

38 Jacaranda Street, Arboretum, Richards Bay P.O. Box 101672, Meerensee, 3901 Telephone: 035 789 0632 / 078 284 9332 Fax: 086 535 8846 Website: www.emveloconsultants.co.za E-mail: info@emveloconsultants.co.za

Integrity | Honesty | Excellence

DRAFT BASIC ASSESSMENT REPORT

EIA REF: DC27/0003/2023

The Proposed Hlabisa Full Water-borne Sanitation: Development of Hlabisa Bulk Sewer Pipelines and the New Wastewater Treatment Works, within Big Five Hlabisa Local Municipality, uMkhanyakude District, KZN

14 JULY 2023

Prepared By: Emvelo Quality and Environmental Consultant (PTY) Ltd

Prepared For: DLV Project Managers and Engineers

On behalf of: uMkhanyakude District Municipality

Applicant:

Applicant	uMkhanyakude District Municipality
Contact Person	Lumka Salukazana
	(Project Manager)
Address	Harlingen No. 13433, King Fisher Road, Mkuze, 3965
Contact Number	+27357538600
Email Address	salukazanalu@ukdm.gov.za

Environmental Assessment Practitioner (EAP) Details:

Name of Consultancy	Emvelo Quality and Environmental Consultant (PTY)Ltd
Name of EAP's	Phumzile Lembede (B.Sc. Honours in Environmental Management), Registered: EAP(EAPASA), Pr. Sci.Nat (SACNASP) & IAIAsa.
	Dumisani Myeni (B.Sc. Honours in Environmental Management), Registered: EAP (EAPASA) & Cand. Sci. Nat. (SACNASP).
Postal Address	P.O. Box 101672, Meerensee, 3901
Physical Address	38 Jacaranda Street, Arboretum, Richards Bay 3900.
Telephone Number	035 789 0632
Email Address	info@emveloconsultants.co.za

COPYRIGHT AND DISCLAIMER

The Emvelo Quality and Environmental Consultant (Pty) Ltd reserves the copyright to this document including the accompanying data, models, trade secrets, rules, any other applicable intellectual property rights and is protected by the copyright and intellectual property law of South Africa. The information within this document is considered confidential and may under no circumstances be reproduced, distributed or used by a third party without written consent of Emvelo Quality and Environmental Consultant (Pty) Ltd.

The information presented in this document is based on the information supplied by the Client prior to the commencement of the investigation; therefore, Emvelo Quality and Environmental Consultant (Pty) Ltd including its directors and employees shall not be held liable for, and is indemnified against all actions, claims, demands, losses, liabilities, costs, damages and expenses prompted by, or in connection with, inaccurately relayed information pertaining to the site and/or the development.

This report is exclusively compiled for EIA purpose for the client/applicant; with specific application to the proposed development.

PROJECT TEAM

CLIENT CONTACT PERSON

Phumzile Lembede

Lumka Salukazana

Dumisani Myeni

Overview: Assessment of impacts related to the proposed development of Hlabisa Bulk Sewer Pipeline and the New Hlabisa Wastewater Treatment Works, in order to ensure the Client's compliance with all relevant environmental legislations.

Project Team Details				
Principal EAP	Phumzile Lembede (BSc. Honours in Environmental Management)			
	Registered: EAP (EAPASA) & Pr. Sci.Nat (Environmental Science)			
	Field: Environmental Management & Water Resource			
	11 Years' Experience			
	phumizle@emveloconsultants.co.za			
Study Lead & EAP	Dumisani Myeni (BSc. Honours in Environmental Management)			
	Registered: EAP (EAPASA) & Cand.Sci.Nat. (Environmental Science)			
	Field: Environmental Management, Water Resource & Waste Management.			
	9 Years' Experience			
	dumisani@emveloconsultants.co.za			

QMS - INFORMATION

PRINCIPAL EAP

STUDY LEAD & EAP

PHUMZILE LEMBEDE

ENV. CONSULTANT

DUMISANI MYENI

ENV.CONSULTANT

QMS-REVISION HISTORY

Revision	Revision Date	Details	Authorized	Name	Position
1	03- 07-2023	DRAFT BAR	Y	Dumisani Myeni	Study Lead Env. Scientist
2	13-07-2023	DRAFT BAR	Y	Phumzile Lembede	Principal EAP Env. Scientist

EXECUTIVE SUMMARY

Emvelo Quality and Environmental Consultant (Pty) Ltd has been appointed by DLV Project Managers and Engineers (Pty) Ltd (the Project Principal Agent), on behalf of uMkhanyakude District Municipality (the Applicant), as the independent Environmental Assessment Practitioner (EAP), to facilitate the Basic Assessment Process required in terms of the National Environmental Management Act ,1998 (Act. No. 107 of 1998) (NEMA) for this application.

The uMkhanyakude District Municipality (UKDM) is the delegated Water and Sanitation Service Authority (WSSA) for all municipalities within the district, which include the Big 5 Hlabisa Local Municipality. The UKDM has identified various areas and settlements within the district, which require sanitation upgrades to a full water-borne sanitation system. Therefore, the district proposes to construct the water-borne sanitation system within Hlabisa town and the surrounding communities.

The proposed development of Hlabisa bulk sewer pipeline and the new Hlabisa Wastewater Treatment Works (WWTW) will facilitate the formalization of existing settlement and future housing development, as the implementation of Hlabisa water-borne sanitation project will provide a formalized water-borne sanitation system for settlement and businesses.

The proposed development of Hlabisa bulk sewer pipeline and the New Hlabisa WWTW will entail the following features: Construction of a 3230m (250mmø) uPVC bulk sewer gravity main from Matshamnyama – Ward 13 to Emabhanoyini; Construction of 1120m (250mmø) uPVC bulk sewer gravity main from Emabhanoyini to the new Hlabisa WWTW; Construction of 140m (250mmø) uPVC treated effluent discharge pipeline for the new Hlabisa WWTW. Along with bulk sewer gravity and rising main they will be Intermediate and collector mains. Four pumpstations will be constructed to support the raising main. The area of approximately will be cleared for construction of WWTW which constitutes the following features: Tie15.5mX 6.5m equalization tank; 21m X 10.4m anoxic tank and 21m X 14m aeration tank; Three Sludge Maturation Ponds: Pond 1 (30m X 30m X 1.5m); Pond 2 (30m X 30m X 1.5m); Pond 3 (22m X 22m X 1.5m); Two 3.5m X 12mØ (396m³) settling tanks. The WWTW will be designed to operate at the of capacity of 1.5 Ml/day(1500m³/day). The access road of 135m length will be constructed for the purpose of easy access to the WWTW site.

The construction of the bulk sewer gravity main will results in: Construction corridor of not more than 10m width within the vicinity of stream crossings and wetlands; The 10m length pipeline crossing at Emacekeni (28° 8'59.67"S, 31°52'9.75"E); 11m length pipeline crossing at Emacekeni (28° 9'25.52"S, 31°52'5.54"E); 17m length crossing at Emabhanoyini (28° 9'24.78"S, 31°52'44.96"E), and at (28° 9'21.14"S, 31°52'53.57"E). The Gravity Main between (Entry Point: 28° 9'6.83"S, 31°52'9.83"E) and

(Exit Point: 28° 9'14.63"S, 31°52'7.65"E) at Emacekeni traverse within 32m regulated area of the NFEPA Wetland. The construction of the new Hlabisa WWTW will result in the clearance of an extent area of 1.8ha of indigenous vegetation. There are no CBAs and ESA within the project reach. Having mentioned the above site characteristics, the planned activities will result in: Excavation within the watercourses, namely the wetlands and instream habitat; Infilling within the watercourses; vegetation clearance for pipeline route (12m width construction corridor.

The NEMA Environmental Impact Assessment (EIA) Regulations (2014) as amended on 7 April 2017, govern the process of applying for environmental authorization for certain developments. A provision in the EIA Regulations is made for two forms of assessment, namely: Basic Assessment and Scoping & EIA, depending on the scope of the activity. The EIA regulations specify that: Activities identified in Listing Notice 1 and 3 (GNR 327 and 324 of 2017) require a Basic Assessment, while the activities identified in Listing Notice 2 (GNR 325 of 2017) are subject to a Scoping and EIA. The listed activities associated with the proposed development are: Listing Notice 1, Activity 12, 19 and 27. Therefore, this application will follow a Basic **Assessment process**, as activities in Listing Notice 1 have been triggered.

The Public Participation Process (PPP) has, to date, included: displaying onsite notices, placing of an advertisement in the Ilanga Newspaper, distribution of Background Information Documents (BIDs), and Circulation of this Draft BAR.

The preferred alternatives are '*Routing, Design/Technology, Site Layout/Location Alternatives*'. These preferred alternatives cannot be undertaken in isolation, as they assessment is integrated considering this linear development (sewer conveyance) and construction of WWTW infrastructure.

The '*Alternative A: Routing Alternatives*', favours the best engineering design practices as the route is situated within the low-lying areas, thus favours efficiency of sewer flow along the bulk sewer gravity main to the new WWTW site. The '*Routing Alternative*' for the pipeline is also consolidated with the '*Alternative B: Design Alternative*'. Due to above mentioned factors other routes were not accessed as this was considered the best design route for efficiency of water-borne sanitation system for this project. However, it is also proposed that the pipeline route should be realigned where it encroaches the sensitive environment wherever possible, as the best practice and were feasible, traversing small sections of wetland, such as within W02 (*Figure 7*) can be avoided through rerouting around the system.

The '*Alternative B: Design Alternative*' can be also linked to '*Alternative C: Technology Alternative*'. These alternatives have distinctly catered for dual sludge processing within the WWTW. The proposed '*Design and Technology Alternatives*' proposed processes are based on an extended aeration activated sludge process, without primary sedimentation and with the addition of denitrification to the process. This design is proven to be economical on the expect of electricity input and construction costs compared to a complete denitrification process which is in any case not required.

The '*Alternative C: Technology Alternative*', the excavatibility and rippability determine the use of machinery, and due to inconsistence in geological formation from '*soft to intermediate*'. Therefore, for the purpose excavation for the bulk sewer conveyance and WWTW infrastructure, these materials can be efficiently ripped by a tractor loader backhoe (TLB) of flywheel power approximately 0.10kW per millimetre of tined bucket width. A consideration can also be given to use of a tracked excavator of flywheel power exceeding 0.10kW per millimetre of tined bucket width. Where outcrops are encountered, the excavation could be adequately ripped by a bulldozer of mass approximately 35t, fitted with a single-tine ripper suitable for heavy ripping, and of flywheel power approximately 220kW. Where the hard rock shows some resistance to single-tine ripper suitable for heavy ripping, and of flywheel power approximately 220kW, the rock blasting will be an option. However, blasting must be considered a last resort where all means of heavy ripping have failed. No blasting within the watercourse will be allowed.

On the other hand, the '*Alternative D: Site Layout Alternative*' proposes for configuration of proposed site layout/position of the proposed new Hlabisa WWTW facility. The 'Site Layout Alternatives' for the WWTW involve looking at the impact likelihood and configuration of the site positioning to mitigate the impacts. The south-eastern corner or section of the current site lies with 100m buffer overage of Hlabisa River. As a result, the 'Site Layout Alternative' proposes that WWTW should be shifted at least 80m north from the current existing position.

The 'Alternative E: Location Alternative' where the choice of the location of pipeline route is over emphasise as determined by the topography of the project area, as it is proposed that the gravity main follow the low-lying areas for efficiency of gravitating of sewer to WWTW. Also, the location of the new proposed WWTW is so strategic as it is at the lowest point of the project area, thus enable efficiency of bulk sewer gravity main. It is also important to note that the current site (existing Hlabisa WWWT) has limited space and upgrading the existing WWTW after these proposed upgrades the site cannot support any further future expansion, and the current WWTW is now at the edge encircled by growing settlements within Hlabisa.

Although, there are impact associated with these preferred alternatives, but preferred/mitigated development proposal presented in this report is responsive to the integrated results of the assessment of potential impacts made by the various specialists on the project team. The adherence to mitigation measures will render the impacts be of temporal nature, only during construction. This will be addressed by mitigation measures discussed under (*Section 15*) and EMPr.

Six (6) discrete habitat types were delineated within the assessment area, namely, wetlands, riparian and instream habitat, scarp forest, sourveld, and transformed (which is within settlement). The proposed development site traverses through the forest, grasslands, crosses the R618 provincial road, near human settlements and streams. The existing land use of the project area and its immediate surrounding area include cultivated land (subsistence farming), forest plantations (agricultural facility) and homesteads. The summary of impacts significant during construction and operation/maintenance phase are outlined by (*Table 1*) below.

	Constructi	on Phase	Operational Phase		
Impact	Without Mitigation	With Mitigation	Without Mitigation	With Mitigation	
Biodiversity (flora): Habitat fragmentation, loss of indigenous vegetation during pipeline and WWTW construction and maintenance.	Medium-High	Negligible	Medium-High	Negligible	
Biodiversity (flora): Habitat fragmentation, loss of natural vegetation and introduction of invasive alien plant species (IAPS)	High	Negligible	Very High	Very low	
Biodiversity (flora): Habitat fragmentation, Loss of plant species of conservation concern (SCC)	Medium	Negligible	Very low	Negligible	
Biodiversity (Fauna): Disturbance to surrounding wildlife and fauna	Medium-High	Negligible	Medium	Negligible	
Impact on terrestrial surface water resource: Impacts on watercourse habitat functions and services.	High	Negligible	Medium-High	Negligible	
Impact on hydrological flow regime (rivers, streams, wetlands)	High	Negligible	High	Negligible	
Impact on surface water quality (stream and river pollution)	Medium-High	Negligible	High	Very low	
Impact on ground water resource (Oil spillages & Ground water contamination)	High	Negligible	Medium-High	Negligible	
Geological Impacts: Erosion, run-off slits and compaction.	High	Negligible	Medium-High	Negligible	
Impact on Heritage Resources: Disturbance of Burial Grounds and Graves	Medium-High	Negligible	Medium-High	Negligible	
Loss of other heritage resources	Low	Negligible	Negligible	Negligible	
Impact on Paleontological resources: Archaeological and fossils	Low	Negligible	Negligible	Negligible	
Waste (General, Hazardous Waste)	Medium-High	Negligible	Medium-High	Negligible	
Waste (Eluent Waste)	Negligible	Negligible	High	Very low	

Table 1: Summarised Impacts Significance

Impact on Air Pollution: Dust from construction areas and emissions from vehicles and equipment.	Medium	Negligible	Low	Very low
Socio-economic Impact	Negligible	Negligible	Negligible	Negligible
Visual Impact	Very low	Negligible	Very low	Negligible
Noise Pollution	Medium	Very low	Very low	Negligible
Impact on Traffic	Medium-High	Very low	Medium	Negligible
Impacts on existing services (properties or utility infrastructure)		Very low	Very low	Negligible

The findings of this EIA Report as well as the specialist studies conclude that there are no environmental fatal flaws that should prevent the proposed project from proceeding, provided that the recommended mitigation and management measures are implemented. Five (5) specialist studies were considered for this EIA: Terrestrial Biodiversity Impact Assessment (Appendix G1); Wetland Impact Assessment (Appendix G2); Aquatic Ecological Impact Assessment (Appendix G3); Geohydrology Impact Assessment (Appendix G4); and Geotechnical Assessment (Appendix G5). Overall, anticipated adverse impacts linked with the planned activities (Hlabisa Water-borne Sanitation) during construction and operation are expected to be of *'Low'* impact significance, provided that mitigation measures prescribed in this report, EMPr and specialist studies and other attached documents are adhered to.

The EAP and Wetland Specialist has proposed that the preferred 'Site Layout Alternative' provides for the configuration of existing WWTW site layout. The WWTW site must be shifted at least 80m-100m further north of existing position (Figure 3). This will prevent the WWTW infrastructure to be prone to flooding in case of extremely event, and also prevent undesirable contamination Hlabisa River lying downstream of the WWTW. Furthermore, the configuration of WWTW site layout will mean exploring the use of site such as above the plantations, along previously disturbed corridors as the wetlands serve high ecological and hydrological value and should be preserved and protected. Therefore, the proposed alternative site position (Figure 3) could meet the desirable development objectives and provide impact mitigation as the site will be shifted further north by 80-100m from current location. This will also avoid the option of wetland offsetting, as this would be the case if the current WWTW position is considered. This will be in line with accordance to GN509 of the National Water Act, 1998 (Act No. 36 of 1998), the regulated area refers to the outer edge of the 1 in 100-year flood line and /or delineated riparian habitat, whichever is the greatest distance, measured from the middle of the watercourse of a river, spring, natural channel, lake or dam; In the absence of a determined 1 in 100-year flood line or riparian area the area within 100 metres (m) from the edge of a watercourse where the edge of the watercourse is the first identifiable annual bank fill flood bench (subject to compliance to section 144 of the Act). Buffer determination for watercourse habitat outside the construction corridor but at risk of being impacted. For the new WWTW 100m buffer determination is required between Hluhluwe River and new WWTW. This means the layout must be configured such that the WWTW should be shifted at least 80m-100m further north of existing position (*Figure 3*).

The EAP has also established that the guidelines for the protection of natural forest habitat suggest that no activities or development should be considered that would destroy the forest habitats unless of strategic provincial or national importance with no feasible alternatives. Therefore, where feasible the pipeline must be re-routed along the Zululand Lebombo Scarp Forest (*FOz5*). The 15m buffer determination along the Zululand Lebombo Scarp Forest (*FOz5*) must be adhered to. Also, a 33m buffer has been applied to the high- risk wetlands and a 20m buffer to the wetlands receiving indirect impacts and at lower risk of impact. A buffer cannot be applied to wetlands W01, W04 and W05 as a result of activities taking place within them and a 20m buffer cannot be applied to wetlands W02 and W03 due to their proximity to the proposed activities. The vegetation clearance of pipeline construction corridor must not be more than 10m width for the construction corridor within the vicinity of the stream crossing (riparian zones), and wetlands (Subtropical Alluvial Vegetation (*Aza7*) vegetation). Thus, this will minimise impact associated with trenching for installation of sewer pipeline within some of the sensitive ecosystems.

Due the nature of works which involve working within the watercourses as a result of pipeline stream and wetland (riparian) crossing it is highly recommended that the planned activities be undertaken during dry period, where the streams and river are dry and of low peak flows condition.

It must be noted that the project is within the settlement area. Moreover, there was one grave site encountered during the infield assessment at location (28° 9'21.60"S, 31°52'4.68"E) but falls outside the project corridor. The grave site was within the household. The likelihood of gravesite encroachment could be mitigated through, appointment of the Project Social Facilitator to manage project social aspects and re-route the pipeline where there is encroachment to burial sites. Social Facilitator to undertake engagement with the households adjacent to pipeline route for assistance in identifying all unmarked graves that could be on the section of pipeline route; designs to be reviewed to prevent intrusion into grave sites, such as deviations to avoid graves and 30m buffer marked as "No-Go" areas. Any contractor found working within No-Go areas must be fined as per fining schedule/system setup for the project.

The EAP submit that the environmental process undertaken thus far complies with the requirements as prescribed by Appendix 1 of GNR 326 (EIA Regulation 2014 as amended on 07 April 2017) and that this report covers the full suite of potential environmental issues related to the proposed construction and operation of the proposed Hlabisa Water-borne Sanitation Project :Bulk sewer

pipeline and new WWTW. All potential impacts have been evaluated and responded to by either complete avoidance where possible, or by recommendation of the most appropriate and feasible mitigation measures. The preferred/mitigated development proposal presented in this report is responsive to the integrated results of the assessment of potential impacts made by the various specialists on the project team.

The EAP is of the view that the Environmental Authorization should be granted on certain conditions that are outlined in this section. After an Authorization has been granted, it is the applicants' responsibility to ensure that all recommendations outlined in this report as well as in the EMPr are properly implemented.

Table of Contents

	LIST	OF ACRONYMS1
	GLC	SSARY OF ITEMS
	ASS	SUMPTIONS AND LIMITATIONS
1	INT	RODUCTION AND BACKGROUND6
	1.1	Project Team7
	1.2	Report Structure7
2	PRO	DJECT TITTLE12
3	PRC	DJECT LOCALITY12
	3.1	Geographical Locational Context
	3.2	Site Locality Context (Site Description)13
4	SIT	ES ACCESS17
5	PRO	DJECT DESCRIPTION
	5.1	Project Anticipated Date19
	5.2	Design Criteria19
	5.3	Design Criteria for Bulk Sewer Pipeline
	5.4	Design Criteria for WWTW21
6	LIS	TED AND SPECIFIED ACTIVITIES TRIGGERED23
7	AC	TIVITY MOTIVATION
	7.1	The need
	7.2	Desirability
8	PRO	OPOSAL ALTERNATIVES
	8.1	Alternative A (Routing Alternatives)
	8.2	Alternative B (Design Alternative)
	8.3	Alternative C (Technology Alternative)
	8.4	Alternative D (Site Layout Alternative)
	8.5	Alternative E (Location Alternative)
	8.6	Alternative F (No-Go Alternative)
	8.7	Preferred Alternative
9		/IRONMENTAL STATUTORY FRAMEWORK41
9		

	10.1 Background	. 47
	10.2 Objectives of public participation	. 48
	10.3 Landowner	. 48
	10.4 Legal Compliance	. 49
	10.5 Consultation with the Competent Authority	. 49
	10.6 Consultation with other Relevant Authorities	. 49
	10.7 Notification of the Interested and Affected Parties (I&APs)	. 50
	10.1 Comments from the registered Interested and Affected Parties (I&APs)	. 52
11	DESCRIPTION OF BASELINE ENVIRONMENT	.53
	11.1 Climate	. 53
	11.1.1 Potential impact	. 54
	11.2 Surface Hydrology	. 55
	11.2.1 Rivers, dams and lakes	. 55
	11.2.2 Wetlands	. 58
	11.2.3 Potential impacts of the project hydrological features	. 60
	11.3 Ground Water	. 60
	11.3.1 Potential Impacts	. 61
	11.4 Biomes	. 61
	11.5 Flora	. 62
	11.5.1 Potential Impacts	. 65
	11.6 Protected Areas and Biodiversity Sector Plan	. 66
	11.6.1 Potential Impacts	. 70
	11.7 Fauna	. 70
	11.7.1 Potential Impacts	. 73
	11.8 Topography	. 73
	11.8.1 Potential impacts	. 75
	11.9 Geology	. 75
	11.9.1 Potential impacts	. 77
	11.10 Visual environment and land use character	. 77
	11.10.1 Potential Impacts	. 80
	11.11 Heritage, cultural and palaeontological aspects	. 80
	11.11.1 Potential Impacts	. 84
	11.12 Social and economic aspects	. 84

	11.12.1 Potential Impacts	85
	11.13 Traffic	86
	11.13.1 Potential Impacts	
12	WASTE AND POLLUTION DURING CONSTRUCTION AND OPERATION	86
	12.1 Waste management	86
	12.2 Hazardous waste	87
	12.2.1 Potential Impacts	
	12.3 Wastewater (effluent)	87
	12.3.1 Potential Impacts	88
	12.4 Air Pollution	88
	12.4.1 Potential Impacts	89
	12.5 Noise Pollution	89
	12.5.1 Potential Impacts	89
13	UTILITY SERVICES	89
	13.1 Water Supply	89
	13.2 Sanitation Facilities	90
	13.3 Energy (Electricity)	90
14	OTHER EXISTING SERVICES	90
	14.1 Potential Impacts	91
15	IMPACT ASSESSMENT AND MITIGATION MEASURES	92
	15.1 Impact Analysis (Preferred Routing, Site Layout/Location and Design/Te Alternatives)	
16	CUMULATIVE IMPACT ASSESSMENT AND MITIGATION MEASURES	167
17	SPECIALISTS STUDIES	175
	17.1 Motivation for excluding compliance statements:	175
	17.1.1 Agriculture Theme	175
	17.1.2 Civil Aviation Theme	176
	17.2 Motivation for Exclusion of other Specialist Studies	176
18	SUMMARY OF FINDINGS BY SPECIALISTS	178
	18.1 Terrestrial Biodiversity Impact Assessment Findings	178
	18.2 Wetland Habitat Impact Assessment Findings	181
	18.3 Aquatic Ecological Impact Assessment Findings	184
	18.4 Geohydrology Impact Assessment Findings	186

	18.5 Geotechnical Assessment Findings	188
19	RECOMMENDATIONS BY SPECIALISTS	189
	19.1 Recommendations by the Terrestrial Biodiversity Assessment	189
	19.2 Recommendations by the Wetland Habitat Impact Assessment	190
	19.3 Recommendation by Aquatic Ecological Impact Assessment	191
	19.3.1 Other mitigation measures	191
	19.4 Recommendations a Geohydrology Impact Assessment	192
	19.5 Recommendation by a Geotechnical Assessment	193
20	RECOMMENDATIONS FROM THE EAP FOR INCLUSION IN EA	194
	20.1 Pre-Construction phase	194
	20.2 During Construction Phase	197
	20.3 During Operation/ Maintenance	201
21	ENVIRONMENTAL IMPACT STATEMENT	203
22	CONCLUSION AND EAP OPINION	206
23	BIBLIOGRAPHY	210
AF	PENDICES	213
	APPENDIX A. EAP DECLARATION OF INFORMATION	214
	APPENDIX B. ENVIRONMENTAL MANAGEMENT PLAN(EMPR)	215
	APPENDIX C. MAPS AND CASE IMAGES	216
	C-1: Locality & Sensitivity Maps	217
	C-2: Other Maps	218
	C-3 Case Images/Site Photographs	219
	APPENDIX D. CIVIL LAYOUTS DESIGNS	220
	APPENDIX E. PUBLIC PARTICIPATION PROCESS	221
	E-1: Newspaper Advert/ Notice	222
	E-2: Background Information Document (BID)	223
	E-3: Onsite Notices	224
	E-4: I&APs Register	225
	E-5: Department Acknowledgements Letters	226
	E-6: Minutes of the EIA Pre-Application meeting	227
	E-7: Proof of Documents Circulation	228
	E-8: I&APs Comments and Responses	220

APPENDIX F. EAP'S CV(S)	230
F-1: Principal EAP (Phumzile Lembede)	231
F-2: Study Lead/EAP (Dumisani Myeni)	232
APPENDIX G. SPECIALIST STUDIES	233
G-1: Terrestrial Biodiversity Impact Assessment	234
G-2: Wetland Delineation and Impact Assessment	235
G-3: Aquatic Ecological Impact Assessment	236
G-4: Geohydrology Impact Assessment	237
G-5: Geotechnical Assessment	238
APPENDIX H: SCREENING TOOL SENSITIVITY VERIFICATION	239
APPENDIX I: ENVIRONMENTAL SCREENING REPORT	240
APPENDIX J: STORMWATER MANAGEMENT PLAN	241
APPENDIX K: CONTINGENY PLAN	242

List of Figures

Figure 1: Geographical Context for the study area (Hlabisa Bulk Sewer)	13
Figure 2: Locality & Sensitivity Map for Hlabisa Bulk Sewer Pipeline & WWTW	14
Figure 3: Map Showing the Preferred Alternative Site Layout/Location	37
Figure 4: Map Showing a preferred new WWTW and Location	38
Figure 5: Hlabisa climate graph over a 12-month period [Source: Climate-Data.Org]	54
Figure 6: Map showing dam, rivers and wetlands with the study area	57
Figure 7: Map showing wetlands and drainage lines delineated within the study area	59
Figure 8: Aquifer Classification of the new Hlabisa WWTW site	60
Figure 9: Map Showing Dominant Savanna Biome within project area	62
Figure 10: Map showing the vegetation type within the study area	64
Figure 11: Map showing Protected Areas within the region of the study area	67
Figure 12: Sensitivity map showing no CBAs and ESA within the project reach	69
Figure 13: Figure 12: 2831CD Quarter Degree Square [Source: ADU, 2022]	71
Figure 14: Contour Map showing elevations project area	74
Figure 15: Map showing a dominance geological formation within study area	76
Figure 16: Visual Characteristics along Bulk Sewer Gravity Pipeline Route	78
Figure 17: Visual Characteristics of Proposed New WWTW Site	79
Figure 18: Archaeological and Cultural Heritage Sensitivity Theme	81
Figure 19: Palaeontological Sensitivity of the study area	82
Figure 20: Environmental Screening Tool Palaeontological Sensitivity	83
Figure 21: Map Showing R618 Road Crossings	91

List of Tables

Table 1: Summarised Impacts Significance	viii
Table 2: Environmental Assessment Practitioners	7
Table 3: Basic Assessment Report Structure (Appendix 1 GNR 326)	8
Table 4: Hlabisa Bulk Sewer Pipeline Co-ordinates	15
Table 5: Hlabisa New WWTW and Sewer Pumpstations	16
Table 6: SG 21-digit codes for the proposed site	16
Table 7:Design Criteria for Bulk Sewer Pipeline	20
Table 8: Design Criteria for WWTW	21
Table 9: Applicable WWTW Effluent Parameters	22
Table 10: Listed and specified activities triggered	24
Table 11: SANS1200D Excavatibility Classes (Geology and excavation technologies)	33
Table 12: Environmental Statutory Framework	42
Table 13: Notification of I&APs	50
Table 14: Public Participation Process	51
Table 15: Subcategories of CBA and ESAs [Source: Ezemvelo KZN Wildlife,2014]	68
Table 16: Impact Assessment Analysis for Project Planning Phase	95
Table 17: Impact Assessment Analysis for Construction Phase	110
Table 18: Impact Assessment Analysis for Operation Phase	158
Table 19: Criteria for Cumulative Impacts	167
Table 20: Prioritisation Factor (Cumulative Impacts)	168
Table 21: Description of Cumulative Impacts of High Value	169
Table 22: Environmental Screening Tool Sensitivity Theme	175
Table 23: Specialist Studies Identified by Environmental Screening Tool	176

LIST OF ACRONYMS

BAR	Basic Assessment Report	
CFP	Chance Finds Procedure	
DWS	Department of Water and Sanitation	
DOT	Department of Transport	
EMPr.	Environmental Management Programme	
ECO	Environmental Control Officer	
EDTEA	Department of Economic Development, Tourism and Environmental	
	Affairs	
EIA	Environmental Impact Assessment	
HGM	Hydrogeomorphic	
MSDS	Material Safety Data Sheet	
NEMA	National Environmental Management Act 107 (Act 107 of 1998)	
NEMPAA	National Environmental Management: Protected Areas, 2003 (Act 57 of	
	2003)	
I&AP	Interested and Affected Parties	
EAP	Environmental Assessment Practitioner	
GA	General Authorisation	
SCADA SCC	Supervisory Control and Data Acquisition Species of Conservation Concern	

GLOSSARY OF ITEMS

DEVELOPMENT: the building, erection or establishment of a facility, structure or infrastructure that is necessary for the undertaking of a listed or specified activity, but excludes any modification, alteration or expansion of such a facility, structure or infrastructure and excluding the reconstruction of the same facility in the same location, with the same capacity and footprint.

BIODIVERSITY: The variety of life in an area, including the number of different species, the genetic wealth within each species, and the natural areas where they are found.

BASIC ASSESSMENT: The process of collecting, organizing, analyzing, interpreting and communicating information that is relevant to the consideration of the application, in terms of Listing Notice 1 (GNR 327 and 324 of 2017) of NEMA (as amended).

DEVELOPMENT FOOTPRINT: any evidence of physical alteration because of the undertaking of an activity.

CONTRACTOR: companies and or individual persons appointed on behalf of the client to undertake activities, as well as their sub-contractors and suppliers.

ENVIRONMENTAL CONTROL OFFICER (ECO): an individual nominated through the client to be present on-site to act on behalf of the client in matters concerning the implementation and day to day monitoring of the EMPr and conditions stipulated by the authorities as prescribed in NEMA.

ENVIRONMENT: in terms of the NEMA (as amended), the "environment" means the surroundings within which humans exist and that are made up of: the land, water, and atmosphere of the earth; micro-organisms, plant and animal life; any part or combination of (i) of (ii) and the interrelationships among and between them; the physical, chemical, aesthetic and cultural properties and conditions of the foregoing that influence human health and wellbeing.

ENVIRONMENTAL IMPACT: the change to the environment, whether adverse or beneficial, wholly or partially resulting from an organization's activities, products or services.

HYDROLOGICAL SYSTEM: water bodies and their connectivity to the welfare of an ecosystem.

MITIGATION: the measures designed to avoid reduce or remedy adverse impacts.

ENVIRONMENTAL MANAGEMENT PROGRAMME (EMPr): a detailed plan of action prepared to ensure that recommendations for enhancing or ensuring positive environmental impacts and limiting or preventing negative environmental impacts are implemented during the lifecycle of the project. This EMPr focuses on the construction phase, operation (maintenance) phase and decommissioning phase of the proposed project.

POLLUTION: NEMA defines pollution to mean any change in the environment caused by the substances; radioactive or other waves; or noise, odours, dust or heat emitted from any activity, including the storage or treatment of waste or substances, construction and the provision of services, whether engaged in by any person or an organ of state, where that change has an adverse effect on human health or well-being or on the composition, resilience and productivity of natural or managed ecosystems, or on materials useful to people or will have such an effect in the future.

WATER POLLUTION: the National Water Act, 1998 (Act 36 of 1998) defines water pollution to be the direct or indirect alteration of the physical, chemical or biological properties of a water resource so as to make it less fit for any beneficial purpose for which it may reasonably be expected to be used; or harmful or potentially harmful (a) to the welfare, health or safety of human beings; (b) to any aquatic or non-aquatic organisms; (c) to the resource quality, or (d) to property.

REHABILITATION: rehabilitation is defined as the return of a disturbed area to a state which approximates the state (wherever possible) which it was before the disruption.

WATERCOURSE: can be a) a river or spring; b) a natural channel or depression in which water flows regularly or intermittently; c) a wetland, lake or dam into which, or from which, water flows; and/or d) any collection of water which the Minister may, by notice in the Gazette, declare to be a watercourse as defined in the National Water Act, 1998 (Act No. 36 of 1998) and a reference to a watercourse includes, where relevant, its bed and banks.

WETLAND: the land which is transitional between terrestrial and aquatic systems where the water table is usually at or near the surface, or the land is periodically covered with shallow water, and

which land in normal circumstances supports or would support vegetation typically adapted to life in saturated soil.

INDIGENOUS VEGETATION: refers to vegetation consisting of indigenous plant species occurring naturally in an area, regardless of the level of alien infestation and where the topsoil has not been lawfully disturbed during the preceding ten years.

GENERAL WASTE: waste that does not pose an immediate hazard or threat to health or the environment, and includes domestic waste; building and demolition waste; business waste; and inert waste.

HAZARDOUS WASTE: hazardous waste means any waste that contains organic or inorganic elements or compounds that may, owing to the inherent physical, chemical or toxicological characteristics of that waste, have a detrimental impact on health and the environment.

ARCHAEOLOGICAL RESOURCES: includes (a) material remains resulting from human activity which are in a state of disuse and are in or on land and which are older than 100 years including artifacts, human and hominid remains and artificial features and structures; (b) rock art, being any form of painting, engraving or other graphic representation on a fixed rock surface or loose rock or stone, which was executed by human agency and which is older than 100 years, including any area within 10m of such representation; wrecks, being any vessel or aircraft, or any part thereof, which was wrecked in South Africa, whether on land, in the internal waters, the territorial waters or in the maritime culture zone of the republic as defined in the Maritimes Zones Act, 1994 (Act 15 of 1994), and any cargo, debris or artifacts found or associated therewith, which is older than 60 years or which SAHRA considers to be worthy of conservation; features, structures and artifacts associated with military history which are older than 75 years and the site on which they are found.

INTERESTED AND AFFECTED PARTY (I&AP): for the purposes of Chapter 5 of the NEMA and in relation to the assessment of the environmental impact of a listed activity or related activity, an interested and affected party contemplated in Section 24(4) (a) (v), and which includes (a) any person, group of persons or organization interested in or affected by such operation or activity; and (b) any organ of state that may have jurisdiction over any aspect of the operation or activity.

ASSUMPTIONS AND LIMITATIONS

Certain assumptions, limitations, and uncertainties are associated with this report. This report is based on information that is currently available and, as a result, the following assumptions and limitations should be noted:

- This report is based on project information provided by the client;
- 4 The description of the baseline environment has been obtained from environmental desktop study and specialist studies;
- 4 The results are based on the outcomes of a single assessment. The risk assessment only included the proposed development and the anticipated activities, no ancillary activities were considered; and
- In determining the significance of impacts, with mitigation, it is assumed that mitigation measures proposed in the report are correctly and effectively implemented and managed throughout the life of the project.

1 INTRODUCTION AND BACKGROUND

Emvelo Quality and Environmental Consultant (Pty) Ltd has been appointed by DLV Project Managers and Engineers (Pty) Ltd (the Project Principal Agent), on behalf of uMkhanyakude District Municipality (the Applicant), as the independent Environmental Assessment Practitioner (EAP), to facilitate the Basic Assessment Process required in terms of the National Environmental Management Act ,1998 (Act. No. 107 of 1998) (NEMA) for this application.

The uMkhanyakude District Municipality (UKDM) is the delegated Water and Sanitation Service Authority (WSSA) for all municipalities within the district, which include the Big Five Hlabisa Local Municipality. The UKDM has identified various areas and settlements within the district, which require sanitation upgrades to a full water-borne sanitation system. Therefore, the district proposes to construct the water-borne sanitation system within Hlabisa town and the surrounding communities. The proposed development of Hlabisa bulk sewer pipeline and the new Hlabisa Wastewater Treatment Works (WWTW) will facilitate the formalization of existing settlement and future housing development, as the implementation system for settlement and businesses. Consequently, an environmental impact assessment (EIA) has commenced, assisting the UKDM (applicant) in identifying all potential adverse environmental management requirements are adequately implemented.

In addition, the construction of bulk sewer and reticulation will see the connection of businesses, schools and households which are currently serviced by a household's septic tanks. Thereby, providing a full water-borne sanitation system that will be connected to this sewer main lines and discharge to the new Hlabisa WWTW. Moreover, it is also important to note that the safe disposal of human excreta and greywater is vitally important in the control of infectious and other communicable diseases. Therefore, the design and construction of appropriate sanitation systems is of paramount importance in contributing to the safe disposal of human excreta (Water Research Commission, 2011).

1.1 Project Team

In accordance with Appendix 1, Section 3(1)(a) of GN No. 326 (7 April 2017), this section provides an overview of Emvelo Consultant and the company's EIA experience, as well as the details and experience of the EAPs that form part of the Emvelo Consultant project team.

Name	Qualification	Experience (Years)	Duties
Phumzile Lembede	B.Sc. Honours in (Environmental Management), Registered: EAP (EAPASA) & Pr. Sci. Nat. (SACNASP) in the Environmental Science Field of	11	Principal EAP and Environmental Scientist
Dumisani Myeni	Practice B.Sc. Honours in (Environmental Management), Registered: EAP (EAPASA) & Cand. Sci. Nat. (SACNASP) in the Environmental Science Field of Practice	9	Study Lead/EAP and Environmental Scientist

Table 2: Environmental Assessment Practitioners

1.2 Report Structure

The Environmental Basic Assessment has been undertaken in accordance with the requirements of sections 24 and 24D of the National Environmental Management Act, 1998 (Act 108 of 1998) ["NEMA"] and the Environmental Impact Assessment ("EIA") Regulations contained in Government Notice (GN) No. R982 of 2014 as promulgated in terms of the NEMA ["EIA Regulations"] as amended up to and including GN R 326 in GN 40772 of 07 April 2017.

This Basic Assessment Report (BAR) is compiled with accordance to **Appendix 1** of GNR 326 (EIA Regulation (2014) as amended on 07 April 2017). A summary of the report structure, and the specific sections that correspond to the applicable regulations, is provided in (*Table 3*) below.

EIA Regulation	Description – EIA Regulation (2014) as amended on 07 April 2017	Content in Basic Assessment Report Section
Appendix 1. 3.1(a):	Details of – i. The Environmental Assessment Practitioner (EAP) who prepared the report; and ii. The expertise of the EAP, including a curriculum vitae;	 Cover page Section 1.1. Appendix F
Appendix 1. 3.1(b):	The location of the activity. Including – i. The 21-digit Surveyor General code of each cadastral land parcel; ii. Where available, the physical address and farm name; iii. Where the required information in items (i) and (ii) is not available, the coordinates of the boundary of the property or properties;	Section 3
Appendix 1. 3.1(c):	A plan which locates the proposed activity or activities applied for at an appropriate scale, or, if it is – i. A linear activity, a description and coordinates of the corridor in which the proposed activity or activities is to be undertaken; or ii. On a land where the property has not been defined, the coordinates within which the activity is to be undertaken;	Section 3
Appendix 1. 3.1(d):	A description of the scope of the proposed activity, including – i. All listed and specified activities triggered; ii. A description of the activities to be undertaken, including associated structures and infrastructure;	Section 5Section 6
Appendix 1. 3.1(e):	A description of the policy and legislative context within which the development is located and an explanation of how the proposed development complies with and responds to the legislation and policy context;	Section 9

Table 3: Basic Assessment Report Structure (Appendix 1 GNR 326)

Appendix 1. 3.1(f):	A motivation for the need and desirability for the proposed development, including the need and	Section 7
	desirability of the activity in the context of the preferred location.	
Appendix 1. 3.1(g):	A motivation for the preferred site, activity and technology alternative;	Section 8
Appendix 1. 3.1(h):	A full description of the process followed to reach the proposed preferred alternative	Section 8
	within the site, including-	
	(i) details of all alternatives considered;	Section 10
	(ii) details of the public participation process undertaken in terms of regulation 41 of the Regulations,	
	including copies of the supporting documents and inputs;	Appendix E5
	(iii) a summary of the issues raised by interested and affected parties, and an indication of the manner	 Section 11-Section 14
	in which the issues were incorporated, or the reasons for not including them;	
	(iv) the environmental attributes associated with the development footprint alternatives focusing on the	Section 15
	geographical, physical, biological, social, economic, heritage and cultural aspects;	
	(v) the impacts and risks identified including the nature, significance, consequence, extent, duration	Section 16
	and probability of the impacts, including the degree to which these impacts-	Section 8.7
	(aa) can be reversed;	
	(bb) may cause irreplaceable loss of resources; and	
	(cc) can be avoided, managed or mitigated;	
	(vi) the methodology used in determining and ranking the nature, significance, consequences, extent,	
	duration and probability of potential environmental impacts and risks associated with the alternatives;	
	(vii) positive and negative impacts that the proposed activity and alternatives will have on the	
	environment and on the community that may be affected focusing on the geographical, physical,	
	biological, social, economic, heritage and cultural aspects;	
	(viii) the possible mitigation measures that could be applied and level of residual risk;	
	(ix) the outcome of the site selection matrix;	
	(x) if no alternative development footprints for the activity were investigated, the motivation for not	
	considering such; and	

	(xi) a concluding statement indicating the preferred alternatives, including preferred location of the	
	activity;	
Appendix 1. 3.1(i)	A full description of the process undertaken to identify, assess and rank the impacts	Section 15
	the activity will impose on the preferred location through the life of the activity, including-	
	(i) a description of all environmental issues and risks that were identified during the environmental	Section 16
	impact assessment process; and	
	(ii) an assessment of the significance of each issue and risk and an indication of the extent to which	
	the issue and risk could be avoided or addressed by the adoption of mitigation measures;	
Appendix1. 3.1(j)	An assessment of each identified potentially significant impact and risk, including-	Section 15
	(i) cumulative impacts;	
	(ii) the nature, significance and consequences of the impact and risk;	Section 16
	(iii) the extent and duration of the impact and risk;	
	(iv) the probability of the impact and risk occurring;	
	(v) the degree to which the impact and risk can be reversed;	
	(vi) the degree to which the impact and risk may cause irreplaceable loss of resources; and	
	(vii) the degree to which the impact and risk can be mitigated;	
Appendix 1. 3.1(k):	Where applicable, a summary of the findings and recommendations of any specialist report complying	Section 18
	with Appendix 6 to these Regulations and an indication as to how these findings and recommendations	
	have been included in the final assessment report;	Section 19
Appendix 1. 3.1(I):	An environmental impact statement which contains-	Section 21
	(i) a summary of the key findings of the environmental impact assessment:	
	(ii) a map at an appropriate scale which superimposes the proposed activity and its associated	Section 3
	structures and infrastructure on the environmental sensitivities of the preferred development footprint	Section 20
	on the approved site as contemplated in the accepted scoping report indicating any areas that should	
	be avoided, including buffers; and	Section 21
	(iii) a summary of the positive and negative impacts and risks of the proposed activity and identified	
	alternatives	

Based on the assessment, and where applicable, impact management measures from specialist	Appendix B
	a Daatian 20
	Section 20
	Assumption and limitation
and mitigation measures proposed;	
A reasoned opinion as to whether the proposed activity should or should not be authorised, and if the	Section 20
opinion is that it should be authorised, any conditions that should be made in respect of that	
authorisation;	
Where the proposed activity does not include operational aspects, the period for which the	N/A
environmental authorisation is required and the date on which the activity will be concluded, and the	
post construction monitoring requirements finalised;	
An undertaking under oath or affirmation by the EAP in relation to-	Appendix A
(i) the correctness of the information provided in the reports;	
(ii) the inclusion of comments and inputs from stakeholders and I&APs	
(iii) the inclusion of inputs and recommendations from the specialist reports where relevant; and	
(iv) any information provided by the EAP to interested and affected parties and any responses by the	
EAP to comments or inputs made by interested or affected parties;	
Where applicable, details of any financial provision for the rehabilitation, closure, and ongoing post	N/A
decommissioning management of negative environmental impacts;	
Any specific information that may be required by the competent authority; and	N/A
Any other matters required in terms of section 24(4)(a) and (b) of the Act.	N/A
	 opinion is that it should be authorised, any conditions that should be made in respect of that authorisation; Where the proposed activity does not include operational aspects, the period for which the environmental authorisation is required and the date on which the activity will be concluded, and the post construction monitoring requirements finalised; An undertaking under oath or affirmation by the EAP in relation to- (i) the correctness of the information provided in the reports; (ii) the inclusion of comments and inputs from stakeholders and I&APs (iii) the inclusion of inputs and recommendations from the specialist reports where relevant; and (iv) any information provided by the EAP to interested and affected parties and any responses by the EAP to comments or inputs made by interested or affected parties; Where applicable, details of any financial provision for the rehabilitation, closure, and ongoing post decommissioning management of negative environmental impacts;

2 PROJECT TITTLE

The Proposed Hlabisa Full Water-borne Sanitation: Development of Hlabisa Bulk Sewer Pipelines and the New Wastewater Treatment Works, within Big Five Hlabisa Local Municipality, uMkhanyakude District, KZN.

