North	FRV Energy South Africa	Project Manager & EAP
West		
Alldays PV & CPV SEF Phase 1, Limpopo	BioTherm Energy	Project Manager & EAP
Hyperion PV Solar Development 1, 2, 3, 4, 5 & 6,	Building Energy	Project Manager & EAP
Northern Cape		
Vrede & Rondavel PV, Free State	Mainstream Renewable	Project Manager & EAP
	Energy Developments	

Basic Assessments

Project Name & Location	Client Name	Role
Aberdeen PV SEF, Eastern Cape	BioTherm Energy	Project Manager & EAP
Christiana PV 1 SEF on Hartebeestpan Farm, North-	Solar Reserve South Africa	Project Manager & EAP
West		
Heuningspruit PV1 & PV 2 facilities near Koppies,	Sun Mechanics	Project Manager & EAP
Free State		
Kakamas PV Facility, Northern Cape	iNca Energy	Project Manager & EAP
Kakamas II PV Facility, Northern Cape	iNca Energy	Project Manager & EAP
Machadodorp 1 PV SEF, Mpumalanga	Solar To Benefit Africa	Project Manager & EAP
PV site within the Northern Cape	iNca Energy	Project Manager & EAP
PV sites within 4 ACSA airports within South Africa,	Airports Company South Africa	Project Manager & EAP
National	(ACSA)	
RustMo1 PV Plant near Buffelspoort, North West	Momentous Energy	Project Manager & EAP
RustMo2 PV Plant near Buffelspoort, North West	Momentous Energy	Project Manager & EAP
RustMo3 PV Plant near Buffelspoort, North West	Momentous Energy	Project Manager & EAP
RustMo4 PV Plant near Buffelspoort, North West	Momentous Energy	Project Manager & EAP

Project Name & Location	Client Name	Role
Sannaspos PV SEF Phase 2 near Bloemfontein, Free	SolaireDirect Southern Africa	Project Manager & EAP
State		
Solar Park Expansion within the Rooiwal Power	AFRKO Energy	Project Manager & EAP
Station, Gauteng		
Steynsrus SEF, Free State	SunCorp	Project Manager & EAP
Sirius Solar PV Project Three and Sirius Solar PV	SOLA Future Energy	Project Manager & EAP
Project Four (BA in terms of REDZ regulations),		
Northern Cape		
Northam PV, Limpopo Province	Northam Platinum	Project Manager & EAP
Kolkies PV Suite (x 6 projects) and Sadawa PV Suite	Mainstream Renewable	Project Manager & EAP
(x 4 projects), Western Cape	Energy Developments	

Screening Studies

Project Name & Location	Client Name	Role
Allemans Fontein SEF near Noupoort, Northern Cape	Fusion Energy	Project Manager & EAP
Amandel SEF near Thabazimbi, Limpopo	iNca Energy	Project Manager & EAP
Arola/Doornplaat SEF near Ventersdorp, North West	FRV & iNca Energy	Project Manager & EAP
Bloemfontein Airport PV Installation, Free State	The Power Company	Project Manager & EAP
Brakspruit SEF near Klerksorp, North West	FRV & iNca Energy	Project Manager & EAP
Carolus Poort SEF near Noupoort, Northern Cape	Fusion Energy	Project Manager & EAP
Damfontein SEF near Noupoort, Northern Cape	Fusion Energy	Project Manager & EAP
Everest SEF near Welkom, Free State	FRV & iNca Energy	Project Manager & EAP
Gillmer SEF near Noupoort, Northern Cape	Fusion Energy	Project Manager & EAP
Grootkop SEF near Allansridge, Free State	FRV & iNca Energy	Project Manager & EAP
Heuningspruit PV1 & PV 2 near Koppies, Free State	Cronimat	Project Manager & EAP
Kimberley Airport PV Installation, Northern Cape	The Power Company	Project Manager & EAP
Kolonnade Mall Rooftop PV Installation in Tshwane,	Momentous Energy	Project Manager & EAP
Gauteng		
Loskop SEF near Groblersdal, Limpopo	S&P Power Unit	Project Manager & EAP
Marble SEF near Marble Hall, Limpopo	S&P Power Unit	Project Manager & EAP
Morgenson PV1 SEF South-West of Windsorton,	Solar Reserve South Africa	Project Manager & EAP
Northern Cape		
OR Tambo Airport PV Installation, Gauteng	The Power Company	Project Manager & EAP
Oryx SEF near Virginia, Free State	FRV & iNca Energy	Project Manager & EAP
Rhino SEF near Vaalwater, Limpopo	S&P Power Unit	Project Manager & EAP
Rustmo2 PV Plant near Buffelspoort, North West	Momentous Energy	Project Manager & EAP
Spitskop SEF near Northam, Limpopo	FRV & iNca Energy	Project Manager & EAP
Steynsrus PV, Free State	Suncorp	Project Manager & EAP
Tabor SEF near Polokwane, Limpopo	FRV & iNca Energy	Project Manager & EAP
UpingtonAirport PV Installation, Northern Cape	The Power Company	Project Manager & EAP
Valeria SEF near Hartebeestpoort Dam, North West	Solar to Benefit Africa	Project Manager & EAP
Watershed SEF near Lichtenburg, North West	FRV & iNca Energy	Project Manager & EAP
Witkop SEF near Polokwane, Limpopo	FRV & iNca Energy	Project Manager & EAP
Woodmead Retail Park Rooftop PV Installation, Gauteng	Momentous Energy	Project Manager & EAP

Environmental Compliance, Auditing and ECO

Project Name & Location	Client Name	Role
ECO and bi-monthly auditing for the construction of	Enel Green Power	Project Manager
the Adams Solar PV Project Two South of Hotazel,		P

Project Name & Location	Client Name	Role
Northern Cape		
ECO for the construction of the Kathu PV Facility,	REISA	Project Manager
Northern Cape		
ECO and bi-monthly auditing for the construction of	Enel Green Power	Project Manager
the Pulida PV Facility, Free State		
ECO for the construction of the RustMo1 SEF, North	Momentous Energy	Project Manager
West		
ECO for the construction of the Sishen SEF, Northern	Windfall 59 Properties	Project Manager
Саре		
ECO for the construction of the Upington Airport PV	Sublanary Trading	Project Manager
Facility, Northern Cape		
Quarterly compliance monitoring of compliance	REISA	Project Manager
with all environmental licenses for the operation		
activities at the Kathu PV facility, Northern Cape		
ECO for the construction of the Konkoonsies II PV SEF	BioTherm Energy	Project Manager
and associated infrastructure, Northern Cape		
ECO for the construction of the Aggeneys PV SEF	BioTherm Energy	Project Manager
and associated infrastructure, Northern Cape		

Compliance Advice and ESAP Reporting

Project Name & Location	Client Name	Role
Aggeneys Solar Farm, Northern Cape	BioTherm Energy	Environmental Advisor
Airies II PV Facility SW of Kenhardt, Northern Cape	BioTherm Energy	Environmental Advisor
Kalahari SEF Phase II in Kathu, Northern Cape	Engie	Environmental Advisor
Kathu PV Facility, Northern Cape	Building Energy	Environmental Advisor
Kenhardt PV Facility, Northern Cape	BioTherm Energy	Environmental Advisor
Kleinbegin PV SEF West of Groblershoop, Northern	MedEnergy	Environmental Advisor
Саре		
Konkoonises II SEF near Pofadder, Northern Cape	BioTherm Energy	Environmental Advisor
Konkoonsies Solar Farm, Northern Cape	BioTherm Energy	Environmental Advisor
Lephalale SEF, Limpopo	Exxaro	Environmental Advisor
Pixley ka Seme PV Park, South-East of De Aar,	African Clean Energy	Environmental Advisor
Northern Cape	Developments (ACED)	
RustMo1 PV Plant near Buffelspoort, North West	Momentous Energy	Environmental Advisor
Scuitdrift 1 SEF & Scuitdrift 2 SEF, Limpopo	Building Energy	Environmental Advisor
Sirius PV Plants, Northern Cape	Aurora Power Solutions	Environmental Advisor
Upington Airport PV Power Project, Northern Cape	Sublunary Trading	Environmental Advisor
Upington SEF, Northern Cape	Abengoa Solar	Environmental Advisor
Ofir-ZX PV SEF near Keimoes, Northern Cape	Networx \$28 Energy	Environmental Advisor
Environmental Permitting for the Steynsrus PV1 & PV2	Cronimet Power Solutions	Environmental Advisor
SEF's, Northern Cape		
Environmental Permitting for the Heuningspruit PV	Cronimet Power Solutions	Environmental Advisor
SEF, Northern Cape		

Due Diligence Reporting

Project Name & Location	Client Name	Role
5 PV SEF projects in Lephalale, Limpopo	iNca Energy	Environmental Advisor
Prieska PV Plant, Northern Cape	SunEdison Energy India	Environmental Advisor
Sirius Phase One PV Facility near Upington, Northern	Aurora Power Solutions	Environmental Advisor
Саре		

Project Name & Location	Client Name	Role
Biodiversity Permit & WULA for the Aggeneys SEF	BioTherm Energy	Project Manager & EAP
near Aggeneys, Northern Cape		
Biodiversity Permit for the Konkoonises II SEF near	BioTherm Energy	Project Manager & EAP
Pofadder, Northern Cape		
Biodiversity Permitting for the Lephalale SEF,	Exxaro Resources	Project Manager & EAP
Limpopo		
Environmental Permitting for the Kleinbegin PV SEF	MedEnergy	Project Manager & EAP
West of Groblershoop, Northern Cape		
Environmental Permitting for the Upington SEF,	Abengoa Solar	Project Manager & EAP
Northern Cape		
Environmental Permitting for the Kathu PV Facility,	Building Energy	Project Manager & EAP
Northern Cape		
Environmental Permitting for the Konkoonsies Solar	BioTherm Energy	Project Manager & EAP
Farm, Northern Cape		
Environmental Permitting for the Lephalale SEF,	Exxaro Resources	Project Manager & EAP
Limpopo		
Environmental Permitting for the Scuitdrift 1 SEF &	Building Energy	Project Manager & EAP
Scuitdrift 2 SEF, Limpopo		
Environmental Permitting for the Sirius PV Plant,	Aurora Power Solutions	Project Manager & EAP
Northern Cape		
Environmental Permitting for the Steynsrus PV1 & PV2	Cronimet Power Solutions	Project Manager & EAP
SEF's, Northern Cape		
Environmental Permitting for the Heuningspruit PV	Cronimet Power Solutions	Project Manager & EAP
SEF, Northern Cape		
Permits for the Kleinbegin and UAP PV Plants,	MedEnergy Global	Project Manager & EAP
Northern Cape		
\$53 Application for Arriesfontein Solar Park Phase 1 –	Solar Reserve / SunCorp	Project Manager & EAP
3 near Danielskuil, Northern Cape		
\$53 Application for Hertzogville PV1 & PV 2 SEFs, Free	Solar Reserve / SunCorp	Project Manager & EAP
State		
\$53 Application for the Bloemfontein Airport PV	Sublunary Trading	Project Manager & EAP
Facility, Free State		
\$53 Application for the Kimberley Airport PV Facility,	Sublunary Trading	Project Manager & EAP
Northern Cape		
\$53 Application for the Project Blue SEF, Northern	WWK Developments	Project Manager & EAP
Саре		
\$53 Application for the Upington Airport PV Facility,	Sublunary Trading	Project Manager & EAP
Free State		
WULA for the Kalahari SEF Phase II in Kathu, Northern	Engie	Project Manager & EAP
Cape		

Environmental Permitting, \$53, Water Use Licence (WUL), Waste Management Licence (WML) & Other Applications

RENEWABLE POWER GENERATION PROJECTS: CONCENTRATED SOLAR FACILITIES (CSP)

Environmental Impact Assessments and Environmental Management Programmes

Project Name & Location	Client Name	Role
llanga CSP 2, 3, 4, 5, 7 & 9 Facilities near Upington,	Emvelo Holdings	Project Manager & EAP
Northern Cape		
llanga CSP near Upington, Northern Cape	llangethu Energy	Project Manager & EAP

Project Name & Location	Client Name	Role
llanga Tower 1 Facility near Upington, Northern	Emvelo Holdings	Project Manager & EAP
Саре		
Karoshoek CPVPD 1-4 facilities on site 2 as part of	FG Emvelo	Project Manager & EAP
the larger Karoshoek Solar Valley Development East		
of Upington, Northern Cape		
Karoshoek CSP facilities on sites 1.4; 4 & 5 as part of	FG Emvelo	Project Manager & EAP
the larger Karoshoek Solar Valley Development East		
of Upington, Northern Cape		
Karoshoek Linear Fresnel 1 Facility on site 1.1 as part	FG Emvelo	Project Manager & EAP
of the larger Karoshoek Solar Valley Development		
East of Upington, Northern Cape		

Environmental Compliance, Auditing and ECO

Project Name & Location	Client Name	Role
ECO for the construction of the !Khi CSP Facility,	Abengoa Solar	Project Manager
Northern Cape		
ECO for the construction of the Ilanga CSP 1 Facility	Karoshoek Solar One	Project Manager
near Upington, Northern Cape		
ECO for the construction of the folar Park, Northern	Kathu Solar	Project Manager
Саре		
ECO for the construction of the KaXu! CSP Facility,	Abengoa Solar	Project Manager
Northern Cape		
Internal audit of compliance with the conditions of	Karoshoek Solar One	Project Manager
the IWUL issued to the Karoshoek Solar One CSP		
Facility, Northern Cape		

Screening Studies

Project Name & Location	Client Name	Role
Upington CSP (Tower) Plant near Kanoneiland,	iNca Energy and FRV	Project Manager & EAP
Northern Cape		

Compliance Advice and ESAP reporting

Project Name & Location	Client Name	Role
llanga CSP Facility near Upington, Northern Cape	llangethu Energy	Environmental Advisor
llangalethu CSP 2, Northern Cape	FG Emvelo	Environmental Advisor
Kathu CSP Facility, Northern Cape	GDF Suez	Environmental Advisor
Lephalale SEF, Limpopo	Cennergi	Environmental Advisor
Solis I CSP Facility, Northern Cape	Brightsource	Environmental Advisor

Environmental Permitting, \$53, Water Use Licence (WUL), Waste Management Licence (WML) & Other Applications

Project Name & Location	Client Name	Role
Environmental Permitting for the Ilanga CSP Facility	llangethu Energy	Project Manager & EAP
near Upington, Northern Cape		
Environmental Permitting for the Kathu CSP, Northern	GDF Suez	Project Manager & EAP
Саре		
WULA for the Solis I CSP Facility, Northern Cape	Brightsource	Project Manager & EAP

RENEWABLE POWER GENERATION PROJECTS: WIND ENERGY FACILITIES

Project Name & Location	Client Name	Role
Sere WEF, Western Cape	Eskom Holdings SoC Limited	EAP
Aberdeen WEF, Eastern Cape	Eskom Holdings SoC Limited	Project Manager & EAP
Amakhala Emoyeni WEF, Eastern Cape	Windlab Developments	Project Manager & EAP
EXXARO West Coast WEF, Western Cape	EXXARO Resources	Project Manager & EAP
Goereesoe Wind Farm near Swellendam, Western Cape	iNca Energy	Project Manager & EAP
Hartneest WEF, Western Cape	Juwi Renewable Energies	Project Manager & EAP
Hopefield WEF, Western Cape	Umoya Energy	EAP
Kleinsee WEF, Northern Cape	Eskom Holdings SoC Limited	Project Manager & EAP
Klipheuwel/Dassiesfontein WEF within the Overberg area, Western Cape	BioTherm Energy	Project Manager & EAP
Moorreesburg WEF, Western Cape	iNca Energy	Project Manager & EAP
Oyster Bay WEF, Eastern Cape	Renewable Energy Resources Southern Africa	Project Manager & EAP
Project Blue WEF, Northern Cape	Windy World	Project Manager & EAP
Rheboksfontein WEF, Western Cape	Moyeng Energy	Project Manager & EAP
Spitskop East WEF near Riebeeck East, Eastern Cape	Renewable Energy Resources Southern Africa	Project Manager & EAP
Suurplaat WEF, Western Cape	Moyeng Energy	Project Manager & EAP
Swellendam WEF, Western Cape	IE Swellendam	Project Manager & EAP
Tsitsikamma WEF, Eastern Cape	Exxarro	Project Manager & EAP
West Coast One WEF, Western Cape	Moyeng Energy	Project Manager & EAP

Environmental Impact Assessments and Environmental Management Programmes

Basic Assessments

Project Name & Location	Client Name	Role
Amakhala Emoyeni Wind Monitoring Masts, Eastern	Windlab Developments	Project Manager & EAP
Cape		
Beaufort West Wind Monitoring Masts, Western Cape	Umoya Energy	Project Manager & EAP
Hopefield Community Wind Farm near Hopefield,	Umoya Energy	Project Manager & EAP
Western Cape		
Koekenaap Wind Monitoring Masts, Western Cape	EXXARO Resources	Project Manager & EAP
Koingnaas WEF, Northern Cape	Just Palm Tree Power	Project Manager & EAP
Laingsburg Area Wind Monitoring Masts, Western	Umoya Energy	Project Manager & EAP
Саре		
Overberg Area Wind Monitoring Masts, Western	BioTherm Energy	Project Manager & EAP
Cape		
Oyster Bay Wind Monitoring Masts, Eastern Cape	Renewable Energy Systems	Project Manager & EAP
	Southern Africa (RES)	
Wind Garden & Fronteer WEFs, Eastern Cape	Wind Relc	Project Manager & EAP

Screening Studies

Project Name & Location	Client Name	Role
Albertinia WEF, Western Cape	BioTherm Energy	Project Manager & EAP
Koingnaas WEF, Northern Cape	Just Pal Tree Power	Project Manager & EAP
Napier Region WEF Developments, Western Cape	BioTherm Energy	Project Manager & EAP
Tsitsikamma WEF, Eastern Cape	Exxarro Resources	Project Manager & EAP

Project Name & Location	Client Name	Role
Various WEFs within an identified area in the	BioTherm Energy	Project Manager & EAP
Overberg area, Western Cape		
Various WEFs within an identified area on the West	Investec Bank Limited	Project Manager & EAP
Coast, Western Cape		
Various WEFs within an identified area on the West	Eskom Holdings Limited	Project Manager & EAP
Coast, Western Cape		
Various WEFs within the Western Cape	Western Cape Department of	Project Manager & EAP
	Environmental Affairs and	
	Development Planning	
Velddrift WEF, Western Cape	VentuSA Energy	Project Manager & EAP
Wind 1000 Project	Thabo Consulting on behalf of	Project Manager & EAP
	Eskom Holdings	
Wittekleibosch, Snylip & Doriskraal WEFs, Eastern	Exxarro Resources	Project Manager & EAP
Саре		

Environmental Compliance, Auditing and ECO

Project Name & Location	Client Name	Role
ECO for the construction of the West Coast One	Aurora Wind Power	Project Manager
WEF, Western Cape		
ECO for the construction of the Gouda WEF,	Blue Falcon	Project Manager
Western Cape		
EO for the Dassiesklip Wind Energy Facility, Western	Group 5	Project Manager
Саре		
Quarterly compliance monitoring of compliance	Blue Falcon	Project Manager
with all environmental licenses for the operation		
activities at the Gouda Wind Energy facility near		
Gouda, Western Cape		
Annual auditing of compliance with all	Aurora Wind Power	Project Manager
environmental licenses for the operation activities at		
the West Coast One Wind Energy facility near		
Vredenburg, Western Cape		
External environmental and social audit for the	Cennergi	Project Manager
Amakhala Wind Farm, Eastern Cape		
External environmental and social audit for the	Cennergi	Project Manager
Tsitsikamma Wind Farm, Eastern Cape		
ECO for the construction of the Excelsior Wind Farm	BioTherm Energy	Project Manager
and associated infrastructure, Northern Cape		
External compliance audit of the Dassiesklip Wind	BioTherm Energy	Project Manager
Energy Facility, Western Cape		

Compliance Advice

Project Name & Location	Client Name	Role
Amakhala Phase 1 WEF, Eastern Cape	Cennergi	Environmental Advisor
Dassiesfontein WEF within the Overberg area,	BioTherm Energy	Environmental Advisor
Western Cape		
Excelsior Wind Farm, Western Cape	BioTherm Energy	Environmental Advisor
Great Karoo Wind Farm, Northern Cape	African Clean Energy	Environmental Advisor
	Developments (ACED)	
Hopefield Community WEF, Western Cape	African Clean Energy	Environmental Advisor
	Developments (ACED)	

Rheboksfontein WEF, Western Cape	Moyeng Energy	Environmental Advisor
Tiqua WEF, Western Cape	Cennergi	Environmental Advisor
Tsitsikamma WEF, Eastern Cape	Cennergi	Environmental Advisor
West Coast One WEF, Western Cape	Moyeng Energy	Environmental Advisor

Due Diligence Reporting

Project Name & Location	Client Name	Role
Witteberg WEF, Western Cape	EDPR Renewables	Environmental Advisor
IPD Vredenburg WEF within the Saldanha Bay area,	IL&FS Energy Development	Environmental Advisor
Western Cape	Company	

Environmental Permitting, \$53, Water Use Licence (WUL), Waste Management Licence (WML) & Other Applications

