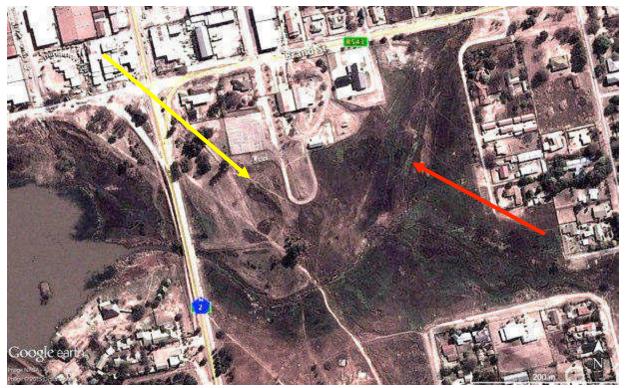
FINAL BASIC ASSESSMENT REPORT FOR THE PROPOSED PIET RETIEF EXTENSION 22

On Portion 100 (A Portion of Portion) of the Farm Piet Retief Town and Townlands 149 HT; Mkhondo Local Municipality in Mpumalanga Province.

REF NR: 17/2/3 GS-239 JULY 2015


Part 3 of 4

LANDSCAPE ARCHITECTS AND ENVIRONMENTAL CONSULTANTS

Figure 15 Google Earth image (2012/09/09) with the potential seepage areas (yellow arrow) very evident as artificial modifiers and again indicating a potential seepage wetland in the east (red arrow)

Figure 16 Google Earth image (2013/08/26) with the potential seepage areas (yellow arrow) very evident as artificial modifiers and again indicating a potential seepage wetland in the east (red arrow)

From **Figures 13** to **16** seasonal changes are evident in the expression of the possible seepage wetland in the east. Also, the possible seepage wetland in the west from **Figure 12** is very evident to have been altered through human activities.

7.1.2 Historical Land Use Changes and Impacts

The details of the historical land use changes on the site cannot be gleaned from the Google Earth images as the impacts precede the first available image. However, it is very evident that changes on the site occurred since 2003 in the form of additional paving and storm water runoff. Changes are also apparent in the stream channel over the image period as the channel appears more eroded in the recent images.

7.2 TERRAIN UNIT INDICATOR

From the contour data a topographic wetness index (TWI) (**Figure 17**) was generated for the site. The TWI provides a very accurate indication of water flow paths and areas of water accumulation that are often correlated with wetlands. This is a function of the topography of the site and ties in with the dominant water flow regime in the soils and the landscape (refer to previous section where the concept of these flows was elucidated). Areas in blue indicate concentration of water in flow paths with lighter shades of blue indicating areas of regular water flows in the soils and on the surface of the wetland / terrestrial zone interface.

From the TWI (**Figure 17**) it is very evident that the entire site is situated on convex topography (both plan and profile curvature) and as such have no areas associated with concentrations of surface runoff. The stream channel to the south is the only confirmed area of concentrated water accumulation and flow. The delineation of the wetland is addressed later in the report.

7.3 SOIL FORM AND SOIL WETNESS INDICATORS (SITE SURVEY)

The site survey revealed widespread and significant alterations to the soils and land surface. As an indication of the extent of the alterations and influences **Figures 18** to **33** provide photographs along a half-moon shaped transect from the western edge to the eastern edge of the site upslope of the stream channel. The captions are self-explanatory.

The main findings along the transect is that the landscape has been altered significantly through historical and more recent human activities. These activities have in most case led to additional soil material and rock being deposited on the land surface or to distinct excavations for urban related infrastructure. The areas that have been altered either show denuded vegetation (due to hard-setting and increased surface runoff) on convex local slopes or accumulation water in depressions with associated increases in vigour of plants and colonisation of plants that prefer wetter soil conditions. These plans are, for the largest part of the site, not true indicators of original wetland conditions.

A small section of darker soil, associated with a wetter patch of land and dolerite rock, was found in the eastern section of the site (**Figures 29** and **30**). This corresponds to the "marshy" area described in the geotechnical report. Although this section is wet more regularly it is not possible to indicate whether this is a historical (pre-human settlement) wetland as the higher clay content of the soils (compared to the rest of the site) would lead to perching of surface water with rapid colonisation of wetland plants. This area is at the foot of storm water accumulation from the existing structures upslope.

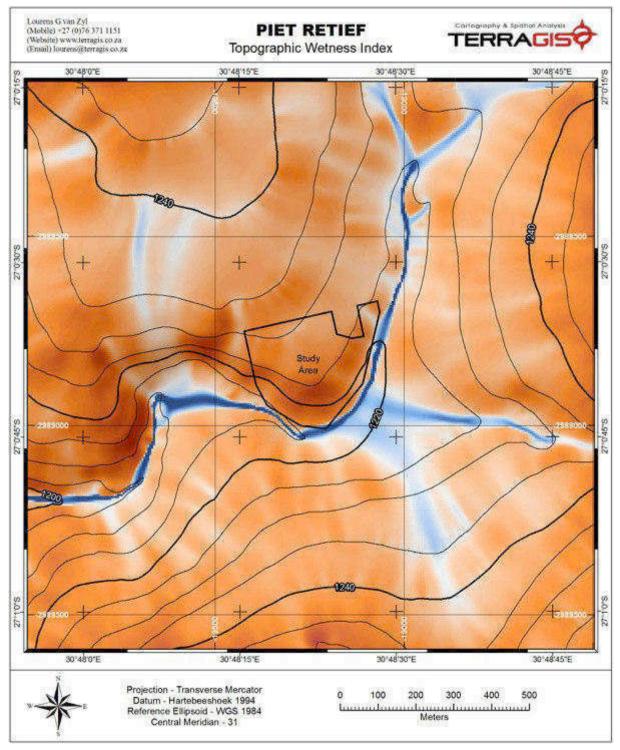


Figure 17 Topographic wetness index (TWI) of the survey site

Figure 18 Human impacts and altered landscape and vegetation on the western edge of the site

Figure 19 Human impacts and altered landscape and vegetation on the western edge of the site

Figure 20 Human impacts and altered landscape and vegetation on the western edge of the site – area erroneously identified during image interpretation as potential seepage wetland

Figure 21 Human impacts and altered landscape and vegetation on the western edge of the site near the stream – note the presence of a pipeline as well as soil disturbances

Figure 22 Human impacts in the form of a pipeline and historical earthworks on the southern boundary with the stream

Figure 23 Foreign soil material and soil disturbances on the south western edge of the site

Figure 24 Foreign soil material and soil disturbances on the south western edge of the site

Figure 25 Vegetation alterations initially (but erroneously) identified as potential seepage areas (yellow arrow)

Figure 26 Vegetation alterations to the south of the developments on the site

Figure 27 Foreign soil material and soil disturbances on the southern sections of the site

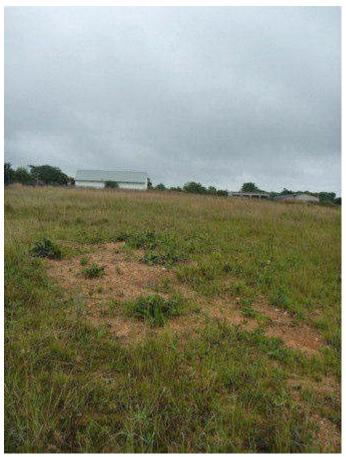


Figure 28 Foreign soil material and soil disturbances on the southern sections of the site

Figure 29 Vegetation alterations to the south of the developments on the site with evidence of regular surface wetness from plant species

Figure 30 Vegetation alterations to the southeast of the developments on the site with evidence of regular surface wetness from plant species

Figure 31 Vegetation and surface disturbances on the eastern section of the site

Figure 32 Vegetation and surface disturbances on the eastern section of the site with widely occurring rubbish and rubble

Figure 33 Altered stream channel (excavation and clearance)

The areas to the south and east of the drainage line exhibit large patches of potential seepage zones. Upon inspection these appeared to have some contribution of seepage water but the bulk of the water currently results from storm water runoff from paved areas upslope.

