

ECOLOGICAL & WETLAND ASSESSMENT REPORT

RENAISSANCE RESOURCES (PTY) LTD

De Bad & At Last Mining Operation

Address: PostNet Suite 0216 Private Bag X37 Lynnwood Ridge 0040

Tel: 082 992 1261 Email: BosciaEcology@gmail.com **RENAISSANCE RESOURCES (PTY) LTD**

Portion 2 (At Last) of the Farm No 232

Portion 2, 3, 4, 5 and 6 of the Farm De Bad 155

Districts of Barkly-Wes and Kimberley
Northern Cape Province

Ecological & Wetland Assessment Report in application for Environmental Authorisation related to a Mining Right Application ((NC) 30/5/1/3/2/10199 MR) that was lodged with the Department of Mineral Resources

September 2022

EXECUTIVE SUMMARY

Renaissance Resources (Pty) Ltd is proposing the mining of Diamonds on Portion 2 (At Last) of the Farm No 232, located within the Barkly-Wes District, as well as on Portion 2, 3, 4, 5 and 6 of the Farm De Bad 155, in the Kimberley District of the Northern Cape Province. Renaissance Resources has submitted a Mining Right application, which triggers the requirement to apply for Environmental Authorisation. This ecological and wetland assessment report considers the impacts that the proposed activities might have on the ecological integrity of the property. It describes the characteristics of terrestrial, aquatic and wetland habitats in the proposed mining area, identifies the source of impacts from the mining operation and assesses these impacts, as well as the residual impacts after closure.

A desktop study and field investigation were performed to obtain ecological and biodiversity information for the proposed study area and found that seven plant communities occur in the study area, including terrestrial and aquatic habitats. The Vaal River, ephemeral pans and drainage lines are all considered to be of very high sensitivity due to their vital ecological and hydrological functionality and significance, which is portrayed in the various sections of this report. The ephemeral pans and Vaal River, including their buffer zones, should ideally be marked as no-go areas.

The woodland on red sand hosts a dense population of *Vachellia erioloba* and is therefore of high sensitivity. The remaining pristine terrestrial habitats are of medium sensitivity, while the sensitivity of those areas already transformed by agriculture, is low.

The most profound impacts related to the proposed activities is expected to be in the form of cumulative habitat destruction, given the extensive history of mining and crop irrigation in the region. Direct and secondary impacts to water resources are also considered to be significant. Therefore, activities near these systems should be carefully planned to avoid disastrous implications.

If any of the protected plant species will be damaged or removed, permit applications regarding protected flora and/or nationally protected trees need to be lodged with the Northern Cape Department of Environment and Nature Conservation and/or Department of Agriculture, Forestry and Fisheries, three months prior to any removal of affected species.

To conclude, in my opinion, authorisation for the mining operation can be granted if the applicant commits to the adherence of effective avoidance, management, mitigation and rehabilitation measures.

TABLE OF CONTENTS

E)	KECUT	IVE S	UMMARY	i
T	ABLE C	F CO	NTENTS	ii
LI	ST OF	FIGU	RES	iv
LI	ST OF	TABL	ES	vii
LI	ST OF	APPE	NDICES	ix
1.		_	OUCTION	
	1.1.		kground information	
	1.2.	•	oe of study	
	1.3.	Deta	ails of the specialist consultant	3
	1.4.	Des	cription of the proposed activity	5
2.	ME	тно	DOLOGY	5
	2.1.	Data	a collection	5
	2.2.	Flor	a	5
	2.2	.1.	Field survey	5
	2.2	.2.	Desktop survey	7
	2.3.	Faui	na	7
	2.3		Field survey	
	2.3	.2.	Aquatic invertebrate cultures	8
	2.3	.3.	Desktop survey	<u>c</u>
	2.4.	Wet	cland assessment procedures	<u>ç</u>
	2.5.	Sens	sitivity mapping and assessment	16
	2.6.	Imp	act assessment and mitigation	17
	2.7.	Assu	umptions and limitations	19
3.	. DE	SCRII	PTION OF THE AFFECTED ENVIRONMENT	20
	3.1.		rent and historic land use	
	3.2.		logy, soils, and topography	
	3.3.		etation	
	3.3	_	Broad-scale vegetation patterns	
	3.3		Fine-scale vegetation patterns	
	3.3		Population of sensitive, threatened and protected plant species	
	3.3		Weeds and invader plant species	
	3.3		Indicators of bush encroachment	
	5.5			

	3.4.	Fau	nal communities	40
	3.4	l.1.	Mammals	41
	3.4	1.2.	Reptiles	42
	3.4	1.3.	Amphibians	43
	3.4	1.4.	Avifauna	44
	3.4	1.5.	Fish	47
	3.4	1.6.	Invertebrates	48
	3.5.	Wa	ter resources	52
	3.5	5.1.	Water resources setting	52
	3.5	5.2.	Watercourse delineation and classification	54
	3.5	5.3.	Wetland Health Assessment (PES)	60
	3.5	5.4.	Wetland Ecological Importance and Sensitivity	65
	3.5	5.5.	Wetland functional importance	66
	3.5	5.6.	Recommended wetland buffer zone	68
	3.6.	Crit	ical biodiversity areas and broad-scale processes	70
	3.7.	Site	sensitivity	76
4.	FC	010	GICAL IMPACT ASSESSMENT	78
	4.1.		ography, soil erosion and associated degradation of landscapes	
		L.1.	Alteration of soil character and quality	
	4.1		Loss of soil fertility	
	4.1		Soil erosion	
	4.2.	Veg	getation and floristics	
	4.2	2.1.	Loss of indigenous vegetation	
		2.2.	Loss of Red data and/or protected floral species	
	4.2	2.3.	Introduction or spread of alien species	
	4.2	2.4.	Encouraging bush encroachment	85
	4.3.	Fau	na	
	4.3	3.1.	Habitat fragmentation	86
	4.3	3.2.	Disturbance, displacement and killing of fauna	87
	4.4.	Wa	ter resources	89
	4.4	l.1.	Alteration/destruction of watercourses	89
	4.4	1.2.	Siltation of surface water	
	4.5.	Bro	ad-scale ecological processes	
_				
5.	CO	NCL	USION, RECOMMENDATIONS AND OPINION REGARDING AUTHORIS	AHON 91
6.	RE	FFRF	NCES	92

LIST OF FIGURES

Figure 1. T	The location of the De Bad and At Last mining area sites are indicated in red2
Figure 2. T	The area on De Bad and At Last, where core mining activities are planned6
S	The extent of the map filter (large black square) applied on the POSA website to extract pecies information for the study area. The small red squares indicate historical data points
Figure 4. T	The existing land use features on the mining right area21
Figure 5. T	The distribution of geological features in the study area22
Figure 6. T	The distribution of land types in the study area24
Figure 7. T	The land types and terrain units associated with the study area
Figure 8. T	The broad-scale vegetation units (Mucina and Rutherford 2012) present in the study area.
Figure 9. T	he distribution of fine-scale plant communities in the study area28
	The thornveld on red sand and rock is represented by tall shrubs in a grassy matrix (top). Biological soil crusts (centre) and crustose lichens (bottom) are prevalent in places 30
	The tall shrubland on calcrete comprise tall shrubs found in a grassy matrix intermixed with low shrubs.
	The open woodland on red sand is represented by large, tall <i>Vachellia erioloba</i> trees parsely scattered in an extensive grassy matrix
_	The woodland on calcareous soil comprises tall trees scattered in a grassy matrix, but a econdary tall shrub layer, dominated by <i>Senegalia mellifera</i> encroaches the matrix33
	Riparian woodland lines the banks of the Vaal River for most part (top), but the woodland interrupted by eroded floodplains in places (bottom).
	The ephemeral pans on site are occupied by grassland in the centre, with tall shrubs lining heir peripheries.

Figure 16.	The protected tree Vachellia erioloba occurs at high densities from saplings to large trees
	in the open woodland on red sand (top and centre), while young trees are found
	sporadically in the thornveld on rocky ridge slopes
Figure 17.	Small rodent burrows (left) and black-backed jackal scat (right) were observed on site.
	42
Figure 18.	Reptile species of conservation concern that are expected to occur in the study area43
Figure 19.	The Giant Bull Frog's distribution range overlaps with that of the study area, and is
	expected to be associated with the ephemeral pans on De Bad44
Figure 20.	Bird species of conservation concern that are expected to occur in the study area46
Figure 21.	The specially protected Common Baboon Spider (Harpactira sp.) has been recorded in
	the region (left), while termitaria most likely belonging to Trinervitermes trinervoides
	(centre), as well as scorpion burrows (right) were observed during the field survey 50
Figure 22.	Crustacean taxa expected to be present in the pans on De Bad. The first few centimetres
	of the soil is where the egg bank occurs and any disturbances to this layer will expose the
	eggs to erosion and crushing, which might lead to major species losses51
Figure 23.	The locality of the proposed mining area in relation to the quaternary catchments of the
	Lower Vaal Water Management Area53
Figure 24.	The delineation of watercourses in the mining right area, along with their GIS buffer
	requirements55
Figure 25.	A digital elevation model, indicating the catchment areas of the depressional wetlands
	on De Bad
Figure 26.	Conceptual illustration of a depression, showing the typical landscape setting and the
	dominant inputs, throughputs and outputs of water (Ollis et al. 2013)58
Figure 27.	Key wetland descriptors for the depressional wetlands on De Bad. The substratum
	comprise of sandy clay loam soil (top). The wetland floor is vegetated by grassland, which
	is dominated by facultative wetland grass species Leptochloa fusca (centre), but mat
	forming herbs (hottom left) and hulbs (hottom right) are also present

Figure 28.	The depressional wetland assessment units on De Bad, indicating their 200m GIS buffer
	requirements and catchment areas
Figure 29.	Features impacting the PES of the De Bad depressional wetlands
Figure 30.	Refined landcover categories and disturbance units according to NLC2018, associated
	with the depressional wetlands on De Bad64
Figure 31.	Final aquatic impact buffer requirements, including practical management considerations, for the valley-bottom wetland
	considerations, for the valley-pottom wetland
Figure 32.	The study area in relation to the Northern Cape Critical Biodiversity Areas71
Figure 33.	The study area in relation to the Mining and Biodiversity Guidelines72
Figure 34.	Environmental sensitivities in the study area, according to the National Web based
	Environmental Screening Tool
Figure 35.	The De Bad & At Last study area in relation to the GWC core, according to Frisby et al.
	(2019)
Figure 36.	The distribution of mining properties (top) and crop irrigation (bottom) along the Vaal
	River
Figure 37.	A sensitivity man for the De Bad and At Last mining sites 77

LIST OF TABLES

Table 1.	Criteria used to assess the significance of the impacts
Table 2.	Plant species found in the region that are of conservation concern. Those recorded in the study area is highlighted in red
Table 3.	The categorisation of weeds and invader plant species, according to NEMBA and CARA 39
Table 4.	A list of declared weeds and invasive species recorded in the study region39
Table 5.	A list of declared indicators of bush encroachment in the Northern Cape, which were recorded in the study area
Table 6.	A list of mammal species that are likely to be found in the study area, which are of conservation concern in terms of the international (IUCN) Red List and the 2016 Mammal Red List of South Africa Lesotho and Swaziland (EWT 2016). Their respective NCNCA schedule numbers are indicated in superscript
Table 7.	Bird of conservation concern that are likely to occur on site
Table 8.	Fish species expected to occur in the Vaal River at the two sites, along with their IUCN status and sensitivity to physico-chemical and no-flow conditions (High = H, Moderate = M, Low = L). Their respective NCNCA schedule numbers are indicated in superscript
Table 9.	Invertebrate species found in the Northern Cape that are of conservation concern49
Table 10	. Catchment characteristics for the Vaal D/S Bloemhof quaternary catchments in which the study area fall, as presented by Delport and Mallory (2002)53
Table 11	Percentage of inland wetland spatial extent according to the present ecological status per wetland type of the Eastern Kalahari Bushveld Bioregion
Table 12	. Summary of the results for the application of Levels 1 to 6 of the Classification System (Ollis et al. 2013), to the depressional wetlands. Confidence ratings at each level are given in brackets.
Table 13	. Summarised results of Wet-Health level 2 assessment (Macfarlane et al. 2020) to the depressional wetlands on De Bad

	RENAISSANCE RESOURCES (PTY) LTD – De Bad & At Last Ecological & Wetland Assessment
Table 14.	Summary of the results for the application of an EIS assessment (Duthie 1999) to the depressions on De Bad
Table 15.	Summary of the results of a WET-EcoServices (Version 2) assessment (Kotze et al. 2020), to the De Bad & At Last wetland
Table 16.	The recommended final aquatic impact buffer requirements for the De Bad depressions.
Table 17.	A detailed analysis of ecological impacts identified for the De Bad and At Last mining operation

LIST OF APPENDICES

APPENDIX 1: Plant species list

APPENDIX 2: Fauna species list

APPENDIX 3: A photographic guide for species of conservation concern that occur on site

1. INTRODUCTION

1.1. Background information

Renaissance Resources (Pty) Ltd is proposing the mining of Diamonds on Portion 2 (At Last) of the Farm No 232, located within the Barkly-Wes District, as well as on Portion 2, 3, 4, 5 and 6 of the Farm De Bad 155, in the Kimberley District. The mining right area is located in the Northern Cape Province and the two sites will from heron be referred to as De Bad and At Last. De Bad lies approximately 16 km south of the town Schmidtsdrif, on the Olie Rivier gravel road that turns off from the N8, while At Last lies approximately 15 km west of Delportshoop, on the R370 gravel road towards Schmidtsdrif that turns off from the R31 (Figure 1). The total extent of the combined mining right area is \pm 6 221 ha.

Renaissance Resources has submitted a Mining Right application, which triggers the requirement to apply for Environmental Authorisation. An ecological and wetland assessment is required to consider the impacts that the proposed activities might have on the ecosystems of the property and therefore Boscia Ecological Consulting has been appointed by the applicant to conduct an assessment and provide an ecological and wetland assessment report.

This assessment report describes the characteristics of terrestrial, aquatic and wetland habitats in the proposed mining area, identifies the biodiversity and species of conservation concern, identifies invasive and encroaching species and their distribution, indicates the source of impacts from the mining operation and assesses these impacts as well as the residual impacts after closure.

A variety of avoidance and mitigation measures associated with each identified impact are recommended to reduce the likely impact of the operation. Ecological responsibilities pertaining to relevant conservation legislation are also indicated. These should all be included in the BAR.

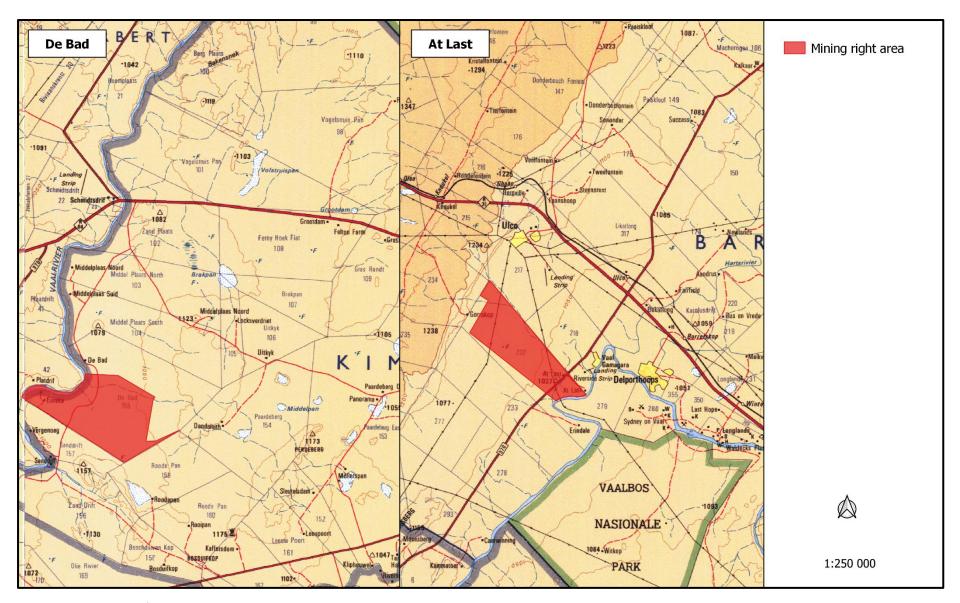


Figure 1. The location of the De Bad and At Last mining area sites are indicated in red.

1.2. Scope of study

The specific terms of reference for the study include the following:

- conduct a desktop study and field investigation to identify and describe different
 ecological habitats (terrestrial, aquatic and wetland) and provide an inventory of
 biodiversity, i.e. communities/species/taxa and associated species of conservation
 concern within the environment that may be affected by the proposed activity;
- identify the relative ecological sensitivity of the project area;
- produce an assessment report that:
 - indicates identified habitats and fauna and flora species,
 - delineates and classifies wetlands,
 - indicates the ecological sensitivity of habitats and conservation values of species, including Wetland Health Assessment (PES), Wetland Ecological Importance and Sensitivity (EIS) and Wetland Functional Assessment (Eco-Services)
 - determines the potential impacts of the project on the ecological integrity,
 - provides mitigation measures and recommendations to limit project impacts,
 - indicates ecological responsibilities pertaining to relevant conservation legislation.

1.3. Details of the specialist consultant

Company Name	Boscia Ecological Consulting cc	Registration No:	2011/048041/23
Address	PostNet Suite 0216 Private Bag X37 Lynnwood Ridge 0040		
Contact Person	Dr Elizabeth (Betsie) Milne (Pr. Sci. Nat)		
Contact Details	Cell: 082 992 1261	Email: BosciaEcolo	ogy@gmail.com
Qualifications	Professional Natural Scientist - Ecological Science (Registration No: 131395) PhD Botany (Nelson Mandela Metropolitan University), Masters Environmental Management (University of the Free State), BTech Nature Conservation (Tshwane University of Technology)		

Declaration of independence

- I, Elizabeth (Betsie) Milne, owner of Boscia Ecological Consulting, declare that I:
 - act as the independent specialist in this application;
 - regard the information contained in this report as it relates to my
 - specialist input/study to be true and correct;
 - do not have, and will not have any financial interest in the undertaking of the activity; other than the remuneration of work performed in terms of the Environmental Impact Assessment Regulations, 2014 and any specific environmental management Act;
 - have and will not have any vested interest in the activity proceedings;
 - have no, and will not engage in conflicting interest in the undertaking of the activities;
 - undertake to disclose to the component authority any material
 information that have or may have the potential to influence the
 decision of the competent authority, or the objectivity of any report,
 plan or document required in terms of the Environmental Impact
 Assessment Regulations, 2014 and any specific environmental
 management Act;
 - will provide the competent authority with access to all information at my disposal regarding the study.

1.4. Description of the proposed activity

The mining operation is based on diamond deposits that are restricted to the Rietputs alluvial terraces to the east (De Bad) and west (At Last) of the Vaal River, as well as Rooikoppie gravel (Figure 2). Deposits will be sampled by means of an opencast method using heavy earthmoving machinery.

Vegetated soil or overburden will be stripped, and the underlying gravels will be excavated, screened, and treated through a rotary plan plant before fed to a sorting plant for final recovery. The rough diamond product will then be removed for further beneficiation. No ore processing reagents are required or used in the treatment of the ore. Approximately 300 ha of surface area will be cleared for mining purposes over 10 years.

Mining activities will make use of existing roads where possible, but haul roads will also be created to access the mining areas. Supporting infrastructure include temporary office, workshop and ablution facilities with chemical toilets, storm water control berms, water tanks, fuel storage facility, wash bay, salvage yard, waste disposal site, a central processing plant and pipeline infrastructure.

2. METHODOLOGY

2.1. Data collection

The study comprised a combination of field and desktop surveys for data collection on fauna and flora to obtain a comprehensive data set for the assessment. The fieldwork component was conducted on 18 August 2022 and most data for the desktop assessment was obtained from the quarter degree squares that includes the study area (2824AC, 2824AD and 2824CC).

2.2. Flora

2.2.1. Field survey

For the field work component, satellite images were used to identify homogenous vegetation units within the proposed mining area.

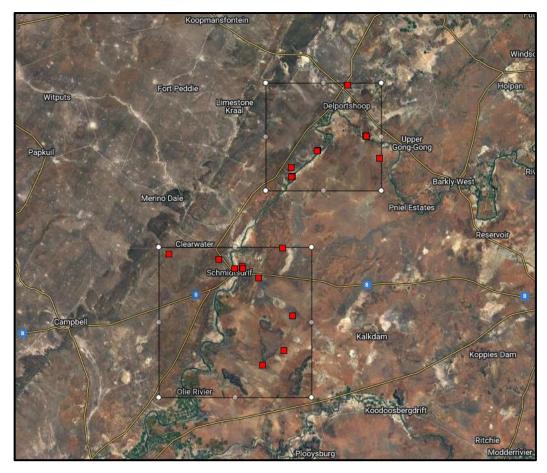
Figure 2. The area on De Bad and At Last, where core mining activities are planned.

Representative sampling plots were allocated in these units and sampled with the aid of a GPS to characterise the species composition. The following quantitative data was collected:

- Species composition
- Species percentage cover
- Amount of bare soil and rock cover
- Presence of biotic and anthropogenic disturbances

Additional checklists of plant species were compiled during the surveys by traversing a linear route and recording species as they were encountered in each unit.

2.2.2. Desktop survey


For the desktop component, the South African National Vegetation Map (Mucina and Rutherford 2006) was used to obtain data on broad scale vegetation types, associated species and their conservation status. Furthermore, the South African National Biodiversity Institute's (SANBI) BGIS database as well as the respective Environmental Framework Documents were consulted to obtain information on biodiversity information for the Dikgatlong Local Municipality (NC092) of the Frances Baard District Municipality and Siyancuma Local Municipality (NC078) of the Pixley ka Seme District Municipality, in which the study area falls. Further searches were undertaken specifically for Red List plant species within the current study area. Historical occurrences of Red List plant species were obtained from the SANBI: POSA database (Figure 3). The IUCN conservation status of plants in the species list was also extracted from the SANBI database and is based on the Threatened Species Programme (SANBI 2020).

2.3. Fauna

2.3.1. Field survey

The faunal field survey was conducted concurrent with the vegetation survey. Habitats on site were assessed to compare with the habitat requirements of Red Data species. The presence of faunal species was determined using the following methods:

- Identification by visual observation,
- Identification of bird and mammal calls,
- Identification of signs (spoor, faeces, burrows, and nests).

Figure 3. The extent of the map filter (large black square) applied on the POSA website to extract species information for the study area. The small red squares indicate historical data points.

2.3.2. Aquatic invertebrate cultures

To verify the presence of branchiopods, dry sediment was collected from the ephemeral pans on site. A hand spade was used to remove at least 1L of the top 5 cm at a minimum of three plots. Sub-samples were then inundated in containers for a minimum of 14 days in a semi-controlled environment with aeration, to simulate average habitat conditions for the region. All hatchlings were identified under the microscope to the lowest possible taxonomic rank.

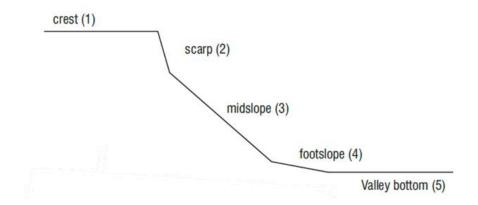
Water quality variables (pH and Electrical Conductivity (uS/cm)) were measured after three days of inundation using a handheld multi meter.

2.3.3. Desktop survey

A lists of mammals, reptiles, amphibians, birds, fish, and invertebrates, which are likely to occur in the study area, were obtained based on distribution records from the literature, including Friedmann and Daly (2004) and Stuart and Stuart (2015) for mammals, Alexander and Marais (2007) and Bates et al. (2014) for reptiles, Du Preez and Carruthers (2009) for amphibians, Gibbon (2006) for birds, Kleynhans (2007) for fish and Thirion (2007), Picker et al. (2004) and Griffiths et al. (2015) for invertebrates. A map of important bird areas (BirdLifeSA 2015) was also consulted. Additional information on faunal distribution was extracted from the various databases hosted by the ADU web http://adu.org.za, well from the portal, as as Baboon Spider Atlas https://www.baboonspideratlas.co.za/, Freshwater Biodiversity Information System (FBIS) https://freshwaterbiodiversity.org/, and iNaturalist https://www.inaturalist.org/. The faunal species lists provided are based on species which are known to occur in the broad geographical area, as well as a preliminary assessment of the availability and quality of suitable habitat at the site.

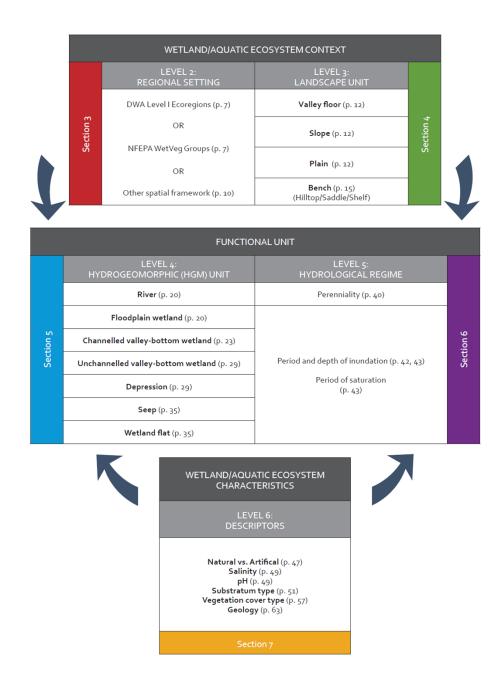
The likelihood of Red Data species occurring on site has been determined using the distribution maps in the Red Data reference books (Friedmann and Daly 2004, Minter et al. 2004, Bates et al. 2014, Taylor et al. 2015, ADU 2016) and comparing their habitat preferences with the habitats described from the field survey. The conservation status of each species is also listed, based on the IUCN Red List Categories and Criteria (IUCN 2019) and/or the various regional and national red data books/lists for the respective taxa.

