

Exxaro Coal Pty (Ltd) Grootegeluk Short-Term Stockpiles Amendment Project

Geochemistry Report

Project Number:

EXX3666

Prepared for: Exxaro Coal (Pty) Ltd (Grootegeluk)

September 2016

Digby Wells and Associates (South Africa) (Pty) Ltd Co. Reg. No. 2010/008577/07. Turnberry Office Park, 48 Grosvenor Road, Bryanston, 2191. Private Bag X10046, Randburg, 2125, South Africa Tel: +27 11 789 9495, Fax: +27 11 789 9498, info@digbywells.com, www.digbywells.com

Directors: AJ Reynolds (Chairman) (British)*, GE Trusler (C.E.O), B Beringer, LF Koeslag, J Leaver*, NA Mehlomakulu, DJ Otto *Non-Executive

This document has been prepared by Digby Wells Environmental.

Report Type:	Geochemistry Report
Project Name:	Exxaro Coal Pty (Ltd) Grootegeluk Short-Term Stockpiles Amendment Project
Project Code:	EXX3666

Name	Responsibility	Signature	Date
Andre van Coller	Geochemistry and reporting	Bell	27 September 2016
Lucas Smith	1 st Review	L.H	20 June 2016
Brett Coutts	2 nd Review	and the	22 June 2016

This report is provided solely for the purposes set out in it and may not, in whole or in part, be used for any other purpose without Digby Wells Environmental prior written consent.

EXECUTIVE SUMMARY

Exxaro Coal (Pty) Ltd (Exxaro), Grootegeluk Coal Mine (Grootegeluk) is contracted to supply coal to Eskom's Medupi and Matimba power stations, both in Lephalale, Limpopo Province. Off-take of Eskom coal has slowed due to construction delays and thus Exxaro requires additional stockpiling space to accommodate the excess coal on site. Digby Wells was requested by Exxaro Coal (Pty) Ltd to carry out for the proposed Short Term Stockpile Amendment at the Grootegeluk Mine.

Digby Wells Environmental (Digby Wells) was appointed by Exxaro (Pty) Ltd, Grootegeluk to amend the environmental authorisations for the Grootegeluk Infrastructure Expansion Project in 2014. The permitting documents were submitted to Limpopo Department of Economic Development, Environment and Tourism (LEDET) and Department of Mineral Resources (DMR).Exxaro were granted an Environmental Authorisation in October 2014 and August 2015.

The project has been subdivided into a 2 phased approach:

- Phase 1: Amendment to stockpile GG10A capacity with a temporary stockpile on the approved footprint area and Department of Water Affairs and Sanitation (DWS) approval for the use of temporary liners for five years.
- Phase 2: Section 102 Amendment process for the changes to the EMPR for the three stockpile areas including size, capacity and use. Some of these areas have not been covered in previous application or in previous studies or partially covered.

This report outlines and summarises the results of the geochemical specialist study that serves as additional information and motivation for the phases noted above.

Various geochemical tests in addition to those done by WSP for the waste classification were done with the purpose to serve as additional motivation to the methodology proposed by Exxaro in the implementation of their alternatives to the Class C and D liners for the GG7 to 8 and GG1 to 6 temporary stockpiles.

The following summary of the results and conclusions from the study:

Waste Classification

The material from the GG1 to GG6 process plants were sampled and submitted to an accredited laboratory (Jones Environmental Laboratory) for analysis by WSP Environmental (Pty) Ltd. The results of the test work are shown in Appendix B. The tests conducted were *aqua regia* digestion for total concentration and reagent water (distilled water) leaching procedure (20:1 ratio) in accordance with the National Environmental NEM:WA guidelines for mono-disposal (DEA, 2013). Based on the outcomes of the test work, the "waste" can be classed (Table 2-2) after comparison with the total concentration threshold (LCT) values.

Based on the above, the material from GG1 to GG6 is classed as a Type 4 waste and should be disposed of or stored at a facility with a Class D liner. A conceptual design for a

Class D liner as given by the NEM: WA guidelines (DEA, 2013) are shown below in Figure 2-1.

The material from the GG7 to GG8 process plants were sampled and submitted to an accredited laboratory (Jones Environmental Laboratory) by WSP Environmental (Pty) Ltd. The results of the test work are shown in Appendix B. The tests conducted were *aqua regia* digestion for total concentration and reagent water (distilled water) leaching procedure (20:1 ratio) in accordance with the National Environmental NEM:WA guidelines for mono-disposal (DEA, 2013). Based on the outcomes of the test work, the "waste" can be classed (Table 2-2) after comparison with the total concentration threshold (LCT) values.

Based on the above, the material from GG7 to GG8 is classed as a Type 3 waste and should be disposed of or stored at a facility with a Class C liner or a system with similar properties. A conceptual design for a Class C liner as given by the NEM: WA guidelines (DEA, 2013) are shown below in Figure 2-2.

<u>Mineralogy</u>

The main minerals are quartz, muscovite, kaolinite, microcline with calcite and pyrite. The dominant mineral or compound is however the carbonaceous material or coal. The mineralogy indicated by the XRD results is typical of the sandstone/siltstone/mudstone formations dominated by clay minerals and feldspar. Inclusions of calcite/dolomite rich in Ca and Mg are evidence of the depositional environment in which the formations formed, with high evaporation and weathering rates.

The combination of the various oxides like Al_2O_3 and Fe_2O_3 combined with the SiO₂ all contribute to the silicate and oxide minerals present in the coal material along with carbon reported in the table as lost on ignition (LOI) due to the carbon being burnt during the analysis. Cl, Ba, La, Zr, Cu, Sr, Zn and Ni are the dominant trace elements as would be expected in a crustal environment with enriched clay and silicate mineralogy.

Acid Producing Potential

The paste pH in the ABA results show that there were no acid generation prior to analysis. However based on the paste pH from the NAG results (preparation pH of 4.5) samples GG7-8 A and B and sample GG1-6 A is acid generating with GG1-6 B being a slightly lower risk for acid generation only based on the paste pH results. From the ABA results the total sulphur (>0.3%), NNP (<0) and NPR (<1) shows that all 4 samples are potentially acid generating. This is due the pyrite content and low neutralising potential.

All 4 samples are classed as acid generating (Rock type I). This is however normal for coal deposits and is the same in most deposits. Surface water management of storm water and runoff from the stockpiles are crucial in managing any acidic water and leachate from toe seepage. These specific stockpiles at Grootegeluk will however be compacted and will only be I operation for short period (5 years) and with the low rainfall in the area the risk of high volumes of AMD formation is low. Although the mean annual precipitation (MAP) in the Grootegeluk area is low, in some months high intensity rainfall can occur. With the

compaction of the coal during the stockpiling process¹ the permeability will be decreased and runoff increased. This last mentioned process will allow lower infiltration, but if high intensity rainfall events do take place for an extended period some AMD formation can potentially be observed as suggested by the lab tests.

Leachate Results

Almost all the metals are below detection in both tests with the exception of Ba, Ni and Mn. Ba and Ni are heavy metals commonly associated with the geology as trace elements. In both tests the concentrations leaching was however well below the guideline values and does not pose an environmental or health risk. Over time the load can potentially increase. However, with the continuous stockpiling and reclaiming as well as compaction to take place the risk of seepage is reduced.

The Mn concentrations are however slightly above the guideline values for drinking water. Manganese is a common element enriched in the earth's crust and does easily dissolve into water under a wide range of pH levels. However, at the expected rate of seepage and low rainfall at Grootegeluk the element should not leach out at these concentrations given by the lab tests which simulate a worst case scenario². All other elements are below the guideline values for drinking water.

The TDS values are mostly dominated by the sulphate distribution but do not pose a risk at the levels they are detected in all samples under both test methods. There is not much of a difference between the leachate concentrations of the distilled water tests and that of the SPLP results, even though the SPLP is done at a lower more acidic pH of 4.8.

The above conclusions based on the laboratory results and information at hand show that the metal leach potential of the material is low and will further be reduced by compaction. The environmental risk for contamination of groundwater through seepage is low.

Recommendations

Based on the study results the following is recommended by Digby Wells Environmental:

- It is proposed that Exxaro designs the liner for the GG1 to 6 short-term stockpiles in line with the Class D liner;
- It is proposed that Exxaro designs the liner for the GG7 to 8 short-term stockpiles in line with the Class C liner requirements;

¹ Based on information provided by Exxaro the coal will be compacted in line with stockpile management guidelines. The coal will be compacted down to 101% of the natural density and lead to a reduced permeability.

² Static leachate tests performed by laboratories are done to simulate a worst case scenario. This involves the milling of samples down to very small particle sizes. This process increases the mineral surface areas open to interact with oxygen and water and in turn increase the reactivity of minerals.

- Exxaro should implement monitoring and quality control measures on a regular basis for the groundwater, surface water and coal material. This will allow the management of contaminants, if any, leaching and/or flowing from the stockpiles;
- Surface water management of storm water and runoff from the stockpiles should be implemented and are crucial in managing any acidic water and leachate from toe seepage; and
- Compaction of the coal material should be implemented as planned³ to allow the permeability of the coal material to decrease and minimise any risk of seepage from the stockpiles further.

³ Based on information provided by Exxaro the coal will be compacted in line with stockpile management guidelines. The coal will be compacted down to 101% of the natural density and lead to a reduced permeability.

TABLE OF CONTENTS

1	Ir	ntrodu	uction	1
	1.1	Pro	ject Description	1
	1.2	Deli	iverables	3
	1.3	Sco	ope of Work and Methodology	3
	1.3	3.1	Desktop Study	3
	1.3	3.2	Laboratory Analysis	3
2	D	eskto	op Review: Waste Classification	4
	2.1	Leg	islative Guidelines	4
	2.2	Wa	ste Classification Methodology	5
	2.3	GG	1 to 6 Material Waste Classification	7
	2.4	GG	7 to 8 Material Waste Classification	8
3	G	eoch	emical Test Description and Purpose	10
	3.1	XRI	D and XRF	10
	3.2	ABA	A and NAG	. 10
	3.3	Lea	achate Tests and Total Elemental Analysis	. 10
4	La	abora	atory Results and Interpretations	11
	4.1	Roc	ck Mineralogy and Chemical Composition	11
	4.2	Acio	d Generation Potential	. 14
	4.3	Lea	achate Test Results	. 16
5	С	onclu	usions	18
6	R	ecom	nmendations	19
7	R	efere	nces	20

LIST OF FIGURES

Figure 2-1: Minimum design requirements for a Class D liner (DEA, 2013)
Figure 2-2: Minimum design requirements for a Class C liner (DEA, 2013)

LIST OF TABLES

Table 2-1: Waste Type for Landfill Disposal	. 7
Table 2-2: Classification of GG1 to 6 materials	. 8
Table 2-3: Classification of GG1 to 6 materials	. 9
Table 4-1: XRD Result Summary - Minerals	12
Table 4-2: XRF Result Summary – Major Oxides	13
Table 4-3: XRF Result Summary – Major Trace Elements	13
Table 4-4: Acid Base Accounting Results	15
Table 4-5: Net Acid Generation Results	15
Table 4-6: Distilled water and SPLP leachate results (mg/L)	17

LIST OF APPENDICES

Appendix A: Plans
Appendix B: WSP Report
Appendix C: Waste Classification Memo for GG 1 to 6
Appendix D: Laboratory Certificates

1 Introduction

Exxaro Coal (Pty) Ltd (Exxaro), Grootegeluk Coal Mine (Grootegeluk) is contracted to supply coal to Eskom's Medupi and Matimba power stations, both in Lephalale, Limpopo Province. Due to delays in the start-up of Medupi off-take of Eskom coal has slowed and Exxaro requires additional stockpiling space to accommodate the excess coal on site. Digby Wells was requested by Exxaro Coal (Pty) Ltd to carry out for the proposed Short Term Stockpile Amendment at the Grootegeluk Mine.

Digby Wells Environmental (Digby Wells) was appointed by Exxaro (Pty) Ltd, Grootegeluk to amend the environmental authorisations for the Grootegeluk Infrastructure Expansion Project in 2014. The permitting documents were submitted to Limpopo Department of Economic Development, Environment and Tourism (LEDET) and Department of Mineral Resources (DMR).Exxaro were granted an Environmental Authorisation in October 2014 and August 2015.

The project has been subdivided into a 2 phased approach:

- Phase 1: Amendment to stockpile GG10A capacity with a temporary stockpile on the approved footprint area and Department of Water Affairs and Sanitation (DWS) approval for the use of temporary liners for five years.
- Phase 2: Section 102 Amendment process for the changes to the EMPR for the three stockpile areas including size, capacity and use. Some of these areas have not been covered in previous application or in previous studies or partially covered.

This report outlines and summarises the results of the geochemical specialist study that serves as additional information and motivation for phases 1 and 2 mentioned above.

1.1 Project Description

Exxaro owns multiple mining operations, including Grootegeluk Coal Mine (hereafter Grootegeluk), which has been in operation since 1982 in the Limpopo Province. Grootegeluk is located approximately 18 km outside of Lephalale and is contracted to supply coal to Eskom's Matimba power station and the Medupi power station. Due to delays in the start-up of Medupi the off-take of Eskom coal has slowed and Exxaro requires additional stockpiling space to accommodate the excess coal on site.

Exxaro applied to expand certain infrastructure within the mine boundary area, referred to as the Grootegeluk Coal Mine Infrastructure Expansion Project. Exxaro submitted Applications in terms of the National Environmental Management Act (NEMA), 1998 (Act No. 107 of 1998) and Minerals and Petroleum Resources Development Act (MPRDA), 2002 (Act No. 28 of 2002) to include the following activities / expansions within the mine boundary:

- Expansion of the rail loop, load out stations and associated infrastructure;
- Expansion of the existing coal stockyard and stockpiles;
- Expansion of the fuel storage depot;

- Expansion of beneficiation plants and associated infrastructure;
- New road and conveyors to fines recovery area;
- New gate and hard park area; and
- Expansion of ancillary infrastructure and new 33 kV power line.

The aforementioned 2014 amendment was also associated with the expansion of the existing coal product stockpiles. The following stockpiles and stockyards were included in the applications and approved:

- GG 6/2 stockyard;
- GG 10 stockyards;
 - Conical Stock pile;
 - Stockyard A and
 - Stockyard B;
- Multi-product overflow stockyard

The Grootegeluk Coal Mine Infrastructure Expansion Project was authorised in terms of the NEMA and the Environmental Impact Assessment Regulations of 2010⁴, (which have been repealed). The Limpopo Department of Economic Development, Environment and Tourism (LEDET), and the Record of Decision are dated 27 October 2014, with reference number 12/1/9/1-W89 (Plan 1, Appendix A). The Department of Mineral Resources (DMR) Environmental Management Programme (EMP) Amendment approval was granted on the 28 August 2015.

Exxaro proposed a phased authorisation approach for the amendments that are being requested. Exxaro proposes to amend the existing Authorisation relevant to the Grootegeluk Mine Infrastructure Expansion Project (which included the expansion of the GG10 Stockyards and several other stockpile areas).

The purpose of these amendments is to allow Exxaro to legally stockpile Eskom-grade coal currently being mined from the upper coal benches at the Grootegeluk Mine. In summary the two phases included the following:

- Phase 1: Amendment of the GG10A stockyard for temporary use The amendment of the GG10A stockyard area with the capacity of 400,000m³ to include the alternative of a temporary 2 Mt compacted Power Station Coal Stockpile in the same footprint area.
- Phase 2: Amend the GG10B stockyard area The amendment of the GG10B stockyard to include the additional area inside the loop not originally included. To also amend the use of the multi-product overflow stockpiles to stacking and loading

⁴ Dated 18 June 2010

areas. The additional 1.1mil stockpiles area in the footprint of the original Coke and Co-gen area will need to be included as an additional area.

Further to what has been noted above regarding the requested amendment, Exxaro received approval from Department of Water Affairs (DWS) and DMR for Phase 1 of the project on the 5th May 2016 and 7th July 2016 respectively. This part of the project and associated specialist studies conducted is in support of the Phase 2 amendment that is being requested for in terms Section 31 of the 2014 NEMA Regulations applies as this is an amendment to an existing Environmental Authorisation. Thus the information contained within this specialist report is specific to the Phase 2 amendment process, however does make reference to Phase 1 with respect to the areas assessed.

The purpose of this Project is to utilise the Laydown Area, GG10B, and Multiproduct Stockyard footprints to stock excess Eskom-grade coal only, for an approximate period of five years, until the Medupi power station is fully operational. This project also includes the extension of the GG10B Stockyard footprint by approximately 12 hectares (ha) by including the internal area of the discontinued rail loop. The assumed grade of coal to be placed on this proposed consolidated stockpile area has been classified as Type 3 waste, requiring a Class C liner (Section 2, and Appendix B). It is assumed the amount of coal to be stockpiled in this area will total six megatons.

The proposed changes will require authorisation in terms of Regulation 31 of the NEMA, as well as a Section 21(g) Authorisation in terms of the National Water Act, 1998 (Act No 36 of 1998).

1.2 Deliverables

The following deliverables forms part of this study:

- Laboratory analysis and data interpretations; and
- Geochemical report with conclusions and recommendations.

1.3 Scope of Work and Methodology

The following scope of work and methodology was followed.

1.3.1 Desktop Study

A study of the proposed project plans, project descriptions, existing data and permits was done to evaluate the exact extent of the study needed. The main document reviewed was the technical memo and laboratory results prepared by WSP for the waste classification purposes (discussed in section 2 of this report and attached in Appendix B).

1.3.2 Laboratory Analysis

Digby Wells submitted a total of four (4) samples; two per stockpile extension, for geochemical testing with the results to be interpreted and serve as input into the waste

classification and liner motivation. At the start of the project Digby Wells was provided with the samples and they were submitted for:

- X-Ray Diffraction (XRD) and X-Ray Fluorescence (XRF);
- Acid base accounting (ABA and Net acid generation (NAG) tests;
- Aqua regia digestion; and
- Distilled water and Synthetic Precipitation Leachate Procedures (SPLP) to determine the leachability of any elements present in high concentrations.

2 Desktop Review: Waste Classification

Material from Plant GG1 to 6 will be temporarily stockpiled at the GG10A stockyard while material from GG7 to 8 will be stockpiled at the GG10B stockyard. Waste classification was done on both material streams from the plants feeding the line to the two mentioned stockyards.

During phase 1 the stockpile material for GG1 to 6 was classified according to the latest NEM: WA guidelines by WSP (Appendix B) (WSP 2015). A short summarising memo on the outcome of the classification was done by Digby Wells (Appendix C) to allow for an application for the GG1 to 6 materials to be stockpiled on the GG10A stockyard footprint which has already been approved. Furthermore, a second material stream was sampled from GG7 to 8 for the purposes of determining the liner requirements for the GG10 Stockpile B during the temporary stockpile period of 5 years.

The containment barriers prescribed for waste do not consider the product loadings, excavation and transport from stockpiles and thus are not generally appropriate for coal handling facilities (WSP, 2015).

Although the product is not seen as waste, the classification of the material was undertaken to confirm the liner requirements as required by the DWS and DEA.

2.1 Legislative Guidelines

On 2 June 2014, the National Environmental Management: Waste Amendment Act (NEMWA), 2014 (Act No. 26 of 2014) was published, which for the first time included "residue deposits" and "residue stockpiles" under the environmental waste legislation (previously mining residue was covered under the MPRDA). Mine waste are listed under Schedule 3, under the category "Hazardous Waste", therefore the understanding is that mine waste are considered to be hazardous unless the applicant can prove that the waste is non-hazardous.

As residue deposits and residue stockpiles are considered to be waste, they are regulated by the following regulations, both promulgated on 23 August 2013 in the amended NEM: WA guidelines:

R634 – Waste Classification and Management Regulations;

- R635 National norms and standards for assessment of waste for landfill disposal; and
- R636 National norms and standards for disposal of waste to landfill.

According to these regulations, waste that is generated must be classified in accordance with SANS 10234 within 180 days of generation. Waste that has already been generated, but not previously classified must be classified within 18 months of the date of commencement of the regulations. The norms and standards specify the waste classification methodologies for determining the waste category, and the specifications for pollution control barrier systems (liners) for each of the waste categories.

The Department of Environmental Affairs (DEA) has published the following draft regulations:

Notice 1005 of 2014 (14 November 2014): Proposed regulations regarding the planning and management of residue stockpiles and residue deposits from a prospecting, mining, exploration or production operation.

In terms of waste classification, these regulations state that residue stockpiles and residue deposits must be characterised to identify any potential risk to health or safety and environmental impact in terms of physical characteristics, chemical characteristics (toxicity, propensity to oxidise and decompose, propensity to undergo spontaneous combustion, pH and chemical composition of the water separated from the solids, stability and reactivity and the rate thereof, neutralising potential and concentration of volatile organic compounds), and mineral content.

In addition, the quality of seepage from residue facilities needs to be predicted:

 Notice 1006 of 2014 (14 November 2014): Proposed regulations to exclude a waste stream or a portion of a waste stream from the definition of waste.

These regulations state that waste generated from a source listed in Category A of Schedule 3 of NEMWA may be excluded from being defined as hazardous on demonstration that the waste is non-hazardous in accordance with the Waste Management and Classification regulations. Exclusion of a waste stream from the definition of waste may be considered if it can be demonstrated that any contaminant of concern originating from the waste reaching the receptor will not exceed the acceptable environmental limits for any contaminant of concern for such a receptor. The acceptable environmental limits have not been defined.

2.2 Waste Classification Methodology

Total Concentration values were determined by *aqua regia* digestion and analysis with ICP methods. Total Concentration Threshold limits are subdivided into three categories as follows:

 TCT0 limits based on screening values for the protection of water resources, as contained in the Framework for the Management of Contaminated Land (DEA, March 2010);

- TCT1 limits derived from land remediation values for commercial/industrial land (DEA, March 2010); and
- TCT2 limits derived by multiplying the TCT1 values by a factor of 4, as used by the Environmental Protection Agency, Australian State of Victoria.

Leachable concentration was determined by following the reagent water leaching procedure.

Leachable Concentration Threshold (LCT) limits are subdivided into four categories as follows:

- LCT0 limits derived from human health effect values for drinking water, as published by the Department of Water and Sanitation (DWS), South African National Standards (SANS), World Health Organization (WHO) or the United States Environmental Protection Agency (USEPA);
- LCT1 limits derived by multiplying LCT0 values by a Dilution Attenuation Factor (DAF) of 50, as proposed by the Australian State of Victoria;
- LCT2 limits derived by multiplying LCT1 values by a factor of 2; and
- LCT3 limits derived by multiplying the LCT2 values by a factor of 4.

