

An Impact Assessment of the biodiversity of the proposed Mayogi PV site at Kirkwood, Eastern Cape

May 2023

An Impact Assessment of the biodiversity of the proposed Mayogi PV site at Kirkwood, Eastern Cape

by

G.J. Bredenkamp D.Sc. Pr.Sci.Nat.(400086/83) and **J.P.C. van Wyk** M.Sc. Pr.Sci.Nat.(400062/09)

Commissioned by SiVEST SA (Pty) Ltd

EcoAgent CC PO Box 25533 Monument Park 0181 082 5767046 ecoagent@mweb.co.za

May 2023

National Environmental Management Act, 1998 (Act No. 107 of 1998) (NEMA) and Environmental Impact Assessment (EIA) Regulations, 2014 (as amended) - Requirements for Specialist Reports (Appendix 6)

Regulation GNR 326 of 4 December 2014, as amended 7 April 2017, Appendix 6	Section of
	Report
(a) details of the specialist who prepared the report; and the expertise of that specialist to	Title page
compile a specialist report including a curriculum vitae;	Chapter 10
	p125-130
(b) a declaration that the specialist is independent in a form as may be specified by the competent authority;	Page 8
(c) an indication of the scope of, and the purpose for which, the report was prepared;	Chapter 2
	Page15-17
(cA) an indication of the quality and age of base data used for the specialist report;	Chapter 4
	Page 23-29
	and Chapter 5
(cB) a description of existing impacts on the site, cumulative impacts of the proposed	Chapter 3
development and levels of acceptable change;	P18-23
	and Chapter 5
	and Chapter 7
(d) the duration, date and season of the site investigation and the relevance of the season	Chapter 4.1 2
to the outcome of the assessment;	p23 and
	Chapter 4.2 p26
(e) a description of the methodology adopted in preparing the report or carrying out the	Chapter 4
specialised process inclusive of equipment and modelling used;	P23-29
(f) details of an assessment of the specific identified sensitivity of the site related to the	Paragraphs 5.2
proposed activity or activities and its associated structures and infrastructure, inclusive of	p34-48 and 5.3
a site plan identifying site alternatives;	P 4953
p(g) an identification of any areas to be avoided, including buffers;	Paragraph 5.2
	P34-48
(h) a map superimposing the activity including the associated structures and infrastructure	
on the environmental sensitivities of the site including areas to be avoided, including	P35-36
buffers;	
(i) a description of any assumptions made and any uncertainties or gaps in knowledge;	
(j) a description of the findings and potential implications of such findings on the impact of	Chapters 5, 6
the proposed activity, including identified alternatives on the environment or activities;	and 7
(k) any mitigation measures for inclusion in the EMPr;	Chapter 7
	Impact table
	P93-116
(I) any conditions for inclusion in the environmental authorisation;	No-Go areas
- · · · · · · · · · · · · · · · · · · ·	Monitor success
	of rehabilitation
(I) any conditions for inclusion in the environmental authorisation; (m) any monitoring requirements for inclusion in the EMPr or environmental authorisation;	No-Go areas Monitor success

(n) a reasoned opinion—	
i. whether the proposed activity, activities or portions thereof should be authorised;	
iA. Regarding the acceptability of the proposed activity or activities; and	Paragraph 7.3
ii. if the opinion is that the proposed activity, activities or portions thereof should be	and Chapter 8
authorised, any avoidance, management and mitigation measures that should be included	and Onaptor o
in the EMPr or Environmental Authorization, and where applicable, the closure plan;	
	N/A -No
(o) a summary and copies of any comments received during any consultation process and	
where applicable all responses thereto; and	feedback has yet
	been received
	from the public
	participation
	process
	regarding the
	visual
	environment
(p) any other information requested by the competent authority	N/A. No
	information
	regarding the
	visual study has
	been requested
	from the
	competent
	authority to date.
(2) Where a government notice gazetted by the Minister provides for any protocol or	
minimum information requirement to be applied to a specialist report, the requirements as	N/A
indicated in such notice will apply.	

TABLE OF CONTENTS DECLARATION OF INDEPENDENCE	8
DISCLAIMER:	9
ABSTRACT	10
1. BACKGROUND AND ASSIGNMENT	13
1.1. Initial preparations:	14
1.2. Vegetation and habitat survey:	14
1.4. Fauna survey	
2. RATIONALE AND SCOPE	15
2.1 Rationale	15
2.2 Legal Framework	16
2.3 The Scope and objectives	16
2.4 Limitations	17
3. STUDY SITE	18
3.1 Location and the receiving environment	18
3.2 Geology, topography, drainage and soil	21
3.3 Regional Climate	22
3.4 Land-use	22
4. METHODS	23
4.1 VEGETATION AND FLORA	23
4.1.1 Literature studies and databases:	23
4.1.2. Field studies: Vegetation and Flora surveys	23
4.1.2.1 Vegetation and flora survey	23
4.1.2.2 Plant Species Status	24
4.1.2.3 Species Richness	24
4.1.2 4 Indigenous vegetation and Vegetation Status	25
4.2 FAUNA	26
4.2.1 Field Surveys	26
4.2.2 Desktop Surveys	
4.2.3 Specific Requirements	29
5. RESULTS VEGETATION AND FLORA	30
5.1 RESULTS OF THE LITERATURE STUDY AND DATABASE SURVEY	30
5.1.1 Vegetation Type	30
5.1.2 Threatened Ecosystems	31
5.1.3 Critical Biodiversity Areas and Ecological Support Areas	

	5.1.4 Pro	otected and Conservation Areas	32
	5.1.5 Sp	pecies of Conservation Concern (CCS), Red Listed plant species	33
	5.1.6 NE	EMBA / TOPS plant species	33
	5.1.7 Na	ationally Protected Trees	33
	5.1.8 Pr	ovincially Protected Plants	33
	5.2 RES	SULTS OF THE VEGETATION AND FLORA SURVEY	34
	5.2.1. Aı	rid Karoo Vegetation	37
	5.2.2. D	ry Thicket with <i>Euphorbia</i>	38
	5.2.3. Aı	rid Thicket on limestone	41
	5.2.4. Di	isturbed Open Thicket	42
	5.2.5. M	esic Thicket with Spekboom	44
	5.2.6. Va	alley with Drainage Line	46
	5.3 ANA	ALYSIS	49
	5.3.1 Ali	en and Invasive plants species	49
	5.3.2 Me	edicinal Plants	51
	5.3.3 Ec	cological Sensitivity	51
	5.3.4 Cc	onservation Value	53
5.3	.5 Asses	sment of Screening Tool Results	. 54
	5.3.5.1 F	Plant Species Sensitivity	54
	5.3.5.2 A	Animal Species Sensitivity	55
	5.3.5.3 E	Bird species Sensitivity	56
	5.3.5.4	Terrestrial Biodiversity Sensitivity	56
	5.4 Disc	ussion and Conclusion	57
6. F	RESULTS	S: FAUNA	. 58
6.1	MAMMA	LS	. 58
	6.1.1 Ma	ammal Habitat Assessment	58
	6.1.2 Ob	served and Expected Mammal Species Richness	60
	6.1.3.Cc	onclusion	67
6.2	BIRDS		. 68
	6.2.1	Bird Habitat Assessment	68
	6.2.2	Expected and Observed Bird Species Richness	68
	6.2.3	Threatened and Red Listed Bird Species	79
	6.2.4	Martial Eagle (Polemaetus bellicosus)	79
	6.2.5	Secretarybird (Sagittarius serpentarius)	79
	6.2.6	Southern Black Korhaan (Afrotis afra)	80
6.3	HERPET	OFAUNA	. 81

6.3.1	Herpetofauna Habitat Assessment		81
6.3.2	Expected and Observed Herpetofauna Species Richness		83
6.3.3	Threatened and Red listed Reptile and Amphibian Species		86
6.4 Gener	al site assessment	86	
7. IMPACT A	ASSESSMENT	87	
7.1: Planned	l Layout	87	
7.2 Methods	S	90	
1.1 Determi	nation of Significance of Impacts	90	
1.2 Impact F	Rating System	90	
7.3 Results	of Impact Assessment	93	
7.4 Com	parative Assessment of the Three Alternative substations		. 117
8. DISCUSS	ION AND CONCLUSION	118	
8.1 Vegetati	on	118	
8.2 Fauna		118	
8.3 Conclus	ion	119	
9. LITERATI	JRE CITED OR CONSULTED	120	
10. CURRIC	ULA	125	
10.1 Abridg	ed Curriculum Vitae: Prof George Johannes Bredenkamp	125	
10.2. Abridg	ed Curriculum Vitae: Jacobus Casparus Petrus (Jaco) Van Wyk	129	

DECLARATION OF INDEPENDENCE

We, George Johannes Bredenkamp, Id 4602105019086, SACNASP Reg No 400086/83 and Jacobus Casparus Petrus Van Wyk, Id 680804 5041084, SACNASP Reg No 400062/09 declare that we:

- Hold higher degrees (MSc and DSc) in the biological sciences, which allowed registration by South African Council for National Scientific Professions as Professional Ecologist that sanction me to function independently as specialist scientific consultant;
- Act as an independent specialist consultant in the field of ecology, vegetation science, botany zoology and wetlands;
- Are employed by Eco-Agent CC, CK 95/37116/23, of which GJ Bredenkamp is the owner;
- Abide by the Code of Ethics of the SACNASP;
- Are committed to biodiversity conservation but concomitantly recognize the need for economic development;
- Are assigned as specialist consultants by Pierre Joubert Landscape Architect and Environmental Planner for the project "An Impact Assessment of the biodiversity of the proposed Mayogi PV site at Kirkwood, Eastern Cape" described in this report;
- Declare that, as per prerequisites of the Natural Scientific Professions Act (Act No. 27 of 2003), as amended by the Science and Technology Laws Amendment Act (Act 7 of 2014), this investigation of vegetation exclusively reflects our own observations and unbiased scientific interpretations, and was executed to the best of our ability;
- Within our fields of expertise, we reserve the right to form and hold our own opinions within the
 constraints of our training and experience and therefore will not submit willingly to the interests of other
 parties or change our statements to appease or unduly benefit them;
- Do not have or will not have any financial interest in the undertaking of the activity other than remuneration for work performed;
- Do not have, and will not have any vested or conflicting interests in the proposed development;
- Undertake to disclose to the client and the competent authority any material information that have or may have the potential to influence the decision of the competent authority with regard to the Environmental Impact Assessment requirements;
- Will provide the client and competent authority with access to all information at our disposal, regarding this project, whether favourable or not;
- Reserve the right to only transfer our intellectual property contained in this report to the client(s), (party
 or company that commissioned the work) on full payment of the contract fee. Upon transfer of the
 intellectual property, I recognise that written consent from the client(s) will be required for us to release
 any part of this report to third parties;
- In addition, remuneration for services provided by us is not subjected to or based on approval of the proposed project by the relevant authorities responsible for authorising this proposed project.

GJ Bredenkamp

JPC van Wyk

Grodeny

DISCLAIMER:

Even though every care is taken to ensure the accuracy of this report, environmental assessment studies are limited in scope, time and budget. Discussions and proposed mitigations are to some extent made on reasonable and informed assumptions built on *bone fide* information sources, as well as deductive reasoning. Deriving a 100% factual report based on field collecting and observations can only be done over several years and seasons to account for fluctuating environmental conditions and migrations. Since environmental impact studies deal with dynamic natural systems additional information may come to light at a later stage. The vegetation team can thus not accept responsibility for conclusions and mitigation measures made in good faith based on own databases or on the information provided at the time of the directive. Although the author exercised due care and diligence in rendering services and preparing documents, he accepts no liability. The client, by receiving this document, indemnifies the authors against all actions, claims, demands, losses, liabilities, costs, damages, and expenses arising from or in connection with services rendered, directly or indirectly by the author and by the use of this document. This report should therefore be viewed and acted upon with these limitations in mind.

ABSTRACT

SiVEST was appointed to undertake the required Impact Assessment process for the proposed construction and operation of a PV facility at Kirkwood, Eastern Cape. The proposed project is to develop the PV facility, in two adjacent parts, namely the Mayogi PV1 and Mayogi PV2 facilities. The associated infrastructure *inter alia* include a BESS, site camp, substation and OHL, and O&M building for each part.

This report is an Impact Assessment on the biodiversity of both the proposed PV1 and PV2 facilities.

Eco-Agent CC was appointed by SiVEST to assess the biodiversity (fauna and flora) and ecological sensitivity, including the Impact Assessment for the **PV site** for this development.

This study was done in accordance with the National Environmental Management Act (Act 107 of 1998) Amendment of the Environmental Impact Assessment Regulations 2014, 7 April 2017. (GNR. 324, 325, 326 & 327: Listing Notices 1, 2, 3).

Furthermore, the results of the National Environmental Screening Tool (NEMA Government Notices 648 (2019) and 655 (2020)) indicate Very High sensitivity for Terrestrial Biodiversity and Low to Medium sensitivity for plant Species and Medium to High for Animal Species sensitivity.

The Terms of Reference for this assignment is interpreted as follows: Compile a study of the vegetation sensitivity, fauna and flora on the site, in accordance with all the requirements of relevant national and provincial authorities.

Vegetation

The relevant literature and databases were used to obtain data regarding threatened, protected, alien invasive and medicinal plant species, also regional vegetation, threatened status of vegetation types, protected and conservation areas, critical biodiversity areas, wetlands and water courses. Standard methods for vegetation surveys were applied. Plant communities were mapped and described including total floristic composition per pant community. All the above data were applied in analyses to determine conservation status and ecological sensitivity per plant community.

According to SANBI & DEAT (2009) and NEMBA, Government Notice 1002 (2011) and Government Notice 689 (2022) the Ecosystem Status for **Albany Alluvial** vegetation type is as **Endangered**. On the specific site the vegetation is mostly **transformed**, with very little original natural vegetation remaining. According to Mucina & Rutherford (2006, 2018) the Sundays Noorsveld and the Sundays Thicket vegetation types are classified as **Least Concern**. The **Sundays Arid Thicket** (= Sundays Noorsveld) is listed as **Vulnerable** in the 2022 NEMBA list of Threatened Ecosystems.

No Irreplaceable Critical Biodiversity Areas occur in the site area. Most of the site is regarded as Ecological Support Area 1, with a small patch of Other Natural Areas.

Eleven plant species of conservation concern could occur in the general area of the site, but none of these were recorded during the field survey.

The vegetation study of the proposed site resulted in the identification of six different plant communities (= ecosystems on the plant community level of organisation) that could be mapped. The terrestrial plant communities identified mostly have low to medium plant species richness, no threatened, red data or protected plant species were recorded on the site.

The results of the vegetation and flora study indicate that the **Valley with Drainage line** has High Ecological sensitivity, therefore **No-Go area**. The **Mesic Thicket with spekboom** has Medium-High ecological sensitivity and conservation value and this has also been marked as **No-Go area**. The rest of the terrestrial habitat areas have low, medium-low or medium ecological sensitivity.

Most of the terrestrial vegetation areas have low to medium plant species richness, no threatened or nationally protected plant species and low to medium conservation value.

Should the Valley with the Drainage Line be conserved and protected, and the Mesic Thicket with spekboom be at least partly conserved, it is suggested that the construction of the proposed PV facility can be supported.

Fauna

Although many mammal, bird and herpetofauna species may from time to time occur in the area of the site, only a few may be encountered or observed at any one time. This can be ascribed to very small species or low species density and individuals are therefore not easily seen. Many smaller mammals and herpetofauna are either secretive, nocturnal, hibernators and/or seasonal.

The Animal Sensitivity is regarded as **High** for the study site. However, the impression from this study is that the animal species sensitivity is rather **LOW** on the study site, because the habitats are mostly degraded or transformed. Note that Mayogi is (was) a game farm and several animal species (game species) occurred from time to time. There was a constant flow of animal species bought or bred and later sold. The Daniell Cheetah breeding project is located across the road. The many animals that are present on several nature reserves/game farms in the area **inflate** the estimate by the Screening Tool for Animal Species Sensitivity on this particular study site. Furthermore, Animal Species Sensitivity includes bird species, of which the Screening Tool provides a separate "Bird Species Sensitivity" result indicated as Low. The two mammal species have only Medium sensitivity. From a vertebrate fauna perspective, there is no objection against the development on condition that the development adheres to the condition concerning the protection of the Valley and Drainage Line on the site.

Impacts

The impacts of the proposed development on biodiversity will, without as well as with mitigation measures, be **Low** on the Arid Karoo and Dry Thicket with Euphorbia, in spite of these systems being regarded as threatened ecosystems. On the site both these systems are highly disturbed and even transformed, therefore it is suggested that, except for the no-Go areas, the proposed development can be supported. The impacts of the proposed development will be **Low** on the rest of the vegetation, plant species and fauna.

It is suggested that the cumulative impact on vegetation, plants and fauna of the	ne Mayogi PV
project, in relation to other possible PV developments, is rather low.	
Mayogi PV facility revised July 2023	Page 12

1. BACKGROUND AND ASSIGNMENT

The following information was provided by SiVEST SA (Pty) Ltd (hereafter referred to as "SiVEST").

SiVEST was appointed to undertake the required Impact Assessment process for the proposed construction and operation of a PV facility at Kirkwood, Eastern Cape. The proposed project is to develop one or more PV facilities and associated infrastructure on the property, depending on site sensitivities. The associated infrastructure would include a BESS, site camp, substation and OHL, and O&M building.

From the DEA Screening Tool results, it is clear that the northern part of the property is the most suitable in terms of the solar theme sensitivity (Figure 1.1 below), therefore the focus area for PV development is the northern part of the property.

This report is an Impact Assessment on the biodiversity of both the proposed **PV1 and PV2** parts of the facility.

The Skilpad Substation is located within the Mayogi PV1 site area of the property.

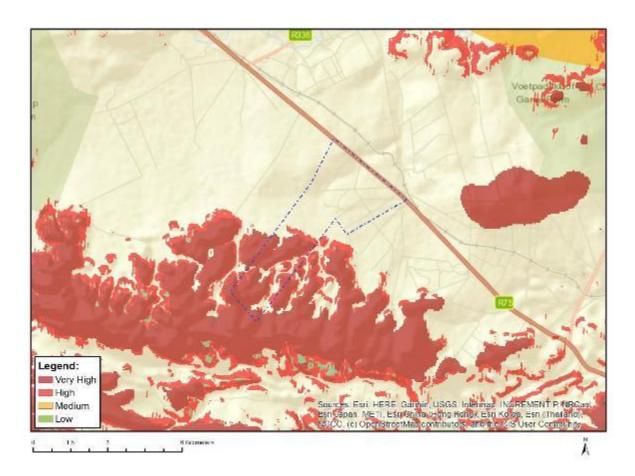


Figure 1.1: The DEA Screening Tool Relative Landscape (Solar) Theme Sensitivity. The proposed Mayogi PV 1 project is restricted to the northern part of the farm.

The proposed project is located approximately 7 km (as the crow flies) southwest of Kirkwood. The site for the proposed project is located on the R75 Road, approximately about 30 km north of Uitenhage (Kariega) within the in the Sundays River Valley Local Municipality, Sarah Baartman (Cacado) District Municipality (Figure 3.1), Eastern Cape Province. The site is located approximately 20 km southwest of the southern boundary of the Addo Elephant National Park. (Figure 3.2 and 3.3).

Eco-Agent CC was appointed by SiVEST to assess the biodiversity (fauna and flora) and ecological sensitivity for the site relevant for this development. This investigation is in accordance with the EIA Regulations No. R982-985, Department of Environmental Affairs and Tourism, 4 December 2014. emanating from Chapter 5 of the National Environmental Management Act, 1998 (Act No. 107 of 1998), and the Amendment of the Environmental Impact Assessment Regulations, 7 April 2017. (GNR. 324, 325, 326 & 327: and the Eastern Cape conservation regulations. It is also in accordance with Government Notice 648 Government Gazette 45421, 10 May 2019 (Biodiversity) and Government Notice 655 Government Gazette 42946, 10 January 2020 (Plants and Animals) (NEMA).

In accordance with the Natural Scientific Professions Act (Act 27 of 2003; and Science and Technology Laws Amendment Act (Act 7 of 2014) only a person registered with the South African Council for Natural Scientific Professions may practice in a consulting capacity. Prof GJ Bredenkamp and Mr JPC van Wyk of EcoAgent CC undertook an independent and professional assessment of the biodiversity and ecological sensitivity.

The Terms of Reference for this assignment is interpreted as follows: Compile a study of the biodiversity and consequently the ecological sensitivity of the site, in accordance with all the above requirements. Then do an Impact Assessment of the proposed development on the biodiversity.

In the light of the above, the following had to be done:

1.1. Initial preparations:

Obtain all relevant maps and information on the natural environment of the concerned area.

These include:

- Results of the National Environmental Screening Tool with relevance to biodiversity, plant species and animal species, and where relevant of aquatic systems.
- Regional Vegetation Types
- Information (maps) with regard to Critical Biodiversity Areas and Ecological Support Areas, Conservation Areas, Protected Areas and hydrology (wetlands), and any other environmentally / ecologically sensitive areas in relation to the study site.
- Information on Red Data listed plant species and other plant species of conservation concern that may occur in the area.
- Delimit the various plant communities as relatively homogeneous vegetation-cum-habitat (ecosystem) mapping units that can be recognised on aerial photographs / Google Earth images of the site.

1.2. Vegetation and habitat survey:

List the plant species (trees, shrubs, grasses and herbaceous species) present in each relatively homogeneous vegetation-cum-habitat (ecosystem) mapping unit, for floristic confirmation and description of plant communities (ecosystems) and for vegetation status assessment.

- Identify suitable habitat for any Red Data listed plant species that may possibly occur on the site.
- Identify from this list any red data plant species, protected plant species, alien plant species, and medicinal plants that occur or may potentially occur on the study areas.

1.3. Plant community delimitation and description

- Process data (vegetation-cum-habitat classification) to identify the plant communities that are present on the site, on an ecological basis.
- Prepare a vegetation map of the area.
- Describe the vegetation and habitat of each mapping unit.
- Determine the sensitivity of each mapping unit in terms of biodiversity and presence of threatened or protected plant species, alien and weedy species.
- Determine the ecological status of each plant community in terms of primary, secondary, disturbed, degraded, transformed vegetation.
- Prepare a Site Sensitivity Verification Statement as required by Government Notice 648 (2019) and Government Notice 655 (2020) (Screening Tool).

1.4. Fauna survey

- List fauna species present on the site or that may occur on the site.
- List Red Data fauna species that occur or may possibly occur on the site.

This report resulted from a site visit by the EcoAgent team on 15-17 November 2022 to assess the vegetation, flora and fauna, and ecological sensitivity.

2. RATIONALE AND SCOPE

2.1 Rationale

It is widely recognised that to conserve natural resources it is of the utmost importance to maintain ecological processes and life support systems for plants, animals and humans. To ensure that sustainable development takes place, it is therefore important that possible impacts on the environment are considered before relevant authorities approve any development. This led to legislation protecting the natural environment. In 1992, the Convention of Biological Diversity, a landmark convention, was signed by more than 90 % of all members of the United Nations. In South Africa, the Environmental Conservation Act (Act 73 of 1989), the National Environmental Management Act, 1998 (NEMA) (Act 107 of 1998) and the National Environmental Management Biodiversity Act, 2004 (Act 10 0f 2004) ensure the protection of ecological processes, natural systems and natural beauty, as well as the preservation of biotic diversity within the natural environment. They also ensure the protection of the environment against disturbance, deterioration, defacement or destruction as a result of man-made structures, installations, processes, products or activities. In support of these Acts, a draft list of Threatened Ecosystems was published (Government Gazette 2009), as part of the National Environmental Management Biodiversity Act, 2004 (Act 10 of 2004), and these Threatened Ecosystems are described by SANBI & DEAT (2009) and a list of Threatened or Protected Species (TOPS) regulations is also available (NEMBA Notice 388 of 2013). International and national Red Data lists have also been produced for various plant and animal taxa.

All components of the ecosystems (physical environment, vegetation, animals) at a site are interrelated and interdependent. **A holistic approach is therefore imperative** to effectively include the development, utilisation and, where necessary, conservation of the given natural resources into an integrated development plan, which will address all the needs of the modern human population (Bredenkamp & Brown 2001).

It is therefore necessary to make a thorough inventory of the plant communities, flora and fauna on the site, to evaluate the plant diversity and possible presence of plant and fauna species of conservation concern, red listed plant and fauna species and protected plant and fauna species, alien species, invader species and weedy species. From the results of this evaluation the **sensitivity** of the vegetation and the conservation value can be determined.

2.2 Legal Framework

Authoritative legislation that lists impacts and activities on biodiversity and wetlands and riparian areas that requires authorisation includes *inter alia*:

- Conservation of Agriculture Resources Act, 1983 (Act 43 of 1983);
- Government Gazette 34809 Threatened Terrestrial Ecosystems of South Africa 9 December 2011 NEMBA)
- Government Notice Regulation 1182 and 1183 of 5 September 1997, as amended (ECA);
- Government Notice Regulation 385, 386 and 387 of 21 April 2006 (NEMA);
- Government Notice Regulation 392, 393, 394 and 396 of 4 May 2007 (NEMA);
- Government Notice Regulation 398 of 24 March 2004 (NEMA);
- Government Notice Regulation 544, 545 and 546 of 18 June 2010 (NEMA)
- Government Notice Regulation 982, 983, 984 and 985 of 4 December 2014 (NEMA).
- National Environmental Management Act (Act 107 of 1998) Amendment of the Environmental Impact Assessment Regulations 2014, 7 April 2017. (Government Notice Regulations. 324, 325, 326 & 327: Listing Notices 1, 2, 3).
- National Environmental Management Act, 1998 (Act No. 107 of 1998)(including all later amendments and additions);
- National Environmental Management: Biodiversity Act, 2004 (Act 10 of 2004)(including all later amendments and additions);
- National Environmental Management: Protected Areas Act 2003 (Act 57 Of 2003) (as Amendment Act 31 of 2004 and Amendment Act 15 of 2009)
- National Forests Act, 1998 (Act 84 of 1998);
- National Water Act, 1998 (Act 36 of 1998);
- The older Environment Conservation Act, 1989 (Act 73 of 1989);
- Government Notice 655 Government Gazette 42946, 10 January 2020 (Plants and Animals)(NEMA).
- Government Notice 648 Government Gazette 45421, 10 May 2019 (Biodiversity) (NEMA).
- Government Notice 689 Government Gazette 47526, 18 November 2022. The Revised National List of Ecosystems that are Threatened and in need of Protection.

2.3 The Scope and objectives

The Scope of this study is therefore:

- To identify describe and map the vegetation and plant communities (ecosystems) that occur on the site;
- To assess the ecological sensitivity of these ecosystems and comment on ecologically sensitive areas, in terms of their plant diversity and where needed ecosystem function;
- To provide a list of plant species that do occur in each plant community that occurs on site and that may be affected by the development;
- To assess the qualitative and quantitative significance of the fauna habitat components and current general conservation status of the property;
- To identify fauna and flora species of conservation concern that may occur on the site;
- Compile a list of fauna that occur on the site or may from time to time occur on the site;
- Confirm or dispute the environmental sensitivity as identified by the National web-based environmental screening tool;
- If relevant, provide management recommendations that might mitigate negative and enhance positive impacts, should the proposed development be approved.

