Weltevreden Open Cast Mine

Traffic Impact Assessment

Xinovo Mining (a subsidiary Mbuyelo Group)

Reference: 505288

Revision: 0 2019-10-18

Document control record

Document prepared by:

Aurecon South Africa (Pty) Ltd

Reg No 1977/003711/07
Aurecon Centre
Lynnwood Bridge Office Park
4 Daventry Street
Lynnwood Manor 0081
PO Box 74381
Lynnwood Ridge 0040
South Africa

T +27 12 427 2000

F +27 86 556 0521

E tshwane@aurecongroup.com

W aurecongroup.com

A person using Aurecon documents or data accepts the risk of:

- Using the documents or data in electronic form without requesting and checking them for accuracy against the original hard copy version.
- b) Using the documents or data for any purpose not agreed to in writing by Aurecon.

Document control						áurecon		
Repo	ort title	Traffic Impact Assessment						
Docu	ment code		Project nun	nber	505288			
File p	path		P:\Projects\505576 EIA and WUL for Bierspruit Opencast\5 DEL DES\501 Engineering\Reports\TRAFFIC\Bierspruit_Mine_TIA_Report_Draft01_V00.docx					
Clien	t	Xinovo Mining (a subsidiary Mbuyelo Group)						
Clien	t contact		Client refer	ence				
Rev	Date	Revision details/status	Author	Reviewer	Verifier (if required)	Approver		
0	2019-10-18	Draft Report	Gugulethu Hlanze	Justice Chauke		Altus Moolman		
Current revision		0			<u> </u>			

Approval								
Author signature		Approver signature						
Name	Gugulethu Hlanze	Name	Altus Moolman					
Title	Transport Planner	Title	Project Director					

Contents

1	Introduction	n		6
	1.1	Project	background	6
	1.2	•	of the TIA	
		·		
2	Approach	and meth	odology	9
	2.1	Study a	rea	ç
	2.2	•	ment scenarios	
	2.3		neration	
	2.4		tion capacity analysis	
	2.5		evaluation	
3	Existing tra	ansport e	environment	11
	3.1	-	road network	
	3.2		traffic volumes	
	5.2	•		
		3.2.1	Site traffic observations	
		3.2.2	Existing traffic volumes	
	3.3	_	road conditions	
	3.4		afety	
	3.5		ransport	
	3.6	-	rehicles	
	3.7	Walking	and cycling	17
4	Trip gener	ation		18
	4.1	Constru	ction and operational data	18
	4.2	Trip ger	neration assumptions	19
	4.3	Trip ger	neration estimate	20
5	Trip distrib	ution an	d assignment	21
6	Intersectio	n capaci	ty analysis	26
	6.1	Assessi	ment criteria	26
	6.2	Scenari	os assessed	26
	6.3	Intersec	tion capacity analysis results	27
		631	2019 Baseline (existing) traffic	27
		6.3.2	2022 Opening year background traffic, without the proposed development	
		6.3.3	2022 Opening year background traffic, with the proposed development traffic (construction phase)	
		6.3.4	2024 Future year background traffic, without the proposed development	
		6.3.5	2024 Opening year with the proposed development traffic (operational phase).	
		6.3.6	Summary of the intersection capacity analyses	
	6.4		oment access	
_			alking and cycling	
8		_	act assessment	
	8.1	•	y assessment	
	8.2		afety	
	8.3	Surfacir	ng conditions	37
Q	Conclusion	ne and ro	commendations	40

Appendices

Appendix A

Site setting plan

Appendix B

Traffic flow diagrams

Appendix C

Mine construction and operational data questionnaire

Appendix D

Trip generation calculations

Appendix E

Intersection analysis results

Appendix F

Environmental impact rating of proposed development traffic

Figures

- Figure 1-1: Location map
- Figure 1-2: Aerial view of the site
- Figure 3-1: Existing traffic volumes AM peak hour (total traffic)
- Figure 3-2: Existing traffic volumes PM peak hour (total traffic)
- Figure 3-3: Vehicle type composition on R33 during the AM and PM peak hour
- Figure 3-4: Heavy vehicles on R33 during the AM and PM peak hour
- Figure 5-1: Development traffic AM peak hour (construction phase)
- Figure 5-2: Development traffic PM peak hour (construction phase)
- Figure 5-3: Development traffic AM peak hour (operational phase)
- Figure 5-4: Development traffic PM peak hour (operational phase)
- Figure 6-1: Proposed access strategy option 1 (through the existing access)
- Figure 6-2: Proposed access strategy option 2 (move existing intersection about 400m southward)

Tables

- Table 4-1: Employees by phase and shifts
- Table 4-2: Service vehicles (regular site supplies and deliveries) (both construction and operation)
- Table 4-3: Haulage trucks
- Table 4-4: Mode share expectations
- Table 4-5: Trip generation summary (construction phase)
- Table 4-6: Trip generation summary (operational phase)
- Table 6-1: Level of Service Criteria
- Table 6-2: Intersection capacity results 2019 baseline
- Table 6-3: Intersection capacity results 2022 background without proposed development traffic
- Table 6-4: Intersection capacity results 2022 background traffic with the proposed development
- Table 6-5: Intersection capacity results 2024 background without proposed development traffic
- Table 6-6: Intersection capacity results 2024 background plus proposed development traffic
- Table 6-7: Queuing analysis variables
- Table 8-1: Environmental impact rating of the additional development traffic

1 Introduction

1.1 Project background

Xinovo Mining (Pty) Ltd (hereinafter referred to as Xinovo), a subsidiary of Mbuyelo Group (Pty) Ltd, is proposing to develop the Weltevreden Open Cast Mine, located along R33 approximately 8 km south of Belfast in Mpumalanga province. The mine will extract coal mostly for local markets. The location of the site is shown in Figure 1-1.

Aurecon was appointed by Digby Wells Environmental, on behalf of Xivono, to carry out a Traffic Impact Assessment (TIA) for the proposed mine development as part of the Environmental Impact Assessment (EIA) of the project.

The proposed project area is located within the Nkangala District Municipality (NDM), in Ward 1 of the Emakhazeni Local Municipality (ELM). The nearest large settlements to the site are the town of Belfast (11 km) and its township of Siyathuthuka (15km).

Xivono proposes to mine two pits, OC1 (162 ha footprint) and OC2 (200 ha footprint) through open pit mining (refer to the local setting plan attached in Appendix A).

There is an existing access along the R33, towards the southern boundary of the proposed development site (OC2). This access currently serve a neighbouring coal mine and is configured as a partial access (i.e. left-in, left-out and a southbound right-in). Existing (planning stage) traffic to the proposed Weltervreden Open Cast Mine is taken off this access.

This report provides a summary of the current road, traffic and transport conditions in the study area and analyses the traffic impact that the proposed development is expected to have on the surrounding road network and environment. It also recommends transport interventions required to support the development and to mitigate any impact.

1.2 Scope of the TIA

The scope of the traffic impact assessment included the following:

- Meeting with the project team and correspondences with the road authorities to discuss possible intersection/ road crossing solutions and the overall traffic impact assessment approach and methodology;
- Conducting literature review, site visit, and traffic count surveys to understand current and future traffic and transport (including public and non-motorised transport) conditions;
- Estimating trip generation potential of the proposed mine during construction and operation phases;
- Conducting capacity analysis and access assessment to determine the impact of additional traffic during construction and operation phases and to recommend road upgrades, if necessary, to mitigate the development impact;

Assessing impact on public transport, walking and cycling and to recommend necessary mitigation measures.

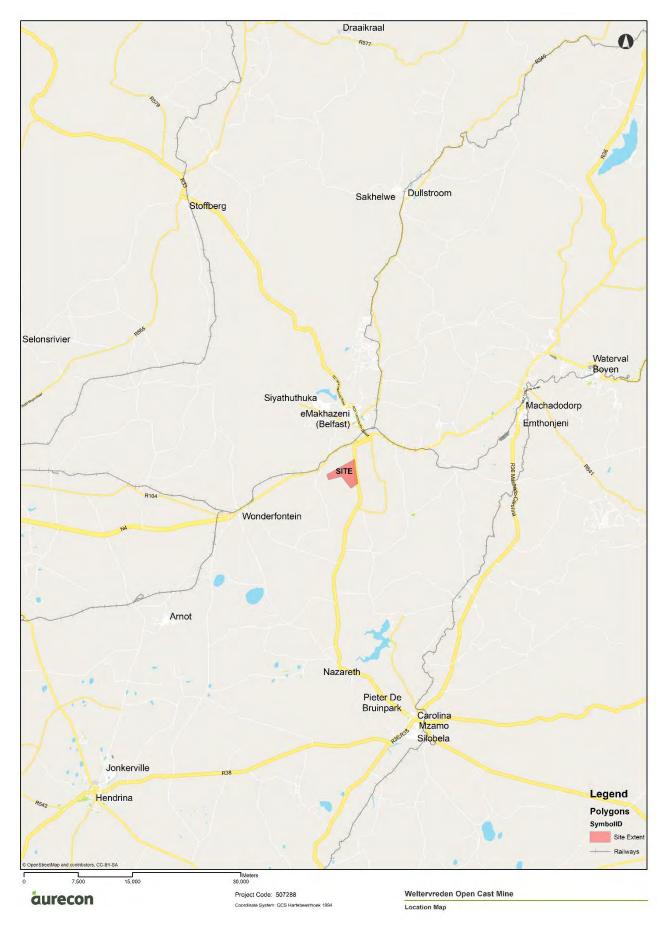


Figure 1-1: Location map

Figure 1-2: Aerial view of the site

2 Approach and methodology

2.1 Study area

The study area includes the four intersections along the R33 and the new proposed mine site. The impact of the development traffic is expected to be the highest at these locations. The intersections are indicated in Figure 1-2 and listed below:

- R33/N4 eastbound On- and Off-ramp (1);
- R33/N4 westbound On- and Off-ramp (2);
- R33/Vogelstruispoort road (3);
- R33/ Unknown access road (4); and
- R33/ Weltevreden Mine access road (5).

2.2 Assessment scenarios

The study assessed the following scenarios, based on expected phasing activities of the Weltevreden Open Cast Mine:

- Planning phase (2019);
- Construction phase (assumed to be from 2021 and 2022);
- Operational phase (assumed to be from 2022 to 2037);
- Decommissioning (assumed to be from 2037 to 2038).

The operation phase is expected to generate the most traffic for the development.

2.3 Trip generation

Neither the TMH 17 South African Trip Data Manual¹ nor its predecessor the South African Trip Generation Rates Manual (SATGRM)² have trip generation rates for mining developments. Therefore, development traffic was generated from first principles using data on expected mine construction and operational activities as provided by the client.

2.4 Intersection capacity analysis

Traffic analysis was carried out using SIDRA Intersection analysis software and the intersection performance measurements were defined in accordance with the Highway Capacity Manual (HCM2010).

2.5 Access evaluation

The site is divided into the north (OC1) and the south (OC2) sections, west of the R33 road. There are several individual farm / private accesses located along the R33 (refer to images and descriptions of the existing transport environment in Section 3 below).

The current Weltevreden Open Cast mine traffic accesses the site from an existing access along the R33, near the southern boundary of the site. This access is shared with a neighbouring coal mine as mentioned above.

¹ Committee of Transport Officials (COTO), 2013. South African Trip Data Manual, Pretoria: Published by the South African National Roads Agency Limited (SANRAL).

² National Department of Dransport (NDoT), 1995. South African Trip Generation Manual, Pretoria.

Aurecon engaged the South African National Roads Agency SOC Limited (SANRAL) regarding the access options for the development, as part of the TIA scoping process. The following comments are relevant to the site's access strategy:

- The R33 is a national road, under the responsibility of SANRAL;
- SANRAL classifies the R33 as a Class 2 Road (as a rural road, the implied intersection spacing is 5km);
- Direct access on a Class 2 Road is not supported. However, intersections can be considered provided they are accessible to the public and meet minimum TRH26 (South Africa Road Classification and Access Management Manual)³, safety and sight distance requirements;
- In case of a new intersection being proposed, all other existing accesses, which do not meet the intersection spacing requirements, will need to be closed.

Based on the initial SANRAL comments, Aurecon proposes that the development access be taken off the existing R33 intersection, near the southern boundary of the site (OC2). The rest of the assessment assumes this access strategy. An alternative is also proposed to move the intersection about 400m south of the existing location to improve intersection geometry.

The proposed access intersection as per above, is included in the traffic impact analyses.

Further analysis was carried out using queuing analysis theory, to estimate number of access gates and stacking space required at access gates for the two sections of the proposed mine (i.e. east and west site sections).

³ Committee of Transport Officials (COTO), 2012, South African Road Classification and Access Management Manual: SANRAL, Pretoria.

3 Existing transport environment

The Traffic Impact Assessment (TIA) reviews the impact that the proposed mining development could have on all modes of transport and road network operation within the study area extent.

To better understand the local traffic environment, a manual classified traffic count survey was undertaken on Thursday 12th September 2019 between 06h00 and 18h00. A site visit was undertaken on 19 September 2019.

The traffic count data, as revealed from the survey, were used in the SIDRA intersection assessment software to assess the intersections' performance and the likely impact of the additional traffic due to the proposed development at key intersections within the study area as described above.

3.1 Existing road network

The N4 national road passes about 2 km to the north of the project area and the R33 regional road runs along the eastern boundary of the project area. The surrounding road network is further discussed below:

N4

The N4 is a national road connecting Gauteng and Mpumalanga provinces. The N4 off ramps and on ramps at Belfast connect with the R33 route to Weltevreden Mine. The N4 on/off ramp is in good surfacing condition.

R33

R33 is a north-south major arterial, currently defined as a Class 2 road by SANRAL. The R33 is located in a rural area Belfast, in Mpumalanga Province. It is a paved road with one lane per direction. It facilitates access to the N4 in the north and N17 in the south.

The R33 connects Belfast to Carolina and serves a number of coal mines located along the route. The current pavement condition in the vicinity of the site is in a good state while the rest of the route is in fair condition.

Accesses along R33

There are several accesses located along the R33, providing primary access to multiple farms and developments. Any changes to the accesses (especially closures) will require substantial consultation with the land owners and tenants.

Weltevreden Open Cast Mine Access

The access road to Weltevreden mine connects to the R33. The access to the mine has a left-in and left-out access (partial intersection) with the R33. This access will be shared with another, existing coal mine in the vicinity.

3.2 **Existing traffic volumes**

3.2.1 Site traffic observations

A site visit was conducted on 19 September 2019 to observe the current transport environment in the study area and to confirm locations for manual traffic count surveys. The following observations were made during the site visit:

- The R33 was found to have relatively low traffic volumes;
- Vehicle types observed along the R33 were mostly heavy vehicles (trucks), light vehicles and few minibus
- There are very few minibus taxis, which are mostly empty considering that the site visit was made during the morning peak;
- The R33 was in a fair surfacing condition and has several individual accesses located along the stretch of road, mostly serving farms and mines;
- The posted speed limit on R33 is 120 km/hr;
- There were no speed limit reduction signs observed near intersections, private accesses and sharp bends;
- There was no street lighting observed along the R33;
- Cyclist and pedestrian activity was observed along the R33 and yet there are no walking and cycling facilities provided;
- There were no evident traffic problems during the site visit.

3.2.2 **Existing traffic volumes**

Existing traffic volumes were derived from the traffic counts. Existing traffic volumes are shown in Figure 3-1 and 3-2. A full set of traffic flow diagrams are included in Appendix B.

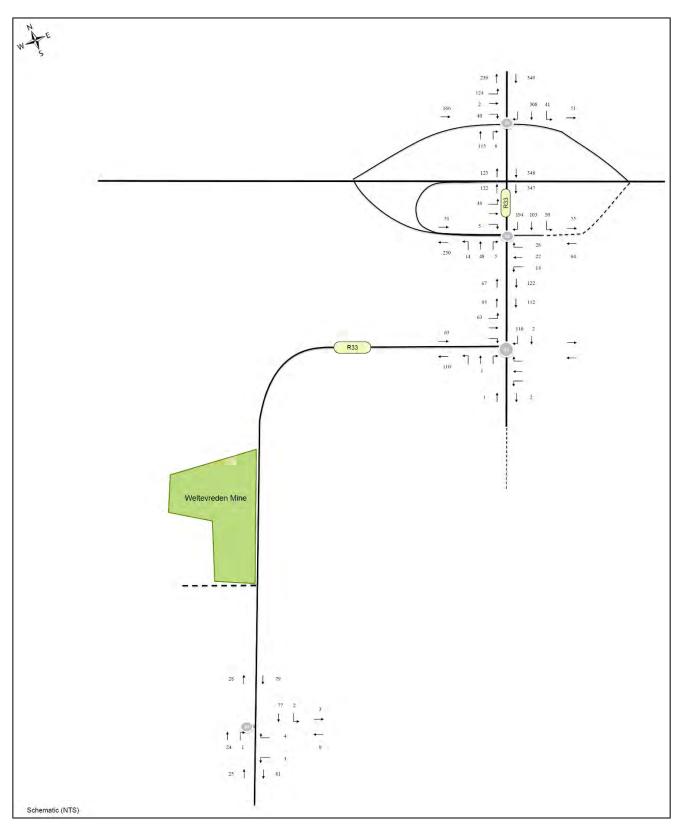


Figure 3-1: Existing traffic volumes AM peak hour (total traffic)

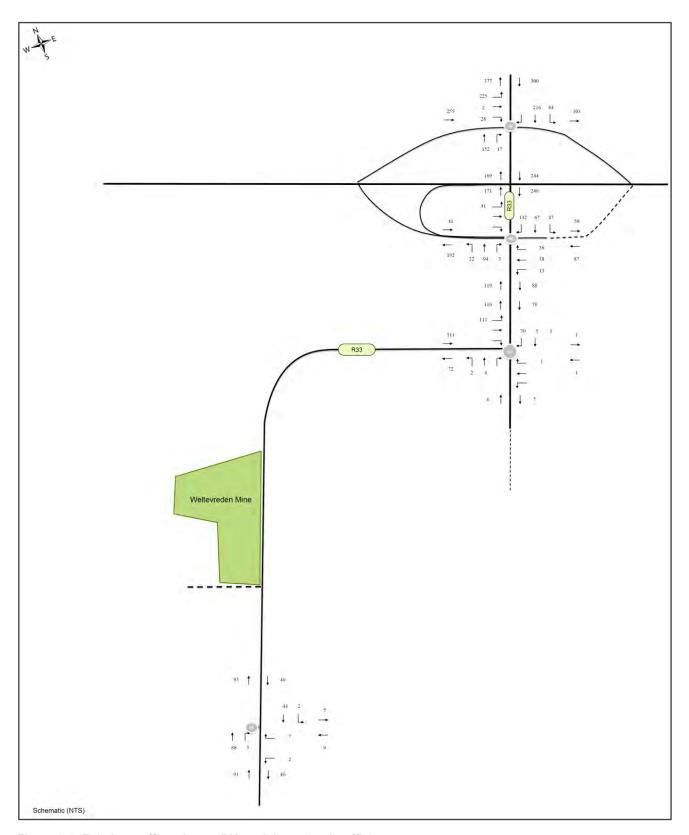


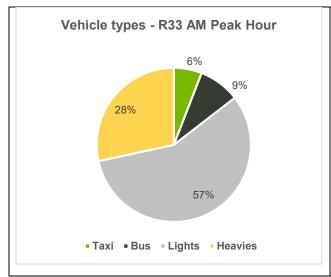
Figure 3-2: Existing traffic volumes PM peak hour (total traffic)

The R33 carries up to 680 vehicles during the peak hour (vph) (total for both directions) north of the N4, 190 vph between the site and the N4 and 140 vph south of the site. The counts further illustrate that about 50 vph (in total) enter and exit the R33 between survey locations 3 and 4 during the peak hours.

3.3 Existing road conditions

Based on site observations, the R33 is paved and appears to be in good condition in the immediate vicinity of the site and in a fair condition further south of the development site. The N4 on and off ramp joining the R33 appear to be good in condition. Local traffic includes light vehicles, heavy vehicles (trucks and buses) and minibus taxis.

3.4 Road safety


The horizontal alignment of the R33 is relatively straight near the site and as such visibility, sight distances and sight lines are within acceptable standards. However, the road does have a 90 degree turn about 300m south of the N14 interchange. The R33 has a posted speed limit of 120 km/hr throughout the study area.

The R33 has one lane per direction. No passing lanes were observed during site visits, therefore resulting in very limited overtaking opportunities along the road. The above conditions could lead to crashes caused by impatient motorists desiring to overtake slower moving vehicles. Heavy vehicles in the traffic stream generally add to driver anxiety for other road users, impact on pedestrian movements and therefore increase road safety risks. There is a significant proportion of heavy vehicles currently on the network, as discussed below.

3.5 Public transport

The R33, near the proposed site access is served by public transport, in the form of minibus taxis (about 6% to 8% of total traffic), and buses (about 4% to 9% of total traffic).

Buses and minibus taxis that service the area comprise of both private mine employee shuttles and public transport services. Although light vehicles make up about 60% of the vehicles on the road network, it can be expected that majority of people in the study area use public transport or employee shuttles since buses and taxis carry more people per vehicle.

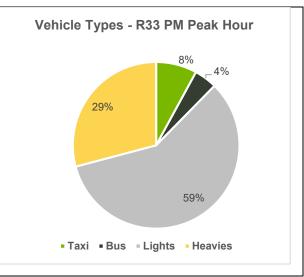


Figure 3-3: Vehicle type composition on R33 during the AM and PM peak hour

3.6 Heavy vehicles

Currently, about 29 % of the vehicles on the R33 are heavy vehicles, which is considered higher than the norm, but representative of typical areas with mining activities. The majority heavy vehicles (i.e. 73% and 59% in the AM and PM peak hours respectively) were recorded at the station 3 which is north of the Weltevreden Mine site and the remainder at station 4 south of the development. The results indicate that most heavy vehicles travel on the N4 to access regional centres, and a much smaller percentage use the R33 south of the proposed development site to access regional centres.

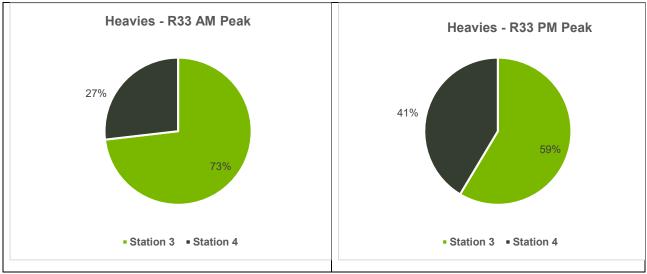


Figure 3-4: Heavy vehicles on R33 during the AM and PM peak hour

3.7 Walking and cycling

There were no dedicated walking and cycling paths and crossing facilities observed along the R33 and N4 ramps during the site visit. There was almost no walking and cycling activity observed within the study area, with the exception of the area around R33 and N4 interchange, where low volume walking and cycling activity was observed.

4 Trip generation

Traditionally, development traffic is estimated by applying trip generation rates from the South African Trip Data Manual (THM17) ⁴and previously the South African Trip Generation Rates Manual (SATGRM) (NDoT, 1995). However, neither the SATGR manual nor TMH17 have recommended trip rates for mines and associated activities. As an alternative it was considered appropriate to estimate the mine's trip generation from first principles, using possible operational data as provided by the client.

4.1 Construction and operational data

A summary is provided below of the mine traffic generation indicators during the construction and operational phases. A questionnaire was sent to the client, where details on expected mine activities and transport demand was provided for both the construction and operational phases of the project. A copy of the full questionnaire is included in Appendix C.

Table 4-1: Employees by phase and shifts

Time	Const	ruction	Operational		
Type	Shift 1	Shift 2	Shift 1	Shift 2	
Shift times (Assumption)	06:00 to 16h00	16h00 to 02h00	06:00 to 16h00	16h00 to 02h00	
General	20	10	100	100	
Technical	10		20	10	
Administrative	8		14	2	
Management	2		4		
Total	40	10	138	112	
Total	Ę	50	:	250	

The site is expected to have 50 and 250 employees during the construction and operational phase respectively.

Table 4-2: Service vehicles (regular site supplies and deliveries) (both construction and operation)

Type of goods	Light Delivery Vehicles	Heavy Vehicles	
	Total per day (per direction)	Description	Total per day (per direction)
Office supplies (Stationery, bottled water, food, etc.)	3	Ad-hoc Low-beds to deliver or collect yellow plant	1
Fuel	-	Fuel	1
Total	3		2

It is estimated that three light vehicles and two heavy vehicles will access the site per day, to ring in regular site supplies.

⁴ Committee of Transport Officials (COTO), 2013. South African Trip Data Manual, Pretoria: Published by the South African National Roads Agency Limited (SANRAL).

Table 4-3: Haulage trucks

Description	Const	truction	Operation		
Description	Inbound	Outbound	Inbound	Outbound	
Truck trips	2	2	60	60	
Total	4		120		

Four heavy vehicles are expected to enter and leave the site during the construction stage and 120 heavy vehicles are expected during the operational phase.

Table 4-4: Mode share expectations

Mode	Construction phase	Operation phase
Walk / Cycle	0%	0%
Minibus Taxis (public)	0%	0%
Buses (Public)	0%	0%
Rail	0%	0%
Staff Transport (Minibuses)	80%	80%
Staff Transport (Buses)	0%	0%
Private Vehicles	20%	20%
Total	100%	100%

It is expected that 80% of the employees will make use of public transport and employee shuttle buses or minibuses. The remainder (20%) are expected to access the site using private cars.

4.2 Trip generation assumptions

Further assumptions that were made in estimating the potential trip generation of the proposed mining development included the following:

- Although the shift change time do no coincide with the peak hours observed from traffic counts, it was
 assumed for trip generation purposes that these shifts coincide with the background traffic peaks. This
 was to allow for more robust traffic analyses (using the worst-case scenario);
- 100% of shift 1 trips will enter the site during the AM peak and 100% trips of shift 2 will exit the site (worst-case shift overlap scenario);
- It was assumed that 100% of daily service traffic enters or leaves the site during the AM and PM peak hours;
- The directional distribution for service and haulage traffic was assumed to be 50% inbound and 50% outbound in both the AM and PM peaks;
- For haulage trucks, it was assumed that 10% of the daily demand will enter and leave the site during the AM and PM peak;
- In some instances where calculations resulted in fractional vehicle numbers, the results were rounded up to the nearest whole number.

4.3 Trip generation estimate

A summary of the estimated trip generation is provided in Table 4-5 and 4-6 below. Detailed trip generation calculations are included in Appendix D.

Table 4-5: Trip generation summary (construction phase)

Vehicle type	AM Total	AM Inbound	AM Outbound	PM Total	PM Inbound	PM Outbound
Light vehicles	12	9	4	13	4	9
Minibuses	3	3	1	4	1	3
Heavy vehicles*	3	2	2	4	2	2
Total	18	14	7	21	7	14

^{*}Include haul trucks and service / delivery heavy vehicles

Table 4-6: Trip generation summary (operational phase)

Vehicle type	AM Total	AM Inbound	AM Outbound	PM Total	PM Inbound	PM Outbound
Light vehicles	45	25	21	46	21	25
Minibuses	15	8	7	15	7	8
Heavy vehicles	14	7	7	14	7	7
Total	74	40	35	75	35	40

The development is expected to generate approximately about 20 vehicles per hour during the construction phase AM and PM peaks. During the operation peak, the development is expected to generate about 75 vehicle trips during the AM and PM peak hours.

The operational phase is expected to generate significantly more traffic than the construction phase and is therefore considered to be a more critical phase of the mine development.

For the opening year, the construction traffic is used, and the operational phase is used for the 5 year design horizon, as discussed further in Section 6.