In the Regulation, the terms "Total Concentration Threshold" and "TCT" mean the total concentration threshold limit for particular elements or chemical substances in a waste, expressed as mg/kg, prescribed in section 6 of the Norms and Standards. The terms "Leachable Concentration Threshold" and "LCT" mean the leachable concentration threshold limit for particular elements and chemical substances in a waste, expressed as mg/l, prescribed in section 6 of these Norms and Standards.

GN R634 identifies waste classes (Waste Types 0 to 4) ranging from high risk to low risk, based on comparison of the Total Concentration (TC) and Leachable Concentration (LC) of individual constituents in the waste against the following threshold limits. Waste is assessed by comparison of the total and leachable concentration of elements and chemical substances in the waste material to TCT and LCT limits as specified in the National Norms and Standards for Waste Classification and the National Norms and Standards for Disposal to Landfill as per Table 2-1.

Waste Type	Element or chemical substance concentration	Disposal	
0	LC > LCT3 OR TC > TCT2	Not allowed	
1	LCT2 < LC ≤ LCT3 OR TCT1 < TC ≤ TCT2	Class A or Hh:HH landfill	
2	LCT1 < LC ≤ LCT2 AND TC ≤ TCT1	Class B or GLB+ landfill	
3	LCT0 < LC ≤ LCT1 AND TC ≤ TCT1	Class C or GLB- landfill	
4	$LC \leq LCT0$ AND TC \leq TCT0 for metal ions and inorganic anions	Class D or GLB- landfill	
	AND all chemical substances are below the total concentration		
	limits provided for organics and pesticides listed		

Table 2-1: Waste Type for Landfill Disposal

2.3 GG1 to 6 Material Waste Classification

The material from the GG1 to GG6 process plants were sampled and submitted to an accredited laboratory (Jones Environmental Laboratory) for analysis by WSP Environmental (Pty) Ltd. The results of the test work are shown in Appendix B. The tests conducted were *aqua regia* digestion for total concentration and reagent water (distilled water) leaching procedure (20:1 ratio) in accordance with the National Environmental NEM:WA guidelines for mono-disposal (DEA, 2013). Based on the outcomes of the test work, the "waste" can be classed (Table 2-2) after comparison with the total concentration threshold (TCT) and leachable concentration threshold (LCT) values.

Table 2-2: Classification of GG1 to 6 materials

Test	Purpose	Results (All parameters considered)	Classification
GG 1- 6			
Aqua regia digestion	Total Concentration (TC)	TC <tct0< td=""><td>Type 4</td></tct0<>	Type 4
Reagent water leach test	Leachable Concentration (LC)	LC <lct0< td=""><td>Туре 4</td></lct0<>	Туре 4

Based on the above, the material from GG1 to GG6 is classed as a Type 4 waste (WSP 2015) and should be disposed of or stored at a facility with a Class D liner. A conceptual design for a Class D liner as given by the NEM: WA guidelines (DEA 2013) are shown in Figure 2-1.

(d) Class D Landfill:

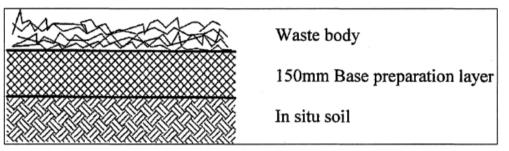


Figure 2-1: Minimum design requirements for a Class D liner (DEA, 2013)

It is proposed that Exxaro designs the liner for the GG1 to 6 short-term stockpiles in line with the Class D liner requirements. Exxaro will also implement monitoring and quality control measures on a regular basis for groundwater, surface water and coal material. This will allow the management of contaminants, if any, leaching and/or flowing from the stockpiles.

2.4 GG7 to 8 Material Waste Classification

The material from the GG7 to GG8 process plants were sampled and submitted to an accredited laboratory (Jones Environmental Laboratory) for analysis by WSP Environmental (Pty) Ltd. The results of the test work are shown in Appendix B. The tests conducted were *aqua regia* digestion for total concentration and reagent water (distilled water) leaching procedure (20:1 ratio) in accordance with the National Environmental NEM:WA guidelines for mono-disposal (DEA 2013). Based on the outcomes of the test work, the "waste" can be classed (Table 2-3) after comparison with the total concentration threshold (LCT) values.

Table 2-3: Classification of GG7 to 8 materials

Test	Purpose	Results (All parameters considered)	Classification
GG 7- 8			
Aqua regia digestion	Total Concentration (TC)	TCT0 <tc<tct1< td=""><td>Туре 3</td></tc<tct1<>	Туре 3
Reagent water leach test	Leachable Concentration (LC)	LC <lct0< td=""><td>Туре 4</td></lct0<>	Туре 4

Based on the above, the material from GG7 to GG8 is classed as a Type 3 waste (WSP 2015) and should be disposed of or stored at a facility with a Class C liner or a system with similar properties. A conceptual design for a Class C liner as given by the NEM: WA guidelines (DEA 2013) are shown in Table 2-3.

(c) Class C Landfill:

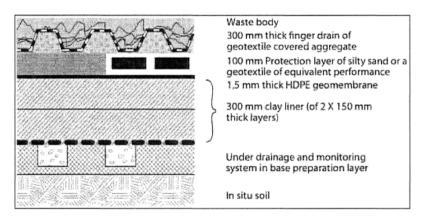


Figure 2-2: Minimum design requirements for a Class C liner (DEA, 2013)

It is proposed that Exxaro designs the liner for the GG7 to 8 short-term stockpiles in line with the Class C liner requirements. However, a system with similar properties has been proposed by Exxaro that is more cost effective. The data and interpretations presented in the remainder of this document serves as motivation along with the groundwater contaminant transport models presented in the groundwater specialist study report for the newly designed liner system to be implemented.

3 Geochemical Test Description and Purpose

Additional geochemical tests were done by Digby Wells (2016) to serve as additional motivation in support of the methodology proposed by Exxaro in the implementation of their alternatives to the prescribed Class C and D liners. The following paragraphs and sub section present the laboratory test methodologies and summarise the results for the 4 processed coal samples submitted by Digby Wells. The samples were from the product streams coming from the open pit through GG1 to 8.

The laboratory test to determine the potential for rock samples to produce ARD are generally grouped into two categories; static and kinetic tests. Static tests are relatively simple, inexpensive and rapid and enable initial screening of waste material in terms of the potential to produce ARD.

Static testing provides an indication of whether a particular sample has the potential to generate ARD and the elements that may leach from sample, whereas kinetic testing provides more confidence in the static test findings, as well as providing an indication of the time scale of the ARD and metal leaching.

All tests provide information on the chemical behaviour of a material and help in calculating reaction rates and input parameters into geochemical models.

3.1 XRD and XRF

XRF is an X-ray method used to determine the elemental composition of a material that allows for the evaluation of a materials chemical compound distribution, as well as the various trace element concentrations. XRD allows for the measurement of the crystal structures within a sample to determine the mineralogical composition of the material that allows the specialist to determine whether any reactive solids will lead to environmental risks through the study of the various minerals.

3.2 ABA and NAG

Acid-Base Accounting (ABA) is a first order classification procedure whereby the acidneutralising potential and acid-generating potential of rock samples are determined, and the difference (Net Neutralising Potential) is calculated. This procedure includes NAG tests that evaluate the Net Acid Generation and neutralising potential of the material to evaluate the potential of the material to counter acid production. The Net Neutralising Potential, and/or the ratio of neutralising potential to acid-generation potential, is compared with a predetermined value, or set of values, to divide samples into categories that either require, or do not require further determinative acid potential generation test work.

3.3 Leachate Tests and Total Elemental Analysis

Leachate tests are done to simulate the heavy metal and anion leachate potential of soils, waste material and waste water left in-situ under the expected conditions, with the solution type and pH determined based on guidelines or the expected conditions on site. These tests

will simulate and evaluate the potential of any heavy metal or ion contamination from the waste material that will be produced. The leachate tests are used to evaluate the leachability of material that will be mono- or co-disposed.

The leachate tests done on the Grootegeluk samples were divided into two methods:

- Distilled water leachate procedure:
 - A distilled water extraction is prescribed as the preferred method to extract dissolvable metals and ions from waste material.
- Synthetic Precipitation Leachate Procedure (SPLP):
 - The SPLP was designed to simulate material sitting in-situ (in or on top of the ground surface) exposed to rainfall with an assumption that the rainfall is slightly acidic.

Total Concentration values were determined by *aqua regia* digestion and analysis with ICP methods to determine the complete chemical make-up of the material before being leached or altered.

4 Laboratory Results and Interpretations

4.1 Rock Mineralogy and Chemical Composition

Table 4-1 gives the XRD mineralogy results for the coal samples. As per the oxide and trace element distributions (Table 4-2 and Table 4-3) that predict the potential mineralogy within the XRD results, the main minerals are quartz, muscovite, kaolinite, microcline with calcite and pyrite. The dominant mineral or compound is however carbonaceous material or coal. The carbon material is however logged and reported by the laboratory equipment as graphite as this is the crystalline mineral form of carbon.

The mineralogy indicated by the XRD results is typical of the sandstone/siltstone/mudstone formations dominated by clay minerals and feldspar. Inclusions of calcite/dolomite rich in Ca and Mg are evidence of the depositional environment in which the formations formed, with high evaporation and weathering rates. Calcite and dolomite however also form during synand post depositional coal forming processes. The dolomite mineralogy indicated in the XRD results is a carbonate phase containing both Mg and Ca.

The kaolinite mineralogy can be due to the weathering of k-feldspar with an exposure of these minerals to atmospheric conditions leading to further formation of kaolinite during the formation period within the host rocks that are dominated by k-feldspar and other silicate minerals. The breakdown of feldspar is a pH buffering reaction, however further weathering sequences leading to the formation of secondary gibbsite from kaolinite is not a buffering reaction.

Pyrite is present in all samples and is associated with the depositional environment in which the coal formation occurred. The presence of pyrite can potentially lead to ARD formation. The potential ARD formation will be further discussed in the section on the ABA and NAG.

The mineralogy in the coal samples can be chemically described through the mineral formulas given below:

Calcite CaCe	D_3
------------------	-------

- Kaolinite Al₂(Si₂O₅)(OH)₄
- Muscovite
 KAI₂(Si₃AI)O₁₀(OH,F)₂
- Pyrite FeS₂
- Quartz SiO₂
- Siderite FeCO₃

The presence of siderite in the formations indicate that the original oxidation states are still stable with the main iron phase being ferrous iron (Fe(II)). Siderite can potentially act as a neutraliser under certain conditions, but with higher alkaline conditions and pH levels being elevated the weathering reaction of siderite can lead to acid production. The dissolution of siderite produces Fe^{2+} and HCO_3^- and combined with ferrous iron oxidation under elevated pH levels gives of protons in conditions where bicarbonate is stable. More acidic environments give aqueous conditions where carbonic acid is stable and no net acid production will occur (Dold 2005).

The minerals discussed above are all made up of chemical combinations or bonds of various oxides and trace elements (Table 4-2 and Table 4-3). The combination of the various oxides like AI_2O_3 and Fe_2O_3 combined with the SiO_2 all contribute to the silicate and oxide minerals present in the coal material along with carbon reported in the table as lost on ignition (LOI) due to the carbon being burnt during the analysis. CI, Ba, La, Zr, Cu, Sr, Zn and Ni are the dominant trace elements as would be expected in a crustal environment with enriched clay and silicate mineralogy.

Mineral	GG7-8 A	GG7-8 B	GG1-6 A	GG1-6 B
	Amount (weight %)			
Calcite	0.05	0.01	0.58	0.97
Dolomite	1.26	1.01	1.56	1.58
Coal	65.24	72.47	59.67	58.16
Kaolinite	25.92	23.29	19.99	19.72
Muscovite	2.24	1.77	2.11	2.21
Pyrite	1.28	0.58	0.66	0.80
Quartz	3.94	0.85	14.47	12.85
Siderite	0.08	0.02	0.96	3.71

Table 4-1: XRD Result Summary - Minerals

	Weight %			
Major Oxides	GG7-8 A	GG7-8 B	GG1-6 A	GG1-6 B
SiO ₂	11.14	8.74	20.38	17.40
TiO ₂	0.35	0.39	0.36	0.35
Al ₂ O ₃	7.39	7.30	7.96	7.91
Fe ₂ O ₃	1.21	0.58	1.90	3.81
MnO	0	0	0.02	0.05
MgO	0.25	0.18	0.25	0.40
CaO	0.81	0.32	0.83	1.38
Na ₂ O	0.05	<0.01	0.02	0.03
K ₂ O	0.17	0.11	0.34	0.28
P ₂ O ₅	0.06	0.05	0.06	0.10
Cr ₂ O ₃	0	0	0.01	0.01
SO ₃	0.24	0.07	0.15	0.06
LOI	77.50	81.64	67.70	67.22
Total	99.23	99.41	100.11	99.08
H₂O-	0.04	0.60	0.14	0.09

Table 4-2: XRF Result Summary – Major Oxides

Table 4-3: XRF Result Summary – Major Trace Elements

	Concentration (ppm)							
Major Trace Elements	GG7-8 A	GG7-8 B	GG1-6 A	GG1-6 B				
As	9.62	8.98	8.42	6.12				
Ва	88.70	86.30	91.60	92.50				
Bi	1.38	1.75	1.48	1.53				
Cd	<3.04	<3.04	<3.04	<3.04				
Се	<3.08	<3.08	19.90	16.10				
CI	122	125	123	122				
Со	<0.56	<0.56	<0.56	<0.56				
Cs	1.38	1.40	1.33	1.31				
Cu	28.40	114	55.50	60.60				
Ga	11.10	9.27	13.30	16.90				
Ge	<0.50	<0.50	<0.50	<0.50				
Hf	6.38	6.49	6.38	6.39				
Hg	<1.00	<1.00	<1.00	<1.00				
La	95	97.80	84.90	65.60				
Lu	1.70	1.68	1.88	2.20				

Geochemistry Report Exxaro Coal Pty (Ltd) Grootegeluk Short-Term Stockpiles Amendment Project EXX3666

	Concentration (ppm)							
Major Trace Elements	GG7-8 A	GG7-8 B	GG1-6 A	GG1-6 B				
Мо	2.48	2.54	2.46	2.47				
Nb	<2.15	<2.15	<2.15	<2.15				
Nd	54	58.50	49.40	40.70				
Ni	29.60	30.70	20.50	27.50				
Pb	<2.03	<2.03	<2.03	<2.03				
Rb	8.90	5.64	18.30	14				
Sb	<1.48	<1.48	<1.48	<1.48				
Sc	18.70	17.10	18.20	21.70				
Se	0.83	1.12	0.50	0.62				
Sm	9.32	7.80	10.40	14.90				
Sn	4.57	3.72	4.91	7.06				
Sr	68.60	60.50	57.90	66.30				
Та	1	0.76	1.05	1				
Те	0.53	<0.16	0.83	2.21				
Th	5.34	5.97	4.39	3.37				
ТІ	2.33	2.31	2.22	2.18				
U	2.39	2.48	2.35	2.46				
V	<7.60	<7.60	<7.60	<7.60				
W	6.86	6.86	6.87	6.91				
Y	16	15.90	17.70	17.60				
Yb	4.27	2.96	4.59	6.78				
Zn	47	87.60	51.60	54				
Zr	77.80	78.60	98	86.50				

4.2 Acid Generation Potential

From the ABA and NAG test results presented in Table 4-4 and Table 4-5 the following can be concluded:

- The paste pH in the ABA results shows that there was no acid generation prior to analysis. However, based on the paste pH from the NAG results (preparation pH of 4.5) samples GG7-8 A and B and sample GG1-6 A is acid generating with GG1-6 B being a slightly lower risk for acid generation only based on the paste pH results;
- From the ABA results the total sulphur (>0.3%), NNP (<0) and NPR (<1) shows that all 4 samples are potentially acid generating;
- This is due the pyrite content and low neutralising potential;

- All 4 samples are classed as acid generating (Rock type I). This is however normal for coal deposits and is the same in most deposits;
- Management of storm water and runoff from the stockpiles are crucial in managing any acidic water and leachate from toe seepage; and
- The stockpiles at Grootegeluk will however be for short periods (5 years) and with the low rainfall in the area the risk of high volumes of AMD formation is very low.

Modified Sobek (EPA-600)	GG7-8 A	GG7-8 B	GG1-6 A	GG1-6 B
Paste pH	7	7.1	7.2	7.3
Total Sulphur (%) (LECO)	2.27	1.34	1.79	1.64
Acid Potential (AP) (kg/t)	71	42	56	51
Neutralization Potential (NP)	15	11	17	27
Nett Neutralization Potential (NNP)	-56	-31	-39	-24
Neutralizing Potential Ratio (NPR) (NP : AP)	0.216	0.258	0.304	0.53
Rock Type	7			I

Table 4-4: Acid Base Accounting Results

Table 4-5: Net Acid Generation Results

Net Acid Generation	Sample Identification: pH 4.5									
Net Acia Generation	GG7-8 A	GG7-8 B	GG1-6 A	GG1-6 B						
NAG pH: (H ₂ O ₂)	2.7	2.7	3	4.8						
NAG (kg H ₂ SO ₄ / t)	16	40	11	<0.01						
Net Acid Generation	Sample Identification: pH 7									
Net Acia Selleration	GG7-8 A	GG7-8 B	GG1-6 A	GG1-6 B						
NAG pH: (H ₂ O ₂)	GG7-8 A 4.5	GG7-8 B 4.5	GG1-6 A 4.5	GG1-6 B 4.8						

4.3 Leachate Test Results

Both distilled water leachate and SPLP tests were performed on samples representing each stockpile. These results are shown in Appendix D and also compared against SANS 2015 drinking water standards as a reference point to determine any potential elements at risk in Table 4-6.

From the leachate tests the following can be concluded:

- Almost all the metals are below detection in both tests with the exception of Ba, Ni and Mn;
- Ba and Ni are heavy metals commonly associated with the geology as trace elements. In both tests the concentration leaching out was well below the guideline values and does not pose an environmental or health risk;
- The Mn concentrations are however slightly above the guideline values for drinking water. Manganese is a common element enriched in the earth's crust and does easily dissolve in water under a wide range of pH levels. However, at the expected rate of seepage and low rainfall at Grootegeluk the element should not leach out at these concentrations given by the laboratory tests, which simulates a worst case scenario. Although the mean annual precipitation (MAP) in the Grootegeluk area is low, in some months high intensity rainfall can occur. With the compaction of the coal during the stockpiling process⁵ the permeability will be decreased and runoff increased. This last mentioned process will allow lower infiltration but if high intensity rainfall events does take place for an extended period some AMD formation can potentially be observed as suggested by the lab tests;
- All other elements are below the guideline values for drinking water;
- The TDS values are mostly dominated by the sulphate distribution, but does not pose a risk at the levels detected in all samples under both test methods;
- There is not much of a difference between the leachate concentrations of the distilled water tests and that of the SPLP results. Even though the SPLP is done at a lower more acidic pH of 4.8; and
- The above conclusions based on the laboratory results and information at hand show that the metal leach potential of the material is low and will further be reduced by compaction. The environmental risk for contamination of groundwater through seepage is low.

⁵ Based on information provided by Exxaro the coal will be compacted in line with stockpile management guidelines. The coal will be compacted down to 101% of the natural density and lead to a reduced permeability.

Table 4-6: Distilled water and SPLP leachate results (mg/L)

Parameter	SANS 2015 Drinking	Distille	d water	SPLP		
Farameter	water guidelines	GG7-8	GG1-6	GG7-8	GG1-6	
As, Arsenic	≤ 0.01	<0.010	<0.010	<0.010	<0.010	
B, Boron	≤ 2.4	<0.025	<0.025	<0.025	<0.025	
Ba, Barium	≤ 0.7	<0.025	0.043	0.03	0.044	
Cd, Cadmium	≤ 0.003	<0.005	<0.005	<0.005	<0.005	
Co, Cobalt	N/A	<0.025	<0.025	<0.025	<0.025	
Cr total	≤ 0.05	<0.025	<0.025	<0.025	<0.025	
Cu, Copper	≤ 2	<0.010	<0.010	<0.010	<0.010	
Hg, Mercury	≤ 0.006	<0.001	<0.001	<0.001	<0.001	
Mn, Manganese	≤ 0.4	0.692	0.431	1.03	0.668	
Mo, Molybdenum	N/A	<0.025	<0.025	<0.025	<0.025	
Ni, Nickel	≤ 0.07	0.038	<0.025	0.041	<0.025	
Pb, Lead	≤ 0.01	<0.010	<0.010	<0.010	<0.010	
Sb, Antimony	≤ 0.02	<0.010	<0.010	<0.010	<0.010	
Se, Selenium	≤ 0.04	<0.010	<0.010	<0.010	<0.010	
V, Vanadium	N/A	<0.025	<0.025	<0.025	<0.025	
Zn, Zinc	≤ 5	<0.025	<0.025	<0.025	<0.025	
Uranium as U	≤ 0.03	<0.001	<0.001	<0.001	<0.001	
Hexavalent Chromium as Cr ⁶⁺	N/A	<0.010	<0.010	<0.010	<0.010	
Chloride as Cl	≤ 300	<2	2	<2	2	
Sulphate as SO ₄	≤ 500	134	417	202	445	
Nitrate as N	≤ 11	0.1	0.8	0.1	0.8	
F, Fluoride	≤ 1.5	<0.2	0.4	<0.2	0.3	
Total Dissolved Solids at 180 °C	≤ 1 200	230	636	318	702	
Bicarbonate as HCO ₃ (calc)	N/A	43.9	34.1	43.9	43.9	
Carbonate as CO ₃ (calc)	N/A	<5	<5	<5	<5	
Total Alkalinity as CaCO ₃	N/A	36	28	36	36	
			•			

Geochemistry Report Exxaro Coal Pty (Ltd) Grootegeluk Short-Term Stockpiles Amendment Project EXX3666

5 Conclusions

From the geochemical tests and interpretations the following can be concluded:

- The main minerals are quartz, muscovite, kaolinite, microcline with calcite and pyrite;
- The dominant mineral or compound is however carbonaceous material or coal;
- XRD The mineralogy indicated by the results is typical of the sandstone/siltstone/mudstone formations dominated by clay minerals and feldspar. Inclusions of calcite/dolomite rich in Ca and Mg are evidence of the depositional environment in which the formations formed, with high evaporation and weathering rates:
- The combination of the various oxides like Al₂O₃ and Fe₂O₃ combined with the SiO₂ all contribute to the silicate and oxide minerals present in the coal material along with carbon material reported in the table as lost on ignition (LOI) due to the carbon being burnt during the analysis;
- Cl, Ba, La, Zr, Cu, Sr, Zn and Ni are the dominant trace elements as would be expected in a crustal environment with enriched clay and silicate mineralogy;
- The paste pH in the ABA results shows that there was no acid generation prior to analysis. However, based on the paste pH from the NAG results (preparation pH of 4.5) samples GG7-8 A and B and sample GG1-6 A are acid generating with GG1-6 B being a slightly lower risk in terms of acid generation;
- From the ABA results the total sulphur (>0.3%), NNP (<0) and NPR (<1) show that all 4 samples are potentially acid generating;
- This is due the pyrite content and low neutralising potential;
- All 4 samples are classed as acid generating (Rock type I). This is however normal for coal deposits and is the same in most deposits;
- Management of storm water and runoff from the stockpiles are crucial in managing acidic water and leachate from toe seepage; and
- The stockpiles at Grootegeluk will however be for short periods (5 years) and with the low rainfall in the area the risk of high volumes of AMD formation is low. Although the mean annual precipitation (MAP) in the Grootegeluk area is low, in some months high intensity rainfall can occur. With the compaction of the coal during the stockpiling process⁶ the permeability will be decreased and runoff increased. This last mentioned process will allow lower infiltration but if high intensity rainfall events do take place for an extended period some AMD formation can potentially be observed as suggested by the lab tests.