2.4 Limitations

A limitation was that at the time of the survey (November 2022), the vegetation was still fairly dry after the winter season and only limited summer rains have fallen in the area.

3. STUDY SITE

3.1 Location and the receiving environment

The proposed project is located on Farm 692 (the original farm is Springbokvlakte 142) located on the R75 Road, approximately 7 km (as the crow flies) southeast of Kirkwood, and about 30 km north of Uitenhage (Kariega) within the in the Sundays River Valley Local Municipality, Sarah Baartman (Cacado) District Municipality (Figure 3.1), Eastern Cape Province. The site is located approximately 20 km southwest of the southern boundary of the Addo Elephant National Park. (Figure 3.2 and 3.4).

Figure 3.1: The location of the Sundays River Valley Local Municipality within the Sarah Baartman District Municipality.

Figure 3.2: A Google Earth image the of the proposed Mayogi PV Facility site in relation to roads, Kirkwood town and broader topography. This development is restricted to the northern part of the site.

Figure 3.3: The northern section of the property, proposed for the development (Figure supplied by SiVest).

The proposed development is restricted to the northern part of the farm (Figure 3.3 above).

A site ecological sensitivity map based on biodiversity, including the northern part of the property, led to a decision to develop two separate PV facilities (Figure 3.4 below) with associated infrastructure that *inter alia* include a BESS, site camp, substation and OHL, and O& M building on the northern part of the property.

The locality of the Mayogi PV sites is given in Figure 3.4 (below).

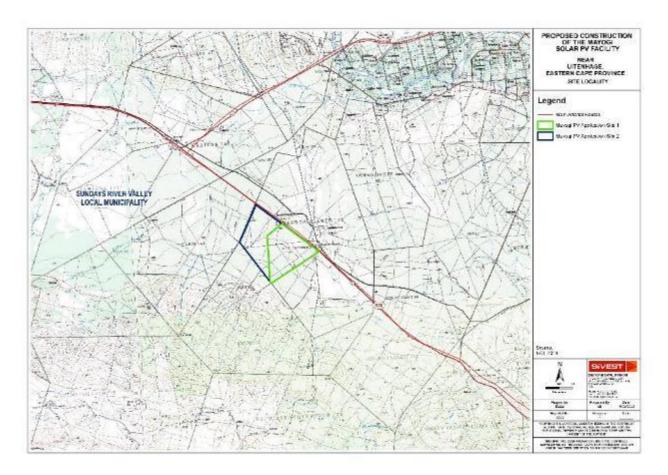


Figure 3.4: The locality of the Mayogi PV 1 and PV 2 sites.

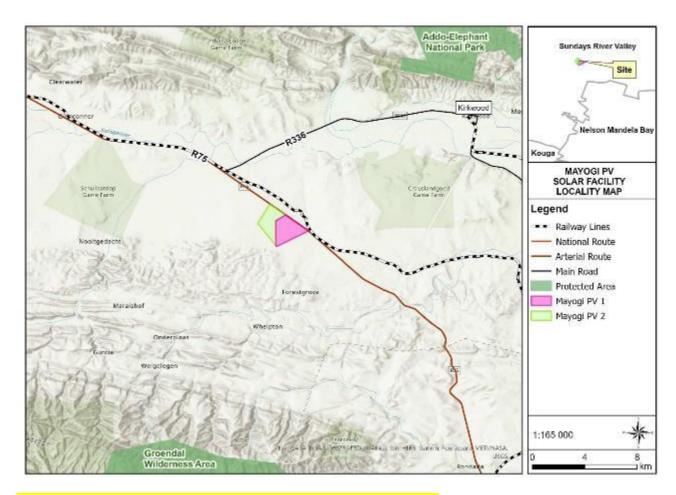


Figure 3.5: The locality of the proposed Mayogi PV 1 and PV 2 sites.

3.2 Geology, topography, drainage and soil

The two adjacent PV sites are located in the broad valley between the Groot Winterhoekberge in the south and the Klein Winterhoekberge in the north (Figure 3.2). The northern part of the site area is a flat to slightly undulating plain in the valley, about 180 masl, while the southern area is located on the lower northern foothills of the Groot Winterhoekberge, about 220 masl. Soils are usually red, loamy to clayey soils that are derived from the Sondagsrivier and Kirkwood formations.

The site area slopes gradually to the north, with minor drainage lines flowing northwards (Figure 3.6 below). A very small tributary of the Kariega River originates on the neighbouring Farm, Schilpadlaagte, located south-east of the study site. This tributary flows north-westwards and passes 150 m from the north-eastern corner of the study site. A minor drainage line from the study site flows past the Skilpad Substation, leave the study site, crosses the tarred R75 road and joins the tributary that flows to the Kariega River. No alluvium is present along this minor drainage line. In this vicinity the vegetation is heavily disturbed by the road, the Skilpad Substation and farming practiced. The small patch of Albany Alluvial vegetation that is mapped here, is totally degraded and not recognisable (Figure 5.1 below).

The main land types are Fc and lb. (Mucina and Rutherford 2017).

3.3 Regional Climate

Non-seasonal rainfall dominates the region, with MAP between 159 mm and 550 mm. Frost is present between 3 and 44 days per year. The mean monthly maximum is $30.56~^{\circ}$ C in January and the mean monthly minimum is $3.74~^{\circ}$ C in July. Altitude ranges from $108~^{\circ}$ 1467 masl.(Mucina and Rutherford 2017) .

3.4 Land-use

The area is used for agriculture and small towns or villages. This was similar over many years (decades).

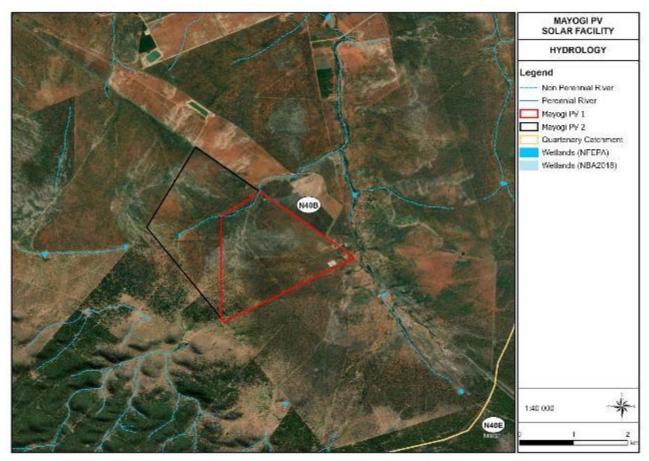


Figure 3.6: Hydrology in the area of the Mayogi PV site.

4. METHODS

4.1 VEGETATION AND FLORA

4.1.1 Literature studies and databases:

For background information, the relevant maps, aerial photographs, and other information on the natural environment of the concerned area were obtained though literature studies and data bases. These *inter alia* include:

- Results of the National Environmental Screening Tool with relevance to biodiversity, plant species and animal species, and where relevant of aquatic systems. (Government Notice 655 Government Gazette 42946, 10 January 2020 [Plants and Animals)(NEMA) and Government Notice 648 Government Gazette 45421, 10 May 2019 (Biodiversity)(NEMA)].
- The relevant vegetation types in which the site is located using Mucina & Rutherford (2006, 2012).
- Threatened ecosystems are identified using Mucina & Rutherford (2006, 2012) SANBI & DEAT (2009) and NEMA Government Gazette 34809 (2011).
- Information (maps) about Critical Biodiversity Areas and Ecological Support Areas, and any other environmentally / ecologically sensitive areas in relation to the study site from the MTPA Conservation Plan.
- Species of Conservation Concern, including:
 - Information on Red and Orange Data listed plant species data from. SANBI and MTPA data bases.
 - Critically Endangered, Endangered, Vulnerable and Protected Species (NEMBA species, TOPS species) are evaluated against the list published in Department of Environmental Affairs and Tourism Notice No. 2007 (National Environmental Management: Biodiversity Act, 2004 (Act 10 of 2004)).
 - Nationally Protected Trees as published in Government Notice No. 29062 3 (2006) (National Forests Act, 1998 (Act No. 84 0f 1998), as Amended (Department of Water Affairs Notice No 897, 2006).and that may occur in the area.
 - Other plant species of conservation concern, particularly provincially protected species.

4.1.2. Field studies: Vegetation and Flora surveys.

4.1.2.1 Vegetation and flora survey.

Prof GJ Bredenkamp, of EcoAgent, assisted by Dr CL Bredenkamp (plant taxonomist and editor and author of the three volume "Flora of the Eastern Cape Province" undertook the field survey on 15-17 November 2022, to assess the fauna, vegetation and flora and ecological sensitivity. This data is needed to eventually evaluate the possible impacts of the proposed development on the vegetation and plant and animal species, and to suggest possible mitigation options where needed.

A Google Earth image was used to stratify and map different units representing differences in cover and vegetation. At several sampling plots and transects within each mapping unit a description of the dominant and characteristic plant species found, was made. These descriptions were based on **total floristic** composition, following established vegetation survey techniques (Mueller-Dombois & Ellenberg 1974; Westhoff & Van der Maarel 1978; Brown *et al.* 2013). Data recorded resulted in a list of the plant species present, including trees, shrubs, grasses and forbs. A comprehensive species list was therefore derived for the site, but it is realised that some species could have been missed. These vegetation survey methods have been used as the basis of a national vegetation survey of South Africa (Mucina *et al.* 2000, Brown *et al.* 2013) and are considered an efficient method of describing vegetation and capturing species information. Within each mapping unit noted were made of relevant habitat features, with emphasis on topography and some soil properties Additional notes were made of any other features that might have had an ecological influence, e.g. previous utilization and disturbance.

From the floristic data an analysis of the presence of Alien and Invasive species on the site was made. Furthermore, the **ecological sensitivity** of each plant community was calculated by using plant species composition, plant species of conservation concern, habitat features and relevant legislation, including Critical Biodiversity Areas and the National Screening Tool. From this information an ecological sensitivity map was prepared.

Lastly an Impact Assessment was done by applying standard SiVEST assessment methods. (See Chapter 7 below)

4.1.2.2 Plant Species Status

Plant species recorded in each plant community with an indication of the status of the species by using the following symbols:

A Followed by Invasive category (1a, 1b, 2, 3) = Alien woody species

D = Dominant

d = subdominant

EG = Exotic Garden ornamental or Garden Escape

G = Indigenous Garden ornamental or Garden Escape

M= Medicinal plant species

N = Exotic, naturalized

P = Protected trees species

NP = nationally protected species (NEMBA)

p = provincially protected species

RD = Species of Conservation Concern, Red data listed plant

W = weed.

4.1.2.3 Species Richness

Species Richness is interpreted as follows: Number of indigenous species recorded in the sample plots representing the plant community. Alien woody species and weeds are not included (Table 4.1).

Table 4.1: Categories of plant species richness.

No species	of	Category
1-24		Low
25-39		Medium
40-59		High
60+		Very High

4.1.2 4 Indigenous vegetation and Vegetation Status

Indigenous vegetation: According to NEMA (Act 107 of 1998, - Amendment of the Environmental Impact Assessment Regulations 2014, 7 April 2017 (GNR. 324, 325, 326 & 327: Listing Notices 1, 2, 3):Definitions) Indigenous vegetation refers to vegetation consisting of indigenous plant species occurring naturally in an area, regardless of the level of alien infestation and where the topsoil has not been lawfully disturbed during the preceding ten years.

The following criteria indicate vegetation status:

Primary vegetation is the *original indigenous vegetation* that occurred in the area, in this case the Eastern Highveld Grassland (Gm 12) vegetation type (Mucina & Rutherford 2012). The vegetation is *relatively undisturbed*, *or slightly disturbed*, though the vegetation **still consists of the original dominant, sub-dominant and associated plant species**.

Disturbed primary vegetation is where the *original indigenous vegetation* that occurred in the area is disturbed but can still be identified by the original dominant, sub-dominant and most associated plant species. Some of the species that were present may have disappeared, however, some other species (species of lower successional status or weedy species) increased in abundance or invaded into the original vegetation. Disturbed primary vegetation may recover when well-managed.

Degraded vegetation is where the *original indigenous vegetation* is so severely disturbed by impacts (mostly man-induced) that the original dominant, sub-dominant and most associated plant species and vegetation structure are changed. Some of the originally occurring species are still sparsely present, but they are mostly replaced by other species of lower successional status, alien invasive species or weedy species. Degraded vegetation may not recover without active application of rehabilitation measures. Severely Degraded vegetation can be regarded as Transformed.

Transformed vegetation is where the original indigenous vegetation was destroyed with no or very little of the original plant species remaining, e.g. cleared for development (construction, tilled for agriculture (e.g. maize), silviculture (e.g. pines, wattles, eucalypts), total cover by alien invasive plant species (e.g. black wattle), planted pasture (e.g. *Eragrostis*), sports fields (e.g. kikuyu grass). Transformed vegetation areas include areas where the topsoil has been disturbed during the preceding ten years. Recovery to the original indigenous vegetation is almost impossible though by active application of rehabilitation measures a vegetation cover (not representing or similar to the original indigenous vegetation!) can be established.

Secondary (indigenous) vegetation is where the original indigenous vegetation was destroyed but the transformed area was left unused and fallow for several years. Vegetation, different from the

original indigenous vegetation, can become (naturally) established and develop through successional processes to a specific plant community with a specific indigenous plant species composition and with good cover, hence secondary vegetation may fall within the definition of indigenous vegetation as provided for in NEMA, but it mostly represents **Transformed vegetation**, as the original vegetation has been destroyed. A good example is where species rich *Themeda triandra*-dominated indigenous grassland was transformed for agriculture, (e.g. maize production) and then left fallow. Through successional phases secondary *Hyparrhenia hirta* – dominated grassland can become established. By applying specific rehabilitation and management procedures, the development of secondary vegetation can be enhanced.

4.2 FAUNA

The field survey was conducted on 15-17 November 2022. The days were sunny, pleasant with a slight breeze of wind. During this visit, the observed and derived presence of mammals, birds, reptiles and amphibians associated with the recognised habitat types of the study site was recorded. This was done with due regard to the well-recorded global distributions of Southern African vertebrates, coupled with the qualitative nature of recognised habitats.

The 500 meters of adjoining areas were scanned for possible additional fauna habitats.

4.2.1 Field Surveys

During the site visit, mammals, birds, reptiles and frogs were identified by visual sightings through random transect walks. No trapping or mist netting was conducted as the terms of reference did not require such intensive work. In addition, mammals were also identified by means of spoor, droppings, burrows or roosting sites, and frogs by their calls.

4.2.2 Desktop Surveys

As many mammals and herpetofauna are either secretive, nocturnal, hibernators and/or seasonal, and some are seasonal migrators, distributional ranges and the presence of suitable habitats were used to deduce the presence or absence of such species based on authoritative tomes, scientific literature, field guides, atlases and data bases. This can be done with a high level of confidence irrespective of season.

The probability of the occurrence of mammal, reptile and amphibian species was based on their respective geographical distributional ranges and the suitability of on-site habitats:

High probability would be applicable to a species with a distributional range overlying the study site as well as the presence of prime habitat occurring on the study site. Another consideration for inclusion in this category is the inclination of a species to be common to the area, i.e. normally occurring at high population densities.

Medium probability pertains to a mammal and herpetofaunal species with its distributional range peripherally overlapping the study site, or its required habitat on the site being sub-optimal. The size of the site as it relates to its likelihood to sustain a viable breeding population, as well as its geographical isolation are taken into consideration. Species categorised as *medium* normally do not occur at high population numbers - but cannot be deemed as rare.

Low probability of occurrence would imply that the species' distributional range is peripheral to the study site and habitat is sub-optimal. Furthermore, some mammals, reptiles and amphibians categorised as low are generally deemed to be rare.

Mammals

Based on the impressions gathered during the site visit, as well as publications such as The Mammals of the Southern African Subregion (Skinner & Chimimba, 2005), Smithers' Mammals of Southern Africa; A Field Guide (Apps, 2012) and Stuarts' Field Guide to Mammals of Southern Africa (Stuart & Stuart, 2015), a list of species which may occur on the site was compiled. The latest taxonomic nomenclature was used. The vegetation type was defined according to the standard handbook by Mucina and Rutherford (eds) (2006).

Birds

A list of bird species expected to occur on site was initially derived from the quarter-degree grid records presented in an atlas of southern African birds (Tarboton, Kemp & Kemp, 1987; Harrison, Allan, Underhill, Herremans, Tree, Parker & Brown, 1997 and www.sabap2.org.za). A further list of birds was obtained from SANPARKS for the Addo Elephant National Park. Based on an assessment of the habitats present at the site, Birds of the Transvaal. (Tarboton, Kemp & Kemp, 1987), The Atlas of Southern African Birds. Vol. 1 & 2. (Harrison, Allan, Underhill, Herremans, Tree, Parker & Brown (eds.), 1997), Roberts - Birds of Southern Africa, VIIth ed. (Hockey, Dean, & Ryan, (eds) 2005), The Chamberlain Guide to Birding Gauteng (Marais & Peacock 2008), Sasol Birds of Southern Africa. 4th ed. (Sinclair, Hockey, Tarboton & Ryan, 2011), The Eskom Red Data book of birds of South Africa, Lesotho and Swaziland (Taylor, Peacock & Wannless, 2015) &.www.sabap2.org.za, the list was then reduced to those species that were judged as 'possible' or 'likely' to occur within those habitats as residents or regular visitors. Due to the considerable aerial mobility of birds, a number of additional species might be expected as infrequent nomads or vagrants, but these were not included on the list. It was judged that the habitats available would offer no significant material support or conservation assistance to these species, and that if they did occur. it would be temporarily and in insignificant numbers. 'Possible' refers to species that might use their mobility to make intermittent use of the habitats available when they are in a particular condition (during or after rain, flood, drought, burn, grazing, seeding, flowering) or season (regional, intra-African or inter-continental migrants). 'Likely' refers to species that are expected to make regular use of the site for feeding, roosting and/or breeding. Species actually recorded on site during the field survey are expected to fall into the latter category unless annotated otherwise.

No objective assessment was made of the carrying capacity of the habitat for any species, since this varies through time and birds are capable of arriving or departing as conditions change. Special attention was paid to species considered as threatened internationally or nationally (Taylor *et al.* 2015), and to those considered as species of conservation priority within Gauteng (GDARD 2014a & b). The category assigned to these species was raised to include infrequent visitors as 'likely', based on the precautionary principle. Further details of the extent and limits of various habitat types detected during the field survey and on adjacent properties were also obtained by study of satellite images from Google Earth.

A site visit took place on 15-17 November 2022, with approximately 12 hours spent on or the vicinity of the site. The weather during the visit was warm, partly cloudy and with little wind. During the site visit, birds occurring at the site were identified by walking transects. During walking transects all birds encountered (seen or heard) were identified, nests observed were identified, and the avian habitats present were assessed.

Herpetofauna

Herpetofauna is poikilothermic. The majority of herpetofauna are secretive, often nocturnal, hibernators and/or seasonal. Due to these facts, distributional ranges and the presence of suitable habitats were used to deduce the presence or absence of these species based on authoritative tomes, scientific literature, field guides, atlases and databases. Desktop surveys can be done irrespective of season.

The probability of the occurrence of reptile and amphibian species was based on their respective geographical distributional ranges and the suitability of on-site habitats.

High probability would be applicable to a species with a distributional range overlying the study site as well as the presence of prime habitat occurring on the study site. Another consideration for inclusion in this category is the inclination of a species to be common to the area, i.e. normally occurring at high population densities.

Medium probability pertains to a herpetofauna species with its distributional range peripherally overlapping the study site or required habitat on the site being sub-optimal. The size of the site as it relates to its likelihood to sustain a viable breeding population, as well as its geographical isolation is taken into consideration. Species categorised as *medium* normally do not occur at high population numbers, but cannot be deemed as rare.

Low probability of occurrence would imply that the species' distributional range is peripheral to the study site and habitat is sub-optimal. Furthermore, some reptiles and amphibians categorised as low are generally deemed to be rare.

For herpetofauna, a list of species which may occur on the site was compiled, based on the impressions gathered during the site visits. Publications such as FitzSimons' Snakes of Southern Africa (Broadley, 1990), Field Guide to Snakes and other Reptiles of Southern Africa (Branch, 1998), A Guide to the Reptiles of Southern Africa (Alexander & Marais, 2007), Atlas and Red List of the Reptiles of South Africa, Lesotho and Swaziland (Bates, Branch, Bauer, Burger, Marais, Alexander & De Villiers, 2014), A Complete Guide to the Snakes of Southern Africa (Marais, 2022), Amphibians of Central and Southern Africa (Channing 2001), Atlas and Red Data Book of the Frogs of South Africa, Lesotho and Swaziland (Minter, Burger, Harrison, Braack, Bishop & Kloepfer, 2004, 2004) and A Complete Guide to the Frogs of Southern Africa (Du Preez & Carruthers, 2017) Field Guide to the Frogs & other Amphibians of Africa Channing & Rödel 2019) were consulted to compile the list. The latest taxonomic nomenclature was used.

4.2.3 Specific Requirements

Mammals:

During the visit, the site was surveyed and assessed for the potential occurrence of the following threatened or rare mammal species as provided by the results of the Screening Tool for the site:

Species name	Common name	
Acinonyx jubatus	Cheetah	
Philantomba monticola	Blue duiker	

Birds

To identify Red Data species likely to occur on the site and to express an opinion regarding their probable occurrence, based on specific habitat requirements and guided by the existing lists compiled for such species within the relevant quarter-degree grid and pentad cells by regional and national bird atlases (Tarboton *et al.* 1987; Harrison *et al.* 1997; www.sabap2.org.za) the most recent assessment of the threatened status of South Africa's avifauna, The 2015 Eskom Red Data Book of Birds of South Africa, Lesotho and Swaziland (Taylor, Peacock & Wanless, 2015), was used.

During the visit, the site was particularly surveyed and assessed for the potential occurrence of the following threatened or rare bird species as provided by the results of the Animal Sensitivity Screening Tool for the site. The Screening Tool for Bird Sensitivity does not indicate any sensitive bird species.

Species name	Common name
Polemaetus bellicosus	Martial Eagle
Sagittarius serpentarius	Secretary Bird
Afrotis afra	Southern Black Korhaan

Herpetofauna: During the visit, the site was checked and assessed for the potential habitat and occurrence of Red Data herpetofauna species in the Eastern Cape Province (Alexander and Marais, 2007; Minter, *et al*, 2004, Bates, *et al*, 2014, Du Preez & Carruthers, 2017 and Hofmeyr, M.D. & Boycott, R.C. 2018).

Reptile species include, for example,

Karoo Dwarf Tortoise (Homopus boulengeri), Salt Marsh Gecko (Cryptactites peringueyi), Albany Sandveld Lizard (Nucras taeniolata), Cottrell's Mountain Lizard (Tropidosaura cottrelli), Coppery Grass Lizard (Chamaeasaura aenea), Fitzsimons' Long Tailed Seps (Tetradactylus fitzsimonsi), Variable Legless Skink (Acontias poecilus), Pondo Dwarf Chameleon (Bradypodion caffer), Kentani Dwarf Chameleon (Bradpodion kentanicum), Kwazulu Dwarf Chameleon (Bradypodion melanocephalum), Elandsberg Dwarf Chameleon (Bradypodion taeniabronchum), Forest Thread Snake (Leptotyphlops sylvicolus), Albany Adder (Bitis albanica), Plain Mountain Adder (Bitis inornata), Kwazulu-Natal Black Snake (Macrelaps microlepidotus) and Eastern Green Mamba (Dendroaspis angusticeps).

Ampibia include Misbelt Chirping Frog (*Anhydrophryne ngongoniensis*), Hogsback Chirping Frog (*Anhydrophryne rattrayi*), Hewitt's Ghost Frog (*Heleophryne hewitti*), Amatola Toad (*Vandijkophrynus amatolicus*) Kloof Frog (*Natalbatrachus bonebergi*), Bilbo's Rain Frog (*Breviceps bagginsi*) and Knysna Leaf-folding Frog (*Afrixalus knysnae*).

5. RESULTS VEGETATION AND FLORA

5.1 RESULTS OF THE LITERATURE STUDY AND DATABASE SURVEY

5.1.1 Vegetation Type

"Thicket" vegetation was only recently recognized as a separate biome in South Africa (Pierce 2003). In the classical vegetation map of Acocks (1953, 1988), only three vegetation mapping units that relate to thicket (then classified as Karroid Bushveld) were recognized, namely Valley Bushveld, Noorsveld and Spekboomveld. Detailed studies under the Subtropical Thicket Ecosystem Planning (STEP) project (Vlok & Euston-brown 2002; Cowling *et al.*, 2003 and Pierce 2003), widened the concept of "Thicket" and recognized and described a wealth of vegetation types / plant communities that occur in "Thicket".

The latest understanding of subtropical thicket concept differs significantly from earlier descriptions. The most recent studies indicate that subtropical thicket covers some 47465 km², the three Acocks veld types, namely Valley Bushveld, Spekboomveld and Noorsveld, cover only 17257 km² (Pierce 2003).

Within the study site, three STEP vegetation types occur namely:

Sundays Noorsveld – (on the northern plain) The high cover of *Euphorbia coerulescens* – (soetnoors) (now known as *Euphorbia radyeri*), and sparse presence of *Boscia oleoides* trees (Witgat)) and an abundance of *Rhigozum obovatum* (wildegranaat) is typical of this vegetation unit. *Portulacaria afra* (Spekboom) is only found sparsely in the better-preserved veld, and never dominant in this vegetation. Grasses such as *Cenchrus ciliata, Fingerhuthia africana* and *Panicum maximum* used to be abundant, but are now sparse.

Sundays Spekboomveld – (on the southern hilly area) Pappea capensis (Doppruim) and Portulacaria afra are the dominant species while Crassula ovata is a common succulent plant, which distinguish this vegetation type. The relatively high cover of spekboom, doppruim and boerboon (Schotia afra) distinguish this spekboomveld from the adjacent noorsveld.

Southern Karoo Alluvia – (on the alluvium area) Characteristically a sparse woodland of *Acacia karroo* (sweet thorn) and *Lycium* sp (wolwedoring) The (dwarf) shrub layer is dominated by *Pentzia incana* (ankerkaroo) and *Salsola* sp (ganna). Grasses include *Stipagrostis* sp. and *Aristida* sp.

From this STEP work accrued the vegetation map of Mucina & Rutherford (2006). In this older map the Sundays Valley Thicket was known as Sundays Thicket (Vegetation Type AT6), while the Sundays Arid Thicket was known as Sundays Noorsveld (Vegetation Type AT5).

According to the Mucina & Rutherford (2018) revised map of Thicket vegetation, three vegetation types are present in the vicinity of the site, namely Sundays Valley Thicket (Vegetation Type AT51) on the hilly part south of the site, Sundays Arid Thicket (Vegetation Type AT49) on the northern

plains part and a small patch of Albany Alluvial Vegetation (Vegetation type Aza6) in the north-eastern corner of the site (Mucina & Rutherford 2018) (Figure 5.1 below).