2.4. Wetland assessment procedures


a) Wetland and riparian areas delineation

Wetlands and riparian areas were delineated according to methodology adapted from the delineation procedure as set out by Rountree et al. (2008). Even though the presence of all indicators included in this delineation procedure provides a logical, defensible, and technical basis for identifying an area as wetland or riparian area; these procedures were primarily developed for wetlands and riparian areas in mesic and humid regions. The soil and vegetation descriptors outlined in these procedures do not fully accommodate those wetland and riparian areas found in more arid regions.

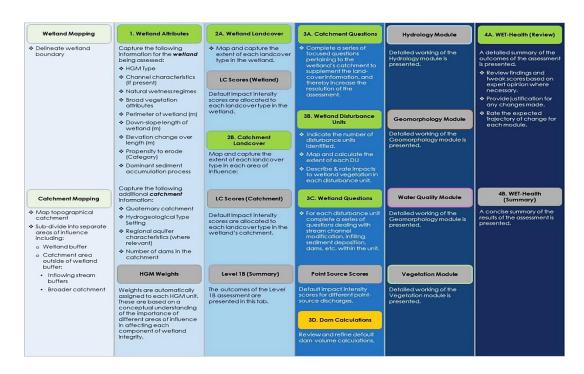
Therefore, delineation of wetlands and riparian areas were performed by estimating their boundaries from satellite imagery and topographical maps, and then drawing it onto the site map, using clues such as topography, differences in colour, shading, texture, and elevation. These boundaries were then verified in the field. The field verification further considered topography, vegetation and alluvial soils or deposited material.


In terms of topography, terrain unit indicators were considered:

 Terrain Unit Indicator helps identifying those parts of the landscape where wetlands are most likely to occur. Typical terrain units are depicted below:

b) Wetland Classification

The wetlands were subsequently classified according to the classification procedure for inland systems (Level 2) developed by Ollis et al. (2013). The inland component of the Classification System has a tiered structure (see below diagram), which progresses from Regional Setting (Level 2) and Landscape Units (Level 3), to Hydrogeomorphic (HGM) Units at the finest spatial scale (Level 4). At Level 5, Inland Systems are distinguished from each other based on the hydrological regime and, in the case of open waterbodies, the inundation depth class. At Level 6, six 'descriptors' have been incorporated into the Classification System. These descriptors allow you to distinguish between aquatic ecosystems with different structural, chemical, and/or biological characteristics.


c) Wetland Health Assessment

A Present Ecological State (PES) assessment was conducted to establish baseline health for wetlands in the study area, based on WET-Health Version 2 (Macfarlane et al. 2020). The WET-Health tool is designed to assess the PES of a wetland by scoring the perceived deviation from a theoretical reference condition. The tool considers wetland PES to be a function of three core inter-related drivers, namely hydrology, geomorphology, and water quality. The biology of the wetland responds to changes in these drivers. The suite of tools developed for WET-Health Version 2 therefore assesses wetland PES based on four modules: (1) Hydrology, (2) Geomorphology, (3) Water quality, and (4) Vegetation:

Vegetation generally plays a central role in the biology of wetlands located in mesic and humid regions. However, in more arid environments, such as De Bad and At Last, wetlands are often naturally devoid of typical vegetation, especially if wetlands are ephemeral. Wet-Health Version 2 recognises that their recommended method may not adequately cater for every situation, and expert review and refinement of impact scores is encouraged based on additional information and expert interpretation. This is accommodated in the Level 2 assessments by allowing the assessor to review and moderate scores with appropriate justification. Therefore, an adapted Wet-Health level 2 assessment was conducted to determine the PES of wetlands on De Bad & At Last.

A Level 2 approach is a rapid but robust field-based wetland PES assessment that includes a series of separate modules, brought together in an integrated assessment:

The WET-Health tool uses algorithms to produce impact intensity scores for each module, which are then combined in a standardised manner to produce an overall impact intensity score for the assessed wetland. These intensity scores correlate to an overall ecological category:

Ecological Category	Description	Impact score	PES Score (%)
Α	Unmodified, natural.	0 – 0.9	91% - 100%
В	Largely natural with few modifications / in good health. A small change in natural habitats and biota may have taken place but the ecosystem functions are still predominantly unchanged.	1-1.9	81% - 90%
С	Moderately modified / fair condition. Loss and change of natural habitat and biota have occurred, but the basic ecosystem functions are still predominantly unchanged.	2 – 3.9	61% - 80%
D	Largely modified / poor condition. A large loss of natural habitat, biota and basic ecosystem functions has occurred.	4 – 5.9	41% - 60%
E	Seriously modified / very poor condition. The loss of natural habitat, biota and basic ecosystem functions is extensive.	6 – 7.9	21% - 40%
F	Critically modified / totally transformed. Modifications have reached a critical level and the lotic system has been modified completely with an almost complete loss of natural habitat and biota.	8 - 10	0 – 20%

Trajectory of Change classes and symbols used to describe the predicted nature of change in the state of a wetland from its present state given threats and vulnerability, are:

Trajectory class	Description	Symbol
Improve markedly	Likely to improve substantially over the next 5 years	$\uparrow \uparrow$
Improve	Likely to improve slightly over the next 5 years	↑
Remain stable	Likely to remain stable over the next 5 years	\rightarrow
Deteriorate slightly	Likely to deteriorate slightly over the next 5 years	\
Deteriorate markedly	Likely to deteriorate substantially	$\downarrow \downarrow$

d) Wetland Ecological Importance and Sensitivity

An Ecological Importance and Sensitivity (EIS) assessment was conducted by using methodology adapted from Duthie (1999). For this assessment procedure, a series of determinants are considered using a ranking scale of 0 to 4, i.e. Very high = 4; High = 3, Moderate = 2; Marginal/Low = 1; None = 0:

Determinant				
PR	PRIMARY DETERMINANTS			
1.	Rare & Endangered Species			
2.	Populations of Unique Species			
3.	Species/taxon Richness			
4.	Diversity of Habitat Types or Features			
5	Migration route/breeding and feeding site for wetland species			
6.	Sensitivity to Changes in the Natural Hydrological Regime			
7.	Sensitivity to Water Quality Changes			
8.	Flood Storage, Energy Dissipation & Particulate/Element Removal			
MODIFYING DETERMINANTS				
9.	Protected Status			
10	Ecological Integrity			

The median of the determinants is used to allocate an Ecological Management Class (EMC):

EIS Category	Mean range	EMC
Very high Wetlands that are considered ecologically important and sensitive on a national or even international level. The biodiversity of these wetlands is usually very sensitive to flow and habitat modifications.	> 3 and <= 4	А
High Wetlands that are considered to be ecologically important and sensitive. The biodiversity of these wetlands may be sensitive to flow and habitat modifications.	> 2 and <= 3	В
Moderate Wetlands that are considered to be ecologically important and sensitive on a provincial or local scale. The biodiversity of these wetlands is not usually sensitive to flow and habitat modifications.	> 1 and <= 2	С
Low/marginal Wetlands that are not ecologically important and sensitive at any scale. The biodiversity of these wetlands is ubiquitous and not sensitive to flow and habitat modifications.	> 0 and <= 1	D

e) Wetland Functional Assessment

To evaluate the ecosystem services supplied by the wetlands of the study area, an assessment was conducted according to guidelines provided in WET-EcoServices (Version 2) (Kotze et al. 2020). This assessment examines and rates the following services according to their degree of importance and the degree to which the service is provided:

flow wetland ers					
Removal by the wetland of phosphates carried by runoff waters					
Removal by the wetland of nitrates carried by runoff waters					
Removal by the wetland of toxicants (e.g. metals, biocides and salts) carried by runoff waters					
Controlling of erosion at the wetland site, principally through the protection provided by vegetation					
The trapping of carbon by the wetland, principally as soil organic matter					
Through the provision of habitat and maintenance of natural process by the wetland, a contribution is made to maintaining biodiversity					
The provision of water extracted directly from the wetland for domestic, agriculture or other purposes					
The provision of natural resources from the wetland, including livestock grazing, craft plants, fish etc.					
The provision of grazing for livestock					
The provision of areas in the wetland favourable for the cultivation of foods					
Places of special cultural significance in the wetland, e.g. for baptisms or gathering of culturally significant plants					
Sites of value for tourism and recreation in the wetland, often associated with scenic beauty and abundant birdlife					
Sites of value in the wetland for education or research					
> 2.8					
High					

f) Determining the recommended buffer zone

A buffer is required by the NWA to be assigned to all watercourses that fall within an area earmarked for development, to reduce the impacts to aquatic resources and protect the range of goods and services that these resources provide to society. The buffer zones for wetlands on site were determined according to guidelines set out in Macfarlane and Bredin (2017), accompanied by their Site-Based Wetland Buffer Model.

Sensitivity mapping and assessment 2.5.

An ecological sensitivity map of the site was produced by integrating the information collected on site with the available ecological and biodiversity information available in the literature and various spatial databases.

The sensitivity mapping entails delineating different habitat units identified on the satellite images and assigning likely sensitivity values to the units based on their ecological properties, conservation value and the potential presence of species of conservation concern, as well as their probability of being affected by proposed activities.

The sensitivity of the different units identified in the mapping procedure increased with probability and was rated according to the following scale:

Low:

Areas of natural or transformed habitat with a low sensitivity where there is likely to be a negligible impact on ecological processes and biodiversity. Most types of activities can proceed within these areas with little ecological impact.

Medium:

Areas of natural or previously transformed land where the impacts are likely to be largely local and the risk of secondary impact such as erosion low. Activities within these areas can proceed with relatively little ecological impact provided that appropriate mitigation measures are taken.

High:

Areas of natural or transformed land where a high impact is anticipated due to the high biodiversity value, sensitivity or important ecological role of the area. These areas may contain or be important habitat for faunal species or provide important ecological services such as water flow regulation or forage provision. Activities within these areas are undesirable and should only proceed with caution as it may not be possible to mitigate all impacts appropriately.

Very High: Critical and unique habitats that serve as habitat for species of conservation concern, or perform critical ecological roles. These areas are essentially no-go areas for activities and should be avoided as much as possible.

2.6. Impact assessment and mitigation

The criteria used to assess the significance of the impacts are shown in Table 1. The different project activities and associated infrastructure were identified and considered in order to identify and analyse the various possible impacts. The limits were defined in relation to project characteristics. Those for severity, extent, duration and probability are subjective, based on rule-of-thumb and experience. Natural and existing mitigation measures were considered. These natural mitigation measures were defined as natural conditions, conditions inherent in the project design and existing management measures, which alleviate impacts. The Consequence value of the impacts was calculated by using the following formula:

Consequence of impacts is defined as follows:

Very Low: Impact would be negligible. Almost no mitigation and/or remedial activity would be needed, and any minor steps which might be needed would be easy, cheap and simple.

Low: Impact would have little real effect. Mitigation and/or remedial activity would be either easily achieved or little would be required or both.

Low – Medium: Impact would be real but not substantial within the bounds of those which could occur. Mitigation and/or remedial activity would be both feasible and fairly easily possible.

Medium – High: Impact would be real and rather substantial within the bounds of those which could occur. Mitigation and/or remedial activity would be feasible, but not necessarily possible without difficulty.

High: Impacts of substantial order. Mitigation and/or remedial activity would be feasible but difficult, expensive, time consuming or some combination of these.

Very High: Of the highest order possible within the bounds of impacts which could occur. There would be no possible mitigation and/or remedial activity to offset the impact at the spatial or time scale for which was predicted.

Table 1. Criteria used to assess the significance of the impacts.

Weig	jht	Severity						Spatial scope (Extent)							Duration				
5		Dis	astrou	JS			Trai	Trans boundary effects							Permanent				
4		Cat	astro	phic / m	ajor		National / Severe environmental damage							Res	Residual				
3		Hig	h/ Cri	tical / S	erious	3	Regional effect							Dec	Decommissioning				
2 Medium / slightly harmful							Immediate surroundings / local / outside mine fence								Life of operation				
1 Minimal/potentially harmful							Slight permit deviation / on-site								Short term / construction (6 months – 1 yrs)				
0 Insignificant / non- harmful						Activity specific / No effect / Controlled								Immediate (0 – 6 months)					
Weig	Weight number						1			2 3				4		5			
Frequency																1			
		Frequency of				Highly unlikely			Rare			Low likelihood			Probable / possible		Certain		
Prob	abili	ty			Practically impossible			Conceivable but very unlikely			Only remotely possible			Unusual but possible		Definite			
			Frequency of activity				innual less		6 monthly / temporarily			Infrequent			Frequently		Life of operation		
							(Se		CONSE			Durat	ion)						
£	1		2	3 4			5	6	7			9	10	11	12	13	14	15	
mpac	- 2	2	4	6	8		10	12	14	16		18	20	22	24	26	28	30	
PROBABILITY activity + Frequency of impact)	, 3	3	6	9	12		15	18	21	24	:	27	30	33	36	39	42	45	
neuc	4		8 12 16		:	20	24	28	32	;	36	40	44	48	52	56	60		
BILIT Free	5	5	10 15 20			25	30	35	40	4	45	50	55	60	65	70	75		
PROBABILITY activity + Frequ	. 6	6	12 18 24		,	30	36	42	48		54	60	66	72	78	84	90		
PR f actir	7	,	14 21 28		;	35	42	49	56	(63	70	77	84	91	98	105		
(Frequency of	, 8	3	16	24	32		40	48	56	64		72	80	88	96	104	112	120	
edne	. 0)	18	27	36		45	54	63	72	8	81	90	99	108	117	126	135	
(Fre	1	0	20	30	40		50	60	70	80	Ģ	90	100	110	120	130	140	150	
	Colour Significance value ode rating						Negative impact Management strategy							Positive Impact Management strategy					
	VERY HIGH 120						- 150 Improve current management							Maintain current management					
HIGH					101	– 12	5	mprove current management					Maintain current management						
MEDIUM – HIGH 76						76 -	- 100 Improve current management						Maintain current management						
		LOV	OW – MEDIUM 51				- 75	- 75 Improve current				nanagement			Maintain current management				
		LOW					- 50		Improve	mprove current management					Maintain current management				
		VERY LOW					- 25		Improve	mprove current management					Maintain current management				

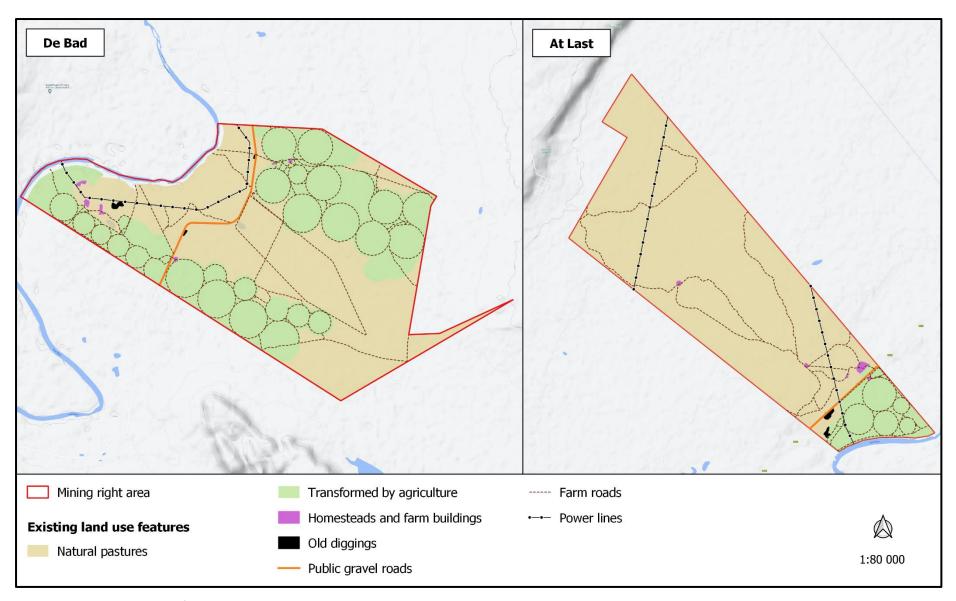
2.7. Assumptions and limitations

The study took place during late winter, which is not an optimal time of the year. Although the area received good summer rainfall, most grasses and annuals were dormant during the time of the field survey. The vegetation was therefore not in a favourable state for the assessment at the time of the site visit. Furthermore, due to the brief duration of the surveys and the lack of seasonal coverage, the species list and wetland characterisation reflected in this report cannot be regarded as fully representative. Ideally, a site should be visited several times during different seasons to ensure that the variation in species presence and habitat conditions are captured. However, this is rarely possible due to time and cost constraints related to mining and prospecting right application processes, and due to the nature of ephemeral wetlands systems. The survey was nevertheless conducted in such a manner to ensure all representative communities were traversed and therefore is likely to have included most of the common and important species present.

The official guideline documents and tools currently available to assess wetlands in South Africa were mainly developed for- and best applied to the more temperate wetlands of South Africa. The suite of methodologies available to date do not provide for a comprehensive and accurate assessment of the ephemeral wetlands in South Africa. This is mainly because they are rarely wet and do not display those indicators typically used for wetland assessments in other parts of South Africa. These systems have also received little attention in terms of scientific research. Therefore, the nature of the wetland on site and the lack of fully applicable methodologies are regarded as a limiting factor to justify the impacts to- and sensitivity of these systems on site. Nevertheless, the methodology used for this assessment was adapted from those available in the official guidelines, based on specialist knowledge and experience to provide a comprehensive understanding of the wetland and associated impacts related to the mining activities. In addition to these standard assessment protocols, the invertebrate cultures that were run in the lab provided valuable insight into the biodiversity of the ephemeral pans, which enhanced the wetland assessment outcome.

De Bad was accessible during the time of the field survey, but no access was granted to visit At Last during this time. Therefore information relating to the ecology of At Last was extrapolated from nearby sites that have been surveyed in the past. The core area earmarked for mining on At Last has however already been completely transformed by agricultural activities and therefore the lack of access is not considered a significant limitation to this ecological assessment.

3. DESCRIPTION OF THE AFFECTED ENVIRONMENT


3.1. Current and historic land use

De Bad and At Last are situated in a rural area, with major land uses in the region including mining and agriculture. According to AGIS, both sites are highly suitable for irrigation. De Bad falls within the Douglas East Potential Agricultural Area (PAA), with a B rating, while At Last falls within the Delportshoop PAA, with a D rating. The agricultural region is demarcated for cattle farming, with the grazing capacity estimated at 13 - 15 Ha/LSU. Currently, the property is used for agricultural activities, with extensive crop irrigation, especially along the river, while the remaining natural pastures are utilised by domestic stock. Existing infrastructure include homesteads, farm tracks, power lines and grazing camps, while large areas have been transformed for agriculture and evidence of historic mining activities are also visible (Figure 4).


3.2. Geology, soils, and topography

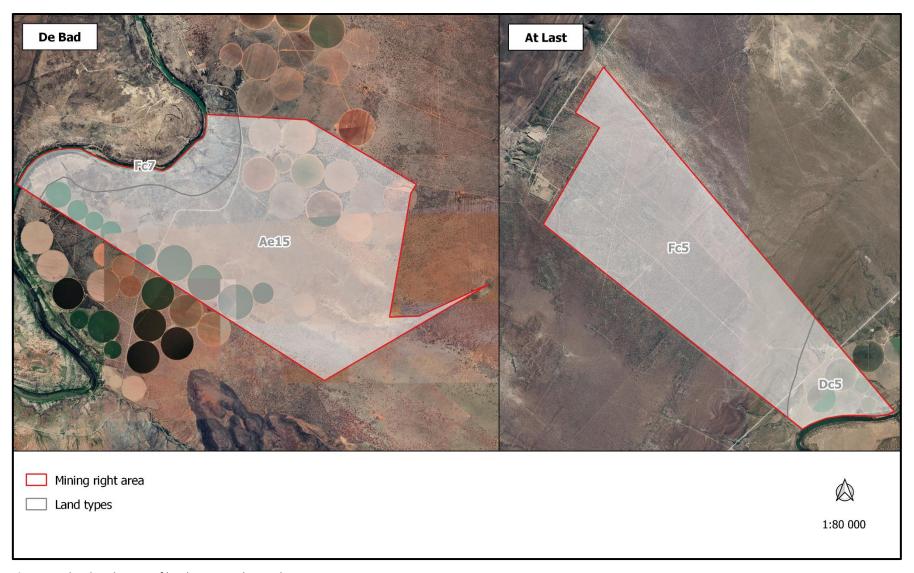
According to Bosch and Visser (1993) the geological features on the De Bad comprise Quaternary deposits, while Quaternary and Vaalian deposits are found on At Last (Figure 5). This geological map is however not entirely accurate, as it depicts De Bad to be largely covered by wind-blow sand. In reality, the slopes east of the Vaal River comprise Dwyka Tillites. Calcrete and surface limestone is present in the centre of the property, and alluvium is found along the river. Dolerite dykes and Kimberlite fissures are also present on De Bad (Figure 5). At Last primarily comprises calcrete, with alluvium along the river and major drainage systems. Siltstone, shale, quartzite, gritstone, and conglomerate from the Vryburg Formation of the Campbell Group (Griqualand West Sequence) occurs west of the public gravel road (Figure 5).

The topography of De Bad is characterised by plains with open low hills or ridges, with the slopes towards the river being classified as rolling or irregular plains with low hills or ridges. At Last is associated with plains with open high hills or ridges. Altitude ranges from 1 000 m above sea level along the river for both sites, to $1\,020-1\,046$ m along the plains on De Bad and $1020-1\,080$ m on At Last. The terrain is indicated by a gentle slope of around 1% across the plains but increases slightly to 2% towards the ridges that slope towards the river.

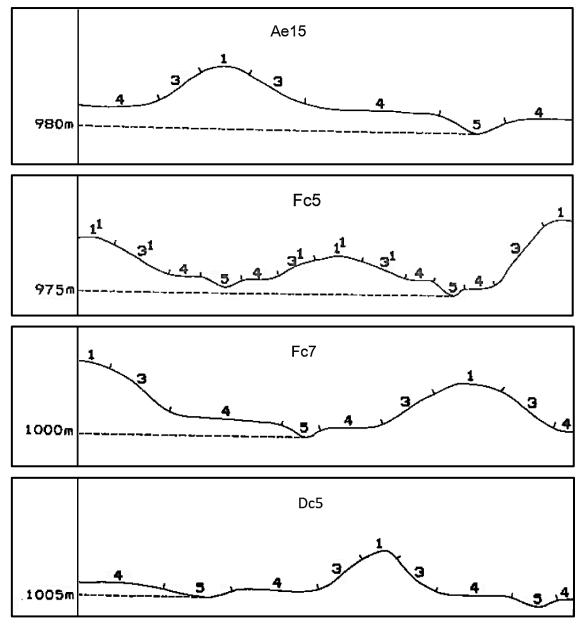
Figure 4. The existing land use features on the mining right area.

Figure 5. The distribution of geological features in the study area.

Land types include Fc7 and Ae15 on De Bad, and Fc5 and Dc5 on At Last (Figure 6 and Figure 7). Soils associated with the Fc5 and Fc7 land types are typically Glenrosa and/or Mispah forms, with lime generally present in the entire landscape. Dc5 land types include soils where prismacutanic and/or pedocutanic diagnostic horizons are dominant, but with one or more of vertic, melanic, red structured diagnostic horizons also being present. The Ae15 land type is associated with red-yellow apedal, freely drained soils, red, with a high base status and that are more than 300 mm deep, without dunes. The Vaal River is typically represented by terrain unit 5, while the plains are associated with terrain unit 4. The ridge slopes are presented by unit 3.


The generally level to gently sloping land of the plains produces low water erosion risk, but due to shifting sands being present it is highly susceptible to wind erosion. Erosion risks on the steeper slopes of the ridges are higher in terms of water erosion, and any pure sands found here will also be highly susceptible to wind erosion. The soils also have moderately high susceptibility for crusting and compaction.

3.3. Vegetation


3.3.1. Broad-scale vegetation patterns

The study area falls within the Savanna Biome (Mucina and Rutherford 2006). According to the vegetation map of Mucina and Rutherford (2012), the sites are represented by two broad-scale vegetation units, i.e. Kimberley Thornveld and Schmidtsdrif Thornveld (Figure 8). This vegetation map however does not reflect the true character of the site, because it has not been mapped at a very fine scale. Therefore, field-based classification of small-scale vegetation patterns are discussed in the next section.

Kimberley Thornveld is distributed in the North-West, Free State and Northern Cape Provinces at altitudes between 1 050 and 1 400 m. It is found in the Kimberley, Hartswater, Bloemhof and Hoopstad Districts, but is also within the Warrenton, Christiana, Taung, Boshof and Barkly West Districts. The unit is typically presented as slightly undulating sandy plains with a well-developed tree and shrub layer and an open grass layer. Andesitic lavas of the Allanridge Formation occur in the north and west, while fine-grained sediments of the Karoo Supergroup are found in the south and east. Soils are deep, sandy to loamy, and of the Hutton form. The most common land types are Ae and Ah.