⁶ Based on information provided by Exxaro the coal will be compacted in line with stockpile management guidelines. The coal will be compacted down to 101% of the natural density and lead to a reduced permeability.

From the leachate tests the following can be concluded:

- Almost all the metals are below detection in both tests with the exception of Ba, Ni and Mn;
- Ba and Ni are heavy metals commonly associated with the geology as trace elements. In both tests the concentration leaching out was well below the guideline values and does not pose an environmental or health risk;
- The Mn concentrations are however slightly above the guideline values for drinking water. Manganese is a common element enriched in the earth's crust and easily dissolves in water under a wide range of pH levels. However, at the expected rate of seepage and low rainfall at Grootegeluk the element should not leach out at these concentrations given by the lab tests which simulate a worst case scenario⁷;
- All other elements are below the guideline values for drinking water;
- The TDS values are dominated by the sulphate distribution, but do not pose a risk at the levels they are detected in all samples under both test methods;
- There is not much of a difference between the leachate concentrations of the distilled water tests and that of the SPLP results. Even though the SPLP is done at a lower more acidic pH of 4.8; and
- The above conclusions show that the metal leach potential of the material is low and will further be reduced by compaction and thus the environmental risk for contamination of groundwater through seepage is low.

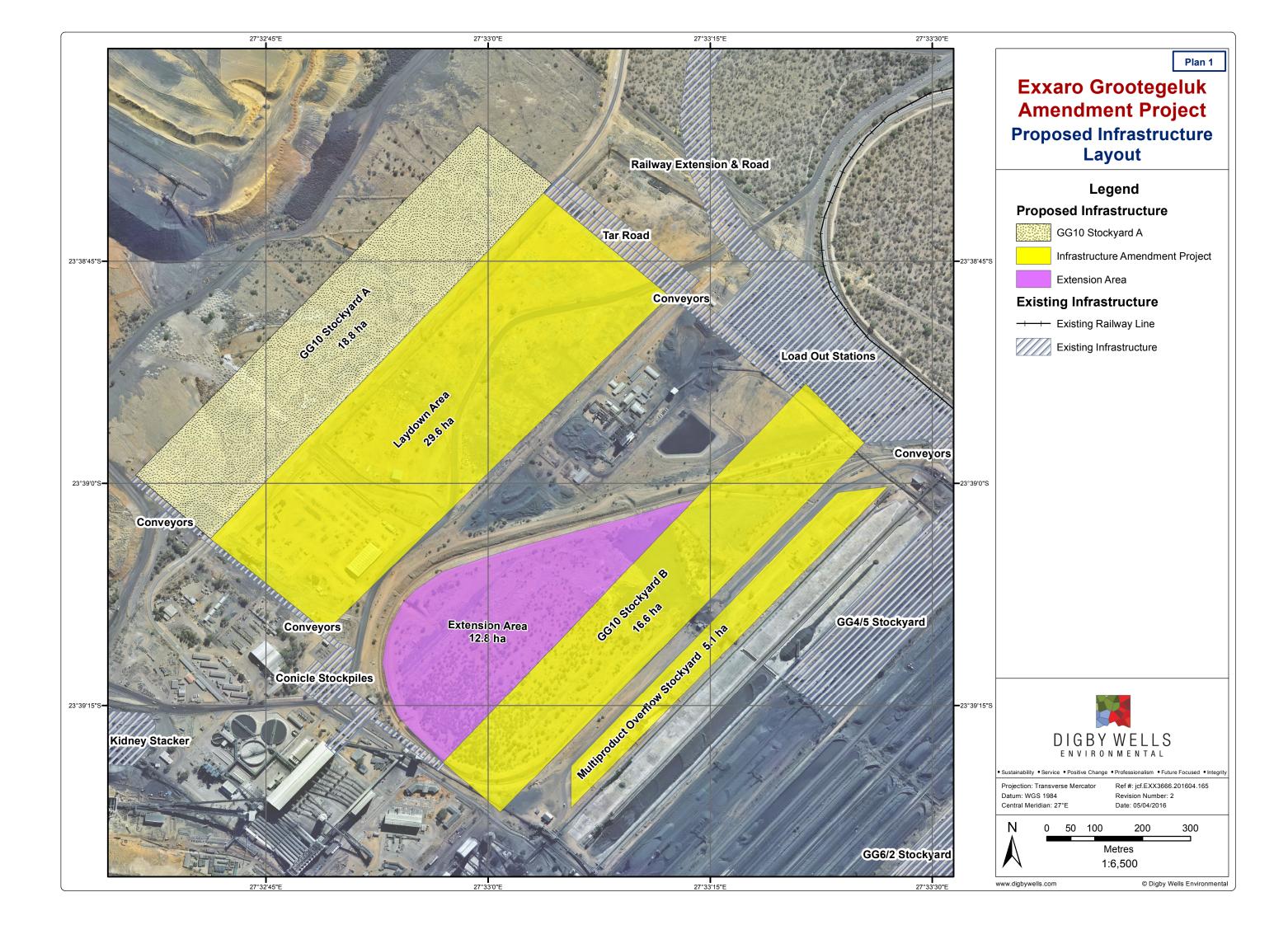
6 Recommendations

Based on the study results the following is recommended by Digby Wells Environmental:

- It is proposed that Exxaro designs the liner for the GG1 to 6 short-term stockpiles in line with the Class D liner requirements;
- It is proposed that Exxaro designs the liner for the GG7 to 8 short-term stockpiles in line with the Class C liner requirements;
- Exxaro should implement monitoring and quality control measures on a regular basis for groundwater, surface water and coal material. This will allow the management of contaminants, if any, leaching and/or flowing from the stockpiles;
- Management of storm water and runoff from the stockpiles should be implemented and are crucial in managing acidic water and leachate from toe seepage; and

⁷ Static leachate tests performed by laboratories are done to simulate a worst case scenario. This involves the milling of samples down to very small particle sizes. This process increases the mineral surface areas open to interact with oxygen and water and in turn increase the reactivity of minerals.

 Compaction of the coal material should be implemented as planned to allow the permeability of the coal material to decrease and minimise any risk of seepage from the stockpiles further.


7 References

- DEA, 2013. National Norms and Standards for the Disposal of Waste to Landfill.
- Dold, B., 2005. Basic Concepts of Environmental Geochemistry of Sulfide Mine-Waste. Society of Economic Geologists.
- WSP, 2015. Exxaro Grootegeluk Waste Classification: Coal Product.

Geochemistry Report Exxaro Coal Pty (Ltd) Grootegeluk Short-Term Stockpiles Amendment Project EXX3666

Appendix A: Plans

Geochemistry Report Exxaro Coal Pty (Ltd) Grootegeluk Short-Term Stockpiles Amendment Project EXX3666

Appendix B: WSP Report

Reference: Exxaro Grootegeluk Waste Classification: Coal Product

WSP Environmental (Pty) Ltd

Block A, First Floor, 1 On Langford, Langford Road, Westville, Republic of South Africa, 3629 PO Box 670, Westville, 3630 Tel: +27 (0)31 240 8860 E-mail: wspe@wspgroup.co.za Web: http://www.wspgroup.co.za

WSP Environmental (Pty) Ltd Registered Number: 1995/08790/07

A member of the WSP Global Inc. Offices worldwide

09 December 2015

Exxaro Grootegeluk Coal Mine

Dear Filomaine Swanepoel,

RE : Coal Product Waste Classification

Following receipt of two coal samples (GG 1-6 & GG 7-8) WSP Environmental (Pty) Ltd (WSP) arranged for the samples to undergo laboratory analysis in terms of GN 635 to determine their SANS 10234 classification and landfill type profile. It is understood that this was undertaken in response to a directive issued by the Department of Water and Sanitation (DWS) to determine temporary liner requirements for coal product storage beds as contained within GN 636.

To the best of WSP's knowledge, there exists no legislated requirements for a) the installation of specific liner systems for coal product beds or b) authorisations for the. The DWS is presumably motivated by the requirement to protect water resources from potential contamination sources.

Due to the fact that the coal streams in question are stockpiled products and not waste, management of the coal cannot be undertaken in terms of the waste legislation; with GN 634 explicitly clear in its purpose to regulate classification, management and disposal requirements of waste. Furthermore, GN 636 states that its purpose is to determine the requirements for the disposal of waste to landfill. The containment barriers prescribed for wastes do not consider the product loadings, excavation and transport from stockpiles and thus are not generally appropriate for coal handling facilities.

Nevertheless, type profiling of the coal streams (Appendix A) indicated that coal streams GG 1-6 and GG 7-8 would be profiled as Type 4 and Type 3 wastes respectively, suitable for disposal to a Class D and Class C landfill. Additionally, SANS 10234 classifications of the coal product streams were undertaken (Appendix B), for which both streams were determined to be non-hazardous. The results of the leaching tests conclude that the coal has an insignificant proportion of leachable heavy metals and salts and is considered to be chemically inert as a stockpile. The risk to water resources is considered to be very low if this an active stockpile and is not left to chemically weather over years of non-use.

In terms of appropriate environmental management of the coal stockpiles, WSP recommends that the coal is stockpiled on an impermeable hard standing surface (i.e. cement/concrete). Cognisance should be given to potentially turbid coal-dust contaminated stormwater arising from rainfall events; and an appropriate stormwater management system should be implemented to capture such dirty stormwater.

Yours faithfully

Zaffar Hussain Environmental Consultant

Directors:

SL Doel[#], MC du Plooy**, JH McStay^B, ESBF Mtetwa* (non-Executive)

Appendix A: Type Profiles of GG 1-6 and GG 7-8

WSP Environmental (Pty) Ltd: Screening Waste Type Profliing & Disposal Prohibition Appraisal Based on National Norms and Standards for the Assessment of Waste for Landfill Disposal GNR. 635 (23 August 2013)

Source of Waste: Exxaro Grootegeluk, Exxaro Grootegeluk Coal Mine, Power Station Coal GG1-6 Waste Matrix (Liquid / Solid): Solid

	A							
TCT2	Assessed	(based on TCTs and subject	LCT0	LCT1	LCT2	LCT3	Assessed	(based on LCTs an
	Concentration	to I CTs)					Concentration	subject to TCTs)
2000	5.3	2. 3 or 4 - LCT Dependent	0.01	0.5	1	4		
60000	16.57	2. 3 or 4 - LCT Dependent	0.5	25	50	200		
25000	27	2. 3 or 4 - LCT Dependent	0.7	35	70	280		
1040	0.1	2. 3 or 4 - LCT Dependent	0.003	0.15	0.3	1.2		
20000	3.3	2. 3 or 4 - LCT Dependent	0.5	25	50	200		
-	2.7	2. 3 or 4 - LCT Dependent	0.1	5	10	40		
2000			0.05	2.5	5	20		
78000	11	2. 3 or 4 - LCT Dependent	2	100	200	800		
640			0.006	0.3	0.6	2.4		
100000	261	2. 3 or 4 - LCT Dependent	0.5	25	50	200	0.076	4
4000 42400	0.6	2. 3 or 4 - LCT Dependent 2. 3 or 4 - LCT Dependent	0.07	3.5 3.5	7	28		
7600	5.2 14	2. 3 or 4 - LCT Dependent 2. 3 or 4 - LCT Dependent	0.07	0.5	1	20		
300	14	2. 3 or 4 - LCT Debendent	0.02	0.5	2			
200			0.02	0.5	1	4		
10720	11	2. 3 or 4 - I CT Dependent	0.2	10	20	80		
640000	45	2. 3 or 4 - LCT Dependent	5	250	500	2000	0.006	4
-	N	ot Applicable	1000	12500	25000	100000	41	4
	N	ot Applicable	300	15000	30000	120000		
		ot Applicable	250	12500	25000	100000		
		ot Applicable	250	550	1100	4400		
- 40000	0.5	2. 3 or 4 - LCT Dependent	11	75	1100	600		
40000	0.5	2. 3 01 4 - LCT Dependent	0.07	3.5	7	28		
12000			0.01	0.0				
40			-	0.01	0.02	0.08		
6.8	0.137	2. 3 or 4 - LCT Dependent		0.035	0.02	0.28		
16				0.2	0.4	1.6		
35200			-	5	10	40		
2800			-	15	30	120		
8400			-	15	30	120		
160			-	0.5	1	4		
127600			-	5	10	40		
73600			-	15	30	120		
14.8			-	1.5	3	12		
600			-	0.35	0.7	2.8		
15000			-	2.5	5	20		
64			-	0.25	0.5	2		
3200			-	10	20	80		
20.8			•	0.065	0.13	0.52		
2160			•	3.5	7	28		
8000			-	25	50	200		
5.4			•	0.03	0.06	0.24		
32000 5740				100 2.5	200 5	800 20		
5740 180				2.5	5	20		
200	2.225	2, 3 or 4			2	0	Net	Applicable
	2.225	2, 3 01 4		-		-		Applicable
2600	32	2, 3 or 4				-		
40000 2240	32	2, 3 or 4		- 7	- 14	- 56	NOT A	Applicable
48				0.025	0.05	50		
480				1	2	8		
1600				5	10	40		
20				0.65	1.3	5.3		
800				0.25	0.5	2		
4600				35	70	280		
13200				3.5	7	28		
4800				15	30	120		
192				0.06	1	4		
46400				0.25	2	8		
7080				10	20	80		
6				0.015	0.03	0.12		
3560			-	25	50	200		
		• • • • • • • • • • • • • • • • • • •						
4.8			-	0.015	0.03	0.03		
200			-	1	2	2		
480			-	1.5	3	3		
16			-	0.05	0.1	0.1		
4.8	4 Wast - T		-	0.015	0.03	0.03	In a Dec (illine	
firmation of Type							ype Profiling	
n (mg/kg), unles	s stated Assessed	Satisfy					pe calculated for any indiv	ridual substance, whethe
	Assessed	Туре 4		Total (TCT) or				
TCT0 & LCT0):	As above	Yes					given substance (i.e. the	
TCT0 & LCT0):	As above	Yes				the final waste	type is determined by co	nsidering both the TCT a
3	As above 52.02	No	LCT analytic	al data simultar	eously.			
-	52.02		3. Only when	e laboratory an	alysis has resu	Ited in positive	identification of substance	es (i.e. above laboratory
		To Clarify					spective TCTs and LCTs	
		To Clarify					ction have been assumed	
		To Clarify		he waste type)				
						ofiling of liquid v	wastes is undertaken by o	comparing the analytical
		To Clarify					thresholds given that liqui	
		To Clarify				and to the LCT	uncendus given mar liqu	a wastes carinot provide
		To Clarify	eacnate extr	act for analysis				
		To Clarify						
ions, see below)		10 Oktilly	Category of	Landfill (Bas	ed on GNR	636, 23 Augus	st 2013)	
,			outogoty of		a on one.	, 20 Augus		
iste						Class D	/ GLB-	
	Гуре)							
4			d					
	aste	ated with Waste Type)	aste ated with Waste Type) x Not applicable, PCBs not detecte	aste Category of C	aste and with Waste Type) Not applicable, PCBs not detected	ions, see below) Category of Landfill (Based on GNR. aste ated with Waste Type) b Not applicable, PCBs not detected	ions, see below) Category of Landfill (Based on GNR 636, 23 Augu: aste Class D ated with Waste Type) Not applicable, PCBs not detected	ions, see below) Category of Landfill (Based on GNR. 636, 23 August 2013) aste Class D / GLB- ated with Waste Type) Not applicable, PCBs not detected

PCBs > 50ppm	PCBs (ppm):			Not applicable, PCBs not detected
Explosive, corrosive or oxidising according to	Explosive, corrosive or oxidising according to SANS 10234		No	Not applicable
pH <6 or >12	pH:	6.72	No	Not applicable
Flashnoint c61º Celsius	Flashpoint (°C):	>70	No	Not applicable
Moisture Content > 40%	Moisture Content (%):	0.8	No	Not applicable
Hazardous with Calorific Value >10MJ/kg	CV (MJ/ka):	26	No	Landfill disposal to be prohibited by August 2017
Hazardous with Total Organic Carbon >6%	TOC (%):	52.02	No	Landfill disposal to be prohibited by August 2028
Brine (high salt content) >5% TDS	TDS (%):	N/A	N/A	Not applicable to a solid waste
Leachable TDS >100 000mg/l	TDS (mg/l):	41	No	Not applicable

End of Waste Type Profiling & Disposal Prohibition Appraisal

WSP Environmental (Pty) Ltd: Screening Waste Type Profliing & Disposal Prohibition Appraisal Based on National Norms and Standards for the Assessment of Waste for Landfill Disposal GNR. 635 (23 August 2013)

Source of Waste: Exxaro Grootegeluk, Exxaro Grootegeluk Coal Mine, Power Station Coal GG7-8

Source of Waste: Waste Matrix (Liquid / Solid)											
Leachate Preparation (Solids Only)											
Substance		Concentratio	on (ppm) - Solid	I/Total Assessed	Waste Type (based on TCTs and subject		Concen	tration (ppm	n) - Leachate/L	iquid Assessed	Waste Type (based on LCTs and
Substance	TCT0	TCT1	TCT2	Concentration	(based on TCTs and subject to LCTs)	LCT0	LCT1	LCT2	LCT3	Concentration	subject to TCTs)
Metal Ions											
Arsenic	5.8	500	2000	1.4	2. 3 or 4 - LCT Dependent	0.01	0.5	1	4		
Boron	150 62.5	15000 6250	60000 25000	8.79	 3 or 4 - LCT Dependent 2 or 3 - LCT Dependent 	0.5 0.7	25 35	50 70	200 280		
Barium Cadmium	7.5	260	1040	96	2 or 3 - LC1 Dependent	0.003	0.15	0.3	1.2		
Cobalt	50	5000	20000	6.5	2. 3 or 4 - LCT Dependent	0.5	25	50	200		
Chromium	46000	800000	-	2.5	2. 3 or 4 - LCT Dependent	0.1	5	10	40		
Chromium (Hexavalent)	6.5	500	2000			0.05	2.5	5	20		
Copper	16	19500	78000	11	2. 3 or 4 - LCT Dependent	2	100	200	800		
Mercurv	0.93	160 25000	640			0.006	0.3	0.6 50	2.4 200		
Manganese Molybdenum	1000 40	1000	100000 4000	128	 3 or 4 - LCT Dependent 3 or 4 - LCT Dependent 	0.5 0.07	25 3.5	50	200		
Nickel	91	10600	42400	10.6	2. 3 or 4 - LCT Dependent	0.07	3.5	7	28		
Lead	20	1900	7600	7	2. 3 or 4 - LCT Dependent	0.01	0.5	1	4		
Antimony	10	75	300			0.02	1	2	8		
Selenium	10	50	200			0.01	0.5	1	4		
Vanadium	150 240	2680 160000	10720 640000	11 24	2. 3 or 4 - LCT Dependent	0.2 5	10 250	20 500	80 2000	0.005	
Zinc Inorganic Anions	240	160000	640000	24	2. 3 or 4 - LCT Dependent	5	250	500	2000	0.005	4
Total Dissolved Solids					Not Applicable	1000	12500	25000	100000	30	4
Chloride			-		Not Applicable	300	15000	30000	120000		
Sulphate			-		Not Applicable	250	12500	25000	100000		
Nitrate			-		Not Applicable	11	550	1100	4400		
Fluoride	100	10000	40000	0.5	2. 3 or 4 - LCT Dependent	1.5	75	150	600		
Cvanide	14	10500	42000			0.07	3.5	7	28		
Organics											
Benzene	-	10	40			-	0.01	0.02	0.08		
Benzo(a)pvrene Carbon tetrachloride		1.7 4	6.8 16	0.479	2. 3 or 4 - LCT Dependent		0.035	0.07	0.28		
Carbon tetrachloride Chlorobenzene		4 8800	35200				5	10	40		
Chloroform	-	700	2800			-	15	30	120		
2-Chlorophenol	-	2100	8400			-	15	30	120		
Bis(2-ethvlhexvl)phthalate	-	40	160			-	0.5	1	4		
1.2-Dichlorobenzene	-	31900	127600			-	5	10	40		
1.4-Dichlorobenzene 1.2-Dichloroethane	-	18400 3.7	73600 14.8			-	15 1.5	30 3	120 12		
1.2-Dichloroethane 1.1-Dichloroethene	-	3.7 150	600				0.35	0.7	2.8		
1.2-Dichloroethene		3750	15000			-	2.5	5	20		
Dichloromethane	-	16	64				0.25	0.5	2		
2.4-Dichlorophenol	-	800	3200			-	10	20	80		
2.4-Dinitrotoluene	-	5.2	20.8			-	0.065	0.13	0.52		
Ethvlbenzene	-	540	2160			-	3.5	7	28		
Formaldehvde	-	2000 2.8	8000 5.4			-	25 0.03	50 0.06	200 0.24		
Hexachlorobutadiene Methyl Ethyl Ketone (2-Butanone)	-	2.0	32000				100	200	800		
Methyl Tertiary Butyl Ether	-	1435	5740			-	2.5	5	20		
Nitrobenzene	-	45	180			-	1	2	8		
Total PAHs	-	50	200	7.935	2, 3 or 4	-	-	-		Not	Applicable
>C6-C9	-	650	2600			-	-	-		Not	Applicable
>C10-C36	-	10000	40000	54	2, 3 or 4	-	-	-	-	Not	Applicable
Phenol	-	560	2240			-	7	14	56		
Polvchlorinated Biphenvls (PCBs)	-	12	48			-	0.025	0.05	0.2		
Stvrene 1.1.1.2-Tetrachloroethane	-	120 400	480 1600				5	2	8 40		
1.1.2.2-Tetrachloroethane	-	-00	20			-	0.65	1.3	5.3		
Tetrachloroethene	-	200	800				0.25	0.5	2		
Toluene		1150	4600			-	35	70	280		
Trichlorobenzenes (Sum)		3300	13200			-	3.5	7	28		
1.1.1-Trichloroethane	-	1200	4800			-	15	30	120		
1.1.2-Trichloroethane	-	48 11600	192 46400			-	0.06	1	4		
Trichloroethene 2.4.6-Trichlorophenol		17600	7080				10	2	8		
Vinvl chloride	-	1.5	6			-	0.015	0.03	0.12		
Xvlenes (Sum)	-	890	3560			-	25	50	200		
Pesticides											
Aldrin + Dieldrin	0.05	1.2	4.8			-	0.015	0.03	0.03		
DDT + DDD + DDE	0.05	50	200			•	1	2	2		
2.4-Dichlorophenoxvacetic Acid (2.4-D) Chlordane	0.05	120 4	480 16				1.5 0.05	0.1	3		
Heptachlor	0.05	4	4.8				0.05	0.03	0.03		
			irmation of Typ	e 4 Waste Type						Type Profiling	
		Concentration	(mg/kg), unles	s stated	Satisfy	1. The final v	vaste type is de	etermined fror	n the highest ty	/pe calculated for any indiv	vidual substance, whether this
Organics		Threshold		Assessed	Type 4	be based on	Total (TCT) or	Leachable (L	CT) concentrati	ions.	
	Motels (all a		TCT0 & LCT0):	Concentration	No	2. Where a r	umber of wast	e types are a	pplicable for any	/ given substance (i.e. the	consideration of TCTs in
	Anions (all con			As above As above	Yes	isolation cann	ot result in a T	ype 4 profile),	the final waste	e type is determined by co	nsidering both the TCT and
Total Organic Carbon	Anions (all con (%)		1CT0 & LCT0): 3	As above 63.48	No	LCT analytica	al data simultar	eously.			
BTEX (Sum)	(70)	6	-	03.40	To Clarify					identification of substanc	
Polychlorinated Biphenyls (PCBs)		1			To Clarify		,				(i.e. substances determined
Mineral Oil (>C10-C40)		500			To Clarify				ry limits of dete	ection have been assumed	to be irrelevant for
Pesticides					TO OKIIII Y	-	he waste type)				
Aldrin + Dieldrin		0.05			To Clarify					wastes is undertaken by o	
DDT + DDD + DDE		0.05			To Clarify				edia to the LCT	thresholds given that liqu	id wastes cannot provide a
2,4-Dichlorophenoxyacetic Acid (2,4-D)		0.05			To Clarify	leachate extr	act for analysis	i.			
Chlordane		0.05			To Clarify						
Heptachlor		0.05			To Clarify						
	potential disp	osal prohibiti	ons, see below)	1		Category of	Landfill (Bas	ed on GNR.	636, 23 Augu	ist 2013)	
Verall Screened Waste Type (notwithstanding potential disposal prohibitions, see below) Category of Landfill (Based on GNR. 636, 23 August 2013)											
			- 1 -						~		
		Type 3 Wa	ste						Class C	/ GLB+	