The Mayogi PV 1 and PV 2 sites that are earmarked for this development is largely situated within the Sundays Arid Thicket (= Sundays Noorsveld) (Figure 5.1).

A very small patch in the **north-eastern corner** of the site mapped as Albany Alluvial Vegetation, which is more representative of a karroid vegetation and almost no elements typical of the original Albany Alluvial Vegetation are left (see paragraph 3.2 above). The vegetation is more typical of the Southern Karoo Alluvia (STEP)(Pierce 2003). The Skilpad substation is also situated within this alluvium vegetation.

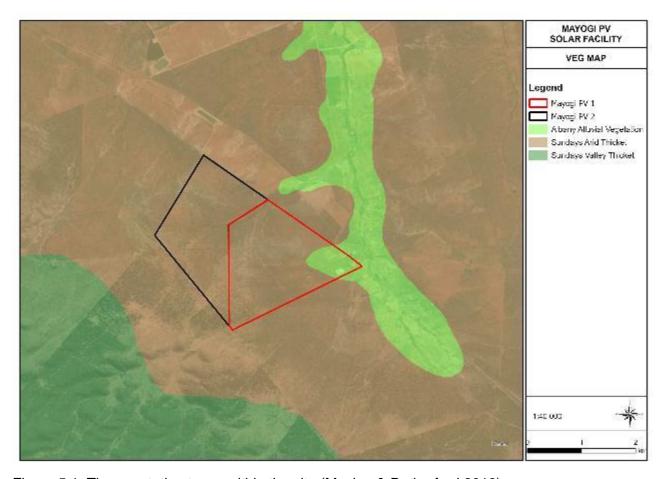


Figure 5.1: The vegetation types within the site (Mucina & Rutherford 2018).

5.1.2 Threatened Ecosystems

According to Mucina & Rutherford (2006, 2018) the Albany Alluvial Vegetation is classified as **Endangered**. Only 6% is statutorily conserved in the Addo Elephant National Park and other provincial conservation areas, and 2% in private conservation areas. About half has been transformed for agriculture, towns, roads and plantations (Mucina & Rutherford 2006). According to SANBI & DEAT (2009) and NEMBA, Government Notice 1002 (2011) and Government Notice 689 (2022) the Ecosystem status for this vegetation type is also classified as **Endangered**.

On the study site this vegetation is not typical Albany Alluvial Vegetation, but rather resembles Southern Karroo Alluvia (Pierce 2003). Alternatively it can be regarded as **transformed** by agriculture or heavy grazing, with little original indigenous vegetation remaining.

According to Mucina & Rutherford (2006, 2018) the Sundays Noorsveld and the Sundays Thicket vegetation types are classified as **Least Concern**. However, the Sundays Arid Thicket (= Sundays Noorsveld) is listed as **Vulnerable** in the 2022 NEMBA list of Threatened Ecosystems (Government Notice 689 Government Gazette 47526, 18 November 2022).

5.1.3 Critical Biodiversity Areas and Ecological Support Areas

No Irreplaceable CBAs occur in the site area. Most of the site is in Ecological Support Area 1 (Figure 5.2 below).

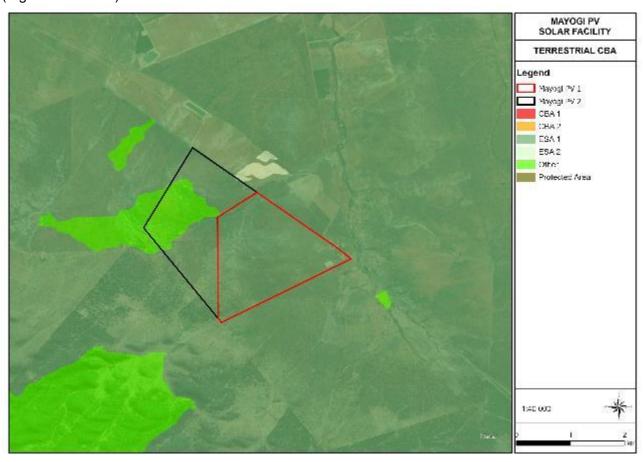


Figure 5.2: No "Irreplaceable" CBA,s occurs in the site area. Most of the site is classified as "Ecological Support Area 1" or "Other Natural Areas".

5.1.4 Protected and Conservation Areas

The site is located approximately 20 km southwest of the southern boundary of the Addo Elephant National Park and about 20 km north of the Groendal Wilderness Area (Figure 3.1 and 3.2). There are also other private conservation areas and/or game farms in the general area.

5.1.5 Species of Conservation Concern (CCS), Red Listed plant species

Red Data listed plant species and Orange listed plant species (= plant species of conservation concern) are those plants that are important for South Africa's conservation decision making processes. These plants are nationally protected by the National Environmental Management: Biodiversity Act (Raimondo *et al.*, 2009).

Threatened species (Red Data listed species) are those that are facing high risk of extinction, indicated by the categories Critically Endangered (CE), Endangered (EN) and Vulnerable (VU). Species of Conservation Concern include the Threatened Species.

Additionally, the Orange listed categories are Near Threatened (NT), Data Deficient (DD), (DDT = lack of taxonomic data), Critically Rare (CR), Rare (R) and Declining (D). This is in accordance with the Red List for South African Plants (Raimondo *et al.* 2009 upgraded on SANBI website).

Lists of Red Data plant species (Raimondo *et al* 2009) for the area in general were obtained from DEA Screening Tool, (2022), but the names may not be made public (Table 5.1 below).

Table 5.1 Sensitive plant species for the area, Screening Tool results

Sensitivity	Feature(s)
Medium	Sensitive species 1252
Medium	Sensitive species 1268
Medium	Sensitive species 779
Medium	Duvalia pillansii
Medium	Strelitzia juncea
Medium	Corpuscularia lehmannii
Medium	Sensitive species 1101
Medium	Asparagus spinescens
Medium	Sensitive species 1248
Medium	Cotyledon tomentosa subsp. tomentosa
Medium	Sensitive species 19

5.1.6 NEMBA / TOPS plant species

These species are evaluated against the list published in Department of Environmental Affairs and Tourism Notice No. 2007, Government Gazette 574 of 2013 and Notice 256 of 2015 and National Environmental Management: Biodiversity Act (NEMBA), 2004 (Act 10 of 2004).

No NEMBA/TOPS plant species occur on the site.

5.1.7 Nationally Protected Trees

The National Forest Act, 1998 (Act No. 84 of 1998) enforces the protection of several indigenous trees. The removal, thinning or relocation of protected trees will require a permit from the Department of Agriculture, Forestry and Fisheries (DAFF) (Notice of the List of Protected Tree Species under the National Forests Act, 1998, Notice 835, Government Gazette 39741, No 19, 29 August 2014).

No protected trees occur on the site.

5.1.8 Provincially Protected Plants

No additional officially protected plant species were found on the site.

5.2 RESULTS OF THE VEGETATION AND FLORA SURVEY

Five plant communities were identified and mapped, (Table 5.2 below):

Table 5.2: List of mapping units with ecological sensitivity:

	Vegetation mapping unit	Sensitivity result
1	Arid Karoo Vegetation	Low
2	Dry Thicket with Euphorbia	Medium
3	Arid Thicket on limestone	Medium-Low
4	4 Disturbed Open Thicket Medium-Low	
5	Mesic Thicket with Spekboom	Medium-High
6	Valley with Drainage Line	High

A vegetation map showing the distribution of the mapping units is presented in Figure 5.3 (below) while the ecological sensitivity is given in Figure 5.4 (below).

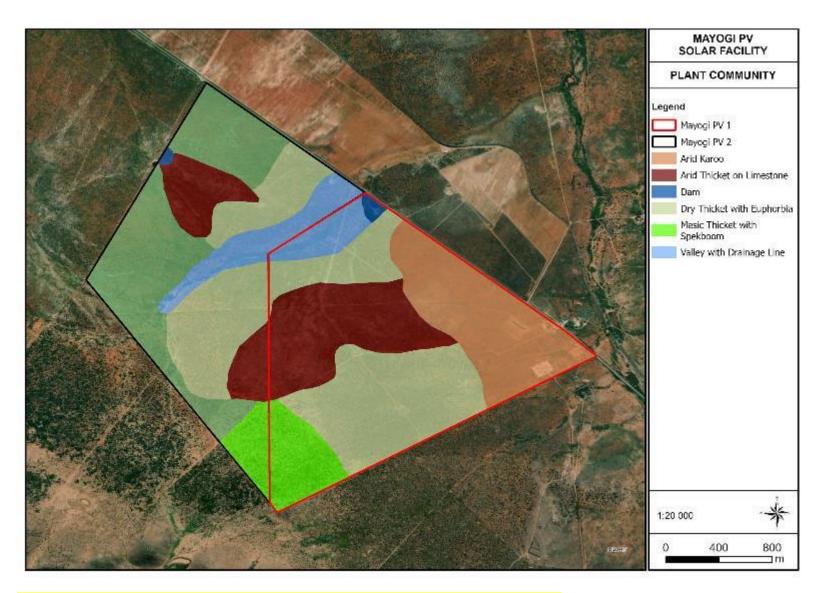


Figure 5.3: A vegetation map of the of the proposed Mayogi PV 1 and PV 2 Facility sites.

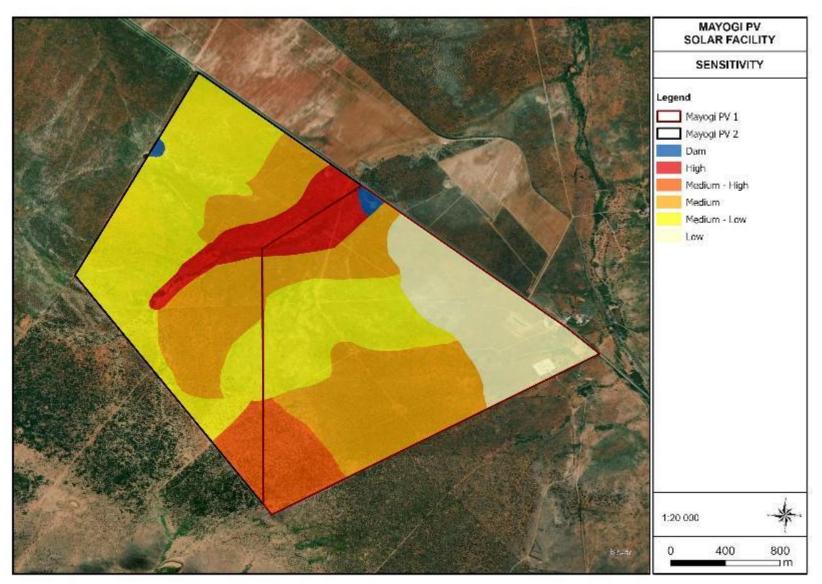


Figure 5.4: Ecological sensitivity of the of the proposed Mayogi PV 1 and PV 2 Facility sites.

5.2.1. Arid Karoo Vegetation

This very arid and disturbed Karoo-veld is limited to the lower-lying plains in the northern part of the Mayogi PV 1 site (Figure 5.3 above) and adjacent plains along the R75 Road. This plant community does not occur on the Mayogi PV 2 site. The existing Skilpad substation, Mayogi shop and auction venue are located within this plant community. This plant community is classified as the "Albany Alluvium Vegetation" vegetation type (Mucina & Rutherford 2006, 2018), which is regarded as **Endangered**. According to SANBI & DEAT (2009) and NEMBA Government Notice 1002, 2011 and Government Notice 689, 2022) the Ecosystem status for this vegetation type is also classified as **Endangered**.

Within the study site this vegetation is **highly degraded** and is more representative of a karroid vegetation type with almost no elements typical of the original Albany Alluvial Vegetation left. The vegetation is more typical of the Southern Karoo Alluvia (STEP, Pierce 2003).

This vegetation on the study site is very dry and highly disturbed and degraded (Figure 5.5, below) and some of the dwarf shrubs are dead or dormant and could not be identified. The most abundant karroid dwarf shrub is Pentzia incana with Lycium cinereum, Asparagus striatus and Salsola sp also present. Two mesembs species (vygies) Mesembryanthemum crystallinum Mesembryanthemum aitonis occurred prominently in this karoo veld, indicating the disturbed and trampled condition. Grass species that occur include Aristida adscensionis, Aristida congesta, Chloris virgata, Eragrostis obtusa, Enneapogon desvauxii and Stipagrostis sp. Much dry, dead remains of the previous season's grass were present during the time of the survey. Currently the ecological biodiversity and sensitivity, based on vegetation and flora, is Low, and the resulting nature conservation value is also Low.

Figure 5.5: The Arid Karroo Vegetation. Note the Skilpad substation on the left photograph

Trees and Shrubs and dwarf shrubs

Asparagus striatus
Atriplex sp W
Cereus jamacaru A, 1b

Chrysocoma ciliata Lycium cinereum Pentzia incana

Grasses and sedges

Aristida adscensionis Aristida congesta Chloris virgata Cynodon dactylon Enneapogon desvauxii Eragrostis obtusa Stipagrostis sp

р

Table 5.3: Number of species recorded in disturbed grassland between the Agricultural lands

	Indigenous	Aliens / Weeds	Total	Red Data	Protected	Medicinal
Trees and shrubs	4	2	6	0	0	0
Grasses	7	0	7	0	0	0
Forbs	4	0	4	0	1	0
Total	15	2	17		1	0

The species richness is Low, with no species of conservation concern present, but several weed species present. It has low conservation value and low ecological sensitivity (Figure 5.3 above). This does not exclude occasional possible occurrence of species of conservation concern, this is however not likely, and the development will not be a threat for such a species.

Table 5.4: Summary of some characteristics of the Arid Karoo Vegetation within the proposed powerline

Arid karoo Vegetation: summary				
Status	Degraded, original vegetation disturbed and trampled			
Soil	deep yellow loam soil Rockiness 2 % cover			
Conservation priority:	Low	Sensitivity:	Low	
Species Richness	Low	Need for rehabilitation	Low	
Dominant spp.	Pentzia incana, Mesembryanthemum aitonis			

Discussion

Although classified as Endangered, there is no sign of the original Albany Alluvial Vegetation, which has probably been transformed into a dry disturbed karroid vegetation. From a vegetation and flora point of view, there is no objection against the proposed development in this Arid Karoo Vegetation, which is already in a degraded condition.

5.2.2. Dry Thicket with Euphorbia

This plant community is typical Sundays Arid Thicket (vegetation type AT49, Mucina & Rutherford 2018), previously classified as Sundays Noorsveld (vegetation type AT5, Mucina & Rutherford 2006),

or as Sundays Noorsveld, STEP, Pierce 2003). According to Mucina & Rutherford (2006, 2018) the Sundays Noorsveld and the Sundays Thicket vegetation types are classified as **Least Concern**.

The Sundays Arid Thicket (= Sundays Noorsveld) is listed as **Vulnerable** in the 2022 NEMBA list of Threatened Ecosystems (Government Notice 689 Government Gazette 47526, 18 November 2022).

This plant community occurs on both PV 1 and PV 2 sites and occupies a large portion of the south-eastern plains and a small patch in the north (Figure 5.3 above).

The high cover of *Euphorbia radyeri* (soetnoors) (Figure 5.6 below) and presence of *Boscia oleoides, Pappea capensis* and *Rhigozum obovatum* is typical of this vegetation unit. *Portulacaria afra* (spekboom) is absent or sparsely present in good condition veld. The grass layer is scanty, much dry, dead remains of the previous season's grass were present during the time of the survey. Grasses such as *Cenchrus ciliata, Fingerhuthia africana* and *Panicum maximum* used to be abundant, but are now rather sparse.

The most abundant karroid dwarf shrub is *Pentzia incana* with *Lycium cinereum*, while the two mesembs species (vygies) *Mesembryanthemum crystallinum* and *Mesembryanthemum aitonis* occurred prominently, indicating the disturbed and trampled condition. Grass species that occur include *Aristida adscensionis*, *Aristida congesta*, *Eragrostis obtusa*, *Tragus berteronianus* and *Eragrostis lehmanniana*. Much dry, dead remains of the previous season's grass were present during the time of the survey. Currently the ecological biodiversity and sensitivity, based on vegetation and flora, is **Medium**, and the resulting nature conservation value is also **Medium**.

Figure 5.6: The Dry Thicket with Euphorbia vegetation.

Trees and Shrubs and dwarf shrubs

Asparagus striatus Asparagus suaveolens		Lycium cinereum Opuntia aurantiaca	A1b
Azima tetracantha	M	Opuntia humifusa	A1b
Boscia oleoides	d	Pappea capensis	
Cadaba aphylla		Pentzia incana	
Carissa haematocarpha		Putterlickia pyracantha	
Euclea undulata	M	Rhigosum obovatum	d
Euphorbia mauritanica		Schotia afra	
Euphorbia radyeri	D	Searsia longispina	
Gymnosporia polyacantha		Trichocereus stachianus	A1b

Grasses and sedges

Aristida adscensionis Aristida congesta Chloris virgata Cynodon dactylon Enneapogon desvauxii Eragrostis lehmanniana Eragrostis obtusa Tragus berteronianus

Forbs

Felicia muricata Hermannia sp Indigofera sessilifolia Justicia spartioides Lantana rugosa Mesembryanthemum aitonis W Mesembryanthemum crystallinum Sansevieria aethiopica

Table 5.5: Number of species recorded in Dry Thicket with Euphorbia

	Indigenous	Aliens / Weeds	Total	Red Data	Protected	Medicinal
Trees and shrubs	17	3	20	0	0	2
Grasses	8	0	8	0	0	0
Forbs	8	0	8		0	0
Total	33	3	36		0	2

The species richness is Medium, with no species of conservation concern present, but several Alien species are present. This does not exclude occasional possible occurrence of species of conservation concern, this is however not likely, and the development will not be a threat for such a species.

Table 5.6: Dry Thicket with <i>Euphorbia</i> : summary					
Status	Disturbed Noorsveld				
Soil	yellow loam soil Rockiness 2 % cover 2				
Conservation priority:	Medium	Sensitivity:	Medium		
Species Richness	Medium	Need for rehabilitation	Low		
Dominant spp.	Euphorbia radyeri, Boscia oleoides, Rhigosum obovatum. Pentzia incana, Mesembryanthemum aitonis				

Discussion

According to Mucina & Rutherford (2006, 2018) the Sundays Noorsveld and the Sundays Thicket vegetation types are classified as **Least Concern.** However, the Sundays Arid Thicket (= Sundays Noorsveld) is listed as **Vulnerable** in the 2022 NEMBA list of Threatened Ecosystems (Government Notice 689 Government Gazette 47526, 18 November 2022).

From a vegetation and flora sensitivity point of view, the conservation value and ecological sensitivity are Medium (Figure 5.4 above). On the site this vegetation has been utilized, trampled and disturbed,

limiting its conservation value. Development within this plant community can be supported though a part of this vegetation should be conserved.

5.2.3. Arid Thicket on limestone

This plant community mainly occurs on both the PV 1 and PV 2 sites (Figure 5.3 above). Limestone stones occur scattered to dense on the soil surface. The vegetation is extremely dry, with many dry, or dead trees and shrubs. The herbaceous layer is also very scanty, with much bare soil and with the weedy *Mesembryanthemum aitonis* being the dominant plant species over much of the area. This is regarded as a very dry variant of Noorsveld and is classified as Sundays Arid Thicket (vegetation type AT49, Mucina & Rutherford 2018). The plant species richness is very low in this plant community.

Few scattered individuals of *Euphorbia radyeri* (soetnoors) (Figure 5.7 below) and presence of *Euclea undulata* is typical of this vegetation unit.

Figure 5.7: The Arid Thicket on limestone with many dead trees and shrubs and poor herbaceous cover.

Trees and Shrubs and dwarf shrubs

Asparagus striatus Gymnosporia polyacantha Asparagus suaveolens Lycium cinereum Azima tetracantha Opuntia humifusa A₁b M Boscia oleoides Pappea capensis Cadaba aphylla Pentzia incana Euclea undulata dM Putterlickia pyracantha Schotia afra Euphorbia radyeri

Grasses and sedges

Aristida adscensionis Cynodon dactylon
Aristida congesta Enneapogon desvauxii
Chloris virgata Tragus berteronianus

Forbs

Felicia muricata

Lantana rugosa

Hermannia sp

Mesembryanthemum aitonis

Table 5.7: Number of species recorded in Arid Thicket on limestone.

	Indigenous	Aliens / Weeds	Total	Red Data	Protected	Medicinal
Trees and shrubs	13	1	14	0	0	2
Grasses	6	0	6	0	0	0
Forbs	5	0	5		0	0
Total	24	1	25		0	2

The species richness is Low, with no species of conservation concern present, It is degraded with medium-low conservation value and medium-low ecological sensitivity (Figure 5.4 above).

Table 5.8: Arid Thicket on limestone: summary					
Status	Highly degraded				
Soil	yellow loam soil with limestone	Rockiness % cover	2		
Conservation priority:	Medium-low	Sensitivity:	Medium- Low		
Species Richness	Low	Need for rehabilitation	Low		
Dominant spp.	Euphorbia radyeri, Euclea undulata Mesembryanthemum aitonis				

Discussion

From a vegetation and flora sensitivity point of view, development on this area can be supported.

5.2.4. Disturbed Open Thicket

This plant community occurs in the western and southern parts of the PV2 site and does not occur on the PV 1 site. (Figure 5.3 above). The woody vegetation is open, and it seems that many trees and shrubs have been removed, probably to improve the herbaceous layer for grazing. The herbaceous layer is, however, also scanty, with much bare soil and with the weedy *Mesembryanthemum aitonis* being the dominant plant species (Figure 5.8 below). This vegetation is disturbed Sundays Arid Thicket (vegetation type AT49, Mucina & Rutherford 2018).

No individuals of *Euphorbia radyeri* (soetnoors) occur here)and presence of scattered individuals of *Euclea undulata* and *Boscia oleoides* is typical of this vegetation unit.

Figure 5.8: The Disturbed Open Thicket with scattered trees and shrubs and poor herbaceous cover. With *Mesembryanthemum aitonis* and *M. crystallinum* dominant.

The following plant species were recorded:

Trees and Shrubs and dwarf shrubs

Agave americana	A1b	Eucalyptus grandis	A1b
Aloe africana		Euclea undulata	dM
Asparagus suaveolens		Pappea capensis	
Boscia oleoides		Schotia afra	
Cadaba aphylla			

Grasses and sedges

Aristida adscensionis Cynodon dactylon Aristida congesta Tragus berteronianus

Forbs

Felicia muricata Mesembryanthemum crystallinum Mesembryanthemum aitonis

Table 5.9: Number of species recorded in Disturbed Open Thicket

	Indigenous	Aliens / Weeds	Total	Red Data	Protected	Medicinal
Trees and shrubs	7	2	9	0	0	1
Grasses	4	0	4	0	0	0
Forbs	3	0	3		0	0
Total	14	2	16		0	1

The species richness is Low, with no species of conservation concern present, It is degraded with Medium-low conservation value and Medium-low ecological sensitivity (Figure 5.4 above).

Table 5.10: Disturbed Open Thicket: summary				
Status	Disturbed, cleared			
Soil	yellow loam soil	Rockiness % cover	2	
Conservation priority:	Medium-low	Sensitivity:	Medium- Low	
Species Richness	Low	Need for rehabilitation	Low	
Dominant spp.	Euclea undulata Mesembryanthemum aitonis			

Discussion

From a vegetation and flora sensitivity point of view, development on this area can be supported.

5.2.5. Mesic Thicket with Spekboom

This plant community is a variation of Sundays Arid Thicket (vegetation type AT49, Mucina & Rutherford 2018), where *Portulacaria afra* (spekboom) is present, often dominant. This plant community occupies the south-eastern corner of the study site, on both the PV 1 and PV 2 sites (Figure 5.3 above). It occurs on the lower-lying plain but transitional to the hills on the southern part of the farm. (Figure 5.1 above) The vegetation is dense thicket 2-3 m tall, with only few scattered taller trees (Figure 5.9 below).

The relatively high cover of *Portulacaria afra* and the absence of *Euphorbia radyeri* (soetnoors) is typical of this plant community (Figure 5.9 below). Taller trees are only sparsely present The grass layer is scanty, due to the high cover of the shrubs, particularly *Portulacaria afra*. Different Crassula species often occur here, e.g. *Crassula ovata, Crassula cultrata, Cotyledon orbiculata*. Shrubby species such as *Carissa bispinosa, Azima tetracantha, Gymnosporia polyacantha* from dense bush. More species occur in this dense thicket, all were not noted during the survey, due to accessibility.

Figure 5.9: The dense Mesic Thicket with spekboom vegetation.

Trees and Shrubs and dwarf shrubs

Asparagus suaveolens

Azima tetracantha

Carissa bispinosa

Euclea undulata

Gymnosporia polyacantha

Opuntia ficus-indica

Pappea capensis

Portulacaria afra

Putterlickia pyracantha

Schotia afra

Searsia longispina

Grasses and sedges

Chloris virgata Cynodon dactylon Enneapogon desvauxii

Forbs

Cotyledon orbiculata Crassula cultrata, Crassula ovata Hermannia sp Eragrostis lehmanniana Eragrostis obtusa

Indigofera sessilifolia Lantana rugosa Sansevieria aethiopica D

Table 5.11: Number of species recorded in Mesic Thicket with spekboom

	Indigenous	Aliens / Weeds	Total	Red Data	Protected	Medicinal
Trees and shrubs	10	1	11	0	0	2
Grasses	5	0	5	0	0	0
Forbs	7	0	7		0	0
Total	22	1	23		0	2

The species richness is Medium, with no species of conservation concern present, but several Alien species present. It has low conservation value and low ecological sensitivity (Figure 5.4 above). This does not exclude occasional possible occurrence of species of conservation concern, this is however not likely, and the development will not be a threat for such a species.

Table 5.12: Mesic Thicket with spekboom: summary				
Status	Dense thicket			
Soil	yellow loam soil	Rockiness % cover	2	
Conservation priority:	Medium-High	Sensitivity:	Medium- High	
Species Richness	Medium	Need for rehabilitation	Low	
Dominant spp.	Portulacaria afra			

Discussion

From a vegetation and flora sensitivity point of view, development within **medium-high** sensitivity is normally **not suggested**. This area is therefore regarded as **No-Go** area.

5.2.6. Valley with Drainage Line

The valley with the drainage line is clearly indicated in Figures 3.4 and 3.5 (above). The valley is flat and shallow (Figures 5.10 and 5.11 below) This vegetation occurs on both the PV 1 and PV 2 sites (Figure 5.3 above). The vegetation is basically similar to that of the adjacent plant community, being Dry Thicket with *Euphorbia*. (Figure 5.3 above). There is no obvious, distinct riparian zone, though locally the vegetation seems to be somewhat denser. During the field study there was no water in the drainage line.