Project Name & Location	Client Name	Role
Biodiversity Permitting for the Power Line between	Cennergi	Project Manager & EAP
the Tsitikamma Community WEF & the Diep River		
Substation, Eastern Cape		
Biodiversity Permitting for the West Coast One WEF,	Aurora Wind Power	Project Manager & EAP
Western Cape		
Environmental Permitting for the Excelsior WEF,	BioTherm Energy	Project Manager & EAP
Western Cape		
Plant Permits & WULA for the Tsitsikamma	Cennergi	Project Manager & EAP
Community WEF, Eastern Cape		
S24G and WULA for the Rectification for the	Hossam Soror	Project Manager & EAP
commencement of unlawful activities on Ruimsig AH		
in Honeydew, Gauteng		
S24G Application for the Rheboksfontein WEF,	Ormonde - Theo Basson	Project Manager & EAP
Western Cape		
\$53 Application & WULA for Suurplaat and Gemini	Engie	Project Manager & EAP
WEFs, Northern Cape		
\$53 Application for the Hopefield Community Wind	Umoya Energy	Project Manager & EAP
Farm near Hopefield, Western Cape		
\$53 Application for the Project Blue WEF, Northern	WWK Developments	Project Manager & EAP
Саре		
\$53 for the Oyster Bay WEF, Eastern Cape	RES	Project Manager & EAP
WULA for the Great Karoo Wind Farm, Northern	African Clean Energy	Project Manager & EAP
Саре	Developments (ACED)	

CONVENTIONAL POWER GENERATION PROJECTS (COAL)

Environmental Impact Assessments and Environmental Management Programmes

Project Name & Location	Client Name	Role
Mutsho Power Station near Makhado, Limpopo	Mutsho Consortium	Project Manager & EAP
Coal-fired Power Station near Ogies, Mpumalanga	Ruukki SA	Project Manager & EAP
Thabametsi IPP Coal-fired Power Station, near	Axia	Project Manager & EAP
Lephalale, Limpopo		
Transalloys Coal-fired Power Station, Mpumalanga	Transalloys	Project Manager & EAP
Tshivasho IPP Coal-fired Power Station (with WML),	Cennergi	Project Manager & EAP
near Lephalale, Limpopo		
Umbani Coal-fired Power Station, near Kriel,	ISS Global Mining	Project Manager & EAP
Mpumalanga		

Project Name & Location	Client Name	Role
Waterberg IPP Coal-Fired Power Station near	Exxaro Resources	Project Manager & EAP
Lephalale, Limpopo		

Basic Assessments

Project Name & Location	Client Name	Role
Coal Stockyard on Medupi Ash Dump Site, Limpopo	Eskom Holdings	Project Manager & EAP
Biomass Co-Firing Demonstration Facility at Arnot	Eskom Holdings	Project Manager & EAP
Power Station East of Middleburg, Mpumlanaga		

Screening Studies

Project Name & Location	Client Name	Role
Baseload Power Station near Lephalale, Limpopo	Cennergi	Project Manager & EAP
Coal-Fired Power Plant near Delmas, Mpumalanga	Exxaro Resources	Project Manager & EAP
Makhado Power Station, Limpopo	Mutsho Consortium, Limpopo	Project Manager & EAP

Environmental Compliance, Auditing and ECO

Project Name & Location	Client Name	Role
ECO for the Camden Power Station, Mpumalanga	Eskom Holdings	Project Manager

Compliance Advice

Project Name & Location	Client Name	Role
Thabametsi IPP Coal-fired Power Station, near	Axia	Environmental Advisor
Lephalale, Limpopo		

Environmental Permitting, \$53, Water Use Licence (WUL), Waste Management Licence (WML) & Other Applications

Project Name & Location	Client Name	Role
Permit application for the Thabametsi Bulk Water	Axia	Project Manager & EAP
Pipeline, near Lephalale, Limpopo		
\$53 & WULA for the Waterberg IPP Coal-Fired Power	Exxaro Resources	Project Manager & EAP
Station near Lephalale, Limpopo		
S53 Application for the Tshivasho Coal-fired Power	Cennergi	Project Manager & EAP
Station near Lephalale, Limpopo		

CONVENTIONAL POWER GENERATION PROJECTS (GAS)

Environmental Impact Assessments and Environmental Management Programmes

Project Name & Location	Client Name	Role
Ankerlig OCGT to CCGT Conversion project &400 kV	Eskom Holdings SoC Limited	Project Manager & EAP
transmission power line between Ankerlig and the		
Omega Substation, Western Cape		
Gourikwa OCGT to CCGT Conversion project &	Eskom Holdings SoC Limited	Project Manager & EAP
400kV transmission power line between Gourikwa &		
Proteus Substation, Western Cape		
Richards Bay Gas to Power Combined Cycle Power	Eskom Holdings SoC Limited	Project Manager & EAP
Station, KwaZulu-Natal		
Richards Bay Gas to Power Plant, KwaZulu-Natal	Richards Bay Gas Power 2	Project Manager & EAP
Decommissioning & Recommissioning of 3 Gas	Eskom Holdings	Project Manager & EAP
Turbine Units at Acacia Power Station & 1 Gas		
Turbine Unit at Port Rex Power Station to the existing		

Project Name & Location	Client Name	Role
Ankerlig Power Station in Atlantis Industria, Western		
Саре		
320MW gas-to-power station in Richards Bay, KwaZulu-Natal	Phinda Power Projects	Project Manager & EAP

Screening Studies

Project Name & Location	Client Name	Role
Fatal Flaw Analysis for 3 area identified for the	Globeleq Advisors Limited	Project Manager & EAP
establishment of a 500MW CCGT Power Station		
Richards Bay Gas to Power Combined Cycle Power	Eskom Holdings SoC Limited	Project Manager & EAP
Station, KwaZulu-Natal		

GRID INFRASTRUCTURE PROJECTS

Environmental Impact Assessments and Environmental Management Programmes

Project Name & Location	Client Name	Role
Aggeneis-Oranjemond Transmission Line &	Eskom Transmission	Project Manager & EAP
Substation Upgrade, Northern Cape		
Ankerlig-Omega Transmission Power Lines, Western	Eskom Transmission	Project Manager & EAP
Саре		
Karoshoek Grid Integration project as part of the	FG Emvelo	Project Manager & EAP
Karoshoek Solar Valley Development East of		
Upington, Northern Cape		
Koeberg-Omega Transmission Power Lines,, Western	Eskom Transmission	Project Manager & EAP
Саре		
Koeberg-Stikland Transmission Power Lines, Western	Eskom Transmission	Project Manager & EAP
Саре		
Kyalami Strengthening Project, Gauteng	Eskom Transmission	Project Manager & EAP
Mokopane Integration Project, Limpopo	Eskom Transmission	Project Manager & EAP
Saldanha Bay Strengthening Project, Western Cape	Eskom Transmission	Project Manager & EAP
Steelpoort Integration Project, Limpopo	Eskom Transmission	Project Manager & EAP
Transmission Lines from the Koeberg-2 Nuclear	Eskom Transmission	Project Manager & EAP
Power Station site, Western Cape		
Tshwane Strengthening Project, Phase 1, Gauteng	Eskom Transmission	Project Manager & EAP
Main Transmission Substation (MTS) associated with	Wind Relic	Project Manager & EAP
the Choje Wind Farm cluster, Eastern Cape		

Basic Assessments

Project Name & Location	Client Name	Role
Dassenberg-Koeberg Power Line Deviation from the	Eskom Holdings	Project Manager & EAP
Koeberg to the Ankerlig Power Station, Western		
Саре		
Golden Valley II WEF Power Line & Substation near	BioTherm Energy	Project Manager & EAP
Cookhouse, Eastern Cape		
Golden Valley WEF Power Line near Cookhouse,	BioTherm Energy	Project Manager & EAP
Eastern Cape		
Karoshoek Grid Integration project as part of the	FG Emvelo	Project Manager & EAP
Karoshoek Solar Valley Development East of		
Upington, Northern Cape		

Project Name & Location	Client Name	Role
Konkoonsies II PV SEF Power Line to the Paulputs	BioTherm Energy	Project Manager & EAP
Substation near Pofadder, Northern Cape		
Perdekraal West WEF Powerline to the Eskom Kappa	BioTherm Energy	Project Manager & EAP
Substation, Westnern Cape		
Rheboksfontein WEF Powerline to the Aurora	Moyeng Energy	Project Manager & EAP
Substation, Western Cape		
Soetwater Switching Station near Sutherland,	African Clean Energy	Project Manager & EAP
Northern Cape	Developments (ACED)	
Solis Power I Power Line & Switchyard Station near	Brightsource	Project Manager & EAP
Upington, Northern Cape		
Stormwater Canal System for the Ilanga CSP near	Karoshoek Solar One	Project Manager & EAP
Upington, Northern Cape		
Tsitsikamma Community WEF Powerline to the Diep	Eskom Holdings	Project Manager & EAP
River Substation, Eastern Cape		
Two 132kV Chickadee Lines to the new Zonnebloem	Eskom Holdings	Project Manager & EAP
Switching Station, Mpumalanga		
Electrical Grid Infrastructure for the Kolkies and	Mainstream Renewable	Project Manager & EAP
Sadawa PV clusters, Western Cape	Energy Developments	
Sadawa Collector substation, Western Cape	Mainstream Renewable	Project Manager & EAP
	Energy Developments	
Electrical Grid Infrastructure for the Vrede and	Mainstream Renewable	Project Manager & EAP
Rondavel PV facilities, Free State	Energy Developments	

Environmental Compliance, Auditing and ECO

Project Name & Location	Client Name	Role
ECO for the construction of the Ferrum-Mookodi	Trans-Africa Projects on behalf	Project Manager
Transmission Line, Northern Cape and North West	of Eskom	
EO for the construction of the Gamma-Kappa	Trans-Africa Projects on behalf	Project Manager
Section A Transmission Line, Western Cape	of Eskom	
EO for the construction of the Gamma-Kappa	Trans-Africa Projects on behalf	Project Manager
Section B Transmission Line, Western Cape	of Eskom	
EO for the construction of the Hydra IPP Integration	Trans-Africa Projects on behalf	Project Manager
project, Northern Cape	of Eskom	
EO for the construction of the Kappa-Sterrekus	Trans-Africa Projects on behalf	Project Manager
Section C Transmission Line, Western Cape	of Eskom	
EO for the construction of the Namaqualand	Trans-Africa Projects on behalf	Project Manager
Strengthening project in Port Nolloth, Western Cape	of Eskom	
ECO for the construction of the Neptune Substation	Eskom	Project Manager
Soil Erosion Mitigation Project, Eastern Cape		
ECO for the construction of the Ilanga-Gordonia	Karoshoek Solar One	Project Manager
132kV power line, Northern Cape		

Environmental Permitting, \$53, Water Use Licence (WUL), Waste Management Licence (WML) & Other Applications

Project Name & Location	Client Name	Role
Environmental Permitting and WULA for the	Eskom Holdings	Project Manager & EAP
Rockdale B Substation & Loop in Power Lines,		
Environmental Permitting and WULA for the	Eskom Holdings	Project Manager & EAP
Steelpoort Integration project, Limpopo		
Environmental Permitting for Solis CSP near Upington,	Brightsource	Project Manager & EAP
Northern Cape		

MINING SECTOR PROJECTS

Environmental Impact Assessments and Environmental Management Programmes

Project Name & Location	Client Name	Role
Elitheni Coal Mine near Indwe, Eastern Cape	Elitheni Coal	Project Manager & EAP
Groot Letaba River Development Project Borrow Pits	liso	Project Manager & EAP
Grootegeluk Coal Mine for coal transportation	Eskom Holdings	Project Manager & EAP
infrastructure between the mine and Medupi Power		
Station (EMPr amendment) , Limpopo		
Waterberg Coal Mine (EMPr amendment), Limpopo	Seskoko Resources	Project Manager & EAP
Aluminium Plant WML & AEL, Gauteng	GfE-MIR Alloys & Minerals	Project Manager & EAP

Basic Assessments

Project Name & Location	Client Name	Role
Rare Earth Separation Plant in Vredendal, Western	Rareco	Project Manager & EAP
Саре		
Decommissioning and Demolition of Kilns 5 & 6 at	PPC	Project Manager & EAP
the Slurry Plant, Kwa-Zulu Natal		

Environmental Compliance, Auditing and ECO

Project Name & Location	Client Name	Role
ECO for the construction of the Duhva Mine Water	Eskom Holdings SoC Limited	Project Manager
Recovery Project, Mpumalanga		
External compliance audit of Palesa Coal Mine's	HCI Coal	Project Manager
Integrated Water Use License (IWUL), near		
KwaMhlanga, Mpumalanga		
External compliance audit of Palesa Coal Mine's	HCI Coal	Project Manager
Waste Management License (WML) and EMP, near		
KwaMhlanga, Mpumalanga		
External compliance audit of Mbali Coal Mine's	HCI Coal	Project Manager
Integrated Water Use License (IWUL), near Ogies,		
Mpumalanga		
Independent External Compliance Audit of Water	Tronox Namakwa Sands	Project Manager
Use License (WUL) for the Tronox Namakwa Sands		
(TNS) Mining Operations (Brand se Baai), Western		
Саре		
Independent External Compliance Audit of Water	Tronox Namakwa Sands	Project Manager
Use License (WUL) for the Tronox Namakwa Sands		
(TNS) Mineral Separation Plant (MSP), Western Cape		
Independent External Compliance Audit of Water	Tronox Namakwa Sands	Project Manager
Use License (WUL) for the Tronox Namakwa Sands		
(TNS) Smelter Operations (Saldanha), Western Cape		
Compliance Auditing of the Waste Management	PetroSA	Project Manager
Licence for the PetroSA Landfill Site at the GTL		
Refinery, Western Cape		

Environmental Permitting, \$53, Water Use Licence (WUL), Waste Management Licence (WML) & Other Applications

Project Name & Location	Client Name	Role
Waste Licence Application for the Rare Earth	Rareco	Project Manager & EAP
Separation Plant in Vredendal, Western Cape		69

WULA for the Expansion of the Landfill site at Exxaro's	Exxaro Resources	Project Manager & EAP
Namakwa Sands Mineral Separation Plant, Western		
Cape		
S24G & WML for an Aluminium Plant, Gauteng	GfE-MIR Alloys & Minerals	Project Manager & EAP

INFRASTRUCTURE DEVELOPMENT PROJECTS (BRIDGES, PIPELINES, ROADS, WATER RESOURCES, STORAGE, ETC)

Environmental Impact Assessments and Environmental Management Programmes

Project Name & Location	Client Name	Role
Bridge across the Ngotwane River, on the border of South Africa and Botswana	Eskom Holdings	Project Manager & EAP
Chemical Storage Tanks, Metallurgical Plant Upgrade & Backfill Plant upgrade at South Deep Gold Mine, near Westornaria, Gauteng	Goldfields	Project Manager & EAP
Expansion of the existing Welgedacht Water Care Works, Gauteng	ERWAT	Project Manager & EAP
Golden Valley WEF Access Road near Cookhouse, Eastern Cape	BioTherm Energy	Project Manager & EAP
Great Fish River Wind Farm Access Roads and Watercourse Crossings near Cookhouse, Eastern Cape	African Clean Energy Developments (ACED)	Project Manager & EAP
llanga CSP Facility Watercourse Crossings near Upington, Northern Cape	Karoshoek Solar one	Project Manager & EAP
Modification of the existing Hartebeestfontein Water Care Works, Gautng	ERWAT	Project Manager & EAP
N10 Road Realignment for the Ilanga CSP Facility, East of Upington, Northern Cape	SANRAL	Project Manager & EAP
Nxuba (Bedford) Wind Farm Watercourse Crossings near Cookhouse, Eastern Cape	African Clean Energy Developments (ACED)	Project Manager & EAP
Pollution Control Dams at the Medupi Power Station Ash Dump & Coal Stockyard, Limpopo	Eskom	Project Manager & EAP
Qoboshane borrow pits (EMPr only), Eastern Cape	Emalahleni Local Municipality	Project Manager & EAP
Tsitsikamma Community WEF Watercourse Crossings, Eastern Cape	Cennergi	Project Manager & EAP
Clayville Central Steam Plant, Gauteng	Bellmall Energy	Project Manager & EAP
Msenge Emoyeni Wind Farm Watercourse Crossings and Roads, Eastern Cape	Windlab	Project Manager & EAP

Basic Assessments

Project Name & Location	Client Name	Role
Harmony Gold WWTW at Doornkop Mine, Gauteng	Harmony Doornkop Plant	Project Manager & EAP
Ofir-ZX Watercourse Crossing for the Solar PV Facility,	Networx S28 Energy	Project Manager & EAP
near Keimoes, Northern Cape		
Qoboshane bridge & access roads, Eastern Cape	Emalahleni Local Municipality	Project Manager & EAP
Relocation of the Assay Laboratory near	Sibanye Gold	Project Manager & EAP
Carletonville, Gauteng		
Richards Bay Harbour Staging Area, KwaZulu-Natal	Eskom Holdings	Project Manager & EAP
S-Kol Watercourse Crossing for the Solar PV Facility,	Networx S28 Energy	Project Manager & EAP
East of Keimoes, Northern Cape		
Sonnenberg Watercourse Crossing for the Solar PV	Networx S28 Energy	Project Manager & EAP
Facility, West Keimoes, Northern Cape		

Project Name & Location	Client Name	Role
Kruisvallei Hydroelectric Power Generation Scheme,	Building Energy	Project Manager & EAP
Free State		
Masetjaba Water Reservoir, Pump Station and Bulk	Naidu Consulting Engineers	Project Manager & EAP
Supply Pipeline near Nigel, Gauteng		
Access Road for the Dwarsug Wind Farm, Northern	South Africa Mainsteam	Project Manager & EAP
Cape Province	Renewable Power	

Screening Studies

Project Name & Location	Client Name	Role
Roodepoort Open Space Optimisation Programme (OSOP) Precinct, Gauteng	TIMAC Engineering Projects	Project Manager & EAP
Vegetable Oil Plant and Associated Pipeline, Kwa- Zulu Natal	Wilmar Oils and Fats Africa	Project Manager & EAP

Environmental Compliance, Auditing and ECO

Project Name & Location	Client Name	Role
ECO and bi-monthly auditing for the construction of	Department of Water and	Project Manager
the Olifants River Water Resources Development	Sanitation	Auditor
Project (ORWRDP) Phase 2A: De Hoop Dam, R555		
realignment and housing infrastructure		
ECO for the Rehabilitation of the Blaaupan & Storm	Airports Company of South	Project Manager
Water Channel, Gauteng	Africa (ACSA)	
Due Diligence reporting for the Better Fuel Pyrolysis	Better Fuels	Project Manager
Facility, Gauteng		
ECO for the Construction of the Water Pipeline from	Transnet	Project Manager
Kendal Power Station to Kendal Pump Station,		
Mpumalanga		
ECO for the Replacement of Low-Level Bridge,	South African National	Project Manager
Demolition and Removal of Artificial Pong, and	Biodiversity Institute (SANBI)	
Reinforcement the Banks of the Crocodile River at		
the Construction at Walter Sisulu National Botanical		
Gardens, Gauteng Province		
External Compliance Audit of the Air Emission	PetroSA	Project Manager
Licence (AEL) for a depot in Bloemfontein, Free		
State Province and in Tzaneen, Mpumalanga		
Province		

Environmental Permitting, \$53, Water Use Licence (WUL), Waste Management Licence (WML) & Other Applications

Project Name & Location	Client Name	Role
WULA for the Izubulo Private Nature Reserve,	Kjell Bismeyer, Jann Bader,	Project Manager & EAP
Limpopo	Laurence Saad	
WULA for the Masodini Private Game Lode, Limpopo	Masodini Private Game Lodge	Environmental Advisor
WULA for the Ezulwini Private Nature Reserve,	Ezulwini Investments	Project Manager & EAP
Limpopo		
WULA for the Masodini Private Game Lode, Limpopo	Masodini Private Game Lodge	Project Manager & EAP
WULA for the N10 Realignment at the Ilanga SEF,	Karoshoek Solar One	Project Manager & EAP
Northern Cape		
WULA for the Kruisvallei Hydroelectric Power	Building Energy	Project Manager & EAP
Generation Scheme, Free State		

Project Name & Location	Client Name	Role
S24G and WULA for the llegal construction of	Sorror Language Services	Project Manager & EAP
structures within a watercourse on EFF 24 Ruimsig		
Agricultural Holdings, Gauteng		

HOUSING AND URBAN PROJECTS

Basic Assessments

Project Name & Location	Client Name	Role
Postmasburg Housing Development, Northern Cape	Transnet	Project Manager & EAP

Compliance Advice and reporting

Project Name & Location	Client Name	Role
Kampi ya Thude at the Olifants West Game Reserve,	Nick Elliot	Environmental Advisor
Limpopo		
External Compliance Audit of WUL for the	Johannesburg Country Club	Project Manager
Johannesburg Country Club, Gauteng		

Environmental Compliance, Auditing and ECO

Project Name & Location	Client Name	Role
Due Diligence Audit for the Due Diligence Audit	Delta BEC (on behalf of	Project Manager
Report, Gauteng	Johannesburg Development	
	Agency (JDA))	