3 PROJECT LOCALITY

The project locality is described in terms of geographic locational context and site context, as explained in (*Section 3.1 & 3.2*) below.

3.1 Geographical Locational Context

The study area falls within the jurisdiction of the Big Five Hlabisa Local Municipality (BFHLM) and located at the south-western boundary of the municipality within uMkhanyakude District (UKDM), KwaZulu Natal. The project area is across Hlabisa traversing across ward 12 and 14 of the Hlabisa Big Five Local Municipality (*Figure 1*). The project area is within Quaternary Catchment W32E of Pongola-Mtamvuma Catchment Management Area (P-MCMA).

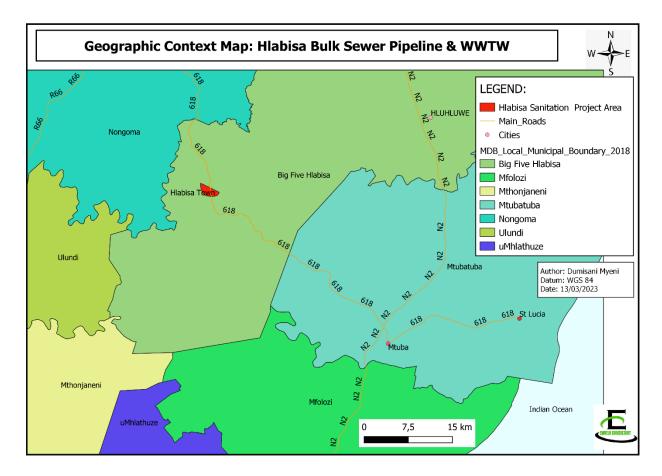


Figure 1: Geographical Context for the study area (Hlabisa Bulk Sewer)

3.2 Site Locality Context (Site Description)

The project will take place within Hlabisa Area, at Hlabisa-Abakwa farm no. 17435, 17435; Hlabisa Reserve No. 12 farm 15832 portion 14, across Ward 12 and 14 of BFHLM. The 5km bulk sewer gravity main traverse along the valley at the periphery of Hlabisa across Matshamnyama towards to Emabhanoyini in ward 12 and further to Bazane area in ward 14 where the WWTW will be located (*Figure 2*).

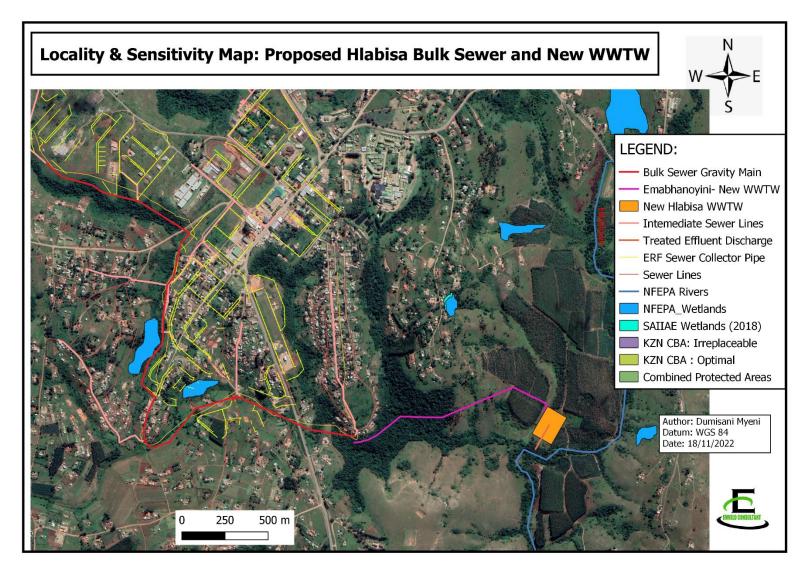


Figure 2: Locality & Sensitivity Map for Hlabisa Bulk Sewer Pipeline & WWTW

The (*Tables 4-5*) below, provides the Global Positioning System (GPS) co-ordinates for the proposed development site.

Gravity Main from Matshamnyama – Ward 13 to Emabhanoyini		
Start	28°8'23.87"S, 31°51'39.49"E	
1 st bend	28° 8'27.02"S, 31°51'42.06"E	
2 nd bend	28° 8'32.30"S, 31°51'41.60"E	
3 rd bend	28° 8'34.09"S, 31°51'44.72"E	
4 th bend	28° 8'37.96"S, 31°51'46.24"E	
5 th bend	28° 8'40.33"S, 31°51'48.41" E	
6 th bend	28° 8'48.78"S, 31°52'13.77"E	
7 th ben	28° 8'51.39"S, 31°52'14.88"E	
8 th bend	28° 8'54.84"S, 31°52'11.23"E	
9 th bend	28° 8'57.97"S, 31°52'10.73"E	
10 th bend	28° 9'1.17"S, 31°52'8.95"E	
11 th bend	28°9'10.45"S, 31°52'9.58"E	
12 th bend	28°9'12.82"S, 31°52'8.19"E	
13 th bend	28°9'14.94"S, 31°52'7.68"E	
14 th bend	28° 9'17.20"S, 31°52'7.87"E	
15 th bend	28° 9'24.53"S, 31°52'4.69" E	
16 th bend	28° 9'25.87"S, 31°52'5.21"E	
17 th bend	28° 9'26.12"S, 31°52'6.18"E	
18 th bend	28° 9'17.22"S, 31°52'22.57"E	
End	28° 9'25.20"S, 31°52'45.29"E	
Gravity Main from Emabhanoyini to the new Hlabisa WWTW		
Start (Join)	28° 9'25.20"S, 31°52'45.29"E	
1 st bend	28° 9'25.62"S, 31°52'45.84"E	
2 nd bend	28° 9'21.34"S, 31°52'53.55"E	
3 rd bend	28° 9'21.52"S, 31°53'1.44"E	
4 th bend	28° 9'16.49"S, 31°53'14.69"E	

Table 4: Hlabisa Bulk Sewer Pipeline Co-ordinates

5 th bend	28° 9'19.38"S, 31°53'21.10"E
6 th bend	28° 9'20.51"S, 31°53'20.47"E
END (Inlet Works)	28° 9'21.01"S, 31°53'21.49"E
Rising Main	
Rising Main Start	28° 9'25.20"S, 31°52'45.29"E

Table 5: Hlabisa New WWTW and Sewer Pumpstations

New Hlabisa WWTW Perimeter		
Corner 1	28° 9'19.70"S, 31°53'21.18"E	
Corner 2	28° 9'21.54"S, 31°53'24.81"E	
Corner 3	28° 9'26.02"S, 31°53'21.89"E	
Corner 4	28° 9'24.20"S, 31°53'18.26"E	
Sewer Pumpstations		
Pumpstation 1	28° 8'18.76"S, 31°51'31.58"E	
Pumpstation 2	28° 8'45.72"S, 31°52'0.13"E	
Pumpstation 3	28° 9'25.88"S, 31°52'6.99"E	
Pumpstation 4	28° 8'30.42"S, 31°52'23.12"E	

The (Table 6) below, provides the 21-digits Surveyor General Code (SGC).

Table 6: SG 21-digit codes for the proposed site

Farm name/s, Portions, and number/s	SG 21-digit code
Hlabisa-Abakwa, Reserve;	N0GU0000001743500000
Hlabisa Reserve No. 12, Farm 15832, Portion 14	N0HU00000001583200014

Six (6) discrete habitat types were delineated within the assessment area, namely, wetland, riparian and instream habitat, scarp forest, and transformed (which is within settlement) (*Refer to Section 11.5*).

As depicted in (*Figure 2*) above, the bulk sewer gravity main will the streams and will traverse the NFEPA Wetlands. The pipeline route traverses the virgin land along the valley where will have a number of stream and drainage crossing. Adjacent to the valley is the land currently occupied by dispersed settlement dwellings. The area outside of Hlabisa town and the settlement is currently not formalised. The area is made up of savanna biome overlain with fragment of Eastern scarp forest: Northern Zululand Lebombo scarp forest, Alluvial wetland: Sub-tropical alluvial vegetation, and dominated by Northern Zululand Sourveld vegetation.

4 SITES ACCESS

The Hlabisa Bulk Sewer Pipeline and WWTW can be access via R618 exiting from N2 at Mtubatuba, towards Hlabisa or Nongoma. Coming from Mtuba side enter the Hlabisa town and turn left via D1907 and travel about 1km and take the exit toward substation, travel down the valley where the project starts. The bulk pipeline traverse along the valley crossing R618 towards the new WWTW site. To access new WWTW is further east of Hlabisa town passing the Hlabisa Hospital, at about 500m turn right and downslope along the rural dwelling and forestry firebreak/boundary until reaching the open space adjacent the Hluhluwe River upper catchment.

5 PROJECT DESCRIPTION

The Proposed Hlabisa Full Water-borne Sanitation Project: Development of Hlabisa Bulk Sewer Pipeline and the New Hlabisa Wastewater Treatment Works, within Big 5 Hlabisa Local Municipality, uMkhanyakude District, KZN.

The proposed development of Hlabisa bulk sewer pipeline and the New Hlabisa WWTW will entail the following features:

- a) Construction of Bulk Sewer Pipeline:
 - Construction of a 3230m (250mmø) uPVC bulk sewer gravity main from Matshamnyama to Emabhanoyini;
 - Construction of 1120m (250mmø) uPVC bulk sewer gravity main from Emabhanoyini to the new Hlabisa WWTW at Bazane;
 - Construction of 140m (250mmø) uPVC treated effluent discharge pipeline from the new Hlabisa WWTW to adjacent Hluhluwe River (upper catchment);
 - ↓ Construction of the Hlabisa town Intermediate 3294m (200mmø) uPVC sewer main;
 - ↓ Construction of the Hlabisa town collector 5270m (160mmø) uPVC sewer main;

- Construction of the Matshamnyama intermediate 750m (200mmø) uPVC sewer main;
- Construction of the Matshamnyama collector 1184m (160mmø) uPVC sewer main;
- Construction of the Emacekeni intermediate 1220m (200mmø) uPVC sewer main;
- Construction of the Emacekeni Collector 2450m (160mmø) uPVC sewer main;
- Construction of the Emabhanoyini intermediate 822m (200mmø) uPVC sewer main;
- ↓ Construction of the Emabhanoyini collector 2007m (160mmø) uPVC sewer main.

b) Construction of the new Hlabisa WWTW:

The provision of a formal wastewater treatment facility of capacity of 1.5 $M\ell/day(1500m^3/day)$, will entail the construction of the following components:

- Clearance of approximately 1.8ha area for development of new Hlabisa WWTW facility;
- **4** Tie15.5m X 6.5m equalization tank;
- 21m X 10.4m anoxic tank and 21m X 14m aeration tank;
- Three Sludge Maturation Ponds: Pond 1 (30m X 30m X 1.5m); Pond 2 (30m X 30m X 1.5m); Pond 3 (22m X 22m X 1.5m);
- Two 3.5m X 12mØ (396m³) settling tanks;
- 4 534m² of six (6) sludge drying beds;
- 4 70.4 m² of two (2) sludge composition facility;
- Construction of 140m (250mmø) uPVC treated effluent discharge pipeline for the new Hlabisa WWTW from WWTW to Hluhluwe River (upper catchment);

The supporting infrastructure for the new Hlabisa WWTW entail:

- Construction of 135m access road to new WWTW;
- Construction of 547m perimeter fencing for the new WWTW.
- Operation room with electrical control equipment;
- Standby generator room;
- Housing for operating staff.

- c) Construction of four sewer pumpstations:
 - Construction of four (4) sewer pumpstation to supports the bulk sewer line on elevated areas, by pump the sewer to the new Hlabisa WWTW;
 - ↓ The dimensions of all four (4) pumpstations are (5mx5mx3m);
 - 4 The pumpstations will have the pumping capacity ranging between 12ℓ s and 5ℓ s.

The implementation of Hlabisa bulk sewer pipeline and the new Hlabisa Wastewater Treatment Works (WWTW) will facilitate the formalization of existing settlement and future housing development, as the implementation of Hlabisa Full Water-borne Sanitation Project will provide a formalized water-borne sanitation system for settlement and businesses.

5.1 Project Anticipated Date

The Project is planned to start at within 2023/2024 financial. In favour of the anticipated start date is that due to the nature of works which involve working within the watercourses as a result of sewer bulk line stream crossings, wetland crossings and slope gradient for sewer gravity main construction, it is therefore highly recommended that the planned activities be undertaken during winter season (dry season), when the streams are dry or at low flow conditions, as well as when there is less chance of run-off from the disturbed soil at sloping areas. Therefore, for planning and tender process the applicant (UKDM) wishes to receive an authorisation by the end of October 2023.

5.2 Design Criteria

The design criteria discussed in this report reflect to the main project activities that triggers the EIA as listed below:

- Construction of a 5000m (250mmø) uPVC bulk sewer gravity main (whole bulk gravity main);
- Pumpstations required to lift the sewage from low-lying areas to the WWTW or gravity main, whichever is applicable.
- Construction of wastewater treatment facility of capacity of 1.5 Ml/day(1500m³/day);
- Construction of 140m (250mmø) uPVC treated effluent discharge pipeline from the new Hlabisa WWTW to Hluhluwe River;

5.3 Design Criteria for Bulk Sewer Pipeline

The following design criteria was used to ascertain the sanitation demand for each of the areas and are based on DWS – Technical Guidelines for the Development of Water and Sanitation Infrastructure and criteria as well as the CSIR Guidelines for Human Settlements Planning and design:

- The trench depth will be approximately 1m;
- Trench width will be approximately 1m
- **4** Designed for a 20-year lifespan in accordance with the following technical guidelines:
 - Technical Guidelines for the Development of Water and Sanitation Infrastructure – Second Edition (2004): DWS.
 - Standard Specifications SANS 1200.

-	
Parameter	Unit
Population Growth Rate	1.6 %
Projection	20 Years
Average HH Daily flow	600 l/HH Middle income
Stormwater Infiltration	15% (allowance)
Peak Factor - Household	2
Peak Factor – Commercial Light Duty	4
Minimum Flow (Gravity Mains)	0.7m/s
Maximum Flow (Rising Mains)	2.5m/s
Pipe Material	uPVC, Class 34
Bulk Sewer Gravity Main	250mmø
Minimum Gradients	153.81m/s

Table 7:Design Criteria for Bulk Sewer Pipeline

The design along the road reserve and for road crossing will be done in accordance with Department of Transport (DoT) standards. These designs will be requirements to secure the wayleave with regards to the pipeline situated within the road reserve; specifications and

requirements for pipe crossings underneath the roads, which will be constructed by means of pipe jacking; specification, requirements, and preferences with regards to access to the respective roads.

5.4 Design Criteria for WWTW

The following design criteria was used to ascertain the water-borne sanitation demand for each of the areas and are based on DWS – Technical Guidelines for the Development of Water and Sanitation Infrastructure and criteria as well as the CSIR Guidelines for Human Settlements Planning and design.

Parameter	Unit
Population Growth Rate	1.6 %
Projection	20 Years
WWTW Operational Capacity	1.5 Mł/day
Average HH Daily flow	600
Stormwater Infiltration	15% (allowance)
Peak Wet Weather Flow (PWW) to enter the grit of WWTW	51.0 l/s
Annual average dry weather flow (AADWF)	17.0 l/s
Max flow allowed	64.6 {/s
Outflow from the Equalization Basin with Emergency Overflow	25 l/s
Volume of Equalization Basin (including Emergency)	105 m ³ 1.5 hours storage of PDWF 1.1 hours of PWWF

Table 8: Design Criteria for WWTW

The WWTW capacity will be 1.5Ml/day, and the general standard for potential water quality parameters is applicable to the effluent from the proposed WWTW, as outlined in (*Table 9*) below.

Most of the generated sewage flow will be from domestic origin. The effluent from the new WWTW will be treated discharged into upper catchment of the Hluhluwe River, the grit and the screenings will dispose to approved landfill, as will be prescribed through waste classification.

Parameter	General Standard	Special Limit
PH	5.5 - 9.5	5.5-7.5
Biological Oxygen Demand (mg/l)	10-300	
Faecal Coliforms (MPN/100ml)	1000	0
Electrical Conductivity (mS/m)	70-150	50-100
Orthophosphate as phosphorous (mg/I)	10	1-2.5
Ammonia (ionised and un-ionised) as Nitrogen (mg/I)	6	2
Chemical Oxygen Demand (mg/l)	75	30
Total Suspended Solids (mg/I)	25	10
Nitrate/Nitrite as Nitrogen (mg/l)	15	1.5
Fluoride (mg/l)	1	1
Chlorine as Free Chlorine (mg/l)	0.25	0
Soap, oil or grease (mg/l)	2.5	0
Dissolved Arsenic (mg/l)	0.02	0.01
Dissolved Cadmium (mg/l)	0.005	0.001
Dissolved Chromium (VI) (mg/l)	0.05	0.02
Dissolved Copper (mg/l)	0.01	0.002
Dissolved Cyanide (mg/l)	0.02	0.01
Dissolved Iron (mg/l)	0.3	0.3
Dissolved Lead (mg/l)	0.01	0.006
Dissolved Manganese (mg/l)	0.01	0.01
Dissolved Zinc (mg/l)	0.01	0.04

 Table 9: Applicable WWTW Effluent Parameters

The design caters for a sludge drying bed and also make use of an oxidation pond. The oxidation pond area will be partially filled, or concrete lined to be used as sludge maturation ponds. This proposed process design is based on an extended aeration activated sludge process, without primary sedimentation and with the addition of denitrification to the process.

The oxygen demand in the purification process is based on the carbonaceous and nitrification oxygen requirement and with denitrification 63% of the oxygen required for nitrification can be recovered if complete denitrification can be achieved. The proposed nitrogen removal process is based on a 3 - reactor system (modified Ludzack- Ettinger process) namely anoxic, aerobic and sedimentation anoxic, with a disinfection facility at the effluent side, an inlet section for screening, grit removal and flow measurement and modified oxidation ponds to serve as sludge maturation ponds for waste sludge. With this process complete denitrification is not possible and Nitrates in the effluent will be ± 5 to 7 mg/ ℓ . This design is proven to be economical on the expect of electricity input and construction costs compared to a complete denitrification process which is in any case not required.

The treatment steps at the inlet works are screening, grit removal, solids grinder and flow measurement. Provision is made for a mechanical screen and a by-pass canal with a hand rake screen. Grit removal is manually from the grit canals and two canals are to be constructed.

The velocity in the grit canal is kept constant under variable flow conditions to allow for sedimentation of the grit particles in the bottom collector chute of the canal. The grit canals are rotated, and grit removed daily.

6 LISTED AND SPECIFIED ACTIVITIES TRIGGERED

The UKDM will require an Environmental Authorisation (EA) prior to undertaking the proposed construction of bulk sewer gravity main and new Hlabisa WWTW. The (*Table 10*) below indicates the Listed activities in terms of the EIA 2014 Regulations (as amended on 07 April 2017) that are applicable to the proposed project.

GNR & Listing Notice No.	Listed Activity	Description of the applicable listed activity	Describe the portion of the proposed project to which the applicable listed activity relates;
			And Applicability
GNR No. 327 (7 April 2017) Listing Notice 1.	Listed Activity 12	 [The development of— (xii) infrastructure or structures with a physical footprint of 100 square metres or more;] The development of— (ii) infrastructure or structures with a physical footprint of 100 square metres or more; where such development occurs— (a) within a watercourse; excluding— (aa) the development of infrastructure or structures within existing ports or harbours that will not increase the development footprint of the port or harbour; (bb) where such development activities are related to the development of a port or harbour, in which case activity 26 in Listing Notice 2 of 2014 	And ApplicabilityMatshamnyama to Emabhanoyini at Hlabisa-Abakwa farmno. 17435; Hlabisa Reserve No 12 farm 15832 portion 14.Applicability:The pipeline construction will results in: Constructioncorridor of not more than 10m width within the vicinity ofstream crossings and wetlands; The 10m length pipelinecrossing at Emacekeni (28° 8'59.67"S, 31°52'9.75"E); 11mlength pipeline crossing at Emacekeni (28° 9'25.52"S,31°52'5.54"E); 17m length crossing at Emabhanoyini (28°9'24.78"S, 31°52'44.96"E), and at (28° 9'21.14"S ,31°52'53.57"E). Therefore, this will results in clearance of10m width construction corridor and construction of pipelineinfrastructure, including the concrete encase covering thepipeline section at instream crossings. The infrastructurewithin watercourse will exceed 100m².The Gravity Main between (Entry Point: 28° 9'6.83"S,31°52'9.83"E) and (Exit Point: 28° 9'14.63"S, 31°52'7.65"E)at Emacekeni traverse within 32m regulated area of the
		applies; (cc) activities listed in activity 14 in Listing Notice 2 of 2014 or activity 14 in Listing Notice 3 of 2014, in which case that activity applies;	NFEPA Wetland. The locality of stream and wetland crossings are along the valley which is outside the Hlabisa town (urban area), as a result the valley has not been developed.

Table 10: Listed and specified activities triggered

GNR & Listing Notice No.	Listed Activity	Description of the applicable listed activity	Describe the portion of the proposed project to which the applicable listed activity relates; And Applicability
GNR No. 327 (7 April 2017) Listing Notice 1.	Listed Activity 19	 (dd) where such development occurs within an urban area; [or] (ee) where such development occurs within existing roads, [or] road reserves or railway line reserves; or (ff) the development of temporary infrastructure or structures where such infrastructure or structures will be removed within 6 weeks of the commencement of development and where indigenous vegetation will not be cleared. The infilling of depositing of any material of more than 10 cubic metres into, or the dredging, excavation, removal or moving of soil, sand, shells, shell grit, pebbles or rock of more than 10 cubic metres from — (i) a watercourse; - but excluding where such infilling, depositing, dredging, excavation, removal or moving— (a) will occur behind a development setback; 	Matshamnyama to Emabhanoyini at Hlabisa-Abakwa farm no. 17435; Hlabisa Reserve No 12 farm 15832 portion 14. Applicability: The pipeline traverse along the valley, as a result there will be three stream crossings at an un-named stream crossed by gravity sewer main, and immediate sewer lines for the construction of bulk sewer. Approximately 18m ³ of soil/spoils will be excavated at each stream crossing and therefore a combined stream crossings will have a total of 54m ³ of spoils/soils excavated within watercourse to facilitate
		(b) is for maintenance purposes undertaken in accordance with a maintenance management plan; [or]	pipeline alignment and installation of bulk sewer pipeline. There will be also infilling for pipelaying at stream crossings.

GNR & Listing Notice No.	Listed Activity	Description of the applicable listed activity	Describe the portion of the proposed project to which the applicable listed activity relates; And Applicability
		 (c) falls within the ambit of activity 21 in this Notice, in which case that activity applies; (d) occurs within existing ports or harbours that will not increase the development footprint of the port or harbour; or (e) where such development is related to the development of a port or harbour, in which case activity 26 in Listing Notice 2 of 2014 applies. 	These stream crossings will be as follows: 10m length pipeline crossing at Emacekeni (28° 8'59.67"S, 31°52'9.75"E); 11m length pipeline crossing at Emacekeni (28° 9'25.52"S, 31°52'5.54"E); 17m length crossing at Emabhanoyini (28° 9'24.78"S, 31°52'44.96"E). The pipeline from Emabhanoyini to the new Hlabisa WWT will have the stream crossing at (28° 9'21.14"S, 31°52'53.57"E).
GNR No. 327 (7 April 2017) Listing Notice 1.	Listed Activity 27	The clearance of an area of 1 hectares or more, but less than 20 hectares of indigenous vegetation, except where such clearance of indigenous vegetation is required for— (i) the undertaking of a linear activity; or (ii) maintenance purposes undertaken in accordance with a maintenance management plan.	Hlabisa Reserve No 12 farm 15832 portion 14. Applicability : Construction of New Hlabisa WWTW The clearance of approximately 1.8ha of indigenous vegetation for development of new Hlabisa WWTW facility.
GNR No. 325 (7 April 2017) Listing Notice 2	N/A	N/A	N/A

GNR & Listing	Listed Activity	Description of the applicable listed activity	Describe the portion of the proposed project to
Notice No.			which the applicable listed activity relates;
			And Applicability
GNR No. 324 (7 April 2017) Listing Notice 3	N/A	N/A	N/A

7 ACTIVITY MOTIVATION

The need for and the desirability of a proposed development forms a key component of any EIA application, as the concept of "need and desirability" relates to, amongst others, the nature, scale and location of development being proposed, as well as the wise use of land. The "need and desirability" are interrelated and the two components collectively can be considered in an integrated and holistic manner (DEA, 2017).

The UMD is the delegated Water and Sanitation Service Authority (WSSA) all rural municipalities within the district, which include the Big 5 Hlabisa Local Municipality. The UKDM has identified various areas and settlements, within the district, which require sanitation upgrades to a full water-borne sanitation system. Therefore, the district proposes to upgrade the Hlabisa town sanitation to an efficient water-borne sanitation system.

It is also important to note that the safe disposal of human excreta and greywater is vitally important in the control of infectious and other communicable diseases and the design and construction of appropriate sanitation systems is of paramount importance in contributing to the safe disposal of human excreta (Water Research Commission, 2011).

7.1 The need

Considering the broader community's needs and interests as reflected in a credible IDP, SDF and EMF for the area. The financial viability of adopted proposed development or activity location should be considered within the context of justifiable economic development, measured against the broader societal short-term and long-term needs. Therefore, what is needed and desired for a specific area should primarily be strategically and democratically determined beyond the spatial extent of individual EIAs (DEA, 2017).

In this regard, the UKDM has streamline the provision of water-borne sanitation with human settlement development for BFHLM. The periphery of Hlabisa town, such as Matshamnyama settlement has been planned for strategic development of approximately 192 low-cost housing and formalization of existing households which will require which will require a formal water borne sanitation system. Currently, these areas either discharge their sewage into septic tanks, which are emptied and then hauled to the existing Hlabisa Wastewater Treatment

Works (WWTW) situated adjacent the Hlabisa Hospital, or do not have any form of a water borne sanitation system. The sewer connection will also take place in Matshamnyama, Emacekeni and Emabhanoyini.

Moreover, since the discharge of sewage to be generated from these settlements cannot be handled by the current Hlabisa WWTW, it is then proposed that the new Hlabisa WWTW be constructed, as the current WWTW facility was primarily designed to cater for Hlabisa Hospital. There is also some evidence of effluent contribution by commercial centre that need to be formalised.

7.2 Desirability

The assessment of desirability of the environmental proposal is fundamental for streamlining the proposal to the baseline environment. This is done in order to meet the objective of the National Development Plan (NDP) 2030 by ensuring that the threat to the "environment and the challenge decent living and livelihood as well as poverty alleviation are closely intertwined through a balance between resource use for economic benefit, improving livelihoods and that of ecosystems protection (DEA, 2017).

As previously explained on (*section 10.1*), in response to UKDM need for sanitation upgrade the water-borne sanitation has been adopted, with focus on a cost effective and environmentally compatible process (extended aeration activated sludge process with nitrogen removal) also taking into consideration the operation and maintenance of the plant.

The 5km sewer conveyance infrastructure is required to traverse along the low-lying areas to facilitate the conveyance of sewer through gravity main. As a result, the bulk sewer gravity main traverse along the valley outside of Hlabisa town across Matshamnyama towards to Emabhanoyini in ward 12 and further to Bazane area in ward 14 where the WWTW will be located. This route allows for good design and practices based on the topography of the project area which will enable sewer to be transferred through gravity main as a result of the slope conditions as they are low-lying sloping areas, thus minimise the use of sewer pumpstation, energy use, and maintenance cost due pump failures. However, the pumpstations will be constructed in certain areas where the pipeline is on high lying areas along the route. These pumps must function continuously; therefore, the maintenance of electrical equipment and

motors, as well as back-up diesel generators to provide power in the event of electricity outages, is crucially important. The location of the new Hlabisa WWTW technical favours the engineering design and effectiveness of the Hlabisa water-borne sanitation, as it is located at approximately 1.5km east of existing WWTW on the lowest lying area in terms of topography of the project area, thus enable efficiency of gravity main. It is important to note that the current site (existing Hlabisa WWWT) has limited space and upgrading the existing WWTW cannot support any further future expansion, as the current WWTW is now at the edge encircled by growing settlements within Hlabisa.

The proposed construction of Hlabisa bulk sewer pipeline and WWTW will facilitate the formalization of existing settlement and future housing development, as the implementation of Hlabisa town sanitation system will provide a formalised water borne sanitation for settlement and businesses. In addition, the construction of bulk sewer and reticulation will see the connection of businesses, schools and households which are currently serviced by a household's septic tanks. Thereby, upgrading to a full water-borne sanitation system that will be connected to this sewer main lines and WWTW.

Apart from improved water-borne sanitation another the deliverable for bulk sewer infrastructure projects is jobs creation and stimulation of the local economy. Therefore, the inclusion of local labour during the construction period will create the much-needed temporary employment opportunities and transfer of skills to local community, as well as support local supply chains and businesses.

8 PROPOSAL ALTERNATIVES

The DFFE provides guidelines on the assessment of alternatives, to which the impact assessment must be considered. Regulations indicate that any alternatives considered in an assessment process must be reasonable and feasible. Additionally, I&APs must be afforded an opportunity to provide inputs into the process of formulating alternatives. Once a full range of potential alternatives have been identified, the reasonable and feasible alternatives should be formulated as activity alternatives for further consideration during the basic assessment or scoping and EIA process (DEAT,2004a; DEAT, 2006). These alternatives are: location (site), activity (project), site layout, design, scale, routing, scheduling, process, demand, input, technology, and no-go options.

It is, however, important to note that the regulation and guidelines specifically state that only 'feasible' and 'reasonable' alternatives should be explored. It also recognizes that the consideration of alternatives is an iterative process of feedback between the applicant and the appointed EAP, which in some instances culminates in a single preferred project proposal (DEAT, 2006).

After weighing all project alternatives for this project (Discrete Alternative Approach), the preferred 'Alternative A: Routing Alternative, Alternative B: Design Alternative, Alternative C: Technology Alternative, and Alternative D: Site Layout Alternative' were adopted as alternatives that will meet the stated need for and purpose of the project, by providing proper mitigation measures, as discussed below.

8.1 Alternative A (Routing Alternatives)

In the linear project activities, the 'Routing Alternatives' are employed through route investigations, also various corridors are investigated and compared in terms of their impacts (DEAT,2004a). The 'Routing alternatives' for this project, involve looking at the impact likelihood and providing engineering design and suitable routes to mitigate those impacts.

The 'Routing Alternative' proposes that the 5km bulk sewer gravity main traverse along the valley outside of Hlabisa town across Matshamnyama towards to Emabhanoyini in ward 12 and further to Bazane area in ward 14 where the WWTW will be located. This route favours the best engineering design practices as the route is situated within the low-lying areas, thus favours efficiency of sewer flow along the bulk sewer gravity main to the new WWTW site.

Due to above mentioned factors other routes were not accessed as this was considered the best design route for efficiency of water-borne sanitation system for this project. However, it is also proposed that the pipeline route should be realigned where it encroaches the sensitive environment wherever possible, as the best practice and were feasible, traversing small sections of wetland, such as within W02 (*figure 7*) can be avoided through rerouting around the system.

The guidelines for the protection of natural forest habitat suggest that no activities or development should be considered that would destroy the forest habitats unless of strategic provincial or national importance with no feasible alternatives. Therefore, where feasible the route design must incorporate re-routing the construction corridor along the Zululand Lebombo Scarp Forest (FOz5).

8.2 Alternative B (Design Alternative)

The design alternative forms an integral part of the project proposal and becomes a part of the project description and need not be evaluated as separate alternatives (DEAT, 2004a). This 'Design Alternative' is in line with project design criteria described in *Section 5*. Therefore, this section provides for a project design for bulk sewer conveyance and WWTW infrastructure as previously described.

The design for bulk sewer conveyance and WWTW cannot be isolated to the 'Technology Alternative' as the infrastructure design cater for capability and efficiency bulk sewer conveyance and WWTW.

The design provides for the construction of a 5000m (250mmØ) uPVC bulk sewer gravity main along the low-lying areas of the project areas for efficiency of water-borne sanitation system. The pipeline route will have trench of 1m deep and 1m width in order to instal bulk sewer line. The clearance of 10m width construction corridor and construction of pipeline infrastructure, including the concrete encase covering the pipeline section at instream crossings. The sewer pumpstations will be constructed to lift sewer along the high-lying areas.

The WWTW will consist of Tie15.5m X 6.5m equalization tank; 21m X 10.4m anoxic tank and 21m X 14m aeration tank; Three Sludge Maturation Ponds: Pond 1 (30m X 30m X 1.5m); Pond 2 (30m X 30m X 1.5m); Pond 3 (22m X 22m X 1.5m); Two 3.5m X 12mØ (396m³) settling tanks.

The process design is based on an extended aeration activated sludge treatment plant with biological nitrogen removal included in the process: The design caters for dual sludge processing methods; Inlet works with automated front rake screen and hand raked screen, grit canals, venture flume for measuring flow with ultrasonic level detector; Flow equalization tank;

BNR reactor with anoxic & aerobic reactors; Circular sedimentation tank with rotating half bridge; Return sludge pumpstation (RAS); Sludge draw-off holding and settling dams; A sludge drying bed and also make use of an oxidation pond. Dried sludge composting under cover area; The oxidation pond area will be partially filled, or concrete lined to be used as sludge maturation ponds, thus enable the contingency plan for efficiency of WWTW. The proposed process design is based on an extended aeration activated sludge process, without primary sedimentation and with the addition of denitrification to the process. This design is proven to be economical on the expect of electricity input and construction costs compared to a complete denitrification process which is in any case not required.

The treatment steps at the inlet works are screening, grit removal, solids grinder and flow measurement. Provision is made for a mechanical screen and a by-pass canal with a hand rake screen.

8.3 Alternative C (Technology Alternative)

The technology to be used in the activity, refers to a consideration of method of operation, such that an alternative includes the option of achieving the same goal by using a different method or process (DEA&DP, 2007). Therefore, the construction of bulk sewer pipeline and WWTW will involve excavation for laying of pipeline infrastructure and founding for WWTW.

The technology for bulk sewer conveyance and WWTW cannot be isolated to the 'Design Alternative' discussed above, as the infrastructure design cater for capability and efficiency bulk sewer conveyance and WWTW.

The technology to be adopted for excavation will be based on *in-sutu* material as classified in (*Table 10*) below:

In-sutu Geological Conditions at different depth	Description of material properties/ Excavatibility and Rippability
Soft	Material that can be efficiently removed or loaded without prior
	ripping, by means of bulldozer, tractor-scraper, track type front

Table 11: SANS1200D Excavatibility Classes (Geology and excavation technologies)

end loader, back acting excavator, without the use of pneumatic
tools such as paving breaker.
Material that can efficiently be ripped by a tractor loader
backhoe (TLB) of flywheel power approximately 0.10kW per
millimetre of tined bucket width and adequately ripped by a
bulldozer of mass approximately 35t, fitted with a single-tine
ripper suitable for heavy ripping, and of flywheel power
approximately 220kW. Or use of pneumatic tools before removal
by equipment to one specified above.
Excavation in material that cannot before removal, be efficiently
ripped by a bulldozer. This type of bedrock that cannot be
removed without blasting or without wedging and splitting
Excavation in material containing more than 40% volume
boulders of size in the range of 0.03-20m ³ , in matrix of soft
material or smaller boulder.
Excavation in material containing more than 40% volume
boulders of size in the range of 0.03-20m ³ , in matrix of soft
material or smaller boulder, and which require individual drilling
and blasting in order to loaded by a tractor type front-end loader
or by a by a tractor loader backhoe (TLB)/back acting excavator

The study area within the pipeline route is predominantly underlain by sediments of the Vryheid Formation, and the WWTW location is underlain by the *Tillite* and shale of the *Dwyka* Group. No seepage was encountered at PSS 1 and PSS 2; PSS 3 although the section is located within the narrow flood plain within the valley along the bulk sewer pipeline route. Seepage was encountered at PSS 3 and PSS 4 and the two test pits excavated on the WWTW site. The sloping topography on PSS 1, 2, 4 and the WWTW provides good drainage, and no ponding was observed.

A 65KW powered 4x4 tractor-loader-backhoe (TLB) was used to excavate the six test pits on site. The test pits were excavated to shallow refusal or the maximum reach of the backhoe, up to 4.2m below Existing Ground Level (EGL). The topsoil, clayey-silt-sand mixes associated with residuum and decomposed to highly weathered sediments encountered on the five sites are soft excavatable. Shale bedrock present at an average depth of 2m that underlies the WWTW site ranges initially from soft to intermediate but becomes hard excavation with depth. The six (6) dynamic penetration (DPSH) tests were conducted to verify the consistency of the

substrate soils and to facilitate the location of the dilatometer tests. The DPSH testing experienced refusal at the depths ranging between 6 and 9m for the estimated depth of influence of a 9m² rectangular structure. Two (2) flat dilatometer tests (DMT's) were performed on site. The refusal was experienced at the dept of 7.4m EGL occurring on grey mudstone.

Bedrock on the five sites along the bulk sewer conveyance comprises Vryheid Formation sandstone with the balance made up of Dwyka tillite and shale in the vicinity of the WWTW. These excavatable materials are characterised of overall good excavatability, up to 4.2m below Existing Ground Level (EGL). The surrounding matrix/decomposed material is likely to require '*Soft*' to '*Intermediate*' excavation.

Therefore, for the purpose excavation for the bulk sewer conveyance and WWTW infrastructure, these materials can be efficiently ripped by a tractor loader backhoe (TLB) of flywheel power approximately 0.10kW per millimetre of tined bucket width. And where outcrops are encountered, the excavation could be adequately ripped by a bulldozer of mass approximately 35t, fitted with a single-tine ripper suitable for heavy ripping, and of flywheel power approximately 220kW. In addition, consideration can also be given to use of a tracked excavator of flywheel power exceeding 0.10kW per millimetre of tined bucket width. Where the hard rock shows some resistance to single-tine ripper suitable for heavy ripping, and of flywheel power approximately 220Kw. No rock blasting will be required. However, when the hard pan rock outcrop is encountered, the blasting must be considered a last resort where all means of heavy ripping have failed.

The 'Impact Analysis' (*Refer to Section 15*) and the recommendations by the EMPr are based on this construction methods.

8.4 Alternative D (Site Layout Alternative)

The site layout alternatives permit consideration of different spatial configurations of an activity on a particular site. This may include particular components of a proposed development or may include the entire activity (DEAT, 2004a). The '*Site Layout Alternatives*' for the WWTW involve looking at the impact likelihood and configuration of the site positioning to mitigate the impacts. The south-eastern corner or section of the current site lies with 100m buffer overage of Hlabisa River. As a result, the 'Site Layout Alternative' proposes that WWTW should be

shifted at least 80m-100m further north of existing position (Figure 3). This will prevent the WWTW infrastructure to be prone to flooding in case of extremely event, and also prevent undesirable contamination Hlabisa River lying downstream of the WWTW. According to According to GN509 of the National Water Act, 1998 (Act No. 36 of 1998), the regulated area refers to the outer edge of the 1 in 100-year flood line and /or delineated riparian habitat, whichever is the greatest distance, measured from the middle of the watercourse of a river, spring, natural channel, lake or dam; In the absence of a determined 1 in 100-year flood line or riparian area the area within 100 metres (m) from the edge of a watercourse where the edge of the watercourse is the first identifiable annual bank fill flood bench (subject to compliance to section 144 of the Act). Furthermore, the Wetland Specialist has also recommended that an alternative site for the WWTW be explored such as above the plantations, along previously disturbed corridors as the wetlands serve high ecological and hydrological value and should be preserved and protected. Therefore, the proposed alternative site position (Figure 3) could meet the desirable development objectives and provide impact mitigation as the site will be shifted further north by 80-100m from current location. This will also avoid the option of wetland offsetting, as this would be the case if the current WWTW position is considered.

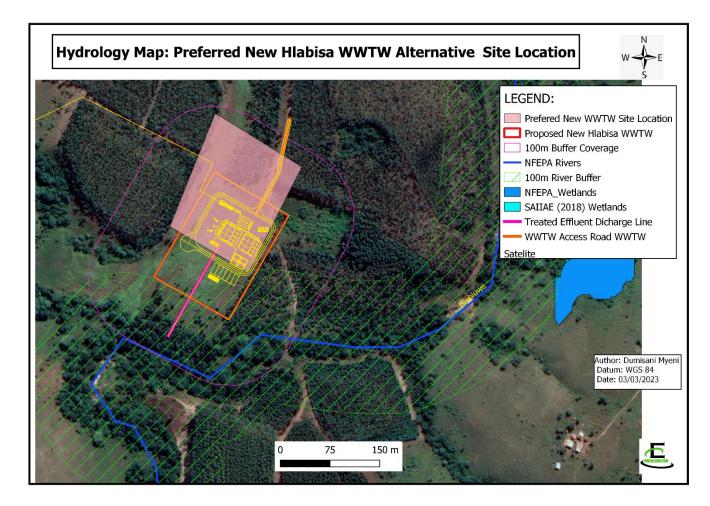


Figure 3: Map Showing the Preferred Alternative Site Layout/Location

8.5 Alternative E (Location Alternative)

The 'Location Alternative' could be considered part of site layout alternatives. However, the 'Location Alternative' is considered for the entire proposal or for a component of a proposal, locations that are geographically quite separate, and alternative locations that are in close proximity (DEAT, 2004a). The choice of gravity main location was determined through topography of the project site as incorporated into engineering design supporting efficiency of the water-borne sanitation system. The 5km bulk sewer gravity main will traverse along the valley at the periphery of Hlabisa across Matshamnyama towards to Emabhanoyini in ward 12 and further to Bazane area in ward 14 where the WWTW will be located. This route allows for good design and practices which will enable sewer to be transferred through gravity main as a result of the slope conditions as they are low-lying sloping areas, thus minimise the use of sewer pumpstation, energy use, and maintenance cost due pump failures. It is important to note that once the sewer conveyance infrastructure is within high-lying areas it will be subject to operational by means of number of pumpstations. These pumps must function continuously;

therefore, the maintenance of electrical equipment and motors, as well as back-up diesel generators to provide power in the event of electricity outages, is crucially important.

The location of the new Hlabisa WWTW technical favours the engineering design and effectiveness of the Hlabisa water-borne sanitation, as it is located at approximately 1.5km east of existing WWTW on the lowest lying area in terms of topography of the project area, thus enable efficiency of gravity main (**Figure 4**). It is important to note that the current site (existing Hlabisa WWWT) has limited space and upgrading the existing WWTW after these proposed upgrades the site cannot support any further future expansion, and the current WWTW is now at the edge encircled by growing settlements within Hlabisa.

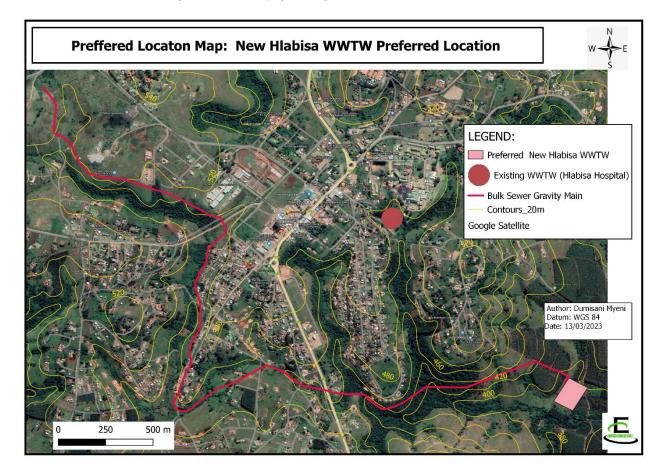


Figure 4: Map Showing a preferred new WWTW and Location

8.6 Alternative F (No-Go Alternative)

In the absence of the proposed development, the UKDM as a delegated WSSA for BFHLM would be unable to construct the water-borne sanitation system within Hlabisa town and the surrounding communities, which is required to address the sanitation of Hlabisa thereby

formalising water-borne sanitation for settlement and businesses, whist in the process streamline the provision of water-borne sanitation with human settlement development for BFHLM (*Refer to Section 7*). It is also important to note that this infrastructure project serves to provide public good (sanitation) from the proposed water-borne sanitation system. Therefore, projects that are proposed on public land and/or for the public good should consider the major development alternatives that would meet the stated need for and purpose of the project (DEAT, 2004a).

Provision of water-borne sanitation for the safe disposal of human excreta and greywater is vitally important in the control of infectious and other communicable diseases and the design and construction of appropriate sanitation systems is of paramount importance in contributing to the safe disposal of human excreta (Water Research Commission, 2011). The provision of the decent sanitation is a national priority and one of the key elements of a decent standard of living for all South Africans (NPC, 2012).

The EAP is therefore of the view that the NO-GO option is undesirable in the face of social and economic needs of the UKDM communities and South Africa's National Development Plan 2030 objectives.

8.7 Preferred Alternative

The role of alternatives is to find the most effective way of meeting the need and purpose of the proposal, either through enhancing the environmental benefits of the proposed activity, and or through reducing or avoiding potentially significant negative impacts (DEAT, 2004a).