5 Trip distribution and assignment

Traffic distribution was based on the client feedback from the trip generation questionnaire and the peak hour traffic volumes from the traffic count surveys. Additional assumptions were made where gaps in the client-provided information were identified. Two traffic distribution were developed, i.e. general traffic distribution for employee traffic and service vehicles, and the site-specific distribution for haulage trucks. A summary of the traffic distribution assumptions is provided below:

- General distribution:
 - 60% to and from Siyathuthuka (north-west of Belfast town centre);
 - 20% to and from Belfast;
 - 18% to and from Machadodorp (eNtokozweni)*;
 - 1% to and from Middelburg*;
 - 1% to and from Carolina*.
- Haulage trucks:
 - 100% to use R33 going to Site, comprising of:
 - 99% northbound towards the N14 / R33 interchange*;
 - 1% southbound towards Carolina*.

The distribution of the development traffic, for both the construction and operational phases is shown in Figure 5-1 to 5-4 below and in Appendix B.

^{*}Additional Aurecon assumptions.

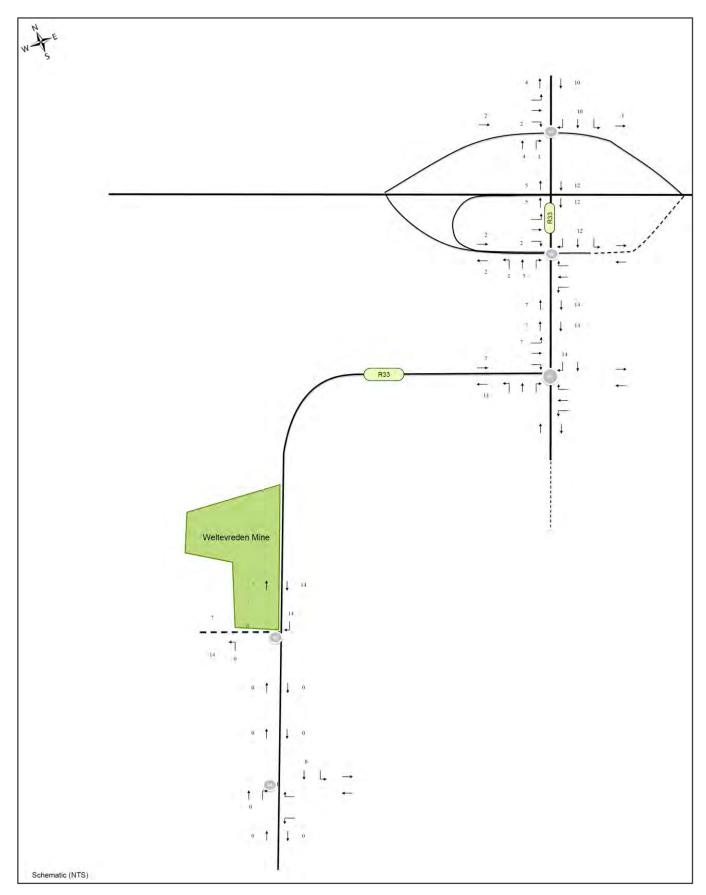


Figure 5-1: Development traffic AM peak hour (construction phase)

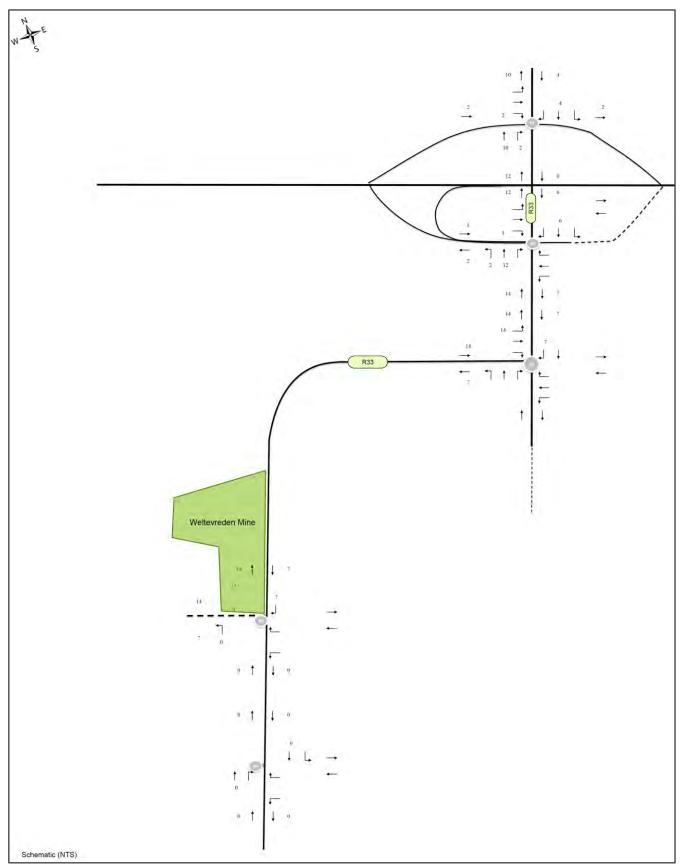


Figure 5-2: Development traffic PM peak hour (construction phase)

Figure 5-3: Development traffic AM peak hour (operational phase)

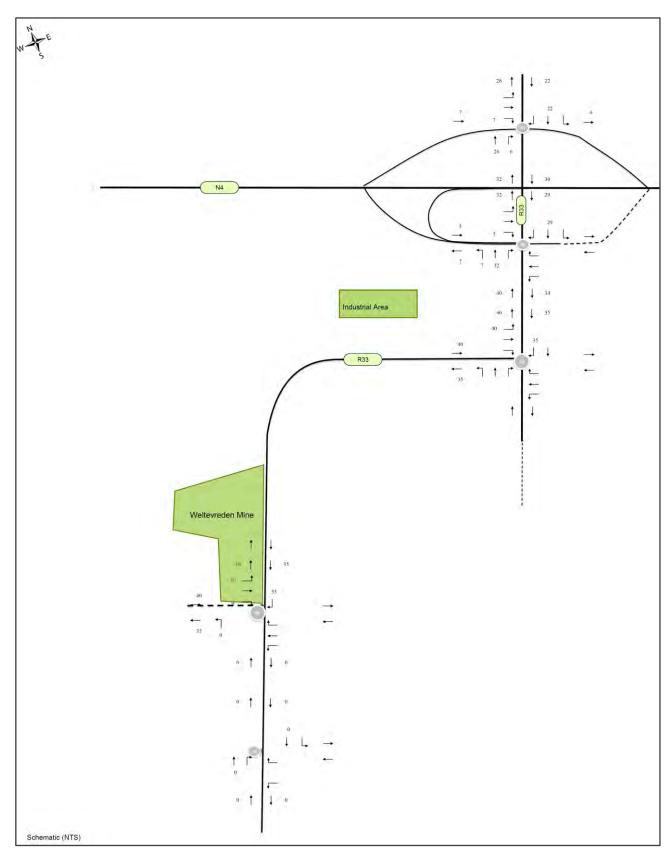


Figure 5-4: Development traffic PM peak hour (operational phase)

6 Intersection capacity analysis

6.1 Assessment criteria

The intersection and access capacity analyses were carried out using SIDRA Intersection software. The performance criteria used to determine an intersection's Level of Service (LOS) is provided in Table 6-1 below. The LOS, delay and volume/capacity (v/c) measurements are defined in accordance with the Highway Capacity Manual (HCM 2010) methodology.

Table 6-1: Level of Service Criteria

Level of Service Content	Performance measure – Average delay per vehicle (sec/veh)					
	Roundabouts and signals	Stop and Give Way/ Yield Signs				
Α	d ≤ 10	d ≤ 10				
В	10 < d ≤ 20	10 < d ≤ 15				
С	20 < d ≤ 35	15 < d ≤ 25				
D	35 < d ≤ 55	25 < d ≤ 35				
E	55 < d ≤ 80	35 < d ≤ 50				
F	d > 80	d ≥ 50				

The capacity analysis in this TIA used delay as the LOS measure for priority-controlled intersections. As illustrated in Table 6-1, LOS A to F are used, with LOS A indicating the best operating conditions and LOS F the worst. The LOS A to D were taken as acceptable for the purpose of this traffic impact assessment.

An additional performance measure that is also assessed is the Volume over Capacity (V/C) ratio, also referred to as the degree of saturation. V/C is defined as Volume of traffic divided by the capacity of the road element or an intersection. For design and planning purposes V/C ratios up to 0.95 (95%) are acceptable. Values between 0.95 to 1.0 indicates road network demand that is approaching capacity and delays can be expected on the road network. V/C values more than 1 indicate that the demand exceed the available capacity and the network may be prone to traffic jams and congestion.

6.2 Scenarios assessed

The 2019 baseline traffic was determined from traffic count survey data. For purposes of determining the future background traffic growth, the following sources were reviewed:

- Emakhazeni Local Municipality Spatial Development Framework (SDF);
- TMH17 (Table 1.1: Typical traffic growth rates).

The Emakhazeni local municipality Spatial Development Framework (SDF), 2015, highlights that population size in the municipality slightly increased by approximately 10% between 2001 and 2011, from about 43,000 to 47,200 people. This translates to an annual growth of 1% (pa). The SDF forecast the population to grow by about 1.1% pa, with the 2020 projected at about 52,300 people (assuming a normal growth scenario).

Typical traffic growth rates, provided in TMH17, allow for a growth rate of 0 to 3% pa in low growth areas and between 3 and 4% in average growth areas. Based on SDF projections, it was determined that the Emakhazeni could be categorised as either low growth or average growth area. Considering that the surrounding road network currently has low traffic volumes, the upper traffic growth rate threshold from TMH17 for average growth area (i.e. 4% pa) was selected for estimating future background traffic.

Two future horizon periods were assessed, i.e. 2-year horizon (opening year) (2021) and 5-year horizon (2024) as required by TMH16⁵. The construction traffic was added to the operational phase as the development traffic would not have fully ramped up on opening year. The operational phase development traffic was added to 5-year horizon background traffic to test the impact of the proposed development traffic. 5-year analysis was used to establish the impact of the additional traffic due to the proposed mining development.

The following traffic analysis scenarios were therefore analysed:

- 2019 Baseline (existing) traffic;
- 2022 Opening year background traffic, without proposed development;
- 2022 Opening year background traffic, with the proposed development traffic (construction phase);
- 2024 Operational year background traffic, without the proposed development traffic;
- 2024 Operational year background traffic, with the proposed development traffic (operational phase).

6.3 Intersection capacity analysis results

The results of the intersection capacity analysis area summarised below and detailed results are included in Appendix E.

6.3.1 2019 Baseline (existing) traffic

The 2019 baseline analysis results are summarised in Table 6-2 below.

Table 6-2: Intersection capacity results - 2019 baseline

			AM			PM		
Intersection	Туре	Approach	V/C	Delay (s)	LOS	V/C	Delay (s)	LOS
		South: R33	0.086	0.5	Α	0.096	0.8	Α
1 – R33/N4 IC (N4	Driority	North: R33	0.216	0.7	Α	0.183	1.6	Α
On Ramp)	Priority	West: N4 On Ramp	0.182	9.9	Α	0.160	7.7	Α
		Overall	0.216	3.1	Α	0.183	3.6	A
	Priority	South: R33	0.051	1.9	Α	0.067	1.5	Α
2 – R33/N4 IC (N4		East: Engen Garage Access Road	0.191	16.4	С	0.221	15.1	С
On/Off Ramp)		North: R33	0.173	4.2	Α	0.129	4.6	Α
		N4 On/Off Ramp	0.065	9.2	Α	0.048	9.2	Α
		Overall	0.191	5.9	Α	0.221	6.1	Α
		South:	0.004	9.2	Α	0.009	9.5	Α
3 – R33/		East:	0.002	3.7	Α	0.002	3.7	Α
Vogelstruispoort	Priority	North: R33	0.164	9.6	Α	0.126	10.7	В
road		West: R33	0.079	6.0	Α	0.105	5.8	Α
		Overall	0.164	8.2	Α	0.126	7.8	A

⁵ Committee of Transport Officials (COTO), 2012, South African Traffic Impact and Site Traffic Assessment Manual, Published by the South African National Roads Agency Limited (SANRAL), Pretoria

	Туре	Approach	AM			PM		
Intersection			V/C	Delay (s)	LOS	V/C	Delay (s)	LOS
	Priority	South: R33	0.030	0.3	Α	0.082	0.2	Α
4 – R33/Unknown road		East: Unknown Access	0.009	8.2	А	0.012	8.8	Α
Toau		North: R33	0.065	0.1	Α	0.056	0.3	Α
		Overall	0.065	0.7	Α	0.082	0.7	Α

Analysis results indicate that the network currently operates at level of service (LOS) A, with virtually no delays.

6.3.2 2022 Opening year background traffic, without the proposed development

The opening year (2022) background traffic scenario was included to serve as a reference scenario, upon which the impact of the development traffic will be evaluated for the assumed opening year of the development. This scenario is also intended to evaluate the impact of background growth on the surrounding road network in 2022. The 2022 traffic volumes were estimated using a background growth of 4% as discussed earlier. Results for this scenario are summarised in Table 6-3.

Table 6-3: Intersection capacity results – 2022 background without proposed development traffic

	Туре			АМ		PM		
Intersection		Approach	V/C	Delay (s)	LOS	V/C	Delay (s)	LOS
1 – R33/N4 IC (N4 On Ramp)	Priority	South: R33	0.097	0.6	Α	0.108	8.0	Α
		North: R33	0.243	0.7	Α	0.205	1.6	Α
		West: N4 On Ramp	0.239	11.0	В	0.205	8.0	Α
		Overall	0.243	3.3	Α	0.205	3.7	Α
	Priority	South: R33	0.058	2.0	Α	0.074	1.5	Α
2 – R33/N4 IC (N4 On/Off Ramp)		East: Engen Garage Access Road	0.241	18.4	С	0.272	16.8	С
		North: R33	0.197	4.2	Α	0.148	4.7	Α
		N4 On/Off Ramp	0.077	9.4	Α	0.054	9.3	Α
		Overall	0.241	6.2	Α	0.272	6.4	Α
	Priority	South:	0.004	9.3	Α	0.009	9.6	Α
3 – R33/		East:	0.002	3.7	Α	0.002	3.7	Α
Vogelstruispoort		North: R33	0.185	9.7	Α	0.145	10.9	В
road		West: R33	0.089	6.0	Α	0.118	5.8	Α
		Overall	0.185	8.3	Α	0.145	7.8	Α
4 – R33/Unknown road	Priority	South: R33	0.033	0.2	Α	0.092	0.2	Α
		East: Unknown Access	0.009	8.3	А	0.013	8.9	А
		North: R33	0.073	0.1	Α	0.063	0.2	Α
		Overall	0.073	0.7	Α	0.092	0.7	Α

The increase in traffic due to background growth will have minimal impact on traffic operational performance of the surrounding road network.

6.3.3 2022 Opening year background traffic, with the proposed development traffic (construction phase)

The scenario was included to test the impact of the proposed Weltevreden Open Cast Mine development on the surrounding road network. To estimate demand for this scenario, the construction phase development traffic was added to the 2022 background traffic. The analysis results for the scenario are summarised in Table 6-4 below.

Table 6-4: Intersection capacity results - 2022 background traffic with the proposed development

	Туре	Approach	АМ			PM		
Intersection			V/C	Delay (s)	LOS	V/C	Delay (s)	LOS
1 – R33/N4 IC (N4 On Ramp)		South: R33	0.100	0.6	Α	0.115	0.9	Α
	Priority	North: R33	0.250	0.7	Α	0.209	1.6	Α
		West: N4 On Ramp	0.261	11.5	В	0.186	8.3	Α
		Overall	0.261	3.5	Α	0.209	3.8	Α
2 – R33/N4 IC (N4		South: R33	0.062	1.9	Α	0.081	1.4	Α
	Priority	East: Engen Garage Access Road	0.253	18.9	С	0.284	17.3	С
On/Off Ramp)		North: R33	0.200	4.2	Α	0.152	4.7	Α
		N4 On/Off Ramp	0.086	9.8	Α	0.055	9.4	Α
		Overall	0.253	6.2	Α	0.284	6.4	Α
	Priority	South:	0.004	9.3	А	0.009	9.7	Α
3 – R33/		East:	0.002	3.7	Α	0.002	3.7	Α
Vogelstruispoort		North: R33	0.207	9.8	Α	0.159	11.0	В
road		West: R33	0.098	6.0	Α	0.131	5.8	Α
		Overall	0.207	8.3	Α	0.159	7.8	Α
	Priority	South: R33	0.033	0.2	Α	0.092	0.2	Α
4 – R33/Unknown road		East: Unknown Access	0.009	8.3	А	0.013	8.9	А
		North: R33	0.073	0.1	Α	0.064	0.2	Α
		Overall	0.073	0.7	Α	0.092	0.7	Α
5- R33/Weltevreden access	Priority	South: R33	0.033	0.2	А	0.083	0.1	Α
		North: R33	0.062	0.9	Α	0.055	0.9	Α
		West: Access Road to Weltevreden Mine	0.004	9.3	А	0.011	9.4	Α
		Overall	0.062	1.1	A	0.083	1.0	Α

The analysis indicates that the additional traffic, due to the proposed development, will have minimal impact on traffic operational conditions of the surrounding road network. All five intersections that were assessed will operate at LOS A, even with the additional traffic due to the proposed development.

6.3.4 2024 Future year background traffic, without the proposed development

In terms of the operational information received from Mbuyelo Group, the mine will operate for approximately 15 years. However as per the requirement of TMH16, a 5-year horizon is assessed. The future year (2024) background scenario was included to serve as a reference scenario, upon which the impact of the development traffic will be evaluated for the 5-year TIA horizon. This scenario is also intended to evaluate the impact of background growth on the surrounding road network up to 2024. The 2024 traffic volumes were estimated using a background growth of 4% as discussed earlier. Results for this scenario are summarised in Table 6-5.

Table 6-5: Intersection capacity results - 2024 background without proposed development traffic

	Туре			АМ			PM		
Intersection		Approach	V/C	Delay (s)	LOS	V/C	Delay (s)	LOS	
1 – R33/N4 IC (N4 On Ramp)	Priority	South: R33	0.105	0.6	Α	0.117	0.9	Α	
		North: R33	0.263	0.7	Α	0.222	1.6	Α	
		West: N4 On Ramp	0.294	0.6	В	0.222	8.4	Α	
		Overall	0.294	3.6	Α	0.222	3.8	Α	
2 – R33/N4 IC (N4		South: R33	0.061	2.0	Α	0.082	1.6	Α	
	Priority	East: Engen Garage Access Road	0.287	20.6	С	0.319	18.6	С	
On/Off Ramp)		North: R33	0.215	4.3	Α	0.163	4.7	Α	
		N4 On/Off Ramp	0.084	9.6	Α	0.060	9.3	Α	
		Overall	0.287	6.5	Α	0.319	6.8		
	Priority	South:	0.004	9.3	Α	0.011	9.7	Α	
3 – R33/		East:	0.002	3.7	Α	0.002	3.7	Α	
Vogelstruispoort		North: R33	0.201	9.8	Α	0.157	11.0	В	
road		West: R33	0.097	6.0	Α	0.127	5.8	Α	
		Overall	0.201	8.3	Α	0.157	7.9	Α	
4 – R33/Unknown road	Priority	South: R33	0.036	0.2	Α	0.100	0.2	Α	
		East: Unknown Access	0.011	8.3	Α	0.015	0.9	Α	
		North: R33	0.079	0.1	Α	0.069	0.2	Α	
		Overall	0.079	0.7	Α	0.100	0.8	Α	

The increase in traffic due to background growth will have minimal impact on traffic operational performance of the surrounding road network. All assessed intersections will continue operating at LOS A, with minimal delays.

6.3.5 2024 Opening year with the proposed development traffic (operational phase)

The scenario was included to test the impact of the proposed Weltevreden Open Cast Mine development on the surrounding road network in 2024 (5-year TIA horizon). To estimate demand for this scenario, the operational phase development traffic was added to the 2024 background traffic. This is also used as a critical scenario, through which the impact of the development traffic was assessed. The analysis results for the scenario are summarised in Table 6-6 below.

Table 6-6: Intersection capacity results - 2024 background plus proposed development traffic

	Туре			AM		PM		
Intersection		Approach	V/C	Delay (s)	LOS	V/C	Delay (s)	LOS
1 – R33/N4 IC (N4 On Ramp)	Priority	South: R33	0.121	0.8	Α	0.133	1.0	Α
		North: R33	0.282	0.7	Α	0.241	1.5	Α
		West: N4 On Ramp	0.394	14.6	В	0.279	9.6	Α
		Overall	0.394	4.2	Α	0.279	4.1	Α
	Priority	South: R33	0.088	1.5	Α	0.103	1.3	Α
0. 000/04/10/24		East: Engen Garage Access Road	0.343	23.2	С	0.373	21.1	С
2 – R33/N4 IC (N4 On/Off Ramp)		North: R33	0.230	4.2	Α	0.177	4.6	Α
		N4 On/Off Ramp	0.118	11.0	В	0.078	10.3	В
		Overall	0.343	6.7	Α	0.373	6.9	Α
	Priority	South:	0.004	9.5	Α	0.011	10.0	Α
3 – R33/		East:	0.002	3.7	Α	0.002	3.7	Α
Vogelstruispoort		North: R33	0.269	10.1	В	0.227	11.4	В
road		West: R33	0.140	6.0	Α	0.165	5.8	Α
		Overall	0.269	8.4	Α	0.227	8.1	Α
	Priority	South: R33	0.037	0.2	Α	0.100	0.2	Α
4 – R33/Unknown road		East: Unknown Access	0.011	8.3	А	0.015	9.0	А
		North: R33	0.079	0.1	Α	0.069	0.2	Α
		Overall	0.079	0.7	Α	0.100	0.8	Α
5 - R33/Weltevreden access		South: R33	0.035	0.2	Α	0.090	0.1	Α
		North: R33	0.067	1.9	Α	0.059	2.7	Α
	Priority	West: Access Road to Weltevreden Mine	0.024	9.0	А	0.031	9.5	А
		Overall	0.067	2.6	Α	0.090	2.4	Α

The analysis indicates that the additional traffic, due to the proposed development, will have minimal impact on traffic operational conditions of the surrounding road network. All five intersections that were assessed will still operate at LOS even with the development traffic.

6.3.6 Summary of the intersection capacity analyses

The surrounding road network has enough capacity to accommodate additional traffic due to background traffic growth and the proposed Weltevreden Open Cast Mine development traffic. Minimal delays are expected in 2024 and all assessed intersections will operate at LOS A or better.

6.4 Development access

As mentioned earlier SANRAL discourages direct access off Class 1 to 3 roads. SANRAL could consider new intersections subject to TRH26 and safety requirements being met, and the intersections being for a public road that can be shared with neighbouring properties.

In case of a new intersection being proposed, it may be necessary to close other sub-optimal intersections (in terms of TRH26 intersection spacing requirements). Closure of intersection could be subject to a number of risks and legal challenges.

For the above reasons, it is recommended that access to the site be via a service road either to the existing partial access intersection off the R33 near the southern boundary of the proposed mining development (option 1), or to a new intersection approximately 400m south of the existing intersection (with the existing intersection having to be closed) (option 2). It is further proposed that sections of the service road be shared with nearby properties. A private road can then be provided north of the service road for controlled access to the development.

Sketches of the two proposed access strategies are provided below.

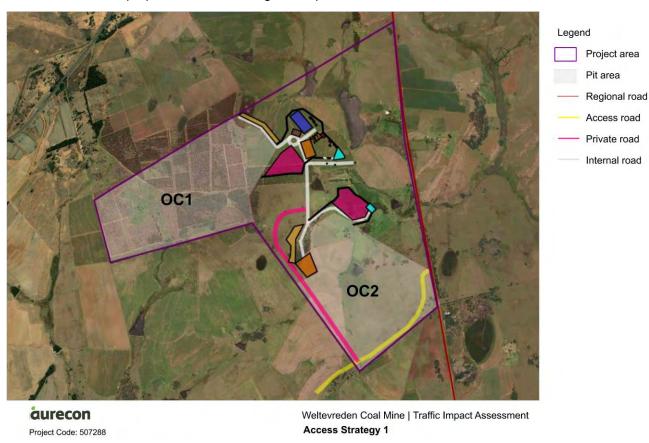


Figure 6-1: Proposed access strategy - option 1 (through the existing access)

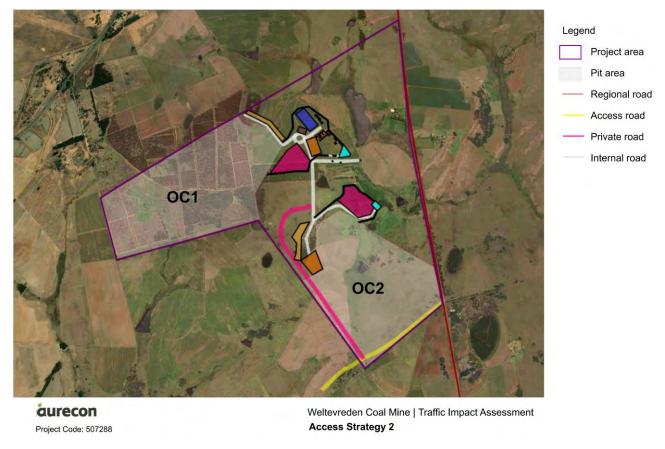


Figure 6-2: Proposed access strategy - option 2 (move existing intersection about 400m southward)

Advantages of the option 1 access strategy includes the following:

- Keeping an existing intersection that, based on aerial image history, was recently constructed;
- Minimal interruptions are expected to the R33 traffic during service road construction.

Advantages to option 2 access strategy includes the following:

- The same lane configurations will be provided at the new intersection;
- Traffic safety will be enhanced through the following:
 - The angle of the intersection will be improved to a near 90-degree intersection;
 - An existing sharp bend before the intersection will be removed.
- The service road will be aligned closer to the edge of the southern boundary of the site, maximising space available for mine operations and safety barrier requirements.

Either of the access strategy has unique advantages and addresses initial comments received from SANRAL. The service road will be a Class 4 road since it will function as a local collector road.

A queuing analysis was carried out for the critical inbound traffic flow into the development, during the AM peak (operational phase). For queuing analysis purposes, it was assumed that boom gates with a push button will be used to control access. The results of the queuing analysis area provided below.

Table 6-7: Queuing analysis variables

Description	Access
Peak Hour Inbound Traffic Volume (vph)	40
Average arrival rate at peak (vph)	50
Average service rate (sec/veh)	10
Average service rate (services/h)	360
Traffic Intensity	0.14
Number of channels (gates)	1
90th percentile queue length (<n td="" vehicles)<=""><td>2</td></n>	2
Average number of vehicles in the system (veh)	0.2
Average Delay (sec)	11.6
Average vehicles per gate (veh)	0.2

The analysis demonstrated that a single gate, with enough stacking for two vehicles at a time would be required. However, from practicality perspective, it is recommended that two entrance gates be provided, where the additional gate will be used for visitors signing in. This will allow employee and authorised vehicles unimpeded access, thus reducing probability of queues building up at the entrance. It is further recommended that a minimum stacking of about 25 m be provided between the edge of the proposed service road and the location of the boom gates, as per the requirement of THM16 (for a class 4 road).

7 Public transport, walking and cycling

As per the trip generation calculations, refer to Appendix C, it is estimated that the proposed development will generate fourteen (i.e. eight inbound and six outbound) minibus taxi trips during both the AM and PM peak hours. It is expected that this demand will be accommodated by the mine's employee shuttles. It will therefore be necessary to accommodate for internal pick-up and drop-off. Minibus taxi laybys are therefore recommended within the development to facilitate pick-up and drop-offs for those using employer-arranged shuttle buses or minibuses.

