6 DESCRIPTION OF THE BASELINE ENVIRONMENT ### 6.1 Introduction According to section 28(e) of the NEMA Regulations, this section includes a description of the baseline environment that may be affected by the activity and the manner in which the biophysical, social, economic and cultural aspects of the environment may be affected by the proposed activity. ## 6.2 Study Area in Regional Context ## 6.2.1 Locality Majuba Power Station is located approximately 16 km southwest (SW) of Amersfoort and approximately 40km northnorthwest (NNW) of Volksrust in the Mpumalanga Province (**Figure 6.1**). The power station falls within the Pixley Ka Seme Local Municipality which falls within the Gert Sibande District Municipality (**Figure 6.2**). **Figure 6.1:** Location of Majuba Power Station within the Pixley Ka Seme Local Municipality December 2012 **Figure 6.2:** Location of Pixley Ka Seme Local Municipality within the Gert Sibande District Municipality ## 6.2.2 Study Area The particular area required for the continuous ashing facility is approximately 550 ha, which is located on the southern portion of the existing Majuba Power Station ash disposal facility. However, in order to allow for a robust environmental process, all land within a radius of 12 km was assessed in order to identify potential alternatives sites, should sensitive environmental aspects limit the suitability of this particular portion of land. The Majuba Continuous Ashing EIA study area is therefore located within a 12 km radius around source of ash, at Majuba Power Station (**Figure 6.3**). The study area is approximately 450 square kilometres in size and includes a total of 40 different farms divided into 195 farm portions. A list of the farm portions are included in **Table 6.1**. **Figure 6.4** shows the location of the Eskom's proposed site for the project. **Table 6.2** outlines the farms associated with the proposed Majuba Continuous Ashing Area. Figure 6.3: Majuba Continuous Ashing EIA Study Area Table 6.1: Farm Portions situated within the Majuba Continuous Ashing EIA Study Area | Table GIZI Farm Fordons Sicadeed Within the Flajaba Continuous Ashing EIA Stady Area | | | | | |--|----------|-------------|------------------|--| | SG Code | Farm No. | Portion No. | Farm Name | | | T0HS00000000008200005 | 82 | 5 | WELGEDACHT 82 HS | | | T0HS00000000008200006 | 82 | 6 | WELGEDACHT 82 HS | | | T0HS00000000008200007 | 82 | 7 | WELGEDACHT 82 HS | | | T0HS00000000008200008 | 82 | 8 | WELGEDACHT 82 HS | | | T0HS00000000008200009 | 82 | 9 | WELGEDACHT 82 HS | | | T0HS00000000008200010 | 82 | 10 | WELGEDACHT 82 HS | | | T0HS00000000008200011 | 82 | 11 | WELGEDACHT 82 HS | | | T0HS00000000008200012 | 82 | 12 | WELGEDACHT 82 HS | | | T0HS00000000008300001 | 83 | 1 | RIETPOORT 83 HS | | | T0HS00000000008300002 | 83 | 2 | RIETPOORT 83 HS | | | T0HS00000000008300003 | 83 | 3 | RIETPOORT 83 HS | | | T0HS00000000008300004 | 83 | 4 | RIETPOORT 83 HS | | | T0HS00000000008300005 | 83 | 5 | RIETPOORT 83 HS | | | T0HS00000000008300007 | 83 | 7 | RIETPOORT 83 HS | | | T0HS0000000005200000 | 52 | R | HOLVLEI 52 HS | | | T0HS0000000005200001 | 52 | 1 | HOLVLEI 52 HS | | | T0HS0000000005200004 | 52 | 4 | HOLVLEI 52 HS | | | T0HS0000000006500000 | 65 | R | BERGVLIET 65 HS | | | T0HS0000000006500000 | 65 | R | BERGVLIET 65 HS | | | T0HS00000000006500000 | 65 | R | BERGVLIET 65 HS | | | SG Code | Farm No. | Portion No. | Farm Name | |--|----------|-------------|-----------------------------------| | T0HS00000000006500003 | 65 | 3 | BERGVLIET 65 HS | | T0HS0000000006500004 | 65 | 4 | BERGVLIET 65 HS | | T0HS0000000006500006 | 65 | 6 | BERGVLIET 65 HS | | T0HS0000000006500007 | 65 | 7 | BERGVLIET 65 HS | | T0HS0000000006500008 | 65 | 8 | BERGVLIET 65 HS | | T0HS0000000006900000 | 69 | R | SLANGFONTEIN 69 HS | | T0HS0000000006900008 | 69 | 8 | SLANGFONTEIN 69 HS | | T0HS00000000006900011 | 69 | 11 | SLANGFONTEIN 69 HS | | T0HS00000000006900012 | 69 | 12 | SLANGFONTEIN 69 HS | | T0HS00000000006900013 | 69 | 13 | SLANGFONTEIN 69 HS | | T0HS00000000006900014 | 69 | 14 | SLANGFONTEIN 69 HS | | T0HS00000000006900015 | 69 | 15 | SLANGFONTEIN 69 HS | | T0HS00000000006900016 | 69 | 16 | SLANGFONTEIN 69 HS | | T0HS00000000008500001 | 85 | 1 | ELANDSPOORT 85 HS | | T0HS00000000008500004 | 85 | 4 | ELANDSPOORT 85 HS | | T0HS000000000008000028 | 80 | 28 | HOLFONTEIN 80 HS | | T0HS000000000008000029 | 80 | 29
P | HOLFONTEIN 80 HS | | T0HS00000000008100000 | 81
81 | R
1 | WITKOPPIES 81 HS | | T0HS00000000008100001
T0HS00000000008100002 | 81 | 2 | WITKOPPIES 81 HS WITKOPPIES 81 HS | | T0HS00000000008100002 | 81 | 3 | WITKOPPIES 81 HS | | T0HS000000000008100003 | 81 | 4 | WITKOPPIES 81 HS | | T0HS00000000000000000000000000000000000 | 81 | 5 | WITKOPPIES 81 HS | | T0HS00000000008100006 | 81 | 6 | WITKOPPIES 81 HS | | T0HS00000000008100007 | 81 | 7 | WITKOPPIES 81 HS | | T0HS00000000008100008 | 81 | 8 | WITKOPPIES 81 HS | | T0HS00000000008100009 | 81 | 9 | WITKOPPIES 81 HS | | T0HS00000000008100010 | 81 | 10 | WITKOPPIES 81 HS | | T0HS00000000008100011 | 81 | 11 | WITKOPPIES 81 HS | | T0HS00000000008100012 | 81 | 12 | WITKOPPIES 81 HS | | T0HS00000000008100013 | 81 | 13 | WITKOPPIES 81 HS | | T0HS00000000008100014 | 81 | 14 | WITKOPPIES 81 HS | | T0HS0000000009700013 | 97 | 13 | TWEEFONTEIN 97 HS | | T0HS0000000005400005 | 54 | 5 | TWEEDEPOORT 54 HS | | T0HS0000000005400009 | 54 | 9 | TWEEDEPOORT 54 HS | | T0HS00000000009700014 | 97 | 14 | TWEEFONTEIN 97 HS | | T0HS00000000009700015 | 97 | 15 | TWEEFONTEIN 97 HS | | T0HS00000000009700000 | 97 | R | TWEEFONTEIN 97 HS | | T0HS00000000006600008 | 66 | 8 | RIETFONTEIN 66 HS | | T0HS00000000006600009 | 66 | 9 | RIETFONTEIN 66 HS | | T0HS00000000006600010 | 66 | 10 | RIETFONTEIN 66 HS | | T0HS00000000006600011 | 66 | 11 | RIETFONTEIN 66 HS | | T0HS00000000006600014 | 66 | 14 | RIETFONTEIN 66 HS | | T0HS00000000006700000 | 67 | R | ROODEKOPJES 67 HS | | T0HS00000000006700001 | 67 | 1 | ROODEKOPJES 67 HS | <u>December</u> 2012 | SG Code | Farm No. | Portion No. | Farm Name | |--|----------|-------------|---------------------------------| | T0HS00000000006700002 | 67 | 2 | ROODEKOPJES 67 HS | | T0HS00000000006700003 | 67 | 3 | ROODEKOPJES 67 HS | | T0HS00000000006700004 | 67 | 4 | ROODEKOPJES 67 HS | | T0HS00000000006800001 | 68 | 1 | PALMIETSPRUIT 68 HS | | T0HS00000000006800002 | 68 | 2 | PALMIETSPRUIT 68 HS | | T0HS0000000006800003 | 68 | 3 | PALMIETSPRUIT 68 HS | | T0HS00000000006800004 | 68 | 4 | PALMIETSPRUIT 68 HS | | T0HS0000000006800005 | 68 | 5 | PALMIETSPRUIT 68 HS | | T0HS0000000006800006 | 68 | 6 | PALMIETSPRUIT 68 HS | | T0HS0000000006800007 | 68 | 7 | PALMIETSPRUIT 68 HS | | T0HS0000000006800008 | 68 | 8 | PALMIETSPRUIT 68 HS | | T0HS0000000006900000 | 69 | R | SLANGFONTEIN 69 HS | | T0HS0000000005300000 | 53 | R | STRYDKRAAL 53 HS | | T0HS0000000005300001 | 53 | 1 | STRYDKRAAL 53 HS | | T0HS0000000005300001 | 53 | 1 | STRYDKRAAL 53 HS | | T0HS0000000005300004 | 53 | 4 | STRYDKRAAL 53 HS | | T0HS0000000005300005 | 53 | 5 | STRYDKRAAL 53 HS | | T0HS0000000005300006 | 53 | 6 | STRYDKRAAL 53 HS | | T0HS0000000005300007 | 53 | 7 | STRYDKRAAL 53 HS | | T0HS0000000005400000 | 54 | R | TWEEDEPOORT 54 HS | | T0HS00000000005400001 | 54 | 1 | TWEEDEPOORT 54 HS | | T0HS00000000005400010 | 54 | 10 | TWEEDEPOORT 54 HS | | T0HS00000000006500010 | 65 | 10 | BERGVLIET 65 HS | | T0HS00000000006500011 | 65 | 11 | BERGVLIET 65 HS | | T0HS00000000006500012 | 65 | 12 | BERGVLIET 65 HS | | T0HS00000000006500015 | 65 | 15 | BERGVLIET 65 HS | | T0HS00000000006500016 | 65 | 16 | BERGVLIET 65 HS | | T0HS00000000006500017 | 65 | 17 | BERGVLIET 65 HS | | T0HS00000000006500018 | 65 | 18 | BERGVLIET 65 HS | | T0HS00000000006500019 | 65 | 19 | BERGVLIET 65 HS | | T0HS00000000006500020
T0HS00000000006500021 | 65
65 | 20
21 | BERGVLIET 65 HS BERGVLIET 65 HS | | T0HS00000000000500025 | 65 | 25 | BERGVLIET 65 HS | | T0HS00000000000500025 | 65 | 26 | BERGVLIET 65 HS | | T0HS00000000000500027 | 65 | 27 | BERGVLIET 65 HS | | T0HS00000000000000000000000000000000000 | 66 | R | RIETFONTEIN 66 HS | | T0HS000000000006600001 | 66 | 1 | RIETFONTEIN 66 HS | | T0HS00000000000000000000000000000000000 | 66 | 3 | RIETFONTEIN 66 HS | | T0HS00000000000000000000000000000000000 | 66 | 5 | RIETFONTEIN 66 HS | | T0HS000000000005600001 | 56 | 1 | KOPPIES KRAAL 56 HS | | T0HS00000000005600005 | 56 | 5 | KOPPIES KRAAL 56 HS | | T0HS00000000005600013 | 56 | 13 | KOPPIES KRAAL 56 HS | | T0HS00000000005700001 | 57 | 1 | AMERSFOORT TOWN AND TOWNL | | T0HS00000000005700001 | 57 | 1 | AMERSFOORT TOWN AND TOWNL | | T0HS00000000005700001 | 57 | 1 | AMERSFOORT TOWN AND TOWNL | pa Continuous Ashing EIA: <u>Final Scoping Report</u> 2012 per 6: Description of Baseline Environment | SG Code | Farm No. | Portion No. | Farm Name | |-----------------------|----------|-------------|---------------------------| | T0HS0000000005700035 | 57 | 35 | AMERSFOORT TOWN AND TOWNL | | T0HS0000000005700036 | 57 | 36 | AMERSFOORT TOWN AND TOWNL | | T0HS0000000005700048 | 57 | 48 | AMERSFOORT TOWN AND TOWNL | | T0HS0000000005700049 | 57 | 49 | AMERSFOORT TOWN AND TOWNL | | T0HS0000000005700050 | 57 | 50 | AMERSFOORT TOWN AND TOWNL | | T0HS0000000005700051 | 57 | 51 | AMERSFOORT TOWN AND TOWNL | | T0HS0000000005700052 | 57 | 52 | AMERSFOORT TOWN AND TOWNL | | T0HS0000000005700053 | 57 | 53 | AMERSFOORT TOWN AND TOWNL | | T0HS0000000005700054 | 57 | 54 | AMERSFOORT TOWN AND TOWNL | | T0HS0000000005700055 | 57 | 55 | AMERSFOORT TOWN AND TOWNL | | T0HS0000000005700056 | 57 | 56 | AMERSFOORT TOWN AND TOWNL | | T0HS0000000005800000 | 58 | R | VLAKPLAATS 58 HS | | T0HS00000000006000003 | 60 | 3 | SCHULPSPRUIT 60 HS | | T0HS00000000006000023 | 60 | 23 | SCHULPSPRUIT 60 HS | | T0HS00000000006000024 | 60 | 24 | SCHULPSPRUIT 60 HS | |
T0HS00000000008500010 | 85 | 10 | ELANDSPOORT 85 HS | | T0HS00000000008500018 | 85 | 18 | ELANDSPOORT 85 HS | | T0HS00000000008500019 | 85 | 19 | ELANDSPOORT 85 HS | | T0HS00000000007700000 | 77 | R | MOOIMEISJESFONTEIN 77 HS | | T0HS00000000007700001 | 77 | 1 | MOOIMEISJESFONTEIN 77 HS | | T0HS00000000007700002 | 77 | 2 | MOOIMEISJESFONTEIN 77 HS | | T0HS00000000007700003 | 77 | 3 | MOOIMEISJESFONTEIN 77 HS | | T0HS00000000007700004 | 77 | 4 | MOOIMEISJESFONTEIN 77 HS | | T0HS00000000007700005 | 77 | 5 | MOOIMEISJESFONTEIN 77 HS | | T0HS00000000007700006 | 77 | 6 | MOOIMEISJESFONTEIN 77 HS | | T0HS00000000007700007 | 77 | 7 | MOOIMEISJESFONTEIN 77 HS | | T0HS00000000007700008 | 77 | 8 | MOOIMEISJESFONTEIN 77 HS | | T0HS00000000007700009 | 77 | 9 | MOOIMEISJESFONTEIN 77 HS | | T0HS00000000007900000 | 79 | R | MEZIG 79 HS | | T0HS00000000007900001 | 79 | 1 | MEZIG 79 HS | | T0HS00000000007900002 | 79 | 2 | MEZIG 79 HS | | T0HS00000000007900003 | 79 | 3 | MEZIG 79 HS | | T0HS00000000007900004 | 79 | 4 | MEZIG 79 HS | | T0HS00000000007900005 | 79 | 5 | MEZIG 79 HS | | T0HS00000000007900006 | 79 | 6 | MEZIG 79 HS | | T0HS00000000007900007 | 79 | 7 | MEZIG 79 HS | | T0HS00000000007900008 | 79 | 8 | MEZIG 79 HS | | T0HS0000000007900009 | 79 | 9 | MEZIG 79 HS | | T0HS00000000007900010 | 79 | 10 | MEZIG 79 HS | | T0HS0000000007900011 | 79 | 11 | MEZIG 79 HS | | T0HS00000000007900012 | 79 | 12 | MEZIG 79 HS | | T0HS00000000007900013 | 79 | 13 | MEZIG 79 HS | | T0HS00000000007900014 | 79 | 14 | MEZIG 79 HS | | T0HS00000000008000000 | 80 | R | HOLFONTEIN 80 HS | | T0HS00000000008000001 | 80 | 1 | HOLFONTEIN 80 HS | | SG Code | Farm No. | Portion No. | Farm Name | |-----------------------|----------|-------------|--------------------------| | T0HS00000000008000005 | 80 | 5 | HOLFONTEIN 80 HS | | T0HS0000000008000006 | 80 | 6 | HOLFONTEIN 80 HS | | T0HS00000000008000007 | 80 | 7 | HOLFONTEIN 80 HS | | T0HS00000000008000008 | 80 | 8 | HOLFONTEIN 80 HS | | T0HS00000000008000010 | 80 | 10 | HOLFONTEIN 80 HS | | T0HS00000000008000011 | 80 | 11 | HOLFONTEIN 80 HS | | T0HS00000000008000012 | 80 | 12 | HOLFONTEIN 80 HS | | T0HS00000000008000012 | 80 | 12 | HOLFONTEIN 80 HS | | T0HS00000000008000014 | 80 | 14 | HOLFONTEIN 80 HS | | T0HS00000000008000015 | 80 | 15 | HOLFONTEIN 80 HS | | T0HS00000000008000022 | 80 | 22 | HOLFONTEIN 80 HS | | T0HS00000000008000024 | 80 | 24 | HOLFONTEIN 80 HS | | T0HS00000000008000025 | 80 | 25 | HOLFONTEIN 80 HS | | T0HS00000000008500005 | 85 | 5 | ELANDSPOORT 85 HS | | T0HS00000000008500006 | 85 | 6 | ELANDSPOORT 85 HS | | T0HS00000000008500007 | 85 | 7 | ELANDSPOORT 85 HS | | T0HS00000000008500008 | 85 | 8 | ELANDSPOORT 85 HS | | T0HS00000000008500009 | 85 | 9 | ELANDSPOORT 85 HS | | T0HS0000000005900000 | 59 | R | WEILAND 59 HS | | T0HS0000000009700004 | 97 | 4 | TWEEFONTEIN 97 HS | | T0HS0000000009700005 | 97 | 5 | TWEEFONTEIN 97 HS | | T0HS0000000009700006 | 97 | 6 | TWEEFONTEIN 97 HS | | T0HS00000000007800029 | 78 | 29 | ELANDSPOORT THERON 78 HS | | T0HS00000000008100015 | 81 | 15 | WITKOPPIES 81 HS | | T0HS00000000008200000 | 82 | R | WELGEDACHT 82 HS | | T0HS00000000008200002 | 82 | 2 | WELGEDACHT 82 HS | | T0HS00000000008200003 | 82 | 3 | WELGEDACHT 82 HS | | T0HS00000000008200004 | 82 | 4 | WELGEDACHT 82 HS | | T0HS00000000008600022 | 86 | 22 | OUDEHOUT KLOOF 86 HS | | T0HS00000000011500000 | 115 | R | JAPTRAP 115 HS | | T0HS0000000011600000 | 116 | R | WERDA 116 HS | | T0HS00000000011700000 | 117 | R | KLEIN RIETFONTEIN 117 HS | | T0IS00000000052500007 | 525 | 7 | MOOIGELEGEN 525 IS | | T0IS00000000052500009 | 525 | 9 | MOOIGELEGEN 525 IS | | T0IS00000000052500010 | 525 | 10 | MOOIGELEGEN 525 IS | | T0IS00000000052500013 | 525 | 13 | MOOIGELEGEN 525 IS | | T0IS00000000052500015 | 525 | 15 | MOOIGELEGEN 525 IS | | T0IS00000000052600002 | 526 | 2 | VLEIFONTEIN 526 IS | | T0IS00000000052500000 | 525 | R | MOOIGELEGEN 525 IS | | T0IS00000000052500001 | 525 | 1 | MOOIGELEGEN 525 IS | Figure 6.4: The location of the 12km demarcated study area Table 6.2: Farm Portions associated with Eskom's proposed Continuous Ashing Area | SG_CODE | FARM_NO | PORTION | FARM NAME | |-----------------------|---------|---------|-----------------------------| | T0HS0000000006700001 | 67 | 1 | Roodekopjes 67 HS Portion 1 | | T0HS0000000008100000 | 81 | Rem | Witkoppies 81 HS remainder | | T0HS00000000008100001 | 81 | 1 | Witkoppies 81 HS Portion 1 | | T0HS00000000008100002 | 81 | 2 | Witkoppies 81 HS Portion 2 | | T0HS00000000008100005 | 81 | 5 | Witkoppies 81 HS Portion 5 | | T0HS00000000008100006 | 81 | 6 | Witkoppies 81 HS Portion 6 | | T0HS00000000008100007 | 81 | 7 | Witkoppies 81 HS Portion 7 | | T0HS0000000008100013 | 81 | 13 | Witkoppies 81 HS Portion 13 | | T0HS0000000008100014 | 81 | 14 | Witkoppies 81 HS Portion 14 | NEAS Reference: DEA/EIA/0001417/2012 ## 6.3 Description of the Baseline Environment ### 6.3.1 Topography The study area, within the 12 km radius, is characterised by strong undulating character typical of the Mpumalanga province with hills and koppies to the south and east. The natural topography of the area has been disturbed as a result of various mining, agricultural and power generation activities. ### 6.3.2 Climate The climate in the study area can be described as typical highveld conditions with summers that are moderate and wet, while winters are cold and dry. Severe frost and snow are sometimes experienced. The area also falls within the mist belt. The mean annual precipitation is approximately 760 mm/year, with rain experienced predominantly in the summer months (October to April). **Figure 6.5** shows the monthly rainfall for the Majuba Power Station experienced during the period August 2011 to July 2012. **Figure 6.5:** The monthly rainfall as measured at Majuba Power Station during the period August 2011 to July 2012 Annual average maximum, minimum and mean temperatures are given as 26.3°C, 0.7°C and 15.1°C, respectively, based on the data collected at Eskom's Majuba monitoring station for the period 2009-2011. Average daily maximum temperatures range from 25.6°C in February and December to 16.6°C in June, with daily minima ranging from 16°C in January to 0.7°C in July (**Figure 6.6**). December 2012 **Figure 6.6:** Average monthly maximum, minimum and mean temperatures for Majuba Power Station The prevailing wind direction is recorded as being co-dominant, with both easterly and west-north-westerly winds. **Figure 6.7** shows the period, day-time and night-time wind roses for the Majuba Power Station. Figure 6.7: Period, day-time and night-time wind roses for the Majuba Power Station ### 6.3.3 Geology Majuba Power Station falls within the Carboniferous to early Jurassic aged Karoo Supergroup. Sediments in this part of Mpumalunga Province fall within the Permian Ecca group which comprises of a total of 16 formations. The study area is underlain by Karoo Supergroup sedimentary rocks of the Vryheid and Volksrust Formations of the Ecca Group. These are largely comprised of sandstone, mudstone, shale, siltstone, and coal seams. The Volkrust Formation is predominantly argillaceous unit with interfingers with the overlying Beaufort Group and underlying Vryheid Formation. Considerable intrusive Karoo dolerite is also mapped in the area. The geology of the study area is shown in **Figure 6.8**. Figure 6.8: Geology of the Study area ## 6.3.4 Land Cover and Land Use Land cover categories are presented in **Figure 6.9**. For the purpose of this assessment, land cover are loosely categorised into classes that represent natural habitat and categories that contribute to habitat degradation and transformation on a local or regional scale. In terms of the importance for biodiversity, the assumption is that landscapes exhibiting high transformation levels are normally occupied by plant communities and faunal assemblages that do not necessarily reflect the original or pristine status. This is particularly important in the case of conservation important taxa as these plants and animals generally exhibit extremely low tolerance levels towards disturbances. This is one of the main reasons for the threatened status of these species. Changes in the natural environment available to these species are therefore likely to result in severe impacts on these species and, subsequently, their conservation status. Three important aspects are associated with habitat changes that accompany certain land uses. Permanent transformation of natural habitat by land uses such as agriculture, mining and urbanisation results in the permanent decimation of available habitat as these areas will not recover to the original pristine status. A second aspect of habitat transformation or degradation is that it affects species directly, namely changes in species presence/ absence and –composition. This result from the exodus of species for which habitat conditions have become unfavourable, the decrease in abundance of certain species because of decreased habitat size, or an influx of species that are better adapted to the altered environment. While some, or most, of the new species that occupy an area might be indigenous, they are not necessarily endemic to the affected area. Lastly, a larger threat to the natural biodiversity of a region is represented by the influx of invasive exotic species that can effectively sterilise large tracts of remaining natural habitat. The study area is situated within the Pixley Ka Seme Municipality, which comprises a total of 522,723ha. The BGIS (2007) assessment indicates that approximately 88% of the municipality are currently considered untransformed. This figure is however regarded an overestimation of the true extent of remaining natural (pristine) grassland habitat in the region. This statement is based on the following: - The current land cover, as presented in ENPAT does not accurately reflect the current land cover status in all instances; in particular, recent agricultural activities
and localised stands of exotics are not captured within the existing data (pers. obs.); and - It is well established that the status of much of the remaining portions of 'natural grassland' is not accurately summarized in the assessment. These 'natural grasslands' frequently comprehend poor quality grassland or even pastures that exhibit severely altered species compositions and depleted diversity that does not reflect the natural grassland of the region (pers. obs.). By inclusion of portions of other land cover categories, sub-climax grassland types in particular, within the category of 'Natural Grassland' a fallacious view is created of the extent of remaining natural habitat in the region. It is therefore extremely likely that remaining untransformed habitat within the municipality is much lower than initially anticipated. Ultimately, the greater region is characterised by high levels of habitat transformation, isolation and habitat fragmentation, resulting from persistent increases in mining and agricultural activities, urban developments, linear infrastructure and poor management practices. The effects of commercial agriculture (maize production), infestation by alien invasive trees and recent increase in mining activities are evident from the mosaical appearance of land cover in the immediate region. Other noteworthy land transformation effects result from mining, industrial and urban development. Road and railway infrastructure in the region caused a moderate level of habitat fragmentation and isolation. Figure 6.9: Land cover categories in the study area ## 6.3.5 Land Type The existing ash disposal facility is situated within the Bd46 land type unit (**Figure 6.10**). Other land types represented within the 12km buffer zone include Ae252, Ah86, Bc44 and Bd44. Map units Aa to Ai refer to yellow and red soils without water tables and belonging in one or more of the following soil form: Inanda, Kranskop, Magwa, Hutton, Griffin and Clovelly. The map units refer to land that does not qualify as a plinthic catena and in which one or more of the above soil forms occupy at least 40% of the area. In Ab (red, dystrophic and/ or mesotrophic), yellow soils occupy less than 10% of the area and /or mesotrophic soils occupy a larger area than high base status red-yellow apedal soils. The B- group includes a large area of the South African interior that is occupied by a catena, which in its perfect form is represented by (in order from highest to lowest in the upland landscape) Hutton, Bainsvlei, Avalon and Longlands forms. The valley bottoms are occupied by one or other gley soil. Soils with hard plinthite are common over sandstones in the moist climate zones in the eastern part of the country. Depending on the extent to which water tables have been operative over a landscape, Longlands, Avalon and related grey and yellow soils may predominate, even to the exclusion of red soils. Where water tables have not extended beyond the valley bottoms, red soils may predominate with plinthic soils restricted to narrow strips of land around valley bottoms or pans. For inclusion into Bc and Bd plinthic soils must cover more than 10% of the area. Unit Bc NEAS Reference: DEA/EIA/0001417/2012 December 2012 indicates land in which yellow and/ or red apedal soils are eutrophic and red soils are widespread, while red soils are not widespread in unit Bd. Figure 6.10: Land type units with the study area # 6.3.6 Natural Vegetation ### Regional Vegetation - VEGMAP The study area corresponds to the Grassland Biome as defined by Mucina & Rutherford (VegMap, 2006). This unit is found in the eastern, precipitation-rich regions of the Highveld. Grasslands of these parts are regarded 'sour grasslands'. The following ecological types are represented within the 12km radius (**Figure 6.11**): - Amersfoort Highveld Clay Grassland; - Bloemfontein Karroid Shrubland; - Eastern Temperate Freshwater Wetlands; - Soweto Highveld Grassland; and - Wakkerstroom Montane Grassland. A map with the conservation status of respective vegetation types are presented in **Figure 6.12**. ### o Amersfoort Highveld Clay Grassland This grassland comprises undulating plains, with small, scattered patches of dolerite outcrops. The vegetation comprises of short, closed grassland, largely dominated by a dense *Themeda triandra* sward, often severely grazed. Overgrazing leads to invasion of *Seriphium plumosum*. Parts of this unit were once cultivated and these transformed areas are not picked up by satellite for transformation coverage; the percentage of grasslands still in a natural state may therefore be underestimated. The conservation status is regarded as '**Vulnerable**'; none is formally protected. Some 25% of this vegetation type is transformed, predominantly by cultivation (22%). The area is not suited to forestation. Silver and black wattle and *Salix babylonica* invade drainage areas. ### o Bloemfontein Karroid Shrubland Vegetation of this unit comprehends plateaus or slightly sloping flanks of dolerite outcrops supporting low shrubland dominated by dwarf small-leaved karroid and succulent shrubs. Grasses are restricted to depressions and crevices filled with fine soils. Remarkable is the presence of abundant geophytic herbs. Solitary shrubs or small shrub groups with *Diospyros austro-africana*, *Euclea crisps* subsp. *ovata*, *Searsia burchelli S. ciliata* and *S. erosa* are occasionally present, especially in habitats where root penetration into deeper crevices is possible. Some sites of this vegetation are exposed to considerable urban developmental pressures, especially within the borders of the Mangaung Municipality. None is conserved in statutory conservation areas, but small portions are found on the premises of the Free State National Botanical Garden in Bloemfontein; a 'Least Threatened' status is currently afforded. About 10% is already transformed, mainly by cultivation. Potts & Tidmarsh (1937) were the first to describe this vegetation and to recognise the fact that it is a unique island of succulent-dominated karroid shrub community within the Grassland Biome. Although there is a strong affinity to the vegetation of the arid west, it also has a notable grass component. It is therefore suggested that the occurrence of karroid shrubland within highveld grasslands relates to physiological drought due to shallow soils, high runoff, high evaporation rates and impeded infiltration of rainwater. These factors create soil-controlled microhabitat for vegetation that might be considered a relic of drier (and presumable colder) past climatic