BIOTHERM MARALLA EAST AND WEST WIND PROJECTS

BIRD IMPACT ASSESSMENT STUDY: AVIFAUNA 132KV GRID CONNECTION

EXECUTIVE SUMMARY

BioTherm Energy (BioTherm) is proposing to develop three wind energy facilities (WEFs) in the vicinity of Sutherland, in the Western Cape and Northern Cape. The planned sites are called Maralla East and West (2 x sites) and Esizayo (1 x site). The localities are located in the proposed Komsberg Renewable Energy Development Zone (REDZ).

This report deals with the potential impacts on avifauna of the 132kV grid connection between the proposed sites and the Komsberg Substation.

The proposed Maralla grid connection will have several potential impacts on avifauna ranging from a site to a regional level. These impacts are summarised in the table below:

		Substation 1				Substation 2						
		Powerline	e Option 1	Powerlin	e Option 2	Powerlin	e Option 1	Powerline Option 2				
Environmental parameter	Impact	Rating prior to mitigation	Rating post mitigation	Rating prior to mitigation	Rating post mitigation	Rating prior to mitigation	Rating post mitigation	Rating prior to mitigation	Rating post mitigation			
	Displacement of Red Data avifauna due to habitat destruction and disturbance associated with the construction of the	-27 Low	-14 Low	-33 Medium	-14 Low	-27 Low	-14 Low	-33 Medium	-14 Low			
	powerlines Collisions of Red Data avifauna with the earthwire of the proposed 132kV powerlines	-51 Medium	-31 Medium	-68 High	-51 Medium	-51 Medium	-31 Medium	-68 High	-51 Medium			
	Electrocution of Red	-7 Low	-7 Low									
Avifauna	Displacement of Red Data fauna due to habitat destruction and disturbance associated with the de-commissioning of the powerlines	-27 Low	-14 Low									
	the powernites		Subst	ation 1			Subs	tation 2				
	Impact		prior to ation	Rating pos	t mitigation		prior to ation	Rating post mitigation				
	Displacement of Red Data avifauna due to habitat destruction and disturbance associated with the construction of the substation			10	Low							
	Electrocution of Red Data avifauna in the substation yard		Low		-12 Low		Low	-12 Low				
	Displacement of Red Data avifauna due to habitat destruction and disturbance associated with the decommissioning of											
	the substation	-18	Low	-12	Low	-18	Low	-12 L	OW			

As far as cumulative impacts are concerned, the greatest potential concern in the 70km radius around Komsberg Substation is for the large raptor species, particularly Verreaux's Eagle and Martial Eagle, due to their low numbers and vulnerability to turbine collisions. However, the Maralla grid connection should not threaten these species significantly. The concern from a powerline interaction perspective is more for large terrestrial species, particularly Ludwig's Bustard, which is highly susceptible to powerline collisions. The Maralla grid connection will add an additional 27 – 36km of HV line to the existing HV network in the area, depending on which alternative is built. Several hundred kilometres of HV line already exists within this area, and several more are planned should the renewable energy projects all be built. The overall cumulative impact of the Maralla grid connection, when viewed with the existing impacts on avifauna, is assessed to be MEDIUM, but it could be reduced to some extent with mitigation.

Both substation alternatives are located in transitional zones between the Fynbos and Succulent Karoo habitat with a similar footprint size. However, Substation 1 coupled with powerline Option 1 is the most preferred combination as it is the shortest of all the powerline options, runs for a considerable distance next to an existing road and is likely to have the least impact on large eagles breeding on existing transmission lines.

From an avifaunal impact perspective, the proposed development could go ahead, provided the proposed mitigation measures are strictly implemented.

TABLE OF CONTENTS

EXEC	UTIVE SUMMARY	2
Table	of Contents	4
1.	Introduction	5
2.	Description of the Project	11
3.	Description of the Affected Environment	14
4.	Impacts of powerlines and substations on avifauna	17
5.	Detailed description of impacts per phase	20
6.	Assessment of impacts	23
7.	Mitigation and Management Measures	26
8.	Stakeholder COnsultation	31
9.	Conclusions	31
10	REFERENCES	
APP	PENDIX 1: CHRIS VAN ROOYEN CV	37
APP	PENDIX 2: BIRD HABITAT	42
APP	PENDIX 3: SPECIES LIST	45
APP	PENDIX 4: RENEWABLE ENERGY APPLICATIONS WITHIN A 70KM RADIUS	55
APP	PENDIX 5: IMPACT TABLES	69

1. INTRODUCTION

1.1. SCOPE OF WORK

The terms of reference for this impact assessment report are as follows:

- Describe the affected environment from an avifaunal perspective;
- Discuss gaps in baseline data and other limitations;
- List and describe the expected impacts for the Maralla 132kV grid connection on avifauna;
- Assess and evaluate the potential impacts; and
- Recommend mitigation measures to reduce the impact of the expected impacts on avifauna.

1.2. OBJECTIVES OF THE REPORT

The objectives of the report are to investigate the potential impact of the proposed Maralla 132kV grid connection on avifauna in order to assess whether the project is fatally flawed from an avifaunal impact perspective and, if not, what mitigation measures should be implemented to reduce the potential impacts.

1.3. LEGISLATIVE FRAMEWORK

There is no legislation pertaining specifically to the impact of wind facilities and associated infrastructure on avifauna. There are best practice guidelines available which were compiled under the auspices of Birdlife South Africa (BLSA) and the Endangered Wildlife Trust (EWT) i.e. *Jenkins A R; Van Rooyen C S; Smallie J J; Anderson M D & Smit H A. 2011. Best practice guidelines for avian monitoring and impact mitigation at proposed wind energy development sites in southern Africa. Endangered Wildlife <i>Trust and Birdlife South Africa.* These guidelines have been updated on several occasions, with the latest version released in 2015, which require the regular inspection of associated powerlines for collision mortality.

1.3.1 AGREEMENTS AND CONVENTIONS

Table 1 below lists international agreements and conventions which South Africa is party to and which is relevant to the conservation of avifauna1.

Convention name	Description	Geographic scope
African-Eurasian Waterbird Agreement (AEWA)	The Agreement on the Conservation of African-Eurasian Migratory Waterbirds (AEWA) is an intergovernmental treaty dedicated to the conservation of migratory waterbirds and their habitats across Africa, Europe, the Middle East, Central Asia, Greenland and the Canadian Archipelago. Developed under the framework of the Convention on Migratory Species (CMS) and administered by the United Nations Environment Programme (UNEP), AEWA brings together countries and the wider international conservation community in an effort to establish coordinated conservation and management of migratory waterbirds throughout their entire migratory range.	Regional

Table 1: Agreements and conventions which South Africa is party to and which is relevant to the conservation of avifauna.

^{1 (}BirdLife International (2016) Country profile: South Africa. Available from:

http://www.birdlife.org/datazone/country/south_africa. Checked: 2016-04-02).

	 The Convention on Biological Diversity (CBD) entered into force on 29 December 1993. It has 3 main objectives: The conservation of biological diversity The sustainable use of the components of biological diversity The fair and equitable sharing of the benefits arising out of the utilization of genetic resources. 	Global
Convention on the Conservation of Migratory Species of Wild Animals, (CMS), Bonn, 1979	As an environmental treaty under the aegis of the United Nations Environment Programme, CMS provides a global platform for the conservation and sustainable use of migratory animals and their habitats. CMS brings together the States through which migratory animals pass, the Range States, and lays the legal foundation for internationally coordinated conservation measures throughout a migratory range.	Global
International Trade in Endangered Species of	CITES (the Convention on International Trade in Endangered Species of Wild Fauna and Flora) is an international agreement between governments. Its aim is to ensure that international trade in specimens of wild animals and plants does not threaten their survival.	Global
Wetlands of International	The Convention on Wetlands, called the Ramsar Convention, is an intergovernmental treaty that provides the framework for national action and international cooperation for the conservation and wise use of wetlands and their resources.	Global
Understanding on the Conservation of	The Signatories will aim to take co-ordinated measures to achieve and maintain the favourable conservation status of birds of prey throughout their range and to reverse their decline when and where appropriate.	

1.3.2 NATIONAL LEGISLATION

1.3.2.1 Constitution of the Republic of South Africa, 1996

The Constitution of the Republic of South Africa provides in the Bill of Rights that: Everyone has the right –

- (a) to an environment that is not harmful to their health or well-being; and
- (b) to have the environment protected, for the benefit of present and future generations, through reasonable legislative and other measures that
 - (i) prevent pollution and ecological degradation;
 - (ii) promote conservation; and
 - (iii) secure ecologically sustainable development and use of natural resources while promoting justifiable economic and social development.

1.3.2.2 The National Environmental Management Act 107 of 1998 (NEMA)

The National Environmental Management Act 107 of 1998 (NEMA) creates the legislative framework for environmental protection in South Africa, and is aimed at giving effect to the environmental right in the Constitution. It sets out a number of guiding principles that apply to the actions of all organs of state that may significantly affect the environment. Sustainable development (socially, environmentally and economically) is one of the key principles, and internationally accepted principles of environmental management, such as the precautionary principle and the polluter pays principle, are also incorporated.

NEMA also provides that a wide variety of listed developmental activities, which may significantly affect the environment, may be performed only after an environmental impact assessment has been done and authorization has been obtained from the relevant authority. Many of these listed activities can potentially have negative impacts on bird populations in a variety of ways. The clearance of natural vegetation, for instance, can lead to a loss of habitat and may depress prey populations, while erecting structures needed for generating and distributing energy, communication, and so forth can cause mortalities by collision or electrocution.

1.3.2.3 The National Environmental Management: Biodiversity Act 10 of 2004 (NEMBA) and the Threatened or Protected Species Regulations, February 2007 (TOPS Regulations)

The most prominent statute containing provisions directly aimed at the conservation of birds is the National Environmental Management: Biodiversity Act 10 of 2004 read with the Threatened or Protected Species Regulations, February 2007 (TOPS Regulations). Chapter 1 sets out the objectives of the Act, and they are aligned with the objectives of the Convention on Biological Diversity, which are the conservation of biodiversity, the sustainable use of its components, and the fair and equitable sharing of the benefits of the use of genetic resources. The Act also gives effect to CITES, the Ramsar Convention, and the Bonn Convention on Migratory Species of Wild Animals. The State is endowed with the trusteeship of biodiversity and has the responsibility to manage, conserve and sustain the biodiversity of South Africa.

1.4. STUDY APPROACH AND METHODOLOGY

The following approach was followed in compiling the report:

- Bird distribution data of the Southern African Bird Atlas Project2 (SABAP 2) was obtained (http://sabap2.adu.org.za/), in order to ascertain which species occur in the pentads where the proposed wind facility is located. A pentad grid cell covers 5 minutes of latitude by 5 minutes of longitude (5'× 5'). Each pentad is approximately 8 × 7.6 km. In order to get a more representative impression of the birdlife, a consolidated data set was obtained for the 9 pentads which overlap substantially with the proposed Maralla grid connection options (see Figure 1). A total of 39 full protocol lists have been completed to date for the 9 pentads where the study area is located (i.e. lists surveys lasting a minimum of two hours each). The SABAP2 data was therefore regarded as a reliable snapshot of the avifauna, especially when supplemented by actual data collected during surveys and through general knowledge of the area.
- A classification of the vegetation types in the study area was obtained from the Atlas of Southern African Birds 1 (SABAP1) and the National Vegetation Map compiled by the South African National Biodiversity Institute (Mucina & Rutherford 2006).
- The national threatened status of all priority species was determined with the use of the most recent edition of the Red Data Book of Birds of South Africa, Lesotho and Swaziland (Taylor *et al.* 2015), and the latest authoritative summary of southern African bird biology (Hockey *et al.* 2005).
- The global threatened status of all priority species was determined by consulting the latest (2016.2) IUCN Red List of Threatened Species (http://www.iucnredlist.org/).
- The BirdLife South Africa (BLSA) was consulted on Important Bird Areas of Southern Africa for information on relevant Important Bird Areas (IBAs) (http://www.birdlife.org.za/conservation/important-bird-areas) (Marnewick *et al.* 2015).
- Satellite imagery from Google Earth was used in order to view the broader area on a landscape level and to help identify bird habitat on the ground.
- Information on bird diversity and abundance at the Maralla development sites was obtained through a 12-months monitoring programme. Data was collected through transect counts, incidental

sightings, inspection of potential focal points and the recording of flight behaviour from vantage points. This data was used as a supplementary source of information on the variety and abundance of avifauna in the study area.

 Information on existing raptor nests were obtained from avifaunal specialists Dr. Andrew Jenkins (Avisense Consulting) and Andrew Pearson (Arcus), as well as from the staff of the Komsberg Nature Reserve. Various landowners were also interviewed to obtain information on nests and roosting sites.



Figure 1: The 9 pentads where the proposed Maralla grid connections are located.

1.5. ASSUMPTIONS AND LIMITATIONS

• A total of 39 full protocol lists have been completed to date for the 9 pentads for the Maralla grid connection study area (i.e. lists surveys lasting a minimum of two hours or more each). This is a fairly comprehensive dataset which provides an accurate snapshot of the avifauna which could occur in the study area. For purposes of completeness, the list of species that could be encountered was supplemented with personal observations, general knowledge of the area, SABAP1 records (Harrison *et al.* 1997), and data from the pre-construction bird monitoring.

- Conclusions in this study are based on experience of these and similar species in different parts of South Africa. Bird behaviour can never be entirely reduced to formulas that will be valid under all circumstances. However, power line and substation impacts can be predicted with a fair amount of certainty, based on a robust body of research stretching back over thirty years (see References Section 9).
- To date no peer-reviewed, scientific papers are available on the impacts of wind farms on birds in South Africa. The precautionary principle was therefore applied throughout. The World Charter for Nature, which was adopted by the UN General Assembly in 1982, was the first international endorsement of the precautionary principle (http://www.unep.org). The principle was implemented in an international treaty as early as the 1987 Montreal Protocol and, among other international treaties and declarations, is reflected in the 1992 Rio Declaration on Environment and Development. Principle 15 of the 1992 Rio Declaration states that: "in order to protect the environment, the precautionary approach shall be widely applied by States according to their capabilities. Where there are threats of serious or irreversible damage, lack of full scientific certainty shall be not used as a reason for postponing cost-effective measures to prevent environmental degradation."
- All Red Data species were classified as priority species for purposes of the investigation (Retief *et al.* 2012).
- The study area was defined as a 2km buffer zone around the proposed powerline alignments (see Figures 2 and 3).

1.6. DECLARATION OF INDEPENDENCE

Chris van Rooyen

Chris has 20 years' experience in the management of wildlife interactions with electricity infrastructure. He was head of the Eskom-Endangered Wildlife Trust (EWT) Strategic Partnership from 1996 to 2007, which has received international acclaim as a model of co-operative management between industry and natural resource conservation. He is an acknowledged global expert in this field and has worked in South Africa, Namibia, Botswana, Lesotho, New Zealand, Texas, New Mexico and Florida. Chris also has extensive project management experience and has received several management awards from Eskom for his work in the Eskom-EWT Strategic Partnership. He is the author of 15 academic papers (some with co-authors), co-author of two book chapters and several research reports. He has been involved as ornithological consultant in numerous power line and several renewable energy projects. Chris is also co-author of the Best Practice for Avian Monitoring and Impact Mitigation at Wind Development Sites in Southern Africa, which is currently (2016) accepted as the industry standard. Chris also works outside the electricity industry and had done a wide range of bird impact assessment studies associated with various residential and industrial developments.

Albert Froneman

Albert has an M. Sc. in Conservation Biology from the University of Cape Town, and started his career in the natural sciences as a Geographic Information Systems (GIS) specialist at Council for Scientific and Industrial Research (CSIR). In 1998, he joined the Endangered Wildlife Trust where he headed up the Airports Company South Africa – EWT Strategic Partnership, a position he held until he resigned in 2008 to work as a private ornithological consultant. Albert's specialist field is the management of wildlife, especially bird related hazards at airports. His expertise is recognized internationally; in 2005 he was elected as Vice Chairman of the International Bird Strike Committee. Since 2010, Albert has worked closely with Chris van Rooyen in developing a protocol for pre-construction monitoring at wind energy facilities, and he is currently jointly coordinating pre-construction monitoring programmes at several wind

farm facilities. Albert also works outside the electricity industry and had done a wide range of bird impact assessment studies associated with various residential and industrial developments.

Nico Laubscher

Nico holds a D.Sc. from the University of Potchefstroom and was head of the Statistics Division, National Research Institute for Mathematical Sciences of the CSIR from 1959 – 1975. He retired in 1989 as head of the Centre for Statistical Consultation at the University of Stellenbosch. Nico held several offices, including President of the South African Statistical Association, and editor of the South African Statistical Journal. Nico has five decades' experience in statistical analysis and data science applications, including specialisation in model building with massive data sets, designing of experiments for process improvement and analysis of data so obtained, and statistical process control. He also has published peer reviewed papers in several leading statistical journals, including Annals of Mathematical Statistics, American Statistical Journal, Technometrics and The American Statistician. He currently operates as a private statistical consultant to industry and academia.

SPECIALIST DECLARATION

I, Chris van Rooyen as duly authorised representative of Chris van Rooyen Consulting, and working under the supervision of and in association with Albert Froneman (SACNASP Zoological Science Registration number 400177/09) as stipulated by the Natural Scientific Professions Act 27 of 2003, hereby confirm my independence (as well as that of Chris van Rooyen Consulting) as a specialist and declare that neither I nor Chris van Rooyen Consulting have any interest, be it business, financial, personal or other, in any proposed activity, application or appeal in respect of which WSP was appointed as environmental assessment practitioner in terms of the National Environmental Management Act, 1998 (Act No. 107 of 1998), other than fair remuneration for worked performed, specifically in connection with the Environmental Impact Assessment for the proposed Maralla grid connections.

Ami un Raupe

Signed: Chris van Rooyen Tel: 0824549570 Email: vanrooyen.chris@gmail.com

See APPENDIX 1 for Chris van Rooyen's CV.

2. DESCRIPTION OF THE PROJECT

The proposed infrastructure will consist of the following:

- An onsite Eskom Substation of up to 132kV which will occupy an area of 250mx 250m;
- A double circuit power line using steel monopole structures of up to 132kV that will run from the onsite Eskom substation to the existing Eskom Komsberg Substation;

See **Figure 2** for the proposed lay-out of the Maralla Substation Alternative 1 ("Substation 1"), Options 1 and 2 and **Figure 3** for the proposed lay-out of the Maralla Substation Alternative 2 ("Substation 2"), Options 1 and 2.