7.4 ARTIFICIAL MODIFIERS

The artificial modifiers have been discussed and elucidate in the previous sections.

8. WETLAND ASSESSMENT

8.1 PROPOSED DELINEATION AND BUFFER

From the investigation a wetland boundary, inclusive of storm water driven wetland areas, was determined **Figure 34**. It is difficult to assign a buffer to a wetland that has been impacted and that still receives significant contributions of water from storm water runoff from paved areas upslope. It is recommended that developments can encroach up to 30 from the drainage line and where the current developments are closer than that these areas should not be expanded. The above is proposed only in the event that adequate storm water planning and mitigation is conducted on site.

8.2 WETLAND CLASSIFICATION / TYPES

Based on the investigation two types of wetland areas are identified namely: 1) the areas associated with an impacted and eroded drainage feature and 2) a seepage/storm water outflow zone. As discussed earlier in the report it is not possible to indicate whether the latter zone is a natural seepage zone or a more recent development of storm water runoff increases and frequency.

8.3 WETLAND FUNCTIONALITY

The channelled valley bottom wetland / watercourse is fed predominantly from the catchment through overland flow with additions from storm water runoff from paved areas. The main contributor to the small impacted wetland patch on the site is storm water runoff from paved areas and structures upslope to the south. From the investigation it was not possible to identify any significant contributions of hillslope water or lateral flows to wetlands or the stream. This is a function of the convex slope of the site.

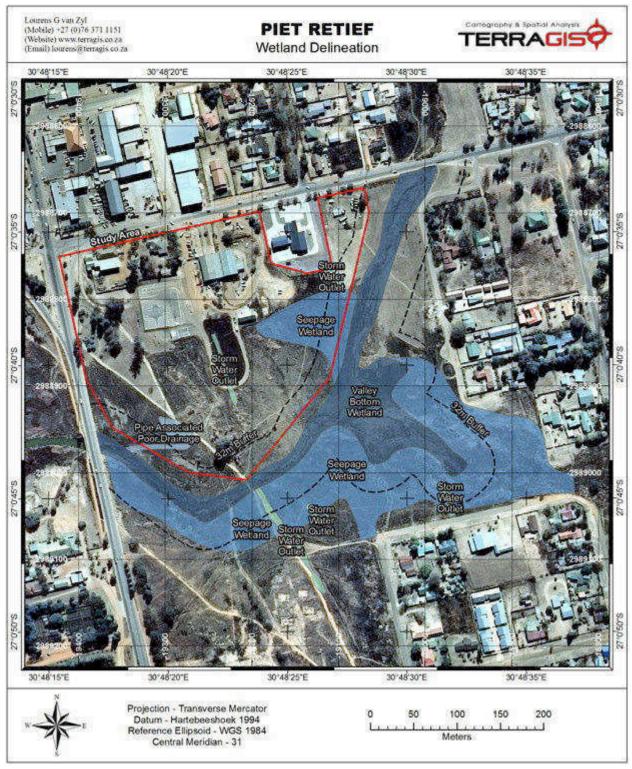


Figure 27 Proposed delineation for the investigation site

8.4 PRESENT ECOLOGICAL STATUS (PES) DETERMINATION

Hydrological Criteria:

- Flow modification: Large modification due to urban infrastructure in the catchment with significant erosion in the channel and on the banks. Score 2, Confidence 4.
- Permanent inundation: Permanent inundation was not part of the reference state and cannot be included as a new aspect. Inundation does take place in areas but this is due to significant human impacts in the form of alteration and rubble dumping. Score 2, Confidence 4.

Water Quality Criteria

- Water quality modification: Score 1, Confidence 4
- Sediment load modification: Score 1, Confidence 4

Hydraulic / Geomorphic Criteria

- Canalisation: Score 2, Confidence 4
- Topographic Alteration: Score 1, Confidence 4

Biological Criteria

- Terrestrial encroachment: Score 1, Confidence 3
- Indigenous vegetation removal: Score 2 (for most of the site), Confidence 4
- Invasive plant encroachment: Score 1 (for most of the site), Confidence 4
- Alien fauna: Score 2, Confidence 3
- Overutilisation of biota: Score 1, Confidence 4

<u>Score</u>

PES category D-E

From the data generated as well as the extent of the identified alterations the conclusion is that the wetland systems on the site have a PES rating of an D to an E. The potential for improvement is small as the storm water and water quality aspects have to be addressed outside of the wetland areas within the respective catchments.

9. CONCLUSIONS AND RECOMMENDATIONS

The following conclusions are drawn from the investigation:

- 1. The entire site has undergone alterations in the form of varying intensity human activities.
- 2. The stream that forms the valley bottom section of the landscape is impacted in many areas through erosion and excavation. In addition, significant amounts of litter and invasive plants are evident throughout the channel.
- 3. A possible seepage wetland zone was identified at the foot of urban developments with storm water outflows. The specific soils found in this area indicate predominantly surface wetness and it is therefore concluded that the main contributor to wetland vegetation establishment is storm water emanating from the paved areas upslope.
- 4. The soils found in the small wetland area have high clay contents and this aspect precludes any significant volumes of water flowing laterally subsurface wise into the wetland. Dolerite intrusions in the general landscape often exhibit distinct weathering and zones of poor

drainage due to the localised effect of high clay content on water percolation, drainage and movement. From these aspects it is not possible to unequivocally assign the area as a seepage wetland. This area's possible recharge zone has been paved and it can therefore safely be assumed that the dominant hydrological functioning is one of surface water runoff from upslope areas during rainfall events.

- 5. During development of the site the construction activities should be limited to a distance of at least 30 m from the water course except if adequate storm water management and containments structures are constructed to minimise high energy flows into the stream channel.
- 6. The "seepage wetland" is situated immediately downslope of paved up sites and a buffer can therefore not be recommended. In this case the same recommendations as above regarding storm water management apply.

REFERENCES

Boehner, J., Koethe, R. Conrad, O., Gross, J., Ringeler, A., Selige, T. 2002: Soil Regionalisation by Means of Terrain Analysis and Process Parameterisation. In: Micheli, E., Nachtergaele, F., Montanarella, L. [Ed.]: Soil Classification 2001. European Soil Bureau, Research Report No. 7, EUR 20398 EN, Luxembourg. pp. 213-222.

Brady, N.C. and Weil, R.P. 1999. *The Nature and Properties of Soils*. Twelfth edition. Upper Saddle River, New Jersey: Prentice Hall.

Department of Water Affairs and Forestry (DWAF). 2005. A practical field procedure for identification and delineation of wetland and riparian areas. DWAF, Pretoria.

Hillel, D. 1982. Introduction to soil physics. Acedemic Press, INC. Harcourt Brace Javonovich, Publishers.

Jenny, H. 1941. Factors of soil formation. New York, NY, USA: McGraw-Hill Book Company, p 281

Land Type Survey Staff. (1972 – 2006). *Land Types of South Africa: Digital map (1:250 000 scale) and soil inventory databases.* ARC-Institute for Soil, Climate and Water, Pretoria.