periods. ### Eastern Temperate Freshwater Wetlands This vegetation type occurs around water bodies with stagnant water (lakes, pans, periodically flooded vleis and edges of calmly flowing rivers) and is embedded within the Grassland Biome. The landscape is generally flat, or shallow depressions filled with (temporary) water bodies supporting zoned systems of aquatic and hygrophilous vegetation of temporarily flooded grasslands and ephemeral herblands. The vleis form where flow of water is impeded by impermeable soils and/ or by erosion resistant features, such as dolerite intrusions. Many vleis and pans of this type of wetlands are inundated and/ or saturated only during the summer rainfall season and for some months after this into the middle of the dry winter season, but they may remain saturated all year round. About 5% is statutorily conserved in the Blesbokspruit, Hogsback, Marievale, Olifantsvlei, Seekoeivlei, Wakkerstroom Wetland, Umgeni Vlei and Pamula Park Nature Reserves. It is also protected in private nature reserves such as the Korsman Bird Sanctuary and Langfontein. A '**Vulnerable**' conservation status is ascribed to this unit. Some 15% has been transformed to cultivated land, urban areas or plantations. ## Soweto Highveld Grassland The Soweto Highveld Grassland comprises a gently to moderately undulating landscape on the Highveld plateau supporting short to medium-high, dense, tufted grassland dominated almost entirely by *Themeda triandra* and accompanied by a variety of other grasses such as *Elionurus muticus*, *Eragrostis racemosa*, *Heteropogon contortus* and *Tristachya leucothrix*. Only scattered small wetlands, narrow stream alluvia, pans and occasional ridges or rocky outcrops interrupt the continuous grassland cover in undisturbed areas. This vegetation type is regarded '**Endangered**' with a target of 24%. Only a handful of patches are statutorily conserved, including Wadrift, Krugersdorp, Leeuwkuil, Suikerboschrand and Rolfe's Pan Nature Reserve. Almost half of the area is already transformed by cultivation, urban sprawl, mining and building of road infrastructure. Some areas have been flooded by dams (Grootdraai, Leeukuil, Trichardtsfontein, Vaal, Willem Brummer). Erosion is generally very low. #### Wakkerstroom Montane Grassland A small portion of this ecological type is represented in the southeast of the 12km radius. Vegetation of this unit is a less obvious continuation of the Escarpment that links the southern and northern Drakensberg escarpments; it straddles this divide and comprises of low mountains and undulating plains. The vegetation comprises predominantly short montane grasslands on the plateaus and the relatively flat areas, with short forest and *Leucosidea* thickets occurring along steep, mainly east-facing slopes and drainage lines. *L. sericea* is the dominant woody pioneer species that invades areas as a result of grazing mismanagement. A status of 'Least Threatened' is afforded to these parts; although less than 1% is statutorily conserved in the Paardeplaats Nature Reserve. There are 10 Natural Heritage Sites in this unit, although very little of it is formally protected. Land use pressures from agriculture are low, probable owing to the colder climate and shallower soils. The area is also suited to afforestation, with more than 1% under *Acacia mearnsii* and
Eucalyptus plantations **Figure 6.11:** VEGMAP Categories in the Study area (according to Mucina and Rutherford 2006) **Figure 6.12:** VEGMAP conservation status of vegetation types (according to Mucina and Rutherford 2006) NEAS Reference: DEA/EIA/0001417/2012 ## MBCP Categories The local and regional designation of Mpumalanga Terrestrial Biodiversity Conservation Categories (MBCP) is illustrated in **Figure 6.13**. The mandate for conserving biodiversity lies with state agencies at national, provincial and local levels of government, forming part of a wider responsibility for the environment and the sustainable use of natural resources. Constitutional and national laws require these environmental issues to be dealt with in cooperative, participatory, transparent and integrated ways. The MBCP is the first spatial biodiversity plan for Mpumalanga that is based on scientifically determined and quantified biodiversity objectives. The purpose of the MBCP is to contribute to sustainable development in Mpumalanga. The MBCP maps the distribution of Mpumalanga Province's known biodiversity into seven categories (Lötter & Ferrar, 2006). These are ranked according to ecological and biodiversity importance and their contribution to meeting the quantitative targets set for each biodiversity feature. The categories are: - **Protected areas** already protected and managed for conservation; - Irreplaceable areas no other options available to meet targets—protection crucial; - Highly Significant areas protection needed, very limited choice for meeting targets; - **Important and Necessary areas** protection needed, greater choice in meeting targets; - **Ecological Corridors** mixed natural and transformed areas, identified for long term connectivity and biological movement; - Areas of Least Concern natural areas with most choices, including for development; - Areas with No Natural Habitat Remaining transformed areas that do not contribute to meeting targets. The study area comprises four of these categories (Figure 6.13), namely: - Highly Significant (red); - Important & Necessary (green); - No Natural Habitat Remaining (grey); and - Least Concern (yellow). December 2012 **Figure 6.13:** The MBCP categories as they relate to the study area. ## • Species of Conservation Importance South Africa's Red List system is based on the IUCN Red List Categories and Criteria Version 3.1 (finalized in 2001), amended to include additional categories to indicate species that are of local conservation concern. The IUCN Red List system is designed to detect risk of extinction. Species that are at risk of extinction, also known as threatened or endangered species are those that are classified in the categories Critically Endangered (CR), Endangered (EN) and Vulnerable (VU). Species included in these categories are presented in **Table 6.3**. Taking the habitat that is available as well as the status thereof into consideration, it is regarded likely that plant species included in the Threatened category might be present within the study areas. Mpumalanga Province comprises 4,256 plant species of which 276 are included in the following conservation categories: - 1 Extinct; - 30 Endangered; - 80 Vulnerable; - 36 Near Threatened; - 2 Critically Rare; - 47 Rare; - 25 Declining; - 19 Data Deficient insufficient information (DDD); and - 36 Data Deficient taxonomical problem (DDT). Data records indicate the presence of a number of plant species of conservation importance within the ¼-degree grids that are sympatric to the study area (**Table 6.3**). Table 6.3: Plant species of conservation importance within the region of the study area | Species Name | Family | Status | |----------------------------|---------------------|-----------------| | Argyrolobium campicola | Fabaceae | Near Threatened | | Crinum bulbispermum | Amaryllidaceae | Declining | | Gladiolus robertsoniae | Iridaceae | Near Threatened | | Ilex mitis | Aquifoliaceae | Declining | | Khadia alticola | Mesembryanthemaceae | Rare | | Kniphofia typhoides | Asphodelaceae | Near Threatened | | Miraglossum davyi | Apocynaceae | Vulnerable | | Nerine platypetala | Amaryllidaceae | Vulnerable | | Stenostelma umbelluliferum | Apocynaceae | Near Threatened | In addition to the species currently captured in the SANBI infobase (POSA, 2011), the following provincially protected plants are known to occur within the region of the study area (Mpumalanga Nature Conservation Act No.10 of 1998) (**Table 6.4**) Table 6.4: Protected plant species within the region of the study area | Species Name | Family | Status | |--|----------------|------------------------| | Agapanthus inapertus subsp. intermedius | Agapanthaceae | Provincially protected | | Aloe ecklonis | Asphodelaceae | Provincially protected | | Corycium nigrescens | Orchidaceae | Provincially protected | | Crinum bulbispermum | Amaryllidaceae | Provincially protected | | Cyrtanthus breviflorus | Amaryllidaceae | Provincially protected | | Cyrtanthus tuckii var. transvaalensis | Amaryllidaceae | Provincially protected | | Cyrtanthus tuckii var. tuckii | Amaryllidaceae | Provincially protected | | Eulophia foliosa | Orchidaceae | Provincially protected | | Gladiolus crassifolius | Iridaceae | Provincially protected | | Gladiolus dalenii subsp. dalenii | Iridaceae | Provincially protected | | Gladiolus permeabilis subsp. edulis | Iridaceae | Provincially protected | | Gladiolus robertsoniae | Iridaceae | Provincially protected | | Gladiolus sericeovillosus subsp. calvatus | Iridaceae | Provincially protected | | Gladiolus sericeovillosus subsp. sericeovillosus | Iridaceae | Provincially protected | | Haemanthus montanus | Amaryllidaceae | Provincially protected | | Kniphofia albescens | Asphodelaceae | Provincially protected | | Kniphofia typhoides | Asphodelaceae | Provincially protected | | Leucospermum cuneiforme | Proteaceae | Provincially protected | | Satyrium neglectum subsp. neglectum var. | Orchidaceae | Provincially protected | | Zantedeschia albomaculata subsp. macrocarpa | Araceae | Provincially protected | Further detail can be obtained from the Biodiversity Specialist Report in **Appendix I**. December 2012 ### 6.3.7 Animal Life A total of 115 Red Data species from five categories (IUCN) are known to occur in the Mpumalanga Province (Invertebrates, Reptiles, Frogs and Mammals) and the Q-grids 2729BA and 2729BB (birds), included in the following conservation categories: - 23 species are listed as Data Deficient (DD); - 42 species are listed as Near Threatened (NT); - 34 species are listed as Vulnerable (VU); - 11 species are listed as Endangered (EN); and - 5 species are listed as Critically Endangered (CR). Estimations for the probability of occurrence (PoC) for Red Data fauna taxa for the study area yielded the following results (**Table 6.5**): - 41 species have a low PoC; - 14 species have a moderate-low PoC; - 31 species have a moderate PoC; - 7 species have a moderate-high PoC; and - 15 species have a high PoC. Seven Red Data species have been recorded, or are known to occur, in the study area. Table 6.5: Red Data assessment for the study area | | Probability Assessment | | | |-------------------------------|----------------------------|-----------------|------------------------| | Biological Name | English Name | RD | Probability Assessment | | Butterflies | | | | | Aloeides barbarae | Barbara's Copper | Endangered | low | | Aloeides merces | Wakkerstroom Copper | Vulnerable | high | | Aloeides nubilus | Cloud Copper | Endangered | low | | Aloeides rossouwi | Rossouw's Copper | Endangered | low | | Chrysoritis aureus | Heidelberg Opal | Vulnerable | low | | Chrysoritis phosphor borealis | Scarce Scarlet | Data Deficient | moderate-low | | Lepidochrysops irvingi | Irving's Blue | Vulnerable | low | | Lepidochrysops jefferyi | Jeffrey's Blue | Endangered | low | | Lepidochrysops swanepoeli | Swanepoel's Blue | Vulnerable | low | | Metisella meninx | Marsh Sylph | Vulnerable | moderate | | Frogs | | | | | Breviceps sopranus | Whistling Rain Frog | Data Deficient | low | | Hemisus guttatus | Spotted Shovel-nosed Frog | Vulnerable | moderate | | Pyxicephalus adspersus | Giant Bullfrog | Near Threatened | moderate | | Strongylopus wageri | Plain Stream Frog | Near Threatened | low | | Reptiles | | | | | Acontias breviceps | Short-headed Legless Skink | Near Threatened | moderate | | Afroedura major | Swazi Flat Gecko | Near Threatened | low | | Chamaesaura aenea | Coppery Grass Lizard | Near Threatened | moderate | | Chamaesaura macrolepis | Large-scaled Grass Lizard | Near Threatened | low | 6-21 Majuba Continuous Ashing EIA: Final Scoping Report Chapter 6: Description of Baseline Environment | Homoroselaps dorsalis | Striped Harlequin Snake | Near Threatened | moderate-low | |-----------------------------|-------------------------------|----------------------------------|----------------| | Kininyx natalensis | Natal Hinged Tortoise | Near Threatened | low | | Lamprophis fuscus | Yellow-bellied House Snake | Near Threatened | moderate | | Smaug giganteus | Giant Girdled Lizard | Vulnerable | confirmed | | Tetradactylus breyeri | Breyer's Long-tailed Seps | Vulnerable | moderate-low | | Birds | | | | | Phoenicopterus roseus | Greater Flamingo | Near Threatened | confirmed | | Phoenicopterus minor | Lesser Flamingo | Near Threatened | moderate-high | | Mycteria ibis | Yellow-billed Stork | Near Threatened | moderate-low | | Ciconia nigra | Black Stork | Near Threatened | moderate | | Leptoptilos crumeniferus | Marabou Stork | Near Threatened | moderate-low | | Geronticus calvus | Southern Bald Ibis | Vulnerable | confirmed | | Botaurus stellaris | Eurasian Bittern | Critically Rare | moderate | | Sagittarius serpentarius | Secretarybird | Near Threatened | confirmed | | Gyps coprotheres | Cape Vulture | Vulnerable | moderate | | Circus ranivorus | African Marsh Harrier | Vulnerable |