Figure 6. The distribution of land types in the study area.

Figure 7. The land types and terrain units associated with the study area.



Figure 8. The broad-scale vegetation units (Mucina and Rutherford 2012) present in the study area.

The unit is classified as being least threatened, but 18 % has already been transformed, predominantly by cultivation. Only 2 % is currently conserved in statutory reserves and no endemic species are known from this unit. It is specifically prone to Acacia mellifera encroachment following overgrazing, but the occurrence and risk of erosion is very low.

Schmidtsdrif Thornveld is distributed in the Northern Cape, Free State and North-West Provinces at altitudes between 1 000 and 1 350 m. It stretches from the footslopes and midslopes to the southeast and below the Ghaap Plateau from around Douglas in the southwest via Schmidtsdrif towards Taung in the northeast. A small less typical section is found east of the Ghaap Plateau from Warrenton towards Hertzogville. The unit is typically presented as a closed shrubby thornveld dominated by Senegalia mellifera and Vachellia tortilis. Apart from grasses, bulbs and annual herbs are also prominent. The vegetation is very disturbed in some areas due to overgrazing by goats and other browsers. Dwyka diamictites and Ecca shales of the Karoo Supergroup are the most significant geological features in this unit, Shale and dolomite of the Schmidtsdrif Subgroup (Griqualand West Supergroup) are also present. Surface limestone occurs sporadically. The soils are welldrained, stony and shallow (< 0.3 m), with large angular rocks found on the surface. A soilrock complex with Mispah soil form is typical, while the unit is mainly associated with the Ae and Dc land types. The unit is least threatened, with 13 % being transformed mainly by cultivation. A very small portion (0.2 %) used to be conserved in the de-proclaimed Vaalbos National Park, but it is no longer statutorily conserved. Erosion is very low to low. No endemic species are known from this unit and Prosopis spp. are significant alien invaders.

3.3.2. Fine-scale vegetation patterns

The proposed finer scale vegetation communities were delineated according to plant species correspondences and changes in soil structure. The vegetation of the study area can be divided into six distinct units (Figure 9), which are described below. These descriptions include unique characteristics and the dominant species found in each unit. A complete plant species list, including those species historically recorded in the region, is presented in Appendix 1. Areas that have already been transformed by agriculture are indicated on the map but will not be discussed further.

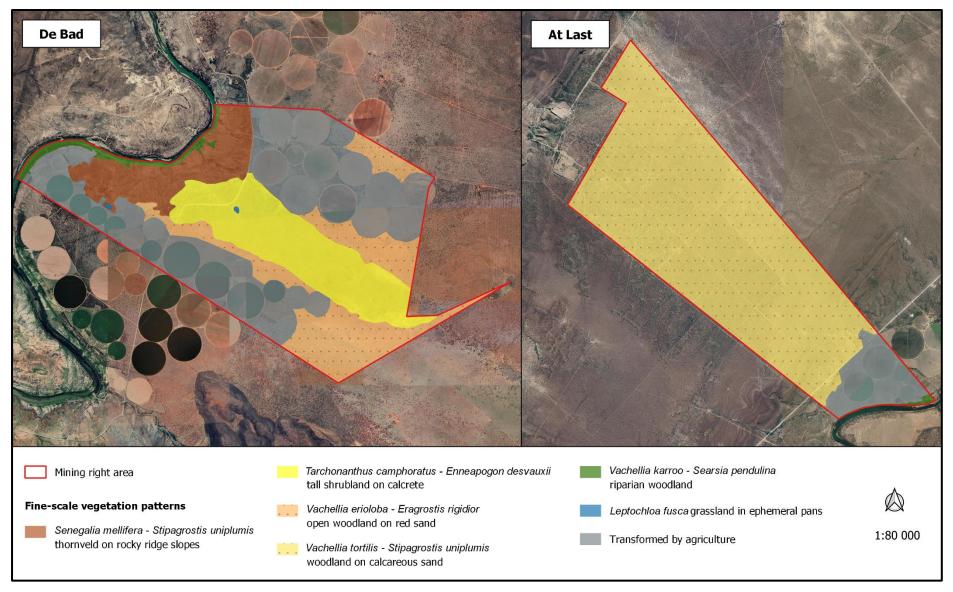


Figure 9. The distribution of fine-scale plant communities in the study area.

i) Senegalia mellifera - Stipagrostis uniplumis thornveld on rocky ridge slopes

This community occurs along the ridge slopes on De Bad (Figure 9). The vegetation is presented as thornveld with tall shrubs scattered in a grassy matrix (Figure 10). Much of this community has been degraded by historic land use activities. Red sand and rock constitute approximately $5-10\,\%$ of the ground cover. Crustose lichens and biological soil crusts are also conspicuus in some areas, but for most parts the latter has been destroyed by trampling.

The tall shrub layer is dominated by Senegalia mellifera, with Grewia flava also being very abundant. Other common tall shrubs include Phaeoptilum spinosum, Tarchonanthus camphoratus, Ehretia rigida, Ziziphus mucronata subsp. mucronata, Gymnosporia buxifolia and Rhigozum trichotomum. Trees, Vachellia tortilis, V. erioloba and Olea europaea subsp. africana are also scattered across the thornveld. Low shrubs include Plinthus karooicus, Lycium cinereum, Pentzia incana, Lasiosiphon polycephalus, Leonotis pentadentata, Aptosimum marlothii, A. indivisum, Asparagus laricinus, Justicia incana, Melolobium candicans, Kleinia longiflora and Viscum rotundifolium.

The grass layer is dominated by *Stipagrostis uniplumis*, but *Eragrostis lehmanniana* is also abundant. Other common grasses include *Fingerhuthia africana*, *Cenchrus ciliaris*, *Eragrostis echinochloidea*, *Heteropogon contortus*, *Enneapogon cenchroides* and *Aristida congesta subsp. barbicollis*.

Herbs include *Lessertia annularis, Helichrysum argyrosphaerum, Nemesia fruticans, Sebaea exigua* and *Oxalis lawsonii*. Succulents, *Aloe claviflora* and *A. grandidentata* are also found here.

The herbaceous weed *Bidens pilosa*, along with invasive *Prosopis* trees and shrubs are also common in this unit.

Figure 10. The thornveld on red sand and rock is represented by tall shrubs in a grassy matrix (top). Biological soil crusts (centre) and crustose lichens (bottom) are prevalent in places.

ii) Tarchonanthus camphoratus - Enneapogon desvauxii tall shrubland on calcrete

This community is associated with the calcrete and surface limestone deposits in the centre of De Bad (Figure 9). Here, the vegetation comprises tall shrubland within a grassy matrix, intermixed with low shrubs (Figure 11). It is found on shallow, rocky soil, which constitutes approximately 5% of the ground cover.

The tall shrub layer is dominated by *Tarchonanthus camphoratus*, but *Senegalia mellifera* is also abundant. Other common species include *Ziziphus mucronata* subsp. *mucronata*, *Rhigozum trichotomum*, *Grewia flava* and *Cadaba aphylla*. Low shrubs include *Justicia divaricata*, *Pentzia calcarea*, *Eriocephalus ambiguus*, *Felicia fascicularis*, *Lycium cinereum*, *Thesium hystrix* and *Rosenia humilis*.

The grassy matrix consists of a clear short- and tall grass component. *Enneapogon desvauxii* dominates the short-grass component, while *Aristida vestita* dominates the tall-grass component. Other common grasses include *Enneapogon cenchroides*, *Fingerhuthia africana*, *Cenchrus ciliaris*, *Eragrostis lehmanniana*, *E. echinochloidea*, *Heteropogon contortus* and *Themeda triandra*. Herbs include *Senecio consanguineus* and *Helichrysum argyrosphaerum*.

Figure 11. The tall shrubland on calcrete comprise tall shrubs found in a grassy matrix intermixed with low shrubs.

iii) Vachellia erioloba - Eragrostis rigidior open woodland on red sand

This community is restricted to deep red sand, which comprise the majority of De Bad, but most of it has been completely transformed for crop irrigation (Figure 9). Here, the vegetation is presented as an open woodland, where tall trees are scattered in an extensive grassland matrix (Figure 12). Bare ground constitutes approximately 5% of the ground cover.

Vachellia erioloba dominates the tree layer, with large adult individuals providing refugia for other tall shrubs, such as Lycium hirsutum and Grewia flava, the grass Setaria verticillata, as well as the herb Senecio consanguineus. Senegalia mellifera is also starting to encroach on the grassland.

The grassland is strongly dominated by *Eragrostis rigidior*, but *Eragrostis lehmanniana*, *E. pallens*, *Pogonarthria squarrosa* and *Stipagrostis uniplumis* is also common. Low shrubs found in the grassy matrix include *Lasiosiphon polycephalus*, *Selago densiflora* and *Plinthus karooicus*. Herbs include *Nemesia fruticans*, *Oxalis lawsonii* and *Lotononis laxa*. The bulb *Trachyandra bulbinifolia* is also found here.

Figure 12. The open woodland on red sand is represented by large, tall *Vachellia erioloba* trees sparsely scattered in an extensive grassy matrix.

iv) Vachellia tortilis - Stipagrostis uniplumis woodland on calcareous sand

This community covers most of At Last (Figure 9) and is found on sandy soil over rock, with calcrete being prevalent. The vegetation is presented as woodland, with tall trees scattered in a grassy matrix (Figure 13).

The tree layer is dominated by *Vachellia tortilis* and a secondary tall shrub layer, dominated by *Senegalia mellifera* has also encroached the matrix. Other trees and tall shrubs scattered across this community include *Boscia albitrunca*, *Diospyros lycioides*, *Grewia flava*, *Searsia burchellii*, *S. tridactyla*, *S. lancea*, *Tarchonanthus camphoratus*, *Ziziphus mucronata* and *Rhigozum obovatum*. Common low shrubs include *Pentzia calcarea*, *Felicia fascicularis*, *Lycium horridum*, *Asparagus glaucus*, *Viscum rotundifolium*, *Lasiosiphon polycephalus*, *Seddera capensis*, *Justicia divaricata* and *Jamesbrittenia tysonii*.

The grass layer is dominated by *Stipagrostis uniplumis*, but other common grasses include *Eragrostis echinochloidea*, *E. lehmanniana*, *Cenchrus ciliaris*, *Enneapogon cenchroides*, *Cymbopogon pospischilii*, *Themeda triandra*, *Aristida meridionalis*, *Setaria verticillata* and *Aristida congesta* subsp. *congesta*. The herb *Salvia disermas* is also found here.

Figure 13. The woodland on calcareous soil comprises tall trees scattered in a grassy matrix, but a secondary tall shrub layer, dominated by *Senegalia mellifera* encroaches the matrix.

v) Vachellia karroo - Searsia pendulina riparian woodland

The riparian woodland lines the Vaal River on both De Bad and At Last (Figure 9). Although it is the main vegetation along the riverbank, it is broken up by bare areas and floodplains that have been degraded through land use activities and erosion (Figure 14). The woodland is fairly monotonous, and the vegetation seems to have been severely degraded, most likely by recent flooding events. *Vachellia karroo* dominates, but *Searsia pendulina, Lycium bosciifolium, Diospyros lycioides* subsp. *lycioides, Asparagus* sp., and *Eucalyptus camaldulensis* are also common woody components. The understory has been infested with *Bidens bipinnata* and *Argemone ochroleuca* in places. *Phragmites australis* is common along the water line, and the floodplains are dominated by the grass *Cynodon dactylon* and the bulb *Moraea pallida*.

Figure 14. Riparian woodland lines the banks of the Vaal River for most part (top), but the woodland is interrupted by eroded floodplains in places (bottom).

vi) Leptochloa fusca grassland in ephemeral pans

The ephemeral pans on De Bad (Figure 9) are occupied by monotonous grassland vegetation in the centre, with tall shrubs lining the periphery (Figure 15). Leptochloa fusca dominates the grassland, with Eragrostis rigidior occurring sporadically. The low shrub Selago densiflora, herb Lotononis laxa and bulb Ornithogalum flexuosum are also found here. The woody component lining the peripheries include Diospyros lycioides subsp. lycioides, Ziziphus mucronata subsp. mucronata, Lycium bosciifolium and Grewia flava. Argemone ochroleuca has infested the understory in places.

Figure 15. The ephemeral pans on site are occupied by grassland in the centre, with tall shrubs lining their peripheries.

3.3.3. Population of sensitive, threatened and protected plant species

The SANBI Red List provides information on the national conservation status of South Africa's indigenous plants, while the National Forests Act (No. 84 of 1998) (NFA) and the Northern Cape Nature Conservation Act (Act No. 9 of 2009) (NCNCA) restricts activities regarding sensitive plant species. Section 15 of the NFA prevents any person to cut, disturb, damage, destroy or remove any protected tree; or collect, remove, transport, export, purchase, sell, donate or in any other manner acquire or dispose of any protected tree, except under a licence granted by the Minister. Section 49 (1) and 50 (1) of the NCNCA states that no person may, without a permit pick, transport, possess, or trade in a specimen of a specially protected (Schedule 1) or protected (Schedule 2) plants. Furthermore, Section 51(2) states that no person may, without a permit, pick an indigenous plant (Schedule 3) in such manner that it constitutes large-scale harvesting.

Most species of the region are classified as least concern; a category which includes widespread and abundant taxa (Table 2). However, one species, i.e. *Salsola microtricha* is listed as "Data Deficient - Taxonomically Problematic" under the National Environmental: Biodiversity Act (Act No. 10 of 2004) (NEMBA). The genus *Salsola* needs taxonomic revision because its species are poorly defined and difficult to separate. Therefore, based on currently available data, the risk of extinction of this species cannot be assessed. This species was not encountered on site, but it has been recorded in the region in the past.

Species protected in terms of the National Forests (NFA) Act No 84 of 1998 include *Vachellia erioloba, V. haematoxylon* and *Boscia albitrunca* (Table 2). The latter species is also protected according to the NCNCA (Schedule 2). It was not recorded on De Bad but is expected to occur on At Last, in the pristine woodland to the west of the public gravel road, which has not been earmarked for mining.

Vachellia erioloba was most abundant in the woodland on red sand, where it was found at very high densities of 20 - 30 individual per hectare. Here, all size classes were also present, from saplings of 80 cm (h) x 60 cm (d) (Figure 16), all the way through to large mature adults of 5 m (h) x 15 m (d). It also occurred in the thornveld on rocky ridge slopes, but at very low densities of <1 individuals per hectare. Here, they primarily occurred as young adult trees of 3 m (h) x 2.5 m (d) (Figure 16). *Vachellia haematoxylon* was not recorded in the study area.

A photographic guide for species of conservation concern that occur on site is provided in Appendix 3.

Table 2. Plant species found in the region that are of conservation concern. Those recorded in the study area is highlighted in red.

FAMILY	Scientific name	Status	NFA	NCNCA
AIZOACEAE	Titanopsis calcarea			S2
AMARANTHACEAE	Salsola microtricha	DDT		
ASPHODELACEAE	Aloe claviflora			S2
	Aloe grandidentata			S2
	Bulbine abyssinica			S2
	Trachyandra bulbinifolia			S2
CAPPARACEAE	Boscia albitrunca		X	S2
CELASTRACEAE	Gymnosporia buxifolia			S2
FABACEAE	Lessertia annularis			S1
	Vachellia erioloba		X	
	Vachellia haematoxylon		X	
HYACINTHACEAE	Ornithogalum flexuosum			S2
	Ornithogalum nannodes			S2
IRIDACEAE	Babiana hypogaea			S2
	Moraea pallida			S2
OLEACEAE	Olea europaea subsp. africana			S2
OXALIDACEAE	Oxalis lawsonii			S2
SCROPHULARIACEAE	Jamesbrittenia tysonii			S2
	Nemesia fruticans			S2
	Nemesia lilacina			S2

Protected species in terms of Schedule 1 and 2 of the Northern Cape Nature Conservation (NCNCA) Act No. 9 of 2009 is listed in Table 2. All *Lessertia* species are protected in terms of Schedule 1, and *Lessertia* annularis was recorded in the thornveld on rocky ridge slopes.

Species protected in terms of Schedule 2 include *Olea europaea* subsp. *africana*, all Aizoaceae species previously included in the family Mesembryanthemaceae, all species in the family Asphodelaceae and Iridaceae, as well as all *Gymnosporia*, *Ornithogalum*, *Oxalis*, *Jamesbrittenia* and *Nemesia* species.

Figure 16. The protected tree *Vachellia erioloba* occurs at high densities from saplings to large trees in the open woodland on red sand (top and centre), while young trees are found sporadically in the thornveld on rocky ridge slopes.

3.3.4. Weeds and invader plant species

Weeds and invasive species are controlled in terms of the National Environmental Management: Biodiversity (NEMBA) Act 10 of 2004, the Conservation of Agricultural Resources (CARA) Act 43 of 1993, as well as the NCNCA (Schedule 6). These are species that do not naturally occur in a given area and exhibit tendencies to invade that area, and others; at the cost of locally indigenous species. To govern the control of such species, NEMBA and CARA have divided weeds and invader species into categories (see Table 3). All declared weeds and invasive species recorded in the study region are listed in Table 4, along with their categories according to CARA, NEMBA and NCNCA.

Table 3. The categorisation of weeds and invader plant species, according to NEMBA and CARA.

	NEMBA	CARA
1a	Listed invasive species that must be combatted or eradicated.	Plant species that must be removed and destroyed immediately. These plants serve no economic purpose and possess characteristics that are harmful to humans, animals and the environment.
1b	Listed invasive species that must be controlled.	2 Plant species that may be grown under controlled conditions. These plants have certain useful qualities and are allowed in demarcated areas. In other areas they must be eradicated and controlled.
2	Listed invasive species that require a permit to carry out a restricted activity within an area.	3 Plant species that may no longer be planted. These are alien plants that have escaped from, or are growing in gardens and are proven to be invaders. No further planting is allowed. Existing plants may remain (except those within the flood line, 30 m from a watercourse, or in a wetland) and must be prevented from spreading.
3	Listed invasive species that are subject to exemptions and prohibitions	

Table 4. A list of declared weeds and invasive species recorded in the study region.

Scientific name	entific name Common name		NEMBA	NCNCA
Argemone ochroleuca	White-flowered Mexican poppy	1	1b	S6
Eucalyptus camaldulensis	River red gum	2	1b	S6
Lythrum hyssopifolia	Hyssop loosestrife	-	1b	-
Prosopis glandulosa	Honey mesquite	2	3	S6
Prosopis velutina	Velvet mesquite	2	3	S6

3.3.5. Indicators of bush encroachment

Bush encroacher species are controlled in terms of Regulation 16 of CARA; where land users of an area in which natural vegetation occurs and that contains communities of encroacher indicator plants are required to follow sound practices to prevent the deterioration of natural resources and to combat bush encroachment where it occurs. Declared indicators of bush encroachment in the Northern Cape, recorded in the study area, are listed in Table 5.

Table 5. A list of declared indicators of bush encroachment in the Northern Cape, which were recorded in the study area.

Scientific name	Common name
Grewia flava	Velvet Raisin
Rhigozum trichotomum	Three – thorn rhigozum
Senegalia mellifera subsp. detinens	Black thorn
Tarchonanthus camphoratus	Camphor bush
Vachellia karroo	Sweet thorn
Vachellia tortilis	Umbrella thorn

3.4. Faunal communities

According to Section 3(a) and 4(a) of the Northern Cape Nature Conservation (NCNCA) Act No. 9 of 2009, no person may, without a permit by any means hunt, kill, poison, capture, disturb, or injure any protected (Schedule 2) or specially protected (Schedule 1) wild animals. Furthermore, Section 12 (1) of NCNCA states that no person may, on a land of which he or she is not the owner, hunt a wild animal without the written permission from the landowner. According to the act "wild animal" means a live vertebrate or invertebrate animal, and the egg or spawn of such animal.

The landscape features on the De Bad & At Last site provides several habitat opportunities to faunal communities and wild animals likely to be found in the study area are discussed in their respective faunal groups below.

3.4.1. Mammals

As many as 59 terrestrial mammals and nine bat species have been recorded in the region (see Appendix 2), of which Vervet Monkey, Steenbok, Suricate, Slender Mongoose and Kudu were encountered during the site visit. Small rodent burrows and Black-backed Jackal scat were also observed (Figure 17).

Seven listed terrestrial mammal species and two listed bat species potentially occur in the area (Table 6). Virtually all mammals of the study area are protected; either according to Schedule 1, 2 or 3 of NCNCA (see Appendix 2). Those that are specially protected are also indicated in Table 6.

The African Straw-coloured Fruit-bat, Aardvark, Aardwolf, Cape Fox, Bat-eared Fox, African Striped Weasel, African Wildcat, Black-footed cat, Honey Badger, Striped Polecat and South African Hedgehog all have a high chance of occurring on site, given their wide habitat tolerances and preference for the dominant savanna habitat found on site. Cape Clawless Otter and Spotted-necked Otter also have a high likelihood to occur in the study area, but they are expected to be restricted to the Vaal River.

Table 6. A list of mammal species that are likely to be found in the study area, which are of conservation concern in terms of the international (IUCN) Red List and the 2016 Mammal Red List of South Africa Lesotho and Swaziland (EWT 2016). Their respective NCNCA schedule numbers are indicated in superscript.

Scientific name	Common name	IUCN Status	EWT 2016
² Eidolon helvum	African Straw-coloured Fruit-bat	NT	LC
² Rhinolophus denti	Dent's Horseshoe Bat	LC	NT
¹ Orycteropus afer	Aardvark	LC	LC
¹Smutsia temminckii	Temminck's Ground Pangolin	VU	VU
¹ Atelerix frontalis	South African Hedgehog	LC	NT
¹ Proteles cristatus	Aardwolf	LC	LC
¹ Felis silvestris cafra	African Wild Cat	LC	LC
¹ Felis nigripes	Black-footed cat	VU	VU
¹ Vulpes chama	Cape Fox	LC	LC
² Aonyx capensis	Cape Clawless Otter	NT	NT
¹ Hydrictis maculicollis	Spotted-necked Otter	NT	VU
¹Hyaena brunnea	Brown Hyena	NT	NT
¹ Otocyon megalotis	Bat-eared Fox	LC	LC
¹ Ictonyx striatus	Striped Polecat LC		LC
¹ Poecilogale albinucha	African Striped Weasel	LC	NT
¹ Mellivora capensis	Honey Badger	LC	LC

Figure 17. Small rodent burrows (left) and black-backed jackal scat (right) were observed on site.

Dent's Horseshoe Bat has a low potential to be found on site. It prefers rocky outcrops and caves and no suitable roosting sites have been observed on site. Temminck's Ground Pangolin and Brown Hyaena also have a low potential to occur on site. Although their habitat requirements and natural distribution ranges overlap with that of the study area, they are both rather sensitive to anthropogenic habitat disturbances. Farm fences and the extensive agricultural activities on site are expected to restrict their occurrences across their natural distribution range in the area.

Problem animals (Schedule 4) confirmed on site are Vervet Monkey and Black-backed Jackal, but Caracal is also expected to occur in the study area.

3.4.2. Reptiles

The De Bad and At Last mining area lies within the distribution range of at least 55 reptile species (see Appendix 2). No listed species are known to occur in the area, but most reptiles of the study area are protected either according to Schedule 1 or 2 of NCNCA, except for agamas, geckos and skinks (Appendix 2). Specially protected species include *Karusasaurus polyzonus* (Southern Karusa Lizard) and *Chamaeleo dilepis dilepis* (Common Flap-neck Chameleon). The Karusa Lizard is a rock-dwelling species, while the Common Flap-neck Chameleon is typically found high up in bushes or trees (Figure 18).

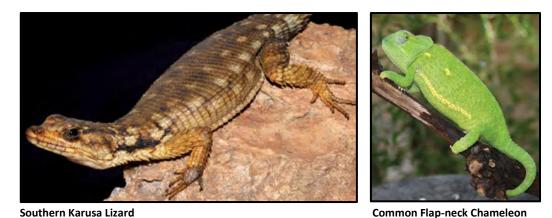


Figure 18. Reptile species of conservation concern that are expected to occur in the study area.

Three species from the region are endemic to South Africa, i.e. *Homopus femoralis* (Greater Padloper), *Pachydactylus mariquensis* (Common Banded Gecko) and *Agama aculeata distanti* (Eastern Ground Agama).

3.4.3. Amphibians

Fifteen amphibian species are known from the region (Appendix 2). The Vaal River and ephemeral pans are considered to be the most important habitats for amphibians in the study area, as most frogs are dependent on water, specifically for breeding. Higher amphibian diversity is expected in these habitats, while the adults of those species which are relatively independent of water (Tandy's Sand Frog, Tremolo Sand Frog, Boettger's Caco, Karoo Toad) are likely to be common in the terrestrial habitats, where they normally aestivate under logs, stones and animal burrows during the dry season.

The Giant Bull Frog (*Pyxicephalus adspersus*, Figure 19) is listed as Near Threatened in the Southern African Frog Atlas and is protected according to Schedule 1 of the NCNCA. They prefer seasonal shallow grassy pans, vleis and other rain-filled depressions in open flat areas of grassland or savanna, but mainly remain buried up to 1 m underground until conditions become favourable. The site lies within the known distribution of this species, and the ephemeral pans on De Bad present ideal habitats for it.