ENVIRONMENTAL MANAGEMENT TOOLS

Project Name & Location	Client Name	Role
Development of the 3rd Edition Environmental	Gauteng Department of	Project Manager & EAP
Implementation Plan (EIP)	Agriculture and Rural	
	Development (GDARD)	
Development of Provincial Guidelines on 4x4 routes,	Western Cape Department of	EAP
Western Cape	Environmental Affairs and	
	Development Planning	
Compilation of Construction and Operation EMP for	Eskom Holdings	Project Manager & EAP
the Braamhoek Transmission Integration Project,		
Kwazulu-Natal		
Compilation of EMP for the Wholesale Trade of	Munaca Technologies	Project Manager & EAP
Petroleum Products, Gauteng		
Operational Environmental Management	Eskom Holdings	Project Manager & EAP
Programme (OEMP) for Medupi Power Station,		
Limpopo		
Operational Environmental Management	Dube TradePort Corporation	Project Manager & EAP
Programme (OEMP) for the Dube TradePort Site		
Wide Precinct		
Operational Environmental Management	Eskom Holdings	Project Manager & EAP
Programme (OEMP) for the Kusile Power Station,		
Mpumalanga		
Review of Basic Assessment Process for the	Exxaro Resources	Project Manager & EAP
Wittekleibosch Wind Monitoring Mast, Eastern Cape		
Revision of the EMPr for the Sirius Solar PV	Aurora Power Solutions	Project Manager & EAP

Project Name & Location	Client Name	Role
State of the Environment (SoE) for Emalahleni Local	Simo Consulting on behalf of	Project Manager & EAP
Municipality, Mpumalanga	Emalahleni Local Municipality	
Aspects and Impacts Register for Salberg Concrete	Salberg Concrete Products	EAP
Products operations		
First State of Waste Report for South Africa	Golder on behalf of the	Project Manager & EAP
	Department of Environmental	
	Affairs	
Responsibilities Matrix and Gap Analysis for the	Building Energy	Project Manager
Kruisvallei Hydroelectric Power Generation Scheme,		
Free State Province		
Responsibilities Matrix and Gap Analysis for the	Building Energy	Project Manager
Roggeveld Wind Farm, Northern & Western Cape		
Provinces		

PROJECTS OUTSIDE OF SOUTH AFRICA

Project Name & Location	Client Name	Role
Advisory Services for the Zizabona Transmission	PHD Capital	Advisor
Project, Zambia, Zimbabwe, Botswana & Namibia		
EIA for the Semonkong WEF, Lesotho	MOSCET	Project Manager & EAP
EMP for the Kuvaninga Energia Gas Fired Power	ADC (Pty) Ltd	Project Manager & EAP
Project, Mozambique		
Environmental Screening Report for the SEF near	Building Energy	EAP
Thabana Morena, Lesotho		
EPBs for the Kawambwa, Mansa, Mwense and	Building Energy	Project Manager & EAP
Nchelenge SEFs in Luapula Province, Zambia		
ESG Due Diligence for the Hilton Garden Inn	Vatange Capital	Project Manager
Development in Windhoek, Namibia		
Mandahill Mall Rooftop PV SEF EPB, Lusaka, Zambia	Building Energy	Project Manager & EAP
Monthly ECO for the PV Power Plant for the Mocuba	Scatec	Project Manager
Power Station		

CURRICULUM VITAE OF RENDANI RASIVHETSHELE

Profession :	Environmental Assessment Practitioner		
Specialisation:	Environmental Impacts Assessments, Report writing		
Work Experience:	4 years' experience in Environmental Field		

VOCATIONAL EXPERIENCE

Professional execution of consulting services for various projects in the environmental management field, specialising in Environmental Impact Assessments studies, environmental permitting, public participation process, compilation of environmental management plans and programmes. Responsibilities include report writing, project management and coordination, environmental planning, stakeholder engagements, site inspections, reviews of specialist studies and identifications of potential negative environmental impacts and benefits,

SKILLS BASE AND CORE COMPETENCIES

- Interpretation of environmental regulations and compilation of Environmental Impact Assessments reports and associated environmental management programmes in accordance with the relevant environmental legislative requirements.
- Project management for a variety of projects
- Public participation process for a variety of projects
- Environmental planning

EDUCATION AND PROFESSIONAL STATUS

Degrees:

- B.Sc. (Hons) Environmental Management (2020), University of South Africa (UNISA)
- Bachelor of Environmental Science (2016), University of Venda (UNIVEN)

Short Courses:

- Introduction to SAMTRAC (2020) NOSA
- Introduction to EIA Report Writing (2020) IAIAsa

Professional Society Affiliations:

- Environmental Assessment Practitioners Association of South Africa Reg. EAP(EAPASA)- Reg No. 2019/1729
- International Association for Impact Assessment South Africa Full Member Reg No. 6534
- South African Council for natural Scientific Professionals Candidate Natural Scientist: Environmental Scientist Reg No. 116712

EMPLOYMENT

Date	Company	Roles and Responsibilities
May 2021 - Current:	Savannah Environmental (Pty) Ltd	Environmental Assessment Practitioner
		Tasks included: Compilation of Environmental Impact Assessment (EIA) reports, Basic Assessment (BA) reports and Environmental Management Programmes (EMPr), environmental Screening reports, co-ordinatinon of public participation process, Project management, Client liaison, Process EIA and amendments applications.
March 2021 – April 2021	JB Enviro Services (Pty) Ltd	Environmental Control Officer
		<u>Task included:</u> Maintaining the Environmental Management System to align with ISO14001 Standard, Conducting site visits and compiling site reports.
August 2018 – May 2020	LEAP Enviro (Imbrilinx cc)	Environmental Assessment Practitioner
		Tasks included: Compilation of Environmental Impact Assessment (EIA) reports, Basic Assessment (BA) reports and Environmental Management Programmes (EMPr), environmental Screening reports, co-ordinatinon of public participation process, Project management, Client and specialist liaison, Process EIA and amendments applications.
April 2016- July 2018	Mott Macdonald SA (Pty) Ltd	Assistant Environmental Consultant
		<u>Tasks included:</u> Assisting with public participation processes, environmental assessments, basic mapping, and field work.

PROJECT EXPERIENCE

Experience in conducting Environmental Impacts Assessments, public participation, and Environmental Management Programme, for residential developments, commercial developments, industrial upgrades, bulk services, and renewable energy projects (solar and wind). Responsibilities includes overall compilation of the report, specialists engagements, reviewing specialists reports and incorporating specialist studies into the Environmental Impact Assessment report and its associated Environmental Management Programme.

INFRASTRUCTURE DEVELOPMENT PROJECTS (PIPELINES, WATER RESOURCES, INDUSTRIAL)

Basic Assessments and Environmental Programmes

Project Name & Location	Client Name	Role
Diepsloot Klevebank, Sewer upgrade, Gauteng	Johannesburg water	Project Manager & EAP
Olivedale retirement village, dam rehabilitation, Gauteng	Olivedale Retirement Village	Project Manager & EAP

HOUSING AND URBAN PROJECTS

Environmental Impact Assessments and Environmental Management Programmes

Project Name & Location	Client Name	Role
Helderwyk Integrated Residential Project, Gauteng	Purple Moss 19(Pty) Ltd	EAP
Reigerpark Extension 10 mixed use Development, Gauteng	Living Africa 2 (Pty) Ltd	EAP
Dersley Springs, Gauteng	Royal Albertos Properties	EAP
Alliance Extension 4 & 5, Gauteng	New Canada	EAP
	Developments	

Basic Assessments and Environmental Programmes

Project Name & Location	Client Name	Role
Botesdal Commercial Development, Gauteng	Open Energy Innovations	Project Manager & EAP
Dark City/Poortjie Residential Development, Gauteng	City of Johannesburg	Project Manager & EAP
Matsamo Mall, Mpumalanga	Moolman Group	Project Manager & EAP
Clayville Extension 45 Mixed use development, Gauteng	Valuemax Midrand	EAP
Queenswood Extension 14, township establishment,	Skilpadrift Ontwikkeling	EAP
Gauteng		

RENEWABLE ENERGY PROJECTS

Basic Assessments

Project Name & Location	Client Name	Role
Redding Wind Energy Facility, Eastern Cape	Redding (Pty) Ltd	EAP
Aeoulus Wind Energy Facility, Eastern Cape	Aeoulus (Pty) Ltd	EAP
Woodhouse Grid Connection, North West	Genesis Eco Energy Developments	EAP

Part 2 amendments

Project Name & Location	Client Name	Role
Perdekraal West Wind Energy Facility, Western Cape	Biotherm	EAP
Poortjies Wind Energy Facility, Northern Cape	Mainstream	EAP
Loperberg Wind Energy Facility, Eastern Cape	Loperberg Wind Farm	EAP
Malabar Wind Energy Facility, Eastern Cape	Malabar Wind Farm	EAP
Spreeukloof Wind Energy Facility, Eastern Cape	Spreeukloof Wind Farm	EAP

Part 1 amendments

Project Name & Location	Client Name	Role	
Woodhouse Solar 1 PV, North West	Genesis Woodhouse Solar 1	EAP	

Woodhouse Solar 2 PV, North West	Genesis Woodhouse Solar 2	EAP

OTHER PROJECTS

Basic Assessments

Project Name & Location	Client Name	Role
Thokoza Park, Gauteng	City of Ekurhuleni municipality	EAP
Macsteel, Industrial upgrade, Gauteng	The insulation Company	EAP

Email: nicolene@savannahsa.com Tel: +27 (11) 656 3237

CURRICULUM VITAE OF NICOLENE VENTER

Profession :	Public Participation and Social Consultant
Specialisation:	Public participation process; stakeholder engagement; facilitation (workshops, focus group and public meetings; public open days; steering committees); monitoring and evaluation of public participation and stakeholder engagement processes
Work Experience:	23 years' experience as a Public Participation Practitioner and Stakeholder Consultant

VOCATIONAL EXPERIENCE

Over the past 23 years Nicolene established herself as an experienced and well recognised public participation practitioner, facilitator and strategic reviewer of public participation processes. She has experience in managing public participation and stakeholder engagement projects and awareness creation programmes. Her experience includes designing and managing countrywide public participation and stakeholder engagement projects and awareness creation projects, managing multiproject schedules, budgets and achieving project goals. She has successfully undertaken several public participation processes for EIA, BA and WULA projects. The EIA and BA process include linear projects such as the NMPP, Eskom Transmission and Distribution power lines as well as site specific developments such as renewable energy projects i.e. solar, photo voltaic and wind farms. She also successfully managed stakeholder engagement projects which were required to be in line with the Equator Principles, locally and in neighbouring countries.

SKILLS BASE AND CORE COMPETENCIES

- Project Management
- Public Participation, Stakeholder Engagement and Awareness Creation
- Public Speaking and Presentation Skills
- Facilitation (workshops, focus group meetings, public meetings, public open days, working groups and committees)
- Social Assessments (Stakeholder Analysis / Stakeholder Mapping)
- Monitoring and Evaluation of Public Participation and Stakeholder Engagement Processes
- Community Liaison
- IFC Performance Standards
- Equator Principles
- Minute taking, issues mapping, report writing and quality control

EDUCATION AND PROFESSIONAL STATUS

Degrees / Diplomas / Certificates:

• Higher Secretarial Certificate, Pretoria Technicon (1970)

Short Courses:

- Techniques for Effective Public Participation, International Association for Public Participation, IAP2 (2008)
- Foundations of Public Participation (Planning and Communication for Effective Public Participation), IAP2 (2009)
- Certificate in Public Participation IAP2SA Modules 1, 2 and 3 (2013)

Certificate in Public Relations, Public Relation Institute of South Africa, Damelin Management School (1989)

Professional Society Affiliations:

• Member of International Association for Public Participation (IAP2): Southern Africa

EMPLOYMENT

Date	Company	Roles and Responsibilities	
November 2018 – current	Savannah Environmental (Pty) Ltd	Public Participation and Social Consultant	
		<u>Tasks include:</u>	
		Tasks include: Drafting of a Public Participation Plan with key deliverable dates and methodology to be followed, Background Information Document, Letters to Stakeholders and Interested and/or Affected Parties (I&APs) inclusive of key project deliverables and responses to questions / concerns raised; Stakeholder identification; facilitating stakeholder workshops, focus group and public meetings; conduct one-on-one consultation with Community Leaders, Tribal Chiefs, affected landowners, etc.	
		Managing interaction between Stakeholders and Team Members, liaising with National, Provincial and Local Authorities, managing community consultation and communications in project affected areas, attend to the level of technical information communicated to and consultation with all level of stakeholders involved.	

Date	Company	Roles and Responsibilities
2016 – October 2018	Imaginative Africa (Pty) Ltd	Independent Consultant
	(Director of Imaginative Africa)	Consulting to various Environmental Assessment Practitioners for Public Participation and Stakeholder Engagements:
		<u>Tasks include:</u>
		Tasks include: Drafting of a Public Participation Plan with key deliverable dates and methodology to be followed, Background Information Document, Letters to Stakeholders and Interested and/or Affected Parties (I&APs) inclusive of key project deliverables and responses to questions / concerns raised; Stakeholder identification; facilitating stakeholder workshops, focus group and public meetings; conduct one-on-one consultation with Community Leaders, Tribal Chiefs, affected landowners, etc.
		Managing interaction between Stakeholders and Team Members, liaising with National, Provincial and Local Authorities, managing community consultation and communications in project affected areas, attend to the level of technical information communicated to and consultation with all level of stakeholders involved
		<u>Clients</u> :
		SiVEST Environmental Savannah Environmental Baagi Environmental Royal Haskoning DHV (previously SSI)
2013 - 2016	Zitholele Consulting	Senior Public Participation Practitioner and Project
	Contact person: Dr Mathys Vosloo	Manager
	Contact number: 011 207 2060	Tasks included: Project managed public participation process for EIA/BA/WULA/EAL projects. Manages two Public Participation Administrators. Public Participation tasks as outlined as above and including financial management of public participation processes.
2011 - 2013	Imaginative Africa (Pty) Ltd	Independent Consultant
	(company owned by Nicolene Venter)	Consulting to various Environmental Assessment Practitioners for Public Participation and Stakeholder Engagements
		Tasks included:
		Drafting of a Public Participation Plan with key deliverable dates and methodology to be followed, Background Information Document,

		Letters to Stakeholders and Interested and/or Affected Parties (I&APs) inclusive of key project deliverables and responses to questions / concerns raised; Stakeholder identification; facilitating stakeholder workshops, focus group and public meetings; conduct one-on-one consultation with Community Leaders, Tribal Chiefs, affected landowners, etc. Managing interaction between Stakeholders and Team Members, liaising with National, Provincial and Local Authorities, managing community consultation and communications in project affected areas, attend to the level of technical information communicated to and consultation with all level of stakeholders involved
		<u>Clients:</u> Bohlweki Environmental Bembani Sustainability (Pty) Ltd Naledzi Environmental
2007 – 2011	SiVEST SA (Pty) Ltd	Unit Manager: Public Participation Practitioner
	Contact person: Andrea Gibb	Tasks included:
	Contact number: 011 798 0600	Project managed public participation process for EIA/BA projects. Manages two Junior Public Participation Practitioners. Public Participation tasks as outlined as above and including financial management of public participation processes.
2005 – 2006	Imaginative Africa (Pty) Ltd	Independent Consultant
	(company owned by Nicolene Venter)	Public Participation and Stakeholder Engagement Practitioner
		Tasks included:
		Drafting of a Public Participation Plan with key deliverable dates and methodology to be followed, Background Information Document, Letters to Stakeholders and Interested and/or Affected Parties (I&APs) inclusive of key project deliverables and responses to questions / concerns raised; Stakeholder identification; facilitating stakeholder workshops, focus group and public meetings; conduct one-on-one consultation with Community Leaders, Tribal Chiefs, affected landowners, etc.
		Managing interaction between Stakeholders and Team Members, liaising with National, Provincial and Local Authorities, managing community consultation and communications in project affected areas, attend to the level of technical

		information communicated to and consultation with all level of stakeholders involved. <u>Clients:</u> Manyaka-Greyling-Meiring (previously Greyling Liaison and currently Golder Associates)
1997 - 2004	Imaginative Africa (Pty) Ltd (company owned by Nicolene Venter)	Independent Consultant: Public Participation Practitioner. <u>Tasks included:</u> Drafting of a Public Participation Plan with key deliverable dates and methodology to be followed, Background Information Document, Letters to Stakeholders and Interested and/or Affected Parties (I&APs) inclusive of key project deliverables and responses to questions / concerns raised; Stakeholder identification; facilitating stakeholder workshops, focus group and public meetings; conduct one-on-one consultation with Community Leaders, affected landowners, etc. Managing interaction between Stakeholders and Team Members, liaising with National, Provincial Local Authorities, managing community consultation and communications in project affected areas, attend to the level of technical information communicated to and consultation with all level of stakeholders involved. <u>Clients:</u> Greyling Liaison (currently Golder Associates); Bembani Sustainability (Pty) Ltd; Lidwala Environmental; Naledzi Environmental

PROJECT EXPERIENCE

RENEWABLE POWER GENERATION PROJECTS

PHOTOVOLTAIC SOLAR ENERGY FACILITIES

Environmental Impact Assessments and Environmental Management Programmes

Project Name & Location	Client Name	Role
Lichtenburg PVs (3 PVs) & Power Lines (grid	Atlantic Energy Partners	Project Manage the Public
connection), Lichtenburg, North West Province	EAP: Savannah Environmental	Participation Process
Allepad PVs 4 PVs) & Power Lines (grid	IL Energy	Facilitate all meetings
connection), Upington, Northern Cape Province	EAP: Savannah Environmental	Consultation with
		Government Officials, Key
Hyperion Solar PV Developments (4 PVs) and	Building Energy	Stakeholders, Landowners &
Associated Infrastructures, Kathu, Northern Cape	EAP: Savannah Environmental	Community Leaders
Province		
Aggeneys Solar PV Developments (2 PVs) and	Atlantic Energy Partners and	
Associated Infrastructures, Aggeneys, Northern	ABO Wind	
Cape Province	EAP: Savannah Environmental	
Upilanga Solar Park, Northern Cape (350MW CSP	Emvelo Capital Projects (Pty)	
Tower)	Ltd	
Khunab Solar Development, consisting of Klip Punt	Atlantic Energy Partners and	
PV1, McTaggarts PV1, McTaggarts PV2,	Abengoa	
McTaggarts PV3 and the Khunab solar Grid		
Connection near Upington, Northern Cape		
Province		
Sirius Solar PV3 and PV4, near Upington, Northern	Solal	
Cape Province		
Geelstert PV 1 and PV2 solar energy facilities, near	ABO Wind	
Aggeneys, Northern Cape		
Naledi PV and Ngwedi PV solar energy facilities,	Atlantic Energy Partners and	
near Upington, Northern Cape	Abengoa	
Kotulo Tsatsi PV1, Kotulo Tsatsi PV3 and Kotulo Tsatsi	Kotulo Tsatsi Energy	
PV4 solar energy facilities, near Kenhardt, Northern		
Саре		
Tlisitseng PV, including Substations & Power Lines,	BioTherm Energy	Public Participation,
Lichtenburg, North West Province	EAP: SIVEST	Landowner and Community
Sendawo PVs, including Substations & Power Lines,		Consultation
Vryburg, North West Province		
Helena Solar 1, 2 and 3 PVs, Copperton, Northern		
Cape Province		
Farm Spes Bona 23552 Solar PV Plants,	Surya Power	Public Participation,
Bloemfontein, Free State Province	EAP: SIVEST	Landowner and Community
		Consultation
De Aar Solar Energy Facility, De Aar, Northern	South Africa Mainstream	Public Participation,
Cape Province	Renewable Power	Landowner and Community
Droogfontein Solar Energy Facility, Kimberley,	Developments	Consultation
Northern Cape Province	EAP: SIVEST	
Kaalspruit Solar Energy Facility, Loeriesfontein,		
Northern Cape Province		

Platsjambok East PV, Prieska, Northern Cape Province		
Renosterburg PV, De Aar, Northern Cape Province	Renosterberg Wind Energy Company	Public Participation, Landowner and Community
19MW Solar Power Plant on Farm 198 (Slypklip), Danielskuil, Northern Cape Province	EAP: SiVEST Solar Reserve South Africa EAP: SiVEST	Consultation Public Participation, Landowner and Community
		Consultation

Basic Assessments and Environmental Management Programmes

Project Name & Location	Client Name	Role
Upilanga Solar Park, Northern Cape (x6 100MW PV's and x3 350MW PV Basic Assessments)	Emvelo Capital Projects (Pty) Ltd	Project Manage the Public Participation Process Facilitate all meetings
Sirius Solar PV Solar Energy Facility, Upington, Northern Cape Province	SOLA Future Energy	Consultation with Government Officials, Key Stakeholders, Landowners & Community Leaders
Khunab Solar Development, consisting of Klip Punt PV1, McTaggarts PV1, McTaggarts PV2, McTaggarts PV3 and the Khunab solar Grid Connection near Upington, Northern Cape Province	Atlantic Energy Partners and Abengoa	

WIND ENERGY FACILITIES

Environmental Impact Assessments and Environmental Management Programmes

Project Name & Location	Client Name	Role
Aletta Wind Farm, Copperton, Northern Cape	BioTherm Energy	Public Participation
Province	EAP: SIVEST	
Eureka Wind Farm, Copperton, Northern Cape		
Province		
Loeriesfontein Wind Farm, Loeriesfontein, Northern	South Africa Mainstream	Public Participation
Cape Province	Renewable Power	
Droogfontein Wind Farm, Loeriesfontein, Northern	Developments	
Cape Province	EAP: SIVEST	
Four Leeuwberg Wind Farms, Loeriesfontein,		
Northern Cape Province		
Noupoort Wind Farm, Noupoort, Northern Cape		
Province		
Mierdam PV & Wind Farm, Prieska, Northern Cape		
Province		
Platsjambok West Wind Farm & PV, Prieska,	1	
Northern Cape Province		

Basic Assessments and Environmental Management Programmes

Project Name & Location	Client Name	Role
Cluster of Renewable Energy Developments,	Wind Relic	
Eastern Cape Province		