high | | Circus maurus | Black Harrier | Vulnerable | confirmed | | Circus macrourus | Pallid Harrier | Near Threatened | high | | Polemaetus bellicosus | Martial Eagle | Vulnerable | moderate-high | | Stephanoaetus coronatus | Crowned Eagle | Near Threatened | low | | Falco naumanni | Lesser Kestrel | Vulnerable | high | | Falco biarmicus | Lanner Falcon | Near Threatened | high | | Neotis denhami | Denham's Bustard | Vulnerable | moderate | | Eupodotis caerulescens | Blue Korhaan | Near Threatened | confirmed | | Lissotis melanogaster | Black-bellied Bustard | Near Threatened | moderate | | Sarothrura affinis | Striped Flufftail | Vulnerable | moderate | | | Corn Crake | Vulnerable | moderate | | Crex crex | | Vulnerable | | | Balearica regulorum | Grey Crowned Crane Blue Crane | | high confirmed | | Anthropoides paradisea | | Vulnerable | | | Bugeranus carunculatus | Wattled Crane | Critically Rare Near Threatened | high | | Vanellus melanopterus | Black-winged Lapwing | | moderate-high | | Rostratula benghalensis | Greater Painted-snipe | Near Threatened | moderate-low | | Glareola nordmanni | Black-winged Pratincole | Near Threatened | moderate | | Hydroprogne caspia | Caspian Tern | Near Threatened | moderate-low | | Tyto capensis | African Grass-owl | Vulnerable | high | | Alcedo semitorquata | Half-collared Kingfisher | Near Threatened | moderate | | Heteromirafra ruddi | Rudd's Lark | Critically Rare | moderate-low | | Spizocorys fringillaris | Botha's Lark | Endangered | moderate | | Lioptilus nigricapillus | Bush Blackcap | Near Threatened | moderate-low | | Anthus brachyurus | Short-tailed Pipit | Vulnerable | moderate | | Anthus chloris | Yellow-breasted Pipit | Vulnerable | moderate | | Mammals | | | | | Chrysospalax villosus | Rough-haired Golden Mole | Critically Rare | moderate-low | | Amblysomus hottentotus | Hottentot's Golden Mole | Data Deficient | moderate-low | | Amblysomus robustus | Robust Golden Mole | Endangered | low | | Amblysomus septentrionalis | Highveld Golden Mole | Near Threatened | high | | Neamblysomus julianae | Juliana's Golden Mole | Vulnerable | low | | Atelerix frontalis | South African Hedgehog | Near Threatened | moderate | | Elephantulus brachyrhynchus | Short-snouted Elephant-shrew | Data Deficient | low | | Myosorex cafer | Dark-footed Forest Shrew | Data Deficient | moderate-low | | Forest Shrew | Data Deficient | high | |------------------------------------|---|--| | Reddish-grey Musk Shrew | Data Deficient | high | | Greater Musk Shrew | Data Deficient | moderate-high | | Tiny Musk Shrew | Data Deficient | moderate | | Lesser Red Musk Shrew | Data Deficient | moderate | | Maquassie Musk Shrew | Vulnerable | low | | Swamp Musk Shrew | Data Deficient | high | | Lesser Grey-brown Musk Shrew | Data Deficient | moderate-high | | Least Dwarf Shrew | Data Deficient | moderate | | Greater Dwarf Shrew | Data Deficient | low | | Lesser Dwarf Shrew | Data Deficient | moderate | | Percival's Short-eared Trident Bat | Vulnerable | moderate-low | | Blasius's Horseshoe Bat | Near Threatened | moderate | | Swinny's Horseshoe Bat | Near Threatened | moderate-low | | Natal Long-fingered Bat | Near Threatened | moderate-high | | Giant Yellow House Bat | Near Threatened | low | | Samango Monkey | Vulnerable | low | | · / | Endangered | low | | | Vulnerable | low | | Rock Dormouse | Data Deficient | low | | White-tailed Rat | Endangered | moderate | | Bushveld Gerbil | Data Deficient | low | | | Data Deficient | moderate | | | Near Threatened | moderate | | Woodland Mouse | Data Deficient | low | | Sloggett's Rat | Data Deficient | moderate | | | Near Threatened | moderate | | Lion | Vulnerable | low | | Serval | Near Threatened | high | | Cheetah | Vulnerable | low | | Black-footed Cat | Vulnerable | low | | Spotted Hvaena | Near Threatened | low | | 1 | Near Threatened | high | | | | low | | | | low | | - | | low | | <u>'</u> | | low | | - | _ | moderate-high | | - | | moderate | | · | | moderate | | | | low | | | | low | | | · · | low | | | | low | | 1 1 1 | | low | | | | high | | Roan Antelope | Vulnerable | low | | | v alliciable | IOW | | Southern Sable Antelope | Vulnerable | low | | | Reddish-grey Musk Shrew Greater Musk Shrew Tiny Musk Shrew Lesser Red Musk Shrew Maquassie Musk Shrew Swamp Musk Shrew Lesser Grey-brown Musk Shrew Least Dwarf Shrew Least Dwarf Shrew Lesser Dwarf Shrew Percival's Short-eared Trident Bat Blasius's Horseshoe Bat Swinny's Horseshoe Bat Samango Monkey Ground Pangolin Rock Dormouse White-tailed Rat Bushveld Gerbil Single-striped Mouse Water Rat Woodland Mouse Sloggett's Rat Leopard Lion Serval Cheetah Black-footed Cat Spotted Hyaena Brown Hyaena Selous's Mongoose Meller's Mongoose Meller's Mongoose Meller's Mongoose Side-striped Jackal African Wild Dog Honey Badger African Striped Weasel Spotted-necked Otter African Savanna Elephant Black Rhinoceros White Rhinoceros Common Hippopotamus Sharpe's Grysbok Southern Oribi | Reddish-grey Musk Shrew Greater Musk Shrew Data Deficient Tiny Musk Shrew Data Deficient Tiny Musk Shrew Data Deficient Lesser Red Musk Shrew Data Deficient Maquassie Musk Shrew Data Deficient Lesser Grey-brown Musk Shrew Least Dwarf Shrew Data Deficient Least Dwarf Shrew Data Deficient Lesser Dwarf Shrew Data Deficient Vulnerable Blasius's Horseshoe Bat Near Threatened Swinny's Horseshoe Bat Near Threatened Matal Long-fingered Bat Near Threatened Giant Yellow House Bat Near Threatened Samango Monkey Samango Monkey Samango Monkey Findangered Ground Pangolin Vulnerable Rock Dormouse Data Deficient White-tailed Rat Bushveld Gerbil Data Deficient Single-striped Mouse Data Deficient Water Rat Near Threatened Woodland Mouse Data Deficient Sloggett's Rat Data Deficient Leopard Lion Vulnerable Serval Near Threatened Lion Vulnerable Serval Near Threatened Cheetah Vulnerable Serval Near Threatened Selous's Mongoose Data Deficient Meller's Mongoose Data Deficient Side-striped Jackal Near Threatened African Wild Dog Endangered Honey Badger Near Threatened African Striped Weasel Data Deficient Spotted-necked Otter Near Threatened African Savanna Elephant Vulnerable Sharpe's Grysbok Near Threatened Southern Oribi Endangered | Mpumalanga includes 31 provincially listed protected species (www.speciesstatus.sanbi.org – NEMBA status, **Table 6.6**). Table 6.6: Protected species of Mpumalanga | | Probability | | | |---------------------------|-------------------------------------|--------------|--------------| | Biological Name | English Name | NEMBA status | Assessment | | Aonyx capensis | African Clawless Otter | protected | high | | Atelerix frontalis | South African Hedgehog | protected | moderate | | Bucorvus leadbeateri | Southern Ground-Hornbill | protected | low | | Ceratogyrus bechuanicus | Starbust Horned Baboon Spider | protected | moderate-low | | Ceratotherium simum | White Rhinoceros | protected | low | | Circus ranivorus | African Marsh Harrier | protected | high | | Connachaetus gnou | Black Wildebeest | protected | low | | Crocuta crocuta | Spotted Hyaena | protected | low | | Dromica species | Flightless Tiger Beetle species | protected | moderate-low | | Felis nigripes | Black-footed Cat | protected | low | | Graphipterus assimilis | Velvet Ground Beetle | protected | moderate-low | | Harpactira gigas | Transvaal Banded Baboon Spider | protected | moderate-low | | Hydrictis maculicollis | Spotted-necked Otter | protected | moderate | | Leptailurus serval | Serval | protected | high | | Loxodonta africana | African Savanna Elephant | protected | low | | Manticora species | Monster Tiger Beetle species | protected | moderate-low | | Megacephala asperata | Tiger Beetle | protected | moderate-low | | Megacephala regalis | Tiger Beetle | protected | moderate-low | | Neotis denhami | Denham's Bustard |
protected | moderate | | Nigidius auriculatus | Stag Beetle | protected | moderate-low | | Oonotus adspersus | Stag Beetle | protected | moderate-low | | Oonotus interioris | Stag Beetle | protected | moderate-low | | Oonotus rex | Stag Beetle | protected | moderate-low | | Oonotus sericeus | Stag Beetle | protected | moderate-low | | Parahyaena brunnea | Brown Hyaena | protected | high | | Prosopocoilus petitclerci | Stag Beetle | protected | moderate-low | | Prothyma guttipennis | Tiger Beetle | protected | moderate-low | | Pterinochilus breyeri | Malelane Golden-brown Baboon Spider | protected | moderate-low | | Pterinochilus nigrofulvus | Transvaal Golden Baboon Spider | protected | moderate-low | | Raphicerus sharpei | Sharpe's Grysbok | protected | low | | Redunca arundinum | Southern Reedbuck | protected | low | It is estimated that three of the eight species listed in **Table 6.6** are unlikely to occur in the study area (low) and 16 species moderately unlikely (moderate-low). Three species are considered at least moderately likely (moderate) and four species highly likely to occur in the study area (high). Further detail can be obtained from the Biodiversity Specialist Report in Appendix I. ### 6.3.8 Avifauna ### Bird Micro Habitats It is important to understand the habitats available to birds at a smaller spatial scale, i.e. micro habitats. Micro habitats are shaped by factors other than vegetation, such as topography, land use, food sources and man-made factors. Investigation of this study area revealed the following bird micro habitats. ## Arable and/or cultivated lands Arable or cultivated lands (**Figure 6.14**) can represent significant feeding areas for many bird species in any landscape for the following reasons: through opening up the soil surface, land preparation makes many insects, seeds, bulbs and other food sources readily accessible to birds and other predators; the crop or pasture plants cultivated are also often eaten by birds, or attract insects which are in turn eaten by birds; during the dry season arable lands often represent the only green or attractive food sources in an otherwise dry landscape. Relevant bird species that may be attracted to these areas include most importantly the Blue Crane, Grey Crowned Crane, Southern Bald Ibis, Blue Korhaan and White Stork. Figure 6.14: Agricultural lands. ### Open Grasslands: As can be seen from the earlier discussion regarding vegetation types, the major vegetation types present all fall within the greater Grasslands Biome. It was not surprising, therefore, that the most extensive bird micro habitat available on this site, is that of Grassland (**Figure 6.15**). Grasslands represent a significant foraging and/or hunting area for many bird species. Grassland may attract the Blue Crane, Grey Crowned Crane, Southern Bald Ibis, Blue Korhaan, White-bellied Korhaan, Secretarybird, Denham's Bustard, Black-winged Pratincole, and White Stork, although most of these species would tend to avoid grassland patches in close proximity to human disturbance. Pristine patches of grassland, near to water, may provide breeding habitat for the African Grass Owl. The grassland patches are also a favourite foraging area for game birds such as francolins and Helmeted Guineafowl, as well as being hunting habitat for raptors such as African Marsh Harrier, Lanner Falcon, Lesser Kestrel, Amur Falcon and Black-shouldered kite. Important to this study is that two sensitive species, Rudd's Lark (Critically Endangered) and Botha's Lark (Endangered), have been recorded in the quarter degree squares (SABAP1 data) examined and both species are grassland species (**Figures 6.16 and 6.17**). Figure 6.15: Relatively undisturbed grassland observed in the broader study area. Figure 6.16: The Critically Endangered Rudd's Lark NEAS Reference: DEA/EIA/0001417/2012 December 2012 Figure 6.17: The Endangered Botha's Lark #### o Dams: Dams have become important attractants to various bird species in the South African landscape. Various waterfowl, such as Spur-winged geese, Egyptian geese, and numerous duck species, may frequent these areas and are vulnerable to collision with power lines, where the dams are in close proximity or on-route to dams. More importantly, Blue Cranes use dams to roost in communally, and Flamingos may use these areas as stop over points while moving between larger water bodies. Various Storks may also frequent these water bodies. Numerous dams were observed in the study area, of varying sizes, and varying importance to avifauna. A pair of Blue Cranes as well as a flock of 40 Greater Flamingos were observed at a particular dam (270 06' 05.8"S 290 41' 33.1" E) in the study area during the site visit (**Figure 6.18**). **Figure 6.18:** A dam in the study area where both Greater Flamingos and Blue Cranes were observed. ### Wetlands and Rivers or drainage lines: Wetlands and rivers can be very attractive micro habitats for birds as well as habitats for water birds etc. In this area species such as Greater Flamingo, Lesser Flamingo, Yellow-billed Stork and Caspian Tern are attracted to water. The Blue Crane and Grey- Crowned Crane are also known to occur near vleis, pans and inland water sources. Non Red Data species may also occur