Looking at environmental impact likelihood and providing engineering to mitigate those impacts. The preferred alternatives are '*Routing, Design/Technology, Site Layout/Location Alternatives*'. These preferred alternatives cannot be undertaken in isolation, as they assessment is integrated considering this linear development (sewer conveyance) and construction of WWTW infrastructure.

The '*Alternative A: Routing Alternatives*', favours the best engineering design practices as the route is situated within the low-lying areas, thus favours efficiency of sewer flow along the bulk

sewer gravity main to the new WWTW site. The '*Routing Alternative*' for the pipeline is also consolidated with the '*Alternative B: Design Alternative*'. Due to above mentioned factors other routes were not accessed as this was considered the best design route for efficiency of water-borne sanitation system for this project. However, it is also proposed that the pipeline route should be realigned where it encroaches the sensitive environment wherever possible, as the best practice and were feasible, traversing small sections of wetland, such as within W02 (*Figure 7*) can be avoided through rerouting around the system.

The 'Alternative B: Design Alternative' can be also linked to 'Alternative C: Technology Alternative'. These alternatives have distinctly catered for dual sludge processing within the WWTW. The proposed 'Design and Technology Alternatives' proposed processes are based on an extended aeration activated sludge process, without primary sedimentation and with the addition of denitrification to the process. This design is proven to be economical on the expect of electricity input and construction costs compared to a complete denitrification process which is in any case not required.

The '*Alternative C: Technology Alternative*', the excavatibility and rippability determine the use of machinery, and due to inconsistence in geological formation from 'soft to intermediate'. Therefore, for the purpose excavation for the bulk sewer conveyance and WWTW infrastructure, these materials can be efficiently ripped by a tractor loader backhoe (TLB) of flywheel power approximately 0.10kW per millimetre of tined bucket width. A consideration can also be given to use of a tracked excavator of flywheel power exceeding 0.10kW per millimetre of tined bucket width. Where outcrops are encountered, the excavation could be adequately ripped by a bulldozer of mass approximately 35t, fitted with a single-tine ripper suitable for heavy ripping, and of flywheel power approximately 220kW. Where the hard rock shows some resistance to single-tine ripper suitable for heavy ripping, and of flywheel an option. However, blasting must be considered a last resort where all means of heavy ripping have failed. No blasting within the watercourse will be allowed.

On the other hand, the '*Alternative D: Site Layout Alternative*' proposes for configuration of proposed site layout/position of the proposed new Hlabisa WWTW facility. The 'Site Layout Alternatives' for the WWTW involve looking at the impact likelihood and configuration of the

site positioning to mitigate the impacts. The south-eastern corner or section of the current site lies with 100m buffer overage of Hlabisa River. As a result, the 'Site Layout Alternative' proposes that WWTW should be shifted at least 80m north from the current existing position.

The 'Alternative E: Location Alternative' where the choice of the location of pipeline route is over emphasise as determined by the topography of the project area, as it is proposed that the gravity main follow the low-lying areas for efficiency of gravitating of sewer to WWTW. Also, the location of the new proposed WWTW is so strategic as it is at the lowest point of the project area, thus enable efficiency of bulk sewer gravity main. It is also important to note that the current site (existing Hlabisa WWWT) has limited space and upgrading the existing WWTW after these proposed upgrades the site cannot support any further future expansion, and the current WWTW is now at the edge encircled by growing settlements within Hlabisa.

Although, there are impact associated with these preferred alternatives, but preferred/mitigated development proposal presented in this report is responsive to the integrated results of the assessment of potential impacts made by the various specialists on the project team. The adherence to mitigation measures will render the impacts be of temporal nature, only during construction. This will be addressed by mitigation measures discussed under (*Section 15*) and EMPr.

9 ENVIRONMENTAL STATUTORY FRAMEWORK

The NEMA is the primary South African legislation governing the requirements for Environmental Impact Assessments. In the context of the proposed development/operation the provisions of NEMA, and the associated EIA Regulations (regarding Basic Assessment Process) are of fundamental relevance. In terms of the Environmental Regulations promulgated under the NEMA, an EIA must be conducted for any development or activity that requires an Environmental Authorisation.

Apart from this EIA triggers, this project also triggers Section 21(c); Section 21 (i); Section 21 (f) and Section 21 (g) of National Water Act National Water Act (Act No. 36 of 1998). Consequently, the Water Use License Application is underway, due to proposed and

anticipated alterations to the wetland characteristics and impeding or diverting flows; due to the nature of handling sewage; and discharging treated effluent into a watercourse.

The applicable legislations, regulations and policies relevant to the proposed development/operations are outlined in (**Table 12**) below:

Legislation	Relevance
Constitution of	Chapter 2 – Bill of Rights.
the	> Section 24 - Environmental Rights/ Health Or Well-Being / Depletion Of Natura
Dopublic of Couth	Resources
Republic of South	 Section 32: Access to Information
Africa, (No. 108	 Section 33: Administrative Decisions
of 1996)	 Section 38: Locus Standi
	Section 68: Authority for Provincial Legislation
National	Section 2: Principles in Environmental Management
Environmental	 Section 24: Environmental Authorisations and/or Norms and Standards (EA) (
Management A at	 Section 24G: Rectification Application
Management Act	 Section 24J: Implementation Guidelines
(NEMA) (No. 107	> Section 24L: Alignment of Environmental Authorisations, including Integrated
of	Environmental Authorisations)
4000)	Section 24N: Environmental Management Programmes, Rehabilitation of Disturbed
1998)	Areas and Closure Plan
	Section 24P: Financial Provision for Remediation of environmental damage
	> Section 24Q: Monitoring and Performance Assessment (Environmental Audit) or
	EMPr's
	Section 24S: Management of Residue Stockpiles and Residue Deposits
	Section 24M: Exemption from Application of Certain Provisions of The Act
	Section 28: Duty of Care and Remediation of Environmental Damage
	 Section 28: Soil Pollution
	Section 29: Protection of Workers on Refusal to Undertake Work
	Section 30: Emergency Incident Causing Danger to Public or Environment
	Section 30A: Emergency Situation - Request for Directive to undertake listed activity
	without EA
	Section 31: Access to Environmental Information and Protection of Workers
	Section 32: Enforcement of Environmental Laws
	Section 34: Liabilities in Criminal Offences Under Environmental Laws
	Section 39: Control over products which could harm the environment
	 Section 43: Appeals (Ch 9, Sec 43)

 Table 12: Environmental Statutory Framework

Legislation	Relevance
	Section 44 and 47: Regulations
	 Section 47A: Regulations, Legal Documents and Steps Not In Compliance With
	Procedural Requirements
	 Section 47B: Consultation with other Departments
	 Section 47C: Extension of Time Periods
	 Section 47D: Delivery of Documents
	 Section 49A and 49B: Offences and Penalties
GN No. 326 (7	 Purpose - regulate the procedure and criteria as contemplated in Chapter 5 of NEMA
April	relating to the preparation, evaluation, submission, processing, and consideration of,
Дрш	and decision on, applications for environmental authorisations for the
2017)	commencement of activities, subjected to and EIA, in order to avoid or mitigate
	detrimental impacts on the environment, and to optimise positive environmental
Purpose	impacts, and for matters pertaining thereto.to identify activities that would require environmental authorizations prior to
-	
	ement of that activity and to identify competent authorities in terms of sections 24(2) and
24C of NE	
	tigation, assessment, and communication of the potential impact of activities must follow
-	dure as prescribed in regulations 19 and 20 of the EIA Regulations published in terms of
	(5) of the Act. However, according to Regulation 15(3) of GN No. 327, Scoping and an
	ental Impact Report (S&EIR) must be applied to an application, if the application is for two
	activities as part of the same development for which S&EIR must already be applied in
•	any of the activities.
	that are relevant to this application are: Listing Notice 1, Activity 12, 19, and 27
National Water	 Chapter 3 – Protection of water resources.
Act (Act No. 36 of	 Section 19 – Prevention and remedying effects of pollution.
1998)	 Section 20 – Control of emergency incidents.
	 Section 21- WUL activities (Section 21C, Section 21i; Section 21f; & Section 21g)
	Chapter 4 – Water use
	Authority – Department of Water and Sanitation (DWS).
NEMA 1998 - GN	Regulation 1 and 2: Interpretation, Purpose and Commencement of Regulations)
R326 of 07 April	 Regulation 3: Timeframes)
2017-	Regulation 4: Decision on Applicant and Notification to I&AP's
Environmental	 Regulation 5 and 6: General Requirements for Applications
Impact	 Regulation 7, 8 and 9: Consultations between Competent Authority and other
Assessment	relevant State Departments
Regulations,	Regulation 10 and 11: Competent Authority - Right of access to information
2014	 Regulation 12, 13 and 14: EAP's and Specialists' Appointments and Conditions
	 Regulation 15: Assessment Process to be followed
	 Regulation 16, 17 and 18: Requirements applicable to the EA Application
	· · · · · · · · · · · · · · · · · · ·

Legislation	Relevance
National	 Regulation 19 and 20: Basic Assessment Report submitted to Competent Authority Regulation 21, 22, 23 and 24: S&EIR submission to Competent Authority Regulation 25 and 26: Issue and Content of an Environmental Authorisation Regulation 31, 32 and 33: Amendment of Environmental Authorisation Regulation 34: Audits on EA's, EMPr's and Closure Plans Regulation 36 and 37: Amendments to an EMPr and Closure Plan Regulation 38: Suspension and Withdrawal of Environmental Authorisation Regulation 39, 40, 41, 42, 43 and 44: Public Participation Regulation 45, 46 and 47: General Matters Regulation 48: Offences NEM: AQA (Act No.39 of 2004).
Environmental Management Air Quality Act (Act No. 39 of 2004)	 Air quality management Section 32 – Dust control. Section 34 – Noise control. Authority – uMkhanyakude District Municipality
National Environmental Management: Biodiversity Act, 2004 (Act No. 10 of 2004)	 Section 43-48: Biodiversity Management Plans (Ecosystems, Indigenous Species or Migratory Species) Section 51-55: Threatened or Protected Ecosystems and Threatening Processes Section 56-58: Threatened or Protected Species Section 64-67 and 69: Alien Species Posing a potential threat to Biodiversity Section 70 and 77: Invasive Species posing a potential threat to Biodiversity (Section 101 and 102: Offences and Penalties Authority – DFFE.
Occupational Health & Safety Act (Act No. 85 of 1993) National Heritage Resources Act (Act No. 25 of 1999)	 Provisions for Occupational Health & Safety Regulation 9A and 14: Hazardous Chemicals Substances Regulation 10 and 15: Disposal of HCS Waste Authority – Department of Labour. Section 34 – protection of structures older than 60 years. Section 35 – protection of heritage resources. Section 36 – protection of graves and burial grounds. Section 51: Offences and Penalties Authority – Provincial Heritage Agency: Amafa Institute Heritage Agency
National Road Traffic Act 1996 (Act No. 96 of 1996)	 Section 51: Waste on Or Near National Road Authority – KZN Department of Transport and community safety

Legislation	Relevance
Environment	Section 29: Offences and Penalties
Conservation Act	Section 31A: Damage to Environment
(Act 73 Of 1989)	
Promotion of	Section 11 and 12: Access to Records of Public Bodies
Access to	 Section 50: Access to Record of Private Bodies
Information Act,	Section 51: Publication and Availability of Certain Records
2000 (Act No 2 of 2000)	Section 70: Mandatory Disclosure by Public/Private Bodies
Water Services	Section 3: Right of Access to Basic Water Supply and Sanitation
Act, 1997 (Act	Section 9: National Standards on Provision or Water Services
No. 108 of 1997)	Section 11: Duty to Provide Access to Water Services
	Section 12-18: Water Services Development Plans
	Section 27: Monitoring of Water Services Provided
	 Section 77: Transferability of Servitudes
Hazardous	 Section 2-3: Grouped Hazardous Substances
Substances Act,	Group I – Hazardous Substances (GN R 452 Of 25 March 1977 and GN 801 Of
1973 (Act No. 15	31 July 2009)
of 1973)	 Group II Hazardous Substances (GN R1382 Of 12 August 1994)
	 Group III Hazardous Substances (GN R1302 Of 14 June 1991)
	 Group IV Hazardous Substances (GN R247 of 26 February 1993)
	 Section 18 and 19: Offences and Penalties
Fertilisers, Farm	Section 3 and 7: Pest Control Operators, and use of fertilizers, farm feeds,
Feeds,	agricultural, stock remedies and sterilising plants
Agricultural	Section 7: Sale of fertilizers, farm feeds, agricultural remedies, and stock
Remedies and	remedies
Stock Remedies	Section 7BIS: Prohibition on acquisition, disposal, sale or use of certain fertilizers,
Act, 1947 (Act	farm feeds, agricultural remedies, and stock remedies
No. 36 of 1947)	 GN R181 of 7 February 2003 - Regulation Relating to the Prohibition of the Sale,
	Acquisition, Disposal or Use of Agricultural Remedies
	 Containers And Labels of Agricultural and Stock Remedies
	GN 98 of 11 February 2011 - Pest Control Operator Regulations
National	Section 7-9: National Norms and Standards, Provincial Norms and Standards and
Environmental	Waste Service Standards
Management:	 Section 14 and 15: Priority Waste
Waste Act, 2008	 Section 16: Duty on Waste Holder to Implement Reasonable Measures
(Act No. 59 of	Section 17: Reduction, Re-Use, Recycling and Recovery of Waste
2008)	Section 43-59: Waste Management Licences for Listed Waste Activities or
	Compliance to Norms and Standards
	 Section 21 and 22: Storage of Waste

Legislation	Relevance
	Section 23 and 24: Waste Collection needs to be Authorised by the Municipality
	Section 25: Waste Transportation
	Section 26: Unauthorised Disposal of Waste and Protection of Environment
	Section 25: Protection of Environment at Private Land
	Section 35-41: Contaminated Land
	Section 67 and 68: Offences and Penalties
	Regulation 4: Waste Classification
	Regulation 5: Safety Data Sheets for Hazardous Waste
	Regulation 6: General Obligations on Waste Generators, Transporters and
	Managers
	Regulation 7: Waste Treatment
	Regulations 8: Waste Assessment - Waste Disposal to Landfill - Obligations on
	Generators and Managers
	Regulation 9: Waste Management Activities that do not require a Waste
	Management Licence
	Regulation 10: Records on Waste Generation and Management
Advertising on	Section 8: Articles or Materials On or Near Public Roads
Roads and	
Ribbon	
Development	
Act, 1940 (Act	
No. 21 of 1940)	
Health Act, 1977	Section 20: Waste Being a Threat to Human Health
(Act No. 63 of	C C
1977)	
Conservation of	Section 5: Prohibition on the Spreading of Weeds
Agricultural	 Section 8 and 9: Soil Conservation Schemes
Resources Act,	 Regulation 8: Managing the Flow Pattern of Run-off Water
1983 (Act No. 43	 Regulation 12: Burning of Veld, Prevention and Control of Veld Fires
of 1983)	 Regulation 15: Weeds and Invader Plants
,	
National Forests	 Section 7: Indigenous trees
Act, 1998 (Act	 Section 12-15: Protected Trees (All Areas)
No. 84 of 1998)	 Section 16: Registration in Title Deeds
	 Section 61-64: Offences and Penalties
National Veld	 Section 9 and 10: Fire Danger Rating
and Forest Fire	Section 17-19 and 34: Firebreaks
Act, 1998 (Act	Section 24 and 25: Offences and Penalties
No. 101 of 1998)	
,	

Legislation	Relevance
National	Section 18 and 19: Special Nature Reserves
Environmental	Section 23-26: Nature Reserves
Management:	Section 28 and 29: Protected Environments
Protected Areas	Section 37: Management of Protected Areas
Act, 2003 (Act	Section 38-42: Management Plans in Protected Areas
No 57 of 2003)	Section 43: Monitoring performance of Protected Areas
	Section 45-47: Access to Protected Areas
	Section 48: Restricted activities in Protected Areas
	Regulation 49: Regulation or Restriction of Activities in Protected Areas
	 Section 89: Offences and Penalties

10 THE PUBLIC PARTICIPATION PROCESS

Section 24 (4) (a) (v) of NEMA, provides that the procedures for the investigation, assessment and communication of the potential consequences or impacts of activities on the environment, must ensure, with respect to every application for an Environmental Authorisation, the public information and participation procedures which provide all interested and affected parties, including all organs of state in all spheres of government that may have jurisdiction over any aspect of the activity, with a reasonable opportunity to participate in those information and participation procedures.

10.1 Background

Public Participation Process (PPP) is part of the EIA process which is governed under the principles of NEMA as well as the EIA regulations. It is defined as the process by which an organization consults with all interested or affected parties (I&APs) which include organizations, government entities, affected communities, non-governmental organisations (NGOs), etc. It is a two-way communication process and collaborative problem solving with the goal of achieving better and more acceptable decisions.

The PPP also provides all the stakeholders including the community with a platform to raise their environmental concerns before the Competent Authority can make a final decision regarding the issuing of the Environmental Authorization. This prevents and minimizes disputes before they become unsolvable. Chapter 6 of the EIA regulations emphasize that the information related to the proposed project must be made available to I&APs, prior to a final decision. Therefore, this process will allow I&APs to have access to the information relating to this project. The application was conducted according to Chapter 6 of the EIA Regulations 2017.

10.2 Objectives of public participation

The objectives are as follows:

- To inform and involve the community and the stakeholders about the proposed development;
- To identify and address the community and stakeholder's environmental concerns regarding this activity;
- To provide opportunities for the community, relevant government departments, surrounding businesses, the residents, and other stakeholders to raise their environmental concerns, suggest solutions and identify priorities or issues;
- To protect the environmental rights of the local community; and
- To optimise on local and indigenous knowledge of the area.

10.3 Landowner

According to Regulation 39(1) of GN No. 326 (7 April 2017), if the applicant is not the owner or person in control of the land on which the activity is to be undertaken, the applicant must, before applying for an Environmental Authorization in respect of such activity, obtain the written consent of the landowner or person in control of the land to undertake such activity on that land.

The notices were given to Ingonyama Trust Board as well as Traditional Council. The land consent for the new Hlabisa WWTW site was obtained from Traditional Council and Ingonyama Trust Board. However, The project entail construction of sewer conveyance infrastructure. Therefore, in terms of EIA Regulations, 2014 as amended on 07 April 2017, the Section 39 (2) (a) the land consent does not apply in respect to linear activity.

10.4 Legal Compliance

The PPP must comply with several important sets of legislation that require public participation as part of an application for authorisation or approval, namely but not limited to:

- ↓ The National Environmental Management Act (Act No. 107 of 1998 NEMA);
- ↓ The National Water Act (Act No. 36 of 1998-NWA)

10.5 Consultation with the Competent Authority

The relevant authorities required to review the proposed project and to provide an Environmental Authorisation were consulted from the outset of this study and have been engaged throughout the project process. In terms of NEMA Section 24 (C), the lead decision-making authority for this application for Environmental Authorisation is the KZN Department of Economic Development, Tourism and Environmental Affairs (EDTEA).

However, other authorities with jurisdiction over elements of the receiving environment or project activities were consulted and listed as I&APs.

Authority consultation included the following activities:

- Submission of EA Enquiry to EDTEA;
- The EA Pre-Application Meeting was convened with EDTEA on 21st of October 2022 (*Refer to Appendix E* for a copy of the minutes).
- An application for authorisation in terms of NEMA (Act 107 of 1998), is submitted to EDTEA as a competent authority.

10.6 Consultation with other Relevant Authorities

Background information (BID) regarding the proposed project was provided to relevant authorities and agencies, requesting their input into the EIA process. The authorities include *inter alia* as:

- Department of Water and Sanitation (DWS);
- Ezemvelo KZN Wildlife;

- Department of Forestry, Fisheries and Environment (DFFE)
- Department of Agriculture and Rural Development;
- Ingonyama Trust Board;
- **4** KwaZulu Natal Department of Transport
- **KZN** Amafa Heritage and Research Institute;
- Big Five Hlabisa Local Municipality;
- uMkhanyakude District Municipality;

10.7 Notification of the Interested and Affected Parties (I&APs)

Section 41 of Chapter 6 of the EIA regulations have listed the different options, to be used when notifying the I&APs. The PP process for this project was conducted, as detailed in (*Table 12*) and indicated by the green blocks.

Table 13: Notification of I&APs

All the Interested and Affected parties were notified of the application by-			
Fixing a notice board at the place conspicuous to and accessible by the public at the boundary, on the fence, or along the corridor of any alternative sites.	YES	NO/NA	
Appendix E: Onsite notices positions.			
Any alternative site also mentioned in the application	YES	NO/NA	
Has a written notice been given to-			
Landowner or person in control if the applicant is not in control of the land.	YES	NO/NA	
The notices were given to Ingonyama Trust Board as well as Traditional Council. The land consent for the new Hlabisa WWTW site was obtained from Traditional Council and Ingonyama Trust Board.			
The project entail construction of sewer conveyance infrastructure. Therefore, in terms of EIA Regulations, 2014 as amended on 07 April 2017, the Section 39 (2) (a) the land consent does not apply in respect to linear activity.			
The municipal councillor of the Ward in which the site and alternative site of the proposed activity.	YES	NO/NA	
The BID was sent to the Ward 12 & 14 Councillors of the Big 5 Hlabisa Local Municipality.			
The municipality which has jurisdiction in the area and other organs of state:	YES	NO/NA	
The BID was sent to Big 5 Hlabisa Local Municipality.			

Placing an advertisement in-		•
Regional newspaper ((Ilanga Newspaper: 17/10/2022 - 19/10/2022 Edition).	YES	NO/NA
Onsite Notices:	YES	NO/NA
Onsite notices have been placed at boundaries and intersections as well as strategic points.		
Any official Gazette that is published specifically for providing public notice of applications	YES	NO/NA
One provincial newspaper, any official Gazette that is published with the purpose of providing public notice of applications.		NO/NA

Table 14: Public Participation Process

Basic Assessment Public Participation

Identification of I&APS:

Interested and Affected Parties (I&APs) have been identified throughout the process. Initial identification of I&APs includes state departments/organs, state agencies, adjacent properties servitudes owners/operators, municipality, and ward councillors.

Notification BIDs have been circulated to all identified I&APs informing them of the proposed development and the opportunity to comment (Proof of Circulation attached in *Appendix E*).

Notification by Onsite Notices:

The Onsite notices have been placed at boundaries and intersections as well as strategic points (Refer

to Appendix E: Onsite Notices)

Notification by Newspaper Notices/Advert:

An advertisement was placed on (Ilanga Newspaper: 17/10/2022 - 19/10/2022 Edition), attached on

(Appendix E).

Registration of I&APS:

Registration of I&APs was conducted from the period of 14 days, register attached on (*Appendix E*).

Public Participation Meeting:

Public meeting was not held since the project constitute the linear activities. The BID was given to the adjacent occupants adjacent occupants and properties and servitudes owners/operators, municipality, and ward councillors.

Circulation of a Draft Basic Assessment Report:

The EDTEA has received the hardcopy of the draft Basic Assessment Report (DBAR).

The DBAR is circulated via email to all identified and registered I&APs. The Hard copy is placed at Hlabisa Library for 30 days public review and comments.

The DBAR is delivered and sent via email to relevant State Departments and Organs of State and their inputs and comments were requested. (Proof of circulation will be attached on the Final Basic Assessment Report in *Appendix E*).

The Proof of circulation will be attached on the Final Basic Assessment Report in (Appendix E).

Final Basic Assessment Report:

All comments received from DBAR during the commenting period will be included in the Final Basic Assessment Report (FBAR) and attached in (Appendix E) comments and response report (CRR). The FBAR will be submitted to EDTEA for Environmental Authorisation decision.

10.1 Comments from the registered Interested and Affected Parties (I&APs).

Section 43 of Chapter 6 of NEMA (EIA Regulations 2017) indicates that all I&APs are entitled to comment in writing on all reports produced by the applicant during the EIA process. This will bring the concerns raised to the attention of the applicant.

The I&APs were provided with the opportunity to raise their concerns and comments regarding the proposed development project. Firstly, a Background Information Document (BID) was sent to all relevant I&APs on the 14th of October 2022, the revised BID was also forwarded on the 25th of January 2023 as attached in (*Appendix E*). The onsite notices were posted onsite on 17th of October 2022, and revised onsite notices were also posted onsite on the on 31st of January 2023. Notices were displayed in strategic positions in the project area in order to enhance accessibility from the public, as attached in (*Appendix E*). Following, the posting of onsite notices, the newspaper advert was published by (*Ilanga Newspaper: 17/10/2022 - 19/10/2022 Edition* as attached in (*Appendix E*). The DBAR was circulated for 30 days period. The I&APs were given a fair opportunity to comment public participation, and their comments are attached. All public participation activities are attached under (*Appendix E*).

Public participation activities and reports are attached in Appendix E (Public Participation).

11 DESCRIPTION OF BASELINE ENVIRONMENT

This section provides a general description of the status quo of the receiving environment in the project area. This serves to provide the context within which the Basic Assessment exercise was conducted. It also allows for an appreciation and identification of sensitive environmental features and possible receptors of the effects of the proposed project.

11.1 Climate

The Southern African region is divided into three climatic regions: Wet, dry, and moderate regions. In this regard the KwaZulu Natal encompasses the categories such as humid subtropical (*Cfa*), oceanic climate (*Cfb*), hot semi-arid climates (*BSh*) tropical savanna climate (*Aw*), subtropical highland oceanic climate (*Cwb*), but the most prevalent ones are *Cfa*, *Cfb*, *BSh* and Aw (Climate-Data.org). (Climate-Data.org).

The climate region of this study is referenced to Hlabisa town. The study district of UKDM has a temperate climate with winters being very mild and summers that can be hot and humid, with mostly precipitation received during the summer season, and the period between October to March. The southern and eastern parts of UKDM fall predominantly within the humid subtropical region of South Africa, with the western region being a more semi-arid region. The district experience mild winter temperatures are due to the oceanic climate (warm Agulhas current), with the lowest temperatures, which are experienced between March and July. The mean temperature in the UKDM varies between lowest 10°C in winter and highest at 32°C during summer. In Hlabisa, there is little rainfall throughout the year as its climate falls under the *BSh* and is classified as warm and temperate, with the mean annual temperature of 20.6°C, and mean annual precipitation of 678mm, experienced during summer season, but some precipitation also experienced even in dry season (Ezemvelo KZN Wildlife, 2014; Climate-Data.Org). The study area has a Mean Annual Precipitation (MAP) of 828.9 mm (early and mid-summer).

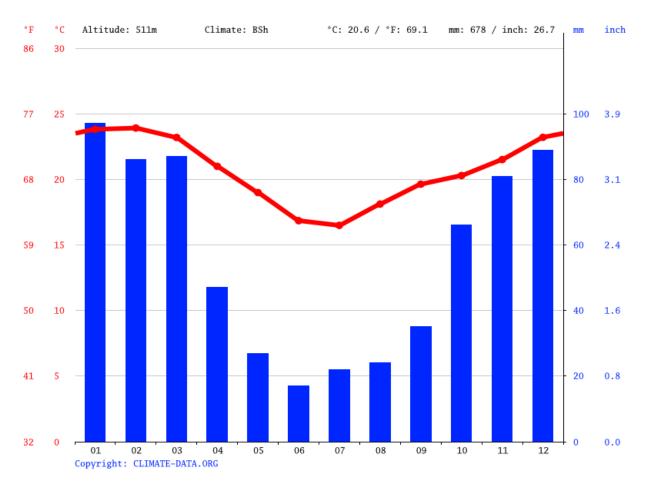


Figure 5: Hlabisa climate graph over a 12-month period [Source: Climate-Data.Org]

11.1.1 Potential impact

The project deeply relies on climate and seasonal trends such as stream discharge since pipeline construction corridor traverse un-named stream and wetlands. Due to various return periods and extreme events on the wetlands and stream associated with wet period, the excavation during the peak flow conditions will results to surface run-off, siltation and erosion within the vicinity of the pipeline wetland and stream crossing. Given the above-mentioned climatic trajectory (*Figure 5*), it is inferred that construction within the watercourse and the riparian zone, will have minimal impact on the hydrological and geological elements when conducted between April and September. The measures to mitigate the potential impacts will be considered further in the EMPr.

11.2 Surface Hydrology

The hydrological system of uMkhanyakude District conglomerate with high and low-lying areas. The high-lying areas with dominantly of non-perianal hydrological system at the western part of the district that rather drain eastwards to low-lying plains forming wetland systems. Also, the western areas further south is characterised of both of low-lying and high-lying areas whereby those low-lying areas are rich in flood-plain wetlands. The UKDM is rich in surface water resources that support a wide biodiversity and is the backbone of a thriving tourist industry. The district incorporates many areas relevant to the freshwater ecosystem conservation and conservation priorities, which include wetland clusters, refuge or critically endangered and endangered, as well as otherwise threatened, fish species within the Mkuze River, Pongola River, and the freshwater coastal lakes. These features are largely dependent on the quality of the resource that originates outside of conserved areas, which is difficult to manage. (Ezemvelo KZN Wildlife, 2014).

The study area is located in the Quaternary Catchments W32E, within the Pongola to Mtamvuna Water Management Area (WMA) 4.

The freshwater ecosystem within the UKDM comprises diverse rivers, dams wetlands, lakes as discussed below.

11.2.1 Rivers, dams and lakes

The UKDM is bordered by Mfolozi River at the southern region, and has Pongola River, which drains the north-western area northwards toward the Great Usutu River and Mozambique, the Msunduzi River and Mkuze River traversing central region in a southerly direction toward the iSimangaliso Wetland Park system, whilst the Hluhluwe, Nyalazi River and Mfolozi Rivers drain the southern areas towards the iSimangaliso Wetland Park system. These are free flowing rivers. The Pongola and Nawavuma River which originate west of the district cut though this mountain range via gorges. The Mkuze and Msunduzi Rivers, which also originated to the west of the district, drain the southern areas of the municipality into the iSimangaliso Wetland Park and ultimately southwards toward the Indian Ocean. The north-eastern region is drained by small rivers, of which the Swamanzi River is the only one classified as perennial. (Ezemvelo KZN Wildlife, 2014).

There is only one dam (Pongola Poort Dam/Jozini Dam) which is an instream dam situated within Pongola River within Jozini. The district is also a home to freshwater lakes situated along the coast region namely, Lake St Lucia, Lake Sibhayi, and Lake Nibela.

The study area drains into non perennial stream where there are pipeline stream crossings and the upper catchment of Hluhluwe River which traverse adjacent the new Hlabisa WWTW site. The treated effluent discharge drains upstream of Hluhluwe River at the upper catchment (*Figure 6*). The Hluhluwe River is one of the major rivers within uMkhanyakude District. There were no dams and lakes within the jurisdiction of the study area.

The infield riverine habitat delineation provided that the project area has a number of drainage line draining into the Vallely along the location of the Bulk Sewer Gravity Main. This valley later drains into upper catchment of Hluhluwe River downstream of WWTW. A single riverine unit (Hluhluwe River) was identified as a likely receiver of impacts from the proposed development. Riparian habitats were identified and delineated along the valley and at both downstream and downstream of the Hluhluwe River within WWTW location. The volume of the water within the watercourse at the time of assessment was moderate to low. The Hluhluwe River was characterised by long shallow pools, interlinked with slow flowing riffles dominated by sand and boulders.

The analysis of the overall Eco Status of the assessed unit within the Hluhluwe River was determined to be a '*Class D*' at the upstream site, and a '*Class D/E*' at the downstream site. The river is slightly more degraded upstream site is likely a result of the activities from the adjacent rural settlements who utilise the river for subsistence use. The results from the *insitu* assessment show that all parameters are within both the TWQR for aquatic systems and the DWS General Effluent Standard. The results from the laboratory assessment show that all parameters are within both the TWQR for aquatic systems and the DWS General Effluent Standard. The results from the laboratory assessment show that all parameters are within both the TWQR for aquatic systems and the DWS General Effluent Standard. The results from the laboratory assessment show that all parameters are within both the TWQR for aquatic systems and the DWS General Effluent Standard. The results from the laboratory assessment show that all parameters are within both the TWQR for aquatic systems and the DWS General Effluent Standard. The results from the laboratory assessment show that all parameters are within both the TWQR for aquatic systems and the DWS General Effluent Standard with the exception of total suspended solids. However, whilst E. coli counts were low (>45 counts per 100ml water), total coliform counts are higher than the DWS limits. The high coliform counts suggest that perhaps there are moderate coliform sources upstream, possibly from animal manure or human settlements.

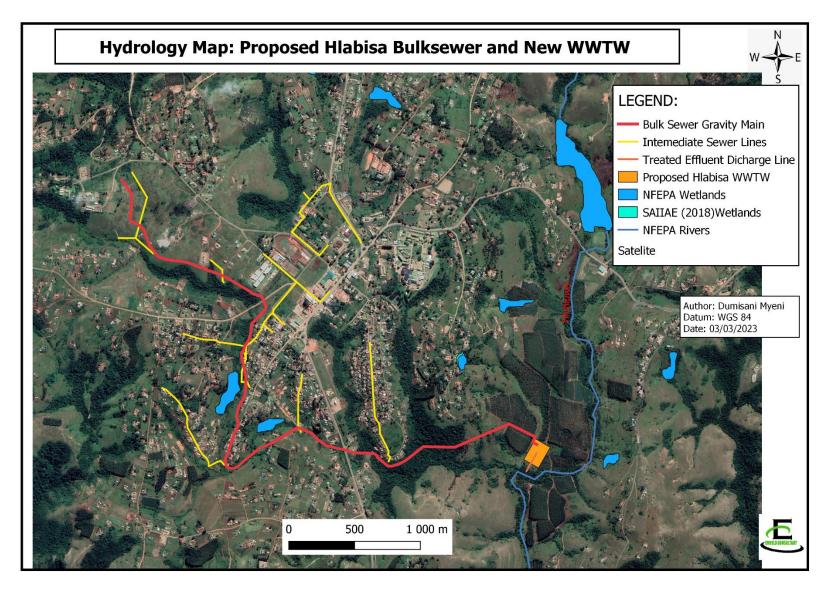


Figure 6: Map showing dam, rivers and wetlands with the study area

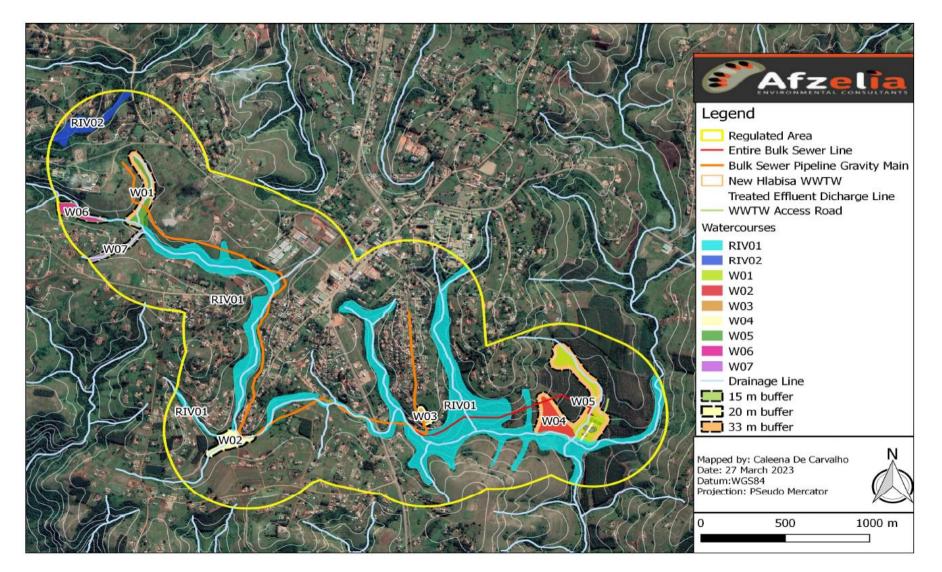
11.2.2 Wetlands

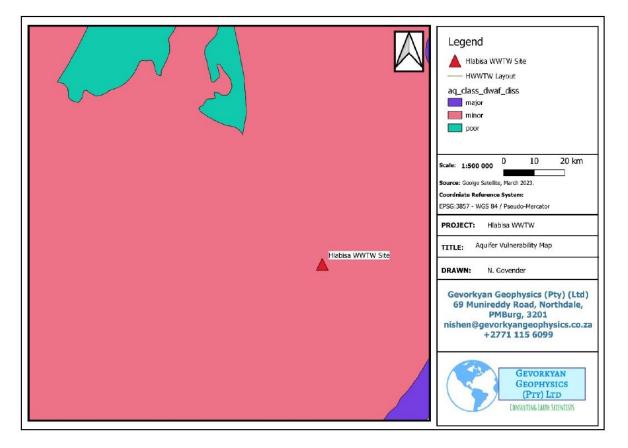
As discussed above in (**Section 10.2**), the major wetlands systems at uMkhanyakude District are mainly formed at the large areas of low-lying plains draining from the west of the district to Greater iSimangaliso Wetland Park. Also, (Ezemvelo KZN Wildlife, 2014).

Within the section of the study area, the NFEPA dataset, Ezemvelo KZN Wildlife and SAIIAE showed the presence of wetlands systems within 32m- 100m project coverage, as well as within the proposed pipeline route (*Figure 6 & 7*).

The infield watercourse delineation confirmed the presence of seven (7) wetland systems that fell within the study area and regulated area (falling within or close to the proposed development footprint) and only five (5) of these systems were identified to be at risk and required further assessment. These systems were identified as seepage, Unchanneled Valley Bottom (UVB) and Channelled Valley Bottom (CVB) wetlands and they were identified to be largely natural and moderately modified. Existing impacts placing pressure on these systems are livestock grazing, rural settlements and *Eucalyptus* plantations. As a result of their surrounding land uses, these wetlands were important overall in trapping sediment, controlling erosion, attenuating floods, regulating flows and assimilating toxins and nutrients. These systems were therefore of moderate to high ecological importance and sensitivity.

Riparian habitats were identified and delineated along the valley and at both downstream and downstream of the Hluhluwe River within WWTW location. The volume of the water within the watercourse at the time of assessment was moderate to low. The Hluhluwe River was characterised by long shallow pools, interlinked with slow flowing riffles dominated by sand and boulders.




Figure 7: Map showing wetlands and drainage lines delineated within the study area

11.2.3 Potential impacts of the project hydrological features

The construction of the sewer conveyance will involve the excavation within wetland hydrological bodies, and excavation within stream for stream crossings. Therefore, any construction within the watercourse is considered environmental sensitive. It is highly recommended that the recommendations by the EMPr, Aquatic Ecological Assessment, and Wetland Habitat Impact Assessment be adhered to, in order to mitigate any impacts that may arise.

11.3 Ground Water

According to the DWS 'Aquifer Classification Map' the project area (new Hlabisa WWTW) comprises the 'Minor Aquifer System' in accordance with vulnerability map (*Figure 8*). Which, therefore, provides a moderate yielding aquifer systems of variable water quality.

Figure 8: Aquifer Classification of the new Hlabisa WWTW site

The infield assessment provided that the project area is underlain by un fractures aquifer system with approximately yields between 0.1-0.5 l/s. The static ground water level is at

approximately 27m below EGL. The project area is also characterized by the faults which are considered as flow path for groundwater. The groundwater seepage was encountered within depth ranging from 0.7m- 0.9m below EGL, and this can be attributed to the rainfall and also known as perched groundwater conditions. The absence of dolerite intrusion creates an indication of weakness on surrounding rocks, aiding to pathways for groundwater movement. In instances of dolerite instruction, the fractures within the bedrocks were considered to be high.

11.3.1 Potential Impacts

The potential to groundwater contamination as a result of operation of WWTW. The groundwater seepage onsite was determined at approximately less than 1m below EGL, this elevated groundwater was associated with rainfall or classified as perch conditions. Therefore, any failure and spillage of effluent in new WWTW could risk in significant contamination in surface and perch groundwater. It is highly recommended that the recommendations by the EMPr, Hydrological Impact Assessment, Aquatic Ecological Assessment, and Wetland Habitat Impact Assessment be adhered to, in order to mitigate any impacts that may arise.

11.4 Biomes

The uMkhanyakude District traverses eight (6) biomes, namely; Azonal Forest, Forest, Indian Coastal Belt, Savanna, Grassland and Wetlands biomes and contains 45 vegetation types (Ezemvelo KZN Wildlife, 2014). The study area within Hlabisa bulk sewer gravity main and WWTW is overlaid by the Savanna Biome, and with intrusion of a Forest Biome near the new WWTW site (*Figure 9*). The study area is dominantly Eastern Valley Bushveld (SVs6).

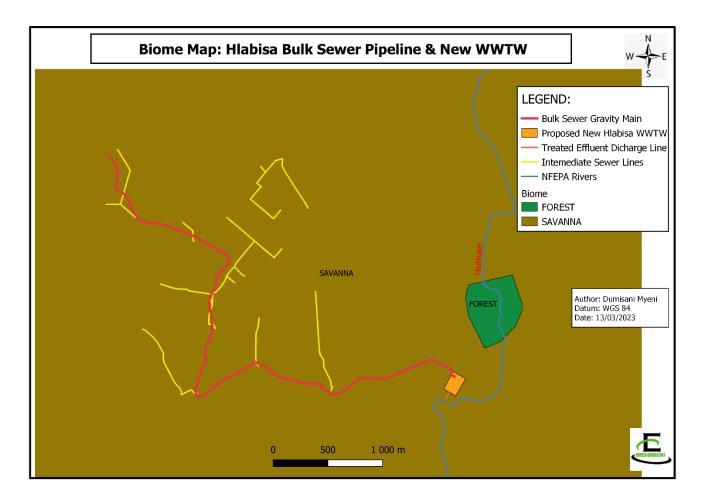


Figure 9: Map Showing Dominant Savanna Biome within project area

11.5 Flora

As discussed in (*Section 9.3*), the uMkhanyakude District has a very rich vegetation endemic from stratified biomes. Most noticeable the Maputaland region boasting with great conservation and biodiversity importance, hosting lush riverine and estuarine habitats, diverse savannah and foothill grasslands, and highly specialized and threatened dune forests, stretching from Mtubatuba towards South African and Mozambican boarder, with over 2500 species that occur within the Maputaland Centre of which at least 230 species are endemic or near endemic to the region (Ezemvelo KZN Wildlife, 2014).

Undisputable, the uMkhanyakude District is rich in vegetation species diversity endemic to Eastern Coastal region amongst other hosted by Arizona Forest, namely: Lowveld Riverine Forests, Mangrove Forests, *Ficus trichopoda* Swamp Forest, and *Raphia* Swamp Forest, Dukuduku Moist Coastal Lowlands Forest and East Coast Dune Forest all with a conservation

status classified as '*Critically Endangered*'. Whilst the Maputaland Dry Coastal Lowlands Forest; Maputaland Mesic Coastal Lowlands Forest; Maputaland Moist Coastal Lowlands Forest; Maputaland Dune Forest with a conservation status classified as '*Endangered*. Moreover, the region also diversified by the Savanna vegetation, namely: Zululand Coastal Thornveld classified as '*Critically Endangered*; Maputaland Coast Belt classified as '*Endangered*; The Western Maputaland Clay Bushveld and Zululand Lowveld classified as '*Vulnerable*'. The district also hosts diversified wetlands vegetation species of conservational concern such as: Lowveld Floodplain Grasslands and Lacustrine classified as '*Critically Endangered*. The Subtropical Alluvial Vegetation: Lowveld Floodplain Grasslands are classified as '*Endangered*'. Whilst the Tall Reed Wetland and Subtropical Freshwater Wetlands are classified as '*Vulnerable*'. Furthermore, the grassland vegetation comprises the Lebombo Summit Sourveld and Maputaland Wooded Grassland which are classified as 'Endangered' (Ezemvelo KZN Wildlife, 2014).

The vegetation type with the study area main as depicted by (*Figure 10*) is predominantly: Northern Zululand Sourveld (*Svi22*) '*Vulnerable*' with (19%) conservation target; with intrusion of Northern Zululand Lebombo Scarp Forest (*FOz5*) 'Least Threatened' with (40%) conservation target; and Subtropical Alluvial Vegetation (*Aza7*) 'Least Threatened' with (31%) conservation target (Mucina & Rutherford, 2006).

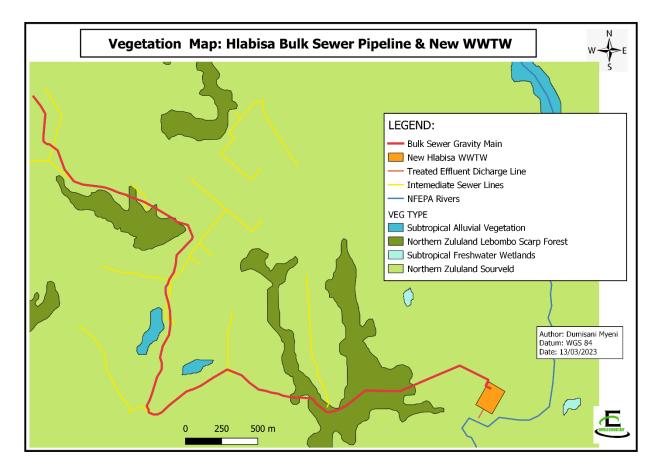


Figure 10: Map showing the vegetation type within the study area

Six (6) discrete habitat types were delineated within the assessment area, namely, wetlands, riparian and instream habitat, scarp forest, sourveld, and transformed (which is within settlement). The proposed development site traverses through the forest, grasslands, crosses the R618 provincial road, near human settlements and streams. The existing land use of the project area and its immediate surrounding area include cultivated land (subsistence farming), forest plantations (agricultural facility) and homesteads.

The riparian habitat vegetation in the region provides cover for bird species such as the *Circus ranivorus* (African Marsh Harrier), *Caprimulgus natalensis* (Swamp Nightjar) and *Alcedo semitorquata* (Half-collared Kingfisher). Scarp Forest habitat type within the study area will be utilized by numerous faunal species (birds, reptiles, insects and mammals).