Nama Wind Energy Facility, Northern Cape	Genesis ECO	Project Manage the Public
Province	EAP: Savannah Environmental	Participation Process
		Facilitate all meetings
	_	Consultation with
Zonnequa Wind Energy Facility, Northern Cape		Government Officials, Key
Province		Stakeholders, Landowners
		& Community Leaders

CONCENTRATED SOLAR FACILITIES (CSP)

Environmental Impact Assessments and Environmental Management Programmes

Project Name & Location	Client Name	Role
Upington Concentrating Solar Plant and associated	Eskom Holdings	Project Manage the Public
Infrastructures, Northern Cape Province	EAP: Bohlweki Environmental	Participation Process
		Facilitate all meetings
		Consultation with
		Government Officials, Key
		Stakeholders, Landowners
		& Community Leaders

CONVENTIONAL POWER GENERATION PROJECTS (GAS)

Environmental Impact Assessments and Environmental Management Programmes

Project Name & Location	Client Name	Role
450MW gas to power project and associated 132kV	Phinda Power Producers	Project Manage the Public
power line, Richards bay, KwaZulu-Natal		Participation Process
4000MW gas to power project and associated 400kV	Phinda Power Producers	Facilitate all meetings
power lines, Richards bay, KwaZulu-Natal		Consultation with
Richards Bay Gas to Power Combined Cycle Power	Eskom Holdings SoC Limited	Government Officials, Key
Station, KwaZulu-Natal		Stakeholders & Landowners

GRID INFRASTRUCTURE PROJECTS

Environmental Impact Assessments and Environmental Management Programmes

Project Name & Location	Client Name	Role
132/11kV Olifantshoek Substation and Power Line,	Eskom	Project Manage the Public
Northern Cape		Participation Process
Grid connection infrastructure for the Namas Wind	Genesis Namas Wind (Pty) Ltd	Facilitate all meetings
Farm, Northern Cape Province		Consultation with
Grid connection infrastructure for the Zonnequa	Genesis Zonnequa Wind (Pty)	Government Officials, Key
Wind Farm, Northern Cape Province	Ltd	Stakeholders, Landowners
Khunab Solar Grid Connection, near Upington,	Atlantic Energy Partners and	& Community Leaders
Northern Cape Province	Abengoa	
Pluto-Mahikeng Main Transmission Substation and	Eskom Holdings	
400kV Power Line (Carletonville to Mahikeng),	EAP: Baagi Environmental	
Gauteng and North West Provinces		
Thyspunt Transmission Lines Integration Project,	Eskom Holdings	Public Participation,
Eastern Cape Province	EAP: SIVEST	Landowner and
		Community Consultation
Westrand Strengthening Project, Gauteng Province		Public Participation,

Mookodi Integration Project, North-West Province		
Transnet Coallink, Mpumalanga and KwaZulu-Natal	-	
Provinces		
Delarey-Kopela-Phahameng Distribution power line		
and newly proposed Substations, North-West		Public Participation,
Province		Landowner and
Invubu-Theta 400kV Eskom Transmission Power Line,	Eskom Holding	Community Consultation
KwaZulu-Natal Province	EAP: Bembani Environmental	
Melkhout-Kudu-Grassridge 132kV Power Line	Eskom Holdings	Public Participation,
Project (project not submitted to DEA), Eastern	EAP: SIVEST	Landowner and
Cape Province		Community Consultation
Tweespruit-Welroux-Driedorp-Wepener 132Kv		
Power Line, Free State Province		
Kuruman 132Kv Power Line Upgrade, Northern	Eskom Holdings	
Cape Province	EAP: Zitholele	
Vaalbank 132Kv Power Line, Free State Province		
Pongola-Candover-Golela 132kV Power Line		
(Impact Phase), KwaZulu-Natal Province		

PART 2 AMENDMENTs

Project Name & Location	Client Name	Role
Transalloys Coal-Fired Power Station near	Transalloys (Pty) Ltd	Project Manage the Public
Emalahleni, Mpumalanga Province		Participation Process
Zen Wind Energy Facility, Western Cape	Energy Team (Pty) Ltd]
Hartebeest Wind Energy Facility, Western Cape	juwi Renewable Energies (Pty)	1
	Ltd	
Khai-Ma and Korana Wind Energy Facilities	Mainstream Renewable	1
	Power (Pty) Ltd	

FACILITATION

Project Name & Location	Client Name	Meeting Type
Bloemfontein Strengthening Project, Free State	Eskom Holdings	Public Meetings
Province	EAP: Baagi Environmental	
Mooidraai-Smitkloof 132kV Power Line and	Eskom Holdings	Focus Group Meetings
Substation, Northern Cape Province	EAP: SSI	
Aggeneis-Oranjemond 400kV Eskom Transmission	Eskom Holdings	Focus Group Meetings &
Power Line, Northern Cape Province	EAP: Savannah Environmental	Public Meetings
Ariadne-Eros 400kV/132kV Multi-Circuit Transmission	Eskom Holdings	Public Meetings
Power Line (Public Meetings)	EAP: ACER Africa	
Majuba-Venus 765kV Transmission Power Lines,		
Mpumlanaga Province		
Thabametsi IPP Power Station, Limpopo Province	Thabametsi Power Company	Focus Group Meeting &
	EAP: Savannah Environmental	Public Meeting
Aggeneis-Oranjemond Transmission Line &	Eskom Transmission	Focus Group Meetings &
Substation Upgrade, Northern Cape		Public Meetings

SCREENING STUDIES

Project Name & Location	Client Name	Role
Potential Power Line Alternatives from Humansdorp	Nelson Mandela Bay	Social Assessment
to Port Elizabeth, Eastern Cape Province	Municipality	
	EAP: SIVEST	

ASH DISPOSAL FACILITIES

Environmental Impact Assessments and Environmental Management Programmes

Project Name & Location	Client Name	Role
Medupi Flue Gas Desulphurisation Project (up to	Eskom Holdings SOC Ltd	Public Participation,
completion of Scoping Phase), Limpopo Province	EAP: Zitholele Consulting	Landowner and Community
Kendal 30-year Ash Disposal Facility, Mpumalanga		Consultation
Province		
Kusile 60-year Ash Disposal Facility, Mpumalanga		
Province		
Camden Power Station Ash Disposal Facility,		
Mpumalanga Province		
Tutuka Fabric Filter Retrofit and Dust Handling Plant	Eskom Holdings SOC Ltd	
Projects, Mpumalanga Province	EAP: Lidwala Environmental	
Eskom's Majuba and Tutuka Ash Dump Expansion,		
Mpumalanga Province		
Hendrina Ash Dam Expansion, Mpumalanga		
Province		

INFRASTRUCTURE DEVELOPMENT PROJECTS (BRIDGES, PIPELINES, ROADS, WATER RESOURCES, STORAGE, ETC)

Basic Assessments

Project Name & Location	<u>Client Name</u>	Role
Expansion of LOX and Diesel Storage at the Air Products Facility in Coega, Eastern Cape Transnet's New Multi-Products Pipeline traversing Kwa-Zulu Natal, Free State and Gauteng Provinces	Air Products South Africa (Pty) Ltd Transnet EAP: Bohlweki Environmental	Project Manage the Public Participation Process Facilitate all meetings Consultation with Government Officials, Key
		Stakeholders & Landowners
Realignment of the Bulshoek Dam Weir near Klawer and the Doring River Weir near Clanwilliam, Western Cape Province	Dept of Water and Sanitation EAP: Zitholele	Public Participation

STAKEHOLDER ENGAGEMENT

Project Name & Location	Client Name	Role
Socio-Economic Impact Study for the shutdown	Urban-Econ	Project Management for the
and repurposing of Eskom Power Stations: Komati		stakeholder engagement
Power Station, Hendrina Power Station & Grootvlei		with Community
Power Station		

		Representatives in the primary data capture area
First State of Waste Report for South Africa	Golder Associates on behalf of the Department of Environmental Affairs	Secretarial Services
Determination, Review and Implementation of the Reserve in the Olifants/Letaba System	Golder Associates on behalf of the Department of Water	
Orange River Bulk Water Supply System Levuvu-Letaba Resources Quality Objectives	and Sanitation	

FACILITATION

Project Name & Location	Client Name	Meeting Type
Determination, Review and Implementation of the	Department of Water and	Secretarial Services
Reserve in the Olifants/Letaba System	Sanitation	
Orange River Bulk Water Supply System	Golder Associates	Secretarial Services
Levuvu-Letaba Resources Quality Objectives		Secretarial Services
SmancorCR Chemical Plant (Public Meeting),	Samancor Chrome (Pty) Ltd	Public Meeting
Gauteng Province	EAP: Environment al Science	
	Associates	
SANRAL N4 Toll Highway Project (2 nd Phase),	Department of Transport	Public Meetings
Gauteng & North West Provinces	EAP: Bohlweki Environmental	

MINING SECTOR

Environmental Impact Assessment and Environmental Management Programme

Project Name & Location	Client Name	Role
Zero Waste Recovery Plant at highveld Steel,	Anglo African Metals	Public Participation
Mpumalanga Province	EAP: Savannah Environmental	
Koffiefontein Slimes Dam, Free State Province	Petra Diamond Mines	Public Participation
	EAP: Zitholele	
Baobab Project: Ethenol Plant, Chimbanje, Middle	Applicant: Green Fuel	Public Participation &
Sabie, Zimbabwe	EAP: SIVEST	Community Consultation
BHP Billiton Energy Coal SA's Middelburg Water	BHP Billiton Group	Public Participation
Treatment Plant, Mpumalanga	EAP: Jones & Wagener	

ENVIRONMENTAL AUTHORISATION AMENDMENTS

Project Name & Location	Client Name	Role
Transalloys Coal-Fired Power Station near	Transalloys (Pty) Ltd	Public Participation
Emalahleni, Mpumalanga Province		
Zen Wind Energy Facility, Western Cape	Energy Team (Pty) Ltd	
Hartebeest Wind Energy Facility, Western Cape	juwi Renewable Energies (Pty)	
	Ltd	
Khai-Ma and Korana Wind Energy Facilities	Mainstream Renewable	
	Power (Pty) Ltd	
Beaufort West 280MW Wind Farm into two 140MW	South Africa Mainstream	
Trakas and Beaufort West Wind Farms, Western	Renewable Power	
Саре	Developments	
	EAP: SIVEST	

SECTION 54 AUDITS

Project Name & Location	Client Name	Role
Mulilo 20MW PV Facility, Prieska, Northern Cape	Mulilo (Pty) Ltd	Public Participation:
Mulilo 10MW PV Facility, De Aar, Northern Cape	Mulilo (Pty) Ltd	I&AP Notification process
Karoshoek CSP 1 Facility/ Solar One, Upington,	Karoshoek Solar One (Pty) Ltd	
Northern Cape		

Heldervue+27 78 190 3316Somerset Westwerner@animalia-consult.co.zaCape Town 7130ID 8402275018083

Werner Cristiaan Marais

Summary of qualifications	2008 MSc (Biodiversity and Conservation) – Cum laude	University of Johannesburg
	2006 Hons (Biodiversity and Conservation)	University of Johannesburg
	2005 BSc (Zoology and Botany)	University of Johannesburg
Affiliations to professional bodies and societies	 Pr.Sci.Nat. – SACNASP (South African Council for in the field of Zoological Science, registration nu Serves on the steering committee panel of the S Assessment Association). Served on the research committee of the Gaute Interest Group (GNoRBIG). Served on the steering committee of the Zoolog Johannesburg. 	umber 400169/10. SABAA (South African Bat ang and Northern Regions Bat
Experience	2008 – Current Founder of Animalia Consultants Animalia has completed more than 500 special large-scale projects in the renewable energy consultants in the EIA process and energy fa under the supervision and lead of Werner Mara	ist reports and numerous rgy sector, as specialist acility operational phase,
	2015 – Current Founder of Lightbulb Innovation Lightbulb Innovation is developing new in invented by Werner Marais.	

2008 University of Johannesburg

- Sensitivity and biodiversity surveys of five caves in the Cradle of Humankind World Heritage Site (COHWHS) and Pretoria areas.
- Preliminary survey to investigate the correlation between insectivorous bats and prey insects in the Krugersdorp Game Reserve.

2007, 2008 Bertie van Zyl (Pty) Ltd. (ZZ2 Tomato Farms), UJ

Two-year project to research the biological pest control method of utilizing insectivorous bats in agriculture. Required to conduct an indepth study of bat (Microchiroptera) behavior and ecologically important factors.

2006 University of Johannesburg

Six-month survey of cave dwelling arthropods in the Cradle of Humankind World Heritage Site.

Additional:

- Invited by the EWT (Endangered Wildlife Trust) and ESSA (Exploration Society of Southern Africa) to deliver presentations on current ecological issues regarding bats and wind energy.
- Co-author for the: "South African Bat Fatality Threshold Guidelines for Operational Wind Energy Facilities – ed 1. South African Bat Assessment Association. Sept 2017"
- Co-author for the: "South African Good Practice Guidelines for Operational Monitoring of Bats at Wind Energy Facilities. First Edition July 2014"; and draft edition October 2019
- Contributing editor for the: "South African Good Practice Guidelines for Surveying Bats at Wind Energy Facility Developments – Preconstruction; Edition 4.1, 2017"
- As a co-author, received the Dow Greeff price for best annual scientific publication: "Die karst-ekologie van die Bakwenagrot (Gauteng)" published in the Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie, Vol. 31(1), 2012.

Presented the following papers at conferences:

- The potential of using insectivorous bats (Microchiroptera) as a means of insect pest control in agricultural areas. The Zoological Society of Southern Africa's 50th Anniversary Conference. July 2009.
- Inseketende vlermuise (Microchiroptera) en vlermuishuise in landbougebiede. Suid Afrikaanse Akademie vir Wetenskap en Kuns se 100 jaar Eufees kongres. October 2009.

Interviewed for two popular magazine articles on ecological aspects of biological pest control utilising bats; published in two consecutive issues of Farmers Weekly.

Education MSc (Biodiversity and Conservation)

- The potential of using insectivorous bats (Microchiroptera) as a means of insect pest control in agricultural areas – Passed with distinction
- Involved a large scale in-depth survey of the bat diversity in the Tzaneen and Waterpoort areas, Limpopo.
- Understanding and observing the biology and behavior of local bat species.
- > Designing and experimenting with artificial bat roosts.

Hons Biodiversity and Conservation

- Research project: Preliminary study of the terrestrial Arthropoda associated with caves of the Cradle of Humankind World Heritage Site – Passed with distinction
- Introduction to Environmental Management
- Herpetology
- Terrestrial and conservation ecology
- Resource management (incl. forestry, fire ecology, animal behavior)
- Practical fieldwork methodology (4X4, boat training and mapping)
- Mammalogy
- Population genetics and biosystematics
- > Philosophy and research methodology: Zoology Nature conservation
- Parasitology
- Molecular evolution

BSc Zoology and Botany

- > One-year course in animal diversity and identification
- Six-month course in basic and marine ecology
- Limnology and terrestrial ecology
- Coastal diversity excursion (Marine ecology)
- Introduction to SASS Freshwater pollution monitoring methodology
- > Applied freshwater ecotoxicology
- Waterborne diseases
- Integrated animal physiology and processes
- General parasitology
- Cytology
- Six-month course in the identification and diversity of South African flora
- Ethno and economical plants
- Biotechnology
- Plant physiology
- Plant pathology
- Cellular and molecular biology
- Introduction to organic and physical chemistry
- General chemistry
- Mineralogy and earth dynamics

Additional:

- Experienced report writing skills, sufficient computer skills.
- Bioacoustics analysis.
- Sufficient in GIS.
- Fall Arrest Technician and Rescue qualification (for working at heights).
- First Aid Level 1 and Basic Firefighting.
- Autodesk Inventor Fundamentals course, and 3D modeling skills.
- Intermediate 3D printing skills.
- Snake Identification and Handling Course.
- Multiple training courses in bat related topics Gauteng and Northern Regions Bat Interest Group (GNoRBIG).
- Advanced driving course in 4x4 off-road driving.
- Self-taught artist in the fine arts.
- Inventing, prototyping and product development skills.

Languages Afrikaans / English – Full professional proficiency in both.

References Dr Francois Durand – Karst ecologist and paleontologist. Pr.Sci.Nat.

(Zoology and Earth Sciences).

+27 83 235 7855 (011) 559 2456 Fax: (011) 559 2286 <u>francois_offcampus1@yahoo.com</u>

University of Johannesburg (Auckland Park Kingsway Campus), Auckland Park, Department of Zoology, PO Box 524.

Stephanie Dippenaar – Independent bat environmental consultant.

Pr.Sci.Nat. (Zoological Science).

+27 82 200 5244 steph.dippenaar@gmail.com

Stellenbosch Western Cape

Thank You

Andrew Husted M.Sc Aquatic Health (Pr Sci Nat)

Cell: +27 81 319 1225 Email: andrew@thebiodiversitycompany.com Identity Number: 7904195054081 Date of birth: 19 April 1979

Profile Summary

Extensive experience with many mining projects in South Africa, parts of Africa and also Europe, providing specialist input into ESHIAs and EMPs.

Considerable experience with the project management of national and international multidisciplinary projects.

Specialist guidance, support and facilitation for the compliance with legislative processes, in South Africa as well as with IFC and the Equator principles.

Expertise with Instream Flow and Ecological Water Requirements.

Provide specialist and technical input for faunal, aquatic ecology and wetland studies.

Areas of Interest

Mining, Renewable Energy & Infrastructure Development Projects, Sustainability and Conservation.

Publication of scientific journals and articles.

Key Experience

- Familiar with World Bank, Equator Principles and the International Finance Corporation requirements
- Environmental, Social and Health Impact Assessments (ESHIA)
- Environmental Management Programmes (EMP)
- Ecological Water Requirement determination experience
- Fish population structure assessments
- The use of macroinvertebrates to determine water quality
- Aquatic Ecological Assessments
- Aquaculture
- Monitoring Programmes

Countries worked in

Botswana Cameroon Democratic Republic of Congo Ghana Ivory Coast Liberia Mali Mozambique Republic of Armenia Senegal Sierra Leone South Africa

Nationality

South African

Qualifications

- MSc (University of Johannesburg) – Aquatic Health.
- BSc Honours (Rand Afrikaans University) – Aquatic Health
- BSc Natural Science
- Pr Sci Nat (400213/11)
- Certificate of Competence: Mondi Wetland Assessments
- Certificate of Competence: Wetland WET-Management
- SASS 5 Accredited Department of Water Affairs and Forestry for the River Health Programme
- EcoStatus application for rivers and streams

RELEVANT PROJECT EXPERIENCE

Project Name: The ecological constraints mapping and Critical Habitat re-evaluation for the Anadarko LNG project: Specialist Consultant to conduct Ecological Studies (Fauna and Habitat) and the delineation of wetland systems.

Client: Anadarko.

Personal position / role on project: Wetland Specialist.

Location: Afungi, Mozambique (2015).

Main project features: To identify and map the ecological constraints is to support contractor activities. To redefine the critical habitats within the project area

Project Name: A Joint Basin Survey of the Upper Orange, Lower Orange and Vaal catchments to determine the current status of the systems: Specialist Consultants to conduct Ecological Studies (Fish, Macroinvertebrate, Diatoms, Water Quality and Habitat) and report on the current status (defining system trends).

Client: ORASECOM.

Personal position / role on project: Specialist Ichthyologist.

Location: South Africa (including Namibia, Botswana & Lesotho) (2015).

Main project features: To determine the current status of the catchments and to discuss the temporal and spatial trends of the monitoring reaches.

Project Name: Ecological baseline assessment of local river systems for the Ntem Iron Ore Mine: Specialist Consultants to Undertake Baseline Studies (Fish, Macroinvertebrate, Water Quality and Habitat).

Client: IMIC.

Personal position / role on project: Senior Ichthyologist.

Location: Cameroon (2013).

Main project features: Establishment of the ecological baseline status and functioning assessment of the local river systems.

Project Name: Instream Flow Requirement determination study for the Kibali River hydropower project: Specialist Consultants to Undertake Baseline Studies (Flow, Water Quality and Geomorphology) and Instream Flow Requirement (IFR) Assessment.

Client: Randgold Resources.

Personal position / role on project: Ichthyologist and IFR.

Location: DRC (2012).

Main project features: Establishment of the ecological flow requirements of fishes within the Kibali River.

Project Name: Cost analysis, including the current and potential earing potential of an aquaculture facility: Specialist Consultants to determine the Cost (Current & Potential Earnings) and the Construction of an identical facility (Physical Costs).

Client: Goldtsone Resources.

Personal position / role on project: Ichthyologist.

Location: Ghana (2012).

Main project features: Conduct a detailed costs analysis of an aquaculture facility for the compensation for the removal of the operation.

Project Name: Instream Flow Requirement determination study for the Nzoro River hydropower project: Specialist Consultants to Undertake Baseline Studies (Flow, Water Quality and Geomorphology) and Instream Flow Requirement (IFR) Assessment.

Client: Randgold Resources.

Personal position / role on project: Ichthyologist and IFR. Location: DRC (2011).

Main project features: Establishment of the ecological flow requirements of fishes within the Nzoro River.

Project Name: Environmental study to establish the baseline biological and physical conditions of the Letsibogo Dam.

Client: European Union

Personal position / role on project: Ichthyologist.

Location: Selebi-Phikwe, Botswana (2007 - 2009).

Main project features: Evaluation of the existing fish communities within the Letsibogo Man-made lake with specific consideration of the threats of alien invasive fishes in the lake. The study resulted in the publication of two peer-reviewed papers titled: Comparative behavioural assessment of an established and a new Tigerfish *Hydrocynus vittatus* population in two man-made lakes in the Limpopo (O'Brien et al., 2013) and First observation of Africa Tigerfish (*Hydrocynus vittatus*) predating on Barn Swallows (*Hirundo rustica*) in flight (O'Brien et al., in press).