The presence of, Boscia oleoides, Pappea capensis, Euclea undulata, Schotia afra, Euphorbia radyeri and several spiny species such as Carissa bispinosa, Azima tetracantha, Searsia longispina and Gymnosporia polyacantha, and the absence of Portulacaria afra are typical features. At the lower reaches the presence of Vachellia karroo is conspicuous. The grass layer is scanty, much dry, dead remains of the previous season's grass were present during the time of the survey.

The most abundant karroid dwarf shrub is *Pentzia incana*, while the two mesembs species (vygies) *Mesembryanthemum crystallinum* and *Mesembryanthemum aitonis* occurred prominently. Grass species that occur include *Aristida adscensionis*, *Aristida congesta*, *Eragrostis obtusa*, and *Eragrostis lehmanniana*.

Figure 5.10: The vegetation of the upper and middle reaches of the Valley with Drainage Line.

Figure 5.11: The vegetation of the lower reaches of the Valley with Drainage Line. Note the culvert under the tarred road.

The following plant species were noted:

Trees and Shrubs and dwarf shrubs

Aloe africana		Opuntia ficus-indica	A1b
Asparagus suaveolens		Pappea capensis	
Azima tetracantha	M	Pentzia incana	
Boscia oleoides	d	Putterlickia pyracantha	
Carissa bispinosa		Rhigosum obovatum	d
Cyphostemma sp		Rhoicissus digitata	
Euclea undulata	M	Schotia afra	
Euphorbia radyeri		Searsia longispina	
Gymnosporia polyacantha		Vachellia karroo	
Lycium cinereum			

Grasses and sedges

Aristida adscensionis Aristida congesta Chloris virgata Cynodon dactylon Eragrostis lehmanniana Eragrostis obtusa Setaria

Forbs

Felicia muricata Gomphocarpus fruticosa Hermannia sp Indigofera sessilifolia Lantana rugosa Mesembryanthemum aitonis W Mesembryanthemum crystallinum Moraea polystachya Sansevieria aethiopica

Table 5.13: Number of species recorded in the Valley with Drainage Line

W

	Indigenous	Aliens / Weeds	Total	Red Data	Protected	Medicinal
Trees and shrubs	18	1	19	0	0	2
Grasses	6	0	6	0	0	0
Forbs	8	1	9		0	0
Total	32	2	34		0	2

The species richness is Medium, with no species of conservation concern present .

Table 5.14: Valley with Drainage line: summary					
Status	Drainage line (wetland)				
Soil	yellow loam soil	Rockiness % cover	0		
Conservation priority:	High	Sensitivity:	High		
Species Richness	Medium Need for Low rehabilitation				
Dominant spp.	Euphorbia radyeri, Boscia oleoides, Rhigosum obovatum. Pentzia incana, Mesembryanthemum aitonis				

Discussion

The Drainage Line has High conservation value and High ecological sensitivity (Figure 5.4 above). Occasional occurrence of species of conservation concern is possible but the development will not be a threat for such a species, as **the Drainage Line must be excluded from the development area**. From an ecological sensitivity point of view, development within this plant community **cannot be supported** and is regarded as **No-Go** area.

5.3 ANALYSIS

5.3.1 Alien and Invasive plants species

Declared weeds and invader plant species have the tendency to dominate or replace the canopy or herbaceous layer of natural ecosystems, thereby transforming the structure, composition and function of natural ecosystems. Therefore, it is important that these plants be controlled and eradicated by means of an eradication and monitoring program. Some invader plants may also degrade ecosystems through superior competitive capabilities to exclude native plant species (Henderson, 2001).

Previously declared weeds and invasive plants were controlled by regulations of the Conservation of Agricultural Resources Act, 1983 (Act No. 43 of 1983) (CARA). Later Alien and Invasive Species Regulations, as well as a new draft list of categories of invasive species in terms of the National Environmental Management: Biodiversity Act (Act 10 of 2004) was published in the Government Gazette No. 32090, in April 2009. Several amendments followed. Considering Sections 66(1), 67(1) 70(1)(a), 71(3) and 71A of the National Environmental Management: Biodiversity Act (Act 10 of 2004) the latest Alien and Invasive plant **species list** was published in 2016 (Government Gazette 40166, Notice 864, 29 July 2016) This notice replaces and repeals any Alien and Invasive **species lists** published under the Act, including Notice 599 of 1 August 2014, (Government Gazette 37886) and Notice R507, 508 and 509 of 19 July 2013 (Government Gazette 36683).

Below is a brief explanation of the categories in terms of the National Environmental Management: Biodiversity Act (Act 10 of 2004) (NEMBA) and described in Regulation Gazette 10244, Vol 590, and No 37885 (1 August 2014):

<u>Category 1a:</u> Invasive species requiring **compulsory** control. Any specimens of Category 1a listed species need, by law, to be eradicated from the environment. A person in control of a Category 1a Listed Invasive Species must **immediately** take steps to combat or **eradicate** listed invasive species in compliance with sections 75(1), (2) and (3) of the Act; and allow an authorised official from the Department to enter onto land to monitor, assist with or implement the combatting or eradication of these listed invasive species. No permits will be issued.

<u>Category 1b:</u> Invasive species require **compulsory** control as part of an invasive species **control program** that will result in **removal and destruction** of all such listed species. These plants are deemed to have such a high invasive potential that infestations can qualify to be placed under a government sponsored invasive species management program. No permits will be issued.

Category 2:

Listed Invasive Species are those species listed by notice in terms of section 70(1)(a) of the Act as species which require a **permit** to carry out a restricted activity within an area specified in the Notice or an area specified in the permit (e.g. a plantation, woodlot, orchard etc.), as the case may be.

Unless otherwise indicated in the Notice, no person may carry out a restricted activity in respect of a Category 2 Listed Invasive Species without a permit.

A landowner on whose land a Category 2 Listed Invasive Species occurs or person in possession of a permit, must ensure that the specimens of the species do not spread outside of the land or the area specified in the Notice or permit.

If an Invasive Species Management Programme has been developed in terms of section 75(4) of the Act, a person must control the listed invasive species in accordance with such programme.

Unless otherwise specified in the Notice, any species listed as a Category 2 Listed Invasive Species that occurs outside the specified area contemplated in sub-regulation (1), must, for purposes of these regulations, be considered to be a Category 1 b Listed Invasive Species and must be managed according to Regulation 3.

Notwithstanding the specific exemptions relating to existing plantations in respect of Listed Invasive Plant Species published in Government Gazette No. 37886, according to Notice 599 of 1 August 2014 (as amended), any person or organ of state must ensure that the specimens of such Listed Invasive Plant Species do not spread outside of the land over which they have control.

<u>In summary</u>: Category 2 Invasive species are regulated within a specific **area**. A **permit** for this specific area is required to import, possess, grow, breed, move, sell, buy or accept as a gift any plants listed as Category 2 plants. A landowner on whose land a Category 2 Listed Invasive Species occurs, or a person in possession of a permit, **must ensure that the specimens of the species do not spread outside of the land or the area specified in the Notice or permit.**

Category 2 Listed Invasive Species that occur outside the specified area contemplated, must, for purposes of these regulations, be considered as Category 1b listed invasive species and must be managed accordingly.

No permits will be issued for Category 2 species to exist in riparian zones. These are considered as Category 1b listed invasive plants species and must be managed accordingly.

<u>Category 3:</u> Invasive species regulated by activity. Category 3 Listed Invasive Species are species that are subject to **exemptions** in terms of section 71(3) and **prohibitions** in terms of section 71A of Act. This means that a permit to have these species on the particular property is **not required**, though the landowner is still responsible to control this species and is prohibited of growing, breeding or in any other way propagating these listed invasive species, or allow it to multiply and spread. Selling or otherwise trading in, buying, receiving, giving, donating or accepting as a gift, or in any way acquiring or disposing of any specimen of these listed invasive species are also prohibited.

Any plant species identified as a Category 3 Listed Invasive Species that occurs in riparian areas, must, for the purposes of these regulations, be considered as a Category 1b Listed Invasive Species and must be managed accordingly.

In terms of the amendments to the regulations under the Conservation of Agriculture Resources Act, 1983 (Act No. 43 of 1983) and Regulation 598, Government Gazette 37885, August 2014) (Alien and Invasive Species Regulations), landowners are legally responsible for the control of alien species on their properties.

It should further be noted that the National Environmental Management: Biodiversity Act (2004), Chapter 5, Part 2, Section 73(2), states that a person who is the owner of land on which a listed invasive species occurs must notify any relevant competent authority in writing of the listed invasive species that occur on that land.

Furthermore, that according to the National Environmental Management: Biodiversity Act (2004), Alien and Invasive species Regulations (2017), Chapter 7, Section 29 (1), (2) and (3), the seller of any immovable property must, prior to the conclusion of the relevant sale agreement, notify the purchaser of that property in writing of the presence of listed invasive species on that property.

Several listed alien and invasive woody plant species occur scattered over the site area, though fortunately none of these species occur abundantly. These should, however, all be removed and controlled.

Species name	Common name	Category
Cereus jamacaru	Queen of the night	1b
Eucalyptus grandis	Gum tree	2, 1b in biome
Nicotiana glauca	Wild tobacco	1b
Opuntia aurantiaca	Jointed cactus	1b
Opuntia ficus-indica	Prickly pear	1b
Opuntia humifusa	Creeping prickly pear	1b
Trichocereus stachianus	Torch cactus	1b (= Echnopsis stachianus)

5.3.2 Medicinal Plants

Only medicinal plants listed by Van Wyk, Van Oudtshoorn & Gericke (2005), and rare medicinal plants as indicated by Williams, Victor & Crouch (2013) were indicated with the letter "M" in the list of species for each plant community.

5.3.3 Ecological Sensitivity

It has been clearly demonstrated that vegetation not only forms the basis of the trophic pyramid in an ecosystem, but also plays a crucial role in providing the physical habitat within which organisms complete their life cycles (Kent & Coker 1992). Therefore, the vegetation of an area will largely determine the ecological sensitivity thereof.

The vegetation sensitivity assessment aims to identify whether the vegetation within the study area is of conservation concern and thus sensitive to development:

In order to determine the sensitivity of the vegetation (ecosystem) on the site, weighting scores are calculated per plant community. The following six criteria are used, and each allocated a value of 0-3.

- Conservation status of a regional vegetation unit;
- Conservation importance (e.g. untransformed and un-fragmented natural vegetation, high plant species richness, important habitat for rare fauna species, Critical Biodiversity Areas).
- Listed ecosystem (e.g. wetlands, hills and ridges etc)
- Legislative protection (e.g. threatened ecosystems, SANBI & DEAT 2009, Government Gazette NEMA 2011)
- Plant species of conservation concern (e.g. red listed, nationally or provincially protected plant species, habitat or potential habitat to plants species of conservation concern, protected plants or protected trees);
- Situated within ecologically functionally important features (e.g. wetlands or riparian areas; important habitat for rare fauna species);

Sensitivity is calculated as the sum the values of the criteria. The vegetation with the lowest score represents the vegetation that has the least / limited sensitivity). A maximum score of 18 can be obtained, a score of 15-18 indicated high sensitivity. The sensitivity scores are as follows (Table 5.15):

Table 5.5: Sensitivity Weighting scores for vegetation.

Scoring	15-18	12-14	9-11	6-8	0-5
Sensitivity	High	Medium- High	Medium	Medium- Low	Low
SiVest Categories	No-Go	High	Medium	Low	Low

Development on vegetation that has High sensitivity will normally not be supported, except that specific circumstances may still lead to support of the proposed development. Portions of vegetation with Medium-High or Medium sensitivity should be conserved. Development may be supported on vegetation considered to have Medium-Low or Low sensitivity.

The result of the sensitivity assessment (Table 5.16 below) indicates that the Valley with Drainage Line has High ecological sensitivity. This is because all wetlands, including dry seasonal drainage lines in South Africa enjoy legal protection to conserve and manage all water resources. Drainage lines act as transport lines for water, and also as migration corridors for fauna and flora. This area should therefore be excluded from any development. the Mesic Thicket with spekboom has Medium High ecological sensitivity. This implies that at least a part of this plant community should be conserved. However, this type of vegetation is indeed conserved on the large southern part of the farm, which is excluded from the current development. The Dry Thicket with Euphorbia has Medium ecological sensitivity and the Arid Thicket on limestone as well as the Disturbed Open Thicket have Medium-Low ecological sensitivity, while the Arid Karoo Vegetation has Low ecological sensitivity.

It is suggested that, based on vegetation ecology, the development of a PV facility on the entire study site, excluding the Valley with Drainage Line, and parts of the Mesic Thicket with spekboom may be supported.

Table 5.16: Scoring of vegetation that occurs within the study area (see Table 5.12).

Vegetation	Conservation Status of regional Vegetation unit	Listed Ecosystem	Legislated Protection	Species of conservation concern	Ecological Function	Conservation Importance	Total Score out of max of 18
5.2.1. Arid Karoo Vegetation	2	1	0	1	1	0	5 Low
5.2.2. Dry Thicket with Euphorbia	2	0	0	2	3	2	9 Medium
5.2.3. Arid Thicket on limestone	2	0	0	1	2	1	6 Medium- Low
5.2.4. Disturbed Open Thicket	2	0	0	1	2	1	6 Medium- Low
5.2.5 Mesic Thicket with Spekboom	2	2	1	2	3	3	13 Medium- High
5.2.6 Valley with Drainage Line	2	2	3	2	3	3	15 High

5.3.4 Conservation Value

The following **conservation value** categories were used for assessing the study site:

High: Ecologically sensitive and valuable land that should be conserved and no developed allowed. Due to high species richness and/or sensitive ecosystem functionality and/or red data species. The Valley with Drainage Line is placed in this conservation category.

Medium-high: Land where sections are disturbed but which is in general ecologically sensitive to development/disturbances. due to unique natural vegetation and unique species composition the Mesic Thicket with spekboom fall in this conservation category.

Medium: Land on which low impact development with limited impact on the vegetation / ecosystem could be considered for development. It is recommended that certain portions of the natural vegetation be maintained as open space. The natural vegetation of the Dry Thicket with *Euphorbia* falls in this conservation category.

Medium-low: Land of which small sections could be considered to conserve but where the area in general has little conservation value. The Arid Thicket on limestone as well as the Disturbed Open Thicket fall in this conservation category.

Low: Land that has little conservation value and that could be considered for developed with little to no impact on the vegetation. The Arid Karoo plant community falls in this conservation category.

5.3.5 Assessment of Screening Tool Results

The results of the DEA Screening Tool are indicated in Figures 5.11-5.13 (below).

5.3.5.1 Plant Species Sensitivity

The Result of the DEA Screening Tool analysis for Plant Species Sensitivity for the proposed Mayogi development site is given in Figure 5.12 (below). The plant species sensitivity is shown as **Low** for most of the study site and **Medium** for the north-eastern part of the farm This is **confirmed** by the current biodiversity study. The Arid Karoo plant community in the north-eastern corner of the site is also indicated as having Medium plant species sensitivity, however this is **disputed** as this area is totally degraded/transformed.



Figure 5.12: The Result of the DEA Screening Tool analysis for Plant Species Sensitivity for the study area.

Sensitivity	Feature(s)
Low	Low Sensitivity
Medium	Sensitive species 1252
Medium	Sensitive species 1268
Medium	Sensitive species 779
Medium	Duvalia pillansii

Medium	Strelitzia juncea			
Medium	Corpuscularia lehmannii			
Medium	Sensitive species 1101			
Medium	Asparagus spinescens			
Medium	Sensitive species 1248			
Medium	Cotyledon tomentosa subsp. tomentosa			
Medium	Sensitive species 19			

5.3.5.2 Animal Species Sensitivity

The Result of the DEA Screening Tool analysis for Animal Species Sensitivity for the for the proposed Mayogi development site is given in Figure 5.13 (below). This Sensitivity is regarded as **High.** Our impression is that the animal species sensitivity is rather **LOW** on the specific site, because the habitats in these parts are mostly degraded or transformed. Note that Mayogi is (was) a game farm and several animal species (game species) occurred from time to time. There was a constant flow of animal species bought or bred and later sold. The Daniell Cheetah breeding project is located across the road. **The many animals that are present on several nature reserves/game farms in the area inflate the estimate by the Screening Tool for Animal Species Sensitivity** on this particular study site. Furthermore, Animal Species Sensitivity includes bird species, of which the Screening Toll provides a separate "Bird Species Sensitivity" result (paragraph 5.3.5.3 below). The two mammal species have only Medium sensitivity.

The **High** Animal Species Sensitivity is therefore **disputed**.

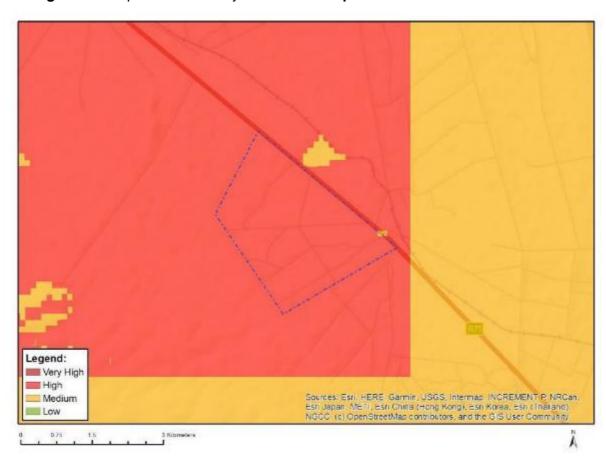


Figure 5:13 The Result of the DEA Screening Tool analysis for Animal Species Sensitivity for the study area.

Sensitivity	Feature(s)		
High	Aves-Polemaetus bellicosus		
High	Aves-Sagittarius serpentarius		
High	Aves-Afrotis afra		
Medium	Aves-Afrotis afra		
Medium	Sensitive species 5		
Medium	Sensitive species 8		

5.3.5.3 Bird species Sensitivity

Figure 5:14 The Result of the DEA Screening Tool analysis for Bird Species Sensitivity for the study area

The entire area has **Low** Bird Species Sensitivity (Figure 5.14, above). This is in stark contrast with the animal species sensitivity (see paragraph 5.3.5.2 above) where **four out of six** of the animals mentioned are actually birds!

5.3.5.4 Terrestrial Biodiversity Sensitivity

The Result of the DEA Screening Tool analysis for Terrestrial Biodiversity Sensitivity for the study is given in Figure 5.15 (below). This Sensitivity is regarded as **Very High**.

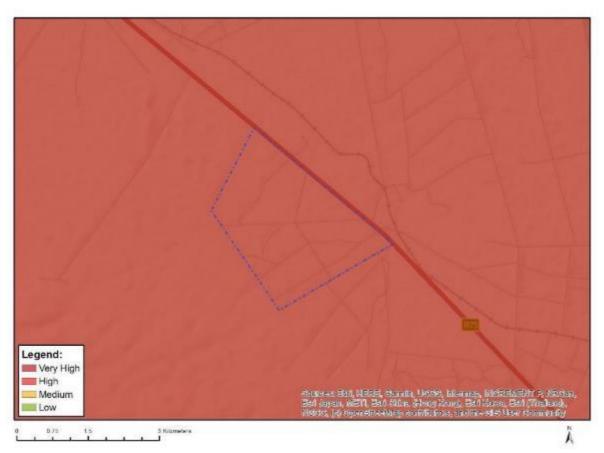


Figure 5.15: The Result of the DEA Screening Tool analysis for Terrestrial Biodiversity Sensitivity for the study area.

Screening Tool results for Terrestrial Biodiversity is regarded as only Low or Very High No intermediate values are considered by the Screening Toll. In this case the **Very High** Biodiversity Sensitivity is derived from the CBA-layer, which indicates that an Ecological Support Area occurs on the site, it is in a FEPA sub-catchment (see Aquatic Biodiversity) and contains the Albany Floodplain Endangered ecosystem, and Sundays Arid Thicket Vulnerable ecosystem.

However, the specific site proposed for the development (northern part of the farm) is quite disturbed to degraded and according to the current biodiversity study it cannot be regarded as having Very High Biodiversity sensitivity.

The result of the Screening Tool on terrestrial biodiversity sensitivity for the proposed site for development is therefore **disputed.**

5.4 Discussion and Conclusion

The results of the vegetation and flora study indicate that the Valley with Drainage line has High ecological sensitivity, The Mesic Thicket with spekboom has Medium-High ecological sensitivity and conservation value, though the vegetation in the southern part of the farm (excluded from this development) represents this vegetation type and will be conserved here. The rest of the terrestrial habitat areas have low, medium-low or medium ecological sensitivity.

Most of the terrestrial vegetation areas on the site have low to medium plant species richness, no threatened or nationally protected plant species and low to medium conservation value.

Should the Valley with the Drainage Line and part of the Mesic Thicket with spekboom be conserved and protected, it is suggested that the construction of the proposed PV facility can be supported.

6. RESULTS: FAUNA

The fauna assessment for the PV1 and PV2 sites are exactly the same.

6.1 MAMMALS

6.1.1 Mammal Habitat Assessment

Acocks (1988), Mucina and Rutherford (2006), Low and Rebelo (1996), Knobel and Bredenkamp (2006), SANBI & DEAT (2009) discuss vegetation types in broad terms. Rautenbach (1978 & 1982) found that mammal assemblages can at best be correlated with botanically defined biomes, such as those by Low and Rebelo (1996), and latterly by Mucina and Rutherford (2006, 2012) as well Knobel and Bredenkamp (2006). The definitions of biomes are basically similar, and both remain valid for mammals and are therefore recognised as a reasonable determinant of mammal distribution. It must however be mentioned that Thicket is only recently recognised as a Biome.

The local occurrences of mammals are, on the other hand, closely dependent on broadly defined habitat types, in particular terrestrial, arboreal (tree-living), rupicolous (rock-dwelling) and wetland-associated vegetation cover. It is thus possible to deduce the presence or absence of mammal species by evaluating the habitat types within the context of biome distribution ranges.

Two of the four major habitat types are well represented on the study site, namely terrestrial (the herbaceous layer, Figure 6.1) and arboreal (trees-living as habitat, Figure 6.2). Large tracks of terrestrial habitats are disturbed by anthropogenic activities, resulting in dominance of two seasonal *Mesembryanthemum* species (e.g. Figure 5.8 above). No significant rupicolous (rock) occur on the relevant northern part of the farm, but rock habitats are present on the southern part, where no development is proposed. Except for small, seasonal, manmade dams there is no wetland habitat within the study site.

At the time of the site visit, the vegetation cover was varied from locally fair to poor but could provide adequate nourishment and cover for small terrestrial mammals.

There are no caves suitable for cave-dwelling bats on the study site, although some of the nearby buildings may act as substitute daytime roosts. It is likely that common bats commute from roosting sites elsewhere to hawk for insects over the wetlands near the study site .corridor.

The regional setting of the study site and its recent historical land-use have an important consequence regarding mammals that are or may have been present in the vicinity of the site. The relatively nearby Addo Elephant national Park and several other conservation areas or

game farms may create an overstated impression of the mammal species diversity that occur naturally in the area.

Figure 6.1: Terrestrial habitat for mammals

Figure 6.2: Arboreal habitat for mammals

6.1.2 Observed and Expected Mammal Species Richness

Large and medium-sized mammals (such as elephant, rhinoceros, buffalo, giraffe, black wildebeest, red hartebeest, eland, gemsbok, waterbuck, zebras and more had been eradicated from the general veld areas and are now only seen in certain nature conservation areas, e.g. Addo Elephant National Park, the Daniell cheetah breeding facility and the several game farms in the area, Should the presence of many species of the larger and medium-sized mammals in these conservation areas be reflected in data bases, the possible mammal diversity on or in the vicinity of the study site will be over-emphasized. On the other hand, the specific study site has until recently been used as a game breeding and auction farm. It is assumed that there was a large turnover of many mammal species on the farm, by buying and selling game. These mammal species do not occur on the farm anymore.

However, several mammal species are expected to occur in thicket localities. These include several species of rodents, mongooses, porcupine and aardvark. A list of mammals that may occur on the site or the vicinity of the site, based on the known habitat preference and distribution of these species, was compiled from the existing mammal literature (Skinner & Chimimba 2006, Friedman 2005, Stuart 2015). In compiling the list, a precautionary principle was mostly applied.

It is estimated that 74 mammal species may have occurred from time to time on or near the study site area (Table 6.1), and nine were confirmed on or close to the site. Eleven of the species listed in Table 6.1 are listed as Red Data species.

Most of the species of the resident diversity (Table 6.1) are common and widespread (viz. scrub hares, multimammate mice, pygmy mice, genets, mongooses and others). Many of the species listed in Table 6.1 are robust, some with strong pioneering capabilities allowing them to invade and occupy new habitats. The reason for their survival success is predominantly seated in their remarkable reproduction potential (viz. multimammate mice species capable of producing ca. 12 pups per litter at intervals of three weeks), and to a lesser extent their reticent and cryptic nature (scrub hares, genets and mongooses).

Eighteen species are mice or rats, Not all species will occur at the same time, but some may occur from time to time on the site. Some species are nocturnal and are seldom seen.

The Southern African hedgehog occurs in a wide variety of habitat types but must have suitable vegetation cover. The study site has suitable habitat therefore this species may be present.

Twelve of the listed species are bats. Due to their ability to fly and to cover large distances, the distribution information on some bat species is insufficient. This has resulted in certain bat species being included as a precautionary measure. The Egyptian and free-tailed bats as well as the vespertilionid bats show remarkable adaptability by expanding their distributional ranges and population numbers significantly by capitalising on the roosting opportunities offered by manmade structures in the vicinity. The study site offers no caves or suitable structures answering to the exacting roosting requirements of cave-dwelling bats (e.g.

Rhinolophidae, Nycteridae), but it is likely that they have roosts elsewhere and during summer sunsets commute to the area of the site to hawk for invertebrates.

The genet species, the mongooses and Black-backed Jackal all have wide habitat tolerances, and, coupled with their catholic diets and reticent habits, render them persistent carnivores, even in or close to human settlements.

The study site falls in the natural **distribution range** and has, or historically may have had suitable habitat for the following eleven mammal red data species: fynbos golden mole, white-tailed rat, blue duiker, African striped weasel, African marsh rat? (some taxonomic issues), South African hedgehog, black-footed cat, brown hyena, grey rhebok, cheetah and leopard. These species may from time to time occur or have had occurred, on the study site or the vicinity of the site. Having noted this, it is clear that there is currently not suitable dense bush on the northern part of the farm (= the study site) for blue duiker, and likewise not adequate wetland for African marsh rat, while it is doubtful that there is habitat in the site for the fynbos golden mole.

From the **Screening Tool** results the following mammal species were noted as having medium sensitivity:

Species name	Common name	
Acinonyx jubatus	Cheetah	
Philantomba monticola	Blue duiker	

Cheetah occurs on the Daniell Cheetah breeding project, located across the road. There is not suitable forest or dense bush on the site for blue duiker.

Table 6.1 (below) provides information on mammal species that may from time-to-time occur in the area.

Table 6.1: Mammal diversity of the study site.

The species observed or deduced to occupy the site. (Systematics and taxonomy as proposed by Skinner & Chimimba [2005], Apps [2012], Stuart & Stuart [2015] & Child *et.al.*[2016]).