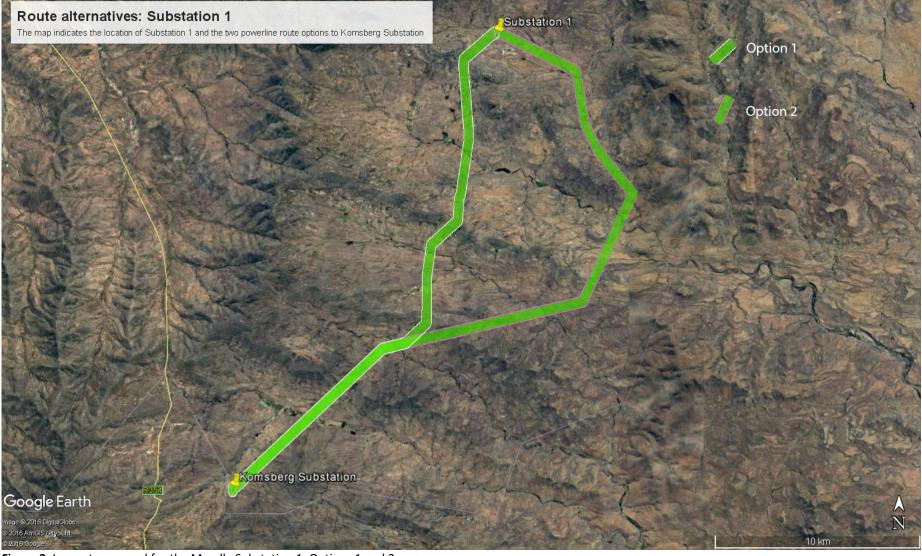


Figure 2: Lay-out proposed for the Maralla Substation 1, Options 1 and 2.

Figure 3: Lay-out proposed for the Maralla Substation 2, Options 1 and 2.

3. DESCRIPTION OF THE AFFECTED ENVIRONMENT

3.1. STUDY AREA IN GENERAL

3.1.1. BIRD HABITATS

The study area is situated approximately 40 - 60km south of the town of Sutherland, in the Karoo Hoogland Local Municipality of the Northern Cape Province. The area is situated in the proposed Komsberg Renewable Energy Zone (REDZ) and the proposed Central Corridor of the national Electricity Grid Infrastructure (EGI) (DEA 2015). The study area straddles the slopes of the Klein Roggeveld Mountains, Die Helfte se Berg and the Langberg below the escarpment, and is bisected by numerous ephemeral rivers, the largest being the Komsberg River and the Meintjiesplaasrivier. The habitat in the study area is extremely rugged, consisting of rolling hills with boulder-strewn slopes and exposed ridge lines. Prominent high points ("koppe") are Ruiter se Kop (1391m a.s.l), Murray se Kop (1134m a.s.l), Witbaken se Kop (1241m a.s.l) and Aasvoëlkop (1192m a.s.l). The study area contains a number of man-made dams used for the irrigation of a few crops (mostly pastures), which is grown as supplementary fodder for small stock farming. Sheep farming is the main economic activity. The southern part of the study area is traversed by the Droërivier-Muldersvlei 400kV, Bachus-Droërivier 400kV and the Gamma – Omega 765kV transmission lines.

The natural vegetation in the study area is dominated by Central Mountain Shale Renosterveld which exists in a transitional zone between the Fynbos and Succulent Karoo Biomes (Mucina & Rutherford 2006). The vegetation type is found on slopes and broad ridges of low mountains and escarpments. It consists of tall shrubland dominated by renosterbos and large suites of mainly non-succulent karoo shrubs with a rich geophytic flora in the undergrowth or in more open, wetter or rocky habitats (Mucina & Rutherford 2006). In the south closer to Komsberg Substation the Central Mountain Shale Renosterveld is replaced by Koedoesberge – Moordenaars Karoo which is found on slightly undulating to hilly landscapes consisting of low succulent scrub and dotted by scattered tall shrubs and patches of "white" grass (Mucina & Rutherford 2006).

The climate is arid to semi-arid with a mean average precipitation of 228mm, with relatively even rainfall with a slight peak in autumn and winter. Mean daily maximum and minimum temperatures in Sutherland range between 27°C and -3°C for January and July₂.

While the development area is large, and the altitude range it encompasses considerable, the habitat in the study area from an avian perspective is relatively uniform, dominated by open, rocky, undulating or montane renosterbos, with steep, rocky slopes, ridges and low cliffs, denser, woody vegetation along the bigger drainage lines (and stands of alien trees), and both natural and artificial wetlands - river courses, vleis and dams. The larger artificial impoundments in the area probably support good numbers of waterbirds in wet years, and the Eskom power pylons are used as roosting, hunting and/or nesting habitat by certain species (e.g. raptors and corvids).

The site is not located within 50 km of any of the currently registered national Important Bird Areas (Marnewick *et al.* 2015).

See **APPENDIX 2** for representative samples of the habitat in the study area.

² http://www.worldweatheronline.com/sutherland-weather-averages/northern-cape/za.aspx

3.1.2 AVIFAUNA

A total of 161 species could potentially occur in the study area. Of these, 13 are classified as Red Data species. **Table 2** below lists the Red Data species that could potentially occur in the study area, as well as the potential impact on these species in the study area.

See **APPENDIX 3** for a list of all species that could potentially occur in the study area.

Table 2: Priority species that could potentially occur in the study area. EN = Endangered VU = Vulnerable NT = Near threatened LC = Least concern

Sp	ecies	Re	porting rat	e			Status				Habit	at				Imp	pact	
Species	Taxonomic name	SABAP 2	SABAP1	Recorded during pre-construction monitoring	Global status	Local status	South African endemic	Southern African endemic	Fynbos/Karoo	Dams	Drainage line	Agriculture	HV lines	Alien trees	Collisions	Electrocutions	Displacement: Disturbance	Displacement: Habitat destruction
Eagle, Verreaux's	Aquila verreauxii	10.26	√ 16.67	х	LC	VU			x	х			x	x	х		х	
Korhaan, Southern Black	Afrotis afra	30.77	√ 16.00	х	VU	VU	Endemic	Endemic	x						х		х	
Stork, Black	Ciconia nigra		√ 5.88		LC	VU				х					х			
Flamingo, Greater	Phoenicopterus roseus		√ 18.18	х	LC	NT				х					х			
Korhaan, Karoo	Eupodotis vigorsii	12.82	√ 15.00		LC	NT		Endemic	х						х		х	
Sandpiper, Curlew	Calidris ferruginea		√ 12.50		NT	LC				х					х			
Bustard, Ludwig's	Neotis ludwigii	5.13	√ 10.42	х	EN	EN		Near-endemic	x			x			х		x	
Eagle, Martial	Polemaetus bellicosus	20.51	√ 10.42	х	VU	EN			x	х			x	x	x		x	
Harrier, Black	Circus maurus		√ 12.00	х	VU	EN	Near endemic	Endemic	x			x			х		x	
Lanner Falcon	Falco biarmicus			х	LC	VU			х	х		x	x	x			x	
Sclater's Lark	Spizocorys sclateri			х	NT	NT			х									

4. IMPACTS OF POWERLINES AND SUBSTATIONS ON AVIFAUNA

4.1. GENERAL

Negative impacts on birds by electricity infrastructure generally take two forms namely electrocution and collisions (Ledger & Annegarn 1981; Ledger 1983; Ledger 1984; Hobbs and Ledger 1986a; Hobbs & Ledger 1986b; Ledger, Hobbs & Smith, 1992; Verdoorn 1996; Kruger & Van Rooyen 1998; Van Rooyen 1998; Kruger 1999; Van Rooyen 1999; Van Rooyen 2000; Van Rooyen 2004; Jenkins *et al.* 2010). Birds also impact on the infrastructure through nesting and streamers, which can cause interruptions in the electricity supply (Van Rooyen *et al.* 2002).

4.2. ELECTROCUTIONS

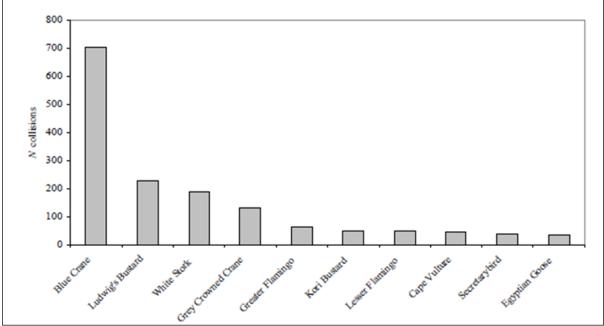
Electrocution refers to the scenario where a bird is perched or attempts to perch on the electrical structure and causes an electrical short circuit by physically bridging the air gap between live components and/or live and earthed components (Van Rooyen 2004). The electrocution risk is largely determined by the pole/tower design. In the case of the proposed Maralla grid connections, no electrocution risk is envisaged because the proposed design of the 132kV lines will not pose an electrocution threat to any of the priority species which are likely to occur at the site. Electrocutions within the proposed on-site substation yard are possible, but should not affect the more sensitive Red List bird species, as these species are unlikely to use the infrastructure within the substation yards for perching or roosting.

4.3. COLLISIONS

Collisions are probably the bigger threat posed by transmission lines to birds in southern Africa (Van Rooyen 2004). Most heavily impacted upon are bustards, storks, cranes and various species of waterbirds. These species are mostly heavy-bodied birds with limited manoeuvrability, which makes it difficult for them to take the necessary evasive action to avoid colliding with transmission lines (Van Rooyen 2004, Anderson 2001). In a recent PhD study, Shaw (2013) provides a concise summary of the phenomenon of avian collisions with transmission lines:

"The collision risk posed by power lines is complex and problems are often localised. While any bird flying near a power line is at risk of collision, this risk varies greatly between different groups of birds, and depends on the interplay of a wide range of factors (APLIC 1994). Bevanger (1994) described these factors in four main groups – biological, topographical, meteorological and technical. Birds at highest risk are those that are both susceptible to collisions and frequently exposed to power lines, with waterbirds, gamebirds, rails, cranes and bustards usually the most numerous reported victims (Bevanger 1998, Rubolini et al. 2005, Jenkins et al. 2010).

The proliferation of man-made structures in the landscape is relatively recent, and birds are not evolved to avoid them. Body size and morphology are key predictive factors of collision risk, with large-bodied birds with high wing loadings (the ratio of body weight to wing area) most at risk (Bevanger 1998, Janss 2000). These birds must fly fast to remain airborne, and do not have sufficient manoeuvrability to avoid unexpected obstacles. Vision is another key biological factor, with many collision-prone birds principally using lateral vision to navigate in flight, when it is the lower-resolution, and often restricted, forward vision that is useful to detect obstacles (Martin & Shaw 2010, Martin 2011, Martin et al. 2012). Behaviour is important, with birds flying in flocks, at low levels and in crepuscular or nocturnal conditions at higher risk of collision (Bevanger 1994). Experience affects risk, with migratory and nomadic species that spend much of their time in unfamiliar locations also expected to collide more often (Anderson 1978, Anderson 2002). Juvenile birds have often been reported as being more collision-prone than adults (e.g. Brown et al. 1987, Henderson et al. 1996).


Topography and weather conditions affect how birds use the landscape. Power lines in sensitive bird areas (e.g. those that separate feeding and roosting areas, or cross flyways) can be very dangerous (APLIC 1994, Bevanger 1994). Lines crossing the prevailing wind conditions can pose a problem for

large birds that use the wind to aid take-off and landing (Bevanger 1994). Inclement weather can disorient birds and reduce their flight altitude, and strong winds can result in birds colliding with power lines that they can see but do not have enough flight control to avoid (Brown et al. 1987, APLIC 2012).

The technical aspects of power line design and siting also play a big part in collision risk. Grouping similar power lines on a common servitude, or locating them along other features such as tree lines, are both approaches thought to reduce risk (Bevanger 1994). In general, low lines with short span lengths (i.e. the distance between two adjacent pylons) and flat conductor configurations are thought to be the least dangerous (Bevanger 1994, Jenkins et al. 2010). On many higher voltage lines, there is a thin earth (or ground) wire above the conductors, protecting the system from lightning strikes. Earth wires are widely accepted to cause the majority of collisions on power lines with this configuration because they are difficult to see, and birds flaring to avoid hitting the conductors often put themselves directly in the path of these wires (Brown et al. 1987, Faanes 1987, Alonso et al. 1994a, Bevanger 1994)."

From incidental record keeping by the Endangered Wildlife Trust, it is possible to give a measure of what species are generally susceptible to power line collisions in South Africa (see **Figure 8** below - Jenkins *et al.* 2010).

Figure 5: The top 10 collision prone bird species in South Africa, in terms of reported incidents contained in the Eskom/EWT Strategic Partnership central incident register 1996 - 2008 (Jenkins *et al.* 2010)

Power line collisions are generally accepted as a key threat to bustards (Raab *et al.* 2009; Raab *et al.* 2010; Jenkins & Smallie 2009; Barrientos *et al.* 2012, Shaw 2013). In a recent study, carcass surveys were performed under high voltage transmission lines in the Karoo for two years, and low voltage distribution lines for one year (Shaw 2013). Ludwig's Bustard was the most common collision victim (69% of carcasses), with bustards generally comprising 87% of mortalities recovered. Total annual mortality was estimated at 41% of the Ludwig's Bustard population, with Kori Bustards also dying in large numbers (at least 14% of the South African population killed in the Karoo alone). Karoo Korhaan was also recorded, but to a much lesser extent than Ludwig's Bustard. The reasons for the relatively low collision risk of this species probably include their smaller size (and hence greater agility in flight) as well as their more sedentary lifestyles, as local birds are familiar with their territory and are less likely to collide with power lines (Shaw 2013).

Several factors are thought to influence avian collisions, including the manoeuvrability of the bird, topography, weather conditions and power line configuration. An important additional factor that previously has received little attention is the visual capacity of birds; i.e. whether they are able to see obstacles such as power lines, and whether they are looking ahead to see obstacles with enough time

to avoid a collision. In addition to helping explain the susceptibility of some species to collision, this factor is key to planning effective mitigation measures. Recent research provides the first evidence that birds can render themselves blind in the direction of travel during flight through voluntary head movements (Martin & Shaw 2010). Visual fields were determined in three bird species representative of families known to be subject to high levels of mortality associated with power lines i.e. Kori Bustards, Blue Cranes Anthropoides paradiseus and White Storks Ciconia ciconia. In all species the frontal visual fields showed narrow and vertically long binocular fields typical of birds that take food items directly in the bill under visual guidance. However, these species differed markedly in the vertical extent of their binocular fields and in the extent of the blind areas which project above and below the binocular fields in the forward facing hemisphere. The importance of these blind areas is that when in flight, head movements in the vertical plane (pitching the head to look downwards) will render the bird blind in the direction of travel. Such movements may frequently occur when birds are scanning below them (for foraging or roost sites, or for conspecifics). In bustards and cranes pitch movements of only 25° and 35°, respectively, are sufficient to render the birds blind in the direction of travel; in storks, head movements of 55° are necessary. That flying birds can render themselves blind in the direction of travel has not been previously recognised and has important implications for the effective mitigation of collisions with human artefacts including wind turbines and power lines. These findings have applicability to species outside of these families especially raptors (Accipitridae) which are known to have small binocular fields and large blind areas similar to those of bustards and cranes, and are also known to be vulnerable to power line collisions.

Despite doubts about the efficacy of line marking to reduce the collision risk for bustards (Jenkins et al. 2010; Martin et al. 2010), there are numerous studies which prove that marking a line with PVC spiral type Bird Flight Diverters (BFDs) generally reduce mortality rates (e.g. Barrientos et al. 2011; Jenkins et al. 2010; Alonso & Alonso 1999; Koops & De Jong 1982), including to some extent for bustards (Barrientos et al. 2012; Hoogstad 2015 pers.comm). Beaulaurier (1981) summarised the results of 17 studies that involved the marking of earth wires and found an average reduction in mortality of 45%. Barrientos et al. (2011) reviewed the results of 15 wire marking experiments in which transmission or distribution wires were marked to examine the effectiveness of flight diverters in reducing bird mortality. The presence of flight diverters was associated with a decrease of 55–94% in bird mortalities. Koops and De Jong (1982) found that the spacing of the BFDs was critical in reducing the mortality rates mortality rates are reduced up to 86% with a spacing of 5m, whereas using the same devices at 10m intervals only reduces the mortality by 57%. Barrientos et al. (2012) found that larger BFDs were more effective in reducing Great Bustard collisions than smaller ones. Line markers should be as large as possible, and highly contrasting with the background. Colour is probably less important as during the day the background will be brighter than the obstacle with the reverse true at lower light levels (e.g. at twilight, or during overcast conditions). Black and white interspersed patterns are likely to maximise the probability of detection (Martin et al. 2010).

4.4. DISPLACEMENT DUE TO HABITAT DESTRUCTION AND DISTURBANCE

During the construction phase and maintenance of power lines and substations, some habitat destruction and transformation inevitably takes place. This happens with the construction of access roads, the clearing of servitudes and the levelling of substation yards. These activities have an impact on birds breeding, foraging and roosting in or in close proximity of the substation and power line servitudes through transformation of habitat, which could result in temporary or permanent displacement.

Apart from direct habitat destruction, the above-mentioned construction and maintenance activities also impact on birds through disturbance; this could lead to breeding failure if the disturbance happens during a critical part of the breeding cycle. Construction activities in close proximity to breeding locations could be a source of disturbance and could lead to temporary breeding failure or even permanent abandonment of nests.

5. DETAILED DESCRIPTION OF IMPACTS PER PHASE

5.1. CONSTRUCTION PHASE

5.1.1. DISPLACEMENT DUE TO HABITAT DESTRUCTION AND DISTURBANCE ASSOCIATED WITH THE CONSTRUCTION OF THE POWERLINES

The construction of the powerlines and associated substations will result in a significant amount of movement and noise, which will lead to the temporary displacement of Red Data avifauna from the vicinity of the construction activities. It is highly likely that most priority species listed in **Table 2** will vacate the immediate vicinity of the construction area for the duration of these activities. Larger, sensitive species such as Martial Eagle, Ludwig's Bustard, Karoo Korhaan and Southern Black Korhaan are most likely to be affected by this temporary impact. Due to the nature of the vegetation, very little if any vegetation clearing will be required. Loss of habitat is therefore likely to be minimal and should not materially affect any priority species.