There is currently no walking or cycling facilities in the immediate vicinity of the proposed development access. The development is also not expected to generate primary walking or cycling trips as employee shuttles are generally used in the area. However, it is recommended that adequate footpaths be provided along the mine access road, connecting to the internal road network. It is also recommended that adequate drop-off and pick up area be provided within the development to accommodate employee shuttle demand.

8 Environmental impact assessment

Transport of heavy goods has an impact on traffic operations and road safety. In terms of TMH16, the following aspects of heavy goods vehicles needs to be assessed:

- Capacity;
- Road safety;
- Road geometry standards;
- Road surfacing conditions;
- Dust;
- Road classification.

Heavy vehicles are expected to use the R33 and the N4, in the immediate study area. These roads are planned and designed to carry relatively high proportion of heavy vehicle traffic. The additional heavy vehicle trips, due to the proposed development, is therefore expected to have little impact on road geometry standards and classification of the local road network. With the exception of the proposed interventions to improve access to the site, no major geometric changes are expected.

The remainder of this section will focus on capacity, road safety and road surfacing conditions. A brief discussion of the development traffic on surrounding transport environment is provided below. The impact ratings are included in Appendix F.

8.1 Capacity assessment

Road capacity has been assessed as part of the capacity analysis in Section 6 of this report, and it was found that the additional traffic due to the proposed development will have minimal impact on the traffic operational conditions of the surrounding network.

8.2 Road safety

An increase in heavy vehicle trips in the study area will increase the road safety risk to other road users, including pedestrians and cyclists, especially through active nodes such as town centres, residential areas and near schools. Intersections may also be affected, where longer gaps will be required by heavy vehicle traffic as compared to light vehicles.

From the trip generation calculation, it was estimated that about two heavy vehicle trips will be generated by the development during the construction phase AM and PM peak hours. During the operational phase it is estimated that 14 heavy vehicle trips could be added on the surrounding road network in the AM and PM peak hours. Daily heavy vehicle volumes are estimated to be three and 120 vehicles during the construction and operational phases respectively. This includes haulage traffic and those vehicles bringing in regular supplies to the site, such as office supplies, fuel, water and on an ad-hoc basis to move mining or construction machinery.

With a combination of low external road network heavy traffic generation and short lifespan of the facilities, the impact of the proposed development on road safety is considered low. However, it is recommended that awareness be raised regularly on safe driving and on impact of heavy vehicles on other road users, pedestrians and cyclists, as part of regular safety awareness briefings and training of mine employees and suppliers.

It is also recommended that road markings and signage be reviewed near the access intersection with the R33, with a view to ensure that sufficient warning is provided to other road users on the expected heavy vehicle crossing activities at the intersection.

It is also recommended that, where alternatives exist, employees and partners operating heavy vehicles to and from the development site should be encouraged to avoid activity nodes, residential areas and activity areas such as schools and community facilities.

It is also recommended that lighting along R33 Route, particularly the proposed service road and R33 intersection be improved. This will ensure adequate night time visibility and can reduce probabilities of crashes due to poor lighting conditions.

8.3 Surfacing conditions

Heavy vehicles increase loads on the roads. As discussed above, there will be an increase in heavy vehicle volumes on the surrounding road network due to the proposed development. The existing surfacing condition of the R33, near the development access, is in good condition. It is expected that the additional heavy traffic volumes could result in the quality of the surface condition reducing over time, especially the intersection of the R33 with the mine service road.

If access strategy option 1 (i.e. service road connecting to the existing intersection) is accepted, the intersection surfacing conditions will need to be monitored and appropriate rehabilitation be carried out when conditions deteriorate and on decommissioning of the site.

If access strategy option 2 is accepted (i.e. moving the intersection about 400m south towards the site boundary), the new intersection should be designed to accommodate the estimated additional heavy vehicle volumes that could be generated by the development over the lifetime of the mine. There should also be regular observations of the surface conditions in the immediate vicinity of the site to determine the need for maintenance over the lifetime of the project. The developer (mine operator) should assume the maintenance responsibility of the service road / R33 during the life of the mine, including the decommissioning phase. It is noted that a memorandum of understanding may need to be agreed between the mine and SANRAL regarding maintenance and rehabilitation responsibilities of the R33 / service road intersection.

Table 8-1: Environmental impact rating of the additional development traffic

0.1	Access 6			Pi	re-mitigation:			B			P	ost-mitigation:		
Code	Impact	Duration	Extent	Intensity	Consequence	Probability	Significance	Recommended mitigation	Duration	Extent	Intensity	Consequence	Probability	Significance
25	Road network capacity	Short- term	Local	Negligible	Negligible	Very unlikely	Very low	No mitigation required.	Short- term	Local	Negligible	Negligible	Very unlikely	Very low
26	Road safety	Short- term	Regional	High - negative	Moderately detrimental	Very likely	Moderate - negative	Regular traffic safety awareness and training is recommended at part of on-site safety briefing for employees and suppliers or partners. Signage should be reviewed near the R33 / Weltevreden Mine access intersection to ensure sufficient warning of crossing heavy vehicles is provided to general road users. Improve lighting along R33 Route particularly the Weltevreden Mine Access and R33 intersection so as to improve visibility during the night and minimise heavy vehicle crashes. Where alternatives exist, employees and partners operating heavy vehicles to and from the development site, should be encouraged to avoid activity nodes, residential areas and activity areas such as schools and community facilities.	Short- term	Site specific	High - negative	Moderately detrimental	Fairly likely	Low - negative

Code	Impact		Pre-mitigation:				December and administration		Post-mitigation:					
Code	impact	Duration	Extent	Intensity	Consequence	Probability	Significance	Recommended mitigation	Duration	Extent	Intensity	Consequence	Probability	Significance
27	Intersection/Surfacing condition	Short- term	Site- specific	High - negative	Slightly detrimental	Certain	Moderate - negative	The Weltevreden Mine Access and R33 intersection should be improved a full intersection and accommodate for heavy vehicles making a right and left turn from the mine access road. Localised surface upgrade or rehabilitation is recommended at the intersection of the R33 with the proposed development access, to improve current conditions and to better accommodate the additional development traffic.	Short- term	Site- specific	Moderate - negative	Slightly detrimental	Fairly likely	Low - negative

9 Conclusions and recommendations

Xinovo Mining (Pty) Ltd, a subsidiary of Mbuyelo Group, is proposing to develop the Weltevreden Open Cast Mine, located along R33 in Belfast, Mpumalanga Province. The mine will extract coal, mostly for local markets. The site of the proposed Weltevreden Open Cast Mine is served by the R33 route in Belfast. Extracted coal is currently planned to be transported by trucks from the Weltevreden Open Cast Mine to Thuthuka Power Station.

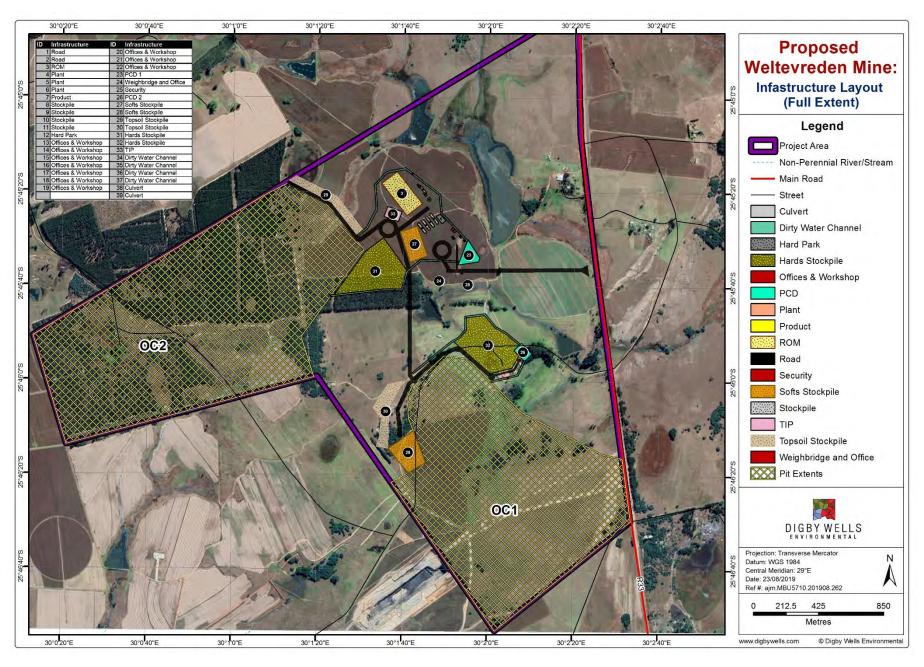
Aurecon was appointed to carry out a Traffic Impact Assessment (TIA) for the proposed mine development. The TIA will form part of the Environmental Impact Assessment (EIA) of the project.

The additional traffic that can be generated by the proposed mining development was estimated from first principles, as suitable trip generation rates are not provided in the South African Trip Data Manual (TMH17) and its predecessor, the South African Trip Generation Rates Manual (SATGRM). Xivono provided typical construction and operational data that were used in estimating the trips. It is estimated that the proposed development can generate approximately 20 and 75 peak hour trips during the construction and operational phases respectively.

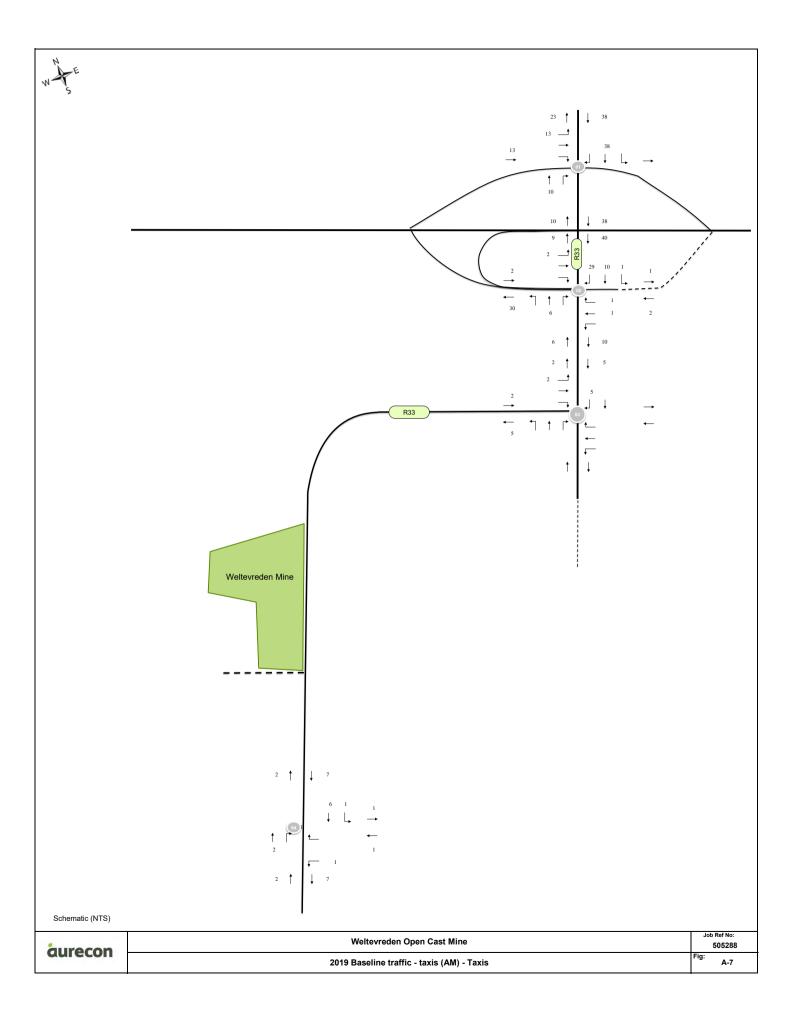
Intersection capacity analyses were carried out to assess the potential impact of the additional trips due to the proposed development on the surrounding local road network. The analysis results demonstrated that the impact of the proposed mining development on the road network will be minimal. The existing network will have sufficient capacity to accommodate background traffic growth and the additional development trips.

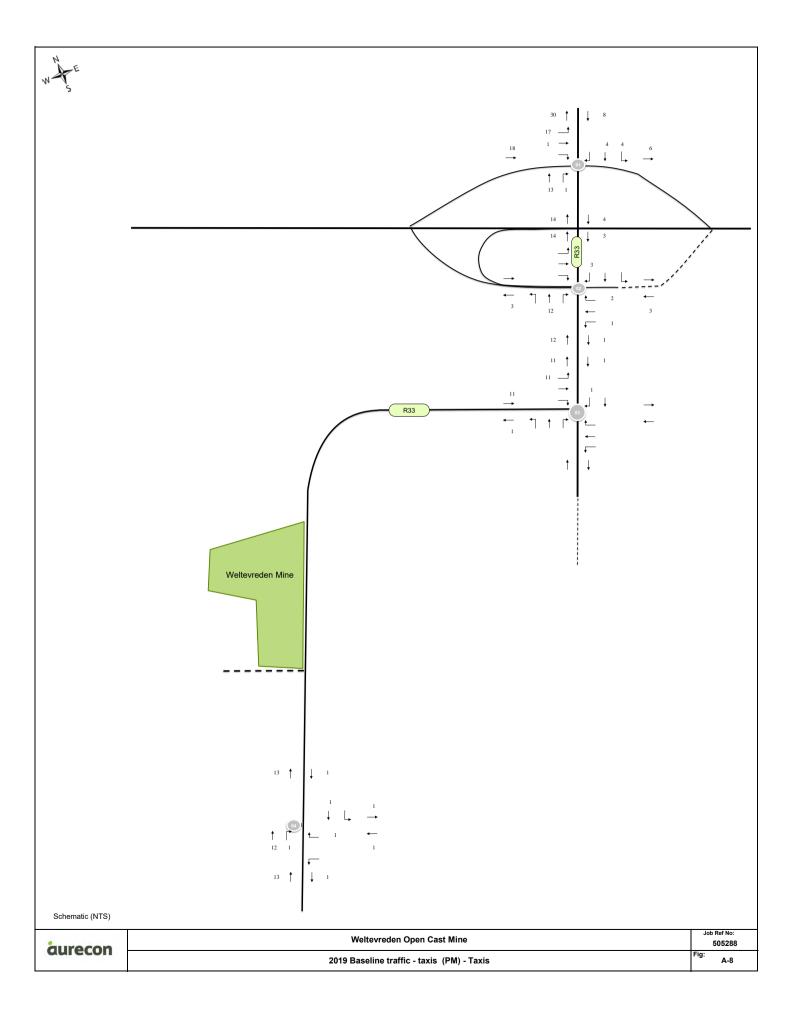
The proposed development is estimated to generate eight peak hour minibus taxi trips during the construction phase and 14 taxi trips during the operational phase. It is expected that these trips will mainly be in the form of employee shuttle minibuses. It is recommended that minibus taxi drip-off and pick-up areas be provided at suitable locations within the proposed development. Suitable footpaths should be provided along the mine access road, connecting with the mine's internal road network. This will facilitate access by people who are dropped or picked up outside the site access road from publicly operated bus and minibus services.

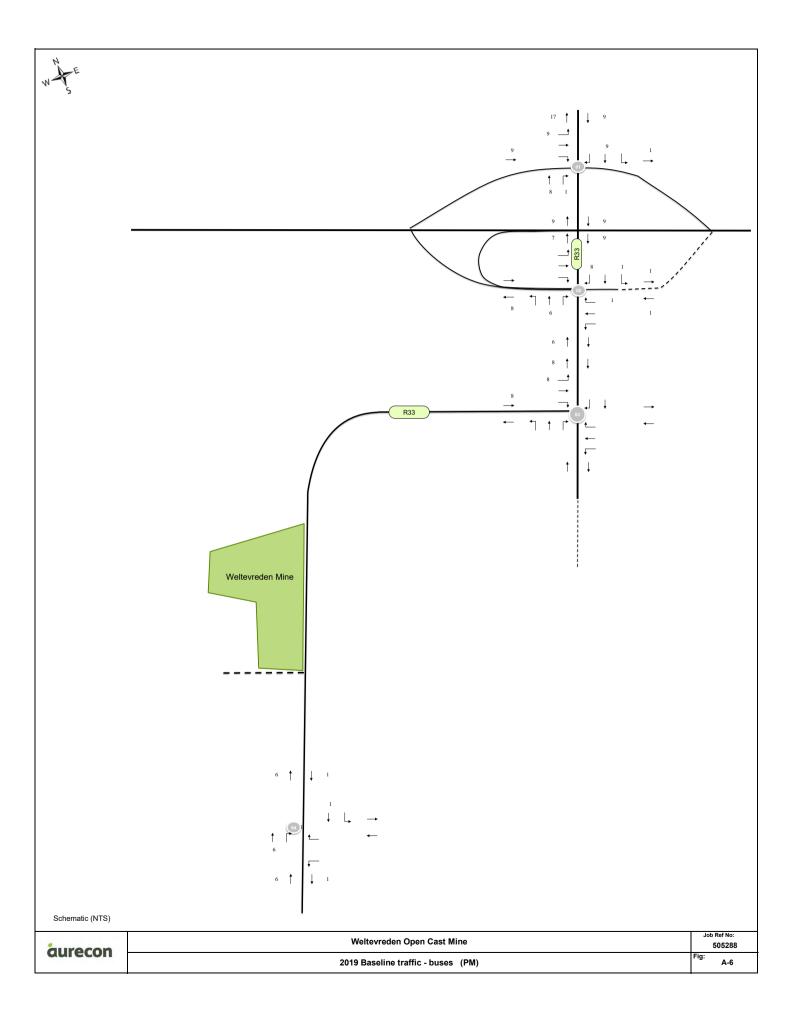
An increase in heavy vehicles generally affect traffic operations and increase road safety risks.

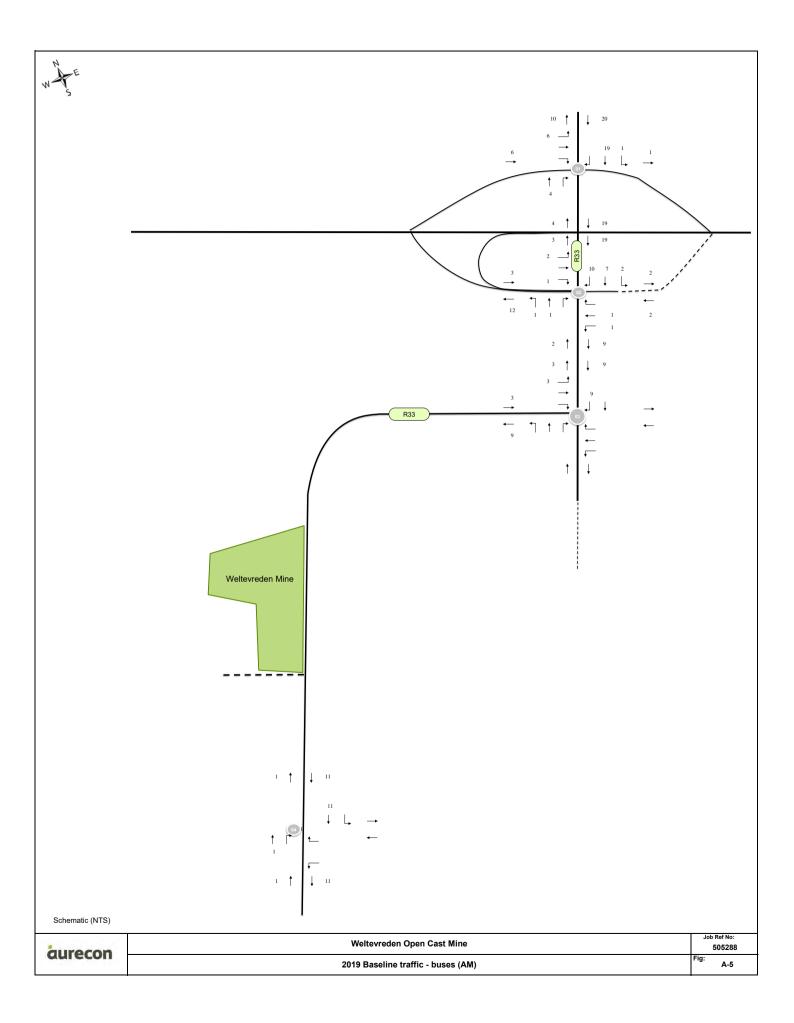

To mitigate the road safety impact, regular awareness and training is proposed for mine employees and supply partners to raise awareness of other road users, especially pedestrians and cyclist in the wider study area. Furthermore, lighting should be provided at the R33/Weltevreden Mine intersection to improve visibility and minimise heavy vehicle crashes

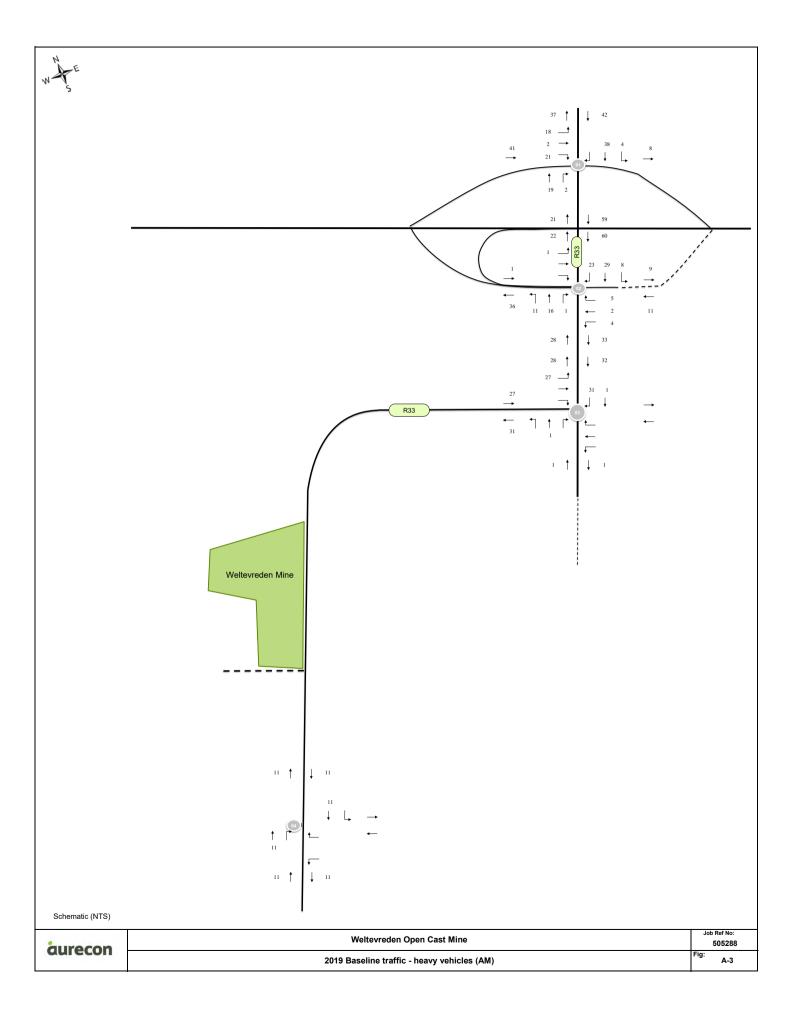
It is further recommended that signage be reviewed in the immediate vicinity of the proposed access to ensure sufficient warning to other road users of heavy vehicles turning into and crossing between the two sections of the proposed mine.

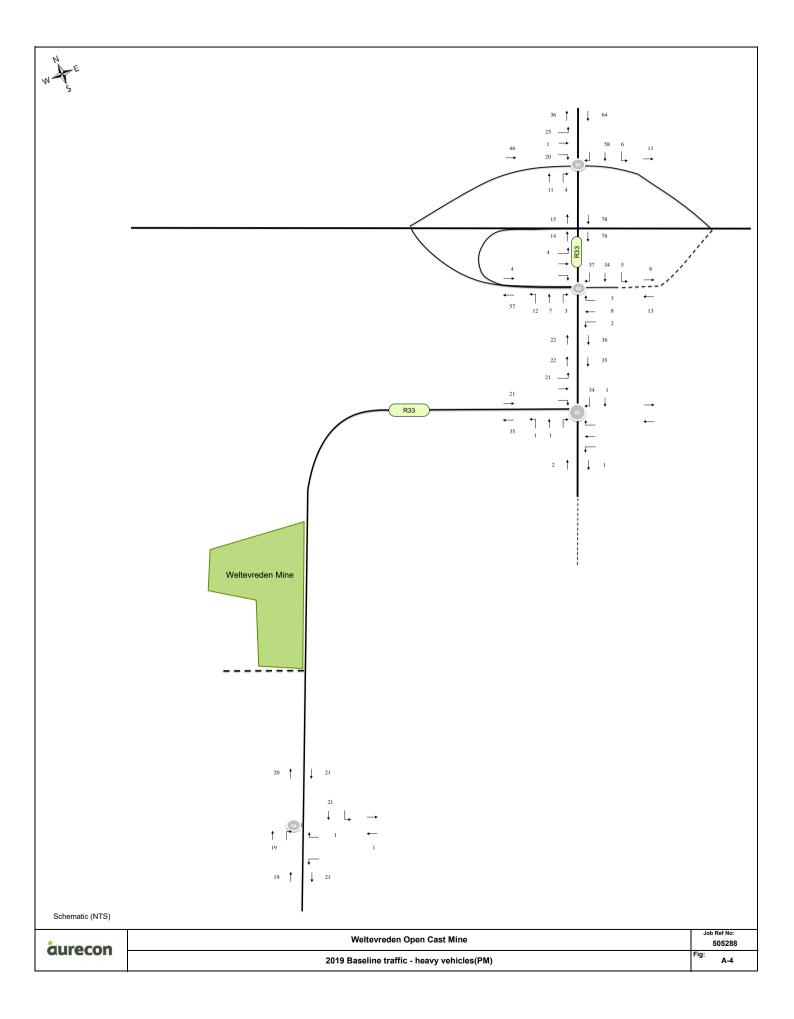

It is also recommended that, where alternatives exist, employees and partners operating heavy vehicles to and from the development site, should be encouraged to avoid activity nodes, residential areas and activity areas such as schools and community facilities.

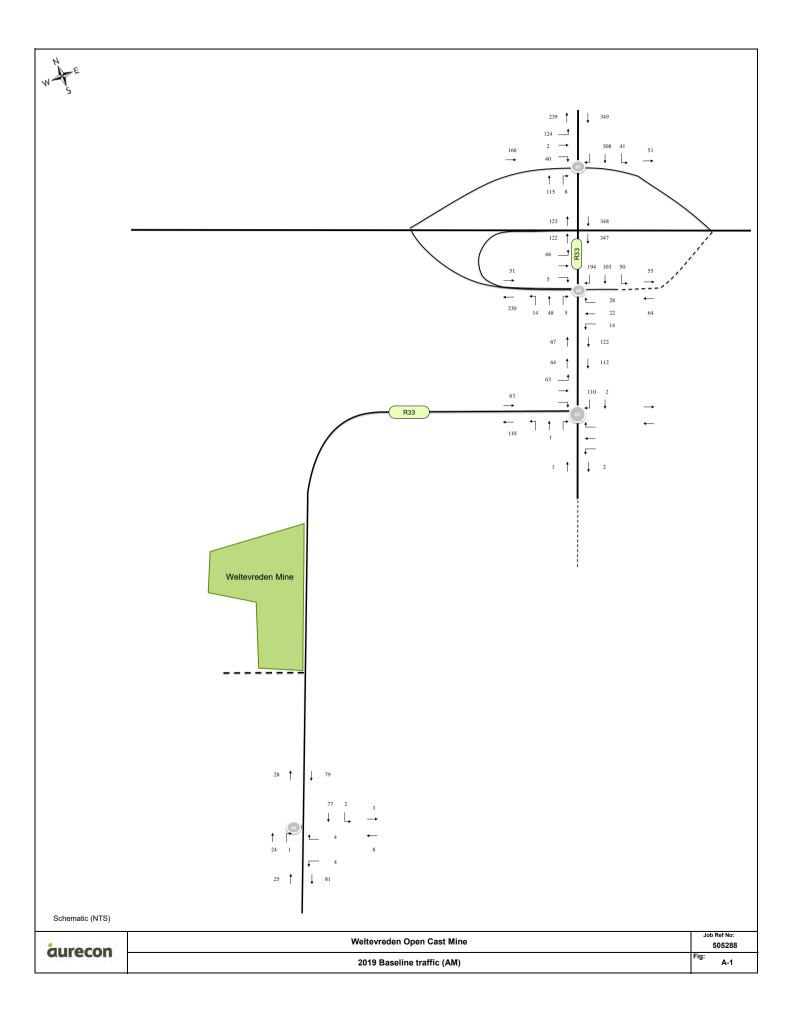

Provided that the above recommendations are accepted, the proposed Weltevreden Open Cast Mine is supported from transport planning and traffic engineering perspectives.