Disposal Prohibitions (notwithstanding other)				
PCBs > 50ppm	PCBs (ppm):			Not applicable, PCBs not detected
Explosive, corrosive or oxidising according to	SANS 10234		No	Not applicable
pH <6 or >12	pH:	6.62	No	Not applicable
Flashpoint c61° Celsius	Flashpoint (°C):	>70	No	Not applicable
Moisture Content > 40%	Moisture Content (%):	0.4	No	Not applicable
Hazardous with Calorific Value >10MJ/kg	CV (MJ/ka):	21	No	Landfill disposal to be prohibited by August 2019
Hazardous with Total Organic Carbon >6%	TOC (%):	63.48	No	Landfill disposal to be prohibited by August 2028
Brine (high salt content) >5% TDS	TDS (%):	N/A	N/A	Not applicable to a solid waste
Leachable TDS >100 000mg/l	TDS (mg/l):	30	No	Not applicable

End of Waste Type Profiling & Disposal Prohibition Appraisal

Appendix B: SANS 10234 Classifications of GG 1-6 and GG 7-8

WSP Reference: 46831, 0001	Prepared For: Exxaro Grootegeluk
Material Source: Exxaro Grootegeluk Coal Mine	
Geographic Coordinates: 23°40' 18.78"S 27° 31'2 8.30"E	
Production Process: Pow er Station Coal GG1-6	
General Appearance	Classification Summary
Coal	Not Hazardous (General)
Applicable Hazard Statement Codes	

Composition & Quantitative Classification

Composition assessed in general accordance with the following hierarchy:

- 1. South African National Standard, Globally Harmonised System of Classification and Labelling of Chemicals (GHS), SANS 10234:2008, Edition 1.1; and,
- 2. European Regulation (EC) No. 1272/2008, 'Classification, Labelling and Packaging of Substances and Mixtures (CLP Regulation).

Hazard Statement Codes for individual ingredients are sourced from:

1. Supplement to SANS 10234:2008 Edition 1;

2. Table 3.1 of Annex VI of the CLP Regulations;

3. European Chemicals Agency, Classification & Labelling Inventory Database; or,

4. Product (Material) Safety Data Sheet.

Hazard Statement Code	Hazard Statement	Threshol d (%)	Threshol d (ppm)	Threshold and Test Comments	Assessment Concentratio n (ppm)	Outcome(s) of Further Testing	Hazardous (Yes/No)	Additional Comments
				Physical Hazard	Statements			
H200	Unstable explosive	0	0	If >0% then classified under H200 unless further information and/or testing proves otherw ise	No substances identified	Not applicable	No	
H201	Explosive; mass explosion hazard	0	0	If >0% then classified under H201 unless further information and/or testing proves otherwise	No substances identified	Not applicable	No	
H202	Explosive; severe projection hazard	0	0	If >0% then classified under H202 unless further information and/or testing proves otherwise	No substances identified	Not applicable	No	
H203	Explosive; fire blast or projection hazard	0	0	If >0% then classified under H203 unless further information and/or testing proves otherw ise	No substances identified	Not applicable	No	
H204	Fire or projection hazard	0	0	If >0% then classified under H204 unless further information and/or testing proves otherwise	No substances identified	Not applicable	No	
H205	May explode in fire	0	0	If >0% then classified under H205 unless further information and/or testing proves otherwise	No substances identified	Not applicable	No	
H220	Extremely flammable gas	0	0	If >0% then classified under H220 unless further information and/or testing proves otherwise	No substances identified	Not applicable	No	
H221	Flammable gas	0	0	If >0% then classified under H221 unless further information and/or testing proves otherwise	No substances identified	Not applicable	No	

Hazard Statement Code	Hazard Statement	Threshol d (%)	Threshol d (ppm)	Threshold and Test Comments	Assessment Concentratio n (ppm)	Outcome(s) of Further Testing	Hazardous (Yes/No)	Additional Comments
H222	Extremely flammable aerosol	0	0	If >0% then classified under H222 unless further information and/or testing proves otherw ise	No substances identified	Not applicable	No	
H223	Flam m able aerosol	0	0	If >0% then classified under H223 unless further information and/or testing proves otherw ise	No substances identified	Not applicable	No	
H224	Extremely flammable liquid and vapour	0	0	If >0% then classified under H224 unless further information and/or testing proves otherw ise	No substances identified	Not applicable	No	
H225	Highly flammable liquid and vapour	0	0	If >0% then classified under H225 unless further information and/or testing proves otherw ise	No substances identified	Not applicable	No	
H226	Flammable liquid and vapour	0	0	If >0% then classified under H226 unless further information and/or testing proves otherw ise	No substances identified	Not applicable	No	
H227	Combustible liquid	0	0	If >0% then classified under H227 unless further information and/or testing proves otherw ise	No substances identified	Not applicable	No	
H228	Flammable solid	0	0	If >0% then classified under H228 unless further information and/or testing proves otherw ise	No substances identified	Not applicable	No	
H229	Pressurised container: may burst if heated	0	0	Relevant only for pressurised containers	Not applicable	Not applicable	No	
H230	May react explosively even in the absence of air	()	0	If >0% then classified under H230 unless further information and/or testing proves otherwise	No substances identified	Not applicable	No	

Hazard Statement Code	Hazard Statement	Threshol d (%)	Threshol d (ppm)	Threshold and Test Comments	Assessment Concentratio n (ppm)	Outcome(s) of Further Testing	Hazardous (Yes/No)	Additional Comments
H231	may react explosively even in the absence of air at elevated pressure and/or	0	0	If >0% then classified under H231 unless further information and/or testing proves otherw ise	No substances identified	Not applicable	No	
H240	Heating may cause an explosion	0	0	If >0% then classified under H240 unless further information and/or testing proves otherwise	No substances identified	Not applicable	No	
H241	Heating may cause a fire or explosion	0	0	If >0% then classified under H241 unless further information and/or testing proves otherwise	No substances identified	Not applicable	No	
H242	Heating may cause a fire	0	0	If >0% then classified under H242 unless further information and/or testing proves otherwise	No substances identified	Not applicable	No	
H250	Catches fire spontaneously if exposed to air	0	0	If >0% then classified under H250 unless further information and/or testing proves otherwise	No substances identified	Not applicable	No	
H251	Self-heating; may catch fire	0	0	If >0% then classified under H251 unless further information and/or testing proves otherwise	No substances identified	Not applicable	No	
H252	Self-heating in large quantities; may catch fire	0	0	If >0% then classified under H252 unless further information and/or testing proves otherwise	No substances identified	Not applicable	No	
		0	0	If >0% then classified under H260 unless further information and/or testing proves otherwise	No substances identified	Not applicable	No	

Hazard Statement Code	Hazard Statement	Threshol d (%)	Threshol d (ppm)	Threshold and Test Comments	Assessment Concentratio n (ppm)	Outcome(s) of Further Testing	Hazardous (Yes / No)	Additional Comments								
		0.0076	76.1	Concentration of aluminium phosphide required to evolve sufficient volume of phosphine in contact with water to render	No analysis for aluminium	Not applicable	No									
		1.177	11773	<u>concentration of free caesium</u> required to evolve sufficient volume of hydrogen in contact with w ater to render hazardous; based on	No analysis for caesium	Not applicable	No									
	In contact with water releases flammable gases that may ignite spontaneously			0.061 6	614.7	<u>Erement-specific assessment</u> Concentration of free lithium required to evolve sufficient volume of hydrogen in contact with water to render hazardous; based on	No analysis for lithium	Not applicable	No							
H260		water releases lammable gases 0.108 1076 that may ignite	1076	<u>Erement-specific assessment</u> Concentration of free magnesium required to evolve sufficient volume of hydrogen in contact with water to render hazardous; based on	All magnesium assumed to be bound/ complexed	Not applicable	No									
		0.346	3463	<u>Element-specific assessment</u> Concentration of free potassium required to evolve sufficient volume of hydrogen in contact with water to render hazardous; based on	All potassium assumed to be bound/ complexed	Not applicable	No									
										0.757	7571	<u>crement-specific assessment</u> Concentration of free rubidium required to evolve sufficient volume of hydrogen in contact with water to render hazardous; based on	No analysis for rubidium	Not applicable	No	
		0.204 2036	<u>concentration of free sodium</u> Concentration of free sodium required to evolve sufficient volume of hydrogen in contact with water to render hazardous; based on		Not applicable	No										
		0.388	3881	<u>concentration of free strontium</u> Concentration of free strontium required to evolve sufficient volume of hydrogen in contact with water to render hazardous; based on	No analysis for strontium	Not applicable	No									

Hazard Statement Code	Hazard Statement	Threshol d (%)	Threshol d (ppm)	Threshold and Test Comments	Assessment Concentratio n (ppm)	Outcome(s) of Further Testing	Hazardous (Yes/No)	Additional Comments	
		0	0	If >0% then classified under H261 unless further information and/or testing proves otherwise	No substances identified	Not applicable	No		
		0.608	6082	<u>Erement-spectric assessment</u> Concentration of free barium required to evolve sufficient volume of hydrogen in contact with water to render hazardous; based on <u>Erement-spectric assessment</u>	All barium assumed to be bound/ complexed	Not applicable	No		
1004	In contact with	0.177	1775	Concentration of free calcium	All calcium assumed to be bound/ complexed	Not applicable	No		
H261	water releases flammable gas		0	0	<u>Compound-specific assessment</u> Ferrosilicon may evolve sufficient hydrogen in contact with water to render hazardous; based on ratio of iron:silicon	Ferrosilicon not identified	Not applicable	No	
		0.696	6964	<u>Etement-spectric assessment</u> Concentration of free gadolinium required to evolve sufficient volume of hydrogen in contact with water to render hazardous; based on	No analysis for gadolinium	Not applicable	No		
		0.666	6659	<u>concentration of free samarium</u> Concentration of free samarium required to evolve sufficient volume of hydrogen in contact with water to render hazardous; based on	No analysis for samarium	Not applicable	No		
H270	May cause or intensify fire; oxidiser	0	0	If >0% then classified under H270 unless further information and/or testing proves otherwise	No substances identified	Not applicable	No		
H271	May cause a fire or explosion; strong oxidiser	0	0	If >0% then classified under H271 unless further information and/or testing proves otherwise	No substances identified	Not applicable	No		

Hazard Statement Code	Hazard Statement	Threshol d (%)	Threshol d (ppm)	Threshold and Test Comments	Assessment Concentratio n (ppm)	Outcome(s) of Further Testing	Hazardous (Yes / No)	Additional Comments
H272	May intensify fire; oxidiser	0	0	If >0% then classified under H272 unless further information and/or testing proves otherw ise	No substances identified	Not applicable	No	
H280	Contains gas under pressure; may explode if heated	0	0	If >0% then classified under H280 unless further information and/or testing proves otherwise	No substances identified	Not applicable	No	
H281	Contains refrigerated gas; may cause cryogenic burns or injury	0	0	If >0% then classified under H281 unless further information and/or testing proves otherw ise	No substances identified	Not applicable	No	
H290	May be corrosive to metals	0	0	If >0% then classified under H290 unless further information and/or testing proves otherw ise	No substances identified	Not applicable	No	

Hazard Statement Code	Hazard Statement	Threshol d (%)	Threshol d (ppm)	Threshold and Test Comments	Assessment Concentratio n (ppm)	Outcome(s) of Further Testing	Hazardous (Yes/No)	Additional Comments
				Health Hazard S	tatements			
H300	Fatal if swallowed	1	10000	If cumulative/additive >1% classified under H300 (Category 1 Acute Toxicity); pending further assessment	No substances identified	Not applicable	No	
H301	Toxic if swallowed	1	10000	If individual substance >1% classified under H301 (Category 3 Acute Toxicity); pending further assessment	5.26	Further assessment not necessary	No	
H302	Harmful if swallowed	1	10000	If individual substance >1% classified under H302 (Category 4 Acute Toxicity); pending further assessment	9068.46	Further assessment not necessary	No	
H303	May be harmful if swallowed	1	10000	If individual substance >1% classified under H303 (Category 5 Acute Toxicity); pending further assessment	No substances identified	Not applicable	No	
H304	May be fatal if swallowed and enters airways	1	10000	If cumulative/additive >1% classified under H304 (Category 1 Acute Toxicity); pending further assessment	No substances identified	Not applicable	No	
H305	May be harmful if swallowed and enters airways	1	10000	If individual substance >1% classified under H305 (Category 5 Acute Toxicity); pending further assessment	No substances identified	Not applicable	No	
H310	Fatal in contact with skin	1	10000	If cumulative/additive >1% classified under H310 (Category 1 Acute Toxicity); pending further assessment	No substances identified	Not applicable	No	
H311	Toxic in contact with skin	1	10000	If individual substance >1% classified under H311 (Category 3 Acute Toxicity); pending further assessment	No substances identified	Not applicable	No	

Hazard Statement Code	Hazard Statement	Threshol d (%)	Threshol d (ppm)	Threshold and Test Comments	Assessment Concentratio n (ppm)	Outcome(s) of Further Testing	Hazardous (Yes/No)	Additional Comments
H312	Harmful in contact with skin	1	10000	If individual substance >1% classified under H312 (Category 4 Acute Toxicity); pending further assessment	9068.46	Further assessment not necessary	No	
H313	May be harmful in contact with skin	1	10000	If individual substance >1% classified under H313 (Category 5 Acute Toxicity); pending further assessment	No substances identified	Not applicable	No	
H314	Causes severe skin burns and	1	10000	If cumulative/additive >1% classified under H314 (Category 1 Skin Corrosion/Irritant); pending further assessment	406.50	Further assessment not necessary	No	
FD 14	eye damage	≤2 pH Ur	nits ≥11.5	<u>pH-specific assessment</u> If ≤2 or ≥11.5 pH then classified as corrosive	6.72	Not applicable	No	
H315	Causes skin irritation	1	10000	If cumulative/additive >1% classified under H315 (Category 3 Skin Corrosion/Irritant), >10% then Category 2; pending further assessment	6365.68	Further assessment not necessary	No	
H316	Causes mild skin irritation	10	100000	lf cumulative/additive >10% classified under H316 (Category 3 Skin Corrosion/Irritant); pending further assessment	No substances identified	Not applicable	No	
H317	May cause an allergic skin reaction	1	10000	If individual substance >1% classified under H317 (Category 1 Skin Sensitisation); pending further assessment	6.56	Further assessment not necessary	No	
H318	Causes severe eye damage	1	10000	If cumulative/additive >1% classified under H318 (Category 2 Skin/Eye Sensitisation); pending further assessment	6365.38	Further assessment not necessary	No	
H319	Causes severe eye irritation	10	100000	If cumulative/additive >10% classified under H319 (Category 2 Eye Sensitisation); pending further assessment Page 9 c	14.34	Further assessment not necessary	No	

Hazard Statement Code	Hazard Statement	Threshol d (%)	Threshol d (ppm)	Threshold and Test Comments	Assessment Concentratio n (ppm)	Outcome(s) of Further Testing	Hazardous (Yes/No)	Additional Comments
H320	Causes eye irritation	10	100000	If cumulative/additive >10% classified under H320 (Category 2 Eye Sensitisation); pending further assessment	No substances identified	Not applicable	No	
H330	Fatal if inhaled	1	10000	If cumulative/additive >1% classified under H330 (Category 1 Acute Toxicity); pending further assessment	0.099	Further assessment not necessary	No	
H331	Toxic if inhaled	1	10000	If individual substance >1% classified under H331 (Category 3 Acute Toxicity); pending further assessment	5.26	Further assessment not necessary	No	
H332	Harmful if inhaled	1	10000	If individual substance >1% classified under H332 (Category 4 Acute Toxicity); pending further assessment	9068.46	Further assessment not necessary	No	
H333	May be harmful if inhaled	1	10000	If individual substance >1% classified under H333 (Category 5 Acute Toxicity); pending further assessment	No substances identified	Not applicable	No	
H334	may cause allergy or asthma symptoms or breathing difficulties if	0.1	1000	If individual substance >0.1% classified under H334 (Category 1 Respiratory Sensitisation); pending further assessment	No substances identified	Not applicable	No	
H335	May cause respiratory irritation	20	200000	If cumulative/additive >20% classified under H335 under Generic Limits; pending further assessment	6379.72	Further assessment not necessary	No	
H336	May cause drowsiness or dizziness	20	200000	If cumulative/additive >20% classified under H336 under Generic Limits; pending further assessment	No substances identified	Not applicable	No	
H340	May cause genetic defects	0.1	1000	If individual substance >0.1% classified under H340 (Category 1 Mutagen); pending further assessment Page 10 d	0.14	Further assessment not necessary	No	

Hazard Statement Code	Hazard Statement	Threshol d (%)	Threshol d (ppm)	Threshold and Test Comments	Assessment Concentratio n (ppm)	Outcome(s) of Further Testing	Hazardous (Yes/No)	Additional Comments
H341	Suspected of causing genetic defects	1	10000	If individual substance >1% classified under H341 (Category 2 Mutagen); pending further assessment	No substances identified	Not applicable	No	
H350	May cause cancer	0.1	1000	If individual substance >0.1% classified under H350 (Category 1 Carcinogen); pending further assessment	6.56	Further assessment not necessary	No	
H351	Suspected of causing cancer	0.1	1000	If individual substance >0.1% classified under H351 (Category 2 Carcinogen); pending further assessment	31.74	Further assessment not necessary	No	
H360	May damage fertility or the unborn child	0.1	1000	If individual substance >0.1% classified under H360 (Category 1 Teratogen); pending further assessment	13.89	Further assessment not necessary	No	
H361	Suspected of damaging fertility or the unborn child	0.1	1000	If individual substance >0.1% classified under H361 (Category 2 Teratogen); pending further assessment	No substances identified	Not applicable	No	
H361d	Suspected of damaging the unborn child	0.1	1000	If individual substance >0.1% classified under H361d; pending further assessment	No substances identified	Not applicable	No	
H362	May cause harm to breast-fed children	0.1	1000	If individual substance >0.1% classified under H362 (Additional Category Teratogen); pending further assessment	No substances identified	Not applicable	No	
H370	Causes damage to organs	1	10000	If individual substance >1% classified under H370 (Category 1 Single Exposure); pending further assessment	No substances identified	Not applicable	No	
H371	May cause damage to organs	1	10000	If individual substance >1% classified under H371 (Category 2 Single Exposure); pending further assessment Page 11 (No substances identified	Not applicable	No	

Hazard Statement Code	Hazard Statement	Threshol d (%)	Threshol d (ppm)	Threshold and Test Comments	Assessment Concentratio n (ppm)	Outcome(s) of Further Testing	Hazardous (Yes/No)	Additional Comments
H372	causes damage to organs through prolonged or repeated	1	10000	If individual substance >1% classified under H372 (Category 1 Repeat Exposure); pending further assessment	14.34	Further assessment not necessary	No	
H373	May cause damage to organs through	1	10000	If individual substance >1% classified under H373 (Category 2 Repeat Exposure); pending further assessment	13.89	Further assessment not necessary	No	
15/5	prolonged or repeated exposure	0.005	50	<u>PCB-specific assessment</u> If PCBs are present >0.005% then classified hazardous under H373	No substances identified	Not applicable	No	
				Environmental Haza	rd Statements			
H400	Very toxic to aquatic life	1	10000	If cumulative/additive >1% classified under H400 (Category 1 Acute Aquatic Toxicity); pending further assessment	91.39	Further assessment not necessary	No	
H401	Toxic to aquatic life	25	250000	If modified cumulative/additive >25% classified under H401 (Category 2 Acute Aquatic Toxicity); pending further assessment	913.92	Further assessment not necessary	No	
H402	Harmful to aquatic life	25	250000	If modified cumulative/additive >25% classified under H402 (Category 3 Acute Aquatic Toxicity); pending further assessment	9139.24	Further assessment not necessary	No	
H410	Very toxic to aquatic life with long lasting effects	1	10000	If cumulative/additive >1% classified under H410 (Category 1 Chronic Aquatic Toxicity); pending further assessment	91.39	Further assessment not necessary	No	
H411	Toxic to aquatic life with long lasting effects	25	250000	lf modified cumulative/additive >25% classified under H411 (Category 2 Chronic Aquatic Toxicity); pending further assessment	913.92	Further assessment not necessary	No	

Hazard Statement Code	Hazard Statement	Threshol d (%)	Threshol d (ppm)	Threshold and Test Comments	Assessment Concentratio n (ppm)	Outcome(s) of Further Testing	Hazardous (Yes / No)	Additional Comments
H412	Harmful to aquatic life with long lasting effects	25	250000	If modified cumulative/additive >25% classified under H412 (Category 3 Chronic Aquatic Toxicity); pending further assessment	9139.24	Further assessment not necessary	No	
H413	May cause long lasting harmful effects to aquatic life	25	250000	If modified cumulative/additive >25% classified under H413 (Category 4 Chronic Aquatic Toxicity); pending further assessment	97.96	Further assessment not necessary	No	
H420	hearms public health and the environment by destroying ozone in the upper	0.1	1000	If individual substance >0.1% classified under H420 (Category 1). Substances based on Annexes to the Montreal Protocol.	No substances identified	Not applicable	No	

Assumptions and Comments

1. Acute Toxicity Estimates (ATE) have not been derived from LD50 data or conversion factors presented in SANS 10234; classification has been based on generic screening thresholds. Where more detailed assessment is recommended, appropriate LD50 should be sourced based on current available data.