Red Data species rankings as defined in Friedmann and Daly's S.A. Red Data Book / IUCN (World Conservation Union) (2004): CR= Critically Endangered, En = Endangered, Vu = Vulnerable, LR/cd = Lower risk conservation dependent, LR/nt = Lower Risk near threatened, DD = Data Deficient. All other species are deemed of Least Concern.

Probability:

High Definitely there or have a high probability to occur;

Medium probability to occur based on ecological and distributional parameters;

Low probability to occur based on ecological and distributional parameters.

SCIENTIFIC NAME	ENGLISH NAME	RD	Probability	Remarks
		Status		
Order: AFROSORICIDA				
Family:	Golden Moles			
Chrysochloridae				
Amblysomus corriae	Fynbos Golden Mole	NT	Low	No possible habitat
Order: MACROSCELIDEA	Sengis			
Family: Macrosclididae				
Macroscelides	Round-eared Sengi		Low	Restricted to rocky habitat, maybe on southern part of the
proboscidea				farm
Myosorex varius	Forest Shrew		Medium	Dense bus in southern part of farm
Crocidura cyanea	Reddish-grey Musk Shrew		Medium	
Crocidura flavescens	Greater Red Musk shrew		Low	Habitat too dry
Order:				
TUBULIDENTATA				
Family:				
Orycteropodidae				
Orycteropus afer	Aardvark		high	
Order: LAGOMORPHA				
Family: Leporidae	Hares, Rabbits and Rock Rabbits			

SCIENTIFIC NAME	ENGLISH NAME	RD	Probability	Remarks
		Status		
Lepus saxatilis	Scrub Hare		High	Seen in area
Pronolagus saundersiae	Hewitt's Red Rock Rabbit			
Order: RODENTIA				
Family: Bathyergidae	Mole-Rats			
Cryptomys hottentotus	African Mole-Rat		High	Mound seen on the site
Georhychus capensis	Cape Mole Rat		Medium	
Family: Hystricidae	Porcupines			
Hystrix africaeaustralis	Cape Porcupine		High	Signs observed
Family: Muridae	Rats and Mice			
Mystromys albicaudatus	White-tailed Rat	VU	Medium	
Dendromus melanotus	Grey Climbing Mouse		Medium	
Saccostomus campestris	Pouched Mouse		High	
Desmodillus auricularis	Cape Short-tailed Gerbil		Medium	
Gerbilliscus paeba	Pygmy Hairy-footed Gerbil		Medium	
Rhabdomys pumilio	Four-Striped Grass Mouse		High	
Dasymys incomptus	African March Rat	NT	Low	Not adequate wetland habitat
Mus minutoides	Pygmy Mouse		Medium	
Mus musculus	House Mouse		High	Introduced
Grammomys dolichurus	Woodland Thicket Rat		Medium	
Mastomys natalensis	Natal Multimammate Mouse		Medium	
Mastomys coucha	Southern Multimammate Mouse		High	
Micaelamys	Namaqua Rock Mouse		Low	
namaquensis				
Rattus rattus	House Rat		High	Introduced
Parotomys brantsii	Brant's Whisting Rat		Medium	
Otomys sundersiae	Sunders'eiRat vlei Rat		Low	No habitat on site
Otomys irroratus	Vlei rat		Medium	No habitat on site
Myotomys unisulcatus	Bush Karoo Rat		Medium	

SCIENTIFIC NAME	ENGLISH NAME	RD	Probability	Remarks
		Status		
Order: EULIPOTYPHA				
Family: Soricidae	Shrews			
Myosorex varius	Forest Shrew		Low	
Crocidura cyanea	Reddish-grey Musk Shrew		Medium	
Family Erinaceidae				
Atelerix frontalis	South African Hedgehog	NT	Medium	Utilise various habitats, probably present
Order: CHIROPTERA	Bats			See note on bats in text
Family: Pteropodidae	Fruit Bats			
Eidolon helvum	Straw-Coloured Fruit Bat		Low	
Rousettus aegyptiacus	Egyptian Fruit Bat		medium	
Epomophorus wahlbergi	Wahlberg's epouletted Fruit Bat		low	
Family: Embalonuridae	Sheath-Tailed Bats			
Taphozous mauritianus	Mauritian Tomb Bat		Low	
Family: Molossidae	Free-Tailed Bats			
Tadarida aegyptiaca	Egyptian Free-Tailed Bat		High	
Family Miniopteridae	Long-fingered Bats			
Miniopterus natalensis	Natal Long-Fingered Bat		High	
Family:	Vesper Bats			
Vespertilionidae				
Neoromicia capensis	Cape Serotine Bat		High	
Myotis tricolor	Temminck's Hairy Bat		High	
Eptesicus hottentotus	Long-tailed Serotine Bat		Medium	
Pipistrellus capensis	Cape Serotine Bat		High	
Family: Nycteridae	Slit-Faced Bats			
Nycteris thebaica	Egyptian Slit-Faced Bat		High	
Family: Rhinolophidae	Horseshoe Bats			
Rhinolophus clivosus	Geoffroy's Horseshoe Bat		High	
Order: PRIMATES	Baboons and Monkeys			

SCIENTIFIC NAME	ENGLISH NAME	RD	Probability	Remarks
		Status		
Papio ursinus	Chacma Baboon		High	
Cercopithecus	Vervet Monkey		High	
pygerythrus				
Order: CARNIVORA	Carnivores			
Felidae	Cats			
Felis silvestris	African Wild Cat		High	Observed
Felis nigripes	Small Spotted Cat (Black-footed)	VU	Low	
Caracal caracal	Caracal		High	
Acinonyx jubatus	Cheetah	VU	Low	In neighbouring Cheetah breeding farm
Panthera pardus	Leopard	VU	Medium	Noted in the vicinity by local people
Family: Viverridae	Civets and Genets			
Genetta genetta	Small-Spotted Genet		High	
Genetta tigrina	South African Large-Spotted Genet		Medium	
Family: Herpestidae	Suricates and Mongooses			
Cynictis penicillata	Yellow Mongoose		High	Seen on site
Galerella pulverulenta	Cape Grey Mongoose		High	
Atilax paludinosus	Marsh Mongoose		Medium	
Suricata suricatta	Meerkat		High	
Family Canidae	Jackals			
Vulpes chama	Cape Fox		Medium	
Otocyon megalotis	Bat-eared Fox		Low	
Canis mesomelas	Black-backed Jackal		High	Noted at close by area
Family: Mustelidae	Otters and Badgers			
Aonix capensis	African Clawless Otter		Low	Not suitable habitat
Mellivora capensis	Honey Badger		High	
Poecilogale albinucha	African Striped Weasel	NT	Medium	
Ictonix striatus	Striped Polecat		High	
Family: Hyaenidae	Hyaenas			

SCIENTIFIC NAME	ENGLISH NAME	RD	Probability	Remarks
		Status		
Hyaena brunnea	Brown Hyaena	NT	Low	Noted in the vicinity by local people
Proteles cristatus	Aaardwolf		Low	
Order: HYRACOIDEA	Dassies			
Family: Procaviidae				
Procavia capensis	Rock Dassie		High	
ORDER RUMINANTIA				
Family Bovidae	Buffalo, Wildebeest and			
	Antelopes			
Tragelaphus strepticeros	Greater Kudu		High	Noted in area
Tragelaphus sylvaticus	Bushbuck		Medium	
Pelea capreolus	Grey Rhebuck	NT	Medium	
Oreotragus oreotragus	Klipspringer		Medium	In southern part of the farm
Raphicerus campestris	Steenbok		High	Noted in area
Raphicerus melanotis	Cape Grysbok		High	
Philantomba monticola	Blue Duiker	VU	Low	Mentioned by DEA Screening Tool – Bush in southern
				part of the farm presents suitable habitat, but is probably
				too dry.
Sylvicapra grimmea	Common Duiker		High	Observed in the area

6.1.3.Conclusion

Although many mammal species may from time to time occur in the area of the site, only a few may probably be encountered or observed at any one time. This can be ascribed to very small species or low species density and individuals are therefore not easily seen. Many smaller mammals are either secretive, nocturnal, hibernators and/or seasonal, and some are seasonal migrators. However, by applying the standard methods of deducing probable presence by using the recognised literature on distribution and habitat preferences, and knowledge of habitats present on the site, a list of mammals could successfully be compiled with a high level of confidence.

Some of the mammal species predicted to visit the area of the site, may be threatened by the construction or the phase of operation of the PV facility, but most of them are quite motile and will easily move away from danger. The area affected is too small to affect any of the mammal species in a critical manner.

From a mammal perspective, the PV-facility can be supported.

6.2 BIRDS

6.2.1 Bird Habitat Assessment

The habitats occupied by flighted birds differ from those of most terrestrial vertebrates in being explicitly three-dimensional, especially for aerial-feeding species and in the airspace above landscapes with low relief and short vegetation, such as occur on the site. In the two primarily terrestrial dimensions, most birds are also more dependent on vegetation structure, and substrate texture and colour, than they are on vegetation composition, with the exception of a minority of species with particular food requirements of foliage, flowers, fruit or seeds. However, although the vegetation biomes and units most recently described for South Africa are defined primarily on vegetation composition, they do offer good analyses of the abiotic factors that also underlie these divisions, such as topography, geology, soil types and climate, and on general structural features of vegetation types and landscapes.

The aerial mobility of birds also demands paying attention to the principal habitats surrounding the study site and their conservation status, not just those along the immediate borders but also more distant habitats that might provide sources for species visiting the site and sinks for those breeding on site.

Birds are also a relatively visible and audible group of homeothermic vertebrates, active throughout the year, and with habitat preferences that can be evaluated from experience, by reference to the comprehensive literature available and by the subset of species that can be detected by a field survey during a particular season and time of day. Such information and experience also inform and enable searches for particular species of conservation concern.

The principal habitat types detected on the site that are most relevant to bird ecology and community structure are:

- 1. Different thickets (arid, disturbed, dry and mesic)
- 2. Limited wetlands.

The habitats directly adjacent to the study site vary and consist mostly of degraded habitats and a provincial road.

6.2.2 Expected and Observed Bird Species Richness

Most of the expected species are typical generalists that might occupy the fabricated habitats available, especially the various transformed lands and other man-induced alterations such as buildings, while others are aerial feeders that mainly use the airspace above the habitats. Species typically inhabiting aquatic habitats would be likely to occur in significant numbers due to the limited presence of this habitat.

The disturbed and arid thickets are in poor to fair condition and not sufficient to support some species dependent on this habitat.

The disturbed nature of the habitat and the location which includes busy a tar road, collectively mean that avian diversity is lower than normal. The bird species that were deduced to occupy the site are listed in Table 2.

The study site lies mostly in two Pentads (3325-2515 & 3330-2515). A total of 116 & 111 species are expected or were recorded on these Pentads respectively (Table 2). These Pentads, together with Roberts Birds VII of Southern Africa, were used to compile a list of possible birds for the site (Table 2)

Table 6.2: Bird species diversity expected on and around the proposed site. Based on the national list and annotations of Birdlife South Africa (2011), sorted in the order of 'Roberts VII' (Hockey et al. 2005), with probability of occurrence and habitat preferences assessed and comparison with lists from SABAP 1&2 (Harrison et al., 1997; www.sabap2.org).

Common English Name	Scientific Name	Status Codes (see below)			Probability of occurrence (see 4.2 above)		
Name		R D	S	E	High	Mediu m	Lo w
Grey-winged Francolin	Scleroptila africanus					М	
Red-winged Francolin	Scleroptila levaillantii						L
Common Quail	Coturnix coturnix						L
Helmeted Guineafowl	Numida meleagris				Н		
Egyptian Goose	Alopochen aegyptiaca				Н		
South African Shelduck	Tadorna cana						L
Spur-winged Goose	Plectropterus gambensis						L
Cape Teal	Anas capensis						L
African Black Duck	Anas sparsa					М	
Yellow-billed Duck	Anas undulata				Н		
Cape Shoveler	Anas smithi						L
Knob-billed Duck	Sarkidiornis melanotos						L
Red-billed Teal	Anas erythrorhyncha						L
Southern Pochard	Netta erythrophthalma						L
Greater Honeyguide	Indicator indicator						L
Lesser Honeyguide	Indicator minor					M	
Brown-back Honeybird	Prodotiscus regulus						L
Red-throated Wryneck	Jynx ruficollis					M	
Ground Woodpecker	Geocolaptes olivaceus						L
Cardinal Woodpecker	Dendropicos fuscescens					М	
Olive Woodpecker	Dendropicos griseocephalus						L
Red-fronted Tinkerbird	Pogoniulus pusillus					М	
Acacia Pied Barbet	Tricholaema leucomelas					М	

Common English	Scientific Name	(Status Codes e belo	w)	Probability of occurrence (see 4.2 above)			
Name		R D	S	E	High	Mediu m	Lo w	
Black-collared Barbet	Lybius torquatus				Н			
Crowned Hornbill	Tockus alboterminatus						L	
African Hoopoe	Upupa africana				Н			
Green Wood-hoopoe	Phoeniculus purpureus						L	
European Roller	Coracias garrulus	NT					L	
Malachite Kingfisher	Alcedo cristata					М		
Brown-hooded Kingfisher	Halcyon albiventris					М		
Giant Kingfisher	Megaceryle maximus						L	
Pied Kingfisher	Ceryle rudis						L	
European Bee-eater	Merops apiaster		B/NB M				L	
•			IVI		Н			
Speckled Mousebird	Colius striatus				Н			
Red-faced Mousebird	Urocolius indicus						L	
Jacobin Cuckoo	Clamator jacobinus		BM					
Great Spotted Cuckoo	Clamator glandarius		BM			M	L	
Red-chested Cuckoo	Cuculus solitarius		BM			IVI	L	
Black Cuckoo	Cuculus clamosus		BM				L	
Klaas's Cuckoo	Chrysococcyx klaas		BM				L	
Diderick Cuckoo	Chrysococcyx caprius		BM		Н			
Burchell's Coucal	Centropus burchellii						L	
Alpine Swift	Tachymarptis melba					M		
Common Swift	Apus Apus		NBM				L	
African Black Swift	Apus barbatus						L	
Little Swift	Apus affinis		BM		Н			
Horus Swift	Apus horus		ВМ				L	
White-rumped Swift	Apus caffer		ВМ		Н			
Barn Owl	Tyto alba						L	
Marsh Owl	Asia capensis					М		
Cape Eagle-Owl	Bubo capensis						L	
Spotted Eagle-Owl	Bubo africanus						L	
Fiery-necked Nightjar	Caprimulgus pectoralis						L	
European Nightjar	Caprimulgus europaeus		NBM				L	
Rock Dove	Columba livia		- 1		Н			
Speckled Pigeon	Columba guinea				Н			
African Olive-Pigeon	Columba arquatrix						L	
Emerald-spotted Wood-Dove	Turtur chalcospilos						L	
Laughing Dove	Streptopelia senegalensis				Н			
Cape Turtle-Dove	Streptopelia capicola				Н			
Red-eyed Dove	Streptopelia semitorquata				Н			
Namaqua Dove	Oena capensis						L	
Tambourine Dove	Turtur tympanistria						L	
Denham's Bustard	Neotis denhami	VU					L	

Common English	Scientific Name	(Status Codes e belo	w)	Probability of occurrence (see 4.2 above)			
Name		R	S	Е	High	Mediu	Lo	
		D			9	m	W L	
Ludwig's Bustard	Neotis Iudwigii	EN					L	
Kori Bustard	Ardeotis kori	NT					L	
Southern Black Korhaan	Afrotis afra Anthropoides	VU			Confirme		L	
Blue Crane	paradiseus	NT			d			
Black Crake	Amaurornis flavirostra					M		
African Purple Swamphen	Porphyrio madagascariensis						L	
Common Moorhen	Gallinula chloropus				Н			
Red-knobbed Coot	Fulica cristata				Н			
African Snipe	Gallinago nigripennis						L	
Marsh Sandpiper	Tringa stagnatilis						L	
Common Greenshank	Tringa nebularia						L	
Wood Sandpiper	Tringa glareola						L	
Common Sandpiper	Actitis hypoleucos						L	
Little Stint	Calidris minuta						L	
Curlew Sandpiper	Calidris ferruginea						L	
Ruff	Philomachus pugnax						L	
Water Thick-Knee	Burhinus vermiculatus						L	
Spotted Thick-knee	Burhinus capensis				Н			
Black-winged Stilt	Himantopus himantopus						L	
Pied Avocet	Recurvirostra avosetta						L	
Common Ringed Plover	Charadrius hiaticula						L	
Kittlitz's Plover	Charadrius pecuaritus						L	
Three-banded Plover	Charadrius tricollaris				Н			
Blacksmith Lapwing	Vanellus armatus				Н			
Black-winged Lapwing	Vanellus melanopterus						L	
Crowned Lapwing	Vanellus coronatus				Н			
Grey-headed Gull	Larus cirrocephalus						L	
Whiskered Tern	Chilidonias hybrida						L	
White-winged Tern	Chiidonias leucopterus						L	
Black-shouldered Kite	Elanus caeruleus				Н			
Yellow-billed Kite	Milvus aegyptius						L	
African Fish-Eagle	Haliaeetus vocifer						L	
African Marsh-Harrier	Circus ranivorus						L	
Black Harrier	Circus maurus						L	
African Harrier-Hawk	Polyboroides typus						L	
Southern Pale Chanting Goshawk	Melierax canorus						L	
Gabar Goshawk	Melierax gabar						L	
African Goshawk	Accipiter tachiro						L	
Little Sparrowhawk	Accipter minullus						L	
Rufous-chested Sparrowhawk	Accipiter rufiventris						L	

Common English Name	Scientific Name		Status Codes e belo	w)	Probability of occurrence (see 4.2 above)			
Name		R D	S	Ε	High	Mediu m	Lo w	
Black Sparrowhawk	Accipiter melanoleucus						L	
Steppe Buzzard	Buteo buteo		NBM				L	
Jackal Buzzard	Buteo rufofuscus					M		
Verreauxs' Eagle	Aquila verreauxii	VU					L	
Booted Eagle	Aquila pennatus						L	
Martial Eagle	Polemaetus bellicosus	EN					L	
African Crowned Eagle	Stephanoaetus coronatus						Г	
Secretarybird	Sagittarius serpentarius	VU					L	
Rock Kestrel	Falco rupicolus	VU			H			
	Falco rupicolus Falco biarmicus	\/II					L	
Lanner Falcon		VU					L	
Peregrine Falcon	Falco peregrinus				Н			
Little Grebe	Tachybaptus ruficolis				- 11		L	
African Darter	Anhinga rufa Phalacrocorax							
Reed Cormorant	africanus					М		
White-breasted Cormorant	Phalacrocorax lucidus					М		
Little Egret	Egretta garzetta					M		
Yellow-billed Egret	Egretta intermedia						L	
Great Egret	Egretta alba						L	
Grey Heron	Ardea cinerea				Н			
Black-headed Heron	Ardea melanocephala				Н			
Goliath Heron	Ardea goliath						L	
Purple Heron	Ardea purpurea						L	
Cattle Egret	Bubulcus ibis				Н			
Black-crowned Night Heron	Nycticorax nycticorax						L	
Green-backed Heron	Butorides striata						L	
Little Bittern	Ixobrychus minutus						L	
Hamerkop	Scopus umbretta					М		
Hadeda Ibis	Bostrychia hagedash				Н			
African Conned Ibia	Threskiornis				Н			
African Sacred Ibis	aethiopicus						L	
African Spoonbill	Platalea alba						L	
Yellow-billed Stork	Mycteria ibis	EN					L	
White Stork	Ciconia ciconia						L	
Eurasian Golden Oriole	Oriolus oriolus						L	
Black-headed Oriole	Oriolus larvatus				Н		_	
Fork-tailed Drongo Blue-mantled Crested- Flycatcher	Dicrurus adsimilis Trochocercus cyanomelas				11		L	
African Paradise-Flycatcher	Terpsiphone viridis						L	
Black-backed Puffback	Dryoscopus cubla					М		
Southern Tchagra	Tchagra tchagra						L	
Southern Boubou	Laniarius ferrugineus				Н			

Common English	Common English Name Scientific Name		Status Codes e belo	w)	oc	bability ocurrence 4.2 above	
Name		R D	S	Ε	High	Mediu m	Lo w
Bokmakierie	Telophorus zeylonus				Н		
Olive Bush-Shrike	Telophorus olivaceus						L
Grey-headed Bush-Shrike	Malaconotus blanchoti						L
Cape Batis	Batis capensis					М	
Chinspot Batis	Batis molitor					М	
Cape Crow	Corvus capensis				Н		
Pied Crow	Corvus albus				Н		
White-necked Raven	Corvus albicollis					М	
Red-backed Shrike	Lanius collurio						L
Common Fiscal	Lanius collaris				Н		
Grey Cuckooshrike	Coracina caesia						L
Black Cuckooshrike	Campephaga flava						L
Cape Penduline-Tit	Anthoscopus minutus						L
Southern Black Tit	Parus niger						L
Grey Tit	Parus afer						L
Brown-throated Martin	Riparia paludicola						L
Banded Martin	Riparia cincta						L
Barn Swallow	Hirundo rustica		NBM		Н		
White-throated Swallow	Hirundo albigularis		BM		Н		
Pearl-breasted Swallow	Hirundo dimidiata		BM			М	
Greater Striped Swallow	Cecropis cucullata		BM		Н		
Lesser Striped Swallow	Hirundo abyssinica		BM			М	
Red-breasted Swallow	Cecropis semirufa		BM		Н		
Rock Martin	Hirundo fuligula		J		Н		
Common House-Martin	Delichon urbicum						L
Black Saw-wing	Psalidoprocne						L
Dark-capped Bulbul	Pycnonotus tricolor						L
Cape Bulbul	Pycnonotus capensis				Н		
Sombre Greenbul	Andropadus importunus						L
Terrestrial Brownbul	Phyllastrephus terrestris						L
Fairy Flycatcher	Stenostira scita						L
Cape Grassbird	Sphenoeacus afer						L
Victorin's Warbler	Cryptillas victorini						L
Long-billed Crombec	Sylvietta rufescens					М	
Yellow-bellied Eremomela	Eremonela icteropygicalis						L
Little Rush-Warbler	Bradtypterus baboecala					M	
African Reed-Warbler	Acrocephalus baeticatus Acrocephalus						L
Great Reed-Warbler	arundinaceus						L
Yellow-throated Woodland- Warbler	Phykkoscopus ruficapilla						L
Willow Warbler	Phylloscopus trochilus		NBM				L

Common English	ommon English Name		Status Codes e belo	w)	00	bability occurrence 4.2 above	
Name		R	S	E	High	Mediu m	Lo w
Chestnut-vented Tit-Babbler	Parisoma subcaeruleum					М	
Lesser Swamp-Warbler	Acrocephalus gracilirostris				Н		
Cape White-eye	Zosterops capensis			(*)	Н		
Lazy cisticola	Cisticola aberrans					М	
Grey-backed Cisticola	Cisticola subruficapilla					М	
Wailing Cisticola	Cisticola lais						L
Levaillant's Cisticola	Cisticola tinniens					Н	
Neddicky	Cisticola fulvicapilla				Н		
Zitting Cisticola	Cisticola juncidis				Н		
Cloud Cisticola	Cisticola tektrix						L
Karoo Prinia	Prinia maculosa				Н		
Bar-throated Apalis	Apalis thoracica					М	
Yellow-breasted Apalis	Apalis flavida						L
Green-backed Camaroptera	Camaroptera brechyura						L
Rufous-naped Lark	Mirafra africana						L
Cape Clapper Lark	Mirafra apiata						L
Eastern Longbilled	Certhilauda semitorquata						L
Red-capped Lark	Calandrella cinerea				Н		
Red-capped Lark	Calandrella cinerea				Н		
Cape Rock-Thrush	Monticola rupestris						L
Olive Thrush	Turdus olivaceus			(*	Н		
Southern Black Flycatcher	Melaenornis pammelaina						L
Fiscal Flycatcher	Sigelus silens			(*)	Н		
Spotted flycatcher	Muscicapa striata		NBM				L
African Dusky Flycatcher	Muscicapa adusta						L
Cape Robin-Chat	Cossypha caffra				Н		
Brown Scrub-Robin	Cercotrichas signata						L
White-browned Scrub-Robin	Cercotrichas leucophrys						L
Karoo Scrub-Robin	Cercotrichas coryphoeus					М	
African Stone Chat	Saxicola torquatus				Н		
Familiar Chat	Ceromela familaris						L
Ant-eating Chat	Myrmecocichla formicivora						L
Mocking Cliff-Chat	Thamnolaea cinnamomeiventris						L
Red-winged Starling	Onychognathus morio						L
Black-bellied Starling	Lamprotornis corruscus						L
Cape Glossy Starling	Lamprotornis nitens				Н		
Violet-backed Starling	Cinnyricinclus leucogaster						L
Pied Starling	Lamprotornis bicolor				Н		

Common English	Scientific Name		Status Codes e belo	w)	00	bability occurrence 4.2 above	
Name		R	S	E	High	Mediu m	Lo w
Wattled Starling	Creatophora cinerea						L
Common Starling	Sturnus vulgaris		_		Н		
Grey Sunbird	Cyanomitra veroxii						L
Collared Sunbird	Hedydipna collaris						L
Amethyst Sunbird	Chalcomitra amethystina				Н		
Malachite Sunbird	Cinnyris afer						L
Southern Double-collared						М	
Sunbird Greater Double-collared	Cinnyris chalybeus						
Sunbird	Cinnyris afer					М	
Spectacled Weaver	Ploceus ocularis					M	
Southern Masked-Weaver	Ploceus velatus				Н		
Cape Weaver	Ploceus capensis				Н		
Village Weaver	Ploceus cucullatus						L
Red-billed Quelea	Quelea quelea					M	
Southern Red Bishop	Euplectes orix				Н		
Thick-billed Weaver	Amblyospiza albifrons						L
Red-collared Widowbird	Euplectes ardens				Н		
African Quailfinch	Ortygospiza atricollis					M	
Red-headed Finch	Amadina erythrocephala						L
Swee Waxbill	Coccopygia melanotis					М	
Common Waxbill	Estrilda astrild				Н		
Green-winged Pytilia	Pytilia melba						L
African Firefinch	Lagonosticta rubricata						L
Pin-tailed Whydah	Vidua macroura						L
Dusky Indigobird	Vidua funerea						L
House Sparrow	Passer domesticus		- 1		Н		
Cape Sparrow	Passer melanurus				Н		
Southern Grey-headed Sparrow	Passer diffuses				Н		
Yellow-throated Petronia	Petronia superciliaris						L
African Pied Wagtail	Motacilla aguimp						L
Cape Wagtail	Motacilla capensis				Н		
Cape Longclaw	Macronyx capensis					М	
African Pipit	Anthus cinnamomeus				Н		
Plain-backed Pipit	Anthus leucophrys						L
Long-billed Pipit	Anthus similis						L
Bushveld Pipit	Anthus caffer						L
Cape Canary	Serinus canicollis				Н		
Yellow-fronted Canary	Crithagra mozambicus					М	
Yellow Canary	Crithagra flaviventris						L
Brimstone Canary	Crithagra sulphuratus					М	
White-throated Canary	Crithagra albogularis						L

Common English Name	Scientific Name	Status Probability Codes occurrenc Scientific Name (see below) (see 4.2 abo			currence		
Name		R D	Ø	E	High	Mediu m	Lo w
Streaky-headed Seedeater	Crithagra gularis				-	М	
Cape Siskin	Crithagra totta						L
Cinnamon-breasted Bunting	Emberiza tahapisi					М	
Cape Bunting	Emberiza capensis					М	
Golden-breasted Bunting	Emberiza flaviventris						L

Red Status	Status in south Africa (S)	Endemism in South Africa (E)
NA = Not Assessed	BM = breeding migrant	Endemism in South Africa (E) (not southern Africa
LC = Least Concern	NBM = non-breeding migrant	as in field guides)
NT = Near-Threatened	V = vagrant	* = endemic
VU = Vulnerable	I = introduced	
EN = Endangered	R = rare	(*) = near endemic (i.e. ~70% or more of population in RSA)
CR = Critically Endangered	PRB = probable rare breeder	B* = breeding endemic
EX = Extinct Regionally	RB = rare breeder	B(*) = breeding near endemic
NR = Not Recognised	RV = rare visitor	W* = winter endemic
Red Status is from The Eskom Red Data Book of Birds of South Africa, Lesotho and Swaziland, Taylor (2015).		