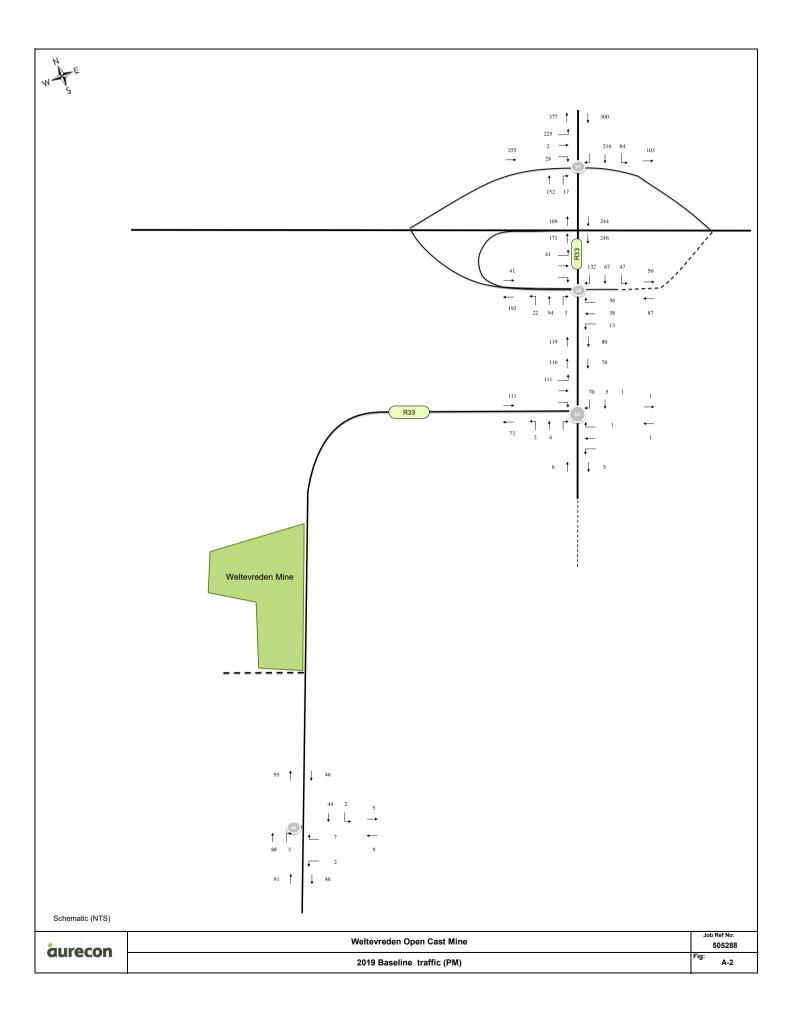

Appendix A Site setting plan

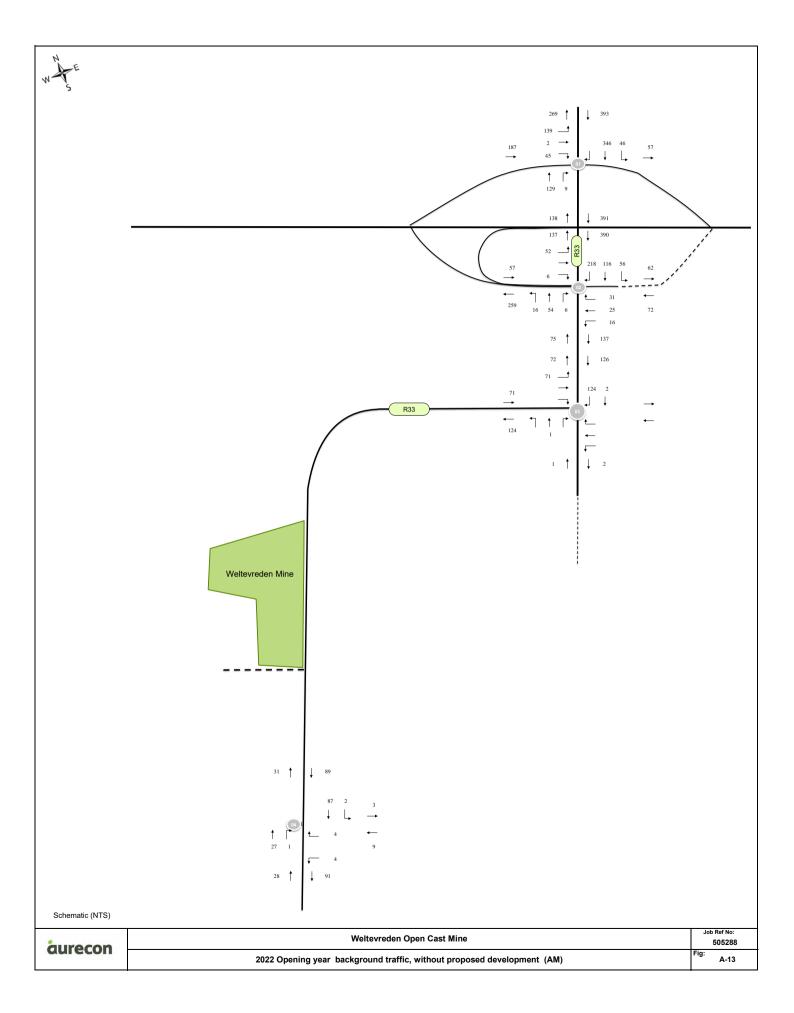


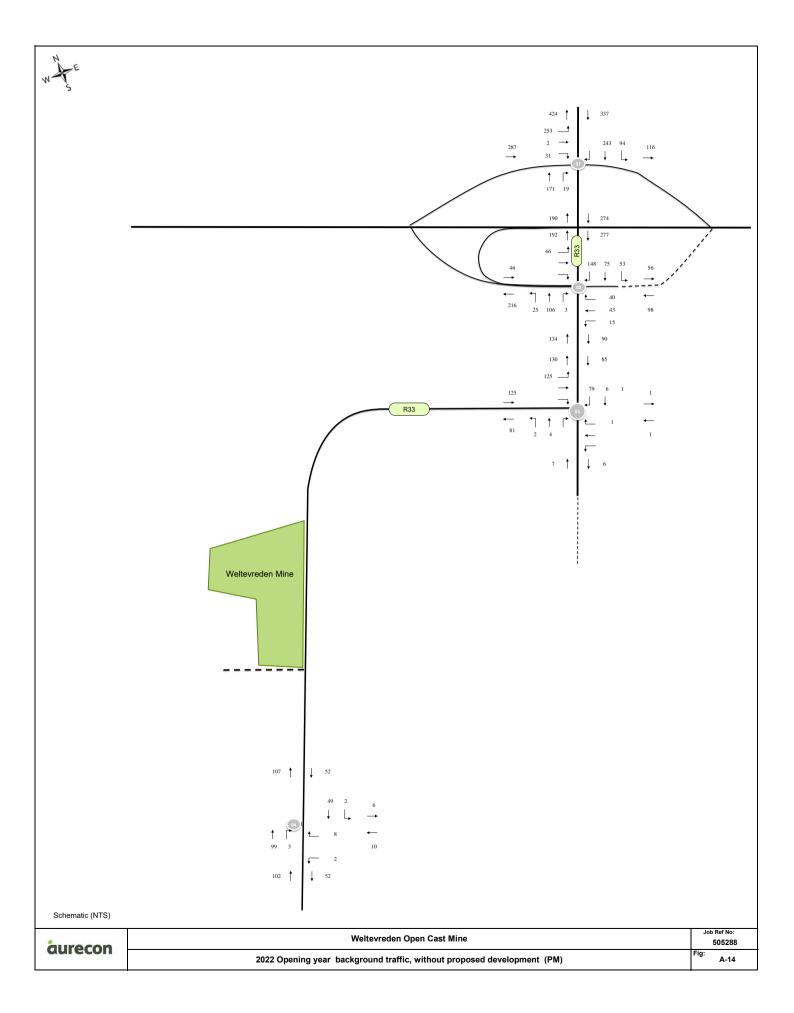

Appendix B Traffic flow diagrams

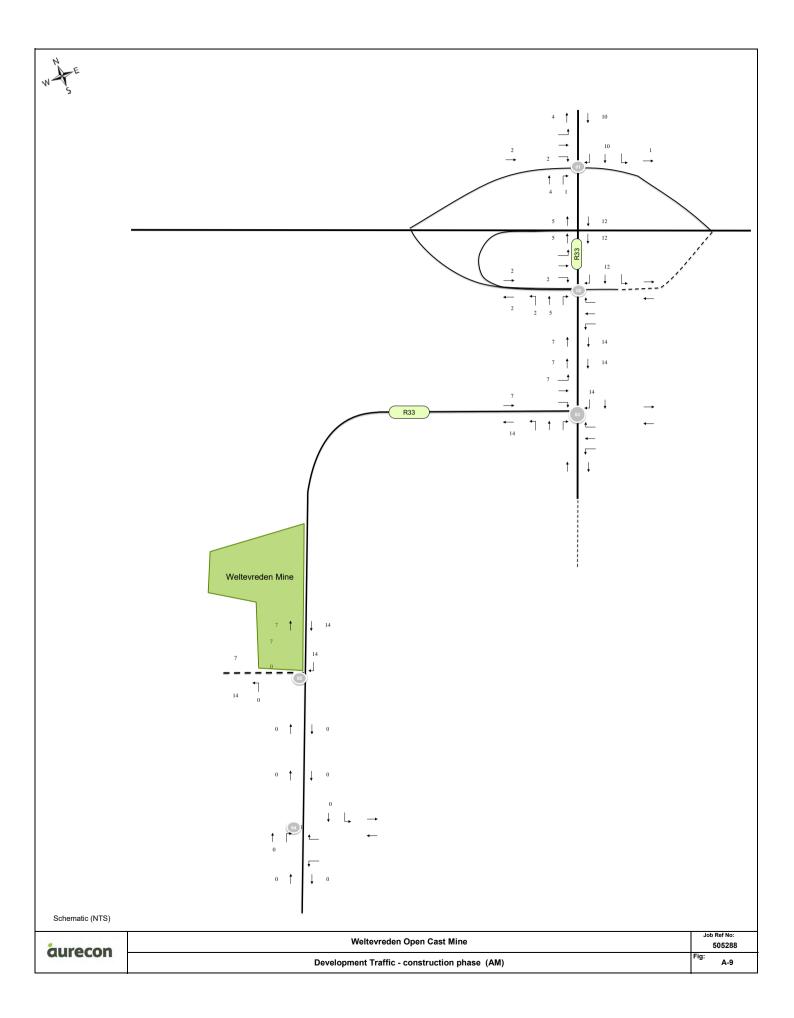


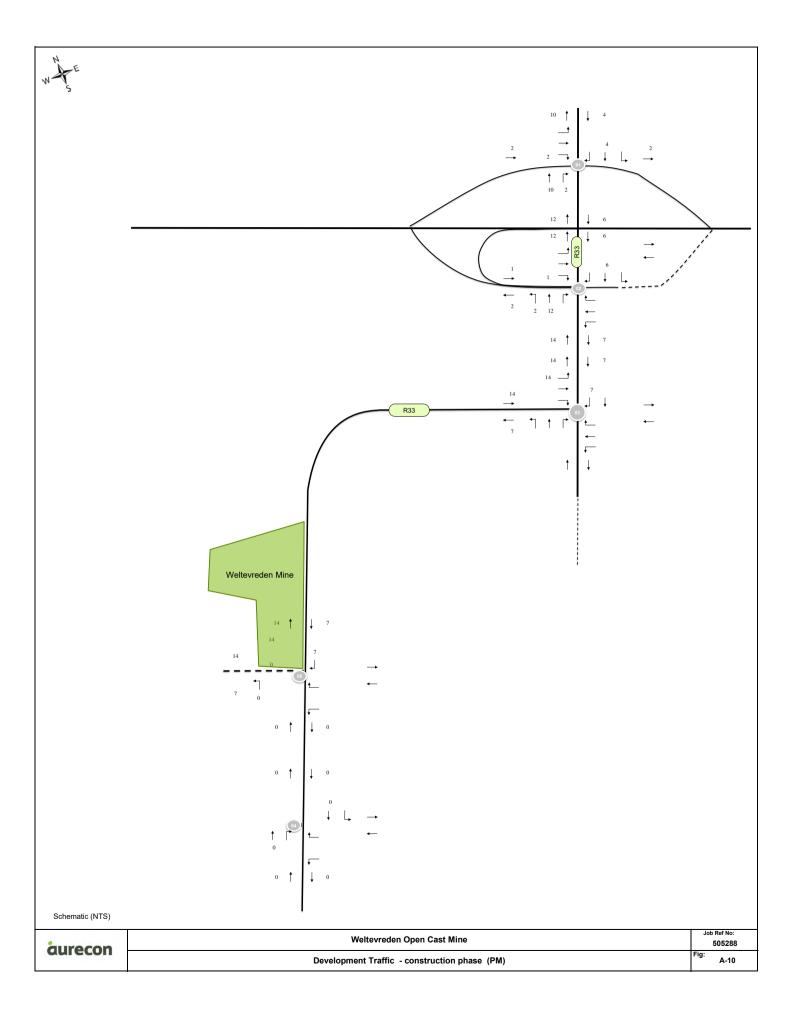


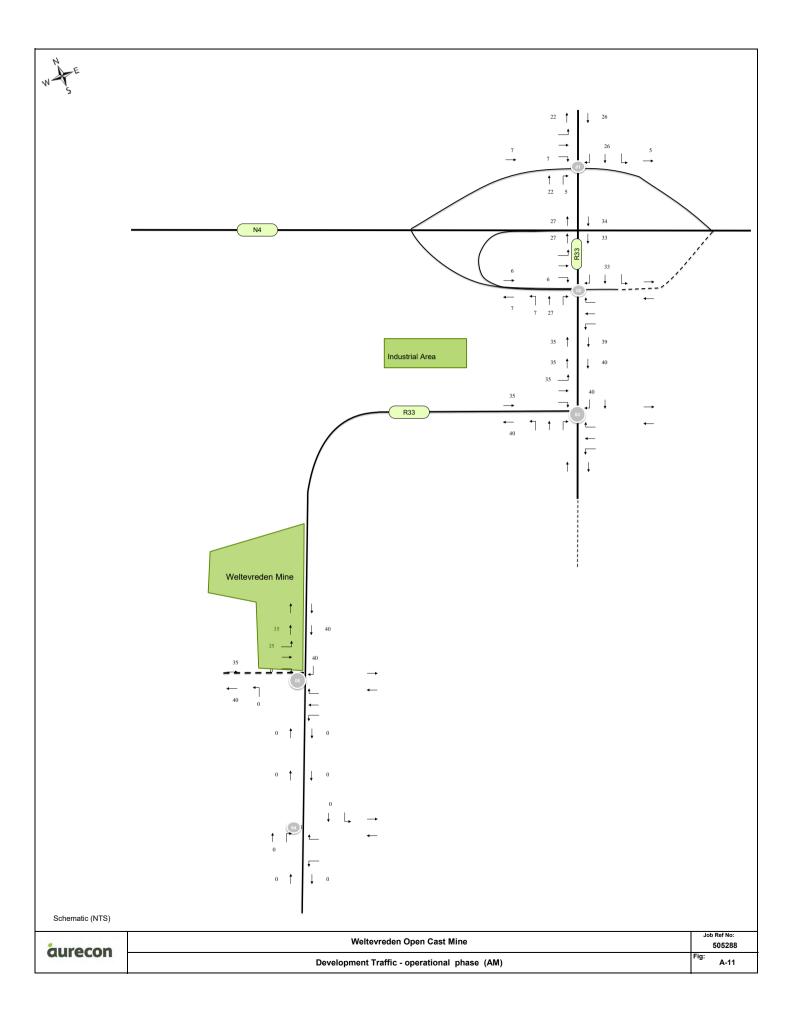


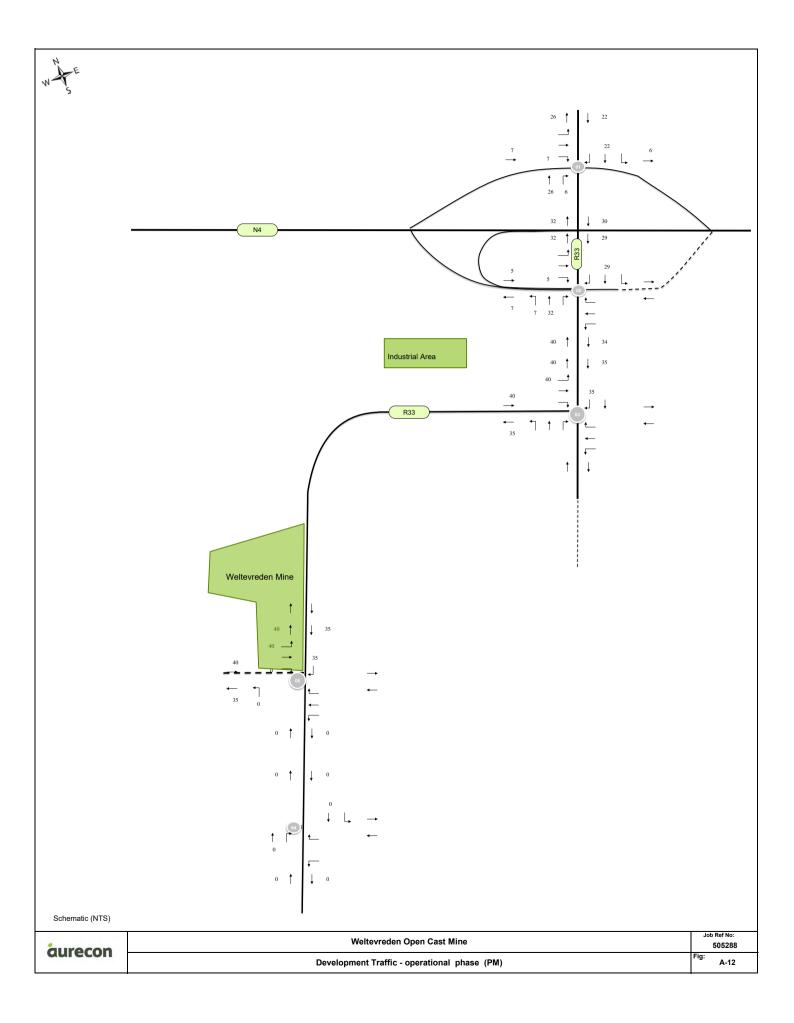


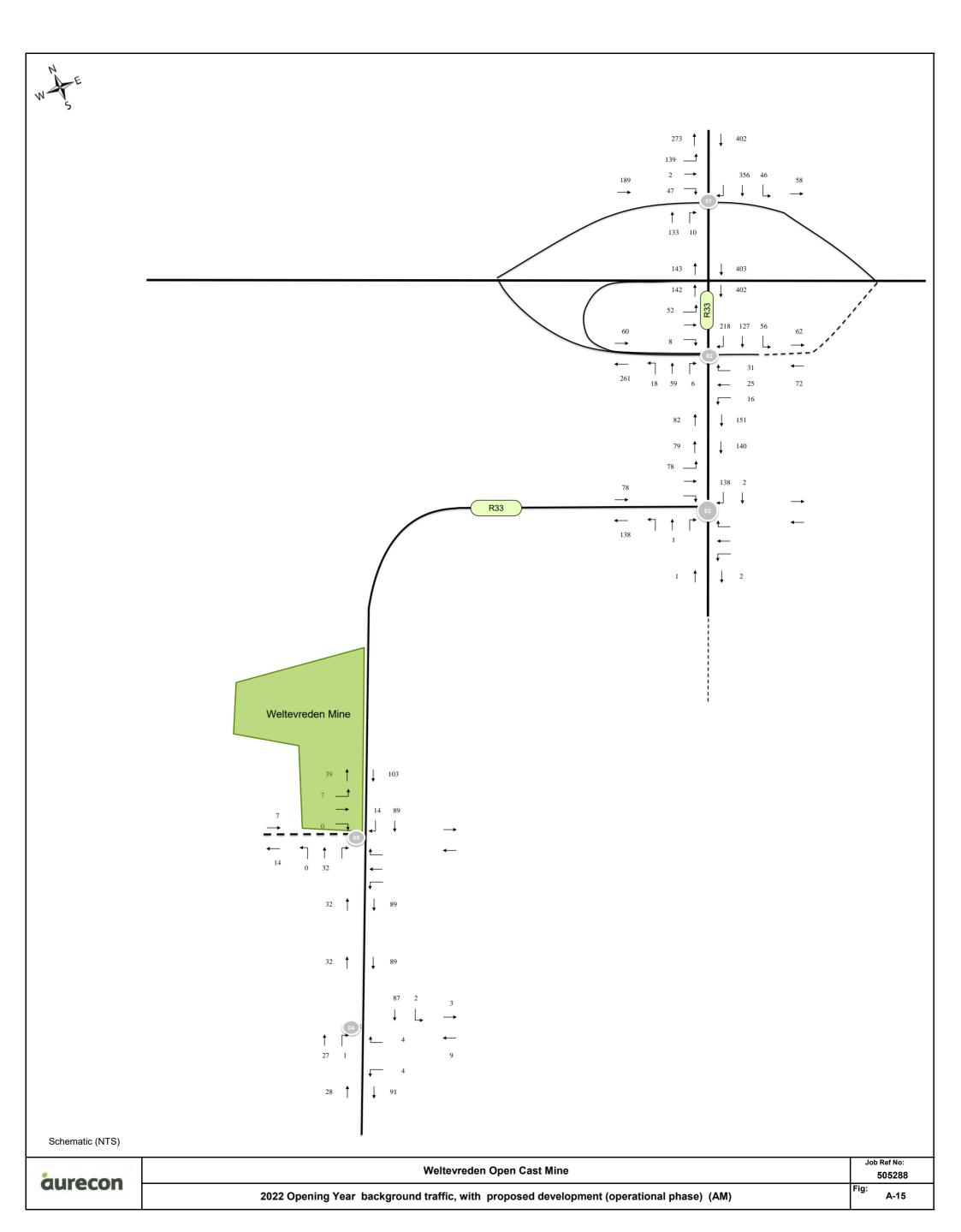


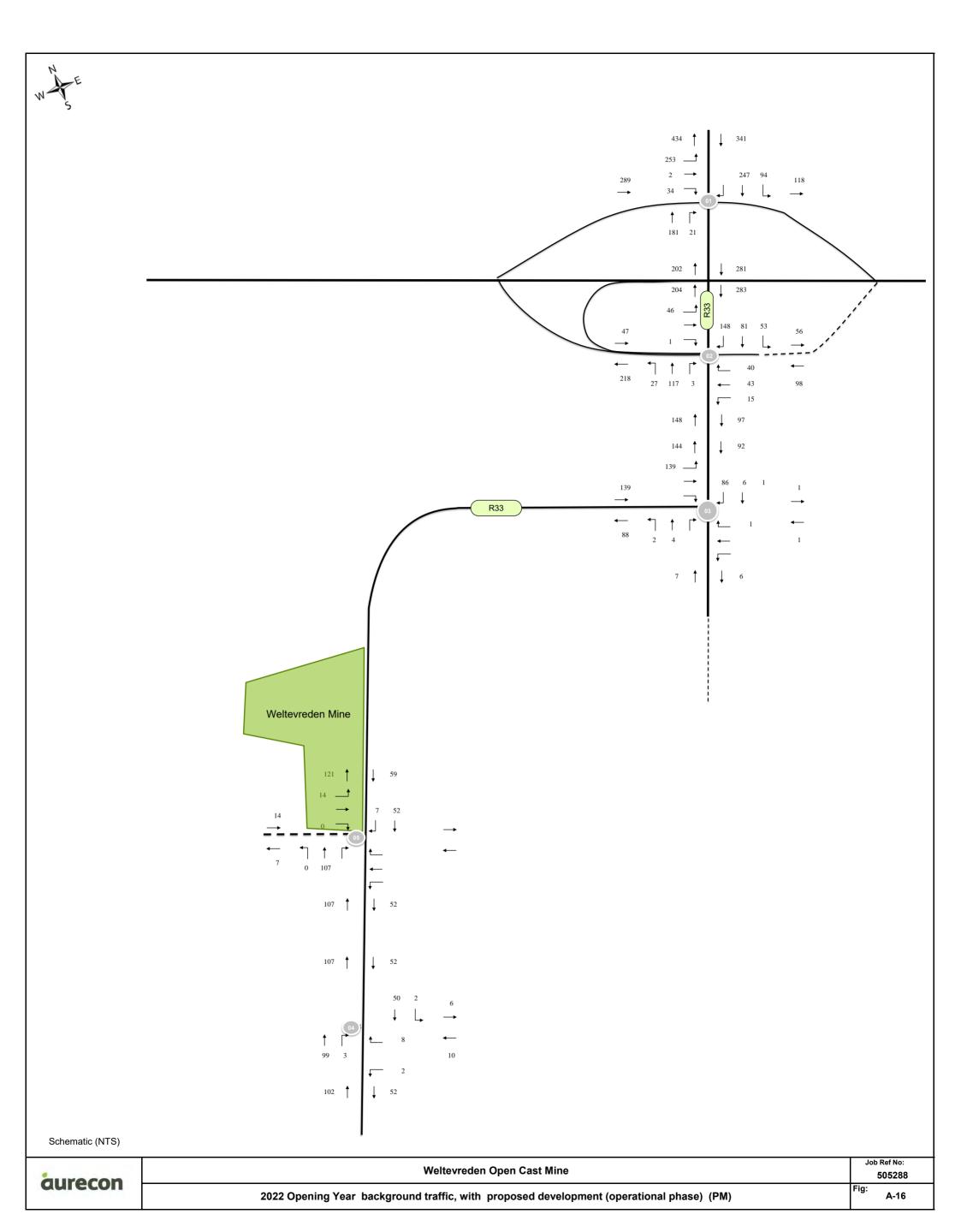


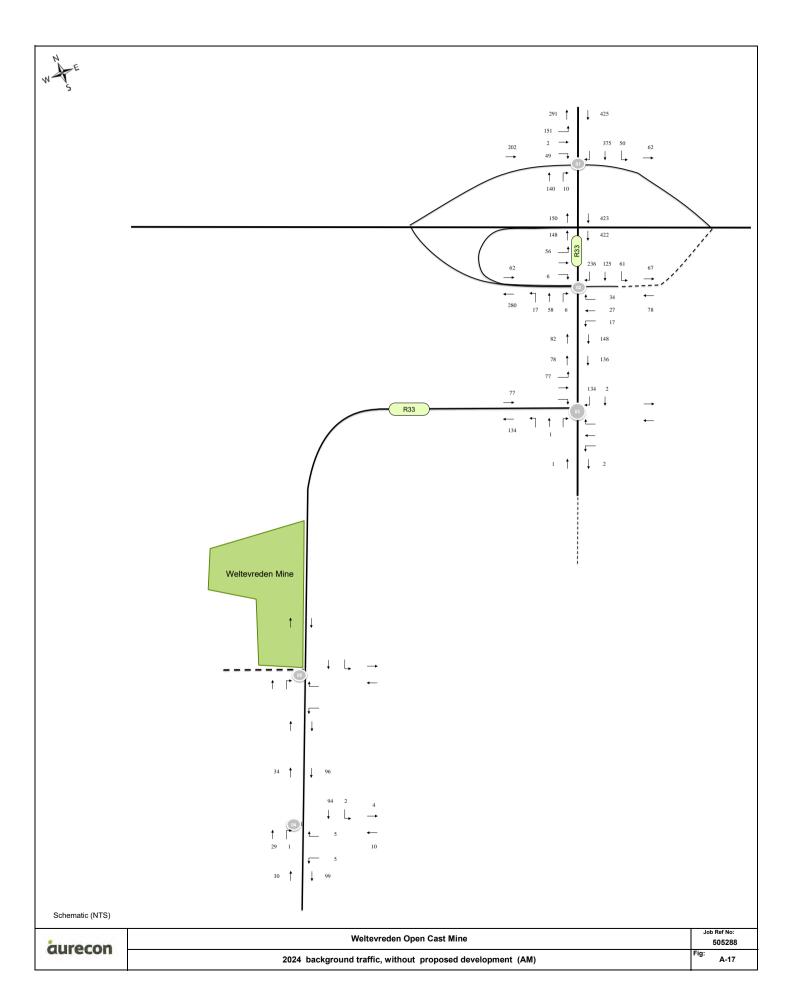


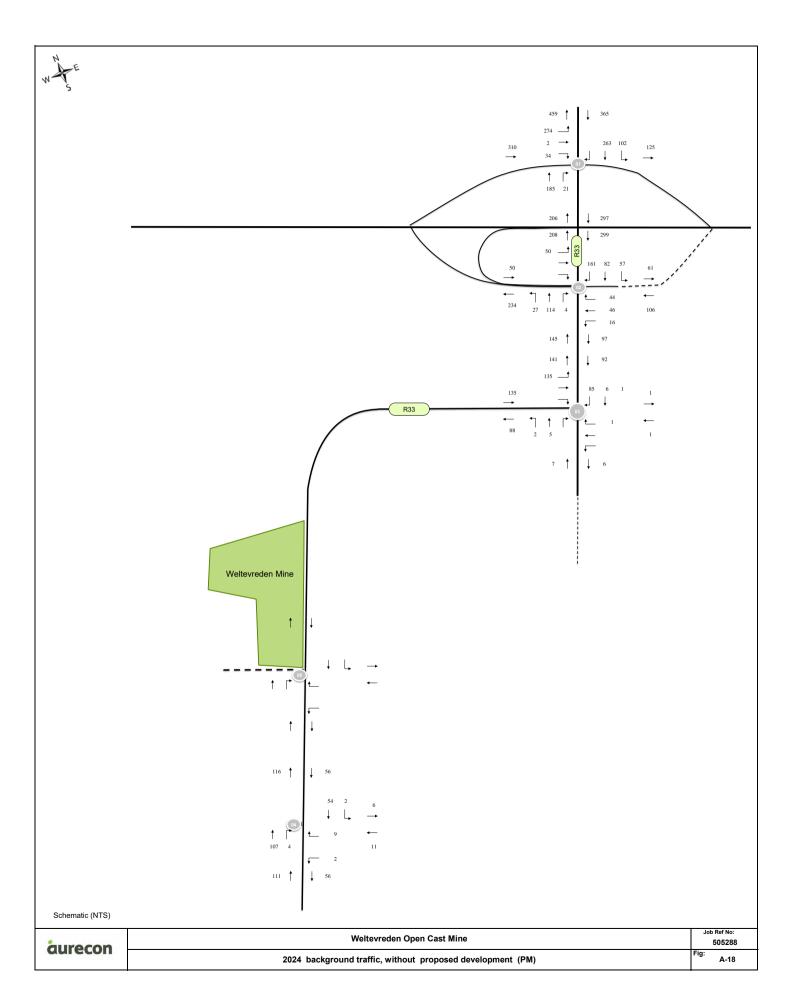


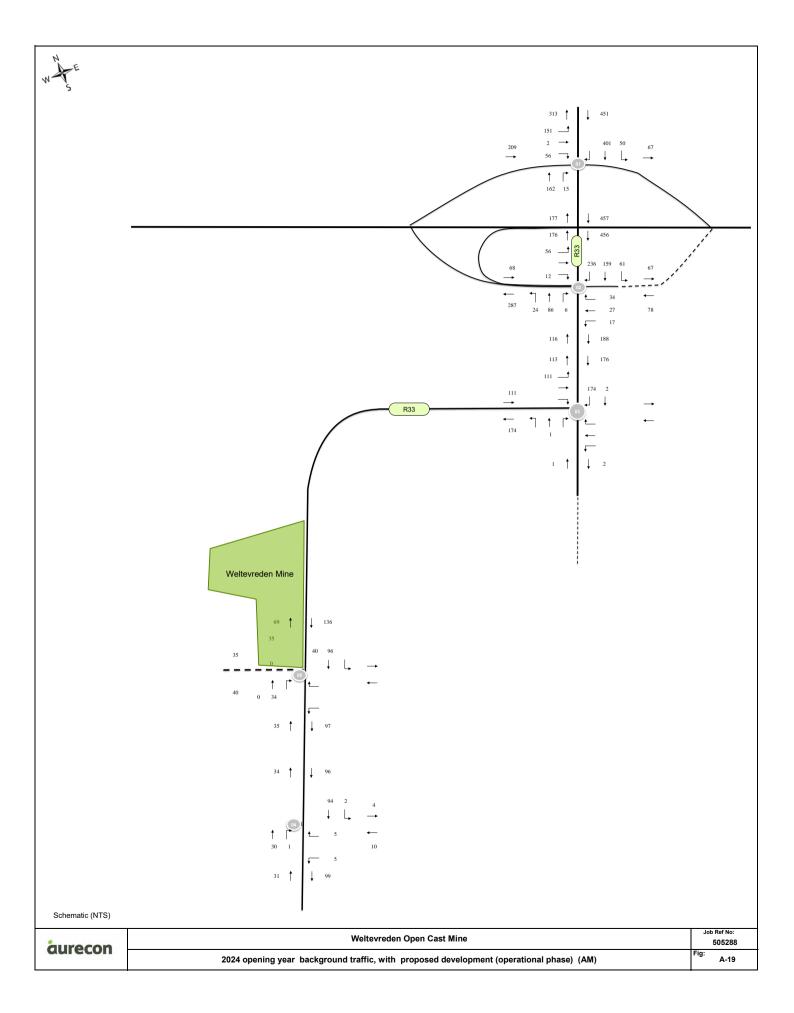


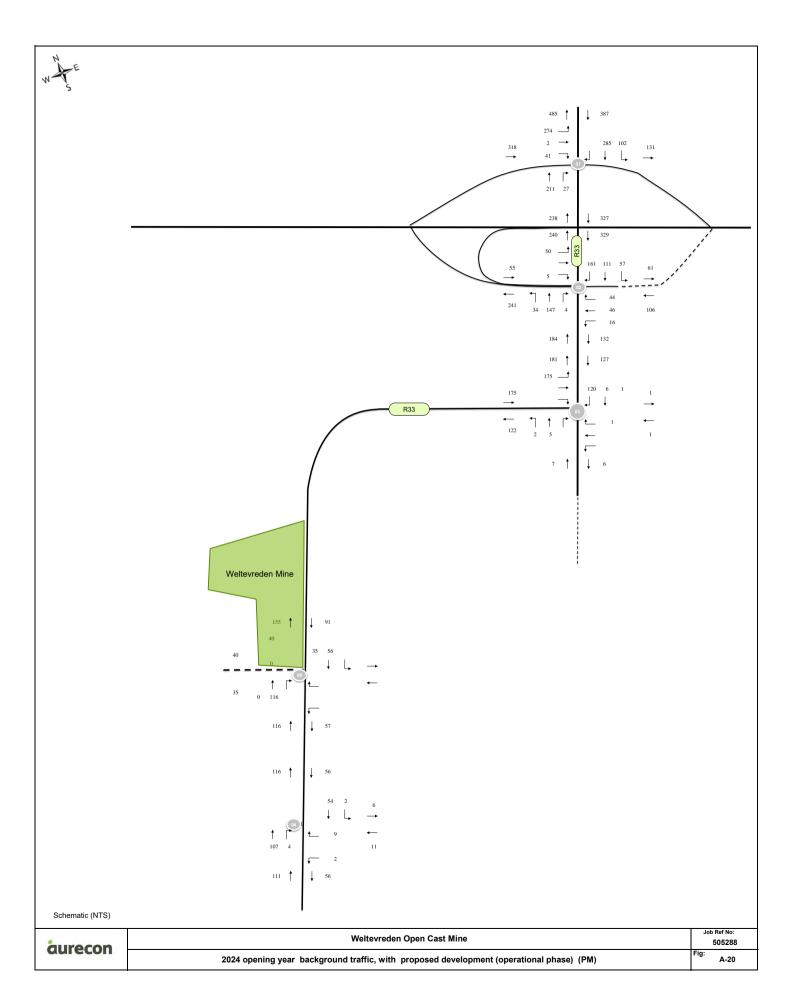












Appendix C

Mine construction and operational data questionnaire

Item		(Question		Response				
1		plan and the size of the provide details and send		// N	Yes – layout plan provided				
2	How many p	eople are likely to be ement?	aployed at the facility,	Planning Design Phase:10 Construction Phase:50 Operational Phase:250 Decommissioning Phase:50					
	Please provid	le likely breakdown of s							
	Туре	Planning	Construction	Operational	Decommissioning				
2	General	0	30	200	30				
3	Technical	6	10	30	10				
	Administrati	ve 1	8	16	8				
	Management	3	2	4	2				
- 1	Which are the most likely residential areas where staff will live, and what are the likely percentages of staff living in those areas?								
	No.	Description			% of staff likely of live there				
	1.	Siyathuthuka			60%				
4	2.	Belfast			20%				
	3.								
	4								
	5.								

Item			Question			Response	e				
	5.1 When is cons	struction expected	to commence?		2021						
5	5.2 When is the	expected opening y	ear of the development:		2022						
	5.3 How long is t	the facility expecte	d to operate? (facility life sp	oan)	15 years						
	If Yes, what time	Will the staff work in shifts: Y/N If Yes, what time are these shifts and the approximate number of staff (for each development phase) Y Please provide shift details below									
		liji delalis selow	Construction			Operationa	al				
6	Type	Shift 1	Shift 2	Shift 3	Shift 1	Shift 2	Shift 3				
6	General	06:00-16:00 (30 staff)	16:00-02:00 (20 staff)		06:00-16:00 (100 staff)	16:00-02:00 (2 staff)	20				
	Technical	07:00-16:30 (10)		07:00-16:30 (20)	16:00-02:00 (10 staff)					
	Administrative	07:00-16:30 (8)			07:00-16:30 (14)	16:00-02:00 (2 staff)	2				
	Management	07:00-16:30 (2)			07:00-16:30 (4)						
	How many heavy	vehicles (and hau	l trucks) are expected to en	ter and leave the	e facility per day, durin	g each phase of t	the development?				
7	Phase II		Inbound		Outbound	То	tal				
	Construction		2		2	4					
	Operational		60		60	120	0				

Item		Que	estion		Response	
	What are the	likely origins or destinatio	ns of heavy vehicles and haul trucks			
	No.	Description		% distribution		
		Middleburg		100%		
8	Origins					
		Tutuka Powerstation		100%		
	Destinations					
9	What is the casite? (in m³)	apacity of heavy vehicles t	ransporting the haul material from the	25m ³		
10	Are the heavy time periods?	vehicles going to be oper (Please confirm operation	ating 24 hours a day or only during set nal times if not 24hrs)	24 hours_		
	How many ve	chicles are likely to visit th	e site on regular basis to deliver and / or	collect various goods (reg	ular site supplies)?	
	Type of good	ls	Light Delivery Vehicles	Heavy Vehicles	Total	
11	Office supplies (Stationery, bottled water, food, etc.)		3	1	4	
	Fuel		0	0	1	
	Other					

Item		Question	Response			
12	Where are the goods above 1	ikely to originate from?	Middleburg and Witbank			
13	Will parking areas be provid If so, how many parking bay	ed on site? s are expected to be provided:	Parking will be provided - 20			
14	How many access points are (Please indicate the accesses		One access road from the R33			
	How are staff members expe (Please indicate likely % by		Xivono intends to provide employee transport to those who require it			
	Mode	Construction	Operation			
	Walk / Cycle					
1.5	Minibus Taxis (public)					
15	Buses (Public)					
	Rail					
	Staff Transport (Minibuses)	80%	80%			
	Staff Transport (Buses)					
	Private cars	20%	20%			

Appendix D

Trip generation calculations

1. Employees

Table 1: Number of employees

Туре	Planning	Construction	Operational	Decommissioning	
General	0	30	200	30	
Technical	6	10	30	10	
Administrative	1	8	16	8	
Management	3	2	4	2	
Total	10	50	250	50	

Table 2: Number per shift

Tomas	Constru	ction	Operational			
Туре	Shift 1	Shift 2	Shift 1	Shift 2		
Shift times (Assumption)	06h00 to 16h00	16h00 to 02h00	06h00 to 16h00	16h00 to 02h00		
General	20	10	100	100		
Technical	10		20	10		
Administrative	8		14	2		
Management	2		4			
Total	40	10	138	112		
	50	C 10	250			

2. Haulage

Table 3: Number haullage trucks

Table 31 Hallingt Hannage tracks			
Phase	Inbound	Outbound	Total
Construction	.2	2	4
Operational	60	60	120

3. Deliveries and supplies

Table 4: Routine deliveries and supplies (construction and operational phase)

Type of goods	Lig	ht Delivery Vehicles		Heavy Vehicles				
	Total per day	AM Peak	PM Peak	Description	Total per day	AM Peak	PM Peak	
	Peak / Day proportions	100%	100%	Peak / Day proportions		100%	100%	
Office supplies (Stationery, bottled water, food, etc.)	3.0	3.0	3.0	Adhoc Lowbeds to deliver or collect yellow	1.0	1.0	1.0	
Fuel	0.0	0.0	0.0	Fuel	1.0	1.0	1.0	
Other	0.0	0.0	0.0		0.0	0.0	0.0	
Total	3	3.0	3.0		2	2	2	

4. Mode share inputs

Table 4: Expected mode share

Mode	Construction	Operation	Vehicle Occupancy Assumptions
Walk / Cycle	0%	0%	1.0
Minibus Taxis (public)	0%	0%	14.0
Buses (Public)	0%	0%	40.0
Rail	0%	0%	1500.0
Staff Transport (Minibuses)	80%	80%	14.0
Staff Transport (Buses)	0%	0%	40.0
Private Vehicles	20%	20%	1.2

5. Trip generation

5.1 Employee trips

Table 5: Employee person trip

Trip Type	AM Total	AM Inbound	AM Outbound	PM Total	PM Inbound	PM Outbound
	100%			100%		
Construction Phase	50	40	10	50	10	40
Operational Phase	250	138	112	250	112	138
Total employee person trips	300	178	122	300	122	178

5.1.2 Employee person trips (mode share)

Table 6: Employee person trips (mode share) | Construction Phase

Mode	AM Total	AM Inbound	AM Outbound	PM Total	PM Inbound	PM Outbound
Walk / Cycle	0	0	0	0	0	0
Minibus Taxis (public)	0	0	0	0	0	0
Buses (Public)	0	0	0	0	0	0
Rail	0	0	0	0	0	0
Staff Transport (Minibuses)	40	32	. 8	40	8	32
Staff Transport (Buses)	0	0	0	0	0	0
Private Vehicles	10	8	2	10	2	8
Total	50	40	10	50	10	40

Table 7: Employee person trips (mode share) | Operational Phase

Mode	AM Total	AM Inbound	AM Outbound	PM Total	PM Inbound	PM Outbound
Walk / Cycle	0	0	0	0	0	0