in these areas for example herons. Rivers in their true form represent an important habitat for many species, including Black Stork and a variety of other water birds, while the wooded riparian habitat along a river may provide habitat for various species such as the Hamerkop, African Darter, various cormorants, kingfishers, bee-eaters, robin-chats and numerous smaller species. Small rivers are represented in the study area by the Geelklipspruit, Witbankspruit and Skulpspruit. Numerous smaller drainage lines, some of which do not always carry water are also present in the broader area. An unnamed "spruit" and associated wetland is present on the eastern side of the proposed disposal facility continuation. Drainage lines, as well as all of the Rivers/"Spruite" discussed above, may serve as flight paths for several bird species. ### Stands of Alien vegetation: Patches of alien trees were observed throughout the study area, often associated with a farm stead, or along farm roads (**Figure 6.19**). These areas will mostly be important to physically smaller bird species. These also provide perching, roosting and nesting habitats for various raptor species and larger birds such as francolins, Guineafowl, Herons and Hadeda Ibises. Figure 6.19: A stand of Alien Trees associated with a farm access road in the study area. ### • Relevant bird populations The relevant bird populations that have been reported by the South African Bird Atlas Project (1 and 2) (SABAP) can be found below in **Tables 6.7** and **6.8**. In addition the preferred habitat as well as likelihood of occurrence can be seen in the last two columns of **Table 6.7**. This likelihood of occurrence is done with precaution at this initial scoping stage, and will be updated once the specialist has accessed the site, during the EIA phase. Report rates are essentially an expression of the number of times a species was recorded in a either a pentad or a quarter degree square, as a percentage of the number of times that square was counted. A report rate of 0 means that the species was recorded in the square, but at a very low frequency. It is important to note that these species could have been recorded anywhere in the square, and not necessarily in the exact study area. SABAP 2 data for the pentads (2705_2940 and 2705_2945) in the study area was examined, and in general the area is poorly counted. Pentads 2700 2945, 2700 2940 and 2700 2950 were also considered due to their close proximity to the site. **Table 6.8** below shows report rates, based on the number of cards submitted, for the Red Data species identified during SABAP2 counts. Interestingly, of the 17 red listed species identified in the SABAP 1 data, only 7 species have again been recorded in the SABAP 2 data for the pentads examined. This however, does not necessarily mean that these species do not occur here, or that they have moved from the area, post SABAP1, but may merely be due to the low counting effort of the pentadsor selective micro habitat counting by the SABAP2 field counters. White Stork, protected through the Bonn Convention, was recorded in both data sets. Rudd's Lark was not recorded in the pentads examined, while Botha's Lark was recorded in one of the five pentads, with only one record from that pentad (which in fact does not incorporate the site). Blue Korhaan was recorded in four pentads, and was observed in the area during the site visit NEAS Reference: DEA/EIA/0001417/2012 **Table 6.7:** Red Data species report rates for the two quarter degree squares which cover the study area-SABAP 1 (Harrison et al, 1997) | Total Cards | | 42 | 62 | | | |---------------------------|--------------|--------|--------|---|---------------| | Total Species | | 165 | 162 | | | | Total Breeding Species | | 19 | 31 | | | | | Conservation | | | | Likelihood of | | Name | status | 2729BA | 2729BB | Habitat | occurrence | | | | | | High-altitude and montane grassveld above | | | | | | | about 1700 m, usually on crowns and ridges | | | Rudd's Lark | CR | | 5 | without rocks and with dense grass cover up to 50 cm tall | Possible | | | 1 | | | Heavily grazed grassy uplands in sour grassveld | | | | | | | (avoids valley bottoms, vleis, pastures, | | | Botha's Lark | EN | | 6 | cultivated lands and rocky areas). | Possible | | | | | | High grassveld (especially after burning), heavily | | | | | | | grazed pastures, cultivated lands; breeds in | | | Southern Bald (Bald) Ibis | VU | 14 | 24 | mountainous or highly dissected country | Possible | | | | | | Marsh, vlei, grassland (usually near water); may | | | African Marsh-Harrier | νυ | 10 | 5 |
hunt over grassland, cultivated lands and open savanna | Possible | | 7 (Treat Marsh Harrer | 1 | 10 | | Open grassveld, mainly on highveld, usually near | 1 0331010 | | Lesser Kestrel | VU | 2 | 3 | towns or farms | Possible | | | | | 40 | Midland and highland grassveld, edge of karoo, | | | Blue Crane | VU | 2 | 13 | cultivated land, edges of vleis | Possible | | Grey Crowned- (Crowned) | | | | Marshes, vleis, moist grasslands, cultivated | | | Crane | VU | 2 | 3 | fields | Possible | | White-bellied Korhaan | VU | 2 | 2 | Open grassland; sometimes in sparse <i>Acacia</i> thornveld | Possible | | Denham's (Stanley's) | | | | | | | Bustard | VU | | 2 | Montane and highland grassveld, savanna, karoo scrub | Possible | | Dustaru | 1 | | | Mainly inland waters; rivers, dams, pans, | 1 0331610 | | Yellow-billed Stork | NT | 5 | | floodplains, marshes; less often estuaries | Possible | | | 1 | _ | _ | Large bodies of shallow water, both inland and | | | Greater Flamingo | NT | 7 | 3 | coastal; saline and brackish waters preferred Larger brackish or saline inland and coastal | Possible | | Lesser Flamingo | NT | 2 | | waters | Possible | | _ | | | | Semidesert, grassland, savanna, open woodland, | | | Secretarybird | NT | 2 | | farmland, mountain slopes | Possible | | Blue Korhaan | NT | 21 | 52 | Open grassveld, karoo scrub, cultivated lands | Likely | | Black-winged Pratincole | NT | 2 | 3 | Open grassland | Possible | | Caspian Tern | NT | 2 | | Estuaries, marine shores, larger inland dams and pans | Possible | | | | | | Mountains or open country from semidesert to | | | Lanner Falcon | NT | | 2 | woodland and agricultural land; also cities (Durban, Harare). | Possible | | Lamier Faicon | 141 | | 3 | Highveld grasslands, mountain meadows, | L 022INIG | | White Stork | Bonn | 7 | 6 | cultivated lands, marshes, karoo | Likely | CR = Critically Endangered; EN = Endangered; V = Vulnerable; NT = Near-threatened; Bonn = Protected Internationally under the Bonn Convention on Migratory Species. **Table 6.8:** Report rates from Southern African Bird Atlas Project 2 (SABAP2) as of 22/08/2012. | Species | Cons.
status | Pentad Report Rate (%) | | | | | | | |----------------|-----------------|------------------------|-----------|-----------|-----------|-----------|--|--| | | | 2705_2945 | 2705_2940 | 2700_2945 | 2700_2940 | 2700_2950 | | | | No Cards | | 2 | 2 | 3 | 1 | 4 | | | | Total Species | | 68 | 51 | 70 | 35 | 80 | | | | | | | | | | | | | | Botha's Lark | EN | - | - | 33.3 | - | - | | | | Lesser Kestrel | VU | 50 | - | ı | 100 | - | | | | Southern Bald | VU | - | - | - 1 | - | 25 | | | 6-30 Majuba Continuous Ashing EIA: <u>Final Scoping Report</u> Chapter 6: Description of Baseline Environment | Ibis | | | | | | | |---------------|------|----|----|------|------------|----| | Blue Crane | VU | - | - | - | - | 25 | | Secretarybird | NT | 50 | - | - | incidental | - | | Blue Korhaan | NT | 50 | 50 | 100 | - | 75 | | White Stork | Bonn | - | - | 33.3 | - | 25 | CR = Critically Endangered; EN = Endangered; V = Vulnerable; NT = Near-threatened; Bonn = Protected Internationally under the Bonn Convention on Migratory Species. Further detail can be obtained from the Avifauna Specialist Report in Appendix J. ### 6.3.9 Surface Water The study area encompasses a 12 km radius around the current infrastructure, and falls over five quaternary catchments in the Upper Vaal Water Management Area (WMA) with the Majuba Power Station located in C11J (Figure 6.21). The study area in relation to the National Freshwater Ecosystem Priority Areas (NFEPA) and the Mpumalanga Biodiversity Conservation Plan are provided in Figure 6.22 and Figure 6.23. Portions of the study area are located in a Freshwater Ecosystem Priority Area (FEPA) and these systems were identified as being in a good condition (NFEPA – Nel et al., 2011) and therefore need to be maintained in order to contribute to the biodiversity of the area (Figure 6.22). The remainder of the study area is located in an Upstream Management Area. Anthropogenic activities taking place in these areas need to be monitored in order to prevent the degradation of FEPAs and Fish Support Areas located downstream (Figure 6.22). According to the MBCP (Ferrrar & Lötter, 2007) the study area is located in an "Ecosystem Maintenance" sub-catchment (Figure 6.23). The characterisation of the rivers located within the study area (12 km radius) showed that with the exception of the Skulpspruit (order two river) all of the remaining associated systems are order one rivers/streams (**Figure 6.12**). The Witbankspruit (running along the eastern boundary of the Majuba Power Station), Skulpspruit and the Markgraafspruit are all perennial with the remainder of the systems being classed as non-perennial (**Figure 6.21**; **Table 6.9**). Numerous smaller streams are shown in the 1:50 000 river coverage (**Figure 6.21**). Non perennial rivers located in drier climates hold different characteristics to those located in wetter climates and function differently to their perennial counterparts (Rossouw et al., 2005). They therefore require focused attention with regards to ecosystem management. The tributary of the Witbankspruit as indicated in **Figure 6.21** will be affected by the proposed continuation of ashing. The aquatic ecosystems in the immediate vicinity include: - A pan to the south of the existing ashing activity (Figure 6.20 A); - The tributary of the Witbankspruit which is a valley bottom system to the east of the current ash disposal facility footprint (running south to north) (Figure 6.20 C and D); - A tributary of the Witbankspruit to the west of the existing ash disposal facility; - Various zero order tributaries of the aforementioned system; and Visually observed seeps. **Figure 6.20**: Photographs taken during the screening/scoping survey: facing south towards the pan and channelled valley bottom system (A); facing north at the existing ash disposal facility on the 35 year ashing line (B); facing east toward a dam and the Majuba Power station (C); and facing southeast at the tributary of the Witbankspruit. Six attributes were used to obtain the Present Ecological State (PES) on desktop quaternary catchment level by the National Spatial Biodiversity Assessment (NSBA - Nel et al., 2004). These attributes predominantly refer to habitat integrity of instream and riparian habitat. The surrounding catchments are affected by agricultural activities, waste water treatment works, infrastructural development in the form of power stations and mines. According to the NSBA (Nel et al., 2004) and DWAF (2007) with the exception of the Wolwespruit, all the associated systems fall in a **C** ecological category, indicating a moderately modified ecosystem state (**Table 6.9**). The Wolwespruit, however, classed in an **E-F** ecological category, indicating that this system is critically modified and is in an unacceptable state. The Ecological Importance and Sensitivity (EIS - DWAF, 2007) of all the associated catchments are considered moderately sensitive due to the expected presence of flow intolerant (Labeobarbus aeneus & Labeobarbus kimberleyensis) and unique / endemic (Labeo capensis & Austroglanis sclateri) fish species, and the system's sensitivity to changes in flow and water quality. The systems in the immediate area have "Highveld 3" river signatures, which Nel et al. (2004) assigns a status of critically endangered (**Table 6.9**). The ascribed river status indicates a limited amount of intact river systems carrying the same heterogeneity signatures nationally. This implies a severe loss in aquatic ecological functioning and aquatic diversity in similar river signatures on a national scale (Nel et al., 2004). **Figure 6.21:** Map indicating the 12 km radius study area and DWA monitoring points associated with the proposed continuation of Majuba ashing activities (Nel et al., 2004; Chief Directorate – Surveys and Mapping, 2629 and 2729; SANBI, 2010). **Figure 6.22:** Map indicating the study area in relation to the NFEPAs (Nel et al., 2004; SANBI, 2010; Nel et al., 2011). **Figure 6.23:** Map indicating the study area in relation to the MBCP (Nel et al., 2004; Ferrrar & Lötter, 2007). 6-34 Majuba Continuous Ashing EIA: <u>Final Scoping Report Chapter 6</u>: Description of Baseline Environment EIA Ref Number: 14/12/16/3/3/3/53 NEAS Reference: DEA/EIA/0001417/2012 **Table 6.9:** Characterisation of the system associated with the study area. | River name | Perde-
water | Tributary
of
Perdewater | Skulp-
spruit | Tributary