All other amphibians of the study area are protected according to Schedule 2 of NCNCA (see Appendix 2).

Figure 19. The Giant Bull Frog's distribution range overlaps with that of the study area and is expected to be associated with the ephemeral pans on De Bad.

3.4.4. Avifauna

The study site does not fall within or near (<50 km) any of the Important Bird Areas (IBA) defined by Birdlife South Africa. A total number of 283 bird species have been recorded from the region (see Appendix 2), of which as many as 24 are listed and classified as Vulnerable, Near Threatened, Endangered or Critically Endangered (Table 7). Furthermore, all birds are protected either according to Schedule 1, 2 or 3 of NCNCA (Appendix 2). Those that are specially protected (Schedule 1) are also listed in Table 7. Plants in general, from grass tufts to shrubs and tall trees provide important micro-habitats to birds in the terrestrial habitats. The Vaal River and ephemeral pans further increases habitat opportunities to birds and therefore the study area is expected to host a diverse avifauna community.

Many of the species of conservation concern are expected to occur on site either by occasionally passing over, foraging or nesting. The most common listed bird species expected to occur in the terrestrial habitats on site include Ludwig's Bustard, Kori Bustard, Short-clawed Lark, Tawny Eagle, Martial Eagle, Secretarybird (Figure 20), while most of the specially protected (Schedule 1) owls and raptors are also expected to occur here. African Fish Eagle were heard calling from the Vaal River during the field survey and they usually occupy tall trees in the riparian woodland. The ephemeral pans might attract protected water birds such as Black-winged Pratincole, Yellow-billed Stork, Maccoa Duck, Lesser Flamingo, Greater Flamingo and Greater Painted-snipe; but only during wet seasons.

 Table 7. Bird of conservation concern that are likely to occur on site.

Scientific name	Common name	IUCN	SA Red Data Book	NCNCA (S1)
Anthropoides paradiseus	Blue Crane	VU	NT	
Aquila rapax	Tawny Eagle	VU	EN	Χ
Aquila verreauxii	Black Eagle		VU	Χ
Ardeotis kori	Kori Bustard	NT	NT	Χ
Bubo africanus	Spotted Eagle Owl			Χ
Bubo lacteus	Giant Eagle Owl			Χ
Buteo rufofuscus	Jackal Buzzard			Χ
Buteo vulpinus	Steppe Buzzard			Χ
Caprimulgus europaeus	Eurasian Nightjar			Χ
Caprimulgus rufigena	Rufouscheeked Nightjar			Χ
Caprimulgus tristigma	Freckled Nightjar			Χ
Charadrius pallidus	Chestnutbanded Plover	NT	NT	Χ
Ciconia abdimii	Abdim's Stork		NT	
Ciconia nigra	Black Stork		VU	Χ
Circaetus pectoralis	Blackbreasted Snake Eagle			Χ
Circus maurus	Black Harrier	EN	EN	Χ
Circus pygargus	Montagu's Harrier			Χ
Circus ranivorus	African Marsh Harrier		EN	Χ
Coracias garrulous	Eurasian Roller		NT	
Cursorius rufus	Burchell's Courser		VU	
Elanus caeruleus	Black-shouldered Kite			Х
Falco biarmicus	Lanner Falcon		VU	X
Falco naumanni	Lesser Kestrel			X
Falco peregrinus	Peregrine Falcon			X
Falco rupicolis	Rock Kestrel			X
Falco rupicoloides	Greater Kestrel			X
Glareola nordmanni	Blackwinged Pratincole	NT	NT	X
Glaucidium perlatum	Pearlspotted Owl	•••		X
Gyps africanus	White-backed Vulture	CR	CR	X
Gyps coprotheres	Cape Vulture	EN	EN	X
Haliaeetus vocifer	African Fish Eagle	LIV	LIV	X
Leptoptilos crumeniferus	Marabou Stork		NT	X
Melierax canorus	Pale Chanting Goshawk		INT	X
Melierax gabar	Gabar Goshawk			X
Milvus migrans	Black Kite			X
Mycteria ibis	Yellow-billed Stork		EN	X
•	Ludwig's Bustard	EN		X
Neotis ludwigii	Maccoa Duck	VU	EN	^
Oxyura maccoa			NT	V
Phoenicopterus minor	Lesser Flamingo	NT	NT	X X
Phoenicopterus ruber	Greater Flamingo	EN	NT	
Polemaetus bellicosus	Martial Eagle	EN	EN	X
Polihierax semitorquatus	Pygmy Falcon			X
Polyboroides typus	Gymnogene			X
Ptilopsis granti	Southern White-faced Owl			X
Rostratula benghalensis	Greater Painted-snipe			X
Sagittarius serpentarius	Secretarybird	EN	VU	X
Torgos tracheliotus	Lappet-faced Vulture	EN	EN	X
Tyto alba	Barn Owl			Χ

Figure 20. Bird species of conservation concern that are expected to occur in the study area.

3.4.5. Fish

In addition to those regulations in the NCNCA pertaining to wild animals, Section 32 and 33 of the NCNCA states that no person may, without a permit angle and not immediately release, catch, import, export, transport, keep, possess, breed, or trade in a specimen of a specially protected (Schedule 1) or protected (Schedule 2) fish. No fish are expected to occur in the ephemeral pans, even when filled, mainly due to their ephemerality. However, nine fish species are expected to be found in the Vaal River. These are listed in Table 8, along with their conservation status and sensitivity to physico-chemical and no-flow conditions.

Most of the fish species in the study area are listed as least concern, but the Vaal-orange Largemouth Yellowfish is listed ar Near-Threatened. It is endemic to the Orange-Senqu and Vaal River systems in the Orange-Senqu River Basin and although it is widespread in these systems and their tributaries, it is not abundant. It is being threatened by the continuous decline in water quality, the destruction of suitable spawning beds due to erosion, as well as a slow growth rate and late maturing with low fecundity. It prefers lotic systems, with clear water that has a gravel or sand bottoms. Juveniles feed on a wide variety of aquatic organisms while adults are mostly piscivorous and act as apex predators. Furthermore, all fish species of the study area are protected either according to Schedule 1 or 2 of the NCNCA. Specially protected (Schedule 1) species include the Vaal-orange Largemouth Yellowfish, Vaal-orange Smallmouth Yellowfish and Moggel.

Table 8. Fish species expected to occur in the Vaal River at the two sites, along with their IUCN status and sensitivity to physico-chemical and no-flow conditions (High = H, Moderate = M, Low = L). Their respective NCNCA schedule numbers are indicated in superscript.

Scientific Name	Common name	De Bad	At Last	IUCN	Phys- Chem	No- Flow
² Barbus paludinosus	Straightfin Barb	Х			L	М
² Barbus trimaculatus	Threespot Barb	Χ			L	М
² Clarias gariepinus	Sharptooth catfish	Χ	Χ		L	L
² Labeo capensis	Orange River Mudfish	Χ	Χ		M	Н
¹Labeo umbratus	Moggel	Χ			M	Н
¹Labeobarbus aeneus	Vaal-orange Smallmouth Yellowfish	Χ	Χ		М	Н
¹ Labeobarbus kimberleyensis	Vaal-orange Largemouth Yellowfish	Χ		NT	н	Н
² Pseudocrenilabrus philander	Southern Mouthbrooder	Χ	Χ		L	L
² Tilapia sparrmanii	Banded Tilapia	Х	Х		L	L

3.4.6. Invertebrates

Invertebrates dominate inland habitats and play a significant role in the overall function of the ecosystem (Kremen et al. 1993, Weisser and Siemann 2004). In general, they are widely distributed and extremely diverse, which makes it almost impossible to list all species that may possibly occur on site without a dedicated study. Invertebrates have also not been surveyed as comprehensively as plants and mammals and therefore current available data on their distribution is much scarcer. Nevertheless, key morphospecies and species of conservation concern are discussed here, as well as the major habitats which delimit possible invertebrate communities on site.

Eight invertebrate species of the Northern Cape appear on the IUCN Red Data list of threatened species and are listed in Table 9. However, none of these species' distribution ranges overlap with that of the study area. In addition, those species that are specially protected according to Schedule 1 of the NCNCA include all Velvet worms as well as some baboon spider species, Stag Beetles and the Flightless Dung Beetle (Table 9). Of these, common Baboon Spiders (*Harpactira* sp.) have been recorded in the region (Figure 21).

All Rock- Creeping- and Burrowing Scorpions are protected according to Schedule 2 of the NCNCA, along with several beetles, butterflies and moths (Table 9). Of these, Burrowing and Rock Scorpions as well as some Gossamer-winged Butterflies, Skippers, Brush-footed Butterflies and Satyrs have the highest likelihood to be found on site. All other invertebrates from the class Insecta and Arachnida are protected according to Schedule 3 of the NCNCA.

Three major habitats delimit possible invertebrate communities in the study area:

i. Terrestrial vegetation classified as Karoo for insect preference (Picker et al. 2004)

All of the terrestrial vegetation communities on site fall within this karoo habitat. Invertebrate communities associated with the karoo vegetation represent unique species assemblages, with an above-average representation of beetles, grasshoppers, flies, wasps and lacewings. The protected butterflies, scorpions and baboon spiders discussed above are expected to be associated with this habitat. Invertebrate activity during the site visit was low, but termitaria most likely belonging to *Trinervitermes trinervoides*, and scorpion burrows were observed (Figure 21).

Table 9. Invertebrate species found in the Northern Cape that are of conservation concern.

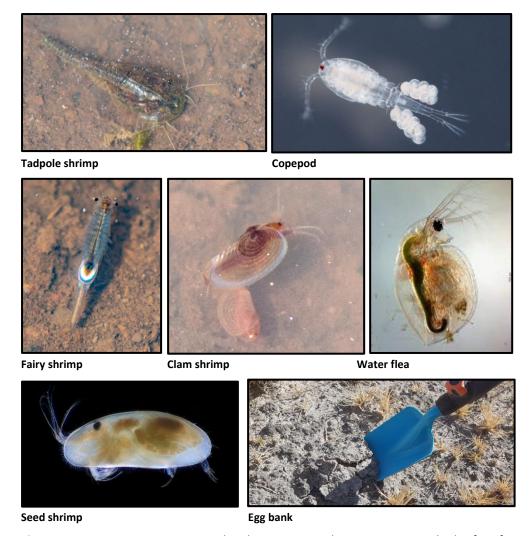

CLASS	ORDER	Scientific Name	Common name	Status
ARACHNIDA	MYGALOMORPHAE	Ceratogyrus spp.	Horned Baboon Spiders	S1
		Harpactira spp.	Common Baboon Spiders	S1
		Pterinochilus spp.	Goldenbrown Baboon Spiders	S1
	SCORPIONES	Hadogenes spp.	All Rock Scorpions	S2
		Opisthacanthus spp.	All Creeping Scorpions	S2
		Opistophthalmus spp.	All Burrowing Scorpions	S2
INSECTA	COLEOPTERA	Circellium bacchus	Flightless Dung Beetle	S1
		Colophon spp.	All Stag Beetles	S1
		Dromica spp.	Tiger Beetles (all species)	S2
		Graphipterus assimilis	Velvet Ground Beetle	S2
		Ichnestoma spp.	All Fruit Chafer Beetles	S2
		Manticora spp.	All Monster Tiger Beetles	S2
		Megacephala asperata	Tiger Beetle	S2
		Megacephala regalis	Tiger Beetle	S2
		Nigidius auriculatus	Stag Beetle	S2
		Oonotus adspersus	Stag Beetle	S2
		Oonotus interioris	Stag Beetle	S2
		Oonotus rex	Stag Beetle	S2
		Oonotus sericeus	Stag Beetle	S2
		Platychile pallida	Tiger Beetle	S2
		Prosopocoilus petitclerci	Stag Beetle	S2
		Prothyma guttipennis	Tiger Beetle	S2
	LEPIDOPTERA	Lepidochrysops penningtoni	Pennington's Blue	DD
		Lycaenidae	All Gossamer-winged Butterflies	S2
		Hepialidae	All Swift Moths	S2
		Hesperiidae	All Skippers	S2
		Nymphalidae	All Brush-footed Butterflies	S2
		Satyridae	All Satyrs	S2
	ORTHOPTERA	Africariola longicauda	Richtersveld Katydid	VU
		Alfredectes browni	Brown's Shieldback	DD
		Brinckiella serricauda	Serrated Winter Katydid	DD
		Brinckiella arboricola	Tree Winter Katydid	EN
		Brinckiella aptera	Mute Winter Katydid	VU
		Brinckiella karooensis	Karoo Winter Katydid	VU
		Brinckiella mauerbergerorum	Mauerberger's Winter Katydid	VU
ONYCHOPHORA		madonoorgororanii	All Velvet worms	S1

Figure 21. The specially protected Common Baboon Spider (*Harpactira* sp.) has been recorded in the region (left), while termitaria most likely belonging to *Trinervitermes trinervoides* (centre), as well as scorpion burrows (right) were observed during the field survey.

ii. Ephemeral wetlands

Ephemeral wetlands (pans) host aquatic invertebrate species that are specifically adapted to ephemerality. Crustaceans in particular are specialists of these pans and dominate them. Their eggs lie dormant in the soil until the pans are inundated. They then hatch and mature rapidly to produce eggs that accumulate in the top few centimetres of the sediment. These eggs are heat and drought resistant and ensure the continued existence of species in a habitat. The egg banks are essentially the vault that contains the biodiversity of the aquatic habitat during times of drought. Any disturbances to the soil will expose the eggs to erosion and crushing, which will result in species losses and possible extinction. Not much is known about the species distribution or conservation status of species in the Northern Cape, but Spinicaudata (Clam shrimps) hatched from sediment collected on site. They usually co-occur with other crustaceans (Figure 22) such as Notostraca (Tadpole shrimps), Anostraca (Fairy shrimps), Cladocera (water fleas), Ostracoda (Seed shrimps) and Copepoda (Copepods). Within a few days after the wetlands are inundated a number of wetland birds will arrive to forage on the crustaceans as their main food source. If the pans remain wet enough the water birds will stay longer to start nesting and breeding. Therefore, the crustaceans are essential components in the food web. These pans also act as important breeding and feeding links to birds in terms of connectivity, by providing stepping-stone corridors in an arid landscape. The disturbance or destruction of these pans will not only impact the specialised pan invertebrate communities locally but will also have a regional and landscapelevel effect.

Figure 22. Crustacean taxa expected to be present in the pans on De Bad. The first few centimetres of the soil are where the egg bank occurs and any disturbances to this layer will expose the eggs to erosion and crushing, which might lead to major species losses.

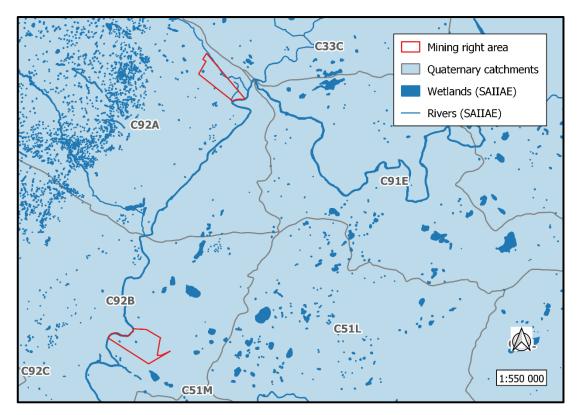
iii. Vaal River

Invertebrates expected to be associated with the Vaal River include Flatworms, earthworms, leeches, freshwater crabs, mussels and prawn, basket clams, freshwater bivalve- and pulmonate snails, bladder snails, pond snails, prong-gilled mayflies, small squaregill mayflies and numerous other species of mayflies, jewel damselflies, narrowwinged damselflies, clubtail dragonflies, emerald dragonflies, skimmers dragonflies, grass moths, giant water bugs, water boatmen, water striders, water treaders, marsh treaders, creeping water bugs, water mites, sponges, water scorpions, backswimmers, pygmy backswimmers, riffle bugs, long-horned caddisflies, microcaddisflies, net-spinning caddisflies, diving beetles, riffle beetles, whirligig beetles, water scavenger beetles, long-toed water beetles, minute moss beetles, biting midges, meniscus midges, mosquitoes, house flies, black flies, horse flies, crane flies and nematoceran flies. generalist species like water boatmen, predaceous diving beetles, whirligig beetles, biting midges, non-biting midges and mosquitos.

3.5. Water resources

The National Water Act (36 of 1998) (NWA) provides a framework to protect water resources. According to this Act, a water resource includes a watercourse, surface water, estuary, or aquifer; whereas a water course includes:

- a) a river or spring,
- b) a natural channel in which water flows regularly or intermittently,
- c) a wetland, lake or dam into which, or from which, water flows, and
- d) any collection of water which the Minister may, by notice in the Gazette, declare to be a watercourse.


Any reference to a watercourse includes its bed and banks and a water resource does not only include the water within the system, but also the entire water cycle; i.e. evaporation, precipitation, the habitats and processes.

The purpose of this Act (Section 2) is to ensure that the nation's water resources are protected, used, developed, conserved, managed and controlled in ways which take into account amongst other factors - (g) protecting aquatic and associated ecosystems and their biological diversity and (h) reducing and preventing pollution and degradation of water resources. No activity may take place within a watercourse unless it is authorised by the Department of Water and Sanitation (DWS). Any area within a wetland or riparian zone is therefore excluded from development unless authorisation is obtained from the DWS in terms of Section 21 (c) and (i).

3.5.1. Water resources setting

De Bad and At Last fall within the Vaal D/S Bloemhof quaternary catchments C92A and C92B of the Lower Vaal Water Management Area (Figure 23). These quaternary catchments have been allocated a Present Ecological State (PES) of 'Moderately Modified' (C) by Delport and Mallory (2002) and information regarding their mean annual rainfall, evaporation potential and runoff is provided in Table 10.

According to The South African Inventory of Inland Aquatic Ecosystems (SAIIAE), De Bad and At Last fall within the Eastern Kalahari Bushveld Bioregion, where 1.3 % of the land area is covered by inland wetlands, including depressions, floodplains, seeps and valley-bottom wetland types (Van Deventer et al. 2019).

Figure 23. The locality of the proposed mining area in relation to the quaternary catchments of the Lower Vaal Water Management Area.

Table 10. Catchment characteristics for the Vaal D/S Bloemhof quaternary catchments in which the study area fall, as presented by Delport and Mallory (2002).

Mining site	Quaternary catchment	Catchment Area (km²)	Mean Annual Rainfall (mm)	Mean Annual Evaporation (mm)	Mean Annual Runoff (10 ⁶ m³)
At Last	C92A	3 923	367	2 250	13.91
De Bad	C92B	1 979	331	2 225	5.02

The spatial extent according to the present ecological status per wetland type is depicted in Table 11. Depressional wetlands are most abundant in this bioregion, with the majority being severely modified. Most of the remaining wetland types in this Bioregion are also moderately- to severely modified.

According to SAIIAE, the study area comprises depressional wetlands as well as a river channel that lines De Bad in the west and At Last in the east. All of the depressional wetlands on site are classified as Least Concern, but the Vaal River is classified as Critically Endangered.

Table 11. Percentage of inland wetland spatial extent according to the present ecological status per wetland type of the Eastern Kalahari Bushveld Bioregion.

Wetland type	Total Extent (%)	% Natural or near-natural (A/B)	% Moderately modified (C)	% Heavily to severely/critically modified (D/E/F)
Depression	57.1	70.5	5.7	23.8
Floodplain	2.2	0.6	48.8	50.5
Seep	17.2	10	15.1	75
Valley-bottom	23.5	0.9	29.6	69.5

3.5.2. Watercourse delineation and classification

Two depressional wetlands, one river (Vaal River), and several drainage lines were identified on site. The wetland features associated with the Vaal River includes an active channel, floodplains, and riparian woodland (Figure 24). A minimum GIS buffer of 200 m is indicated here for the depressional wetlands and river features and the post-mitigation buffer requirements for the drainage lines are 20m. However, it is recommended that a conservative approach be opted for and that the pre-mitigation buffer width of 30m be adopted where possible.

The depressional wetlands covers a total area of \pm 2.4 ha, with their entire surface areas falling within the boundaries of the mining right area. Their catchments cover a total area of \pm 350 ha of which all fall within the study area (Figure 25). The active channel of the Vaal River lines the boundaries of At Last, but \pm 29 ha falls within the boundaries of De Bad (Figure 24). No floodplains are found on At Last, while the floodplains on De Bad cover \pm 13 ha (Figure 24). Riparian woodland occupies a total of \pm 37 ha within the study area (Figure 24). The drainage lines flow from the plains and ridges, downwards towards the river of which a total combined length of \pm 50 km occurs within the study area.

The two depressional wetlands are the main assessment units considered for this mining right area due to the fact that both fall within the areas earmarked for core mining activities. They are found on plains terrain and their Hydrogeomorphic Unit (HGMU) classification is described below, up to Level 6. The river and ephemeral drainage lines will not be further defined, but their buffer requirements should be honoured during the mining operation to minimise impacts to these systems.

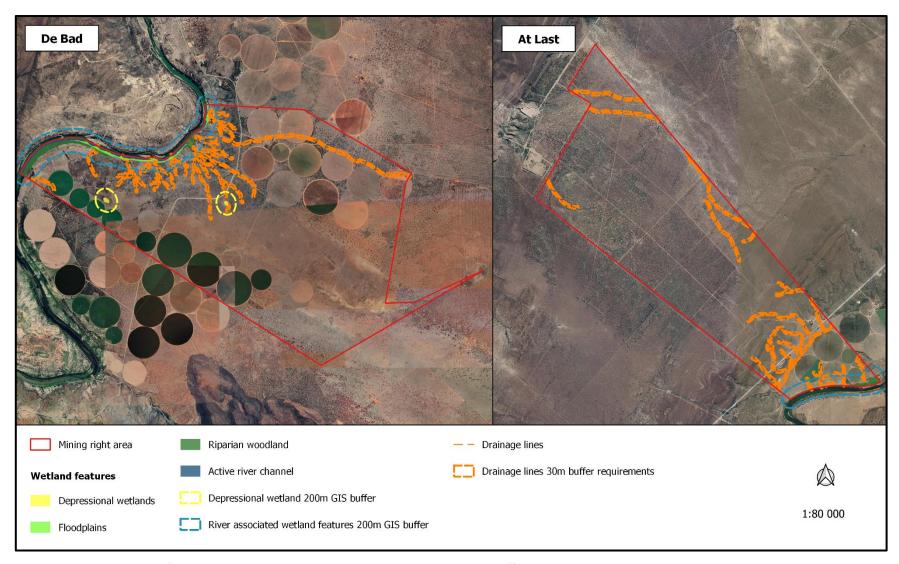
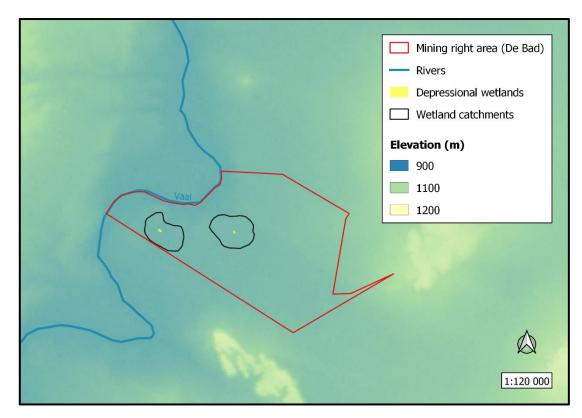



Figure 24. The delineation of watercourses in the mining right area, along with their GIS buffer requirements.

Figure 25. A digital elevation model, indicating the catchment areas of the depressional wetlands on De Bad.

HGMU1: NATURAL ENDORHEIC DEPRESSIONS

The wetlands are all classified as natural endorheic depressions (Figure 26 and Table 12), with high a confidence rating. Water enters the depressions primarily through direct precipitation and overland inflow. The wetlands are only filled after substantial summer rainfall events and are therefore intermittently and rarely inundated. The depressions have clear (turbidity < 100 NTU) and fresh (EC = $23 \,\mu\text{S/cm}$) water, with neutral (6.8) pH. The soils are only intermittently saturated, and the soils do not show any soil wetness indicators. The substrata comprise sandy clay loam soils intermixed with some gravel (Figure 27). The depression floors are vegetated with grasses, bulbs and low-growing herbs, comprising indigenous species (Figure 27). The vegetation form is best described as grassland, dominated by facultative wetland species (*Leptochloa fusca*), intermixed with bulbs and mat forming herbs (Figure 27).

Table 12. Summary of the results for the application of Levels 1 to 6 of the Classification System (Ollis et al. 2013), to the depressional wetlands. Confidence ratings at each level are given in brackets.