2. Ecotoxicity for Category 1 Acute and Chronic Hazards have assumed 1% threshold and additive compounds rather than utilisation of Modification Factors presented in SANS 10234. Where more detailed assessment is recommended, this should follow the mixture-specific principles defined in SANS 10234.

3. Classification does not include European Union (EU Codes), or other territory specific, Hazard Statement Codes that may be applicable outside of the Republic of South Africa.

4. Only where data is presented, or where laboratory analysis has resulted in positive identification of compounds (i.e. above laboratory limits of detection), have the applicable Hazard Statement Codes been appraised (i.e. substances determined to be at concentrations less than laboratory limits of detection have been assumed to be absent).

5. Unless exact speciation has been established through detailed analysis (i.e. X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD)), classification has been based on reasonable assumptions of

substances most-likely present based on expected behaviour within the material - it is recognised that this may not be applicable in all instances and, for clarity, a list of the individual substances appraised where assumptions have been made are listed below.

6. Hazard Statement Codes for individual substances have been sourced from either i) SANS 10234, ii) CLP Regulations, iii) European Chemicals Agency C&L Inventory Database, or iv) appraised existing (M)SDS.

7. Where laboratory analysis has reported concentrations on a dry weight basis, these have been converted to take account of sample moisture content using the formula:

Wet Weight Concentration = Dry Weight Concentration x ((100 - %moisture content)/100).

8. Where assessment has been undertaken on liquids, it has been assumed that 1-litre (volume) is equivalent to 1-kg (mass).

9. For additional details in respect of the individual substances that may render any given material type as hazardous, reference should be made to the appropriate Safety Data Sheet (SDS) which takes account of this classification or, if the SDS has not been prepared by WSP, the Waste Management Summary Report relevant for this classification.

Hazard Statement Code	Hazard Statement	Threshol d (%)	Threshol d (ppm)	Threshold and Test Comments	Assessment Concentratio n (ppm)	Outcomp(s) of Further	Hazardous (Yes/No)	Additional Comments
List of Assume	d Substances							

Arsenic Compounds, Barium Oxide, Cadmium Compounds, Calcium Oxide, Chromium, Cobalt (ii) Oxide, Copper (i) Oxide, Fluoride, Iron (ii) Oxide, Lead Compounds, Magnesium Sulphate, Manganese Dioxide, Molybdenum, Nickel (ii) Oxide, Potassium Oxide, Sodium Oxide, Sulphur, Vanadium (ii) Oxide, Zinc Oxide, Diesel Range Organics (DRO),

End of Material Classification

WSP Reference: 46831, 0001	Prepared For: Exxaro Grootegeluk
Material Source: Exxaro Grootegeluk Coal Mine	
Geographic Coordinates: 23°40' 18.78"S 27° 31'2 8.30"E	
Production Process: Pow er Station Coal GG7-8	
General Appearance	Classification Summary
Coal	Not Hazardous (General)
Applicable Hazard Statement Codes	

Composition & Quantitative Classification

Composition assessed in general accordance with the following hierarchy:

- 1. South African National Standard, Globally Harmonised System of Classification and Labelling of Chemicals (GHS), SANS 10234:2008, Edition 1.1; and,
- 2. European Regulation (EC) No. 1272/2008, 'Classification, Labelling and Packaging of Substances and Mixtures (CLP Regulation).

Hazard Statement Codes for individual ingredients are sourced from:

1. Supplement to SANS 10234:2008 Edition 1;

2. Table 3.1 of Annex VI of the CLP Regulations;

3. European Chemicals Agency, Classification & Labelling Inventory Database; or,

4. Product (Material) Safety Data Sheet.

Hazard Statement Code	Hazard Statement	Threshol d (%)	Threshol d (ppm)	Threshold and Test Comments	Assessment Concentratio n (ppm)	Outcome(s) of Further Testing	Hazardous (Yes/No)	Additional Comments
				Physical Hazard				
H200	Unstable explosive	0	0	If >0% then classified under H200 unless further information and/or testing proves otherw ise	No substances identified	Not applicable	No	
H201	Explosive; mass explosion hazard	0	0	If >0% then classified under H201 unless further information and/or testing proves otherwise	No substances identified	Not applicable	No	
H202	Explosive; severe projection hazard	0	0	If >0% then classified under H202 unless further information and/or testing proves otherwise	No substances identified	Not applicable	No	
H203	Explosive; fire blast or projection hazard	0	0	If >0% then classified under H203 unless further information and/or testing proves otherw ise	No substances identified	Not applicable	No	
H204	Fire or projection hazard	0	0	If >0% then classified under H204 unless further information and/or testing proves otherwise	No substances identified	Not applicable	No	
H205	May explode in fire	0	0	If >0% then classified under H205 unless further information and/or testing proves otherwise	No substances identified	Not applicable	No	
H220	Extremely flammable gas	0	0	If >0% then classified under H220 unless further information and/or testing proves otherwise	No substances identified	Not applicable	No	
H221	Flammable gas	0	0	If >0% then classified under H221 unless further information and/or testing proves otherwise	No substances identified	Not applicable	No	

Hazard Statement Code	Hazard Statement	Threshol d (%)	Threshol d (ppm)	Threshold and Test Comments	Assessment Concentratio n (ppm)	Outcome(s) of Further Testing	Hazardous (Yes/No)	Additional Comments
H222	Extremely flammable aerosol	0	0	If >0% then classified under H222 unless further information and/or testing proves otherw ise	No substances identified	Not applicable	No	
H223	Flam m able aerosol	0	0	If >0% then classified under H223 unless further information and/or testing proves otherw ise	No substances identified	Not applicable	No	
H224	Extremely flammable liquid and vapour	0	0	If >0% then classified under H224 unless further information and/or testing proves otherw ise	No substances identified	Not applicable	No	
H225	Highly flammable liquid and vapour	0	0	If >0% then classified under H225 unless further information and/or testing proves otherw ise	No substances identified	Not applicable	No	
H226	Flammable liquid and vapour	0	0	If >0% then classified under H226 unless further information and/or testing proves otherw ise	No substances identified	Not applicable	No	
H227	Combustible liquid	0	0	If >0% then classified under H227 unless further information and/or testing proves otherw ise	No substances identified	Not applicable	No	
H228	Flammable solid	0	0	If >0% then classified under H228 unless further information and/or testing proves otherw ise	No substances identified	Not applicable	No	
H229	Pressurised container: may burst if heated	0	0	Relevant only for pressurised containers	Not applicable	Not applicable	No	
H230	May react explosively even in the absence of air	()	0	If >0% then classified under H230 unless further information and/or testing proves otherwise	No substances identified	Not applicable	No	

Hazard Statement Code	Hazard Statement	Threshol d (%)	Threshol d (ppm)	Threshold and Test Comments	Assessment Concentratio n (ppm)	Outcome(s) of Further Testing	Hazardous (Yes/No)	Additional Comments
H231	may react explosively even in the absence of air at elevated pressure and/or	0	0	If >0% then classified under H231 unless further information and/or testing proves otherw ise	No substances identified	Not applicable	No	
H240	Heating may cause an explosion	0	0	If >0% then classified under H240 unless further information and/or testing proves otherwise	No substances identified	Not applicable	No	
H241	Heating may cause a fire or explosion	0	0	If >0% then classified under H241 unless further information and/or testing proves otherwise	No substances identified	Not applicable	No	
H242	Heating may cause a fire	0	0	If >0% then classified under H242 unless further information and/or testing proves otherwise	No substances identified	Not applicable	No	
H250	Catches fire spontaneously if exposed to air	0	0	If >0% then classified under H250 unless further information and/or testing proves otherwise	No substances identified	Not applicable	No	
H251	Self-heating; may catch fire	0	0	If >0% then classified under H251 unless further information and/or testing proves otherwise	No substances identified	Not applicable	No	
H252	Self-heating in large quantities; may catch fire	0	0	If >0% then classified under H252 unless further information and/or testing proves otherwise	No substances identified	Not applicable	No	
		0	0	If >0% then classified under H260 unless further information and/or testing proves otherwise	No substances identified	Not applicable	No	

Hazard Statement Code	Hazard Statement	Threshol d (%)	Threshol d (ppm)	Threshold and Test Comments	Assessment Concentratio n (ppm)	Outcome(s) of Further Testing	Hazardous (Yes / No)	Additional Comments									
		0.0076	76.1	Concentration of aluminium phosphide required to evolve sufficient volume of phosphine in contact with water to render	No analysis for aluminium	Not applicable	No										
	In contact with water releases flam mable gases that may ignite spontaneously	1.177	11773	<u>concentration of free caesium</u> required to evolve sufficient volume of hydrogen in contact with water to render hazardous; based on	No analysis for caesium	Not applicable	No										
		water releases flammable gases that may ignite	water releases flammable gases that may ignite	0.061 614.7 Concentration of free lith to evolve sufficient v hydrogen in contact w i render hazardous; b <u>Erement-Spiebinc ass</u> Concentration of free r required to evolve suffic of hydrogen in contact w render hazardous; b	<u>Erement-specific assessment</u> Concentration of free lithium required to evolve sufficient volume of hydrogen in contact with water to render hazardous; based on	No analysis for lithium	Not applicable	No									
H260					Concentration of free magnesium required to evolve sufficient volume of hydrogen in contact with water to render hazardous; based on	All magnesium assumed to be bound/ complexed	Not applicable	No									
		0.346	3463	<u>Element-specific assessment</u> Concentration of free potassium required to evolve sufficient volume of hydrogen in contact with water to render hazardous; based on	All potassium assumed to be bound/ complexed	Not applicable	No										
											0.757	7571	<u>concentration of free rubidium</u> concentration of free rubidium required to evolve sufficient volume of hydrogen in contact with water to render hazardous; based on	No analysis for rubidium	Not applicable	No	
		0.204 203	2036	<u>concentration of free sodium</u> Concentration of free sodium required to evolve sufficient volume of hydrogen in contact with water to render hazardous; based on		Not applicable	No										
		0.388	3881	<u>concentration of free strontium</u> Concentration of free strontium required to evolve sufficient volume of hydrogen in contact with water to render hazardous; based on	No analysis for strontium	Not applicable	No										

Hazard Statement Code	Hazard Statement	Threshol d (%)	Threshol d (ppm)	Threshold and Test Comments	Assessment Concentratio n (ppm)	Outcome(s) of Further Testing	Hazardous (Yes/No)	Additional Comments
		0	0	If >0% then classified under H261 unless further information and/or testing proves otherwise	No substances identified	Not applicable	No	
		0.608	6082	<u>Erement-spectric assessment</u> Concentration of free barium required to evolve sufficient volume of hydrogen in contact with water to render hazardous; based on <u>Erement-spectric assessment</u>	All barium assumed to be bound/ complexed	Not applicable	No	
1004	In contact with	0.177	1775	Concentration of free calcium	All calcium assumed to be bound/ complexed	Not applicable	No	
H261	water releases flammable gas	0	0	<u>Compound-specific assessment</u> Ferrosilicon may evolve sufficient hydrogen in contact with water to render hazardous; based on ratio of iron:silicon	Ferrosilicon not identified	Not applicable	No	
		0.696	6964	<u>Etement-spectric assessment</u> Concentration of free gadolinium required to evolve sufficient volume of hydrogen in contact with water to render hazardous; based on	No analysis for gadolinium	Not applicable	No	
		0.666	6659	<u>concentration of free samarium</u> Concentration of free samarium required to evolve sufficient volume of hydrogen in contact with water to render hazardous; based on	No analysis for samarium	Not applicable	No	
H270	May cause or intensify fire; oxidiser	0	0	If >0% then classified under H270 unless further information and/or testing proves otherwise	No substances identified	Not applicable	No	
H271	May cause a fire or explosion; strong oxidiser	0	0	If >0% then classified under H271 unless further information and/or testing proves otherwise	No substances identified	Not applicable	No	

Hazard Statement Code	Hazard Statement	Threshol d (%)	Threshol d (ppm)	Threshold and Test Comments	Assessment Concentratio n (ppm)	Outcome(s) of Further Testing	Hazardous (Yes / No)	Additional Comments
H272	May intensify fire; oxidiser	0	0	If >0% then classified under H272 unless further information and/or testing proves otherw ise	No substances identified	Not applicable	No	
H280	Contains gas under pressure; may explode if heated	0	0	If >0% then classified under H280 unless further information and/or testing proves otherwise	No substances identified	Not applicable	No	
H281	Contains refrigerated gas; may cause cryogenic burns or injury	0	0	If >0% then classified under H281 unless further information and/or testing proves otherw ise	No substances identified	Not applicable	No	
H290	May be corrosive to metals	0	0	If >0% then classified under H290 unless further information and/or testing proves otherw ise	No substances identified	Not applicable	No	

Hazard Statement Code	Hazard Statement	Threshol d (%)	Threshol d (ppm)	Threshold and Test Comments	Assessment Concentratio n (ppm)	Outcome(s) of Further Testing	Hazardous (Yes/No)	Additional Comments
				Health Hazard S	tatements			
H300	Fatal if swallowed	1	10000	If cumulative/additive >1% classified under H300 (Category 1 Acute Toxicity); pending further assessment	No substances identified	Not applicable	No	
H301	Toxic if swallowed	1	10000	If individual substance >1% classified under H301 (Category 3 Acute Toxicity); pending further assessment	1.39	Further assessment not necessary	No	
H302	Harmful if swallowed	1	10000	If individual substance >1% classified under H302 (Category 4 Acute Toxicity); pending further assessment	5879.30	Further assessment not necessary	No	
H303	May be harmful if swallowed	1	10000	If individual substance >1% classified under H303 (Category 5 Acute Toxicity); pending further assessment	No substances identified	Not applicable	No	
H304	May be fatal if swallowed and enters airways	1	10000	If cumulative/additive >1% classified under H304 (Category 1 Acute Toxicity); pending further assessment	No substances identified	Not applicable	No	
H305	May be harmful if swallowed and enters airways	1	10000	If individual substance >1% classified under H305 (Category 5 Acute Toxicity); pending further assessment	No substances identified	Not applicable	No	
H310	Fatal in contact with skin	1	10000	If cumulative/additive >1% classified under H310 (Category 1 Acute Toxicity); pending further assessment	No substances identified	Not applicable	No	
H311	Toxic in contact with skin	1	10000	If individual substance >1% classified under H311 (Category 3 Acute Toxicity); pending further assessment	No substances identified	Not applicable	No	

Hazard Statement Code	Hazard Statement	Threshol d (%)	Threshol d (ppm)	Threshold and Test Comments	Assessment Concentratio n (ppm)	Outcome(s) of Further Testing	Hazardous (Yes/No)	Additional Comments	
H312	Harmful in contact with skin	1	10000	If individual substance >1% classified under H312 (Category 4 Acute Toxicity); pending further assessment	5879.30	Further assessment not necessary	No		
H313	May be harmful in contact with skin	1	10000	If individual substance >1% classified under H313 (Category 5 Acute Toxicity); pending further assessment	No substances identified	Not applicable	No		
H314	Causes severe	1	10000	If cumulative/additive >1% classified under H314 (Category 1 Skin Corrosion/Irritant); pending further assessment	135.60	Further assessment not necessary	No		
H314	skin burns and eye damage		≤2 pH Ur	nits ≥11.5	<u>pH-specific assessment</u> If ≤2 or ≥11.5 pH then classified as corrosive	6.62	Not applicable	No	
H315	Causes skin irritation	1	10000	lf cumulative/additive >1% classified under H315 (Category 3 Skin Corrosion/Irritant), >10% then Category 2; pending further assessment	3905.02	Further assessment not necessary	No		
H316	Causes mild skin irritation	10	100000	If cumulative/additive >10% classified under H316 (Category 3 Skin Corrosion/Irritant); pending further assessment	No substances identified	Not applicable	No		
H317	May cause an allergic skin reaction	1	10000	If individual substance >1% classified under H317 (Category 1 Skin Sensitisation); pending further assessment	13.44	Further assessment not necessary	No		
H318	Causes severe eye damage	1	10000	If cumulative/additive >1% classified under H318 (Category 2 Skin/Eye Sensitisation); pending further assessment	3904.87	Further assessment not necessary	No		
H319	Causes severe eye irritation	10	100000	If cumulative/additive >10% classified under H319 (Category 2 Eye Sensitisation); pending further assessment Page 9 c	14.40	Further assessment not necessary	No		

Hazard Statement Code	Hazard Statement	Threshol d (%)	Threshol d (ppm)	Threshold and Test Comments	Assessment Concentratio n (ppm)	Outcome(s) of Further Testing	Hazardous (Yes/No)	Additional Comments
H320	Causes eye irritation	10	100000	If cumulative/additive >10% classified under H320 (Category 2 Eye Sensitisation); pending further assessment	No substances identified	Not applicable	No	
H330	Fatal if inhaled	1	10000	If cumulative/additive >1% classified under H330 (Category 1 Acute Toxicity); pending further assessment	No substances identified	Not applicable	No	
H331	Toxic if inhaled	1	10000	If individual substance >1% classified under H331 (Category 3 Acute Toxicity); pending further assessment	1.39	Further assessment not necessary	No	
H332	Harmful if inhaled	1	10000	If individual substance >1% classified under H332 (Category 4 Acute Toxicity); pending further assessment	5879.30	Further assessment not necessary	No	
H333	May be harmful if inhaled	1	10000	If individual substance >1% classified under H333 (Category 5 Acute Toxicity); pending further assessment	No substances identified	Not applicable	No	
H334	may cause allergy or asthma symptoms or breathing difficulties if	0.1	1000	If individual substance >0.1% classified under H334 (Category 1 Respiratory Sensitisation); pending further assessment	No substances identified	Not applicable	No	
H335	May cause respiratory irritation	20	200000	If cumulative/additive >20% classified under H335 under Generic Limits; pending further assessment	3919.26	Further assessment not necessary	No	
H336	May cause drowsiness or dizziness	20	200000	If cumulative/additive >20% classified under H336 under Generic Limits; pending further assessment	No substances identified	Not applicable	No	
H340	May cause genetic defects	0.1	1000	If individual substance >0.1% classified under H340 (Category 1 Mutagen); pending further assessment Page 10 d	0.48	Further assessment not necessary	No	

Hazard Statement Code	Hazard Statement	Threshol d (%)	Threshol d (ppm)	Threshold and Test Comments	Assessment Concentratio n (ppm)	Outcome(s) of Further Testing	Hazardous (Yes/No)	Additional Comments
H341	Suspected of causing genetic defects	1	10000	If individual substance >1% classified under H341 (Category 2 Mutagen); pending further assessment	No substances identified	Not applicable	No	
H350	May cause cancer	0.1	1000	If individual substance >0.1% classified under H350 (Category 1 Carcinogen); pending further assessment	13.44	Further assessment not necessary	No	
H351	Suspected of causing cancer	0.1	1000	If individual substance >0.1% classified under H351 (Category 2 Carcinogen); pending further assessment	53.78	Further assessment not necessary	No	
H360	May damage fertility or the unborn child	0.1	1000	If individual substance >0.1% classified under H360 (Category 1 Teratogen); pending further assessment	6.97	Further assessment not necessary	No	
H361	Suspected of damaging fertility or the unborn child	0.1	1000	If individual substance >0.1% classified under H361 (Category 2 Teratogen); pending further assessment	No substances identified	Not applicable	No	
H361d	Suspected of damaging the unborn child	0.1	1000	If individual substance >0.1% classified under H361d; pending further assessment	No substances identified	Not applicable	No	
H362	May cause harm to breast-fed children	0.1	1000	If individual substance >0.1% classified under H362 (Additional Category Teratogen); pending further assessment	No substances identified	Not applicable	No	
H370	Causes damage to organs	1	10000	If individual substance >1% classified under H370 (Category 1 Single Exposure); pending further assessment	No substances identified	Not applicable	No	
H371	May cause damage to organs	1	10000	If individual substance >1% classified under H371 (Category 2 Single Exposure); pending further assessment Page 11 (No substances identified	Not applicable	No	

Hazard Statement Code	Hazard Statement	Threshol d (%)	Threshol d (ppm)	Threshold and Test Comments	Assessment Concentratio n (ppm)	Outcome(s) of Further Testing	Hazardous (Yes / No)	Additional Comments
H372	to organs through prolonged or repeated	1	10000	If individual substance >1% classified under H372 (Category 1 Repeat Exposure); pending further assessment	14.40	Further assessment not necessary	No	
H373	May cause damage to organs through	1	10000	If individual substance >1% classified under H373 (Category 2 Repeat Exposure); pending further assessment	6.97	Further assessment not necessary	No	
1073	prolonged or repeated exposure	0.005	50	<u>PCB-specific assessment</u> If PCBs are present >0.005% then classified hazardous under H373	No substances identified	Not applicable	No	
				Environmental Haza	rd Statements			
H400	Very toxic to aquatic life	1	10000	If cumulative/additive >1% classified under H400 (Category 1 Acute Aquatic Toxicity); pending further assessment	59.16	Further assessment not necessary	No	
H401	Toxic to aquatic life	25	250000	If modified cumulative/additive >25% classified under H401 (Category 2 Acute Aquatic Toxicity); pending further assessment	591.64	Further assessment not necessary	No	
H402	Harmful to aquatic life	25	250000	If modified cumulative/additive >25% classified under H402 (Category 3 Acute Aquatic Toxicity); pending further assessment	5916.37	Further assessment not necessary	No	
H410	Very toxic to aquatic life with long lasting effects	1	10000	If cumulative/additive >1% classified under H410 (Category 1 Chronic Aquatic Toxicity); pending further assessment	59.16	Further assessment not necessary	No	
H411	Toxic to aquatic life with long lasting effects	25	250000	If modified cumulative/additive >25% classified under H411 (Category 2 Chronic Aquatic Toxicity); pending further assessment	591.64	Further assessment not necessary	No	

Hazard Statement Code	Hazard Statement	Threshol d (%)	Threshol d (ppm)	Threshold and Test Comments	Assessment Concentratio n (ppm)	Outcome(s) of Further Testing	Hazardous (Yes / No)	Additional Comments
H412	Harmful to aquatic life with long lasting effects	25	250000	If modified cumulative/additive >25% classified under H412 (Category 3 Chronic Aquatic Toxicity); pending further assessment	5916.37	Further assessment not necessary	No	
H413	May cause long lasting harmful effects to aquatic life	25	250000	If modified cumulative/additive >25% classified under H413 (Category 4 Chronic Aquatic Toxicity); pending further assessment	72.60	Further assessment not necessary	No	
H420	harms public health and the environment by destroying ozone in the upper	0.1	1000	If individual substance >0.1% classified under H420 (Category 1). Substances based on Annexes to the Montreal Protocol.	No substances identified	Not applicable	No	

Assumptions and Comments

1. Acute Toxicity Estimates (ATE) have not been derived from LD50 data or conversion factors presented in SANS 10234; classification has been based on generic screening thresholds. Where more detailed assessment is recommended, appropriate LD50 should be sourced based on current available data.