MacVicar, C.N. et al. 1977. *Soil Classification. A binomial system for South Africa.* Sci. Bull. 390. Dep. Agric. Tech. Serv., Repub. S. Afr., Pretoria.

Soil Classification Working Group. 1991. Soil Classification. A taxonomic system for South Africa. *Mem. Agric. Nat. Resour. S.Afr.* No.15. Pretoria.

Wischmeier, W.H., C.B. Johnson and B.V. Cross. 1971. A Soil Erodibility Nomograph for Farm Land and Construction Sites. J. Soil Water Conserv. 26: 189 – 193.

Bokamoso:

Basic assessment Flora and Fauna Assessment

Portion 17 of the farm Vlakfontein 522KR; Piet Retief, Mpumalanga Province, South Africa

By

Samuel Laurence Luke Verburgt

info@enviro-insight.co.za

ansironmental increas assessments

TABLE OF CONTENTS

Li	List of tables						
1	Introduction						
2	Met	hods	5				
	2.1	Field survey	5				
	2.2	Desktop Survey	5				
	2.2.	1 Literature study	5				
	2.2.	2 GIS	5				
3	Results						
	3.1	Description of study area	6				
	3.2	Habitat Unit 1 – Disturbed Transformed	9				
	3.3	Habitat Unit 2- Disturbed Vegetated Habitat	10				
	3.4	Habitat Unit 3- Stream and Stream Buffer Habitat Type	11				
	3.5	Faunal species of Conservation concern	12				
	3.6	Floral species of concern	14				
4	Disc	cussion and recommendations	14				
	4.1	Fauna	14				
	4.2	Flora	14				
	4.3	Habitat	14				
	4.4	Assessment of the presence of indigenous vegetation Habitat in ACCORDANCE with the legislation	17				
5	Ref	References1					
6	Арр	Appendix18					

LIST OF FIGURES

2011 II. 2013 - ANG - ANG 2014 ANG 2013 - ANG 2014 ANG 20

Figure 1: The study area in relation to the regional vegetation type	4
Figure 2: Specialist coverage and location of georeferenced photographs taken in the field	6
Figure 3: Mpumalanga (2014) C-Plan showing the conservation plan status of the project footprint	7
Figure 4: Photographic example of the Disturbed Transformed	9
Figure 5: Photographic example of the Disturbed Vegetated Habitat Type	11
Figure 6: Photographic example of the Stream/ Stream Buffer Habitat Type	13
Figure 7: Final Habitat Delineation of the designated study area	15
Figure 8: Final Habitat Sensitivity of the designated study area	16

LIST OF TABLES

Table 1: Examples of current impacts observed in the study area during the survey

8

1 INTRODUCTION

Enviro-Insight CC was commissioned by Bokamoso to perform a basic assessment of fauna and flora for the proposed Portion of Portion 100 (Portion of Portion 1) of the farm Piet Retief Town and Townlands 149 HT; Mpumalanga Province, South Africa. This site falls entirely within the KaNgwane Montane Grassland regional vegetation unit (Figure 1; Mucina & Rutherford 2006). In addition, this vegetation type is the only vegetation unit in the immediately surrounding region. For the purposes of the study, any proposed developments should be compared against the new 2014 Environmental Impact Assessment Regulations, which drives much of the approach for this study.

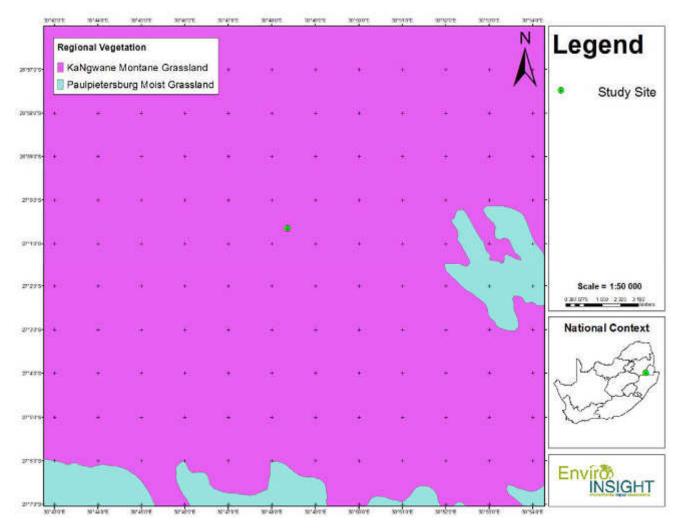


Figure 1: The study area in relation to the regional vegetation type

2 METHODS

2.1 FIELD SURVEY

A field survey was performed in March 2015 by a specialist zoologist/ ecologist where the botanical and the faunal aspects of the survey area were evaluated. This represented a wet season survey. During the field survey, the proposed development site was covered on foot and a series of georeferenced photographs were taken of the habitat attributes that would serve to drive the results and conclusions. The field survey focused on a Basic Assessment level classification of the fauna, flora, habitats as well as the potential presence of Red Data species (also referred to as Red-Listed species), which are species of conservation concern in South African (either classified as threatened by the IUCN (2014), protected by NEMBA (2014) or indeed other legislations applicable provincially or nationally). An analysis of the diversity and ecological integrity of the habitats present on site was also performed as well as the presence of indigenous vegetation with an extent of more than 1 hectare.

2.2 DESKTOP SURVEY

2.2.1 Literature study

As mentioned above, much of the approach for this survey is based upon the National and Mpumalanga Requirements for Biodiversity Assessments. The level of this study does not warrant intensive sampling but rather serves to combine the aspects of the regional vegetation unit (obtained from Mucina and Rutherford 2006) with the field study in order to formulate a series of recommendations. Many of the <u>potential</u> avifaunal triggers were referenced by the Southern Africa Bird Atlas Project (SABAP 2) and Hockey *et al.* (2005). Mammal information was referenced by Skinner and Chimimba (2005) while reptiles and amphibians were referenced from Bates *et al.* (2014) and Du Preez and Carruthers (2009) respectively. It must be stated that evaluation of species of concern was considered only AFTER the field study which served to identify the potential for occurrence. Therefore, all species identified under the above mentioned references were <u>not</u> necessarily analysed in detail. Plants were identified using Van Oudtshoorn (2004) and Van Wyk & Van Wyk (1997). Species nomenclature follows the aforementioned references throughout this document. The applicability of the information obtained from the literature sources was evaluated for the study area and the subsequent recommendations are to be used by the client (Bokamoso) in order to drive the development process in accordance with the relevant legislation.

2.2.2 GIS

Ground truthing and the use of recent satellite imagery were used to assist in the characterisation of the study area. The Mpumalanga C-Plan (2014) was also used in conjunction with ground truthing in order to verify the status of the site, which is shown in Figure 3.

3 RESULTS

3.1 DESCRIPTION OF STUDY AREA

The specialist tracks as well as the location of the georeferenced photos are shown as Figure 2. The georeferenced photographs served to assist in both the site characterisation as well as the sensitivity analysis. Although some areas were not able to be covered fully (e.g. the north-west corner of the site), transparent fencing into disturbed areas provided more than enough clarity for accurate descriptions to be made.