The infield investigation within the construction corridor did not observe plant Species of Conservation Concern (SCC) within construction corridor and within the Project Area of Influence (PAOI) outside the constriction corridor. However, the plant species listed as "Specially Protected Indigenous Plants" in terms of Schedule 12 of Natal Nature Conservation Ordinance, No. 15 of 1974 were identified within the study area, namely ALL LILIACEAE, which includes *Aloe sp.* such as Aloe *marlothii* and Aloe *arborscens*. All provincially protected plant species within the project development site, should either be avoided or be preserved and incorporated into the landscaping around the proposed development site. The infield recorded 105 plant species within the study area. The plant species such as *Albizia adianthifolia* (Flat crown), *Combretum kraussii* (Forest Bushwillow), *Commiphora woodii* (Forest Corkwood), *Trichilia* dregeana (Forest Natal-mahogany), and *Trema orientalis* (Trema, Pigeon wood) were recorded in abundance along the Scarp Forest all having conservation status of '*Least Concern*'.

The edges of this Forest community comprise of dense thickets of *Chromolaena odorata* (Triffid weed), *Lantana camara* (Lantana) and *Ricinus communis* (Castor oil plant) all classified as '*Category 1b AIS*'. The grassland vegetation is being transformed by the invasion of *Psidium guajava* (Common guava) classified as '*Category 2 AIS*'. Alien invasive plant species on the study area were observed to occur in clumps, scattered distributions or as single individuals.

The riparian habitat of Hluhluwe River was largely surrounded by non-indigenous plants such as *Amorpha fruticose*, *Senna didymobotrya* (exotic) and *Cerbera manghas*.

11.5.1 Potential Impacts

Potential impacts to vegetation could result from the vegetation clearance for construction of sewer conveyance infrastructure, which will involve the clearance of vegetation in accordance with clearance for the construction of pipeline route, as well as clearance for the new WWTW. However, proper mitigation can be achieved through carefully implementation of recommendations given by the EMPr, and by Terrestrial Ecological Impact Assessment.

11.6 Protected Areas and Biodiversity Sector Plan

The aim of the National Environmental Management: Protected Areas Act (Act No. 57 of 2003) (NEM: PAA) is to provide for the protection and conservation of ecologically viable areas representative of South Africa's biological diversity and natural seascapes. The purpose of a Protected Environment is amongst others to protect a specific ecosystem outside a special nature reserve world heritage site or nature reserve and also to ensure the use of the natural resources in the area is sustainable. Protected areas in South Africa are defined as parts of the landscape that are formally protected by law in terms of the NEM: PAA and managed primarily for the purpose of biodiversity conservation.

The uMkhanyakude District falls within a bioregion and hosts a number of formally protected and other conservation areas, namely: iSimangaliso Wetland Park; Hluhluwe-iMfolozi Park System; Makasa Nature Reserve; Manguzi Forest Reserve; Tembe Elephant Park; Sileza Nature Reserve; Ubombo Mountain Nature Reserve; Ndumo Game Reserve; Hlatikulu Forest Reserve; Futululu Forest; Futululu Conservation Area; and a number of private game reserves (Ezemvelo KZN Wildlife, 2014).

The study area does not fall within any of the formal Protected Areas (PA) and the nearest PAs are situated approximately 2.8km east and south of the project area, namely: HluhluweiMfolozi Nature Reserve, with eMpembeni, Obuka and Somopho Nature Reserves Systems. The Greater iSimangaliso Wetland Park and iSimangaliso Marine Protected Area (MPA) are situated at approximately 52km east, and 86km further east, respectively (**Figure 11**).

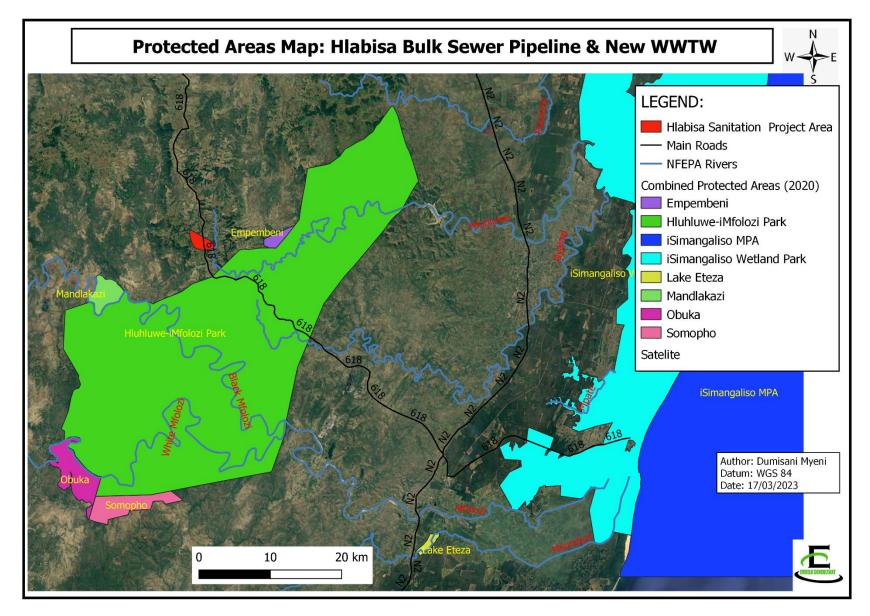


Figure 11: Map showing Protected Areas within the region of the study area

There are two main categories of areas that are required to meet conservation targets. These two main categories include Critical Biodiversity Areas (CBAs) and Ecological Support Areas (ESAs). The CBAs are crucial for supporting biodiversity features and ecosystem functioning and are required to meet biodiversity and/or process targets including corridors. The ESAs represent the functionality and not necessarily the entire natural areas that are required to ensure the persistence and maintenance of biodiversity patterns and ecological processes within a Critical Biodiversity Areas (*Refer to table 15*).

It is estimated that threatened ecosystems make up 9.5% of South Africa, with critically endangered and endangered ecosystems accounting for 2.7%, and vulnerable ecosystems 6.8% of the land area. It is therefore vital that Threatened Terrestrial Ecosystems inform proactive and reactive conservation and planning tools, such as Biodiversity Sector Plans, municipal Strategic Environmental Assessments (SEAs) and Environmental Management Frameworks (EMFs), Environmental Impact Assessments (EIAs) and other environmental applications (Mucina et al. 2006).

Critical Biodiversity Areas (CBAs) – Crucial for supporting biodiversity features and ecosystem functioning and are required to meet biodiversity and/or process targets			
Critical Biodiversity Areas: Irreplaceable (CBA1)	Areas considered critical for meeting biodiversity targets and thresholds, and which are required to ensure the persistence of viable populations of species and the functionality of ecosystems.		
Critical Biodiversity Areas: Optimal (CBA2)	Areas that represent an optimised solution to meet the required biodiversity conservation targets while avoiding high-cost areas as much as possible (Category driven primarily by process but is informed by expert input).		
Ecological Support Areas (ESAs) – Functional but not necessarily entirely natural areas that are required to ensure the persistence and maintenance of biodiversity patterns and ecological processes within Critical Biodiversity Areas.			

Functional but not necessarily entirely natural terrestrial or aquatic areas that are required to ensure the persistence and maintenance of biodiversity patterns and ecological processes within the Critical

Table 15: Subcategories of CBA and ESAs	[Source: Ezemvelo KZN Wildlife 2014]
Table 13. Subcallegones of CDA and LOAS	

Ecological Support Areas

			Biodiversity Areas. The area also contributes significantly to the maintenance of Ecosystem Services.
Ecological Species Speci	Support fic	Areas:	Terrestrial modified areas that provide a critical support function to a threatened or protected species, for example agricultural land or dams associated with nesting/roosting sites.
Ecological Buffers	Support	Areas:	Terrestrial areas identified as requiring land-use management guidance not necessarily due to biodiversity prioritisation, but in order to address other legislation/ agreements which the biodiversity sector is mandated to address, e.g., WHS Convention, Triggers Listing Notice criteria, etc.

According to the Ezemvelo KZN Wildlife (2016), the proposed development site does not fall within any of the KZN CBA: Optimal Areas or CBA: Irreplaceable Areas (*Figure 12*).

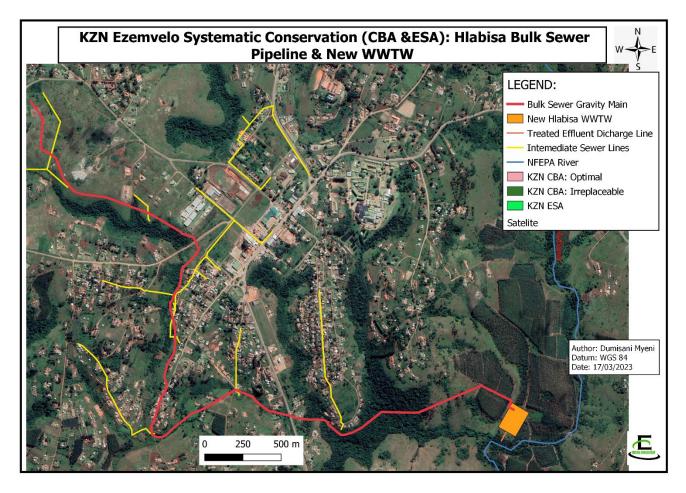
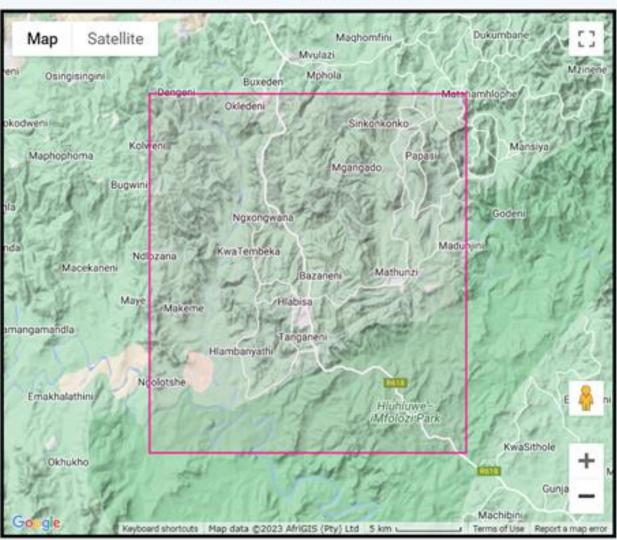


Figure 12: Sensitivity map showing no CBAs and ESA within the project reach


11.6.1 Potential Impacts

There are no protected areas and CBAs within the study area. It is important to note that intensive vegetation clearance at project site can lead to fragmentation, reduction, and loss of habitat as well as loss of plant species SCC and migration of animals away from the area. However, proper mitigation can be achieved through carefully implementation of recommendations given by the EMPr, and by Terrestrial Ecological Impact Assessment.

11.7 Fauna

The uMkhanyakude District lies within the Maputaland-Pondoland Albany bioregion hotspot which said to have high levels of species and endemism for fauna in avifauna, reptiles, mammals and marine biodiversity. Whereby, 14 of the 631 bird species that inhabit this region is endemic and 25 '*Red Data Species*'. Out of 208 species of mammal eight (8) of them are endemic to this region. The 'Critical Endangered' faunal species within the district is the *Cloeotis percivali australis sp.* (Short-eared trident bat), while other 12 are 'Endangered', and 40 of the faunal species within the district 'Vulnerable', and total of 20 species endemism (Ezemvelo KZN Wildlife, 2014).

In addition, the desktop survey interrogated the potential faunal species that could be found on the study area are those which have been recorded in the Quarter Degree Square 2831BB (*Figure 13*) obtained from FitzPatrick Institute of African Ornithology (2023). It is important to note that the project area is within the Quarter Degree Square 2831BB, and this region being interrogated cover the study area and stretch far to the Hluhluwe-iMfolozi Park System. Therefore, species being listed may be situated may also reflect the species within the protected area situated approximately 2.8km east and south of the project area.

Summary information for locus 2831BB

Figure 13: Figure 12: 2831CD Quarter Degree Square [Source: ADU, 2022]

The desktop observed the probability of occurrence of 21 frog species, 128 *Lepi* (butterfly) species, and 21 *Odonata* (dragonfly) with conservation status classified as '*Least Concern*'. There were 73 bird species which were recorded within the study region, to which one (1) amongst classified as '*Vulnerable*', three (3) were '*Endangered*', and two (2) were '*Critical Endangered*'. However, the identity of those species is withheld for their protection. There were 53 mammal species which were recorded, amongst which one (1) was classified as '*Least Concern*'. Threatened': three (3) were classified as '*Vulnerable*'; four were classifies as '*Near Threatened*'. There were 41 reptile species which were recorded amongst which one (1) was classified as '*Vulnerable*'; and two (2) were classified '*Near Threatened*'.

The field investigation by Terrestrial Ecological Assessment observed the existence of only mammal species, namely *Lepus saxatilis* (Scrub Hare). three frog species were recorded on site, namely *Hyperolius marmoratus* (Painted Reed Frog), *Amietophrynus gutturalis* (Guttural toad) and *Kassina senegalensis* (Bubbling Kassina). No frog species of conservation concern were recorded during the survey. No frog species of conservation concern were recorded during the survey. Twenty-eight (28) bird species were recorded during the field survey; However, no bird nests were identified on the study area, and bird species of conservation concern were recorded during the survey. Five reptile species were recorded during the survey, namely *Dispholidus typus* (Boomslang), *Trachylepis striata* (African Striped Skink), *Lygodactylus capensis* (Common Dwarf Gecko), *Causus rhombeatus* (Rhombic Night Adder), and *Acanthocercus atricollis* (Southern Tree Agama). No reptile species of conservation concern were recorded during the survey.

The following invertebrate species were recorded on the proposed development site, namely Elegant Grasshopper (*Zonocerus elegans subsp. elegans*), Brown Pansy (*Junonia natalica natalica*), African Yellow Pansy (*Junonia hierta cebrene*), Common Mother-of-Pearl (*Protogoniomorpha parhassus*), Broad-bordered Grass Yellow (*Terias brigitta brigitta*), Pirate (*Catacroptera cloanthe*), Soldier Pansy (*Junonia elgiva*), Plain Tiger/African Queen/African Monarch (*Danaus chrysippus*), Common grass yellow butterfly (*Terias hecabe solifera*), Inspector (*Chalcostephia flavifrons*), Citrus swallowtail (*Papilio demodocus*), Pea blue/Long-tailed blue (*Lampides boeticus*), Common Meadow White Butterfly (*Pontia helice helice*) and Buff-tipped Skipper (*Netrobalane canopus*). No invertebrate species of conservation concern were recorded during the survey.

The infield assessment by the Aquatic Ecological Assessment provides that the study area comprised primarily of taxa that are moderately tolerant to pollution, although multiple highly sensitive taxa were also sampled, which included: *Baetidae*, *Chironomids* and *Gomphidae*. Similarly, in the downstream reach, some highly sensitive taxa were collected including, *Baetidea*, *Leptophebidae* and *Gomphidae*. The fish species recorded within Hluhluwe River was the Southern mouthbrooder (*Pseudocrenilabrus philander*).

11.7.1 Potential Impacts

Vegetation clearance within the wetlands, riparian and instream, and scarp forest habitat for the purpose of construction of sewer conveyance infrastructure water pipeline could modify natural integrity of the species habitat, locality fauna disturbance might occur and could led to fragmentation, reduction, and loss of habitat as well as the ecological corridors and connectivity. However, proper mitigation can be achieved through carefully implementation of recommendations given by the EMPr, Terrestrial Ecological Assessment.

11.8 Topography

The uMkhanyakude District has a varied topography characterised by a diverse terrain consisting of coastal dunes and plains, mountain ranges and low-lying foothills, high hills and incised river valleys, that extends from the flat eastern coastal plans with undulating coastal dunes, and flat terrain from west, east and southern foothills of Lebombo Mountain range with peak altitude of 670m above mean sea-level(mAMS). The topography within the district ranges from 10-670 mAMS where the central is characterised of mountain range, the north-eastern and south-eastern, in fact the coastal region characterised of flat plains. The western boundary is characterised of undulating terrain and form a headwater for major rivers within the district (Ezemvelo KZN Wildlife, 2014).

The study area within Hlabisa Bulk Sewer Pipeline and new WWTW is located within the western region of uMkhanyakude District and is characterised by high altitudes and the undulating terrain with the altitude ranging between 380 and 250mAMSL, the lowest altitude is observed at the proposed new Hlabisa WWTW within Bazane area, whist the highest altitude is observed at the start of bulk sewer gravity main within Matshamnyama area. The locality of the project is characterised of incised valley represented by a green mash which is traversed by non-perennial stream, as the study area drains to the valley situated around western, southern and eastern parts, semi-surrounds the Hlabisa town (*Figure 14*), with Soil Erodibility Score (K-factor) of 0.22 (medium erodibility).

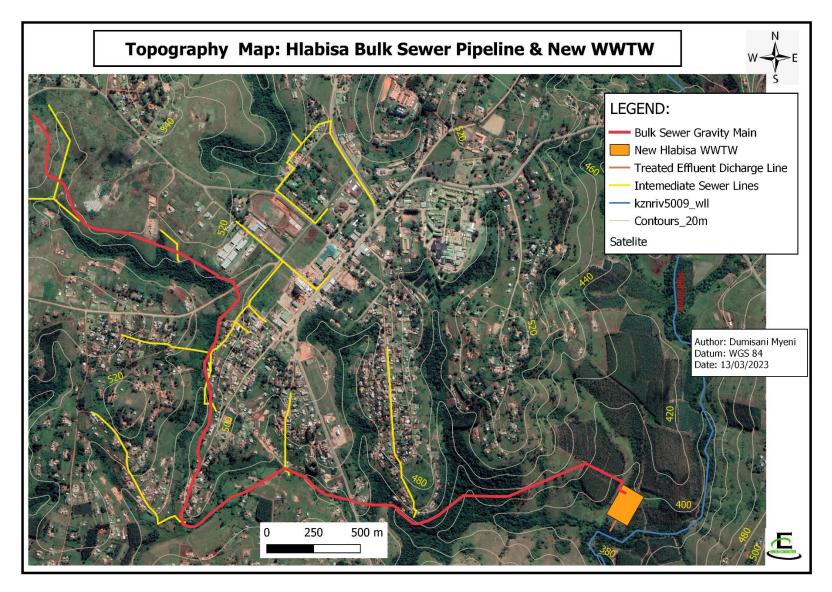


Figure 14: Contour Map showing elevations project area

11.8.1 Potential impacts

The vegetation clearance at slopes and incised valley can have surface run-off propensity. Notwithstanding, the Geotechnical investigation is required to determine the necessary mitigation and construction methods where the cut slopes will be required. This will be addressed in accordance with in-sutu material erodibility, excavatibility, rippability, and run-off propensity. However, proper mitigation can be achieved through carefully implementation of recommendations given by the Geotechnical Assessment and EMPr.

11.9 Geology

The uMkhanyakude District's geological features are stratified and with intrusion across the regions, which vary widely according to their topographical location. However, sandy soils which are susceptible to run-off erosion tend to dominate in the eastern and coastal region. The district is characterised by soils of well to moderate drainage, black soils, duplex soils and alluvial soils. The coastal (eastern region) is characterised of flat plains with coastal sand dunes. This part of the district is underlain by *Cainozoic* sediments of Maputaland Group formation and Zululand Group formation, which are later transitionally traversed by *Ecca Group Arenite* of dolerite formation, further in land at the eastern foothill of Lebombo Mountain range. Furthermore, the Lebombo Mountain range is predominantly underlain by Lebombo Group Basalt, with western foothills at the southern region underlain by a conglomerate intrusion of shale, *Ecca Group Arenite* formation and Vryheid Formation and *Dwyka Group* formation of shale, sandstone, coal, and alluvial formation (Ezemvelo KZN Wildlife, 2014).

The western region of uMkhanyakude District have stratified geological formation *Archaean* Basement Rocks and Karoo Supergroup, within numerous intrusions of sub-groups. The oldest *Swazian* basement rocks are exposed north of Hlabisa where the *Mandeva* Formation (*Mozaan* Group, Pongola Supergroup) conglomerate, banded iron formation and shale are intruded by the more extensive coarse grained porphyritic biotite granite and tonalite of the *Nzimane* Granite. The distinctive *Wela* Formation quartzite, schist and banded iron-formation are exposed in the Wela and Nzimane River valleys. These basement units are unconformably overlain by the Ordovician-Silurian sandstones of the Natal Group to the east and north of Hlabisa town. The distribution of these rocks is strongly influenced by north-south oriented block faulting. The Karoo Supergroup rocks are subdivided into the *Dwyka* and *Ecca* Groups which have a widespread distribution in the hilly terrain of Hluhluwe-iMfolozi Park near Hlabisa. The *Permian* to *Triassic Emakwezeni, Ntabene, Nyoka and Clarens* Group Formations form the high hills defining the eastern boundary of the park and extend northwards as irregular, steep hilly terrain. The *Lebombo* Group volcanic rocks form the low-lying area extending through Ngweni, Mhlosinga and Bayala and the prominent Lebombo mountains (Ezemvelo KZN Wildlife, 2014).

The study area is situated at Hlabisa which is at the western boundary of uMkhanyakude District. The dominance geological formation comprises the *Tillite* Group, with *Arenite* and *Shale* intrusion, as the project area is within a stratified belt of *Tillite* Geological Groups Formation, with Shale and Mudstone of the Dwyka Group and Karroo Supergroup. (*Figure 15*).

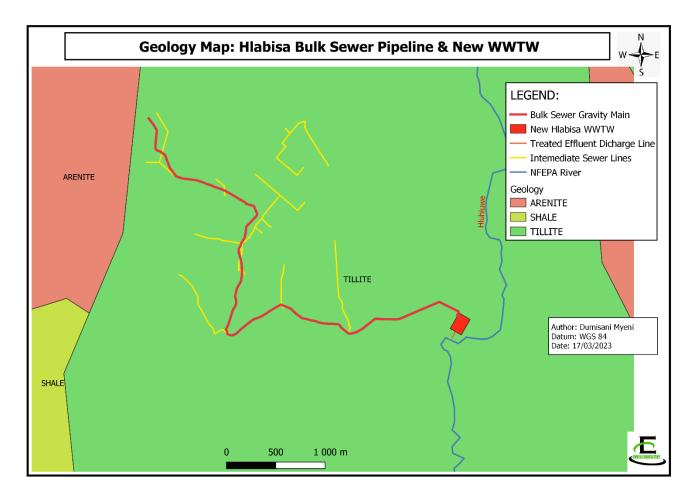
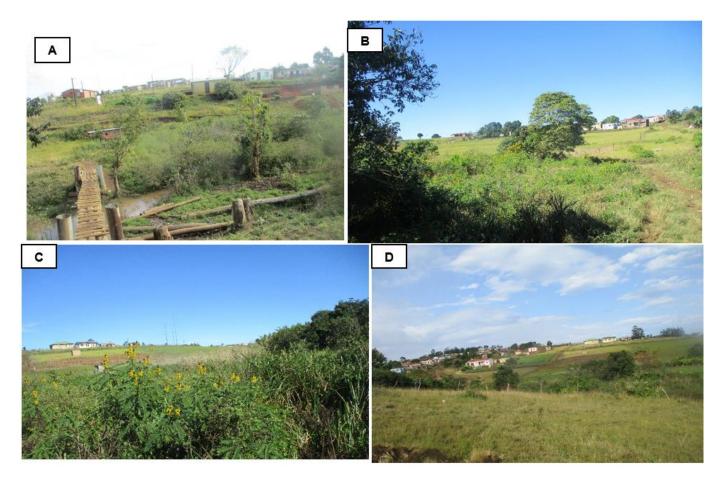


Figure 15: Map showing a dominance geological formation within study area

The infield investigation by the geotechnical assessment indicated that the prominent geological structures comprise the topsoil, clayey-silt-sand mixes associated with residuum and decomposed to highly weathered sediments along the bulk sewer conveyance route. Shale bedrock present at an average depth of 2m that underlies the WWTW site ranges initially from soft to intermediate but becomes hard excavation with depth. Bedrock on the five sites comprises Vryheid Formation sandstone pipeline route with the balance made up of *Dwyka* tillite and – shale in the vicinity of the WWTW. No seepage was encountered at PSS 1 and PSS 2; PSS 3 although the section is located within the narrow flood plain within the valley along the bulk sewer pipeline route. Seepage was encountered at PSS 3 and PSS 4 and the two test pits excavated on the WWTW site, mostly at 2m below EGL. The sloping topography on PSS 1, 2, 4 and the WWTW provides good drainage, and no ponding was observed.

11.9.1 Potential impacts

The construction activities for sewer conveyance infrastructure and WWTW include excavation for sewer conveyance infrastructure, and the founding for WWTW construction. This activity may have impact on geological stability within the vicinity of sewer conveyance and WWTW, and along the pipeline route at elevated areas, thus result in run-off erosion. Therefore, the mitigation measures given by the Geotechnical Assessment and EMPr must be adhered to in order to minimise any potential significant impacts that may arise.


11.10 Visual environment and land use character

Subject to the direct visual influence of the proposed project, the zone of visual influence can be experienced at different scales by receptors located at various distances from the site. The viewshed area and zone of visual influence for new developments is classified as follows:

- High visibility Visible from a large area (several square kilometres, >5km radius)
- Moderate visibility Visible from an intermediate area (several hectares, 2.5 5 km radius).
- Low visibility Visible from a small area around the project site (<1km radius).

Six (6) discrete habitat types were delineated within the assessment area, namely, wetlands, riparian and instream habitat, scarp forest, sourveld, and transformed (which is within

settlement). The proposed development site traverses through the forest, grasslands, crosses the R618 provincial road, near human settlements and streams. The existing land use of the project area and its immediate surrounding area include cultivated land (subsistence farming), forest plantations (agricultural facility) and homesteads. The Land use along bulk sewer gravity main route comprises of indigenous open spaces along the valley, low-high density settlements, subsistence farming which are characteristics along the gravity main (*Figure 16*).

Figure 16: Visual Characteristics along Bulk Sewer Gravity Pipeline Route

Notes: Frame A, B, C & D depict the land use character along bulk sewer gravity main route comprises of indigenous open spaces along the valley, low-high density settlements, subsistence farming which are characteristics along the gravity main. Frame A depict the stream along the valley which is considered a drainage line.

The proposed development is the construction bulk sewer pipeline which involves route clearance and excavation for the installation of sub-surface infrastructure (bulk sewer pipe) along the low-lying areas, which in this instance is the valley. The site camp establishment is considered to have no negative visual impacts, as the proposed infrastructure will be

concentrated within existing developed area, such as using site from households facilities. During construction activities it is likely that the project could be considered 'low visibility' as it can be visible from a small area around the project site (<1km radius). However, the visual impact will be temporary as will only be experience during construction.

The commercial forest and indigenous open space have been observed at the new Hlabisa WWTW site. The site is adjacent to Hlabisa River, as a result the treated wastewater from WWTW will be discharged in this river (*Figure 17*).

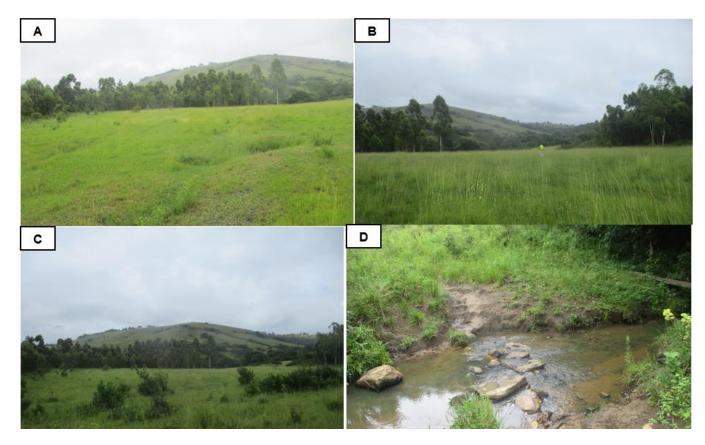


Figure 17: Visual Characteristics of Proposed New WWTW Site

Notes: Frame A, B & C depict the land use character which comprise open space and commercial forest (Eucalyptus plantations) surrounding the new WWTW site. Frame D depict the upper reach of Hlabisa River adjacent to the new WWTW. The treated wastewater will be discharged into Hluhluwe River.

The proposed development is the construction the new WWTW and associated infrastructure within indigenous open space surrounded by commercial forest. The WWTW infrastructure will be constructed in an isolated and remote area. However, will be considered to have 'Low

visibility' as the area is surrounded by the commercial forest, which is the WWTW vicinity were predominantly the *Eucalyptus plantations* which were concentrated along the Hluhluwe River. Therefore, the new WWTW will be hidden within the commercial forest, and it can be '*low visibility*' as it can be visible from a small area around the project site (<1km radius).

11.10.1 Potential Impacts

The proposed sewer conveyance infrastructure project consists of mainly sub-surface infrastructure. Also, the vicinity of the proposed new Hlabisa WWTW is predominantly the *Eucalyptus* plantations (commercial forest) which were concentrated along the Hluhluwe River WWTW. Therefore, the project will have minor visual and land use change. The visual impacts could only be experienced during construction through movement of construction machinery, storage of materials/equipment and excavated spoil materials along the trenches, which can only be viewed at the local scale. Also, the dust and other visibility aspects will be managed through proper implementation of recommendations contained in EMPr.

11.11 Heritage, cultural and palaeontological aspects

According to Ezemvelo KZN Wildlife (2011), the history of human inhabitation in the region around Mtubatuba and Hlabisa dated back since the early stone age to the late iron age, which involves San tribe and later Nguni tribe from the Middle Ages. Whereby, this history could be exhibited through kraals, burial, and smelting sites.

Archaeological and Cultural Heritage assessment is not considered viable the site has a low sensitivity theme, as depicted by Environmental Screening Tool (*Figure 17*).

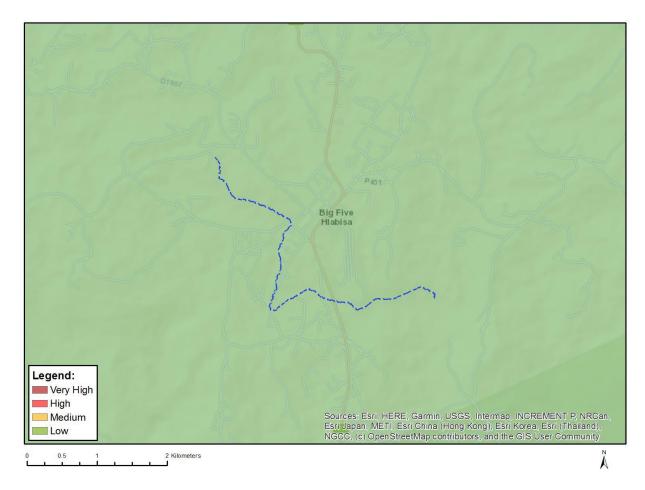


Figure 18: Archaeological and Cultural Heritage Sensitivity Theme

The SAHRIS palaeosensitivity provides that, the **Red**, 'Very High' - field assessment and protocol for finds is required; **Orange/yellow**, 'High'- desktop study is required and based on the outcome of the desktop study, a field assessment is likely; **Green**, 'Moderate' - desktop study is required; **Blue**, 'Low' - no palaeontological studies are required however a protocol for finds is required; **Grey**, 'Insignificant/Zero' - no palaeontological studies are required; **White/Clear**, 'Unknown' -these areas will require a minimum of a desktop study. As more information comes to light.

A preliminary desktop study for palaeontological fossils sensitivity of the proposed site, reveals that the site falls within a '*Moderate*' paleontological sensitivity, as result a field assessment is not required for this study (*Figure 19*). The high sensitivity intrusion on the further west, but this section of high sensitivity falls outside of the project area.

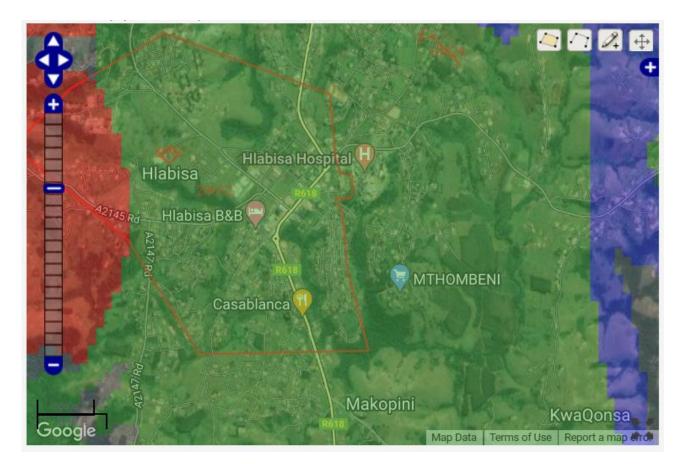


Figure 19: Palaeontological Sensitivity of the study area [Source: <u>https://sahris.sahra.org.za/node/add/heritage-cases</u>]

Moreover, the environmental screening tool also describe that the section of the study area as having 'Medium' paleontological sensitivity and a '*Low*' archaeological and cultural heritage sensitivity (*Figure 20*).

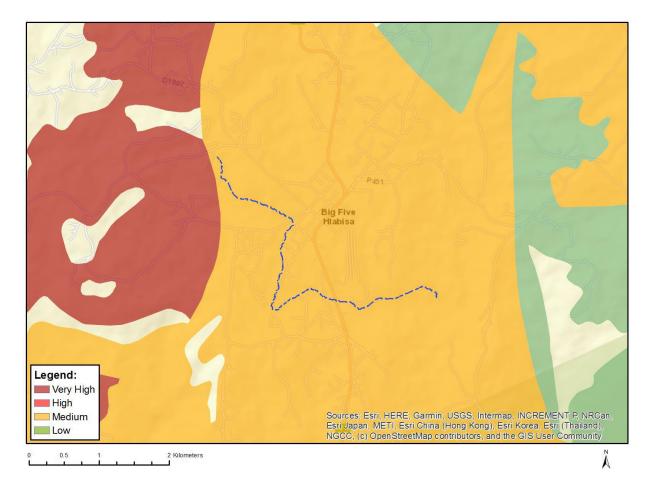


Figure 20: Environmental Screening Tool Palaeontological Sensitivity

Archaeological resources may still be discovered during excavations or any ground-breaking activities during the construction phase.

It must also be noted that the study area has no formal burial site, but community make use of the household burial sites. As, a result one grave within the household at location (28° 9'21.60"S, $31^{\circ}52'4.68"E$) was observed but falls outside the project corridor.

The inquiry has been lodged with South African Heritage Resource Agency care of AMAFA Heritage Resource Institute to ascertain whether there are any cultural and heritage sites within the study area. Findings will be incorporated into the final Basic Assessment Report.

11.11.1 Potential Impacts

During the clearing of vegetation, excavation and construction activities, heritage resources/artefacts/places that might be buried underground may be affected. Moreover, excavations (pre-construction and construction phase) could uncover the following: stone foundations, ash middens associated with the farmsteads and homesteads that can contain bone, glass and clay ceramics, ash, metal objects such as spoons, knives, and possible adult and infant burials (especially unmarked). However, proper mitigation can be achieved through diligent implementation of the recommendations contained in the EMPr.

11.12 Social and economic aspects

The BFLM is a largely rural municipality with only two semi-urban areas being Hluhluwe and Hlabisa towns. The agriculture, tourism, retail sectors, game reserves and government institutions are the major sources of employment creation. The municipality is considered to experience brain drain due to exponential youth migration to the cities in quest for job and decent livelihood. This is also reflected in the smallest imbalance in gender ratios, i.e. the most evenly matched proportion of males and females, with the following population stratifications: Under 15 years (40.3%); 15 - 64 years (55.6%); and over 65 years (4.2%), making the half of the population which falls under economic active group, and with high rate of youth unemployment of approximately 70% with the highest rate recorded to youth under the age of 25 years which constitute 40%.

The BLFM three categorized of household, namely; formal, informal and traditional type housing, with 17 724 households falls under formal housing, 536 households fall under informal housing and 6 856 households falling under traditional housing. The study area comprises of hybrid human settlements which can be classified into semi-formal and traditional households.

The water and sanitation mandate of BFLM falls under the UKDM which is the delegated Water and Sanitation Service Authority (WSSA) for all municipalities within the district, which include the Big 5 Hlabisa Local Municipality. The access to basic water infrastructure remains one of the key challenges in UKDM. The proportion of households provided with water through regional and local water schemes is only 42% compared to the provincial percentage of 72%. About 30% of households are utilising untreated sources of water directly from springs, dams or rivers, a figure significantly higher than the provincial total of 13%. In addition, the district experiences the backlog in terms of delivering sanitation which meets the minimum World Health Organisation (WHO) standards. A total of 65 675 households has below minimum level of service in terms of sanitation access. Only 16.6% of the entire population within the district have got access to water-borne sanitation with 15.2% having no access to any form of sanitation. Therefore, in light of above discussion the UKDM has identified various areas and settlements within the district, which require sanitation upgrades to a full water-borne sanitation system. Therefore, the district proposes to construct the water-borne sanitation system within Hlabisa town and the surrounding communities.

The project will have positive impacts in terms of improving livelihoods, through provision of efficient water-borne sanitation. It is also expected that the local community will benefit through jobs during the construction, operation, and maintenance phase, which will enable the transfer of skills and boost the local economy. Additionally, local businesses will benefit from the supply chain processes. This will contribute to alleviating poverty and decrease the dependency ratio of the area.

The bulk sewer gravity main is proposed to be situated at along the valley which is considered a low-lying area within the project area. There is subsistence agriculture land use within the valley at some section of the proposed bulk sewer gravity main. However, because the bulk sewer gravity main comprise mainly of sub-infrastructure which will be trenched and laid at approximately 1m depth, as a result there will be no change in land use, as the land can be later be used for substance agriculture after construction. Also, the pipeline is located within the valley outside settlements, therefore pose no threat of households relocation.

11.12.1 Potential Impacts

No negative impact associated by the proposed development, as there is no relocation of households is anticipated. In fact, the project will have positive impacts in terms of improving livelihoods, through provision of efficient water-borne sanitation. It is also expected that the local community will benefit through jobs during the construction, operation, and maintenance phase, which will enable the transfer of skills and boost the local economy. Additionally, local businesses will benefit from the supply chain processes. This will contribute to alleviating poverty and decrease the dependency ratio of the area.

11.13Traffic

The access road to the project sites is linked to the settlement access roads. Local communities and road users including school children will be impacted during construction activities in the area. The route which are likely to be heavily impacted by heavy construction vehicle turning to site are R618 within Hlabisa Town, D1907 toward substation, down the valley (pipeline route) where the project starts, east of Hlabisa town passing the Hlabisa Hospital towards the new WWTW.

11.13.1 Potential Impacts

The hauling of material and equipment to site will utilise existing local roads. The access to the site will have impact main road traffic, as construction vehicles turn main road. Local communities and road users including school children will be impacted during construction activities in the area. Safety risks, and domestic and wildlife collisions, related to the movement of heavy equipment, materials and vehicles will likely increase during the course of the project. However, proper mitigation can be achieved through diligent implementation of the recommendations contained in the EMPr. A basic traffic management plan will be included during construction phase. Mitigation of potential traffic related impacts will be addressed by proper implementation of safety management systems during the construction.

12 WASTE AND POLLUTION DURING CONSTRUCTION AND OPERATION

Construction activities, like other operations, also lead to water pollution and waste generation, and such pollution and waste have detrimental effect on the receiving environment.

12.1 Waste management

Some of the possible solid and liquid waste during the construction and assembling of the pipelines and associated infrastructure include general waste (plastic, paper, food scraps, etc.), hazardous waste (chemicals, oil, diesel, resins, drilling fluids, sewage, etc.), medical waste from onsite injuries (bandages, swabs, medication, needles, etc.) and building rubble (cement, steel, wood, etc.) The general waste will be disposed of at the Mkuze landfill site, which is situated at Mkuze (28° 8'59.67"S, 31°52'9.75"E), while the disposal of hazardous and

medicinal waste will be handled by a certified service provider. Proper measures will be put in place to contain generated during construction, as prescribed by EMPr.

12.2 Hazardous waste

The incorrect handling and disposal of hazardous waste (lubricants, fuel, chemicals, agricultural remedies, *inter alia*) could have detrimental impacts on nearby watercourses. Potential impacts on groundwater may arise if hazardous substances are allowed to leak onto bare soil and potentially leach into the ground or disposed of incorrectly. Proper measures will be put in place to contain any spillages (oil spills) occurring during construction, as prescribed by EMPr.

12.2.1 Potential Impacts

The incorrect handling and disposal of hazardous waste (lubricants, fuel, chemicals, agricultural remedies, inter alia) could have contaminate nearby watercourses.

The potential impacts on groundwater may arise if hazardous substances are allowed to leak onto bare soil and potentially leach into the ground or disposed of incorrectly or enter the water bodies. Hazardous waste (eg. chemical) contamination of water bodies by runoff water that contain contaminants from onsite waste storage areas and/or chemical storage areas can have significant impacts. Management plants will be implemented to contain any spillages (hazardous substances), handling of waste emanating from the site, and clean-up of spillages, as prescribed in the EMPr.

12.3 Wastewater (effluent)

The waste to be produced during the operational phase will emanate from the WWTW. This waste will be dominantly the effluent waste. The WWTW capacity will be 1.5Ml/day, and the general standard for potential water quality parameters is applicable to the effluent from the proposed WWTW.

Most of the generated sewage flow will be from domestic origin. The effluent from the new WWTW will be treated discharged into upper catchment of the Hluhluwe River, the grit and the screenings will dispose to approved landfill, as will be prescribed through waste classification.

Wastewater will also be discharge during construction activities especially with the large number of workers on site. Some of the sources of wastewater include:

- surface runoff from construction activities
- washing of vehicles, equipment, implements, etc.
- site toilets, food preparation, personal hygiene

12.3.1 Potential Impacts

The incorrect handling and disposal of wastewater (chemicals toilet and grey water) from site during construction could have detrimental impacts on nearby watercourses. Proper measures will be put in place to contain any spillages (wastewater), sludge and handling of waste emanating from the site. As prescribed in the EMPr including chemical toilets located conveniently along the working areas, managed by a competent portable toilet service provider and all effluent waste will be disposed of at the existing Hlabisa WWTW.

The potential impact during operation could be an overflow of WWTW due the block screens, and poor maintenance for WWTW, and conveyance infrastructure such as pumpstations. The wastewater may enter the nearby watercourse, or seep into groundwater. Potential impacts on groundwater may arise if hazardous substances are allowed to leak onto bare soil and potentially leach into the ground or disposed of incorrectly or enter the surface water bodies.

However, proper measures will be put in place to contain wastewater overflow and spillages from occurring during construction, and operational phase as prescribed by EMPr.

12.4 Air Pollution

The proposed development itself will not have direct impact on air pollution and atmospheric emission. However, certain activities during construction could have a minor impact on the ambient air as a result of emissions from the onsite equipment, machinery, and vehicles. These include dust emanating from construction activities and fumes (carbon monoxide) released by construction vehicles and machinery.

12.4.1 Potential Impacts

The proposed development itself will not have direct impact on air pollution and atmospheric emission. However, proper measures will be put in place to contain any dust and emissions occurring during construction, as prescribed by EMPr.

12.5 Noise Pollution

The project sites will emit different levels of noise due the various construction activities, movement of heavy construction vehicles, use of machinery as well as from large number of workers on site. However, noise impacts are expected to be of short duration and only during certain times of the construction phase, which is likely to only have impacts to the immediate environment.

12.5.1 Potential Impacts

The level of noise from the construction vehicle could be heard within the locality of the project sites and adjacent properties. However, proper measures will be put in place to contain any potential noise pollution impact occurring during construction, as prescribed by EMPr.

13 UTILITY SERVICES

The services imply to utilities supporting the construction and operation of the facility/activity. The service for consideration refers to; Water supply, sewer provision, and energy (electricity).

13.1 Water Supply

The water to be used during construction will use metered water supplied by the UKDM, with the provision of existing water within the project locality. The water use will include water construction, consumption, drinking, equipment cleaning and hygiene as well as dust suppression where required.

13.2 Sanitation Facilities

All construction sites will have chemical toilets located conveniently along the pipeline route and the new WWTW site, and all effluent waste will be disposed of at the existing WWTW next to Hlabisa Hospital.

13.3 Energy (Electricity)

The electricity during constriction will be supplied through the use of electricity generators. During operational phase at the WWTW, the facility will be electrified through connection to Eskom, and the use generator and solar power as a back-up.

14 OTHER EXISTING SERVICES

The existing services include the sub-surface infrastructure, such as water conveyance infrastructure; underground cables as well as overhead infrastructure such powerlines, telecommunication infrastructure, structures etc.; and existing roads.

The gravity main will have road crossings within the vicinity of R618 at approximately (28° 9'22.09"S, $31^{\circ}52'34.22"E$). This road crossing will take place at the main road (*Figure 21*). The design along the road reserve and for road crossing will be done in accordance with Department of Transport (DoT) standards. These designs will be requirements to secure the wayleave with regards to the pipeline situated within the road reserve; specifications and requirements for pipe crossings underneath the roads, which will be constructed by means of pipe jacking; specification, requirements, and preferences with regards to access to the respective roads.