Substation 1

Both powerline options are of similar length but powerline Option 1 is preferred over Option 2. The main reason for that is that Option 2 runs for a considerable distance alongside the existing Droërivier – Muldersvlei 400kV line within very close proximity of at least four large raptor nests, three of which are confirmed Martial Eagle nests. Construction activities near these nests could lead to temporary displacement of the breeding pairs. In the case of Option 1, only one nest is potentially affected. Furthermore, Option 2 is almost 24% longer than Option 1, which means it has an increased potential for displacing Red Data species due to its longer length. Lastly, Option 1 runs for most of the way fairly close to very close to the Smoushoogte dirt road, which eliminates the need for the construction of new roads during the construction phase.

Substation 2

Powerline Option 1 is preferred over Option 2. The main reason for that is that Option 2 runs for a considerable distance alongside the existing Droërivier – Muldersvlei 400kV line within very close proximity of at least four large raptor nests, three of which are confirmed Martial Eagle nests. Construction activities near these nests could lead to temporary displacement of the breeding pairs. In the case of Option 1, only one nest is potentially affected.

5.2 OPERATIONAL PHASE

5.2.1. COLLISIONS WITH THE EARTHWIRE OF THE PROPOSED 132KV POWERLINES

The most likely Red Data candidates for collision mortality on the proposed powerlines are Ludwig's Bustards in natural habitat and agricultural areas, Karoo Korhaan, Southern Black Korhaan in natural habitat, and Greater Flamingo near dams. Non-Red Data waterbirds could also be at risk near dams and where the line crosses drainage lines (see **Table 2** for a list of species that could be at risk). Martial and Verreaux's Eagle might also be at risk, but not to the same degree as the large terrestrial species.

Substation 1

Both options have a similar amount of potential high risk drainage lines and dams. However, Option 2 is about 24% longer than Option 1, and Option 1 runs for most of the way fairly close to very close to the Smoushoogte dirt road which is a natural deterrent for sensitive Red Data species. Option 1 is therefore the preferred option.

Substation 2

Both options have a similar amount of potential high risk drainage lines and dams and are of similar length. However, Option 1 runs for most of the way fairly close to very close to the Smoushoogte dirt road which is a natural deterrent for sensitive Red Data species. Option 1 is therefore the preferred option.

5.2.2. ELECTROCUTION

No electrocution risk is envisaged because the proposed double circuit steel monopole design of the 132kV lines will not pose an electrocution threat to any of the priority species which are likely to occur in the study area. Electrocutions within the proposed on-site substation yard are possible, but should not affect the more sensitive Red List bird species, as these species are unlikely to use the infrastructure within the substation yards for perching or roosting.

5.3 DE-COMMISSIONING PHASE

5.3.1 DISPLACEMENT DUE TO HABITAT DESTRUCTION AND DISTURBANCE ASSOCIATED WITH THE DE-COMMISSIONING OF THE POWERLINES

The de-commissioning of the powerlines and associated substations will result in a significant amount of movement and noise, which will lead to the temporary displacement of priority avifauna from the vicinity of the construction activities. It is highly likely that most priority species listed in **Table 2** will vacate the immediate vicinity of the decommissioning operations for the duration of these activities. Larger, sensitive Red Data species such as Ludwig's Bustard, Karoo Korhaan and Southern Black Korhaan are most likely to be affected by this temporary impact. However, once the activities have ceased, the study area should be re-colonised in due course.

Substation 1

Powerline Option 1 is preferred over Option 2. The main reason for that is that Option 2 runs for a considerable distance alongside the existing Droërivier – Muldersvlei 400kV line within very close proximity of at least four large raptor nests, three of which are confirmed Martial Eagle nests. Decommissioning activities near these nests could lead to temporary displacement of the breeding pairs. In the case of Option 1, only one nest is potentially affected. Furthermore, Option 2 is almost 24% longer than Option 1, which means it has an increased potential for displacing Red Data species due to its longer length. Lastly, Option 1 Option 1 runs for most of the way fairly close to very close to the Smoushoogte dirt road, which eliminates the need for the construction of new roads during the decommissioning phase.

Substation 2

Both powerline options are of similar length but powerline Option 1 is preferred over Option 2. The main reason for that is that Option 2 runs for a considerable distance alongside the existing Droërivier – Muldersvlei 400kV line within very close proximity of at least four large raptor nests, three of which are confirmed Martial Eagle nests. Construction activities near these nests could lead to temporary displacement of the breeding pairs. In the case of Option 1, only one nest is potentially affected.

5.4. PREFERRED ALTERNATIVE: SUBSTATION 1 OR SUBSTATION 2

Both substation alternatives are located in transitional zones between the Fynbos and Succulent Karoo habitat with a similar footprint size. However, Substation 1 coupled with powerline option 1 is the most preferred combination as it is the shortest of all the powerline options, runs for a considerable distance

next to an existing road and is likely to have the least impact on large eagles breeding on existing transmission lines.

5.5. CUMULATIVE IMPACTS

The renewable energy project applications currently registered with DEA between Touws River and Sutherland within a 70km radius around Komsberg Substation are listed in **APPENDIX 4.** Possible impacts by renewable energy projects on birds within this area are temporary displacement due to disturbance associated with the construction of the facility and associated infrastructure, collisions with solar panels and wind turbines, permanent displacement due to habitat transformation, entrapment in perimeter fences and collisions with the associated power lines.

Apart from renewable energy developments, several other threats are currently facing avifauna in the natural Karoo habitat (Marnewick *et al.* 2015):

• Overgrazing

This results in a depletion of palatable plant species, erosion, and encroachment by Karoo shrubs. The result is loss of suitable habitat and a decrease in the availability of food for large terrestrial birds. Centre-pivot irrigated croplands using underground water are increasing and agriculture is intensifying, which may benefit some Red Data species, but not all.

• Poisoning

Strychnine poison was used extensively in the past to control damage-causing predators, such as Black-backed Jackal *Canis mesomelas* and Caracal *Caracal caracal*, and reduced scavenging raptor populations. The use of poison may be continuing, and the potential impacts on threatened raptor species has not been confirmed or quantified.

Road-kills

Many birds are commonly killed on roads, especially nocturnal species such as Spotted Eagle-Owl.

Powerlines

Numerous existing and new power lines are significant threats to some priority species. Power lines kill substantial numbers of all large terrestrial bird species in the Karoo, including threatened species (Jenkins *et al.* 2010; Shaw, J. 2013) There is currently no completely effective mitigation method to prevent collisions.

• Climate change

Climate change scenarios for the region predict slightly higher summer rainfall by 2050, and increased rainfall variability. Droughts are expected to become more severe. The climate change is predicted to have both positive and negative consequences for priority species. Increased summer rainfall could improve survival, and conversely drought years can lower long-term average survival. Large, mainly resident species dependent on rainfall are also more vulnerable to climate change. This would include the slow-breeding Verreaux's Eagle, Tawny Eagle and Martial Eagle, which also exhibit extended parental care. Severe hailstorms kill many priority species and could become more frequent.

• Shale gas fracking

There is a potential threat of shale gas fracking throughout the Karoo. Populations of bird species may be locally reduced through disturbance caused by lights, vibration, vehicles and dust, and may be affected by pollutants in ponds containing contaminated water produced by returned fracking fluids.

Persecution

Although it is difficult to prove, the direct persecution of raptors such as Verreaux's Eagle and Martial Eagle for stock predation is still taking place (R. Visagie pers. comm).

The greatest potential concern in the 70km radius around Komsberg Substation is for the large raptor species, particularly Verreaux's Eagle and Martial Eagle, due to their low numbers and vulnerability to turbine collisions. However, the Maralla grid connection should not materially threaten these species. The concern from a powerline interaction perspective is more for large terrestrial species, particularly Ludwig's Bustard, which is highly susceptible to powerline collisions. The Maralla grid connection will add an additional 27 – 36km of HV line to the existing HV network in the area, depending on which alternative is built. Several hundred kilometres of HV line already exists within this area, and several more are planned should the renewable energy projects all be built. The overall cumulative impact of the Maralla grid connection, when viewed with the existing impacts on avifauna, is assessed to be MEDIUM, but it could be reduced to some extent with mitigation.

6. ASSESSMENT OF IMPACTS

The EIA uses a methodological framework developed by WSP | Parsons Brinckerhoff to meet the combined requirements of international best practice and NEMA, Environmental Impact Assessment Regulations, 2014 (GN No. 982) (the "EIA Regulations").

As required by the EIA Regulations (2014), the determination and assessment of impacts were based on the following criteria:

- → Nature of the Impact
- → Significance of the Impact
- Consequence of the Impact
- \rightarrow Extent of the impact
- → Duration of the Impact
- → Probability if the impact
- → Degree to which the impact:
 - can be reversed;
 - may cause irreplaceable loss of resources; and
 - can be avoided, managed or mitigated.

Following international best practice, additional criteria have been included to determine the significant effects. These include the consideration of the following:

- → Magnitude: to what extent environmental resources are going to be affected;
- Sensitivity of the resource or receptor (rated as high, medium and low) by considering the importance of the receiving environment (international, national, regional, district and local), rarity of the receiving environment, benefits or services provided by the environmental resources and perception of the resource or receptor); and
- Severity of the impact, measured by the importance of the consequences of change (high, medium, low, negligible) by considering inter alia magnitude, duration, intensity, likelihood, frequency and reversibility of the change.

It should be noted that the definitions given are for guidance only, and not all the definitions will apply to all the environmental receptors and resources being assessed. Impact significance was assessed with and without mitigation measures in place.

6.1 METHODOLOGY

Impacts were assessed in terms of the following criteria:

> The nature, a description of what causes the effect, what will be affected and how it will be affected

Nature or Type of Impact	Definition
Beneficial / Positive	An impact that is considered to represent an improvement on the baseline or introduces a positive change.
Adverse / Negative	An impact that is considered to represent an adverse change from the baseline, or introduces a new undesirable factor.
Direct	Impacts that arise directly from activities that form an integral part of the Project (e.g. new infrastructure).
Indirect	Impacts that arise indirectly from activities not explicitly forming part of the Project (e.g. noise changes due to changes in road or rail traffic resulting from the operation of Project).
Secondary	Secondary or induced impacts caused by a change in the Project environment (e.g. employment opportunities created by the supply chain requirements).
Cumulative	Impacts are those impacts arising from the combination of multiple impacts from existing projects, the Project and/or future projects.

→ The physical **extent**, wherein it is indicated whether:

Score Description

- 1 the impact will be limited to the site;
- 2 the impact will be limited to the local area;
- 3 the impact will be limited to the region;
- 4 the impact will be national; or
- 5 the impact will be international;
- → The duration, wherein it is indicated whether the lifetime of the impact will be:

Score Description

1 of a very short duration (0 to 1 years)

- **2** of a short duration (2 to 5 years)
- **3** medium term (5–15 years)
- 4 long term (> 15 years)
- 5 permanent
- The magnitude of impact on ecological processes, quantified on a scale from 0-10, where a score is assigned:

Score	Description
00010	Dooonption

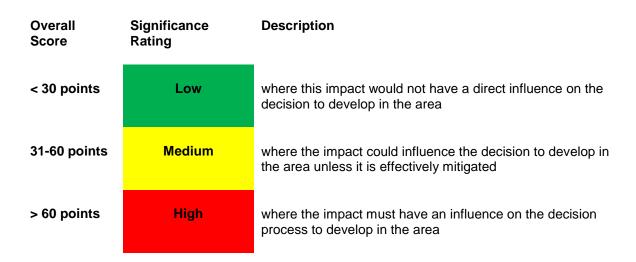
- **0** small and will have no effect on the environment.
- 2 minor and will not result in an impact on processes.
- 4 low and will cause a slight impact on processes.
- 6 moderate and will result in processes continuing but in a modified way.
- 8 high (processes are altered to the extent that they temporarily cease).
- **10** very high and results in complete destruction of patterns and permanent cessation of processes.
- → The probability of occurrence, which describes the likelihood of the impact actually occurring. Probability is estimated on a scale where:

```
Score Description
```

- 1 very improbable (probably will not happen.
- 2 improbable (some possibility, but low likelihood).
- **3** probable (distinct possibility).
- 4 highly probable (most likely).
- 5 definite (impact will occur regardless of any prevention measures).

- → the **significance**, which is determined through a synthesis of the characteristics described above (refer formula below) and can be assessed as low, medium or high;
- → the **status**, which is described as either positive, negative or neutral;
- \rightarrow the degree to which the impact can be reversed;
- → the degree to which the impact may cause irreplaceable loss of resources; and
- \rightarrow the *degree* to which the impact can be mitigated.

The **significance** is determined by combining the criteria in the following formula:


S = (E+D+M)*P

S = Significance weighting

- **E** = Extent
- **D** = Duration
- M = Magnitude

P = Probability

The significance weightings for each potential impact are as follows:

6.1 IMPACT ASSESSMENT TABLES

The impact assessment tables are attached as **APPENDIX 5**.

7. MITIGATION AND MANAGEMENT MEASURES

The proposed mitigation measures are set out below in Table 5.

Table 5: Mitigation and management

ACTIVITY	MITIGATION AND MANAGEMENT MEASURE	Responsible Person	Applicable Development Phase	INCLUDE AS CONDITION OF AUTHORISATION	MONITORING REQUIREMENTS
Displacement of Red Data avifauna due to habitat destruction and disturbance associated with the construction of the powerlines	 Measures to control noise and dust should be applied according to current best practice in the industry. Maximum use should be made of existing access roads and the construction of new roads should be kept to a minimum as far as practical. The recommendations of the ecological and botanical specialist studies must be strictly implemented, especially as far as limitation of the construction footprint and rehabilitation of disturbed areas is concerned. Prior to construction commencing, an inspection should be performed by the avifaunal specialist to record any large raptor nests on the existing Droërivier- Muldersvlei 1 400kV line that could be impacted by the construction of the proposed powerline Should any nests be recorded, it would require management of the potential impacts on the breeding birds once construction commences, which would necessitate the involvement of the avifaunal specialist, and the Environmental Control Officer. An effective communication strategy should be implemented whereby the avifaunal 	Environmental Control Officer	Construction	Yes	None

ACTIVITY	MITIGATION AND MANAGEMENT MEASURE	Responsible Person	Applicable Development Phase	INCLUDE AS CONDITION OF AUTHORISATION	MONITORING REQUIREMENTS
	specialist is provided with a construction schedule which will enable him/her to ascertain when and where breeding priority raptors could be impacted by the construction activities. This could then be addressed through the timing of construction activities during critical periods of the breeding cycle, once it has been established that a particular nest is active				
Displacement of Red Data avifauna due to habitat destruction and disturbance associated with the construction of the substation	 Construction activity should be restricted to the immediate footprint of the infrastructure. Access to the remainder of the site should be strictly controlled to prevent unnecessary disturbance of priority species. Measures to control noise and dust should be applied according to current best practice in the industry. Maximum use should be made of existing access roads and the construction of new roads should be kept to a minimum as far as practical. The recommendations of the ecological and botanical specialist studies must be strictly implemented, especially as far as limitation of the construction footprint and rehabilitation of disturbed areas is concerned. 	Construction manager Environmental Control Officer	Construction	Yes	None
Collisions of Red Data avifauna with the	 A walk-through must be conducted by the avifaunal specialist after final pole positions 	Construction manager	Operation	Yes	 The powerlines should be inspected at least once a quarter for a minimum of two years by the

ACTIVITY	MITIGATION AND MANAGEMENT MEASURE	Responsible Person		INCLUDE AS CONDITION OF AUTHORISATION	
earthwire of the proposed 132kV powerlines	have been determined, to demarcate sections of line that will need to be mitigated with Bird Flight Diverters (BFDs).	Environmental Control Officer Site management Avifaunal specialist			 avifaunal specialist to establish if there is any significant collision mortality. Thereafter the frequency of inspections will be informed by the results of the first two years. The detailed protocol to be followed for the inspections will be compiled by the avifaunal specialist prior to the first inspection.
Electrocution of priority species on the powerlines	None are required.	·			
Electrocution of priority species within the substation yard	The hardware within the substation yard is too complex to warrant any mitigation for electrocution at this stage. It is recommended that if on-going impacts are recorded once operational, site specific mitigation be applied reactively. This is an acceptable approach because Red List bird species are unlikely to frequent the substation and be electrocuted.	management Avifaunal specialist	Operation	Yes	None
Displacement due to habitat destruction and disturbance associated with the de- commissioning of the powerlines	 Activity should be restricted to the immediate footprint of the infrastructure. Access to the remainder of the site should be strictly controlled to prevent unnecessary disturbance of priority species. Measures to control noise and dust should be applied according to current best practice in the industry. Maximum use should be made of existing access roads and the construction of new roads should be kept to a minimum as far as practical. 	Site management	De- commissioning	No	None

ACTIVITY	MITIGATION AND MANAGEMENT MEASURE	RESPONSIBLE PERSON	Applicable Development Phase	INCLUDE AS CONDITION OF AUTHORISATION	MONITORING REQUIREMENTS
	• The recommendations of the ecological and botanical specialist studies must be strictly implemented, especially as far as limitation of the footprint and rehabilitation of disturbed areas is concerned.				
Displacement due to habitat destruction and disturbance associated with the de- commissioning of the substation	 Activity should be restricted to the immediate footprint of the infrastructure. Access to the remainder of the site should be strictly controlled to prevent unnecessary disturbance of priority species. Measures to control noise and dust should be applied according to current best practice in the industry. Maximum use should be made of existing access roads and the construction of new roads should be kept to a minimum as far as practical. The recommendations of the ecological and botanical specialist studies must be strictly implemented, especially as far as limitation of the footprint and rehabilitation of disturbed areas is concerned. 		De- commissioning	No	None

8. STAKEHOLDER CONSULTATION

8.1. STAKEHOLDER CONSULTATION PROCESS

Public participation is a requirement of the S&EIR process; it consists of a series of inclusive and culturally appropriate interactions aimed at providing stakeholders with opportunities to express their views, so that these can be considered and incorporated into the S&EIR decision-making process. Effective public participation requires the prior disclosure of relevant and adequate project information to enable stakeholders to understand the risks, impacts, and opportunities of the Proposed Project.

A comprehensive stakeholder consultation process was undertaken during the scoping phase. Stakeholders were identified through existing databases, site notices, newspaper adverts and meetings. All stakeholders identified to date have been registered on the project database. All concerns, comments, viewpoints and questions (collectively referred to as 'issues') received to date have been documented and responded to in a Comment and Response Report.