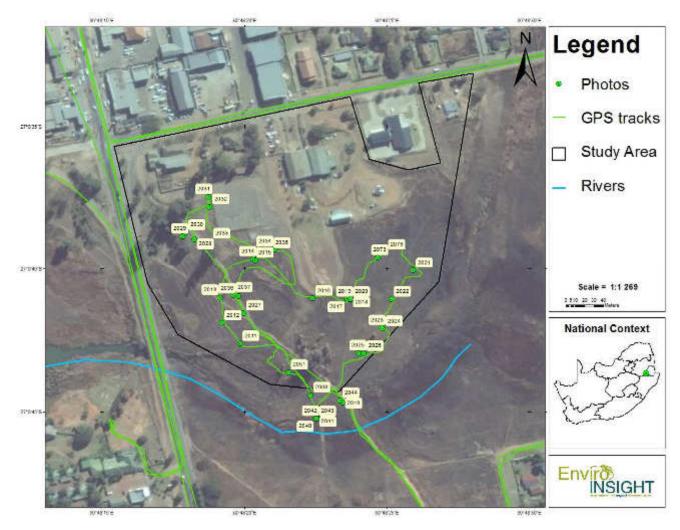


Figure 2: Specialist coverage and location of georeferenced photographs taken in the field

The study area was classified as falling entirely within the Vulnerable KaNgwane Montane Grassland regional vegetation unit which is under threat due to the low levels of protection afforded to the unit. It was evident from the ground-truthing (georeferenced photos provided in the Appendix) that much of the study area is not ecologically intact and is poorly connected to similar ecologically intact vegetation. The potential for Red Listed species is discussed below. In addition, the Mpumalanga C-Plan (2014) has classified the area as having "no natural habitat remaining".

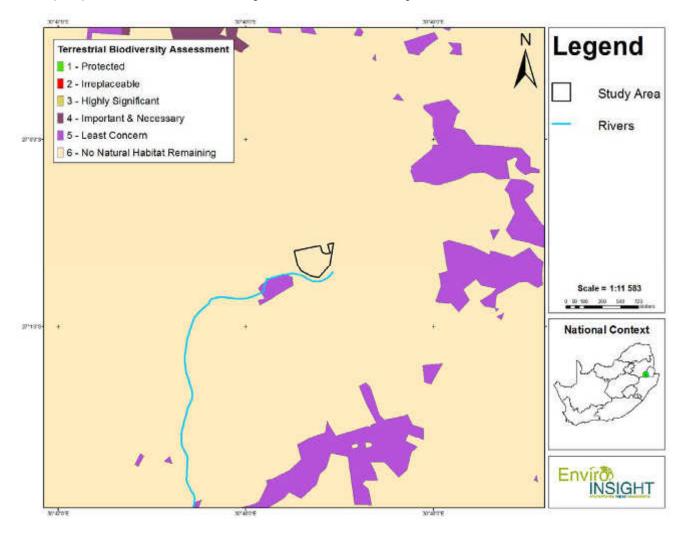
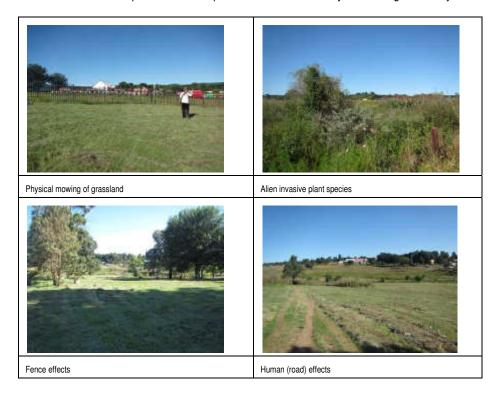


Figure 3: Mpumalanga (2014) C-Plan showing the conservation plan status of the project footprint

Utalita 2010-012-02 642 Nobles Lain-05070: 1637 Annie internin-interioran Utalita annanio-interioran Utalita annanio-interioran

environmental inquest excessionents



Significant current impacts (shown photographically in Table 1) were recorded on site, most of which related directly to the current use of the development footprint.

The most significant identified impacts on site included:

- The high densities of alien invasive / indigenous invasive species including are prevalent;
- The physical manipulation (mowing) of the grassland system;
- Adjacent road networks (fragmentation, noise and traffic effects);
- Fence related habitat fragmentation;
- Residential related presence of feral predators (cats and dogs); and
- Human density effects.

Photographic evidence of the current impacts on the site is shown in Table 1.

Table 1: Examples of current impacts observed in the study area during the survey

The following section provides a description of each of the habitat types occurring within the study area.

3.2 HABITAT UNIT 1 – DISTURBED TRANSFORMED

This habitat type is characterised by building structures and development and is not considered o be ecologically functional in any way. Photographic evidence of this habitat type is shown as Figure 4.

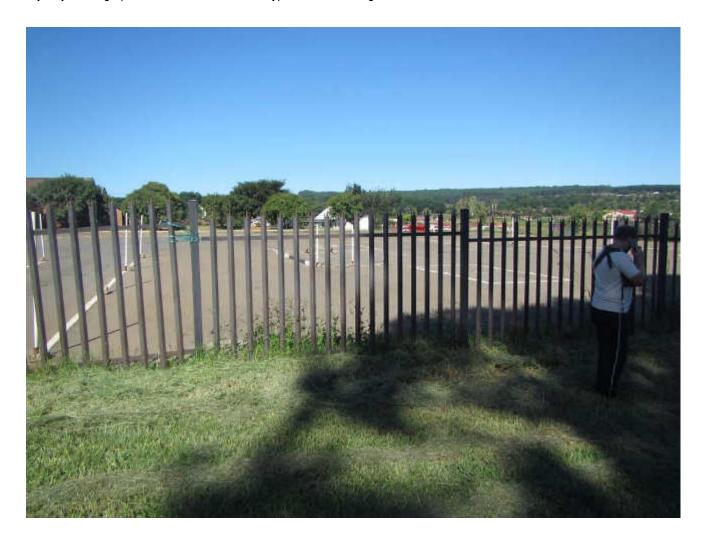
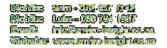



Figure 4: Photographic example of the Disturbed Transformed

ansironmental inquasi assessmente

3.3 HABITAT UNIT 2- DISTURBED VEGETATED HABITAT

This habitat type was by far the most prevalent within the study area and although it shows an abundance of indigenous vegetation, it is no longer considered to be ecologically functional in any way. The habitat is characterised in a number of ways, specifically;

- Previous disturbance with secondary grass regrowth
- Cultivated lawn
- Alien invasive species

Despite the slight variations within the habitat, it is entirely classified as non-sensitive and no Red-Listed species are expected to occur. Historically, the habitat type was most likely subjected to unsupervised grazing practices, human activities and physical manipulation of the floristic structure. In regards to actual classification, this is shown by both the undifferentiated or monospecific floristic structure and low diversity of species composition.

The grass cover throughout Disturbed Vegetated habitat was significant, although the representative species were indicative of disturbance. Dominant and sub-dominant species included *Melinis repens*, *Pennisetum clandestinum* (or other lawn grasses), *Aristida congesta* subsp. *barbicolis*, *Cynodon dactylon*, *Sporobolus africanus*, *Heteropogon contortus*, *Hyparrhenia hirta* and fragments of *Cymbopogon sp*. Most of the species fell within the "Increaser" classification as described by Van Outshoorn (2004) showing low grazing value and high previous levels of disturbance, although some pockets of *Themeda triandra* were present (Decreaser).

A photographic example of the Disturbed Vegetated Habitat Type is shown as Figure 5.

Figure 5: Photographic example of the Disturbed Vegetated Habitat Type

3.4 HABITAT UNIT 3- STREAM AND STREAM BUFFER HABITAT TYPE

The Stream and Stream Buffer Habitat type mostly occurred outside of the project footprint, although the influence of the waterway and associated buffer on and within the study area warrants further discussion. In addition, it must be stated that formal wetland delineation was beyond the scope of this study which mostly sought to classify the flora fauna on a basic assessment level. The general classification of this habitat is required in order to subsequently relate its presence to potential Red-Listed faunal species.