of
Skultspruit | Witbank-
spruit | Wolve-
spruit | Markgraaf-
spruit | | | |-----------------------------|---|-------------------------------|------------------|--------------------------------|--------------------|-------------------|----------------------|--|--| | River Order | 1 | 1 | 2 | 1 | 1 | 1 | 1 | | | | Hydrological
Class | - | Non-
perennial | Perennial | Non-
perennial | Perennial | Non-
perennial | Perennial | | | | River
Signature | Highveld3 | | | | | | | | | | Conservation status | Critically Endangered | | | | | | | | | | PES (Nel et al., 2004) | С | С | С | С | O | E-F | С | | | | Aquatic
Ecoregion | Highveld | | | | | | | | | | Water
Management
Area | Upper Vaal | | | | | | | | | | Quaternary catchment | C11E | C11E | C11E | C11E | C11J | C11L | C13B | | | | PES (DWAF, 2007) | С | С | С | С | C | E-F* | С | | | | EIS (DWAF,
2007) | Moderate | | | | | | | | | | PES: Present Eco | PES: Present Ecological State; EIS: Ecological Importance and Sensitivity; DWAF, 2000 | | | | | | | | | ### Catchment Drivers of Ecological Change The study area falls within the Upper Vaal Water Management Area (WMA) which includes the Vaal, Klip, Wilge, Liebenbergsvlei and Mooi Rivers. It covers a catchment area of 55 565 km² and includes the Vaal Dam,
Grootdraai Dam and Sterkfontein Dam (DWAF, 2004). The Upper Vaal WMA is the most populous WMA in South Africa, with more than 80 % of the population residing in the area downstream of the Vaal Dam, and approximately 97 % living in an urban environment. Land use in the WMA is dominated by cultivated dry land agriculture with the main crops being maize and wheat. About 75 % of the irrigation is upstream of major storage dams and is supplied from rivers or farm dams DWAF, 2004). The majority of the water requirements of the WMA are for the urban, industrial and mining sectors (77 %), with 11 % for irrigation, 8 % for power generation and the remaining 4 % for rural water supplies. The Upper Vaal WMA is subdivided into three subareas, with the study area located in the "upstream of the Vaal Dam" sub-area. Geographically, over 73 % of the total requirements for water are in the sub-area "downstream of the Vaal Dam" and nearly 20 % in the sub-area upstream of the Vaal Dam. Most of the irrigation in the WMA is in the sub-area downstream of the Vaal Dam (DWAF, 2004). The available water and total requirements for the year 2000, including transfers between WMAs is shown in **Table 6.10**. **Table 6.10:** Reconciliation of requirements and available water for the year 2000 (million m3/a) without yield of Mohale Dam (DWAF, 2004) | Sub-area | MAR | Local yield | Transfers
in | Transfers
out | Local requirement | Deficit | | |--|------|-------------|-----------------|------------------|-------------------|---------|--| | Wilge | 868 | 59 | 0 | 0 | 60 | -1 | | | US of Vaal
Dam | 1109 | 184 | 118 | 67 | 216 | 19 | | | DS of Vaal
Dam | 446 | 889 | 1224 | 1343 | 769 | 1 | | | MAR: Natural Mean Annual Run-off; US: Upstream, DS: Downstream | | | | | | | | The majority of the water requirements in the sub-area upstream of Vaal Dam are for mining and bulk industrial use, with a considerable portion allocated for urban use and power generation (DWAF, 2004). The expected future growth in the petro-chemical industry and the increasing need of power generation in the region are putting pressure • Historical Water Quality on the water requirements of the sub-area at present. Historical water quality data was obtained from DWA water monitoring points located on the Perdewater and Skulpspruit (**Figure 6.21**): - Upstream of the Majuba Power Station at DWA gauging station C11_90606 on the Perdewater, upstream of the confluence with the Skulpspruit. - Downstream of the Majuba Power Station at DWA gauging station C11_177963, downstream of the Amersfoort Waste Water Treatment Works. These monitoring stations provide minimum, maximum, median and 90th percentile values for the variables measured between the period of 1996 and 2007 (**Table 6.11**). The monitoring points are located Upstream (Perdewater – 90602) and downstream (Skulpspruit – 177963) of the study area. The monitoring point located on the Perdewater showed better water quality when compared to monitoring point located downstream on the Skulpspruit. Despite the pH values falling above CEV, the remainder of the values were within the TWQRs and benchmark criteria (DWAF, 1996; Kotze, 2002). The Skulpspruit (downstream) reflected poor water quality with all the variables measured being considerably higher than the values obtained at the Perdewater weir (**Table 6.11**). Na, Cl, SO_4 and $NH_4(N)$ values were all within the tolerable range while the electrical conductivity fell within the intolerable range (Kotze, 2002). The NO3(N) and PO4(P) values were considerably higher when compared to Perdewater, indicating severe organic enrichment, most likely as a result of effluent from the Amersfoort Waste Water Treatment Works. **Table 6.11:** DWA 90th percentile water quality values for monitoring stations located on the Perdewater and Skulpsruit systems | the Perdewater and Sk | tarpor are o | , 5001115 | C11_90 | 1602 | | C11_177 | 963 | | |-----------------------------|--------------|--------------------|----------------|--------|---------|---------------|-------------|------------| | | | | Perdew | | | Skulpspr | | | | Variable | Abb | Unit | | | centile | | 90th pe | rcentile | | | | | Min
Max | | centile | Min
Max | | centile | | Position in relation to the | <u> </u> | | | Median | | | Median | | | Majuba Power Station | | | Upstrea | im | | Downstre | eam | | | Flow | | m3s | 4.1 | 3.0 | | No data | | | | 1100 | | 55 | 0 | 0 | n=6604 | No data | | | | рН | | H¹+ ions | 9.73 | 8.74 | | 8.8 | 7.9 | | | P | | | 6.85 | 7.88 | n=90 | 6.4 | 7.5 | n=61 | | Electrical Conductivity | EC | mS-m ⁻¹ | 29.5 | 13.3 | | 137 | 115 | | | | | | 7.8 | 11.51 | 6.4 | 35 | 97 | n=61 | | Total Dissolved Solids | TDS | ppm | 223 | 94.24 | | No data | | | | | | | 56.88 | 85.0 | n=88 | | | | | Calcium | Са | mg/l | 33.03 | 12.6 | | 60.3 | 44.22 | | | | | | 5.759 | 8.16 | n=90 | 13.4 | 28.2 | n=39 | | Magnesium | Mg | mg/l | 13.06 | 5.53 | | 42.8 | 32.97 | | | | | | 0.75 | 4.6 | n=90 | 4.6 | 18.3 | n=39 | | Potassium | K | mg/l | 3.12 | 1.73 | | 26.1 | 26.02 | | | | | | 0.592 | 1.24 | n=89 | 25.7 | 25.9 | n=2 | | Sodium | Na | mg/l | 13.79 | 6.03 | | 110 | 83.74 | | | | | | 1.0 | 5.2 | n=89 | 9.8 | 62.3 | n=23 | | TAlkilinity | Tal | mg/l | 120.0
23.85 | 45.3 | | 494
141 | 423 | | | | | | | 40.53 | n=90 | 141 | 318 | n=2 | | Chloride | CI | mg/l | 10.52
2.0 | 6.65 | | 101
15.0 | 84.6 | | | | | | | 5.0 | n=90 | | 63.5 | n=52 | | Fluoride | F | mg/l | 0.23
0.05 | 0.18 | | 0.6
0.05 | 0.4 | | | | | | | 0.13 | n=88 | 0.00 | 0.2 | n=34 | | Silica | Si | mg/l | 11.06
0.57 | 6.16 | | No data | | | | | | | | 5.18 | n=90 | | 00 | | | Sulphate | S04 | mg/l | 44.6
2.0 | 14.4 | | 130.0
29.0 | 98 | | | | | | | 10.9 | n=90 | | 67
50 56 | n=40 | | Ammonium | NH4(N) | mg/l | 0.1
0.015 | 0.06 | | 75.0
0.05 | 58.56 | | | | | | | 0.02 | n=90 | | 36.2 | n=61 | | Nitrate | NO3(N) | mg/l | 1.14
0.005 | 0.29 | | 31.2
0.05 | 18.87 | | | | | | | 0.2 | n=90 | | 0.3 | n=61 | | Phosphate | PO4(P) | mg/l | 0.1
0.003 | 0.03 | | 17.4
0.05 | 14.5 | . - | | | | | 0.003 | 0.02 | n= | 0.03 | 8.6 | n=60 | ## • Expected Macroinvertebrate Species A list of macroinvertebrates expected to occur in the study area or indicating the possibility of occurrence was determined for the major drainage lines (**Table 6.12**; **Figure 6.24**). Each taxon was allocated a rating score of either 1, 3 or 5: a rating of 5 indicates that the specific taxon has been sampled within that sub-quaternary (SQ) reach and is likely to be sampled; a rating of 3 indicates that the taxon has not been sampled in the SQ reach but has been sampled in a similar SQ reach and the probability of occurrence has been extrapolated; a rating of 1 indicates that the taxon has not been sampled in the SQ reach or any other similar SQ reach but is thought to be potentially present taking into account the available habitat, water quality and associated land use activities. The majority of expected macroinvertebrates are of low to moderate sensitivity, scoring between 3 and 8 (Gerber & Gabriel, 2002). A total of five relatively sensitive taxa are expected to occur within the study area, namely Heptageniidae, Athericidae, Dixidae, Leptophlebiidae and Tricorythidae. Sensitivity scores of these taxa ranged between 9 and 13 (Gerber & Gabriel, 2002) representing taxa that are moderately to highly intolerant to alterations in water quality (pollution). NEAS Reference: DEA/EIA/0001417/2012 **Table 6.12:** Macroinvertebrate species expected to occur, or indicating the possibility of occurrence, in the different sub-quaternary reaches located within the study area. Taxa in red are considered sensitive taxa | ID | | Α | В | С | D | E | F | G | н | |-----------------|----|------------|-----------------------------------|---|-------------|------------------------------------|--------------------|-------------|-----------------------| | | ss | Perdewater | Tributary of
the
Perdewater | - | Skulpspruit | Tributary of
the
Skulpspruit | Witbank-
spruit | Wolwespruit | Markgraaff-
spruit | | Porifera | 5 | | | | 5 | | | | | | Turbellaria | 3 | 1 | 1 | 1 | 5 | 1 | 1 | 1 | 1 | | Oligochaeta | 1 | 1 | 1 | 1 | 5 | 1 | 1 | 1 | 1 | | Hirudinea | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Potamonautidae | 3 | 1 | 1 | 1 | 5 | 1 | 1 | 1 | 1 | | Atyidae | 8 | 1 | 1 | 1 | 5 | 1 | 1 | 1 | 1 | | Hydracarina | 8 | 1 | 1 | 1 | 5 | 1 | 1 | 1 | 1 | | Baetidae > 2 Sp | 12 | 1 | 1 | 1 | 5 | 1 | 1 | 1 | 1 | | Caenidae | 6 | 1 | 1 | 1 | 5 | 1 | 1 | 1 | 1 | | Heptageniidae | 13 | | | | | | | 1 | | | Leptophlebiidae | 9 | 1 | 1 | 1 | 5 | 1 | 1 | 1 | 1 | | Tricorythidae | 9 | | | | 5 | | | | | | Coenagrionidae | 4 | 1 | 1 | 1 | 5 | 1 | 1 | 1 | 1 | | Lestidae | 8 | | | | 5 | | | | | | Aeshnidae | 8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Gomphidae | 6 | 1 | 1 | 1 | 5 | 1 | 1 | 1 | 1 | | Libellulidae | 4 | 1 | 1 | 1 | 5 | 1 | 1 | 1 | 1 | | Belostomatidae | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Corixidae | 3 | 1 | 1 | 1 | 5 | 1 | 1 | 1 | 1 | | Gerridae | 5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Hydrometridae | 6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | ID | | Α | В | С | D | E | F | G | н | |-----------------------|----|------------|-----------------------------------|---|-------------|------------------------------------|--------------------|-------------|-----------------------| | | ss | Perdewater | Tributary of
the
Perdewater | - | Skulpspruit | Tributary of
the
Skulpspruit | Witbank-
spruit | Wolwespruit | Markgraaff-
spruit | | Naucoridae | 7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Nepidae | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Notonectidae | 3 | 1 | 1 | 1 | 5 | 1 | 1 | 1 | 1 | | Pleidae | 4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Veliidae/Mesoveliidae | 5 | 1 | 1 | 1 | 5 | 1 | 1 | 1 | 1 | | Ecnomidae | 8 | | | | | | | | 1 | | Hydropsychidae 1 Sp | 4 | 1 | 1 | 1 | | 1 | 1 |
1 | 1 | | Hydropsychidae > 2 Sp | 12 | | | | 5 | | | | | | Hydroptilidae | 6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Leptoceridae | 6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Dytiscidae | 5 | 1 | 1 | 1 | 5 | 1 | 1 | 1 | 1 | | Elmidae/Dryopidae | 8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Gyrinidae | 5 | 1 | 1 | 1 | 5 | 1 | 1 | 1 | 1 | | Haliplidae | 5 | | | | 5 | | | | | | Hydraenidae | 8 | | | | 5 | | | | | | Hydrophilidae | 5 | 1 | 1 | 1 | 5 | 1 | 1 | 1 | 1 | | Athericidae | 10 | | | | | | | | 1 | | Ceratopogonidae | 5 | 1 | 1 | 1 | 5 | 1 | 1 | 1 | 1 | | Chironomidae | 2 | 1 | 1 | 1 | 5 | 1 | 1 | 1 | 1 | | Culicidae | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Dixidae | 10 | | | | | | | | 1 | | Muscidae | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | ID | | A | В | С | D | E | F | G | н | |--------------|---|------------|-----------------------------------|---|-------------|------------------------------------|--------------------|-------------|-----------------------| | | ss | Perdewater | Tributary of
the
Perdewater | - | Skulpspruit | Tributary of
the
Skulpspruit | Witbank-
spruit | Wolwespruit | Markgraaff-
spruit | | Simuliidae | 5 | 1 | 1 | 1 | 5 | 1 | 1 | 1 | 1 | | Tabanidae | 5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Tipulidae | 5 | | | | | | | | 1 | | Ancylidae | 6 | 1 | 1 | 1 | 5 | 1 | 1 | 1 | 1 | | Lymnaeidae | 3 | | | | | | | | 1 | | Physidae | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Planorbinae | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Corbiculidae | 5 | 1 | 1 | 1 | 5 | 1 | 1 | 1 | 1 | | Sphaeriidae | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | SS = Sensitivity Score (Dickens & Graham, 2001) | | | | | | | | | **Figure 6.24:** Sub-quaternary catchments related to the expected macroinvertebrate species lists (Chief Directorate – Surveys and Mapping, 2629 and 2729; Pers. Comm. Mrs. Christa Thirion, 2012) #### Expected Fish Species A summary of the expected fish families, species and IUCN conservation status is provided in **Table 6.13**. The area of study provides potential refuge for four fish families represented by approximately 12 species, none of which have conservation status and are listed as Least Concern (LC) by the IUCN (2012). Barbus neefi and Barbus pallidus are expected to occur in the study area (IUCN, 2012) and both species are moderately intolerant to alterations in water quality, making them good indicators of ecosystem health. **Table 6.13:** Fish species expected to occur, or indicating the possibility of occurrence, in the river systems associated with the study area | Family | Genus and Species | Common Name | IUCN