There will be ongoing communication between WSP | Parsons Brinckerhoff and stakeholders throughout the S&EIR process.

Stakeholder Details	Comment	Specialist Response
Cape Nature	5.3. The one aspect that is not dealt with is the accumulative impact. Both sites are surrounded by other windfarm developments either proposed or at the bidding stage. Considering the size of the area that will eventually be under windfarms, this aspect needs to be addressed. Currently the accumulative impact is a difficult subject to address as there are a number of stakeholders involved because of the different applications, but DEA needs to be made aware of this and be reminded on a regular basis as they will have to come up with a plan to address this issue. The other aspect is the accumulative impact of collisions that also need to be addressed.	The issue of cumulative impacts is addressed under Section 5.4 of this report.

8.2. STAKEHOLDER COMMENTS AND RESPONSE

9. CONCLUSIONS

The proposed Maralla grid connection will have several potential impacts on avifauna ranging from a site to a regional level. These impacts are summarised in the table below:

ERHOFE

		Substation 1			Substation 2				
		Powerline Option 1		Powerline Option 2		Powerline Option 1		Powerline Option 2	
		Rating prior		Rating prior		Rating prior		Rating prior	
Environmental		to	Rating post	to	Rating post	to	Rating post	to	Rating post
parameter	Impact	mitigation	mitigation	mitigation	mitigation	mitigation	mitigation	mitigation	mitigation
Avifauna	Displacement of Red Data	-27 Low	-14 Low	-33 Medium	-14 Low	-27 Low	-14 Low	-33 Medium	-14 Low
	avifauna due to habitat								
	destruction and disturbance								
	associated with the								
	construction of the								
	powerlines								
	Collisions of Red Data	-51 Medium	-31 Medium	-68 High	-51 Medium	-51 Medium	-31	-68 High	-51
	avifauna with the earthwire						Medium		Medium
	of the proposed 132kV								
	powerlines								
	Electrocution of Red Data	-7 Low	-7 Low	-7 Low	-7 Low	-7 Low	-7 Low	-7 Low	-7 Low
	avifauna								
	Displacement of Red Data	-27 Low	-14 Low	-27 Low	-14 Low	-27 Low	-14 Low	-27 Low	-14 Low
	fauna due to habitat								
	destruction and disturbance								
	associated with the de-								
	commissioning of the								
	powerlines								
		Substation 1			Substation 2				
	Impact	Rating prior	to mitigation	Rating post mitigation		Rating prior to mitigation		Rating post mitigation	
	Displacement of Red Data								
	avifauna due to habitat								
	destruction and disturbance								
	associated with the								
	construction of the								
	substation	-18 Low		-12 Low		-18 Low		-12 Low	

Elec	ctrocution of Red Data				
avif	fauna in the substation				
	yard	-7 Low	-7 Low	-7 Low	-7 Low
Dis	placement of Red Data				
av	vifauna due to habitat				
dest	ruction and disturbance				
	associated with the				
de	commissioning of the				
	substation	-18 Low	-12 Low	-18 Low	-12 Low

As far as cumulative impacts are concerned, the greatest potential concern in the 70km radius around Komsberg Substation is for the large raptor species, particularly Verreaux's Eagle and Martial Eagle, due to their low numbers and vulnerability to turbine collisions. However, the Maralla grid connection should not threaten these species significantly. The concern from a powerline interaction perspective is more for large terrestrial species, particularly Ludwig's Bustard, which is highly susceptible to powerline collisions. The Maralla grid connection will add an additional 27 – 36km of HV line to the existing HV network in the area, depending on which alternative is built. Several hundred kilometres of HV line already exists within this area, and several more are planned should the renewable energy projects all be built. The overall cumulative impact of the Maralla grid connection, when viewed with the existing impacts on avifauna, is assessed to be MEDIUM, but it could be reduced to some extent with mitigation.

Both substation alternatives are located in transitional zones between the Fynbos and Succulent Karoo habitat with a similar footprint size. However, Substation 1 coupled with powerline Option 1 is the most preferred combination as it is the shortest of all the powerline options, runs for a considerable distance next to an existing road and is likely to have the least impact on large eagles breeding on existing transmission lines.

From an avifaunal impact perspective, the proposed development could go ahead, provided the proposed mitigation measures are strictly implemented.

10 REFERENCES

- ALLAN, D.G. 1994. The abundance and movements of Ludwig's Bustard *Neotis ludwigii*. *Ostrich* 65: 95-105
- ANIMAL DEMOGRAPHY UNIT. The southern African Bird Atlas Project 2. University of Cape Town. <u>http://sabap2.adu.org.za</u>.
- AVIAN POWER LINE INTERACTION COMMITTEE (APLIC). 2012. *Mitigating Bird Collisions with Power Lines: The State of the Art in 2012.* Edison Electric Institute. Washington D.C.
- BARNES, K.N. (ed.) 1998. The Important Bird Areas of southern Africa. BirdLife South Africa: Johannesburg.
- BARRIENTOS R, PONCE C, PALACIN C, MARTÍN CA, MARTÍN B, ET AL. 2012. Wire marking results in a small but significant reduction in avian mortality at power lines: A BACI Designed Study. PLoS ONE 7(3): e32569. doi:10.1371/journal.pone.0032569.
- BARRIENTOS, R., ALONSO, J.C., PONCE, C., PALACÍN, C. 2011. Meta-Analysis of the effectiveness of marked wire in reducing avian collisions with power lines. Conservation Biology 25: 893-903.
- BEAULAURIER, D.L. 1981. Mitigation of bird collisions with transmission lines. Bonneville Power Administration. U.S. Dept. of Energy.
- HARRISON, J.A., ALLAN, D.G., UNDERHILL, L.G., HERREMANS, M., TREE, A.J., PARKER, V & BROWN, C.J. (eds). 1997. The atlas of southern African birds. Vol 1 & 2. BirdLife South Africa, Johannesburg.
- HOBBS, J.C.A. & LEDGER J.A. 1986a. The Environmental Impact of Linear Developments; Power lines and Avifauna. Proceedings of the Third International Conference on Environmental Quality and Ecosystem Stability. Israel, June 1986.
- HOBBS, J.C.A. & LEDGER J.A. 1986b. Power lines, Birdlife and the Golden Mean. *Fauna and Flora*, 44:23-27.
- HOOGSTAD, C. Email communication from the manager of the Eskom-EWT Strategic Partnership to the author on 25 June 2015.
- HOCKEY P.A.R., DEAN W.R.J., AND RYAN P.G. 2005. Robert's Birds of Southern Africa, seventh edition. Trustees of the John Voelcker Bird Book Fund, Cape Town.

• JENKINS, A., DE GOEDE, J.H. & VAN ROOYEN, C.S. 2006. Improving the products of the Eskom Electric Eagle Project. Unpublished report to Eskom. Endangered Wildife Trust.

WSP

- JENKINS, A. & SMALLIE, J. 2009. Terminal velocity: the end of the line for Ludwig's Bustard? Africa Birds and Birding. Vol 14, No 2.
- JENKINS, A.R., SMALLIE, J.J. & DIAMOND, M. 2010. Avian collisions with power lines: a global review of causes and mitigation with a South African perspective. *Bird Conservation International* 20: 263-278.
- KOOPS, F.B.J. & DE JONG, J. 1982. Vermindering van draadslachtoffers door markering van hoogspanningsleidingen in de omgeving van Heerenveen. Electrotechniek 60 (12): 641 646.
- KRUGER, R. & VAN ROOYEN, C.S. 1998. Evaluating the risk that existing power lines pose to large raptors by using risk assessment methodology: The Molopo Case Study. *Proceedings of the* 5th World Conference on Birds of Prey and Owls. August 4-8,1998. Midrand, South Africa.
- KRUGER, R. 1999. *Towards solving raptor electrocutions on Eskom Distribution Structures in South Africa*. Bloemfontein (South Africa): University of the Orange Free State. (M. Phil. Minithesis)
- LEDGER, J. 1983. *Guidelines for Dealing with Bird Problems of Transmission Lines and Towers.* Eskom Test and Research Division. (Technical Note TRR/N83/005).
- LEDGER, J.A. & ANNEGARN H.J. 1981. Electrocution Hazards to the Cape Vulture (*Gyps coprotheres*) in South Africa. *Biological Conservation* 20:15-24.
- LEDGER, J.A. 1984. Engineering Solutions to the Problem of Vulture Electrocutions on Electricity Towers. *The Certificated Engineer*, 57:92-95.
- LEDGER, J.A., J.C.A. HOBBS & SMITH T.V. 1992. Avian Interactions with Utility Structures: Southern African Experiences. *Proceedings of the International Workshop on Avian Interactions with Utility Structures*. Miami (Florida), Sept. 13-15, 1992. Electric Power Research Institute.
- MARNEWICK, M.D., RETIEF E.F., THERON N.T., WRIGHT D.R., ANDERSON T.A. 2015. Important Bird and Biodiversity Areas of South Africa. Johannesburg: BirdLife South Africa.
- MARTIN, G., SHAW, J., SMALLIE J. & DIAMOND, M. 2010. Bird's eye view How birds see is key to avoiding power line collisions. Eskom Research Report. Report Nr: RES/RR/09/31613.
- MUCINA. L. & RUTHERFORD, M.C. (Eds) 2006. The vegetation of South Africa, Lesotho and Swaziland. *Strelitzia* 19. South African National Biodiversity Institute, Pretoria.
- SHAW, J.M. 2013. Power line collisions in the Karoo: Conserving Ludwig's Bustard. Unpublished PhD thesis. Percy FitzPatrick Institute of African Ornithology, Department of Biological Sciences, Faculty of Science University of Cape Town May 2013.
- VAN ROOYEN, C.S. & LEDGER, J.A. 1999. Birds and utility structures: Developments in southern Africa. Pp 205-230, in Ferrer, M. & G.F.M. Janns. (eds.). Birds and Power lines. Quercus, Madrid (Spain). Pp 238.
- VAN ROOYEN, C.S. & TAYLOR, P.V. 1999. Bird Streamers as probable cause of electrocutions in South Africa. EPRI Workshop on Avian Interactions with Utility Structures 2-3 December 1999. Charleston, South Carolina.
- VAN ROOYEN, C.S. 1998. Raptor mortality on power lines in South Africa. *Proceedings of the 5th World Conference on Birds of Prey and Owls*. Midrand (South Africa), Aug.4 8, 1998.
- VAN ROOYEN, C.S. 1999. An overview of the Eskom-EWT Strategic Partnership in South Africa. *EPRI* Workshop on Avian Interactions with Utility Structures Charleston (South Carolina), Dec. 2-3 1999.
- VAN ROOYEN, C.S. 2000. An overview of Vulture Electrocutions in South Africa. *Vulture News,* 43: 5-22. (Vulture Study Group, Johannesburg, South Africa).

• VAN ROOYEN, C.S. 2007. Eskom-EWT Strategic Partnership: Progress Report April-September 2007. Endangered Wildlife Trust, Johannesburg.

WS

BRINCKERHOFF

- VAN ROOYEN, C.S. VOSLOO, H.F. & R.E. HARNESS. 2002. Eliminating bird streamers as a cause of faulting on transmission lines in South Africa. *Proceedings of the IEEE 46th Rural Electric Power Conference.* Colorado Springs (Colorado), May. 2002.
- VERDOORN, G.H. 1996. Mortality of Cape Griffons *Gyps coprotheres* and African Whitebacked Vultures *Pseudogyps africanus* on 88kV and 132kV power lines in Western Transvaal, South Africa, and mitigation measures to prevent future problems. *Proceedings of the 2nd International Conference on Raptors*: Urbino (Italy), Oct. 2-5, 1996.

APPENDIX 1: CHRIS VAN ROOYEN CV

Curriculum vitae: Chris van Rooyen

Name	:	Chris van Rooyen
Profession/Specialisation	:	Avifaunal Specialist
Highest Qualification	:	LLB
Nationality	:	South African
Years of experience	:	20 years

Key Qualifications

Chris van Rooyen has twenty years' experience in the assessment of avifaunal interactions with industrial infrastructure. He was employed by the Endangered Wildlife Trust as head of the Eskom-EWT Strategic Partnership from 1996 to 2007, which has received international acclaim as a model of co-operative management between industry and natural resource conservation. He is an acknowledged global expert in this field and has consulted in South Africa, Namibia, Botswana, Lesotho, New Zealand, Texas, New Mexico and Florida. He also has extensive project management experience and he has received several management awards from Eskom for his work in the Eskom-EWT Strategic Partnership. He is the author and/or co-author of 17 conference papers, co-author of two book chapters, several research reports and the current best practice guidelines for avifaunal monitoring at wind farm sites. He has completed more than 100 power line assessments; and has to date been employed as specialist avifaunal consultant on more than 50 renewable energy generation projects. He has also conducted numerous risk assessments on existing power lines infrastructure. He also works outside the electricity industry and he has done a wide range of bird impact assessment studies associated with various residential and industrial developments (see key project experience below).

Key Project Experience

Bird Impact Assessment Studies and avifaunal monitoring for wind-powered generation facilities:

- 1. Eskom Klipheuwel Experimental Wind Power Facility, Western Cape
- 2. Mainstream Wind Facility Jeffreys Bay, Eastern Cape (EIA and monitoring)
- 3. Biotherm, Swellendam, (Excelsior), Western Cape (EIA and monitoring)
- 4. Biotherm, Napier, (Matjieskloof), Western Cape (pre-feasibility)
- 5. Windcurrent SA, Jeffreys Bay, Eastern Cape (2 sites) (EIA and monitoring)
- 6. Caledon Wind, Caledon, Western Cape (EIA)
- 7. Innowind (4 sites), Western Cape (EIA)
- 8. Renewable Energy Systems (RES) Oyster Bay, Eastern Cape (EIA and monitoring)
- 9. Oelsner Group (Kerriefontein), Western Cape (EIA)
- 10. Oelsner Group (Langefontein), Western Cape (EIA)
- 11. InCa Energy, Vredendal Wind Energy Facility Western Cape (EIA)
- 12. Mainstream Loeriesfontein Wind Energy Facility (EIA and monitoring)
- 13. Mainstream Noupoort Wind Energy Facility (EIA and monitoring)
- 14. Biotherm Port Nolloth Wind Energy Facility (Monitoring)
- 15. Biotherm Laingsburg Wind Energy Facility (EIA and monitoring)
- 16. Langhoogte Wind Energy Facility (EIA)
- 17. Vleesbaai Wind Energy Facility (EIA and monitoring)
- 18. St. Helena Bay Wind Energy Facility (EIA and monitoring)
- 19. Electrawind, St Helena Bay Wind Energy Facility (EIA and monitoring)
- 20. Electrawind, Vredendal Wind Energy Facility (EIA)
- 21. SAGIT, Langhoogte and Wolseley Wind Energy facilities
- 22. Renosterberg Wind Energy Project 12 month preconstruction avifaunal monitoring project (2014)
- 23. De Aar North (Mulilo) Wind Energy Project 12 month preconstruction avifaunal monitoring project (2014)

- 24. De Aar South (Mulilo) Wind Energy Project 12 month bird monitoring (2014)
- 25. Namies Aggenys Wind Energy Project 12 month bird monitoring (2014)
- 26. Pofadder Wind Energy Project 12 month bird monitoring (2014)
- 27. Dwarsrug Loeriesfontein Wind Energy Project 12 month bird monitoring (2014)
- 28. Waaihoek Utrecht Wind Energy Project 12 month bird monitoring (2014)
- 29. Amathole Butterworth Utrecht Wind Energy Project 12-month bird monitoring & EIA specialist
- 30. Phezukomoya and San Kraal Wind Energy Projects 12-month bird monitoring & EIA specialist study (Innowind)
- 31. Beaufort West Wind Energy Facility 12-month bird monitoring & EIA specialist study (Mainstream)
- 32. Leeuwdraai Wind Energy Facility 12-month bird monitoring & EIA specialist study (Mainstream)
- 33. Sutherland Wind Energy Facility 12-month bird monitoring (Mainstream)
- 34. Maralla Wind Energy Facility 12-month bird monitoring & EIA specialist study (Biotherm)
- 35. Esizayo Wind Energy Facility 12-month bird monitoring & EIA specialist study (Biotherm)
- 36. Humansdorp Wind Energy Facility 12-month bird monitoring & EIA specialist study (Cennergi)
- 37. Aletta Wind Energy Facility 12-month bird monitoring & EIA specialist study (Biotherm)
- 38. Eureka Wind Energy Facility 12-month bird monitoring & EIA specialist study (Biotherm)
- 39. Makambako Wind Energy Faclity (Tanzania) 12-month bird monitoring & EIA specialist study (Windlab)
- 40. R355 Wind Energy Facility 12-month bird monitoring (Mainstream)
- 41. Groenekloof Wind Energy Facility 12-month bird monitoring & EIA specialist study (Mulilo)
- 42. Tsitsikamma Wind Energy Facility 24-months post-construction monitoring (Cennergi)
- 43. Noupoort Wind Energy Facility 24-months post-construction monitoring (Mainstream)
- 44. Kokerboom Wind Energy Facility 12-month bird monitoring & EIA specialist study (Business Venture Investments)
- 45. Kuruman Wind Energy Facility 12-month bird monitoring & EIA specialist study (Mulilo)

Bird Impact Assessment Studies for Solar Energy Plants:

- 1. Concentrated Solar Power Plant, Upington, Northern Cape.
- 2. Globeleq De Aar and Droogfontein Solar PV Pre- and Post-construction avifaunal monitoring
- 3. JUWI Kronos PV project, Copperton, Northern Cape
- 4. Sand Draai CSP project, Groblershoop, Northern Cape
- 5. Biotherm Helena PV Project, Copperton, Northern Cape
- 6. Biotherm Letsiao CSP Project, Aggeneys, Northern Cape
- 7. Biotherm Enamandla PV Project, Aggeneys, Northern Cape
- 8. Biotherm Sendawo PV Project, Vryburg, North-West
- 9. Biotherm Tlisitseng PV Project, Lichtenburg, North-West
- 10. JUWI Hotazel Solar Park Project, Hotazel, Northern Cape
- 11. Veld Solar One Project, Aggeneys, Northern Cape.