Level 1	Le	vel 2	Level 3	Level 4: HGM Unit		
System type	DWA Ecoregion	Wetland Bioregion	Landscape Unit	4A	4B	4C
INLAND	Southern Kalahari	Eastern Kalahari Bushveld	Plain (high)	Depression (high)	Endorheic (high)	Without channelled inflow (high)

Level 5: Hydroperiod				
5A 5B 5C				
Intermittently inundated (high) Intermittently saturated (high) n/a				

Level 6: Substratum type [Proportional rating (0-6)]											
Mineral soil (<10% organic carbon) (high)											
6A							6B				
Bedrock	Boulders	Cobbles	Pebbles /Gravel	Sandy soil	Silt	Clayey soil	Loamy soil	Organic soil	Salt crust	Other	Sandy Clay
0	0	0	1	1	0	2	2	0	0	0	Loam + gravel

Level 6: Vegetation cover, Form & Status [Proportional rating (0-6)]							
6A		6B		6C			
Vegetation cover (high)		Vegetation form (high)					
Vegetated	5	Aquatic	0	n/a			
	1	Herbaceous		Geophytes	1		
				Grasses	4		
				Herbs/Forbs	1		
Unvegetated			5	Sedges/Rushes	0		
				Reeds	0		
				Restios	0		
				Palmiet	0		
		Shrubs	1	n/a			
		Forest	0	n/a			

	6D	6E				
V	egetation form (high)	Vegetation status (high)				
Aquatic	n/a					
Herbaceous	n/a	Grasses	Indigenous	6		
			Alien	0		
			Crop	0		
		Herbs/Forbs	Indigenous	6		
			Alien	0		
			Crop	0		
Shrubs		Indigenous		6		
	n/a	Alien		0		
		Crop		0		
Forest		n/a				

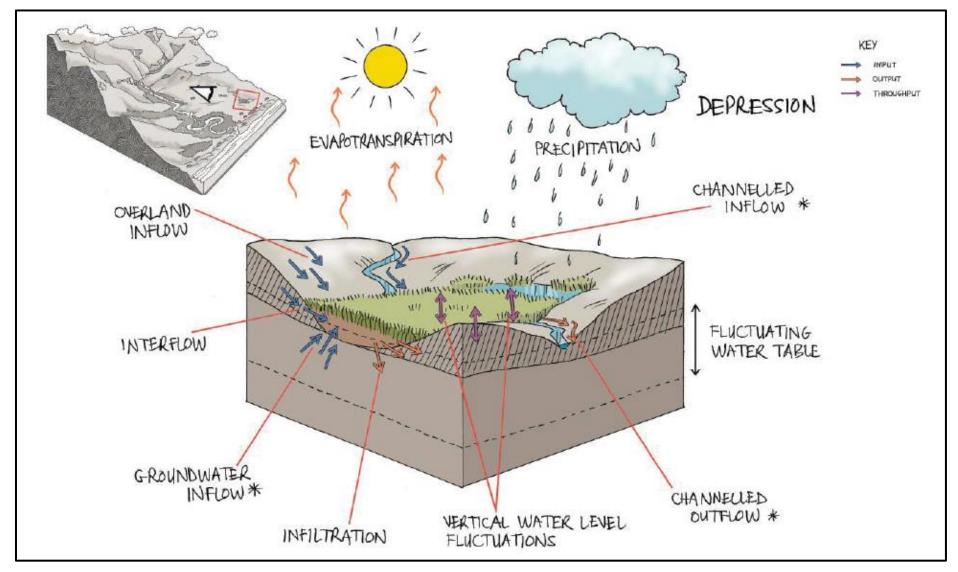


Figure 26. Conceptual illustration of a depression, showing the typical landscape setting and the dominant inputs, throughputs and outputs of water (Ollis et al. 2013).

Figure 27. Key wetland descriptors for the depressional wetlands on De Bad. The substratum comprises of sandy clay loam soil (top). The wetland floor is vegetated by grassland, which is dominated by facultative wetland grass species *Leptochloa fusca* (centre), but mat forming herbs (bottom left) and bulbs (bottom right) are also present.

3.5.3. Wetland Health Assessment (PES)

Depression 1 is considered to be moderately modified (PES C, Table 13), i.e. loss and change of natural habitat and biota have occurred, but the basic ecosystem functions are still predominantly unchanged. Depression 2 is considered to be largely natural (PES B, Table 13), i.e. a small change in natural habitats and biota may have taken place but the ecosystem functions are still predominantly unchanged. The two assessment units are indicated in Figure 28, including their 200m GIS buffers and catchment areas. Impact sources are described in Figure 29 and refined landcover categories are depicted in Figure 30.

For Pan 1, the natural hydrology and water quality have been most affected, while the natural geomorphology and vegetation are still considered to be unmodified. The most significant direct impacts occur from the adjacent crop irrigation activities, which falls within the buffer and catchment area. These increase the risk of pollution and artificial nutrient input to the pan, which ultimately affects the water quality. Indirect impacts include general surface disturbances, in the form of farm roads, that cut through the wetland buffer, altering its natural geomorphology and hydrologic regime. Farm buildings in the catchment area caused disturbances to the natural vegetation in increased the presence of alien invasive-and bush encroaching species in the catchment. Old mining activities have also altered the geomorphology further up in the catchment, increasing the risk of sedimentation to some degree.

Pan 2 remains largely unmodified and the only main impact to this system is the public gravel road and smaller farm roads that cut through its buffer and catchment. These alter its natural hydrologic regime, with secondary risk of sedimentation, which affects the natural water quality.

The current state of the hydrology, geomorphology, water quality and vegetation are expected to remain stable if no mining takes place within the buffer or catchment areas. However, if proposed mining activities proceed within the catchment area, the geomorphology and vegetation is likely to deteriorate slightly, while the hydrology and water quality is likely to deteriorate substantially. Mining within the buffer and wetland itself will have more serious implications, to the effect that the wetlands will most likely be destroyed.

Table 13. Summarised results of Wet-Health level 2 assessment (Macfarlane et al. 2020) to the depressional wetlands on De Bad.

	Wetlands PES Summaries					
Wetland name	De Bad depressional wetland					
Assessment Unit	1					
HGM type	Depression without flushing					
Areal extent (Ha)	1 Ha					
Final (adjusted) Scores						
PES Assessment	Hydrology	Geomorphology	Water Quality	Vegetation		
Impact Score	2.2	1.9	2.6	1.5		
PES Score (%)	78%	81%	74%	86%		
Ecological Category	С	В	С	В		
Trajectory of change (no mining)	→	→	→	→		
Trajectory of change (mining)	↓ ↓	\	4 4	\		
Confidence (revised results)	High	High	High	High		
Combined Impact Score	2.0					
Combined PES Score (%)	80%					
Combined Ecological Category	С					
Hectare Equivalents	0.8 Ha					

Wetland name	De Bad depressional wetland						
Assessment Unit	2						
HGM type	Depression without flushing						
Areal extent (Ha)	1 Ha						
Final (adjusted) Scores							
PES Assessment	Hydrology	Geomorphology	Water Quality	Vegetation			
Impact Score	1.8	1.0	1.7	0.5			
PES Score (%)	82%	90%	83%	95%			
Ecological Category	В	Α	В	Α			
Trajectory of change (no mining)	→	\rightarrow	→	→			
Trajectory of change (mining)	$\downarrow \downarrow$	\	$\downarrow \downarrow$	\			
Confidence (revised results)	High	High	High	High			
Combined Impact Score	nbined Impact Score 1.3						
Combined PES Score (%)	87%						
Combined Ecological Category	gory B						
Hectare Equivalents 0.7 Ha							

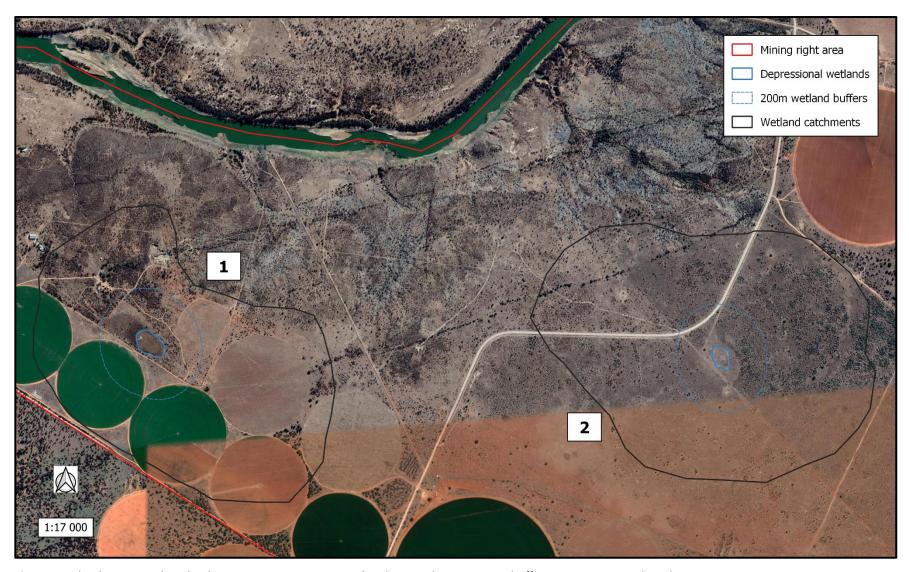


Figure 28. The depressional wetland assessment units on De Bad, indicating their 200m GIS buffer requirements and catchment areas.

Pan 1

Pan 2

Roads

A public gravel road without culverts cuts through the wetland buffer of depression 2 and farm roads traverse the buffers of both pans.

Source: External, secondary

Associated impacts:

- Impeded natural flow of runoff water
- Reduction in flood peaks
- Increased erosion and sedimentation

Irrigated crops

Extensive crop irrigation occurs in the catchment and buffer areas of Pan 1.

Source: External, direct

Associated impacts:

- Impeded natural flow of runoff water
- Reduction in flood peaks
- Increased erosion and sedimentation
- Loss of natural vegetation
- Artificial input of nutrients
- Pollution of water resource
- Change in water quality

Figure 29. Features impacting the PES of the De Bad depressional wetlands.

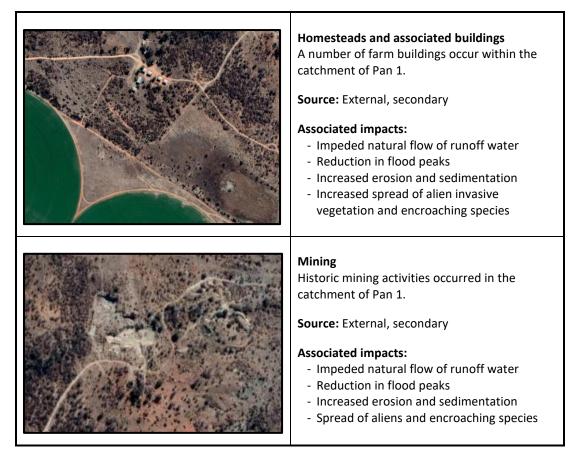
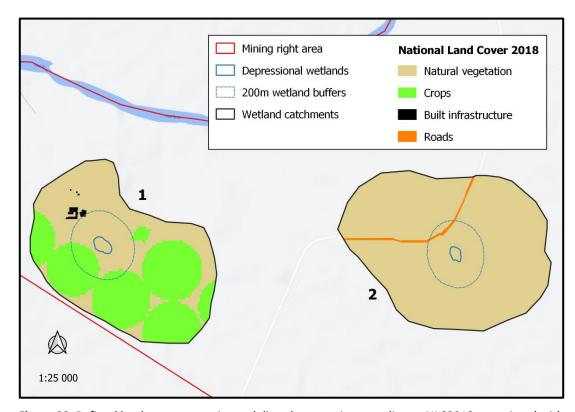



Figure 29 (cont.). Features impacting the PES of the De Bad depressional wetlands.

Figure 30. Refined landcover categories and disturbance units according to NLC2018, associated with the depressional wetlands on De Bad.

3.5.4. Wetland Ecological Importance and Sensitivity

The two depressions on De Bad have the same ecological characteristics and therefore were evaluated as a collective. These depressions are rated to have a High EIS (Table 14) and is considered to be ecologically important and sensitive. The biodiversity of these wetlands may be sensitive to flow and habitat modifications. This assessment was mainly based on a "wet scenario" because the ecological importance of these watercourses will primarily only manifest during times of inundation. However, activities impacting the wetland during the dry phase has direct implications on its ability of to maintain the ecological integrity of the wet phase.

Table 14. Summary of the results for the application of an EIS assessment (Duthie 1999) to the depressions on De Bad.

DETERMINANT	SCORE	CONFIDENCE						
PRIMARY DETERMIN	IANTS							
1. Rare & Endangere	are & Endangered Species 4							
2. Populations of Ur	ique Species	3	4					
3. Species/taxon Ric	hness	2	3					
4. Diversity of Habit	at Types or Features	1	4					
5 Migration route/b	preeding and feeding site for wetland species	2	3					
6. Sensitivity to Cha	vity to Changes in the Natural Hydrological Regime 1							
7. Sensitivity to Wat	vity to Water Quality Changes 1							
8. Flood Storage, En	Flood Storage, Energy Dissipation & Particulate/Element Removal 1							
MODIFYING DETERN	MINANTS							
9. Protected Status		3	4					
10. Ecological Integrit	10. Ecological Integrity 3							
	TOTAL	21						
	2.1							
OVERA	High							

The Near Threatened Giant Bull Frog and a number of red listed water birds are expected to occur in the depressions when they are inundated. These include the Black-winged Pratincole, Yellow-billed Stork, Maccoa Duck, Lesser Flamingo and Greater Flamingo; all of which are Near Threatened or Endangered. Unfortunately, the depressions of the Northern Cape have not yet been comprehensively surveyed for invertebrates and therefore it is difficult to state with confidence which species are present on De Bad. However, the hatching trials revealed that clam shrimps are present in these pans.

Clam shrimps usually co-occur with other specialised branchiopod species, which are all highly unique to depressions. The egg-banks of these organisms are also found in the topsoil layers, which make them very vulnerable to modifications. The exact species richness hosted by these pans is however not known. Although a number of species are expected to occur in these habitats, they are only expected to have a moderate significance, as they are only expected to have significant taxa richness at a local scale. The depressions are also expected to be important breeding and feeding links in terms of connectivity, especially for wetland birds in South Africa during wet periods by providing stepping-stone corridors in an arid landscape.

The depressions are considered to have low sensitivity to changes in hydrology and water quality, because they flood infrequently (< annually). However, if these systems are inundated anthropogenically and for a prolonged period of time, they will lose their ability to sustain the unique aquatic communities, which are adapted for ephemerality, e.g. branchiopod eggs require periods of desiccation for their life cycles to complete. Furthermore, the depressions have marginal food storage, energy dissipation and element removal ability, mainly based on fairly low roughness associated with the vegetation in these habitats.

All watercourses are protected under the National Water Act, which reflects their importance for the conservation of ecological diversity at a national scale and therefore they have been considered to have high protected status. The depressions on De Bad have not been significantly affected by human activity, and therefore they are rated to still have high ecological integrity.

3.5.5. Wetland functional importance

The De Bad depressions scored very low on most of the typical ecosystem services provided by wetlands. They however scored very high in the maintenance of biodiversity (Table 15). Most of the regulating and supporting services provided by the depressions are compromised by the fact that the wetlands are strictly ephemeral. The facultative wetland grass species however increases its provision of food for livestock slightly, but not many people are dependent on this resource. The maintenance of biodiversity is attributable to the branchiopod communities that occur here.

Table 15. Summary of the results of a WET-EcoServices (Version 2) assessment (Kotze et al. 2020), to the De Bad & At Last wetland.

E	COSYSTEM SERVICE		Supply	Demand	Importance Score	Importance
ES	Flood attenuation	Refers to the effectiveness of wetlands at spreading out and slowing down storm flows and thereby reducing the severity of floods and associated impacts.	1.3	0.0	0.0	Very Low
SERVIC	Stream flow regulation	Refers to the effectiveness of wetlands in sustaining flows in downstream areas during low-flow periods.	2.0	0.8	1.6	Moderately Low
TING	Sediment trapping	Refers to the effectiveness of wetlands in trapping and retaining sediments from sources in the catchment.	0.6	0.0	0.0	Very Low
UPPOR	Erosion control	Refers to the effectiveness of wetlands in controlling the loss of soil through erosion.	1.0	0.0	0.0	Very Low
ID SI	Phosphate assimilation	Refers to the effectiveness of wetlands in retaining, removing or	2.4	0.0	0.9	Low
9 AN	Nitrate assimilation	destroying nutrients and toxicants such as nitrates, phosphates, salts, biocides and bacteria from inflowing sources, essentially providing a water	2.7	0.0	1.2	Low
NIE	Toxicant assimilation	purification benefit.	2.9	0.0	1.4	Moderately Low
REGULATING AND SUPPORTING SERVICES	Carbon storage	Refers to the ability of wetlands to act as carbon sinks by actively trapping and retaining carbon as soil organic matter.	1.3	0.0	0.0	Very Low
~	Biodiversity maintenance	Refers to the contribution of wetlands to maintaining biodiversity through providing natural habitat and maintaining natural ecological processes.	3.8	4.0	4.0	Very High
/ICES	Water for human use	Refers to the ability of wetlands to provide a relatively clean supply of water for local people as well as animals	0.0	0.0	0.0	Very Low
PROVISIONING SERVICES	Harvestable resources	Refers to the effectiveness of wetlands in providing a range of harvestable natural resources including firewood, material for construction, medicinal plants and grazing material for livestock.	0.0	1.3	0.0	Very Low
NOISI	Food for livestock	Refers to the ability of wetlands to provide suitable vegetation as food for livestock.	3.0	0.3	1.7	Moderately Low
PROV	Cultivated foods	Refers to the ability of wetlands to provide suitable areas for cultivating crops and plants for use as food, fuel or building materials.	1.8	0.0	0.3	Very Low
A.F.	Tourism and Recreation	Refers to the value placed on wetlands in terms of the tourism related and recreational benefits provided.	0.9	0.0	0.0	Very Low
CULTURAL SERVICES	Education and Research	Refers to the value of wetlands in terms of education and research opportunities, particularly concerning their strategic location in terms of catchment hydrology.	2.6	0.0	1.1	Low
	Cultural and Spiritual	Refers to the special cultural significance of wetlands for local communities	2.0	0.0	0.5	Very Low

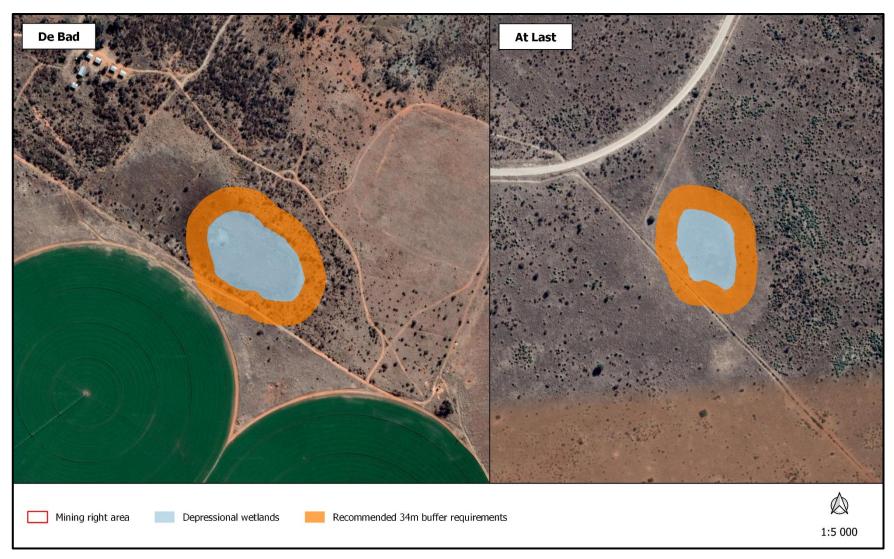
The low scores for the provisional services are because the depressions lack the ability to directly supply water or medicinal plants and no crop farming, hunting or fishing is possible. The wetland is not used as a public tourism or recreation destination and is not associated with any cultural practises or beliefs. The site has also not been subject to research in the past and the fact that it is situated in a rural area, relatively far away from the nearest academic institution; lowers its importance for education and research.

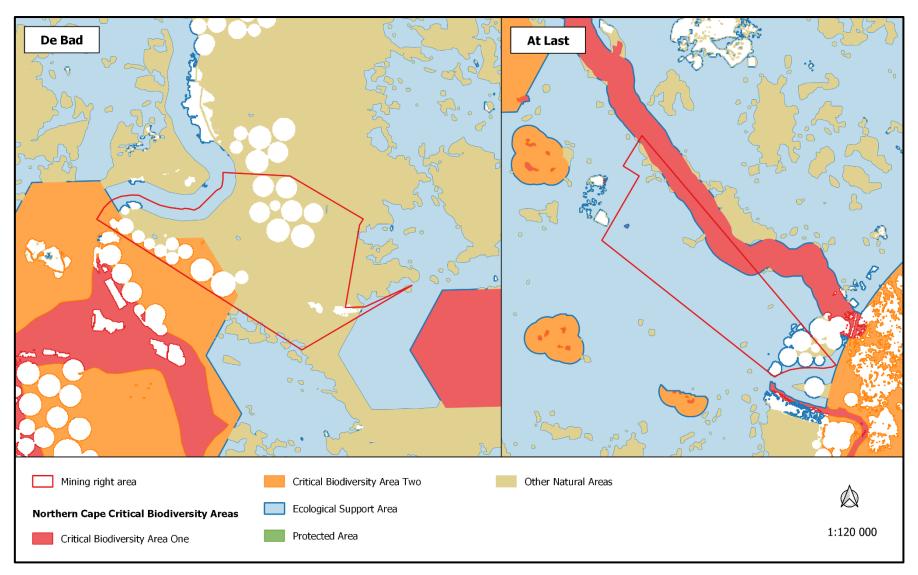
3.5.6. Recommended wetland buffer zone

The aquatic buffer segments identified for the depressions on De Bad (Figure 31) have gentle sloping land and shallow sandy-loam textured soils with moderate permeability (Table 16). The depressions' buffer requirements are low in general, due to the arid climate, lack of organic soils, limited human use, as well as the low risks associated with the proposed activities compared to other mining operations. A pre-mitigation buffer width of 34 m is deemed acceptable to protect core wetland habitat and aquatic functioning from the operation. However, with mitigation, the final buffer requirements are 25 m.

Table 16. The recommended final aquatic impact buffer requirements for the De Bad depressions.

Buffer segments	Differentiating characteristics	Pre-mitigation width (m)	Post-mitigation width (m)
	Slope: Very Gentle (0 - 2%)		
	<u>Vegetation</u> : Good; Moderately robust vegetation with good interception potential (e.g. good condition tufted grass stands).		
Buffer Segment for Pan 1 and 2	Soil permeability: Moderately low; Deep moderately fine textured soils (e.g. loam & sandy clay loam) OR shallow (<30cm) moderately drained soils.	34	25
	Micro-topography: Dominantly uniform topography: Dominantly smooth topography with few/minor concentrated flow paths to reduce interception.		




Figure 31. Final aquatic impact buffer requirements, including practical management considerations, for the valley-bottom wetland.

3.6. Critical biodiversity areas and broad-scale processes

The proposed mining site falls within critical biodiversity areas, as defined by the Northern Cape Critical Biodiversity Areas Map (Holness and Oosthuysen 2016). This map identifies biodiversity priority areas, called Critical Biodiversity Areas (CBAs) and Ecological Support Areas (ESAs), which, together with protected areas, are important for the persistence of a viable representative sample of all ecosystem types and species as well as the long-term ecological functioning of the landscape as a whole. Most of De Bad comprises natural or transformed areas, but the local catchment of the Vaal River, south of the site comprise of *Critical Biodiversity Areas Two*. The remaining section of Vaal River on site, along with the ephemeral pans are classified as *Ecological Support Areas* (Figure 32). At Last mainly comprise of *Ecological Support Areas*, but an ephemeral tributary to the Vaal, including its buffer zone, lines the site's northern boundary and is classified as *Critical Biodiversity Areas One* (Figure 32).

According to the Mining and Biodiversity Guidelines (DENC et al. 2013) no areas on De Bad is considered important, but the ephemeral drainage line on At Last and a small section of the Vaal River buffer in the south have *Highest Biodiversity Importance*. These areas constitute the highest risk for mining (Figure 33). These guidelines were developed to identify and categorize biodiversity priority areas sensitive to the impacts of mining in order to support mainstreaming of biodiversity issues in decision making in the mining sector.

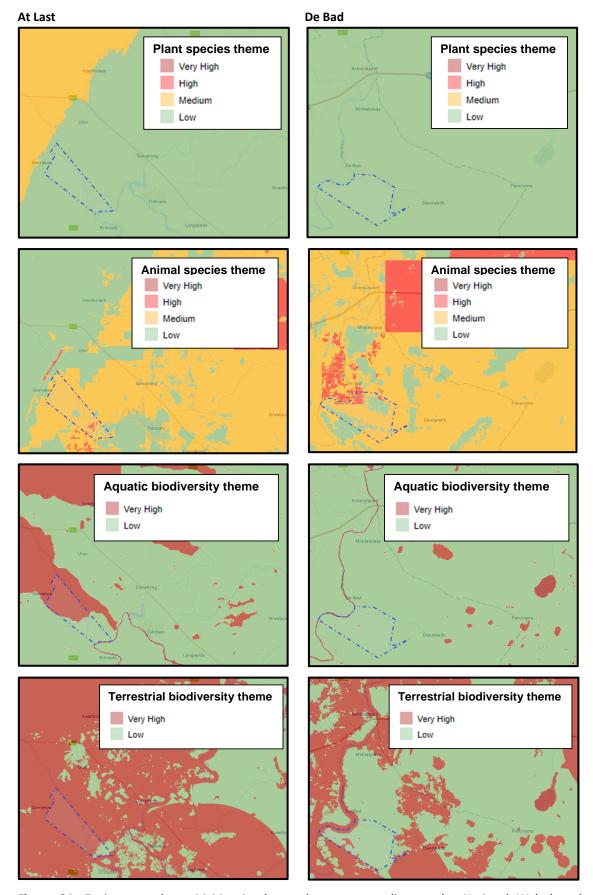

According to the National Web based Environmental Screening Tool the study area is considered to have sensitive environmental features (Figure 34). This tool is a geographically based web-enabled application which allows a proponent intending to apply for environmental authorisation in terms of the Environmental Impact Assessment (EIA) Regulations 2014 (as amended), to screen their proposed site for any environmental sensitivity. According to this, De Bad and At Last are considered to be of low sensitivity based on the *Plant species Theme*. Both sites however have high and medium sensitivity based on the *Animal Species Theme*. The high sensitivity is attributed to suitable habitat the sites provide for the listed Lanner Falcon, while the medium sensitivity on both sites is associated with regional records of Caspian Tern, Secretarybird, Tawny Eagle, White-backed Vulture and Ludwig's Bustard. No suitable habitat however exists in the study area for Caspian Tern. Highly sensitive areas are also present on both sites in terms of the *Terrestrial Biodiversity Theme*, which is a direct function of the Northern Cape Critical Biodiversity Areas Map. The Vaal River and ephemeral pans have very high sensitivity, as it falls within a freshwater ecosystem priority quinary catchment.