Minibus Taxis (public)	0	0	0	0	0	0
Buses (Public)	0	0	0	0	0	0
Rail	0	0	0	0	0	0
Staff Transport (Minibuses)	200	110	90	200	90	110
Staff Transport (Buses)	0	0	0	0	0	0
Private Vehicles	50	28	22	50	22	28
Total	250	138	112	250	112	138

Tble 8: Employee vehicle trips (mode share) | Construction Phase

Mode	AM Total	AM Inbound	AM Outbound	PM Total	PM Inbound	PM Outbound
Walk / Cycle	0	0	0	0	0	0
Minibus Taxis (public)	0	0	0	0	0	0
Buses (Public)	0	0	0	0	0	0
Rail	0	0	0	0	0	0
Staff Transport (Minibuses)	3	2	1	3	1	2
Staff Transport (Buses)	0	0	0	0	0	0
Private Vehicles	8	7	2	8	2	7
Total	12	9	3	12	3	9

Table 9: Employee vehicle trips (mode share) | Operational Phase

Mode	AM Total	AM Inbound	AM Outbound	PM Total	PM Inbound	PM Outbound
Walk / Cycle	0	0	0	0	0	0
Minibus Taxis (public)	0	0	0	0	0	0
Buses (Public)	0	0	0	0	0	0
Rail	0	0	0	0	0	0
Staff Transport (Minibuses)	14	8	6	14	6	8
Staff Transport (Buses)	0	0	0	0	0	0
Private Vehicles	42	23	19	42	19	23
Total	56	31	26	56	26	31

5.2 Heavy Vehicle (Haulage)

Table 10: Haulage traffic

% Peak (% of daily)

10%

Phase	AM Total	AM Inbound	AM Outbound	PM Total	PM Inbound	PM Outbound
Directional Districution		50%	50%		50%	50%
Construction	1	1	1	1	1,1	1
Operations	12	6	6	12	6	6

5.3 Deliveries and regular supplies (Construction and Operational Phases)

Table: 11: Delivery and service vehicle traffic

Vehicle Type	AM Total	AM Inbound	AM Outbound	PM Total	PM Inbound	PM Outbound
Directional Districution		50%	50%		50%	50%
Light Vehicles	3	1.5	2.0	3.0	1.5	1.5
Heavy Vehicles	2	1.0	1.0	2.0	1.0	1.0
Total	5	3.0	3.0	5.0	3.0	3.0

Table: 11: Delivery and service vehicle traffic (rounded)

Vehicle Type	AM Total	AM Inbound	AM Outbound	PM Total	PM Inbound	PM Outbound
Light Vehicles	4	2	2	4	2	2
Heavy Vehicles	2	1	1	2	1	1
Total	6	3	3	6	3	3

6.0 Trip generation summary

Table 12: Trip generation summary | Construction Phase

Vehicle type	AM Total	AM Inbound	AM Outbound	PM Total	PM Inbound	PM Outbound
Light vehicles	11	8	4	11	3	8
Minibuses	3	2	1	3	1	2
Heavy vehicles	3	2	2	3	2	2
Total	17	12	6	17	6	12

Table 13: Trip generation summary | Operational Phase

Vehicle type	AM Total	AM Inbound	AM Outbound	PM Total	PM Inbound	PM Outbound
Light vehicles	45	25	21	45	20	25
Minibuses	14	8	6	14	6	8
Heavy vehicles	14	. 7	7	14	7	7
Total	73	39	34	73	34	39

6.0 Trip generation summary (rounded)

Table 14: Trin generation summary | Construction Phase

Vehicle type	AM Total	AM Inbound	AM Outbound	PM Total	PM Inbound	PM Outbound
Light vehicles	12	.9	4	13	4	9
Minibuses	3	3	1	4	1	3
Heavy vehicles	3	2	2	4	2	2
Total	18	14	7	21	7	14

Table 15: Trip generation summary | Operational Phase

Vehicle type	AM Total	AM Inbound	AM Outbound	PM Total	PM Inbound	PM Outbound
Light vehicles	45	25	21	46	21	25
Minibuses	15	8	7	15	7	8
Heavy vehicles	14	7	7	14	7	7
Total	74	40	35	75	35	40

Appendix E Intersection analysis results

Site: 1 [Site 1 SC00 2019 BS AM]

Site 1 2019 Base Scenario AM Site Category: (None) Stop (Two-Way)

Mov	Turn	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Aver. No.	Average
ID		Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate	Cycles	Speed km/h
South	n: R33											
2	T1	126	16.5	0.086	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.0
3	R2	9	25.0	0.011	8.2	LOS A	0.0	0.3	0.46	0.64	0.46	50.0
Appro	ach	135	17.1	0.086	0.5	NA	0.0	0.3	0.03	0.04	0.03	59.2
North	: R33											
7	L2	45	9.8	0.029	5.7	LOS A	0.0	0.0	0.00	0.57	0.00	53.2
8	T1	338	12.3	0.216	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	59.9
Appro	ach	384	12.0	0.216	0.7	NA	0.0	0.0	0.00	0.07	0.00	59.1
West:	N4 On ra	amp										
10	L2	136	14.5	0.096	5.8	LOSA	0.0	0.0	0.00	0.52	0.00	54.4
11	T1	2	0.0	0.182	15.0	LOS B	0.7	6.6	0.69	1.03	0.69	44.8
12	R2	44	52.5	0.182	22.7	LOS C	0.7	6.6	0.69	1.03	0.69	42.9
Appro	ach	182	23.5	0.182	9.9	LOS A	0.7	6.6	0.18	0.65	0.18	51.0
All Ve	hicles	701	16.0	0.216	3,1	NA	0.7	6.6	0.05	0.21	0.05	56.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AURECON AUSTRALASIA PTY LTD | Processed: Friday, 11 October 2019 01:21:35

Project: P:\Projects\507288 Weltevreden Coal Mine TiA\5 DEL DES\501 Engineering\Calcs and analysis\SIDRA\Sidra_Weltevreded_V01.sip8

MOVEMENT SUMMARY

Site 1 2019 Base Scenario PM Site Category: (None) Stop (Two-Way)

Mov	Turn	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Aver. No.	
ID		Tota l veh/h	HV %	Satn v/c	Delay sec	Service	Vehic l es veh	Distance	Queued	Stop Rate	Cycles	Speed km/
South	: R33	ven/m	70	V/C	Sec		ven	m	_	_		KIII/
2	T1	163	7.2	0.096	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.
3	R2	18	23.5	0.021	7.8	LOSA	0.1	0.7	0.43	0.64	0.43	50.
Appro	ach	181	8.8	0.096	0.8	NA	0.1	0.7	0.04	0.06	0.04	58.
North	: R33											
7	L2	90	7.1	0.056	5.6	LOSA	0.0	0.0	0.00	0.57	0.00	53.
8	T1	232	26.9	0.183	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	59.
Appro	ach	322	21.4	0.183	1.6	NA	0.0	0.0	0.00	0.16	0.00	57.
West:	N4 On ra	amp										
10	L2	241	11.1	0.160	5.7	LOSA	0.0	0.0	0.00	0.52	0.00	54
11	T1	2	50.0	0.128	21.1	LOS C	0.5	5.2	0.66	1.04	0.66	43
12	R2	30	71.4	0.128	22.7	LOS C	0.5	5.2	0.66	1.04	0.66	42
Appro	ach	273	18.0	0.160	7.7	LOS A	0.5	5.2	0.08	0.58	0.08	52
All Ve	hicles	776	17.3	0.183	3,6	NA	0.5	5.2	0.04	0,29	0.04	56

Site Level of Service (LOS) Method: Delay (SIDRA), Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AURECON AUSTRALASIA PTY LTD | Processed: Friday, 11 October 2019 01:38:57

Project: P:\Projects\507288 Weltevreden Coal Mine TIA\5 DEL DES\501 Engineering\Calcs and analysis\SIDRA\Sidra_Weltevreded_V01.sip8

Site: 1 [Site 1 SC01 2022 OY AM]

Site 1 2022 Opening Year without Dev. AM Site Category: (None)

Stop (Two-Way)

Move	ement P	erformanc	e - Veh	icles								
Mov ID	Turn	Demand Tota l veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehic l es veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Averag Speed km/
South	n: R33											
2	T1	142	16.5	0.097	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.
3	R2	10	25.0	0.013	8.7	LOS A	0.0	0.4	0.49	0.66	0.49	49.
Appro	ach	152	17.1	0.097	0.6	NA	0.0	0.4	0.03	0.04	0.03	59.
North	: R33											
7	L2	51	9.8	0.033	5.7	LOS A	0.0	0.0	0.00	0.57	0.00	53.
8	T1	380	12.3	0.243	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	59.
Appro	ach	431	12.0	0.243	0.7	NA	0.0	0.0	0.00	0.07	0.00	59.
West	N4 On ra	amp										
10	L2	153	14.5	0.107	5.8	LOS A	0.0	0.0	0.00	0.52	0.00	54.
11	T1	2	0.0	0.239	17.4	LOS C	0.9	9.1	0.75	1.05	0.83	42.
12	R2	49	52.5	0.239	26.8	LOS D	0.9	9.1	0.75	1.05	0.83	41.
Appro	ach	204	23.5	0.239	11.0	LOS B	0.9	9.1	0.19	0.65	0.21	50.
All Ve	hicles	787	16.0	0.243	3,3	NA	0.9	9.1	0.06	0.21	0.06	56.

