

LAND CAPABILITY AND FRESHWATER HABITAT IDENTIFICATION: ENAMANDLA PV SITE 5 BIOTHERM ENERGY (PTY) LTD

Draft Public

Project no: 47579 Date: January 2017

WSP | Parsons Brinckerhoff WSP House, Bryanston Place, 199 Bryanston Drive, Bryanston, 2191

Tel: +27 (0) 11 300 6085 Fax: +27 (0) 11 361 1381 www.wspgroup.com www.pbworld.com

QUALITY MANAGEMENT

ISSUE/REVISION	FIRST ISSUE	REVISION 1	REVISION 2	REVISION 3
Remarks				
Date	12/12/2016			
Prepared by	Bruce Wickham			
Signature	1200 ·			
Checked by	Colin Holmes			
Signature	Gol-			
Authorised by	Greg Matthews			
Signature	MATHENTE			
Project number	47579			
Report number	R01			
File reference	47579_R01-Enamandla PV Site 5-Freshwater Habitat Assessment Final Report-20161110.docx			

PRODUCTION TEAM

CLIENT

Senior Associate Michael Barnes

Environmental Manager Irene Bezuidenhout

Analyst Siphelele Dunga

WSP | PARSONS BRINCKERHOFF

Author Bruce Wickham

Reviewer Colin Holmes

Authorisation Greg Matthews

TABLE OF CONTENTS

1	INTRODUCTION	1
1.1	OBJECTIVES OF THE REPORT	1
1.2	STUDY APPROACH AND METHODOLOGYLAND CAPABILITYFRESHWATER HABITAT IDENTIFICATIONIMPACT METHODOLOGICAL FRAMEWORK	2 3
1.3	ASSUMPTIONS AND LIMITATIONS	6
1.4	DECLARATION OF INDEPENDENCE	7
2	DESCRIPTION OF THE PROJECT	8
3	DESCRIPTION OF THE AFFECTED ENVIRONMENT	12
3.1	HYDROLOGY	12
3.2	VEGETATION AND LAND USE	15
3.3	SOILS AND GEOLOGY	15
3.4	GROUNDWATER	20
4	FINDINGS – ENAMANDLA PV SITE 5	20
4.1	LAND CAPABILITY	20
4.2	FRESHWATER HABITAT	22
5	ASSESSMENT OF IMPACTS	24
5.1	CONSTRUCTION PHASE	24
5.2	OPERATIONAL PHASE	24
5.3	DECOMMISSIONING PHASE	25
5.4	CUMULATIVE IMPACTS	25
5.5	OPTIONS ANALYSIS	27

6	MITIGATION AND MANAGEMENT MEASURES27				
7	STAKEHOLDER CONSULTATION29				
7.1	STAKEHOLDER CONSULTATION PROCESS29				
7.2	STAKEHOLDER COMMENTS AND RESPONSE29				
8	CONCLUSION30				
9	PLATES31				
10	REFERENCES32				
T A D	1.50				
IAB	LES				
TABLE 1:	NATURE OR TYPE OF IMPACT4				
TABLE 2:	PHYSICAL EXTENT OF IMPACT5				
TABLE 3:	DURATION OF IMPACT5				
TABLE 4:	MAGNITUDE OF IMPACT ON ECOLOGICAL PROCESSES5				
TABLE 5:	IMPACT PROBABILITY OF OCCURRENCE5				
TABLE 6:	SIGNIFICANCE WEIGHTINGS FOR EACH IMPACT6				
TABLE 7:	TERTIARY D82 HYDROLOGICAL CHARACTERISTICS12				
TABLE 8:	REPRESENTATIVE SOIL SAMPLES20				
TABLE 9:	SOIL SAMPLE CHARACTERISTICS21				
TABLE 10:	CONSTRUCTION PHASE IMPACTS24				
TABLE 11:	OPERATIONAL PHASE IMPACTS24				
TABLE 12:	DE-COMMISSIONING PHASE IMPACTS25				
TABLE 13:	NEIGHBOURING RENEWABLE ENERGY PROJECTS COMPARISON26				
TABLE 14:	MITIGATION AND MANAGEMENT MEASURES FOR POTENTIAL IMPACTS28				
TABLE 15:	STAKEHOLDER COMMENTS AND QUERIES AND THE ASSOCIATED RESPONSES29				
FIG	URES				
FIGURE 1:	REGIONAL SETTING OF ENAMANDLA PV SITE 5 IN RELATION TO THE ENTIRE BIOTHERM PROJECT AND THE TOWN OF UPINGTON9				
FIGURE 2:					

FIGURE 3:	PROPOSED NEIGHBOURING RENEWABLE ENERGY PROJECTS, REDZ AND EGI	.11
FIGURE 4:	LOCATION OF BIOTHERM SITES IN RELATION TO NEW WMA	413
FIGURE 5:	LOCAL HYDROLOGY AND TOPOGRAPHY	.14
FIGURE 6:	LOCAL NATURAL VEGETATION	.16
FIGURE 7:	LOCAL LAND COVER (LAND USE)	.17
FIGURE 8:	LOCAL SOIL LAND TYPE AND SOIL SAMPLING LOCATIONS	.18
FIGURE 9:	LOCAL GENERAL GEOLOGY	.19
FIGURE 10:	LOCAL LAND CAPABILITY	.23

APPENDICES

A P	Р	E N	D	ΙX	Α	SGS LABORATORY SO	IL ANALYSIS REPORT
-----	---	-----	---	----	---	-------------------	--------------------

A P P E N D I X B ENVIRONMENTAL SIGNIFICANCE FOR EACH IMPACT

A P P E N D I X C CUMULATIVE IMPACT ASSESSMENT

1 INTRODUCTION

BioTherm Energy (Pty) Ltd (BioTherm) have proposed the development for a renewable energy complex Enamandla PV Site 5 in the Northern Cape province. As part of the application process for Environmental Authorisation, WSP Environmental (Pty) Ltd (WSP | Parsons Brinckerhoff) was appointed by BioTherm to undertake a Social and Environmental Impact Assessment (SEIA).

The SEIA is divided into two phases, the Scoping Phase and the Environmental Impact Assessment (EIA) Phase. This report will follow from the scoping phase, addressing the land capability and freshwater habitat systems (i.e. wetlands and watercourses) located within the project footprint, and providing a high level assessment of the potential environmental impacts associated with the proposed development.

1.1 OBJECTIVES OF THE REPORT

The objective associated with the assessments include the following:

- Describe the background of the project and contextualise it in the natural environment. This will include defining the land capability and appraisal and identification of freshwater habitat systems located within the project footprint;
- à List and assess the potential environmental impacts associated with the proposed project to the environs identified; and
- Conclude the finding of the report, highlighting any significant impacts and their corresponding mitigation and management measures which should be considered as conditions in the authorisation.

1.2 STUDY APPROACH AND METHODOLOGY

The scope of work covered within this report, which entails a land capability assessment and freshwater habitat identification, forms part of the process required for BioTherm to apply as a Preferred Bidder to the Department of Environmental Affairs (DEA). The study therefore focuses on the identification and assessment of sensitive environments that may be impacted on by the proposed project.

The purpose of this report was to conduct a high level study that defined the land capability and identified freshwater habitat systems in the area of the proposed Enamandla PV Site 5. The potential impacts to the land and freshwater habitat systems were defined at a generic and high level. This entailed a desktop review and site visit from which an initial the scoping report was developed. The desktop review utilised available information at the time, including the following spatial information resources:

- Google Earth Pro;
- a Agricultural Geo-Referenced Information System (AGIS);
- à National Freshwater Ecosystem Priority Areas (NFEPA);
- The U.S. Geological Survey (USGS);
- The Soil Maps of Africa: European Digital Archive of Soil Maps (EuDASM);
- à Hydrological features including rivers and, catchments and water management areas, and

Existing maps and detailed project information provided by BioTherm which were available at the onset of the project.

Preliminary maps and figures were developed to use during the site visit to verify the information collected during the desktop review, through a ground-truthing exercise.

The site investigation comprised of a three-day site visit conducted between the 9th and 11th of February 2016. The site assessments entailed a drive through of the property on which the proposed Enamandla PV Site 5 is located. The area covered during the site visit was the operational footprint of the proposed project as well as a 500m boundary buffer. The following tasks were undertaken as part of the site investigation:

- Verification of desktop review information;
- Wetland and riparian zone identification and delineation;
- a Soil profile characterisation and sample collection, including:
 - Soil depth and profile description (i.e. subjective moisture estimation, effective rooting depth, presence of mottling, gleying, pedocretes and soil structure);
 - Classification of soil form and family based on the Taxonomic Soil Classification System for South Africa (Macvicar, 1991);
 - Permeability based on in-situ estimation and texture properties;
- à Underlying lithology; and
- Soil sample collection for laboratory analyses of pH, electrical conductivity, exchangeable sodium and soil texture.

A handheld Global Positioning System (GPS) and camera were used in conjunction with the maps produced in the desktop review, to conduct the ground-truthing exercise. The GPS was used to delineate areas as well as verify and mark all relevant points with exact co-ordinates. Representative soil samples were collected using a hand-operated auger, where holes were drilled until the parent material/refusal was reached. The representative soil samples were sent for analyses to the SGS Soil Laboratory situated in Somerset West in the Western Cape, to determine the pH, electrical conductivity, exchangeable sodium and texture.

LAND CAPABILITY

The land capability for the proposed Enamandla PV Site 5 project footprint was assessed according to the Land Capability Classification described in the Chamber of Mines Guidelines (Chamber of Mines of South Africa/Coaltech, 2007). The physical and chemical data from the soils laboratory analyses, in conjunction with the climatic, topographical, vegetation and land use information, was used to classify the Land Capability of the farm property into 4 broad categories:

- Class 1 Wetland It is made up of vleis, swamps, marshes, peat-bogs and the like. There is usually a water table present at shallow depth in the soil with the result that it is difficult or impossible to recover soil material for later use because heavy machinery becomes bogged down, unless the soils are drained;
 - Wetland, has one of the following characteristics:
 - a diagnostic organic (O) horizon at the surface;
 - horizon that is gleyed throughout more than 50 percent of its volume and is significantly thick, occurring within 75 cm of the surface;
- Class 2 Arable land Land which conforms to all of the following requirements: Does not qualify as a wetland;

- has soil that is readily permeable to the roots of common cultivated plants throughout a depth of 0.75 m from the surface:
- has a soil pH value between 4,0 and 8,4. Has electrical conductivity of the saturation extract less than 400mS/m at 25°C, and an exchangeable sodium percentage less than 15 through the upper 0,75 m of soil;
- has a permeability of at least 1,5 mm per hour in the upper 0.5 m of soil;
- has less than 10 percent by volume of rocks or pedocrete fragments larger than 100 mm in diameter in the upper 0,75 m of soil;
- the product of the slope (in percent) and erodibility factor (K) is less than 2.0;
- occurs under a climate regime which permits, from soils of similar texture and adequate effective depth (0,75 m), the economic attainment of yields of adapted agronomic or horticultural crops that are at least equal to the current national average for those crops. Or is either currently being irrigated successfully or has been scheduled for irrigation by the Department of Water Affairs;
- à Class 3 Grazing Land Grazing land conforms to all of the following requirements;
 - does not qualify as wetland or as arable land;
 - has soil or soil-like material, permeable to the roots of native plants, that is more than 0.25 m thick and contains less than 50 % by volume of rocks or pedocrete fragments larger than 100 mm diameter;
 - supports or is capable of supporting a stand of native or introduced grass species or other forage plants utilisable by domesticated livestock or game animals on a commercial basis;
- Class 4 Wilderness land This is land which has little or no agricultural capability by virtue of being too arid, too saline, too steep or too stony to support plants of economic value. Its uses lie in the fields of recreation and wildlife conservation. It does, however, also include watercourses, submerged land, built-up land and excavations. Wilderness land is defined by exclusion, namely land which does not qualify as wetland, arable land or grazing land.