Figure 32. The study area in relation to the Northern Cape Critical Biodiversity Areas.

Figure 33. The study area in relation to the Mining and Biodiversity Guidelines.

Figure 34. Environmental sensitivities in the study area, according to the National Web based Environmental Screening Tool.

According to the Pixley ka Seme Spatial Development Framework (relevant to De Bad) all rivers and wetlands, including a generic buffer of 100m, are regarded as ecological corridors. Their mandate is to conserve existing ecological corridors and rehabilitate any remnants of corridors. The Frances Baard Environmental Management Framework, relevant to At Last, considers all Critical Biodiversity Areas and Ecological Support Areas as Biodiversity Environmental Management Zones. These zones highlight environmentally significant areas that should be managed sustainably to safeguard terrestrial and aquatic biodiversity within the municipality.

The study area also falls within the Griqualand West Centre (GWC) of Endemism (Frisby et al. 2019) (Figure 35). This area has a high concentration of plant species with very restricted distributions, known as endemics (Van Wyk and Smith 2001). Relatively small disturbances in a centre of endemism may easily pose a serious threat to its many range-restricted species.

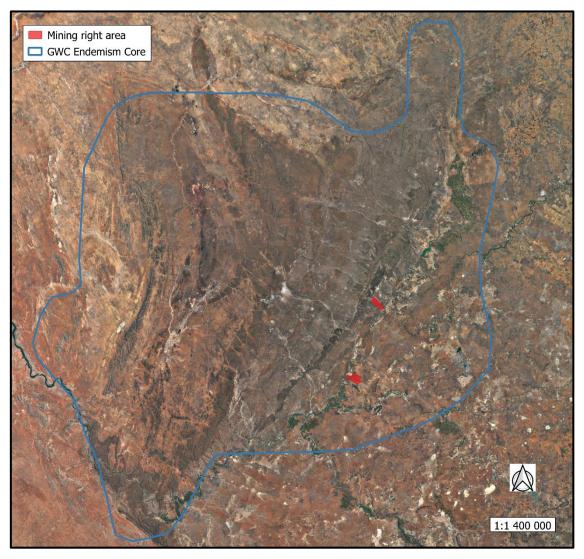


Figure 35. The De Bad & At Last study area in relation to the GWC core, according to Frisby et al. (2019).

Finally, the study area falls within a region where one of South Africa's largest economically most important alluvial diamond deposits are found (Figure 36), i.e. along the Orange and Vaal Rivers (Gresse 2003). The most significant crop irrigation in the Northern Cape also stretches along these rivers (Durand 2006). These factors increase the proposed operation's cumulative impacts.

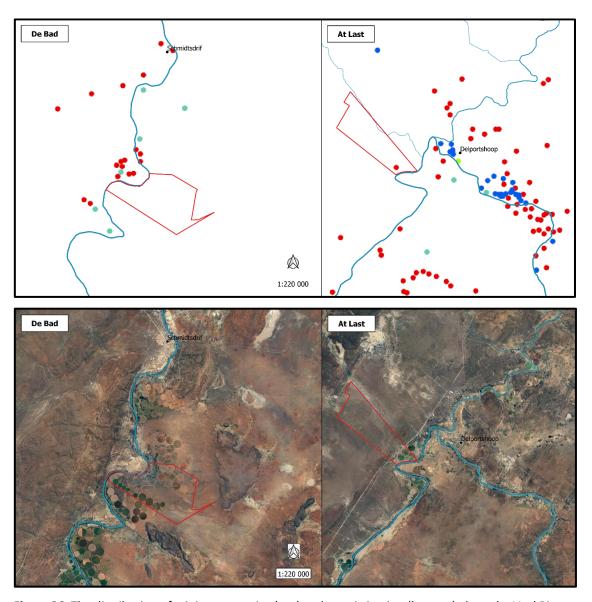


Figure 36. The distribution of mining properties (top) and crop irrigation (bottom) along the Vaal River.

3.7. Site sensitivity

The sensitivity map for the De Bad and At Last mining sites is illustrated in Figure 37. The Vaal River, ephemeral pans, and all drainage lines are considered to be of **very high** sensitivity due to their vital ecological and hydrological functionality and significance. These freshwater systems are also protected in terms of the National Water Act (Act No 36 of 1998) and regarded as important features for the conservation of biodiversity and broad-scale ecological processes. These units are essentially no-go areas.

The woodland on red sand is considered to be of high sensitivity, primarily because of the widespread and dense occurrence of nationally protected *Vachellia erioloba*. Although these units are not regarded as no-go areas, activities should only proceed with caution as it may not be possible to mitigate all impacts appropriately.

The remaining pristine plains and ridges on De Bad and At Last are considered to be of medium sensitivity. Some land use disturbances are visible, but the natural vegetation remains intact. Species of conservation concern also occur in these habitats, but impacts are likely to be largely local. Activities within these areas can proceed with relatively little ecological impact provided that appropriate mitigation measures are taken.

Those areas already transformed by agriculture are of **low** sensitivity. There is likely to be a negligible impact on ecological processes and biodiversity in these areas and most types of activities can proceed within these areas with little ecological risk.



Figure 37. A sensitivity map for the De Bad and At Last mining sites.

4. ECOLOGICAL IMPACT ASSESSMENT

In this section, all potential impacts and associated risk factors that may be generated by the Renaissance operation are identified and described. A detailed analysis of each impact is provided in Table 17. The impacts are assessed in terms of the relevant ecological aspects and each impact is associated with an outline of specific mitigation measures, which with proper implementation, monitoring, and auditing, will serve to reduce the significance of the impact.

4.1. Topography, soil erosion and associated degradation of landscapes

4.1.1. Alteration of soil character and quality

Source of the impact

During clearing of an area for the excavation of minerals, construction of infrastructure and roads, stockpiling, oil and petrochemical spills.

Description of the impact

Topsoil contains living organisms and seed banks that provide ecological resilience against disturbances, and any disturbances to the intact soil profile will change its ability to sustain natural ecological functioning. Vehicles and mining equipment may potentially leak hazardous fluids on the soil surface, which will cause soil pollution. Apart from the direct disturbances caused by the mining activities, soil compaction by dump loads as well as heavy machinery and vehicles will causes a decrease in large pores, and subsequently the water infiltration rate into soil.

- Topsoil needs to be removed and stored separately during mining and the construction of roads, infrastructure, and stockpile areas.
- These topsoil stockpiles must be kept as small as possible to prevent compaction and the formation of anaerobic conditions.
- Topsoil must be stockpiled for the shortest possible timeframes to ensure that the quality of the topsoil is not impaired.
- Topsoil must not be handled when the moisture content exceeds 12 %.
- Topsoil stockpiles must by no means be mixed with sub-soils.
- The topsoil should be replaced as soon as possible on to the disturbed areas, thereby allowing for the re-growth of the seed bank contained within the topsoil.

Table 17. A detailed analysis of ecological impacts identified for the De Bad and At Last mining operation.

	IMPACT		Phase		Extent	Donation	Carranita.	Durch all With	Cian ificana	Significance after
			О	D	Extent	Duration	Severity	Probability	Significance	Mitigation
	Alteration of soil character and quality	✓	✓	✓	On-site (1)	Residual (4)	High (3)	Certain for life of operation (10)	Medium - High (80)	Low-Medium
Soil	Loss of topsoil and soil fertility	✓	✓	✓	On-site (1)	Residual (4)	High (3)	Certain for life of operation (10)	Medium - High (80)	Low-Medium
	Increase in soil erosion	✓	✓		Local (2)	Decommissioning (3)	Medium (2)	Possible, frequently (8)	Low - Medium (56)	Low
	Loss of indigenous vegetation	✓	✓		On-site (1)	Residual (4)	High (3)	Certain for life of operation (10)	Medium – High (80)	Low-Medium
ø	Loss of Red data and/or protected floral species	✓	✓		On-site (1)	Residual (4)	Major (4)	Possible for life of operation (9)	Medium - High (81)	Low-Medium
Flora	Introduction or spread of alien species	✓	✓	✓	Local (2)	Residual (4)	Medium (2)	Possible, infrequent (7)	Low-Medium (56)	Very low
	Bush encroachment	✓	✓	✓	On-site (1)	Residual (4)	Minimal (1)	Possible, infrequent (7)	Low (42)	Very low
Fauna	Habitat fragmentation	✓	✓		Regional (3)	Residual (4)	High (3)	Certain for life of operation (10)	Medium - High (100)	Low-Medium
Fat	Disturbance, displacement and killing of fauna	✓	✓	✓	Local (2)	Decommissioning (2)	High (3)	Certain, for life of operation (70)	Low-Medium (70)	Low

Table 17 (cont.). A detailed analysis of ecological impacts identified for the De Bad and At Last mining operation.

		IMPACT		Phase		Extent	Duration	Severity	Probability	INIGNITICANCE	Significance after Mitigation
				0	D						
Water	9	Alteration/destruction of watercourses	✓	✓		Regional (3)	Permanent (5)	IHIGN (3)	Possible, life of operation (9)	Medium - High (99)	Low-Medium
		Siltation of surface water	✓	\	✓	Deglobal (3)	Decommissioning (3)	IMedium (2)	Possible, infrequent (7)	Low-Medium (56)	Low
	3	Compromise of broadscale ecological processes	✓	>		Regional (3)	Residual (4)	IHigh (3)	Certain for life of operation (10)	Medium - High (100)	Low-Medium

- For restoration of the affected areas without topsoil, soils can be sourced from other sustainable areas and chemically changed to match with the surrounding environment.
- To restore areas where compacted soil occurs, a ripper blade or deep plow can be pulled across the affected area to alleviate compaction.
- Encourage the growth of natural plant species in all affected areas by sowing indigenous seeds
 or by planting seedlings and succulent cuttings.
- Vehicles and machinery should be regularly serviced and maintained.
- Refuelling and vehicle maintenance must take place in well demarcated areas and over suitable drip trays to prevent soil pollution.
- Drip trays must be available on site and installed under all stationary vehicles.
- Spill kits to clean up accidental spills must be well-marked and available on site.
- Workers must undergo induction to ensure they are prepared for rapid clean-up procedures.
- Any soil or area that is contaminated must be cleaned immediately by removing the soil and disposing it as hazardous waste in the correct manner.

4.1.2. Loss of soil fertility

Source of the impact

During clearing of an area for the excavation of minerals, construction of infrastructure and roads, stockpiling.

Description of the impact

Topsoil contains living organisms that naturally regulate the ecological functioning of a habitat. Therefore, any disturbances to the intact soil profile can result in soil sterilisation which will directly affect vegetation communities. Apart from the direct disturbances caused by the mining activities, loss of soil fertility can also occur through soil compaction by dump loads as well as heavy machinery and vehicles.

- Topsoil needs to be removed and stored separately during mining and the construction of roads, infrastructure and stockpile areas.
- These topsoil stockpiles must be kept as small as possible to prevent compaction and the formation of anaerobic conditions.
- Topsoil must be stockpiled for the shortest possible timeframes to ensure that the quality of the topsoil is not impaired.
- Topsoil must not be handled when the moisture content exceeds 12 %.

- Topsoil stockpiles must by no means be mixed with sub-soils.
- The topsoil should be replaced as soon as possible on to the disturbed areas, thereby allowing for the re-growth of the seed bank contained within the topsoil.
- For restoration of the affected areas without topsoil, soils can be sourced from other sustainable areas and chemically changed to match with the surrounding environment.
- To restore areas where compacted soil occurs, a ripper blade or deep plow can be pulled across the affected area to alleviate compaction.
- Encourage the growth of natural plant species in all affected areas by sowing indigenous seeds
 or by planting seedlings and succulent cuttings.

4.1.3. Soil erosion

Source of the impact

During clearing of an area for the excavation of minerals, construction of infrastructure and roads, stockpiling, natural events.

Description of the impact

Vegetation will be stripped for construction of new roads, infrastructure, and excavations. As a result, these areas will be bare, and susceptible to wind and water erosion. Furthermore, any topsoil-, overburden- and ore stockpiles can be eroded by wind, rain, and flooding. Exposed sediments in the watercourses can be carried away during runoff causing downstream sediment deposition. Any leaking pipes can also cause additional water erosion.

- Bare ground exposure should always be minimised in terms of the surface area and duration.
- Re-establishment of plant cover on disturbed areas must take place as soon as possible once activities in the area have ceased.
- No new roads, infrastructure or mining areas should be developed over the drainage lines.
- Disturbances during the rainy season should be monitored and controlled.
- Any potential run-off from exposed ground should be controlled with flow retarding barriers.
- Regular monitoring during the mining operation should be carried out to identify areas where erosion is occurring; followed by appropriate remedial actions.

4.2. Vegetation and floristics

4.2.1. Loss of indigenous vegetation

Source of the impact

During clearing of an area for the excavation of minerals, construction of infrastructure and roads, stockpiling.

Description of the impact

The Renaissance mining activities are expected to destroy a large area of natural habitat, especially on De Bad. It is expected that the ecological functioning and biodiversity will take many years to fully recover. Furthermore, vehicle traffic and mining activities generate lots of dust which can reduce the growth success and seed dispersal of many small plant species in the adjacent areas.

Mitigation and monitoring

- Implement best practise principles to minimise the footprint of transformation, by keeping to existing roads and earmarked areas where possible.
- Implement effective avoidance measures to limit any activities in the highly sensitive areas, by applying the no-go principles.
- Ensure measures for the adherence to a maximum speed limit of 40 km/h to minimise dust fallout and associated effects on plants in the adjacent pristine areas.
- Encourage the growth of natural plant species in all affected areas by sowing indigenous seeds or by planting seedlings.
- The setup of a small nursery is advisable to maximise translocation and re-establishment efforts of affected areas.
- Apply for permits to authorise the clearance of indigenous plants from DENC at least three months before such activities will commence.

4.2.2. Loss of Red data and/or protected floral species

Source of the impact

Removal of listed or protected plant species during clearing of an area for the excavation of minerals, construction of infrastructure and roads, stockpiling. Intentional removal of listed or protected plant species for non-mine related purposes, e.g., firewood collection or illegal succulent trade.

Description of the impact

There are a number of plant species of conservation concern present in the Mining Right area, including the nationally protected *Vachellia erioloba* and provincially protected *Aloe claviflora*, *A. grandidentata*, *Trachyandra bulbinifolia*, *Gymnosporia buxifolia*, *Lessertia annularis*, *Ornithogalum flexuosum*, *Moraea pallida*, *Olea europaea* subsp. *africana*, *Oxalis lawsonii*, *Jamesbrittenia tysonii* and *Nemesia fruticans*. Therefore, it is likely that the mining operation could potentially have an impact on these species if their local populations are destroyed. Furthermore, any illegal harvesting of firewood from *V. erioloba* or succulents and bulbs for ornamental purposes or trade, by staff, contractors or secondary land users could have devastating effects on the population of these species.

- The footprint areas of the mining activities must be scanned for Red Listed and protected plant species prior to any destructive activities by means of a search-and-rescue operation.
- It is recommended that these plants are identified and marked prior to intended activity. These plants should ideally be incorporated into the design layout and left in situ. However, due to the nature of the proposed mining activities they will most likely all be removed or relocated (if possible). The relevant permits from DENC/DAFF should be applied for at least three months before such activities will commence.
- The setup of a small nursery is advisable to maximise translocation and re-establishment efforts of all the rescued plants.
- A management plan should be implemented to ensure proper establishment of ex situ
 individuals and should include a monitoring programme for at least two years after reestablishment to ensure successful translocation.
- The designation of an environmental officer is recommended to render guidance to the staff
 and contractors with respect to suitable areas for all related disturbance and must ensure that
 all contractors and workers undergo Environmental Induction prior to commencing with work
 on site. The environmental induction should occur in the appropriate languages for the
 workers who may require translation.
- All those working on site must be educated about the conservation importance of the flora
 occurring on site as well as the legislation relating to protected species.
- Employ regulatory measures to ensure that no illegal harvesting takes place.

4.2.3. Introduction or spread of alien species

Source of the impact

During clearing of an area for the excavation of minerals, construction of infrastructure and roads, stockpiling, improper rehabilitation practises. Existing populations.

Description of the impact

Several invasive species (*Argemone ochroleuca*, *Eucalyptus camaldulensis*, *Lythrum hyssopifolia* and *Prosopis* spp.) and a high density of naturalised exotics (*Bidens* spp.,) occur within and around the study area. Anthropogenic disturbances to natural vegetation, especially the clearance of large areas of land, provide the opportunity for alien plants to increase. This is due to their opportunistic nature of dispersal and establishing in disturbed areas. If alien plants establish in disturbed areas, it may cause an impact beyond the boundaries of the mining site. These alien species are thus a threat to surrounding natural vegetation and can result in the decrease of biodiversity as well as reduction in the ecological value and land use potential of the area. Therefore, if alien species are not controlled and managed, their propagation into new areas could have a high impact on the surrounding natural vegetation in the long term. With proper mitigation, the impacts can be substantially reduced.

Mitigation and monitoring

- Implement best practise principles to minimise the footprint of transformation, by keeping to existing roads and earmarked areas where possible.
- Mechanical methods of control should be implemented pro-actively as soon as alien species start to emerge.
- Regular follow-up monitoring of invasive control areas needs to be implemented to ensure
 effective eradication.
- Encourage proper rehabilitation of disturbed areas through soil restoration and reseeding of indigenous plant species.

4.2.4. Encouraging bush encroachment

Source of the impact

During clearing of an area for the excavation of minerals, construction of infrastructure and roads, stockpiling, improper rehabilitation practises. Existing populations.

Description of the impact

Bush encroachment is a natural phenomenon characterised by the excessive expansion of certain shrub species at the expense of other plant species. While general clearing of the area and mining activities destroy natural vegetation, bush encroaching plants can increase due to their aggressive nature in disturbed areas. If encroaching plants establish in disturbed areas, it may lower the potential for future land use and decrease biodiversity. *Senegalia mellifera*, *Grewia flava*, *Rhigozum trichotomum*, *Tarchonanthus camphoratus* and *Vachellia karroo* already indicate high levels of encroachment on site. However, the removal of these species during mining activities may potentially reduce their abundance and therefore mining could have a positive effect on bush encroachment.

Mitigation and monitoring

- Mechanical methods of control should be implemented pro-actively when encroaching species form dense stands.
- Regular follow-up monitoring of encroached control areas needs to be implemented to ensure
 effective eradication.
- Encourage proper rehabilitation of disturbed areas through soil restoration and reseeding of indigenous plant species.

4.3. Fauna

4.3.1. Habitat fragmentation

Source of the impact

During clearing of an area for the excavation of minerals, construction of infrastructure and roads, stockpiling.

Description of the impact

Fragmentation of habitats typically leads to the loss of migration corridors, in turn resulting in degeneration of the affected population's genetic make-up. This can be in the form of small-scale fragmentation for reptiles, amphibians, and invertebrates, to more large-scale fragmentation that hinder dispersal of birds and plants. It also includes the destruction of burrows, tunnels, and chambers as well as the degradation of ephemeral aquatic habitats. Small-scale fragmentation disconnects breeding and foraging links, increasing stress and energy budget deficits, which is especially taxing on animals living in arid environments.

Larger scale fragmentation results in a subsequent loss of genetic variability between metapopulations occurring within the study site. Pockets of fragmented natural habitats hinder the growth and development of populations. The mining activities is expected to result in the loss of connectivity and fragmentation of natural micro-habitats primarily on a local scale, but if the ephemeral pans are destroyed then this will have a regional effect on the branchiopod population as well as the migratory birds that feed on them.

Mitigation and monitoring

- All activities associated with the mining operation must be planned, where possible to encourage faunal dispersal and should minimise dissection or fragmentation of any important faunal habitat type.
- The footprint areas of the mining activities must be scanned for any nests and dens prior to any destructive activities by means of a search-and-rescue operation.
- It is recommended that nests and dens are identified and marked prior to intended activity and should be incorporated into the design layout and left in situ. However, due to the nature of the proposed mining activities they will most likely be destroyed. The relevant permits from DENC should be applied for at least three months before such activities will commence.
- The extent of the earmarked area should be demarcated on site layout plans. No staff, contractors or vehicles may leave the demarcated area except those authorised to do so.
- Those pristine areas surrounding the earmarked area that are not part of the demarcated area should be considered as a no-go zone for employees, machinery or even visitors.
- No new roads should be created across any of the watercourses.
- No mining should take place in the drainage lines, ephemeral pans or within the river buffer. If
 this is unavoidable, a water use license to alter the beds and banks of the watercourses should
 be obtained from DWS prior to such activities.
- Employ sound rehabilitation measures to restore characteristics of all affected terrestrial and aquatic habitats.

4.3.2. Disturbance, displacement and killing of fauna

Source of the impact

Vegetation clearing; increase in noise and vibration; human and vehicular movement on site resulting from mining activities; excavations.

Description of the impact

The site provides suitable habitat for several species of conservation concern, as discussed in the various faunal taxon groups in this report. The proposed mining activities could lead to the death and displacement of some of these species. The transformation of natural habitats will result in the loss of micro-habitats, affecting individual species and ecological processes. This will result in the displacement of faunal species that depend on such habitats, e.g., birds that nest in trees or animals residing in holes in the ground, among rocks or underneath plants. Increased noise and vibration will disturb and possibly displace wildlife. Fast moving vehicles cause road kills of small mammals, birds, reptiles, amphibians, and many invertebrates. Intentional killing of snakes, reptiles, and owls will negatively affect their local populations.

- Careful planning of the operation is needed to avoid the destruction of pristine habitats and minimise the overall disturbance footprint.
- The extent of the mining activities should be demarcated on site layout plans, and no personnel or vehicles may leave the demarcated area except if authorised to do so. Areas surrounding the earmarked site should be managed as a no-go zone.
- The footprint areas of the mining activities must be scanned for any protected faunal species prior to any destructive activities by means of a search-and-rescue operation.
- If any of the protected wildlife species are directly threatened by habitat destruction or displacement during the mining operation, then the relevant permits from DENC should be obtained followed by the relevant mitigation procedures stipulated in the permits.
- It is recommended that these individuals be rescued and relocated by a registered professional prior to intended activities.
- No mining should take place in the drainage lines, pans or near the river and no new roads should be created across these water resources. If this is unavoidable, a water use license to alter the beds and banks of each earmarked watercourse should be obtained from DWS prior to such activities.
- Everyone on site must undergo environmental induction for awareness on not capturing or harming species that are often persecuted out of superstition and to be educated about the conservation importance of the fauna occurring on site.
- All reptiles, amphibians, bird nests and small mammal litters that are exposed during the clearing operations should be captured for later release or translocation by a qualified expert.
- Employ measures that ensure adherence to a maximum speed limit of 40 km/h as well as driving mindfully on site to lower the risk of animals being killed on the roads or elsewhere in the mining area.

4.4. Water resources

4.4.1. Alteration/destruction of watercourses

Source of the impact

During excavation of minerals, construction of infrastructure and roads, stockpiling.

Description of the impact

During mining activities there is a possibility that the watercourses on site (i.e., ephemeral pans, Vaal River and drainage lines) might be altered or indirectly affected. This includes direct mining within the watercourses as well as development of roads, infrastructure or stockpiles within their channels, catchment areas, or buffer zones. Such activities can completely change the hydrologic regime or habitat conditions of the watercourses, which will not only compromise their ecological functioning, but also have downstream effects.

Mitigation and monitoring

- All activities associated with the mining operation must be planned to avoid any disturbances to the watercourses and their buffer zones.
- No new roads should be created across the watercourses and no mining should take place in these systems. If this is unavoidable, a water use license to alter the beds and banks of each earmarked watercourse should be obtained from DWS prior to such activities.
- Employ sound rehabilitation measures to restore characteristics of all affected watercourses.

4.4.2. Siltation of surface water

Source of the impact

During clearing of an area for the excavation of minerals, construction of infrastructure and roads, stockpiling, natural events.

Description of the impact

Vegetation will be stripped in preparation for the mining areas and associated infrastructure. These bare areas will be susceptible to water erosion without plants to stabilise the soil, creating potential sediment source zones. High runoff events could potentially cause the drainage lines, pans and Vaal River to be filled with silt from mining areas if the sediment source zones lie along the drainage paths towards these watercourses. This may lead to changes in hydrologic regime or character of the watercourses on site, and downstream.