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: AURECON AUSTRALASIA PTY LTD | Processed: Friday, 11 October 2019 02:22:52
Project: PyProjects/507288 Weltevreden Coal Mine TIA/5 DEL DESISO1 Engineering/Calcs and analysis/SIDRA/Sidra_Weltevreded_V01.sip8

MOVEMENT SUMMARY

Site: 1 [Site 1 SC01 2022 OY PM]

Site 1 2022 Opening Year without Dev. PM Site Category: (None) Stop (Two-Way)

Mov	Turn	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Aver. No.	Average
ID		Total		Satn	Delay	Service	Vehic l es	Distance	Queued	Stop Rate	Cycles	Speed
		veh/h	%	v/c	sec		veh	m				km/h
South												
2	T1	183	7.2	0.108	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.0
3	R2	20	23.5	0.025	8.2	LOSA	0.1	0.8	0.46	0.66	0.46	50.2
Appro	ach	204	8.8	0.108	0.8	NA	0.1	0.8	0.05	0.07	0.05	58.8
North	: R33											
7	L2	101	7.1	0.062	5.6	LOS A	0.0	0.0	0.00	0.57	0.00	53.3
8	T1	260	26.9	0.205	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	59.9
Appro	ach	361	21.4	0.205	1.6	NA	0.0	0.0	0.00	0.16	0.00	57.9
West:	N4 On ra	amp										
10	L2	271	11.1	0.180	5.7	LOSA	0.0	0.0	0.00	0.52	0.00	54.5
11	T1	2	50.0	0.163	23.7	LOS C	0.6	6.5	0.71	1.03	0.71	42.2
12	R2	33	71.4	0.163	25.6	LOS D	0.6	6.5	0.71	1.03	0.71	41.2
Appro	ach	307	17.9	0.180	8.0	LOS A	0.6	6.5	0.08	0.58	0.08	52.6
All Ve	hicles	871	17.2	0,205	3.7	NA	0.6	6.5	0.04	0.29	0.04	56.1

Site Level of Service (LOS) Method: Delay (SIDRA), Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AURECON AUSTRALASIA PTY LTD | Processed: Friday, 11 October 2019 02:26:58

Project: P:\Projects\507288 Weltevreden Coal Mine TIA\5 DEL DES\501 Engineering\Calcs and analysis\SIDRA\Sidra_Weltevreded_V01.sip8

Site: 1 [Site 1 SC03 2024 BT AM]

Site 1 2024 Backgroud Traffic without Dev. AM Site Category: (None)

Stop (Two-Way)

Move	ment P	erformanc	e - Veh	icles								
Mov ID	Turn	Demand Tota l veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehic l es veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h
South	: R33											
2	T1	154	16.5	0.105	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.0
3	R2	11	25.0	0.016	9.0	LOS A	0.1	0.5	0.51	0.68	0.51	49.5
Appro	ach	165	17.1	0.105	0.6	NA	0.1	0.5	0.03	0.05	0.03	59.1
North:	R33											
7	L2	55	9.8	0.036	5.7	LOS A	0.0	0.0	0.00	0.57	0.00	53.2
8	T1	412	12.3	0.263	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	59.9
Appro	ach	467	12.0	0.263	0.7	NA	0.0	0.0	0.00	0.07	0.00	59.0
West:	N4 On ra	amp										
10	L2	166	14.5	0.117	5.8	LOSA	0.0	0.0	0.00	0.52	0.00	54.4
11	T1	2	0.0	0.294	20.0	LOS C	1.2	11.6	0.80	1.06	0.94	40.8
12	R2	54	52.5	0.294	31.0	LOS D	1.2	11.6	0.80	1.06	0.94	39.2
Appro	ach	222	23.6	0.294	12.0	LOS B	1.2	11.6	0.20	0.66	0.24	49.6
A ll Ve	hicles	854	16.0	0.294	3,6	NA	1.2	11,6	0.06	0.22	0.07	56.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: AURECON AUSTRALASIA PTY LTD | Processed: Friday, 11 October 2019 03:03:50
Project: PyProjects:507288 Weltevreden Coal Mine TIA/5 DEL DESISO1 Engineering/Calcs and analysis/SIDRA/Sidra_Weltevreded_V01.sip8

MOVEMENT SUMMARY

Site: 1 [Site 1 SC03 2024 BT PM]

Site 1 2024 Background Traffic without Dev. PM Site Category: (None)

Stop (Two-Way)

Mov	Turn	Demand	Flows	Deg.	Average	Level of	95% Back	of Oueue	Prop.	Effective	Aver. No.	Average
ID		Total	HV	Satn	Delay	Service	Vehic l es	Distance	Queued	Stop Rate	Cycles	
		veh/h			sec		veh					km/h
South	: R33											
2	T1	198	7.2	0.117	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.0
3	R2	23	23.5	0.029	8.4	LOS A	0.1	0.9	0.48	0.68	0.48	50.0
Appro	ach	221	8.9	0.117	0.9	NA	0.1	0.9	0.05	0.07	0.05	58.8
North	: R33											
7	L2	109	7.1	0.068	5.6	LOSA	0.0	0.0	0.00	0.57	0.00	53.3
8	T1	282	26.9	0.222	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	59.9
Appro	ach	391	21.4	0.222	1.6	NA	0.0	0.0	0.00	0.16	0.00	57.9
West:	N4 On ra	amp										
10	L2	294	11.1	0.195	5.7	LOSA	0.0	0.0	0.00	0.52	0.00	54.5
11	T1	2	50.0	0.199	26.4	LOS D	0.7	8.0	0.75	1.04	0.78	40.9
12	R2	36	71.4	0.199	28.4	LOS D	0.7	8.0	0.75	1.04	0.78	40.0
Appro	ach	332	18.0	0.199	8.4	LOS A	0.7	8.0	0.09	0.58	0.09	52.4
All Ve	hicles	944	17.2	0.222	3.8	NA	0.7	8.0	0.04	0.29	0.04	56.0

Site Level of Service (LOS) Method: Delay (SIDRA), Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AURECON AUSTRALASIA PTY LTD | Processed: Friday, 11 October 2019 03:06:27

Project: P:\Projects\507288 Weltevreden Coal Mine TIA\5 DEL DES\501 Engineering\Calcs and analysis\SIDRA\Sidra_Weltevreded_V01.sip8

Site: 1 [Site 1 SC04 2024 BTWD AM]

Site 1 2024 Backgroud Traffic with Dev. AM Site Category: (None)

Stop (Two-Way)

Move	ment P	erformanc	e - Veh	icles								
Mov ID	Turn	Demand Tota l veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehic l es veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	
South	: R33											
2	T1	178	16.5	0.121	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.0
3	R2	16	25.0	0.025	9.3	LOS A	0.1	0.8	0.53	0.71	0.53	49.3
Appro	ach	195	17.2	0.121	0.8	NA	0.1	0.8	0.04	0.06	0.04	58.9
North:	: R33											
7	L2	55	9.8	0.036	5.7	LOS A	0.0	0.0	0.00	0.57	0.00	53.2
8	T1	441	12.3	0.282	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
Appro	ach	496	12.0	0.282	0.7	NA	0.0	0.0	0.00	0.06	0.00	59.1
West:	N4 On ra	amp										
10	L2	166	14.5	0.117	5.8	LOS A	0.0	0.0	0.00	0.52	0.00	54.4
11	T1	2	0.0	0.394	24.5	LOS C	1.6	16.2	0.85	1.09	1.10	37.8
12	R2	62	52.5	0.394	38.1	LOS E	1.6	16.2	0.85	1.09	1.10	36.4
Appro	ach	230	24.5	0.394	14.6	LOS B	1.6	16.2	0.24	0.68	0.31	48.0
A ll Ve	hic l es	920	16.2	0.394	4.2	NA	1.6	16.2	0.07	0,22	0.09	55.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement. Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: AURECON AUSTRALASIA PTY LTD | Processed: Sunday, 13 October 2019 20:40:34
Project: PyProjects/507288 Weltevreden Coal Mine TIA/S DEL DESISO1 Engineering/Calcs and analysis/SIDRA/Sidra_Weltevreded_V01.sip8

MOVEMENT SUMMARY

Site 1 2024 Background Traffic with Dev. PM Site Category: (None)

Stop (Two-Way)

Mov	Turn	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Aver. No.	Average
ID		Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
South	: R33	veh/h	%	v/c	sec		veh	m				km/h
2	T1	226	7.2	0.133	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.0
3	R2	29	23.5	0.039	8.7	LOS A	0.1	1.2	0.49	0.70	0.49	49.8
Appro	ach	255	9.0	0.133	1.0	NA	0.1	1.2	0.06	0.08	0.06	58.6
North	: R33											
7	L2	109	7.1	0.068	5.6	LOS A	0.0	0.0	0.00	0.57	0.00	53.3
8	T1	305	26.9	0.241	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
Appro	ach	415	21.7	0.241	1.5	NA	0.0	0.0	0.00	0.15	0.00	58.0
West:	N4 On ra	amp										
10	L2	294	11.1	0.195	5.7	LOSA	0.0	0.0	0.00	0.52	0.00	54.5
11	T1	2	50.0	0.279	31.7	LOS D	1.1	12.0	0.81	1.06	0.93	38.3
12	R2	44	71.4	0.279	34.6	LOS D	1.1	12.0	0.81	1.06	0.93	37.5
Appro	ach	340	19.1	0.279	9.6	LOS A	1.1	12.0	0.11	0.60	0.13	51.4
A ll Ve	hicles	1010	17.6	0.279	4.1	NA	1.1	12.0	0.05	0.28	0.06	55.7

Site Level of Service (LOS) Method: Delay (SIDRA), Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AURECON AUSTRALASIA PTY LTD | Processed: Sunday, 13 October 2019 21:02:58

Project: P:\Projects\507288 Weltevreden Coal Mine TIA\5 DEL DES\501 Engineering\Calcs and analysis\SIDRA\Sidra_Weltevreded_V01.sip8

Site: 2 [Site2 SC00 2019 BS AM]

Site 2 2019 Base Scenario AM Site Category: (None) Stop (Two-Way)

Move	ement P	erformano	e - Veh	icles								
Mov ID	Turn	Demand Tota l veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehic l es veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	
South	: R33											
1	L2	16	78.6	0.022	6.4	LOS A	0.0	0.0	0.00	0.56	0.00	47.7
2	T1	54	33.3	0.051	0.1	LOS A	0.0	0.4	0.06	0.06	0.06	58.8
3	R2	6	20.0	0.051	6.7	LOS A	0.0	0.4	0.06	0.06	0.06	55.0
Appro	ach	75	41.8	0.051	1.9	NA	0.0	0.4	0.05	0.16	0.05	55.8
East:	Engen G	arage Acce	ss Road									
4	L2	16	28.6	0.191	10.1	LOS B	0.7	5.7	0.52	0.97	0.52	41.3
5	T1	25	9.1	0.191	16.2	LOS C	0.7	5.7	0.52	0.97	0.52	47.2
6	R2	31	17.9	0.191	19.6	LOS C	0.7	5.7	0.52	0.97	0.52	46.8
Appro	ach	72	17.2	0.191	16.4	LOS C	0.7	5.7	0.52	0.97	0.52	45.9
North	: R33											
7	L2	56	16.0	0.040	5.7	LOS A	0.0	0.0	0.00	0.57	0.00	52.9
8	T1	115	28.1	0.093	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	60.0
9	R2	217	11.9	0.173	6.1	LOS A	0.8	6.0	0.21	0.56	0.21	52.3
Appro	ach	388	17.3	0.173	4.2	NA	0.8	6.0	0.12	0.39	0.12	54.0
West	N4 On/C	Off Ramp										
10	L2	51	2.2	0.065	8.4	LOS A	0.2	1.7	0.16	0.92	0.16	51.1
11	T1	1	0.0	0.065	15.2	LOS C	0.2	1.7	0.16	0.92	0.16	51.4
12	R2	6	0.0	0.065	15.3	LOS C	0.2	1.7	0.16	0.92	0.16	48.4
Appro	ach	58	1.9	0.065	9.2	LOSA	0.2	1.7	0.16	0.92	0.16	50.9
All Ve	hicles	593	18.9	0.191	5.9	NA	0.8	6.0	0.16	0.49	0.16	52.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright @ 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AURECON AUSTRALASIA PTY LTD | Processed: Friday, 11 October 2019 01:43:10
Project: P:\Projects\507288 Weltevreden Coal Mine TIA\5 DEL DES\501 Engineering\Calcs and analysis\SIDRA\Sidra Weltevreded V01.sip8

MOVEMENT SUMMARY

Site: 2 [Site2 SC00 2019 BS PM]

Site 2 2019 Base Scenario PM Site Category: (None) Stop (Two-Way)

Mov	Turn	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Aver. No.	
ID		Total veh/h	HV %	Satn v/c	De l ay sec	Service	Vehic l es veh	Distance m	Queued	Stop Rate	Cycles	Speed km/
South	n: R33	701111										
1	L2	24	54.5	0.027	6.2	LOS A	0.0	0.0	0.00	0.57	0.00	48.
2	T1	101	7.4	0.067	0.1	LOS A	0.0	0.4	0.03	0.04	0.03	59.
3	R2	3	100.0	0.067	7.4	LOS A	0.0	0.4	0.03	0.04	0.03	53.
Appro	oach	127	18.4	0.067	1.5	NA	0.0	0.4	0.02	0.13	0.02	57.
East:	Engen Ga	arage Acce	ss Road									
4	L2	14	15.4	0.221	9.2	LOSA	0.9	6.7	0.49	0.97	0.49	43.
5	T1	41	21.1	0.221	16.2	LOS C	0.9	6.7	0.49	0.97	0.49	47.
6	R2	39	8.3	0.221	16.0	LOS C	0.9	6.7	0.49	0.97	0.49	47.
Appro	oach	93	15.0	0.221	15.1	LOSC	0.9	6.7	0.49	0.97	0.49	47.
North	: R33											
7	L2	50	10.6	0.033	5.7	LOS A	0.0	0.0	0.00	0.57	0.00	53.
8	T1	72	50.7	0.075	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.
9	R2	141	28.0	0.129	6.6	LOS A	0.6	4.8	0.28	0.57	0.28	51.
Appro	oach	263	30.9	0.129	4.6	NA	0.6	4.8	0.15	0.42	0.15	53.
West	: N4 On/O	ff Ramp										
10	L2	44	9.8	0.048	9.0	LOS A	0.2	1.3	0.22	0.90	0.22	51.
11	T1	1	0.0	0.048	13.7	LOS B	0.2	1.3	0.22	0.90	0.22	51.
12	R2	1	0.0	0.048	14.0	LOS B	0.2	1.3	0.22	0.90	0.22	48.
Appro	oach	46	9.3	0.048	9.2	LOS A	0.2	1.3	0.22	0.90	0.22	51.
A ll Ve	hicles	530	23.2	0.221	6.1	NA	0.9	6.7	0.18	0.49	0.18	52.

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: AURECON AUSTRALASIA PTY LTD | Processed: Friday, 11 October 2019 01:53:34
Project: PyProjects/507288 Weltevreden Coal Miner ITAS DEL DESSO1 Engineering/Calcs and analysis/SIDRA/Sidra_Weltevreded_V01.sip8

Site: 2 [Site2 SC01 2022 OY AM]

Site 2 2022 Opening Year without Dev. AM Site Category: (None) Stop (Two-Way)

Mov	Turn	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Aver. No.	
ID		Tota l veh/h	HV %	Satn v/c	De l ay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate	Cycles	Speed km/l
South	: R33											
1	L2	18	78.6	0.026	6.4	LOS A	0.0	0.0	0.00	0.56	0.00	47.
2	T1	60	33.3	0.058	0.1	LOS A	0.1	0.5	0.07	0.06	0.07	58.
3	R2	7	20.0	0.058	6.8	LOS A	0.1	0.5	0.07	0.06	0.07	55.
Appro	ach	85	41.8	0.058	2.0	NA	0.1	0.5	0.06	0.17	0.06	55.
East:	Engen G	arage Acce	ss Road									
4	L2	18	28.6	0.241	10.6	LOS B	0.9	7.4	0.56	0.98	0.60	40.
5	T1	28	9.1	0.241	18.3	LOS C	0.9	7.4	0.56	0.98	0.60	46.
6	R2	35	17.9	0.241	22.6	LOS C	0.9	7.4	0.56	0.98	0.60	45.
Appro	ach	81	17.2	0.241	18.4	LOS C	0.9	7.4	0.56	0.98	0.60	44.
North	: R33											
7	L2	63	16.0	0.045	5.7	LOS A	0.0	0.0	0.00	0.57	0.00	52.
8	T1	130	28.1	0.105	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.
9	R2	244	11.9	0.197	6.1	LOSA	0.9	7.0	0.23	0.56	0.23	52.
Appro	ach	436	17.3	0.197	4.2	NA	0.9	7.0	0.13	0.40	0.13	54.
West:	N4 On/C	ff Ramp										
10	L2	58	2.2	0.077	8.4	LOSA	0.3	2.0	0.18	0.91	0.18	51.
11	T1	1	0.0	0.077	16.7	LOS C	0.3	2.0	0.18	0.91	0.18	51.
12	R2	7	0.0	0.077	17.0	LOS C	0.3	2.0	0.18	0.91	0.18	48.
Appro	ach	66	1,9	0.077	9.4	LOS A	0.3	2.0	0.18	0.91	0.18	50.
All Ve	hicles	668	18.9	0.241	6.2	NA	0.9	7.4	0.18	0.49	0.18	52.

Site Level of Service (LOS) Method: Delay (SIDRA), Site LOS Method is specified in the Parameter Settings dialog (Site tab),

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright @ 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AURECON AUSTRALASIA PTY LTD | Processed: Friday, 11 October 2019 02:36:01
Project: P:\Projects\507288 Weltevreden Coal Mine TIA\5 DEL DES\501 Engineering\Calcs and analysis\SIDRA\Sidra Weltevreded V01.sip8

MOVEMENT SUMMARY

Site: 2 [Site2 SC01 2022 OY PM]

Site 2 2022 Opening Year without Dev PM Site Category: (None) Stop (Two-Way)

Mov	Turn	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Aver. No.	
ID		Tota l veh/h	HV %	Satn v/c	Delay sec	Service	Vehic l es veh	Distance m	Queued	Stop Rate	Cycles	Speed km/h
South	n: R33											
1	L2	27	54.5	0.031	6.2	LOS A	0.0	0.0	0.00	0.57	0.00	48.9
2	T1	113	7.4	0.074	0.1	LOS A	0.0	0.4	0.03	0.03	0.03	59.6
3	R2	3	100.0	0.074	7.6	LOS A	0.0	0.4	0.03	0.03	0.03	53.8
Appr	oach	143	18.3	0.074	1.5	NA	0.0	0.4	0.02	0.13	0.02	57.
East:	Engen G	arage Acce	ss Road									
4	L2	16	15.4	0.272	9.7	LOSA	1.1	9.0	0.53	0.99	0.59	42.
5	T1	46	21.1	0.272	18.2	LOS C	1.1	9.0	0.53	0.99	0.59	46.
6	R2	43	8.3	0.272	18.1	LOS C	1.1	9.0	0.53	0.99	0.59	46.
Appr	oach	105	15.0	0.272	16.8	LOSC	1.1	9.0	0.53	0.99	0.59	46.
North	: R33											
7	L2	57	10.6	0.037	5.7	LOS A	0.0	0.0	0.00	0.57	0.00	53.
8	T1	80	50.7	0.083	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	60.0
9	R2	158	28.0	0.148	6.7	LOSA	0.6	5.5	0.30	0.58	0.30	51.
Appr	oach	296	30.8	0.148	4.7	NA	0.6	5.5	0.16	0.42	0.16	53.
West	: N4 On/O	ff Ramp										
10	L2	49	9.8	0.054	9.0	LOSA	0.2	1.5	0.24	0.90	0.24	51.
11	T1	1	0.0	0.054	14.6	LOS B	0.2	1.5	0.24	0.90	0.24	51.6
12	R2	1	0.0	0.054	15.2	LOS C	0.2	1.5	0.24	0.90	0.24	48.8
Appr	oach	51	9.4	0.054	9.3	LOS A	0.2	1.5	0.24	0.90	0.24	51.
All Ve	ehicles	595	23.2	0.272	6.4	NA	1.1	9.0	0.20	0.49	0.21	52.

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: AURECON AUSTRALASIA PTY LTD | Processed: Friday, 11 October 2019 02:39:36
Project: PtyProjects\(\subseteq 1.00\) Welteverded Coal Miner ITAS DEL DES\(\subseteq 1.00\) Edgineering\(\subseteq 1.00\) analysis\(\subseteq 1.00\) SIDRA\(\subseteq 1.00\) Alter Volume (V01.sip8)

W Site: 2 [Site2 SC02 2022 BT PM]

Site 2 2022 Background Traffic with Dev PM Site Category: (None) Stop (Two-Way)

Mov	Turn	Demano	d Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Aver. No.	Average
ID		Total		Satn	Delay	Service	Vehicles	Distance		Stop Rate	Cycles	
		veh/h	%	v/c	sec		veh	m				km/ł
South	: R33											
1	L2	27	54.5	0.031	6.2	LOS A	0.0	0.0	0.00	0.57	0.00	48.9
2	T1	125	7.4	0.081	0.1	LOS A	0.1	0.4	0.03	0.03	0.03	59.7
3	R2	3	100.0	0.081	7.7	LOS A	0.1	0.4	0.03	0.03	0.03	53.9
Appro	ach	155	17.4	0.081	1.4	NA	0.1	0.4	0.02	0.12	0.02	57.3
East:	Engen G	arage Acce	ss Road									
4	L2	18	15.4	0.284	9.9	LOSA	1.2	9.5	0.54	0.99	0.61	41.9
5	T1	46	21.1	0.284	18.9	LOS C	1.2	9.5	0.54	0.99	0.61	46.2
6	R2	43	8.3	0,284	18.8	LOS C	1.2	9.5	0.54	0.99	0,61	46.5
Appro	ach	107	15.0	0.284	17.3	LOS C	1.2	9.5	0.54	0.99	0.61	45.7
North:	R33											
7	L2	57	10.6	0.037	5.7	LOSA	0.0	0.0	0.00	0.57	0.00	53.2
8	T1	85	50.7	0.088	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.0
9	R2	161	28.0	0.152	6.8	LOS A	0.7	5.7	0.31	0.59	0.31	51.3
Appro	ach	302	31.1	0.152	4.7	NA	0.7	5.7	0.17	0.42	0.17	53.4
West:	N4 On/C	ff Ramp										
10	L2	49	9.8	0.055	9.1	LOS A	0.2	1.5	0.25	0.89	0.25	51.1
11	T1	1	0.0	0.055	15.0	LOS C	0.2	1.5	0.25	0.89	0.25	51.6
12	R2	1	0.0	0.055	15.7	LOS C	0.2	1.5	0.25	0.89	0.25	48.7
Appro		51	9.4	0.055	9.4	LOSA	0.2	1,5	0.25	0.89	0.25	51.0
A ll Ve	hicles	616	23.0	0.284	6.4	NA	1.2	9.5	0.20	0.48	0.21	52.3

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright @ 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AURECON AUSTRALASIA PTY LTD | Processed: Friday, 11 October 2019 16:18:25
Project: P:\Projects\507288 Weltevreden Coal Mine TIA\5 DEL DES\501 Engineering\Calcs and analysis\SIDRA\Sidra Weltevreded V01.sip8

MOVEMENT SUMMARY

Site: 2 [Site2 SC03 2024 BT AM]

Site 2 2024 Background Traffic without Dev. AM Site Category: (None)

O1	υþ	()	WO-	- v v	ay	,

Mov	Turn	Demand	Flows	Dea.	Average	Level of	95% Back	of Queue	Prop.	Effective	Aver. No.	Average
ID		Total	HV	Satn	Delay	Service	Vehic l es	Distance	Queued		Cycles	
		veh/h			sec		veh					· km/h
South	: R33											
1	L2	19	78.6	0.027	6.4	LOS A	0.0	0.0	0.00	0.56	0.00	47.7
2	T1	65	33.3	0.061	0.1	LOS A	0.1	0.5	0.07	0.06	0.07	58.8
3	R2	7	20.0	0.061	6.9	LOS A	0.1	0.5	0.07	0.06	0.07	55.0
Appro	ach	91	41.8	0.061	2.0	NA	0.1	0.5	0.06	0.16	0.06	55.8
East:	Engen G	arage Acce	ss Road									
4	L2	19	28.6	0.287	11.3	LOS B	1.2	9.4	0.61	1.01	0.71	38.9
5	T1	30	9.1	0.287	20.3	LOS C	1.2	9.4	0.61	1.01	0.71	44.9
6	R2	38	17.9	0.287	25.4	LOS D	1.2	9.4	0.61	1.01	0.71	44.5
Appro	ach	87	17.2	0.287	20.6	LOSC	1.2	9.4	0.61	1.01	0.71	43.6
North	: R33											
7	L2	68	16.0	0.049	5.7	LOS A	0.0	0.0	0.00	0.57	0.00	52.9
8	T1	140	28.1	0.113	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	60.0
9	R2	264	11.9	0.215	6.2	LOSA	1.0	7.7	0.24	0.57	0.24	52.2
Appro	ach	472	17.3	0.215	4.3	NA	1.0	7.7	0.14	0.40	0.14	53.9
West:	N4 On/C	off Ramp										
10	L2	63	2.2	0.084	8.5	LOS A	0.3	2.1	0.19	0.91	0.19	50.9
11	T1	1	0.0	0.084	17.9	LOS C	0.3	2.1	0.19	0.91	0.19	51.1
12	R2	7	0.0	0.084	18.3	LOS C	0.3	2.1	0.19	0.91	0.19	48.2
Appro	ach	70	2.0	0.084	9.6	LOSA	0.3	2.1	0.19	0.91	0.19	50.7
All Ve	hicles	720	18.9	0.287	6.5	NA	1.2	9.4	0.19	0.49	0.20	52.2

Site Level of Service (LOS) Method: Delay (SIDRA), Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: AURECON AUSTRALASIA PTY LTD | Processed: Friday, 11 October 2019 03:08:55
Project: PtyProjects\(\subseteq 1000\) Welterverded Coal Miner ITAS DEL DES\(\subseteq 1000\) Edgineering\(\subseteq 1000\) and analysis\(\subseteq 1000\) SIDRA\(\subseteq 1000\) and volume 1000\) and subsete 1000\(\subseteq 1000\) and subsete 1000\(\subsete 10000\) and subsete 1000\(\subsete 100000\) and subsete

Site: 2 [Site2 SC03 2024 BT PM]

Site 2 2024 Background Traffic without Dev PM Site Category: (None)

Stop (Two-Way)

Move	ement P	erforman	ce - Veh	icles								
Mov ID	Turn	Demand Tota l veh/h	d Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehic l es veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h
South	: R33											
1	L2	29	54.5	0.034	6.2	LOS A	0.0	0.0	0.00	0.57	0.00	48.9
2	T1	122	7.4	0.082	0.1	LOSA	0.1	0.5	0.04	0.04	0.04	59.
3	R2	4	100.0	0.082	7.7	LOS A	0.1	0.5	0.04	0.04	0.04	53.7
Appro	ach	155	18.7	0.082	1.6	NA	0.1	0.5	0.03	0.14	0.03	57.0
East:	Engen G	arage Acce	ss Road									
4	L2	17	15.4	0.319	10.4	LOS B	1.4	11.2	0.57	1.01	0.68	41.
5	T1	49	21.1	0.319	20.1	LOS C	1.4	11.2	0.57	1.01	0.68	45.
6	R2	47	8.3	0.319	20.1	LOS C	1.4	11.2	0.57	1.01	0.68	45.
Appro	ach	113	14.9	0.319	18.6	LOSC	1.4	11.2	0.57	1.01	0.68	45.
North	: R33											
7	L2	61	10.6	0.040	5.7	LOS A	0.0	0.0	0.00	0.57	0.00	53.
8	T1	88	50.7	0.091	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.
9	R2	172	28.0	0.163	6.8	LOS A	0.7	6.2	0.32	0.59	0.32	51.3
Appro	ach	321	30.9	0.163	4.7	NA	0.7	6.2	0.17	0.43	0.17	53.
West:	N4 On/C	off Ramp										
10	L2	54	9.8	0.060	9.1	LOS A	0.2	1.6	0.25	0.90	0.25	51.
11	T1	1	0.0	0.060	15.5	LOS C	0.2	1.6	0.25	0.90	0.25	51.6
12	R2	1	0.0	0.060	16.3	LOS C	0.2	1.6	0.25	0.90	0.25	48.
Appro	ach	56	9.4	0.060	9.3	LOS A	0.2	1.6	0.25	0.90	0.25	51.
A ll Ve	hic l es	646	23.3	0.319	6.8	NA	1.4	11.2	0.21	0.50	0.23	52.