In addition to the above four classes, the land capability was also defined by the eight land capability classes based on the original USDA work and adapted for SA conditions by ARC. This was done at a desktop level, based on the GIS information provided on the Department of Agriculture, Forestry, and Fisheries (DAFF) Agricultural Geo-Referenced Information System website (AGIS, 2007).

FRESHWATER HABITAT IDENTIFICATION

The freshwater habitat identification for the proposed Enamandla PV Site 5 project entailed the following tasks described below:

- Desktop review to establish the baseline environmental conditions and location of wetlands marked in the National Land Cover GIS database for South Africa (SANBI – BGIS) and the National Freshwater Ecosystem Priority Areas (NFEPA);
- a Identification of wetlands, based on the Department of Water Affairs and Forestry (DWAF) publication Updated Manual for the Identification and Delineation of Wetlands and Riparian Areas (DWAF, 2008); and
- High level description of the potential impacts on the identified freshwater habitats located within a 500m radius of the proposed Enamandla PV Site 5 project footprint.

IMPACT METHODOLOGICAL FRAMEWORK

The impact valuation uses a methodological framework used by WSP | Parsons Brinckerhoff to meet the combined requirements of international best practice and NEMA, Environmental Impact

Assessment Regulations, 2014 (GN No. 982) (the "EIA Regulations"). As required by the EIA Regulations (2014), the determination and assessment of impacts will be based on the following criteria:

- Nature of the Impact;
- Significance of the Impact;
- Consequence of the Impact;
- Extent of the impact;
- a Duration of the Impact;
- Probability if the impact;
- a Degree to which the impact:
 - < can be reversed;
 - may cause irreplaceable loss of resources; and
 - can be avoided, managed or mitigated.

Following international best practice, additional criteria have been included to determine the significant effects. These include the consideration of the following:

- Magnitude to what extent environmental resources are going to be affected;
- Sensitivity of the resource or receptor (rated as high, medium and low) by considering the importance of the receiving environment (international, national, regional, district and local), rarity of the receiving environment, benefits or services provided by the environmental resources and perception of the resource or receptor); and
- **Severity** of the impact, measured by the importance of the consequences of change (high, medium, low, negligible) by considering inter alia magnitude, duration, intensity, likelihood, frequency and reversibility of the change.

It should be noted that the definitions given are for guidance only, and not all the definitions will apply to all of the environmental receptors and resources being assessed. Impact significance was assessed with and without mitigation measures in place.

Impacts are assessed in terms of the following criteria:

- The nature, a description of what causes the effect, what will be affected and how it will be affected (Table 1);
- The physical extent, wherein it is indicated whether (Table 2);
- a The duration, wherein it is indicated whether the lifetime of the impact will be (Table 3);
- The magnitude of impact on ecological processes, quantified on a scale from 0-10, where a score is assigned (Table 4); and
- à The probability of occurrence, which describes the likelihood of the impact actually occurring. Probability is estimated on a scale where (**Table 5**):

Table 1: Nature or Type of Impact

NATURE OR TY	DEFINITION
OF IMPACT	
Beneficial /	An impact that is considered to represent an improvement on the baseline or introduces a
Positive	positive change.
Adverse /	An impact that is considered to represent an adverse change from the baseline, or
Negative	introduces a new undesirable factor.

Direct	Impacts that arise directly from activities that form an integral part of the Project (e.g. new infrastructure).
Indirect	Impacts that arise indirectly from activities not explicitly forming part of the Project (e.g. noise changes due to changes in road or rail traffic resulting from the operation of Project).
Secondary	Secondary or induced impacts caused by a change in the Project environment (e.g. employment opportunities created by the supply chain requirements).
Cumulative	Impacts are those impacts arising from the combination of multiple impacts from existing projects, the Project and/or future projects.

Table 2: Physical Extent of Impact

SCORE	DESCRIPTION
1	The impact will be limited to the site.
2	The impact will be limited to the local area.
3	The impact will be limited to the region.
4	The impact will be national.
5	The impact will be international.

Table 3: Duration of Impact

SCORE	DESCRIPTION
1	A very short duration (0 to 1 years).
2	A short duration (2 to 5 years).
3	A medium term (5–15 years).
4	A long term (> 15 years).
5	Permanent.

Table 4: Magnitude of Impact on Ecological Processes

SCORE	DESCRIPTION
0	Small and will have no effect on the environment.
2	Minor and will not result in an impact on processes.
4	Low and will cause a slight impact on processes.
6	Moderate and will result in processes continuing but in a modified way.
8	High (processes are altered to the extent that they temporarily cease).
10	Very high and results in complete destruction of patterns and permanent cessation of processes.

Table 5: Impact Probability of Occurrence

SCORE	DESCRIPTION
1	very improbable (probably will not happen.
2	improbable (some possibility, but low likelihood).
3	probable (distinct possibility).
4	highly probable (most likely).
5	definite (impact will occur regardless of any prevention measures).

- à The significance, which is determined through a synthesis of the characteristics described above (refer formula below) and can be assessed as low, medium or high;
- à The status, which is described as either positive, negative or neutral;
- a The degree to which the impact can be reversed;
- à The degree to which the impact may cause irreplaceable loss of resources; and

a The degree to which the impact can be mitigated.

The significance is determined by combining the criteria in the following formula:

$$S = (E + D + M) \times P$$

S = Significance weighting;

E = Extent;

D = Duration;

M = Magnitude, and

P = Probability.

The significance weightings for each potential impact are as follows (**Table 6**):

Table 6: Significance Weightings for Each Impact

OVERALL SCORE	SIGNIFICANCE RATING	DESCRIPTION
< 30	Low	where this impact would not have a direct influence on the decision to develop
points		in the area
31-60	Medium	where the impact could influence the decision to develop in the area unless it is
points		effectively mitigated
> 60	High	where the impact must have an influence on the decision process to develop in
points		the area

The impact significance without mitigation measures will be assessed with the design controls in place. Impacts without mitigation measures in place are not representative of the Project's actual extent of impact, and are included to facilitate understanding of how and why mitigation measures were identified. The residual impact is what remains following the application of mitigation and management measures, and is thus the final level of impact associated with the development of the Project. Residual impacts also serve as the focus of management and monitoring activities during Project implementation to verify that actual impacts are the same as those predicted in this EIA Report.

1.3 ASSUMPTIONS AND LIMITATIONS

The following assumptions and limitations were identified as part of the assessment:

- à The various published data sources (i.e. aerial imagery, mapping and previous reports) have been assumed to be accurate at the time of use.
- At the time of the site investigation, the final layout routes of the pipelines, powerlines and substations was not made available, and as such could not be investigated as part of the site assessment.
- Identification of freshwater habitats in the region of the proposed Enamandla PV Site 5 project, was limited to a high level desktop exercise.
- Owing to the extent of the site and accessibility constraints, groundtruthing was only possible in certain areas of the site. Conditions of freshwater habitat in inaccessible areas were therefore inferred based on site observations of accessible habitats.
- The site visit was limited to a 500m radius around the farm property Hartebeestvlei RE86 within which the proposed Enamandla PV Site 5 project sites are located. As such, only the freshwater habitats identified within the 500m buffer of the farm property that were accessible by vehicle at the time of the site visit, were investigated.
- and distinguish any freshwater habitats in the area due to arid nature of the region.

1.4 DECLARATION OF INDEPENDENCE

Bruce Wickham is a Hydrologist with an MSc from the University of KwaZulu-Natal in 2015. He joined WSP | Parsons Brinckerhoff in 2015 and has worked on various soil and wetland related projects. He is registered as a Candidate Natural Scientist – Water Resources Science with the South African Council for Natural Scientific Professions (SACNASP).

Colin is a Senior Environmental Consultant at WSP | Parsons Brinckerhoff with an MSc in Applied Environmental Science. He has also completed wetland management courses with the University of Free State. He has completed and managed numerous projects relating to wetland and riparian delineations, Present Ecological State and Ecological Importance and Sensitivity assessments, and the compilation of IWWMPs. He is registered with the South African Council for Scientific Professions – Professional Natural Scientist (Environmental Scientist) and is a SETA accredited Carbon Footprint Analyst.

Greg Matthews has 17 years of professional experience and is registered with the South African Council for Scientific Professions – Professional Natural Scientist (Environmental Scientist and Hydrological Scientist). He has been involved in numerous projects associated with the assessment of activities on both soil and water resources.

WSP | Parsons Brinckerhoff has no financial or other interest in the proposed development and will derive no benefits other than fair remuneration for consulting services provided.

- I, Greg Matthews, declare that -
- à I act as the independent specialist in this application;
- I will perform the work relating to the application in an objective manner, even if this results in views and findings that are not favourable to the applicant;
- a I declare that there are no circumstances that may compromise my objectivity in performing such work;
- a I have expertise in conducting the specialist report relevant to this application, including knowledge of the Act, regulations and any guidelines that have relevance to the proposed activity;
- à I will comply with the Act, regulations and all other applicable legislation;
- à I have no, and will not engage in, conflicting interests in undertaking of the activity;
- I undertake to disclose to the applicant and the competent authority all material information in my possession that reasonably has or may have potential of influencing – any decision to be taken with respect to the application by the competent authority; and – the objectivity of any report, plan or document to be prepared by myself for submission to the competent authority;
- All the particulars furnished by me in this form are true and correct; and
- I realise that a false declaration is an offense in terms of regulation 71 and is punishable in terms of section 24F of the Act.

Name: Greg Matthews Sign: Date: 11/10/2016

2

DESCRIPTION OF THE PROJECT

The proposed Solar BioTherm development, is located on the remaining extent farm portion Hartebeestvlei RE86 in the Northern Cape province (**Figure 1**). The project entails two renewable solar power technologies viz. Concentrated Solar Power (CSP) and Photovoltaics (PV), differentiated by Letsoai (CSP) and Enamandla (PV) site names (**Figure 2**). Furthermore, there are two alternative site layouts for the Enamandla PV sites 2-5, of which the second layout (i.e. 'Alternatives 2") is the preferred option (**Figure 2**).

This report is primarily focused towards potential activities and impacts associated with the Enamandla PV Site 5, however there are also proposed infrastructure options associated with the development (i.e. substations, power transmission lines and pipelines). The associated infrastructure has been assessed in a separate report.

The Enamandla PV Site 5 will produce 75 MW of electrical power which will be fed into the national grid. Photovoltaic (PV) solar power converts light directly into electricity. This technology uses photovoltaic cells which convert light into electric current through the 'photovoltaic effect'. The PV system produces direct current power which fluctuates with the sunlight's intensity. Multiple photovoltaic cells are connected to form a module, and in turn the modules are wired together to form an array. The arrays are connected to a transformer, with the output voltage being stepped up from medium voltage to high voltage in the transformer. The medium voltage cables will be run underground in the facility (except where a technical assessment suggest that overhead lines are applicable) to an onsite substation before being evacuated by 132kV powerlines to the common substation.

The Enamandla PV Site 5 occupies an area of 43.8 km² (3.4km² for alternative 2), in the northern portion of the farm property, which has a total area of 132 km². The closest town is Aggeneys, which is 15km north of the sites (**Figure 1**). The main town of Upington is situated approximately 250km north east of the site. The Orange River is located 55km north of the site (**Figure 1**). The site is located within the Namakwa District and the Khâi-Ma Local Municipalities (LM). The main economic sectors are agriculture, tourism, community, social and personal services (The Local Government Handbook, accessed 2016). The main road of the N14 runs from Upington to Springbok and serves as the primary access route to Aggeneys and neighbouring towns (**Figure 1**).

In addition to the proposed Enamandla PV Site 5 project, there are additional potential solar/wind power developments planned in the area around the proposed BioTherm solar sites (**Figure 3**). This area falls within the Springbok Wind Renewable Energy Development Zone (REDZ). Which were identified throughout South Africa in a Strategic Environmental Assessment (SEA), as part of the Department of Environmental Affairs Strategic Integrated Project National Infrastructure Plan.