Bird Impact Assessment Studies for the following overhead line projects:

- 1. Chobe 33kV Distribution line
- 2. Athene Umfolozi 400kV
- 3. Beta-Delphi 400kV
- 4. Cape Strengthening Scheme 765kV
- 5. Flurian-Louis-Trichardt 132kV
- 6. Ghanzi 132kV (Botswana)
- 7. Ikaros 400kV
- 8. Matimba-Witkop 400kV
- 9. Naboomspruit 132kV
- 10. Tabor-Flurian 132kV
- 11. Windhoek Walvisbaai 220 kV (Namibia)
- 12. Witkop-Overyssel 132kV
- 13. Breyten 88kV

14.	Adis-Phoebus 400kV
15.	Dhuva-Janus 400kV
16.	Perseus-Mercury 400kV
17.	Gravelotte 132kV
18.	Ikaros 400 kV
19.	Khanye 132kV (Botswana)
20.	Moropule – Thamaga 220 kV (Botswana)
21.	Parys 132kV
22.	Simplon –Everest 132kV
23.	Tutuka-Alpha 400kV
24.	Simplon-Der Brochen 132kV
25.	Big Tree 132kV
26.	Mercury-Ferrum-Garona 400kV
27.	Zeus-Perseus 765kV
28.	Matimba B Integration Project
29.	Caprivi 350kV DC (Namibia)
30.	Gerus-Mururani Gate 350kV DC (Namibia)
31.	Mmamabula 220kV (Botswana)
32.	Steenberg-Der Brochen 132kV
33.	Venetia-Paradise T 132kV
34.	Burgersfort 132kV
35.	Majuba-Umfolozi 765kV
36.	Delta 765kV Substation
37.	Braamhoek 22kV
38.	Steelpoort Merensky 400kV
39.	Mmamabula Delta 400kV
40.	Delta Epsilon 765kV
41.	Gerus-Zambezi 350kV DC Interconnector: Review of proposed avian mitigation measures for
	the Okavango and Kwando River crossings
42.	Giyani 22kV Distribution line
43.	Liqhobong-Kao 132/11kV distribution power line, Lesotho
44.	132kV Leslie – Wildebeest distribution line
45.	A proposed new 50 kV Spoornet feeder line between Sishen and Saldanha
46.	Cairns 132kv substation extension and associated power lines
47.	Pimlico 132kv substation extension and associated power lines
48.	Gyani 22kV
49.	Matafin 132kV
50.	Nkomazi_Fig Tree 132kV
51.	Pebble Rock 132kV
52.	Reddersburg 132kV
53.	Thaba Combine 132kV
54.	Nkomati 132kV
55.	Louis Trichardt – Musina 132kV
56.	Endicot 44kV
57.	Apollo Lepini 400kV
58.	Tarlton-Spring Farms 132kV
59.	Kuschke 132kV substation
60.	Bendstore 66kV Substation and associated lines
61.	Kuiseb 400kV (Namibia)
62.	Gyani-Malamulele 132kV
63.	Watershed 132kV
64.	Bakone 132kV substation
65.	Eerstegoud 132kV LILO lines
66.	Kumba Iron Ore: SWEP - Relocation of Infrastructure
67.	Kudu Gas Power Station: Associated power lines
68.	Steenberg Booysendal 132kV
69.	Toulon Pumps 33kV
70.	Thabatshipi 132kV

70. Thabatshipi 132kV71. Witkop-Silica 132kV

72.	Bakubung 132kV
73.	Nelsriver 132kV
-	
74.	Rethabiseng 132kV
75.	Tilburg 132kV
76.	GaKgapane 66kV
77.	Knobel Gilead 132kV
78.	Bochum Knobel 132kV
79.	Madibeng 132kV
80.	Witbank Railway Line and associated infrastructure
81.	Spencer NDP phase 2 (5 lines)
82.	Akanani 132kV
83.	Hermes-Dominion Reefs 132kV
84.	Cape Pensinsula Strengthening Project 400kV
85.	Magalakwena 132kV
	Benficosa 132kV
86.	
87.	Dithabaneng 132kV
88.	Taunus Diepkloof 132kV
89.	Taunus Doornkop 132kV
90.	Tweedracht 132kV
91.	Jane Furse 132kV
92.	Majeje Sub 132kV
93.	Tabor Louis Trichardt 132kV
94.	Riversong 88kV
95.	Mamatsekele 132kV
96.	Kabokweni 132kV
97.	MDPP 400kV Botswana
98.	Marble Hall NDP 132kV
99.	Bokmakiere 132kV Substation and LILO lines
100.	Styldrift 132kV
101.	Taunus – Diepkloof 132kV
102.	Bighorn NDP 132kV
	-
103.	Waterkloof 88kV
104.	Camden – Theta 765kV
105.	Dhuva – Minerva 400kV Diversion
106.	Lesedi –Grootpan 132kV
107.	Waterberg NDP
108.	Bulgerivier – Dorset 132kV
109.	Bulgerivier – Toulon 132kV
110.	Nokeng-Fluorspar 132kV
111.	Mantsole 132kV
112.	Tshilamba 132kV
113.	Thabamoopo - Tshebela – Nhlovuko 132kV
114.	Arthurseat 132kV
115.	Borutho 132kV MTS
116.	Volspruit - Potgietersrus 132kV
-	
117.	Neotel Optic Fibre Cable Installation Project: Western Cape
117.	Matla-Glockner 400kV
118.	Delmas North 44kV
119.	Houwhoek 11kV Refurbishment
120.	Clau-Clau 132kV
121.	Ngwedi-Silwerkrans 134kV
122.	Nieuwehoop 400kV walk-through
123.	Booysendal 132kV Switching Station
124.	Tarlton 132kV
125.	Medupi - Witkop 400kV walk-through
126.	Germiston Industries Substation
127.	Sekgame 132kV
128.	Botswana – South Africa 400kV Transfrontier Interconnector
120.	Syferkuil – Rampheri 132kV
123.	

- 130. Queens Substation and associated 132kV powerlines
- 131. Oranjemond 400kV Transmission line

Bird Impact Assessment Studies for the following residential and industrial developments:

- 1. Lizard Point Golf Estate
- 2. Lever Creek Estates
- 3. Leloko Lifestyle Estates
- 4. Vaaloewers Residential Development
- 5. Clearwater Estates Grass Owl Impact Study
- 6. Sommerset Ext. Grass Owl Study
- 7. Proposed Three Diamonds Trading Mining Project (Portion 9 and 15 of the Farm Blesbokfontein)
- 8. N17 Section: Springs To Leandra "Borrow Pit 12 And Access Road On (Section 9, 6 And 28 Of The Farm Winterhoek 314 Ir)
- 9. South African Police Services Gauteng Radio Communication System: Portion 136 Of The Farm 528 Jq, Lindley.
- 10. Report for the proposed upgrade and extension of the Zeekoegat Wastewater Treatment Works, Gauteng.
- 11. Bird Impact Assessment for Portion 265 (a portion of Portion 163) of the farm Rietfontein 189-JR, Gauteng.
- 12. Bird Impact Assessment Study for Portions 54 and 55 of the Farm Zwartkop 525 JQ, Gauteng.
- 13. Bird Impact Assessment Study Portions 8 and 36 of the Farm Nooitgedacht 534 JQ, Gauteng.
- 14. Shumba's Rest Bird Impact Assessment Study
- 15. Randfontein Golf Estate Bird Impact Assessment Study
- 16. Zilkaatsnek Wildlife Estate
- 17. Regenstein Communications Tower (Namibia)
- 18. Avifaunal Input into Richards Bay Comparative Risk Assessment Study
- 19. Maquasa West Open Cast Coal Mine
- 20. Glen Erasmia Residential Development, Kempton Park, Gauteng
- 21. Bird Impact Assessment Study, Weltevreden Mine, Mpumalanga
- 22. Bird Impact Assessment Study, Olifantsvlei Cemetery, Johannesburg
- 23. Camden Ash Disposal Facility, Mpumalanga
- 24. Lindley Estate, Lanseria, Gauteng

Professional affiliations

I work under the supervision of and in association with Albert Froneman (MSc Conservation Biology) (SACNASP Zoological Science Registration number 400177/09) as stipulated by the Natural Scientific Professions Act 27 of 2003.

APPENDIX 2: BIRD HABITAT

Figure 1: The Maralla development areas is located in a transitional zone between the Fynbos and Succulent Karoo Biomes.

Figure 2: An artificial impoundment in the study area.

Figure 3: An agricultural field in the study area.

Figure 4: Existing HV lines in the study area.

Figure 5: Exotic trees and a dirt road in the study area.

APPENDIX 3: SPECIES LIST

Species		Repo	orting rat	e	Status				
Species	Taxonomic name	SABAP 2	SABAP1	Recorded during pre-construction monitoring	Global status	Local status	South African endemic	Southern African endemic	
Apalis, Bar-throated	Apalis thoracica		✓ 8.33						
Avocet, Pied	Recurvirostra avosetta		✓ 11.11						
Barbet, Acacia Pied	Tricholaema leucomelas	5.13	✓ 39.58					Near- endemic	
Batis, Pririt	Batis pririt	2.56	✓ 29.73					Near- endemic	
Bee-eater, European	Merops apiaster		✓ 10.34						
Bishop, Southern Red	Euplectes orix	7.69	✓ 25.00						
Bokmakierie	Telophorus zeylonus	92.31	√ 66.67					Near- endemic	
Bulbul, African Red-eyed	Pycnonotus nigricans		✓ 10.00					Near- endemic	
Bulbul, Cape	Pycnonotus capensis	12.82	✓ 21.74				Endemic	Endemic	
Bunting, Cape	Emberiza capensis	74.36	✓ 70.83					Near- endemic	
Bunting, Lark-like	Emberiza impetuani	35.9	✓ 19.35					Near- endemic	
Bustard, Ludwig's	Neotis ludwigii	5.13	✓ 10.42	x	EN	EN		Near- endemic	
Buzzard, Jackal	Buteo rufofuscus	58.97	✓ 22.22				Near endemic	Endemic	
Buzzard, Steppe	Buteo buteo	12.82	✓ 17.65						
Canary, Black-headed	Serinus alario	35.9	✓ 29.17				Near endemic	Endemic	

Species		Repo	orting rat	e			Status	
		nepu					010103	
Species	Taxonomic name	SABAP 2	SABAP1	Recorded during pre-construction monitoring	Global status	Local status	South African endemic	Southern African endemic
Canary, Cape	Serinus canicollis	7.69	√ 9.09					Endemic
Canary, White-throated	Crithagra albogularis	51.28	✓ 58.33					Near- endemic
Canary, Yellow	Crithagra flaviventris	56.41	√ 43.75					Near- endemic
Chat, Anteating	Myrmecocichla formicivora	20.51	✓ 16.00					Endemic
Chat, Familiar	Cercomela familiaris	48.72	✓ 39.58					
Chat, Karoo	Cercomela schlegelii	56.41	✓ 77.08					Near- endemic
Chat, Sickle-winged	Cercomela sinuata	56.41	✓ 24.00				Near endemic	Endemic
Chat, Tractrac	Cercomela tractrac		✓ 25.00					Near- endemic
Cisticola, Grey-backed	Cisticola subruficapilla	66.67	✓ 52.08					Near- endemic
Coot, Red-knobbed	Fulica cristata	5.13	✓ 16.67					
Cormorant, Reed	Phalacrocorax africanus	2.56	✓ 8.33					
Cormorant, White-breasted	Phalacrocorax lucidus	2.56	X 0.00					
Crombec, Long-billed	Sylvietta rufescens	12.82	✓ 18.75					
Crow, Cape	Corvus capensis		✓ 17.65					
Crow, Pied	Corvus albus	51.28	✓ 27.59					
Cuckoo, Diderick	Chrysococcyx caprius		✓ 25.00					
Dove, Laughing	Streptopelia senegalensis	7.69	✓ 29.17					

Species		Repo	orting rat	e			Status	
Species Species	Taxonomic name	Repo Z dBAB	rting rat VABAP1	Recorded during pre-construction monitoring	Global status	Local status	Status South African endemic	Southern African endemic
Dove, Namaqua		10.26	√	Recorc				
Dove, Red-eyed	Oena capensis Streptopelia semitorquata	15.38	20.00 ✓ 25.00					
Duck, African Black	Anas sparsa	7.69	✓ 24.14					
Duck, Yellow-billed	Anas undulata	20.51	✓ 22.92					
Eagle, Booted	Hieraaetus pennatus	2.56	✓ 10.71					
Eagle, Martial	Polemaetus bellicosus	20.51	✓ 10.42	х	VU	EN		
Eagle, Verreaux's	Aquila verreauxii	10.26	✓ 16.67	х	LC	VU		
Eagle-owl, Spotted	Bubo africanus	25.64	▼ 5.88 √					
Egret, Cattle Eremomela, Karoo	Bubulcus ibis Eremomela	23.08	5.88 ✓				Near	
Eremomela, Yellow-bellied	gregalis Eremomela	35.9	20.00 ✓				endemic	Endemic
Fiscal, Common (Southern)	icteropygialis Lanius collaris	66.67	14.58 ✓ 66.67					
Flamingo, Greater	Phoenicopterus roseus		 66.67 √ 18.18 	x	LC	NT		
Flycatcher, Chat	Bradornis infuscatus		✓ 9.09					Near- endemic
Flycatcher, Fairy	Stenostira scita	12.82	✓ 17.39				Near endemic	Endemic
Flycatcher, Fiscal	Sigelus silens	2.56	✓ 16.22				Near endemic	Endemic
Flycatcher, Spotted	Muscicapa striata		✓ 8.33					

Species		Repo	orting rat	e			Status	
Species	Taxonomic name	SABAP 2	SABAP1	Recorded during pre-construction monitoring	Global status	Local status	South African endemic	Southern African endemic
Francolin, Grey-winged	Scleroptila afra	41.03	√ 8.33				Endemic (SA, Lesotho, Swaziland)	Endemic
Goose, Egyptian	Alopochen aegyptiaca	53.85	✓ 41.67					
Goose, Spur-winged	Plectropterus gambensis	17.95	√ 9.09					
Goshawk, Southern Pale Chanting	Melierax canorus	33.33	✓ 30.00					Near- endemic
Grebe, Black-necked	Podiceps nigricollis		✓ 9.09					
Grebe, Little	Tachybaptus ruficollis	5.13	✓ 15.79					
Greenshank, Common	Tringa nebularia	5.13	✓ 11.11					
Guineafowl, Helmeted	Numida meleagris	23.08	✓ 6.90					
Hamerkop	Scopus umbretta	5.13	✓ 17.39					
Harrier, Black	Circus maurus		✓ 12.00	х	VU	EN	Near endemic	Endemic
Heron, Black-headed	Ardea melanocephala	15.38	✓ 11.76					
Heron, Grey	Ardea cinerea	5.13	✓ 16.22					
Honeyguide, Lesser	Indicator minor	2.56	X 0.00					
Hoopoe, African	Upupa africana		✓ 6.90					
Ibis, African Sacred	Threskiornis aethiopicus	10.26	✓ 10.34					
Ibis, Hadeda	Bostrychia hagedash	58.97	✓ 16.22					

Species		Repo	orting rat	e			Status	Status				
Species	Taxonomic name	SABAP 2	SABAP1	Recorded during pre-construction monitoring	Global status	Local status	South African endemic	Southern African endemic				
Kestrel, Lesser	Falco naumanni	2.56	X 0.00									
Kestrel, Rock	Falco rupicolus	46.15	✓ 54.17									
Kingfisher, Malachite	Alcedo cristata		√ 8.33									
Kite, Black-shouldered	Elanus caeruleus		✓ 29.41									
Korhaan, Karoo	Eupodotis vigorsii	12.82	✓ 15.00		LC	NT		Endemic				
Korhaan, Southern Black	Afrotis afra	30.77	✓ 16.00	x	VU	VU	Endemic	Endemic				
Lanner Falcon	Falco biarmicus			х	LC	VU						
Lapwing, Blacksmith	Vanellus armatus	15.38	✓ 50.00									
Lapwing, Crowned	Vanellus coronatus	20.51	√ 5.88									
Lark, Cape Clapper	Mirafra apiata	28.21	✓ 11.76				Near endemic	Endemic				
Lark, Eastern Clapper	Mirafra fasciolata	2.56	✓ 11.76					Near- endemic				
Lark, Karoo	Calendulauda albescens	17.95	✓ 8.11				Near endemic	Endemic				
Lark, Karoo Long-billed	Certhilauda subcoronata	66.67	✓ 33.33					Endemic				
Lark, Large-billed	Galerida magnirostris	64.1	✓ 35.42				Near endemic	Endemic				
Lark, Red-capped	Calandrella cinerea	28.21	✓ 16.67									
Lark, Spike-heeled	Chersomanes albofasciata	12.82	✓ 19.44					Near- endemic				
Martin, Brown-throated	Riparia paludicola	2.56	✓ 29.17									
Martin, Rock	, Hirundo fuligula	61.54	✓ 52.08									

Species		Repo	orting rat	e			Status	
Species	Taxonomic name	SABAP 2	SABAP1	Recorded during pre-construction monitoring	Global status	Local status	South African endemic	Southern African endemic
Masked-weaver, Southern	Ploceus velatus	46.15	✓ 52.08					
Moorhen, Common	Gallinula chloropus	2.56	X 0.00					
Mousebird, Red-faced	Urocolius indicus	12.82	✓ 19.35					
Mousebird, White-backed	Colius colius	23.08	✓ 35.42					Endemic
Night-Heron, Black-crowned	Nycticorax nycticorax		✓ 16.67					
Penduline-tit, Cape	Anthoscopus minutus	20.51	X 0.00					Near- endemic
Pigeon, Speckled	Columba guinea	48.72	✓ 31.25					
Pipit, African	Anthus cinnamomeus	23.08	✓ 16.22					
Pipit, Long-billed	Anthus similis		✓ 8.00					
Plover, Kittlitz's	Charadrius pecuarius	2.56	✓ 12.50					
Plover, Three-banded	Charadrius tricollaris	48.72	✓ 31.25					
Pochard, Southern	Netta erythrophthalma		√ 9.09					
Prinia, Karoo	Prinia maculosa	79.49	✓ 62.50				Near endemic	Endemic
Quail, Common	Coturnix coturnix	5.13	✓ 12.50					
Raven, White-necked	Corvus albicollis	66.67	✓ 29.17					
Reed-warbler, African	Acrocephalus baeticatus		√ 8.33					
Robin-chat, Cape	Cossypha caffra	38.46	✓ 25.00					
Species		Repo	orting rat	e			Status	