2. Ecotoxicity for Category 1 Acute and Chronic Hazards have assumed 1% threshold and additive compounds rather than utilisation of Modification Factors presented in SANS 10234. Where more detailed assessment is recommended, this should follow the mixture-specific principles defined in SANS 10234.

3. Classification does not include European Union (EU Codes), or other territory specific, Hazard Statement Codes that may be applicable outside of the Republic of South Africa.

4. Only where data is presented, or where laboratory analysis has resulted in positive identification of compounds (i.e. above laboratory limits of detection), have the applicable Hazard Statement Codes been appraised (i.e. substances determined to be at concentrations less than laboratory limits of detection have been assumed to be absent).

5. Unless exact speciation has been established through detailed analysis (i.e. X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD)), classification has been based on reasonable assumptions of

substances most-likely present based on expected behaviour within the material - it is recognised that this may not be applicable in all instances and, for clarity, a list of the individual substances appraised where assumptions have been made are listed below.

6. Hazard Statement Codes for individual substances have been sourced from either i) SANS 10234, ii) CLP Regulations, iii) European Chemicals Agency C&L Inventory Database, or iv) appraised existing (M)SDS.

7. Where laboratory analysis has reported concentrations on a dry weight basis, these have been converted to take account of sample moisture content using the formula:

Wet Weight Concentration = Dry Weight Concentration x ((100 - %moisture content)/100).

8. Where assessment has been undertaken on liquids, it has been assumed that 1-litre (volume) is equivalent to 1-kg (mass).

9. For additional details in respect of the individual substances that may render any given material type as hazardous, reference should be made to the appropriate Safety Data Sheet (SDS) which takes account of this classification or, if the SDS has not been prepared by WSP, the Waste Management Summary Report relevant for this classification.

Hazard Statement Code	Hazard Statement	Threshol d (%)	Threshol d (ppm)	Threshold and Test Comments	Assessment Concentratio n (ppm)	Outcome(s) of Further	Hazardous (Yes/No)	Additional Comments
	al Ocale a face a size							

List of Assumed Substances

Arsenic Compounds, Barium Oxide, Boron Sulphide, Calcium Oxide, Chromium, Cobalt (ii) Oxide, Copper (i) Oxide, Fluoride, Iron (ii) Oxide, Lead Compounds, Magnesium Sulphate, Manganese Dioxide, Molybdenum, Nickel (ii) Oxide, Potassium Oxide, Sodium Oxide, Sulphur, Vanadium (ii) Oxide, Zinc Oxide, Diesel Range Organics (DRO),

End of Material Classification

Geochemistry Report Exxaro Coal Pty (Ltd) Grootegeluk Short-Term Stockpiles Amendment Project EXX3666

Appendix C: Waste Classification Memo for GG 1 to 6

То:	The Regional Manager Department of Mineral Resources Limpopo Province	Date:	May 2015
From:	Digby Wells Environmental	Proj #:	EXX3666
RE:	Environmental Authorisation Ame Regulation 29 (a) of the NEMA, fo GG10A Stockyard LEDET Reference: 12/1/9/1-W89 Mining Right Reference: LP 30/5/1/3/	or Grootegel	

Dear Mr Kolani,

Digby Wells Environmental (hereafter Digby Wells) has been appointed by Exxaro Grootegeluk Coal Mine (hereafter Exxaro) as the consultant to perform a geochemical and waste classification assessment for the GG1 to 6 short-term stockpiles, as well as submit an amendment to the Grootegeluk Mine Infrastructure Expansion Project Environmental Authorisation to stockpile this material. Proof of payment for the Application is attached in Appendix A.

Exxaro hereby formally requests an amendment to the Environmental Authorisation relevant to the Grootegeluk Coal Mine Infrastructure Expansion Project, Limpopo Department of Economic Development, Environment and Tourism (LEDET) reference number 12/1/9/1-W89, and Mining Right reference number for the Grootegeluk Mine LP 30/5/1/3/2/1 (46) EM. The amendment being requested has been considered in terms of Regulation 29 (a) of R 982 of the Environmental Impact Assessment Regulations, 2014, (the EIA Regulations 2014) promulgated in terms of the National Environmental Management Act, 1998 (NEMA)¹ which stipulates:

"29. An environmental authorisation may be amended by following the process prescribed in this Part if the amendment-

¹ Regulation 982, Environmental Impact Assessment Regulations under the NEMA, promulgated on 4 December 2014.

Digby Wells and Associates (South Africa) (Pty) Ltd (Subsidiary of Digby Wells & Associates (Pty) Ltd). Co. Reg. No. 2010/008577/07. Fern Isle, Section 10, 359 Pretoria Ave Randburg Private Bag X10046, Randburg, 2125, South Africa Tel: +27 11 789 9495, Fax: +27 11 789 9498, info@digbywells.com, www.digbywells.com

(a) will not change the scope of a valid environmental authorisation nor increase the level or nature of the impact, which impact was initially assessed and considered when [the] application was made for an environmental authorisation."

Exxaro is requesting permission to use the footprint of the GG10A Stockyard (which has not yet been constructed) for the construction of a short-term compacted coal stockpile of a larger capacity, for a period of five years, and thereafter construct the permanent GG10A Stockyard.

1 **Project Background**

Exxaro has an operational mine, namely Grootegeluk Coal Mine, near Lephalale in the Limpopo Province. The Grootegeluk Coal Mine is also contracted to supply coal to the Eskom Medupi and Matimba Power stations from the upper benches of coal at the mine. In 2014, Exxaro applied to expand certain infrastructure within the mine boundary area, referred to as the Grootegeluk Coal Mine Infrastructure Expansion Project. Exxaro submitted Applications in terms of the National Environmental Management Act (NEMA), 1998 (Act No. 107 of 1998) and Minerals and Petroleum Resources Development Act (MPRDA), 2002 (Act No. 28 of 2002) to include the following activities / expansions within the mine boundary:

- Expansion of the rail loop, load out stations and associated infrastructure;
- Expansion of the existing coal stockyard and stockpiles;
- Expansion of the fuel storage depot;
- Expansion of beneficiation plants and associated infrastructure;
- New road and conveyors to fines recovery area;
- New gate and hard park area; and
- Expansion of ancillary infrastructure and new 33 kV power line.

The aforementioned 2014 amendment was also associated with the expansion of the existing coal product stockpiles. The following stockpiles and stockyards were included in the applications and approved:

- GG 6/2 stockyard;
- GG 10 stockyards;
 - Conical Stock pile;
 - Stockyard A (to which this amendment applies); and
 - Stockyard B.
- Multi-product overflow stockyard

The Grootegeluk Coal Mine Infrastructure Expansion Project was authorised in terms of the NEMA and the Environmental Impact Assessment Regulations of 2010^2 , (which have been repealed). The LEDET, and the Record of Decision is dated 27 October 2014, with reference number 12/1/9/1-W89.

The Grootegeluk Coal Mine Infrastructure Expansion Project included the development of the GG10 A and B stockyards to accommodate the increase in production of multi-product coal (benches 2 to 10), which was estimated to be 2 million tonnes (Mt) per annum. The GG10A stockyard area. GG10A has an approved capacity of 400,000 m³. The delay in ramp up at the Medupi power station has resulted in the need for increased stockpiling capacity of power station coal at the Grootegeluk Mine, since Eskom has decreased off-take from the existing stockpiles. Exxaro, however, cannot leave the upper benches of coal in situ and still be able to access the lower benches to continue supplying Exxaro's other clients (power stations, steel industry, cement industry, factories and farming).

To accommodate the excess Eskom-grade coal, Exxaro proposes to stockpile the coal in an approved Stockyard footprint for a period of five years. Exxaro will not construct a permanent Stockyard liner for this duration as the liner for the stockpile will only be in use for the five-year stockpiling period and then destroyed. To ensure Exxaro is compliant with the relevant legislation, a waste classification was undertaken to determine the type of liner required for this short-term stockpile. The locality and infrastructure plan is attached in Appendix B.

2 Applicant Details

The proposed activity of increasing the quantity of coal to be stockpiled at the GG10A stockyard within the same footprint area as part of Phase 1 of the project will take place within the mining footprint at the Grootegeluk Mine on the farm Daarby 458 LQ. The contact details of the Applicant are set out in Table 1 below:

Name of person to whom the environmental authorisation was issued:	Exxaro Coal (Pty) Ltd.	
Contact person:	Mr JL Wepener	
Postal address:	PO Box 178	
	Lephalale	
	Postal code:	0555

Table 1: Details of the Applicant

² Dated 18 June 2010

Telephone:	014 763 9100		
E-mail:	johan.wepener@exxaro.com	Fax:	014 763 9108
Magisterial District or Town:	Lephalale Magisterial District		
Departmental reference number of the previous environmental authorisation in respect of which an amendment is applied for:	12/1/9/1-W89		

3 Legal Requirements

3.1 Approved Listed Activities

The Grootegeluk Mine Infrastructure Expansion Project was approved in terms of the 2010 NEMA Regulations and the Record of Decision is attached hereto as Appendix C. Refer to Table 2 below for the approved Listed Activities relevant to the 2014 Expansion Project.

Table 2: Approved Listed Activities

Activity/ies fo granted:	or which	authorisation	was	Activity No. 18 of R. 544:
gramed.				The infilling or depositing of any material of more than 5 cubic metres into, or the dredging, excavation, removal or moving of soil, sand, shells, shell grit, pebbles or rock from
				(i) a watercourse;
				(ii) the sea;
				(iii) the seashore;
				(iv) the littoral active zone, an estuary or a distance of 100 metres inland of the high-water mark of the sea or an estuary, whichever distance is the greater-
				but excluding where such infilling, depositing, dredging, excavation, removal or moving
				(i) is for maintenance purposes undertaken in accordance with a management plan agreed to by the relevant environmental authority; or
				(ii) occurs behind the development setback line.
				Activity No. 22 of R. 544: The construction of a road, outside urban areas, with a reserve wider than 13,5 meters or, where no
				reserve exists where the road is wider than 8 metres.
				Activity No. 28 of R 544:
				The expansion of existing facilities for any process or activity where such expansion will result in the need for a new, or amendment of, an existing permit or license in terms of national or provincial legislation

governing the release of emissions or pollution, excluding where the facility, process or activity is included in the list of waste management activities published in terms of section 19 of the National Environmental Management: Waste Act, 2008 (Act No. 59 of 2008) in which case that Act will apply.
<u>Activity No. 42 of R. 544:</u> The expansion of facilities for the storage, or storage and handling, of a dangerous good, where the capacity of such storage facility will be expanded by 80 cubic metres or more.
 <u>Activity No. 53 of R. 544:</u> The expansion of railway lines, stations or shunting yards where there will be an increased development footprint – excluding: (i) railway lines, shunting yards and railway stations in industrial complexes or zones; (ii) underground railway lines in mines; and (iii) additional railway lines within the reserve of an existing railway line.

3.2 DMR Amendment to the ROD

The stockpile volume in the approved Environmental Authorisation (12/1/9/1-W89) is 400,000 m² and Exxaro accordingly seeks consent to have the volume increased to 2 Mt. The quantity of coal will be increased through constructing a compacted stockpile, without the equipment and infrastructure required for a stockyard area. Thus the GG10A stockyard footprint area will be sufficient.

The Grootegeluk Coal Mine Infrastructure Expansion Project, to which the Environmental Authorisation and subsequent Amendment pertains, includes the construction of the GG10 stockyards (two stockyards known as GG10A and GG10B). The necessity of the GG10 stockyards came about due to the existing GG7 Plant being modified to cater for an increase in metallurgical coal production. The modified GG7 plant, now referred to as the GG10 plant, has been approved to produce the following products once constructed:

Small nuts:

- 50 mm to + 25 mm; and
- 10% to 15% ash content.

Peas:

- -25 mm to +10 mm; and
- 10% to 15% ash content.

Power station coal:

-10 mm; and as per the current design.

Exxaro is applying to amend the Environmental Authorisation to reflect that Exxaro has the option (alternative) to store up to 2 Mt of power station coal within the GG10A stockyard footprint, as excess power station coal ultimately destined for Eskom. Therefore, the amendment to the Environmental Authorisation will be to increase the quantity of coal through constructing a compacted stockpile without the equipment required for a stockyard area. Thus the GG10A stockyard area will be able to accommodate the additional 2 Mt of coal, for short-term storage. To establish the type of liner to be constructed to prevent potential surface water and groundwater pollution, a waste classification was undertaken. The liner and the waste classification of the coal are discussed in below.

3.3 Liner Requirements

The Legislative requirements regarding the type of liner required for coal stockpiles is undertaken in terms of the National Environmental Management: Waste Act, 2008 (Act No. 59 of 2008) (NEM:WA) and the NEM:WA guidelines for mono-disposal³ (DEA, 2013).

³ NEMWA Act 59 of 2008, Norms and Standards for Assessment prior to Landfill Disposal in terms of Regulation 5(2)(c) of the Regulations.

Although the product is not seen as a waste the classification of the material was undertaken to advice on liner requirements as required by the Department of Water and Sanitation (DWS) and Department of Environmental Affairs (DEA).

3.3.1 Legislative Guideline

On 2 June 2014, the NEM:WA, 2014 (Act No. 26 of 2014) was published, which for the first time included "residue deposits" and "residue stockpiles" under the environmental waste legislation (previously mining residue was covered under the MPRDA). Mine waste are listed under Schedule 3, under the category "Hazardous Waste", therefore the understanding is that mine waste are considered to be hazardous unless the applicant can prove that the waste is non-hazardous.

As residue deposits and residue stockpiles are considered to be waste, they are regulated by the following regulations, both promulgated on 23 August 2013 in the amended NEM: WA guidelines:

- R634 Waste Classification and Management Regulations
- R635 National norms and standards for assessment of waste for landfill disposal; and
- R636 National norms and standards for disposal of waste to landfill.

According to these regulations, waste that is generated must be classified in accordance with SANS 10234 within 180 days of generation. Waste that has already been generated, but not previously classified must be classified within 18 months of the date of commencement of the regulations. The norms and standards specify the waste classification methodologies for determining the waste category, and the specifications for pollution control barrier systems (liners) for each of the waste categories.

DEA has published the following draft regulations:

Notice 1005 of 2014 (14 November 2014): Proposed regulations regarding the planning and management of residue stockpiles and residue deposits from a prospecting, mining, exploration or production operation.

In terms of waste classification, these regulations state that residue stockpiles and residue deposits must be characterised to identify any potential risk to health or safety and environmental impact in terms of physical characteristics, chemical characteristics (toxicity, propensity to oxidise and decompose, propensity to undergo spontaneous combustion, pH and chemical composition of the water separated from the solids, stability and reactivity and the rate thereof, neutralising potential and concentration of volatile organic compounds), and mineral content.

In addition, the quality of seepage from residue facilities needs to be predicted:

 Notice 1006 of 2014 (14 November 2014): Proposed regulations to exclude a waste stream or a portion of a waste stream from the definition of waste.

These regulations state that waste generated from a source listed in Category A of Schedule 3 of NEM:WA may be excluded from being defined as hazardous on demonstration that the waste is non-hazardous in accordance with the Waste Management and Classification regulations. Exclusion of a waste stream from the definition of waste may be considered if it can be demonstrated that any contaminant of concern originating from the waste reaching the receptor will not exceed the acceptable environmental limits for any contaminant of concern for such a receptor. The acceptable environmental limits have not been defined.

3.3.2 Waste Classification Methodology

Total Concentration values were determined by *aqua regia* digestion and analysis with ICP methods.

Total Concentration Threshold limits are subdivided into three categories as follows:

- TCT0 limits based on screening values for the protection of water resources, as contained in the Framework for the Management of Contaminated Land (DEA, March 2010);
- TCT1 limits derived from land remediation values for commercial/industrial land (DEA, March 2010); and
- TCT2 limits derived by multiplying the TCT1 values by a factor of 4, as used by the Environmental Protection Agency, Australian State of Victoria.

Leachable concentration was determined by following the reagent water leaching procedure.

Leachable Concentration Threshold (LCT) limits are subdivided into four categories as follows:

- LCT0 limits derived from human health effect values for drinking water, as published by the Department of Water and Sanitation (DWS), South African National Standards (SANS), World Health Organization (WHO) or the United States Environmental Protection Agency (USEPA);
- LCT1 limits derived by multiplying LCT0 values by a Dilution Attenuation Factor (DAF) of 50, as proposed by the Australian State of Victoria;
- LCT2 limits derived by multiplying LCT1 values by a factor of 2; and
- LCT3 limits derived by multiplying the LCT2 values by a factor of 4.

In the Regulation, the terms "Total Concentration Threshold" and "TCT" mean the total concentration threshold limit for particular elements or chemical substances in a waste, expressed as mg/kg, prescribed in section 6 of the Norms and Standards. The terms "Leachable Concentration Threshold" and "LCT" mean the leachable concentration threshold limit for particular elements and chemical substances in a waste, expressed as mg/l, prescribed in section 6 of these Norms and Standards.

GN R634 identifies waste classes (Waste Types 0 to 4) ranging from high risk to low risk, based on comparison of the Total Concentration (TC) and Leachable Concentration (LC) of individual constituents in the waste against the following threshold limits. Waste is assessed by comparison of the total and leachable concentration of elements and chemical substances in the waste material to TCT and LCT limits as specified in the National Norms and Standards for Waste Classification and the National Norms and Standards for Disposal to Landfill as per Table 1-1.

Waste Type	Element or chemical substance concentration	Disposal
0	LC > LCT3 OR TC > TCT2	Not allowed
1	LCT2 < LC ≤ LCT3 OR TCT1 < TC ≤ TCT2	Class A or Hh:HH landfill
2	LCT1 < LC ≤ LCT2 AND TC ≤ TCT1	Class B or GLB+ landfill
3	LCT0 < LC ≤ LCT1 AND TC ≤ TCT1	Class C or GLB- landfill
4	$LC \leq LCT0$ AND TC \leq TCT0 for metal ions and inorganic anions	Class D or GLB- landfill
	AND all chemical substances are below the total concentration	
	limits provided for organics and pesticides listed	

Table 1-1: Waste Type for Landfill Disposal

4 Technical Considerations for Linear Requirements

The containment barriers prescribed for wastes do not consider the product loading, excavation and transport from stockpiles and thus are not generally appropriate for coal handling facilities (WSP, 2015).

Although the product is not seen as waste, the classification of the material was undertaken to confirm the liner requirements as required by the DWS and DEA.

The material from the GG1 to GG6 process plants were sampled and submitted to an accredited laboratory (Jones Environmental Laboratory) by WSP Environmental (Pty) Ltd. The results of the test work are shown in Appendix D. The tests conducted were *aqua regia* digestion for total concentration and reagent water leaching procedure (20:1 ratio) in accordance with the National Environmental NEM:WA guidelines for mono-disposal (DEA, 2013). Based on the outcomes of the test work, the "waste" can be classed (as tabulated below) after comparison with the total concentration threshold (LCT) values:

Test Purpose		Results (All parameters considered)	Classification
GG 1- 6			
Aqua regia digestion	Total Concentration (TC)	TC <tct0< td=""><td>Type 4</td></tct0<>	Type 4
Reagent water leach test	Leachable Concentration (LC)	LC <lct0< td=""><td>Type 4</td></lct0<>	Type 4

Based on the above, the material from GG1 to GG6 is classed as a Type 4 waste and should be disposed of or stored at a facility with a Class D liner. A conceptual design for a Class D liner as given by the NEM: WA guidelines (DEA, 2013) are shown below in Figure 1.

(d) Class D Landfill:

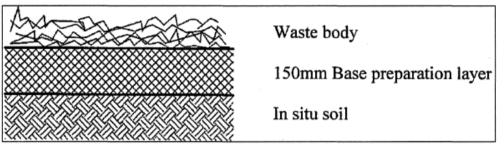


Figure 1: Minimum design requirements for a Class D liner (DEA, 2013)

It is proposed that Exxaro designs the liner for the GG1 to 6 short-term stockpiles in line with the Class D liner. Exxaro will also implement monitoring and quality control measures on a regular basis for the groundwater, surface water and coal material. This will allow the management of contaminants, if any, leaching and/or flowing from the stockpiles.