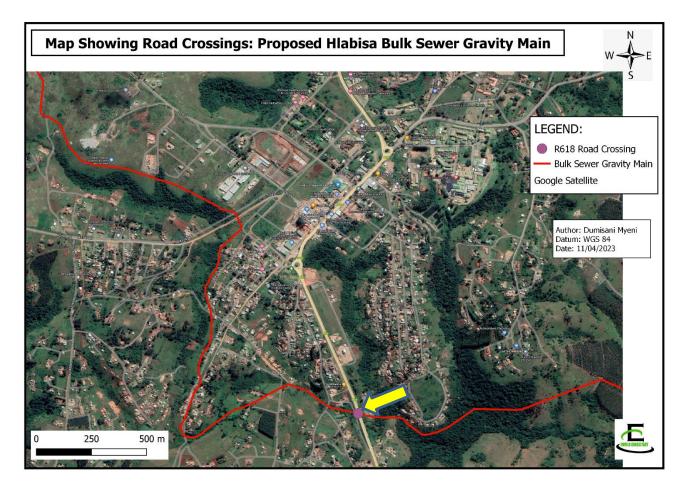


Figure 21: Map Showing R618 Road Crossings

14.1 Potential Impacts

The excavations for construction of the bulk sewer pipeline could unearth the existing services thus result in inconvenience to local communities serviced by the affected infrastructure. Uncontrolled construction activities within the vicinity of road crossings would undermine the road infrastructure integrity and result in road damage etc. However, proper measures will be put in place to prevent the damage to infrastructure during construction, as prescribed by EMPr.

15 IMPACT ASSESSMENT AND MITIGATION MEASURES

The Environmental Impact Assessment (EIA) conducted for the construction phase and the operational phase for the site, are discussed in (*section 15.1*) below.

Each impact identified is assessed in terms of probability (likelihood of occurring), scale (spatial scale), magnitude (severity) and duration (temporal scale). To effectively implement the adopted scientific approach in determining the significance of the environmental impact, a numerical value was linked to each rating scale.

The following criteria will be applied to the impact assessment for the proposed development:

Occurrence

- Probability the probability of the impact describes the likelihood of the impact actually occurring.
- Impact duration the duration of the impact describes the period of time during which an environmental system or component is changed by the impact.

Severity

- Magnitude refers to the 'degree of disturbance' to biophysical systems and components which expresses the change in the health, functioning and/or role of the system or component as a result of an activity.
- Scale/extent the extent of the impact generally expresses the spatial influence of the effects produced by a disturbance to an environmental system or component.

The following ranking scales were used:

Probability = P	Duration = D
5 – Definite (More than 80 % chance of occurrence)	5 – Permanent - The only class of impact that will be non-transitory (indefinite)
4 – Probable (Between 60-80% chance of occurrence)	continue or last for the entire operational life of the
3 – Possible (Between 40-60% chance of occurrence)	development (15 - 50years)

2 - Fairly Unlikely (Between 20-40% chance of	3 - Medium-term - The impact and its effects will
occurrence	continue or last for some time after the construction
1 – Unlikely (Less than 20% chance of	phase (5 - 15 years)
occurrence)	2 – Medium-short - The impact and its effects will
	continue or last for the period of a relatively long
	construction period and/or limited recovery time after
	this construction period (2 - 5 years)
	1 – Short Term - Likely to disappear with mitigation
	measures or through natural processes which span
	shorter than the construction phase (0-2 years)
Scale = S	Magnitude = M
5 – International (beyond 200km)	5 - High
4 – Regional (50-200km radius)	4– Medium High
3 – Local (2-50km radius)	3 – Medium
2 – Surrounding area (within 2km)	2 – Medium Low
1 – Site (within100m)	1 – Low
Status of Impact	

Status of Impact

+ Positive / -Negative or 0-Neutral

The overall impact significance score/points (SP) for each identified impact are calculated by multiplying magnitude, duration, and scale by the probability of all this happening.

The range of possible significance scores is classified into seven rating classes (*Refer to section 14.1*).

SP = (Magnitude +Duration +Scale) x Probability

The impacts status can either be positive, negative or neutral as depicted in table below.

Significance	Environmental Significance Points	Colour Code
Negligible	0-10	Ν
Very low	11-20	VL

Low	21-30	L
Medium	31-40	М
Medium-High	41-50	MH
High	51-60	Н
Very high	61-75	VH

15.1 Impact Analysis (Preferred Routing, Site Layout/Location and Design/Technology Alternatives)

Potential impact	Impact Significance	Proposed Mitigation Measures Impact Significance
	without Mitigation	with mitigation
	Project I	Planning
Poor project panning will result in unnecessary damage and disturbance to natural vegetation:	Medium-High (50)	 The site layout plan must clearly delineate the servitude for the bulk sewer gravity mains (10)
Extensive vegetation clearance due to poor site layout design, and planning which will result in extensive vegetation clearance, large scale topsoil removal and excavation for site set-up clearing could degradation of indigenous vegetation and sensitive plant communities such as <i>Northern</i> <i>Zululand Sourveld</i> (<i>Svi22</i>); <i>Zululand Lebombo</i> <i>Scarp Forest (FOz5)</i> ; and <i>Subtropical Alluvial</i> <i>Vegetation</i> (Aza7), and riparian habitats.	SP= (M + D + S) × P SP= (5 + 3 + 2) × 5 SP =50	 construction corridor. The route design must incorporate a pipeline construction corridor of not be more than 10m width for the construction corridor within the vicinity of the stream crossing (riparian zones), and wetlands (<i>Subtropical Alluvial Vegetation (Aza7) vegetation</i>). The guidelines for the protection of natural forest habitat suggest that no activities or development should be considered that would destroy the forest habitats unless of strategic provincial or national importance with no feasible alternatives. Therefore, where feasible the route design must incorporate re-routing the construction corridor along the Zululand Lebombo Scarp Forest (<i>FOz5</i>). The vegetation clearance of pipeline construction corridor must not be more than 10m width for the construction

 Table 16: Impact Assessment Analysis for Project Planning Phase

Potential impact	Impact Significance		Proposed Mitigation Measures	Impact Significance
	without Mitigation			with mitigation
	Project P	lann	ing	
			corridor within the vicinity of the Zululand	
			Lebombo Scarp Forest (FOz5).	
		\triangleright	The design must incorporate a 15m buffer	
			determination along the Zululand Lebombo	
			Scarp Forest (FOz5).	
		\triangleright	Should pipeline route runs along a Scarp	
			Forest which is found within the study area.	
			The permit will be required from DFFE in	
			order to cut, destroy or disturb the natural	
			forest.	
		۶	The design must incorporate a pipeline	
			construction corridor of not be more than 15m	
			width on the remainder sections of pipeline	
			along habitat associated Northern Zululand	
			Sourveld (Svi22), provided there are no	
			sensitive environment.	
		\triangleright	The design must incorporate a 15m buffer	
			determination along the new WWTW and	
			must be limited to demarcated footprint.	
		\triangleright	The site layout plan must indicate areas that	
			are no-go zones, to limit large scale and	
			unnecessary vegetation clearance.	
		\triangleright	Development planning must ensure that	
			further loss of vegetation and disturbance are	

Potential impact	Impact Significance	Proposed Mitigation Measures Impact Significant	ce			
	without Mitigation	with mitigation				
	Project Planning					
		restricted within the recommended site layout				
		footprint.				
		The site layout plan must clearly delineate				
		the servitude for the bulk sewer gravity mains				
		construction corridor around the Zululand				
		Lebombo Scarp Forest (FOz5) with 15m				
		buffer determination around the scarp forest.				
		ECO must be appointed to oversee				
		construction activities.				
		 A plan to actively rehabilitate the construction 				
		area post-construction needs to be				
		developed.				
		Pre-construction environmental induction				
		must be conducted for all construction staff				
		on site to ensure that basic environmental				
		principles are adhered to. This includes				
		awareness as to conservation and				
		importance of protected plants/trees and				
		medicinal plants, as well as to conditions of				
		the EA and the various permits/licenses.				

Potential impact	Impact Significance		Proposed Mitigation Measures	Impact Significance			
	without Mitigation			with mitigation			
Project Planning							
Poor project planning will result in loss of plants	Medium	≻	The site layout for the bulk sewer gravity	Negligible			
SCC:	(36)		main and new Hlabisa WWTW construction	(5)			
Poor design and construction planning may result in			must clearly illustrate the proposed				
the permanent loss of various plant SCC as the			construction footprint and clearly delineate				
construction works will take place within a sensitive	SP= (M + D + S) × P		the servitude for the construction corridor.	$SP=(M + D + S) \times P$			
plant community such as Northern Zululand	SP= (5 + 5 + 2) × 3	≻	The site layout plan must indicate no-go	SP= (2 + 2 + 1) × 1			
Sourveld (Svi22); Zululand Lebombo Scarp Forest	SP =36		areas to limit large scale and unnecessary	SP =5			
(FOz5); and Subtropical Alluvial Vegetation (Aza7),			vegetation clearance.				
and riparian habitats.		≻	The site layout plan must indicate no-go				
			areas to prevent disturbance or removal of				
There are no CBA1, CBA2 and ESA within the			ALL LILIACEAE, which includes Aloe sp.				
project reach. No threatened plant species or plant			Where this proves not to be possible, a				
SCC were recorded within the construction corridor			permit will be required from the provincial				
during the survey. However, there is a likelihood			DFFE in order to disturb, and remove ALL				
that plant SCC will be encountered during			LILIACEAE, which includes Aloe sp. before				
construction. However, plant species listed as			construction activities commence.				
"Specially Protected Indigenous Plants" in terms of		≻	Site camp must be established at already				
Schedule 12 of Natal Nature Conservation			disturbed site, preferable for the new WWTW				
Ordinance, No. 15 of 1974 were identified within the			the site camp to be placed within fire break				
study area, namely ALL LILIACEAE, which includes			corridor of commercial forest. For the				
which includes Aloe sp. such as Aloe marlothii and			pipeline route, the site camp must be				
Aloe arborscens.			concentrated within existing developed area,				
			such as using site from households' facilities				
			and be demarcated by site layout.				

Potential impact	Impact Significance	Proposed Mitigation Measures Impact Sig	Inificance
	without Mitigation	with mit	igation
	Project I	anning	
		An ECO must be appointed to oversee	
		construction activities, and establishment of	
		construction site camp, as well as to ensure	
		compliance to all environmental legal	
		requirements.	
		A plan to actively rehabilitate the site during	
		construction and post-construction needs to	
		be developed and implemented.	
Poor project planning will result in loss of fauna	Medium	The site layout for the construction of the bulk Negline	gible
SCC):	(36)	sewer gravity mains and new WWTW must (5	5)
Poor design and construction planning may result in		clearly illustrate the proposed construction	
the permanent loss of various animal SCC as the		footprint and clearly delineate the servitude	
construction works will take place within or along	SP= (M + D + S) × P	for the construction corridor. SP= (M + I	D + S) × P
the Northern Zululand Sourveld (Svi22); Zululand	SP= (5 + 5 + 2) × 3	The site layout plan must make indicate no- SP= (2 +	2 + 1) × 1
Lebombo Scarp Forest (FOz5); and Subtropical	SP =36	go areas/zone, to limit large scale vegetation	SP =5
Alluvial Vegetation (Aza7), and riparian habitats.		clearance.	
		Site camp must be established at already	
There are no CBA1, CBA2 and ESA within the		disturbed site, preferable for the new WWTW	
project reach. However, there is a likelihood that		the site camp to be placed within fire break	
animal SCC will be encountered during		corridor of commercial forest. For the	
construction, as the riparian vegetation and		pipeline route, the site camp must be	
woodlands provide suitable habitats for fauna		concentrated within existing developed area,	
species. Local fauna disturbance might occur and		such as using site from households' facilities	
could led to fragmentation, reduction, and loss of		and be demarcated by site layout.	

Potential impact	Impact Significance without Mitigation		Proposed Mitigation Measures	Impact Significance with mitigation
habitat as well as destruction of ecological corridors				
and connectivity.				
Poor project planning will result in degradation	High	≻	Design must incorporate the realignment of	Very Low
of wetland, riparian and instream habitats:	(60)		pipeline where it encroaches the sensitive	(12)
Poor design and / or implementation of the planned			environment wherever possible, as the best	
infrastructure associated with the bulk sewer gravity	SP= (M + D + S) × P		practice and were feasible, traversing small	
main, WWTW treated effluent discharge pipeline,	SP= (5 + 5 + 2) × 5		sections of wetland, such as within W02	SP= (M + D + S) × P
and construction of new WWTW, such as pipeline	SP = 60		(<i>Figure 7</i>) can be avoided through rerouting	SP= (2 + 1 + 1) ×3
stream crossings, wetland crossings and wetland			around the system.	SP = 12
clearance are likely to result in degradation of		۶	Develop the engineering designs to prevent	
watercourse habitat include (i) undertaking bulk			or minimize alteration of flow regime within	
earthworks along the banks and riverbed (ii) placing			the vicinity of the stream crossings.	
infrastructure within watercourses, and (iii)		۶	The project plan must schedule the	
dewatering of the construction area. These			construction activities within the instream and	
activities will lead to removal of instream and			riparian habitat to take place during the low	
riparian vegetation, flow regime alteration as well as			flow condition and dry period. Preferable	
the alteration of the natural topography of the			during the dry (winter season).	
watercourse, and concrete encase at river crossing.		≻	A site layout plan must be compiled indicating	
			the limits of disturbance associated with the	
Seven (7) wetlands fell within the regulated area			construction of new Hlabisa WWTW and	
and only five (5) of these systems were identified to			associated infrastructures in relation to the	
be at risk and required further assessment. These			identified sensitive areas (i.e., Hluhluwe	
systems were identified as seepage, Unchanneled			River and wetland system). No-go areas and	
Valley Bottom (UVB) and Channelled Valley Bottom				

Potential impact	Impact Significance	Proposed Mitigation Measures	Impact Significance			
	without Mitigation		with mitigation			
Project Planning						
(CVB) wetlands and they were identified to be		any stormwater infrastructure must be				
largely natural and moderately modified.		indicated on this plan;				
		> The 'Site Layout Alternative' proposes the				
The Bulk Sewer Gravity Mian traverse along the		configuration of existing layout. The WWTW				
valley and the construction will have pipeline stream		should be shifted at least 80m-100m further				
crossings. The Hluhluwe River is adjacent the new		north of existing position (<i>Figure 3</i>). This will				
WWTW, as a result the treated wastewater from the		prevent the WWTW infrastructure to be prone				
WWTW will be discharged into this river. The		to flooding in case of extremely event, and				
effluent discharge pipeline from the new WWTW will		also prevent undesirable contamination				
be constructed.		Hlabisa River lying downstream of the				
		WWTW. Furthermore, the Wetland				
		Specialist has also recommended that an				
		alternative site for the WWTW be explored				
		such as above the plantations, along				
		previously disturbed corridors as the				
		wetlands serve high ecological and				
		hydrological value and should be preserved				
		and protected. Therefore, the proposed				
		alternative site position (<i>Figure 3</i>) could meet				
		the desirable development objectives and				
		provide impact mitigation as the site will be				
		shifted further north by 80-100m from current				
		location. This will also avoid the option of				

Potential impact	Impact Significance	Proposed Mitigation Measures	Impact Significance			
	without Mitigation		with mitigation			
	Project Planning					
		wetland offsetting, as this would be the case				
		if the current WWTW position is considered.				
		> Buffer determination for watercourse habitat				
		outside the construction corridor but at risk of				
		being impacted. For the new WWTW 100m				
		buffer determination is required between				
		Hluhluwe River and new WWTW. This				
		means the layout must be configured such				
		that the WWTW should be shifted at least				
		80m-100m further north of existing position				
		(Figure 3).				
		> The design for the pipeline route should be				
		realigned where it encroaches the sensitive				
		environment wherever possible, as the best				
		practice and were feasible, traversing small				
		sections of wetland, such as within W02				
		(<i>Figure 7</i>) can be avoided through rerouting				
		around the system.				
		> The pipeline route along the wetlands must				
		include buffer determination to design a				
		layout to buffer at least 28m buffer for CVB				
		wetlands; 26m buffer for UVB wetlands; and				
		25m buffer for seepage wetlands to protect				

Potential impact	Impact Significance	Proposed Mitigation Measures	Impact Significance
	without Mitigation		with mitigation
	Project Pla	anning	
		wetland habitat and ecological corridor and	
		mark no-go areas.	
		Clearly delineate the servitude for the	
		construction corridor. A pipeline construction	
		corridor must not be more than 10m width for	
		construction within the vicinity of wetland	
		systems, including riparian zone, and stream	
		crossing. The servitude must include the	
		trench, one-way running track, topsoil	
		stockpile corridor and subsoil stockpile	
		corridor. All areas of watercourses outside	
		this servitude must be considered no-go	
		areas.	
		A detailed method statement for working	
		within the watercourse must be compiled by	
		the contractor prior to the commencement of	
		the project. This method statement must be	
		approved by the aquatic ecologist or ECO.	
		Conceptual riparian zone rehabilitation and	
		monitoring plan with a focus on erosion and	
		alien vegetation management, be compiled	
		prior construction and implemented.	
		> An ECO must be appointed to oversee	
		construction activities, and establishment of	

Potential impact	Impact Significance		Proposed Mitigation Measures	Impact Significance
	without Mitigation			with mitigation
	Project I	Planr	ning	
			construction site camp, as well as to ensure	
			compliance to all environmental legal	
			requirements.	
Poor project planning will result in deterioration	High	≻	The project plan must schedule the	Very Low
of surface water quality and streamflow	(60)		construction activities within the instream and	(12)
reduction:			riparian habitat to take place during the low	
Poor design and / or implementation of the planned	SP= (M + D + S) × P		flow condition and dry period.	
infrastructure associated with the bulk sewer gravity	SP= (5 + 4 + 3) × 5	≻	The design must provide that all pipeline	SP= (M + D + S) × P
main pipeline crossings at wetland, riparian and un	SP = 60		crossings be aligned and designed to	SP= (2 + 2 + 2) ×2
named stream crossings along the valley, as well as			minimize the extent of river habitat directly	SP = 12
construction of and new WWTW treated effluent			impacted by construction activities. In this	
discharge pipeline within the riparian of upper			regard the pipeline crossings should be	
catchment of Hluhluwe River are likely to result in			aligned at right angles to flow and along	
deterioration of surface water quality and			existing or planned areas / corridors of	
streamflow reduction, include (i) undertaking bulk			disturbance.	
earthworks along the banks and riverbed (ii) placing		۶	The design must provide that the pipeline	
infrastructure within watercourses, and (iii) de-			stream/river crossings and associated	
watering of the construction area. These activities			embedment material be established below	
will lead to removal of instream and riparian			the base level and suitably secured in place	
vegetation, flow regime alteration as well as the			to ensure that it does not act as barrier or	
alteration of the natural topography of the			impediment to flow (in the case of the	
watercourse, and concrete encase at river crossing.			pipeline). The Concrete encase design at	
			river crossings must allow for adequate flow	
			of water and be subject to change as	

Potential impact	Impact Significance	Proposed Mitigation Measures	Impact Significance
	without Mitigation		with mitigation
	Project Pla	inning	
		determined by in-sutu conditions. However,	
		where there are opportunities to attach to /	
		include pipelines in the existing crossing	
		structures, these must be investigated. Pipe	
		bridges must be designed such that pipes are	
		suspended sufficiently high above the	
		channel bed and above the high-water mark	
		so as not to interfere with natural flow	
		regimes and such that pipes do not act as	
		traps for debris and sediment transported	
		through the channel. Pipe bridge piers must	
		be placed on either side of the watercourse	
		for smaller rivers/streams and not to be	
		placed within the channel bed. Piers must be	
		placed with enough distance up the bank	
		(preferably on the top of the upper bank) and	
		not below the water mark/bank full level.	
		Ideally, pipelines should be placed above the	
		watercourse via a pipe bridge where it does	
		not impede the flow or characteristics of the	
		stream bed and channel. However, the	
		viability of this must be further investigated by	
		the project engineer.	

Potential impact	Impact Significance		Proposed Mitigation Measures	Impact Significance
	without Mitigation			with mitigation
	Project I	Plannii	ng	
		\triangleright	Ensure that the timing of the topsoil stripping	
		i	is optimised to limit the time between	
		:	stripping and construction/deposition.	
		\succ	A detailed method statement for working	
		,	within the watercourse must be compiled by	
		1	the contractor prior to the commencement of	
		1	the project. This method statement must be	
		;	approved by the aquatic/wetland ecologist or	
		\triangleright	Engineering design to mitigate extreme	
			events from inundation upstream of the	
		:	stream crossing.	
Poor project planning will result in site	High	A	Design geosynthetics for all river crossings	Negligible
geological instability (soil erosion, banks	(55)	;	and abstraction works to prevent bank	(10)
incision and seepage):		i	incision and erosion.	
Poor project designs and planning would result in	SP= (M + D + S) × P	\succ	A detailed method statement for working	
erosion and degradation of habitats is likely to occur	SP= (5 + 5 + 1) × 5	,	within the watercourse must be compiled by	SP= (M + D + S) × P
during clearing of vegetation, topsoil removal and	SP = 55	1	the contractor prior to the commencement of	SP= (2 + 2 + 1) ×2
excavation works at riverbanks and instream habitat		1	the project. This method statement must be	SP = 10
at pipeline river crossings as well as pipeline route,		;	approved by the aquatic ecologist or ECO.	
and excavation at WWTW for foundation of				
infrastructure. Therefore, excavation at riverbanks				

Potential impact	Impact Significance		Proposed Mitigation Measures	Impact Significance
	without Mitigation			with mitigation
	Project F	Plann	ing	
and instream is considered highly sensitive as it		≻	Sections of trenches/excavations/cuts need	
may result in stream sedimentation. Furthermore,			to be either shored or flattened to less than	
the disturbed soils are prone to surface run-off.			60° from horizontal;	
		\triangleright	All excavation works which require ripping	
			must be determined by Seismic Evaluation.	
		\triangleright	Blasting of rock outcrops must be considered	
			as a last resort. A detail report must be	
			submitted by the contractor prior to	
			construction detailing the conditions which	
			will resort in blasting. This report must be	
			accompanied by blasting method statement.	
		۶	Conceptual riparian zone rehabilitation and	
			monitoring plan with a focus on erosion and	
			alien vegetation management, be compiled	
			prior to construction.	
		\triangleright	Spoil from the trench excavations should not	
			be placed closer than the equivalent depth of	
			the trench to avoid unnecessary loading of	
			the sidewalls, especially under moist to	
			saturated conditions;	
		۶	Design an adequate stormwater	
			management system to include surface	
			drainage for continual drainage within the	
			pipeline route and vicinity of the river	

Potential impact	Impact Significance		Proposed Mitigation Measures	Impact Significance		
	without Mitigation			with mitigation		
	Project Planning					
			crossings including abstraction works to			
			prevent bank incision, seepage and			
			geological instability as a result of ponding.			
Poor project planning will result in social	Medium	≻	Appoint a Social Facilitator to manage project	Negligible		
distress and damage to existing services:	(40)		social aspects and re-route the pipeline	(10)		
Social impacts related to bulk water infrastructure			where there is encroachment to burial sites.			
emanate from:	SP= (M + D + S) × P		Social Facilitator to undertake engagement			
	SP= (5 + 2 + 3) × 4		with the households adjacent to pipeline	$SP=(M + D + S) \times P$		
Movement of heavy machinery turning and	SP = 40		route for assistance in identifying all	SP= (2 + 2 + 1) ×2		
turning on R618 within Hlabisa Town,			unmarked graves that could be on the section	SP = 10		
D1907 toward substation, down the valley			of pipeline route; designs to be reviewed to			
(pipeline route) where the project starts,			prevent intrusion into grave sites, such as			
east of Hlabisa town passing the Hlabisa			deviations to avoid graves and 30m buffer			
Hospital towards the new WWTW.			marked as "No-Go" areas.			
Disturbance of existing services (water		\succ	Identify all existing underneath and surface			
infrastructure, powerline,			infrastructure, such as water pipeline,			
telecommunication infrastructure and			telecommunication lines, and powerlines			
roads);			which will be in the corridor, and submit the			
 Disturbance of heritage resources, burial sites and paleontological resources 			wayleaves to relevant authorities to approve			
			the design and construction method. These			
			designs will be required to secure wayleaves.			
		۶	The design along the road reserve and for			
			road crossing will be done in accordance with			
			Department of Transport (DoT) standards.			

Potential impact	Impact Significance		Proposed Mitigation Measures	Impact Significance	
	without Mitigation			with mitigation	
	Project Planning				
			These designs will be requirements to secure		
			the wayleave with regards to the pipeline		
			situated within the road reserve;		
			specifications and requirements for pipe		
			crossings underneath the roads, which will		
			be constructed by means of pipe jacking;		
			specification, requirements, and preferences		
			with regards to access to the respective		
			roads.		
		\triangleright	A basic traffic management plan must be		
			included during the construction phase. The		
			mitigation of this will be addressed by diligent		
			implementation of Safety Management		
			Systems during the construction phase.		
		\triangleright	Identify and delineate the existing multiple		
			access points to the pipeline routes. These		
			access route must form an integral part of site		
			layouts which must be communicated to		
			project team including delivery crew.		
		\triangleright	Appoint a Social Facilitator to manage project		
			social aspects.		

Potential impact	Impact Significance		Proposed Mitigation Measures	Impact Significance
	without Mitigation			with mitigation
	Construct	ion F	Phase	
Loss of indigenous vegetation during	Medium-High	۶	Clearly demarcate the construction footprint	Negligible
construction:	(50)		prior to clearing of vegetation.	(10)
The development comprises construction of bulk		≻	The vegetation clearance of pipeline	
sewer gravity main, WWTW and effluent discharge			construction corridor must not be more than	
pipeline, will result in vegetation clearance and			10m width for the construction corridor within	$SP=(M + D + S) \times P$
obliteration of vegetation on site for the purpose of	SP= (M + D + S) × P		the vicinity of the stream crossing (riparian	SP= (2+ 2 + 1) × 2
construction for laying of the pipeline infrastructure,	SP= (5 + 3 + 2) × 5		zones), and wetlands (Subtropical Alluvial	SP =10
and WWTW construction.	SP =50		Vegetation (Aza7) vegetation).	
Also uncontrolled construction activities beyond the		۶	The guidelines for the protection of natural	
required footprint of the project area. This could			forest habitat suggest that no activities or	
lead to loss of flora habitat, as the construction will			development should be considered that	
take place within the vicinity of the stream crossing			would destroy the forest habitats unless of	
(riparian zones), and wetlands (Subtropical Alluvial			strategic provincial or national importance	
Vegetation (Aza7); the Zululand Lebombo Scarp			with no feasible alternatives. Therefore,	
Forest (FOz5) and the rest of the pipeline and			where feasible the pipeline must be re-routed	
WWTW will be constructed along habitat associated			along the Zululand Lebombo Scarp Forest	
Northern Zululand Sourveld (Svi22).			(FOz5).	
		۶	The 15m buffer determination along the	
			Zululand Lebombo Scarp Forest (FOz5)	
			must be adhered to.	
		≻	The vegetation clearance of pipeline	
			construction corridor must not be more than	
			10m width for the construction corridor within	

Table 17: Impact Assessment Analysis for Construction Phase

Potential impact	Impact Significance	Proposed Mitigation Measures	Impact Significance			
	without Mitigation		with mitigation			
	Construction Phase					
		the vicinity of the Zululand Lebombo Scarp				
		Forest (FOz5). Should pipeline route runs				
		within a Scarp Forest which is found within				
		the study area. The permit will be required				
		from DFFE in order to cut, destroy or disturb				
		the natural forest.				
		> The vegetation clearance of pipeline				
		construction corridor must not be more than				
		15m width on the remainder sections of				
		pipeline along habitat associated Northern				
		Zululand Sourveld (Svi22), provided there				
		are no sensitive environment.				
		> Vegetation clearance for construction of the				
		new WWTW must be limited to demarcated				
		footprint. A 15m buffer along the project site				
		must be considered, and no development				
		and stockpiling should take place outside 15				
		buffer of the new WWTW site.				
		> The servitude must include the trench, one-				
		way running track, topsoil stockpile corridor				
		and subsoil stockpile corridor. All areas of				
		watercourses outside this servitude must be				
		considered no-go areas.				

Potential impact	Impact Significance	Proposed Mitigation Measures Impact Significa	nce		
	without Mitigation	with mitigatio	n		
	Construction Phase				
		Install buffers through visible pegging with			
		construction barricades to restrict			
		development from encroaching the sensitive			
		environment.			
		The demarcations are to remain until			
		construction and rehabilitation is complete.			
		Any contractor found working within No-Go			
		areas must be fined as per fining			
		schedule/system setup for the project.			
		Surrounding areas with indigenous			
		vegetation must be under no circumstances			
		be fragmented or disturbed further or used as			
		an area for ruble and stockpiles			
		Only the approved existing access road must			
		be used, and vehicles must not traverse			
		virgin land.			
		> The project boundary must be demarcated			
		and vegetation clearing as well as topsoil			
		removal must be limited to the site only.			
		> All laydown, storage areas, site camps etc.			
		must be restricted to within the project area			
		and should preferably be situated within			
		areas of low sensitivity (already disturbed			
		areas).			

Potential impact	Impact Significance		Proposed Mitigation Measures	Impact Significance
	without Mitigation			with mitigation
	Constructi	ion P	Phase	
		>	Vegetation clearance in the construction	
			phase is to be removed in a phased	
			approach, as and when it becomes	
			necessary as vegetation harbours fauna.	
		\triangleright	Undertake progressive rehabilitation: Areas	
			cleared of vegetation must be revegetated/	
			land scaped, immediately after the	
			infrastructure in that portion has been	
			installed. Do not wait for the project to be	
			completed or contractor leaving the site.	
		\triangleright	ECO must be appointed to oversee	
			construction activities and enforce the	
			conditions of the EA and permits for	
			environmental legal compliance.	
		\triangleright	All workers to undergo environmental	
			awareness and training, including induction	
			on conditions of the EA and permits to ensure	
			effective implementation of the conditions of	
			the EA and permits for environmental legal	
			compliance.	

Potential impact	Impact Significance without Mitigation		Proposed Mitigation Measures	Impact Significance with mitigation
	Construct	ion F	Phase	
Disturbance of terrestrial species habitat as a	Medium-High	\triangleright	The construction corridors must be surveyed	Negligible
result of construction activities:	(50)		for potential habitats such as burrowing and	(10)
The uncontrolled construction activities may result			roasting sites, prior to site clearance in order	
in the loss of habitat and permanent loss of			to delineate and buffer the areas, where not	
unidentified animal SCC. Also, this might			possible to locate them.	$SP=(M + D + S) \times P$
encourage migration of species. Furthermore, the	SP= (M + D + S) × P	۶	Install buffers to restrict development from	SP= (2+ 2 + 1) × 2
animals with limited mobility are often the first to be	SP= (5 + 3 + 2) × 5		encroaching into sensitive environments.	SP =5
affected by habitat fragmentation due to the effects	SP =50	۶	Install buffers through visible pegging with	
on population viability.			construction barricades to restrict	
			development from encroaching the sensitive	
Unnecessary destruction of riparian vegetation			environment.	
habitat onsite which provides foraging and cover		۶	The vegetation clearance of pipeline	
for all animal species; Unnecessary destruction			construction corridor must not be more than	
grasslands vegetation habitat on site which			10m width for the construction corridor within	
provides a foraging and significant feeding area for			the vicinity of the stream crossing (riparian	
animal species; Unnecessary destruction scarp			zones), and wetlands (Subtropical Alluvial	
forest vegetation habitat which is utilized by			Vegetation (Aza7).	
numerous mammals, raptors, bird species for		۶	The guidelines for the protection of natural	
foraging, and nesting.			forest habitat suggest that no activities or	
			development should be considered that	
			would destroy the forest habitats unless of	
			strategic provincial or national importance	
			with no feasible alternatives. Therefore,	
			where feasible the pipeline must be re-routed	

Potential impact	Impact Significance		Proposed Mitigation Measures	Impact Significance
	without Mitigation			with mitigation
	Constructio	on P	hase	
			along the Zululand Lebombo Scarp Forest	
			(F0z5).	
		۶	The 15m buffer determination along the	
			Zululand Lebombo Scarp Forest (FOz5)	
			must be adhered to.	
		۶	The vegetation clearance of pipeline	
			construction corridor must not be more than	
			10m width for the construction corridor within	
			the vicinity of the Zululand Lebombo Scarp	
			Forest (FOz5). Should pipeline route runs	
			along a Scarp Forest which is found within	
			the study area. The permit will be required	
			from DFFE in order to cut, destroy or disturb	
			the natural forest.	
		۶	The vegetation clearance of pipeline	
			construction corridor must not be more than	
			15m width on the remainder sections of	
			pipeline along habitat associated Northern	
			Zululand Sourveld (Svi22), provided there	
			are no sensitive environment.	
		۶	Vegetation clearance for construction of the	
			new WWTW must be limited to demarcated	
			footprint. A 15m buffer along the project site	
			must be considered, and no development	

Potential impact	Impact Significance	Proposed Mitigation Measures Impact Significance			
	without Mitigation	with mitigation			
Construction Phase					
		and stockpiling should take place outside 15			
		buffer of the new WWTW site.			
		All construction activities must take place			
		within an area demarcated for the			
		development.			
		No ad-hoc roads are permitted, access roads			
		must be defined and utilised and avoided			
		within sensitive habitat.			
		All laydown, storage areas, site camps etc.			
		should be restricted to within the project area			
		and should preferably be situated within			
		areas of low sensitivity (already disturbed			
		areas).			
		ECO must be appointed to oversee			
		construction activities and enforce the			
		conditions of the EA and permits for			
		environmental legal compliance.			
Loss of plant SCC during construction:	Medium	The demarcated pipeline route and WWTW Negligible			
Uncontrolled construction activities may result in	(40)	construction corridor must be surveyed prior (10)			
vegetation clearance and result in the permanent		to construction for identification of plant SCC.			
loss of various plant SCC, as the construction works	SP= (M + D + S) × P	Establish buffer by means of visible SP= (M + D + S) × P			
will take place within the vicinity of the stream	SP= (5 + 3 + 2) × 4	construction barricades to section off plant SP= (2 + 2+ 1) × 2			
crossing (riparian zones), and wetlands	SP = 40	SCC falling outside construction corridor and SP = 10			
(Subtropical Alluvial Vegetation (Aza7); the		declare it a no-go area.			

Potential impact	Impact Significance	Proposed Mitigation Measures Impact Significance					
	without Mitigation	with mitigation					
	Construction Phase						
Zululand Lebombo Scarp Forest (FOz5) and the		The plant SCC outside construction corridor					
rest of the pipeline and WWTW will be constructed		must not be removed or disturbed.					
along habitat associated Northern Zululand		Relocate plant SCC within the construction					
Sourveld (<i>Svi22</i>).		corridor to undisturbed areas within project					
		locality. A plant 'rescue' operation must be					
There were no CBA1, CBA2 and ESA within the		undertaken under the directive of an					
project reach. No threatened plant species or plant		ecologist/botanist					
SCC were recorded within the construction corridor		If needed, approval must be obtained from					
during the survey. However, there is a likelihood		the ECO, before any disturbance or removal					
that plant SCC will be encountered during		of plant species of conservational concern;					
construction.		plants to be relocated, by a Botanist.					
		Buffer and indicate no-go areas to prevent					
However, provincial protected plant species were		disturbance or removal of <i>Aloe sp.</i> (Aloe					
recorded within the study area, namely Aloe sp.		marlothii and Aloe arborscens). Where this					
(Aloe marlothii and Aloe arborscens).		proves not to be possible (falls within					
		construction corridor), a permit will be					
		required from the provincial DFFE in order to					
		disturb and relocate the Aloe sp. before					
		construction activities commence.					
		The removed Aloe sp. must be reintroduced					
		to site during landscaping.					
		ECO must be appointed to oversee					
		construction activities and enforce the					

Potential impact	Impact Significance		Proposed Mitigation Measures	Impact Significance		
	without Mitigation			with mitigation		
Construction Phase						
			conditions of the EA and permits for			
			environmental legal compliance.			
		≻	All workers to undergo environmental			
			awareness and training, including induction			
			on conditions of the EA and permits to			
			minimise or prevent impacts to plant SCC,			
			and protected plant species.			
Encroachment of Invasive Alien Plant Species:	High	≻	Prevent large scale clearance, and only clear	Negligible		
Uncontrolled construction activities, such as	(55)		the areas as demarcated by the approved	(8)		
vegetation clearance and excavation are likely to			project plans. All bare surfaces across the			
spread and/or exacerbate colonization and	SP= (M + D + S) × P		construction site must be checked for IAPs	SP= (M + D + S) × P		
establishment of invasive alien species.	SP= (5 + 4 + 2) × 5		every two weeks and IAPs removed by hand	SP= (2 + 1+ 1) × 2		
Encroachment, proliferation and spread of weeds	SP = 55		pulling/uprooting and adequately disposed.	SP = 8		
and invasive alien plant (IAP) species are mainly		۶	The control and eradication of a listed			
associated with clearance of vegetation.			invasive species must be carried out during			
			and post construction within the project site.			
Disturbance to habitat and removal of vegetation		۶	All sites disturbed by construction activities			
will increase the likelihood of IAP invasion and			must be monitored for colonization by exotics			
noxious weeds.			or invasive plants and be regular removed.			
The colonisation by weeds and IAPs poses a risk to		≻	Alien invasive plants (listed in this study) can			
indigenous plant communities and habitat			be removed manually or with the help of			
characteristics as IAPs outcompete indigenous			simple tools. This entails damaging or			
vegetation and may reduce species richness or			removing the plant by physical action.			
cause a loss in biodiversity.						

118 EMVELO CONSULTANT- DRAFT Basic Assessment Report: Proposed Hlabisa Bulk Sewer Pipeline and new WWTW

Potential impact	Impact Significance		Proposed Mitigation Measures	Impact Significance		
	without Mitigation			with mitigation		
Construction Phase						
Overtime, IAP may disperse and proliferate into		≻	An alien invasive removal and management			
riparian and wetland habitat and alter the hydrology			plan must be compiled and implemented			
of the watercourses.			onsite.			
		≻	Stockpiles must be vegetated if they are to be			
			stored for prolonged periods of time such as			
			3 to 6 months.			
		≻	All stockpiles must be kept free of weeds and			
			IAPs.			
Disturbance to surrounding wildlife and fauna:	Medium High	≻	The construction corridor must be surveyed	Negligible		
Uncontrolled construction activities: vehicle	(44)		prior clearance to locate animal species who	(8)		
movements, noise and habitat destruction will			mighty be foraging, roasting, or nestling			
disturb animals in the area. As a result, the	SP= (M + D + S) × P		within the construction corridor.	SP= (M + D + S) × P		
proposed construction activities are likely to result	SP= (5 + 4 + 2) × 4	≻	During site preparation, special care must be	SP= (2 + 1+ 1) × 2		
in the migration of species which are endemic to the	SP = 4		taken during the clearing of the works area in	SP = 8		
project area or a loss of animal species currently			order to minimize damage or disturbance of			
found on site, as reptiles, bird species, mammals,			roosting and nesting sites.			
and invertebrates may be separated into distinct		۶	The project area must be surveyed for			
populations.			potential animal SCC prior to construction in			
			order to locate, capture and relocate any			
Unnecessary destruction of riparian vegetation			animal SCC.			
habitat onsite which provides foraging and cover for		۶	During construction special care must be			
all animal species; Unnecessary destruction			taken to avoid prevent migration of species			
grasslands vegetation habitat on site which			which are endemic to the project area or a			
provides a foraging and significant feeding area for			loss of animal species currently found on site,			

Potential impact	Impact Significance		Proposed Mitigation Measures	Impact Significance			
	without Mitigation			with mitigation			
Construction Phase							
animal species; Unnecessary destruction scarp			animals with limited mobility are often the first				
forest vegetation habitat which is utilized by			to be affected by habitat fragmentation due to				
numerous mammals, raptors, bird species for			the effects on population viability as reptiles,				
foraging, and nesting.			bird species, small mammals, and				
			invertebrates may be disintegrated into				
Inadvertent killing and injury of fauna species during			distinct populations.				
vegetation clearance and construction activities.		\blacktriangleright	Avoid habitat fragmentation and allow for				
Loss/displacement of fauna species potentially			fauna migration corridors.				
present on site.		\blacktriangleright	Walkways must be constructed allowing for				
			animals to escape from the pipeline trenches,				
			with an aid of a Herpetologist/Ecologist.				
		\blacktriangleright	If any herpetological species are				
			encountered or exposed during the				
			construction phase, these must be removed				
			and relocated to natural areas in the vicinity.				
			This remedial action requires the				
			employment of a herpetologist and or				
			ecologist to oversee the removal of any				
			herpetofauna during the initial ground				
			clearing phase of construction (i.e., initial				
			ground-breaking by earthmoving equipment).				
			It is advisable that the earthworks be				
			confined to the dry season, when there is				
			likely to be less faunal movement.				

Potential impact	Impact Significance		Proposed Mitigation Measures	Impact Significance
	without Mitigation			with mitigation
	Constructi	ion P	hase	
		≻	Construction activities must be limited to the	
			designated development footprint.	
			During site preparation, special care must be	
			taken during the clearing of the works area in	
			order to minimize damage or disturbance of	
			roosting and nesting sites.	
		\blacktriangleright	If possible, the clearance of vegetation	
			should commence during non-breeding	
			season of fauna species (i.e., winter).	
		\checkmark	No faunal species are to be disturbed,	
			trapped, hunted, or killed.	
			Wetland fauna (e.g., birds, snakes, frogs,	
			small mammals) that are encountered during	
			the construction phase must be relocated to	
			other parts of the wetland under the guidance	
			of the EO or ECO.	
		\blacktriangleright	During the construction phase, no	
			construction is to occur at night to minimise	
			all possible disturbances to amphibian	
			species possibly inhabiting the wetland.	
			All construction and maintenance vehicles	
			must stick to properly demarcated and	
			prepared roads.	

Potential impact	Impact Significance		Proposed Mitigation Measures	Impact Significance		
	without Mitigation			with mitigation		
Construction Phase						
		۶	Driving on virgin land must be strictly			
			prohibited.			
		\triangleright	No fires should be allowed at the site.			
		۶	No dogs or other pets should be allowed at			
			the site			
Potential loss of wetland and riparian habitat:	High	\rightarrow	The project site servitude must be clearly	Very Low		
	(60)		demarcated to avoid unnecessary large-	(12)		
Construction will result in alteration of hydrological			scale disturbances to adjacent areas.			
and geomorphological processes.	SP= (M + D + S) × P	۶	All work to be done within the riparian and	$SP=(M + D + S) \times P$		
	SP= (5 + 5 + 2) × 5		wetland habitats must be carried out during	SP= (2 + 1 + 1) ×3		
The infield watercourse delineation confirmed the	SP = 60		low flow conditions, and dry periods.	SP = 12		
presence of seven (7) wetlands fell within the		≻	An ecologist must conduct a walk through			
regulated area and only five (5) of these systems			prior to vegetation clearing and a permit must			
were identified to be at risk and required further			be obtained to remove any TOPS.			
assessment. These systems were identified as		۶	Clearing activities must be undertaken in a			
seepage, Unchanneled Valley Bottom (UVB) and			phased approach.			
Channelled Valley Bottom (CVB) wetlands and they		≻	A pipeline construction corridor must not be			
were identified to be largely natural and moderately			more than 10m width for construction within			
modified.			the vicinity of wetland systems, including			
			riparian zone. The servitude must include the			
Expanded / more intense edge impacts could occur			trench, one-way running track, topsoil			
as a result of deterioration in vegetation quality and			stockpile corridor and subsoil stockpile			
cover and the potential for increased alien invasive			corridor. All areas of watercourses outside			

Potential impact	Impact Significance	Proposed Mitigation Measures	Impact Significance			
	without Mitigation		with mitigation			
Construction Phase						
plant invasion due to disturbance causing activities		this servitude must be considered no-go				
taking place within or near the wetlands and riparian		areas.				
zones.	>	> The vegetation clearance and earthworks				
		must be limited to project area as				
The degraded wetland systems within the project		demarcated by the layouts proposes the				
area as result of construction activities will not be		configuration of existing layout. The				
able to provide ecosystems function and services		clearance and construction for the new				
such as:		WWTW must be shifted at least 80m-100m				
 CVB wetland function for flood attenuation reducing the velocity and volumes of surface runoff that reach the Mhlathuze River UVB Effective in trapping sediment, flood attenuation and regulating flows. The hillslope seepage effective in trapping sediment, assimilating toxins/nutrients and regulating flows, such as to regulate stormwater flows received from developments, as a result of its locality in the landscape. As well as erosion control. Riparian zone effective in erosion control. 		sensitive environment wherever possible, as the best practice and were feasible, traversing small sections of wetland, such as within W02 (<i>Figure 7</i>) can be avoided through rerouting around the system.				

Potential impact	Impact Significance		Proposed Mitigation Measures	Impact Significance		
	without Mitigation			with mitigation		
Construction Phase						
the destruction of habitat and complete loss of W05		۶	Where possible the pipeline route along the			
wetland. The wetlands are currently of ecological			wetlands must include buffer determination			
and hydrological importance and loss of these			of at least 28m buffer for CVB wetlands; 26m			
systems will negatively impact on the catchment.			buffer for UVB wetlands; and 25m buffer for			
These wetlands are remnants of natural habitat			seepage wetlands to protect wetland habitat			
remaining in the area and therefore maintain			and ecological corridor and mark no-go			
biodiversity. Habitat that remains will be fragmented			areas.			
and this will affect ecological corridors. The		≻	A 33m buffer has been applied to the high-			
removal of vegetation and the construction of			risk wetlands and a 20m buffer to the			
hardened surfaces (WWTW) may lead to			wetlands receiving indirect impacts and at			
concentrated flows entering the wetlands, which			lower risk of impact. A buffer cannot be			
may be high flow rates within a short space of time			applied to wetlands W01, W04 and W05 as a			
(increased flood peaks). Destruction of the W05			result of activities taking place within them			
wetland infers water will no longer percolate into the			and a 20m buffer cannot be applied to			
soil and rather, large volumes of surface runoff will			wetlands W02 and W03 due to their proximity			
enter the river, and this will increase erosion and			to the proposed activities.			
sediment inputs into the river. Fragmented wetlands		≻	Install buffers through visible pegging with			
from the bulk sewer line will also have flows			construction barricades to restrict			
impeded and alter natural inputs, throughputs, and			development from encroaching the sensitive			
outputs in the wetland.			environment.			
		≻	The demarcations are to remain until			
			construction and rehabilitation is complete.			