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright @ 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AURECON AUSTRALASIA PTY LTD | Processed: Friday, 11 October 2019 03:12:20
Project: P:\Projects\507288 Weltevreden Coal Mine TIA\5 DEL DES\501 Engineering\Calcs and analysis\SIDRA\Sidra Weltevreded V01.sip8

MOVEMENT SUMMARY

Site: 2 [Site2 SC04 2024 BTWD AM]

Site 2 2024 Background Traffic with Dev. AM Site Category: (None) Stop (Two-Way)

Mov	Turn	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Aver. No.	
ID		Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehic l es veh	Distance m	Queued	Stop Rate	Cycles	Speed km/
South	n: R33											
1	L2	19	78.6	0.027	6.4	LOS A	0.0	0.0	0.00	0.56	0.00	47.
2	T1	96	33.3	0.088	0.1	LOS A	0.1	0.6	0.06	0.04	0.06	59.
3	R2	7	20.0	0.088	7.2	LOS A	0.1	0.6	0.06	0.04	0.06	55.
Appr	oach	122	39.6	0.088	1.5	NA	0.1	0.6	0.05	0.12	0.05	56.
East:	Engen Ga	arage Acce	ss Road									
4	L2	27	28.6	0.343	12.6	LOS B	1.5	11.8	0.65	1.02	0.83	37.
5	T1	30	9.1	0.343	23.8	LOS C	1.5	11.8	0.65	1.02	0.83	43.
6	R2	38	17.9	0.343	30.3	LOS D	1.5	11.8	0.65	1.02	0.83	43.
Appr	oach	95	18.1	0.343	23.2	LOS C	1.5	11.8	0.65	1.02	0.83	41.
North	: R33											
7	L2	68	16.0	0.049	5.7	LOS A	0.0	0.0	0.00	0.57	0.00	52.
8	T1	170	28.1	0.137	0.0	LOSA	0.0	0.0	0.00	0.00	0.00	60.
9	R2	272	11.9	0.230	6.4	LOS A	1.1	8.3	0.29	0.58	0.29	52.
Appr	oach	510	17.8	0.230	4.2	NA	1.1	8.3	0.16	0.39	0.16	54.
West	: N4 On/O	ff Ramp										
10	L2	63	2.2	0.118	8.7	LOS A	0.4	3.0	0.28	0.89	0.28	50.
11	T1	1	0.0	0.118	20.1	LOS C	0.4	3.0	0.28	0.89	0.28	50.
12	R2	13	0.0	0.118	21.3	LOS C	0.4	3.0	0.28	0.89	0.28	47.
Appr	oach	77	1.8	0,118	11.0	LOS B	0.4	3.0	0.28	0.89	0,28	49.
All Ve	ehicles	804	19.6	0.343	6.7	NA	1.5	11.8	0.21	0.47	0.23	52

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement. Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: AURECON AUSTRALASIA PTY LTD | Processed: Sunday, 13 October 2019 21:13:11
Project: PyProjects/507288 Weltevreden Coal Miner ITAS DEL DESSO1 Tegninerening/Calcs and analysis/SIDRA/Sidra_Weltevreded_V01.sip8

Site: 2 [Site2 SC04 2024 BTWD PM]

Site 2 2024 Background Traffic without Dev PM Site Category: (None) Stop (Two-Way)

Mov	Turn	Demand	d Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Aver. No.	Average
ID		Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate	Cycles	Speed km/l
South	: R33											
1	L2	29	54.5	0.034	6.2	LOS A	0.0	0.0	0.00	0.57	0.00	48.9
2	T1	157	7.4	0.103	0.1	LOS A	0.1	0.6	0.03	0.03	0.03	59.
3	R2	4	100.0	0,103	8.1	LOS A	0.1	0.6	0.03	0.03	0.03	53.
Appro	ach	191	16.6	0.103	1.3	NA	0.1	0.6	0.03	0.11	0.03	57.
East:	Engen G	arage Acce	ss Road									
4	L2	25	15.4	0.373	11.5	LOS B	1.7	13.8	0.61	1.02	0.80	39.
5	T1	49	21.1	0.373	23.4	LOS C	1.7	13.8	0.61	1.02	0.80	44.
6	R2	47	8.3	0.373	23.6	LOS C	1.7	13.8	0.61	1.02	0.80	44.
Appro	ach	121	15.0	0.373	21.1	LOSC	1.7	13.8	0.61	1.02	0.80	43.
North:	: R33											
7	L2	61	10.6	0.040	5.7	LOS A	0.0	0.0	0.00	0.57	0.00	53.
8	T1	111	50.7	0.116	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.
9	R2	180	28.0	0.177	7.0	LOS A	0.8	6.7	0.36	0.61	0.36	51.
Appro	ach	352	32.2	0.177	4.6	NA	0.8	6.7	0.18	0.41	0.18	53.
West:	N4 On/C	off Ramp										
10	L2	54	9.8	0.078	9.3	LOS A	0.3	2.1	0.32	0.89	0.32	50.
11	T1	1	0.0	0.078	17.2	LOS C	0.3	2.1	0.32	0.89	0.32	51.
12	R2	5	0.0	0.078	18.6	LOS C	0.3	2.1	0.32	0.89	0.32	48.
Appro	ach	60	8.7	0.078	10.3	LOS B	0.3	2.1	0.32	0.89	0.32	50.
A ll Ve	hicles	724	23.3	0.373	6.9	NA	1.7	13.8	0.22	0.48	0.26	51.

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements. NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright @ 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AURECON AUSTRALASIA PTY LTD | Processed: Sunday, 13 October 2019 21:28:03
Project: P:\Projects\507288 Weltevreden Coal Mine TIA\5 DEL DES\501 Engineering\Calcs and analysis\SIDRA\Sidra Weltevreded V01.sip8

MOVEMENT SUMMARY

Site: 3 [Site 3 SC00 2019 BS AM]

Site 3 2019 Base Scenario AM Site Category: (None) Stop (Two-Way)

Mov	Turn	Demano		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Aver. No.	
ID		Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
South	: RoadNa	veh/h me	%	v/c	sec		veh	m				km/l
4	L2	1	0.0	0.004	8.0	LOS A	0.0	0.1	0.01	1.05	0.01	50.6
5	T1	1	100.0	0.004	11.0	LOS B	0.0	0.1	0.01	1.05	0.01	46.0
6	R2	1	0.0	0.004	7.5	LOSA	0.0	0.1	0.01	1.05	0.01	50.0
Appro	ach	4	33.3	0.004	9.2	LOS A	0.0	0.1	0.01	1.05	0.01	49.0
East:	RoadNam	ne										
7	L2	1	0.0	0.002	5.5	LOSA	0.0	0.0	0.01	0.39	0.01	54.
8	T1	1	0.0	0.002	0.0	LOSA	0.0	0.0	0.01	0.39	0.01	56.6
9	R2	1	0.0	0.002	5.4	LOSA	0.0	0.0	0.01	0.39	0.01	53.
Appro	oach	4	0.0	0.002	3.7	NA	0.0	0.0	0.01	0.39	0.01	54.9
North	: R33											
10	L2	1	0.0	0.164	8.0	LOS A	0.6	5.3	0.13	0.97	0.13	50.
11	T1	2	50.0	0.164	10.5	LOS B	0.6	5.3	0.13	0.97	0.13	45.9
12	R2	135	28.2	0.164	9.6	LOS A	0.6	5.3	0.13	0.97	0.13	48.8
Appro	oach	139	28.3	0.164	9.6	LOS A	0.6	5.3	0.13	0.97	0.13	48.8
West	: R33											
1	L2	77	42.9	0.079	6.1	LOS A	0.0	0.0	0.00	0.50	0.00	52.2
2	T1	1	0.0	0.001	0.0	LOS A	0.0	0.0	0.02	0.30	0.02	57.4
3	R2	1	0.0	0.001	5.5	LOS A	0.0	0.0	0.02	0.30	0.02	54.6
Appro	oach	80	41.6	0.079	6.0	NA	0.0	0.0	0.00	0.50	0.00	52.3
All Ve	hicles	226	32.6	0.164	8.2	NA	0.6	5.3	0.08	0.79	0.08	50.

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: AURECON AUSTRALASIA PTY LTD | Processed: Friday, 11 October 2019 02:01:32
Project: PtyProjects\(\subseteq 1.32\) Welteverden Coal Miner ITAS DEL DES\(\subseteq 1.32\) Edgingering\((\subseteq 1.32\) analysis\(\subseteq 1.32\) SIDRA\(\subseteq 1.32\) Edgingering\((\subseteq 1.32\) analysis\(\subseteq 1.32\) Edgingering\((\subseteq 1.32\) analysis\((\subseteq 1.32\) analysis\((\subse

Site: 3 [Site 3 SC00 2019 BS PM]

Site 3 2019 Base Scenario PM Site Category: (None) Stop (Two-Way)

Move	ement P	erformanc	e - Veh	icles								
Mov ID	Turn	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehic l es veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	
South	n: RoadNa	ame										
4	L2	3	50.0	0.009	10.1	LOS B	0.0	0.3	0.01	1.05	0.01	48.3
5	T1	5	25.0	0.009	9.8	LOS A	0.0	0.3	0.01	1.05	0.01	47.0
6	R2	1	0.0	0.009	7.5	LOS A	0.0	0.3	0.01	1.05	0.01	49.9
Appro	oach	9	28.6	0.009	9.5	LOSA	0.0	0.3	0.01	1.05	0.01	47.9
East:	RoadNar	me										
7	L2	1	0.0	0.002	5.5	LOS A	0.0	0.0	0.01	0.39	0.01	54.4
8	T1	1	0.0	0.002	0.0	LOS A	0.0	0.0	0.01	0.39	0.01	56.6
9	R2	1	0.0	0.002	5.4	LOS A	0.0	0.0	0.01	0.39	0.01	53.5
Appro	oach	4	0.0	0.002	3.7	NA	0.0	0.0	0.01	0.39	0.01	54.9
North	: R33											
10	L2	1	0.0	0.126	8.0	LOSA	0.5	4.5	0.13	1.00	0.13	49.8
11	T1	6	20.0	0.126	9.1	LOSA	0.5	4.5	0.13	1.00	0.13	47.0
12	R2	88	48.6	0.126	10.9	LOS B	0.5	4.5	0.13	1.00	0.13	47.7
Appro	oach	95	46.1	0.126	10.7	LOS B	0.5	4.5	0.13	1.00	0.13	47.7
West	: R33											
1	L2	139	18.9	0.105	5.8	LOS A	0.0	0.0	0.00	0.52	0.00	53.2
2	T1	1	0.0	0.001	0.0	LOS A	0.0	0.0	0.02	0.30	0.02	57.4
3	R2	1	0.0	0.001	5.5	LOS A	0.0	0.0	0.02	0.30	0.02	54.6
Appro	oach	141	18.6	0.105	5.8	NA	0.0	0.0	0.00	0.51	0.00	53.2
All Ve	hicles	249	29.1	0.126	7.8	NA	0.5	4.5	0.05	0.72	0.05	50.9

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright @ 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AURECON AUSTRALASIA PTY LTD | Processed: Friday, 11 October 2019 02:06:52
Project: P:\Projects\507288 Weltevreden Coal Mine TIA\5 DEL DES\501 Engineering\Calcs and analysis\SIDRA\Sidra Weltevreded V01.sip8

MOVEMENT SUMMARY

Site: □ [Site □ SC01 2022 OY AM]

Site 3 2022 Opening Year without Dev. AM Site Category: (None)

Stop (Two-Way)

Mov	Turn	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Aver. No.	
ID		Total	HV	Satn	Delay	Service	Vehic l es	Distance	Queued	Stop Rate	Cycles	
Couth	: RoadNa	veh/h	%	v/c	sec		veh	m				km/ł
4	L2	1	0.0	0.004	8.0	LOS A	0.0	0.1	0.01	1.05	0.01	50.6
5	T1	1	100.0	0.004	11.1	LOS B	0.0	0.1	0.01	1.05	0.01	46.0
6	R2	1	0.0	0.004	7.5	LOS A	0.0	0.1	0.01	1.05	0.01	50.0
Appro	ach	4	33.3	0.004	9.3	LOS A	0.0	0.1	0.01	1.05	0.01	49.0
East:	RoadNan	ne										
7	L2	1	0.0	0.002	5.5	LOSA	0.0	0.0	0.01	0.39	0.01	54.
8	T1	1	0.0	0.002	0.0	LOS A	0.0	0.0	0.01	0.39	0.01	56.6
9	R2	1	0.0	0.002	5.4	LOS A	0.0	0.0	0.01	0.39	0.01	53.
Appro	ach	4	0.0	0.002	3.7	NA	0.0	0.0	0.01	0.39	0.01	54.9
North	: R33											
10	L2	1	0.0	0.185	8.0	LOSA	0.7	6.2	0.14	0.97	0.14	50.
11	T1	2	50.0	0.185	10.5	LOS B	0.7	6.2	0.14	0.97	0.14	45.9
12	R2	152	28.2	0.185	9.7	LOSA	0.7	6.2	0.14	0.97	0.14	48.8
Appro	ach	156	28.3	0.185	9.7	LOS A	0.7	6.2	0.14	0.97	0.14	48.8
West:	R33											
1	L2	87	42,9	0.089	6.1	LOSA	0.0	0.0	0.00	0.50	0.00	52.
2	T1	1	0.0	0.001	0.0	LOSA	0.0	0.0	0.02	0.30	0.02	57.
3	R2	1	0.0	0.001	5.5	LOSA	0.0	0.0	0.02	0.30	0.02	54.6
Appro		90	41.7	0.089	6.0	NA	0.0	0.0	0.00	0.50	0.00	52.
All Ve	hiolog	253	32.7	0.185	8.3	NA	0.7	6.2	0.09	0.79	0.09	50.

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: AURECON AUSTRALASIA PTY LTD | Processed: Friday, 11 October 2019 02-43:41
Project: PyProjects/507288 Weltevreden Coal Miner ITAS DEL DESSO1 Engineering/Calcs and analysis/SIDRA/Sidra_Weltevreded_V01.sip8

Site: □ [Site □ SC01 2022 OY PM]

Site 3 2022 Opening Year without Dev. PM Site Category: (None)

Stop (Two-Way)

Mov	Turn	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Aver. No.	Average
ID		Total		Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
		veh/h	%	v/c	sec		veh	m				km/f
South	: RoadNa	ame										
4	L2	3	50.0	0.009	10.1	LOS B	0.0	0.3	0.01	1.05	0.01	48.
5	T1	5	25.0	0.009	9.9	LOS A	0.0	0.3	0.01	1.05	0.01	47.
6	R2	1	0.0	0.009	7.5	LOS A	0.0	0.3	0.01	1.05	0.01	49.
Appro	ach	9	28.6	0.009	9.6	LOS A	0.0	0.3	0.01	1.05	0.01	47.
East:	RoadNar	ne										
7	L2	1	0.0	0.002	5.5	LOS A	0.0	0.0	0.01	0.39	0.01	54.
8	T1	1	0.0	0.002	0.0	LOSA	0.0	0.0	0.01	0.39	0.01	56.
9	R2	1	0.0	0.002	5.4	LOS A	0.0	0.0	0.01	0.39	0.01	53.
Appro	ach	4	0.0	0.002	3.7	NA	0.0	0.0	0.01	0.39	0.01	54.
North:	R33											
10	L2	1	0.0	0.145	8.0	LOSA	0.5	5.2	0.14	1.00	0.14	49.
11	T1	8	20.0	0.145	9.2	LOS A	0.5	5.2	0.14	1.00	0.14	47.
12	R2	99	48.6	0.145	11.0	LOS B	0.5	5.2	0.14	1.00	0.14	47.
Appro	ach	108	46.0	0.145	10.9	LOS B	0.5	5.2	0.14	1.00	0.14	47.
West:	R33											
1	L2	156	18.9	0.118	5.8	LOSA	0.0	0.0	0.00	0.52	0.00	53.
2	T1	1	0.0	0.001	0.0	LOSA	0.0	0.0	0.02	0.30	0.02	57.
3	R2	1	0.0	0.001	5.5	LOS A	0.0	0.0	0.02	0.30	0.02	54.
Appro	ach	159	18.6	0.118	5.8	NA	0.0	0.0	0.00	0.51	0.00	53.
A ll Vel	hicles	279	29.2	0.145	7.8	NA	0.5	5.2	0.05	0.72	0.05	50.

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright @ 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AURECON AUSTRALASIA PTY LTD | Processed: Friday, 11 October 2019 02:47:21
Project: P:\Projects\507288 Weltevreden Coal Mine TIA\5 DEL DES\501 Engineering\Calcs and analysis\SIDRA\Sidra Weltevreded V01.sip8

MOVEMENT SUMMARY

Site: 3 [Site 3 SC02 2022 BT AM]

Site 3 2022 Background Traffic with Dev. AM Site Category: (None)

Stop (Two-Way)

Mov	Turn	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Aver. No.	
ID		Tota l veh/h	HV %	Satn v/c	Delay sec	Service	Vehic l es veh	Distance m	Queued	Stop Rate	Cycles	Speed km/h
South	n: RoadNa	me										
4	L2	1	0.0	0.004	8.0	LOS A	0.0	0.1	0.01	1.05	0.01	50.
5	T1	1	100.0	0.004	11.2	LOS B	0.0	0.1	0.01	1.05	0.01	45.9
6	R2	1	0.0	0.004	7.5	LOS A	0.0	0.1	0.01	1.05	0.01	50.0
Appro	oach	4	33.3	0.004	9.3	LOS A	0.0	0.1	0.01	1.05	0.01	48.9
East:	RoadNam	ne										
7	L2	1	0.0	0.002	5.5	LOSA	0.0	0.0	0.01	0.39	0.01	54.
8	T1	1	0.0	0.002	0.0	LOS A	0.0	0.0	0.01	0.39	0.01	56.
9	R2	1	0.0	0.002	5.4	LOS A	0.0	0.0	0.01	0.39	0.01	53.
Appro	oach	4	0.0	0.002	3.7	NA	0.0	0.0	0.01	0.39	0.01	54.
North	: R33											
10	L2	1	0.0	0.207	8.0	LOSA	0.8	7.1	0.15	0.96	0.15	50.
11	T1	2	50.0	0.207	10.6	LOS B	0.8	7.1	0.15	0.96	0.15	45.9
12	R2	169	28.2	0.207	9.8	LOSA	0.8	7.1	0.15	0.96	0.15	48.
Appro	oach	173	28.3	0.207	9.8	LOS A	0.8	7.1	0.15	0.96	0.15	48.
West	: R33											
1	L2	96	42.9	0.098	6.1	LOS A	0.0	0.0	0.00	0.50	0.00	52.
2	T1	1	0.0	0.001	0.0	LOSA	0.0	0.0	0.02	0.30	0.02	57.
3	R2	1	0.0	0.001	5.5	LOS A	0.0	0.0	0.02	0.30	0.02	54.
Appro	oach	98	41.8	0.098	6.0	NA	0.0	0.0	0.00	0.50	0.00	52.
All Ve	ehicles	279	32.8	0.207	8.3	NA	0.8	7.1	0.09	0.79	0.09	50.

Site Level of Service (LOS) Method: Delay (SIDRA), Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: AURECON AUSTRALASIA PTY LTD | Processed: Friday, 11 October 2019 16:36:54
Project: PyProjects/507288 Weltevreden Coal Miner ITAS DEL DESSO1 Engineering/Calcs and analysis/SIDRA/Sidra_Weltevreded_V01.sip8

Site: 3 [Site 3 SC03 2024 BT AM]

Site 3 2024 Background Traffic without Dev. AM Site Category: (None)

Stop (Two-Way)

		erforman										
Mov ID	Tum	Demano Total veh/h	d Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	Distance	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h
South	: RoadNa		70	V/C	Sec		ven	m				KIIVI
4	L2	1	0.0	0.004	8.0	LOSA	0.0	0.1	0.01	1.05	0.01	50.5
5	T1	1	100.0	0.004	11.2	LOS B	0.0	0.1	0.01	1.05	0.01	45.9
6	R2	1	0.0	0.004	7.5	LOS A	0.0	0,1	0.01	1.05	0.01	50.0
Appro	ach	4	33.3	0.004	9.3	LOS A	0.0	0.1	0.01	1.05	0.01	48.9
East:	RoadNan	ne										
7	L2	1	0.0	0.002	5.5	LOSA	0.0	0.0	0.01	0.39	0.01	54.4
8	T1	1	0.0	0.002	0.0	LOSA	0.0	0.0	0.01	0.39	0.01	56.6
9	R2	1	0.0	0.002	5.4	LOSA	0.0	0.0	0.01	0.39	0.01	53.5
Appro	ach	4	0.0	0.002	3.7	NA	0.0	0.0	0.01	0.39	0.01	54.9
North:	R33											
10	L2	1	0.0	0.201	8.0	LOS A	0.8	6.8	0.15	0.96	0.15	50.1
11	T1	2	50.0	0.201	10.6	LOS B	0.8	6.8	0.15	0.96	0.15	45.9
12	R2	164	28.2	0.201	9.8	LOS A	0.8	6.8	0.15	0.96	0.15	48.8
Appro	ach	168	28.3	0.201	9.8	LOS A	0.8	6.8	0.15	0.96	0.15	48.8
West:	R33											
1	L2	94	42.9	0.097	6.1	LOS A	0.0	0.0	0.00	0.50	0.00	52.2
2	T1	1	0.0	0.001	0.0	LOSA	0.0	0.0	0.02	0.30	0.02	57.4
3	R2	1	0.0	0.001	5.5	LOS A	0.0	0.0	0.02	0.30	0.02	54.6
Appro	ach	97	41.8	0.097	6.0	NA	0.0	0.0	0.00	0.50	0.00	52.3
All Ve	hicles	272	32.8	0.201	8.3	NA	0.8	6.8	0.09	0.79	0.09	50.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright @ 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AURECON AUSTRALASIA PTY LTD | Processed: Friday, 11 October 2019 03:16:25
Project: P:\Projects\507288 Weltevreden Coal Mine TIA\5 DEL DES\501 Engineering\Calcs and analysis\SIDRA\Sidra Weltevreded V01.sip8

MOVEMENT SUMMARY

Site: 3 [Site 3 SC03 2024 BT PM]

Site 3 2024 Background Traffic without Dev. PM Site Category: (None)

Stop (Two-Way)

Mov	Turn	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Aver. No.	
ID		Total	HV	Satn	Delay	Service	Vehic l es	Distance	Queued	Stop Rate	Cycles	Speed
South	: RoadNa	veh/h	%	v/c	sec		veh	m				km/
4	L2	3	50.0	0.011	10.1	LOS B	0.0	0.3	0.01	1.05	0.01	48.
5	T1	6	25.0	0.011	10.0	LOSA	0.0	0.3	0.01	1.05	0.01	46.
6	R2	1	0.0	0.011	7.5	LOSA	0.0	0.3	0.01	1.05	0.01	49.
Appro		10	28.1	0.011	9.7	LOSA	0.0	0.3	0.01	1.05	0.01	47.
			20.1	0.011	0.1	LOOM	0.0	0.0	0.01	1.00	0.01	
East:	RoadNan	ne										
7	L2	1	0.0	0.002	5.5	LOS A	0.0	0.0	0.01	0.39	0.01	54.
8	T1	1	0.0	0.002	0.0	LOS A	0.0	0.0	0.01	0.39	0.01	56.
9	R2	1	0.0	0.002	5.4	LOS A	0.0	0.0	0.01	0.39	0.01	53.
Appro	ach	4	0.0	0.002	3.7	NA	0.0	0.0	0.01	0.39	0.01	54.
North	: R33											
10	L2	1	0.0	0.157	8.0	LOSA	0.6	5.7	0.15	1.00	0.15	49.
11	T1	8	20.0	0.157	9.3	LOSA	0.6	5.7	0.15	1.00	0.15	46.
12	R2	106	48.6	0.157	11.1	LOS B	0.6	5.7	0.15	1.00	0.15	47.
Appro	ach	115	46.2	0.157	11.0	LOS B	0.6	5.7	0.15	1.00	0.15	47.
West:	R33											
1	L2	169	18.9	0.127	5.8	LOS A	0.0	0.0	0.00	0.52	0.00	53.
2	T1	1	0.0	0.001	0.0	LOSA	0.0	0.0	0.02	0.30	0.02	57.
3	R2	1	0.0	0.001	5.5	LOS A	0.0	0.0	0.02	0.30	0.02	54.
Appro	ach	171	18.6	0.127	5.8	NA	0.0	0.0	0.00	0.51	0.00	53.
All Ve	hicles	300	29.3	0.157	7.9	NA	0.6	5.7	0.06	0.72	0.06	50

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: AURECON AUSTRALASIA PTY LTD | Processed: Friday, 11 October 2019 03:19:59
Project: PyProjects/507288 Weltevreden Coal Miner ITAS DEL DESSO1 Engineering/Calcs and analysis/SIDRA/Sidra_Weltevreded_V01.sip8

Site: 3 [Site 3 SC04 2024 BTWD AM]

Site 3 2024 Background Traffic with Dev. AM Site Category: (None) Stop (Two-Way)

Move	ement Pe	erforman	ce - Veh	icles								
Mov ID	Turn	Demand Total veh/h	d Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehic l es veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h
South	: RoadNa	ıme										
4	L2	1	0.0	0.004	8.0	LOS A	0.0	0.1	0.01	1.05	0.01	50.4
5	T1	1	100.0	0.004	11.8	LOS B	0.0	0.1	0.01	1.05	0.01	45.8
6	R2	1	0.0	0.004	7.5	LOS A	0.0	0.1	0.01	1.05	0.01	49.8
Appro	ach	4	33.3	0.004	9.5	LOS A	0.0	0.1	0.01	1.05	0.01	48.8
East:	RoadNan	ne										
7	L2	1	0.0	0.002	5.5	LOS A	0.0	0.0	0.01	0.39	0.01	54.4
8	T1	1	0.0	0.002	0.0	LOSA	0.0	0.0	0.01	0.39	0.01	56.6
9	R2	1	0.0	0.002	5.4	LOS A	0.0	0.0	0.01	0.39	0.01	53.5
Appro	ach	4	0.0	0.002	3.7	NA	0.0	0.0	0.01	0.39	0.01	54.9
North	: R33											
10	L2	1	0.0	0.269	8.0	LOS A	1.1	9.7	0.19	0.96	0.19	49.9
11	T1	2	50.0	0.269	10.9	LOS B	1.1	9.7	0.19	0.96	0.19	45.7
12	R2	213	28.2	0.269	10.1	LOS B	1.1	9.7	0.19	0.96	0.19	48.6
Appro	ach	217	28.3	0.269	10.1	LOS B	1.1	9.7	0.19	0.96	0.19	48.6
West:	R33											
1	L2	136	42.9	0.140	6.1	LOS A	0.0	0.0	0.00	0.50	0.00	52.2
2	T1	1	0.0	0.001	0.0	LOSA	0.0	0.0	0.02	0.30	0.02	57.4
3	R2	1	0.0	0.001	5.5	LOSA	0.0	0.0	0.02	0.30	0.02	54.6
Appro	ach	139	42.1	0.140	6.0	NA	0.0	0.0	0.00	0.50	0.00	52.3
All Ve	hicles	363	33.3	0.269	8.4	NA	1.1	9.7	0.11	0.78	0.11	50.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright @ 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: AURECON AUSTRALASIA PTY LTD | Processed: Sunday, 13 October 2019 21:38:41
Project: P:\Projects\507288 Weltevreden Coal Mine TIA\5 DEL DES\501 Engineering\Calcs and analysis\SIDRA\Sidra Weltevreded V01.sip8

MOVEMENT SUMMARY

Site: 3 [Site 3 SC04 2024 BTWD PM]

Site 3 2024 Background Traffic with Dev. PM Site Category: (None)

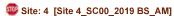
Stop (Two-Way)

Mov	Turn	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Aver. No.	
ID		Total	HV	Satn	Delay	Service	Vehic l es	Distance	Queued	Stop Rate	Cycles	
South	: RoadNa	veh/h	%	v/c	sec		veh	m				km/l
4	L2	3	50.0	0.011	10.1	LOS B	0.0	0.3	0.01	1.05	0.01	48.0
5	T1	6	25.0	0.011	10.1	LOS B	0.0	0.3	0.01	1.05	0.01	46.7
6	R2	1	0.0	0.011	7.5	LOS A	0.0	0.3	0.01	1.05	0.01	49.6
		10	28.1	0.011	10.0	LOSA	0.0	0.3	0.01	1.05	0.01	47.4
Appro	acn	10	20.1	0.011	10.0	LUSA	0.0	0.3	0.01	1.05	0.01	47.4
East:	RoadNan	ne										
7	L2	1	0.0	0.002	5.5	LOSA	0.0	0.0	0.01	0.39	0.01	54.4
8	T1	1	0.0	0.002	0.0	LOS A	0.0	0.0	0.01	0.39	0.01	56.6
9	R2	1	0.0	0.002	5.4	LOS A	0.0	0.0	0.01	0.39	0.01	53.5
Appro	ach	4	0.0	0.002	3.7	NA	0.0	0.0	0.01	0.39	0.01	54.9
North	: R33											
10	L2	1	0.0	0.227	8.0	LOSA	0.9	8.7	0.19	0.99	0.19	49.4
11	T1	8	20.0	0.227	9.5	LOSA	0.9	8.7	0.19	0.99	0.19	46.6
12	R2	150	48.6	0.227	11.5	LOS B	0.9	8.7	0.19	0.99	0.19	47.3
Appro	ach	159	46.9	0.227	11.4	LOS B	0.9	8.7	0.19	0.99	0.19	47.
West:	R33											
1	L2	219	18.9	0.165	5.8	LOS A	0.0	0.0	0.00	0.52	0.00	53.
2	T1	1	0.0	0.001	0.0	LOS A	0.0	0.0	0.02	0.30	0.02	57.4
3	R2	1	0.0	0.001	5.5	LOS A	0.0	0.0	0.02	0.30	0.02	54.6
Appro	ach	221	18.7	0.165	5.8	NA	0.0	0.0	0.00	0.52	0.00	53.2
All Ve	hicles	394	30.1	0.227	8.1	NA	0.9	8.7	0.08	0.72	0.08	50.