Table 6.2: Red-listed species whose possible presence at the site of the proposed development was evaluated during the assessment process.

Species	Scientific name	Red Data¹	Assessment of likelihood of presence at site
Stork, Yellow-billed	Mycteria ibis	EN	Habitat not suitable - generally inhabits open, shallow water. Not recorded in the Pentads of the site (SABAP 2)
Stork, Black	Ciconia nigra	VU	Unlikely. Habitat not suitable. Recorded in the Pentads of the site (SABAP 2).
Secretarybird	Sagittarius serpentarius	VU	Possible, but unlikely. Site is too small and disturbed to host this species. Not recorded in the Pentads of the site (SABAP 2).
Bustard, Denham's	Neotis den hami	VU	Possible, but unlikely. Site and surroundings too disturbed to host this species. Not recorded in the Pentads of the site (SABAP 2).
Bustard, Ludwig's	Neotis ludwigii	EN	Possible. Recorded in the Pentads of the site (SABAP 2).
Bustard, Kori	Ardeotis kori	NT	Possible, but unlikely - requires large areas of suitable habitat and avoids disturbed landscapes. Recorded in the Pentads of the site (SABAP 2).
Tern, Caspian	Sterna caspia	VU	Extremely unlikely – no suitable habitat on site. Not recorded in the Pentads of the site (SABAP 2).
Falcon, Lanner	Falco biarmicus	VU	Occurrence possible, but the area is unlikely to be important hunting habitat. Not recorded in the Pentads of the site (SABAP 2).
Eagle, Verreaux's	Aquila verreauxii	VU	Unlikely. Largely confined to mountainous areas. However, occurs within 50 km of site, and therefore possible that birds traverse the area from time to time. Not recorded in the Pentads of the site (SABAP 2).
Eagle, Martial	Polemaetus bellicosus	EN	Possible, but unlikely - requires huge areas of suitable habitat and avoids disturbed landscapes. Recorded in the Pentads of the site (SABAP 2).
Marsh-harrier, African	Circus ranivorus	EN	Unlikely. Habitat not suitable. The site is too small and disturbed. Not recorded in the Pentads of the site (SABAP 2).
Finfoot, African	Podica senegalensis	VU	Extremely unlikely – requires slow-flowing water in large river systems. Habitat not suitable. The waterbodies are much too small and disturbed to hold this species. Not recorded in the Pentads of the site (SABAP 2).
Night Heron, White- backed	Gorsachius leuconotus	VU	Very unlikely. Requires clear, swift-or slow-flowing perennial rivers. Not recorded in the Pentads of the site (SABAP 2).

Species	Scientific name	Red Data¹	Assessment of likelihood of presence at site
Crane, Blue	Anthropoides paradiseus	NT	Likely. Recorded in the Pentads of the site (SABAP 2). Two were observed in the area south of the site.
Korhaan, Southern Black	Afrotis afra	VU	Possible, but unlikely. Site too small and surroundings too disturbed to host this species. Recorded in the Pentads of the site (SABAP 2).
Painted-snipe, Greater	Rostratula benghalensis	NT	Unlikely. Habitat not suitable, prefers freshwater wetlands, where it prefers secluded muddy areas adjacent to concealing vegetation. Not recorded in the Pentads of the site (SABAP 2).
Kingfisher, Half-collared	Alcedo semitorquata	NT	Extremely unlikely. Habitat not suitable. The waterbodies are too shallow and/or slow-flowing with no riverine habitat. Not recorded in the Pentads of the site (SABAP 2).
Roller, European	Coracias garrulus	NT	Possible, but unlikely. Habitat not suitable. Not recorded in the Pentads of the site (SABAP 2).

¹Current (2015) IUCN Red List Status for South Africa, Lesotho and Swaziland (Taylor et al. 2015). NT = Near Threatened; VU = Vulnerable; EN = Endangered; CR = Critically Endangered

6.2.3 Threatened and Red Listed Bird Species

A total of 18 threatened or near-threatened species (Taylor, Peacock & Wanless, 2015) were previously recorded in the general area where the site is located (Table 6.3).

However, of these 18 species, only six were recorded in the Pentads of the study site (SAPAB 2), namely the Blue crane, Kori bustard, Ludwig's bustard, Black stork, Southern black korhaan and Martial eagle. Two blue cranes were observed during the site visit in the buffer area south of the site.

There are not many full protocols for these Pentads. The possibility exists that species such as the Secretary bird may from time to time occur on the site. However, for most Red Data species the nature of the site is such that their occurrence is unlikely (Table 3). Due to the limited extent and quality of the habitats, half the species are expected to be at best erratic visitors and the other half are only expected as infrequent vagrants, their inclusion being primarily due to the Precautionary Principle. As can be seen from the estimates of the habitats as support for the basic requirements of the species, they are considered at best as only mediocre for all the threatened species. The odd Verreaux's eagle may fly over the site, but the area is unlikely to be an important hunting or scavenging habitat.

6.2.4 Martial Eagle (*Polemaetus bellicosus*)

According to the Screening Tool Report on the Proposed development for the Mayogi PV Facility, Eastern Cape Province, scheduled for a solar farm, the Martial Eagle (*Polemaetus bellicosus*) has a high sensitivity.

The occurrence of the martial eagle on the site is very unlikely. The martial eagle requires huge areas of suitable habitat and avoids disturbed landscapes. The martial eagle is recorded in the Pentads of the site (SABAP 2).

The odd martial eagle may fly over the site, but the area is unlikely to be an important hunting or scavenging habitat. The martial eagle should not occur on the site as a breeding species.

6.2.5 Secretarybird (Sagittarius serpentarius)

According to the Screening Tool Report on the Proposed development for the Mayogi PV Facility, Eastern Cape Province, scheduled for a solar farm, the Secretarybird (*Sagittarius* serpentarius) has a high sensitivity.

The occurrence of the Secretarybird on the site is possible, but unlikely. The site is too small and disturbed to host this species. The Secretarybird is not recorded in the Pentads of the site (SABAP 2).

The odd Secretarybird may fly over the site, but the area is unlikely to be an important hunting or scavenging habitat. The Secretarybird should not occur on the site as a breeding species.

6.2.6 Southern Black Korhaan (Afrotis afra)

According to the Screening Tool Report on the Proposed development for the Mayogi PV Facility, Eastern Cape Province, scheduled for a solar farm, the southern black korhaan (*Afrotis afra*) has a high and medium sensitivity.

The occurrence of the southern black korhaan on the site is possible, but unlikely. The site is too small and disturbed to host this species. The southern black korhaan is recorded in the Pentads of the site (SABAP 2).

The site is too disturbed, and the area is unlikely to be an important habitat for this species. The southern black korhaan should not occur on the site as a breeding species.

6.3 HERPETOFAUNA

6.3.1 Herpetofauna Habitat Assessment

The local occurrences of reptiles and amphibians are closely dependent on broadly defined habitat types, in particular terrestrial, arboreal (tree-living), rupicolous (rock-dwelling) and wetland-associated vegetation cover. It is thus possible to deduce the presence or absence of reptile and amphibian species by evaluating the habitat types within the context of global distribution ranges.

From a herpetological habitat perspective, it was established that two of the four major habitat types are well represented on the study site, namely terrestrial (the herbaceous layer, Figure 6.1 above) and arboreal (trees-living as habitat, Figure 6.2 above). Most of the study site consists of terrestrial habitat, disturbed by anthropogenic activities, resulting in dominance of two seasonal *Mesembryanthemum* species (e.g. Figure 5.8 above). Some areas of the study site have been altered by agricultural activities, overgrazing by game, invasive plants, periodical veldfires, wire fences, gravel roads and powerlines. The study site is thus ecologically disturbed in most parts. No moribund termitaria were recorded on the study site. These structures are generally good indicators of the occurrence of small herpetofauna. Little rock-embedded limestone veld (Figure 6.5 below) occurs on the relevant northern part of the farm. Rock habitats are present on the southern part (Figure 6.4 below), where no development is proposed. Except for small, seasonal, man-made dams there is no wetland habitat within the study site.

Accordingly, it is estimated that the herpetofauna population density for the study site is low. The basal cover was poor in many places and would not provide adequate cover for small terrestrial herpetofauna. The herbaceous layer of the study site has been transformed in some areas and due to arid conditions, prey is probably sparsely distributed, so foraging grounds would need to be extensive to support some herpetofauna species populations.

Due to the presence of natural rupicolous habitat, some species like southern karusa lizard, western rock skink and rock agama were added to the species list in Table 6.4 (below).

Figure 6.4:A ridge just south of the site boundary.

Figure 6.5: Rock-embedded limestone veld.

There is one non-perennial drainage line on the site. Small temporary dams occur in the drainage line. At the time of the site visit the drainage line and the dams were basically dry.

6.3.2 Expected and Observed Herpetofauna Species Richness

Sixty-six reptile species (Table 6.4) and 17 amphibian species (Table 6.5) may possibly occur on the study site.

The American red-eared terrapin (*Trachemys scripta elegans*) and the Brahminy blind snake (*Indotyphlops braminus*) are the only two feral reptile or amphibian species known to occur or have occurred in South Africa (De Moor and Bruton, 1988; Picker and Griffiths, 2011), but with only a few populations, they are not expected to occur on this site.

The species assemblage is typical of what can be expected of habitat that is severely disturbed or transformed, but with sufficient habitat to sustain populations. Most of the reptile species of the resident diversity (Table 6.4) are fairly common and widespread (viz. common house snake, common sand lizard, southern karusa lizard, western rock skink, variegated skink, southern rock agama. Widespread Amphibia species (Table 6.5) include raucous toad and Boettger's Caco.

The expected herpetofauna species richness is low as only two habitat types are prominent on the site.

Table 6.4: The Reptile and Amphibia species deduced to from time to time reside the site. Systematic arrangement and nomenclature according to Branch (1998), Bates, *et.al* 2014 and Alexander & Marais (2007).

Probability:

High Definitely there or have a *high* probability to occur;

Medium probability to occur based on ecological and distributional parameters;

Low probability to occur based on ecological and distributional parameters.

	SCIENTIFIC NAME	ENGLISH NAME
	CLASS: REPTILIA	REPTILES
	Order: TESTUDINES	TORTOISES & TERRAPINS
	Family: Pelomedusidae	Side-necked Terrapins
Low	Pelomedusa subrufa	Marsh Terrapin
	Family: Testudinidae	Tortoises
Low	Chersina angulata	Angulate Tortoise
Low	Homopus areolatus	Parrot-Beaked Dwarf Tortoise
Low NT	Homopus boulengeri	Karoo Dwarf Tortoise
Low	Psammobates tentorius	Tent tortoise
High	Stigmochelys pardalis	Leopard Tortoise
	Order: SQUAMATA	SCALE-BEARING REPTILES
	Suborder:LACERTILIA	LIZARDS
	Family: Gekkonidae	Geckos
High	Chondrodactylus bibronii	Bibron's Gecko
Low	Goggia essexi	Essex's Pygmy Gecko
Low	Hemidactylus mabouia	Common Tropical House Gecko
Low	Pachydactylus capensis	Cape Gecko
Low	Pachydactylus geitje	Ocellated Gecko
Medium	Pachydactylus maculatus	Spotted Gecko

	SCIENTIFIC NAME	ENGLISH NAME
Medium	Pachydactylus mariquensis	Common Banded Gecko
· · · · · · · · · · · · · · · · · · ·	Family:Lacertidae	Old World Lizards or Lacertids
Medium	Nucras lalandii	Delalande's Sandveld Lizard
Low	Nucras livida	Karoo Sandveld Lizard
Low NT	Nucras taeniolata	Albany Sandveld Lizard
Low	Pedioplanis burchelli	Burchell's Sand Lizard
High	Pedioplanis lineoocellata puchella	Common Sand Lizard
Low	Tropidosaura montana	Common Mountain Lizard
LOW	Family: Cordylidae	Common Wountain Elzara
Low	Chamaesaura anguina	Cape Grass Lizard
High	Cordylus cordylus	Cape Girdled Lizard
High	Karusasaurus polyzonus	Southern Karusa Lizard
Low	Pseudocordylus microlepidotus	Cape Craig Lizard
LOW	microlepidotus	Cape Graig Lizard
	Family: Gerrhosauridae	Plated Lizards
Medium	Gerrhosaurus flavigularis	Yellow-throated Plated Lizard
Low	Tetrdactylus tetradactylus	Cape Long-Tailed Seps
LOW	Family: Scincidae	Skinks
Low	Acontias gracilicauda	Thin-tailed Legless Skink
Medium	Acontias meleagris	Cape Legless Skink
High	Trachylepis capensis	Cape Skink
Low	Trachylepis sulcata	Western Rock Skink
Medium	Trachylepis suicata Trachylepis varia	Variable Skink
Low	Trachylepis variegata Scelotes caffer	Variegated Skink
Low		Cape Dwarf Burrowing Skink Monitors
Low	Family: Varanidae	
Low	Varanus albigularis	Southern Rock Monitor
Low	Varanus niloticus	Nile Monitor Chameleons
Lliab	Family: Chamaeleonidae	
High	Bradypodion ventrale	Eastern Cape Dwarf Chameleon
Lliada	Family: Agamidae	Agamas
High	Agama aculeata	Western Ground Agama
High	Agama atra	Southern Rock Agama
	Subordor, SEDDENTES	CNAVEC
	Suborder: SERPENTES	SNAKES Blind Snakes
Madium	Family: Typhlopidae	Blind Snakes
Medium	Rhinotyphlops lalandei	Delalande's Beaked Blind Snake
I II ada	Family: Leptotyphlopidae	Thread Snakes
High	Leptotyphlops nigricans	Black Thread Snake
1.151-	Family: Viperidae	Adders
High	Bitis arietans	Puff Adder
Low	Bitis atropos	Berg Adder
Medium	Causus rhombeatus	Rhombic Night Adder
Marth	Family: Lamprophiidae	Disable handed Continued 5
Medium	Aparallactus capensis	Black-headed Centipede Eater
Low	Homoroselaps lacteus	Spotted Harlequin Snake
High	Boaedon capensis	Common House Snake
Low	Lamprophis aurora	Aurora House Snake
Low	Lamprophis fuscus	Yellow-bellied Snake
Low	Lamprophis guttatus	Spotted Rock Snake
Low	Lycodonomorphus inornatus	Olive Ground Snake
Low	Lycodonomorphus laevissimus	Dusky-Bellied Water Snake

	SCIENTIFIC NAME	ENGLISH NAME
Low	Lycodonomorphus rufulus	Brown Water Snake
Low	Lycophidion capense	Cape Wolf Snake
Medium	Psammophis crucifer	Cross-Marked Grass Snake
Low	Psammophis notostictus	Karoo Sand Snake
High	Psammophylax rhombeatus	Spotted Grass Snake
Low	Duberria lutrix	Common Slug Eater
Low	Prosymna sundevallii	Sundevall's Shovel-snout
Medium	Pseudaspis cana	Mole Snake
	Family: Elapidae	Cobras, Mambas and Others
Low	Aspidelaps lubricus	Coral Shield Cobra
High	Hemachatus haemachatus	Rinkhals
Low	Naja nivea	Cape Cobra
	Family: Colubridae	
High	Crotaphopeltis hotamboeia	Red-Lipped Snake
Low	Dasypeltis scabra	Rhombic Egg Eater
Low	Philothamnus occidentalis	Western Natal Green Snake
Low	Philothamnus semivariegatus	Spotted Bush Snake
Low	Dispholidus typus	Boomslang

Red Listed Reptiles of South Africa, Lesotho and Swaziland (2014) are indicated in the first column: CR= Critically Endangered, En = Endangered, Vu = Vulnerable, NT = Near Threatened, DD = Data Deficient. All other species are deemed of Least Concern

Table 6.5: The Amphibia species deduced to from time to time reside the site.

Systematic arrangement and nomenclature according to Minter, et.al (2004), Bates, et.al (2014) and Du Preez & Carruthers (2017).

Probability:

High Definitely there or have a high probability to occur;

Medium probability to occur based on ecological and distributional parameters;

Low probability to occur based on ecological and distributional parameters.

hilly to occur based on coological a	na diotribational paramotore:
CLASS: AMPHIBIA	AMPHIBIANS
Order: ANURA	FROGS
Family: Pipidae	Clawed Frogs
Xenopus laevis	Common Platanna
Family: Bufonidae	Toads
Sclerophrys capensisi	Raucous Toad
Sclerophrys pardalis	Eastern Leopard Toad
Vandijkophrynus gariepensis	Karoo Toad
Family: Hyperoliidae	Reed Frogs
Hyperolius marmoratus	Painted Reed Frog
Hyperolius semidiscus	Yellow-striped Reed Frog
Kassina senegalesis	Bubbling Kassina
Semnodactylus wealii	Rattling Frog
Family: Brevicipitidae	Rain Frogs
Breviceps adspersus pentheri	Bushveld Rain Frog
Family: Phrynobatrachidae	Puddle Frog
Phrynobatrachus natalensis	Snoring Puddle Frog
Family: Pyxicephalidae	Striped Stream Frog
Amietia delalandii	Common River Frog
Amieta poyntoni	Poynton's River Frog
	CLASS: AMPHIBIA Order: ANURA Family: Pipidae Xenopus laevis Family: Bufonidae Sclerophrys capensisi Sclerophrys pardalis Vandijkophrynus gariepensis Family: Hyperoliidae Hyperolius marmoratus Hyperolius semidiscus Kassina senegalesis Semnodactylus wealii Family: Brevicipitidae Breviceps adspersus pentheri Family: Phrynobatrachidae Phrynobatrachus natalensis Family: Pyxicephalidae Amietia delalandii

High	Strongylopus grayii	Clicking Stream Frog
Low	Strongylopus fasciatus	
High	Cocosternum boettgeri	Boettger's Caco
Low	Cocosternum nanum namum	Bronze Caco
Low	Pyxicephalus adspersus	Giant Bullfrog
High	Tomopterna tandy	Tandy's Sand Frog
Low	Tomopterna delalandii	Cape Sand Frog

Red Data species rankings as defined in Minter, *et.al*, (2004) Atlas and Red Data Book of the Frogs of South Africa, Lesotho and Swaziland (2004) and Bates, *et.al*, (2014) Atlas and are indicated in the first column: CR= Critically Endangered, En = Endangered, Vu = Vulnerable, NT = Near Threatened, DD = Data Deficient. All other species are deemed of Least Concern

6.3.3 Threatened and Red listed Reptile and Amphibian Species

The study site falls outside the natural range of the following terrestrial Eastern Cape Province Red Data herpetofauna species: Karoo dwarf tortoise, the Nile crocodile, salt marsh gecko, Cottrell's mountain lizard, coppery grass lizard, Fitzsimons' long-tailed seps, variable legless skink, Pondo dwarf chameleon, Kentani dwarf chameleon, Kwazulu dwarf chameleon, Elandsberg dwarf chameleon, forest thread snake, Albany adder, plain mountain adder, Kwazulu-Natal black snake, eastern green mamba, mistbelt chirping frog, Hogsback chirping frog, Hewitt's ghost frog, Amatola toad, kloof frog, Bilbo's rain frog and Knysna leaf-folding frog.

The study site lies near the centre of the distribution range of the Albany Sandveld Lizard (*Nucras taeniolata*) and there is a small possibility that this species, with the Red Data status of **Near Threatened**, may occur on the site.

6.4 General site assessment

The terrestrial habitat type on site has been altered by activities, clearing of vegetation, overgrazing by game, invasive plants, periodical veldfires, wire fences, gravel roads and powerlines.

Since the wetland system (one non-perennial drainage line) enjoys statutory protection, it is flagged as having a 'High Conservation Sensitivity'.

Screening Tool Animal species sensitivity is given as **High**. However, the author's impression is that the mammal species sensitivity is currently rather **Low** on the specific site, particularly on the northern part of the study site. Mayogi is (was) a game farm and several animal species (game species) occurred there from time to time. The Daniell Cheetah breeding project is located across the road. The many nature reserves/game farms in the area have inflated the estimate for animal species sensitivity:

Although Avian sensitivity is mentioned as **Low**, three bird species are mentioned under "**Animal** species sensitivity" as having medium sensitivity. A breeding pair of blue cranes were observed on the southern part of the area, which is excluded from this study.

From the vertebrate fauna perspective, sensitivity on site for the Terrestrial Biodiversity cannot be **Very High** (**disputed**) and is therefore regarded as being **Low**.

7. IMPACT ASSESSMENT

7.1: Planned Layout

JUWI provided the following layout plans via SiVest:

1. Red Rocket is going to construct a **new 132kV overhead** line across the property (Figure 7.1 below).

Figure 7.1: The new 132 kV Overhead line running across both the PV 1 and PV 2 sites.

2. Substations

There are three alternative locations for the PV 1 Substation:

Each substation location will consist of around 4ha and contain the proposed:

- O&M building
- Construction Laydown area
- Substation yard: IPP and Eskom (self-built side)
- BESS

Alternative 1:

Connect to the "Skilpad" substation on the northwest side (Figure 7.2 below). This implies to build a Substation containing the "IPP and Self-built side" to the **north** of the OHL. Then construct an "OHL as Self-built prospect to hand over one day" The OHL will connect the IPP/Self-built substation to the nearby Skilpad substation (Figure 7.3 below).

(Note: This will also imply a new OHL coming from the adjacent PV 2 site Substation).

Figure 7.2: Connect to the Skilpad Substation from the north-western side.

Figure 7.3: Substation containing the "IPP and Self-built side" to the **north** of the kV 132 OHL.

Alternative 2: Connect to the "Skilpad" substation on the south-western side (Figure 7.4 below). This will imply that PV1: substation will be directly **south-east** of the "Skilpad" substation (Figure 7.5 below).

(Note: This will imply that the PV2: substation will be 2km away and therefor need an OHL to connect the 132kV power line into the PV1 substation, onto a common 132kV busbar).

Figure 7.4: Connect to the Skilpad Substation from the south-western side.

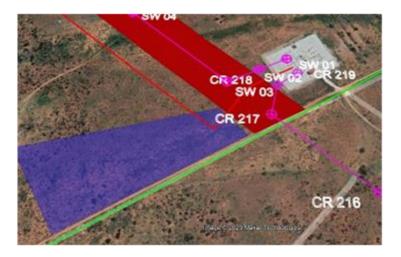


Figure 7.5: The PV 1 substation close to, south-east of the Skilpad Substation.

Alternative 3: This is basically similar to Alternative 2, but the PV 2 substation will be incorporated into the PV 1 substation, i.e. on the same location. (Figure 7.6 below).



Figure 7.6: The PV 1 and PV 2 Substations built on the same locality

Apart from the above infrastructure and the No-Go Areas, [namely (i) the Mesic Thicket with spekboom in the south-eastern corner, (ii) the Daniell Cheetah Project area, (except the gate and access road) and (iii) the two Drainage Lines and their buffer areas] the rest of the available area will be used for the solar PV panels, associated roads cables and irrigation piping.

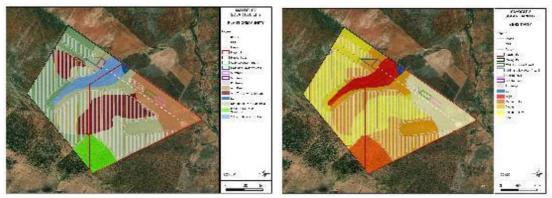


Figure 7.7: The final positions of the substations and other infrastructure over the plant community and sensitivity maps.

7.2 Methods

The following methodology was provided by SiVEST.

1. ENVIRONMENTAL IMPACT ASSESSMENT (EIA) METHODOLOGY

The Environmental Impact Assessment (EIA) Methodology assists in evaluating the overall effect of a proposed activity on the environment. Determining of the significance of an environmental impact on an environmental parameter is determined through a systematic analysis.

1.1 Determination of Significance of Impacts

Significance is determined through a synthesis of impact characteristics which include context and intensity of an impact. Context refers to the geographical scale (i.e. site, local, national or global), whereas intensity is defined by the severity of the impact e.g. the magnitude of deviation from background conditions, the size of the area affected, the duration of the impact and the overall probability of occurrence. Significance is calculated as shown in **Table 1**.

Significance is an indication of the importance of the impact in terms of both physical extent and time scale, and therefore indicates the level of mitigation required. The total number of points scored for each impact indicates the level of significance of the impact.

1.2 Impact Rating System

The impact assessment must take account of the nature, scale and duration of effects on the environment and whether such effects are positive (beneficial) or negative (detrimental). Each issue / impact is also assessed according to the various project stages, as follows:

Planning;

- Construction:
- Operation; and
- Decommissioning.

Where necessary, the proposal for mitigation or optimisation of an impact should be detailed. A brief discussion of the impact and the rationale behind the assessment of its significance has also been included.

The significance of Cumulative Impacts should also be rated (As per the Excel Spreadsheet Template).

1.2.1 Rating System Used to Classify Impacts

The rating system is applied to the potential impact on the receiving environment and includes an objective evaluation of the possible mitigation of the impact. Impacts have been consolidated into one.

(1) rating. In assessing the significance of each issue the following criteria (including an allocated point system) is used.

Table 7.1: Rating of impacts criteria

ENVIRONMENTAL PARAMETER

A brief description of the environmental aspect likely to be affected by the proposed activity (e.g. Surface Water).

ISSUE / IMPACT / ENVIRONMENTAL EFFECT / NATURE

Include a brief description of the impact of environmental parameter being assessed in the context of the project. This criterion includes a brief written statement of the environmental aspect being impacted upon by a particular action or activity (e.g. oil spill in surface water).

EXTENT (E)

This is defined as the area over which the impact will be expressed. Typically, the severity and significance of an impact have different scales and as such bracketing ranges are often required. This is often useful during the detailed assessment of a project in terms of further defining the determined.