Potential impact	Impact Significance	Proposed Mitigation Measures	Impact Significance
	without Mitigation	_	with mitigation
	Constructio		
		Any contractor found working within No-Go	
		areas must be fined as per fining	
		schedule/system setup for the project.	
		> Vegetation at riparian zones within the	
		vicinity of the sewer gravity main pipeline	
		stream crossings and effluent discharge	
		pipeline must remain intact where possible,	
		to limit high surface flows and mobilisation of	
		sediments.	
		> Vegetation must be cleared in a phased	
		approach and trench should not be left bare	
		and exposed to erosion.	
		> Soils must be stabilised, and sediment traps	
		must prevent sediment from entering	
		stormwater.	
		Create berms downslope of working area to	
		divert impacts away from wetlands.	
		> The monitoring plan must be developed in	
		order to quantify the impact on the	
		watercourses.	
		> Disturbed watercourse habitats must be	
		rehabilitated as soon as construction is	
		complete or near complete and not left until	
		the end of the project to be rehabilitated.	

-	Impact Significance	Proposed Mitigation Measures	Impact Significance
	without Mitigation		with mitigation
	Constructio	n Phase	
		Soil berms and sediment traps must be	
		established to prevent sediment entering	
		watercourses.	
		Topsoil must be stockpiled in stockpiles not	
		exceeding 2 m in height.	
		> All stockpiles must be established outside the	
		buffer of all watercourses and on relatively	
		flat ground at least 30m away from the	
		watercourse.	
		If at risk of being eroded, all stockpiles must	
		be secured with sandbags around the base	
		of the soil stockpile.	
		No <i>ad-hoc</i> roads are permitted, access roads	
		must be defined and utilised and avoided	
		within wetlands.	
		Site camp must be located outside of	
		wetlands and their buffers, preferable within	
		the site camp for new WWTW must be	
		located along the fire break of commercial	
		forest (Eucalyptus plantations) surrounding	
		the new WWTW site, for gravity main the site	
		camp must be located within the facility of	
		homesteads., or already disturbed area.	

Potential impact	Impact Significance without Mitigation		Proposed Mitigation Measures	Impact Significance with mitigation
Construction Phase				
		>	ECO ECO must be appointed to oversee	
			construction activities and enforce the	
			conditions of the EA and permits for	
			environmental legal compliance.	
Degradation of freshwater (aquatic) habitat as a	High	٨	All work to be done within the riparian,	Very Low
result of construction activities.	(60)		instream habitats, and wetlands must be	(15)
Construction activities within a watercourse are			carried out during low flow conditions, and	
likely to result in degradation of watercourse habitat			dry periods.	
include (i) undertaking bulk earthworks associated	$SP=(M + D + S) \times P$	۶	The use of heavy machinery (excavator)	SP= (M + D + S) × P
with implementing the bulk sewer gravity main at	SP= (5 + 4 + 2) × 5		within the watercourse must be closely	SP= (3 + 1 + 1) × 3
the stream crossings and effluent discharge	SP = 60		supervised. If possible, the excavator must	SP = 15
pipeline within riparian, (ii) placing infrastructure			only be positioned as far as possible away	
within watercourses, (iii) dewatering of the			from the water edge, as it stretches the	
construction area, when necessary, (iii)			bucket to excavate the instream habitat.	
construction of concrete encase for pipeline river		۶	A one-way running track must be established	
crossing, and (iv) Excavation within wetlands and			across the riverbed for the excavators to	
riparian.			move along. The running track must be	
			shielded with a wall of coffer dam and be	
Also, during construction activities it is highly likely			constructed of a rock base overlain by coarse	
that upstream flows will have to be diverted around			aggregate.	
the working area through the utilisation of coffer		≻	All clearance for pipeline river crossing must	
dams. In Modification/destruction of riparian			be within 10m of the construction corridor.	
		≻	All clearance and excavations along the	
			riparian and instream habitat for the purpose	

Potential impact	Impact Significance	Proposed Mitigation Measures	Impact Significance
	without Mitigation		with mitigation
habitat, loss of riverine habitat and loss of aquatic		of construction pipeline river crossings must	
biota		be limited to areas as demarcated and	
		approved by the project plans.	
		> Material excavated from the trench must be	
		stored away from river and away from the	
		proposed dewatering areas. To avoid mixing,	
		the excavated trench material must be	
		placed on a geotextile.	
		> Topsoil stockpile must be stockpiled in	
		stockpiles not exceeding 2 m in height.	
		> All stockpiles must be established outside the	
		buffer of all watercourses and on relatively	
		flat ground at least 32m away from the	
		watercourse.	
		> If at risk of being eroded, all stockpiles must	
		be secured with sandbags around the base	
		of the soil stockpile.	
		> Install buffers to restrict development from	
		encroaching onto sensitive environments.	
		> In the case that coffer dams are used to divert	
		flow for construction purposes, these	
		structures must be temporary in nature and	
		be removed from the river immediately after	

Potential impact	Impact Significance	Proposed Mitigation Measures	Impact Significance		
	without Mitigation		with mitigation		
	Construction Phase				
		the required construction has been completed.			
		 No construction of an artificial channel 			
		outside of the watercourse habitats for water			
		diversion purposes will be permitted.			
		Therefore, the de-watering process from the			
		coffer dams should involve piping the water			
		directly to the active channel downstream of			
		the site as, or if, required.			
		> Water diversion must be temporary and re-			
		directed flow must not be diverted towards			
		any stream banks that could cause erosion			
		and siltation.			
		> A dewatering site must be identified in			
		conjunction with the ECO and should be on			
		flat ground away from the edge of the stream			
		channel and preferably in a well vegetated			
		area.			
		Pumped water must be discharged into a silt			
		trap/hay-bale trap adequately sized to deal			
		with the expected volumes. Outflow from this			
		trap should be via sheet flow and energy			
		dissipation measures may be required.			

Potential impact	Impact Significance		Proposed Mitigation Measures	Impact Significance	
	without Mitigation			with mitigation	
	Construction Phase				
		>	Sediment barriers must be installed in areas		
			sensitive to erosion to prevent stream		
			siltation.		
		\blacktriangleright	Should the outcrop is intercepted within the		
			vicinity of the river crossing, the excavator will		
			access the river to clear boulders etc and		
			where required a hydraulic breaker will be		
			used to break any bedrock encountered, in		
			order to make trench for installation of		
			pipeline infrastructure.		
		\blacktriangleright	Rock blasting will never be allowed within		
			the watercourse.		
		\blacktriangleright	The concrete encased for pipeline crossing		
			at instream must be below the riverbed to		
			prevent upstream ponding and inundation.		
		\blacktriangleright	Disturbed watercourse habitat must be		
			rehabilitated as soon as construction is		
			complete or near complete, and not left until		
			the end of the project to be rehabilitated.		
		\blacktriangleright	Rehabilitate all watercourses in accordance		
			with DWS approved Rehabilitation and		
			Maintenance Plan		

Potential impact	Impact Significance		Proposed Mitigation Measures	Impact Significance
	without Mitigation			with mitigation
	Construct	ion F	Phase	
		≻	ECO must be appointed to oversee	
			construction activities and ensure legal	
			environmental compliance.	
Alteration of flow regimes and fluvial systems,	High	≻	Pre-development site hydrology (i.e., runoff,	Negligible
as well as streamflow reduction as a result of	(60)		infiltration, interception, evapotranspiration,	(10)
construction activities:			groundwater recharge, and stream baseflow)	
The construction will result in alteration of			must be preserved as far as possible.	
hydrological and geomorphological processes. The	SP= (M + D + S) × P	≻	Construct and maintain earth berm to prevent	$SP=(M + D + S) \times P$
temporarily reduced riverine ecological connectivity	SP= (5 + 4+ 2) × 5		flooding and sedimentation during	SP= (2 + 2 + 1) × 2
during the construction at the vicinity of pipelines	SP =60		construction.	SP =10
stream crossing and wetlands crossings.		۶	In excavating the bed of the water body, the	
Excavation will alter percolation through the area			contractor must backfill the excavation with	
and may affect water feeds into the receiving			material which was originally removed from	
environment. Construction related activities will			the stream bed. Further care must be taken	
therefore alter sediment and water inputs into the			to minimize the amount of material used for	
receiving environment and may affect groundwater			backfilling which have abrasive surfaces.	
recharge.		≻	To only use temporary cofferdams to divert	
			flow within working area.	
In addition, the poor construction processes could		≻	Temporary pumping sump must be designed	
lead to stream siltation, further sedimentation of			to achieve optimum hydraulic performance.	
downstream, collapse of banks due to uncontrolled,			Minimise influence on downstream flow	
Increased volumes of water altering hydrological			regime when diverting and impeding flow	
regime stormwater runoff.			(cofferdams, earth berms etc). Use suitable	
			stabilisation structures to prevent.	

Potential impact	Impact Significance	Proposed Mitigation Measures	Impact Significance		
	without Mitigation		with mitigation		
	Construction Phase				
		\succ A rock mattress must be created at the			
		downstream outlet of the flume pipe to			
		reduce erosion at this point to the satisfaction			
		of the ECO.			
		> No construction of an artificial channel			
		outside of the watercourse habitats for water			
		diversion purposes will be permitted.			
		Therefore, the de-watering process from the			
		coffer dams should involve piping the water			
		directly to the active channel downstream of			
		the site as, or if, required.			
		\succ If it is necessary that the flows require			
		diversion in order for the work to be carried			
		out, the flows must be returned to their			
		original pathways and velocities post			
		establishment.			
		> Sediment barriers must be installed in areas			
		sensitive to erosion to prevent stream			
		siltation.			
		> Minimise impervious surfaces and maximise			
		infiltration by maintaining vegetation as far as			
		possible to convey and hold surface runoff			
		and provide for a slow release into the			
		receiving environment.			

Potential impact	Impact Significance		Proposed Mitigation Measures	Impact Significance		
	without Mitigation			with mitigation		
	Construction Phase					
		≻	Reno mattresses or gabions may be required			
			to prevent further incision in areas where the			
			banks of channels are incised and these			
			banks must be stabilised for the pipeline.			
		≻	Stormwater management measures must be			
			implemented in order to minimise diverted			
			flows as the result of rains and prevent the			
			siltation and sedimentation of nearby			
			watercourse also minimise the impacts of the			
			disturbed areas.			
		≻	Concrete encase alignment at river crossing			
			must not form a heap but be aligned with the			
			In-sutu instream habitat.			
Deterioration of surface water quality as a result	Medium High	≻	Excavation at riparian zones must not be	Negligible		
of construction activities:	(50)		undertaken during wet (rainy) periods or	(10)		
			peak flow conditions. The activities within			
Uncontrolled construction processes could lead to			watercourse must only be undertaken during	SP= (M + D + S) × P		
stream siltation, further sedimentation of	$SP=(M + D + S) \times P$		agreed working times and permitted weather	SP= (2 + 1 + 2) × 2		
downstream, collapse of banks due to uncontrolled,	SP= (5 + 2 + 3) × 5		conditions. If heavy rains are expected, the			
Increased volumes of water altering hydrological	SP = 50		clearing and excavation activities must be put	SP = 10		
regime stormwater runoff. In addition will result in			on hold. In this regard, the contractor must be			
excessive run-off from excavations and/or hard surfaces;			aware of weather forecasts. It is			
inappropriate stormwater management.			recommended to undertake majority of the			

Potential impact	Impact Significance		Proposed Mitigation Measures	Impact Significance		
	without Mitigation			with mitigation		
	Construction Phase					
			construction activities during the drier			
During construction especially excavation along			months.			
riparian and instream habitat has potential to Oil,		≻	It is prudent however to be prepared for			
grease and chemical spills from construction			increased flows by scheduling work			
machinery, also discharge of untreated effluent spill			according to the weather forecast and to be			
from unmanaged portable toilets onsite.			adequately prepared for unexpectedly large			
			runoff from a sudden storm.			
		≻	Prevent pollutants from entering drainage			
			lines in amounts that exceed the systems'			
			natural ability to assimilate the pollutants and			
			provide the desired functions.			
		≻	Construct and maintain earth berm to prevent			
			flooding and sedimentation during			
			construction. Sediment barriers must be			
			installed in areas sensitive to erosion such as			
			near water supply points, slopes, and actively			
			eroding riverbanks. These measures include			
			but are not limited to - the use of sandbags,			
			hessian sheets, silt fences, geotextiles, rock			
			gabions, etc to prevent erosion and stream			
			siltation.			
		≻	Minimise impervious surfaces and maximise			
			infiltration by maintaining vegetation as far as			
			possible to convey and hold surface runoff			

Potential impact	Impact Significance		Proposed Mitigation Measures	Impact Significance
	without Mitigation			with mitigation
	Construct	ion P	hase	
			and provide for a slow release into the	
			receiving environment.	
		\blacktriangleright	Reno mattresses or gabions may be required	
			to prevent further incision in areas where the	
			banks of channels are incised, and these	
			banks must be stabilised for the pipeline.	
		\blacktriangleright	Create a coffer dam at watercourse crossing	
			to protect the area from possible silt	
			contaminated runoff.	
		۶	During concrete pouring at the weir and	
			encase concrete at the river crossing, the	
			activity must be undertaken within a strictly	
			controlled environment, such as the use of	
			coffer dams to prevent concrete spills into the	
			watercourse. The infilling of concrete encase	
			at pipeline river crossings must be	
			undertaken in with due diligent, such that	
			there are no concrete spillages into the river.	
			For the infilling/backfilling and levelling using	
			concrete, dependent on the size of the pours,	
			an excavator will place the concrete. The	
			bucket or skip will be filled 3/4 full to reduce	
			spillages whilst transporting the concrete. If	
			any spillages do occur, they will be removed	

Potential impact	Impact Significance	Proposed Mitigation Measures	Impact Significance
	without Mitigation		with mitigation
	Construction	on Phase	
		after the pour and disposed of at the concrete	
		skip wash out bay.	
		➢ Sediment barriers (e.g.: silt	
		fences/sandbags/hay bales) must be	
		installed immediately downstream of active	
		work areas (including soil stockpiles) as	
		necessary to trap any excessive sediments	
		generated during construction.	
		> Create a coffer dam at vicinity stream	
		crossings to protect the area from possible	
		silt contaminated runoff.	
		> No construction machinery must be operated	
		directly into the water, except where coffer	
		dam is in place. The use of construction	
		machinery must be limited only to riverbanks,	
		only if necessary.	
		> The use of heavy machinery (excavator)	
		within the watercourse must be closely	
		supervised. If possible, the excavator must	
		only be positioned as far as possible away	
		from the water edge, as it stretches the	
		bucket to excavate the instream habitat.	
		\succ The de-watering process from the coffer	
		dams must involve piping the water directly	

Potential impact	Impact Significance		Proposed Mitigation Measures	Impact Significance
	without Mitigation			with mitigation
	Constructi	ion P	hase	
			to the active channel downstream of the site	
			as, or if, required.	
		\triangleright	During concrete pouring for encase concrete	
			at the stream crossings, the activity must be	
			undertaken within a strictly controlled	
			environment, such as the use of coffer dams	
			to prevent concrete spills into the	
			watercourse.	
		\triangleright	Minimise influence on downstream flow	
			regime when diverting and impeding flow	
			(cofferdams, earth berms etc).	
		\triangleright	Implementing of a stormwater	
			control/management plan with effective	
			stormwater controls within all riparian	
			throughout all stream crossings.	
		\triangleright	Potential stormwater run-off from hard	
			surfaces requires careful attention to ensure	
			that the nearby watercourse is not negatively	
			impacted by sedimentation and run-off	
			carrying oil, grease, hydrocarbons and/or	
			harmful chemicals.	
		۶	Make use of gabions along the pipeline within	
			the riverbanks to prevent erosion as a result	
			of loose banks due to excavation.	

Potential impact	Impact Significance	Proposed Mitigation Measures	Impact Significance
	without Mitigation		with mitigation
	Constructio	on Phase	
		> Place topsoil of disturbed areas along the	
		and revegetated immediately, to prevent run-	
		off and siltation. Stockpiles must not be more	
		than 2m in height and stored at least 30m	
		away from the watercourse on the area with	
		a relatively flat surface.	
		> Machinery must be parked at least 32m away	
		from the watercourse and only parked on the	
		designated bunded areas and dip trays must	
		be placed under the machinery, when not	
		used to capture any possible hazardous	
		substance leaks.	
		 Stormwater management measures must be 	
		implemented in order to minimise diverted	
		flows as the result of rains and prevent the	
		siltation and sedimentation of nearby	
		watercourse also minimise the impacts of the	
		disturbed areas.	
		> The site must have portable toilets at the ratio	
		of 1:10. These portable toilets must be	
		positioned at relatively flat surface, with	
		shoring and at least 30 meters away from any	
		habitat near a watercourse.	

Potential impact	Impact Significance		Proposed Mitigation Measures	Impact Significance		
	without Mitigation			with mitigation		
	Construction Phase					
		>	Portable toilets must be maintained on a			
			regular basis by a licensed service provider			
			with the provision of service level agreement			
			letter with WWTW facility, and waybills must			
			be saved as documentation.			
		۶	Petroleum fuel must be kept in a covered,			
			bunded structure. The bund must be able to			
			hold at least 110 percent of the content			
			amounts.			
		\triangleright	All chemicals and hazardous substances			
			including cement must be mixed and/or			
			decanted on a tray, shutter boards, or an			
			impermeable surface.			
		\triangleright	ECO must be appointed to oversee			
			construction activities.			
		\triangleright	ECO to Conduct water quality monitoring			
			(baseline and during construction) at suitable			
			up and downstream sites			
Ground water contamination as a result of	High	\triangleright	Suitable storage facilities for handling and	Negligible		
construction activities:	(55)		storage of oils, paints, grease, fuels,	(4)		
The uncontrolled construction activities may have			chemicals, and any hazardous materials to			
potential for leaks of hazardous substances from			be used; must be provided to prevent the			
equipment on site. Such hazardous substances	SP= (M + D + S) × P		migration of spillage into the ground and	SP= (M + D + S) × P		
have the potential to enter the soil and	SP= (5 + 4 + 2) × 5					

Potential impact	Impact Significance	Proposed Mitigation Measures	Impact Significance		
	without Mitigation		with mitigation		
Construction Phase					
watercourses. Hydrocarbons, oils and grease,	SP = 55	possible ingress into the groundwater	SP= (2+ 1 + 1) × 1		
cement, sewage from portable chemical toilets, and		regime.	SP = 4		
events involving the discharge of untreated effluent		Implement protocols and emergency	5P = 4		
are examples of potential contaminants during the		responses for accidental leakages or release			
construction period.		of contaminants into environment.			
		Machinery must be parked on the designated			
Machinery will use petroleum and oil products and		bunded areas and dip trays must be placed			
if not properly managed can lead to contamination		under the machinery showing some signs of			
of the perched groundwater system.		leaks, when not used to capture any possible			
		oil leaks.			
Cement used in mortar lining may also see into the		Vehicle maintenance must not take place on			
soil or runoff into watercourses and cause potential		site unless a specific bunded area is			
subsurface and groundwater contamination through		constructed for such a purpose.			
seepage.		 Hazardous storage and refuelling areas must 			
		be bunded prior to their use on site during the			
The oil spills from construction machinery may also		construction period following the appropriate			
leach the soil and contaminate the groundwater		SANS codes. The bund wall should be high			
through groundwater seepage		enough to contain at least 110% of any			
		stored volume. The surface of the bunded			
		surface should be graded to the centre so			
		that spillage may be collected and			
		satisfactorily disposed of.			
		All necessary equipment for dealing with			
		spills of fuels/chemicals must be available at			

without Mitigation with mitigation Construction Phase the site. Spills must be cleaned up immediately and contaminated soil/material disposed of appropriately at a registered site. Portable clean-up kits must be available on	ion
the site. Spills must be cleaned up immediately and contaminated soil/material disposed of appropriately at a registered site.	
immediately and contaminated soil/material disposed of appropriately at a registered site.	
disposed of appropriately at a registered site.	
Portable clean-up kits must be available on	
site to undertake immediate clean-up, should	
a spill occur.	
Contaminated water containing fuel, oil or	
other hazardous substances must never be	
released into the environment. It must be	
disposed of at a registered hazardous landfill	
site.	
Cement mixing must be done on impervious	
surface (concrete or shatter board)	
Soil degradation and soil erosion due to loss of High > During the site preparation, topsoil and Negligible	2
vegetation cover:(60)subsoil are to be stripped separately from(8)	
Uncontrolled construction processes would result in each other and must be stored separately,	
erosion and degradation of habitats is likely to occur away from spoil, for use post-construction.	
during clearing of vegetation, topsoil removal and SP= (M + D + S) × P > Vegetation clearing must be undertaken in a SP= (M + D + S)	5) × P
excavation works at riverbanks and instream habitat SP= (5 + 5 + 2 × 5 phased approach to avoid loose soils and SP= (2 + 1 + 1	1) × 2
at pipeline river crossings as well as pipeline route, SP = 60 erosion and ideally should take place in the SP =	8
and excavation at WWTW for foundation of dry period. Clearing activities must only be	
infrastructure. Therefore, excavation at riverbanks undertaken during agreed working times and	
and instream is considered highly sensitive as it permitted weather conditions. If heavy rains	
are expected, clearing activities should be	

Potential impact	Impact Significance without Mitigation		Proposed Mitigation Measures	Impact Significance with mitigation
Construc			hase	
may result in stream sedimentation. Furthermore,			put on hold. In this regard, the contractor	
the disturbed soils are prone to surface run-off.			must be aware of weather forecasts. It is	
			recommended to undertake majority of the	
			construction activities during the drier	
			months.	
	3	\triangleright	Vegetation clearance along the pipeline route	
			must be kept as minimal as possible to areas	
			as demarcated by the project plans and to	
			make use of natural erosion suppressors	
			such as good grassland cover. Rehabilitation	
			to begin immediately and not only when	
			construction ends.	
	3	\triangleright	All bare slopes and surfaces within the	
			vicinity of the pipeline route and new WWTW	
			along the high sloping areas to be exposed	
			to the elements during clearing and	
			earthworks must be protected against	
			erosion using rows of hay-bales, sandbags	
			and/or silt fences aligned along the contours	
			and spaced at regular intervals (e.g. every	
			2m) to break the energy of surface flows.	
		≻	No work within riparian, incised banks and	
			wetland habitat area must be carried out	
			during the wet period or peak flow conditions.	

without Mitigation Construction Phase	with mitigation
No vegetation clearance and excav	ation
must be carried within the highly slow	oping
susceptible to surface erosion during	wet
period as this could increase er	osion
propensity.	
> Make use of gabions along the pipe	lines
within the riverbanks, to prevent erosion	as a
result of loose banks caused by excava	ions.
Regular maintenance of any sedi	ment
control dams must be undertaken durin	g the
construction / establishment period to en	isure
that these structures continue to fur	ction
appropriately.	
Wherever possible, existing vegetation	cover
on the development site should	be
maintained during the construction pl	nase.
The unnecessary removal of ground	cover
from slopes must be prevented, especia	ly on
steep slopes which will not be develope	d.
If re-vegetation of exposed surfaces can be a surface of the su	annot
be established immediately due to ph	asing
issues, temporary erosion and sed	ment
control measures must be maintained	until

Potential impact	Impact Significance	Proposed Mitigation Measures	Impact Significance		
	without Mitigation		with mitigation		
	Construction Phase				
		such a time that re-vegetation ca	1		
		commence.			
		 Excavated material must be stockpiled alon 	9		
		the trench within the working servitude for	r		
		later backfilling and must not be more tha	1		
		2m in height.			
		> Excavations must not be left open for	r		
		extended periods and must not b	e		
		undertaken until such time that all require	t l		
		materials are available on-site, to facilitat	e		
		immediate laying of the construction of	f		
		subsurface infrastructure.			
		> All temporary erosion and sediment control	1		
		measures must be monitored for the duratio	1		
		of the construction phase and repaire	k		
		immediately when damaged. All temporar	/		
		erosion and sediment control structures mus	t		
		only be removed once vegetation cover ha	5		
		successfully recolonised the affected areas.			
		> After every rainfall event, the contractor must	t		
		check the site for erosion damage an			
		rehabilitate this damage immediately			
		Erosion rills and gullies must be filled-in wit			
		appropriate material and silt fences o	r		

Potential impact	Impact Significance		Proposed Mitigation Measures	Impact Significance
	without Mitigation			with mitigation
	Construct	ion F	Phase	
			fascine work must be established along the	
			gulley for additional protection until	
			vegetation has re-colonised the rehabilitated	
			area.	
		۶	ECO must be appointed to oversee	
			construction activities and to ensure	
			environmental legal compliance.	
Soil erosion and geological degradation:	High	≻	Best practice pipeline river crossing design	Negligible
The uncontrolled construction activities will likely	(60)		and construction practices to be followed to	(10)
exacerbate erosion and geological degradation.			provide good drainage and prevent erosion.	
Therefore, excavation at riparian zones is	SP= (M + D + S) × P	۶	Excavation for the pipeline river crossing that	
considered highly sensitive as it is prone to erosion	SP= (5 + 5 + 2) × 5		is carried out within the riparian zones must	$SP=(M + D + S) \times P$
due to run-off and sedimentation from wet period.	SP = 60		be limited to the development area as	SP= (3 + 1 + 1) × 2
Also, the exposed riverbanks are prone to erosion			approved by project plans/site layouts. Also,	SP = 10
during peak flow events. Excavation within sloping			to be carried out in a manner to promote	
areas for pipeline construction, is considered highly			stable development of the site.	
sensitive with regard to erosion and geological		\succ	Several slope stabilizing measures can be	
degradation			implemented for construction (the nature and	
			design of which to be assessed and	
			determined by responsible engineer);	
		\succ	Modifying the slope geometry by reducing	
			the slope angle, removing weight from the	
			slope head, increasing weight at the slope	
			toe and/or constructing of benches or berms.	

Potential impact	Impact Significance	Proposed Mitigation Measures Impact Significance			
	without Mitigation	with mitigation			
	Construction Phase				
		 Constructing walls or other retaining elements (reinforced earth walls, gabion walls). 			
		 Surface protection measures including wire meshes, geotextiles and using plant cover to help reinforce the ground surface of slopes, 			
		 which were excavated in soils. > Use suitable stabilisation structures to prevent erosion and select appropriate crossing points (geotechnical findings, sensitivity of riparian and in-stream habitat). 			
		 Sections of trenches/excavations/cuts need to be either shored or flattened to less than 60° from horizontal. 			
		Spoil from the trench excavations must not be placed closer than the equivalent depth of the trench to avoid unnecessary loading of the sidewalls, especially under moist to saturated conditions;			
		It is recommended that excavations be carried out along the guidelines given in SANS 10400-G (current version).			

Potential impact	Impact Significance	Proposed Mitigation Measures	Impact Significance
	without Mitigation		with mitigation
		Excavation at riparian zones must not be	
		undertaken during wet (rainy) periods or	
		peak flow conditions.	
		> If seepage is present or an elevated moisture	
		content is eminent or expected during the	
		wetter part of the year, even trenches	
		shallower than 1.5m should be regarded as	
		dangerous and stand-up time could be	
		measured in minutes.	
		Construct storm water system and make	
		provision for erosion protection.	
		> Excavations must not be left open for a long	
		duration and must not be undertaken until	
		such time that all required materials are	
		available on-site.	
		> Density control of placed fill material must be	
		undertaken at regular intervals during fill	
		construction.	
		> All cut and fill embankments must be	
		adequately vegetated or paved as soon as	
		possible after construction to limit the	
		potential for erosion. Where the	
		recommended batters cannot be	

Potential impact	Impact Significance	Proposed Mitigation Measures	Impact Significance
	without Mitigation		with mitigation
		accommodated, permanent lateral support	
		should be incorporated.	
		> Seepage within the excavation should be	
		dealt with symptomatically via either a	
		furrow/channel draining downslope or by	
		conventional sump and pump method, which	
		will in any case be required to keep the	
		excavation dry after heavy rains during the	
		wet season;	
		> Permanent cut embankments in all the soil	
		materials on site should be restricted to a	
		slope batter of 1:2 (26E);	
		> General fill embankments should be	
		constructed of suitable granular material	
		(G10 or better) and placed in layers of	
		maximum 300mm loose thickness and	
		compacted to a minimum of 95% Mod	
		AASHTO density prior to the placement of	
		the next layer to minimise post construction	
		settlement and potential stability problems;	
		> To ensure proper and uniform compaction	
		across fill the maximum fill particle size	
		should be no greater than two thirds the layer	
		thickness;	

Potential impact	Impact Significance	Proposed Mitigation Measures	Impact Significance
	without Mitigation		with mitigation
		General fill embankments should not exceed	
		a maximum slope batter of 1:1.75 (30°);	
		> After every rainfall event, the contractor must	
		check the site for erosion damage and	
		immediately repair any damage identified.	
		 Sediment barriers (gabions) must be 	
		installed in areas sensitive to erosion such as	
		slopes, and actively eroding riverbanks.	
Disturbance of Burial Grounds and Graves:	Medium High	Appoint a Social Facilitator to manage project	Negligible
Uncontrolled construction activities for pipeline	(48)	social aspects and re-route the pipeline where	(5)
projects are likely to unearth unmarked graves. It		there is encroachment to burial sites. Social	
		Facilitator to undertake engagement with the	SP= (M + D + S) × P
must be noted that the project is within the		households adjacent to pipeline route for	SP= (3 + 1 + 1) × 1
settlement area. Moreover, there was one grave	$SP=(M+D+S)\times P$	assistance in identifying all unmarked graves	SP =5
site encountered during the infield assessment at	SP= (5 + 5 + 2) × 4	that could be on the section of pipeline route;	
location (28° 9'21.60"S, 31°52'4.68"E) but falls	SP = 48	designs to be reviewed to prevent intrusion into	
outside the project corridor. The grave site was		grave sites, such as deviations to avoid graves	
within the household.		and 30m buffer marked as "No-Go" areas. Any	
		contractor found working within No-Go areas	
		must be fined as per fining schedule/system	
		setup for the project.	
		 Excavation for pipeline upgrade must be 	
		limited only to existing pipeline servitudes and	
		minuted only to existing pipeline servitudes and	

Potential impact	Impact Significance	Proposed Mitigation Measures	Impact Significance
	without Mitigation		with mitigation
	Construct	ion Phase	
		development area, as approved by project	
		plans and layouts.	
		Monitoring must take place during site	
		clearance for possible infant and still-born	
		burials and implement the Chance Finds	
		Procedure (CFP) if any such finds are	
		uncovered.	
		> If any human remains, graves, archaeological	
		and historical residues are discovered, the	
		Amafa Heritage Resource Institute and the	
		National Heritage Resources Act, No 25 of	
		1999. requires that operations should cease	
		immediately pending an evaluation by the	
		relevant heritage authorities.	
Loss of archaeological and paleontological	Low	> Excavation for the bulk pipeline upgrade at	Negligible
resources:	(24)	riparian zone and along the pipeline route must	(5)
Uncontrolled construction activities could result in		only be limited to development area as	
disturbance of surfaces and/or sub-surfaces which		approved by project plans	SP= (M + D + S) × P
would be destroyed, damaged, altered, or removed	SP= (M + D + S) × P	> Measures must be taken to avoid any	SP= (3 + 1 + 1) × 1
from its original position of archaeological and	SP= (5 + 5 + 2) × 2	geological structure from being eroded and	SP = 5
paleontological material or objects.	SP = 24	collapsing, and in the process causing loss of	
		archaeological and paleontological resources.	

Potential impact	Impact Significance	Proposed Mitigation Measures	Impact Significance
	without Mitigation		with mitigation
Construction Phase			
However, there are no archaeological sites within		Regular Archaeological Watching Briefs	
the project site. The palaeosensitivity has recorded		should be carried out during construction in	
the area as medium. Archaeological resources may		case any chance findings are made.	
still be discovered during excavations or any		> Should any artefact or heritage resource be	
ground-breaking activities during the construction		encountered, the contractor is advised to stop	
phase.		the operation immediately, inform the ECO	
		who must refer the matter to Amafa Heritage	
A preliminary desktop study for palaeontological		Resource Institute for attention.	
fossils sensitivity of the proposed site, reveals that			
the site falls within a 'Moderate' paleontological			
sensitivity. The environmental screening tool also			
describe the section of the study area as having			
'Medium' paleontological sensitivity and a 'Low'			
archaeological and cultural heritage sensitivity.			
Destruction of heritage resources:	Low	Excavation for the bulk pipeline upgrade at	Negligible
Uncontrolled excavation works, particularly in within	(24)	riparian zone and along the pipeline route must	(5)
the riparian and rural settlement are most likely to		only be limited to development area as	
cause disturbance or destruction of non-renewable		approved by project plans	
heritage resources. However, there are no evidence		A CFP should be implemented where possible	SP= (M + D + S) × P
of heritage resources within the locality of the	SP= (M + D + S) × P	heritage finds are uncovered/ discovered.	SP= (3 + 1 + 1)× 1
project site.	SP= (5 + 5 + 2) × 2	Should any artefact or heritage resource be	SP =5
	SP = 24	encountered, the contractor is advised to stop	

Potential impact	Impact Significance	Proposed Mitigation Measures	Impact Significance
	without Mitigation		with mitigation
	Construct	ion Phase	
		the operation immediately, report to the ECO	
		who must refer the matter to South African	
		Heritage Resource Agency for attention.	
		Therefore, a heritage practitioner /	
		archaeologist must be engaged in the event	
		that any possible heritage resources or	
		artefacts are identified.	
Air pollution, dust, and emissions:	Medium	> Apply dust suppression to exposed soil and	Negligible
Dust could be generated during construction as a	(36)	stockpiles. All transported and stored fine	(10)
result of earthworks and stockpiles. The major dust		product must be covered to prevent spills and	
sources could emanate from the movement of	SP= (M + D + S) × P	been blown by wind.	$SP=(M + D + S) \times P$
vehicles on access road transporting material and	SP= (5 + 1 + 2) × 3	> Excavated material is to be stockpiled along	SP= (3 + 1 + 1) × 2
equipment to the working areas. Furthermore,	SP = 36	the trench within the working servitude for later	SP =10
transportation and storage of fine sand, spoils and		backfilling, of not more than 2m in height.	
cement could result in dust. Emissions from		Limit on-site vehicle speed to 40 km/h or lower	
construction vehicles and heavy machinery,		due to driving conditions.	
especially those poorly maintained will result in air		> All fine products must be covered during	
pollution.		transportation.	
		Minimise gas emission through regular	
		servicing of construction vehicles to meet	
		minimum emission requirements.	
Aesthetic / visual Impact:	Very Low	> Landscaping all disturbed areas to Natural	Negligible
The viewshed area and zone of visual influence for	(12)	Ground Level (NGL).	(8)
the proposed bulk pipeline upgrade is considered			

Potential impact	Impact Significance	Proposed Mitigation Measures	Impact Significance
	without Mitigation		with mitigation
	Construct	ion Phase	
"low visibility" as it can be visible from a small		Removal of all construction material and debris	
area around the project site (<1km radius). As this	$SP=(M + D + S) \times P$	from site.	$SP=(M + D + S) \times P$
project involve underlaid infrastructure.	SP= (3 + 1 + 2) × 2	> Concentrate the construction activity and	SP= (2+ 1 + 1) × 2
	SP = 12	temporary infrastructure in a designated place.	SP = 8
However, during the construction phase, residents		In this regard the site camp, must be	
who live in close proximity to or overlook the		constructed close enough to the construction	
proposed project site will experience a change in		area to avoid high visibility of construction	
their existing views as residents will have a view of		activities.	
the construction site characterized by exposed		> The contractor must maintain good	
earth and machinery.		housekeeping on-site to minimise waste	
		generation and avoid litter.	
		> Dust suppression is important to reduce the	
		visibility of the development.	
		> Excavated material is to be stockpiled along	
		the trench within the working servitude for later	
		backfilling, of not more than 2m in height.	
		> Avoid the use of floodlight at site camp. Also,	
		the light must not face the neighboring	
		homesteads and oncoming traffic on the rural	
		access roads.	
		\succ The clearance must be minimal, only to a	
		corridor as approved by project plans and	
		layouts.	

Potential impact	Impact Significance	Proposed Mitigation Measures	Impact Significance
	without Mitigation		with mitigation
	Construct	ion Phase	
Noise pollution:	Medium	> In recognition of the inherently noisy and	Very Low
The main sources of noise associated with the	(40)	temporary nature of construction activities,	(15)
proposed construction activities include the		specify standard construction hours during	
following: construction activities and equipment	SP= (M + D + S) × P	which the usual fixed noise limits do not apply.	$SP=(M + D + S) \times P$
delivery. Construction activities are likely to be	SP= (5 + 1 + 2) × 5	Ensure that operating hours as determined by	SP= (2+ 1 + 2) × 3
confined to daytime and the noise levels will only	SP = 40	the EA are adhered to. Where not defined,	SP = 15
affect the adjacent areas for a relatively short period		development must be limited to daylight hours.	
of time.		> All vehicles must be maintained in accordance	
		with manufacturer's specifications to avoid	
		excessive noise.	
Traffic impact:	Medium High	> Identify and delineate the existing multiple	Very Low
Construction project result in the increase in	(45)	access points to the pipeline routes. These	(12)
construction vehicles in and around the proposed		access routes must form an integral part of site	
site, and trucks transporting materials turning from	$SP=(M + D + S) \times P$	layouts which must be communicated to the	$SP=(M + D + S) \times P$
the main road to access road to site, vice versa.	SP= (5 + 1 + 3) × 5	project team including delivery crew.	SP= (3 + 1 + 2) × 2
However, it will be of temporary duration as it will	SP = 45	> Appropriate temporary signage, traffic control	SP =12
only last for the construction duration of the project.		signals, delineators, message boards, must be	
The traffic within the main road turning point will be		used for traffic accommodation in the work	
affected by number of construction tricks turning to		zone, truck turning points and shall be visible	
and from the site. The Local community members		by motorists and pedestrians.	
(especially children) and livestock (cattle, goats),		> Allow for the accommodation of traffic during	
could be exposed due the movement of vehicles		excavation for pipeline route road crossing.	
and equipment into and out of the project sites			

Potential impact	Impact Significance	Proposed Mitigation Measures	Impact Significance
	without Mitigation		with mitigation
	Construct	ion Phase	
		> Along the road reserve all clearance and	
		excavation must be done in accordance with	
		DOT standards.	
		The road crossings at must be done according	
		to DOT standards. At the tar or main road	
		crossings, where possible, the pipe jacking	
		must be done, to avoid disturbance to existing	
		road and minimise the impact on the traffic;	
		> Establish speed limits at an approach to	
		construction vehicle turning point where the	
		road conditions dictate, vehicles must be	
		driven slower and with an awareness of	
		potential risks.	
		Limit on-site vehicle speed to 40 km/h or lower	
		due to driving conditions.	
Social distress and damage to existing	Medium High	> Identify all existing underneath and surface	Very Low
services:	(45)	infrastructure, such as water pipeline,	(12)
Social impacts related to bulk water infrastructure		telecommunication lines, and powerlines	
emanate from:	SP= (M + D + S) × P	which will be in the corridor, and construct in	$SP=(M + D + S) \times P$
	SP= (5 + 1 + 3) × 5	accordance with authority requirements, as	SP= (3 + 1 + 2) × 2
	SP = 45		SP =12

	Potential impact	Impact Significance	Proposed Mitigation Measures	Impact Significance
		without Mitigation		with mitigation
		Construct	ion Phase	
ser cat • Dis as • Dis suc	sturbance of existing underneath rvices (water infrastructure, electricity bles, telecommunication infrastructure); sturbance of surface infrastructure such road and roads; and sturbance of overhead infrastructure ch as powerlines and ecommunication infrastructure.	Construct	 per prescribed by approved design and wayleaves. The construction along the road reserve and for road crossing must be done in accordance with Department of Transport (DoT) standards, and design prescription as approved by DoT. These designs will be requirements to secure the wayleave with regards to the pipeline situated within the road reserve; specifications and requirements for pipe crossings underneath the roads, which will be constructed by means of pipe jacking; specification, requirements, and preferences with regards to access to the respective roads. Along the road reserve all clearance and excavation must be done in accordance with DoT standards. All road crossings must be done according to DoT standards. At the tar or main road crossings, where possible, the pipe jacking must be done, to avoid disturbance to existing road and minimise the impact on the traffic. 	

Potential impact	Impact Significance	Proposed Mitigation Measures	Impact Significance
	without Mitigation		with mitigation
	Construct	ion Phase	
Waste emanating from construction activities:	Medium High	Educate of workers on pollution prevention	Negligible
Uncontrolled waste generated from construction	(50)	practices. Training programme must provide	(4)
activities such as: general, health care and		information on material handling and spill	
hazardous wastes are more likely inherited from	SP= (M + D + S) × P	prevention and response.	$SP=(M + D + S) \times P$
construction activities.	SP= (5 + 2 + 3) × 5	 Have sufficient and separate bins for general, 	SP= (2 + 1 + 1) × 1
	SP = 50	medical and hazardous waste disposal by	SP = 4
		implementing the Integrated Waste	
		Management approach: segregation of waste	
		into separate bins and clearly marked for each	
		waste type.	
		Refuse must be removed regularly to licensed	
		landfill sites.	
		Hazardous waste must be stored in a secured	
		waste receptacle and disposed of at a	
		registered waste disposal site.	
		> Adequate sanitary facilities and ablutions on	
		the project site must be provided for all	
		personnel throughout the project area.	
		> All waste manifest and disposal certificates	
		must be kept on record	

Potential Impacts	Impact Significance	Proposed Mitigation Measures	Impact Significance
	without Mitigation		with mitigation
	Operatio	on Phase	
Effluent Waste emanating from WWTW and	High	Conduct waste classification of WWTW The	Medium High
Sewer Pumpstation activities:	(60)	waste resulted from operation of WWTW such	(8)
Uncontrolled waste generated from WWTW and		as sludge, residues of waste, and other	
sewer pumpstations activities such as: wet sludge,	$SP=(M + D + S) \times P$	hazardous waste in accordance with the	$SP=(M + D + S) \times P$
dry sludge, oil spoils, and other hazardous wastes	SP= (5 + 4 + 3) × 5	specified Minimum Requirements per 4(1) of	SP= (2 + 1 + 1) × 2
are more likely inherited during operation and	SP = 60	the National Norms and Standards for Waste	SP = 8
maintenance activities.		Disposal (NEM: WA Act No. 59 of 2008).	
		> Implement the operation and maintenance	
		strategy plan for the pumpstations and WWTW.	
		> Implement Emergency Contingency Plain	
		where there is a system failure	
		> To have temporary sludge handling sump at	
		each pumpstation and at WWTW.	
		> Sludge composting to be done within the	
		shaded area on concrete bunded surface	
		Dispose of dry sludge at registered landfill with	
		licensed professional service provider.	
		Manholes must be sealed and used to inspect	
		and maintain infrastructure.	
		> Adequate maintenance measures need to be	
		implemented immediately when pipeline issues	
		and failures are identified.	

Table 18: Impact Assessment Analysis for Operation Phase

Potential Impacts	Impact Significance without Mitigation	Proposed Mitigation Measures	Impact Significance with mitigation
	Operatio	on Phase	
Deterioration of River water quality during	High	Develop and Implement the Contingency Plan.	Very Low
operation of WWTW and Sewer pumpstations:	(60)	A conceptual riverine rehabilitation and	(12)
Contamination of surface waters from inadequate		monitoring plan with a focus on erosion and	
treatment of effluent.	SP= (M + D + S) × P	alien vegetation management must be	$SP=(M + D + S) \times P$
	SP= (5 + 4 + 3) × 5	implemented, in order to manage the	SP= (3 + 1 + 2) × 2
The highest risk of pollution will be experienced	SP = 60	rehabilitation of the affected watercourse after	SP = 12
during the operation of new WWTW as a result of		the construction (if necessary). The	
treated effluent discharge, as a result the riverine		rehabilitation plan must make provision for an	
ecosystem health will be affected by exponential		aquatic biomonitoring survey which includes	
change to physico-chemical constituents in water.		an assessment of water quality, habitat,	
		SASS5 and fish, given the important	
The aquatic macroinvertebrates, instream		conservation value of the area.	
biotopes, fish and water quality likely to be affected.		The sludge treatment including sludge	
		thickening, storage and disposal process, will	
Misuse and mismanagement, and poor		involve sludge drying bed and also make use of	
maintenance of the WWTW and sewer		an oxidation pond. The oxidation pond area will	
pumpstations leading to failures and ineffective		be partially filled, or concrete lined to be used	
treatment. Will result in sewer spillage and water		as sludge maturation ponds. This proposed	
contamination, as a result the riverine ecosystem		process design is based on an extended	
health will be affected by exponential change to		aeration activated sludge process, without	
physico-chemical constituents in water.		primary sedimentation and with the addition of	
Poor monitoring and management of bulk sewer		denitrification to the process.	
gravity main at the vicinity of pipeline stream		 Conduct monthly water quality tests on treated effluent. 	