Project Name: Environmental and Social Impact Assessment of the Kazungula Bridge on the Zambezi River.

Client: Loci on behalf of the Government of Botswana.

Personal position / role on project: Ichthyologist.

Location: Botswana, Zambia, Namibia and Zimbabwe (2009-2010).

Main project features: Evaluation of the current ecological integrity status of various living and non-living components of the Zambezi River ecosystem and the potential ecological and social consequences of the construction and use of the Kazungula Bridge. The study showed that although water quality and habitat modification impacts will occur as a result of the construction and use of the bridge the long term impacts associated with the operation of the bridge should not result in any major impacts to the local aquatic ecosystem.

ACHIEVEMENTS

- Co-founded The Biodiversity Company in 2015 to provide scientific technical services and policy advice to various sectors.
- Successfully tasked by Digby Wells Environmental to establish and develop a company presence in the United Kingdom. This included the staffing and development of offices in London and Jersey.
- Designed and implemented numerous "specific" turnkey items for clients, these have included the design of plant nurseries, aquaculture projects, search and rescue of select flora, re-introduction of fish species into systems and tree marking and counting.
- Managed and developed the Biophysical Department at Digby Wells Environmental to consist of four specialist units, namely: Fauna & Flora, Pedology, Wetlands & Aquatics as well as Rehabilitation.
- The establishment and growth of the Rehabilitation Unit at Digby Wells Environmental which now
 offers specialist services for all levels of rehabilitation, from management plans, off-set strategies to
 implementation.

OVERVIEW

An overview of the specialist technical expertise include the following:

- Aquatic ecological state and functional assessments of rivers and dams.
- Instream Flow Requirement or Ecological Water Requirement studies for river systems.
- Ecological wetland assessment studies, including the integrity (health) and functioning of the wetland systems.
- Wetland offset strategy designs.
- Wetland rehabilitation plans.
- Monitoring plans for rivers and other wetland systems.
- Toxicity and metal analysis of water, sediment and biota.
- Bioaccumulation assessment of fish communities.

- Fish telemetry assessment that included the translocation of fish as well as the monitoring of fish in order to determine the suitability of the hosting system.
- Faunal surveys which includes mammals, birds, amphibians and reptiles.
- The design, compilation and implementation of Biodiversity and Land Management Plans and strategies.

TRAINING

Some of the more pertinent training undergone include the following:

- Wetland and Riparian Delineation Course for Consultants (Certificate of Competence) DWAF 2008
- The threats and impacts posed on wetlands by infrastructure and development: Mitigation and rehabilitation thereof – Gauteng Wetland Forum 2010
- Ecological State Assessment of Lentic Systems using Fish Population Dynamics University of Johannesburg/Rivers of Life 2010
- Soil Classification and Wetland Delineation Terra Soil Science 2010
- Wetland Rehabilitation Methods and Techniques Gauteng Wetland Forum 2011
- Application of the Fish Response Assessment Index (FRAI) and Macroinvertebrate Response Assessment Index (MIRAI) for the River Health Programme 2011
- Tools for a Wetland Assessment (Certificate of Competence) Rhodes University 2011

EMPLOYMENT EXPERIENCE

CURRENT EMPLOYMENT: The Biodiversity Company (December 2014 – Present)

I co-founded The Biodiversity Company in 2015, consisting of experienced ecologists who provide technical expertise and policy advice to numerous sectors, such as mining, agriculture, construction and natural resources. The team at The Biodiversity Company have conducted stand-alone specialist studies, and provided overall guidance of studies with a pragmatic approach for the management of biodiversity that takes into account all the relevant stakeholders, most importantly the environment that is potentially affected. We manage risks to the environment to reduce impacts with practical, relevant and measurable methods.

EMPLOYMENT: Digby Wells Environmental (October 2013 – December 2014)

Digby Wells assigned me to the role of Country Manager for the United Kingdom. This was a new endeavour for the company as the company's global footprint continues to increase. The primary responsibilities for the role included the following:

- Clint liaison to be able to interact more efficiently and personally with current mining clients, mining
 industry service providers, legal firms and banking institutions in order to introduce Digby Wells as a
 services provider with the aim of securing work.
- Project management for international projects which may require a presence in the United Kingdom, this was dependent on the location and needs of the client. These projects would mostly be based on the Equator Principles (EP) and International Finance Corporation (IFC) Performance Standards.
- Technical input to provide specialist technical expertise for projects, this included fauna, aquatic ecology, wetlands and rehabilitation. Continued with the design and implementation of Biodiversity and Land Management Plans to assist clients with managing the natural resources. Responsibilities also included the mentorship and management (including reviewing and guiding) other expertise such as flora, fauna and pedology.

EMPLOYMENT: Digby Wells Environmental (March 2012 – September 2013)

Manager of a multi-disciplinary department of scientists providing specialist services in support of national and international requirements as well as best practice guidelines, primarily focussing on the mining sector. In addition to managing the department, I was also expected to contribute specialist services, most notably focusing on water resources. Further responsibilities also included the management of numerous projects on a national or international scale. A general overview of the required responsibilities are as follows:

- Project management for single as well as multi-disciplinary studies on a national and international scale. This included legislation and commitments for the respective country being operated in, as well as included the World Bank (WB), EP and IFC requirements.
- Individual and/or team management in order to provide mentoring and supportive structures for development and growth in support of the company's strategic objectives.
- Scientific report writing to ensure that the relevant standards and requirements have been attained, namely local country legislation, as well as WB, EP and IFC requirements.
- **Report reviewing** in order to ensure compliance and consideration of relevant legislation and guidelines and also quality control.
- Specialist management to facilitate the collaboration and integration of specialist skills for the respective projects. This also included the development of Biodiversity and Land Management Plan for clients.
- Client Resource Manager for numerous clients in order to establish as well as maintain working relationships.

An overview of the tenure working with the company is provided below:

- October 2013 December 2014: London Operations Manager Deployed to establish a presence for the company (remote office) in the United Kingdom by means of generating project work to support the employment of staff and operation of a business structure.
- March 2012 September 2013: Biophysical Department Manager Responsible for the development and growth of the department to consist of four specialist units. This included the development of a new specialist unit, namely Rehabilitation.
- January 2011 February 2012: Ecological Unit Manager In addition to implementing aquatic and wetland specialist services, the role required the overall management of additional specialist services which included fauna & flora.
- June 2010 December 2010: Aquatic Services Manager This required the marketing and implementation of specialist programmes for the client base such as biomonitoring and wetland off-set strategies. In addition to this, this also included expanding on the existing skill set to include services such as toxicity, bioaccumulation and ecological flow assessments.
- August 2008: Aquatic ecologist Employed as a specialist to establish the aquatic services within the company. In addition to this, wetland specialist services were added to the existing portfolio.

PREVIOUS EMPLOYMENT: Econ@UJ (University of Johannesburg)

- June 2007 July 2008: Junior aquatic ecologist
 - o Researcher
 - Technical assistant for fieldwork
 - Reporting writing
 - Project management

GENERAL SKILLS

Literacy	Read, write and speak English fluently. Read, write and speak Afrikaans. Basic German.
Generic	Advanced user of Microsoft Office applications.
Mapping	Introductory skill level for ArcGIS and Quantum GIS.

ADDITIONAL EXPERIENCE

Compliance audits	Conducting site investigations in order to determine the level of
	compliance attained, ensuring that the client maintains an appropriate
	measure of compliance with environmental regulations by means of a

CURRICULUM VITAE: Andrew Husted

	legislative approach
Control officer	Acting as an independent Environmental Control Officer (ECO), acting as a quality controller and monitoring agent regarding all environmental concerns and associated environmental impacts
Screening studies	Project investigations in order to determine the level of complexity for the environmental and social studies required for a project. This is a form of risk assessment to guide the advancement of the project.
Public consultation	The provision of specialist input in order to communicate project findings as well as assist with providing feedback if and when required.
Water use licenses	Consultation with the relevant authorities in order to establish the project requirements, as well as provide specialist (aquatics/wetland) input for the application in order to achieve authorisation.
Closure	Primarily the review of closure projects, with emphasis on the closure cost calculations. Support was also provided by assisting with the measurements of structures during fieldwork.
Visual	The review of visual studies as well as the collation of field data to be considered for the visual interpretation for the project.

ACADEMIC QUALIFICATIONS

University of Johannesburg, Johannesburg, South Africa (2009): MAGISTER SCIENTIAE (MSc) - Aquatic Health:

Title: Aspects of the biology of the Bushveld Smallscale Yellowfish (Labeobarbus polylepis): Feeding biology and metal bioaccumulation in five populations.

Rand Afrikaans University (RAU), Johannesburg, South Africa (2004): BACCALAUREUS SCIENTIAE CUM HONORIBUS (Hons) – Zoology

Rand Afrikaans University (RAU), Johannesburg, South Africa (2001 - 2004): BACCALAUREUS SCIENTIAE IN NATURAL AND ENVIRONMENTAL SCIENCES. Majors: Zoology and Botany.

PUBLICATIONS

Tate RB and Husted, A. 2015. Aquatic Biomonitoring in the upper reaches of the Boesmanspruit, Carolina, Mpumalanga, South Africa. African Journal of Aquatic Science.

Tate RB and Husted A. 2013. Bioaccumulation of metals in *Tilapia zillii* (Gervai, 1848) from an impoundment on the Badeni River, Cote D'Iviore. African Journal of Aquatic Science.

O'Brien GC, Bulfin JB, Husted A. and Smit NJ. 2012. Comparative behavioural assessment of an established and new Tigerfish (*Hydrocynus vittatus*) population in two manmade lakes in the Limpopo catchment, Southern Africa. African Journal of Aquatic Science.

Tomschi, H, Husted, A, O'Brien, GC, Cloete, Y, Van Dyk C, Pieterse GM, Wepener V, Nel A and Reisinger U. 2009. Environmental study to establish the baseline biological and physical conditions of the Letsibogo Dam near Selebi Phikwe, Botswana. EC Multiple Framework Contract Beneficiaries.8 ACP BT 13 – Mining Sector (EDMS). Specific Contract N° 2008/166788. Beneficiary Country: Botswana. By: HPC HARRESS PICKEL CONSULT AG

Husted A. 2009. Aspects of the biology of the Bushveld Smallscale Yellowfish (*Labeobarbus polylepis*): Feeding biology and metal bioaccumulation in five populations. The University of Johannesburg (Thesis).

Curriculum vitae: Chris van Rooyen

Name	:	Chris van Rooyen
Profession/Specialisation	:	Avifaunal Specialist
Highest Qualification	:	LLB
Nationality	:	South African
Years of experience	:	19 years

Key Qualifications

Chris van Rooyen has twenty years' experience in the assessment of avifaunal interactions with industrial infrastructure. He was employed by the Endangered Wildlife Trust as head of the Eskom-EWT Strategic Partnership from 1996 to 2007, which has received international acclaim as a model of co-operative management between industry and natural resource conservation. He is an acknowledged global expert in this field and has consulted in South Africa, Namibia, Botswana, Lesotho, New Zealand, Texas, New Mexico and Florida. He also has extensive project management experience and he has received several management awards from Eskom for his work in the Eskom-EWT Strategic Partnership. He is the author and/or co-author of 17 conference papers, co-author of two book chapters, several research reports and the current best practice guidelines for avifaunal monitoring at wind farm sites. He has completed more than 100 power line assessments; and has to date been employed as specialist avifaunal consultant on more than 30 renewable energy generation projects. He has also conducted numerous risk assessments on existing power lines infrastructure. He also works outside the electricity industry and he has done a wide range of bird impact assessment studies associated with various residential and industrial developments (see key project experience below).

Key Project Experience

Bird Impact Assessment Studies for Solar Energy Plants:

- 1. Concentrated Solar Power Plant, Upington, Northern Cape.
- 2. De Aar and Droogfontein Solar PV Pre- and Post-construction avifaunal monitoring
- 3. JUWI Kronos PV project, Copperton, Northern Cape
- 4. Sand Draai CSP project, Groblershoop, Northern Cape (underway)
- 5. Biotherm Helena PV Project, Copperton, Northern Cape
- 6. Biotherm Letsiao CSP Propject, Aggenys, Northern Cape
- 7. Biotherm Enamandla PV Project, Aggenys, Northern Cape
- 8. Biotherm Sendawo PV Project, Vryburg, North-West
- 9. Biotherm Tlisitseng PV Project, Lichtenburg, North-West

Bird Impact Assessment Studies for the following overhead line projects:

- 1. Chobe 33kV Distribution line
- 2. Athene Umfolozi 400kV
- 3. Beta-Delphi 400kV
- 4. Cape Strengthening Scheme 765kV
- 5. Flurian-Louis-Trichardt 132kV
- 6. Ghanzi 132kV (Botswana)
- 7. Ikaros 400kV
- 8. Matimba-Witkop 400kV
- 9. Naboomspruit 132kV
- 10. Tabor-Flurian 132kV
- 11. Windhoek Walvisbaai 220 kV (Namibia)
- 12. Witkop-Overyssel 132kV
- 13. Breyten 88kV
- 14. Adis-Phoebus 400kV
- 15. Dhuva-Janus 400kV
- 16. Perseus-Mercury 400kV

17.	Gravelotte 132kV
18.	Ikaros 400 kV
19.	Khanye 132kV (Botswana)
20.	Moropule – Thamaga 220 kV (Botswana)
21.	Parys 132kV
22.	Simplon –Everest 132kV
23.	Tutuka-Alpha 400kV
24.	Simplon-Der Brochen 132kV
25.	Big Tree 132kV
26.	Mercury-Ferrum-Garona 400kV
27.	Zeus-Perseus 765kV
28.	Matimba B Integration Project
29.	Caprivi 350kV DC (Namibia)
30.	Gerus-Mururani Gate 350kV DC (Namibia)
31.	Mmamabula 220kV (Botswana)
32.	Steenberg-Der Brochen 132kV
33.	Venetia-Paradise T 132kV
34.	Burgersfort 132kV
35.	Majuba-Umfolozi 765kV
36.	Delta 765kV Substation
37.	Braamhoek 22kV
38.	Steelpoort Merensky 400kV
39.	Mmamabula Delta 400kV
40.	Delta Epsilon 765kV
41.	Gerus-Zambezi 350kV DC Interconnector: Review of proposed avian mitigation measures for the
40	Okavango and Kwando River crossings
42.	Giyani 22kV Distribution line
43.	Liqhobong-Kao 132/11kV distribution power line, Lesotho
44. 45.	132kV Leslie – Wildebeest distribution line
45. 46.	A proposed new 50 kV Spoornet feeder line between Sishen and Saldanha Cairns 132kv substation extension and associated power lines
40. 47.	Pimlico 132kv substation extension and associated power lines
47. 48.	Gyani 22kV
49.	Matafin 132kV
50.	Nkomazi_Fig Tree 132kV
51.	Pebble Rock 132kV
52.	Reddersburg 132kV
53.	Thaba Combine 132kV
54.	Nkomati 132kV
55.	Louis Trichardt – Musina 132kV
56.	Endicot 44kV
57.	Apollo Lepini 400kV
58.	Tarlton-Spring Farms 132kV
59.	Kuschke 132kV substation
60.	Bendstore 66kV Substation and associated lines
61.	Kuiseb 400kV (Namibia)
62.	Gyani-Malamulele 132kV
63.	Watershed 132kV
64.	Bakone 132kV substation
65.	Eerstegoud 132kV LILO lines
66.	Kumba Iron Ore: SWEP - Relocation of Infrastructure
67.	Kudu Gas Power Station: Associated power lines
68.	Steenberg Booysendal 132kV
69.	Toulon Pumps 33kV
70.	Thabatshipi 132kV
71.	Witkop-Silica 132kV
72.	Bakubung 132kV
73.	Nelsriver 132kV

73. Nelsriver 132kV

74.	Rethabiseng 132kV
75.	Tilburg 132kV
76.	GaKgapane 66kV
77.	Knobel Gilead 132kV
78.	Bochum Knobel 132kV
79.	Madibeng 132kV
80.	Witbank Railway Line and associated infrastructure
81.	Spencer NDP phase 2 (5 lines)
82.	Ákanani 132kV
83.	Hermes-Dominion Reefs 132kV
84.	Cape Pensinsula Strengthening Project 400kV
85.	Magalakwena 132kV
86.	Benficosa 132kV
87.	Dithabaneng 132kV
88.	Taunus Diepkloof 132kV
89.	Taunus Doornkop 132kV
90.	Tweedracht 132kV
91.	Jane Furse 132kV
92.	Majeje Sub 132kV
93.	Tabor Louis Trichardt 132kV
94.	Riversong 88kV
95.	Mamatsekele 132kV
96.	Kabokweni 132kV
97.	MDPP 400kV Botswana
98.	Marble Hall NDP 132kV
99.	Bokmakiere 132kV Substation and LILO lines
100.	Styldrift 132kV
101.	Taunus – Diepkloof 132kV
102.	Bighorn NDP 132kV
103.	Waterkloof 88kV
104.	Camden – Theta 765kV
105.	Dhuva – Minerva 400kV Diversion
106.	Lesedi –Grootpan 132kV
107.	Waterberg NDP
108.	Bulgerivier – Dorset 132kV
109.	Bulgerivier – Toulon 132kV
110.	Nokeng-Fluorspar 132kV
111.	Mantsole 132kV
112.	Tshilamba 132kV
113.	Thabamoopo - Tshebela – Nhlovuko 132kV
114.	Arthurseat 132kV
115.	Borutho 132kV MTS
116.	Volspruit - Potgietersrus 132kV
117.	Neotel Optic Fibre Cable Installation Project: Western Cape
117.	Matla-Glockner 400kV
118.	Delmas North 44kV
119.	Houwhoek 11kV Refurbishment
120.	Clau-Clau 132kV
120.	Ngwedi-Silwerkrans 134kV
121.	

- 122. Nieuwehoop 400kV walk-through
- Booysendal 132kV Switching Station 123.
- Tarlton 132kV 124.

Bird Impact Assessment Studies for the following residential and industrial developments:

- 1. Lizard Point Golf Estate
- 2. Lever Creek Estates
- 3. Leloko Lifestyle Estates

Chris van Rooyen Consulting

VAT#: 4580238113 email: vanrooyen.chris@gmail.com Tel: +27 (0)82 4549570 cell

- 4. Vaaloewers Residential Development
- 5. Clearwater Estates Grass Owl Impact Study
- 6. Sommerset Ext. Grass Owl Study
- 7. Proposed Three Diamonds Trading Mining Project (Portion 9 and 15 of the Farm Blesbokfontein)
- 8. N17 Section: Springs To Leandra "Borrow Pit 12 And Access Road On (Section 9, 6 And 28 Of The Farm Winterhoek 314 Ir)
- 9. South African Police Services Gauteng Radio Communication System: Portion 136 Of The Farm 528 Jq, Lindley.
- 10. Report for the proposed upgrade and extension of the Zeekoegat Wastewater Treatment Works, Gauteng.
- 11. Bird Impact Assessment for Portion 265 (a portion of Portion 163) of the farm Rietfontein 189-JR, Gauteng.
- 12. Bird Impact Assessment Study for Portions 54 and 55 of the Farm Zwartkop 525 JQ, Gauteng.
- 13. Bird Impact Assessment Study Portions 8 and 36 of the Farm Nooitgedacht 534 JQ, Gauteng.
- 14. Shumba's Rest Bird Impact Assessment Study
- 15. Randfontein Golf Estate Bird Impact Assessment Study
- 16. Zilkaatsnek Wildlife Estate
- 17. Regenstein Communications Tower (Namibia)
- 18. Avifaunal Input into Richards Bay Comparative Risk Assessment Study
- 19. Maquasa West Open Cast Coal Mine
- 20. Glen Erasmia Residential Development, Kempton Park, Gauteng
- 21. Bird Impact Assessment Study, Weltevreden Mine, Mpumalanga
- 22. Bird Impact Assessment Study, Olifantsvlei Cemetery, Johannesburg
- 23. Camden Ash Disposal Facility, Mpumalanga
- 24. Lindley Estate, Lanseria, Gauteng

Ongoing involvement in Bird Impact Assessment Studies for wind-powered generation facilities:

- 1. Eskom Klipheuwel Experimental Wind Power Facility, Western Cape
- 2. Mainstream Wind Facility Jeffreys Bay, Eastern Cape (EIA and monitoring)
- 3. Biotherm, Swellendam, (Excelsior), Western Cape (EIA and monitoring)
- 4. Biotherm, Napier, (Matjieskloof), Western Cape (pre-feasibility)
- 5. Windcurrent SA, Jeffreys Bay, Eastern Cape (2 sites) (EIA and monitoring)
- 6. Caledon Wind, Caledon, Western Cape (EIA)
- 7. Innowind (4 sites), Western Cape (EIA)
- 8. Renewable Energy Systems (RES) Oyster Bay, Eastern Cape (EIA and monitoring)
- 9. Oelsner Group (Kerriefontein), Western Cape (EIA)
- 10. Oelsner Group (Langefontein), Western Cape (EIA)
- 11. InCa Energy, Vredendal Wind Energy Facility Western Cape (EIA)
- 12. Mainstream Loeriesfontein Wind Energy Facility (EIA and monitoring)
- 13. Mainstream Noupoort Wind Energy Facility (EIA and monitoring)
- 14. Biotherm Port Nolloth Wind Energy Facility (Monitoring)
- 15. Biotherm Laingsburg Wind Energy Facility (EIA and monitoring)
- 16. Langhoogte Wind Energy Facility (EIA)
- 17. Vleesbaai Wind Energy Facility (EIA and monitoring)
- 18. St. Helena Bay Wind Energy Facility (EIA and monitoring)
- 19. Electrawind, St Helena Bay Wind Energy Facility (EIA and monitoring)
- 20. Electrawind, Vredendal Wind Energy Facility (EIA)
- 21. SAGIT, Langhoogte and Wolseley Wind Energy facilities
- 22. Renosterberg Wind Energy Project 12 month preconstruction avifaunal monitoring project (2014)
- 23. De Aar North (Mulilo) Wind Energy Project 12 month preconstruction avifaunal monitoring project (2014)
- 24. De Aar South (Mulilo) Wind Energy Project 12 month bird monitoring (2014)
- 25. Namies Aggenys Wind Energy Project 12 month bird monitoring (2014)
- 26. Pofadder Wind Energy Project 12 month bird monitoring (2014)
- 27. Dwarsrug Loeriesfontein Wind Energy Project 12 month bird monitoring (2014)
- 28. Waaihoek Utrecht Wind Energy Project 12 month bird monitoring (2014)
- 29. Amathole Butterworth Utrecht Wind Energy Project 12-month bird monitoring & EIA specialist

- 30. Noupoort East and West Wind Energy Projects 12-month bird monitoring & EIA specialist study (Innowind)
- 31. Beaufort West Wind Energy Facility 12-month bird monitoring & EIA specialist study (Mainstream)
- Leeuwdraai Wind Energy Facility 12-month bird monitoring & EIA specialist study (Mainstream) 32.
- Sutherland Wind Energy Facility 12-month bird monitoring (Mainstream) 33.
- 34. Maralla Wind Energy Facility 12-month bird monitoring & EIA specialist study (Biotherm)
- Esizavo Wind Energy Facility 12-month bird monitoring & EIA specialist study (Biotherm) 35.
- 36. Humansdorp Wind Energy Facility 12-month bird monitoring & EIA specialist study (Cennergi)
- 37. Aletta Wind Energy Facility 12-month bird monitoring & EIA specialist study (Biotherm)
- Eureka Wind Energy Facility 12-month bird monitoring & EIA specialist study (Biotherm) 38.
- 39. Makambako Wind Energy Faclity (Tanzania) 12-month bird monitoring & EIA specialist study (Windlab) study (underway)

Bird Impact Assessment Studies for Solar Energy Plants:

- 1. Concentrated Solar Power Plant, Upington, Northern Cape.
- 2. De Aar and Droogfontein Solar PV Pre- and Post-construction avifaunal monitoring
- 3. JUWI Kronos PV project, Copperton, Northern Cape
- 4. Sand Draai Solar project. Groblershoop, Northern Cape
- 5. Helena PV Project, Copperton, Northern Cape
- 6. Letsitsing Solar Project, Lichtenburg, North-West
- Sendawo Solar Project, Vryburg, North-West
 Letsoai Solar Project, Aggeneys Northern Cape
- 9. Enamandla Solar Project, Aggeneys, Northern Cape

Professional affiliations

I work under the supervision of and in association with Albert Froneman (SACNASP Zoological Science Registration number 400177/09) as stipulated by the Natural Scientific Professions Act 27 of 2003.