Status | |------------------|-----------------------|--------------------|----------------| | Austroglanididae | Austroglanis sclateri | Rock Catfish | LC | | Clariidae | Clarias gariepinus | Sharptooth Catfish | LC | | Cyprinidae | Barbus anoplus | Chubbyhead Barb | LC | | Cyprinidae | Barbus neefi | Sidespot Barb | LC | | Family | Genus and Species | Common Name | IUCN
Status | |-------------------|-----------------------------|-----------------------|----------------| | Cyprinidae | Barbus pallidus | Goldie Barb | LC | | Cyprinidae | Barbus paludinosus | Straightfin Barb | LC | | Cyprinidae | Cyprinus carpio | Common Carp | EX | | Cyprinidae | Labeobarbus aeneus | Smallmouth Yellowfish | LC | | Cyprinidae | Labeo capensis | Orange River Labeo | LC | | Cyprinidae | Labeo umbratus | Moggel | LC | | Cichlidae | Pseudocrenilabrus philander | Southern Mouthbrooder | LC | | Cichlidae | Tilapia sparrmanii | Banded Tilapia | LC | | LC: Least Concern | EX: Exotic | | | ### • Expected Odonata (dragonflies) Species Approximately 58 Odonata species are expected to occur in the study area. All of the 58 species are listed as LC according to the IUCN database (IUCN, 2012). ## • Expected Mollusca (snails, limpets) Species A total of 10 mollusc species are expected to occur in the study area, of which 9 species are listed as LC. Only one species, namely *Burnupia caffra*, is listed as Data Deficient (DD) due to taxonomic uncertainty. Burnupia caffra are frequently unobserved during sampling surveys due to their extremely small size (2 - 4 mm). The genus Burnupia needs taxonomic revision as the numbers of species are extremely uncertain (Appleton et al., 2010). Further detail can be obtained from the Surface Water Specialist Report in Appendix K. #### 6.3.10 Groundwater Groundwater storage and transport in the unweathered Volkrust Formation is likely to be mainly via fractures, bedding planes, joints and other secondary discontinuities. The success of a water supply borehole in these rocks depends on whether one or more of these structures are intersected. In general the Volkrust Formation is considered to be a **minor aquifer**, with some abstractions of local importance. A minor aquifer is a moderately-yielding aquifer system of variable water quality. Although these aquifers seldom produce large quantities of water, they are important for local supplies and in supplying base flow to rivers. **Figure 6.25** Illustrates the hydrogeology of the study area. Figure 6.25: An overview of the hydrogeology of the study area. Further detail can be obtained from the Groundwater Specialist Report in Appendix L. # 6.3.11 Sites of Archaeological, Historical and Cultural Interest The cultural landscape qualities of the study area essentially consist of a rural setup. In this setup the human occupation is made up of a pre-colonial element consisting of limited Stone Age occupation and a Late Iron Age occupation, as well as a much later colonial (farmer) component. # • Rural landscape The rural landscape has always been sparsely populated and it was only during the last couple of hundred years that people, through the application of specific economic strategies, succeeded to occupy a section of the region for any length of time. # Archaeological sites Archaeological sites in this area predominantly date to the Late Iron Age, although some sites dating to the Stone Age are also found in the larger area. Human occupation of the larger geographical region took place since Early Stone Age (ESA) times. This is evidenced by the scattered stone tools found in a secondary context Lidwala Consulting Engineers (SA) (Pty) Ltd (open surface material), where they have been exposed in gravel terraces by rivers and streams. Normally this material is viewed to have a low significance. As this area was probably too cold and it does not have many rock shelters, occupation during Stone Age times remained low, resulting in very few sites dating to this period occurring in the area. Iron Age people started to settle in southern Africa c. AD 300, with one of the oldest known sites at Silver Leaves, south east of Tzaneen dating to AD 270. However, Iron Age occupation of the eastern highveld area (including the study area) did not start much before the 1500s. Some sites dating to the Late Iron Age is known to exist to the north west of the study area. As this was a period signified by high stress levels, people tended to settle in towns, usually located on hill tops for protection. The villages were laid out in complex manner and different areas were demarcated by stone walled enclosures. **Farmsteads** Farmsteads are complex features in the landscape, being made up of different yet interconnected elements. Typically these consist of a main house, gardens, outbuildings, sheds and barns, with some distance from that labourer housing and various cemeteries. In addition roads and tracks, stock pens and wind mills complete the setup. An impact on one element therefore impacts on the whole. By the early 19th century white settlers took up farms. An investigation of the Title Deeds of most of the farms in the region indicates that they were surveyed as early as the 1860s, implying that they would have been occupied by colonists since then. The town of Amersfoort was founded in 1876 and proclaimed in 1888. From its earliest days it was well-known for its wealthy farmer community (Praagh 1906; Raper 2004). Many farmsteads and even houses in Amersfoort were destroyed during the Anglo Boer War. As a result most structures date to the period after that. The architecture of these farmsteads can be described as eclectic as they were built and added to as required over a period of time. In some cases outbuildings would be in the same style as the main house, if they date to the same period. However, they tend to vary considerably in style and materials used. **Cemeteries** Apart from the formal cemeteries that occur in municipal areas (towns or villages), a number of these cemeteries, some quite informal, i.e. without fencing, occur sporadically all over. Many also seem to have been forgotten, making it very difficult to trace the descendants in a case where the graves are to be relocated. NEAS Reference: DEA/EIA/0001417/2012 Most of these cemeteries, irrespective of the fact that they are for land owner or farm labourers (with a few exceptions where they were integrated), are family orientated. They therefore serve as important 'documents' linking people directly by name to the land. ### • Infrastructure and industrial heritage In many cases this aspect of heritage is left out of surveys, largely due to the fact that it is taken for granted. However, the land and its resources could not be accessed and exploited without the development of features such as roads, bridges, railway lines, electricity lines and telephone lines. A variety of bridges, railway lines and other features that can be included in this category occur within the study area. Further detail can be obtained from the Heritage Specialist Report in **Appendix M**. ### 6.3.12 Visual Aspects The study area for the visual assessment is focused to a 12km radius from the Majuba Power Station within the Pixley Ka Seme Local Municipality. There are no major towns in the immediate area. Volksrust lies approximately 40 km to the southeast, and
Amersfoort some 16km to the north. A number of farms and homesteads occur throughout the study area, and in close proximity to the power station. The visual character of the Majuba Power Station and its associated infrastructure is shaped by a unique combination of the following features: - Grassland; - An undulating topography with isolated koppies and ridges; - Perennial and non-perennial streams and isolated dams; - Cultivated land; - Majuba Power Station and associated infrastructure (being a visually dominant feature in the area); - Mining areas; - Dispersed farmsteads, and - Roads, including the N11 national road from Amersfoort to Volksrust, arterial routes (R23, R35) and a number of access roads to farms in the region. The closest towns are Amersfoort and Perdekop, both of which are further than 12 km from the power station, situated beyond the zone of visual influence of the ash disposal facility. NEAS Reference: DEA/EIA/0001417/2012 The topography is an important form giving element of the landscape. On the one hand, it opens up vast panoramic views of the landscape, and on the other hand it creates visual barriers. The topography in the study area has a strong undulating character with hills and koppies south and east. This is significant in terms of the location of the ash disposal facility, since the topography will be the primary factor determining the visibility and level of exposure thereof. In this regard, the screening effect of hills in the south must be noted. Visibility of an object is one of the primary attributes by which visual impact can be concluded. This is determined by a line of sight where nothing obscures the view of an object. Exposure is defined by the degree of visibility, in other words "how much" or "which part" of an object is visible to the observer. This is influenced by topography and the incidence of objects such as trees and buildings that obscure the view partially or in total. Visibility can be modelled by making use of a digital terrain model (DTM), created from contour data, and performing a viewshed analysis using GIS software. It must be noted that the viewshed analysis only accounts for topographical influences, and that the screening effect of vegetation is not included. This indicates a worst-case scenario, where the possibility of visual exposure is mapped, from which possible sensitive viewer locations can be identified. In addition to viewshed analyses as described above, a proximity analysis is required to incorporate the effect of reduced visibility over distance. By integrating the two types of analyses, an index of possible visual impact is generated, as shown on the map in **Figure 6.26**. The map indicates a core area of high visibility and a high degree of visual exposure within 3km from the ash dam. The continuous disposal of ash in a southern direction is expected to impact on a number of sensitive receptors within 3km from the site. Permanent residents within this zone need to be identified and requirements with regard to mitigation measures investigated during the EIA phase. Figure 6.26: Integrated proximity and visual exposure index Further detail can be obtained from the Visual Impact Specialist Report in **Appendix N**. ## 6.3.13 Ambient Air Quality Eskom manages an ambient air quality monitoring station near Majuba to assess impacts on air quality from Majuba Power Station and other pollution sources in the area (data provided with permission, for the current evaluation study, by Gerhardt de Beer, 2012-09-06). The monitoring station is located 3 km east-south-east of the power station and is equipped for continuous monitoring of ambient concentrations of sulphur dioxide (SO_2), nitrogen dioxide (SO_2), and fine particulate matter of particulate size <10 μ m in diameter (PM_{10}). The average daily PM_{10} concentrations for the period January 2009 to June 2012 are presented in **Figure 6.27.** **Figure 6.27:** Daily measured PM_{10} ground level concentrations ($\mu g/m^3$) at the Eskom Majuba 1 monitoring station (for the period January 2009 – June 2012) The current National Ambient Air Quality limit value for PM_{10} daily concentrations (120 $\mu g/m^3$) was exceeded on two occasions during the period reported (once each in 2011 and 2012) (**Table 6.14**). The more stringent National Ambient Air Quality limit for PM10 daily concentrations effective from 1 January 2015 (75 $\mu g/m^3$) would have been exceeded once each in 2009 and 2010, and twice in 2011. In the first six months of 2012 the more stringent 75 $\mu g/m^3$ limit value was exceeded on six occasions resulting in noncompliance with the PM_{10} 2015 National Ambient Air Quality Standard (NAAQS), which allows for four daily limit value exceedances. The more stringent standard is mentioned because the operational phase of the proposed Majuba ash disposal facility will continue after the standard becomes enforceable. **Table 6.14:** Measured daily ambient PM_{10} concentrations at Eskom's Majuba 1 monitoring station for the period 2009 to 2011 | Monitorin
g Period | Data
Availability