1	Site	The impact will only affect the site
2	Local/district	Will affect the local area or district
3	Province/region	Will affect the entire province or region
4	International and National	Will affect the entire country

PROBABILITY (P)

This describes the chance of occurrence of an impact

1	Unlikely	The chance of the impact occurring is extremely low (Less than a 25% chance of occurrence).
2	Possible	The impact may occur (Between a 25% to 50% chance of occurrence).
3	Probable	The impact will likely occur (Between a 50% to 75% chance of occurrence).

		Impact will certainly occur (Greater than a 75% chance of
4	Definite	occurrence).
1	RSIBILITY (R)	
This	* *	npact on an environmental parameter can be successfully reversed upon
1	Completely reversible	The impact is reversible with implementation of minor mitigation measures
2	Partly reversible	The impact is partly reversible but more intense mitigation measures are required.
3	Barely reversible	The impact is unlikely to be reversed even with intense mitigation measures.
4	Irreversible	The impact is irreversible and no mitigation measures exist.
	PLACEABLE LOSS OF RESOUR	• •
	<u> </u>	ources will be irreplaceably lost as a result of a proposed activity.
1	No loss of resource.	The impact will not result in the loss of any resources.
2	Marginal loss of resource	The impact will result in marginal loss of resources.
3	Significant loss of resources	The impact will result in significant loss of resources.
4	Complete loss of resources	The impact is result in a complete loss of all resources.
	ATION (D)	
the	describes the duration of the impaced actived as a result of the proposed actived actives.	
1	Short term	The impact and its effects will either disappear with mitigation or will be mitigated through natural process in a span shorter than the construction phase $(0-1 \text{ years})$, or the impact and its effects will last for the period of a relatively short construction period and a limited recovery time after construction, thereafter it will be entirely negated $(0-2 \text{ years})$.
2	Medium term	The impact and its effects will continue or last for some time after the construction phase but will be mitigated by direct human action or by natural processes thereafter (2 – 10 years).
3	Long term	The impact and its effects will continue or last for the entire operational life of the development, but will be mitigated by direct human action or by natural processes thereafter (10 – 50 years).
4	Permanent	The only class of impact that will be non-transitory. Mitigation either by man or natural process will not occur in such a way or such a time span that the impact can be considered transient (Indefinite).
	ISITY / MAGNITUDE (I / M)	
	ribes the severity of an impact (i.e. tem permanently or temporarily).	whether the impact has the ability to alter the functionality or quality of
1	Low	Impact affects the quality, use and integrity of the system/component in a way that is barely perceptible.
2	Medium	Impact alters the quality, use and integrity of the system/component but system/ component still continues to function in a moderately modified way and maintains general integrity (some impact on integrity).
		<u>. </u>

I			Impact affects the continued viability of the system/component and
			the quality, use, integrity and functionality of the system or
	3	High	component is severely impaired and may temporarily cease. High
		3	costs of rehabilitation and remediation.
			Impact affects the continued viability of the system/component and
			the quality, use, integrity and functionality of the system or
			component permanently ceases and is irreversibly impaired
			(system collapse). Rehabilitation and remediation often impossible.
	1	Very high	If possible rehabilitation and remediation often unfeasible due to
	7	very mgm	extremely high costs of rehabilitation and
			remediation.
ŀ		CICNIFICANO	(6)

SIGNIFICANCE (S)

Significance is determined through a synthesis of impact characteristics. Significance is an indication of the importance of the impact in terms of both physical extent and time scale, and therefore indicates the level of mitigation required. This describes the significance of the impact on the environmental parameter. The calculation of the significance of an impact uses the following formula:

Significance = (Extent + probability + reversibility + irreplaceability + duration) x magnitude/intensity.

The summation of the different criteria will produce a non-weighted value. By multiplying this value with the magnitude/intensity, the resultant value acquires a weighted characteristic which can be measured and assigned a significance rating.

Points	Impact Significance Rating	Description
5 to 23	Negative Low impact	The anticipated impact will have negligible negative effects and will require little to no mitigation.
5 to 23	Positive Low impact	The anticipated impact will have minor positive effects.
24 to 42	Negative Medium impact	The anticipated impact will have moderate negative effects and will require moderate mitigation measures.
24 to 42	Positive Medium impact	The anticipated impact will have moderate positive effects.
43 to 61	Negative High impact	The anticipated impact will have significant effects and will require significant mitigation measures to achieve an acceptable level of impact.
43 to 61	Positive High impact	The anticipated impact will have significant positive effects.
62 to 80	Negative Very high impact	The anticipated impact will have highly significant effects and are unlikely to be able to be mitigated adequately. These impacts could be considered "fatal flaws".
62 to 80	Positive Very high impact	The anticipated impact will have highly significant positive effects.

The results of the Impact Assessment are presented in **Table 7.2** below.

As the Mesic Thicket with Spekboom and the Valley with Drainage Lines are both No-Go areas, and there will be no development, there will be no impacts in these two plant communities, therefore they are excluded from Table 7.2.

7.3 Results of Impact Assessment

ENVIRONMENTA L PARAMETER	ISSUE / IMPACT / ENVIRONMENTA						L SI		CANCE		RECOMMENDED MITIGATION MEASURES	ı		RON R M				GNIFI	CANCE	
Construction Phas	L EFFECT/ NATURE	E	P	R	L	D	/ M	TOTAL	STATUS (+ OR -)	S		E	P	R	L	D	I / M	FOTAL	STATUS (+ OR -)	S
Construction Phas	se		1	<u> </u>	<u> </u>	<u> </u>			1 07					1			l		1 07	
Although this Albany Alluvial Vegetation Type	A fairly large part of this vegetation is regarded as	1	3	2	2	1	2	18	-18	Low	Except for the current Skilpad substation and	1	3	2	2	1	1	9	-9	Lov
(present only on Mayogi PV 1 site) is regarded as	restricted (No- Go) area e.g. around Daniell										planned developments leave the N0-G0									
Endangered , little or no elements typical remained	Cheetah Project, small drainage line and overhead										areas in the north-eastern corner intact.									
on the small patch present on the site. The vegetation is	powerline servitudes. However, there will be some										Strictly control access to the No-Go area during									
totally transformed, the plant community	development in the vicinity of the Skilpad										construction phase.									
identified is the Arid Karoo : Low species richness,	substation, e.g. new Alternative 3 substation south										Avoid any grazing to allow recovery by natural									
-1 >====================================	of the Skilpad,										succession. Disturb as little as									

Low ecological	substation or										possible in the									
sensitivity.	Alternative 1										powerline									
	north of the 132										servitude									
	kV Overhead																			
	powerline, maybe																			
	some solar PV																			
	panels, etc. in the																			
	remaining area.																			
	This will impact																			
	on vegetation and																			
	plant species																			
Manadadana	Observe of the		_					00	00		The desired			_				40	10	
Vegetation and	Clearing of this	1	3	3	2	1	2	20	-20	Low	The clearing of	1	3	3	2	1	1	10	-10	Low
plant species in	vegetation for the										vegetation must									
the Dry Thicket	solar PV panels and associated										be kept to a									
with Euphorbia on both the PV 1											minimum and remain within the									
and PV 2 sites):	cables, access roads, water										footprint									
Medium species	piping and other										development –									
richness, Medium	associated										leave the rest of									
ecological	infrastructure will										the area with									
sensitivity.	result in impacts										natural vegetation									
Sundays Arid	on vegetation and										intact, but there is									
Thicket (=	plant species										very little, if any									
Sundays	loss.										natural vegetation									
Noorsveld) is											left. Remove alien									
listed as											invasive species									
Vulnerable in the											wherever possible									
2022 NEMBA list.											Disturbed open									
											areas must be									
											rehabilitated									
											immediately after									
											construction has									
											been completed									

											During the construction phase workers must be limited to areas under construction and access to adjacent areas must be strictly controlled Rehabilitated areas must be monitored to ensure the establishment of re-vegetated areas. Plant only indigenous grass — no alien species.									
Vegetation and plant species in the Arid Thicket on Limestone on both PV 1 and PV 2 sites: Low species richness, Medium-Low ecological sensitivity	Clearing of this vegetation for the solar panels and for Alternative 2 Substation solar PV panels and associated cables, access road, water piping and other associated infrastructure will	1	2	3	1	1	2	16	-16	Low	The clearing of vegetation must be kept to a minimum and remain within the footprint development – leave the rest of the area with natural vegetation intact, but there is very little, if any,	1	3	3	1	1	1	9	-9	Low

result in impacts	natural vegetation	
on vegetation and	left. Remove alien	
plant species	invasive species	
loss.	wherever possible	
	Disturbed open	
	areas must be	
	rehabilitated	
	immediately after	
	construction has	
	been completed	
	During the	
	construction	
	phase workers	
	must be limited to	
	areas under	
	construction and	
	access to	
	adjacent areas	
	must be strictly	
	controlled	
	· Rehabilitated	
	areas must be	
	monitored to	
	ensure the	
	establishment of	
	re-vegetated	
	areas.	
	· Plant only	
	indigenous grass	
	no alien species	
	- no alien species	

Vegetation and	Clearing of this	1	2	3	1	1	2	16	-16	Low	The clearing of	2	2	1	2	1	1	8	-8	Low
plant species in	vegetation for the										vegetation must									
the Disturbed	solar PV panels										be kept to a									
Open Thicket	and associated										minimum and									
restricted to the	cables, access										remain within the									
PV 2 site: Low	road, water piping										footprint									
species richness,	and other										development -									
Medium-Low	associated										leave the rest of									
ecological	infrastructure will										the area with									
sensitivity	result in										natural vegetation									
-	vegetation and										intact, but there is									
	plant species										very little, if any,									
	loss.										natural vegetation									
											left. Remove alien									
											invasive species									
											wherever possible									
											Disturbed open									
											areas must be									
											rehabilitated									
											immediately after									
											construction has									
											been completed									
											· During the									
											construction									
											phase workers									
											must be limited to									
											areas under									
											construction and									
											access to									
											adjacent areas									
											must be strictly									
											controlled									
											Rehabilitated									
											areas must be									

											monitored to ensure the establishment of re-vegetated areas. Plant only indigenous grass no alien species									
Increase of alien and invasive plant species	Alien invasive plant species and weeds may encroach into any disturbed areas particularly areas cleared for the proposed development	2	2	2	2	1	2	18	-18	Low	An alien invasive management programme must be incorporated into the Environmental Management Programme; Ongoing alien plant control must be undertaken; Areas which have been disturbed will be quickly colonised by invasive alien species. An ongoing management plan must be implemented for the clearing/eradicati on of alien	2	1	1	2	1	1	7	-7	Low

											species. Monitor all sites disturbed by construction activities for colonisation by exotics or invasive plants and control these as they emerge. Avoid planting of exotic plant species, use indigenous grass species.									
Mammals, unlikely to occur in the way of the construction, if present likely to move away.	Direct impacts on mammals and habitat loss by destruction	2	2	2	2	1	2	18	-18	Low	Should any mammal species be encountered or exposed during the construction phase, they should be removed and relocated to natural areas in the vicinity. The contractor must ensure that no indigenous mammal species are disturbed, trapped, hunted or killed during the construction	1	4	1	2	1	1	9	-9	Low

phase.
Conservation-
orientated
clauses should be
built into contracts
for construction
personnel,
complete with
penalty clauses
for non-
compliance. The
appropriate
agency should
implement an
ongoing
monitoring and
eradication
program for all
invasive plant
species growing
on the site. Any
post-development
re-vegetation or
landscaping
exercise should
use grass species
indigenous to the
area are preferred

The construction	Direct impacts on	2	2	2	2	1	2	18	-18	Low	The spatial extent	2	1	1	1	1	1	6	-6	Low
of the facility may	birds and habitat										of construction									
lead to limited	loss										activities be									
habitat loss and											minimized, The									
with little direct											boundaries of the									
impacts on the											development									
birds											footprint areas									
											are to be clearly									
											demarcated and it									
											must be ensured									
											that all									
											construction									
											activities remain									
											within the									
											demarcated									
											footprint area.									
											Any bird nests									
											that are found									
											during the									
											construction									
											period must be									
											reported to the									
											Environmental									
											Control Officer									
											(ECO). Provide									
											adequate briefing									
											for site personnel									
											and residents									
											prior to									
											construction.									
											breeding and									
											foraging in the									
											area should be									

											minimized and controlled.									
Birds disturbance due to human activities	The presence of vehicles and construction workers will cause disturbance to avifauna, with the movement and activities of personnel on site and the associated noise, pollution and litter all having a negative effect on birds. In addition, the presence of construction workers will increase the probability of activities such as illegal hunting of	2	3	1	2	1	2	18	-18	Low	Movement of construction vehicles and workers beyond the boundary of the site must be minimized. In addition, workers must be instructed to minimize disturbance of birds at all times, and steps must be taken to ensure that no illegal hunting occurs. The boundaries of the development footprint areas are to be clearly	2	2	1	2	1	1	8	-8	Low

	birds. The	1									demarcated and it			T						
											must be ensured									
	permanent										that all activities									
	presence of a										remain within the									
	much larger																			
	number of people										demarcated									
	than presently										footprint area.									
	occur at the site										Disturbance by									
	will result in										residents of birds									
	greater										breeding and									
	disturbance of										foraging in the									
	birds that use the										area should be									
	area for foraging										minimized.									
	and breeding.										Provide adequate									
											briefing for site									
											personnel. Any									
											bird nests that are									
											found during the									
											construction									
											period must be									
											reported to the									
											Environmental									
											Control Officer									
											(ECO) and									
											residents should									
											always be aware									
											of the importance									
											of birds in their									
											built environment.									
Birds possibility	Electrical	2	2	1	2	1	1	8	-8	Low	Normal safety	2	1	1	1	1	1	6	-6	Low
of electrocution	infrastructure										measures for									
	such as OHL										electrical									
	pose a potential																			
	collision risk to																			

	flying birds, and a potential electrocution risk to perching birds. The magnitudes of these risks are much lower than the corresponding risks associated with large overhead transmission lines.										installations as used by Eskom									
Reptile or amphibia species may be influenced. The current habitat is mostly disturbed terrestrial habitat	Direct impact on herpetofauna and habitat destruction, unlikely to be present at PV construction site, Those present may move away, slower movement. The footprint for the proposed residential development will result in clearing most of the vegetation area. This will result in some loss of	2	2	2	2	1	2	18	-18	Low	Should any reptile or amphibia species are encountered or exposed during the construction phase, they should be removed and relocated to natural areas in the vicinity. The contractor must ensure that no indigenous herpetofauna species are disturbed, trapped, hunted or killed during	1	4	1	2	1	1	9	-9	Low

herpetofauna	the construction
habitat.	phase. During the
Habitat.	construction
	phase there may
	be increased
	surface runoff and
	a decreased
	water quality.
	Completing
	construction
	during the winter
	months would
	mitigate the
	environmental
	impact. The
	appropriate
	agency should
	implement an
	ongoing
	monitoring and
	eradication
	program for all
	invasive plant
	species growing
	on the site. Any
	post-development post-development
	re-vegetation or
	landscaping
	exercise should
	use species
	indigenous to the
	area.

Operational Phase																				
Although this Albany Alluvial Vegetation Type is regarded as Endangered, little or no elements typical remained on the small patch present on the PV 1 site. The vegetation is totally transformed, the plant community identified is the Arid Karoo: Low species richness, Low ecological sensitivity.	Maintenance of facility	1	3	2	1	4	1	11	-11	Low	Except for the current Skilpad substation and planned developments leave the N0-G0 areas in the north-eastern corner intact. Strictly control access to the No-Go area during operational phase. Avoid any grazing to allow recovery by natural succession. Disturb as little as possible in the powerline servitude	1	2	2	1	4	1	10	-10	Low
Vegetation and plant species in the Dry Thicket with Euphorbia: Medium species richness, Medium	Maintenance of facility	1	3	2	1	4	1	11	-11	Low	Remove alien invasive species wherever possible Disturbed open areas must be rehabilitated	1	2	2	1	4	1	10	-10	Low

ecological sensitivity. Sundays Arid Thicket (= Sundays Noorsveld) is listed as Vulnerable in the 2022 NEMBA list.											immediately after construction has been completed Rehabilitated areas must be monitored to ensure the establishment of re-vegetated areas. Plant only indigenous grass – no alien species.									
Vegetation and plant species in the Arid Thicket on Limestone: Low species richness, Medium-Low ecological sensitivity	Maintenance of facility	1	3	2	1	4	1	11	-11	Low	Remove alien invasive species wherever possible Disturbed open areas must be rehabilitated immediately after construction has been completed Rehabilitated areas must be monitored to ensure the establishment of re-vegetated areas. Plant only indigenous grass	2	1	2	1	4	1	10	-10	Low

											– no alien species.⋅									
Vegetation and plant species in the Disturbed Open Thicket Low species richness, Medium-Low ecological sensitivity	Maintenance of facility	1	3	2	1	4	1	11	-11	Low	Remove alien invasive species wherever possible Disturbed open areas must be rehabilitated immediately after construction has been completed Rehabilitated areas must be monitored to ensure the establishment of re-vegetated areas. Plant only indigenous grass – no alien species.	1	1	2	1	4	1	9	-9	Low
Increase of alien and invasive plant species	Maintenance of facility	2	2	2	2	4	1	12	-12	Low	An alien invasive management programme must be incorporated into the Environmental Management Programme;	2	1	2	1	4	1	10	-10	Low

Ongoing alien
plant control must
be undertaken;
Areas which have
been disturbed
will be quickly
colonised by
invasive alien
species. An
ongoing
management plan
must be
implemented for
the lile lile lile lile lile lile lile li
clearing/eradicati
on of alien
species. Monitor
all sites disturbed
by construction
activities for
colonisation by
exotics or
invasive plants
and control these
as they emerge.
Avoid planting of
exotic plant
species, use
indigenous grass
species.

Mammals,	Maintenance of	2	1	1	1	4	1	9	-9	Low	Should any	2	1	1	1	4	1	9	-9	Low
unlikely to occur	facility										mammal species									
in the way of the	,										be encountered									
facility during											or exposed during									
operational											the operational									
phase, if present											phase, they									
likely to move											should be									
away.											removed and									
											relocated to									
											natural areas in									
											the vicinity. The									
											contractor must									
											ensure that no									
											indigenous									
											mammal species									
											are disturbed,									
											trapped, hunted									
											or killed during									
											the operational									
											phase.									
											Conservation-									
											orientated									
											clauses should be									
											built into contracts									
											for personnel,									
											complete with									
											penalty clauses									
											for non-									
											compliance. The									
											appropriate									
											agency should									
											implement an									
											ongoing									
											monitoring and									

											eradication program for all invasive plant species growing on the site. Any post-development re-vegetation or landscaping exercise should use grass species indigenous to the area are preferred									
Birds habitat loss or direct impact	Maintenance of facility	2	1	1	1	4	1	9	-9	Low	Any bird nests that are found during the operational period must be reported to the Environmental Control Officer (ECO). Provide adequate briefing for site personnel and residents prior to construction. breeding and foraging in the area should be minimized and controlled.	2	1	1	1	4	1	9	-9	

Birds	Maintenance of	2	1	1	1	4	1	9	-9	Low	Movement of	2	1	1	1	4	1	9	-9	
Disturbance due	facility				1						vehicles and	-							_	
to human	,										workers beyond									
activities											the boundary of									
											the site must be									
											minimized. In									
											addition, workers									
											must be									
											instructed to									
											minimize									
											disturbance of									
											birds at all times,									
											and steps must									
											be taken to									
											ensure that no									
											illegal hunting									
											occurs.									
											Disturbance of									
											birds breeding									
											and foraging in									
											the area should									
											be minimized.									
											Provide adequate									
											briefing for site									
											personnel. Any									
											bird nests that are									
											found during the									
											construction									
											period must be									
											reported to the									
											Environmental									
											Control Officer									
											(ECO) and									
											residents should									

Birds electrocution	Maintenance of facility	2	2	1	1	4	1	10	-10	Low	always be aware of the importance of birds in their built environment. Normal safety measures for electrical installations as used by Eskom	2	1	1	1	4	1	9	-9	
Herpetofauna direct impact or habitat loss	Maintenance of facility	2	1	1	1	4	1	9	-9	Low	Should any reptile or amphibia species are encountered or exposed during the operational phase, they should be removed and relocated to natural areas in the vicinity. The contractor must ensure that no indigenous herpetofauna species are disturbed, trapped, hunted or killed during the operational phase. During the operational phase	2	1	1	1	4	1	9	-9	

increased surface runoff and a decreased water quality. The appropriate agency should implement an ongoing monitoring and eradication program for all invasive plant species growing on the site. Any post-development re-vegetation or landscaping exercise should use species indigenous to the area. Decommissioning Phase Transformation 2 2 2 2 4 2 24 -24 Mediu See mitigation 2 1 2 1 4 1 22 -22 Low Low												there may be									
Decommissioning Phase Cumulative The facility will Transformation 2 2 2 2 4 2 24 Mediu See mitigation 2 1 2 1 4 1 22 -22 Low L																					
Quality. The appropriate agency should implement an ongoing monitoring and eradication program for all invasive plant species growing on the site. Any post-development re-vegetation or landscaping exercise should use species indigenous to the area. Decommissioning Phase Cumulative Transformation 2 2 2 2 4 2 24 -24 Mediu See mitigation 2 1 2 1 4 1 22 -22 Low L												runoff and a									
Decommissioning Phase Cumulative The facility will Transformation 2 2 2 2 4 2 2 4 2 24 -24 Mediu See mitigation 2 1 2 1 4 1 22 -22 Low												decreased water									
Agency should implement an ongoing monitoring and eradication program for all invasive plant species growing on the site. Any post-development re-vegetation or landscaping exercise should use species indigenous to the area. Decommissioning Phase Cumulative Transformation 2 2 2 2 4 2 24 4 8 4 8 8 8 8 8 8												quality. The									
Decommissioning Phase The facility will Transformation 2 2 2 2 2 4 2 24 4 Mediu See mitigation 2 1 2 1 4 1 22 -22 Low												appropriate									
Decommissioning Phase Cumulative The facility will Transformation 2 2 2 2 4 2 24 Mediu See mitigation 2 1 2 1 4 1 22 -22 Low																					
Decommissioning Phase The facility will Transformation 2 2 2 4 2 24 -24 Mediu See mitigation 2 1 2 1 4 1 22 -22 Low												-									
Pecommissioning Phase The facility will Transformation 2 2 2 2 4 2 24 Mediu See mitigation 2 1 2 1 4 1 22 -22 Low																					
Pecommissioning Phase The facility will Transformation 2 2 2 2 4 2 24 -24 Mediu See mitigation 2 1 2 1 4 1 22 -22 Low																					
Decommissioning Phase The facility will Transformation 2 2 2 2 4 2 24 -24 Mediu See mitigation 2 1 2 1 4 1 22 -22 Low																					
Decommissioning Phase The facility will Transformation 2 2 2 2 4 2 24 4 2 84 Mediu See mitigation 2 1 2 1 4 1 22 -22 Low																					
Decommissioning Phase Cumulative The facility will Transformation 2 2 2 2 4 2 24 -24 Mediu See mitigation 2 1 2 1 4 1 22 -22 Low												-									
Decommissioning Phase Cumulative The facility will Transformation 2 2 2 2 4 2 24 -24 Mediu See mitigation 2 1 2 1 4 1 22 -22 Low																					
The facility will Transformation 2 2 2 2 4 2 24 -24 Mediu See mitigation 2 1 2 1 4 1 22 -22 Low																					
Decommissioning Phase Cumulative Transformation 2 2 2 2 4 2 24 -24 Mediu See mitigation 2 1 2 1 4 1 22 -22 Low												-									
Decommissioning Phase Cumulative The facility will Transformation 2 2 2 2 4 2 24 -24 Mediu See mitigation 2 1 2 1 4 1 22 -22 Low																					
Decommissioning Phase Cumulative The facility will Transformation 2 2 2 2 4 2 24 -24 Mediu See mitigation 2 1 2 1 4 1 22 -22 Low																					
Decommissioning Phase Cumulative The facility will Transformation 2 2 2 2 4 2 24 -24 Mediu See mitigation 2 1 2 1 4 1 22 -22 Low																					
Decommissioning Phase Cumulative The facility will Transformation 2 2 2 4 2 24 -24 Mediu See mitigation 2 1 2 1 4 1 22 -22 Low												-									
Cumulative The facility will Transformation 2 2 2 2 4 2 24 -24 Mediu See mitigation 2 1 2 1 4 1 22 -22 Low												_									
Cumulative The facility will Transformation 2 2 2 2 4 2 24 -24 Mediu See mitigation 2 1 2 1 4 1 22 -22 Low																					
The facility will	Decommissioning	Phase																			
	Cumulative																				
	The facility will	Transformation	2	2	2	2	4	2	24	-24	Mediu	See mitigation	2	1	2	1	4	1	22	-22	Low
only very slightly and presence of m measures above m	only very slightly											_									
affect Broad-scale the facility will		-																			
ecological only slightly	ecological	-																			
processes contribute to																					
cumulative habitat		cumulative habitat																			
loss and impacts		loss and impacts																			

on broad-scale									
ecological									
processes									

Table 7.3:Summary of impacts on biodiversity

No	Plant Community	Cons	struction phase	Оре	erational phase
		Without mitigation	With mitigation	Without mitigation	With mitigation
1	Arid Karoo	-18 Low	-9 Low	-11 Low	-10 Low
2	Dry Thicket with Euphorbia	-20 Low	-10 Low	-11 Low	-10L ow
3	Arid Thicket on Limestone	-16 Low	-9 Low	-11 Low	-10 Low
4	Disturbed Open Thicket	-16 Low	-8 Low	-11 Low	-9 Low
	Alien, Invasive plants	-12 Low	-10 Low	-12 Low	-10 Low
	Mammals Habitat Loss	-18 Low	-9 Low	-9 Low	-9 Low
	Birds Habitat loss	-18 Low	-6 Low	-9 Low	-9 Low
	Birds Disturbance by human activities	-18 Low	-8 Low	-9 Low	-9 low
	Birds Electrocution	-8 Low	-6 Low	-10 Low	-9 Low
	Herpetofauna	-18 Low	-9 Low	-9 Low	-9 Low
	Cumulative	-24 Low	-22 Low		

From Table 7.3 it can be derived that the impacts of the proposed development on biodiversity will, without as well as with mitigation measures, be **Low** on the Arid Karoo and Dry Thicket with Euphorbia, in spite of these systems being regarded as threatened ecosystems. On the site both these systems are highly disturbed and even transformed, therefore it is suggested that, except for the No-Go areas, the proposed development can be supported (see chapter 5 on vegetation) The impacts of the proposed development will be **Low** on the rest of the vegetation, plant species and fauna.

7.3 Impact of other energy related developments within 35 km radius No information)

It is suggested that the cumulative impact on vegetation, plants and fauna of the Mayogi PV 1 project, in relation to other possible PV developments, is rather low.