CURRICULUM VITAE LOURENS DU PLESSIS

PERSONAL INFORMATION AND CONTACT DETAILS

Name:	Lourens Martinus du Plessis
Date of birth:	1969-11-13
Marital status:	Married
Nationality:	South African
Profession/specialisation:	Geographer/environmental GIS specialist
Company:	MetroGIS (Pty) Ltd
Years with firm:	11 years
Position:	Director
Experience:	20 years
Postal address:	PO Box 384, La Montagne, 0184
Telephone/fax:	012 349 2884/5 (w) 082 922 9019 (cell) 012 349 2880 (fax)
E-mail:	lourens@metrogis.co.za

KEY QUALIFICATIONS AND EXPERIENCE

Primary function

The application of Geographic Information Systems (GIS) in environmental planning and management, impact assessments and spatial modeling.

Experience and expertise

- Data sourcing and acquisition
- Data capture
- Data evaluation
- Data conversion and transfer
- GIS database development, implementation and maintenance
- Spatial analysis/modelling (visibility, slope, aspect, shadow, surface, raster, proximity, etc.)
- Digital terrain/elevation modeling
- Terrain evaluation
- Image processing
- Impact assessment and impact management
- Environmental management
- Decision support systems interface development
- Project management
- Map production, display, queries and reporting
- Environmental sciences expertise
- Process development
- Visual impact assessment

Technological (software) expertise

- Arc/Info and ArcGIS
- ArcView
- PlanetGIS
- Vistapro (virtual landscape rendering software)
- Various GIS support software packages and applications
- Range of Microsoft standard applications (including Microsoft Word/Excel/Access, etc.)

Awards

Award:	Best South African Environmental Technical Paper			
Awarded for:	National Environmental Potential Atlas (ENPAT National)			
Awarded by:	Environmental Planning Professions Interdisciplinary Committee (EPPIC)			
Date:	1995			
Award: Awarded for: Awarded by: Date:				
Award:	Best Cartographic Map Gallery Competition - 3rd Place			
Awarded for:	Environmental Potential Atlas for South Africa (Publication)			
Awarded by:	Environmental Systems Research Institute (ESRI)			
Date:	1998 International ESRI User Conference			
Award:	QDC Performance Award			
Awarded for:	ENPAT Development			
Awarded by:	Q Data Consulting			
Date:	1998			
Award:	Best South African Environmental Technical Paper			
Awarded for:	Environmental Potential Atlas for South Africa (Publication)			
Awarded by:	Environmental Planning Professions Interdisciplinary Committee (EPPIC)			
Date:	1998			

Publications/maps featured in publications

Name:	Environmental Potential Atlas for South Africa
Authors:	W. van Riet, J. van Rensburg, P. Claassen, L. du Plessis and T. van Viegen
Publisher:	J.L. van Schaik
Date:	1997
Name:	ESRI Map Book (Volume 13)
Authors:	Various
Publisher:	Environmental Systems Research Institute (ESRI)
Date:	1998
Name:	Pilanesberg Official Map and Park Guide
Authors:	North-West Parks & Tourism Board and Jacana
Publisher:	Jacana Media (Pty) Ltd
Date:	2001
Name:	KwaZulu-Natal - A celebration of biodiversity
Authors:	Jacana
Publisher:	Jacana Media (Pty) Ltd
Date:	2001
Name:	Garden Route - Still Bay to Storms River (Discover the Magic)
Authors:	Jacana
Publisher:	Jacana Media (Pty) Ltd
Date:	2003
Newser	Louised and Knurger Quide

Name: Lowveld and Kruger Guide

Authors:	High Branching Team
Publisher:	Jacana Media (Pty) Ltd
Date:	2004
Name: Authors: Publisher: Date:	Heights to Homes to Oceans (H_2O) Water Wise information poster Rand Water Rand Water 2004
Name:	Kruger National Park Map and Photographic Guide
Authors:	Andy Tinker Photography
Publisher:	Andy Tinker Photography
Date:	2007

WORK EXPERIENCE/EMPLOYMENT DETAILS

GisLAB CC (Geographic Information Systems Laboratory - University of Pretoria)Period:4/1990 - 9/1997Position:Member / Project Manager

GISBS (Geographic Information Systems Business Solutions - Q Data Consulting)Period:10/1997 - 10/1999Position:Project Manager

MetroGIS (Pty) Ltd

Period:	11/1999 - to date
Position:	Director / Project Manager

EDUCATION/QUALIFICATIONS

Degree:BA (University of Pretoria) Geography and Anthropology (Majors)Other Subjects:Archaeology, Philosophy and Political ScienceDate Received:1993

PROJECTS SUMMARY

(A brief description of **some** prominent and relevant projects)

General projects

GIS mapping and database for Black Eagle habitats and flight patterns in the Karoo National Park

Environmental planning and development control schemes for the Drakensberg *Babangibone, Cathkin Peak and Garden Castle* development nodes

Goukou River (Stilbaai) Environmental Structure Plan

Conservation and open space proposals for the Umhlanga Forest

Grootvlei mine water pumping operation (Blesbokspruit sub-catchment)

GIS services for the Saldannah steel plant

ENPAT Provincial (1:250,000 scale GIS decision support systems) based on an inventory of environmental and socio-economic geographic data

- ENPAT Northern Province (Limpopo Province)
- ENPAT Mpumalanga
- ENPAT North-West

ENPAT Metropolitan (1:50,000 scale GIS decision support systems) containing environmental and socio-economic geographic data that were evaluated for conservation opportunities, development constraints and agricultural constraints

- ENPAT Gauteng
- ENPAT Cape Town
- ENPAT Durban Functional Region (DFR)
- ENPAT Bloemfontein/Botshabello
- ENPAT Port Elizabeth

ENPAT National (1:1,000,000 scale GIS decision support system) and ENPAT publication

Environmental Management Frameworks (EMF). Frameworks of spatially represented information connected to environmental management parameters designed to aid in the pro-active identification of potential conflict between development proposals and critical and/or sensitive environments

- EMF Northern Province (Limpopo Province)
- EMF Mpumalanga
- EMF North-West

Spatial Development Initiatives (SDI). The fast tracking of the EMF concept for priority SDI's

- Lubombo Corridor SDI
- Coega Industrial Development Zone (IDZ)
- Wild Coast SDI
- West Coast Investment Initiative

Sigma colliery: North-West strip operation

Development masterplan for the Tswaing Crater Museum

Conservation plan for the Rietvlei Nature Reserve

GIS services for the planning and management of the Chobe National Park (Botswana)

GIS services for an environmental overview of South Africa

Demarcation/delineation of regions in South Africa

Orange-Vaal (ORVAAL) transfer scheme - Caledon cascades scheme

ENPAT Provincial (1:250,000 scale GIS decision support systems) based on an inventory of environmental and socio-economic geographic data

- ENPAT Eastern Cape
- ENPAT Free State
- ENPAT Kwa-Zulu Natal

Environmental Management Frameworks (EMF). Frameworks of spatially represented information connected to environmental management parameters designed to aid in the pro-active

identification of potential conflict between development proposals and critical and/or sensitive environments

- EMF Eastern Cape
- EMF Free State
- EMF Kwa-Zulu Natal

Hennops River EMF (environmental inventory and management proposals in Centurion)

The Important Bird Areas (IBA) of South Africa map and database

Centurion Metropolitan Substructure Environmental Management Framework (EMF)

Alexandra renewal project EMF

Carbon Sinks and Sequestration - Eastern Cape Wild Coast. Information maps for the "Carbon Sinks - A Rehabilitation Option for South Africa's Natural Environment" report

Prince Edward and Marion Islands. Maps for the World Heritage Site (WHS) bid document

Theewaterskloof and Genadendal - Integrated spatial data management system

Gauteng Communication Network Strategy (GAUCONS). Environmental zones for the control of the construction of telecommunication structures

Gauteng Industries Buffer Zones. The mapping of industrial and mining activities, the creation of buffer control zones and the development of a GIS-based decision support system for the Gauteng Province

Limpopo National Park (LNP) Mozambique. Base maps for fieldwork and planning

Schmidtsdrift Environmental Management Program Report (EMPR)

Loch Vaal Environmental Management Framework (EMF)

Rustenburg - Strategic Environmental Assessment (SEA). The creation of environmental control zones, a GIS-based decision support system and information poster

Faerie Glen Nature Reserve Strategic Environmental Assessment (SEA)

Willow Quarries - Environmental Impact Assessment (EIA). Modeling of mining expansion plan and the potential impact on Golden Mole habitats

Ekurhuleni Metropolitan Municipality (EMM) Environmental Management Framework (EMF)

Limpopo - State of the Environment Report (SoER)

Windhoek (Namibia) - Environmental Structure Plan (ESP)

Gauteng Supplementation and Implemetation of EIA Regulations Project (EIA SIP)

Siyanda District Municipality Environmental Management Framework (EMF)

Olifants and Letaba River Catchments Environmental Management Framework (EMF)

Regional Strategic Environmental Assessments (Regional Assessments)

Regional assessment for the Eskom Wind Energy Facility (Sere) in the Western Cape

Regional assessments for the Eskom Wind Integration Project (WIP)

- Area 1: West Coast (Saldanha to Garies)
- Area 2: Overberg Region
- Area 3: Beaufort West region
- Area 4: Eastern Cape (Tsitsikamma to Port Elizabeth)
- Area 5: Northern Cape (Hondeklipbaai to Port Nolloth)

Sandveld wind energy Regional Assessment

West Coast National Park (Saldanha area) Regional Assessment

Regional Assessment for the Theewaterskloof Municipal area

Brand-se-Baai (Exxaro) wind energy regional assessment

Overberg (BioTherm) wind energy regional assessments

- Area 1: Gordons Bay to Pearly Beach)
- Area 2: Napier RA (Agulhas NP/Swellendal region)

Suurplaat/Sutherland (Investec Wind Energy Development) Regional Assessment

Waterberg (Limpopo) Concentrating Solar Power (CSP) Regional Assessment (Exxaro)

Visual Impact Assessments (VIA), viewshed analyses and visual assessments

Some recent or current projects include:

- Coal strip mining in Zimbabwe viewshed analyses
- Viewshed analyses and sensitivity mapping for telecommunication masts in the northern provinces (Limpopo, Mpumalanga and North-West)
- Siemens 3rd license cellular communications infrastructure EIAs. Viewshed analyses and sensitivity mapping for over 4,000 telecommunication mast sites in all major metropolitan areas of South Africa.
- CSIR high mast viewshed analysis and sensitivity mapping
- Atlantis Open Cycle Gas Turbine power station VIA
- Kynoch Gypsum Tailings dam extension VIA
- N1 Western Bypass Shell service station VIA
- Coega regional hazardous waste processing facility VIA
- Robinson Deep landfill extension VIA
- Hazardous waste blending platform VIA
- Mercury-Ferrum-Garona transmission line integration VIA
- Matimba B (Medupi) coal-fired power station VIA
- Concentrating Solar Power (CSP) plant in Upington VIA
- Zeus to Mercury transmission line (comparative viewshed analyses)
- Mmamabula (Botswana) transmission line and power station viewshed analyses
- Petronet new multi-products pipeline VIA
- Wind energy facility (Sere) in the Western Cape province VIA
- Ankerlig power station conversion and transmission line VIA
- Gourikwa power station conversion and transmission line VIA
- Kyalami strengthening project VIA
- Steelpoort integration project VIA
- Medupi reservoir and telecommunication mast VIA
- Cookhouse wind monitoring masts VIA for a Basic Assessment Report
- Hopefield wind monitoring masts VIA for a Basic Assessment Report
- Amakhala wind monitoring masts VIA for a Basic Assessment Report
- · Caledon, Worcester and Tulbach wind monitoring masts VIAs for Basic Assessment

Reports

- Overberg masts VIA for a Basic Assessment Report
- Britannia Bay wind monitoring mast VIA for a Basic Assessment Report
- Brand-se-Baai wind monitoring masts VIA for a Basic Assessment Report
- Deep River wind monitoring masts VIA for a Basic Assessment Report
- Happy Valley wind monitoring masts VIA for a Basic Assessment Report
- River Bank wind monitoring mast VIA for a Basic Assessment Report
- Uiekraal wind monitoring masts VIA for a Basic Assessment Report
- Beaufort West wind monitoring masts VIA for a Basic Assessment Report
- Laingsburg Wind monitoring masts VIA for a Basic Assessment Report
- Rheboksfontein, Suurplaat and West Coast wind monitoring masts VIAs for Basic Assessment Reports
- Cookhouse wind energy facility VIA
- Hopefield wind energy facility VIA
- Mokopane Integration Project VIA
- Cradle of Humankind World Heritage Site (WHS) viewshed protection zone, visual character assessment and visual zonation plan
- Proposed Indwe wind energy facility VIA
- Proposed Amakhala wind energy facility VIA
- Proposed Boontjieskraal wind energy facility VIA
- Proposed Britannia Bay wind energy facility VIA
- Proposed Brand-se-Baai wind energy facility VIA
- Proposed Upington and Pofadder solar thermal facilities VIAs
- Proposed Dorper wind energy facility VIA
- Proposed Flagging Trees wind energy facility VIA
- Proposed Rheboksfontein, Suurplaat and West Coast wind energy facilities VIAs
- Proposed Riverbank wind energy facility VIA
- Proposed Waterberg photovoltaic plant VIA
- Eskom wind intergration projects VIAs (current)
- Welgedacht water care works VIA

PROFESSIONAL AFFILIATIONS

Application for *Geographical Information Sciences (GISc) Professional Practitioner* submitted to (and currently under review by) The South African Council for Professional and Technical Surveyors (PLATO).

LANGUAGES

	Reading	Writing	Speaking
Afrikaans	Excellent	Excellent	Excellent
English	Excellent	Excellent	Excellent

Appendix 7: Curriculum vitae: Dr David Hoare

Education

Matric - Graeme College, Grahamstown, 1984 B.Sc (majors: Botany, Zoology) - Rhodes University, 1991-1993 B.Sc (Hons) (Botany) - Rhodes University, 1994 with distinction M.Sc (Botany) - University of Pretoria, 1995-1997 with distinction PhD (Botany) – Nelson Mandela Metropolitan University, Port Elizabeth

Main areas of specialisation

- Vegetation ecology, primarily in grasslands, thicket, coastal systems, wetlands.
- Plant biodiversity and threatened plant species specialist.
- Alien plant identification and control / management plans.
- Remote sensing, analysis and mapping of vegetation.
- Specialist consultant for environmental management projects.

Membership

Professional Natural Scientist, South African Council for Natural Scientific Professions, 16 August 2005 – present. Reg. no. 400221/05 (Ecology, Botany)

Member, International Association of Vegetation Scientists (IAVS)

Member, Ecological Society of America (ESA)

Member, International Association for Impact Assessment (IAIA)

Member, Herpetological Association of Africa (HAA)

Employment history

1 December 2004 – present, <u>Director</u>, David Hoare Consulting (Pty) Ltd. <u>Consultant</u>, specialist consultant contracted to various companies and organisations.

1January 2009 – 30 June 2009, Lecturer, University of Pretoria, Botany Dept.

1January 2013 – 30 June 2013, Lecturer, University of Pretoria, Botany Dept.

1 February 1998 – 30 November 2004, <u>Researcher</u>, Agricultural Research Council, Range and Forage Institute, Private Bag X05, Lynn East, 0039. Duties: project management, general vegetation ecology, remote sensing image processing.

Experience as consultant

Ecological consultant since 1995. Author of over 500 specialist ecological consulting reports. Wide experience in ecological studies within grassland, savanna and fynbos, as well as riparian, coastal and wetland vegetation.

SPECIALIST EXPERTISE

IRIS SIGRID WINK

Profession	Civil Engineer (Traffic & Transportation)
Position in Firm	Associate
Area of Specialisation	Manager: Traffic & Transportation Engineering
Qualifications	PrEng, MSc Eng (Civil & Transportation)
Years of Experience	19 Years
Years with Firm	9 Years

SUMMARY OF EXPERIENCE

Iris is a Professional Engineer registered with ECSA (20110156). She joined JG Afrika (Pty) Ltd. in 2012. Iris obtained a Master of Science degree in Civil Engineering in Germany and has more than 15 years of experience in a wide field of traffic and transport engineering projects. Iris left Germany in 2003 and has worked as a traffic and transport engineer in South Africa and Germany. She has technical and professional skills in traffic impact studies, public transport planning, non-motorised transport planning and design, design and development of transport systems, project planning and implementation for residential, commercial and industrial projects and providing conceptual designs for the abovementioned. She has also been involved with transport assessments for renewable energy projects and traffic safety audits.