In a separate SEA - Electrical Grid Infrastructure (EGI), national power corridors were delineated for the efficient and effective expansion of the transmission infrastructure throughout South Africa. The location of the BioTherm sites, as well as the proposed neighbouring renewable energy developments, are strategically placed to overlap with the REDZs and EGI demarcated zones (**Figure 3**). The neighbouring potential solar/wind power developments will be factored into the EIA as part of the cumulative impact assessment. These renewable energy developer entities include:

- Orlight SA (Pty) Ltd Photovoltaic Power Plant
- Sato Energy Holdings Photovoltaics (1 site);
- Solar Capital (Pty) Ltd Concentrate Solar Power (1 site);
- à Mainstream Renewable Power SA Solar (2 sites); and
- a JUWI Renewable Energies (Pty) Ltd Wind Turbines (2 sites).

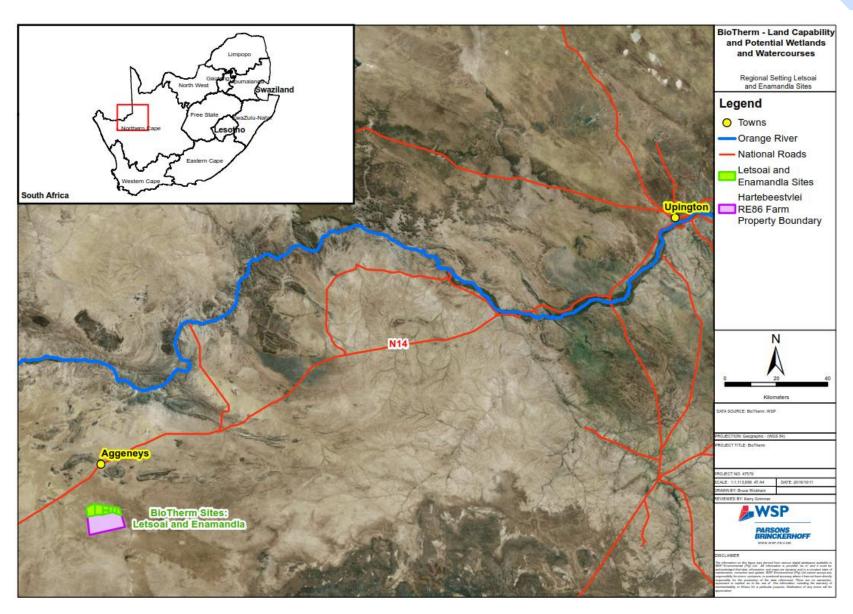


Figure 1: Regional Setting of Enamandla PV Site 5 in relation to the entire BioTherm Project and the town of Upington

Figure 2: Letsoai CSP and Enamandla PV Alternative Sites

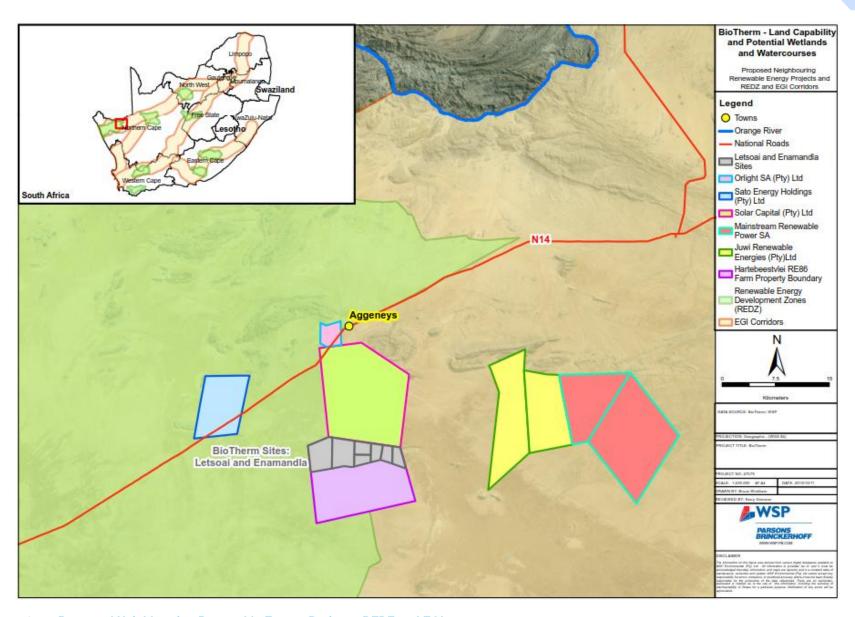


Figure 3: Proposed Neighbouring Renewable Energy Projects, REDZ and EGI

3 DESCRIPTION OF THE AFFECTED ENVIRONMENT

The local natural environment within which the proposed Enamandla PV Site 5 project is located is summarised in the following section. This will include the local hydrology, natural vegetation and land use, soil type and characterisation, and a simple geological description with a basic groundwater assessment. This will serve as basic description of the present natural conditions in the area of the proposed Enamandla PV Site 5 project.

3.1 HYDROLOGY

South Africa is divided into nine Water Management Areas (WMAs), where the proposed BioTherm solar power sites are situated in the Orange WMA 6 (**Figure 4**). The site is located in the downstream portion of the Orange River Basin, which starts in the Lesotho Highlands headwaters of the Senqu River. The Upper region of the Orange WMA, as well as the Upper, Middle and Lower Vaal WMA's all contribute to the Orange River Basin as a whole.

The Enamandla PV Site 5 lies within tertiary catchment D82 and quaternary catchment D82B (**Figure 5**). The hydrological characteristics are summarised in **Table 7**, including catchment area, Mean Annual Precipitation (MAP), Mean Annual Evaporation (MAE) and Mean Annual Runoff (MAR). The MAE largely exceeds the MAP, resulting in very low runoff and reinforcing the arid conditions of the region. The Quaternary catchment, is 100% endoreic (WRC/DWA, 2012). An endoreic area does not contribute to runoff, and thus rainfall on this area is lost through either evaporation or percolation to the underlying groundwater environment, and as such does not contribute to surface water runoff. For a complete assessment of the water component of the Study, the reader is referred to the *Water Assessment report for the Solar Power Generation in the Northern Cape Province* Report (WSP, 2016).

Table 7: Tertiary D82 Hydrological Characteristics

	CATCHMENT AREA	MAP	MAE	MAR
Quaternary	(km²)	(mm)	(/	(million m³/a)
D82B	4 877	80	2 650	0

Upon the site visit, there were no watercourses identified within the proposed Enamandla PV Site 5. The nearest evidence of a watercourse was the Kao River (and associated tributaries) which is located north (outside) of the project site (**Figure 5**). During the site visit there was no water present in the Kao River. Given the low MAP, predominantly flat topography (i.e. average slope of 3.1% from north to south) and sandy soils (i.e. high transmissivity), justifies the dominant endoreic characteristic for the region. As such the rivers in this region (excluding the Orange) are ephemeral and are likely to only convey water during infrequent high rainfall events.

Figure 4: Location of BioTherm Sites In Relation to New WMA

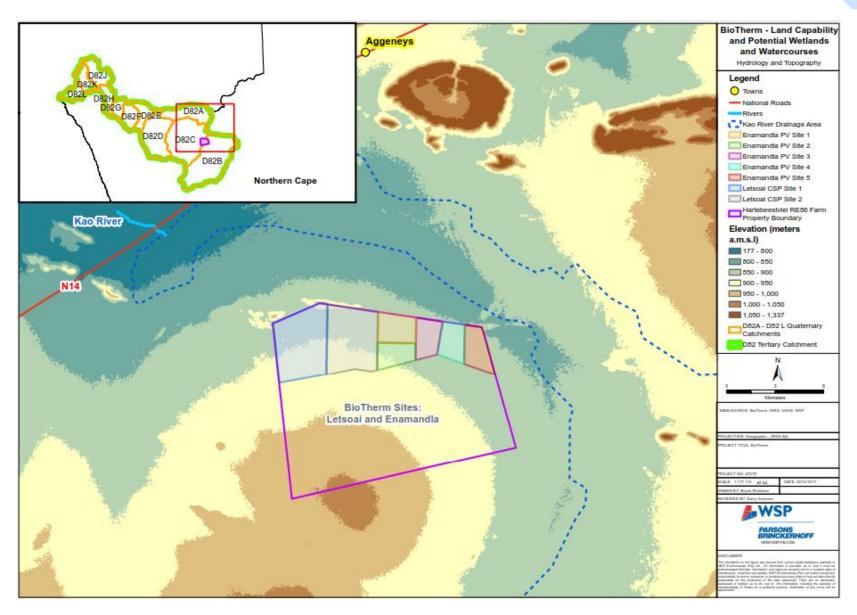


Figure 5: Local Hydrology and Topography

3.2 VEGETATION AND LAND USE

Based on the Mucina and Rutherford (2006) natural vegetation classification map, the area of proposed BioTherm solar power project is mostly Bushmanland Arid Grassland (**Figure 6**). There are minor portions of Bushmanland Inselberg Shrubland situated on the small hills along the northern edge of the Hartebeestvlei RE8 farm property boundary (**Figure 6**). The Department of Agriculture, Forestry and Fisheries (DAFF) define the land use within the Hartebeestvlei RE86 farm property, as predominantly Shrubland and Low Fynbos, with smaller pockets of unimproved (natural) Grassland, and minor areas of Woodlands (DAFF, 2012) (**Figure 7**). As shown in **Figure 7**, there are three potential wetlands located approximately 3.4km ,5.2km and 1.7km south (outside) of the proposed BioTherm sites.

Upon the site visit, the vegetation was identified as mostly shrub-like arid grassland, which is primarily used for sheep grazing (**Plates 1 – 3**). Cattle grazing activities and herd of indigenous antelope (Springbok) were also present within Hartebeestvlei RE86 farm property. Windmill driven boreholes located throughout the farm property supply water to small reservoirs for the sheep and cattle (**Plate 4**).

Beyond the Hartebeestvlei RE86 farm property boundary, additional land use activities identified during the site walkover included, sheep farming, the Eskom Aggeneis Sub-station, Aggeneys mining village, the Black Mountain Mine and the Gamsberg Mine.

3.3 SOILS AND GEOLOGY

Based on the information included in the land type maps of South Africa (AGIS, 2007) the soils in the area of the Hartebeestvlei RE86 farm are identified mostly as "Red-yellow apedal, freely drained soils, red, high base status, < 300 mm deep". There are smaller areas comprised of "Miscellaneous land classes, very rocky with little or no soils" on the inselbergs (small hills) located on the northern boundary of the farm property (**Figure 8**). The landscape is mostly shaped by wind erosion, and there is a low to moderate water erosion hazard (AGIS, 2007).

The general geology description of the area is based on the 1:1 000 000 geological map for Northern Cape Province, published by the Trigonometrical Survey Office in 1970 (Schifano *et.al.*, 1970). The farm property is located on the Namaqualand and Natal belt of metamorphism and granitization where the rock type comprises of *Migmatite, gneiss and ultrametamorphic rocks* (**Figure 9**). Upon the site walkover, gneiss rock types were present below the soil profile (**Plate 5**)

The ranges of hills, mountains and inselbergs in the area display some of the most diverse and complex geology in Southern Africa including some of the richest known concentrations of copper, lead and zinc (Mining Technology, accessed 2016). The Aggeneys deposits occur in the Precambrian metavolcanic metasedimentary Bushmanland Group which forms part of the Namaqualand Metamorphic Complex. The Bushmanland Group is located within the Namaqualand-Natal Mobile Belt, with an area of approximately 18 000km².

Due to the high minerals in the area, mining activities have been active for many years, and projected to continue for decades to come (i.e. the Black Mountain Mine and Gamsberg Mine). The Black Mountain Mine is an underground base-metal operation mining zinc, lead, copper and silver, and is located 14 km north of Hartebeestvlei farm RE86.