159 EMVELO CONSULTANT- DRAFT Basic Assessment Report: Proposed Hlabisa Bulk Sewer Pipeline and new WWTW

Potential Impacts	Impact Significance	Proposed Mitigation Measures	Impact Significance
	without Mitigation		with mitigation
	Operatio	on Phase	
crossing could lead into pipe burst and sewer		Dispose of dry sludge at registered landfill with	
leakage, as a result the effluent would enter the		licensed professional service provider.	
water bodies and result in alteration to physico-		Manholes must be sealed and used to inspect	
chemical constituents in watercourse		and maintain infrastructure.	
characteristics and fragmentation of biota.		> Remove contaminated soils immediately from	
		the polluted area and rectify the impacts.	
Collapse of banks due to uncontrolled stormwater		> Major spills must be reported to the authorities	
runoff, will result in stream siltation and decreased		> The stream crossing must promote natural	
water quality.		flows and allow for connectivity in the river.	
		> Regular inspection at the effluent discharge	
		vicinity and stream crossing for evidence of	
		sediment and debris build-up during wet	
		season and dry season, alternatively after	
		heavy rainfall, or peak flow conditions.	
		> Regular monitoring of treated effluent at the	
		new Hlabisa WWTW must be undertaken. Do	
		not discharge untreated effluent. The	
		discharged effluent must be in accordance with	
		approved TWQR allocation indicated in the	
		water use license. Records of effluent	
		discharge quantity and TWQR parameters	
		must be kept. No untreated effluent may be	
		discharged into watercourses.	

Potential Impacts	Impact Significance	Proposed Mitigation Measures	Impact Significance
	without Mitigation		with mitigation
	Operatio	on Phase	
		The sludge lagoons must be monitored and no	
		leakages into wetland may occur, and any	
		detection of seepage must be remedied	
		immediately.	
		> Adequate maintenance measures need to be	
		implemented immediately when pipeline issues	
		and failures are identified.	
		> Ongoing Quarterly water quality and	
		biomonitoring must be implemented during	
		operation. monitoring at the upstream and	
		downstream of WWTW at Hluhluwe River.	
Soil erosion and geological degradation:	Medium-High	Implement the Stormwater Management Plan	Negligible
Poor placement or design of the on-site WWTW	(50)	Concrete lined upslope interception drains	(10)
stormwater infrastructure during the operation		must be installed at each site.	
phase could lead to increased erosion and	$SP=(M + D + S) \times P$	Implement Maintenance and Monitoring Plan.	$SP=(M + D + S) \times P$
sedimentation into the watercourse.	SP= (5 + 3 + 2) × 5	\succ It is important that the location and extent of the	SP= (3 + 1 + 1) × 2
	SP = 50	watercourses in the vicinity of project activities	SP =10
Uncontrolled construction activities and poor storm		be incorporated into all formal maintenance and	
water designs within the vicinity of stream		repair plans for the project.	
crossings could lead in withering of riverbanks in		Construct storm water system and make	
cut-face at sloping areas, in the process resulting		provision for erosion protection.	
in run-off and erosion in event of high precipitation		The disturbed watercourse habitat and	
and peak flow period.		rehabilitated areas must be monitored for	
		potential erosion and scouring. This must	

Impact Significance	Proposed Mitigation Measures	Impact Significance
without Mitigation		with mitigation
Operatio	on Phase	
	initially take place immediately after	
	construction, thereafter quarterly for two years	
	and thereafter annually.	
	 Installation of gabion baskets and mattresses, 	
	energy dissipaters and grass lined drains	
	Stormwater management through regular	
	inspection for evidence of sediment and debris	
	build-up during wet season.	
	> Adequate maintenance measures need to be	
	implemented immediately when pipeline issues	
	and failures are identified.	
	> Maintenance vehicles must use the existing	
	access route.	
	Adequate rehabilitation and maintenance	
	measures, to be applied to areas susceptible to	
	erosion along the pipeline route	
High	> Engineering design and good construction	Negligible
(55)	practice to mitigate the impact on flow region	(5)
	and prevent inundation upstream of the pipeline	
$SP=(M + D + S) \times P$	stream crossings.	$SP=(M + D + S) \times P$
SP= (5 + 4 + 2) × 5	> Concrete encase alignment must not form a	SP= (3 + 1 + 1) × 1
SP = 55	heap but be aligned with the In-sutu instream	SP = 5
	habitat.	
	without Mitigation Operation Operation High (55) SP= (M + D + S) × P SP= (5 + 4 + 2) × 5	without MitigationOperation Phaseinitially take place immediately after construction, thereafter quarterly for two years and thereafter annually.> Installation of gabion baskets and mattresses, energy dissipaters and grass lined drains> Stormwater management through regular inspection for evidence of sediment and debris build-up during wet season.> Adequate maintenance measures need to be implemented immediately when pipeline issues and failures are identified.> Maintenance vehicles must use the existing access route.> Adequate rehabilitation and maintenance measures, to be applied to areas susceptible to erosion along the pipeline routeHigh (55)SP= (M + D + S) × P SP= (5 + 4 + 2) × 5 SP = 55> Concrete encase alignment must not form a heap but be aligned with the <i>In-sutu</i> instream

Potential Impacts	Impact Significance without Mitigation	Proposed Mitigation Measures	Impact Significance with mitigation
	_	on Phase	with mitigation
the pipeline and prevent it from being eroded as a result of stream crossing. This could result in stream flow reduction, and inundation. Collapse of banks due to uncontrolled stormwater runoff, will result in stream siltation.		Regular inspection at river crossing for evidence of sediment and debris build-up during wet season and dry season, alternatively after heavy rainfall.	
Groundwater pollution: Contamination of groundwater from pipeline leaks and failed sewer pumpstations and other sewer infrastructure. Contamination of ground waters from Inadequate treatment of effluent, result in effluent spillages	Medium High (50) SP= (M + D + S) × P SP= (5 + 4 + 3) × 5 SP = 50	 Develop and Implement Contingency Plan. Conduct monthly water quality tests on treated effluent. Conduct groundwater monitoring quarterly to ensure no leaks. Adequate maintenance measures need to be implemented immediately when pipeline issues and failures are identified. Implement a Biomonitoring program. Dispose of dry sludge at registered landfill with licensed professional service provider. Manholes must be sealed and used to inspect and maintain infrastructure. Remove contaminated soils immediately from the polluted area and rectify the impacts. Major spills must be reported to the authorities. 	Negligible (10) SP= (M + D + S) × P SP= (3 + 1 + 1) × 2 SP = 10

Potential Impacts	Impact Significance without Mitigation	Proposed Mitigation Measures	Impact Significance with mitigation			
Degradation of freshwater (aquatic) habitat as a	egradation of freshwater (aquatic) habitat as a Medium High > Rehabilitate all watercourses in accordance					
result of uncontrolled activities:	(50)	with DWS approved Rehabilitation and	(10)			
Uncontrolled use of WWTW and discharge into		Maintenance Plan				
watercourse	$SP=(M + D + S) \times P$	Rehabilitation and Maintenance Plan	$SP=(M + D + S) \times P$			
Die off of sensitive species at riparian and instream	SP= (5 + 4 + 3) × 5	> Compile and implement a conceptual riverine	SP= (3 + 1 + 2) × 2			
habitat which supports the aquatic	SP = 50	rehabilitation and monitoring plan with a focus	SP = 10			
macroinvertebrates, instream biotopes, and fish.		on erosion and alien vegetation management,				
Collapse of banks due to uncontrolled stormwater		in order to manage the rehabilitation of the				
runoff		affected watercourse after the construction (if				
		necessary).				
		The rehabilitation plan must make provision for				
		an aquatic biomonitoring survey which includes				
		an assessment of water quality, habitat, SASS5				
		and fish, given the important conservation				
		value of the area.				
		Implement Contingency Plan.				
		Conduct monthly water quality tests on treated				
		effluent.				
		Conduct surface water monitoring quarterly to				
		monitor the effluent discharge.				
		Implement a Biomonitoring program.				
		Dispose of dry sludge at registered landfill with				
		licensed professional service provider.				

Potential Impacts	Impact Significance	Significance Proposed Mitigation Measures I	
	without Mitigation		with mitigation
		Manholes must be sealed and used to inspect	
		and maintain infrastructure.	
		> Remove contaminated soils immediately from	
		the polluted area and rectify the impacts.	
		 Major spills must be reported to the authorities 	
Vegetation clearance and rehabilitation during	Medium-High	> Implement a Rehabilitation and Maintenance	Negligible
maintenance	(40)	Plan.	(10)
Uncontrolled maintenance, could result in		> Once a rehabilitation method statement has	
extensive vegetation cover removal	$SP=(M + D + S) \times P$	been established and undertaken, monitoring	$SP=(M + D + S) \times P$
	SP= (5 + 3 + 2) × 4	activities must be put in place to verify the	SP= (3 + 1 + 1) × 2
Poor reinstatement of vegetation.	SP = 40	progress made on the rehabilitation objectives	SP = 10
Steep slopes causing head cut erosion and		and targets	
sedimentation.		> Maintenance vehicles must use the existing	
		access route.	
		 All vehicles must use the existing access roads. 	
		 Mark the pipeline servitude 	
		 Clearly demarcate the pipeline servitude 	
		> Clearance during pipeline maintenance must	
		be within the existing pipeline servitude	
		Exposed soils must be vegetated as soon as	
		possible in order not to impede surface runoff	
		and inhibit erosion of the surface soils.	

Potential Impacts	Impact Significance	Proposed Mitigation Measures						
	without Mitigation		with mitigation					
Operation Phase								
Alien Invasive Plant Species	nvasive Plant Species Very High > In terms of management, alien invasive plant							
Alien invasive plant species within the pipeline	(65)	control must be practiced on an on-going basis	(12)					
servitude.		in line with the requirements of Section 2(2) and						
	$SP=(M + D + S) \times P$	Section 3 (2) the National Environmental	$SP=(M + D + S) \times P$					
Encroachment of IAPs. Permanent alteration to	SP= (5 + 5 + 3) × 5	Management: Biodiversity Act (NEM:BA),	SP= (3 + 2 + 1) × 2					
wetland functionality.	SP = 40	which obligates the landowner/developer to	SP = 12					
		control IAPs on their property.						
		> Progressively, remove alien plant species						
		within the pipeline servitude.						
		Establish and maintain an IAPs management						
		programme.						
Overall Mean significance:	Medium-High	Nature of a project post mitigation	Negligible					
Nature of a project without mitigation	(48)		(9)					
	1735 ÷ 36 =48		332 ÷ 36 =9					

16 CUMULATIVE IMPACT ASSESSMENT AND MITIGATION MEASURES

In terms of the EIA Regulations, the cumulative impact is considered from the holistic point of view. It means that the impacts of an activity are considered from the past, present and foreseeable future, together with the impact of activities associated with that activity. The activity itself may not be significant, but when combined with the existing and reasonably foreseeable impacts eventuating from similar or diverse activities may result in a significant change. "Cumulative impacts can be: additive, synergistic, time crowding, neutralizing and space crowding" (DEAT, 2004b;14).

It is necessary to assess each potentially significant impact in terms of:

- Cumulative impacts; and
- + The degree to which the impact may cause irreplaceable loss of resources.

	Low (1)	Considering the potential incremental, interactive, sequential,					
Cumulative Impact		and synergistic cumulative impacts, it is unlikely that the impact					
(CI)		will result in spatial and temporal cumulative change.					
	Medium (2)	Considering the potential incremental, interactive, sequential,					
		and synergistic cumulative impacts, it is probable that the					
		impact will result in spatial and temporal cumulative change.					
	High (3)	Considering the potential incremental, interactive, sequential,					
		and synergistic cumulative impacts, it is highly probable/					
		definite that the impact will result in spatial and temporal					
		cumulative change.					
	Low (1)	Where the impact is unlikely to result in irreplaceable loss of					
Irreplaceable Loss of		resources.					
Resources (LR)	Medium (2)	Where the impact may result in the irreplaceable loss (cannot					
		be replaced or substituted) of resources but the value (services					
		and/or functions) of these resources is limited.					
	High (3)	Where the impact may result in the irreplaceable loss of					
		resources of high value (services and/or functions).					

Table 19: Criteria for Cumulative Impacts.

Table 20: Prioritisation Factor (Cumulative Impacts)

Impact Description	Alternative	Phase	Cumulative Impact	Irreplaceable Loss
Biodiversity (flora): Habitat fragmentation, loss of natural vegetation during	A, B, C, D & E	Construction +Operation +Maintenance	2	1
pipeline and WWTW construction maintenance.				
Biodiversity (flora): Habitat fragmentation, loss of natural vegetation and	A, B, C, D & E	Construction +Operation +Maintenance	2	1
introduction of invasive alien plant species (IAPS)				
Biodiversity (flora): Habitat fragmentation, Loss of plant species of	A, B, C, D & E	Construction +Operation +Maintenance	1	1
conservation concern (SCC)				
Biodiversity (fauna): Loss of animal species of conservation concern (SCC)	A, B, C, D & E	Construction +Operation + Maintenance	1	1
Impact on terrestrial surface water resource: Impacts on watercourse habitat	A, B, C, D & E	Construction +Operation + Maintenance	2	1
functions and services.				
Impact on hydrological flow regime (rivers, streams, wetlands)	A, B, C, D & E	Construction +Operation + Maintenance	1	1
Impact on surface water quality (stream and river pollution)	A, B, C, D & E	Construction +Operation + Maintenance	2	1
Impact on ground water resource (Oil spillages & Ground water contamination)	A, B, C, D & E	Construction +Operation + Maintenance	1	1
Geological Impacts: Erosion, run-off slits and compaction.	A, B, C, D & E	Construction +Operation + Maintenance	2	1
Impact on Air Pollution: Dust from construction areas and emissions from	A, B, C, D & E	Construction +Operation + Maintenance	1	1
vehicles and equipment.				
Waste (General, Hazardous Waste)	A, B, C, D & E	Construction +Operation + Maintenance	1	1
Waste (Eluent Waste)	A, B, C, D & E	Construction +Operation + Maintenance	2	1
Impact on Heritage Resources: Loss of Heritage Resources, Burial Sites.	A, B, C, D & E	Construction +Operation + Maintenance	1	2
Impact on Paleontological resources: Archaeological and fossils	A, B, C, D & E	Construction +Operation + Maintenance	1	1
Visual Impact	A, B, C, D & E	Construction +Operation + Maintenance	1	1
Socio-economic Impact	A, B, C, D & E	Construction +Operation + Maintenance	3+	1
Impact on Traffic	A, B, C, D & E	Construction +Operation + Maintenance	1	1
Noise Pollution	A, B, C, D & E	Construction +Operation+ Maintenance	1	1
Impacts on existing services (properties or utility infrastructure)	A, B, C, D & E	Construction +Operation + Maintenance	1	1

Table 21: Description of Cumulative Impacts of High Value

Impact	Impact Level	Description		Mitigation		
Loss of indigenous vegetation	Medium (2)	Vegetation clearance for construction	≻	Clearly demarcate the construction footprint		
during construction and		and maintenance will take place within		prior to clearing of vegetation.		
Maintenance:		the vicinity of the riparian zo and	\triangleright	The vegetation clearance pipeline		
Uncontrolled vegetation clearance		wetlands (Subtropical Alluvial Vegetation		construction corridor for pipeline construction		
beyond the required footprint of the		(Aza7); the Zululand Lebombo Scarp		and maintenance must not be more than 10m		
project area could lead to loss of flora		Forest (FOz5) and the rest of the pipeline		width for the construction corridor within the		
habitat.		and WWTW will be constructed along		vicinity of the stream crossing (riparian		
		habitat associated Northern Zululand		zones), and wetlands (Subtropical Alluvial		
		Sourveld (<i>Svi</i> 22).		Vegetation (Aza7) vegetation).		
			\triangleright	The 15m buffer determination along the		
				Zululand Lebombo Scarp Forest (FOz5) must		
				be adhered to.		
			\triangleright	The vegetation clearance pipeline		
				construction corridor for pipeline construction		
				and maintenance of must not be more than		
				15m width on the remainder sections of		
				pipeline along habitat associated Northern		
				Zululand Sourveld (Svi22), provided there are		
				no sensitive environment.		
			\blacktriangleright	Vegetation clearance for construction and		
				maintenance at the new WWTW must be		
				limited to demarcated footprint. A 15m buffer		
				along the project site must be considered, and		
				no development and stockpiling should take		

Impact	Impact Level	Description		Mitigation
				place outside 15 buffers of the new WWTW
				site.
Invasive Alien Plant Species	Medium (2)	Uncontrolled vegetation clearance would	۶	Prevent large scale clearance, and only clear
Uncontrolled construction activities,		result in habitat fragmentation, loss of		the areas as demarcated by the approved
such as vegetation clearance and		natural vegetation and introduction of		project plans. All bare surfaces across the
excavation are likely to spread and/or		invasive alien plant species (IAPS)		construction site must be checked for IAPs
exacerbate colonization and				every two weeks and IAPs removed by hand
establishment of invasive alien species				pulling/uprooting and adequately disposed.
			۶	Implementation of Rehabilitation Plan
			۶	The control and eradication of a listed
				invasive species must be carried out during
				and post construction within the project site.
			\succ	Comprehensive mitigation will include
				rehabilitation plan and prevention of
				spreading of Alien Invasive Plant Species.
Impacts on watercourse habitat	Medium (2)	Uncontrol vegetation clearance and	≻	All work to be done within the riparian,
functions and services (stream,		excavation within watercourse such as		instream habitats, and wetlands must be
river, riparian, and wetlands):		identified which are stream, seepage,		carried out during low flow conditions, and dry
Expanded / more intense edge impacts		Unchanneled Valley Bottom (UVB) and		periods.
could occur due to disturbance causing		Channelled Valley Bottom (CVB)	۶	Where possible the pipeline route along the
activities taking place within or near the		wetlands and they were identified to be		wetlands must include buffer determination of
wetlands and riparian zones.		largely natural and moderately modified.		at least 28m buffer for CVB wetlands; 26m
				buffer for UVB wetlands; and 25m buffer for
		Construction activities within a		seepage wetlands to protect wetland habitat
		watercourse are likely to result in		and ecological corridor and mark no-go areas.
		degradation of watercourse habitat		

Impact	Impact Level	Description		Mitigation
		include (i) undertaking bulk earthworks	≻	All clearance for pipeline river crossing must
		associated with implementing the bulk		be within 10m of the construction corridor.
		sewer gravity main at the stream	\triangleright	All clearance and excavations along the
		crossings and effluent discharge pipeline		riparian and instream habitat for the purpose
		within riparian, (ii) placing infrastructure		of construction pipeline river crossings must
		within watercourses, (iii) dewatering of		be limited to areas as demarcated and
		the construction area, when necessary,		approved by the project plans.
		(iii) construction of concrete encase for	\triangleright	Install buffers to restrict development from
		pipeline river crossing, and (iv)		encroaching onto sensitive environments.
		Excavation within wetlands and riparian.	\triangleright	In the case that coffer dams are used to divert
				flow for construction purposes, these
				structures should be temporary in nature and
				be removed from the river immediately after
				the required construction has been
				completed.
			\triangleright	The use of heavy machinery (excavator)
				within the watercourse must be closely
				supervised. If possible, the excavator must
				only be positioned as far as possible away
				from the water edge, as it stretches the bucket
				to excavate the instream habitat.
			\triangleright	Install buffers through visible pegging with
				construction barricades to restrict
				development from encroaching the sensitive
				environment.

Impact	Impact Level	Description	Mitigation
Impact Deterioration of downstream surface water quality as a result of poor sludge handling practices: Misuse and mismanagement, and poor refurbishments of the WWTW leading to failures and ineffective treatment, and sludge handling.	Medium (2)	Description Potential for WWTW sludge to enter the watercourse. Potential for untreated effluent to enter the watercourse as a results of WWTW failures, pumpstation failure and leaks in bulk sewer line.	 Mitigation A conceptual riverine rehabilitation and monitoring plan with a focus on erosion and alien vegetation management should be compiled, in order to manage the rehabilitation of the affected watercourse after the construction (if necessary). The rehabilitation plan should make provision for an aquatic biomonitoring survey which includes an assessment of water quality, habitat, SASS5 and fish, given the important conservation value of the area. Develop and Implement the Contingency Plan. The sludge treatment including sludge thickening, storage and disposal process, will involve sludge drying bed and also make use of an oxidation pond. The oxidation pond area will be partially filled, or concrete lined to be used as sludge maturation ponds. This proposed process design is based on an extended aeration activated sludge process, without primary sedimentation and with the addition of denitrification to the process. Conduct monthly water quality tests on treated effluent.

Impact	Impact Level	Description	Mitigation
			Manholes must be sealed and used to inspect
			and maintain infrastructure.
			> Regular monitoring of treated effluent at the
			new Hlabisa WWTW must be undertaken. Do
			not discharge untreated effluent. The
			discharged effluent must be in accordance with
			approved TWQR allocation indicated in the
			water use license. Records of effluent
			discharge quantity and TWQR parameters
			must be kept. No untreated effluent may be
			discharged into watercourses.
			The sludge lagoons must be monitored and no
			leakages into wetland may occur, and any
			detection of seepage must be remedied
			immediately.
			> Ongoing Quarterly water quality and
			biomonitoring must be implemented during
			operation. monitoring at the upstream and
			downstream of WWTW at Hluhluwe River.
			> A conceptual riverine rehabilitation and
			monitoring plan with a focus on erosion and
			alien vegetation management should be
			compiled, in order to manage the rehabilitation
			of the affected watercourse after the
			construction (if necessary). The rehabilitation
			plan should make provision for an aquatic

Impact	Impact Level	Description	Mitigation
Impact Soil erosion and geological degradation such as run-off, slits and compaction. The uncontrolled construction activities will likely exacerbate erosion and geological degradation.	Impact Level Medium (2)	Description Excavation at the riverbanks within the site locality for the purpose of bulk pipeline stream crossing could result in run-off erosion and might further exacerbate erosion.	 Mitigation biomonitoring survey which includes an assessment of water quality, habitat, SASS5 and fish, given the important conservation value of the area. Construct storm water system and make provision for erosion protection. Sections of trenches/excavations/cuts need to be either shored or flattened to less than 60° from horizontal. Vegetation clearance should be kept as minimal as possible to areas as demarcated by the project plans and to make use of natural erosion suppressors such as good grassland cover. No work within sensitive riparian should be carried out during wet period or peak flow
			 season. It is recommended that excavation be carried out along the guidelines given in SANS 1200 (current version). Concrete lined upslope interception drains must be installed at each site.

17 SPECIALISTS STUDIES

There were five specialist studies undertaken for this Environmental Assessment, namely:

- Terrestrial Biodiversity Impact Assessment (Appendix G1);
- Wetland Impact Assessment (*Appendix G2*);
- Aquatic Ecological Impact Assessment (Appendix G3);
- Geohydrology Impact Assessment (Appendix G4); and
- Geotechnical Assessment (Appendix G5).

Environmental Screening Tool on the site and surrounding is recognized on the following themes:

Theme	Very High	High	Medium	Low
	Sensitivity	Sensitivity	Sensitivity	sensitivity
Agriculture	X			
Animal Species		Х		
Aquatic Biodiversity	X			
Archaeological and Cultural Heritage				Х
Palaeontology			Х	
Civil Aviation		Х		
Defence Theme				Х
Plant Species			Х	
Terrestrial Biodiversity	X			

Table 22: Environmental Screening Tool Sensitivity Theme

17.1 Motivation for excluding compliance statements:

The compliance statement for Agriculture and Civil Aviation Themes were deemed to be unnecessary due the following reasons:

17.1.1 Agriculture Theme

The bulk sewer gravity main is proposed to be situated at along the valley which is considered a low-lying area within the project area. There is subsistence agriculture land use within the valley at some section of the proposed bulk sewer gravity main. However, because the bulk sewer gravity main comprise mainly of sub-infrastructure which will be trenched and laid at approximately 1m depth, as a result there will be no change in land use, as the land will be later be used for substance agriculture after construction.

17.1.2 Civil Aviation Theme

The Civil Aviation Theme responds to aerodrome which was located within the study area. The aerodrome is now of non-existence as the area is now transformed into settlement area called *'Emabhanoyini'* which is translated in isiZulu as *'the place of aircrafts'* due to fact that the area was previously an aerodrome.

17.2 Motivation for Exclusion of other Specialist Studies

Motivation for exclusion of other specialist studies prescribed by the Environmental Screening Tool is outlined in (*Table 24*) below.

Specialist Study	Motivation for Exclusion of Specialist Study
Agricultural Impact Assessment	This study is not considered viable as the pipeline traverse along
	the valley, to which the preliminary infield assessment for site
	verification confirmed that the pipeline will traverse
	Six (6) discrete habitat types delineated within the assessment
	area, namely, wetlands, riparian and instream habitat, scarp
	forest, sourveld, and transformed (which is within settlement).
	There are fragments of cultivated land (subsistence farming),
	forest plantations (agricultural facility) mostly within the
	homesteads. However, because the bulk sewer gravity main
	comprise mainly of sub-infrastructure which will be trenched and
	laid at approximately 1m depth, as a result there will be no
	change in land use, as the land will be later be used for
	substance agriculture after construction. Therefore, the
	Agricultural Impact Assessment as deemed to not necessary as
	there will be no change in landcover inputs.
Archaeological and Cultural	This study was not considered viable the site has a low
Heritage Impact Assessment	Archaeological and Cultural Heritage sensitivity theme.
Palaeontology Impact	The Palaeontology Impact Assessment is not considered viable
Assessment	as the site has a medium sensitivity theme. A preliminary

Table 23: Specialist Studies Identified by Environmental Screening Tool

Specialist Study	Motivation for Exclusion of Specialist Study
	desktop study for SAHRIS palaeosensitivity provides that the site falls within a 'Moderate' paleontological sensitivity, as result a field assessment is not required for the study area. Therefore, the Palaeontology Impact Assessment was not considered for
Terrestrial Biodiversity Impact	this project. The Terrestrial Biodiversity Impact Assessment was conducted
Assessment	for this EIA, attached as (Appendix G1).
Aquatic Biodiversity Impact Assessment	The Aquatic Biodiversity Impact Assessment was conducted for this EIA, attached as (<i>Appendix G3</i>).
	For the best assessment practice this assessment has been augmented by Wetland Habitat Delineation Impact Assessment, as the pipeline traverse the wetland, and some construction works will take place with the regulated areas, attached as (<i>Appendix G2</i>).
Hydrology Assessment	The Geohydrological Impact Assessment was undertaken to assess the impact of the development on ground water resources, attached as (<i>Appendix G4.</i>
Geotechnical Assessment	The Geotechnical Assessment was conducted for this EIA, attached as (<i>Appendix G5</i>).
Socio-Economic Assessment	This study was not considered viable as, the design for sewer pipeline route does not constitute relocation of households, but rather the pipeline will be re-routed where occurrences of encroachment occur. The Project Social Facilitator will be appointed to monitor and manage the social aspects during the project planning and implementation.
	In addition, the construction of bulk sewer and reticulation will see the connection of businesses, schools and households which are currently serviced by a household's septic tanks. Thereby, upgrading to a full water-borne sanitation system that will be connected to this sewer main lines and WWTW (refer to needs and desirability). Thus, improves livelihoods and social conditions.

Specialist Study	Motivation for Exclusion of Specialist Study
Plant Species Assessment	This assessment is covered by Terrestrial Biodiversity Impact
	Assessment, which was conducted for the proposed
	development (Appendix G1)
Animal Species Assessment	This assessment is covered by Terrestrial Biodiversity Impact
	Assessment, which was conducted for the proposed
	development (Appendix G1)
Seismicity Assessment	The Geotechnical Assessments scope has a provision of
	Seismicity Assessment for excavation of pipeline routes.
	Therefore, this will form part of Geotechnical Assessment.

18 SUMMARY OF FINDINGS BY SPECIALISTS

The summary of findings detailed below, are derived from the: Terrestrial Biodiversity Impact Assessment (*Appendix G1*); Wetland Impact Assessment (*Appendix G2*); Aquatic Ecological Impact Assessment (*Appendix G3*); Geohydrology Impact Assessment (*Appendix G4*); and Geotechnical Assessment (*Appendix G5*), and are summaries as follows:

18.1 Terrestrial Biodiversity Impact Assessment Findings

The Terrestrial Biodiversity Theme sensitivity of the proposed Development of Hlabisa Bulk Sewer Pipeline and new WWTW (project area) is assigned as 'Very High Sensitivity'. The project area is considered Very High due to the presence of National Forestry Inventory and Strategic Water Source Areas. However, the infield site verification concluded that since this is a linear project, the ecological sensitivities of the project site vary from Low to High. Only the forest and riparian vegetations are considered to be of high sensitivities as they are known for high species diversity and potentially higher number of species of conservation concern. The species recorded have a much wider distribution beyond this habitat or locality. Considering that this project is a linear project, the impacts can be mitigated. The sensitivity status of the forest is severely challenged by the invasion of alien plant species.

The project area does not fall within any of the Important Bird and Biodiversity Area (IBAs), with Hluhluwe IMfolozi Park (HiP) situated East of the project site. Four micro-habitats on and around the proposed development site represent a significant breeding, feeding and foraging areas for bird species, namely river and riparian habitat, grasslands, forest habitat and exotic

trees. Twenty-Eight (28) bird species were recorded during the field survey. No bird species of conservation concern were recorded during the survey.

The existing land use of the project area and its immediate surrounding area include cultivated land (subsistence farming), plantations (agricultural facility) and homesteads. The edges of the forest are dominated by alien invasive plant species. Plant species such as Albizia adianthifolia, Combretum kraussii, Commiphorawoodii, Trichilia dregeana and Trema orientalis were recorded in abundance along the Forest area. The edges of this Forest community comprise of dense thickets of Chromolaena odorata, Lantana camara and Ricinus communis. The grassland vegetation is being transformed by the invasion of *Psidium guajava*. No threatened species or plant species of conservation importance were observed within the proposed development site. However, plant species listed as "Specially Protected Indigenous Plants" in terms of Schedule 12 of Natal Nature Conservation Ordinance, No. 15 of 1974 were identified within the study area, namely ALL LILIACEAE, which includes Aloe sp. According to the information obtained from authorities, all provincially protected plant species within the project development site, should either be avoided or be preserved and incorporated into the landscaping around the proposed development site. Where this proves not to be possible, an Ordinary Permit will be required from the Department of Forestry, Fisheries and the Environment (DFFE) to transplant these species outside of the region.

The proposed development traverses along the Northern Zululand Lebombo Scarp Forest (FOz5) '*Least Threatened*' and therefore the least option (clearance method) that will cause minimal impacts/damage to the forest will be recommended.

Five (5) reptile species were recorded during the field survey. No reptile species of conservation concern were recorded during the survey. According to the information obtained from the locals, snake species such as Southern African Python (*Python natalensis*), Twig Snake (*Thelotornis capensis*), Brown House Snake (*Boaedon capensis*) and Eastern Natal Green Snake (*Philothamnus natalensis*) have previously been seen in and around the project area.

The Bazaneni stream traversed the proposed development site, and it holds water on a temporary basis. It is an important breeding habitat for most of the frog species which occur

within the study area. The infield survey observed three frog species, namely Painted Reed Frog (*Hyperolius marmoratus*), Guttural toad (*Amietophrynus gutturalis*) and Bubbling Kassina (*Kassina senegalensis*). No frog species of conservation concern were recorded during the survey.

Most of the mammal species observed during the site visit were domestic animals, including dogs, goats, donkeys and cattle. A number of small wild mammal species are however expected to be present occasionally, however, these species are being hunted by the domestic dogs. According to the information obtained from the locals, hunting by locals is prevalent in the area and mammal species such as Common Warthog (*Phacochoerus africanus*), Vervet Monkey (*Chlorocebus pygerythrus*) and Common Slender Mongoose (*Herpestes sanguineus*) had been seen on or near the project site. The river and its associated riparian vegetation provide suitable habitat for water-dependant mammal species. Only one mammal species was seen on site, namely Scrub Hare (*Lepus saxatilis*).

The infield survey also recorded the following invertebrate species, namely Elegant Grasshopper (*Zonocerus elegans subsp. elegans*), Brown Pansy (*Junonia natalica natalica*), African Yellow Pansy (*Junonia hierta cebrene*), Common Mother-of-Pearl (*Protogoniomorpha parhassus*), Broad-bordered Grass Yellow (*Terias brigitta brigitta*), Pirate (*Catacroptera cloanthe*), Soldier Pansy (*Junonia elgiva*), Plain Tiger/African Queen/African Monarch (*Danaus chrysippus*), Common grass yellow butterfly (*Terias hecabe solifera*), Inspector (*Chalcostephia flavifrons*), Citrus swallowtail (*Papilio demodocus*), Pea blue/Long-tailed blue (*Lampides boeticus*), Common Meadow White Butterfly (*Pontia helice helice*) and Buff-tipped Skipper (*Netrobalane canopus*). No invertebrate species of conservation concern were recorded during the survey.

The Ecologist concluded that that the impacts of the proposed development on flora and fauna can be mitigated to a satisfactory level and as such, the development is deemed acceptable from the ecological perspective and as such should not be prevented from proceeding based on the ecological considerations. Once the proposed development has been constructed, rehabilitation process needs to take place and should also ensure that alien plant emergence and erosion do not occur. The development activities proposed within the project area will not have a significant impact on biodiversity conservation within the site. In order to conserve the

faunal species community structures within the study area, habitat destruction should be limited to an absolute minimum as intact habitat would result in higher faunal and floral species diversity. It is therefore critical that operations are limited to the approved footprint only and effectively designed and managed fence to allow migratory movement of fauna. The impact on fauna is likely to be localized and may result in species being displaced (e.g., snakes and lizards) but no significant and irreversible impact on these species is expected. Mitigation measures to reduce any potential direct and acute impact on faunal species, such as conducting phased earthworks over time to allow various species to move away from the site of development, must be implemented.

18.2 Wetland Habitat Impact Assessment Findings

The findings of the Wetland Hydrologist indicated that seven (7) wetlands fell within the regulated area and only five (5) of these systems were identified to be at risk and required further assessment. These systems were identified as seepage, Unchanneled Valley Bottom (UVB) and Channelled Valley Bottom (CVB) wetlands and they were identified to be largely natural and moderately modified. Existing impacts placing pressure on these systems are livestock grazing, rural settlements and Eucalyptus plantations. As a result of their surrounding land uses, these wetlands were important overall in trapping sediment, controlling erosion, attenuating floods, regulating flows and assimilating toxins and nutrients. These systems were therefore of moderate to high ecological importance and sensitivity.

All construction related activities, apart from the site camp and access road will pose a moderate risk pre and post mitigation. This is as a result of the access road and site camp remaining outside of wetlands. The proposed activities will cause the following impacts:

- Disturbance and destruction to wetland habitat
- Alteration to wetland functionality in terms of vegetation composition, geomorphic features and hydrological regime.
- Contamination of water bodies (surface and groundwater)
- Reduction in water quality from increased turbidity

The findings form infield survey provides that, the wetland unit 01 (W01) UVB wetland be traversed by the bulk sewer line and is therefore at direct risk of impact and required further

assessment; the wetland unit 02 (W02) CVB wetland that is connected to the river falls in close proximity to the proposed activities and therefore this system is at direct risk of impact and required further assessment; wetland unit 03 (W03) seepage wetland occurs alongside the bulk sewer line reserve and its close proximity to the proposed activities infers this system is at direct risk of impact. This system required further assessment; wetland unit 04 (W04) seepage wetland will be traversed slightly by the bulk sewer line whereby activities will directly impact on the remainder of this system. This system was identified to be at risk and required further assessment; wetland unit 05 (W05) UVB wetland occurs upslope of the proposed activities and will be directly impacted/destroyed as a result of the proposed WWTW. This system required further assessment; wetland unit 06 (W06) CVB wetland occurs upslope of the proposed activities, approximately 50 m away and was identified to not be at risk and did not require further assessment; and the wetland unit 07 (W07) seepage wetland occurs approximately 80 away upslope of the proposed activities and was identified to not be at risk and did not require further assessment.

The infield Assessment provides that the; W01 was located a distance away from the informal settlements and therefore was relatively undisturbed. There have been no major changes to the wetland functionality, however informal pathways have been created through the wetland and this increased sediment inputs and has slightly altered flows through the creation of a small impeding feature and from the outcome of erosion and soil compaction. Its location in the valley infers that it receives surface runoff from the surrounding land uses making this system effective in flood attenuation and regulating flows that reach the river. Its location also makes it effective in trapping sediment that is received from surface runoff.

The W02 was connected to the river and was located within an informal settlement. There was a road that had been washed away which is altering the natural flows through this system and has also caused erosion and sedimentation. Due to human disturbance, Invasive Alien Plant Species (IAPs) have proliferated the area and confined indigenous species to small areas. The wetland is used by livestock and by locals for cultivation purposes. Although this system was moderately modified, the location and surrounding land uses make this system important in assimilating nutrients and toxins. The dense reeds also assist in flood attenuation and regulating flows. This system was effective in trapping sediment that runs off from poor land management practices.

The W03 has a dense vegetation made it effective in trapping sediment, controlling erosion and assimilating any toxins and nutrients. Its location within the landscape also made it affective in regulating flows downstream by promoting diffuse flows. This system fell within grazing pastures whereby vegetation has been removed and altered. Grazed areas have led to compacted soils and exposed areas which have altered geomorphology and led to erosion and the formation of head cuts. Erosion has thus affected the retention and distribution patterns in the wetland but not to a significant extent. Manure is also rich in nutrients which has further reduced water quality, along with increased sediment laden runoff.

The W04 was located alongside the Eucalyptus plantation and was used by livestock, it was therefore effective in assimilating nutrients. The diffuse nature of this system also assists in surface runoff from clearing activities taking place in the plantation. This system was therefore also effective in flood attenuation. This system was confined between *Eucalyptus* plantations and clearing activities were the only risk currently posed on this system. The area surrounding the wetland was largely undeveloped and therefore human interference is limited.

The W05 was confined between Eucalyptus plantations and clearing activities were the only risk currently posed on this system. The area surrounding the wetland was largely undeveloped and therefore human interference is limited. This system was mostly effective in regulating flows from the drainage line to the river downstream. The change in topography also promoted diffuse flows which assisted in flood attenuation and trapping sediment that is released from clearing activities. The system was well vegetated which also controls erosion and assists in filtering any nutrients from the plantations.

The buffer tool was used to generate an appropriate buffer to prevent any impacts from reaching the wetlands. A 33 m buffer was generated for the high-risk wetlands and a 20 m buffer to the wetlands receiving indirect impacts and at lower risk of impact. The buffers cannot be applied as activities are taking place within wetlands W01, W04 and W05 and wetlands W02 and W03 are in too close proximity to the proposed activities.

The following impacts were identified as moderate risk: Clearing of vegetation within and in close proximity to watercourses; Excavation for development; and Operation of various components of the proposed development and could not be reduced to low risk, post

mitigation. Therefore, It is the specialist's opinion that an alternative site for the WWTW be explored such as above the plantations, along previously disturbed corridors as the wetlands serve high ecological and hydrological value and should be preserved and protected, particularly W04 and W05.

18.3 Aquatic Ecological Impact Assessment Findings

All watercourses within the study area were observed to fall withing the DWS quaternary catchment area W32E.

The findings of the Aquatic Ecologist indicated the presence of a single riverine unit, the Hluhluwe River was identified as a likely receiver of impacts from the proposed development. The river is characterised by long shallow pools, interlinked with slow flowing riffles dominated by sand and boulders. There appears to be little to no modification of the immediate vicinity (i.e., within 10 m) in the downstream site, however, there is evidence of modification on the upstream site. The upstream site has been transformed into a bridge that has since been flooded, additionally there is evidence of pipes that could be linked to water abstraction; however, it is unclear what the purpose was due to the flooding. The surrounding area is dominated by commercial Gum tree plantations. The riverbanks downstream are at a valley, whereas upstream the riverbanks are moderately steep and prone to sediment flow and erosion during periods of high-water flow or flooding. There was evidence of high surface water around the drainage line, suggesting that the river system is permanent and subject to seasonal flooding. The riparian habitat both upstream and downstream sites contained moderate abundances of exotic or alien invasive species, specifically, Lantana camara (Common lantana), Hibiscus rosa-sinensis (Shoeblack plant), and Senna didymobotrya (Peanutbutter cassia). No aquatic alien plant species were observed within the riparian reach.

Data collected from the Hluhluwe River during the site investigation included aquatic macroinvertebrates, instream biotopes, fish and water quality. One fish species were observed within the study site, namely, the Southern mouthbrooder (*Pseudocrenilabrus philander*). The instream biotopes within the river reaches assessed indicated a fair biotope availability score at the upstream site and a poor biotope score at the downstream site, with overall poor diversity of macroinvertebrates, the majority of which were tolerant of poor water quality conditions, and overall fish community structure is in a critically modified state (*Class F*).

The water quality results indicated that Total Suspended Solids exceeded the Target Water Quality Range whilst the rest of the determinants were in the natural levels. The overall EcoStatus of the assessed unit within the Hluhluwe River was determined to be a *Class D* at the upstream site, and a *Class D/E* at the downstream site. The slightly more degraded upstream site is likely a result of the activities from the adjacent rural settlements who utilise the river for subsistence use.

The results from the laboratory assessment show that all parameters are within both the TWQR for aquatic systems and the DWS General Effluent Standard with the exception of total suspended solids. The total suspended solids (TSS) concentration is a measure of the amount of material suspended in water. The concentration of suspended solids increases with the discharge of sediment washed into rivers due to rainfall and resuspension of deposited sediment. Increases in total suspended solids may also result from anthropogenic sources, including: Discharge of domestic sewage and; Physical perturbations from road, bridge and dam construction. Whilst the E. coli counts were low (>45 counts per 100ml water), total coliform counts are higher than the DWS limits. The high coliform counts suggest that perhaps there are moderate coliform sources upstream, possibly from animal manure or human settlements.

Potential impacts to the riverine areas arising from the construction and operation phase of the development are linked to; Direct habitat disturbance; Soil erosion and sedimentation; and Pollution of water resources and soil.

Although there is a 45 m buffer between the WWTW and the Hluhluwe watercourse, the topography is steep (>10%), where increased run-off from hard surfaces (such as concrete infrastructure and road surfaces) would flow directly into the river, further altering the already modified flow regime within the watercourses and/or alter the base level of the watercourses, which may lead to flow impoundment and/or worsen existing erosion and scouring. Poor placement or design of the on-site stormwater infrastructure during the operation phase could lead to increased erosion and sedimentation into the watercourse. Therefore, it is crucial that the stormwater management system is properly developed and put into place. The likely impacts on riverine habitat associated with the proposed development of the Hlabisa WWTW

can be divided into three distinct impact groups, namely; Loss of Freshwater Habitat & Biota Impact; Degradation of Freshwater Habitat Impact; Water and Soil Pollution Impact.

18.4 Geohydrology Impact Assessment Findings

The findings of the Geohydrologist indicated that the hydro-census study, the static groundwater level is at an approximate depth of 27m below EGL. The pH is between 5 and 9.7, TDS is less than 1200 mg/l, Ammonia (NH4) is less than 1.5 mg/l, Nitrate is less than 11 mg/l which are all within sans limits. The infield assessment provides that there are faults in the area which are considered as preferential flow paths for groundwater. The dolerite intrusion creates planes of weaknesses within the surrounding rock which can create pathways for groundwater movement. In areas of dolerite intrusion, the fractures within the bedrock are considered to be higher. Groundwater seepage was encountered on site at depths in the range 0.70m to 0.9m below EGL. This is the elevated groundwater condition that is a result of rainfall in the area, this is also known as a perched groundwater condition. The perched groundwater condition and the aquifer groundwater level are two different levels.

The project area comprised colluvium, residual shale and weathered shale and tillite rock. The materials, in general, can be described as follows: *Colluvium* – Material can be described as slightly moist, dark grey, soft to firm, fissured and pinholed, sandy CLAY. The colluvial material extended to approximate depths in the range of 0.5m (AH01) to 0.65m (AH04) below EGL; *Residual Shale* – Material can be described as slightly moist, light grey to orange, firm to stiff, silty CLAY. The residual material extended to approximate depths in the range of 0.7m (AH04) to 2.3m (TP02) below EGL; *Weathered Shale Rock* – Material can be described as olive grey, completely to highly weathered, fine grained, laminated, highly fractured, soft to medium hard rock. The weathered shale rock was encountered at surface at EXP01 and from approximate depths in the range 2.2m to 2.3m below EGL. The shale rock in TP02 exhibited signs of metamorphism which is indicative of dolerite activity close to the site; Weathered Tillite Rock – Material can be described as yellowish orange stained black, completely to highly weathered at surface at EXP02 at a road cutting which was approximately 2m thick.

The interrogation of the Hydrogeological Map Sheet "2730 Vryheid" provided that the site is underlain by an fractured aquifer system with approximate yields in the range 0.1 to 0.5 ℓ /s,

the DWS classifies the aquifer as 'b2'. According to the groundwater level map of the area, groundwater within the aquifer is anticipated to be between 17 to 35m below EGL.

Based on the laboratory results in Table 4, the materials classify as CLAY soils with classification of CL. The permeability rates for these soils are 1x10-6 to 1x10-8 cm/s (approximately 0.01296 m/day to 0.00017 m/day). The shale rock at the site is considered as an impermeable membrane and will prevent any contamination from entering the acquire in the area, particularly considering the aquifer is at least 17m below EGL. Below the shale is the tillite rock which is also an impermeable membrane.

The groundwater level within the main aquifer in the area which is classified as potable water source is greater than 15m below EGL and within the solid rock. This is a low-risk vulnerability class. The risk to the perched groundwater condition is high and the risk to the potable water aquifer is low. The main concern from an environmental perspective was if the development will have a negative risk to the potable groundwater aquifer system. However, the impact to potable aquifer system is classified as a low risk, thus, here is no concern for contamination to the potable aquifer. Should there be a failure at the WWTW then the contamination of effluent into the environment will be a significant volume. This is considered as a high load risk. Considering that the site comprised shallow shale rock at depths less than 3m below EGL there is more than sufficient overburden to prevent any contamination from affecting the potable aquifer. Any contamination to the environment may only effect the perched groundwater condition if the site is not rehabilitated and / or remediations are not implemented within 24 days assuming worst case that water level is at 0.35m below EGL.

Due to the depth to the potable aquifer system in the area, overall, the development is considered as a low risk for contamination. Nonetheless, it is strongly recommended that protection of the environment and aquifer system is given careful consideration pre, during and post construction.