5 Consultation with the Department of Water and Sanitation

Exxaro approached the Department of Mineral Resources (DMR) on 29 September 2015 to discuss the proposed GG10A amendment. DMR agreed in principle to the proposed amendments to the GG10A stockyard area. The DMR encouraged Exxaro to consult with the DWS and LEDET prior to DMR making a decision on the Application. Exxaro met with the Limpopo Regional Office of the DWS on 08 December 2015 to present the proposed amendment to the GG10A stockyard and the proposed liner requirements. The Regional Office indicated that Exxaro will have to consult with the Civil Engineering Department of the National DWS Office and present the proposed alterations to the stockpile liner.

Exxaro met with the Civil Engineering Department of the National DWS on 18 January 2016 and a discussion was held around the liner requirements and the waste classification. The DWS officials indicated that, should the coal to be stockpiled at the GG10A stockyard footprint be classified as Type 4 waste, the liner requirements for Class D will be acceptable. As indicated in Section 4.1, the proposed stockpile will accommodate Type 4 waste only, and therefore, Exxaro can accede to the requirements of the DWS.

A memo providing the classification of the coal to be stockpiled at GG10A was submitted to the DWS on 22 March 2016 and DWS has provided approval to the proposed stockpile. Refer to Appendix E for the DWS Letter of Approval.

6 Consultation with Interested and Affected Parties

The consultation undertaken for the Grootegeluk Mine Infrastructure Expansion Project is deemed sufficient for the purposes of this Regulation 29 Amendment as the consultation process undertaken for the Basic Assessment met the requirements for public participation in terms of the NEMA. The placement of additional coal within an impacted area, where the footprint remains unchanged will have no added adverse effect on the rights and interests of stakeholders not previously addressed as part of the consultation process.

7 Potential Impacts and Motivation for Amendment

The proposed amendment does not increase the footprint of the GG10A stockyard, nor does it require modification of the infrastructure associated with the GG10A stockyard or any other mining infrastructure at the Grootegeluk Mine. Exxaro proposes to increase the height of the stockpile within the stockyard footprint to accommodate 2 Mt of coal. No additional impacts or increased impacts have been identified and impacts associated with this project have been assessed and mitigation measures proposed during the environmental authorisation phase of the Infrastructure Expansion Project.

8 Assessment of Potential Negative Environmental Impacts

The assessment of the impact of increasing the height of the stockpile at GG10A has been considered in terms of Regulation 29 (a) of R 982 of the EIA Regulations, 2014, which stipulates:

- "29. An environmental authorisation may be amended by following the process prescribed in this Part if the amendment-
 - (a) will not change the scope of a valid environmental authorisation nor increase the level or nature of the impact, which impact was initially assessed and considered when [the] application was made for an environmental authorisation."

No potential negative environmental impacts are considered to occur due to increasing the height of the GG10A stockpile. The most likely impacts that could arise as a result of the increased height (and therefore volume) of the stockpile are considered to be a potential visual impact, surface water impact, and socio-economic impact. Other environmental aspects have been excluded from consideration due to the irrelevance of these aspects being affected by the proposed increased volume of the stockpile. The assessment of the relevant environmental aspects is discussed below.

8.1 Visual impact

The visual impact of the increased height of the stockpile has been considered as a possible negative impact; however, the predominant land use surrounding the mine consists of game farms and the Manketti Reserve situated within Grootegeluk Mine's own property. Furthermore, the identified visual receptors surrounding the Grootegeluk Mine include three residential areas, consisting of Marapong situated 6 km south-east, Onverwacht located 15 km to the south-east and Lephalale located approximately 20 km to the south-east. The proposed increased height of the stockpile is unlikely to result in a visual impact based on the locations and land use of the surrounding visual receptors. Furthermore, the Grootegeluk Mine has been in operation since 1981 and the active mining areas occupy an area of approximately 3,000 ha. The proposed stockpile will be located within the impacted mining area, thereby retaining the visual effect of the current mine land use. Furthermore, the identified visual receptors are accustomed to the visual impact of the mine, and thus unlikely to be further impacted by the increased height of the stockpile.

8.2 Surface water impact

The impacts to surface water have also been considered due to the increase in the amount of coal to be stored in the GG10A stockyard footprint. A surface water management plan (SWMP) was developed for the Grootegeluk Coal Mine Infrastructure Expansion Project, in 2014. This report, titled *Surface Water Assessments and Conceptual Storm Water Management Plan: Grootegeluk Mine*, compiled by Digby Wells Environmental and the SWMP will remain unchanged for the proposed new stockpile. In summary, the report assessed the potential impacts of the infrastructure amendments (including stockpiles and stockyards) which resulted in two findings / statements; namely that run-off from the stockpiles must be managed adequately and stockpile liners specifications must be compliant with relevant legislation. As discussed in Section 4.1 above, a class D liner is compliant with DWS specifications.

The SWMP report states the that an identified impact as a result of coal stockpiling is runoff contamination by coal fines from stockpiles; however, the runoff reports to the existing storm water drains and hence should be managed there. This implies that the impacts will be minimal as long as the SWMP is well managed. The impact assessment specific to the stockpiles and contained in the report is displayed in Table 3, below, and the finding of the assessment is an overall low impact.

Description of impact			Runoff contamination by coal fines from stockpiles		
Mitigation required			Ensure that the plant storm water drains are fully functional and this retains the impacts within the controlled system with no potential impacts to clean stormwater drainage systems		
Parameters	Duration	Scale	Severity	Probability	Significance
Pre-Mitigation	Project Life	Very limited	Limited damage	Improbable	low
5 1		1	2	14	
Post- Mitigation	Immediate	Very limited	Limited damage	Highly unlikely	low
	1	1	1	1	3

Table 3: Impact rating for surface water run-off from stockpiles

Taking the existing storm water management measures already established on site into consideration, as well as the updated SWMP which assessed the placement of the approved stockpiles, the increased stockpile height is unlikely to increase the impact rating established for the approved stockpile.

8.3 Socio-economic impact

The socio-economic impact of the amendment not being granted may result in Grootegeluk Mine no longer being able operate until the ramp-up takes effect at Medupi power station. Exxaro has saleable coal in Benches 6 to 10; however, these benches cannot be exploited without extracting Benches 2 to 5 (Eskom-grade coal). The Grootegeluk Mine is unable to access the lower benches of coal through underground mining methods as the upper benches of coal are too thick and therefore too heavy to be undermined. If the lower benches of coal cannot be extracted and sold to the respective markets, the Grootegeluk Mine cannot continue with production.

8.4 Other impacts considered

The current Exxaro Standard Operating Procedures for Dust Suppression and Coal Stockpile Maintenance and the SWMP (2014) will apply to the GG10A stockyard area once construction commences and for the duration (five years) for the short-term storage of coal.

8.4.1 Potential Positive Environmental Impacts

Coal will be stored legally in an impacted area, thereby not allowing further negative environmental impacts. The liner for the short-term stockpile will adhere to the requirements of a Class D liner, thereby preventing any carbonaceous surface and groundwater seepage. The continuation of mining at the Grootegeluk Mine will also result in a positive socio-economic impact.

9 Conclusion

No additional environmental impacts are foreseen or considered likely as a result of the proposed amendment to increase the height of the GG10A stockyard. The proposed amendment is a strategic solution to assist Exxaro in stockpiling Eskom-grade coal which is accumulating on site as a result of off-take from Eskom decreasing.

It is requested the DMR give consideration to the information contained within the memo and based on the approval by DWS and their requirements, that the DMR approve the amendment to utilise the GG10A stockyard footprint area for the construction of a short term compacted coal stockpile area for a period of 5 years.

10 References

DEA, 2013, National Norms and Standards for the Assessment of Waste for Landfill Disposal. Department of Environmental Affairs.

WSP, 2015, Exxaro Grootegeluk Waste Classification: Coal Product Report.

Regards,

Parthe

Brett Coutts Unit Manager: Rehabilitation

Appendix A: Application Proof of Payment

Appendix B: Locality and Infrastructure Map

Appendix C: LEDET Record of Decision

Appendix D: Waste Classification

Appendix E: DWS Letter of Approval

Geochemistry Report Exxaro Coal Pty (Ltd) Grootegeluk Short-Term Stockpiles Amendment Project EXX3666

Appendix D: Laboratory Certificates

23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020

Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES NET ACID GENERATION

Date received: 2015-11-19 Project number: 1000

Report number: 56012

Date completed: 2015-12-14 Order number: ---

Client name: Digby Wells Environmental Address: Digby Wells House, Turnberry Office Park, 48 Grosvenor Road, Bryanston, 2191 Telephone: 011 789 9495 Facsimile: 011 789 9498 Contact person: Andre van Coller Contact person: Karabo Lenkoe-Magagula Email: andre.van.coller@digbywells.com Email:

karabo.lenkoe-magagula@digbywells.com

	Sample Identification: pH 4.5				
Net Acid Generation	G6 7/8 Stockpile A	G6 7/8 Stockpile B	GG1-6 Stockpile A	GG1-6 Stockpile B	GG1-6 Stockpile B
Sample Number	21866	21867	21868	21869	21869 D
NAG pH: (H ₂ O ₂)	2.7	2.7	3.0	4.8	4.9
NAG (kg H ₂ SO ₄ / t)	16	40	11	<0.01	<0.01

	Sample Identification: pH 7				
Net Acid Generation	G6 7/8 Stockpile A	G6 7/8 Stockpile B	GG1-6 Stockpile A	GG1-6 Stockpile B	GG1-6 Stockpile B
Sample Number	21866	21867	21868	21869	21869 D
NAG pH: (H ₂ O ₂)	4.5	4.5	4.5	4.8	4.8
NAG (kg H ₂ SO ₄ / t)	21	36	24	2.94	2.74

Notes:

Samples analysed with Single Addition NAG test as per Prediction Manual For Drainage Chemistry from Sulphidic ٠ Geological Materials MEND Report 1.20.1.

· Please let me know if results do not correspond to other data.

E. Botha

Geochemistry Project Manager

23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020 Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES ACID – BASE ACCOUNTING EPA-600 MODIFIED SOBEK METHOD

Client nome: Disky Wells Environmental		Contact novement Andre van C
Date received: 2015-11-19 Project number: 1000	Report number: 56012	Date completed: 2015-12-14 Order number:

Client name: Digby Wells Environmental Address: Digby Wells House, Turnberry Office Park, 48 Grosvenor Road, Bryanston, 2191 Telephone: 011 789 9495 Facsimile: 011 789 9498 Contact person: Andre van Coller Contact person: Karabo Lenkoe-Magagula Email: andre.van.coller@digbywells.com Email: karabo.lenkoe-magagula@digbywells.com

Sample Identification Acid – Base Accounting Modified Sobek (EPA-600) G6 7/8 G6 7/8 GG1-6 GG1-6 GG1-6 Stockpile A Stockpile B Stockpile A Stockpile B Stockpile B Sample Number 21866 21867 21868 21869 21869 D Paste pH 7.0 7.1 7.2 7.3 7.3 Total Sulphur (%) (LECO) 2.27 1.34 1.79 1.64 1.64 Acid Potential (AP) (kg/t) 71 42 56 51 51 Neutralization Potential (NP) 15 17 27 28 11 Nett Neutralization Potential (NNP) -31 -24 -23 -56 -39 Neutralising Potential Ratio (NPR) (NP : AP) 0.216 0.258 0.304 0.530 0.554 **Rock Type** T Т Т Т Т

* Negative NP values are obtained when the volume of NaOH (0.1N) titrated (pH: 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5 Any negative NP values are corrected to 0.00.

Please refer to Appendix (p.2) for a Terminology of terms and guidelines for rock classification

23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020 Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES ACID – BASE ACCOUNTING EPA-600 MODIFIED SOBEK METHOD

Date received: 2015-11-19 Project number: 1000

Report number: 56012

Date completed: 2015-12-14 Order number: ---

Client name: Digby Wells Environmental Address: Digby Wells House, Turnberry Office Park, 48 Grosvenor Road, Bryanston, 2191 Telephone: 011 789 9495 Facsimile: 011 789 9498 Contact person: Andre van Coller Contact person: Karabo Lenkoe-Magagula Email: andre.van.coller@digbywells.com Email: karabo.lenkoe-magagula@digbywells.com

APPENDIX : TERMINOLOGY AND ROCK CLASSIFICATION

TERMINOLOGY (SYNONYMS)

- Acid Potential (AP) ; Synonyms: Maximum Potential Acidity (MPA) Method: Total S(%) (Leco Analyzer) x 31.25
- Neutralization Potential (NP) ; Synonyms: Gross Neutralization Potential (GNP) ; Syn: Acid Neutralization Capacity (ANC) (The capacity of a sample to consume acid) Method: Fizz Test ; Acid-Base Titration (Sobek & Modified Sobek (Lawrence) Methods)
- Nett Neutralization Potential (NNP); Synonyms: Nett Acid Production Potential (NAPP) Calculation: NNP = NP – AP ; NAPP = ANC – MPA
- Neutralising Potential Ratio (NPR) Calculation: NPR = NP : AP

CLASSIFICATION ACCORDING TO NETT NEUTRALISING POTENTIAL (NNP)

If NNP (NP – AP) < 0, the sample has the potential to generate acid If NNP (NP – AP) > 0, the sample has the potential to neutralise acid produced

Any sample with NNP < 20 is potentiall acid-generating, and any sample with NNP > -20 might not generate acid (Usher *et al.*, 2003)

ROCK CLASSIFICATION

TYPE I Potentially Acid Forming		Total S(%) > 0.25% and NP:AP ratio 1:1 or less	
TYPE II Intermediate		Total S(%) > 0.25% and NP:AP ratio 1:3 or less	
TYPE III	Non-Acid Forming	Total S(%) < 0.25% and NP:AP ratio 1:3 or greater	

23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020 Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES ACID – BASE ACCOUNTING EPA-600 MODIFIED SOBEK METHOD

Date received: 2015-11-19 Project number: 1000	Report number: 56012	Date completed: 2015-12-14 Order number:
Client name: Digby Wells Environm Address: Digby Wells House, Turnl		Contact person: Andre van Coller Contact person: Karabo Lenkoe-Magagu

Address: Digby Wells House, Turnberry Office Park, 48 Grosvenor Road, Bryanston, 2191 Telephone: 011 789 9495 Facsimile: 011 789 9498 Contact person: Andre van Coller Contact person: Karabo Lenkoe-Magagula Email: andre.van.coller@digbywells.com Email: karabo.lenkoe-magagula@digbywells.com

CLASSIFICATION ACCORDING TO NEUTRALISING POTENTIAL RATIO (NPR)

Guidelines for screening criteria based on ABA (Price et al., 1997; Usher et al., 2003)

Potential for ARD	Initial NPR Screening Criteria	Comments
Likely	< 1:1	Likely AMD generating
Possibly	1:1 – 2:1	Possibly AMD generating if NP is insufficiently reactive or is depleted at a faster rate than sulphides
Low	2:1 – 4:1	Not potentially AMD generating unless significant preferential exposure of sulphides along fracture planes, or extremely reactive sulphides in combination with insufficiently reactive NP
None	>4:1	No further AMD testing required unless materials are to be used as a source of alkalinity

CLASSIFICATION ACCORDING TO SULPHUR CONTENT (%S) AND NEUTRALISING POTENTIAL RATIO (NPR)

For sustainable long-term acid generation, at least 0.3% Sulphide-S is needed. Values below this can yield acidity but it is likely to be only of short-term significance. From these facts, and using the NPR values, a number of rules can be derived:

- 1) Samples with less than 0.3% Sulphide-S are regarded as having insufficient oxidisable Sulphide-S to sustain acid generation.
- 2) NPR ratios of >4:1 are considered to have enough neutralising capacity.
- 3) NPR ratios of 3:1 to 1:1 are consider inconclusive.
- 4) NPR ratios below 1:1 with Sulphide-S above 3% are potentially acid-generating. (Soregaroli & Lawrence, 1998 ; Usher *et al.*, 2003)

23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020 Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES ACID – BASE ACCOUNTING EPA-600 MODIFIED SOBEK METHOD

Date received: 2015-11-19 Project number: 1000	Report number: 56012	Date completed: 2015-12-14 Order number:
Client name: Digby Wells Environn Address: Digby Wells House, Turn	Contact person: Andre van Coller Contact person: Karabo Lenkoe-Magagula	
48 Grosvenor Road, Bryanston, 21		Email: andre.van.coller@digbywells.com

Facsimile: 011 789 9498

Contact person: Karabo Lenkoe-Magagula Email: andre.van.coller@digbywells.com Email: karabo.lenkoe-magagula@digbywells.com

REFERENCES

Telephone: 011 789 9495

LAWRENCE, R.W. & WANG, Y. 1997. Determination of Neutralization Potential in the Prediction of Acid Rock Drainage. Proc. 4th International Conference on Acid Rock Drainage. Vancouver. BC. pp. 449 – 464.

PRICE, W.A., MORIN, K. & HUTT, N. 1997. Guidelines for the prediction of Acid Rock Drainage and Metal leaching for mines in British Columbia : Part 11. Recommended procedures for static and kinetic testing. In: Proceedings of the Fourth International Conference on Acid Rock Drainage. Vol 1. May 31 – June 6. Vancouver, BC., pp. 15 – 30.

SOBEK, A.A., SCHULLER, W.A., FREEMAN, J.R. & SMITH, R.M. 1978. Field and laboratory methods applicable to overburdens and minesoils. EPA-600/2-78-054. USEPA. Cincinnati. Ohio.

SOREGAROLI, B.A. & LAWRENCE, R.W. 1998. Update on waste Characterisation Studies. Proc. Mine Design, Operations and Closure Conference. Polson, Montana.

USHER, B.H., CRUYWAGEN, L-M., DE NECKER, E. & HODGSON, F.D.I. 2003. Acid-Base : Accounting, Techniques and Evaluation (ABATE): Recommended Methods for Conducting and Interpreting Analytical Geochemical Assessments at Opencast Collieries in South Africa. Water Research Commission Report No 1055/2/03. Pretoria.

ENVIRONMENT AUSTRALIA. 1997. Managing Sulphidic Mine Wastes and Acid Drainage.

E. Botha Geochemistry Project Manager

Building D, The Woods, Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020 Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES X-RAY FLUORESENCE

Date received: 2015-11-19 Project number: 1000

Report number: 56012

Date completed: 2015-12-08 Order number: ---

Client name: Digby Wells Environmental Address: Digby Wells House, Turnberry Office Park, 48 Grosvenor Road, Bryanston, 2191 Telephone: 011 789 9495 Facsimile: 011 789 9498

Contact person: Andre van Coller Contact person: Karabo Lenkoe-Magagula Email: andre.van.coller@digbywells.com Email:

karabo.lenkoe-magagula@digbywells.com

	Major Element Concentration (wt %)[s]				
Major Elements	G6 7/8 Stockpile A	G6 7/8 Stockpile B	GG1-6 Stockpile A	GG1-6 Stockpile B	
	21866	21867	21868	21869	
SiO ₂	11.14	8.74	20.38	17.4	
TiO ₂	0.35	0.39	0.36	0.35	
Al ₂ O ₃	7.39	7.3	7.96	7.91	
Fe ₂ O ₃	1.21	0.58	1.9	3.81	
MnO	0	0	0.02	0.05	
MgO	0.25	0.18	0.25	0.4	
CaO	0.81	0.32	0.83	1.38	
Na ₂ O	0.05	<0.01	0.02	0.03	
K ₂ O	0.17	0.11	0.34	0.28	
P_2O_5	0.06	0.05	0.06	0.1	
Cr ₂ O ₃	0	0	0.01	0.01	
SO3	0.24	0.07	0.15	0.06	
LOI	77.5	81.64	67.7	67.22	
Total	99.23	99.41	100.11	99.08	
H ₂ O-	0.04	0	0.14	0.09	

[s] =Results obtained from sub-contracted laboratory

E. Botha Geochemistry Project Manager

The information contained in this report is relevant only to the sample/samples supplied to WATERLAB (Pty) Ltd. Any further use of the above information is not the responsibility or liability of WATERLAB (Pty) Ltd. Except for the full report, parts of this report may not be reproduced without written approval of WATERLAB (Pty) Ltd.

Building D, The Woods, Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020 Telephone: +2712 – 349 – 1066 Facsimile: +2712 – 349 – 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES X-RAY FLUORESENCE

Date received: 2015-11-19 Project number: 1000

Report number: 56012

Date completed: 2015-12-08 Order number: ---

Client name: Digby Wells Environmental Address: Digby Wells House, Turnberry Office Park, 48 Grosvenor Road, Bryanston, 2191

Telephone: 011 789 9495

Facsimile: 011 789 9498

Contact person: Andre van Coller Contact person: Karabo Lenkoe-Magagula Email: andre.van.coller@digbywells.com Email: karabo.lenkoe-magagula@digbywells.com

karabo.ienkoe-magagula@digbywells.com

	Trace Element Concentration (ppm) [s]				
Trace Elements	G6 7/8 Stockpile A	G6 7/8 Stockpile B	GG1-6 Stockpile A	GG1-6 Stockpile B	
	21866	21867	21868	21869	
As	9.62	8.98	8.42	6.12	
Ва	88.7	86.3	91.6	92.5	
Bi	1.38	1.75	1.48	1.53	
Cd	<3.04	<3.04	<3.04	<3.04	
Се	<3.08	<3.08	19.9	16.1	
CI	122	125	123	122	
Со	<0.56	<0.56	<0.56	<0.56	
Cs	1.38	1.4	1.33	1.31	
Cu	28.4	114	55.5	60.6	
Ga	11.1	9.27	13.3	16.9	
Ge	<0.50	<0.50	<0.50	<0.50	
Hf	6.38	6.49	6.38	6.39	
Hg	<1.00	<1.00	<1.00	<1.00	
La	95	97.8	84.9	65.6	
Lu	1.7	1.68	1.88	2.2	
Мо	2.48	2.54	2.46	2.47	
Nb	<2.15	<2.15	<2.15	<2.15	
Nd	54	58.5	49.4	40.7	
Ni	29.6	30.7	20.5	27.5	
Pb	<2.03	<2.03	<2.03	<2.03	
Rb	8.9	5.64	18.3	14	
Sb	<1.48	<1.48	<1.48	<1.48	
Sc	18.7	17.1	18.2	21.7	
Se	0.83	1.12	0.5	0.62	
Sm	9.32	7.8	10.4	14.9	
Sn	4.57	3.72	4.91	7.06	
Sr	68.6	60.5	57.9	66.3	
Та	1	0.76	1.05	1	
Те	0.53	<0.16	0.83	2.21	
Th	5.34	5.97	4.39	3.37	
TI	2.33	2.31	2.22	2.18	
	Result	s continued on next	page		

E. Botha

Geochemistry Project Manager

The information contained in this report is relevant only to the sample/samples supplied to WATERLAB (Pty) Ltd. Any further use of the above information is not the responsibility or liability of WATERLAB (Pty) Ltd. Except for the full report, parts of this report may not be reproduced without written approval of WATERLAB (Pty) Ltd.