Mitigation and monitoring

- Bare ground exposure should always be minimised in terms of the surface area and duration.
- Re-establishment of plant cover on disturbed areas must take place as soon as possible once activities in the area have ceased.
- No new roads, infrastructure or mining areas should be developed over watercourses.
- Disturbances during the rainy season should be monitored and controlled.
- Any potential run-off from exposed ground should be controlled with flow retarding barriers.
- Regular monitoring during the mining operation should be carried out to identify areas where
 erosion is occurring; followed by appropriate remedial actions.

4.5. Broad-scale ecological processes

Source of the impact

Clearing of vegetation and disturbance during the construction of roads and mining activities; alterations to watercourse habitat characteristics.

Description of the impact

Transformation of intact habitat on a cumulative basis would contribute to the fragmentation of the landscape and would potentially disrupt the connectivity of the landscape for fauna and flora and impair their ability to respond to environmental fluctuations. The vast extent of mining and agricultural activities in the region have already transformed large natural landscapes and the proposed mining activities will add to the fragmentation of habitats on a landscape level. Habitat alterations will also destroy connectivity of vital ecological corridors of aquatic food webs in the ephemeral pans, which could have cascading effects on a regional level.

- Implement best practise principles to minimise the footprint of transformation.
- No new roads should be created across the watercourses and no mining should take place in the
 watercourses or their buffers. If this is unavoidable, a water use license to alter the beds and banks
 of each earmarked watercourse should be obtained from DWS prior to such activities.
- Employ sound rehabilitation measures to restore characteristics of all affected habitats.

5. CONCLUSION, RECOMMENDATIONS AND OPINION REGARDING AUTHORISATION

Seven plant communities occur in the study area, including terrestrial and aquatic habitats. The Vaal River, ephemeral pans and drainage lines are all considered to be of very high sensitivity due to their vital ecological and hydrological functionality and significance, which is portrayed in the various sections of this report. The ephemeral pans and Vaal River, including their buffer zones, should ideally be marked as no-go areas.

The woodland on red sand hosts a dense population of *Vachellia erioloba* and is therefore of high sensitivity. The remaining pristine terrestrial habitats are of medium sensitivity, while the sensitivity of those areas already transformed by agriculture, is low.

The most profound impacts related to the proposed activities is expected to be in the form of cumulative habitat destruction, given the extensive history of mining and crop irrigation in the region. Direct and secondary impacts to water resources are also considered to be significant. Therefore, activities near these systems should be carefully planned to avoid disastrous implications. If any of the protected plant species will be damaged or removed, permit applications regarding protected flora and/or nationally protected trees need to be lodged with the Northern Cape Department of Environment and Nature Conservation and/or Department of Agriculture, Forestry and Fisheries, three months prior to any removal of affected species.

To conclude, in my opinion, authorisation for the mining operation can be granted if the applicant commits to the adherence of effective avoidance, management, mitigation and rehabilitation measures.

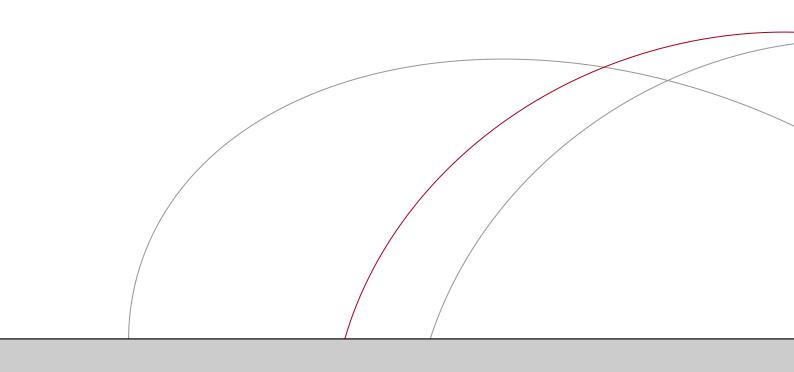
6. REFERENCES

- ADU. 2016. Summary Data of the Frogs of South Africa, Lesotho and Swaziland. Animal Demography
 Unit, Department of Zoology, University of Cape Town. .
- ALEXANDER, G. and MARAIS, J. 2007. A guide to the reptiles of southern Africa. Struik Nature, Cape Town.
- BATES, F., BRANCH, W.R., BAUER, A.M., BURGER, M., MARAIS, J., ALEXANDER, G.J., and DE VILLIERS, M.S. 2014. Atlas and Red List of the Reptiles of South Africa, Lesotho and Swaziland. South African National Biodiversity Institute, Pretoria.
- BIRDLIFESA. 2015. Important Bird Areas Map.
- BOSCH, P.J.A. and VISSER, D.J.L. 1993. 2824 Kimberley, 1:250 000 scale published geological sheet. Council for GeoScience, Pretoria.
- DELPORT, C. and MALLORY, S.J.L. 2002. Lower Vaal Water Management Area: Water Resources Situation Assessment Report. Department of Water Affaris and Forestry, Pretoria.
- DENC, DMR, COM, SAMBF, and SANBI. 2013. Mining and Biodiversity Guideline: Mainstreaming biodiversity into the mining sector, Pretoria.
- DU PREEZ, L. and CARRUTHERS, V. 2009. A complete guide to the frogs of southern Africa. Struik Nature, Cape Town.
- DURAND, W. 2006. Assessing the impact of climate change on crop water use in South Africa. ARC-Grain Crops Institute, Potchefstroom.
- DUTHIE, A. 1999. Determining the Ecological Importance and Sensitivity (EIS) and Ecological Management Class (EMC).in H. MACKAY, editor. Resource Directed Measures for Protection of Water Resources. Volume 4: Wetland Ecosystems Version 1.0. Department of Water Affairs and Forestry, Pretoria.

- FRIEDMANN, Y. and DALY, B. 2004. Red data book of the mammals of South Africa: a conservation assessment. CBSG-EWT, Johannesburg.
- FRISBY, A.W., SIEBERT, S.J., STRUWIG, M., and CILLIERS, D.P. 2019. Plant endemism in GriqualandWest, South Africa. *South African Journal of Botany* 124, 127-137.
- GIBBON, G. 2006. Robert's Multimedia Birds of Southern Africa version 3. . Southern African Birding cc.
- GRESSE, P.G. 2003. The preservation of alluvial diamond deposits in abandoned meanders of the middle-Orange River. SAIMM Colloquium: Diamonds Source to use, Oct. 2003.
- GRIFFITHS, C., DAY, J., and PICKER, M. 2015. Freshwater Life: A field guide to the plants and animals of Southern Africa. Struik Nature, Cape Town.
- HOLNESS, S. and OOSTHUYSEN, E. 2016. Critical Biodiversity Areas of the Northern Cape. Northern Cape Department of Environment and Nature Conservation, http://bgis.sanbi.org.
- HORNSVELD, H. 1977. 2822 Postmasburg, 1:250 000 scale published geological sheet. The Government Printer, Pretoria.
- IUCN. 2019. IUCN Red List of Threatened Species. Version 2019.1
- KLEYNHANS, C.J. 2007. Module D: Fish Response Assessment Index in River EcoClassification: Manual for EcoStatus Determination (version 2). Joint Water Research Commission and Department of Water Affairs and Forestry.
- KOTZE, D.C., MACFARLANE, D.M., and EDWARDS, D.P. 2020. A technique for rapidly assessing ecosystem services supplied by wetlands and riparian areas. Water Research Commission, Pretoria.
- KREMEN, C., COLWELL, R.K., ERWIN, T.L., MURPHY, D.D., NOSS, R.F., and SANJAYAN, M.A. 1993.

 Terrestrial arthropod assemblages: their use in conservation planning. *Conservation Biology* 7:4, 796-808.

- MACFARLANE, D.M. and BREDIN, I.P. 2017. Buffer Zone Guidelines for Rivers, Wetlands and Estuaries.


 WRC Report No. TT 715-1-17. Water Research Commission, Pretoria.
- MACFARLANE, D.M., OLLIS, D.J., and KOTZE, D.C. 2020. WET-Health (Version 2) Technical Guide.

 Report to the Water Research Commission. WRC Project No. K5/2549., Water Research

 Commission, Pretoria.
- MINTER, L.R., BURGER, M., HARRISON, J.A., BRAACK, H.H., BISHOP, P.J., and KLOEPFER, D. 2004. Atlas and Red Data Book of the Frogs of South Africa, Lesotho and Swaziland. Smithsonian Institution, Washington, DC.
- MUCINA, L. and RUTHERFORD, M.C. 2006. The Vegetation Map of South Africa, Lesotho and Swaziland. SANBI, Pretoria, South Africa.
- MUCINA, L. and RUTHERFORD, M.C. 2012. Vegetation Map of South Africa, Lesotho and Swaziland. SANBI, Claremont.
- OLLIS, D.J., SNADDON, C.D., JOB, N.M., and MBONA, N. 2013. Classification System for Wetlands and other Aquatic Ecosystems in South Africa. User Manual: Inland Systems. South African National Biodiversity Institute, Pretoria.
- PICKER, M., GRIFFITHS, C., and WEAVING, A. 2004. Field Guide to the Insects of South Africa. Struik Nature, Cape Town.
- ROUNTREE, M., BATCHELOR, A.L., MACKENZIE, J., and HOARE, D. 2008. Updated Manual for the Identification and Delineation of Wetlands and Riparian Areas (DRAFT). DWAF, Pretoria.
- SANBI. 2020. Red List of South African Plants. Version 2020.1
- TAYLOR, M.R., PEACOCK, F., and WANLESS, R.M. 2015. The 2015 Eskom Red Data Book of Birds of South Africa, Lesotho and Swaziland. BirdLife South Africa, Dunkeld West.
- THIRION, C. 2007. Module E: Macroinvertebrate Response Assessment Index in River EcoClassification: Manual for EcoStatus Determination (version 2). WRC Report No. TT 332/08, Joint Water Research Commission and Department of Water Affairs and Forestry, Pretoria.

- VAN DEVENTER, H., SMITH-ADAO, L., COLLINS, N.B., GRENFELL, M., GRUNDLING, A., GRUNDLING, P.L., IMPSON, D., JOB, N., LÖTTER, M., OLLIS, D., PETERSEN, C., SCHERMAN, P., SIEBEN, E.,
 SNADDON, K., TERERAI, F., and VAN DER COLFF, D. 2019. South African National Biodiversity
 Assessment 2018: Technical Report. Volume 2b: Inland Aquatic (Freshwater) Realm. South
 African National Biodiversity Institute, Pretoria.
- VAN WYK, A.E. and SMITH, G.F. 2001. Regions of floristic endemism in southern Africa. Umdaus press, Hatfield.
- WEISSER, W.W. and SIEMANN, E. 2004. The various effects of insects on ecosystem functioning. Pages 3-24 *in* W. W. Weisser and E. Siemann, editors. Insects and Ecosystem Function, Ecological Studies Series, Volume 173. Springer-Verlag, Berlin.

APPENDICES

APPENDIX 1

Plant species list

FAMILY	SPECIES	STATUS	NFA	NCNCA
ACANTHACEAE	Dicliptera leistneri	LC		
	Justicia divaricata	LC		
	Justicia incana	LC		
AIZOACEAE	Plinthus karooicus	LC		
	Titanopsis calcarea	LC		S2
AMARANTHACEAE	Chenopodium hederiforme var. undulatum	LC		
	Salsola microtricha	DDT		
ANACARDIACEAE	Searsia burchellii	LC		
	Searsia lancea	LC		
	Searsia pendulina	LC		
	Searsia tridactyla	LC		
ASPARAGACEAE	Asparagus glaucus	LC		
	Asparagus laricinus	LC		
ASPHODELACEAE	Aloe claviflora	LC		S2
	Aloe grandidentata	LC		S2
	Bulbine abyssinica	LC		S2
	Trachyandra bulbinifolia	LC		S2
ASTERACEAE	Arctotis leiocarpa	LC		
	Bidens bipinnata	Nat. Exotic		
	Bidens pilosa	Nat. Exotic		
	Chrysocoma ciliata	LC		
	Cineraria lyratiformis	LC		
	Dicoma capensis	LC		
	Eriocephalus ambiguus	LC		
	Felicia fascicularis	LC		
	Gazania krebsiana subsp. arctotoides	LC		
	Helichrysum arenicola	LC		
	Helichrysum argyrosphaerum	LC		
	Hirpicium echinus	LC		
	Kleinia longiflora	LC		
	Laggera decurrens	LC		
	Nolletia chrysocomoides	LC		
	Oedera humilis	LC		
	Osteospermum muricatum subsp. muricatum	LC		
	Pentzia calcarea	LC		
	Pentzia incana	LC		
	Senecio consanguineus	LC		
	Senecio windhoekensis	LC		
	Tarchonanthus camphoratus	Encr.		
BIGNONIACEAE	Rhigozum obovatum	LC		
	Rhigozum trichotomum	Encr.		
BORAGINACEAE	Anchusa riparia	LC		
_ 5.0.00.00	Ehretia rigida	LC		
	Heliotropium lineare	LC		
	Lithospermum cinereum	LC		
CAMPANULACEAE	Wahlenbergia androsacea	LC		
CAPPARACEAE	Boscia albitrunca	LC	Х	S2
	Cadaba aphylla	LC		<u></u>

FAMILY	SPECIES	STATUS	NFA	NCNCA
CELASTRACEAE	Gymnosporia buxifolia	LC		S2
CLEOMACEAE	Cleome rubella	LC		
COMMELINACEAE	Commelina livingstonii	LC		
CONVOLVULACEAE	Seddera capensis	LC		
CUCURBITACEAE	Kedrostis crassirostrata	LC		
CYPERACEAE	Pseudoschoenus inanis	LC		
	Schoenoplectus tabernaemontani	Nat. Exotic		
EBENACEAE	Diospyros lycioides subsp. lycioides	LC		
EUPHORBIACEAE	Euphorbia serpens	Nat. Exotic		
FABACEAE	Cullen tomentosum	LC		
	Indigofera alternans var. alternans	LC		
	Lessertia annularis	LC		S1
	Lotononis laxa	LC		
	Melolobium candicans	LC		
	Prosopis glandulosa	Decl. Inv.		
	Prosopis velutina	Decl. Inv.		
	Senegalia mellifera subsp. detinens	Encr.		
	Vachellia erioloba	LC	X	
	Vachellia haematoxylon	LC	X	
	Vachellia karroo	Encr.		
	Vachellia tortilis	Encr.		
GENTIANACEAE	Sebaea exigua	LC		
HYACINTHACEAE	Ornithogalum flexuosum	LC		S2
	Ornithogalum nannodes	LC		S2
IRIDACEAE	Babiana hypogaea	LC		S2
	Moraea pallida	LC		S2
LAMIACEAE	Leonotis pentadentata	LC		
	Salvia disermas			
LYTHRACEAE	Lythrum hyssopifolia	Decl. Inv.		
MALVACEAE	Corchorus asplenifolius	LC		
	Grewia flava	Encr.		
	Melhania rehmannii	LC		
	Pavonia burchellii	LC		
MYRTACEAE	Eucalyptus camaldulensis	Decl. Inv.		
NYCTAGINACEAE	Phaeoptilum spinosum	LC		
OLEACEAE	Olea europaea subsp. africana	LC		S2
OPHIOGLOSSACEAE	Ophioglossum polyphyllum var. polyphyllum	LC		
	Ophioglossum reticulatum	LC		
OROBANCHACEAE	Cycnium tubulosum subsp. tubulosum	LC		
OXALIDACEAE	Oxalis lawsonii	LC		S2
PAPAVERACEAE	Argemone ochroleuca	Decl. Inv.		
PHYLLANTHACEAE	Phyllanthus maderaspatensis	LC		
PLUMBAGINACEAE	Dyerophytum africanum	LC		
POACEAE	Aristida congesta subsp. barbicollis	LC		
	Aristida congesta subsp. congesta	LC		
	Aristida meridionalis	LC		
	Aristida vestita	LC		
	Cenchrus ciliaris	LC		

FAMILY	SPECIES	STATUS	NFA	NCNCA
POACEAE	Centropodia glauca	LC		
	Cymbopogon pospischilii	LC		
	Dichanthium annulatum var. papillosum	LC		
	Echinochloa jubata	LC		
	Enneapogon cenchroides	LC		
	Enneapogon desvauxii	LC		
	Enneapogon scoparius	LC		
	Eragrostis cilianensis	LC		
	Eragrostis echinochloidea	LC		
	Eragrostis lehmanniana	LC		
	Eragrostis pallens	LC		
	Eragrostis rigidior	LC		
	Fingerhuthia africana	LC		
	Heteropogon contortus	LC		
	Leptochloa fusca	LC		
	Oropetium capense	LC		
	Phragmites australis	LC		
	Pogonarthria squarrosa	LC		
	Setaria verticillata	LC		
	Stipagrostis hirtigluma subsp. patula	LC		
	Stipagrostis uniplumis	LC		
	Themeda triandra	LC		
	Tricholaena monachne	LC		
RHAMNACEAE	Ziziphus mucronata subsp. mucronata	LC		
RUBIACEAE	Cordylostigma virgatum	LC		
	Kohautia cynanchica	LC		
SANTALACEAE	Thesium hystrix	LC		
	Viscum rotundifolium	LC		
SCROPHULARIACEAE	Aptosimum indivisum	LC		
	Aptosimum marlothii	LC		
	Jamesbrittenia tysonii	LC		S2
	Nemesia fruticans	LC		S2
	Nemesia lilacina	LC		S2
	Peliostomum leucorrhizum	LC		
	Selago densiflora	LC		
SOLANACEAE	Lycium bosciifolium	LC		
	Lycium cinereum	LC		
	, Lycium hirsutum	LC		
	Lycium horridum	LC		
THYMELAEACEAE	Lasiosiphon polycephalus	LC		
ZYGOPHYLLACEAE	Roepera lichtensteiniana	LC		

APPENDIX 2

Fauna species list

LIST OF MAMMALS

	Scientific name	Common name	IUCN	EWT 2016	Habitat	Potential of occurrence
	² Eidolon helvum	African Straw-coloured Fruit-bat	NT	LC	Wide habitat tolerance.	High
	² Neoromicia capensis	Cape Serotine Bat	LC	LC	Wide habitat tolerance. Arid grassland, bushveld and <i>Acacia</i> woodland. Roost under tree bark.	High
	³ Miniopterus natalensis	Natal Long-fingered Bat	LC	LC	Roosts in caves or mine shafts, but also crevices and holes in trees.	High
CHIROPTERA	² Nycteris thebaica	Egyptian Slit-faced Bat	LC	LC	Savanna species with wide habitat tolerance. Roosts in caves, mine adits, aardvark holes, rock crevices and hollow trees in open woodland.	High
CHIRO	² Pipistrellus hesperidus	Dusk Pipistrelle	LC	LC	Wide habitat tolerance, but nearby open water is important.	High
	² Rhinolophus clivosus	Geoffroy's Horseshoe Bat	LC	LC	Wide habitat tolerance.	High
	² Rhinolophus denti	Dent's Horseshoe Bat	LC	NT	Arid savanna habitats. Roosts in caves and crevices in rocky outcrops, and abandoned mines.	Low
	² Rhinolophus darlingi	Darling's Horseshoe Bat	LC	LC	Savanna habitats.	High
	² Tadarida aegyptiaca	Egyptian Free-tailed Bat	LC	LC	Wide habitat tolerance.	High

	Scientific name	Common name	IUCN	EWT 2016	Habitat	Potential occurrence
CHRYSOCHLORIDAE	² Chlorotalpa sclateri	Sclater's Golden Mole	LC	LC	Restricted to high-altitude grasslands, scrub and forested kloofs in the Nama Karoo and Grassland biomes of South Africa.	Moderate
CROSCELIDIDAE	² Elephantulus myurus	Eastern Rock Sengi	LC	LC	Savanna and grassland on rocky outcrops or koppies that provide sufficient cracks and holes for shelter.	High
TUBULENTATA	¹ Orycteropus afer	Aardvark	LC	LC	Wide habitat tolerance, being found in open woodland, scrub and grassland, especially associated with sandy soil.	High
HYRACOIDEA	² Procavia capensis	Rock Hyrax	LC	LC	Outcrops of rocks, especially granite formations and dolomite intrusions in the Karoo. Also erosion gullies.	Moderate

	Scientific name	Common name	IUCN	EWT 2016	Habitat	Potential occurrence
	² Lepus capensis	Cape Hare	LC	LC	Dry, open regions, with palatable bush and grass.	High
LAGOMORPHA	² Lepus saxatilis	Scrub Hare	LC	LC	Common in agriculturally developed areas, especially in crop-growing areas or in fallow lands where there is some bush development.	High
2	² Pronolagus rupestris	Smith's Red Rock Rabbit	LC	LC	Rocky slopes and the tops of rocky outcrops of mountains and hills, where grass or scrub vegetation occurs.	Low
PHOLIDOTA	¹ Manis temminckii	Ground Pangolin	VU	VU	Various woodland and savannah habitats, although largely confined to protected areas and well-managed livestock and wildlife farms.	Low

	Scientific name	Common name	IUCN	EWT 2016	Habitat	Potential occurrence
	² Hystrix africaeaustralis	Cape Porcupine	LC	LC	Catholic in habitat requirements.	High
	² Xerus inauris	South African Ground Squirrel	LC	LC	Open terrain with a sparse bush cover and hard substrate.	High
NTIA	² Pedetes capensis	Springhare	LC	LC	Occurs widespread: open sandy ground, sandy scrub, overgrazed grassland, edges of vleis and dry river beds.	High
RODENTIA	² Graphiurus ocularis	Spectacled Dormouse	LC	LC	Rocky habitats, but also trees.	High
	² Rhabdomys pumilio	Four-striped Grass Mouse	LC	LC	Essentially a grassland species, occurs in wide variety of habitats where there is good grass cover.	High
	² Mus minutoides	Pygmy Mouse	LC	LC	Wide habitat tolerance.	High
	³ Mus musculus	House Mouse	LC	Not listed	Wide habitat tolerance.	High

	Scientific name	Common name	IUCN	EWT 2016	Habitat	Potential occurrence
	² Mastomys coucha	Southern Multimammate Mouse	LC	LC	Wide habitat tolerance.	High
	² Mastomys natalensis	Natal Multimammate Mouse	LC	LC	Wide habitat tolerance.	High
	² Aethomys namaquensis	Namaqua Rock Rat	LC	LC	Catholic habitat requirements, but prefer rocky hills, outcrops or boulder-strewn hillsides.	Low
RODENTIA	² Otomys unisulcatus	Karoo Bush Rat	LC	LC	Shrub and fynbos associations in areas with rocky outcrops Tend to avoid damp situations but exploit the semi-arid Karoo through behavioural adaptation.	Low
R	³ Rattus rattus	House Rat	LC	Not listed	Primarily commensal, but also found in a variety of natural and semi-natural habitats	High
	² Saccostomus campestris	Pouched Mouse	LC	LC	Savanna woodland.	High
	² Desmodillus auricularis	Cape Short-eared Gerbil	LC	LC	Tend to occur on hard ground, unlike other gerbil species, with some cover of grass or karroid bush.	High

	Scientific name	Common name	IUCN	EWT 2016	Habitat	Potential occurrence
	² Gerbillurus paeba	Hairy-footed Gerbil	LC	LC	Gerbils associated with Nama and Succulent Karoo preferring sandy soil or sandy alluvium with a grass, scrub or light woodland cover.	High
RODENTIA	² Gerbilliscus leucogaster	Bushveld Gerbil	LC	LC	Predominantly associated with light sandy soils or sandy alluvium.	High
R	² Gerbilliscus brantsii	Highveld Gerbil	LC	LC	Sandy soils or sandy alluvium with some cover of grass, scrub or open woodland.	High
	² Malacothrix typica	Gerbil Mouse	LC	LC	Predominantly in Nama and Succulent Karoo biomes, where mean annual rainfall is 150-500 mm.	High
PRIMATES	⁴ Cercopithecus pygerythrus	Vervet Monkey	LC	LC	Savanna and open woodland, but is extremely adaptable and versatile species able to persist in secondary and/or highly fragmented vegetation.	Confirmed
PRIN	⁴Papio ursinus	Chacma Baboon	LC	LC	Can exploit fynbos, montane grasslands, riverine courses in deserts, and simply need water and access to refuges.	Moderate

	Scientific name	Common name	IUCN	EWT 2016	Habitat	Potential occurrence
EULIPOTYPHLA	² Crocidura cyanea	Reddish-Grey Musk Shrew	LC	LC	Occurs in relatively dry terrain, with a mean annual rainfall of less than 500 mm. Occur in karroid scrub and in fynbos often in association with rocks.	High
T	² Suncus varilla	Lesser Dwarf Shrew	LC	LC	Generally associated with termite mounds, grassland habitat.	High
ERINACEOMORPHA	¹ Atelerix frontalis	South African Hedgehog	LC	NT	Found in a variety of savanna and grassland habitat types and require ample ground cover for nesting and foraging.	High
/ORA	¹ Proteles cristata	Aardwolf	LC	LC	Common in the 100-600mm rainfall range of country, Nama-Karoo, Succulent Karoo Grassland and Savanna biomes.	High
CARNIVORA	⁴ Caracal caracal	Caracal	LC	LC	Caracals tolerate arid regions, occur in semi-desert and karroid conditions.	High
	¹ Felis silvestris	African Wildcat	LC	LC	Wide habitat tolerance.	High