Species	Taxonomic name	SABAP 2	SABAP1	Recorded during pre-construction monitoring	Global status	Local status	South African endemic	Southern African endemic
Ruff	Philomachus pugnax		✓ 12.50					
Sandgrouse, Namaqua	Pterocles namaqua	46.15	✓ 18.92					Near- endemic
Sandpiper, Curlew	Calidris ferruginea		✓ 12.50		NT	LC		
Sandpiper, Marsh	Tringa stagnatilis		√ 9.09					
Sandpiper, Wood	Tringa glareola		√ 5.88					
Sclater's Lark	Spizocorys sclateri			x	NT	NT		
Scrub-robin, Karoo	Erythropygia coryphoeus	69.23	✓ 58.33					Endemic
Seedeater, Streaky-headed	Crithagra gularis		✓ 9.09					
Shelduck, South African	Tadorna cana	56.41	✓ 54.17					Endemic
Shoveler, Cape	Anas smithii	2.56	✓ 21.05					Near- endemic
Snake-eagle, Black-chested	Circaetus pectoralis	2.56	✓ 16.67					
Sparrow, Cape	Passer melanurus	76.92	✓ 70.83					Near- endemic
Sparrow, House	Passer domesticus	35.9	✓ 29.73					
Sparrow, Southern Grey-headed	Passer diffusus	2.56	✓ 8.33					
Sparrowhawk, Rufous-chested	Accipiter rufiventris	7.69	X 0.00					
Sparrowlark, Black-eared	Eremopterix australis		✓ 8.33				Near endemic	Endemic
Sparrowlark, Grey-backed	Eremopterix verticalis		✓ 12.50					Near- endemic
Spoonbill, African	Platalea alba	5.13	✓ 12.50					
Species		Repo	orting rat	e			Status	

Species	Taxonomic name	SABAP 2	SABAP1	Recorded during pre-construction monitoring	Global status	Local status	South African endemic	Southern African endemic
Spurfowl, Cape	Pternistis capensis	53.85	✓ 40.54				Near endemic	Endemic
Starling, Common	Sturnus vulgaris	28.21	✓ 25.00					
Starling, Pale-winged	Onychognathus nabouroup	20.51	✓ 47.92					Near- endemic
Starling, Pied	Lamprotornis bicolor	69.23	√ 58.33				Endemic (SA, Lesotho, Swaziland)	Endemic
Starling, Wattled	Creatophora cinerea	2.56	✓ 6.90					
Stilt, Black-winged	Himantopus himantopus		✓ 15.79					
Stint, Little	Calidris minuta	2.56	✓ 12.50					
Stork, Black	Ciconia nigra		✓ 5.88		LC	VU		
Sunbird, Dusky	Cinnyris fuscus	5.13	✓ 30.43					Near- endemic
Sunbird, Malachite	Nectarinia famosa	33.33	✓ 29.17					
Sunbird, Southern Double- collared	Cinnyris chalybeus	20.51	✓ 33.33				Near endemic	Endemic
Swallow, Barn	Hirundo rustica	30.77	✓ 18.92					
Swallow, Greater Striped	Cecropis cucullata	43.59	✓ 20.83					
Swallow, White-throated	Hirundo albigularis	5.13	✓ 12.50					
Swamp-warbler, Lesser	Acrocephalus gracilirostris	2.56	✓ 16.67					
Swift, African Black	Apus barbatus	2.56	✓ 8.00					
Species		Repo	orting rat	e			Status	

, Sacio	Taxonomic name	SABAP 2	SABAP1	Recorded during pre-construction monitoring	Global status	Local status	South African endemic	Southern African endemic
Swift, Alpine	Tachymarptis melba	2.56	√ 5.88					
Swift, Common	Apus apus	2.56	√ 5.88					
Swift, Little	Apus affinis	12.82	✓ 25.81					
Swift, White-rumped	Apus caffer	17.95	✓ 13.89					
Teal, Cape	Anas capensis	5.13	✓ 11.11					
Teal, Red-billed	Anas erythrorhyncha	2.56	✓ 10.53					
Tern, White-winged	Chlidonias leucopterus		✓ 12.50					
Thick-knee, Spotted	Burhinus capensis	2.56	X 0.00					
Thrush, Karoo	Turdus smithi	10.26	✓ 8.70				Near endemic	Endemic
Thrush, Olive	Turdus olivaceus	5.13	✓ 8.70					
Tit, Grey	Parus afer	25.64	✓ 33.33				Near endemic	Endemic
Tit-babbler, Chestnut-vented	Sylvia subcaerulea		✓ 37.84					Near- endemic
Tit-babbler, Layard's	Sylvia layardi	17.95	✓ 15.00				Near endemic	Endemic
Turtle-dove, Cape	Streptopelia capicola	43.59	✓ 56.25					
Wagtail, Cape	Motacilla capensis	61.54	 ✓ 68.75 					
Warbler, Namaqua	Phragmacia substriata	12.82	√ 37.84				Near endemic	Endemic
Warbler, Rufous-eared	Malcorus pectoralis	30.77	✓ 16.67					Endemic
Warbler, Willow	Phylloscopus trochilus		√ 8.33					
Species		Repo	orting rat	e		1	Status	

	Species	Taxonomic name	SABAP 2	SABAP1	Recorded during pre-construction monitoring	Global status	Local status	South African endemic	Southern African endemic
Waxbill, Common		Estrilda astrild	35.9	✓ 29.17					
Weaver, Cape		Ploceus capensis	53.85	✓ 14.58				Near endemic	Endemic
Wheatear, Capped		Oenanthe pileata		✓ 22.22					
Wheatear, Mountain		Oenanthe monticola	51.28	√ 45.83					Near- endemic
White-eye, Cape		Zosterops virens	2.56	✓ 40.00				Near endemic	Endemic
White-eye, Orange River		Zosterops pallidus		✓ 40.00					Endemic
Whydah, Pin-tailed		Vidua macroura		√ 8.33					
Woodpecker, Cardinal		Dendropicos fuscescens		✓ 16.67					
Woodpecker, Ground		Geocolaptes olivaceus	17.95	✓ 12.50				Endemic (SA, Lesotho, Swaziland)	Endemic

APPENDIX 4: RENEWABLE ENERGY APPLICATIONS WITHIN A 70KM RADIUS

PROPOSED DEVELOPMENT	DEA REFERENCE	CURRENT EA STATUS	PROPONENT	Exten	PROPOSED CAPACITY	Farms	Імрас	TS										 PROPOSED MITIGATION
		EASIAIUS		Т	CAPACITY		Const	ructior	ו		Opera	ation				Dec ning	ommiss	 MEASURES
							Overall	Collision	Displacement	Habitat loss	Overall	Collision	Displacement	Habitat loss	Electrocution	Overall	Displacement	
Proposed 280 MW Gunstfontein Wind Energy Project	14/12/16/3/3/2/395	S&EIR	Networx Eolos Renewables (Pty) Ltd	12 000	280 MW				L	L		L		L	L			Pre- construction monitoring Delineation of suitable buffer zones Post- construction monitoring
Proposed development of renewable energy facility at 3 x Sutherland wind farm sites, Western and	12/12/20/1782/AM1	S&EIR	Mainstream Power Sutherland	28 600	811 MW					М		Μ		Μ				Delineation of no-go zones and pre- construction monitoring. On-site demarcation

PROPOSED DEVELOPMENT	DEA REFERENCE	CURRENT EA STATUS	PROPONENT	Exten t	PROPOSED CAPACITY	Farms	Імрас	тѕ										PROPOSED MITIGATION
		EASTATUS		I	CAPACITY		Const	ructior	1		Opera	ation				Dec ning	ommissi	
							Overall	Collision	Displacement	Habitat loss	Overall	Collision	Displacement	Habitat loss	Electrocution	Overall	Displacement	
Northern Cape.																		of 'no-go' areas identified during pre- construction monitoring must be undertaken to minimise disturbance impacts associated with the construction of the facility. Schedule maintenanc e activities to avoid disturbance s in sensitive areas (identified

PROPOSED DEVELOPMENT	DEA REFERENCE	CURRENT EA STATUS	PROPONENT	Exten	PROPOSED CAPACITY	Farms	Імрас	TS										PROPOSE MITIGATIC	
		EASTATUS		т	CAPACITY		Const	ructior	1		Opera	ation				Dec ning	ommiss		
							Overall	Collision	Displacement	Habitat loss	Overall	Collision	Displacement	Habitat loss	Electrocution	Overall	Displacement		
																		through operation monitorin	
																		Carefully monitorin the local avifauna pre- and post- construct monitorin must be undertake	ng tion ng
																		Excluding developm t from wit 500 m of edge of th escarpme along its entire len through th developm t area to	nen thin the he ent ngth

PROPOSED DEVELOPMENT	DEA REFERENCE	CURRENT EA STATUS	PROPONENT	Exten t	PROPOSED CAPACITY	Farms	Імрас	TS										PROPOSED MITIGATION
NAME		LITCIATOS					Const	ructior	า		Opera	ation				Dec ning	ommissi I	
							Overall	Collision	Displacement	Habitat loss	Overall	Collision	Displacement	Habitat loss	Electrocution	Overall	Displacement	
																		reduce collision risk, primarily for slope soaring raptors.
Proposed Hidden Valley Wind Energy Facility, Northern Cape	12/12/20/2370/2	S&EIR	Hidden Valley Wind- African Clean Energy Developments (Pty) Ltd		150 MW				М	М		Μ			L			Implement exclusion zones In high sensitivity zones
																		Implement post- construction monitoring
																		Curtailment of turbines if need be
																		Nest searches

PROPOSED DEVELOPMENT	DEA REFERENCE	CURRENT EA STATUS		Exten t	PROPOSED CAPACITY	Farms	IMPAC	TS										Proposed Mitigation
NAME		LASIAIUS		1	CAPACITI		Const	ructior	า		Opera	ation			-	Dec ning	ommissic I	
							Overall	Collision	Displacement	Habitat loss	Overall	Collision	Displacement	Habitat loss	Electrocution	Overall	Displacement	
																		Control of staff and equipment to prevent disturbance
Proposed Hidden Valley wind energy facility , Northern Cape	12/12/20/2370/3	S&EIR	Hidden Valley Wind- African Clean Energy Developments (Pty) Ltd	9 180	150 MW				Μ	Μ		М			L			Implement exclusion zones In high sensitivity zones Implement post- construction monitoring Curtailment of turbines if need be Nest searches
																		Control of staff and

PROPOSED DEVELOPMENT	DEA REFERENCE	CURRENT EA STATUS		Exten t	PROPOSED CAPACITY	Farms	Імрас	TS											Proposed Mitigation
NAME		EASTATUS		1	CAPACITY		Const	ructior	ו		Opera	ation				Dec ning	ommiss		MEASURES
							Overall	Collision	Displacement	Habitat loss	Overall	Collision	Displacement	Habitat loss	Electrocution	Overall	Displacement		
																		t	equipment to prevent disturbance
Proposed Hidden Valley wind energy facility , Northern Cape	12/12/20/2370/1	S&EIR	Hidden Valley Wind- African Clean Energy Developments (Pty) Ltd		150MW				Μ	M		M			L			e z l s	Implement exclusion zones In high sensitivity zones
																		۲ C	Implement post- construction monitoring
																		c	Curtailment of turbines if need be
																			Nest searches
																		S	Control of staff and equipment

PROPOSED DEVELOPMENT	DEA REFERENCE	CURRENT EA STATUS		Exten t	PROPOSED CAPACITY	FARMS	Імрас	TS										PROPOSED MITIGATION
NAME		LASIAIUS			CAPACITI		Const	ructior	ו		Opera	ation				Deco ning	ommissi	
							Overall	Collision	Displacement	Habitat loss	Overall	Collision	Displacement	Habitat loss	Electrocution	Overall	Displacement	
																		to prevent disturbance
Proposed Hidden Valley wind energy facility, Northern Cape	12/12/20/2370	S&EIR	Hidden Valley Wind- African Clean Energy Developments (Pty) Ltd		650 MW				Μ	М		Μ			L			Implement exclusion zones In high sensitivity
																		zones Implement post- construction monitoring
																		Curtailment of turbines if need be
																		Nest searches
																		Control of staff and equipment

PROPOSED DEVELOPMENT	DEA REFERENCE	CURRENT EA STATUS	PROPONENT	Exten t	PROPOSED CAPACITY	Farms	IMPAC	тѕ										PROPOSED MITIGATION
		EASTATUS		1	CAPACITY		Const	ructior	ו		Opera	ation				Dec ning	ommissi	
							Overall	Collision	Displacement	Habitat loss	Overall	Collision	Displacement	Habitat loss	Electrocution	Overall	Displacement	
																		to prevent disturbance
Proposed Construction Of The 140MW Roggeveld Wind Farm Within The Karoo Hoogland Local Municipality Of The Northern Cape Province And Within The Laingsburg Local Municipality Of The Western Cape Province	12/12/20/1988/1/AM1	Amendment	G7 Renerable Energies (Pty) Ltd	26 529	140 MW				L	L		L	L	L	Μ			Maintain 1.3km buffer zones around Verreaux's Eagle nests Perform a pre- construction walk- through on the 132kV grid connection.

PROPOSED DEVELOPMENT	DEA REFERENCE	CURRENT EA STATUS	PROPONENT	Exten t	PROPOSED CAPACITY	Farms	IMPAC	TS										PROPOSED MITIGATION
NAME		LASIAIUS		I	CAPACITI		Const	ruction	I		Opera	ation				Dec ning	ommissi	
							Overall	Collision	Displacement	Habitat loss	Overall	Collision	Displacement	Habitat loss	Electrocution	Overall	Displacement	
Proposed Photovoltaic (PV) Solar Energy Facility On A Site South Of Sutherland, Within The Karoo Hoogland Municipality Of The Namakwa District Municipality, Northern Cape Province	12/12/20/2235	BAR	Inca Komsberg Wind (Pty) Ltd	2 859	10 MW							Μ			L			Install visibility "flappers" on all new power lines that are associated with the solar energy facility in order to reduce bird collisions with the power lines. Implement existing Eskom standards for this mitigation. Install "safe" perch or nesting sites at or around the live

PROPOSED DEVELOPMENT	DEA REFERENCE	CURRENT EA STATUS	PROPONENT	Exten t	PROPOSED CAPACITY	Farms	IMPAC	тѕ										PROPOSED MITIGATION
		EASIAIUS			CAPACITY		Const	ructior	1		Opera	ation				Dec ning	ommis	MEASURES
							Overall	Collision	Displacement	Habitat loss	Overall	Collision	Displacement	Habitat loss	Electrocution	Overall	Displacement	
																		electric sites on power line pylons so that large perching birds like eagles will not be electrocuted when perching or nesting on these parts of the pylons.
Proposed establishment of the Suurplaat wind energy facility and associated infrastructure on a site near Sutherland,	12/12/20/1583	S&EIR	Moyeng Energy (Pty) Ltd	28 600	120 MW													 Could not be sourced

PROPOSED DEVELOPMENT	DEA REFERENCE	CURRENT EA STATUS		Exten t	PROPOSED CAPACITY	Farms	Імрас	TS										PROPOSED MITIGATION
NAME		EASTATUS		I	CAPACITY		Const	ruction	1	-	Opera	ation				Dec ning	ommissi	
							Overall	Collision	Displacement	Habitat loss	Overall	Collision	Displacement	Habitat loss	Electrocution	Overall	Displacement	
Western Cape and Northern Cape.																		
Proposed establishment of the Witberg Bay wind energy facility, Laingsburg Local Municipality, Central Karoo District, Western cape		Amendment	Witberg Wind Power (Pty) Ltd	23 777	Unknown													Could not be sourced
Proposed Wind Energy facility at Konstabel	12/12/20/1787	S&EIR	South Africa Mainstream Renewable Power Development	5 129	170 MW													Could not be sourced
Proposed development of a renewable Energy	12/12/20/1783/2/AM1	Amendment	South Africa Mainstream Renewable	6 347	Unknown													Could not be sourced

PROPOSED DEVELOPMENT	DEA REFERENCE	CURRENT EA STATUS	PROPONENT	Exten t	PROPOSED CAPACITY	Farms	IMPAC	тѕ										PROPOSED MITIGATION
NAME		EASIAIUS		1	CAPACITY		Const	ructior	า		Opera	ation	-			Dec ning	ommissi	
							Overall	Collision	Displacement	Habitat loss	Overall	Collision	Displacement	Habitat loss	Electrocution	Overall	Displacement	
facility at Perdekraal, Western Cape - Split 1			Power Development															
Proposed Touwsrivier Solar energy facility	12/12/20/1956	S&EIR	Unknown	215	36 MW			L	Μ	L		L					Μ	The security fence should be adequately marked and the entire length of the 132 kV transmissio n line should be marked with bird "flappers" or diverters to make it visible.
Proposed development of renewable energy facility at Komsberg East and	?	S&EIR	Komsberg Wind Farms (Pty) Ltd	25 600	550 MW				L	L		Μ	L	L	L			Implement exclusion zones in high sensitivity areas

PROPOSED DEVELOPMENT	DEA REFERENCE	CURRENT EA STATUS	PROPONENT	Exten t	PROPOSED CAPACITY	Farms	Імрас	тѕ											ROPOSED ITIGATION
NAME		LA GIAIOS		I	CAPACITI		Const	ructior	1		Opera	ation				Dec ning	ommiss		IEASURES
							Overall	Collision	Displacement	Habitat loss	Overall	Collision	Displacement	Habitat loss	Electrocution	Overall	Displacement		
West near Sutherland																		opph m U fri pode M pow In cop f m of	nplement perational hase nonitoring lse bird- iendly owerline esigns lark owerlines rith BFDs nplement onstruction hase nonitoring f raptor ests
				Total Ha	Total MW														
				193 986	3 217 MW														

-	PROPOSED DEVELOPMENT	DEA REFERENCE	CURRENT EA STATUS	PROPONENT	EXTEN	PROPOSED CAPACITY	Farms	IMPAC	TS										PROPOSED MITIGATION
	NAME		LA GIAIOS		I	CAPACITI		Const	ructio	n		Opera	ation				Dec ning		MEASURES
								Overall	Collision	Displacement	Habitat loss	Overall	Collision	Displacement	Habitat loss	Electrocution	Overall	Displacement	
	i otais pei	Significance Rating							Total	Hectar	es pei	' impao	ct						
i	mpact	High Significance																	
		Medium Significance								35 545	63 930		63 932		28 600	26 529		215	
		Low Significance							215	38 529	38 744		38 744	26 529	38 529	47 332			
		Positive Impacts																	