(%) | Number of Exceedances of the NAAQ limit of 120 µg/m³ (applicable immediately) | Exceedance of
the NAAQS
(applicable
immediately)
(Y/N) | Number of Exceedances of the NAAQ limit of 75 µg/m³ (applicable 2015) | Exceedance of
the NAAQS
(applicable
2015) (Y/N) | |-----------------------|-----------------------------|---|--|---|--| | 2009 | 86 | 0 | N | 1 | N | | 2010 | 82 | 0 | N | 1 | N | | 2011 | 30 | 1 | N | 2 | N | High ambient particulate concentrations have been found to coincide with low ambient temperatures and low rainfall (Burger, 1994). Increases in domestic coal burning and poor atmospheric dispersion potentials, together with persistent industrial emissions, combine to produce elevated ambient concentrations during winter months. High concentrations during summer months are usually associated with increases in fugitive dust emissions. Rainfall events result in a reduction of airborne concentrations due to reductions in the potential for fugitive dust emissions and due to the removal of particulates in the atmosphere by raindrops. Further detail can be obtained from the Air Quality Specialist Report in **Appendix O**. #### 6.3.14 Social Environment Majuba Power Station is situated in the Mpumalanga Province and within the Pixley ka Seme Local Municipality area of jurisdiction. The Pixley Ka Seme Local Municipality is situated in the southern part of the Gert Sibande District Municipality and borders Kwa Zulu Natal and the Free State provinces. It is furthermore framed by the Mkhondo Municipality in the east, Msukaligwa Municipality to the north and Lekwa Municipality to the west. The closest towns include Amersfoort and Volksrust with the small community of Perdekop situated to the south of the power station. The town of Amersfoort was established in 1888 around a Dutch Reformed Church which was built in 1876. The area was first settled in 1876 when two farmers of the area donated land to the church, where Rev. Frans Lion Cachet proceeded to build a Dutch Reformed church. The new village was named after the hometown (in the Netherlands) of the Dutch farmers. When the area became too small for the growing village, more land was purchased from one of the original donors and the town was proclaimed in 1888. The bridge over the Vaal River was built in 1896 and is a national monument. The township of eZamokuhle lies adjacent to the town and contributes greatly to its economy. The history of Volksrust began in 1888 when the Transvaal government decided to establish a town on the edge of the Drakensberg escarpment, on the border of Natal. A place was chosen near where the Boers won a decisive battle in first Anglo-Boer War (December 1880 – March 1881) to regain their independence from the British. Several farms were bought for the purpose and named Volksrust (People's Rest) presumably by Dorie de Jager (sister of Dirk Uys) because the Transvaal forces rested there after the Battle of Majuba. Today the town is a commercial centre of which the main products are maize, wool, sorghum, sunflower seed, beef and dairy. The town is the junction for the main Johannesburg-Durban railway line with other towns in the eastern part of Mpumalanga. Perdekop was established due to an equine sickness epidemic during the second Anglo-Boer war. The people realised that the higher altitude protected the animals from the epidemic and a settlement was established there due to the fact that it was a safe haven from the epidemic. The socioeconomic analysis is specifically aimed at spatial related matters, i.e. demographics, employment and income and economic profile. The 2006 Demarcation Board Data have been utilised. It must be borne in mind that with the 2006 Municipal elections certain ward changes came about. In the case of Pixley Ka Seme Local Municipality an extra ward was created. The figures were appended by the Municipal Demarcation board in conjunction with Statistics South Africa. #### Demographics **Table 6.15** below gives an indication of the different geographic areas within the Pixley Ka Seme Local Municipality as well as the wards within which these areas are situated. The number of households is also indicated. Table 6.15: Ward Demographic areas and number of households | Demographic Area | Ward | Number of Households | |----------------------------|------|----------------------| | Vukuzakhe | 1-2 | 2600 | | Volksrust | 3-4 | 3421 | | Wakkerstroom & eSizameleni | 5 | 1832 | | Perdekop & Siyazenzela | 6 | 2253 | | Amersfoort | 7 | 1565 | | Ezamokuhle | 8 | 1794 | | Daggakraal &
Sinqobile | 9-11 | 4946 | | TOTAL | | 18 412 | ## Population Estimates Population estimates for Pixley ka Seme Local Municipality are reflected in **Table 6.16** below and includes the total number of people. Table 6.16: Population and Household Status Quo | | Formal | Informal | Traditional | Population | Population | |----------------------|------------|------------|-------------|------------|------------| | | Households | Households | Household | Census | 2% growth | | | 2006 | 2006 | 2006 | 2001 | 2001-2008 | | Pixley ka
Seme LM | 10 524 | 5 475 | 2 001 | 80 737 | 91 091 | Table 6.17: Population Distribution per ward | Wards 2007 | Black /
African | Coloured | Indian /
Asian | White | Total
Persons | |------------|--------------------|----------|-------------------|-------|------------------| | 1 | 7 454 | 8 | 0 | 106 | 7 568 | | 2 | 4 996 | 23 | 0 | 0 | 5 019 | | 3 | 7 425 | 221 | 131 | 1 927 | 9 704 | | 4 | 3 901 | 20 | 182 | 1 603 | 5 706 | | 5 | 8 442 | 22 | 37 | 466 | 8 967 | | 6 | 11 323 | 49 | 25 | 722 | 12 119 | | 7 | 4 261 | 0 | 95 | 452 | 4 808 | | 8 | 8 675 | 29 | 4 | 181 | 8 882 | | 9 | 7 095 | 0 | 0 | 13 | 7 100 | | 10 | 10 983 | 19 | 5 | 146 | 11 153 | | 11 | 10 020 | 19 | 0 | 16 | 10 055 | | Total | 84 575 | 410 | 477 | 5 628 | 91 091 | Table 6.18: Population Size and Number of Households | | | Popu | lation | | Number | of Househo | lds (HH) | нн | |----------------------|---------------|---------------|---------------|------------------|--------------|---------------|---------------|-------------------| | | 1996 | 2001 | 2007 | Annual
Growth | 1996 | 2001 | 2007 | Density
(2007) | | Pixley ka
Seme LM | 71 653 | 77 565 | 91 091 | 2.5% | 14 912 | 19 305 | 22 627 | 4.03 | | Gert
Sibande DM | 823 973 | 856 214 | 981 569 | 1.7% | 179 534 | 228 256 | 258 798 | 3.79 | | Mpumalanga | 3 143
918 | 3 442
199 | 3 680
733 | 1.6% | 674 875 | 832 070 | 969 997 | 3.79 | | National | 41 780
470 | 45 145
618 | 47 963
626 | 1.3% | 9 370
586 | 11 364
451 | 13 043
694 | 3.68 | ## • Level of Education The level of education for the population in the study area is reflected in **Table 6.19** below. Table 6.19: Level of Education in Pixley Ka Seme Local Municipality | Level of Education | Pixley Ka Seme Local municipality | Gert Sibande District
Municipality | |--------------------|-----------------------------------|---------------------------------------| | None | 11.97% | 25.39% | | Grade 0-2 | 10.49% | 32.89% | | Grade 3-6 | 9.87% | 31.07% | | Grade 7-9 | 8.70% | 27.80% | | Grade 10-11 | 7.21% | 26.91% | 6-52 Majuba Continuous Ashing EIA: Final Scoping Report Chapter 6: Description of Baseline Environment | Less than Grade 12 | 8.25% % | 22.78 | |---------------------|---------|--------| | Grade 12 only | 6.53% | 24.92% | | Certificate/Diploma | 7.19% | 24.54% | | Bachelor's Degree | 7.96% | 24.02% | | Postgraduate Degree | 8.31% | 25.22% | - Only 6,53% of the population has completed education up to the level of Grade 12 which is better than that of the district municipality. - 97% of the population has no qualification (it is noted that infants and children less than 5 years are excluded from this figure) which is a better situation than that of the district municipality. - Only 7.96% of the population has a bachelor's degree which is much lower than the percentage in the district municipality #### Economic: ## Employment The analysis of employment levels in the study area are reflected as the economically active part of the population, the inactive part, the unemployed and the people living in poverty (total household monthly income < R 1 100-00). The percentage of the economically active part of the total population for each year is also indicated in brackets and the same with the inactive part of the population. The unemployed part of the population and the people living in poverty is already included in the Inactive part of the population and therefore the percentage represents the percentage of the inactive population that is unemployed or living beneath the bread line. **Table 6.20:** Employment within the Pixley ka Seme Local Municipality | Area | 2005 | 2006 | 2007 | 2008 | |----------------------|---------|---------|---------|---------| | Economically active | 21 053 | 21 314 | 21 657 | 22 455 | | (% of population) | (23.7%) | (23.6%) | (23.7%) | (24.4%) | | Inactive | 67 857 | 68 835 | 69 560 | 69 755 | | (% of population) | (76.3%) | (76.4%) | (76.3%) | (75.6%) | | Unemployed | 5 053 | 4 902 | 4 981 | 4 940 | | (% of Inactive pop.) | (24%) | (23%) | (23%) | (22%) | | People in poverty | 52 314 | 49 805 | 49 209 | 47 811 | | (% of population) | (58.8%) | (55.3%) | (53.9%) | (51.9%) | | Total population | 88 910 | 90 149 | 91 216 | 92 210 | The information above indicates that an alarming number of the population is inactive and not contributing to the economy of the municipality. However, this figure also includes infants and scholars which cannot contribute to the economy. <u>December</u> 2012 #### Income The distribution of the income in the municipal area is another indication of growth for development. The levels of income under the bread line indicate the growth of poverty in the municipal area and ultimately make a difference in the provision of housing and other facilities. A poor household can be defined as a household with no basic services or without a house (a home) and with a total household monthly income of less than R 1 100-00. The following table provides a breakdown of the monthly income groups in the municipal area for the year 2008 as defined by Global Insight Southern Africa. Table 6.21: Monthly Income in Pixley ka Seme Local Municipality | | Households | | | |-----------------------|--------------|-------|-------| | Income Range | Global | % | | | | Insight 2008 | | | | R 0-200 | 109 | 0.5% | | | R 201- R 500 | 439 | 1.9% | 13.1% | | R 501- R 1 000 | 2 443 | 10.7% | | | R 1001 – R 1 500 | 2 810 | 12.3% | 41% | | R 1 501 – R 3 500 | 6 571 | 28.7% | | | R 3 501 – R 6 000 | 4 050 | 17.7% | | | R 6 001 – R 11 000 | 2 646 | 11.6% | | | R 11 001 - R 30 000 | 2 489 | 10.9% | | | R 30 001 - R 50 000 | 767 | 3.4% | | | R 50 001 - R 100 000 | 414 | 1.8% | | | R 100 001 – R 200 000 | 127 | 0.6% | | | R 200 001 and more | 30 | 0.1% | | | TOTAL | 22 895 | 100% | | The above table indicates that 13.1% of the households in Pixley Ka Isaka Seme Local Municipality fall within the income group earning less than R 1000-00 per month which can be considered as poor households that will qualify for grants and housing subsidies. A further 41% of the households earn between R 1000-00 and R 3 500-00 per month which can also be considered as a very low level of income and grants and subsidies will also apply to these households. Therefore a total of 54.1% of the households falls within the lower income group which indicates that more than half of the households in the municipal area are in need of government support in some or other way. It further indicates that more than half of the households will probably not be able to pay for basic services and needs to be subsidised by the remaining households who will be able to afford basic services the municipality provides ### GVA Contribution to the Local Economy The municipality has many different economic sectors that contribute to the economy of the area and the district and ultimately the province and the country. These sectors include agriculture, mining, manufacturing, electricity, construction, trade, transport, finance and community services. The following table provides a summary of the different economic sectors that contributes towards the local economy. Table 6.22: Economic sectors and contribution to the GVA of the municipality | Economic Sector | GVA added(R 1000) | Contribution to total | |---------------------------|-------------------|-----------------------| | Agriculture | R 176 647 | 18.85% | | Mining | R 8 656 | 0.92% | | Manufacturing | R 14 176 | 1.51% | | Electricity | R 100 610 | 10.74% | | Construction | R 66 027 | 7.05% | | Trade | R 152 990 | 16.33% | | Transport | R 144 773 | 15.45% | | Finance | R 106 148 | 11.33% | | Community Services | R 167 009 | 17.82% | | Total | R 937 036 | 100% | The results from the above table indicate that the agricultural sector contributes the most to the GVA of the municipal area with community services and trade as the second and third highest contributors. The transport, finance and electricity sectors contributes between 10% and 15% to the GVA of the municipal area with the mining sector contributing the least to the economy of the municipal area. NEAS Reference: DEA/EIA/0001417/2012