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.


NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: AURECON AUSTRALASIA PTY LTD | Processed: Sunday, 13 October 2019 21:50:21
Project: PtyProjects\(\subseteq 1.00\) Welteverded Coal Miner ITAS DEL DES\(\subseteq 1.00\) Edgineering\((\subseteq 1.00\) analysis\(\sigma\) SIDRA\(\sigma\) identified (V01.sip8)

Site 4 2019 Base Scenario AM Site Category: (None) Stop (Two-Way)

Move	ment P	erformanc	e - Veh	icles								
Mov I D	Turn	Demand Tota l veh/h	F l ows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehic l es veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	
South:	: R33											
2	T1	30	45.8	0.030	0.0	LOS A	0.0	0.1	0.02	0.02	0.02	59.5
3	R2	1	0.0	0.030	5.7	LOS A	0.0	0.1	0.02	0.02	0.02	57.3
Appro	ach	31	44.0	0.030	0.2	NA	0.0	0.1	0.02	0.02	0.02	59.5
East: I	Unknowr	Access Ro	ad									
4	L2	5	0.0	0.009	8.4	LOS A	0.0	0.2	0.21	0.87	0.21	51.9
6	R2	5	0.0	0.009	8.0	LOS A	0.0	0.2	0.21	0.87	0.21	51.4
Appro	ach	10	0.0	0.009	8.2	LOSA	0.0	0.2	0.21	0.87	0.21	51.7
North:	R33											
7	L2	3	0.0	0.065	5.5	LOS A	0.0	0.0	0.00	0.02	0.00	58.2
8	T1	96	14.2	0.065	0.0	LOS A	0.0	0.0	0.00	0.02	0.00	59.8
Appro	ach	99	13.8	0.065	0.1	NA	0.0	0.0	0.00	0.02	0.00	59.8
All Vel	nicles	140	19.6	0.065	0.7	NA	0.0	0.2	0.02	0.08	0.02	59.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: AURECON AUSTRALASIA PTY LTD | Processed: Friday, 11 October 2019 02:10:59
Project: PyProjects;507288 Weltevreden Coal Mine TIAS DEL DESSO1 Engineering/Calcs and analysis\SIDRA\Sidra_Weltevreded_V01.sip8

MOVEMENT SUMMARY

Site: 4 [Site 4 SC00 2019 BS PM]

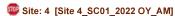
Site 4 2019 Base Scenario PM Site Category: (None) Stop (Two-Way)

Move	ement P	erformanc	e - Veh	icles								
Mov ID	Turn	Demand Tota l veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehic l es veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	
South	: R33											
2	T1	110	21.6	0.082	0.0	LOS A	0.0	0.2	0.01	0.02	0.01	59.7
3	R2	4	0.0	0.082	5.7	LOS A	0.0	0.2	0.01	0.02	0.01	57.5
Appro	ach	114	20.9	0.082	0.2	NA	0.0	0.2	0.01	0.02	0.01	59.6
East:	Unknown	Access Ro	ad									
4	L2	3	0.0	0.012	8.2	LOS A	0.0	0.3	0.22	0.90	0.22	51.8
6	R2	9	14.3	0.012	9.0	LOSA	0.0	0.3	0.22	0.90	0.22	50.7
Appro	ach	11	11.1	0.012	8.8	LOS A	0.0	0.3	0.22	0.90	0.22	50.9
North	: R33											
7	L2	3	0.0	0.056	5.6	LOS A	0.0	0.0	0.00	0.03	0.00	57.9
8	T1	55	47.7	0.056	0.0	LOS A	0.0	0.0	0.00	0.03	0.00	59.5
Appro	ach	58	45.6	0.056	0.3	NA	0.0	0.0	0.00	0.03	0.00	59.5
All Ve	hicles	183	28.1	0.082	0.7	NA	0.0	0.3	0.02	0.08	0.02	59.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.


NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: AURECON AUSTRALASIA PTY LTD | Processed: Friday, 11 October 2019 02:15:33
Project: PyProjects/507288 Weltevreden Coal Mine TIAS DEL DESISO1 Engineering/Calcs and analysis\SIDRA\Sidra_Weltevreded_V01.sip8

Site 4 2022 Opening Year without Dev. AM Site Category: (None)

Stop (Two-Way)

Move	ment P	erformanc	e - Veh	icles								
Mov ID	Turn	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehidles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h
South	: R33											
2	T1	34	45.8	0.033	0.0	LOS A	0.0	0.1	0.02	0.02	0.02	59.6
3	R2	1	0.0	0.033	5.8	LOS A	0.0	0.1	0.02	0.02	0.02	57.4
Appro	ach	35	44.2	0.033	0.2	NA	0.0	0.1	0.02	0.02	0.02	59.5
East:	Unknow	n Access Ro	ad									
4	L2	5	0.0	0.009	8.4	LOS A	0.0	0.2	0.22	0.87	0.22	51.9
6	R2	5	0.0	0.009	8.1	LOS A	0.0	0.2	0.22	0.87	0.22	51.4
Appro	ach	10	0.0	0.009	8.3	LOSA	0.0	0.2	0.22	0.87	0.22	51.6
North:	: R33											
7	L2	3	0.0	0.073	5.5	LOS A	0.0	0.0	0.00	0.01	0.00	58.2
8	T1	109	14.2	0.073	0.0	LOS A	0.0	0.0	0.00	0.01	0.00	59.8
Appro	ach	111	13.9	0.073	0.1	NA	0.0	0.0	0.00	0.01	0.00	59.8
All Ve	hic l es	156	19.8	0.073	0.7	NA	0.0	0.2	0.02	0.07	0.02	59.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: AURECON AUSTRALASIA PTY LTD | Processed: Friday, 11 October 2019 02:51:22
Project: 9:79-picsts;507:28 Weltevreden Coal Mine ThAS DEL DESS(501 Engineering/Calcs and analysis\SIDRA\Sidra_Weltevreded_V01.sip8

MOVEMENT SUMMARY

Site: 4 [Site 4 SC01 2022 OY PM]

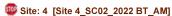
Site 4 2022 Opening Year without Dev. PM Site Category: (None) Stop (Two-Way)

Mov	ement Pe	erformanc	e - Veh	icles								
Mov ID	Turn	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehic l es veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	
South	n: R33											
2	T1	124	21.6	0.092	0.0	LOS A	0.0	0.2	0.01	0.02	0.01	59.8
3	R2	4	0.0	0.092	5.7	LOSA	0.0	0.2	0.01	0.02	0.01	57.5
Appro	oach	128	21.0	0.092	0.2	NA	0.0	0.2	0.01	0.02	0.01	59.7
East:	Unknown	Access Ro	ad									
4	L2	3	0.0	0.013	8.3	LOS A	0.0	0.3	0.24	0.90	0.24	51.7
6	R2	10	14.3	0.013	9.1	LOSA	0.0	0.3	0.24	0.90	0.24	50.6
Appro	oach	13	11.4	0.013	8.9	LOSA	0.0	0.3	0.24	0.90	0.24	50.8
North	: R33											
7	L2	3	0.0	0.063	5.6	LOS A	0.0	0.0	0.00	0.02	0.00	58.0
8	T1	61	47.7	0.063	0.0	LOS A	0.0	0.0	0.00	0.02	0.00	59.6
Appro	oach	64	45.8	0.063	0.2	NA	0.0	0.0	0.00	0.02	0.00	59.5
All Ve	hicles	204	28.2	0.092	0.7	NA	0.0	0.3	0.02	0.07	0.02	59.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.


NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: AURECON AUSTRALASIA PTY LTD | Processed: Friday, 11 October 2019 02:53:36
Project: PyProjects/507288 Weltevreden Coal Mine TIAS DEL DESISO1 Engineering/Calcs and analysis\SIDRA\Sidra_Weltevreded_V01.sip8

Site 4 2022 Background Traffic with Dev. AM Site Category: (None) Stop (Two-Way)

Mov	Turn	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Aver. No.	Average
ID		Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	
		veh/h	%	v/c	sec		veh	m				km/
South	: R33											
2	T1	34	45.8	0.033	0.0	LOS A	0.0	0.1	0.02	0.02	0.02	59.
3	R2	1	0.0	0.033	5.8	LOS A	0.0	0.1	0.02	0.02	0.02	57.
Appro	ach	35	44.2	0.033	0.2	NA	0.0	0.1	0.02	0.02	0.02	59.
East:	Unknown	Access Ro	ad									
4	L2	5	0.0	0.009	8.4	LOS A	0.0	0.2	0.22	0.87	0.22	51.
6	R2	5	0.0	0.009	8.1	LOSA	0.0	0.2	0.22	0.87	0.22	51.
Appro	ach	10	0.0	0.009	8.3	LOS A	0.0	0.2	0.22	0.87	0.22	51.
North:	: R33											
7	L2	3	0.0	0.073	5.5	LOS A	0.0	0.0	0.00	0.01	0.00	58.
8	T1	109	14.2	0.073	0.0	LOS A	0.0	0.0	0.00	0.01	0.00	59.
Appro	ach	111	13.9	0.073	0.1	NA	0.0	0.0	0.00	0.01	0.00	59
All Ve	hicles	156	19.8	0.073	0.7	NA	0.0	0.2	0.02	0.07	0.02	59

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: AURECON AUSTRALASIA PTY LTD | Processed: Friday, 11 October 2019 16:53:01
Project: №7-Projects:507-288 Weltevreden Coal Mine ThAS DEL DESISO1 Engineering/Calcs an analysis\SIDRA\Sidra_Weltevreded_V01.sip8

MOVEMENT SUMMARY

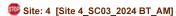
Site 4 2022 Background Traffic with Dev. PM Site Category: (None) Stop (Two-Way)

Mov	Turn	Demand	Elowe	Deg.	Average	Level of	95% Back	of Ougue	Prop.	Effective	Aver. No.	Average
ID		Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance	Queued	Stop Rate	Cycles	
South	: R33											
2	T1	124	21.6	0.092	0.0	LOSA	0.0	0.2	0.01	0.02	0.01	59.7
3	R2	4	0.0	0.092	5.7	LOS A	0.0	0.2	0.01	0.02	0.01	57.5
Appro	ach	128	21.0	0.092	0.2	NA	0.0	0.2	0.01	0.02	0.01	59.7
East:	Unknown	Access Ro	ad									
4	L2	3	0.0	0.013	8.3	LOSA	0.0	0.3	0.24	0.90	0.24	51.7
6	R2	10	14.3	0.013	9.1	LOSA	0.0	0.3	0.24	0.90	0.24	50.6
Appro	ach	13	11.4	0.013	8.9	LOS A	0.0	0.3	0.24	0.90	0.24	50.8
North	: R33											
7	L2	3	0.0	0.064	5.6	LOS A	0.0	0.0	0.00	0.02	0.00	58.0
8	T1	63	47.7	0.064	0.0	LOSA	0.0	0.0	0.00	0.02	0.00	59.6
Appro	ach	65	45.9	0.064	0.2	NA	0.0	0.0	0.00	0.02	0.00	59.5
All Ve	hicles	205	28.3	0.092	0.7	NA	0.0	0.3	0.02	0.07	0.02	59.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.


NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: AURECON AUSTRALASIA PTY LTD | Processed: Friday, 11 October 2019 16:57:34
Project: PyProjects/507288 Weltevreden Coal Mine TIAJS DEL DESISO1 Engineering/Calcs and analysis\SIDRA\Sidra_Weltevreded_V01.sip8

Site 4 2024 Background Traffic without Dev. AM Site Category: (None) Stop (Two-Way)

		erformanc										
Mov ID	Turn	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	
South	: R33											
2	T1	36	45.8	0.036	0.0	LOSA	0.0	0.1	0.02	0.02	0.02	59.
3	R2	1	0.0	0.036	5.8	LOS A	0.0	0.1	0.02	0.02	0.02	57.
Appro	ach	38	44.3	0.036	0.2	NA	0.0	0.1	0.02	0.02	0.02	59.
East:	Unknown	Access Ro	ad									
4	L2	6	0.0	0.011	8.5	LOS A	0.0	0.3	0.23	0.87	0.23	51.
6	R2	6	0.0	0.011	8.2	LOSA	0.0	0.3	0.23	0.87	0.23	51.
Appro	ach	13	0.0	0.011	8.3	LOS A	0.0	0.3	0.23	0.87	0.23	51.
North	: R33											
7	L2	3	0.0	0.079	5.5	LOS A	0.0	0.0	0.00	0.01	0.00	58.
8	T1	118	14.2	0.079	0.0	LOS A	0.0	0.0	0.00	0.01	0.00	59.
Appro	ach	120	13.9	0.079	0.1	NA	0.0	0.0	0.00	0.01	0.00	59.
All Ve	hicles	170	19.6	0.079	0.7	NA	0.0	0.3	0.02	0.08	0.02	59.

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: AURECON AUSTRALASIA PTY LTD | Processed: Friday, 11 October 2019 03:23:33
Project: № Projects:507288 Weltevreden Coal Mine TIA/S DEL DESS(501 Engineering)Calcs and analysis\SIDRA\Sidra_Weltevreded_V01.sip8

MOVEMENT SUMMARY

Site: 4 [Site 4 SC03 2024 BT PM]

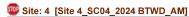
Site 4 2024 Background Traffic without Dev. PM Site Category: (None) Stop (Two-Way)

Move	ement Pe	erformanc	e - Veh	icles								
Mov ID	Turn	Demand Tota l veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehic l es veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	
South	n: R33											
2	T1	134	21.6	0.100	0.0	LOS A	0.0	0.2	0.01	0.02	0.01	59.7
3	R2	5	0.0	0.100	5.7	LOSA	0.0	0.2	0.01	0.02	0.01	57.4
Appro	oach	139	20.8	0.100	0.2	NA	0.0	0.2	0.01	0.02	0.01	59.6
East:	Unknown	Access Ro	ad									
4	L2	3	0.0	0.015	8.3	LOSA	0.0	0.4	0.26	0.90	0.26	51.7
6	R2	11	14.3	0.015	9.2	LOSA	0.0	0.4	0.26	0.90	0.26	50.6
Appro	oach	14	11.7	0.015	9.0	LOS A	0.0	0.4	0.26	0.90	0.26	50.8
North	: R33											
7	L2	3	0.0	0.069	5.6	LOS A	0.0	0.0	0.00	0.02	0.00	58.0
8	T1	68	47.7	0.069	0.0	LOS A	0.0	0.0	0.00	0.02	0.00	59.6
Appro	oach	70	46.0	0.069	0.2	NA	0.0	0.0	0.00	0.02	0.00	59.6
All Ve	ehicles	223	28.2	0.100	0.8	NA	0.0	0.4	0.03	0.08	0.03	59.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.


NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: AURECON AUSTRALASIA PTY LTD | Processed: Friday, 11 October 2019 03:25:42
Project: PyProjects/507288 Weltevreden Coal Mine TIAS DEL DESISO1 Engineering/Calcs and analysis\SIDRA\Sidra_Weltevreded_V01.sip8

Site 4 2024 Background Traffic with Dev. AM Site Category: (None) Stop (Two-Way)

Move	ment Pe	erformanc	e - Veh	icles								
Mov ID	Turn	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	
South	: R33											
2	T1	38	45.8	0.037	0.0	LOS A	0.0	0.1	0.01	0.02	0.01	59.6
3	R2	1	0.0	0.037	5.8	LOS A	0.0	0.1	0.01	0.02	0.01	57.4
Appro	ach	39	44.3	0.037	0.2	NA	0.0	0.1	0.01	0.02	0.01	59.6
East:	Unknown	Access Ro	ad									
4	L2	6	0.0	0.011	8.5	LOS A	0.0	0.3	0.23	0.87	0.23	51.9
6	R2	6	0.0	0.011	8.2	LOS A	0.0	0.3	0.23	0.87	0.23	51.4
Appro	ach	13	0.0	0.011	8.3	LOS A	0.0	0.3	0.23	0.87	0.23	51.6
North:	R33											
7	L2	3	0.0	0.079	5.5	LOS A	0.0	0.0	0.00	0.01	0.00	58.2
8	T1	118	14.2	0.079	0.0	LOS A	0.0	0.0	0.00	0.01	0.00	59.8
Appro	ach	120	13.9	0.079	0.1	NA	0.0	0.0	0.00	0.01	0.00	59.8
All Ve	hic l es	171	19.8	0.079	0.7	NA	0.0	0.3	0.02	0.08	0.02	59.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: AURECON AUSTRALASIA PTY LTD | Processed: Sunday, 13 October 2019 22-41:20
Project: №7-Projects:507-288 Weltevreden Coal Mine TIA/S DEL DESSIO51 Engineering/Calcs 2a.41:20

MOVEMENT SUMMARY

Site: 4 [Site 4 SC04 2024 BTWD PM]

Site 4 2024 Background Traffic with Dev. PM Site Category: (None) Stop (Two-Way)

Move	ement Pe	erformanc		icles								
Mov ID	Turn	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehic l es veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	
South	n: R33											
2	T1	134	21.6	0.100	0.0	LOS A	0.0	0.2	0.01	0.02	0.01	59.7
3	R2	5	0.0	0.100	5.7	LOS A	0.0	0.2	0.01	0.02	0.01	57.4
Appro	oach	139	20.8	0.100	0.2	NA	0.0	0.2	0.01	0.02	0.01	59.6
East:	Unknown	Access Ro	ad									
4	L2	3	0.0	0.015	8.3	LOS A	0.0	0.4	0.26	0.90	0.26	51.7
6	R2	11	14.3	0.015	9.2	LOSA	0.0	0.4	0.26	0.90	0.26	50.6
Appro	oach	14	11.7	0.015	9.0	LOSA	0.0	0.4	0.26	0.90	0.26	50.8
North	: R33											
7	L2	3	0.0	0.069	5.6	LOS A	0.0	0.0	0.00	0.02	0.00	58.0
8	T1	68	47.7	0.069	0.0	LOS A	0.0	0.0	0.00	0.02	0.00	59.6
Appro	ach	70	46.0	0.069	0.2	NA	0.0	0.0	0.00	0.02	0.00	59.6
All Ve	hicles	223	28.2	0.100	0.8	NA	0.0	0.4	0.03	0.08	0.03	59.0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: AURECON AUSTRALASIA PTY LTD | Processed: Sunday, 13 October 2019 22:48:24
Project: PyProjects/507288 Weltevreden Coal Mine TIAJS DEL DESISO1 Engineering/Calcs and analysis\SIDRA\Sidra_Weltevreded_V01.sip8

Site: 5 [Site5 SC02 2022 BTWD PM]

Site 5_2022 Background Traffic with Dev._PM Site Category: (None)

Stop (Two-Way)

Move	ment P	erformanc	e - Veh	icles								
Mov ID	Turn	Demand Tota l veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehic l es veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	
South	: R33											
1	L2	1	0.0	0.001	5.6	LOS A	0.0	0.0	0.00	0.53	0.00	54.9
2	T1	113	21.6	0.083	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.0
Appro	ach	114	21.4	0.083	0.1	NA	0.0	0.0	0.00	0.00	0.00	59.9
North:	R33											
8	T1	55	47.7	0.055	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.0
9	R2	9	20.0	0.007	6.1	LOS A	0.0	0.2	0.24	0.53	0.24	51.8
Appro	ach	64	43.6	0.055	0.9	NA	0.0	0.2	0.04	0.08	0.04	58.6
West:	Access	Road to Wel	ltevrede	n Mine								
10	L2	13	20.0	0.011	9.4	LOS A	0.0	0.3	0.24	0.89	0.24	50.9
12	R2	1	0.0	0.001	9.2	LOS A	0.0	0.0	0.33	0.81	0.33	51.4
Appro	ach	14	18.5	0.011	9.4	LOSA	0.0	0.3	0.24	0.88	0.24	51.0
All Ve	hic l es	192	28.6	0.083	1.0	NA	0.0	0.3	0.03	0.09	0.03	58.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: AURECON AUSTRALASIA PTY LTD | Processed: Sunday, 13 October 2019 23:55:45
Project: PyProjects/507288 Weltevreden Coal Mine TIA/5 DEL DESS/501 Engineering/Calcs and analysis/SIDRA/Sidra_Weltevreded_V01.sip8

MOVEMENT SUMMARY

Site: 5 [Site5 SC02 2022 BTWD PM]

Site 5 2022 Background Traffic with Dev. PM Site Category: (None)

Stop (Two-Way)

Move	ement P	erformanc	e - Veh	icles								
Mov ID	Turn	Demand Tota l veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehic l es veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	
South	: R33											
1	L2	1	0.0	0.001	5.6	LOS A	0.0	0.0	0.00	0.53	0.00	54.9
2	T1	113	21.6	0.083	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.0
Appro	ach	114	21.4	0.083	0.1	NA	0.0	0.0	0.00	0.00	0.00	59.9
North	: R33											
8	T1	55	47.7	0.055	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.0
9	R2	9	20.0	0.007	6.1	LOSA	0.0	0.2	0.24	0.53	0.24	51.8
Appro	ach	64	43.6	0.055	0.9	NA	0.0	0.2	0.04	0.08	0.04	58.6
West	Access F	Road to Wel	ltevreder	n Mine								
10	L2	13	20.0	0.011	9.4	LOS A	0.0	0.3	0.24	0.89	0.24	50.9
12	R2	1	0.0	0.001	9.2	LOS A	0.0	0.0	0.33	0.81	0.33	51.4
Appro	ach	14	18.5	0.011	9.4	LOSA	0.0	0.3	0.24	0.88	0.24	51.0
A ll Ve	hicles	192	28.6	0.083	1.0	NA	0.0	0.3	0.03	0.09	0.03	58.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: AURECON AUSTRALASIA PTY LTD | Processed: Sunday, 13 October 2019 23:55:45
Project: PyProjects/507288 Weltevreden Coal Mine TIAJS DEL DESISO1 Engineering/Calcs and analysis\SIDRA\Sidra_Weltevreded_V01.sip8

Site: 5 [Site5 SC04 2024 BTWD AM]

Site 5 2022 Background Traffic with Dev. AM Site Category: (None) Stop (Two-Way)

Move	ement P	erformanc	e - Veh	icles								
Mov ID	Turn	Demand Tota l veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehic l es veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed km/h
South	: R33											
1	L2	1	0.0	0.001	5.6	LOS A	0.0	0.0	0.00	0.53	0.00	54.9
2	T1	36	45.8	0.035	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.0
Appro	ach	37	44.5	0.035	0.2	NA	0.0	0.0	0.00	0.02	0.00	59.8
North:	: R33											
8	T1	101	14.2	0.067	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.0
9	R2	49	17.5	0.031	5.9	LOS A	0.1	1.1	0.13	0.55	0.13	52.3
Appro	ach	151	15.3	0.067	1.9	NA	0.1	1.1	0.04	0.18	0.04	57.2
West:	Access I	Road to Wel	ltevrede	n Mine								
10	L2	29	20.0	0.024	9.0	LOS A	0.1	0.8	0.13	0.94	0.13	51.0
12	R2	1	0.0	0.001	9.2	LOS A	0.0	0.0	0.33	0.81	0.33	51.4
Appro	ach	31	19.3	0.024	9.0	LOSA	0.1	0.8	0.14	0.93	0.14	51.0
A ll Ve	hic l es	218	20.8	0.067	2.6	NA	0.1	1.1	0.05	0.26	0.05	56.7

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: AURECON AUSTRALASIA PTY LTD | Processed: Sunday, 13 October 2019 23:50:07
Project: № Projects:507288 Weltevreden Coal Mine ThAS DEL DESS!501 Engineering/Calcs and analysis\SIDRA\Sidra_Weltevreded_V01.sip8

MOVEMENT SUMMARY

Site: 5 [Site5 SC04 2024 BTWD PM]

Site 5 2024 Background Traffic with Dev. PM Site Category: (None) Stop (Two-Way)

Move	ement P	erformanc	e - Veh	icles								
Mov ID	Turn	Demand Tota l veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehic l es veh	of Queue Distance m	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	
South	: R33											
1	L2	1	0.0	0.001	5.6	LOS A	0.0	0.0	0.00	0.53	0.00	54.9
2	T1	122	21.6	0.090	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.0
Appro	ach	123	21.4	0.090	0.1	NA	0.0	0.0	0.00	0.00	0.00	59.9
North	: R33											
8	T1	59	47.7	0.059	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	60.0
9	R2	44	20.0	0.031	6.2	LOSA	0.1	1.1	0.25	0.55	0.25	51.8
Appro	ach	103	35.8	0.059	2.7	NA	0.1	1.1	0.11	0.23	0.11	56.2
West	Access F	Road to Wel	ltevreder	n Mine								
10	L2	35	20.0	0.031	9.5	LOS A	0.1	1.0	0.25	0.89	0.25	50.9
12	R2	1	0.0	0.001	9.6	LOS A	0.0	0.0	0.37	0.80	0.37	51.2
Appro	ach	36	19.4	0.031	9.5	LOSA	0.1	1.0	0.26	0.89	0.26	50.9
All Ve	hicles	262	26.8	0.090	2.4	NA	0.1	1.1	0.08	0.22	0.08	57.1

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: AURECON AUSTRALASIA PTY LTD | Processed: Monday, 14 October 2019 00:03:35
Project: PyProjects/507288 Weltevreden Coal Mine TIAJS DEL DESISO1 Engineering/Calcs and analysis\SIDRA\Sidra_Weltevreded_V01.sip8

Appendix F

Environmental impact rating of proposed development traffic

Document prepared by

Aurecon South Africa (Pty) Ltd

Reg No 1977/003711/07 Aurecon Centre Lynnwood Bridge Office Park 4 Daventry Street Lynnwood Manor 0081 PO Box 74381 Lynnwood Ridge 0040 South Africa

T +27 12 427 2000
 F +27 86 556 0521
 E tshwane@aurecongroup.com
 Waurecongroup.com

Aurecon offices are located in:
Angola, Australia, Botswana, China,
Ghana, Hong Kong, Indonesia, Kenya,
Lesotho, Macau, Mozambique,
Namibia, New Zealand, Nigeria,
Philippines, Qatar, Singapore, South Africa,
Swaziland, Tanzania, Thailand, Uganda,
United Arab Emirates, Vietnam.