PROFESSIONAL REGISTRATIONS & INSTITUTE MEMBERSHIPS

- **PrEng** -Registered with the Engineering Council of South Africa No. 20110156 -Registered Mentor with ECSA for the Cape Town Office of JG Afrika
- **MSAICE** -Member of the South African Institution of Civil Engineers
- ITSSA -Member of ITS SA (Intelligent Transport Systems South Africa)
- **SAWEA** -Member of the South African Wind Energy Association
- SARF -South African Road Federation: Committee Member of Council
- SARF WR SARF Western Region Committee Member
- SARF RSC Road Safety Committee Member
- IRF Global Road Safety Audit Team Leader with the International Road Federation (IRF)

EDUCATION

- 1996 Matric Matric (Abitur) Carl Friedrich Gauss Schule, Hemmingen, Germany
- **1998 Diploma** as Draughtsperson Lower Saxonian State Office for Road and Bridge Engineering
- 2003 MSc Eng (Civil and Transportation) Leibniz Technical University of Hanover, Germany

SPECIFIC EXPERIENCE

JG Afrika (Pty) Ltd (Previously Jeffares & Green (Pty) Ltd) 2016 – Date Position – Associate

- Rondekop Windfarm Transport study for the proposed Kudusberg Windfarm near Sutherland, Northern Cape – Client: G7 Renewable Energies
- Kudusberg Windfarm Transport study for the proposed Kudusberg Windfarm near Sutherland, Northern Cape – Client: G7 Renewable Energies
- Multiple Traffic Impact and Route Assessment for the proposed Solar PV Facilities in the Northern Cape – Client: Private Developer
- Kuruman Windfarm Transport study for the proposed Kuruman Windfarm in Kuruman, Northern Cape – Client: Mulilo Renewable Project Developments
- Coega West Windfarm Transportation and Traffic Management Plan for the proposed Coega Windfarm in Coega, Port Elizabeth – Client: Electrawinds Coega
- Traffic and Parking Audits for the Suburb of Groenvallei in Cape Town Client: City of Cape Town Department of Property Management.
- Road Safety Audit for the Upgrade of N1 Section 4 Monument River Client: Aurecon on behalf of SANRAL
- Sonop Windfarm Traffic Impact Assessment for the proposed Sonop Windfarm, Coega, Port Elizabeth – Client: Founders Engineering
- Universal Windfarm Traffic Impact Assessment for the proposed Universal Windfarm, Coega, Port Elizabeth – Client: Founders Engineering
- Road Safety Audit for the Upgrade of N2 Section 8 Knysna to Wittedrift Client: SMEC on behalf of SANRAL
- Road Safety Audit for the Upgrade of N1 Section 16 Zandkraal to Winburg South Client: SMEC on behalf of SANRAL
- Traffic and Road Safety Studies for the Improvement of N7 Section 2 and Section 3 (Rooidraai and Piekenierskloof Pass) – Client: SANRAL
- Road Safety Appraisals for Northern Region of Cape Town Client: Aurecon on behalf of City of Cape Town (TCT)
- Traffic Engineering Services for the Enkanini Informal Settlement, Kayamandi Client: Stellenbosch Municipality
- Lead Traffic Engineer for the Upgrade of a 150km Section of the National Route N2 from Kangela to Pongola in KwaZulu-Natal, Client: SANRAL
- Traffic Engineering Services for the Kosovo Informal Settlement (which is part of the Southern Corridor Upgrade Programme), Client: Western Cape Government
- Traffic and Road Safety Studies for the proposed Kosovo Informal Housing Development (part of the Southern Corridor Upgrade Program), Client: Western Cape Government.
- Road Safety Audit Stage 3 Upgrade of the R573 Section 2 between Mpumalanga/Gauteng and Mpumalanga/Limpopo, Client: AECOM on behalf of SANRAL

- Road Safety Audit Stage 1 and 3 Upgrade of the N2 Section 5 between Lizmore and Heidelberg, Client: Aurecon on behalf of SANRAL
- Traffic Safety Studies for Roads Upgrades in Cofimvaba, Eastern Cape Client: Cofimvaba Municipality
- Road Safety Audit Stage 1 and 3 Improvement of Intersections between Olifantshoek and Kathu, Northern Cape, Client: Nadeson/Gibb on behalf of SANRAL
- Road Safety Audit Stage 3 Upgrade of the Beacon Way Intersection on the N2 at Plettenberg Bay, Client: AECOM on behalf of SANRAL
- Traffic Impact Assessment for a proposed Primary School at Die Bos in Strand, Somerset West, Client: Edifice Consulting Engineers
- Road Safety Audit Stage 1 and 3 Improvement of R75 between Port Elizabeth and Uitenhage, Eastern Cape, Client: SMEC on behalf of SANRAL

Ivan Baker

M.Sc Environmental Science and Hydropedology (*Pr Sci Nat pending*)

Cell: +27 79 898 4056 Email: ivan@thebiodiversitycompany.com Identity Number: 9401105251087 Date of birth: 10 January 1994

Profile Summary

Working experience throughout Southern Africa

Working experience in West-Africa

Specialist experience with mining, construction and agriculture.

Specialist expertise include hydropedology, pedology, land contamination, agricultural potential, land rehabilitation, rehabilitation management and wetlands resources.

Experience hydropedological modelling (HYDRUS model)

Areas of Interest

Mining, Oil & Gas, Renewable Energy & Bulk Services Infrastructure Development, Farming, Land contamination, Sustainability and Conservation.

Key Experience

- Environmental Impact Assessments (EIA)
- Environmental Management Programmes (EMP)
- Wetland delineations and ecological assessments
- Rehabilitation Plans and Monitoring
- Soil-and rock classification
- Level 1, 2 and 3 hydropedology assessments
- Agriculture potential assessments
- Land contamination assessments
- Modulation of surface- and subsurface flows (HYDRUS model)

Country Experience

South Africa	Mozambique
Swaziland	Zimbabwe
Guinea	Zambia

Nationality

South African

Languages

English – Proficient

Afrikaans - Proficient

Qualifications

- MSc (North-West University of Potchefstroom) – Hydropedology
- BSc Honours (North-West University of Potchefstroom) – Environmental geology-Pedology and rehabilitation
- BSc Environmental sciences
- Cand Sci Nat (Pr Sci Nat Pending)
- Certificate of Competence: Fertiliser Society of South Africa
- Certificate of Competence: Tools for Wetland Assessments

SELECTED PROJECT EXPERIENCE

Project Name: Environmental impact assessment for the construction of Road DR08606 leading to Mlamli Hospital, Sterkspruit

Personal position / role on project: Wetland ecologist

Location: Sterkspruit, Eastern Cape Province, South Africa

Main project features: To conduct a wetland assessment, as a component of the environmental authorisation process and Water Use Licence Application (WULA) for the construction of Road DR08606 leading to Mlamli Hospital

Project Name: Biodiversity Baseline & Impact Assessment Report for the proposed Nondvo Dam Project

Personal position / role on project: Wetland ecologist

Location: Mbabane, Swaziland

Main project features: To conduct various assessments according to IFC standards in regard to delineation of wetlands and assessing ecosystem services.

Project Name: Agricultural Potential Assessment - Proposed Kalabasfontein Coal Mining Project Extension

Personal position / role on project: Project Manager and Soil Specialist.

Location: Bethal, Mpumalanga, South Africa

Main project features: To conduct a soil assessment to identify any sensitive resources that might be affected by the proposed mining activities and associated infrastructure as part of an environmental impact assessment.

Project Name: Soil assessment for the closure of the St Helena Shaft, Harmony

Personal position / role on project: Soil specialist

Location: Welkom, Free State, South Africa

Main project features: To conduct a thorough soil and fertility assessment to recommend relevant mitigation and rehabilitation measures to finalise closure at the relevant mine

Project Name: Wetland Functionality Assessment for the Environmental, Health and Socio-Economic Baseline Studies for Block 2 at Siguiri Gold Mine

Personal position / role on project: Wetland ecologist

Location: Siguiri, Guinea, West-Africa

Main project features: To conduct various assessments according to IUCN standards in regard to delineation of wetlands and assessing ecosystem services.

Project Name: Level 3 Hydropedological Assessment for the Sara Buffels Mining Project

Personal position / role on project: Hydropedologist

Location: Ermelo, Mpumalanga, South-Africa

Main project features: To conduct various assessments to determine the hillslope hydrology and to acquire information relevant to the vadose zone's hydraulic properties to quantify sub-surface flows by means of modelling.

Project Name: Level 3 Hydropedological Assessment for the Buffalo Coal Mining Project

Personal position / role on project: Hydropedologist

Location: Dundee, KwaZulu-Natal, South-Africa

Main project features: To conduct various assessments to determine the hillslope hydrology and to acquire information relevant to the vadose zone's hydraulic properties to quantify sub-surface flows by means of modelling

Project Name: Biodiversity Baseline & Impact Assessment for the proposed Tetereane 15MW Solar PV Plant

Personal position / role on project: Ecosystem Services Specialist

Location: Cuamba, Mozambique, Southern-Africa

Main project features: To conduct various assessments according to IUCN standards in regard to ecosystem services

Project Name: Land contamination assessment for the proposed Fleurhof Development

Personal position / role on project: Soil Specialist

Location: Fleurhof, South Africa

Main project features: To conduct assessments relevant to the determination of land contamination, including recommendations, mitigations and risk assessments.

OVERVIEW

An overview of the specialist technical expertise include the following:

- Ecological wetland assessment studies, including the integrity (health) and functioning of the wetland systems.
- Wetland offset strategy designs.
- Wetland rehabilitation plans.
- Monitoring plans for wetland systems.
- Soil classification and agricultural assessments.
- Stripping and stockpiling guidelines.
- Soil rehabilitation plans.
- Soil and stockpile monitoring plans.
- Hydropedological assessments.

TRAINING

Some of the more pertinent training undergone includes the following:

- Tools for a Wetland Assessment (Certificate of Competence) Rhodes University 2018; and
- Workshop on digital soil mapping.

EMPLOYMENT EXPERIENCE

Internship at SRK consulting (January 2017-August 2017)

• Field assistant for SRK consulting during 2017 included the sampling of surface and groundwater as well as on site tests, the accumulation of various different data sets from field loggers, presenting and arranging the relevant data and ultimately using it for my own personal post-graduate studies.

Internship at The Biodiversity Company (August 2017-December 2017)

Employed as an intern (wetland and soil scientist) during the last few months of 2017. During this period, I was part of a variety of soil- and wetland projects, both as report writer and/or field assistant.

CURRENT EMPLOYMENT: The Biodiversity Company (January 2018 – Present)

• Scientific report writing to ensure that the relevant standards and requirements have been attained, namely local country legislation, as well as WB, EP and IFC requirements.

ACADEMIC QUALIFICATIONS

North-West University of Potchefstroom: MAGISTER SCIENTIAE (MSc) - Hydropedology:

Title: Characterisation of vadose zone processes in a tailings facility

North-West University of Potchefstroom (2016): BACCALAUREUS SCIENTIAE HONORIBUS (Hons) – Environmental Geology- Pedology and rehabilitation

North-West University of Potchefstroom (2015): BACCALAUREUS SCIENTIAE IN NATURAL AND ENVIRONMENTAL SCIENCES. Majors: Geology and Geography

CURRICULUM VITAE

<u>Jenna Lavin</u>

Tel: 083 619 0854 (c); 013 0131 (w) E-mail address: jenna.lavin@cedartower.co.za ID number: 8512050014089

EDUCATION:

Tertiary

rerciary	
2014 -	M.Phil in Conservation of the Built Environment (University of Cape Town)
	Ongoing - expected to graduate in 2015
2011	Continued Professional Development Course in Urban Conservation Management (University
	of Cape Town) Part I and Part II
2010	M.Sc. with Distinction in Archaeology (University of Cape Town)
	Title: Palaeoecology of the KBS member of the Koobi Fora Formation: Implications for
	Pleistocene Hominin Behaviour.
2007	B.Sc. Honours in Archaeology (University of Cape Town)
	Title: The Lost Tribes of the Peninsula: An Investigation into the historical distribution of Chacma
	baboons (<u>Papio ursinus</u>) at the Cape Peninsula, South Africa.
	Koobi Fora Field School, Rutgers University (U.S.A.)/ National Museums of Kenya
2006	B.Sc. Archaeology (University of Cape Town)
	B.Sc. Environmental and Geographic Science (University of Cape Town)
_	

Secondary

1999-2003Rustenburg High School for GirlsFirsts in English, Afrikaans, Mathematics HG, Biology HG, History HG, Entrepeneurship.

EMPLOYMENT HISTORY:

PROFESSIONAL DEVELOPMENT Environmental and Heritage Management:

- Head of Heritage Operations for Heritage CTS Consultants and member of OpenHeritage NPC. July 2016 to present
- Assistant Director for Policy, Research and Planning at Heritage Western Cape. *August 2014 to June 2016*

Responsibilities include drafting of new heritage related policy, the grading and declaration of Provincial Heritage Sites, the development of Conservation Management Plans, facilitating the development of inventories of heritage resources through local authorities as well as managing the development of the Western Cape's Heritage Information Management System (HIMS).

Acting Deputy Director from April to December 2015.

 Heritage Officer for Palaeontology and for the Mpumalanga Province at the South African Heritage Resources Agency (SAHRA).
 January 2013 to June 2014

Responsibilities include dealing with palaeontological permit applications in terms of Section 35 of the NHRA and development applications in terms of Section 38 of the NHRA. Projects included the development of a National Palaeotechnic Report identifying significant palaeontological deposits throughout SA, as well as developing professional relationships between SAHRA and the Palaeontological Society of South Africa (PSSA) and the Geological Society of South Africa (GSSA). During this time, I was part of the team that developed the digitised National Palaeontological Sensitvity Map (http://www.sahra.org.za/about/news/nov2013/palaeosensitivitymap), the first of its kind in the world.

• Heritage Officer for Archaeology, Palaeontology and Meteorites at Heritage Western Cape (HWC). September 2010 to December 2012

HWC is a Public Entity that forms part of the Heritage Resource Management Component of the Provincial Governments' Department of Cultural Affairs and Sport (DCAS). Projects included the declaration of Pinnacle Point and the West Coast Fossil Park as Provincial Heritage Sites (PHS), the management of the development of the Baboon Point PHS Conservation Management Plan as well as an educational outreach program as part of the DCAS MOD Centre Project.

- Heritage Officer for the Archaeology, Palaeontology and Meteorites Unit of the South African Heritage Resources Agency (SAHRA) as part of a three month contract. January 2010 to March 2010
- Environmental Control Officer, Amathemba Environmental Management Consulting *Part time: 2007 to 2009*

Other

My private experience as a traveler in South Africa, Tanzania, Kenya, Namibia, Zambia, Malawi and Mozambique has inspired a passion for the conservation of environmental and heritage resources. I am passionate about sustainable living, with my Bachelor of Science in Environmental and Geographical Science providing a framework on which to base my values.

With a friend, I established the fundraising initiative, Chicks4Change, through which we managed to organize a number of successful events and raise R40 000 for Project Rhino to assist with anti-poaching initiatives.

In 2013 I was asked to join the panel of judges for the Ministerial awards for Heritage in the Western Cape. From 2013 to July 2014, I was a member of the Heritage Western Cape Archaeology, Palaeontology and Meteorites Committee. In July 2014, I presented at the Conference for the Palaeontological Society of South Africa on the use of GIS in the management of palaeontological resources in the face of increased development pressures. In April 2015 I participated in a conference on Landscape Archaeology hosted by the Leakey Foundation in San Fransisco, presenting on the management of archaeological landscapes in South Africa. In April 2016, I presented at the ICAHM Conference in Salalah, Oman on the management of archaeological heritage in South Africa.

In November 2013, I was awarded a bursary from the Department of Arts and Culture to complete the Masters in Philosophy in Conservation of the Built Environment through the UCT Faculty of Engineering and the Built Environment in 2014 and 2015.

I am a paid up member of the Association for Southern African Professional Archaeologists (ASAPA), the Association of Professional Heritage Practitioners (APHP), the Palaeontological Society of South Africa (PSSA) and ICOMOS South Africa, for which I am Vice-President of the Board. I am also a member of the International Committee for Archaeological Heritage Management (ICAHM).

Curriculum Vitae

Tony Barbour ENVIRONMENTAL CONSULTING AND RESEARCH

10 Firs Avenue, Claremont, 7708, South Africa (Tel) 27-21-761 2355, (Fax) 27-21-761 2355, (Cell) +27-82 600 8266 (E-Mail) <u>tbarbour@telkomsa.net</u>

Tony Barbour has 24 years' experience in the environmental sector. His experience includes ten years as an environmental consultant in the private sector in South Africa followed by four and a half years at the University of Cape Town's Environmental Evaluation Unit. In 2004 he established his own environmental consulting company, Tony Barbour Environmental Consulting and Research, with a focus on Social Impact Assessment (SIA), Strategic Environmental Assessment (SEA), Independent Review Work, Training and Capacity Building and Environmental Project Management.

PERSONAL DETAILS

Tony Barbour, born on 8 June 1961 Nationality: South African and Irish Marital Status: Married

EDUCATION

- BSc (Geology and Economics) Rhodes, 1984;
- BEcon (Honours) Rhodes, 1985;
- MSc (Environmental Science) University of Cape Town, 1992

ADDITIONAL QUALIFICATIONS

- Advanced and basic mediation/facilitation skills training course, Centre for Conflict Resolution, University of Cape Town (1999);
- > Multi-party negotiation and facilitation skills for natural resource management, MEPC/CIDA (1999).

ACADEMIC AWARDS

- Schwartz Award, Top Student, Geology III, Rhodes University;
- Shell Medal of Excellence, Top student, Masters Course Work, MSc Environmental Science, UCT.

AREAS OF EXPERIENCE AND EXPERTISE

Project management, proposal writing, preparation, review and editing of reports and documents, environmental planning and management, Social Impact Assessment (SIA); Environmental Impact Assessment (EIA); Strategic Environmental Assessment (SEA); waste management, environmental economics, facilitation, public participation, training and teaching. Countries with work experience include South Africa, Namibia, Angola, Botswana, Zambia, Lesotho, Swaziland, Ghana, Mozambique, Mauritius, Kenya, Ethiopia, South Sudan, Sudan and Oman.

EMPLOYMENT RECORD

- > Private Consultant: November 2004-current.
- University of Cape Town: August 2000-October 2004, Environmental Evaluation Unit (EEU), University of Cape Town. Senior Environmental Consultant and Researcher;
- Private sector: 1991-August 2000. 1991-1996: Ninham Shand Consulting (Cape Town). Senior Environmental Scientist, 1996-August 2000: Steffen, Robertson and Kirsten (SRK Consulting) – Associate Director, Manager Environmental Section, SRK Consulting, Cape Town.

RELEVANT AREAS OF EXPERIENCE AND EXPERTISE

SOCIAL IMPACT ASSESSMENT

Infrastructure and development projects

- SIA for small scale hydropower project on Orange River, South Africa (2015);
- SIA for 150 MW coal power station, Mpumalanga, South Africa (2014);
- SIA for waste to energy plant, Pretoria, South Africa (2014);
- SIA for mixed use development in Khayelitsha, Western Cape (2014);
- SIA for small scale hydro scheme on the Orange River, South Africa (2014);
- SIA for Eskom sub-station and power lines, George, South Africa (2014);
- SIA for Trawal Dam, Clanwilliam, Western Cape Province (2013);
- SIA for Eskom transmission lines from proposed Bantamsklip Nuclear Power Station, Western Cape (2010). Project put on hold after initial scoping phase;
- SIA for Eskom transmission lines from proposed Koeberg Nuclear Power Station, Western Cape (2010);
- SIA Bloubos Road, Somerset West, Western Cape (2010);
- SIA for Boschendal Farm Mixed Use Development, Stellenbosch, Western Cape (2008-current);
- SIA Driftsands Nature Reserve, Cape Town, Western Cape (2009);
- SIA Kidds Beach Golf Estate, East London (2009);
- SIA Swartland Regional Mall, Malmesbury, Western Cape (2009);
- SIA Klipfontein Mixed Use Residential Development, Malmesbury, Western Cape (2009);
- SIA Struisbaai Harbour Development, Struisbaai, Western Cape (2009);
- SIA De Plaat Mixed Use Residential Development, Velddrift, Western Cape (2009);
- SIA Woodlands Golf Estate, East London, Eastern Cape (2009);
- SIA Duttons Cove Residential Development, Herolds Bay, Western Cape (2008);
- SIA Ashton Mixed Use Development, Ashton, Western Cape (2009);
- SIA for Mandela Bay Mixed Development Precinct, Mandela Bay, Eastern Cape (2008);
- SIA for Annandale Mixed Development Precinct, Cape Town, Western Cape (2008);
- > SIA for Garden Route Dam development, George, Western Cape (2008);
- SIA for Moropule Coal Power Station, Botswana (2007);
- SIA for proposed residential development near Stillbaai, Western Cape (2007);
- > SIA for proposed residential development near Gansbaai, Western Cape (2007);
- > SIA Bulk Water Scheme, City of Cape Town, Western Cape (2007);
- SIA Montague Golf Estate, Western Cape (2006);
- SIA for Schalkenbosch Golf Estate, Tulbagh, Western Cape (2006);
- SIA for 2010 World Cup Stadium on Green Point Common, Cape Town (2006);
- > SIA for raising of the Clanwilliam Dam, Western Cape (2005-06);
- SIA Kransvlei Golf Estate, Clanwilliam, Western Cape (2005);
- SIA for road up-grade between Gansbaai and Bredadorp, Southern Cape (2005);
- SIA Zeekoevlei Golf Estate, Somerset West, Western Cape (2005)
- SIA Silwersand Golf and Resort Estate, Robertson, Western Cape (2003)
- SIA Assessment for Valkenberg East Site, Cape Town (2003).
- N2 Outeniqua Pass by-pass, George, SA. Socio-economic assessment for proposed by-pass options between the N2 and the Outeniqua Pass (1997).
- Social Assessment for Sparrebosch Golf Course, Knysna, SA (1996).
- Social Assessment for Riversonderend Road By-pass (1991).

Mining and Industrial projects

- SIA for Lucunga Mine, Angola (2016);
- Social Labour Plan for Granite Quarry, North West Province, South Africa (2015);
- Social Labour Plan for coal mine in Mpumalanga, South Africa (2014);
- SIA for heavy mineral separation plant, Vredendal, Western Cape Province (2012);
- SIA Otjizondo Manganese Mine, Namibia (2011);
- SIA for upgrade of PPC Riebeeck cement plant, Western Cape, South Africa (2009);
- SIA for Elitheni Coal Mine, Eastern Cape (2008);
- > SIA and Resettlement Action Plan (RAP) for Southern Ashanti Gold Mining Project, Ghana (2007);
- SIA for Valencia Uranium Mine, Swakopmund, Namibia (2007);
- > SIA for expansion of PPC cement factory, Riebeck West, Western Cape (2007);
- SIA and Social Labour Plan for Xolobeni Heavy Mineral Sands Project, Eastern Cape, South Africa (2007);
- SIA and Social Labour Plan for Tormin Heavy Mineral Sands Project, Western Cape, South Africa (2007);

Renewable energy projects

- SIAs for wind energy facilities: SIAs for over 50 wind energy projects in Western Cape, Eastern Cape and Northern Cape Province of South Africa (2008-current);
- SIAs for solar energy facilities: SIAs for over 60 solar energy projects in Western Cape, Northern Cape, Free State, North West, Mpumulanga and Limpopo Provinces of South Africa (2009-current).