The large flat plains dominated by the fine red sand sediment, is underlain by granitic gneisses, while the protruding inselbergs and ranges of hills are characterised by metavolcanic-metasedimentary units of the Bushmanland Group (Bailie *et al.*, 2007). The orebody at the proposed Gamsberg mine nearby is hosted by iron sulphide-rich pelitic rocks and iron formation, and the economic mineralisation comprises sphalerite (zinc) and minor galena (lead). As of November 2014, the Gamsberg mine was estimated to contain mineral resources of 194Mt.

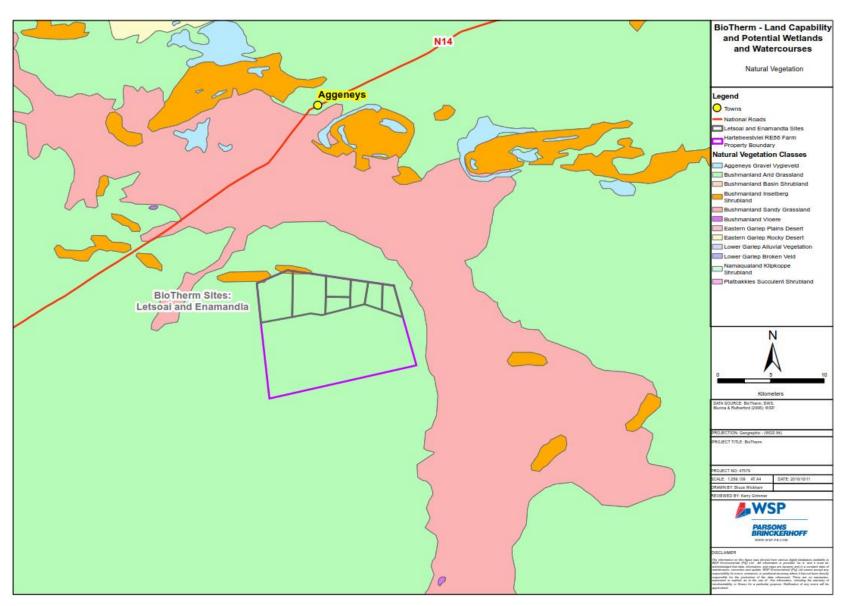


Figure 6: Local Natural Vegetation

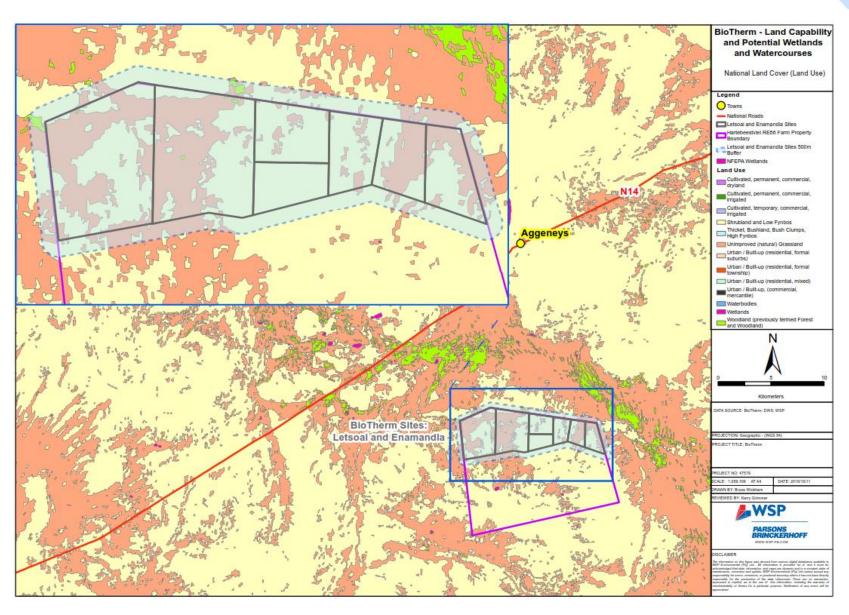


Figure 7: Local Land Cover (Land Use)

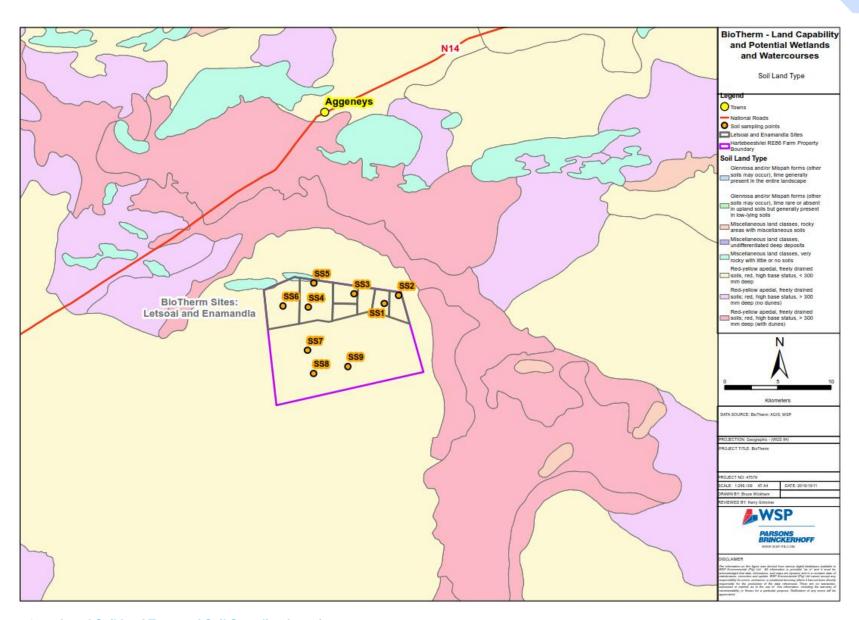


Figure 8: Local Soil land Type and Soil Sampling Locations

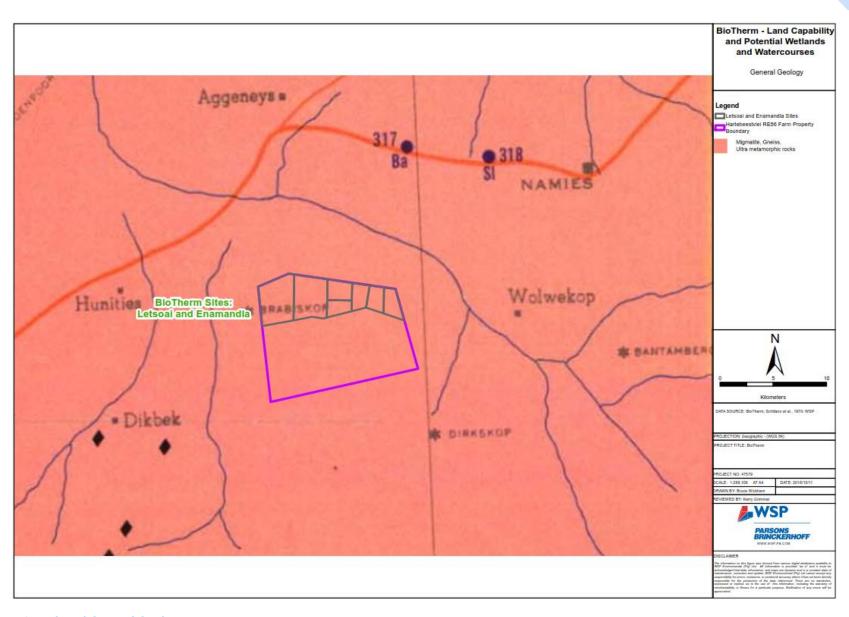


Figure 9: Local General Geology

3.4 GROUNDWATER

The groundwater of the area was assessed through a site walkover conducted by WSP | Parsons Brinckerhoff and VSA Leboa Consulting. Several boreholes over the area were identified with three representative boreholes chosen to be analysed for both yield and chemical constituents.

The groundwater investigation identified the underlying natural geology as a poor aquifer, with a low low-yielding system of poor water quality with a least vulnerability to contamination and the low susceptible to anthropogenic activities. The regional depth to groundwater is 30 to 50m below ground level (bgl). Water level measured from the boreholes ranged between 27.74 m and 79.59m bgl. Owing to mining within the area groundwater level may be induced to drop.

Aquifer testing of two of the boreholes indicated that the average sustainable yield ranged between 0.72 l/s and 1.105 l/s. The groundwater quality analysis revealed a dominance in sodium, potassium, chloride and sulphate ions, with Totals Dissolved Solids ranging from 1000 to 1500 mg/l.

The Water Assessment report for the Solar Power Generation in the Northern Cape Province Report (WSP, 2016) summaries the finding of the assessment of hydrogeological conditions associated with the broader site.

4 FINDINGS – ENAMANDLA PV SITE 5

The assessment of the land capability and Freshwater Habitat for the Enamandla PV Site 5 are outlined below.

4.1 LAND CAPABILITY

To ascertain the characteristics of the soils across the site, soil samples were obtained from nine locations (i.e. SS1 - SS9) (**Figure 8**). The location of the soil sampling points was determined from interpreting the soil land type map for the area as well as on-site observation for changes in the topography and land feature which might induce a change in the soil type.

At each location, the soil depth and diagnostics horizons were identified, and a sample was collected for chemical and physical analyses in a suitable soil laboratory (**Appendix A**). For practical reasons, soil samples that were collected (within 0.3m depth) in a similar setting and had the same soil family, were composited to provide representative samples for the area (**Table 8**). The characteristics of the soil samples and profiles are described in **Table 9**. Based on the *Taxonomic Soil Classification System for South Africa* (Macvicar, 1991) all the soil samples were classified as Namib soil form (**Plate 6**).

Table 8: Representative Soil Samples

REPRESENTATIVE SOIL SAMPLE	MIX SOIL SAMPLES
1	SS1 + SS2 + SS3
2	SS4 + SS5 + SS6
3	SS7 + SS8 + SS9

Table 9: Soil Sample Characteristics

CHARACTERISTIC	SS1	SS2	SS3	SS4	SS5	SS6	SS7	SS8	SS9
Soil Form	Namib								
Profile Depth	0.16	0.95	0.23	1.58	1.13	0.33	0.31	0.34	0.22
Dry Colour*, mottling and	Pale orange	Pale orange	Orange	Orange	Orange	Pale orange	Orange	Orange	Orange
gleying	Hue 5 YR	Hue 5 YR	Hue 2.5 YR	Hue 2.5 YR	Hue 2.5 YR	Hue 5 YR	Hue 5 YR	Hue 7.5 YR	Hue 7.5 YR
	Value 8	Value 7	Value 7	Value 7					
	Chroma 4	Chroma 4	Chroma 8	Chroma 8	Chroma 8	Chroma 4	Chroma 8	Chroma 6	Chroma 6
Subjective moisture	Dry								
Effective rooting depth- Grasses (m)	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Effective rooting depth - Shrubs (m)	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Soil structure	Single grained								
Presence of rocks, pedocretes, calcareousness	No								
На	6.7	6.7	6.7	7.1	7.1	7.1	7.4	7.4	7.4
Electrical conductivity (mS/m)	18.4	18.4	18.4	20.1	20.1	20.1	19.9	19.9	19.9
Exchangeable sodium (%)	1.4	1.4	1.4	2.2	2.2	2.2	1.1	1.1	1.1
Sand (S) Silt (Si) & Clay (C) (%)	96, 2, 2	96, 2, 2	96, 2, 2	96, 2, 2	96, 2, 2	96, 2, 2	96, 2, 2	96, 2, 2	96, 2, 2
Texture**	Fine Sand								
Estimate permeability (m/d)***	1.6 – 6.0	1.6 – 6.0	1.6 – 6.0	1.6 – 6.0	1.6 – 6.0	1.6 – 6.0	1.6 – 6.0	1.6 – 6.0	1.6 – 6.0
Erodibility K factor #	52	52	52	52	52	52	52	52	52
		10: 1 10	" 0 ' 0' '	- · · · · · ·	0 0004)				

Sources:

^{*} Colour based on the revised Standard Soil Colour Chart (Fujihara Industry Co., 2001);

^{**} Texture based upon the United States Department of Agriculture (USDA) Soil texture triangle and grain size

^{***} Estimate Permeability based upon soil structure and texture (van der Molen, Beltran, & Ochs, 2007)

[#] Estimated from the soil erodibility nomograph of Wischmeier, Johnson and Cross (1971)

According to DAFF Agricultural Geo-Referenced Information System (AGIS, 2007), the land capability within the Hartebeestvlei RE86 farm property is largely classified as non-arable with a low potential for grazing, while the inselbergs on the northern boundary of the farm property constitute as Wilderness (**Figure 10**). These two groups correlate to Classes VII and VIII from the Eight-Class Land Capability System described in Klingebiel and Montgomery (1961), as follows:

- VII: Severe limitations that make the land unsuited to cultivation and restrict its use largely to grazing, woodland or wildlife. Restrictions are more severe than those for Class VI due to one or more limitations which cannot be corrected, such as very steep slopes, erosion, shallow soil, stones, wet soil, salts or sodicity (amount of sodium held in a soil) and unfavourable climate.
- VIII: Limitation that preclude its use for commercial plant production and restrict its use to recreation, wildlife, water supply, or aesthetic purposes; limitations that cannot be corrected may result from the effects of one or more of erosion or erosion hazard, sever climate, wet soil, stones, low water-holding capacity, salinity or sodicity.