Overall, this habitat type was divided into the following sub-categories:

- Flowing water (stream): This habitat appeared to flow from a north-easterly to south-westerly direction to the lowest point in the study area, terminating in what is now a large artificial permanent water body (see below). The stream habitat is considered to be in functional ecological condition, despite the evaluation from the C-Plan (Mpumalanga). Rock structure and good quality riparian vegetation persists throughout this habitat type.
- Stream buffer: This system consists of linear riparian vegetation buffering the open water streams draining into the large artificial wetland described below. The vegetation type shows intact vegetation which retains aspects of the previous ecological functionality of the system.
- Large artificial permanent wetland: This water body most likely was a functioning seasonal or semi-permanent wetland and through heavy excavation, has been converted into a permanent "dam like" water body. This habitat acts as a source for wetland birds and possibly aquatic mammals although it is considered to be of peripheral importance to the development as a whole.

A photographic example of the Stream/ Stream Buffer Habitat Type is shown as Figure 6.

Note: A formal wetland delineation has been carried out and further classification was beyond the scope of this study, as per instructions.

3.5 FAUNAL SPECIES OF CONSERVATION CONCERN

Through the assessment of faunal characteristics of the site (habitat potential, evidence of the presence of faunal species etc.) as well as applying the basic assessment study performed in conjunction with the aforementioned faunal references, three faunal "trigger" species were identified and thus require further discussion. The species identified were based on a probability of occurrence (based on habitat potential and previous records) and are discussed below:

Water Rat Dasymys incomtus (Near Threatened)

85115 - 200 - 205 - 20 (24) 1951 - 1060 - 1957 (25)

100

(This and a state of the second

कर्णानाः स्वयत्वा स्वयत्वितः विद्यमित्रियः स्वयंत्वनं

The project footprint is intersected by a portion of intact stream drainage/stream buffer which shows a significant influence on the development area. Although water rats could be located within the site, the habitat observed is considered to be suboptimal habitat for water rat (due to high levels of disturbance). It must be stated however that if the extension was to be developed without mitigation, the flow of the natural drainage line would be impeded significantly and riparian habitat could be eliminated. In light of this and by employing the precautionary principle (assuming that water rat is present in the area), it is concluded that simple mitigation measures could be employed by buffering the drainage line, so that free movement of animals can take place, thereby avoiding all direct impact and maintaining the existing integrity of the stream and stream buffer.

Spotted-neck otter Lutra maculicollis (IUCN Near Threatened)

It was apparent that some potentially suitable migratory/dispersal habitat persists on site, characterised by the linear stream and associated buffer. However, the area is mostly sub-optimal for spotted-neck otters which prefer deep, clear pools which support large populations of fish. The conclusion for the spotted-neck otter mirrors that of the water rat above which favours simple buffering rather than intensive studies on the presence of the species which may in fact prove inconclusive.

Figure 6: Photographic example of the Stream/ Stream Buffer Habitat Type

antivennental inquest assessments

Striped Weasel Poecilogale albinucha (Data Deficient)

Although this species is a grassland resident and is known from the region, the sheer level of disturbance would be highly unlikely to support a viable population of striped weasels.

3.6 FLORAL SPECIES OF CONCERN

Based on the vegetation analysis and the observations made during the survey it is evident that the area currently does not show sound ecological functionality and no Red-Listed plant species were observed and none are expected.

4 DISCUSSION AND RECOMMENDATIONS

The Discussion and Recommendation section will be driven by the legislative minimum requirements and the level of the study commissioned by the client (Basic Assessment). The section will also be broken down into the various components of Fauna, Flora and Habitats.

4.1 FAUNA

Due to the low habitat potential for the regional "trigger" species of conservation concern, the suggested recommendations are purely precautionary. The legislative buffering should be kept intact in order to not restrict the movement of red-listed aquatic mammals such as water rats and spotted neck otters.

4.2 FLORA

The primary recommendations regarding the floral assemblage relates to the buffering of the Stream/ Stream Buffer habitat as a way to maintain corridor movement of birds and aquatic faunal species. In addition, avifauna use this habitat as a corridor for movement between upstream wetland habitats and the large impoundments downstream. Finally, alien/ invasive species located within the project footprint should be subjected to the appropriate eradication program as stipulated by the recommendations of the ROD and any relevant legislation.

4.3 HABITAT

Although no significant ecological triggers were identified on a habitat level, the presence of stream/ stream buffer habitat within the study area does represent an elevated sensitivity for the Habitat Type. This is due to the possible occurrence of the above mentioned wetland associated faunal species. Figure 7 shows the final delineation of the study area with the identifiable Stream/ Stream Buffer area illustrated in blue, denoting the **only** area of high sensitivity. The habitat sensitivity is therefore illustrated as Figure 8. Once more it is imperative to mention that the majority of this habitat type has been subjected to formal wetland delineation and botanically, falls outside the scope of this study (as instructed by the client).

Static 200-335-20 645 State Luin-339784 (857 Sault iniziania-inizianaan Statein aanaania-iniziataan

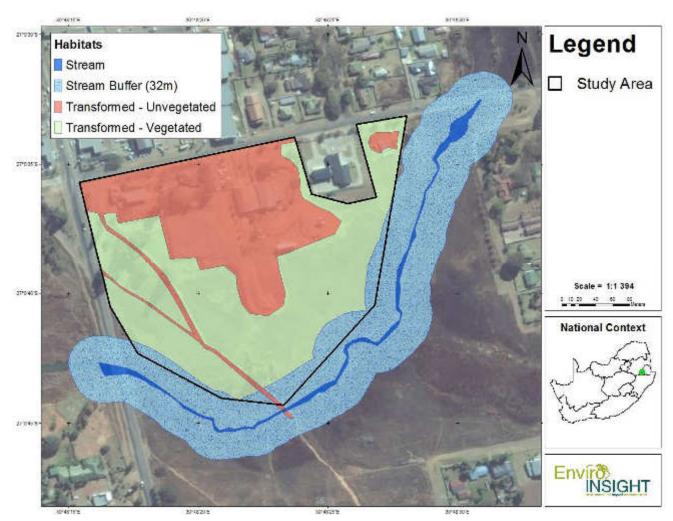


Figure 7: Final Habitat Delineation of the designated study area

ansironmental increas assessments

Birlin 200-855-85 645 Birlin Luin-66978: 1657 Samb Asternaria-infylassa Mirlinia anarania-infylassa

Figure 8: Final Habitat Sensitivity of the designated study area

ansironmental increas assessments

4.4 ASSESSMENT OF THE PRESENCE OF INDIGENOUS VEGETATION HABITAT IN ACCORDANCE WITH THE LEGISLATION

In accordance with the new legislation concerning the presence of 1 Ha or more of continuous indigenous vegetation, a summary based upon the findings of the basic assessment level study is listed below.

- The assessment identified 1 Ha or more of continuous indigenous vegetation within the study area which triggers this
 portion of the 2014 regulations;
- Primary climax grass swards were all but absent;
- The indigenous vegetation on site was highly manipulated and disturbed; and
- Overall and from a floristic point of view, none of the identified indigenous vegetation is considered to be highly sensitive. According to the NEMA Regulations, Indigenous vegetation is refers "to vegetation consisting of indigenous plant species occurring naturally in an area, regardless of the level of alien infestation and where the topsoil has not been lawfully disturbed during the preceding ten years". For the study area, disturbance is continuoius and on going.