Strategic social input into projects

- Social Specialist for funder review based on IFC standards for hydropower power project in Zambia (2014-2015);
- Social Specialist for identification of multi-sector investment opportunities in the Eastern Nile Basin, World Bank and Eastern Nile Technical Office (2015);
- SIA as part of SEA undertaken for industrial area located near Wellington, Western Cape Province (2014);
- Social specialist for assessment of large dam developments on the Eastern Nile Basin, specifically the Blue Nile (Abbay River) in Ethiopia and the consequences for the downstream countries of Sudan and Egypt, World Bank and Eastern Nile Technical Office (2012-2013);
- Social specialist for development and design of Decision Support System for the Nile Basin. Input included development of social indicators used to assess water related projects and development scenarios (dams and irrigation schemes) in the Nile Basin (2012);
- Social specialist for the water resource classification of the Olifants/Doorn Catchment Area (Western and Northern Cape Province) (2011-2012).

Social Impact Assessment and Resettlement Guidelines

- Development of Guidelines for Social Impact Assessment for Department of Environmental Affairs and Development Planning, Western Cape, (2007);
- Development of a Social Assessment and Development Framework for Department of Water Affairs and Forestry, South Africa, including development of guidelines for Social Impact Assessment, Conflict Management, Relocation and Resettlement and Monitoring and Evaluation (2005). The aim of these guidelines was to assist DWAF to identify, assess and manage social impacts (positive and negative) during the design, development, operation and closure of projects.

Resettlement Action Plans (RAPs)

- > RAP for farming community located near Paarl in the Western Cape (current);
- > SIA and RAP for Southern Ashanti Gold Mining Project, Ghana (2007);
- RAP for Mare Chicose Landfill Site, Mauritius (2005);
- Maguga Dam, Swaziland. Development of socio-economic monitoring and evaluation programme, including indicators, for the resettlement programme, Swaziland (2001).

Waste management projects

- SIA for Integrated Waste Management Facility, City of Cape Town (2015);
- SIA for Waste to Energy Facility, Wellington, Western Cape (current);
- SIA for Vissershok landfill expansion, Cape Town (2014);
- SIA for Stellenbosch Landfill Site (2011);
- SIA for Barka Landfill Site, Barka, Oman (2011);
- SIA Helderberg Waste Transfer Station, Western Cape, (2009);
- SIA for Mare Chicose Landfill Site, Mauritius (2005);
- SIA for Coastal Park Landfill Site (1998).

STRATEGIC ENVIRONMENTAL ASSESSMENT

- Project Manager SEA for assessment of option to develop biofuels in Northern Namibia (2010-2011);
- Project Manager SEA City of Windhoek, Namibia (2010-2011);
- Project manager and environmental specialist for SEA for Phase 2 of the National Roads Strategy for Mozambique (2007);
- > Joint project manager for SEA of Cape Town 2004 Olympic Bid, Cape Town, SA (1999);
- Baralink SEA, Johannesburg, SA. Specialist input on socio-economic aspects for Baralink SEA (1998).
- Series of 4 Strategic Environmental Assessment training courses for officials of the Government of Botswana, 2000 & 2001.
- Guest lecturer in SEA for MPhil course in Environmental Management at University of Cape Town, 2000-2004.
- Paper presented at IAIA 98, Christchurch, New Zealand (1998). Strategic Environmental Assessment of the Cape Town 2004 Olympic Bid,

ENVIRONMENTAL IMPACT ASSESSMENT

Experience includes developing proposals (technical and financial), liaising with clients, authorities and the public, developing terms of reference for specialist sub-consultants, project management and reviewing reports. Projects include:

- Barka Landfill Site, Barka, Oman (2011);
- Darling Wind Farm, Western Cape, South Africa. Environmental assessment of proposed Wind Farm near the town of Darling (2002).
- Walvis Bay Naval Facility, Walvis Bay, Namibia. Environmental assessment of the proposed naval facilities in Walvis Bay (2001).
- Portnet Saldanha, Western Cape, SA. EIA for the expansion of a bulk iron ore export facility at the Port of Saldanha (2000).
- Coastal Park Waste General Waste Site, Cape Town, SA. EIA, including public participation for a large, general waste site (1998).
- Sanderlings Development Plettenberg Bay, SA. EA, including public participation, for proposed residential development adjacent to the coast (1999).
- Stellenbosch Mountain Golf Course Development, Stellenbosch, SA. EIA, including public participation, for golf course, hotel and residential development (1998).
- Sparrebosch EIA, Knysna, South Africa (SA). EIA, including public participation, for golf course, hotel and residential development (1996).
- Stones Hill by-pass, Grahamstown, SA. EIA, including public participation, of a proposed by-pass near Stones-Hill, Grahamstown (1992).
- Riversonderend N2 by-pass, Riversonderend, SA.EIA, including public participation, of a proposed by pass of the N2 around the town of Riversonderend (1991).

REVIEW

- Review of SIA for N3 by-pass around Harrismith, Free State Province, (2015-16)
- Review of social implications associated with proposed SANRAL N1-N2 Winelands Toll Road

Project as part of the City of Cape Town's legal challenge of SANRALs proposal to develop toll roads (2015);

- Internal Review of Gamsberg Zinc Mine SIA for ERM (Northern Cape Province, South Africa), March, 2013;
- Internal Review of Waterval Tailings Dam SIA for WSP (North West Province, South Africa), March, 2013,
- Review of SIA for the proposed N1-N2 Winelands Toll Road Project as part of the City of Cape Town's legal challenge to the proposed project (2011-2012);
- Review of SIA for Nuclear 1 for Arcus Gibb (3 conventional nuclear power plants) located along the western and south eastern coasts of South Africa (2009);
- Review of SIA for proposed PMBR Plant at Koeberg, Western Cape (2008);
- > Review of specialist reports for the Groot Letaba Dam EIA, Mpumulanga, South Africa (2008).
- External Review Consultant for SIA component of N2 Wild Coast Toll Road EIA (2008).
- Internal Review Consultant for Golder Associates on Namakwa Sands Heavy Mineral Mining EIA, Western Cape (2006);
- Review of EIA for Palm Valley Golf Course Estate, Durbanville, Western Cape (2005);
- > Review of EIA for Zeekoevlei Golf Course Estate, Somerset West, Western Cape (2005);
- Review of EIA for Oostenberg Waste Transfer Station, Brackenfell, Western Cape (2004);
- Review of Socio-Economic Study undertaken for the R300 Toll Road EIA, Cape Town, Western Cape (2004);
- Review of EIA for proposed establishment of Toll booths on Chapman's Peak Drive, Cape Town, Western Cape (2003);
- Review of EIA for Cell Phone Mast, Cedeberg, Western Cape (2003);
- Review of EIA for Hotel and Conference Center, Durbanville, Western Cape (2003);
- Review of EIA for N7 Road Up-grade, Clanwilliam, Western Cape (2002);
- Review of EIA for Up-grade of Sewage Works, Western Cape (2002).

ENVIRONMENTAL RESEARCH

Experience and projects include:

- > Environmental and social specialist for the development of Mozambique Biofuels Strategy (2007).
- Development of strategy for the development of the Environmental Goods and Service Industry in the Western Cape for the Department of Environmental Affairs and Development Planning in the Western Cape (2006).
- Review of the Environmental Goods and Service Industry in South African and development of a strategy for the Department of Trade and Industry, South Africa (2006).
- Chapter on the South African Environmental Goods and Services Industry for study commissioned by the Department of Environmental Affairs and Tourism (2006).
- Integrating Sustainable Development into the Integrated Development Planning Process in South Africa. Review of 4 case studies in SA for the World Summit on Sustainable Development, Johannesburg (2002).
- Development of Integrated Sustainable Transportation Assessment Framework for Transportation Planning in South Africa. Project Manager for joint project between EEU and Urban Transportation Research Group at UCT (2003).
- Project Manager for South African Cleaner Development Mechanism (CDM) initiative being undertaken by South South North Trust. Project involves the recovery of methane gas from the Bellville South Landfill Site in Cape Town (2004)
- Development of Toolkit for incorporating Sustainable Development in to the Integrated Development Planning Process in South Africa (2004).
- Integrating Sustainable Development into the Eastern Cape Province Provincial Growth and Development Plan, 2004-2020 (2003-2004).
- Department of Housing, South Africa. Assessment of options for the development of energy and water efficient low cost housing in South Africa and an assessment of potential financing mechanisms, South Africa (2000).

ENVIRONMENTAL PLANNING

- Development of a Rehabilitation and Land Use Plan for the Alexkor Mining Area in the Richtersveld in the Northern Cape Province (2003-2007). This formed part of a land claim for the Richtersveld Community and included acting as the lead expert witness for the community in the associated court case.
- Southern Cape Spatial Development Framework (SCSDF), Southern Cape Region, SA. Environmental opportunities and constraints assessment for SCSDF study (2000).
- Stellenbosch Rivers Management Plan, Stellenbosch, SA. Integrated management plan for the urban river systems in Stellenbosch (1998).
- Wetton-Lansdowne corridor project, Cape Town, SA. Habitat conservation and biodiversity study to inform planning proposals for the Wetton-Lansdowne corridor (1998).
- Tygerberg Spatial Development Framework, City of Tygerberg, Cape Town, SA. Environmental baseline study for the spatial development framework study for the City of Tygerberg (1999).
- Protea Valley development options, City of Tygerberg, Cape Town, SA. Assessment and identification of suitable land use development options for Protea Valley (2000).

WASTE MANAGEMENT

- Project Manager, Al Wusta Regional Waste Site Investigation, Oman (2011).
- Project Manager, Al Batinah Regional Waste Site Investigation, Oman (2011);
- Project Manager, Barka Landfill Site EIA, Muscat, Oman (2010);
- Mare Chicose Landfill, Mauritius. SIA and Compensation and Relocation Plan for proposed expansion of the current landfill site (2005).
- Robertson Waste Site, Robertson, SA. EA, including public participation, for the identification of a new waste site (2000).
- Project Manager, Coastal Park General Waste Site, Cape Town, SA. EIA for proposed expansion of a large, general waste site (1998).
- Project Manager, Windhoek general and hazardous waste site, Windhoek, Namibia. Investigation to identify new general and hazardous waste disposal site for Windhoek (1997).
- Project Manager, Walvis Bay general and hazardous waste site, Walvis Bay, Namibia. Investigation to identify new general and hazardous waste disposal site for Walvis Bay (1998).
- Project Manager, Port Elizabeth Waste Site, Port Elizabeth, SA. Environmental Assessment for permit application (1998).
- Project Manager, Brackenfell general waste site, Cape Town, SA. Permit application report ad environmental assessment for Brackenfell waste site (1995).
- Project Manager, Ceres general waste site, Ceres, SA. Permit application report ad environmental assessment for Ceres waste site (1995)
- Project Manager, Caledon general waste site, Caledon, SA. Permit application report ad environmental assessment for Caledon waste site (1996).
- Project Manager, Wellington general waste site, Wellington, SA. Permit application report ad environmental assessment for Wellington waste site (1996).
- Project Manager, Greyton general waste site, Greyton, SA. Permit application report ad environmental assessment for Greyton waste site (1999);

ENVIRONMENTAL TRAINING AND CAPACITY BUILDING

Experience includes design of training courses, development of training manuals and running courses for both the private and public sector. Courses include:

- 2 X 5 day course on Resource Economics for Coastal Managers and Government Officials, Namibian Government (2009).
- 5 day course on EIA and Environmental Management course for Swaziland Local Authorities, 2004.
- > Integrated Coastal Management course for Department of Marine and Coastal Management, 2004.
- 5 regional Social Assessment Training Workshops for officials from the South African Department of Water Affairs and Forestry, 2004.

- > EIA training course for officials of the South African National Parks, Kruger National Park, 2003.
- > Environmental Management course for Shell South Africa, 2003.
- 10 Local Agenda (LA) 21 training courses for provincial and local government departments in South Africa during period 2000-2002.
- Resource Economics Workshop for South African Department of Water Affairs and Forestry, 2002.
- > Conflict Resolution Workshop for subsistence fishermen, Kwa-Zulzu Natal, 2002.
- Integrating the principles of LA 21 into Integrated Development Planning. Course presented at World Summit on Sustainable Development, Johannesburg, 2002.
- Environmental facilitation, mediation and conflict management. Training course for Independent Mediation Services in South Africa (IMSSA) facilitators, 1998, 1999 and 2000.
- Series of 4 Strategic Environmental Assessment training courses for officials of the Government of Botswana, 2000 & 2001.
- > EIA training course for officials of the Government of Lesotho, 2000 and 2001.
- > EIA training courses for local government officials in Cape Town, 2000.

LECTURING AND TEACHING

Experience includes lecturing and teaching at an under and post-graduate level since 1990. The areas of interest include Environmental Economics, EIA, SEA, SIA and Waste Management.

- Guest Lecturer in SIA, Department of Environmental and Geographical Science and Department of Planning, University of Cape Town (current);
- Lecturer in Environmental Economics for the MPhil course in Environmental Management at University of Cape Town from 1990 –2006.
- Guest lecturer in SIA, EIA and SEA for MPhil course in Environmental Management at UCT, 2000-2004.
- > Coordinator and lecturer in Environmental Economics at Cape Technikon, 1999.
- Coordinator and lecturer of waste management course, Peninsula Technikon in 1998.
- Guest lecturer at Peninsula Technikon for waste management, 1994 1998.
- Moderator for Peninsula Tecknikon waste management course, 1994-2002.
- Environmental Management for senior managers, module on a business management course for AngloVaal Management run by Prof John Simpson of UCT, 2000 and 2001.
- Guest lecturer on SIA and EIA for Geography and Environmental Science Honours, UCT. 2000-2004.
- Presenter and coordinator on annual Integrated Environmental Management Short Course run by the Environmental Evaluation Unit at UCT (2000-2006).
- Presenter on Integrated Coastal Management course run by Environmental Evaluation Unit at UCT 2005-2006.

PUBLIC PARTICIPATION

Experience includes designing public participation processes and facilitating public meetings and workshops. Projects include:

- SEA for Wellington Industrial Area, managed and facilitated public meetings and workshops (2014).
- Green Point Common, Cape Town. Public participation and facilitation processes for development of new market area for informal traders (2005);
- Chapman's Peak Drive. Managed and facilitated the public participation processes for looking at the technical and funding options for re-opening Chapman's Peak Drive on the Cape Peninsula as a toll road (2001).
- Visserhok Hazardous waste disposal sites, Cape Town City Council and Wastetech, Cape Town, SA. Managed and facilitated the public participation processes for the permit application for two hazardous waste sites located at Visserhok (1994).
- Grand West Casino, Cape Town. Public participation processes for proposed establishment of the Grand West Casino at the Cape Show Grounds, Cape Town (1997).
- Coastal Park waste site, Cape Town, SA. Managed and facilitated public participation processes for the permit application for the Coastal Park general waste site (1998).

> Managed and facilitated public participation processes associated with EIA's listed above.

ENVIRONMENTAL MANAGEMENT PLANS AND REHABILITATION REPORTS

- Development of rehabilitation programme and cost estimate for damage caused by 80 years of alluvial diamond mining between Alexander Bay and Port Nolloth, West Coast, South Africa (current). This project is linked to the Richtersveld Land Claim and involved acting as an expert witness in the associated court case.
- Corridor Sands Heavy Mineral Project, Mozambique. Development of an Environmental Management Plan (EMP) for the construction phase of the project (2001).
- Walvis Bay Naval facilities, Walvis Bay, Namibia. EMP for the construction phase of the project (2001).
- APC cement factory, Otjiwarongo, Namibia. Operational management plan for up-grade to meet the legislative requirements (2000).
- Sparrebosch golf course, hotel and residential development, Knysna, SA. Environmental Management Plan (EMP) for the construction phase (1997).
- M3 highway up-grade, Johannesburg, SA. EMP for the design and construction phase of the M3 (1995).
- Trunk Road 46, Grahamstown-Port Alfred, Eastern Cape, SA. EMP for the construction phase (1994).
- Trunk Road 46, Grahamstown to Port Alfred, Eastern Cape, SA. Rehabilitation proposals for borrow pits, quarries, cuts, fills and road surfaces (1993).
- Trunk Road 19, Maclear to Halcyon Drift, Eastern Cape, SA. Rehabilitation proposals for borrow pits and quarries (1992).
- Namakwa Sands, Heavy Mineral Mining Operation, West Coast SA. Conceptual Rehabilitation Plan (1991).

ENVIRONMENTAL MANAGEMENT SYSTEMS AND AUDITS

- APC Cement Factory, Otjiwarongo, Namibia. Operational audit of APC cement factory to assess compliance with Namibian legislation (2000).
- Vodacom, SA. Conceptual Development of an Environmental Policy and outline for an Environmental Management System for Vodacom, SA (1998).
- Marine Oil, SA, initial site audit (1999).
- Rose Foundation, SA. Audit of 15 waste oil-recycling facilities in SA (1997).
- Zambian Copper Belt, Zambia. Pre-acquisition audit of 20 electrical transformer stations (1997).

SUPERVISION OF STUDENTS

- 1994-2006: Supervision of the thesis component of MPhil in Environmental Management for a number of students. Usually requested to act as supervisor for at least one or two students per year.
- Internal and external examiner for a number of theses submitted in fulfillment of the MPhil Environmental Management at UCT.

PUBLICATIONS AND PAPERS

Environmental publications and guidelines

- Principal Author of Health, Safety and Environmental Guidelines for Bitumen and Coal Tar Products, prepared for the SA Bitumen Association (Sabita), in 1994 and revised in 1998.
- Co-author of document outlining an integrated Waste Management Strategy for the Western Cape, SA, produced in 1995;
- Principal Author of Guidelines for Waste Management in South Africa, a handbook for local authorities, produced by Ninham Shand in 1993.

Papers and articles

The majority of the articles aimed at the layperson as opposed to journal articles.

- 1. SOWMAN, M R, GLAZEWSKI, J I, FUGGLE, R F, BARBOUR, A (1990) "Planning and legal responses to sea-level rise in South Africa", South African Journal of Science, v 86, 1990.
- BARBOUR, T (1992) 'Addressing the social impacts of waste disposal by incorporating permit applications into the latest Integrated Environmental Management (IEM) procedures", Paper presented at Wastecon '92, 3 – 5 November 1992.
- 3. BARBOUR, T (1992) "Internalising externalities: An attempt to address social costs", paper presented at a workshop on the Economy and Environment, 25 November 1992.
- 4. BARBOUR, T (1993) "The importance of taking waste disposal seriously", IMIESA, v 18 no 7 July 1993.
- 5. BARBOUR, T (1993) "Community based waste collection", Earthyear 5th edition, winter 1993.
- 6. BARBOUR, T (1993) "Guidelines for waste management in South Africa", Ninham Shand, 1993.
- 7. BARBOUR, T (1994) "Quarry Rehabilitation Reports: Are they effective working documents or merely legal requirements?", EPM, v 5, no 2, February 1994.
- 8. BARBOUR, T (1994) "Environmental factors relating to site selection for dams", Paper presented at SAICE one-day seminar on earth dam design, 3 June 1994.
- 9. BARBOUR, T (1994) "Environmental Economics", Earthyear 7th edition, Summer 1994.
- 10. BARBOUR, T (1996) "Lessons learnt from Vissershok for public participation and landuse planning", Paper presented at Wastecon 96, Durban, South Africa.
- 11. BARBOUR, T and COLEMAN, A (1996) "Towards an integrated waste management strategy for the Western Cape", Paper presented at Wastecon 96, Durban, South Africa.
- 12. BARBOUR, T (1998) Strategic Environmental Assessment of the Cape Town 2004 Olympic Bid", paper presented at IAIA 98, Christchurch, New Zealand.
- 13. BARBOUR, T (2000) Robertson Waste Site: A Case Study, paper presented at Wastecon 2000, Somerset West, SA.
- 14. BARBOUR, T (2000) National Environmental Management Act: Implications for Waste Management and the Minimum Requirements, paper presented at Wastecon 2000, Somerset West, SA.
- 15. BARBOUR, T (2001). The role of economic incentives in promoting and/or improving environmental rights. Paper presented a Conference on Environmental Rights, Cape Town, 30 July 2001.
- 16. BARBOUR, T (2002). The role of environmental assessments in land-use planning. Paper presented at Southern African Town Planning Conference, Somerset West, 18-19 March 2002.
- 17. BARBOUR, T (2002). Incorporating principles of environmental sustainability into policy making. Conference on Environmental Practices for the 21st Century, Somerset West, 24-25 May, 2002.
- BARBOUR, T and Brownlie, S (2002). Have mandatory environmental impact assessments improved decision-making in South Africa, and are they making a significant contribution to sustainable development? International Association for Impact Assessment (SA), National Conference, 7-9 October 2002.
- 19. Barbour, T (2003). Developing and evaluating effective strategies for managing hazardous materials and wastes. Paper prepared for Chemical and Toxic Waste Management Conference Park Hyatt, Rosebank, Johannesburg, February 2003.
- 20. Barbour T (2004). Incorporating Sustainable Development considerations in to the IDP process. Paper prepared for conference on Environmental Management for Local Government, Johannesburg, June 2004.
- 21. THESIS TOPIC "Quarry Rehabilitation: The need to adopt a pre-planning approach towards rehabilitation (MSc Environmental Science)." An important component of the study was the development of a Rehabilitation Programme and Rehabilitation checklist to assist those involved in carrying out rehabilitation work.