Based on the Land Capability Classification described in the Chamber of Mines Guidelines the land capability within the Enamandla PV Site 5 is classified as *Class 3: Grazing Land*, for the following reasons:

- There were no wetlands confirmed within the site during the desktop and site walkover exercises. Thus by definition of the Chamber of Mines classification, it is not a wetland;
- The soils are predominately shallow (average 0.58m). Thus by definition of the Chamber of Mines classification, it is not an arable land;
- The product of the slope (in percent) and erodibility factor (K) in the site is not less than 2 (the lowest value is 161.2). Thus by definition of the Chamber of Mines Guidelines, it is not arable land;
- à The land on the site is not irrigated. Thus by definition of the Chamber of Mines Guidelines, it is not an arable land; and
- à It meets all the requirements for class 3: grazing land.

4.2 FRESHWATER HABITAT

A wetland is defined as land which is transitional between terrestrial and aquatic systems where the water table is usually at or near the surface, or the land is periodically covered with shallow water, and which land in normal circumstances supports or would support vegetation typically adapted to life in saturated soil (National Water Act, Act 36 of 1998).

During the desktop investigation, no freshwater habitats were identified within the Enamandla PV Site 5. This was confirmed, where possible, during infield investigations.

Figure 10: Local Land Capability

5 ASSESSMENT OF IMPACTS

The impacts identified for the Enamandla PV Site 5 are assessed in the section that follows. The methodology for defining the significance of the respective impacts is described in section 1.2 of this report. The impacts will be assessed for the construction, operational and de-commissioning phases of the project.

A cumulative impact assessment will also be performed for the neighbouring BioTherm sites and adjacent renewable energy projects. This section will provide a summary of the findings from the significance rating tables used for each impact. The process for determining the relevant significances of each impact for the various phases of the project is provided in **Appendix B**.

5.1 CONSTRUCTION PHASE

The anticipated impacts for the Enamandla PV Site 5 during the construction phase of the project are summarised in **Table 10**. The impacts are only applicable to the present land capability status of the site, as no wetlands freshwater habitats were confirmed within the site and 500m radius of the site boundary.

Table 10: Construction Phase Impacts

ACTIVITY	POTENTIAL IMPACT
Site preparation and	Loss of grazing land current utilised for grazing mostly sheep farming, cattle farming
	and indigenous antelope.
power facility and	Loss of aesthetical value of the natural landscape.
associated	Increased potential of soil erosion due to vegetation clearance, soil disturbance and
infrastructure.	a high traffic movement on site.
	Potential land contamination from hazardous substances. This includes spillage of
	concrete onto soil surface, as well as oils, fuel, grease (from construction vehicles)
	and sewage from temporary on-site ablution facilities.

There are no fatal flaws identified for the construction phase associated with the proposed Enamandla PV Site 5 project. The loss of gazing land is a negative impact and was assigned a medium environmental significance rating score, after mitigation measures. This impact is unavoidable given the fact that during the construction phase the project will physically occupy portions of the land located within the project footprint. The other identified impacts (i.e. soil erosion and spillage of hazardous substances) were classified as negative impacts, but had a low environmental significance rating before and after mitigation measures.

5.2 OPERATIONAL PHASE

The anticipated impacts for the Enamandla PV Site 5 during the operational phase of the project are summarised in **Table 11**. The impacts are only applicable to the present land capability status of the site, as no freshwater habitats were confirmed within the site and 500m radius of the site boundary.

Table 11: Operational Phase Impacts

ACTIVITY	POTENTIAL IMPACT
Day-to-day operational	Loss of grazing land current utilised for mostly sheep farming, cattle farming and
activities during the	indigenous antelope.
	Loss of aesthetical value of the natural landscape.
the solar power facility,	Increased potential of soil erosion due to vegetation clearance, and more run-off
including maintenance.	from harden surfaces (i.e. roads and array of heliostats).

Potential land contamination from hazardous substances. This includes spillage of oils, fuel, grease (from site operational and maintenance vehicles) and permanent onsite sewage systems.

Similar to the construction phase, there were no fatal flaws identified during this phase of the project. The loss of grazing land was assigned a high environmental significance rating, however this negative impact is unavoidable given the fact that associated solar power infrastructure will permanently occupy a portion of the land within the proposed project footprint. With mitigation measures in place, this impact was brought down to a medium environmental significance. The medium rating is under the assumption that farming practices may continue in and around the infrastructure during the operational phase. The other negative impacts of potential soil erosion and spillage of hazardous substances were assigned a low environmental significance before and after mitigation measures.

5.3 DECOMMISSIONING PHASE

The anticipated impacts for the Enamandla PV Site 5 during the de-commissioning phase of the project are summarised in **Table 12**. The impacts are only applicable to the present land capability status of the site, as no freshwater habitats were confirmed within the site and 500m radius of the site boundary.

Table 12: De-commissioning Phase Impacts

ACTIVITY	POTENTIAL IMPACT
De-commissioning of	Increased potential of soil erosion due to removal of solar power infrastructure (i.e.
the solar power facility.	Heliostats), soil disturbance and a high traffic movement on site.
	Potential land contamination from hazardous substances. This includes spillage of
	oils, fuel, grease (from construction vehicles) and sewage from on-site systems.

The decommissioning phase exhibited the lowest environmental significance rating scores for the associated impacts of the proposed Enamandla PV Site 5 project. There were no fatal flaws identified during this phase of the project. The potential for soil erosion and spillage of hazardous substances were classified as a low environmental significance rating before and after mitigation measures.

5.4 CUMULATIVE IMPACTS

There are a number of Environmental Authorisations (EA) (either issued or in process) in the area surrounding the Proposed Project site. It must be stressed that the fact that there are several approved EA surrounding the site does not equate to actual 'development'. The surrounding projects, except for the Preferred Bidders, are still subject to the Renewable Energy Independent Power Producer Procurement Programme (REIPPPP) bidding process like the Enamandla project.

In addition to the Enamandla PV Site 5, the proposed BioTherm project includes one additional CSP site and five PV sites (**Figure 2**). Furthermore, there are five proposed renewable energy projects located within a 100 km radius from the centroid of the BioTherm sites (**Figure 3**). A summarised desktop review of the proposed neighbouring projects, (including the BioTherm sites) is summarised in **Table 13**. The renewable energy projects that have received Environmental Authorisation were investigated to determine any identified potential impacts on land capability and freshwater habitats. These individual impacts were tabulated and assigned a significance rating (Low to High) which allowed for the cumulative assessment of these impacts on the landscape. Overall the cumulative impact of the proposed Enamandla PV Site 5 is deemed to be of 'Low' significance (**Appendix C**).

None of the proposed BioTherm sites intersect any identified freshwater habitats, and the anticipated impacts during the construction, operational and de-commissioning phases are expected to be the same as those summarised above for the Enamandla PV Site 5.

 Table 13:
 Neighbouring Renewable Energy Projects Comparison

ENERGY ENTITY	RENEWABLE ENERGY TECHNOLOGY	FOOTPRINT (KM ²)	No. of Water Courses Intersections	NFEPA WETLANDS INTERSECTIONS	PARENT FARM PROPERTIES	Towns Intersected
Letsoai CSP Site 1	Concentrated Solar Power	13.0	None	None	Hartebeestvlei RE86	None
Letsoai CSP Site 2	Concentrated Solar Power	11.9	None	None	Hartebeestvlei RE86	None
Enamandla PV Site 1	Photovoltaics	4.0	None	None	Hartebeestvlei RE86	None
Enamandla PV Site 2 (Alternative)	Photovoltaics	4.9 (3.1)	None	None	Hartebeestvlei RE86	None
Enamandla PV Site 3 (Alternative)	Photovoltaics	7.3 (3.4)	None	None	Hartebeestvlei RE86	None
Enamandla PV Site 5 (Alternative)	Photovoltaics	3.8 (3.4)	None	None	Hartebeestvlei RE86	None
Orlight SA (Pty) Ltd	Photovoltaics	1.16	1 x ephemeral watercourse	None	Aroams 57 RD	None
Sato Energy Holdings (Pty) Ltd	Photovoltaics	51.7	1 x ephemeral watercourse	6	Zuurwater62	None
Solar Capital (Pty) Ltd	Concentrated Solar Power	141.5	1 x ephemeral watercourse	5	Bloemhoek 61	None
Mainstream Renewable Energies (Pty) Ltd Site 1	Solar Power	57.8	1 x ephemeral watercourse	None	Namies Suid 212	None
Mainstream Renewable Energies (Pty) Ltd Site 2	Solar Power	116.3	1 x ephemeral watercourse	None	Poortje 209	None
Juwi Renewable Energies (Pty) Ltd WEF 1	Wind Turbines	72.7	1 x ephemeral watercourse	None	Vogelstruis Hoek 88	None
Juwi Renewable Energies (Pty) Ltd WEF 2	Wind Turbines	57.11	1 x ephemeral watercourse	None	Namies Suid 212	None

Similarly, the additional proposed renewable projects adjacent to the BioTherm sites, are expected to have the similar impacts to those identified for the BioTherm sites, however several of these project sites intersect freshwater habitats. The assessment of these potentially affected ecological features within the four neighbouring renewable energy developments is beyond the scope of this study, and will require an individual assessment for the respective projects in their own scoping and EIA studies. It is assumed that the impacts during the construction, operational and decommissioning phases are expected to be more significant from a freshwater habitat perspective than those summarised above for the Enamandla PV Site 5.

There was no fatal flaw identified in the cumulative impacts for the proposed BioTherm sites and the five proposed renewable energy projects. As in the case of the above mentioned phases, the loss of grazing land is unavoidable. This impact was initially assigned a high environmental significance, which can be reduced to low with the implementation of mitigation measures (i.e. keep the affected area to a minimal during the construction, operational and decommissioning phases). Potential impacts of soil erosion and spillage of hazardous substances were both classified with a low environmental significance, before and after mitigation measures.

5.5 OPTIONS ANALYSIS

There are two configuration alternatives, within the same overall footprint of the Letsoai and Enamandla Projects (**Figure 2**). The operational impacts of these sites are not significantly different from one another in terms of impacts on land capability and the high-level freshwater habitats (assuming that this infrastructure is not positioned within a freshwater habitat). The major impacts will then be associated with the construction and decommissioning phases which will result in physical disturbance of the environment. The options analysis is based on limiting the environmental impact on land capability and freshwater habitat, as the land is majorly homogenous, land capability basically comes down to the size of the area disturbed by each option, where in terms of freshwater habitats, it comes to location in relation to these habitats and the potential hydrological alterations.

As there are no freshwater habitats that have been identified onsite, the area being fairly homogenous and the overall footprint of the combined Letsoai and Enamandla Projects do not alter between the two alternative configurations; there is no one option that is significantly preferred over the other.