7.4 Comparative Assessment of the Three Alternative substations

All three alternatives are located within the Arid Karoo plant community, which falls within the Albany Alluvial vegetation type (see Figure 5.. According to SANBI & DEAT (2009) and NEMBA, Government Notice 1002 (2011) and Government Notice 689 (2022) the Ecosystem Status for **Albany Alluvial** vegetation type is as **Endangered**. On the specific site the vegetation is mostly **transformed**, with very little original natural vegetation remaining. The Option 3 is preferred, as the PV1 and PV 2 substations is consolidated on a single piece of land, causing less fragmentation and less OHLs. If this is not feasible, then Substation Option 2, located at the Skilpad substation is preferred.

PREFERRED	Located at the Skilpad Substation, including substation od PV 2, on the Arid Karoo
Substation 3	mapping unit that is degraded to transformed, less area used, less OHLs
FAVOURABLE	- Located, at Skilpad substation, less area disturbed, less OHLs on the Arid Karoo
Substation 2	mapping unit very favourable
LEAST PREFERRED	- Located, north of the 132 kV OHL on the Arid Karoo mapping unit that is degraded
Substation 1	to transformed, but more to the centre of the site, more area used for OHLs
NO PREFERENCE	

Alternative	Preference	Reasons (incl. potential issues)
	SUBSTA	ITION ALTERNATIVES
Substation Option 1	Least Preferred	Option 1 is located north of the 132kV OHL in the Arid
		Karoo plant community in the centre of the area use more
		space and needs more OHLs
Substation Option 2	Very Favourable	Substation 2 is located, at Skilpad substation, less area
		disturbed, less OHLs.
Substation Option 3	Preferred	Located at the Skilpad Substation, including substation od
		PV 2, on the Arid Karoo mapping unit, less area used, less
		OHLs

8. DISCUSSION AND CONCLUSION

8.1 Vegetation

The relevant literature and databases were used to obtain data regarding threatened, protected, alien invasive and medicinal plant species, also regional vegetation, threatened status of vegetation types, protected and conservation areas, critical biodiversity areas, wetlands and water courses.

Standard methods for vegetation surveys were applied. Plant communities were mapped and described including total floristic composition per pant community. All the above data were applied in analyses to determine conservation status and ecological sensitivity per plant community.

According to SANBI & DEAT (2009) and NEMBA, Government Notice 1002 (2011) and Government Notice 689 (2022) the Ecosystem Status for **Albany Alluvial** vegetation type is as **Endangered**. On the specific site the vegetation is mostly **transformed**, with very little original natural vegetation remaining. According to Mucina & Rutherford (2006, 2018) the Sundays Noorsveld and the Sundays Thicket vegetation types are classified as **Least Concern**. The **Sundays Arid Thicket** (= Sundays Noorsveld) is listed as **Vulnerable** in the 2022 NEMBA list of Threatened Ecosystems.

No Irreplaceable Critical Biodiversity Areas occur in the site area. Most of the site is regarded as Ecological Support Area 1.

Eleven plant species of conservation concern could occur in the general area of the site, but none of these were recorded during the field survey.

The vegetation study of the proposed site resulted in the identification of six different plant communities (= ecosystems on the plant community level of organisation) that could be mapped. The terrestrial plant communities identified mostly have low to medium plant species richness, no threatened, red data or protected plant species were recorded on the site.

The results of the vegetation and flora study indicate that the Valley with Drainage line has High Ecological sensitivity, therefore No-Go area. The Mesic Thicket with spekboom has Medium-High ecological sensitivity and conservation value and this has also been marked as No-Go area. The rest of the terrestrial habitat areas have low, medium-low or medium ecological sensitivity.

Most of the terrestrial vegetation areas have low to medium plant species richness, no threatened or nationally protected plant species and low to medium conservation value.

Should the Valley with the Drainage Line be conserved and protected, and the Mesic Thicket with spekboom be at least partly conserved, it is suggested that the construction of the proposed PV facility can be supported.

8.2 Fauna

Although many mammal, bird and herpetofauna species may from time to time occur in the area of the site, only a few may be encountered or observed at any one time. This can be

ascribed to very small species or low species density and individuals are therefore not easily seen. Many smaller mammals and herpetofauna are either secretive, nocturnal, hibernators and/or seasonal.

The Animal Sensitivity is regarded as **High** for the study site. However, the impression from this study is that the animal species sensitivity is rather **LOW** on the study site, because the habitats are mostly degraded or transformed. Note that Mayogi is (was) a game farm and several animal species (game species) occurred from time to time. There was a constant flow of animal species bought or bred and later sold. The Daniell Cheetah breeding project is located across the road. The many animals that are present on several nature reserves/game farms in the area **inflate** the estimate by the Screening Tool for Animal Species Sensitivity on this particular study site. Furthermore, Animal Species Sensitivity includes bird species, of which the Screening Toll provides a separate "Bird Species Sensitivity" result indicated as Low. The two mammal species have only Medium sensitivity.

From a vertebrate fauna perspective, there is no objection against the development on condition that the development adheres to the condition concerning the protection of the Valley and Drainage Line on the site.

8.3 Conclusion

It is suggested that the planned development be supported.

9. LITERATURE CITED OR CONSULTED

- Acocks, J.P.H. 1988. Veld types of South Africa, 3rd ed. *Memoirs of the Botanical Survey of South Africa*. **57**: 1–146.
- Alexander, G. 2014. *Python natalensis* (A, Smith, 1840). In Bates, M.F., Branch, W.R., Bauer, A.M., Burger, M., Marais, J., Alexander, G.J. & De Villiers, M.S. (eds). 2014. Atlas and Red List of the Reptiles of South Africa, Lesotho and Swaziland. *Suricata* 1. South African National Biodiversity Institute, Pretoria.
- Alexander, G. & Marais J. 2007. *A Guide to the Reptiles of Southern Africa*. Struik Publishers, Cape Town 408pp.
- Apps, P. 2012. Smithers Mammals of Southern Africa. A Field Guide. Struik Nature, Cape Town.
- Bates, M.F., Branch, W.R., Bauer, A.M., Burger, M., Marais, J., Alexander, G.J. & De Villiers, M.S. (eds). 2014. Atlas and Red List of the Reptiles of South Africa, Lesotho and Swaziland. *Suricata* 1. South African National Biodiversity Institute, Pretoria.
- Boycott, R.C. & Bourquin, O. 2000. *The Southern African Tortoise Book: A guide to Southern African Tortoises, Terrapins and Turtles*.
- Branch, W.R. (Editor), August 1988. *South African Red Data Book Reptiles and Amphibians*. S.A. National Scientific Programmes, Report No. 151, 244 pp.
- Branch, W.R. 1998. *Field Guide to the Snakes and other Reptiles of Southern Africa*. 3rd edition. Struik Publishers, Cape Town. 399 pp., maps, 112 plates.
- Branch, W.R. 2002. 'The Conservation Status of South Africa's threatened Reptiles': 89 103..ln:- G.H. Verdoorn & J. le Roux (editors), 'The State of Southern Africa's Species', Proceedings of a conference held at the Rosebank Hotel, 4 7 September 2001. World Wildlife Fund.
- Bredenkamp, G.J. & Brown, L.R. 2001. Vegetation A reliable ecological basis for environmental planning. *Urban Greenfile* Nov-Dec 2001: 38-39.
- Bredenkamp, G.J., Brown, L.R. & Pfab M. 2006. Conservation value of Egoli Granite Grassland, an endemic grassland in Gauteng, South Africa. Koedoe 49(2): 59-66.
- Broadley, D.G. 1990. *FitzSimons' Snakes of Southern Africa*. Jonathan Ball & Ad Donker Publishers. 387pp.
- Bromilow, C, (2010): Problem Plants of Southern Africa. Third edition, first impression Briza Publications, Pretoria.
- Carruthers, V. & Du Preez L. 2011. Frogs & Frogging. Struik Nature, Cape Town. p108.
- Channing, A. 2001. *Amphibians of Central and Southern Africa*. Protea Bookhouse Pretoria. 470pp.

- Child, M.F., Roxburgh, L., Do Linh San, E., Raimondo D., & Davies-Mostert, H.T. (eds) 2016. The Red List of Mammals of South Africa, Swaziland and Lesotho, South African National Biodiversity Institute and Endangered Wildlife Trust, South Africa.
- Cowling, R.M., Lombard, A.T., Rouget, M., Kerley G.I.H., Wolf T., Sims-Castley, R., Knight, A.T., Vlok, J.H.J., Pierce, S.M., Boshoff, A.F. & Wilson, S.L. 2003. A conservation assessment for the Subtropical Thicket Biome. TERU Report No. 43: 106 pp; Appendices 80 pp.
- C-Plan. (2011). Gauteng Conservation Plan, Version 3.3 (C-Plan 3.3). Department of Agriculture and Rural Development.
- De Moor I.J. & Bruton M.N. 1988. *Atlas of alien and translocated indigenous aquatic animals in southern Africa*. S.A. National Scientific Programmes, Report No. 144, 310pp.
- Department of Environmental Affairs and Tourism. 2007. National Environmental Management: Biodiversity Act, 2004 (Act No. 10 of 2004): Publication of Lists of Critically Endangered, Endangered, Vulnerable and Protected Species. Government Notices.
- Du Preez L. & Carruthers V. 2017. Frogs of Southern Africa A Complete Guide. Struik Publishers, Cape Town.
- Enprocon Environmental Solutions, 2020. EIA Enquiry for Erf 56 Kilbarchan Housing Development, Submitted to Department of Economic Development, Tourism and Environmental Affairs (DEDTEA) Amajuba District.
- Friedman, Y. and Daly, B. (editors). 2004. *Red Data Book of the Mammals of South Africa: A Conservation Assessment*: CBSG Southern Africa, Conservation Breeding Specialist Group (SSC/IUCN), Endangered Wildlife Trust. South Africa.
- Henderson, L. 2001: Alien Weeds and Invasive Plants. A complete guide to declared weeds and invaders in South Africa. Plant Protection Research Institute Handbook No. 12. Agricultural Research Council, South Africa.
- GDARD, 2014. *Requirements for biodiversity assessments Version 3.* Biodiversity Management Directorate, Department of Agriculture and Rural development.
- Grobler, A., Vlok, J., Cowling, R, van der Merwe, S., Skowno, A.L., Dayaram, A. 2018. Technical Report: Integration of the Subtropical Thicket Ecosystem Project (STEP) vegetation types into the VEGMAP national vegetation map 2018.
- Hoare, D.B., Mucina, L., Rutherford, M.C., Vlok, J.H.J., Euston-Brown, D.I.W., Palmer, A.R., Powrie, L.W., Lechmere-Oertel, R.G., Procheş, S.M., Dold, A.P. & Ward, R.A. 2006. Albany Thicket Biome. In: Mucina, L. & Rutherford, M.C. (eds), The vegetation of South Africa, Lesotho and Swaziland: 540-567. SANBI, Pretoria.
- Harrison, J.A., Allan, D.G., Underhill, L.G., Herremans, M., Tree, A.J., Parker, V. & Brown, C.J. (eds.). *The Atlas of Southern African Birds. Vol.1 & 2*. BildLife South Africa, Johannesburg.
- Hockey, P.A.R., Dean, W.R.J. & Ryan, P. (eds) 2005. Roberts Birds of Southern Africa, VIIth ed. The Trustees of the John Voelcker Bird Book Fund, Cape Town.

- Hofmeyr, M.D. & Boycott, R.C. 2018. Kinixys lobatsiana. The IUCN Red List of Threatened Species 2018: e. T163454A115654759.
- Knobel, J, & Bredenkamp, G. 2006. *The Magnificent Natural Heritage of South Africa*. Sunbird Publishers, Roggebaai.
- Low, A.B. & Rebelo, A.G. (eds) 1996. Vegetation of South Africa, Lesotho and Swaziland. Dept Environmental Affairs & Tourism, Pretoria.
- Measey, G.J. (ed.) 2011. Ensuring a future for South Africa's frogs: a strategy for conservation research. *SANBI Biodiversity Series* 19. South African National Biodiversity Institute, Pretoria.84pp.
- Meester, J.A.J., Rautenbach, I.L., Dippenaar, N.J.& Baker, C.M. 1986. *Classification of Southern African Mammals*. Transvaal Museum Monograph No. 5. Transvaal Museum, Pretoria, RSA.
- Mills, G. & Hes, L. 1997. *The complete book of Southern African Mammals*. Struik Winchester, Cape Town, RSA.
- Minter, L.R., Burger, M., Harrison, J.A., Braack, H.H., Bishop, P.J. and Kloepfer, D. eds. 2004. *Atlas and Red Data Book of the Frogs of South Africa, Lesotho and Swaziland*.SI/MAB Series #9. Smithsonian Institution, Washington, DC.
- Mucina, L, & Rutherford, M.C. (eds.). 2006. The vegetation of South Africa, Lesotho and Swaziland. *Strelitzia* 19. South African National Biodiversity Institute, Pretoria. (update 2012)
- Mucina, L., Bredenkamp, G.J., Hoare, D.B. & McDonald, D.J. 2000. A National vegetation database for South Africa. South Africa Journal of Science 96:497-498.
- Mueller-Dombois, D. & Ellenberg, H. 1974. Aims and methods of vegetation ecology. Wiley, New York.
- Pierce, S.M. 2003. The STEP Handbook. Integrating the natural environment into land use decisions at the Municipal level: towards sustainable development. Terrestrial Ecology Research Unit Report No. 47, University of Port Elizabeth, South Africa.
- Picker M. & Griffiths C. 2011. *Alien & Invasive Animals. A South African Perspective*. Struik Nature, Cape Town. P240.
- Raimondo, D., Von Staden, L., Foden, W., Victor, J.E., Helme, N.A., Turner, R.C. Kamundi, D.A. & Manyama, P.A. (Eds.). 2009. Red list of South African plants 2009. Strelitzia 25: 1-668.
- Rautenbach, I.L. 1978. A numerical re-appraisal of the southern African biotic zones. Bulletin of the Carnegie Museum of Natural History 6:175-187.
- SANBI & DEAT. 2009. Threatened Ecosystems in South Africa: Descriptions and Maps. DRAFT for Comment. South African National Biodiversity Institute, Pretoria, South Africa.
- Sinclair, I., Hockey, P., Tarboton, W. & Ryan P. 2011. Sasol Birds of Southern Africa. 4th edition. Struik, Cape Town.

- Skinner, J.D. & Chimimba, T.C. 2005. *The Mammals of the Southern African Subregion*. 3rd edition. Cambridge University Press.
- Smithers, R.H.N. 1086. *South African Red Data Book Terrestrial Mammals*. South African National Scientific Programmes Report No 125. p216.
- Stuart, C. & Stuart, M. 2013. A Field Guide to the Tracks & Signs of Southern, Central & East African Wildlife. 4th edition. Struik Nature, Cape Town.
- Stuart, C. & Stuart, M. 2015. Stuarts' Field Guide to Mammals of Southern Africa 5th edition. Struik Nature, Cape Town.
- Taylor, M.R., Peacock, F. & Wanless, R.M. (eds). 2015. The Eskom Red Data Book of Birds of South Africa, Lesotho and Swaziland. BirdLife South Africa. Johannesburd, South Africa.
- The Conservation of Agricultural Resources Act, 1983 (Act No. 43 of 1983)
- The Environmental Impact Assessment Regulations, 2014 (Gazette No 38282 Regulation 982).
- The National Environment Management Act, 1998 (Act No. 107 of 1998).
- National Environmental Management Act (Act 107 of 1998) Amendment of the Environmental Impact Assessment Regulations 2014, 7 April 2017. (GNR. 324, 325, 326 & 327: Listing Notices 1, 2, 3).
- The National Environmental Management Biodiversity Act, 2004. (Act 10 of 2004). Government Gazette RSA Vol. 467, 26436, Cape Town, June 2004 and several later additions.
- The National Environmental Management Biodiversity Act, 2004. (Act 10 of 2004). Government Gazette RSA Vol. 467, 26436, Cape Town, June 2004.
- The National Environmental Management Biodiversity Act, 2004. (Act 10 of 2004). Draft List of Threatened Ecosystems. Government Gazette RSA Vol. 1477, 32689, Cape Town, 6 Nov 2009.
- The National Environmental Management: Biodiversity Act, 2004 (Act 10 of 2004); Publication of Lists of Critically Endangered, Endangered, Vulnerable and Protected Species.
- The National Forests Act, 2006 (Act 84 of 1998 as amended). Government Gazette RSA Vol. 897, 29062, Cape Town, 8 Sept 2006.
- The National Water Act 1998 (Act 36 of 1998).
- The Natural Scientific Professions Act 2003 (No. 27 of 2003).
- The Science and Technology Laws Amendment Act (Act 7 of 2014).
- Van Wyk, B., Van Oudshoorn B., & Gericke N. 2005: Medicinal Plant of South Africa. Briza Publications, Pretoria.
- Van Wyk, J.C.P. 1998, Under Siege. Timid South African hedgehogs face many threats. *Afr. Wild.* 52(3):6-8.

- Vlok, J.H.J. and Euston-Brown, D.I.W. 2002. The patterns within, and the ecological processes that sustain, the Subtropical Thicket vegetation in the planning domain for the Subtropical Thicket Ecosystem Planning (STEP) Project. Terrestrial Ecology Research Unit. Report 40. University of Port Elizabeth, Port Elizabeth
- Westhoff, V. & Van der Maarel, E. 1978. The Braun-Blanquet approach. In: Whittaker, R.H. (ed.) Classification of plant communities. W. Junk, The Hague.
- Williams, V.L., Victor, J.E. & Crouch, N.R. 2013. Red listed medicinal plants of South Africa: Status, trends and assessment challenges. *South African Journal of Botany* 86: 23-35.

10. CURRICULA

10.1 Abridged Curriculum Vitae: Prof George Johannes Bredenkamp

Born: 10 February 1946 in Johannesburg, South Africa.

Citizenship: South African

Marital status: Married, 1 son, 2 daughters

Present work address

EcoAgent CC

Ecological, botanical and biodiversity consultants PO Box 25533, Monument Park, 0105, South Africa

Tel: (27)(12) 460 2525 Cell 082 5767046

E-Mail: ecoagent@mweb.co.za

Previous work address:

Extra-ordinary Professor

Department of Plant Sciences, University of Pretoria, Pretoria, 0002, South Africa

Qualifications:

1963 Matriculation Certificate, Kempton Park High School

1967 B.Sc. University of Pretoria, Botany and Zoology as majors,

1968 B.Sc. Hons. (cum laude) University of Pretoria, Botany.

1969 H.E.D. (cum laude) Pretoria Teachers Training College.

1975 M.Sc. University of Pretoria, Plant Ecology.

1982 D.Sc. (Ph.D.) University of Pretoria, Plant Ecology.

Theses: (M.Sc. and D.Sc.) on plant community ecology and wildlife management in nature reserves in South African grassland and savanna.

Professional titles:

MSAIE&ES South African Institute of Ecologists and Environmental Scientists

- 1989-1990 Council member

MGSSA Grassland Society of Southern Africa

- 1986 Elected as Sub-editor for the Journal

- 1986-1989 Serve on the Editorial Board of the Journal

1990 Organising Committee: International Conference: Meeting Rangeland

challenges in Southern Africa

- 1993 Elected as professional member

Pr.Sci.Nat. South African Council for Natural Scientific Professions Reg No 400086/83

1993-1997 Chairman of the Professional Advisory Committee:Botanical

Sciences

- 1993-1997: **Council** Member

- 1992-1994: Publicity Committee

- 1994-1997: Professional Registration Committee

2017-2020: Council Member

Professional career:

- Teacher in Biology 1970-1973 in Secondary Transvaal Schools
- Lecturer and senior lecturer in Botany 1974-1983 at University of the North
- Associate professor in Plant Ecology 1984-1988 at Potchefstroom University for CHE
- Professor in Plant Ecology 1988-2008 at University of Pretoria.
- Founder and owner of the Professional Ecological Consultancy firms Ecotrust Environmental Services CC and Eco-Agent CC, 1988-present.

Academic career:

- Students:
 - Completed post graduate students: M.Sc. 57; Ph.D. 16.
- Author of:
 - about 200 scientific papers in refereed journals
 - >150 papers at national and international congresses
 - >1000 scientific (unpublished) reports on environment and natural resources
 - 17 popular scientific papers.
 - about 45 contributions in books
- · Editorial Committees of

South African Journal of Botany,

Journal Grassland Society of Southern Africa,

Bulletin of the South African Institute of Ecologists.

Journal of Applied Vegetation Science. (Sweden)

Phytocoenologia (Germany)

• Highest FRD evaluation category: C1 (=leader in South Africa in the field of Vegetation Science/Plant Ecology)

Membership:

- International Association of Vegetation Science.
- International Society for Ecology (Intecol)
- Association for the Taxonomic study of the Flora of Tropical Africa (AETFAT).
- South African Association of Botanists (SAAB)

1988-1993 Elected to the Council of SAAB.

1989-1990 Elected as **Chairman** of the Northern Transvaal Branch

1990 Elected to the Executive Council as Vice-President

1990 Sub-editor Editorial Board of the Journal

1991-1992 Elected as **President** (2-year period)

1993 Vice-President and Outgoing President

- Wildlife Management Society of Southern Africa
- Suid-Afrikaanse Akademie vir Wetenskap en Kuns

(=South African Academy for Science and Art).

· Wildlife Society of Southern Africa

1975 - 1988: Member

1975 - 1983: Committee member, Pietersburg Centre

1981 - 1982: Chairman, Pietersburg Centre

• Dendrological Society of Southern Africa

1984 - present: Member

1984 - 1988: Committee member, Western Transvaal Branch

1986 - 1988: Chairman, Western Transvaal Branch

1987 - 1989: Member, Central Committee (National level)

1990 - 2000: Examination Committee

Succulent Society of South Africa

1987 - present: Member

· Botanical Society of South Africa

2000 - present: Member

2001- 2008: Chairman, Pretoria Branch

2009-present Committee member Pretoria Branch

2002 – 2015: Chairman, Northern Region Conservation Committee

2002- 2007: Member of Council 2017-2017 President of Council

Special committees:

- Member or past member of 10 special committees re ecology, botany, rangeland science in South Africa.
- Member of the International Code for Syntaxonomical Nomenclature 1993-1996.

Merit awards and research grants:

	ana recearch grante.
1968	Post graduate merit bursary, CSIR, Pretoria.
1977-1979	Research Grant, Committee re Research Development, Dept. of Co-operation
and	Development, Pretoria.
1984-1989	Research Grant, Foundation for Research Development, CSIR, Pretoria.
1986-1987	Research Grant, Dept. of Agriculture and Water Supply, Potchefstroom.
1990-1997	Research Grant, Dept. of Environmental Affairs & Tourism, Pretoria.
1991-present	Research Grant, National Research Foundation, Pretoria.
Research Gra	nt, Water Research Commission.

1999-2003 Research Grant, Water Research Commission.

2006 South African Association of Botanists Silwer Medal for outstanding contributions to South African Botany

Abroad:

- 1986 Travel Grant, Potchefstroom University for Christian Higher Education, Potchefstroom Visits to Israel, Italy, Germany, United Kingdom, Portugal.
- 1987 Travel Grant, Potchefstroom University for Christian Higher Education, Potchefstroom. Visits to Germany, Switzerland, Austria, The Netherlands, United Kingdom.
- 1990 Travel Grant, FRD.

Visit to Japan, Taiwan, Hong-Kong.

1991 Travel Grant, FRD.

Visits to Italy, Germany. Switzerland, Austria, France, The Netherlands, United Kingdom.

1993 Travel Grant, University of Pretoria.

Visits to the USA, Costa Rica, Czech Republic, Austria.

1994 Travel Grant FRD.

Visits to Switzerland, The Netherlands, Germany, Czech Republic.

1995 Travel Grant FRD, University of Pretoria

Visits to the USA

Travel Grant, University of Pretoria, Visit to the UK.

Travel Grant University of Pretoria, Visit Czech Republic, Bulgaria

Travel Grant, University of Pretoria, Visit Czech Republic, Italy, Sweden

Travel Grant, University of Pretoria, Visit Hungary, Spain, USA

Travel Grant, University of Pretoria, Visit Poland, Italy, Greece.

Travel Grant, NRF, Visit Brazil

2006 German Grant Invited lecturer in Rinteln, Germany

Consultant

Founder and owner of Ecotrust Environmental Services CC and Eco-Agent CC Since 1988 >1000 reports as consultant on environmental matters, including: Game Farm and Nature Reserve planning,

Environmental Impact Assessments,

Environmental Management Programme Reports,

Vegetation Surveys,

Wildlife Management,

Veld Condition and Grazing Capacity Assessments,

Red data analysis (plants and animals).

10.2. Abridged Curriculum Vitae: Jacobus Casparus Petrus (Jaco) Van Wyk

Identity number 680804 5041 08 4

Gender Male

Date of birth4 August 1968NationalitySouth African

Home languages Afrikaans, fluent in English **Postal address** P.O. Box 25085, Monument Park, Pretoria, 0105. Tel no +27 12 347 6502, Cell +27 82 410 8871

E-mail jcpvanwyk@absamail.co.za

Present position Co-Department Head, Environmental Education & Life Sciences,

Hoërskool Waterkloof

Consultant Specialist Environmental Assessments, EIAs, writing, photo-recording **Qualifications B.Sc.** (U.F.S.) **B.Sc.** (Hon.) (U.F.S.), **H.E.D** (U.F.S.), **M.Sc.** (U.F.S.)

Honours Foundation of Research Development bursary holder

Professional Natural Scientist (Zoology) – S.A Council for Natural

Scientific Professions, Registration # 400062/09

Notable Research Contribution In-depth field study of the giant bullfrog

Formal Courses Attended Outcomes Based Education, University of the South Africa

(2002)

Introductory Evolution, University of the Witwatersrand

(2008)

OBE, GET & FET training, 2002-2008, Education

Department

Employment history

2009 – Present Vertebrate surveys for different Environmental Companies.

2000 – 2018 Co-Department Head for Environmental Education & Life Sciences, Hoërskool Waterkloof, Pretoria.

1995 - 1999 Teaching Biology (Grades 8-12) and Physics / Chemistry (Grades 8-9) at the Wilgerivier High School, Free State. Duties included teaching, mid-level management and administration.

July 1994 – Dec 1994 Teaching Botany practical tutorials to 1st year students at the Botany & Zoology Department of the Qwa-Qwa campus of the University of Free State, plant collecting, amphibian research

1993 - 1994 Mammal Research Institute (University of Pretoria) research associate on the Prince Edward Islands: topics field biology and population dynamics of invasive alien rodents, three indigenous seals, invertebrate assemblages, censussing king penguin chicks and lesser sheathbills, and marine pollution

1991 - 1993 Laboratory demonstrator for Zoological and Entomological practical tutorials, and caring for live research material, University of the Free State

1986 - 1990 Wildlife management and eco-guiding, Mt. Everest Game Farm, Harrismith **Professional Achievement Research:** Author and co-author of 52 scientific publications in peer-reviewed and popular subject journals, and >350

contractual EIA research reports. Extensive field work and laboratory experience in Africa

Public Recognition: Public speaking *inter alia* radio talks, TV appearances

Hobbies: Popular writing, travel, marathon running, climbing (viz Kilimanjaro), photography, biological observations, public speaking.