	Scientific name	Common name	IUCN	EWT 2016	Habitat	Potential occurrence
	¹ Felis nigripes	Black-footed cat	VU	VU	Dry, open savanna, grasslands and Karoo semi-desert with sparse shrub and tree cover. Prefers hollowed out abandoned termite mounds or dens dug out by other animals.	High
	² Genetta genetta	Common Genet	LC	LC	Occur in open arid habitats.	High
CARNIVORA	² Suricata suricatta	Suricate	LC	LC	Open arid country with hard and stony substrate. Occur in Nama- and Succulent Karoo but also fynbos.	Confirmed
CARN	² Cynictis penicillata	Yellow Mongoose	LC	LC	Semi-arid country on a sandy substrate.	High
	² Herpestes sanguineus	Slender mongoose	LC	LC	Wide habitat tolerance.	Confirmed
	² Herpestes pulverulentus	Cape Grey Mongoose	LC	LC	Wide habitat tolerance.	High
	² Atilax paludinosus	Water mongoose	LC	LC	Mainly restricted to riparian habitats, wherever there is suitable vegetation cover and water in close proximity.	High

	Scientific name	Common name	IUCN	EWT 2016	Habitat	Potential occurrence
	¹Vulpes chama	Cape Fox	LC	LC	Associated with open country, open grassland, grassland with scattered thickets and coastal or semi-desert scrub.	High
	⁴Canis mesomelas	Black-backed Jackal	LC	LC	Wide habitat tolerance.	Confirmed
	² Aonyx capensis	Cape Clawless Otter	NT	NT	Rivers, marshes, dams and lakes; dry stream beds if pools of water exist.	High
CARNIVORA	¹ Hydrictis maculicollis	Spotted-necked Otter	NT	VU	Larger rivers or rivers with permanent pools; lakes, dams and well-watered swamps.	High
٥	¹ Hyaena brunnea	Brown Hyena	NT	NT	Found in dry areas, generally with annual rainfall of 100 - 700 mm, particularly along the coast, semi-desert, open scrub and open woodland savanna.	Low
	¹ Otocyon megalotis	Bat-eared Fox	LC	LC	Open country with mean annual rainfall of 100-600 mm.	High
	¹ Poecilogale albinucha	African Striped Weasel	LC	NT	Wide habitat tolerance, but most common in grassland areas.	High

	Scientific name	Common name	IUCN	EWT 2016	Habitat	Potential occurrence
CARNIVORA	¹Ictonyx striatus	Striped Polecat	LC	LC	Widely distributed throughout the sub-region.	High
	¹ Mellivora capensis	Honey Badger	LC	NT	Wide habitat tolerance.	High
ACTYLA	² Oreotragus oreotragus	Klipspringer	LC	LC	Rocky and mountainous terrain	Low
	² Raphicerus campestris	Steenbok	LC	LC	Inhabits open country.	Confirmed
CETARTIODACTYLA	² Sylvicapra grimmia	Common Duiker	LC	LC	Presence of bushes are important.	High
G	² Thagelaphus strepciceros	Greater Kudu	LC	LC	Mixed scrub woodland on lowlands, hills, and mountains.	Confirmed

LIST OF REPTILES

Family	Scientific name	Common name	SURICATA
AGAMIDAE	³ Agama aculeata aculeata	Western Ground Agama	LC
	³Agama aculeata distanti ^E	Eastern Ground Agama	LC
	³Agama atra	Southern Rock Agama	LC
AMPHISBAENIDAE	³ Monopeltis infuscata	Dusky Worm Lizard	LC
	³ Monopeltis mauricei	Maurice's Worm Lizard	LC
CHAMAELEONIDAE	¹ Chamaeleo dilepis dilepis	Common Flap-neck Chameleon	LC
COLUBRIDAE	³ Crotaphopeltis hotamboeia	Red-lipped Snake	LC
	² Dasypeltis scabra	Rhombic Egg-eater	LC
	³ Dispholidus typus	Boomslang	LC
	² Philothamnus semivariegatus	Spotted Bush Snake	LC
CORDYLIDAE	¹Karusasaurus polyzonus	Southern Karusa Lizard	LC
ELAPIDAE	³ Elapsoidea sundevallii media	Sundevall's Garter Snake	LC
	³ Naja nivea	Cape Cobra	LC
GEKKONIDAE	³ Chondrodactylus bibronii	Bibron's Gecko	LC
	³ Lygodactylus capensis capensis	Common Dwarf Gecko	LC
	³ Pachydactylus capensis	Cape Gecko	LC
	³ Pachydactylus mariquensis ^E	Common Banded Gecko	LC
	³ Ptenopus garrulus garrulus	Common Barking Gecko	LC
GERRHOSAURIDAE	³ Gerrhosaurus flavigularis	Yellow-throated Plated Lizard	LC
LACERTIDAE	² Meroles squamulosus ² Nucras holubi	Common Rough-scaled Lizard Holub's Sandveld Lizard	LC LC
	² Nucras intertexta	Spotted Sandveld Lizard	LC
	² Pedioplanis lineoocellata lineoocellata	Spotted Sand Lizard	LC
	² Pedioplanis namaquensis	Namaqua Sand Lizard	LC
LAMPROPHIIDAE	³ Aparallactus capensis ³ Atractaspis bibronii	Black-headed Centipede-eater Bibron's Stiletto Snake	LC LC
	³ Xenocalamus bicolor bicolor	Bicoloured Quill-snouted Snake	LC
	² Boaedon capensis	Brown House Snake	LC
	² Lamprophis aurora	Aurora Snake	LC
	² Lycodonomorphus rufulus	Brown Water Snake	LC
	² Lycophidion capense capense	Cape Wolf Snake	LC
	³ Psammophis brevirostris	Short-snouted Grass Snake	LC
	³Psammophis notostictus	Karoo Sand Snake	LC
	³Psammophis trinasalis	Fork-marked Sand Snake	LC
	³Psammophylax tritaeniatus	Striped Grass Snake	LC

LIST OF REPTILES (continued)

Family	Scientific name	Common name	SURICATA
LAMPROPHIIDAE	² Prosymna bivittata	Two-striped Shovel-snout	LC
	² Pseudaspis cana	Mole Snake	LC
LEPTOTYPHLOPIDAE	³ Leptotyphlops scutifrons	Peter's Thread Snake	LC
PELOMEDUSIDAE	³ Pelomedusa subrufa	Marsh Terrapin	LC
SCINCIDAE	Acontias occidentalis	Savanna Legless Skink	LC
	Afroablepharus wahlbergii	Wahlberg's Snake-eyed Skink	LC
	Trachylepis capensis	Cape Skink	LC
	Trachylepis punctatissima	Speckled Rock Skink	LC
	Trachylepis punctulata	Speckled Sand Skink	LC
	Trachylepis spilogaster	Kalahari Tree Skink	LC
	Trachylepis sulcata sulcata	Western Rock Skink	LC
	Trachylepis varia	Variable Skink	LC
	Trachylepis variegata	Variegated Skink	LC
TESTUDINIDAE	² Homopus femoralis ^E	Greater Padloper	LC
	³ Psammobates oculifer	Serrated Tent Tortoise	LC
	³ Stigmochelys pardalis	Leopard Tortoise	LC
TYPHLOPIDAE	³ Rhinotyphlops lalandei	Delalande's Beaked Blind Snake	LC
VARANIDAE	² Varanus albigularis albigularis	Southern Rock Monitor	LC
	² Varanus niloticus	Nile Monitor	LC
VIPERIDAE	³ Bitis arietans arietans	Puff Adder	LC

LIST OF AMPHIBIANS

Family	Scientific name	Common name	IUCN status
BUFONIDAE	² Amietophrynus poweri	Western Olive Toad	LC
	² Amietophrynus rangeri	Raucous Toad	LC
	² Bufo gutturalis	Guttural Toad	LC
	² Poyntonophrynus vertebralis	Southern Pygmy Toad	LC
	² Vandijkophrynus gariepensis	Karoo Toad	LC
HYPEROLIIDAE	² Kassina senegalensis	Bubbling Kassina	LC
PHRYNOBATRACHIDAE	² Phrynobatrachus natalensis	Snoring Puddle Frog	LC
PIPIDAE	² Xenopus laevis	Common Platanna	LC
PYXICEPHALIDAE	² Cacosternum boettgeri	Boettger's Caco	LC
	² Amietia quecketti	Common River Frog	LC
	² Amietia fuscigula	Cape River Frog	LC
	¹ Pyxicephalus adspersus	Giant Bullfrog	NT
	² Tomopterna cryptotis	Tremolo Sand Frog	LC
	² Tomopterna tandyi	Tandy's Sand Frog	LC

LIST OF BIRDS

Scientific name	Common name	IUCN status	SA Red Data Book
² Acrocephalus baeticatus	African Marsh Warbler		
² Acrocephalus gracilirostris	Lesser Swamp-warbler		
² Actitis hypoleucos	Common Sandpiper		
² Actophilornis africanus	African Jacana		
² Alcedo cristata	Malachite Kingfisher		
² Alopochen aegyptiacus	Egyptian Goose		
² Amadina erythrocephala	Redheaded Finch		
² Amaurornis flavirostris	Black Crake		
² Anas capensis	Cape Teal		
² Anas erythrorhyncha	Redbilled Teal		
² Anas hottentota	Hottentot Teal		
² Anas smithii	Cape Shoveller		
² Anas sparsa	African Black Duck		
² Anas undulata	Yellowbilled Duck		
² Anhinga rufa	Darter		
² Anthoscopus minutus	Cape Penduline Tit		
² Anthropoides paradiseus	Blue Crane	VU	NT
² Anthus cinnamomeus	Grassveld Pipit		
² Anthus vaalensis	Buffy Pipit		
² Apus affinis	Little Swift		
² Apus apus	Eurasian Swift		
² Apus barbatus	African Black Swift		
² Apus bradfieldi	Bradfield's Swift		
² Apus caffer	Whiterumped Swift		
	Horus Swift		
² Apus horus ¹ Aquila rapax		VU	EN
	Tawny Eagle	٧٥	
¹ Aquila verreauxii	Black Eagle		VU
² Ardea cinerea	Grey Heron		
² Ardea goliath	Goliath Heron		
² Ardea melanocephala	Blackheaded Heron		
² Ardea purpurea	Purple Heron		
² Ardeola ralloides	Squacco Heron		
¹ Ardeotis kori	Kori Bustard	NT	NT
² Batis pririt	Pririt Batis		
² Bostrychia hagedash	Hadeda Ibis		
² Bradornis infuscatus	Chat Flycatcher		
² Bradornis mariquensis	Marico Flycatcher		
¹ Bubo africanus	Spotted Eagle Owl		
¹ Bubo lacteus	Giant Eagle Owl		
² Bubulcus ibis	Cattle Egret		
² Burhinus capensis	Spotted Dikkop		
¹ Buteo rufofuscus	Jackal Buzzard		
¹ Buteo vulpinus	Steppe Buzzard		
² Butorides striatus	Green-backed Heron		
² Calandrella cinerea	Redcapped Lark		
² Calendulauda africanoides	Fawncoloured Lark		
² Calendulauda bradfieldi	Bradfield's Lark		
² Calidris alba	Sanderling		

Scientific name	Common name	IUCN status	SA Red Data Book
² Calidris ferruginea	Curlew Sandpiper		
² Calidris minuta	Little Stint		
² Campethera abingoni	Goldentailed Woodpecker		
¹Caprimulgus europaeus	Eurasian Nightjar		
¹ Caprimulgus rufigena	Rufouscheeked Nightjar		
¹Caprimulgus tristigma	Freckled Nightjar		
² Centropus burchellii	Burchell's Coucal		
² Cercomela familiaris	Familiar Chat		
² Cercomela sinuata	Sicklewinged Chat		
² Cercotrichas coryphoeus	Karoo Robin		
² Cercotrichas paena	Kalahari Robin		
² Ceryle rudis	Pied Kingfisher		
² Charadrius asiaticus	Caspian Plover		
² Charadrius hiaticula	Common Ringed Plover		
¹ Charadrius pallidus	Chestnutbanded Plover	NT	NT
² Charadrius pecuarius	Kittlitz's Plover		
² Charadrius tricollaris	Threebanded Plover		
² Chersomanes albofasciata	Spikeheeled Lark		
Chlidonias hybridus	Whiskered Tern		
² Chlidonias leucopterus	Whitewinged Tern		
² Chrysococcyx caprius	Diederik Cuckoo		
² Ciconia abdimii	Abdim's Stork		NT
² Ciconia ciconia	White Stork		
¹ Ciconia nigra	Black Stork		VU
² Cinnyris fusca	Dusky Sunbird		
¹ Circaetus pectoralis	Blackbreasted Snake Eagle		
¹ Circus maurus	Black Harrier	EN	EN
¹Circus pygargus	Montagu's Harrier		
¹ Circus ranivorus	African Marsh Harrier		EN
Cisticola aridulus	Desert Cisticola		
² Cisticola fulvicapillus	Neddicky		
² Cisticola juncidis	Fantailed Cisticola		
² Cisticola subruficapillus	Greybacked Cisticola		
² Cisticola tinniens	Levaillant's Cisticola		
² Clamator glandarius	Great Spotted Cuckoo		
² Clamator jacobinus	Jacobin Cuckoo		
³ Colius colius	White-backed Mousebird		
² Columba guinea	Rock Pigeon		
² Columba livia	Feral Pigeon		
² Coracias caudata	Lilacbreasted Roller		
² Coracias garrulus	Eurasian Roller		NT
² Coracias naevia	Purple Roller		
³ Corvus albus	Pied Crow		
³ Corvus capensis	Black Crow		

Scientific name	Common name	IUCN status	SA Red Data Book
² Cossypha caffra	Cape Robin		
² Coturnix coturnix	Common Quail		
² Creatophora cinerea	Wattled Starling		
² Cuculus clamosus	Black Cuckoo		
² Cuculus solitarius	Red-chested Cuckoo		
² Cursorius rufus	Burchell's Courser		VU
² Cursorius temminckii	Temminck's Courser		
² Cypsiurus parvus	Palm Swift		
² Delichon urbica	Common House-Martin		
² Dendrocygna bicolor	Fulvous Duck		
· =	White-faced Duck		
² Dendrocygna viduata ² Dendropicos fuscescens			
• •	Cardinal Woodpecker		
² Dicrurus adsimilis	Forktailed Drongo		
² Egretta alba	Great Egret		
² Egretta ardesiaca	Black Heron		
² Egretta garzetta	Little Egret		
² Egretta intermedia	Yellow-billed Egret		
¹ Elanus caeruleus	Black-shouldered Kite		
² Emberiza capensis	Cape Bunting		
² Emberiza flaviventris	Goldenbreasted Bunting		
² Emberiza impetuani	Larklike Bunting		
² Emberiza tahapisi	Rock Bunting		
² Eremomela icteropygialis	Yellowbellied Eremomela		
² Eremopterix verticalis	Greybacked Finchlark		
² Estrilda astrild	Common Waxbill		
² Estrilda erythronotos	Blackcheeked Waxbill		
³Euplectes afer	Yellow-crowned Bishop		
³ Euplectes orix	Red Bishop		
² Eupodotis afraoides	Northern Black Korhaan		
² Eupodotis ruficrista	Red-crested Korhaan		
¹ Falco biarmicus	Lanner Falcon		VU
¹ Falco naumanni	Lesser Kestrel		
¹ Falco peregrinus	Peregrine Falcon		
¹ Falco rupicolis	Rock Kestrel		
¹ Falco rupicoloides	Greater Kestrel		
²Fulica cristata	Red-knobbed Coot		
² Galerida magnirostris	Large-billed Lark		
² Gallinago nigripennis	Ethiopian Snipe		
² Gallinula chloropus	Common Moorhen		
¹Glareola nordmanni	Blackwinged Pratincole	NT	NT
¹ Glaucidium perlatum	Pearlspotted Owl		
² Granatina granatina	Violeteared Waxbill		
¹ Gyps africanus	White-backed Vulture	CR	CR
¹ Gyps coprotheres	Cape Vulture Brown-hooded Kingfisher	EN	EN

Scientific name	Common name	IUCN status	SA Red Data Book
		TOCH Status	JA Neu Data Book
¹ Haliaeetus vocifer	African Fish Eagle		
² Hieraaetus pennatus	Blockwinged Stilt		
² Himantopus himantopus	Blackwinged Stilt		
² Hippolais icterina	Icterine Warbler		
² Hirundo albigularis	White-throated Swallow		
² Hirundo cucullata	Greater Striped Swallow		
² Hirundo dimidiata	Pearl-breasted Swallow		
² Hirundo fuligula	Rock Martin		
² Hirundo rustica	Barn Swallow		
² Hirundo semirufa	Rufous-chested Swallow		
² Hirundo spilodera	South African Swallow		
² Indicator indicator	Greater Honeyguide		
² Indicator minor	Lesser Honeyguide		
² Ixobrychus minutus	Common Little Bittern		
² Lagonosticta senegala	Red-billed Firefinch		
² Lamprotornis nitens	Red-shouldered Glossy-starling		
² Laniarius atrococcineus	Crimson-breasted Shrike		
² Lanius collaris	Common Fiscal		
² Lanius collurio	Red-backed Shrike		
² Lanius minor	Lesser Grey Shrike		
² Larus cirrocephalus	Grey-headed Gull		
¹ Leptoptilos crumeniferus	Marabou Stork		NT
² Macronyx capensis	Cape Longclaw		
² Malcorus pectoralis	Rufous-eared Warbler		
² Megaceryle maxima	Giant Kingfisher		
¹ Melierax canorus	Pale Chanting Goshawk		
¹Melierax gabar	Gabar Goshawk		
² Merops apiaster	European Bee-eater		
² Merops bullockoides	White-fronted Bee-eater		
² Merops hirundineus	Swallowtailed Bee-eater		
² Milvus aegyptius	Yellowbilled Kite		
¹ Milvus migrans	Black Kite		
² Mirafra africana	Rufous-naped Lark		
² Mirafra fasciolata	Eastern Clapper Lark		
² Mirafra passerina	Monotonous Lark		
² Monticola brevipes	Shorttoed Rockthrush		
²Motacilla aguimp	African Pied Wagtail		
² Motacilla capensis	Cape Wagtail		
² Muscicapa striata	Spotted Flycatcher		
¹ Mycteria ibis	Yellow-billed Stork		EN
² Myrmecocichla formicivora	Anteating Chat		
¹ Neotis ludwigii	Ludwig's Bustard	EN	EN
² Netta erythrophthalma	Southern Pochard		
² Nilaus afer	Brubru		
² Numenius phaeopus	Whimbrel		
² Numida meleagris	Helmeted Guineafowl		
² Nycticorax nycticorax	Blackcrowned Night Heron		
² Oena capensis	Namaqua Dove		
² Oenanthe monticola	Mountain Chat		
² Oenanthe pileata	Capped Wheatear		
Schanine pheata	Capped Willeated		

Scientific name	Common name	IUCN status	SA Red Data Book
² Onychognathus nabouroup	Palewinged Starling		
² Oriolus oriolus	Eurasian Golden Oriole		
² Ortygospiza atricollis	Quail Finch		
² Oxyura maccoa	Maccoa Duck	VU	NT
² Parisoma layardi	Layard's Tit-Babbler		
² Parisoma subcaeruleum	Chestnut-vented Tit-Babbler		
² Parus cinerascens	Ashy Tit		
² Passer diffusus	Southern Greyheaded Sparrow		
³ Passer domesticus	House Sparrow		
³ Passer melanurus	Cape Sparrow		
² Passer motitensis	Great Sparrow		
² Phalacrocorax africanus	Reed Cormorant		
² Phalacrocorax lucidus	White-breasted Cormorant		
² Philetairus socius	Sociable Weaver		
² Philomachus pugnax	Ruff		
¹ Phoenicopterus minor	Lesser Flamingo	NT	NT
¹ Phoenicopterus ruber	Greater Flamingo		NT
² Phoeniculus purpureus	Green Wood-Hoopoe		
² Phragmacia substriata	Namaqua Warbler		
² Phylloscopus trochilus	Willow Warbler		
² Platalea alba	African Spoonbill		
² Plectropterus gambensis	Spurwinged Goose		
² Plegadis falcinellus	Glossy Ibis		
² Plocepasser mahali	Whitebrowed Sparrowweaver		
³ Ploceus velatus	Masked Weaver		
² Podiceps cristatus	Great Crested Grebe		
² Podiceps nigricollis	Blacknecked Grebe		
¹ Polemaetus bellicosus	Martial Eagle	EN	EN
¹ Polihierax semitorquatus	Pygmy Falcon		
¹ Polyboroides typus	Gymnogene		
² Porphyrio madagascariensis	African Purple Swamphen		
² Porzana pusilla	Baillon's Crake		
² Prinia flavicans	Blackchested Prinia		
² Psophocichla litsipsirupa	Groundscraper Thrush		
² Pternistis adspersus	Red-billed Francolin		
² Pterocles burchelli	Burchell's Sandgrouse		
² Pterocles namaqua	Namaqua Sandgrouse		
¹ Ptilopsis granti	Southern White-faced Owl		
³ Pycnonotus nigricans	African Red-eyed Bulbul		
² Pytilia melba	Melba Finch		
³ Quelea quelea	Red-billed Quelea		
² Rallus caerulescens	African Rail		
² Recurvirostra avosetta	Pied Avocet		
² Rhinopomastus cyanomelas	Scimitarbilled Woodhoopoe		
² Rhinoptilus africanus	Doublebanded Courser		
² Riparia cincta	Banded Martin		
² Riparia paludicola	Brownthroated Martin		
² Riparia riparia	Sand Martin		
¹ Rostratula benghalensis	Greater Painted-snipe		
¹ Sagittarius serpentarius	Secretarybird	EN	VU

Scientific name	Common name	IUCN status	SA Red Data Book
² Sarkidiornis melanotos	Comb Duck		
² Saxicola torquata	African Stonechat		
² Scleroptila levaillantoides	Orange River Francolin		
² Scopus umbretta	Hamerkop		
² Serinus albogularis	Whitethroated Canary		
² Serinus atrogularis	Blackthroated Canary		
² Serinus flaviventris	Yellow Canary		
² Sigelus silens	Fiscal Flycatcher		
² Spizocorys conirostris	Pinkbilled Lark		
² Sporopipes squamifrons	Scalyfeathered Finch		
² Spreo bicolor ² Stenostira scita	Pied Starling		
	Fairy Flycatcher		
² Streptopelia capicola	Cape Turtle Dove		
² Streptopelia semitorquata	Redeyed Dove		
² Streptopelia senegalensis ² Struthio camelus	Laughing Dove Ostrich		
² Sylvia borin	Garden Warbler		
² Sylvietta rufescens	Longbilled Crombec		
² Tachybaptus ruficollis	Dabchick		
² Tachymarptis melba	Alpine Swift		
² Tadorna cana	South African Shelduck		
² Tchagra australis	Threestreaked Tchagra		
² Telophorus zeylonus	Bokmakierie		
² Terpsiphone viridis	African Paradise-Flycatcher		
² Thalassornis leuconotus	White-backed Duck		
² Threskiornis aethiopicus	Sacred Ibis		
² Tockus leucomelas	Southern Yellowbilled Hornbill		
² Tockus nasutus	Grey Hornbill		
¹ Torgos tracheliotus	Lappet-faced Vulture	EN	EN
² Trachyphonus vaillantii	Crested Barbet		
² Tricholaema leucomelas	Acacia Pied Barbet		
² Tringa glareola	Wood Sandpiper		
² Tringa nebularia	Greenshank		
² Tringa stagnatilis	Marsh Sandpiper		
² Turdus smithi	Karoo Thrush		
² Turnix sylvatica	Kurrichane Buttonquail		
¹Tyto alba	Barn Owl		
² Upupa africana	African Hoopoe		
² Uraeginthus angolensis	Blue Waxbill		
³ Urocolius indicus	Red-faced Mousebird		
² Vanellus armatus	Blacksmith Plover		
² Vanellus coronatus	Crowned Plover		
² Vidua chalybeata	Steelblue Widowfinch		
² Vidua macroura	Pintailed Whydah		
	•		
² Vidua regia	Shafttailed Whydah		
² Zosterops pallidus	Pale White-eye		

APPENDIX 3

A photographic guide for species of conservation concern that occur on site

Lessertia annularis
All Lessertia spp. are protected in terms of Schedule 1 of NCNCA

Vachellia erioloba

This species is protected under the NFA

Olea europaea subsp. africana

Protected under Schedule 2 of the NCNCA

Gymnosporia buxifolia

All Gymnosporia spp. are protected under Schedule 2 of the NCNCA

Spiny shrub or small tree. Leaves in tufts, obovate, toothed above. Highly variable

Many white flowers with an unpleasant smell in axillary cymes.

Aloe claviflora
All Asphodelaceae spp. are protected under Schedule 2 of the NCNCA

Aloe grandidentata
All Asphodelaceae spp. are protected under Schedule 2 of the NCNCA

Trachyandra bulbinifolia All Asphodelaceae spp. are protected under Schedule 2 of the NCNCA

Ornithogalum flexuosum All Ornithogalum spp. are protected under Schedule 2 of the NCNCA

Moraea pallida
All Iridaceae spp. are protected under Schedule 2 of the NCNCA

Oxalis lawsonii
All Oxalis spp. are protected under Schedule 2 of the NCNCA

Jamesbrittenia tysonii
All Jamesbrittenia spp. are protected under Schedule 2 of the NCNCA

Nemesia fruticans
All Jamesbrittenia spp. are protected under Schedule 2 of the NCNCA