5 REFERENCES

85667 420 - 212 421 (842 193667 1007 - 193784 (837

विद्यसिम्बर्डासः-विद्यप्रितिधारः-स्वा अन्यतः सार्वनः-विद्यप्रितिधारः-स्व

DU PREEZ, L.H. & CARRUTHERS, V. 2009. A complete guide to the frogs of southern Africa. Random House Struik, Cape Town.

FROGMAP 2015. The Southern African Frog Atlas Project (SAFAP, now FrogMAP). http://vmus.adu.org.za/

BATES, M.F., BRANCH, W.R., BAUER, A.M., BURGER, M., MARAIS, J., ALEXANDER, G.J. & DE VILLIERS, M.S. (EDS). 2014. Atlas and Red List of the Reptiles of South Africa, Lesotho and Swaziland. Suricata 1. South African National Biodiversity Institute, Pretoria, South Africa.

HOCKEY, P.A.R., DEAN, W.R.J. & RYAN, P.G. (eds.) 2005. Roberts – Birds of Southern Africa, VIIth ed. The Trustees of the John Voelker Bird Book Fund, Cape Town.

IUCN. 2014. The IUCN red data list website. Available at www.iucnredlist.org (Visited April 2014).

MUCINA, L. AND RUTHERFORD, M.C. (Eds.) 2006. The vegetation of South Africa, Lesotho and Swaziland. Strelizia 19. South African National Biodiversity Institute, Pretoria

NATIONAL ENVIRONMENTAL MANAGEMENT: BIODIVERSITY ACT. 2004 (act 10 of 2004): Publication of lists of critically endangered, endangered, vulnerable and protected species.

South African Bird Atlas Project (SABAP2). 2012. http://vmus.adu.org.za/

SANBI. 2014. Mpumalanga Biodiversity Conservation Plan (MBCP). URL: http://bgis.sanbi.org/MBCP/project.asp

SKINNER J.D. & CHIMIMBA, C.T. 2005. The Mammals of the Southern African Subregion (New Edition). Cambridge University Press. South Africa.

VAN OUDTSHOORN F. 2004. Gids tot die grasse van Suider-Afrika. Second Edition. Pretoria. Briza Publikasies VAN WYK, B and VAN WYK, P. 1997. Field guide to trees of Southern Africa. Cape Town. Struik Publishers

6 APPENDIX

85115 - 250 - 252 - 25 (*** 18515 - 1165 - 26978: (#*

(This and a state of the second विधिकेलील स्टब्स् वासीए नेपरिती केवर क

Erren De

Appendix 1: Georeferenced photographs taken during the fieldwork survey (shown in Figure 2)

2071	2072	2073	2074
2075	2076	2077	2078
2080	2081	2082	2083
2084	2085	2086	2087
2088	2089	2090	2091

2092	2093	2094	2095
2096	2097	2098	

anticonnental inquest accessorments

ANAPRO P PRO PERTY MANAGEMENT

PRELIMINARY SERVICES REPORT CIVILINFRASTRUCTURE PIET RETIEF SHOPPING CENTRE

REPORT PREPARED FOR:

Anaprop Property Management P.O. Box 569 Wierdapark 0149

Tel: +27 12 656 8957 Fax: +27 12 656 8959

PREPARED BY:

Lekwa Consulting Engineers (Pty) Ltd PO Box 2779 **ERMELO** 2350 CONTACT:

Tel.: (017) 819-1985 Fax: (017) 819-4017

e-Mail: lekwa@civilnet.co.za

Revision 01

PROJECT No .:

L209

CONTENT

1. INTRODUCTION	3
2. LOCATION	3
3. SITE DESCRIPTION	3
4. CIVIL INFRASTRUCTURE	4
4.1 General	4
4.2 Geotechnical conditions	4
4.3 Hydraulic conditions	4
5. ACCESS AND ROAD WAYS	4
5.1 Design parameters	4
5.2 Access road	5
5.3 Residential roads	5
5.4 Existing roads	5
6. STORMWATER DRAINAGE	5
6.1 Design parameters	5
6.2 Road Stormwater	6
6.3 Roof Stormwater	6
6.4 Stormwater Attenuation	6
7. WATER SUPPLY	6
7.1 Existing services	6
7.2 Design parameters	7
8. SEWAGE DISPOSAL	7
8.1 Existing services	7
8.2 Design parameters	7
9. FIRE FIGHTING	8
10. SOLID WASTE DISPOSAL	
11. ELECTRIC SUPPLY	8
12. TELECOMMUNICATIONS	8
13. CONCLUSION	9
14. ANNEXURES	9

1. INTRODUCTION

Messrs Anaprop (PTY) Ltd requested Lekwa Consulting Engineers (Pty) Ltd to prepare a Preliminary Engineering Services Report on the proposed Bulk Civil infrastructure for the Piet Retief shopping centre development.

The object of the Piet Retief shopping centre development is to establish a number of new commercial units. These rental units will be placed outside the 1:100 year floodline.

The purpose of this report is to provide the preliminary planning and criteria to which the civil services will be designed and constructed, and provide a working document, on which the services agreements can be formalised for the final approval of building plans.

2. LOCATION

The site is referred to as a Portion of Portion 100 (a Portion of Portion 1) of the farm Piet Retief Town and Townlands 149-HT (to be known as Portion 126. The site is located on the corner of Brand Street and Kerk Street in the town of Piet Retief which is located within the Mkhondo Local Municipality area, which has jurisdiction within the Gert Sibande District Municipal area.

A locality map is attached as **Annexure 1**.

3. SITE DESCRIPTION

The site is situated on the west side of the N2 national road. This is an indication that the site is well suited for the proposed development of a shopping centre.

The site has a size of approximately 7,0254 Ha but on this site a portion of the size 5 235 m² must be allocated for the town's local fire station. The proposed floor area will be approximately 39 000 m² and will be for retail/business purposes.

The site slopes from the eastern boundary to the western boundary.

4. CIVILINFRASTRUCTURE

4.1 General

The Civil Infrastructure will be designed in accordance with the requirements of the:

- "Red Book" Guidelines for the provision of Engineering Services and Amenities in Residents Township Developments"
- SABS 0400: National Building Regulations; and
- SABS 0252: Drainage and Water Supply

All contract documentation will be produced in accordance with the specification as set out in SABS 1200.

4.2 Geotechnical conditions

The Geotechnical considerations over the site have been dealt with in a separate report.

4.3 Hydraulic conditions

All commercial units will be developed above the 1:100 year floodline.

5. ACCESS AND ROAD WAYS

5.1 Design parameters

The design standards to be utilised in the design of streets in developments of this nature are those as set out in the "Red Book" – Guidelines for the provision of Engineering Services and Amenities in Residents Township Developments". All contract documentation will be produced in accordance with the specification as set out in SABS 1200. All streets will be designed above the 1: 10 year floodline level.

The access road ways are to be predominantly surfaced roads. Due to the type of development and the site conditions it is proposed that the design speed for all the traffic within the development to be 30 km/h. This reduces the allowable driving speed in the property thus reducing speed, along with creating safe environment for pedestrians.

It is intended that the design of the vertical alignment be flexible so that adjustments can be made to best suit the topography and any physical constraints found on site during the construction phase.

5.2 Access road

Access to the site will be from the Brand Street which intersects with the N2 national road or access can be obtained from the national road N2.

The access road way will be designed to have a crossfall and would have a permanent surface with the width of 6,0 m. The access road will have asphalt or paved surface determined by the material used in the parking area of the shopping centre.

The access road way will be designed for traffic comprising almost entirely passenger vehicles and light single axle heavy vehicles with a maximum loading of 9 tons per axle. The heaviest expected loading on the road network will be the construction traffic.