6 MITIGATION AND MANAGEMENT MEASURES

The potential impacts identified in Section 5 of this report, have been assessed with and without mitigation and management measures. These mitigation and management measures are summarised in **Table 14**, for the construction, operation and decommissioning phases of the project.

The same mitigation and management measures are proposed for the cumulative impacts identified in the previous section, however the responsible person may differ according to the renewable energy project developer.

In addition, an aquatic specialist should be present onsite before the site preparation phase of construction to conduct an in-depth site walkover prior to any site work to assess the area for any freshwater habitats which may be affected by the actions conducted during the construction phase.

Table 14: Mitigation and Management Measures for Potential Impacts

ACTIVITY	MITIGATION AND MANAGEMENT MEASURE	RESPONSIBLE		APPLICABLE DEVELOPMENT		MONITORING REQUIREMENTS
				=	AUTHORISATION	
	Areas of construction should be (where practical) limited to the extent of the project	Site	construction	Construction and		A site compliance audit should be conducted (1)
sheep, cattle and antelope grazing	footprint, and activities outside of the site should be kept to a minimum.	managers	(BioTherm	Operational	high environmental significance	prior to construction to determine the base line
will be occupied by the solar power		contractors)		·	during the operational phase	conditions, (2) during construction on a monthly
facility and associated		·				basis and (3) after rehabilitation measures have
infrastructure.						been implemented.
Increased potential for soil erosion	Areas of construction should be (where practical) limited to the extent of the project	Site	construction	Construction, Operational	Yes - activity has been assigned a	A site compliance audit should be conducted (1)
due to vegetation clearance, soil	footprint, and activities outside of the site should be kept to a minimum. Traffic of	managers	(BioTherm	and Decommissioning	medium environmental significance	prior to construction to determine the base line
disturbance and high traffic	construction vehicles should be kept to a minimum to reduce soil compaction, and	contractors)			during the construction phase	conditions, (2) during construction on a monthly
movement on site.	limited to existing or proposed roadways where practical. Soils excavated during	·				basis and (3) after rehabilitation measures have
	construction of the facility should be appropriately stored in stockpiles which are					been implemented.
	protected from erosion (i.e. through use of vegetation cover in the case of long-term					·
	stockpiles- this should form part of the rehabilitation process after the construction					
	phase). Wind erosion is dominant for the region, however the array of heliostats will					
	act as an artificial wind break and reduce the effect in the site footprint. Water erosion					
	action is considered limited, however backfilling with soil and use of gabions or Reno					
	Mattresses should be used where evidence of erosion is present.					
	The proper handling and storage of hazardous materials, the use of hardstanding in	Site	construction	Construction, Operational	No - activity has been assigned a	A site compliance audit should be conducted (1)
substances such as oils, fuel,	storage areas of hazardous substances and where spillages are possible. The use of	managers	(BioTherm			prior to construction to determine the base line
	bunding around storage of hazardous materials and proper upkeep of machinery and					conditions, (2) during construction on a monthly
	vehicles. A complete spill kit must be onsite at all times.					basis and (3) after rehabilitation measures have
from on-site sanitation systems						been implemented.

7 STAKEHOLDER CONSULTATION

7.1 STAKEHOLDER CONSULTATION PROCESS

Public participation is a requirement of the S&EIR process; it consists of a series of inclusive and culturally appropriate interactions aimed at providing stakeholders with opportunities to express their views, so that these can be considered and incorporated into the S&EIR decision-making process. Effective public participation requires the prior disclosure of relevant and adequate project information to enable stakeholders to understand the risks, impacts, and opportunities of the Proposed Project.

A comprehensive stakeholder consultation process was undertaken during the scoping phase. Stakeholders were identified through existing databases, site notices, newspaper adverts and meetings. All stakeholders identified to date have been registered on the project database. All concerns, comments, viewpoints and questions (collectively referred to as 'issues') received to date have been documented and responded to in a Comment and Response Report.

There will be ongoing communication between WSP | Parsons Brinckerhoff and stakeholders throughout the S&EIR process.

7.2 STAKEHOLDER COMMENTS AND RESPONSE

The stakeholder's queries and comments to the Draft Environmental Scoping Report, relating to land Capability and Freshwater Habitats, have been responded to in **Table 15** below.

Table 15: Stakeholder Comments and Queries and the associated Responses

STAKEHOLDER DETAILS	Соммент	SPECIALIST RESPONSE
C Schwartz Department of Water and Sanitation Northern Cape Region (Lower Orange Water Management Area) 25 October 2016	 The Department takes note of the proposed activity and therefore provides the following comments: Indicated on page 25 of the abovementioned report, water will be sourced from Sedibeng Water. Please note that an agreement between the applicant and Sedibeng Water should be submitted to the Department. Any spillage of any hazardous materials including diesel that may occur during construction and operation must be reported immediately to this Department. All sewage and grey water, as well as any waste generated during the construction phase of the facilities will be collected, contained and disposed of at the permitted and/or licenced facilities of the Local Authority and this must please be confirmed in writing by the local authority. 	 Noted. Noted. Spill response has been addressed within the site-specific EMPr. It is specified that all major spills are reported to the DWS immediately. A representative onsite must be trained in the use of the spill kit stop, contain and remove contamination, to prevent further pollution of the environment. Waste and water management has been addressed within the site specific EMPr. All waste generated onsite must be disposed of in a safe manner at permitted and/or licenced facility. Safe disposal certificates are required to be onsite for inspection by the ECO and officials. The DWS must be informed of any use of private contractors. The details of this contractor and safe

STAKEHOLDER DETAILS	Соммент	SPECIALIST RESPONSE
	Stormwater must be diverted from the construction works and roads and must be managed in such a manner as to disperse runoff and to prevent the concentration of stormwater flow.	control have been addressed within this report and the site-specific EMPr. A

8 CONCLUSION

The land capability of the proposed Enamandla PV Site 5 is defined as non-arable with a low potential for grazing. Grazing activities (mainly sheep) are the dominant land use for the region and has the largest potential to be impacted by the activities of the proposed BioThem project. Indirect impacts of increased soil erosion are expected at the site given the dry, fragile environment of the region. Furthermore, spillage of hazardous substances onto the land as a result of the activities of the Enamandla PV Site 5 project, is a possibility. However, all these potential impacts on the current land capability for the area were classified with a low environmental significance risk, should the appropriate mitigation measure be followed during the construction, operational and decommissioning phases of the project.

There were no freshwater habitat systems identified within a 500m radius of the proposed Enamandla PV Site 5. As such, no impacts are anticipated for the freshwater habitat systems as a result of the activities of the proposed Enamandla PV Site 5 project.

Consequently, there are no fatal flaws anticipated for the proposed Enamandla PV Site 5 project, from a land capability and freshwater habitat perspective. It is recommended that the mitigation and management measures outlined in this report be followed throughout all phases of the project.

This report provides an initial high-level identification and description of the land capability and freshwater habitat systems within the site boundary. This is due to the extent of the site, accessibility constraints and lack of information relating to the positioning of operational and road infrastructure. Should BioTherm be recognised as a Preferred Bidder, the required application for a Water Use Licence (WUL) in terms of Section 21 of the National Water Act (NWA) (Act 36 of 1998) may commence. This application (WULA) will require detailed functional assessments (i.e. PES, EIS and EcoServices) of freshwater habitats potentially affected. Therefore, it is recommended that a more in-depth and thorough study be conducted by a land capability and aquatic specialist should BioTherm be recognised as a Preferred Bidder.

It is also recommended that an aquatic specialist must conduct an in-depth site walkover prior to the construction phase commencing, after the proposed construction footprint has been confirm and demarcated. This is to assess the footprint for any freshwater habitats, allowing for slight alterations in the footprint, to prevent any impacts on the freshwater habitats due to the actions conducted during the construction phase.

9 PLATES

Plate 1 – Vegetation

Plate 2 - Sheep pen

Plate 3 - Cattle pen

Plate 4 - Windmill-driven boreholes and reservoir

Plate 5 - Namib soil form

Plate 6 - Gneiss rock type below soil profile

10 REFERENCES

- à AGIS. (2007). AGIS Agricultural Geo-Referenced Information System. Retrieved March 10, 2016, from AGIS Agricultural Geo-Referenced Information System Web site: http://www.agis.agric.za/agisweb/agis.html.
- Bailie, R., Armstrong, R., & Reid, D. (2007). The Bushmanland Group supracrustal succession, Aggeneys, Bushmanland, South Africa: Provenance, age of deposition and metamorphism. SOUTH AFRICAN JOURNAL OF GEOLOGY Volume 110, 59-86.
- Chamber of Mines of South Afica/Coaltech. 2007, November. *Guidelines for the Rehabilitation of Mined Land. Guidelines for the Rehabilitation of Mined Land.* Johannesburg, Gauteng, South Africa: Chamber of Mines of South Afica/Coaltech.
- DWAF (2008). *Updated Manual for the Identification and Delineation of Wetlands and Riparian Areas*, prepared by M. Rountree, A. L. Batchelor, J. MacKenzie and D. Hoare. Stream Flow Reduction Activities, Department of Water Affairs and Forestry, Pretoria, South Africa.
- à Fujihara Industry Co. (2001). *Revised standard soil color charts*. Fujihara Industry Company, Tokyo, Japan.
- All Klingebeil, A. A., & Montgomery, P. H. (1961). Land capability classification. Agriculture handbook no 210. Soil conservation service. Washington DC: US Department of Agriculture.
- à Macvicar, C. N. (1991). *Soil Classification: A Taxonomic System for South Africa*. Pretoria: Department of Agricultural Development.
- Mining Technology. 2016. Gamsberg-Skorpion Integrated Project. Retrieved May 2016, from Mining Technology website, http://www.mining-technology.com/projects/gamsbergskorpion-integrated-project/.
- Mucina, L., & Rutherford, M. C. (2006). The vegetation of South Africa, Lesotho, and Swaziland. Strelitzia 19. Pretoria: South African National Biodiversity Institute.
- Schifano, G., Eeden van, O. R., & Coertze, F. J. (1970). The Soil Maps of Africa: European Digital Archive of Soil Maps EuDASM. Retrieved March 7, 2016, from The Soil Maps of Africa: European digital archive of soil maps EuDASM Web site: http://eusoils.jrc.ec.europa.eu/esdb_archive/EuDASM/Africa/maps/afr_za2003_4toge.htm
- The Local Government Handbook. Retrieved May 2016, from The Local Government Handbook website: http://www.municipalities.co.za/provinces/view/7/northern-cape.
- à USGS U.S Geological Survey. (2009). USGS. Retrieved March 10, 2016, from USGS Website: http://www.usgs.gov/.
- Van der Molen, W. H., Beltran, J. M., & Ochs, W. J. (2007). Annex 1: Estimating soil hydrological characteristics from soil texture and structure. In W. H. van der Molen, J. M. Beltran, & W. J. Ochs, Guidelines and computer programs for the planning and design of land drainage systems (pp. 115 116). Rome: Food and Agriculture Organisation of the United Nations.
- WSP. 2016. Water Assessment Report for The Enamandla Solar Facilities Enamandla Sites. Project: BioTherm, Project No. 47579, Report Number: R03.
- Wischmeier, W H; Johnson, C H and Cross, V A. (September-October 1971). A soil erodibility nomograph for farmland and construction sites. Journal of Soil and Water Conservation, Vol. 26, No 5, pp 189-193, September-October 1971
- WRC Water Research Commission. 2008. Wetland Management Series: Wet-EcoServices, a technique for rapidly assessing ecosystem services supplied by wetlands. Report No. TT339/08. Water Research Commission, Pretoria, South Africa

Appendix A

SGS LABORATORY SOIL ANALYSIS REPORT

LABORATORY REPORT FOR SOIL ANALYSIS

REG No. 1949/032643/07 VAT REG No. 4560117428

SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm

COMPANY: WSP NAME: P BRINKERHOFF ADDRESS: FARM:

ADDRESS: DISTRICT:

TEL/FAX: DATE: 3/3/2016

Somerset West REF: REP: Tel: (021) 852 7899 229161

Lab Nr.	Ref.	Camp	Depth	рН	Р	K	Ca	Mg	Na	K	Ca	Mg	Na	K	K Ca Mg Na		KCI (H⁺)	Ca:Mg	(Ca+Mg)/ K	Mg:K	Acid Sat	
Lab III.	1101.	Camp	Deptiii	KCI	Bray 1		Amm A	Acetate	Э		٥	6			mea -	- cmol	()/ka			Norms		%
				KOI	mg/kg		mg	/kg				, o		meq = cmol(+)/kg			1.5 - 4.5	10 - 20	3 - 4	76		
B16-203-43	1	SS 1,2,3		6.7	9	95	350	100	9	8.5	61.4	28.7	1.4	0.24	1.75	0.82	0.04	0.00	2.1	10.6	3.4	0.00
B16-203-44	2	SS 4,5,6		7.1	3	96	377	100	15	8.1	62.5	27.2	2.2	0.25	1.89	0.82	0.07	0.00	2.3	11.0	3.3	0.00
B16-203-45	3	SS 7,8,9		7.4	10	111	571	108	10	7.0	70.2	21.8	1.1	0.28	2.86	0.89	0.04	0.00	3.2	13.2	3.1	0.00

Building H1

De Beers Avenue

AECI-site

SGS

LABORATORY REPORT FOR SOIL ANALYSIS

REG No. 1949/032643/07 VAT REG No. 4560117428

SGS s

COMPANY: WSP

ADDRESS: ADDRESS: TEL/FAX:

REF: 229161

Lab Nr.	Ref.	Camp	S-Value	T-Value	Base Sat	Cu	Zn	Mn	Fe	В	s	Clay	Silt	Sand	Density	EC
Lab Ni.	nei.	Camp	cmol(+)/ kg	cmol(+)/ kg	%			M HCI g/kg		H₂O mg/kg	Am Ac mg/kg	Hy	ydrome %	ter	g/cm ³	mS/m
B16-203-43	1	SS 1,2,3	2.9	2.9	100.00	0.55	0.74	12.20	4.00	0.17	4.0	2	2	96	1.730	18.4
B16-203-44	2	SS 4,5,6	3.0	3.0	100.00	0.59	0.49	8.30	0.00	0.15	4.1	2	2	96	1.689	20.1
B16-203-45	3	SS 7,8,9	4.1	4.1	100.00	0.65	0.94	12.70	0.00	0.19	6.8	2	2	96	1.629	19.9

Appendix B

ENVIRONMENTAL SIGNIFICANCE FOR EACH IMPACT

	Construction Phase													
				Enama	a <mark>ndla Sit</mark> e	5								
Potential Impact		Extent (E)	Duration (D)	Magnitude (M)	Probability (P)	Ü	nificance E+D+M)*P)	Status (+ve or - ve)	Confidence					
	Nature of impact:					Direc	t							
Loss of land	Without Mitigation	2	2	8	5	60	Medium	-	medium					
previously used for sheep, cattle and antelope grazing will be	degree to which impact can be reversed:				low									
occupied by the solar power facility and associated	degree of impact on irreplaceable resources:		low											
infrastructure	Mitigation Measures						the extent of the kept to a minimu							
	With Mitigation	1	2	6	5	45	Medium	-	medium					
Construction activities will	Nature of impact:				I	Direct and I	ndirect							
entail vegetation clearance, soil	Without Mitigation	2 2 6 4 40 Medium -							medium					
disturbance and high traffic movement on site, resulting in a	degree to which impact can be reversed:				high									

higher potential for soil erosion	degree of impact on irreplaceable resources:				low								
	Mitigation Measures	footpring construction construc	nt, and active ction vehicled to existing action of the d from eroses). Wind er as an artifice ction is cons	vities outside of es should be k or proposed re facility shoul ion (i.e. throu osion is domir ial wind break idered limited	of the site sho tept to a mining coadways whe d be appropri gh use of vego nant for the re a and reduce to d, however ba	uld be kept mum to red ere practical ately stored etation cove gion, howe he effect in ckfilling wit	the extent of the to a minimum. Truce soil compaction. Soils excavated of in stockpiles which in the case of lower the array of he the site footprint he soil and use of gerosion is presen	affic of on, and during ch are ng-term eliostats . Water abions or					
	With Mitigation	1	2	4	3	21	Low	-	medium				
	Nature of impact:												
Potential spillage	Without Mitigation	2	2	medium									
of hazardous substances such as oils, fuel, grease from	degree to which impact can be reversed:		high										
construction vehicles, and sewage from on- site sanitation	degree of impact on irreplaceable resources:												
systems	Mitigation Measures	storage	areas of ha	zardous subst	ances and wh	ere spillage	he use of hardstal s are possible. The upkeep of machi	e use of					

With 1 2 0 1 3 Low - medium

Operational Phase														
	Enamandla Site 5													
		Extent	Duration	Magnitude	Probability	Sig	ınificance	Status	0 51					
Potential Impact		(E)	(D)	(M)	(P)	(S=(E+D+M)*P)	(+ve or - ve)	Confidence					
	Nature of impact:					Direct								
l acc of land	Without Mitigation	2	4	8	5	70	High	-	medium					
Loss of land previously used for sheep, cattle and antelope grazing will be occupied by	degree to which impact can be reversed:		low											
the solar power facility and associated infrastructure	degree of impact on irreplaceable resources:				low									
i i i i asti uctui c	Mitigation Measures						o the extent of the kept to a minimum							
	With Mitigation	1	4	6	5	55	Medium	-	medium					
Vegetation clearance for	Nature of impact:				Dire	ect and Indire	ect							
heliostats, soil disturbance and	Without Mitigation	2	4	4	3	30	Low	-	medium					

stockpiles, and increased traffic movement on site, resulting in a higher	degree to which impact can be reversed:				high						
potential for soil erosion	degree of impact on irreplaceable resources:				low						
Areas of disturbance should be (where practical) limited to the extent of the project footprint, and activities outside of the site should be kept to a minimum. Traffic of maintenance vehicles should be kept to a minimum to reduce soil compaction, and limited to existing roadways where practical. Long term soil stockpiles should be appropriately stored with the use of vegetation cover. Wind erosion is dominant for the region, however the array of heliostats will act as an artificial wind break and reduce the effect in the site footprint. Water erosion action is considered limited, however backfilling with soil and use of gabions or Reno Mattresses should be used where evidence of erosion is present.											
	With Mitigation	1	4	2	2	14	Low	-	medium		
	Nature of impact:										
Potential spillage of	Without Mitigation	2	4	2	2	16	Low	-	medium		
hazardous substances such as oils, fuel, grease from maintenance	degree to which impact can be reversed:				high						
vehicles, and sewage from on-site sanitation systems degree of impact on irreplaceable resources:											
Mitigation Measures The proper handling and storage of hazardous materials, the use of hardstanding in storage areas of hazardous substances and where spillages are possible. The use of bunding around storage of hazardous materials and proper upkeep of machinery and vehicles.											

	With Mitigation	1	4	2	1	7	Low	-	medium					
Unattended pipeline	Nature of impact:				Dire	ct and Indire	ect							
	Without Mitigation	2	2 4 6 3 36 Medium -											
leakages due to lack of maintenance, negligent operation or management, or unforeseen activity, resulting in soil	degree to which impact can be reversed: degree of		high											
erosion and establishment of local artificial	impact on irreplaceable resources:		low											
wetlands.	Mitigation Measures	Regular		e and inspecti agement of th			ent individuals. Con on system.	petent						
	With Mitigation	1	1	0	1	2	Low	-	medium					

	Decommissioning Phase											
Enamandla Site 5												
Potential Impact		Extent (E)	Duration (D)	Magnitude (M)	Probability (P)	,	nificance E+D+M)*P)	Status (+ve or - ve)	Confidence			
Increased potential of soil erosion due	Nature of impact:				Dire	ct and Indire	ect					
to removal of solar power	Without Mitigation	2	2	4	3	24	Low	-	medium			

infrastructure (i.e. Heliostats), soil disturbance and a high traffic	degree to which impact can be reversed:				high							
movement on site.	degree of impact on irreplaceable resources:				low							
	Areas of disturbance should be (where practical) limited to the extent of the project footprint, and activities outside of the site should be kept to a minimum. Traffic of deconstruction vehicles should be kept to a minimum to reduce soil compaction, and limited to existing roadways where practical. Long term soil stockpiles should be appropriately redistributed to the site to infill any excavations incurred during the de-commissioning phase. Artificial erosion control measured should be removed to establish natural erosion conditions for the area. Although expected to be nominal in this area, the topsoil removed during the construction period is expected to have a higher fertility than the subsoil horizons. In addition, vegetation seeds are stored in the topsoil. As a result, the topsoil should be kept separate from the subsoils, and should be returned to the impacted land to reinstate the land capability, with topsoil being returned as the top layer. Soil compaction during reinstatement should be minimised to ensure infiltration representative of the											
	With Mitigation	1	2	2	2	10	Low	-	medium			
Potential spillage of hazardous	Nature of impact:					Indirect						
substances such as oils, fuel, grease	Without Mitigation	2	2 2 2 12 Low									
from maintenance vehicles, and sewage from on-site sanitation systems	degree to which impact can be reversed:	high										

					low				
Mitig. Meas	gation sures	areas of ha	azardous sub	stances and w	here spillage:	s are possible	se of hardstanding e. The use of bundi achinery and vehic	ng around	
With Mitig	gation	1	2	0	1	3	Low	-	medium

			Cı	umulative	e Impacts				
			E	Enamand	la Site 5				
		Extent	Duration	Magnitude	Probability	Sig	nificance	Status	
Potential Impact		(E)	(D)	(M)	(P)	(S=(E	E+D+M)*P)	(+ve or - ve)	Confidence
Loss of land	Nature of impact:					Direct			
(including wetlands) previously used for	Without Mitigation	2	4	8	5	70	High	-	Low
sheep, cattle and antelope grazing will be occupied by the solar power	degree to which impact can be reversed:				medium				
facility and associated infrastructure	degree of impact on irreplaceable resources:				low				

	Mitigation Measures	respective Special	project footp consideration m of a propo	orints, and act In should be gi Osed site (i.e.	ivities outside ven to identif	of the sites sied wetlands elopment sh	oe limited to the ex should be kept to a and watercourses ould occur within ! rcourse).	minimum. present	
	With Mitigation	1	4	6	5	55	Medium	-	Low
	Nature of impact:				Dire	ct and Indire	ect		
	Without Mitigation	2	4	4	3	30	Low	-	Low
Vegetation clearance for project infrastructure (i.e.	degree to which impact can be reversed:				high				
heliostats and tower or PV cells/modules or wind turbines), soil disturbance and	degree of impact on irreplaceable resources:				low				
stockpiles, and increased traffic movement on site, resulting in a higher potential for soil erosion	Mitigation Measures	project for maintenang to existing stored with the arrang break and	otprint, and nce vehicles: ng roadways h the use of y of heliostal reduce the e	activities outs should be kep where practive vegetation co ts or PV cells/i ffect in the sit th soil and use	side of the site of to a minimu cal. Long term ver. Wind erc modules or wi te footprint. V	e should be k m to reduce soil stockpilosion is domin and turbines vater erosion r Reno Mattr	ne extent of the re ept to a minimum. soil compaction, a es should be appronant for the region will act as an artificates action is consider resses should be us	Traffic of nd limited opriately n, however cial wind ed limited,	
	With Mitigation	1	4	2	2	14	Low	-	Low
Potential spillage of hazardous	Nature of impact:					Indirect			

substances such as oils, fuel, grease	Without Mitigation	2	4	2	2	16	Low	-	Low
from maintenance vehicles, and sewage from on-site sanitation systems	degree to which impact can be reversed:				high				
	degree of impact on irreplaceable resources:				low				
	Mitigation Measures	areas of ha	azardous sub	stances and v	vhere spillage	s are possible	se of hardstanding e. The use of bundi achinery and vehic	ng around	
	With Mitigation	1	4	2	1	7	Low	-	Low

Appendix C

CUMULATIVE IMPACT ASSESSMENT

BIOTHERM – CUMULATIVE ASSESSMENT

APPROACH

The Department of Environmental Affairs (DEA) has requested that a detailed cumulative assessment is undertaken for each of the proposed BioTherm projects. The cumulative assessment must take the specialist studies from the surrounding Environmental Authorisations into account.