APPENDIX 5: IMPACT TABLES

Attached as a separate spreadsheet

Avifauna

			Sig	nificance R	ating Table	ý			
		K I		Constructio					
		Extent	Duration	n - SUDSTAT Magnitude	ion 1 Powe Probability		ignificance	Status	
Potential Impact	Nature of impact:	(E)	(D)	(M)	(P)		(E+D+M)*P)	(+ve or -ve)	Confidence
	Without Mitigation	2	1	6	3	27	Low	-	Medium
Displacement of Red Data avifauna due to habitat	degree to which impact can be reversed:				High				High
destruction and disturbance associated with the construction of the powerlines	degree of impact on irreplaceable resources:				Low				High
powernites	Mitigation Measures	• C	Construction acti	ivity should be r	estricted to the	immediate foot	tprint of the infrastruct	ure.	
	With Mitigation	2	1	4	2	14	Low		Medium
		Komsberg			ion 1 Powe				
Potential Impact		Extent (E)	Duration (D)	Magnitude (M)	Probability (P)		ignificance (E+D+M)*P)	Status (+ve or -ve)	Confidence
	Nature of impact:					Negative			
	Without Mitigation	2	1	8	3	33	Medium	-	Medium
Displacement of Red Data avifauna due to habitat destruction and	degree to which impact can be reversed:				High			-	High
listurbance associated with the construction of the powerlines	degree of impact on irreplaceable resources:				Low				High
	Mitigation Measures	• C	Construction act	ivity should be r	estricted to the	immediate foot	tprint of the infrastruct	ure.	
	With Mitigation	2	1	4	2	14	Low		Medium
		Komsberg	Connectio	n - Substat	ion 2 Powe	rline Alter	native 1		
Potential Impact		Extent (E)	Duration (D)	Magnitude (M)	Probability (P)		ignificance :(E+D+M)*P)	Status (+ve or -ve)	Confidence
	Nature of impact:			<i></i>		Negative	<u> </u>		
	Without Mitigation	2	1	6	3	27	Low	-	Medium
Displacement of Red Data avifauna due to habitat	degree to which impact can be reversed:				High				High
destruction and disturbance associated with the construction of the	degree of impact on irreplaceable resources:				Low				High
powerlines	Mitigation Measures	• C	Construction act	ivity should be r	estricted to the	immediate foot	tprint of the infrastruct	ure.	
	With Mitigation	2	1	4	2	14	Low		Medium
		J			ion 2 Powe				
Potential Impact		Extent	Duration	Magnitude	Probability		ignificance	Status	Confidence
•	Nature of impact:	(E)	(D)	(M)	(P)	(S= Negative	(E+D+M)*P)	(+ve or -ve)	I
	Without Mitigation	2	1	8	3	33	Medium	-	Medium
Displacement of Red Data avifauna due to habitat	degree to which impact can be reversed:				High				High
destruction and listurbance associated with the construction of the powerlines	degree of impact on irreplaceable resources:				Low				High
powernites	Mitigation Measures	• C	Construction act	ivity should be r	estricted to the	immediate foot	tprint of the infrastruct	ure.	
		+		4					

				Douverline	No Co				
		E		Powerline	- No-Go			<u></u>	
Potential Impact	Mitigation	Extent (E)	Duration (D)	Magnitude (M)	Probability (P)		gnificance (E+D+M)*P)	Status (+ve or -ve)	Confidence
	Nature of impact:		1	1	1	1	[-	1
	Without Mitigation								
The no-go option will result in no additional impacts on avifauna and will maintain	degree to which impact can be reversed:								
the current ecological integrity	degree of impact on irreplaceable resources:								
	Mitigation Measures								
	With Mitigation								
			Su		ternative 1				
Potential Impact		Extent (E)	Duration (D)	Magnitude (M)	Probability (P)		gnificance (E+D+M)*P)	Status (+ve or -ve)	Confidence
	Nature of impact:					Negative			-
	Without Mitigation	1	1	4	3	18	Low	-	Medium
Displacement of Red Data avifauna due to habitat destruction and	degree to which impact can be reversed:				High				High
disturbance associated with the construction of the	degree of impact on irreplaceable resources:				Low				High
substation	Mitigation Measures	• C	construction act	ivity should be r	estricted to the	immediate foot	print of the infrastruc	ture.	
	With Mitigation	1	1	2	3	12	Low		Medium
			Su	bstation Al	ternative 2)			
Potential Impact		Extent (E)	Duration	Magnitude	Probability	Si	gnificance (E+D+M)*P)	Status (+ve or -ve)	Confidence
Potential Impact	Nature of impact:	Extent (E)				Si	gnificance (E+D+M)*P)	Status (+ve or -ve)	Confidence
Potential Impact	Without Mitigation		Duration	Magnitude	Probability	Si (S=			Confidence Medium
Displacement of Red Data avifauna due to habitat		(E)	Duration (D)	Magnitude (M)	Probability (P)	Si (S= Negative	(E+D+M)*P)		
Displacement of Red Data avifauna due to habitat destruction and disturbance associated with the construction of the	Without Mitigation degree to which impact can be	(E)	Duration (D)	Magnitude (M)	Probability (P) 3	Si (S= Negative	(E+D+M)*P)		Medium
Displacement of Red Data avifauna due to habitat destruction and disturbance associated with	Without Mitigation degree to which impact can be reversed: degree of impact on irreplaceable	(E) 1	Duration (D) 1	Magnitude (M) 4	Probability (P) 3 High Low	Si (S= Negative 18	(E+D+M)*P)	(+ve or -ve)	Medium High
Displacement of Red Data avifauna due to habitat destruction and disturbance associated with the construction of the	Without Mitigation degree to which impact can be reversed: degree of impact on irreplaceable resources:	(E) 1	Duration (D) 1	Magnitude (M) 4	Probability (P) 3 High Low	Si (S= Negative 18	(E+D+M)*P)	(+ve or -ve)	Medium High
Displacement of Red Data avifauna due to habitat destruction and disturbance associated with the construction of the	Without Mitigation degree to which impact can be reversed: degree of impact on irreplaceable resources: Mitigation Measures	(E) 1 • C	Duration (D) 1 Construction act	Magnitude (M) 4	Probability (P) 3 High Low estricted to the 3	Si (S= Negative 18 immediate foot	(E+D+M)*P)	(+ve or -ve)	Medium High High
Displacement of Red Data avifauna due to habitat destruction and disturbance associated with the construction of the	Without Mitigation degree to which impact can be reversed: degree of impact on irreplaceable resources: Mitigation Measures	(E) 1 • C 1 Extent	Duration (D) 1 Construction act 1 Duration	Magnitude (M) 4 ivity should be r 2 Substation Magnitude	Probability (P) 3 High Low estricted to the 3 - NO-GO Probability	Si (S= Negative 18 immediate foot 12 Si	(E+D+M)*P) Low print of the infrastruc Low gnificance	(+ve or -ve)	Medium High High
Displacement of Red Data avifauna due to habitat destruction and disturbance associated with the construction of the substation	Without Mitigation degree to which impact can be reversed: degree of impact on irreplaceable resources: Mitigation Measures With Mitigation	(E) 1 • C	Duration (D) 1 Construction act	Magnitude (M) 4 ivity should be r 2 Substation	Probability (P) 3 High Low estricted to the 3 - NO-GO	Si (S= Negative 18 immediate foot 12 Si	(E+D+M)*P) Low print of the infrastruc	ture.	Medium High High Medium
Displacement of Red Data avifauna due to habitat destruction and disturbance associated with the construction of the substation	Without Mitigation degree to which impact can be reversed: degree of impact on irreplaceable resources: Mitigation Measures With Mitigation	(E) 1 • C 1 Extent	Duration (D) 1 Construction act 1 Duration	Magnitude (M) 4 ivity should be r 2 Substation Magnitude	Probability (P) 3 High Low estricted to the 3 - NO-GO Probability	Si (S= Negative 18 immediate foot 12 Si	(E+D+M)*P) Low print of the infrastruc Low gnificance	ture.	Medium High High Medium
Displacement of Red Data avifauna due to habitat destruction and disturbance associated with the construction of the substation Potential Impact The no-go option will result in no additional impacts on	Without Mitigation degree to which impact can be reversed: degree of impact on irreplaceable resources: Mitigation Measures With Mitigation Mitigation Nature of impact: Without Mitigation degree to which impact can be reversed:	(E) 1 • C 1 Extent	Duration (D) 1 Construction act 1 Duration	Magnitude (M) 4 ivity should be r 2 Substation Magnitude	Probability (P) 3 High Low estricted to the 3 - NO-GO Probability	Si (S= Negative 18 immediate foot 12 Si	(E+D+M)*P) Low print of the infrastruc Low gnificance	ture.	Medium High High Medium
Displacement of Red Data avifauna due to habitat destruction and disturbance associated with the construction of the substation Potential Impact	Without Mitigation degree to which impact can be reversed: degree of impact on irreplaceable resources: Mitigation Measures With Mitigation Mitigation Nature of impact: Without Mitigation degree to which impact can be	(E) 1 • C 1 Extent	Duration (D) 1 Construction act 1 Duration	Magnitude (M) 4 ivity should be r 2 Substation Magnitude	Probability (P) 3 High Low estricted to the 3 - NO-GO Probability	Si (S= Negative 18 immediate foot 12 Si	(E+D+M)*P) Low print of the infrastruc Low gnificance	ture.	Medium High High Medium
Displacement of Red Data avifauna due to habitat destruction and disturbance associated with the construction of the substation Potential Impact The no-go option will result in no additional impacts on avifauna and will maintain the current ecological	Without Mitigation degree to which impact can be reversed: degree of impact on irreplaceable resources: Mitigation Measures With Mitigation Mitigation Mature of impact: Without Mitigation degree to which impact can be reversed: degree of impact on irreplaceable	(E) 1 • C 1 Extent	Duration (D) 1 Construction act 1 Duration	Magnitude (M) 4 ivity should be r 2 Substation Magnitude	Probability (P) 3 High Low estricted to the 3 - NO-GO Probability	Si (S= Negative 18 immediate foot 12 Si	(E+D+M)*P) Low print of the infrastruc Low gnificance	ture.	Medium High High Medium

Avifauna

				Operation						
	k					erline Alter		I	1	
Potential Impact	Nature of impact:	Extent (E)	Duration (D)	Magnitude (M)	Probability (P)		gnificance (E+D+M)*P)	Status (+ve or -ve)	Confidence	
	Without Mitigation	3	4	10	3	51	Medium	-	Medium	
Collisions of Red Data avifauna with the	degree to which impact can be reversed:		L		Low				Medium	
earthwire of the proposed 132kV powerlines	degree of impact on irreplaceable resources:				High				Medium	
	Mitigation Measures						ole positions have bee Bird Flight Diverters (BF		Medium	
	With Mitigation Nature of impact:	3	4	10	2	34 Negative	Medium		Medium	
	Without Mitigation	3	4	0	1	7	Low		High	
Electrocution of Red Data	degree to which impact can be reversed:				High			-	High	
avifauna	degree of impact on irreplaceable resources:				Low				High	
	Mitigation Measures	No mitiga	tion is required	due to the low	risk of electrocu structure		he steel monopole dou	ble circuit	High	
	With Mitigation	3	4	0 Substat	1	7	Low		High	
Potential Impact	٩	Extent (E)	Connection Duration (D)	1 - SUDSTAT Magnitude (M)	Probability (P)		gnificance (E+D+M)*P)	Status (+ve or -ve)	Confidence	
	Nature of impact:	(=)	(8)	()		Negative	(2.2.11) 1)	(110 01 10)	1	
	Without Mitigation degree to which	3	4	10	4	68	High	-	Medium	
Collisions with the arthwire of the proposed	impact can be reversed:				Low				Medium	
132kV powerlines	degree of impact on irreplaceable resources:				High				Medium	
	Mitigation Measures						ole positions have bee Bird Flight Diverters (BF		Medium	
	With Mitigation	3	4	10	3	51	Medium	55,	Medium	
	Nature of impact: Without Mitigation	3	4	0	1	Negative 7	Low		High	
lectrocution of Red Data	degree to which impact can be		L	I	High			1	High	
avifauna	reversed: degree of impact on irreplaceable resources:				Low				High	
	Mitigation Measures	No mitiga	tion is required	due to the low	risk of electrocu structure		he steel monopole dou	ble circuit	High	
	With Mitigation	3	4	0	1	7	Low		High	
	k		Connectio			erline Alter			T	
Potential Impact	Nature of the sector	Extent (E)	Duration (D)	Magnitude (M)	Probability (P)	(S=)	gnificance (E+D+M)*P)	Status (+ve or -ve)	Confidence	
	Nature of impact: Without Mitigation	3	4	10	3	Negative 51	Medium	-	Medium	
Collisions with the	degree to which impact can be reversed:				Low		I	<u> </u>	Medium	
earthwire of the proposed 132kV powerlines	degree of impact on irreplaceable resources:	High								
	Mitigation Measures						ole positions have bee Bird Flight Diverters (BF		Medium	
	With Mitigation	3	4	10	2	34	Medium	Us).	Medium	
	Nature of impact: Without Mitigation	3	4	0	1	Negative 7	Low		High	
Electrocution of Red Data	degree to which impact can be reversed:				High				High	
avifauna	degree of impact on irreplaceable resources:				Low				High	
	resources: Mitigation Measures	No mitiga	tion is required	due to the low			he steel monopole dou	ble circuit	High	
	With Mitigation	3	4	0	structure 1	7	Low		High	

	k					erline Alternative 2		
Potential Impact		Extent (E)	Duration (D)	Magnitude (M)	Probability (P)	Significance (S=(E+D+M)*P)	Status (+ve or -ve)	Confidence
	Nature of impact:					Negative		
	Without Mitigation	3	4	10	4	68 High	-	Medium
Collisions with the	degree to which impact can be reversed:				Low			Medium
arthwire of the proposed 132kV powerlines	degree of impact on irreplaceable				High			Medium
	resources: Mitigation Measures					list after final pole positions have be mitigated with Bird Flight Diverters (E		Medium
	With Mitigation	3	4	10	3	51 Medium	, b.sj.	Medium
	Nature of impact:					Negative		
	Without Mitigation degree to which	3	4	0	1	7 Low		High
lectrocution of Red Data	impact can be reversed:				High			High
avifauna	degree of impact on irreplaceable resources:				Low			High
	Mitigation Measures	No mitiga	tion is required	due to the low		tion posed by the steel monopole do	ouble circuit	High
	With Mitigation	3	4	0	structure 1	S 7 Low		High
				Powerline	- No-Go			
Potential Impact	Mitigation	Extent	Duration	Magnitude	Probability	Significance	Status	Confidence
	÷	(E)	(D)	(M)	(P)	(S=(E+D+M)*P)	(+ve or -ve)	connuence
	Nature of impact:							
Th	Without Mitigation degree to which							
The no-go option will result in no additional mpacts on avifauna and	impact can be reversed:							
vill maintain the current ecological integrity	degree of impact on irreplaceable resources:							
	Mitigation Measures							
	With Mitigation				r			
	gation		Sut	ostation A	Iternative 1	1		1
Dotontial Impact		Extent	Duration	Magnitude	Probability	Significance	Status	Confidence
Potential Impact	Nature of language	(E)	(D)	(M)	(P)	(S=(E+D+M)*P)	(+ve or -ve)	connuence
	Nature of impact: Without Mitigation	3	4	0	1	Negative 7 Low		High
	degree to which impact can be		· · ·		High			High
lectrocution of Red Data vifauna in the substation yard	reversed: degree of impact on				-			•
yara	irreplaceable resources:	The bardware	within the subs	tation vard is t	Low	varrant any mitigation for electrocuti	on at this stage	High
	Mitigation Measures					nce operational, site specific mitigati		High
	With Mitigation	3	4	0	1	7 Low		High
					Iternative 2			
Potential Impact		Extent (E)	Duration (D)	Magnitude (M)	Probability (P)	Significance (S=(E+D+M)*P)	Status (+ve or -ve)	Confidence
	Nature of impact:	(=)	(8)	(111)	(')	Negative	(100 01 00)	
	Without Mitigation	3	4	0	1	7 Low		High
entropy tion of Dad Data	degree to which impact can be				High			High
lectrocution of Red Data vifauna in the substation yard	reversed: degree of impact on irreplaceable				Low			High
	resources:	The hardware	within the subs	station yard is t		varrant any mitigation for electrocuti	on at this stage.	-
	Mitigation Measures					nce operational, site specific mitigati	on be applied	High
	With Mitigation	3	4	0 Substation	¹ - No-Go	7 Low		High
	Millionhan	Extent (E)	Duration	Magnitude	Probability	Significance	Status	Confidence
Potential Impact	Mitigation		(D)	(M)	(P)	(S=(E+D+M)*P)	(+ve or -ve)	I
Potential Impact	-	(=)						1
Potential Impact	Nature of impact:	(=)						
The no-go option will	Nature of impact: Without Mitigation degree to which	(-/						
-	Nature of impact: Without Mitigation degree to which impact can be reversed: degree of impact on							
The no-go option will result in no additional npacts on avifauna and	Nature of impact: Without Mitigation degree to which impact can be reversed: degree of impact on irreplaceable resources:							
The no-go option will result in no additional mpacts on avifauna and vill maintain the current	Nature of impact: Without Mitigation degree to which impact can be reversed: degree of impact on irreplaceable							