Building D, The Woods, Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020 Telephone: +2712 – 349 – 1066 Facsimile: +2712 – 349 – 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES X-RAY FLUORESENCE

Date received: 2015-11-19 Project number: 1000

Report number: 56012

Date completed: 2015-12-08 Order number: ---

Client name: Digby Wells Environmental Address: Digby Wells House, Turnberry Office Park, 48 Grosvenor Road, Bryanston, 2191 Telephone: 011 789 9495 Facsimile: 011 789 9498 Contact person: Andre van Coller Contact person: Karabo Lenkoe-Magagula Email: andre.van.coller@digbywells.com Email: karabo.lenkoe-magagula@digbywells.com

kai abo.ieiikoe-iiiagaguia@uigbyweiis.coiii

	Trace Element Concentration (ppm) [s]						
Trace Elements	G6 7/8 Stockpile A	G6 7/8 Stockpile B	GG1-6 Stockpile A	GG1-6 Stockpile B			
	21866	21867	21868	21869			
U	2.39	2.48	2.35	2.46			
V	<7.60	<7.60	<7.60	<7.60			
W	6.86	6.86	6.87	6.91			
Y	16	15.9	17.7	17.6			
Yb	4.27	2.96	4.59	6.78			
Zn	47	87.6	51.6	54			
Zr	77.8	78.6	98	86.5			

[s] =Results obtained from sub-contracted laboratory

E. Botha Geochemistry Project Manager

The information contained in this report is relevant only to the sample/samples supplied to WATERLAB (Pty) Ltd. Any further use of the above information is not the responsibility or liability of WATERLAB (Pty) Ltd. Except for the full report, parts of this report may not be reproduced without written approval of WATERLAB (Pty) Ltd.

23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020 Telephone: +2712 – 349 – 1066 Facsimile: +2712 – 349 – 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES X-RAY DIFFRACTION

Date received: 2015-11-19 Project number: 1000

Report number: 56012

Date completed: 2015-12-07 Order number: ---

Client name: Digby Wells Environmental Address: Digby Wells House, Turnberry Office Park, 48 Grosvenor Road, Bryanston, 2191 Telephone: 011 789 9495 Facsimile: 011 789 9498 Contact person: Andre van Coller Contact person: Karabo Lenkoe-Magagula Email: andre.van.coller@digbywells.com Email: karabo.lenkoe-magagula@digbywells.com

Composition (%) [s]							
	G6 7/8 Stockpile A			G6 7/8 Stockpile B			
	21866			21867			
Mineral	Amount (weight %)	Error	Mineral Amount Error				
Calcite	0.05	0.12	Calcite	0.01	0.05		
Dolomite	1.26	0.26	Dolomite	1.01	0.23		
Graphite	65.24	2.43	Graphite	72.47	1.92		
Kaolinite	25.92	1.77	Kaolinite	23.29	1.56		
Muscovite	2.24	0.39	Muscovite	1.77	0.36		
Pyrite	1.28	0.14	Pyrite	0.58	0.11		
Quartz	3.94	0.33	Quartz	0.85	0.14		
Siderite	0.08	0.09	Siderite	0.02	0.07		

Composition (%) [s]							
	GG1-6 Stockpile A			GG1-6 Stockpile B			
	21868			21869			
Mineral	Amount (weight %)	Error	Mineral Amount Error				
Calcite	0.58	0.15	Calcite	0.97	0.21		
Dolomite	1.56	0.24	Dolomite	1.58	0.26		
Graphite	59.67	2.28	Graphite	58.16	2.82		
Kaolinite	19.99	1.11	Kaolinite	19.72	1.32		
Muscovite	2.11	0.33	Muscovite	2.21	0.36		
Pyrite	0.66	0.12	Pyrite	0.8	0.12		
Quartz	14.47	0.87	Quartz	12.85	0.93		
Siderite	0.96	0.2	Siderite	3.71	0.33		

[s] Results obtained from sub-contracted laboratory

E. Botha

Geochemistry Project manager

23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020 Telephone: +2712 - 349 - 1066 Facsimile: +2712 - 349 - 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES X-RAY DIFFRACTION

Date received: 2015-11-19 Project number: 1000	Report number: 56012	Date completed: 2015-12-07 Order number:
Client name: Digby Wells Environm Address: Digby Wells House, Turnh	perry Office Park,	Contact person: Andre van Coller Contact person: Karabo Lenkoe-Magagula
48 Grosvenor Road, Bryanston, 219		Email: andre.van.coller@digbywells.com
Telephone: 011 789 9495	Facsimile: 011 789 9498	Email: karabo.lenkoe-magagula@digbywells.com

Note:

The material submitted was prepared for XRD analysis using a backloading preparation method It was analysed with a PANalytical Empyrean diffractometer with PIXcel detector and fixed slits with Fe filtered Co-Kα radiation. The phases were identified using X'Pert Highscore plus software.

The relative phase amounts (weight%) were estimated using the Rietveld method. Errors are on the 3 sigma level in the column to the right of the amount (in weight per cent).

Comment:

- In case the results do not correspond to results of other analytical techniques, please let me know for further fine tuning of XRD results.
- Mineral names may not reflect the actual compositions of minerals identified, but rather the mineral group.
- Due to preferred orientation effects results may not be as accurate as shown in the table.
- Errors reported for phases occurring in minor amounts are sometimes larger than that of the quantity reported, indicating the possible absence of those phases.
- "Graphite" in one sample represents the organic carbon and should be regarded as semi-quantitative.
- · Traces of additional phases may be present
- Amorphous phases, if present, were not taken into consideration during quantification

Quartz(SiO2)Muscovite(KAI3Si3O10(OH)2)Kaolinite(Al2(Si2O5)(OH)4)CalciteCaCO3PyriteFeS2	Ideal Miner	Ideal Mineral compositions					
Kaolinite(Al2(Si2O5)(OH)4)CalciteCaCO3PyriteFeS2	Quartz	(SiO2)					
CalciteCaCO3PyriteFeS2	Muscovite	(KAI3Si3O10(OH)2)					
Pyrite FeS2	Kaolinite	(Al2(Si2O5)(OH)4)					
· • • • • • • • • • • • • • • • • • • •	Calcite	CaCO3					
	Pyrite	FeS2					
Dolomite Ca Mg (C O3)2	Dolomite	Ca Mg (C O3)2					
Siderite FeCO3	Siderite	FeCO3					

E. Botha

Geochemistry Project manager

The information contained in this report is relevant only to the sample/samples supplied to WATERLAB (Pty) Ltd. Any further use of the above information is not the responsibility or liability of WATERLAB (Pty) Ltd. Except for the full report, parts of this report may not be reproduced without written approval of WATERLAB (Pty) Ltd.

WATERLAB (PTY) LTD 288 De Havliand Cressent Persequor Techno Park, Produce Ventora P.O. Box 283, 0020

CERTIFICATE OF ANALYSES TCLP / ACID RAIN / DISTILLED WATER EXTRACTIONS

Date received: Project number:	19/11/2015 1000	Report number:	56012	Date completed: Order number:	26/01/2016 EXX3666
Client name: Address: Telephone:	Digby Wells Environmental Digby Wells House, Turnberry Office Park, 48 Grosvenor Road, Bryanston, 2191 011 789 9495			Contact person: Email: Contact person: Email:	André van Coller andre.van.coller@digbywells.com Karabo Lenkoe-Magagula karabo.lenkoe-magagula@digbywells.com

Analyses					
	G6 7/8 Stockpile B		GG1-6 Stockpile B		
Sample Number	2:	1867	21	1869	
TCLP / Acid Rain / Distilled Water / H ₂ O ₂	Distill	ed Water	Distille	ed Water	
Dry Mass Used (g)	2	250	2	50	
Volume Used (mℓ)	1	000	1	000	
pH Value at 25°C		7.7		7.7	
Inorganic Anions	mg/ℓ	mg/kg	mg/ℓ	mg/kg	
Total Dissolved Solids at 180 °C	230	920	636	2544	
Bicarbonate as HCO3 (calc)	44	176	34	137	
Carbonate as CO3 (calc)	<5	<20	<5	<20	
Total Alkalinity as CaCO3	36	144	28	112	
Chloride as Cl	<2	<8	2	8	
Sulphate as SO4	134	536	417	1668	
Nitrate as N	0.1	0.4	0.8	3.2	
Fluoride as F	<0.2	<0.8	0.4	1.6	
Hexavalent Chromium as Cr6+	<0.010	<0.04	<0.010	<0.04	
Mercury as Hg	<0.001	<0.004	<0.001	< 0.004	
Uranium as U	<0.001	<0.004	<0.001	<0.004	
ICP-OES Quant	See tab 56012 ICP DW		See tab 56	012 ICP DW	
Acid Base Accounting	See attached report 56012 ABA		See attached r	eport 56012 ABA	
Net Acid Generation	See attached r	eport 56012 NAG	See attached re	eport 56012 NAG	
X-ray Diffraction [s]	See attached r	eport 56012 XRD	See attached re	eport 56012 XRD	
X-ray Fluorescence [s]	See attached r	eport 56012 XRF	See attached report 56012 XRF		

Analyses	CC 7/0.0	tockpile A	GG1-6 Stockpile A		
Consulta Muserbara	-	тоскрпе А 866		тоскрне А 1868	
Sample Number					
TCLP / Acid Rain / Distilled Water / H ₂ O ₂		PLP	-	PLP	
Dry Mass Used (g)	-	50		250	
Volume Used (mℓ)		000		000	
pH Value at 25°C		.7		7.7	
Inorganic Anions	mg/ℓ	mg/kg	mg/ℓ	mg/kg	
Total Dissolved Solids at 180 °C	318	1272	702	2808	
Bicarbonate as HCO3 (calc)	44	176	44	176	
Carbonate as CO3 (calc)	<5	<20	<5	<20	
Total Alkalinity as CaCO3	36	144	36	144	
Chloride as Cl	<2	<8	2	8	
Sulphate as SO4	202	808	445	1780	
Nitrate as N	0.1	0.4	0.8	3.2	
Fluoride as F	<0.2	<0.8	0.3	1.2	
Hexavalent Chromium as Cr6+	<0.010	<0.04	<0.010	<0.04	
Mercury as Hg	<0.001	<0.004	<0.001	< 0.004	
Uranium as U	<0.001	<0.004	<0.001	< 0.004	
ICP-OES Quant	See tab 56012 ICP SPLP		See tab 560	12 ICP SPLP	
Acid Base Accounting	See attached report 56012 ABA		See attached r	eport 56012 ABA	
Net Acid Generation	See attached re	eport 56012 NAG	See attached re	eport 56012 NAG	
X-ray Diffraction [s]	See attached re	eport 56012 XRD	See attached re	eport 56012 XRD	
X-ray Fluorescence [s]	See attached re	eport 56012 XRF	See attached r	eport 56012 XRF	

[s]=subcontracted

E. Botha Geochemistry Project Manager

WATERLAB (PTY) LTD CERTIFICATE OF ANALYSES

ICP-OES QUANTITATIVE ANALYSIS

Date received: Project number:	19/11/2015 1000			Date Completed: Report number:	26/01/2016 56012		
Client name: Adress: Telephone:	ress: Digby Wells House, Turnberry Office Park, 48 Grosvenor Road, Bryanston, 2191				Contact person: Email: Contact person: Email:	André van Coller andre.van.coller@dig Karabo Lenkoe-Mag karabo.lenkoe-maga	
Extract	Sample Dry Mass	Volume	Mass (g/l)	Factor			
Distilled Water	250	1000	250	4			
		A 1					
Sample Id	Sample number	Al	Al	As	As	B	B
Det Limit	├	mg/l <0.100	mg/kg <0.400	mg/l <0.010	mg/kg <0.040	mg/l <0.025	mg/kg <0.100
G6 7/8 Stockpile B	21867	<0.100	<0.400	<0.010	<0.040	<0.025	<0.100
GG1-6 Stockpile B	21869	<0.100	<0.400	<0.010	<0.040	<0.025	<0.100
O-mula Id	O-mula much		De	0-	0-		04
Sample Id	Sample number	Ba	Ba	Ca	Ca	Cd	Cd
Det Limit	<u> </u>	mg/l <0.025	mg/kg <0.100	mg/l	mg/kg <4	mg/l <0.005	mg/kg <0.020
Det Limit G6 7/8 Stockpile B	21867	<0.025	<0.100	<1 34	< <u>4</u> 136	<0.005	<0.020
GG1-6 Stockpile B	21867	0.025	0.172	129	516	<0.005	<0.020
GGT-0 SLUCKPILE B	21009	0.043	0.172	123	010	<0.003	<0.020
Sample Id	Sample number	Со	Со	Cr	Cr	Cu	Cu
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.025	<0.100	<0.025	<0.100	<0.010	<0.040
G6 7/8 Stockpile B	21867	<0.025	<0.100	<0.025	<0.100	<0.010	<0.040
GG1-6 Stockpile B	21869	<0.025	<0.100	<0.025	<0.100	<0.010	<0.040
Sample Id	Sample number	Fe	Fe	К	K	Ma	Ма
Campie la		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.025	<0.100	<0.5	<2.0	<1	<4
G6 7/8 Stockpile B	21867	<0.025	<0.100	1.2	4.7	20	80
GG1-6 Stockpile B	21869	<0.025	<0.100	3.9	15.8	23	92
Sample Id	Sample number	Mn	Mn	Mo	Mo	Na	Na
Det Limit		mg/l <0.025	mg/kg <0.100	mg/l <0.025	mg/kg <0.100	mg/l <1	mg/kg <8
G6 7/8 Stockpile B	21867	0.692	2.77	<0.025	<0.100	<1	<0 <8
GG1-6 Stockpile B	21869	0.431	1.72	<0.025	<0.100	5	20
Sample Id	Sample number	Ni	Ni	Pb	Pb	Sb	Sb
B 111 11		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit	04007	<0.025	<0.100	< 0.010	<0.040	<0.010	<0.040
G6 7/8 Stockpile B GG1-6 Stockpile B	21867 21869	0.038 <0.025	0.152 <0.100	<0.010 <0.010	<0.040 <0.040	<0.010 <0.010	<0.040 <0.040
GGT-0 SLUCKPILE B	21009	<0.023	<0.100	<0.010	<0.040	<0.010	<0.040
Sample Id	Sample number	Se	Se	V	V	Zn	Zn
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.010	<0.040	<0.025	<0.100	<0.025	<0.100
G6 7/8 Stockpile B	21867	<0.010	<0.040	<0.025	<0.100	<0.025	<0.100
GG1-6 Stockpile B	21869	<0.010	<0.040	<0.025	<0.100	<0.025	<0.100

WATERLAB (PTY) LTD CERTIFICATE OF ANALYSES

ICP-OES QUANTITATIVE ANALYSIS

	19/11/2015 1000			Date Completed: Report number:	26/01/2016 56012			
Client name: Digby Wells Environmental Adress: Digby Wells House, Turnberry Office Park, 48 Grosvenor Road, Bryanston, 2191 Telephone: 011 789 9495					Contact person: Email: Contact person: Email:	André van Coller andre.van.coller@digbywells.com Karabo Lenkoe-Magagula karabo.lenkoe-magagula@digbywells.com		
Extract	Sample Dry Mass	Volume	Mass (g/l)	Factor				
SPLP	250	1000	250	4				
			•					
Sample Id	Sample number	Al	AI	As	As	В	В	
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg	
Det Limit	01000	<0.100	<0.400	<0.010	<0.040	<0.025	<0.100	
G6 7/8 Stockpile A	21866	<0.100	<0.400 <0.400	<0.010	<0.040 <0.040	<0.025	<0.100 <0.100	
GG1-6 Stockpile A	21868	<0.100	<0.400	<0.010	<0.040	<0.025	<0.100	
Sample Id	Sample number	Ва	Ba	Ca	Са	Cd	Cd	
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg	
Det Limit		<0.025	<0.100	<1	<4	<0.005	<0.020	
G6 7/8 Stockpile A	21866	0.030	0.120	52	208	<0.005	<0.020	
GG1-6 Stockpile A	21868	0.044	0.176	143	572	<0.005	<0.020	
On marker lat	O	0-	0-	0	0	0	0	
Sample Id	Sample number	Co	Co	Cr	Cr	Cu	Cu	
Det Limit		mg/l <0.025	mg/kg <0.100	mg/l <0.025	mg/kg <0.100	mg/l <0.010	mg/kg <0.040	
G6 7/8 Stockpile A	21866	<0.025	<0.100	<0.025	<0.100	<0.010	<0.040	
GG1-6 Stockpile A	21868	<0.025	<0.100	<0.025	<0.100	<0.010	<0.040	
	21000	101020						
Sample Id	Sample number	Fe	Fe	К	K	Mg	Mg	
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg	
Det Limit		<0.025	<0.100	<0.5	<2.0	<1	<4	
G6 7/8 Stockpile A	21866	<0.025	<0.100	1.3	5.05	26	104	
GG1-6 Stockpile A	21868	<0.025	<0.100	3.9	15.77	24	96	
Sample Id	Sample number	Mn	Mn	Мо	Мо	Na	Na	
eanipie ia		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg	
Det Limit		<0.025	<0.100	<0.025	<0.100	<1	<8	
G6 7/8 Stockpile A	21866	1.03	4.12	<0.025	<0.100	<1	<8	
GG1-6 Stockpile A	21868	0.668	2.67	<0.025	<0.100	5	20	
Commis Id	Comple number	Ni	NI:	Pb	Dh	Sb	0 h	
Sample Id	Sample number	mg/l	Ni mg/kg	mg/l	Pb mg/kg	mg/l	Sb mg/kg	
Det Limit		<0.025	<0.100	<0.010	<0.040	<0.010	<0.040	
G6 7/8 Stockpile A	21866	0.041	0.164	<0.010	<0.040	<0.010	<0.040	
GG1-6 Stockpile A	21868	<0.025	<0.100	<0.010	<0.040	<0.010	<0.040	
	<u> </u>							
Sample Id	Sample number	Se	Se	V	V	Zn	Zn	
Dot Limit		mg/l	mg/kg <0.040	mg/l	mg/kg <0.100	mg/l	mg/kg <0.100	
Det Limit G6 7/8 Stockpile A	21866	<u><0.010</u> <0.010	<0.040	<0.025 <0.025	<0.100	<0.025 <0.025	<0.100	
ao no stockpile A	21868	<0.010	<0.040	<0.025	<0.100	<0.025	<0.100	

23B De Havilland Crescent Persequor Techno Park, Meiring Naudé Road, Pretoria P.O. Box 283, 0020

Telephone: +2712 – 349 – 1066 Facsimile: +2712 – 349 – 2064 Email: accounts@waterlab.co.za

CERTIFICATE OF ANALYSES TOTALS

19/11/2015 2016/01/26 Date received: Date completed: Project number: 1000 Report number: 56012 Order number: EXX3666 Client name: Digby Wells Environmental Contact person: André van Coller Address: Digby Wells House, Turnberry Office Park, Email: andre.van.coller@digbywells.com 48 Grosvenor Road, Bryanston, 2191 Contact person: Karabo Lenkoe-Magagula 011 789 9495 Telephone: karabo.lenkoe-magagula@digbywells.com Email:

Analyses G6 7/8 Stockpile A GG1-6 Stockpile A Sample Numbe 21866 21868 igestion Aqua Regia Aqua Regia Dry Mass Used (g) Volume Used (mℓ) 0.1 0.1 50 50 Jnits mg/ℓ mg/kg mg/ℓ Т mg/kg Mercury as Hg ICP-OES Quant 10 <5.00 See tab ICP AQR 10 <5.00 See tab ICP AQR < 0.010 < 0.010 Total Fluoride [s] Total Hexavalent Chromium as Cr°* [s] 166 179 ~5 ~5

[s]=subcontracted

E. Botha Geochemistry Project Manager

WATERLAB (PTY) LTD CERTIFICATE OF ANALYSES **ICP-OES QUANTITATIVE ANALYSIS**

Date received: 19/11/2015 Project number: 1000

Date Completed: 26/01/2016 56012

Report number:

Client name: **Digby Wells Environmental** Address: Digby Wells House, Turnberry Office Park, 48 Grosvenor Road, Bryanston, 2191 Telephone: 011 789 9495

Contact person: Email: Contact person:

Email:

André van Coller andre.van.coller@digbywells.com Karabo Lenkoe-Magagula karabo.lenkoe-magagula@digbywells.com

Extract	Sample Dry Mass	Volume	Mass (g/l)	Factor
Aqua Regia	0.1	50	2	500

Sample Id	Sample number	As	As	В	В	Ва	Ba
-		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.010	<5.00	<0.025	<12.5	<0.025	<12.5
G6 7/8 Stockpile A	21866	<0.010	<5.00	<0.025	<12.5	0.040	20
GG1-6 Stockpile A	21868	<0.010	<5.00	<0.025	<12.5	0.045	23
Sample Id	Sample number	Cd	Cd	Co	Со	Cr	Cr
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.003	<1.2	<0.025	<12.5	<0.025	<12.5
G6 7/8 Stockpile A	21866	<0.003	<1.2	<0.025	<12.5	<0.025	<12.5
GG1-6 Stockpile A	21868	<0.003	<1.2	<0.025	<12.5	<0.025	<12.5
Sample Id	Sample number	Cu	Cu	Mn	Mn	Мо	Мо
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.010	<5.00	<0.025	<12.5	<0.025	<12.5
G6 7/8 Stockpile A	21866	<0.010	<5.00	<0.025	<12.5	<0.025	<12.5
GG1-6 Stockpile A	21868	<0.010	<5.00	0.037	19	<0.025	<12.5
Sample Id	Sample number	Ni	Ni	Pb	Pb	Sb	Sb
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.025	<12.5	<0.010	<5.00	<0.020	<8.00
G6 7/8 Stockpile A	21866	<0.025	<12.5	<0.010	<5.00	<0.020	<8.00
GG1-6 Stockpile A	21868	<0.025	<12.5	<0.010	<5.00	<0.020	<8.00
1							
Sample Id	Sample number	Se	Se	V	V	Zn	Zn
		mg/l	mg/kg	mg/l	mg/kg	mg/l	mg/kg
Det Limit		<0.010	<5.00	<0.025	<12.5	<0.025	<12.5
G6 7/8 Stockpile A	21866	<0.010	<5.00	<0.025	<12.5	<0.025	<12.5
GG1-6 Stockpile A	21868	<0.010	<5.00	<0.025	<12.5	<0.025	<12.5