In order to ensure that a consolidated cumulative assessment can be developed for each project, a template has been produced to ensure that the specialist studies across the disciplines utilise the same approach.

Each specialist discipline will be required to compile the table below and provide a qualitative discussion on the overall cumulative impact of the projects in the study area.

MASTER ASSUMPTIONS

The following assumptions and limitations have been identified in relation to the above approach:

- Due to the number of different significance rating methodologies utilised across the various projects, significance ratings have been simplified to include only Low, Medium and High ratings.
- a In the event that specialist studies were unable to be obtained, this has been noted.
- All approved and ongoing environmental authorisations within a 70km radius above been considered

Table 1: Cumulative Impacts – Solar Soil & Land Capability

PROPOSED DEVELOPMENT	DEA REFERENCE	CURRENT EA	PROPONENT	EXTENT	PROPOSED CAPACITY	FARMS	Імрас	TS																Proposed Mitigation Measures
NAME		STATUS					Const	ructio	n					_	Opera	ation				Decor	mmissi	oning		
							Agriculture land	Soil erosion	Agricultural impact	Contamination	Dust	Agric potential	Topsoil loss	Veld degrade	Agriculture land	Soil erosion	Dust	Contamination	Agric potential	Soil erosion	Contamination	Dust	Agric potential	
Construction of the Wind and Photovoltaic (PV) Energy Facilities, including the Construction of the Wind and PV Substations and Gridline Connections, near Springbok, within the Nama-Khoi Local Municipality, Northern Cape Province.		In Process		46 535	75		L	L	L						L									
Construction of the Wind and Photovoltaic (PV) Energy Facilities, including the Construction of the Wind and PV Substations and Gridline Connections, Near Springbok, within the Nama-Khoi Local Municipality, Northern Cape Province.		In Process		46 535	1000			L	L						L									
The Proposed Boesmanland Solar Farm Portion 6 (A Portion Of Portion 2), Farm 62 Zuurwater, Aggeneys, Northern Cape Province.	12/12/20/2602	Approved		200	75			L								L								
75MW PV plant on the Farm Zuurwater No 62 in the Namakwa District, Northern	14/12/16/3/3/2/473	In Process		222	75			L		L	М	L				М	L	L	L	L	L	М	L	

Proposed	DEA REFERENCE	CUPPENT	PROPONENT	FYTENT	PROPOSED	FARMS	IMPAC	TC T																PROPOSE	
DEVELOPMENT NAME	DE, (NEI ENEROL	EA STATUS	T NOT ONLINE		CAPACITY	1 7 ti tivio		truction	1						Opera	ation				Decor	nmiesi	ionina		MEASURE	11011
1 V VVI		3 17.1100						li dolloi								illoi i				DCCOI	1111133	Orming			
							Agriculture land	Soil erosion	Agricultural impact	Contamination	Dust	Agric potential	Topsoil loss	Veld degrade	Agriculture land	Soil erosion	Dust	Contamination	Agric potential	Soil erosion	Contamination	Dust	Agric potential		
Cape Province, Phase 4.																									
Proposed Boesmanland Solar Farm Portion 6 (A portion of portion 2) Farm 62 Zuurwater, Aggeneys,	14/12/16/3/3/2/222	Approved		200	75																				
Northern Cape. Proposed Wind Energy Facility and Associated Infrastructure on Namies Wind Farm Pty Ltd, near Aggeneys, Northern Cape Province.	14/12/16/3/3/2/550	In Process		15	220		L		L						L				L						
The Proposed Construction of a Photovoltaic Power Generation Facility within the Black Mountain Mining Area near Aggeneys in the Northern Cape Province.	12/12/20/2151	Approved		19.5	19																				
	14/12/16/3/3/2/683	Unknown		3257 (all facilities)	Unknown		M	L					L	L											
	14/12/16/3/3/2/680	Unknown		3257 (all facilities)	Unknown		M	L					L	L											
				Total	Total																				
				50248.5	1538 MW																				
Significance Totals per impact	Significance Rating						Total	Hecta	res pe	r impa	ict														

Footer 3/4

	PROPOSED DEVELOPMENT	DEA REFERENCE	CURRENT EA	PROPONENT	EXTENT	PROPOSED CAPACITY	FARMS	Імрас	TS																PROPOSED MEASURES	MITIGATION
- 1	VAME		STATUS			CAFACITT		Const	ructio	n						Opera	tion				Decor	nmissi	oning		IVILAGUNES	
								Agriculture land	Soil erosion	Agricultural impact	Contamination	Dust	Agric potential	Topsoil loss	Veld degrade	Agriculture land	Soil erosion	Dust	Contamination	Agric potential	Soil erosion	Contamination	Dust	Agric potential		
		High Significance																								
		Medium Significance						3257				222					222						222			
		Low Significance							50 214	46 550	222		222	3257		46 550	200	222	222	237	222	222		222		
		Positive Impacts																								

The following EAs surrounding the solar developments have been either withdrawn or have lapsed and are therefore not been considered as part of the cumulative impact assessment:

PROPOSED DEVELOPMENT NAME	DEA REFERENCE	CURRENT EA STATUS	PROPONENT	EXTENT	PROPOSED CAPACITY	FARMS
Proposed Sato Energy Holdings Photovoltaic Project, Khai Ma Local Municipality, Northern Cape.	12/12/20/2334/7	Withdrawn / Lapsed			75	
Proposed Sato Energy Holdings Photovoltaic Project, Khai Ma Local Municipality, Northern Cape.	12/12/20/2334/6	Withdrawn / Lapsed			75	
Proposed Sato Energy Holdings Photovoltaic Project, Khai Ma Local municipality, Northern Cape.	12/12/20/2334/7	Withdrawn / Lapsed			75	
Proposed Gamsberg Solar Energy Project on Portion 1 of Farm 57 Aroams near Upington, Khâi-Ma Municipality, Northern Cape.	12/12/20/2605	Withdrawn / Lapsed			Unknown	

Footer 4/4

BIOTHERM – CUMULATIVE ASSESSMENT

APPROACH

The Department of Environmental Affairs (DEA) has requested that a detailed cumulative assessment is undertaken for each of the proposed BioTherm projects. The cumulative assessment must take the specialist studies from the surrounding Environmental Authorisations into account.

In order to ensure that a consolidated cumulative assessment can be developed for each project, a template has been produced to ensure that the specialist studies across the disciplines utilise the same approach.

Each specialist discipline will be required to compile the table below and provide a qualitative discussion on the overall cumulative impact of the projects in the study area.

MASTER ASSUMPTIONS

The following assumptions and limitations have been identified in relation to the above approach:

- Due to the number of different significance rating methodologies utilised across the various projects, significance ratings have been simplified to include only Low, Medium and High ratings.
- a In the event that specialist studies were unable to be obtained, this has been noted.
- All approved and ongoing environmental authorisations within a 70km radius above been considered

Table 1: Cumulative Impacts – Solar Surface Water

PROPOSED DEVELOPMENT NAME		CURRENT EA	PROPONENT	EXTENT	PROPOSED CAPACITY	FARMS	Імраст	S														PROPOSED MEASURES	MITIGATION
DEVELOPMENT INAME		STATUS			CAPACITY		Constr	uction				Opera	ation					Decom	nmissic	ning		IVIEASURES	
							Watercourse sedimentation	Fresh water and habitat loss	Turbines	Power lines	Access route	Fresh water	Watercourse sedimentation	Recharge patterns of pans	Turbines	Power lines	Access route	Watercourse sedimentation	Turbines	Power lines	Access route		
Construction of the Wind and Photovoltaic (PV) Energy Facilities, including the Construction of the Wind and PV Substations and Gridline Connections, near Springbok, within the Nama-Khoi Local Municipality, Northern Cape Province. Construction of the		Process		46 535	75 1000		L					L											
Wind and Photovoltaic (PV) Energy Facilities, including the Construction of the Wind and PV Substations and Gridline Connections, Near Springbok, within the Nama-Khoi Local Municipality, Northern Cape Province.	14/12/16/ <i>3/3/2</i> /44 <i>1</i>	In Process		46 535	1000		L					L											
The Proposed Boesmanland Solar Farm Portion 6 (A Portion Of Portion 2), Farm 62 Zuurwater, Aggeneys, Northern Cape Province.		Approved		200	75		L						L										
75MW PV plant on the Farm Zuurwater No 62 in the Namakwa District, Northern Cape Province, Phase 4.		In Process		222	75		L						М	L				L					
Proposed Boesmanland Solar	14/12/16/3/3/2/222	Approved		200	75																		

	DEA REFERENCE		PROPONENT	EXTENT	Proposed	FARMS	IMPAC ⁻	TS .														PROPOSED	MITIGATION
DEVELOPMENT NAME		EA Status			CAPACITY		Consti	uction				Opera	ation					Decor	nmissi	oning		Measures	
							Watercourse sedimentation	Fresh water and habitat loss	Turbines	Power lines	Access route	Fresh water	Watercourse sedimentation	Recharge patterns of pans	Turbines	Power lines	Access route	Watercourse	Turbines	Power lines	Access route		
Farm Portion 6 (A portion of portion 2) Farm 62 Zuurwater, Aggeneys, Northern Cape.																							
Cape. Proposed Wind Energy Facility and Associated Infrastructure on Namies Wind Farm Pty Ltd, near Aggeneys, Northern Cape Province.	14/12/16/3/3/2/550	In Process		15	220				L	L					L	L	L		L	L	L		
The Proposed Construction of a Photovoltaic Power Generation Facility within the Black Mountain Mining Area near Aggeneys in the Northern Cape Province.	12/12/20/2151	Approved		19.5	19																		
Proposed 75MW Korana Wind Energy Facility, near Poffader in the Northern Cape.	14/12/16/3/3/2/683	Unknown		3257 (all facilities)	Unknown		L	L				L											
Proposed 140MW Khâi-Mai Wind Energy Facility near Pofadder.	14/12/16/3/3/2/680	Unknown		3257 (all facilities)	Unknown	ı	L	L				L											
				Total	Total																		
				50248.5	1538 MW																		
Significance Tatal																						I	
Significance Totals per impact							Total	Hectar	es per	impac	t				!			<u> </u>					
	High Significance																						
	Medium Significance												222										
	Low Significance						50 214	3 257	15	15	15	49 792	200	222	15	15	15	222	15	15	15		
	Positive Impacts																						

Footer 3/4

The following EAs surrounding the solar developments have been either withdrawn or have lapsed and are therefore not been considered as part of the cumulative impact assessment:

PROPOSED DEVELOPMENT NAME	DEA REFERENCE	CURRENT EA STATUS	PROPONENT	EXTENT	PROPOSED CAPACITY	FARMS
Holdings Photovoltaic Project, Khai Ma Local Municipality, Northern Cape.	12/12/20/2334/7	Withdrawn / Lapsed			75	
Proposed Sato Energy Holdings Photovoltaic Project, Khai Ma Local Municipality, Northern Cape.	12/12/20/2334/6	Withdrawn / Lapsed			75	
Proposed Sato Energy Holdings Photovoltaic Project, Khai Ma Local municipality, Northern Cape.	12/12/20/2334/7	Withdrawn / Lapsed			75	
Proposed Gamsberg Solar Energy Project on Portion 1 of Farm 57 Aroams near Upington, Khâi-Ma Municipality, Northern	12/12/20/2605	Withdrawn / Lapsed			Unknown	

Footer 4/4