Avifauna

Normale Connection - Solution Magning Magn						ning Phase				
Output Indice of landOp </td <td></td> <td>I</td> <td>Komsberg</td> <td>Connectio</td> <td></td> <td>ion 1 Powe</td> <td>erline Alter</td> <td>native 1</td> <td></td> <td></td>		I	Komsberg	Connectio		ion 1 Powe	erline Alter	native 1		
build of update ()	Potential Impact									Confidence
Big <b< td=""><td>· ·</td><td>Naturo of impact:</td><td>(E)</td><td>(D)</td><td>(M)</td><td>(P)</td><td></td><td>E+D+M)*P)</td><td>(+ve or -ve)</td><td></td></b<>	· ·	Naturo of impact:	(E)	(D)	(M)	(P)		E+D+M)*P)	(+ve or -ve)	
Objection of any of a			2	1	4	2		Low		Madium
Middle of the product of the produ		9	2	I	0	3	21	LOW	-	wearan
with the decomposing of the power of	habitat destruction and	impact can be reversed:				High				High
Note that is a serie of the	with the de-commissioning	irreplaceable				Low				High
Note of the power line Substati from 1 Prover line Alter of make is a second of the power line Substati diversities is a second of the power line Substati diversities is a second of the power line Substation of the power line Substatis of the power		Mitigation Measures		 Activity sheet 	ould be restricte	ed to the immed	liate footprint c	f the infrastructure.		
Potential impactPotential impactProbability (Woo or W)Statule (Woo or W)Statule (Woo or W)Statule 		With Mitigation	2	1	4	2	14	Low		Medium
<table-container>Potential impactInverse of the constraint of the constrain</table-container>			Komsberg	Connectio	n - Substat	ion 1 Powe	erline Alter	native 2		
Hatare of impact biological constraints of the powerine of the powerine	Potential Impact					-				Confidence
Mithod MigrinoQ16327Low1.AddumDepider derivation distribution derivation which the decompany inversion method, accoss		Naturo of impact:	(E)	(D)	(M)	(P)		(E+D+M)*P)	(+ve or -ve)	
Objection of the commission of the powerine of the powe			2	1	4	2		Low		Modium
Maginal can be required inpart on displayment on signification accounting of displayment on implication accounting of accounting of accounting of displayment on accounting of displayment on displayment on accounting of displayment on displayment on accounting of displayment on displayment on accounting of displayment on displayment on displayment on accounting of displayment on displayment on accounting of displayment on displayment on displayment on displayment on displayment on accounting of displayment on displayment on displayment on displayment on displayment on displayment on displayment on accounting on displayment on displayment on accounting on displayment on displayment on displayment on accounting on displayment on accounting on displayment on accounting on displayment on accounting on displayment on accounting on displayment on displayment on displayment on accounting on displayment on disp		°	2	I	0	3	21	LOW	-	wedium
diskubing association of the glocenning of the glower insection resources:	habitat destruction and	impact can be				High				High
of the powering inconcrete Mitigation Measures Image: Second Se										
MillingMillingNote: SectorMediumMediumWith Milling214214ModeMediumPotential ImpactExtentDurationMagnitudeProbabilitySignificanceSignificanceSignificanceConfidenceMilling Milling216327LowMediumMilling Milling216327LowMediumSignificanceSignificanceSignificanceSignificanceMediumMilling Milling216327LowMediumSignificanceSignificanceSignificanceSignificanceMediumSignificanceSignificanceSignificanceMediumSignificanceSignificanceSignificanceMediumMilling Mino MasuresSignificanceMediumMediumMilling Ion MasuresSignificanceSignificanceMediumMilling Ion MasuresSignificanceSignificanceSignificanceMilling Ion MasuresExtentUserMediumSignificanceMediumMilling Ion MasuresSignificanceSignificanceSignificanceSignificanceSignificanceSignificanceSignificanceSignificanceSignificanceSignificanceMilling Ion MasuresSignificanceSignificanceSignificanceSignificanceSignificanceMilling Ion MasuresSignificanceSignificanceSignificanceSignificanceSignifican								<u></u>		High
Romsberg Connection - Substation 2 Powerline Alternative 1 Potential Impact Extent Duration Magnitude (i) Probability Signituance (i) Signituance (i) Signituance (ive or ve) Confidence bigblacement due to habita distruction and distruction association of the powerlines) Mithout Mitigation 2 1 6 3 27 tow - Medium distruction association of the decommission of the powerline Mithout Mitigation 2 1 6 3 27 tow - Medium visituance association of the powerline Mithout Mitigation Assures - High - - Medium Visituance association with the decommission of the powerline 2 1 4 2 14 tow Medium Deplacement due to maplified of Messures Mitigation Messures Significance (i) Significance (i) Significance (i) Significance (i) Significance (i) Confidence Deplacement due to maplified Situation associated if the powerlines Magnitude (ii) Magnitude (iii) Medium 2 14 tow <td< td=""><td></td><td>Mitigation Measures</td><td></td><td> Activity sh </td><td>ould be restricte</td><td>ed to the immed</td><td>liate footprint c</td><td>if the infrastructure.</td><td></td><td></td></td<>		Mitigation Measures		 Activity sh 	ould be restricte	ed to the immed	liate footprint c	if the infrastructure.		
Potential ImpactExtent (p)Our allon (p)Magnitude (p)Probability (p)Situla (p)Status (p)ConfidenceDisplacement due in abiliti distruction on disturbance associated with the de-comment216327tow.MediumDisplacement due in mabiliti distruction on distrubance associated with the de-comment216327tow.MediumDisplacement due in mabiliti distruction on the de-comment216327tow.MediumMithe de-comment214214wowMediumWith Hitigation21424towMediumPotential ImpactExtentOur allon (p)Magnitude (p)ProbabilitySitula (p)ConfidencePotential ImpactExtentOur allon (p)Magnitude (p)ProbabilitySitula (p)ConfidencePotential ImpactExtentOur allon (p)Magnitude (p)ProbabilitySitula (p)ConfidenceMitigation MesuresExtentOur allon (p)Magnitude (p)ProbabilitySitula (p)ConfidenceMitigation MesuresExtentOur allon (p)Magnitude (p)Situla (p)ConfidenceMitigation MesuresExtentOur allon (p)Magnitude (p)Situla (p)ConfidenceMitigation MesuresExtentImpactImpactI		With Mitigation								Medium
Protect in line of market(c)			Komsberg	Connectio	n - Substat	ion 2 Powe	erline Alter	native 1		
Nature of impact(i)	Potential Impact				•	-				Confidence
Mithout Mitigation216327Low.MediumDisplacement due to habitat destruction and dicturbane ascillationant dicturbane ascillationant dicturbane ascillationant dicturbane ascillationant dicturbane ascillationant dicturbane ascillationant dicturbane ascillationant distrubane ascillationan	·	Nature of impact.	(E)	(D)	(IVI)	(P)		(E+D+IVI) ^{**} P)	(+ve or -ve)	
Displacement of use of matical description distribution easo of the powerine of the pow			2	1	6	3		Low		Medium
Indication description of sources. Figh Confidence with de-commissioning inceptaceable resources. Confidence Image: Confidence	Displacement due to	0								
with mead continustation resources:Irreplaceable res	disturbance associated	reversed:				High				High
Mitigation Measures Image: Control of the substration of the powerines Low Medium With Mitigation 2 1 4 2 14 Low Medium Potential Impact Extent Duration Magnitude Probability Significance Status Confidence Nature of impact Extent Duration Magnitude Probability Significance Status Confidence Vithout Mitigation 2 1 6 3 27 Low Medium disprese to which impact can be represented to the impact can be represented using the decommission of the powerines Mitigation Measures Medium Medium disturbance associated with the de-commission of the powerines Mitigation 2 1 4 2 14 Low Medium Mitigation Measures 2 1 4 2 14 Low Medium Mitigation Measures 2 1 4 2 14 Low Medium into additional impactso in to additional impactso in the decommiscon integration </td <td></td> <td>irreplaceable</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>High</td>		irreplaceable								High
Notice of the powerline of the pow		-		-						
Potential ImpactExtent (E)Duration (D)Magnitude (M)Probability (P)Significance (S=(E+0+M)*P)Status (ve or -ve)ConfidenceMature of impact: biplacement due to habitat destruction and disturbance associated digree of which impact can be reversed: degree of impact on irreplaceable resources:16327Low-MediumHighMith de-commissioning digree of impact on irreplaceable resources:-Activity should be restricted to the immediate footprint of the infrastructure. Immediate footprint of the infrastructure.HighPotential ImpactMitigation214214LowMediumWith Mitigation214214LowMediumPotential ImpactMitigationExtent (D)Duration (D)Magnitude (P)Probability (S=(E+D+M)*P)Status (ve or -ye)Confidence (ve or -ye)Potential ImpactMitigationExtent (D)Duration (D)Magnitude (P)Probability (S=(E+D+M)*P)Status (ve or -ye)ConfidencePotential ImpactMitigationIIIIIIIIThe no-go option will result in no additional impactso aufauna and will maintal the current cological integrityMitigationIIIIIIIIIIIIIIIIIIIIIIIIII<										Medium
Potential impact(e)(b)(b)(c)									Status	
Mitigation216327LowMediumDisplacement due to habitat destruction and distrbance associate with the de-commissioning of the powerlines	Potential Impact									Confidence
Displacement due to habitat destruction and disturbance associated with the de-commissioni of the powerlines degree of impact on irreplaceable resources:		Nature of impact:		1	[[Negative		1	
Impact can be reversed: Impact can be reversed: <td></td> <td>Without Mitigation</td> <td>2</td> <td>1</td> <td>6</td> <td>3</td> <td>27</td> <td>Low</td> <td>-</td> <td>Medium</td>		Without Mitigation	2	1	6	3	27	Low	-	Medium
displayed and solutional degree of impact on irreplaceable resources: Low High with the de-commissioning of the powerlines of the powerlines of the powerlines Mitigation Measures		impact can be								High
of the powerlines resources: · Activity should be restricted to the immediate footprint of the infrastructure. · Confidence Mitigation 2 1 4 2 14 Low Medium With Mitigation 2 1 4 2 14 Low Medium Powerline - No-Go Potential Impact Mitigation Éxtent (E) Duration (D) Magnitude (M) Probability (P) Significance (S=(E+D+M)*P) Status (+ve or -ve) Confidence Nature of impact:	with the de-commissioning	degree of impact on								High
Mitigation Measures Image: Control of Control o	of the powerlines	resources:		Activity sh	ould be restricte		liate footprint c	f the infrastructure.		
Powerline - No-Go Potential Impact Mitigation Extent (E) Duration (D) Magnitude (M) Probability (P) Significance (S=(E+D+M)*P) Status (+ve or -ve) Confidence Nature of impact:		, , , , , , , , , , , , , , , , , , ,								
Potential Impact Mitigation Extent (E) Duration (D) Magnitude (M) Probability (P) Significance (S=(E+D+M)*P) Status (+ve or -ve) Confidence Nature of impact:		With Mitigation	2				14	Low		Medium
Potential impact Mitigation (E) (D) (M) (P) (S=(E+D+M)*P) (+ve or -ve) Confidence Nature of impact: Nature of impact: Vithout Mitigation Impact an be Impact an be Impact an be Impact an be vifaua and will maintain in the current ecologication Impact an be Impact an be Impact an be Impact an be Mitigation Impact an be Wifaust Mill maintain integrity Impact an be Impact an be Impact an be Impact an be Mitigation Impact an be Wifaust Mill maintain Impact an be Wifaust Mill maintain Impact an be Wifaust Mill maintain Impact an be Wifaust Mill maintain Impact an be Wifaust Mill maintain Impact an be Wifaust Mill m			Extont				çi	mificanco	Status	
Nature of impact:	Potential Impact	Mitigation								Confidence
Image: A constraint of the cons		Nature of impact:								
In a no additional impacts on avifauna and will maintain the current ecological integrity Mitigation Measures With Mitigation Measures Mitigation Mitigation Measures		Without Mitigation								
in no additional impacts on avifauna and will maintain the current ecological integrity reversed: degree of impact on irreplaceable resources: Impact on irreplaceable resources: Mitigation Measures With Mitigation										
the current ecological integrity He current ecological integrity Mitigation Measures M		reversed:								
Mitigation Measures With Mitigation	the current ecological	irreplaceable								
With Mitigation Image: Constraint of the second										
		-								
		with witigation		suk	ostation Al	ternative 1				

Potential Impact		Extent (E)	Duration (D)	Magnitude (M)	Probability (P)	(S=	gnificance (E+D+M)*P)	Status (+ve or -ve)	Confidence
	Nature of impact:					Negative			1
	Without Mitigation	1	1	4	3	18	Low	-	Medium
avifauna due to habitat destruction and	degree to which impact can be reversed:				High				High
disturbance associated with the decomissioning of the substation	degree of impact on irreplaceable resources:				Low				High
	Mitigation Measures	• De	comissioning ac	tivity should be	restricted to the	e immediate fo	otprint of the infrastru	ucture.	
	With Mitigation	1	1	2	3	12	Low		Medium
			Sub	ostation Al	ternative 2				
Potential Impact		Extent (E)	Duration (D)	Magnitude (M)	Probability (P)		gnificance (E+D+M)*P)	Status (+ve or -ve)	Confidence
	Nature of impact:					Negative		· · · · ·	•
	Without Mitigation	1	1	4	3	18	Low		Medium
Displacement of Red Data avifauna due to habitat destruction and	impact can be reversed:				High				High
disturbance associated with the decomissioning of the substation	degree of impact on irreplaceable resources:				Low				High
	Mitigation Measures	• De	comissioning ac	tivity should be	restricted to the	e immediate fo	otprint of the infrastru	ucture.	
	With Mitigation	1	1	2	3	12	Low		Medium
			S	Substation	- No-Go				
Potential Impact	Mitigation	Extent (E)	Duration (D)	Magnitude (M)	Probability (P)		gnificance (E+D+M)*P)	Status (+ve or -ve)	Confidence
	Nature of impact:								
	Without Mitigation								
Displacement of Red Data avifauna due to habitat destruction and	impact can be reversed:								
disturbance associated with the decomissioning of the substation	degree of impact on irreplaceable resources:								
	Mitigation Measures								

Avifauna

		Komshors				rlino Altor	pativo 1		
		Extent	Duration	Magnitude	Probability		ignificance	Status	Γ
Potential Impact		(E)	(D)	(M)	(P)		(E+D+M)*P)	(+ve or -ve)	Confidence
	Nature of impact:			1		Negative			
	Without Mitigation	3	4	6	3	39	Medium	-	Medium
	degree to which						•		
Habitat destruction and	impact can be				Medium				
disturbance, collisions,	reversed: degree of impact on								
electrocutions	irreplaceable				Medium				
	resources:	Ctriat inst	lomontation of	alta angolfia miti	action Strict ma	nitoring of toto	I number of authorised	ronourable	-
	Mitigation Measures	Strict III					an absorb the impacts.		
	With Mitigation	3	4	4	3	33	Medium		Medium
					ion 1 Powe			<u>.</u>	
Potential Impact		Extent	Duration	Magnitude	Probability		ignificance (E+D+M)*P)	Status	Confidence
	Nature of impact:	(E)	(D)	(M)	(P)	(S= Negative	(E+D+IVI) P)	(+ve or -ve)	
	Without Mitigation	3	4	6	3	39	Medium		Medium
	_	5	4	0	J	37	Weddin		Medium
	degree to which impact can be				Medium				
Habitat destruction and disturbance, collisions,	reversed:								
electrocutions	degree of impact on				Medium				
	irreplaceable resources:				ivieaium				
	Mitigation Measures	Strict imp					I number of authorised	renewable	
	•	3	applications to	o ensure that po 4	pulations of Red	Data avifauna c 33	an absorb the impacts. Medium		Medium
	With Mitigation			-	ion 2 Powe				Medium
		Extent	Duration	Magnitude	Probability		ignificance	Status	I
Potential Impact		(E)	(D)	(M)	(P)		(E+D+M)*P)	(+ve or -ve)	Confidence
	Nature of impact:		r	1	r	Negative			
	Without Mitigation	3	4	6	3	39	Medium	-	Medium
	degree to which						•		
Habitat destruction and	impact can be				Medium				
disturbance, collisions,	reversed: degree of impact on								
electrocutions	irreplaceable				Medium				
	resources:	Strict im	lomontation of	cito coocific miti	lastion Strict me	nitoring of tota	I number of authorised	ronowabla	
	Mitigation Measures	Strict III					an absorb the impacts.		
	With Mitigation	3	4	4	3	33	Medium		Medium
		Komsberg		on - Substat	ion 2 Powe				
Potential Impact		Extent	Duration	Magnitude	Probability		ignificance	Status	Confidence
	Nature of impact:	(E)	(D)	(M)	(P)	(S= Negative	(E+D+M)*P)	(+ve or -ve)	
	Without Mitigation	3	4	6	3	39	Medium		Medium
	degree to which	5		0		3,	Median		
Habitat de la stational	impact can be				Medium				
Habitat destruction and disturbance, collisions,	reversed:								
electrocutions	degree of impact on irreplaceable				Medium				
	resources:				weutum				
	Mitigation Measures	Strict imp					I number of authorised		
	With Mitigation	3	applications to	o ensure that po	pulations of Red	Data avifauna c 33	an absorb the impacts. Medium		Medium
	with withgation	3	4	Powerline	- No-Go	33	weulum		Interium
	A 4111 - 11	Extent	Duration	Magnitude	Probability	S	ignificance	Status	0
Potential Impact	Mitigation	(E)	(D)	(M)	(P)		(E+D+M)*P)	(+ve or -ve)	Confidence
	Nature of impact:						1		
	Without Mitigation								
ne no-go option will result	degree to which								
	impact can be reversed:								
n no additional impacts on	I EVELSEU:								
wifauna and will maintain	degree of impact on								
vifauna and will maintain the current ecological	irreplaceable								
vifauna and will maintain									
vifauna and will maintain the current ecological	irreplaceable								
vifauna and will maintain the current ecological	irreplaceable resources:								

			Su	bstation Al	ternative 1				
Potential Impact		Extent (E)	Duration (D)	Magnitude (M)	Probability (P)		gnificance (E+D+M)*P)	Status (+ve or -ve)	Confidence
	Nature of impact:		,						
	Without Mitigation	3	4	4	3	33	Medium	-	Medium
Habitat destruction and	degree to which impact can be reversed:				High		-		
disturbance, electrocutions	degree of impact on irreplaceable resources:				Low				
	Mitigation Measures	Strict imp					number of authorised i an absorb the impacts.	renewable	
	With Mitigation	3	4	2	3	27	Low		Medium
			Su	bstation Al	ternative 2)			
Potential Impact		Extent (E)	Duration (D)	Magnitude (M)	Probability (P)		gnificance (E+D+M)*P)	Status (+ve or -ve)	Confidence
	Nature of impact:		r	r	r			1	
	Without Mitigation	3	4	4	3	33	Medium	-	Medium
	degree to which impact can be reversed:								
listurbance, electrocutions	degree of impact on irreplaceable resources:				Low				
	Mitigation Measures	Strict imp					number of authorised i an absorb the impacts.	renewable	
	With Mitigation	3	4	2	3	27	Low	-	Medium
				Substation	- No-Go				
Potential Impact	Mitigation	Extent (E)	Duration (D)	Magnitude (M)	Probability (P)		gnificance (E+D+M)*P)	Status (+ve or -ve)	Confidence
	Nature of impact:						1		
	Without Mitigation								
ne no-go option will result n no additional impacts on avifauna and will maintain	degree to which impact can be reversed:							·	
the current ocological	degree of impact on irreplaceable resources:								
	Mitigation Measures								
	With Mitigation								