5.3 Residential roads

There will be no residential roads in this development site.

5.4 Existing roads

The only existing roads are those adjacent to the development site which will be used to gain access to the site. These are known as Brand Street and the national road N2 (Kerk Street).

6. STORMWATER DRAINAGE

6.1 Design parameters

The stormwater network of the development site must convey all surface stormwater run-off (both road and roof discharge) to the existing stormwater network serving the town of Piet Retief.

Due to the predisposition of the existing soils to erosion, it is imperative that effective stormwater erosion control measures be implemented both during and following construction of the civil infrastructure.

6.2 Road Stormwater

Stormwater on the parking area surface can be conveyed to open channels which can be covered by steel grids. These open channels can be built across the parking area to effectively catch all stormwater and these channels can be further used to convey the stormwater to the municipal stormwater network.

The stormwater can also be caught at collection points, and a network can be designed underneath the parking surface area to lead stormwater to the existing municipal stormwater networks.

These networks must be designed to create a controlled discharge into the existing municipal stormwater networks.

6.3 Roof Stormwater

All stormwater collected from roof runoff will be collected at a central point at each shop unit or drained into the design open channels. These structures can be constructed in such a manner as to lead the water into the municipal networks with a controlled discharge rate.

Efficient scour protection and filtration systems will be required at all discharge points to maintain the integrity of the water quality flow and control the erosion protection at these points.

6.4 Stormwater Attenuation

It is not anticipated that any stormwater attenuation will form part of the stormwater management of the proposed development.

7. WATER SUPPLY

Mkhondo Municipality is the Water Services Authority (WSA) and the Water Services Provider (WSP) for Piet Retief and is responsible for the provision of water services within its area of jurisdiction.

7.1 Existing services

An existing water connection is available and is currently being utilized by the present land occupiers.

The site is currently zoned as municipal and the existing rights allows for 75% coverage for Municipal purposes. As the property forms part

of an existing township, the existing network would have been designed/sized for these existing rights. According to the "Red Book" the annual average water demand for Government and Municipal is the same as for Offices and Shops. It is therefore foreseen that the current water network and connection should have sufficient capacity.

7.2 Design parameters

The estimated water demand per office or shop unit as per "Red book" is 400 litres per day / $100m^2$ of gross floor area. The instantaneous peak factor in the mains of the development is determined by converting the type of development to "equivalent erven" according to the design annual average demand. The accepted basis for design is: one equivalent erven (ee) has an annual average daily demand of 1 000 litres.

The peak factors will be calculated based on the final layout of the development. The peak factor is expected to be around 4.

The water demand for this development is therefore estimated at 156 ke per day.

8. SEWAGE DI SPOSAL

Mkhondo municipality is the Water Services Authority (WSA) and the Water Services Provider (WSP) for Piet Retief and is responsible for the provision of water services within its area of jurisdiction.

8.1 Existing services

An existing sewer connection is available and is currently being utilized by the present land occupiers.

As stated previously the property forms part of an existing township and the existing connections would have been designed/sized for these existing rights. It is therefore foreseen that the current sewer network and connection should have sufficient capacity.

8.2 Design parameters

The estimated sewage outflow per unit of any sort as per "Red Book" standards is estimated as 80% of the water demand of that specific unit. In addition a 15% Stormwater infiltration rate will be allowed for.

A four meter wide Servitude line is proposed to be constructed to the south side of the development site, this proposed sever line runs across the site form the eastern side to the western side of the development site. The topography of the area will have to be considered during the design process and the viability of this option considered.

The sewer flow for this development is therefore estimated at 6,6 ℓ /s. An Ø110 mm sewer pipe installed at minimum 1:95 at 80% full flow will have sufficient capacity. The minimum pipe diameter should be determined taking this minimum requirement and the requirements of the National Building Regulations into consideration.

9. FIRE FIGHTING

All fire-fighting controls will be in accordance with the National Building Regulations as set out in the section for dealing with fire fighting and in accordance with "Red Book" standards

This proposed development will be considered as a High-risk area.

10. SOLID WASTE DI SPOSAL

Mkhondo Municipality has a refuse removal service operating in the area. Mkhondo Municipality will be responsible for the removal and disposal of the solid waste generated by the proposed development.

11. ELECTRI C SUPPLY

An existing electrical connection is available and the final size of the connection will be determined by the type of facilities that will be accommodated in the centre.

At a later stage, when this information is available, will the size of the final connection be determined.

12. TELECOMMUNICATIONS

The supply of telecommunications will be the responsibility of Telkom and any upgrades required to deliver a service to the proposed development will be their responsibility. The area of the proposed development is in a good mobile phone reception area.

13. CONCLUSION

The maintenance of all services on the property will be the responsibility of the land owners. The Mkhondo Municipality will have to agree to supply all services as discussed in this report.

All aspects of the design for both the bulk and internal services will generally be designed in accordance with the "Red Book" – Guidelines for Human Settlement planning and design and will be constructed in accordance with the requirements and specifications of SABS 1200.

As per the "Red Book" it is indicated that the water demand and sewerage flows for Retail/Business and Government/Municipal are the same. The development will be done with reduced floor area rights and therefore the water demand and sewerage flows will also reduce. As the existing water- and sewer networks would have been designed for the existing rights, it can be motivated that there will be sufficient capacity in the existing networks.

This report serves as preliminary planning for the civil infrastructure of proposed shopping centre development in Piet Retief and therefore some information and designs may change when the detail design commences.

Prior to the commencement of the detailed design stage the following information is required:

1. Specifications regarding the electric supply available to the development site currently must be discussed with representatives from Mkhondo Municipality and must be specified.

14. ANNEXURES

Annexure 1: Locality map

Ref: 3470 / 8.17 / 0076

31 March 2014

Mkhondo Local Municipality Cnr. Market and De Wet Street Piet Retief 2380

Att: Mr. Madubula Mabuza

MALL@PIET RETIEF: SEWERAGE DRAINAGE

Sotiralis Consulting Engineers (Pty) Ltd was appointed by Zarafusion (Pty) Ltd to administrate the design, monitoring and planning of the structural and civil engineering components for the proposed new Mall@Piet Retief shopping mall, situated on Portion 126 of Piet Retief town and Town lands 149HT.

As per the Guidelines for Human Settlement Planning and Design "RED BOOK" the estimated daily sewerage flow for the proposed new shopping mall development will be as follows:

LAND USE	COVERAGE	DAILY SEWERAGE FLOW (AS PER THE "RED BOOK")	ESTIMATED EXPECTED SEWERAGE FLOW	
Special for Business (7.0254ha)	60%	400 litres per day / 100m ² of gross floor area	168.61 Kt/day	
TOTAL ESTIMATED DAILY	168.61 Kℓ/day			

The current estimated daily sewerage flow, based on the existing land use rights of the property, can be summarized as follows (please refer to the attached document for a copy of the current, existing, land use rights of the property):

LAND USE	COVERAGE	DAILY SEWERAGE FLOW (AS PER THE "RED BOOK")	ESTIMATED CURRENT SEWERAGE FLOW
Municipal (7.0254ha)	75%	400 litres per day / 100m² of gross floor area	210.76 Kt/day
TOTAL ESTIMATED DAILY WATER DEMEND			210.76 Kℓ/day

As per the above it is evident that the estimated daily sewerage flow for the new proposed development will be less than the current allocated daily sewerage flow for the property as per the existing land use rights. We therefore foresee that the existing municipal outfall sewer pipeline and the existing municipal Sewerage Treatment Facility for the area should be sufficient to cater for sewerage flow from the proposed new development.