18.5 Geotechnical Assessment Findings

The locality of the bulk sewer conveyance route is predominantly underlain by sediments of the Vryheid Formation, and the WWTW location is underlain by the Tillite and shale of the Dwyka Group. Bedrock on the five sites along the bulk sewer conveyance comprises Vryheid Formation sandstone with the balance made up of Dwyka tillite and – shale in the vicinity of the WWTW. The study area *in-sutu* material comprise the topsoil, clayey-silt-sand mixes associated with residuum and decomposed to highly weathered sediments encountered on the five sites of bulk sewer conveyance characterised of soft excavatable. Shale bedrock present at an average depth of 2m that underlies the WWTW site ranges initially from soft to intermediate but becomes hard excavation with depth. These excavatable materials are characterised of overall good excavatability, up to 4.2m below EGL. The surrounding matrix/decomposed material is likely to require 'Soft' to 'Intermediate' excavation.

No seepage was encountered at PSS 1 and PSS 2; PSS 3 although the section is located within the narrow flood plain within the valley along the bulk sewer pipeline route. Seepage was encountered at PSS 3 and PSS 4 and the two test pits excavated on the WWTW site. The sloping topography on PSS 1, 2, 4 and the WWTW provides good drainage, and no ponding was observed.

A 65KW powered 4x4 tractor-loader-backhoe (TLB) was used to excavate the six test pits on site. The test pits were excavated to shallow refusal or the maximum reach of the backhoe, up to 4.2m below Existing Ground Level (EGL). The topsoil, clayey-silt-sand mixes associated with residuum and decomposed to highly weathered sediments encountered on the five sites are soft excavatable. Shale bedrock present at an average depth of 2m that underlies the WWTW site ranges initially from soft to intermediate but becomes hard excavation with depth. The six (6) dynamic penetration (DPSH) tests were conducted to verify the consistency of the substrate soils and to facilitate the location of the dilatometer tests. The DPSH testing experienced refusal at the depths ranging between 6 and 9m for the estimated depth of influence of a 9m² rectangular structure. Two (2) flat dilatometer tests (DMT's) were performed on site. The refusal was experienced at the dept of 7.4m EGL occurring on grey mudstone.

The visual stability assessment of the test pits excavated indicated that the soils were dry enough and had a sufficient silt/clay fraction within the matrix to provide adequate strength against collapse of the test pit side walls with sufficient stand-up time of more than one week. The topsoil, fine grained residual materials and decomposed, soft excavatable sandstone and shale comply with > G10 type material, unsuitable for backfill and subgrade. The site soils are mildly to moderately corrosive.

19 RECOMMENDATIONS BY SPECIALISTS

19.1 Recommendations by the Terrestrial Biodiversity Assessment

The following were recommended by Terrestrial Biodiversity Ecologist, and should be included in the Environmental Authorisation:

- a) Plant species listed as "Specially Protected Indigenous Plants" in terms of Schedule 12 of Natal Nature Conservation Ordinance, No. 15 of 1974 were identified within the study area, namely ALL LILIACEAE, which includes *Aloe sp.* According to the information obtained from authorities, all provincially protected plant species within the project development site, should either be avoided or be preserved and incorporated into the landscaping around the proposed development site. Where this proves not to be possible, an Ordinary Permit will be required from Ezemvelo KZN Wildlife (EKZNW) to transplant these species outside of the region.
- b) The proposed development traverses the Least threatened forest and therefore the least option (clearance method) that will cause minimal impacts/damage to the forest will be recommended.
- c) In order to conserve the faunal species community structures within the study area, habitat destruction should be limited to an absolute minimum as intact habitat would result in higher faunal and floral species diversity. It is therefore critical that construction activities are limited to the required footprint only.
- d) All development footprint areas must remain as small as possible and should not encroach onto surrounding areas.
- e) Newly cleared soils must be re-vegetated and stabilised as soon as construction activities have been completed and there should be an on-going monitoring program to control and/or eradicate newly emerging alien invasive plant species.

- f) In order to alleviate the loss of habitat within the study area, it is recommended that a clear, concise and well formulated rehabilitation plan be implemented after the construction activities, focusing on fauna species
- g) The rehabilitation of disturbed areas must receive high priority and the plant species used during rehabilitation should be site specific and according to the surrounding vegetation composition. Once the proposed development has been constructed, rehabilitation process needs to take place and must also ensure that alien plant emergence and erosion do not occur.
- h) Any fauna threatened by the construction activities must be moved to safety by a suitable qualified Ecologist.

19.2 Recommendations by the Wetland Habitat Impact Assessment

The following were recommended by Wetland Habitat Specialist, and should be included in the Environmental Authorisation:

- a) A 33m buffer was generated for the high-risk wetlands and a 20 m buffer to the wetlands receiving indirect impacts and at lower risk of impact. The buffers cannot be applied as activities are taking place within wetlands W01, W04 and W05 and wetlands W02 and W03 are in too close proximity to the proposed activities.
- b) Where applicable, the buffer zones must be applied to the at-risk wetland systems. A minimum 15 m buffer must be applied to the remaining wetland systems, as best practice, and the systems must be demarcated as "no-go" entry zones.
- c) The Applicant must establish the location of the site camp which must be submitted to the competent authorities as part of the application and the site camp may not intrude into watercourses and their buffers.
- d) An alternative site for the WWTW be explored such as above the plantations, along previously disturbed corridors as the wetlands serve high ecological and hydrological value and should be preserved and protected, particularly W04 and W05.
- e) Due to most of the bulk sewer line falling within aquatic systems, a Biomonitoring Plan is required.
- f) A Groundwater and Surface Water Monitoring Program is recommended.
- g) A Wetland Rehabilitation and Maintenance Plan must accompany the application.

- h) An Environmental Control Officer (ECO) must be appointed for the construction phase to ensure compliance with the authorisations and Environmental Management Programme (EMPr)
- i) The following Water Use License conditions applies:
 - WULA Section 21 (g) due to the nature of handling sewage, will be required.
 - WULA Section 21 Section 21 (f) due to discharging treated effluent into a watercourse, will be required.
 - WULA 21 (c) & (i) for every wetland that is traversed, whereby alterations to the wetland characteristics and impeding or diverting flows are anticipated.

19.3 Recommendation by Aquatic Ecological Impact Assessment

The following were recommended by Aquatic Ecological Specialist, and should be included in the Environmental Authorisation:

- a) A conceptual riverine rehabilitation and monitoring plan with a focus on erosion and alien vegetation management, should be compiled in order to manage the rehabilitation of affected watercourse after the construction of the proposed crossing. The rehabilitation plan should make provision for an aquatic biomonitoring survey which includes an assessment of water quality, habitat, SASS5 and fish.
- b) Potential stormwater run-off from hard surfaces requires careful attention to ensure that the nearby watercourse is not negatively impacted by sedimentation and run-off carrying oil, grease, hydrocarbons and/or harmful chemicals.

19.3.1 Other mitigation measures

- a) All work to be done within sensitive riparian and instream habitats, if any, should be carried out at a time of low flow conditions (winter to early spring). It is prudent however to be prepared for increased flows by scheduling work according to the weather forecast and to be adequately prepared for unexpectedly large runoff from a sudden storm.
- b) A conceptual riverine rehabilitation and monitoring plan with a focus on erosion and alien vegetation management should be compiled, in order to manage the rehabilitation of the affected watercourse after the construction (if necessary). The rehabilitation plan should make provision for an aquatic biomonitoring survey which includes an assessment of water quality, habitat, SASS5 and fish, given the important conservation value of the

area. The survey must be conducted within one month after the construction upgrades to determine the impacts, if any, and implement adaptive management, if required.

- c) Sediment barriers must be installed in areas sensitive to erosion such as near water supply points, slopes, and actively eroding riverbanks. These measures include but are not limited to - the use of sandbags, hessian sheets, silt fences, geotextiles, rock gabions, etc.
- d) The silt fence / curtain must be maintained regularly to ensure continual functionality during the construction phase.
- e) During the operation phase it is recommended that disturbed watercourse habitat and rehabilitated areas are monitored for potential erosion and scouring. This should initially take place immediately after construction, thereafter quarterly for two years and thereafter annually.

19.4 Recommendations a Geohydrology Impact Assessment

The following were recommended by a Geohydrology Specialist, and should be included in the Environmental Authorisation:

- a) The groundwater monitoring boreholes be drilled at WWTW site. It is recommended that two boreholes be drilled downgradient of the site and a single borehole upgradient to a depth of approximately 10m.
- b) Groundwater monitoring must be carried out on a quarterly basis and the upgradient borehole should be used as a general indicative marker. Should any contamination occur, the downgradient boreholes in theory should reflect this in their results whilst the upgradient borehole has a baseline of the area.
- c) A hydrogeologist is recommended to supervise the drilling activity, such that, adequate information about, geology, groundwater strikes, groundwater levels, and water samples are collected. It is therefore recommended that a hydrogeological practitioner be appointed to carry out periodic inspections during construction.
- d) The borehole design should comprise the following:
 - Borehole adequately drilled.
 - PVC Casing needs to be installed within the borehole.
 - Perforated PVC Casing will need to be installed from at least 3m begl.

- The space between the PVC casing and borehole side walls need to be filled with a gravel pack.
- A bentonite seal will need to be placed on the top 3m.
- A concrete plinth at the top with a borehole marker.
- The boreholes need to be adequate diameter to allow for easy sampling.
- e) The following parameters are recommended as a minimum for groundwater testing: pH, conductivity, Potassium (K), Chloride (Cl), Nitrate (NO₃), Ammonia (NH₄), Phosphorus (P), Sodium (Na), Calcium (Ca), Carbonates (HCO₃), Iron (Fe), Manganese (Mn), Titanium (Ti), Chrome (Cr), Cadium (Cd), Lead (Pb), Nickel (Ni), Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Coliforms, and E. Coli. However, DWS may recommend that additions determinants be included and/or indicate some of the above is not required. This will be indicated on the approved license.
- f) During the construction of WWTW, if adequate designs are done to ensure structures are built correctly to prevent contamination of faecal coliforms into the stream/river.
- g) During the operation of WWTW, ensure that the protection measures are in place to mitigate contamination.
- h) Regular monitoring of groundwater quality during the lifespan of the WWTW is required.

19.5 Recommendation by a Geotechnical Assessment

The following were recommended by Geotechnical Specialist, and should be included in the Environmental Authorisation:

- a) Replacement of the foundation materials at the pump station sites with mechanically modified backfill, imported and compacted in layers should curtail future soil movements. The soil raft foundation design will be suitable for modified normal construction – that is reinforced strip footings, light reinforcement in masonry, good drainage and foundation pressure not exceeding 50KPa;
- b) The rockfill and proposed 2m thick engineered soil raft at the WWTW should ensure stable founding conditions, suitable for normally constructed foundations – that is strip footings and slab-on-the-ground; surface water is to be collected and disposed of in storm-water channels draining south-eastwards to the local Bazaneni Stream;

- c) Good compaction control of all layer works is to be carried out to ensure that required densities are achieved;
- Representative bulk soil samples of the mechanically modified material should be taken prior and during the construction of engineered fills to ensure that the quality of the backfill material is within specification;
- e) Sections of trenches/excavations/cuts need to be either shored or flattened to less than 60° from horizontal;
- f) Spoil from the trench excavations should not be placed closer than the equivalent depth of the trench to avoid unnecessary loading of the sidewalls, especially under moist to saturated conditions;
- g) Concrete lined upslope interception drains should be installed at each site; and
- h) Wearing course material for access roads and fills is to be sourced from the dolerite borrow pit.
- i) Any temporary lateral support system opted for by the contractor should be reviewed and approved by the design Engineers prior to excavation commencing.

20 RECOMMENDATIONS FROM THE EAP FOR INCLUSION IN EA

Having considered all issues, included the views of interested and affected parties and the inputs from the specialist reports, the EAP recommends the authorization of this application. After an Authorization has been granted, it is the applicants' responsibility to ensure that all recommendations outlined in this report as well as in the EMPr are properly implemented.

20.1 Pre-Construction phase

The following conditions and mitigation measures are recommended and should be considered in any authorization that may be granted by the CA in respect of the application:

- a) Developed site layout for the construction of bulk sewer gravity main and WWTW must clearly illustrate the proposed construction footprint and clearly delineate the servitude for the construction corridor.
- b) A site layout plan must be compiled indicating the limits of disturbance associated with the construction of new Hlabisa WWTW and associated infrastructures in relation to the

identified sensitive areas (i.e., Hluhluwe River and wetland system). No-go areas and any stormwater infrastructure must be indicated on this plan;

- c) The route design must incorporate a pipeline construction corridor and must not be more than 10m width for the construction corridor within the vicinity of the stream crossing (riparian zones), and wetlands (Subtropical Alluvial Vegetation (*Aza7*). Also, must not be more than 15m width on the remainder sections of pipeline, where there is no sensitive environment.
- d) The site layout plan must indicate no-go areas, through a buffer determination to prevent intrusion of wetlands where such wetlands could be avoided.
- e) The 'Site Layout Alternative' proposes the configuration of existing layout. The WWTW should be shifted at least 80m-100m further north of existing position (*Figure 3*). This will prevent the WWTW infrastructure to be prone to flooding in case of extremely event, and also prevent undesirable contamination Hlabisa River lying downstream of the WWTW. Furthermore, the Wetland Specialist has also recommended that an alternative site for the WWTW be explored such as above the plantations, along previously disturbed corridors as the wetlands serve high ecological and hydrological value and should be preserved and protected. Therefore, the proposed alternative site position (*Figure 3*) could meet the desirable development objectives and provide impact mitigation as the site will be shifted further north by 80-100m from current location. This will also avoid the option of wetland offsetting, as this would be the case if the current WWTW position is considered.
- f) Buffer determination for watercourse habitat outside the construction corridor but at risk of being impacted. For the new WWTW 100m buffer determination is required between Hluhluwe River and new WWTW. This means the layout must be configured such that the WWTW should be shifted at least 80m-100m further north of existing position (*Figure 3*).
- g) A detailed method statement for working within the watercourse must be compiled by the contractor prior to the commencement of the project. This method statement must be approved by the aquatic ecologist or ECO and relevant workers to be inducted on the method statement.
- A conceptual riverine rehabilitation and monitoring plan with a focus on erosion and alien vegetation management should be compiled, in order to manage the rehabilitation of the affected watercourse after the construction (if necessary). The rehabilitation plan should

make provision for an aquatic biomonitoring survey which includes an assessment of water quality, habitat, SASS5 and fish, given the important conservation value of the area.

- i) A plan to actively rehabilitate the construction area during construction and postconstruction needs to be developed before construction commences.
- j) The guidelines for the protection of natural forest habitat suggest that no activities or development should be considered that would destroy the forest habitats unless of strategic provincial or national importance with no feasible alternatives. Therefore, where feasible the pipeline must be re-routed along the Zululand Lebombo Scarp Forest (*FOz5*). 15m buffer determination along the vicinity of Zululand Lebombo Scarp Forest (FOz5) must be considered.
- k) Design the pipeline alignment at stream crossing is such a way that the concrete encased for pipeline crossing at instream must be below the riverbed to prevent upstream ponding and inundation.
- I) Appoint a Social Facilitator to manage project social aspects and re-route the pipeline where there is encroachment to burial sites. Social Facilitator to undertake engagement with the households adjacent to pipeline route for assistance in identifying all unmarked graves that could be on the section of pipeline route; designs to be reviewed to prevent intrusion into grave sites, such as deviations to avoid graves and 30m buffer marked as "No-Go" areas.
- m) A traffic management plan must be developed for the construction phase which must include implementation of relevant Safety Management Systems during the construction, demarcated material hauling routes.
- Identify and delineate the existing access point to the pipeline the construction site. The access route must form an integral part of site layouts which must be communicated to the project team including the delivery crew.
- o) Identify all existing underneath, surface and overhead infrastructure, such as water pipeline, telecommunication lines, powerlines which will likely impact on the pipeline construction, and submit the wayleaves to relevant authorities to approve the design and construction method. These designs will be required to secure the relevant wayleaves.
- p) Pre-construction environmental induction and training must be conducted for all construction staff on site to ensure that basic environmental principles are adhered to. This includes awareness of the importance of protected plants/trees, medicinal plants,

wildlife, heritage resources, waste management and social issues. The training must also include EA, permit and license conditions and the EMPr. Records of all training undertaken must be kept on file for audit purposes.

 q) Appoint an ECO to monitor and enforce compliance of all EA, permits and licences conditions during construction.

20.2 During Construction Phase

- a) The development area must again be surveyed prior to construction in order to locate and capture any animal and plant SCC and relocate them.
- b) Clearly delineate the servitude for the construction corridor. The vegetation clearance of pipeline construction corridor must not be more than 10m width for construction within the vicinity of stream crossing (riparian zones), and wetlands (Subtropical Alluvial Vegetation (*Aza7*) vegetation). The servitude must include the trench, one-way running track, topsoil stockpile corridor and subsoil stockpile corridor. All areas of watercourses outside this servitude must be considered no-go areas. Any contractor found working within No-Go areas must be fined as per fining schedule/system setup for the project.
- c) The 15m buffer determination along the Zululand Lebombo Scarp Forest (*FOz5*) must be adhered to.
- d) The vegetation clearance of pipeline construction corridor must not be more than 10m width for the construction corridor within the vicinity of the Zululand Lebombo Scarp Forest (*FOz5*). Should pipeline route runs within a Scarp Forest which is found within the study area. The permit will be required from DFFE in order to cut, destroy or disturb the natural forest.
- e) The vegetation clearance of pipeline construction corridor must not be more than 15m width on the remainder sections of pipeline along habitat associated Northern Zululand Sourveld (*Svi22*), provided there are no sensitive environment.
- f) Vegetation clearance for construction of the new WWTW must be limited to demarcated footprint. A 15m buffer along the project site must be considered, and no development and stockpiling should take place outside 15m buffer of the new Hlabisa WWTW site and mark it No-Go areas. The demarcations are to remain until construction and rehabilitation is complete.

- g) Any contractor found working within No-Go areas must be fined as per fining schedule/system setup for the project.
- h) All excavation at riparian zones must not be undertaken during wet (rainy) periods or peak flow periods. The activities within watercourse must only be undertaken during agreed working times and permitted weather conditions. If heavy rains are expected, the clearing and excavation activities must be put on hold. In this regard, the contractor must be aware of weather forecasts. It is recommended to undertake majority of the construction activities during the drier months.
- i) Where possible the pipeline route along the wetlands must include buffer determination of at least 28m buffer for CVB wetlands; 26m buffer for UVB wetlands; and 25m buffer for seepage wetlands to protect wetland habitat and ecological corridor and mark no-go areas.
- j) Pre-development site hydrology (i.e., runoff, infiltration, interception, evapotranspiration, groundwater recharge, and stream baseflow) must be preserved as far as possible.
- k) Where coffer dams are used to divert flow for construction purposes, these structures must be temporary in nature and be removed from the river immediately after the required construction has been completed. The de-watering process from the coffer dams should involve piping the water directly to the active channel downstream of the site as, or if, required.
- A one-way running track must be established across the riverbed for the excavators to move along. The running track must be shielded with a wall of coffer dam and be constructed of a rock base overlain by coarse aggregate.
- m) The use of heavy machinery (excavator) within the watercourse must be closely supervised. If possible, the excavator must only be positioned as far as possible away from the water edge, as it stretches the bucket to excavate the instream habitat.
- n) The concrete encased for pipeline crossing at instream must be below the riverbed to prevent upstream ponding and inundation.
- o) The construction of an artificial channel outside of the watercourse habitats for water diversion purposes is not permitted, as this could lead to unnecessary erosion and instream siltation.

- p) Detailed method statement for working within the watercourse with provision for spillage and construction debris management must be compiled by the contractor prior to the commencement of the project;
- q) A conceptual riverine rehabilitation and monitoring plan with a focus on erosion and alien vegetation management should be implemented, in order to manage the rehabilitation of the affected watercourse after the construction (if necessary). The rehabilitation plan should make provision for an aquatic biomonitoring survey which includes an assessment of water quality, habitat, SASS5 and fish, given the important conservation value of the area.
- r) At stream crossing, the material excavated from the trench must be stored away from river and away from the proposed dewatering areas. To avoid mixing, excavated trench material must be placed on a geotextile.
- s) Stockpiles must not be more than 2m in height, and be stored on ideally flat area 32m away from the watercourse;
- t) Rehabilitate all watercourses in accordance with DWS approved Rehabilitation and Maintenance Plan.
- u) It is highly recommended that site camp be developed at already disturbed site, on ideal flat surface area which is at least 32m away from the watercourse. Also, the construction machinery must be parked only at site camp on the designated bunded areas and dip trays must be placed under the machinery, when not in use to capture any possible hazardous substance leaks;
- v) More regular water quality monitoring is required when major construction activity takes place directly within a watercourse, such as exaction of riverbanks, instream habitat disturbance, de-watering of coffer dams, and pouring of encased concrete at stream crossings;
- a) Excavations must not be left open for an extended period, and must not be undertaken until such time that all required materials are available on-site, to facilitate immediate laying of the construction of subsurface infrastructure;
- b) All stockpiles must be kept free of weeds and invasive alien plants;
- c) If at risk of being eroded, all stockpiles must be secured with sandbags around the base of the soil stockpile;

- d) Appoint a Social Facilitator to manage project social aspects and re-route the pipeline where there is encroachment to burial sites. Social Facilitator to undertake engagement with the households adjacent to pipeline route for assistance in identifying all unmarked graves that could be on the section of pipeline route; designs to be reviewed to prevent intrusion into grave sites, such as deviations to avoid graves and 30m buffer marked as "No-Go" areas. Any contractor found working within No-Go areas must be fined as per fining schedule/system setup for the project.
- e) Monitoring must take place during site clearance for possible infant and still-born burials and implement the Chance Finds Procedure (CFP) if any such finds are uncovered.
- f) Regular Archaeological Watching Briefs should be carried out during construction in case any chance findings are made.
- g) The Contractor must ensure that all temporary structures, materials, waste and facilities used for construction activities are removed upon completion of the project.
- h) Fully rehabilitate all disturbed areas and protect them from erosion
- i) The control and eradication of a listed invasive species from the construction footprint, including the site camp must be carried out using methods that are appropriate for the species concerned and the environment within which it occurs.
- j) The methods employed to control and eradicate a listed invasive species must also be directed at the new growth, propagating material and re-growth of such invasive species in order to prevent such species from producing offspring, forming seed, regenerating or re-establishing itself in any manner.
- k) The local community must take priority when it comes to employment and all skills that can be sourced from the local communities. Additionally, locals must be given the opportunity to participate in the development and only specialized skills must be sourced from outside of the surrounding communities;
- I) All reasonable precautions must be taken to minimize noise generated on-site.
- m) Storage areas must be managed properly by applying the suggested mitigation measures recommended in this document and EMPr;
- n) All employees and contractor staff must undergo environmental training covering the following areas: The Environmental Authorisation, the EMPr, Spill Management, Waste Management, Emergency Procedures and Evacuation Procedures;

- No workers are permitted to be accommodated overnight in the site except for essential security personnel.;
- p) Ensure compliance to EA, permit and license conditions.
- q) Construction method statements are to be adhered to. These method statements must consider the environmental facets associated with the rivers such as hydrological flow regimes, flora and fauna. These should be approved by the relevant departments (i.e. EDTEA and DWS);
- r) It is recommended that education of workers is key to establishing good pollution prevention practices. Training programs must provide information on material handling and spill prevention and response, to better prepare employees in case of an emergency;
- s) Petrochemical storage tanks must be enclosed in a bunded area that makes provision for 110% of the total volume of tanks that they contain. All these bunded areas must be supplied with a closable valve through which any spillage can be safely removed;
- t) During operation, the sludge ponds must be regularly inspected (quarterly) for any signs of failure, damage or leaks. Adequate maintenance measures need to be implemented upon finding sludge ponds issues and failures.
- u) If there is any need to review or amend the environmental conditions/requirements, this must be done in consultation with and approval of the ECO.

20.3 During Operation/ Maintenance

- a) Compile and implement the detailed operational maintenance plan, detailing the maintenance of sewer pumpstation, gravity main, and WWTW.
- b) Compile and implement a contingency plan detailing management of system failure at WWTW site.
- c) Develop and Implement the Contingency Plan.
- d) Conduct waste classification of WWTW The waste resulted from operation of WWTW such as sludge, residues of waste, and other hazardous waste in accordance with the specified Minimum Requirements per 4(1) of the National Norms and Standards for Waste Disposal (NEM: WA Act No. 59 of 2008).

- e) Dispose of dry sludge at registered landfill with licensed professional service provider.
 Manholes must be sealed and used to inspect and maintain infrastructure.
- f) The sludge treatment including sludge thickening, storage and disposal process, will involve sludge drying bed and also make use of an oxidation pond. The oxidation pond area will be partially filled, or concrete lined to be used as sludge maturation ponds. This proposed process design is based on an extended aeration activated sludge process, without primary sedimentation and with the addition of denitrification to the process.
- g) Regular monitoring of treated effluent at the new Hlabisa WWTW must be undertaken. Do not discharge untreated effluent. The discharged effluent must be in accordance with approved TWQR allocation indicated in the water use license. Records of effluent discharge quantity and TWQR parameters must be kept. No untreated effluent may be discharged into watercourses.
- h) The sludge lagoons must be monitored and no leakages into wetland may occur, and any detection of seepage must be remedied immediately.
- i) Ongoing Quarterly water quality and biomonitoring must be implemented during operation. monitoring at the upstream and downstream of WWTW at Hluhluwe River.
- j) Remove contaminated soils immediately from the polluted area and rectify the impacts.
- k) Major spills must be reported to the authorities
- I) The stream crossing must promote natural flows and allow for connectivity in the river.
- m) Regular inspection at the effluent discharge vicinity and stream crossing for evidence of sediment and debris build-up during wet season and dry season, alternatively after heavy rainfall, or peak flow conditions.
- n) The disturbed watercourse habitat and rehabilitated areas must be monitored for potential erosion and scouring. This should initially take place immediately after construction, thereafter quarterly for two years and thereafter annually.
- Develop and implement the stormwater management plan throughout the operational and maintenance phases.
- p) Ongoing maintenance and monitoring regimes must be implemented for the stormwater management system, such as regular inspection at the vicinity of stream crossings, effluent treated effluent discharge point, and stormwater drainage systems for evidence of sediment and debris build-up during wet season and dry season, alternatively after heavy rainfall, or peak flow conditions.

- q) The pipeline should be regularly inspected (quarterly) for any signs of failure, damage or leaks. Adequate maintenance measures need to be implemented should evidence of pipeline issues and sewer pumpstation failures are identified, to prevent surface and groundwater pollution as a result of effluent water spillage. Adequate maintenance measures need to be implemented immediately when pipeline issues and failures are identified,
- r) Exposed soils must be vegetated as soon as possible in order not to impede surface runoff and inhibit erosion of the surface soils.
- s) Establish and maintain an IAPs management programme.

21 ENVIRONMENTAL IMPACT STATEMENT

The findings of this EIA Report as well as the specialist studies conclude that there are no environmental fatal flaws that should prevent the proposed project from proceeding, provided that the recommended mitigation and management measures are implemented. Five (5) specialist studies were considered for this EIA: Terrestrial Biodiversity Impact Assessment (Appendix G1); Wetland Impact Assessment (Appendix G2); Aquatic Ecological Impact Assessment (Appendix G3); Geohydrology Impact Assessment (Appendix G4); and Geotechnical Assessment (Appendix G5). Overall, anticipated adverse impacts linked with the planned activities (Hlabisa Water-borne Sanitation) during construction and operation are expected to be of low- medium impact significance.

The project impacts were assessed on the basis of discrete alternatives 'Alternative A: Routing Alternative, Alternative B: Design Alternative, Alternative C: Technology Alternative, Alternative D: Site Layout Alternative', and Alternative E: Location Alternative'. The environmental assessment included an analysis of 36 key environmental aspects of the project that were relevant to the area and the activities, as well as five (5) specialist studies and engagements with relevant stakeholders. Of the 36 environmental aspects analysed, the significance was determined as follows: One (1) was rated 'Very High'; 13 were rated 'High'; 13 were rated 'High'; Six (6) were rated 'Medium'; two (2) were rated 'Low' and one (1) 'Very Low'. With the implementation of suitable mitigation measures, 27 of the impacts were rated 'Negligible' and nine (9) were rated 'Very Low'. Overall Mean significance: Nature of a project without mitigation is rated 'Medium-High', while with mitigation the impacts are considered 'Negligible'.

All specialist studies concluded that the of the proposed Hlabisa Water-borne Sanitation will have little to minor impacts on environment. Notwithstanding, these impacts can be mitigated with appropriate measure detailed in and EMPr and implemented during the project.

The EAP and Wetland Specialist has proposed that the preferred 'Site Layout Alternative' provides for the configuration of existing WWTW site layout. The WWTW site must be shifted at least 80m-100m further north of existing position (Figure 3). This will prevent the WWTW infrastructure to be prone to flooding in case of extremely event, and also prevent undesirable contamination Hlabisa River lying downstream of the WWTW. Furthermore, the configuration of WWTW site layout will mean exploring the use of site such as above the plantations, along previously disturbed corridors as the wetlands serve high ecological and hydrological value and should be preserved and protected. Therefore, the proposed alternative site position (Figure 3) could meet the desirable development objectives and provide impact mitigation as the site will be shifted further north by 80-100m from current location. This will also avoid the option of wetland offsetting, as this would be the case if the current WWTW position is considered. This will be in line with accordance to GN509 of the National Water Act, 1998 (Act No. 36 of 1998), the regulated area refers to the outer edge of the 1 in 100-year flood line and /or delineated riparian habitat, whichever is the greatest distance, measured from the middle of the watercourse of a river, spring, natural channel, lake or dam; In the absence of a determined 1 in 100-year flood line or riparian area the area within 100 metres (m) from the edge of a watercourse where the edge of the watercourse is the first identifiable annual bank fill flood bench (subject to compliance to section 144 of the Act). Buffer determination for watercourse habitat outside the construction corridor but at risk of being impacted. For the new WWTW 100m buffer determination is required between Hluhluwe River and new WWTW. This means the layout must be configured such that the WWTW should be shifted at least 80m-100m further north of existing position (*Figure 3*).

The EAP has also established that the guidelines for the protection of natural forest habitat suggest that no activities or development should be considered that would destroy the forest habitats unless of strategic provincial or national importance with no feasible alternatives. Therefore, where feasible the pipeline must be re-routed along the Zululand Lebombo Scarp Forest (*FOz5*). The 15m buffer determination along the Zululand Lebombo Scarp Forest (FOz5) must be adhered to. Also, a 33m buffer has been applied to the high- risk wetlands

and a 20m buffer to the wetlands receiving indirect impacts and at lower risk of impact. A buffer cannot be applied to wetlands W01, W04 and W05 as a result of activities taking place within them and a 20m buffer cannot be applied to wetlands W02 and W03 due to their proximity to the proposed activities. The vegetation clearance of pipeline construction corridor must not be more than 10m width for the construction corridor within the vicinity of the stream crossing (riparian zones), and wetlands (Subtropical Alluvial Vegetation (Aza7) vegetation). Thus, this will minimise impact associated with trenching for installation of sewer pipeline within some of the sensitive ecosystems.

Due the nature of works which involve working within the watercourses as a result of pipeline stream and wetland (riparian) crossing it is highly recommended that the planned activities be undertaken during dry period, where the streams and river are dry and of low peak flows condition.

It must be noted that the project is within the settlement area. Moreover, there was one grave site encountered during the infield assessment at location (28° 9'21.60"S, 31°52'4.68"E) but falls outside the project corridor. The grave site was within the household. The likelihood of gravesite encroachment could be mitigated through, appointment of the Project Social Facilitator to manage project social aspects and re-route the pipeline where there is encroachment to burial sites. Social Facilitator to undertake engagement with the households adjacent to pipeline route for assistance in identifying all unmarked graves that could be on the section of pipeline route; designs to be reviewed to prevent intrusion into grave sites, such as deviations to avoid graves and 30m buffer marked as "No-Go" areas. Any contractor found working within No-Go areas must be fined as per fining schedule/system setup for the project.

22 CONCLUSION AND EAP OPINION

In view of the foregoing, it is evident that the proposed Hlabisa Water-borne Sanitation Project will not have significant negative environmental impacts in the area.

The 5km sewer conveyance infrastructure is required to traverse along the low-lying areas to facilitate the conveyance of sewer through gravity main. As a result, the bulk sewer gravity main traverse along the valley outside of Hlabisa town across Matshamnyama towards to Emabhanovini in ward 12 and further to Bazane area in ward 14 where the WWTW will be located. This route allows for good design and practices based on the topography of the project area which will enable sewer to be transferred through gravity main as a result of the slope conditions as they are low-lying sloping areas, thus minimise the use of sewer pumpstation, energy use, and maintenance cost due pump failures. However, the pumpstations will be constructed in certain areas where the pipeline is on high lying areas along the route. These pumps must function continuously; therefore, the maintenance of electrical equipment and motors, as well as back-up diesel generators to provide power in the event of electricity outages, is crucially important. The location of the new Hlabisa WWTW technical favours the engineering design and effectiveness of the Hlabisa water-borne sanitation, as it is located at approximately 1.5km east of existing WWTW on the lowest lying area in terms of topography of the project area, thus enable efficiency of gravity main. It is important to note that the current site (existing Hlabisa WWWT) has limited space and upgrading the existing WWTW cannot support any further future expansion, as the current WWTW is now at the edge encircled by growing settlements within Hlabisa.

The proposed construction of Hlabisa bulk sewer pipeline and WWTW will facilitate the formalization of existing settlement and future housing development, as the implementation of Hlabisa town sanitation system will provide a formalised water borne sanitation for settlement and businesses. In addition, the construction of bulk sewer and reticulation will see the connection of businesses, schools and households which are currently serviced by a household's septic tanks. Thereby, upgrading to a full water-borne sanitation system that will be connected to this sewer main lines and WWTW.

The WWTW site must be shifted at least 80m-100m further north of existing position (*Figure 3*). This will prevent the WWTW infrastructure to be prone to flooding in case of extremely

event, and also prevent undesirable contamination Hlabisa River lying downstream of the WWTW. Furthermore, the configuration of WWTW site layout will mean exploring the use of site such as above the plantations, along previously disturbed corridors as the wetlands serve high ecological and hydrological value and should be preserved and protected. Therefore, the proposed alternative site position (Figure 3) could meet the desirable development objectives and provide impact mitigation as the site will be shifted further north by 80-100m from current location. This will also avoid the option of wetland offsetting, as this would be the case if the current WWTW position is considered. This will be in line with accordance to GN509 of the National Water Act, 1998 (Act No. 36 of 1998), the regulated area refers to the outer edge of the 1 in 100-year flood line and /or delineated riparian habitat, whichever is the greatest distance, measured from the middle of the watercourse of a river, spring, natural channel, lake or dam; In the absence of a determined 1 in 100-year flood line or riparian area the area within 100 metres (m) from the edge of a watercourse where the edge of the watercourse is the first identifiable annual bank fill flood bench (subject to compliance to section 144 of the Act). Buffer determination for watercourse habitat outside the construction corridor but at risk of being impacted. For the new WWTW 100m buffer determination is required between Hluhluwe River and new WWTW. This means the layout must be configured such that the WWTW should be shifted at least 80m-100m further north of existing position (Figure 3).

The implementation of Hlabisa Water-borne Sanitation Project will facilitate the construction of bulk sewer and reticulation which will see the connection of businesses, schools and households which are currently serviced by a household's septic tanks. Thereby, providing a full water-borne sanitation system that will be connected to this sewer main lines and discharge to the new Hlabisa WWTW. Moreover, it is also important to note that the safe disposal of human excreta and greywater is vitally important in the control of infectious and other communicable diseases. Therefore, the design and construction of appropriate sanitation systems is of paramount importance in contributing to the safe disposal of human excreta (Water Research Commission, 2011). To realise this goal and to ensure that the Sustainable Development Goal 6 and the NDP objectives are realised through this project, the National Web-Based Environmental Screening Tool (NWBEST) was used to generate the environmental sensitivity report of the proposed development site. Additionally, an Initial Site Sensitivity Verification study was undertaken to confirm or dispute the environmental sensitivity as identified by the NWBEST was conducted.

The decision to grant or refuse authorisation in terms of Section 24 of NEMA must be made in the light of the provisions of the Principles of NEMA. Section 24 provides that, in order to give effect to the general objectives of integrated environmental management laid down in NEMA, the potential impact on the environment of listed activities must be considered, investigated, assessed, and reported on to the CA charged by the Act with deciding applications for EA. A Draft Basic Assessment Report (DBAR) concerning the impact of the proposed Hlabisa Waterborne Sanitation Project including mitigation actions, has been compiled and submitted as prescribed and authorisation may only be issued after consideration of such report.

We submit that the environmental process undertaken thus far complies with these requirements and that this report covers the full suite of potential environmental issues related to the proposed Hlabisa Water-borne Sanitation Project. All potential impacts have been evaluated and responded to by either complete avoidance where possible, or by recommendation of the most appropriate and feasible mitigation measures. The preferred/mitigated development proposal presented in this report is responsive to the integrated results of the assessment of potential impacts made by the various specialists on the project team.

Based on comparative evaluation of the various alternatives, including the No-Go option, it is evident that the preferred '*Alternative A: Routing Alternative, Alternative B: Design Alternative, Alternative C: Technology Alternative, and Alternative D: Site Layout Alternative, Alternative E: Location Alternative'* for the proposed Hlabisa Water-borne Sanitation Project can meet the required objections to offset the No-Go option (subject to the implementation of recommended development mitigation measures). This DBAR therefore, concludes that the proposed development has been considered via a balanced approach, mindful of cumulative impacts, need and desirability of the project and that the overall negative environmental impacts will be of very low significance. As such, the project can be considered for environmental authorisation subject to implementation of the recommended phased approach and specialist mitigation measures such as wetland and stream crossings it is highly recommended that the planned activities be undertaken during dry period, where the streams are dry or of low flows condition.

This Draft Scoping Report is available for a review and comment period of 30 days, from **14**th of **July 2023** to the **14**th of **August 2023**. Comments and submissions received in response to this report will be submitted to EDTEA (the competent authority).

Written submissions must be addressed to: Emvelo Quality and Environmental Consultant (Pty) Ltd Attention: Ms Phumzile Lembede PO Box 101672, Meerensee, 3901 Tel: 035 789 0632 Fax: 086 577 5220 Email: info@emveloconsultants.co.za / dumisani@emveloconsultants.co.za

23 BIBLIOGRAPHY

Brownlie, S., 2005. Guideline for involving biodiversity specialists in EIA processes: Edition 1. CSIR Report No ENV-S-C 2005 053 C. Republic of South Africa, Provincial Government of the Western Cape, Department of Environmental Affairs & Development Planning, Cape Town.

Big 5 Hlabisa Municipality Annual Report 2019/2020. [Accessed at: http://www.big5hlabisa.gov.za/index.php/en/documents/idp/summary/10-idp/158-oversight-report-on-annual-report-2019-2020-financial-year Dated 04 April 2023].

Climate-Data.Org. Hlabisa Climate. [Access at: <u>https://en.climate-data.org/africa/south-africa/kwazulu-natal/hlabisa-189736/</u> Dated 16 March 2023].

CSIR (2011). Wetland Freshwater Priority Areas (FEPAs). Council for Scientific and Industrial Research (CSIR), Pretoria.

DEA (2017), Guideline on Need and Desirability, Department of Environmental Affairs (DEA), Pretoria, South Africa. ISBN: 978-0-9802694-4-4

DEAT (2002) Stakeholder Engagement, Integrated Environmental Management, Information Series 3, Department of Environmental Affairs and Tourism (DEAT), Pretoria.

DEAT (2002) Specialist Studies, Information Series 4, Department of Environmental Affairs and Tourism (DEAT), Pretoria.

DEAT (2010a). Companion to the EIA Regulations 2010. Integrated Environmental Management Guideline Series 5. Department of Environmental Affairs (DEA), Pretoria.

DEAT (2010b). Public Participation 2010. Integrated Environmental Management Guideline Series 7. Department of Environmental Affairs (DEA), Pretoria.

DEAT (2004a) Criteria for determining Alternatives in EIA, Integrated Environmental Management, Information Series 11, Department of Environmental Affairs and Tourism (DEAT), Pretoria.

DEAT (2004b) Cumulative Effects Assessment, Integrated Environmental Management, Information Series 7, Department of Environmental Affairs and Tourism (DEAT), Pretoria.

DEAT (2004c) Cost Benefit Analysis, Integrated Environmental Management, Information Series 8, Department of Environmental Affairs and Tourism (DEAT), Pretoria. DEAT (2006) Guideline 5: Assessment of Alternatives and Impacts in support of the Environmental Impact Assessment Regulations, 2006.Integrated Environmental Management Guideline Series, Department of Environmental Affairs and Tourism (DEAT), Pretoria.

DEA&DP (2007), NEMA EIA Regulations Guideline & Information Document Series

Guideline on Alternatives (September 2007).

Driver, M. (2005). South Africa's first National Spatial Biodiversity Assessment: conservation news. Veld & Flora 91, 11.

DWS (2014). A Desktop Assessment of the Present Ecological State, Ecological Importance and Ecological Sensitivity per Sub Quaternary Reaches for Secondary Catchments in South Africa. Secondary: V3. Department of Water and Sanitation. Compiled by RQIS-RDM [Accessed at: <u>https://www.dwa.gov.za/iwqs/rhp/eco/peseismodel.aspx</u> Dated 23 March 2022].

Ezemvelo KZN Wildlife (2014), uMkhanyakude Biodiversity Sector Plan, V1.0. Unpublished Report by Ezemvelo KZN Wildlife, Biodiversity Conservation Planning Division, Ezemvelo KZN Wildlife, P. O. Box 13053, Cascades, Pietermaritzburg.

Ezemvelo KZN Wildlife (2016). KZN Biodiversity Spatial Planning Terms and Processes, Version 3.3. Unpublished Report, Biodiversity Spatial Planning and Information Division, Ezemvelo KZN Wildlife, P. O. Box 13053, Cascades, Pietermaritzburg, 3202.

FitzPatrick Institute of African Ornithology (2023). FrogMAP Virtual Museum. Accessed at <u>https://vmus.adu.org.za/?vm=FrogMAP</u> on 2023-03-17.

FitzPatrick Institute of African Ornithology (2023). MammalMAP Virtual Museum. Accessed at <u>https://vmus.adu.org.za/?vm=MammalMAP</u> on 2023-03-17.

FitzPatrick Institute of African Ornithology (2023). BirdPix Virtual Museum. Accessed at <u>https://vmus.adu.org.za/?vm=BirdPix</u> on 2023-03-17.

FitzPatrick Institute of African Ornithology (2023). ReptileMAP Virtual Museum. Accessed at <u>https://vmus.adu.org.za/?vm=ReptileMAP</u> on 2023-03-17.

FitzPatrick Institute of African Ornithology (2023). LepiMAP Virtual Museum. Accessed at <u>https://vmus.adu.org.za/?vm=LepiMAP</u> on 2023-03-17.

FitzPatrick Institute of African Ornithology (2023). OdonataMAP Virtual Museum. Accessed at https://vmus.adu.org.za/?vm=OdonataMAP on 2023-03-17.

Mucina, L. and Rutherford, M.C. (2006). The vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19. South African National Biodiversity Institute. Pretoria.

National Environmental Management Act (107 of 1998): EIA Regulation 2014, as Amended on 07 April 2017. Department of Environmental Affairs. Pretoria.

National Planning Commission (NPC). (2012). National Development Plan 2030. Our Future – make it work. Pretoria, South Africa. [Assessed at: <u>http://www.dac.gov.za/sites/default/files/NDP%202030%20-%20Our%20future%20-%20mak</u> e%20it%20work_0.pdf Dated: 15 September 2022]

Richardson, D.M., Bond, W.J., Dean, W.R.J., Higgins, S.I., Midgley, G., Milton, S.J., Powrie, L.W., Rutherford, M.C., Samways, M., Schulze, R., 2000. Invasive alien species and global change: a South African perspective. Invasive species in a changing world, 303-349.

SANBI, 2017. Red List of South African Plants version 2017.1.

uMkhanyakude District Municipality Integrated Development Plan, Review 4th Generation (2018/2019). [Assessed at: <u>https://www.ukdm.gov.za/index.php/integrated-development-plan-idp/idp-2018-2019</u> Dated 04 April 2023]

APPENDICES

APPENDIX A. EAP DECLARATION OF INFORMATION

APPENDIX B. ENVIRONMENTAL MANAGEMENT PLAN(EMPR)

APPENDIX C. MAPS AND CASE IMAGES

C-1: Locality & Sensitivity Maps

C-2: Other Maps

C-3 Case Images/Site Photographs

APPENDIX D. CIVIL LAYOUTS DESIGNS

APPENDIX E. PUBLIC PARTICIPATION PROCESS

E-1: Newspaper Advert/ Notice

E-2: Background Information Document (BID)

E-3: Onsite Notices

E-4: I&APs Register

E-5: Department Acknowledgements Letters

E-6: Minutes of the EIA Pre-Application meeting

E-7: Proof of Documents Circulation

E-8: I&APs Comments and Responses

APPENDIX F. EAP'S CV(S)

F-1: Principal EAP (Phumzile Lembede)

F-2: Study Lead/EAP (Dumisani Myeni)

APPENDIX G. SPECIALIST STUDIES

G-1: Terrestrial Biodiversity Impact Assessment

G-2: Wetland Delineation and Impact Assessment

G-3: Aquatic Ecological Impact Assessment

G-4: Geohydrology Impact Assessment

G-5: Geotechnical Assessment

APPENDIX H: SCREENING TOOL SENSITIVITY VERIFICATION

APPENDIX I: ENVIRONMENTAL SCREENING REPORT

APPENDIX J: STORMWATER MANAGEMENT PLAN

APPENDIX K: CONTINGENY PLAN