An existing municipal outfall sewer pipeline, of which the size is unknown at this stage, is located along the southern boundary of the proposed new development. According to the survey obtained from the site it seems that the capacity of this pipeline can be estimated as follows for different pipe sizes:

- 160mmØ Pipe : ± 20l/s @ 80% Capacity
- 200mmØ Pipe : ± 60l/s @ 80% Capacity
- 300mmØ Pipe : ± 128l/s @ 80% Capacity

The sewerage network form the proposed new development will connect directly to this existing municipal outfall sewer pipeline.

We herewith request confirmation that the Mkhondo Local Municipality is in agreement with the above and that the sewer drainage network of the new Mall@Piet Retief development can connect directly to the existing municipal outfall sewer pipeline south of the proposed new development.

Due to the urgent nature of the requested feedback as per above, confirmation needs to be obtained by latest closing of business coming Friday, 04 April 2014. If no feedback has been received by the said date, it will be assumed that the Mkhondo Local Municipality is in agreement with the above.

You are welcome to contact us should you require any additional information.

Kind Regards

Kobus van Deventer For and on behalf of Sotiralis Consulting Engineers (Pty) Ltd

Tel: +27 12 991 0516 Fax: +27 12 991 0436

> PO Box 1829 Faerie Glen 0043

MUNICIPALITY MUNISIPALITEIT Navrae/Enquiries: · Bheki Bhengu Verw./Ref. Portion 100 (Ptn of Ptn 1) of Piet Retief Town and Townlands No. 149-HT DEPARTMENT OF CORPORATE SERVICES: TOWN PLANNING, HUMAN SETTLEMENTS AND OWNER A. NAME: Mkhondo Municipality DETAILS OF STAND 8. 1. STAND NUMBER: Pin 100 (Pin of Pin 1) of Piet Refief Town and Townlands No. 149-HT 2. PHYSICAL LOCATION Brand Street 3. TOWN: Pist Refisit Piet Retler 5. EXTENTION: O, 6. AREA OF STAND: 7, 0254 Hectares DETAILS REGARDING CONDITIONS ZONING OF DE LOPMENT 1. CONSENT USE: None-2. ZONING: Municipal 3. PRIMARY LAND USES Municipal Purposes 4. SECONDARY LAND USE (with consent) Dwelling units, Residential buildings, iristitutions, apacial uses, sports and recreation clubs 5. PROHIBITED USE: Noxious industrial activities. happing contine it can be don 64 Conce 图 (017) 826 8100 E (017) 826 3129/8102 23 Plct Retief 2380 fatien u da warung, sal ap darituika varasak gerig bina se datan blewin, 'n sooragiyke brie la Abitaans san u pa On written responses mode within sector days from the data herein a similar letter in English we be addressed to you if we are to do.

6. PARKING REQUIREMENTS:

Adequate and paved parking, together with the necessary manoeuring area, shall be provided on the property for the Use Zones and uses to the satisfaction of the local authority.

7. FLOOR AREA RATIO (FAR):

8. HEIGHT ZONE:

9. COVERAGE:

Residential buildings 1,2 and other buildings 2,1

0

Dwelling houses 50%, Residential buildings 40%, and Other buildings 75%.

10. BUILDING LINES:

5 metres along street boundaries and 2 metres on other boundaries.

t need of the testing of the second second

1.1

A THE PARTY AND A PARTY AND A

0

:

•

EKI BHENGU ADMIN CLERK TOWN PLANNING

101

15-11-201

Ref: 3470 / 8.17 / 0077

31 March 2014

Mkhondo Local Municipality Cnr. Market and De Wet Street Piet Retief 2380

Att: Mr. Madubula Mabuza

MALL@PIET RETIEF: SOLID WASTE REMOVAL

Sotiralis Consulting Engineers (Pty) Ltd was appointed by Zarafusion (Pty) Ltd to administrate the design, monitoring and planning of the structural and civil engineering components for the proposed new Mall@Piet Retief shopping mall, situated on Portion 126 of Piet Retief town and Town lands 149HT.

Solid waste from the proposed new development will be collected on site and will be disposed of at the existing municipal landfill site.

We herewith request confirmation that the Mkhondo Local Municipality is in agreement with the above and that the solid waste of the new Mall@Piet Retief can be disposed of into the existing municipal landfill site.

Due to the urgent nature of the requested feedback as per above, confirmation needs to be obtained by latest closing of business coming Friday, 04 April 2014. If no feedback has been received by the said date, it will be assumed that the Mkhondo Local Municipality is in agreement with the above.

You are welcome to contact us should you require any additional information.

Kind Regards

Kobus van Deventer For and on behalf of Sotiralis Consulting Engineers (Pty) Ltd

Tel: +27 12 991 0516 Fax: +27 12 991 0436

> PO Box 1829 Faerie Glen 0043

Ref: 3470 / 8.17 / 0075

31 March 2014

Mkhondo Local Municipality Cnr. Market and De Wet Street Piet Retief 2380

Att: Mr. Madubula Mabuza

MALL@PIET RETIEF: WATER SUPPLY

Sotiralis Consulting Engineers (Pty) Ltd was appointed by Zarafusion (Pty) Ltd to administrate the design, monitoring and planning of the structural and civil engineering components for the proposed new Mall@Piet Retief shopping mall, situated on Portion 126 of Piet Retief town and Town lands 149HT.

As per the Guidelines for Human Settlement Planning and Design "RED BOOK" the estimated daily water demand for the proposed new shopping mall development will be as follows:

LAND USE	COVERAGE	DAILY WATER DEMAND (AS PER THE "RED BOOK")	ESTIMATED EXPECTED WATER DEMEND
Special for Business (7.0254ha)	60%	400 litres per day / 100m ² of gross floor area	168.61 Kt/day
TOTAL ESTIMATED DAILY	168.61 Kℓ/day		

The current estimated daily water demand, based on the existing land use rights of the property, can be summarized as follows (please refer to the attached document for a copy of the current, existing, land use rights of the property):

LAND USE	COVERAGE	DAILY WATER DEMAND (AS PER THE "RED BOOK")	ESTIMATED CURRENT WATER DEMEND
Municipal (7.0254ha)	75%	400 litres per day / 100m ² of gross floor area	210.76 Kt/day
TOTAL ESTIMATED DAILY WATER DEMEND			210.76 Kℓ/day

As per the above it is evident that the estimated daily water demand for the new proposed development will be less than the current allocated daily water supply for the property as per the existing land use rights. We therefore foresee that the existing municipal bulk water supply to the area should be sufficient to supply the new proposed development with potable water.

The existing water supply point to the property will be utilized for the water connection to the new shopping centre and will be upgraded to a 160mmØ water connection and bulk water meter.

We herewith request confirmation that the Mkhondo Local Municipality is in agreement with the above and that the water supply to the new Mall@Piet Retief development can be obtained from the existing municipal bulk water supply pipeline in the vicinity of the proposed new development.

Due to the urgent nature of the requested feedback as per above, confirmation needs to be obtained by latest closing of business coming Friday, 04 April 2014. If no feedback has been received by the said date, it will be assumed that the Mkhondo Local Municipality is in agreement with the above.

You are welcome to contact us should you require any additional information.

Kind Regards

Kobus van Deventer For and on behalf of Sotiralis Consulting Engineers (Pty) Ltd

Tel: +27 12 991 0516 Fax: +27 12 991 0436

> PO Box 1829 Facrie Glen 0043

UNICIPALITY MUNISIPALITEIT ensia more: perio wa VIVV PERSETLA INCO THEMLINC Navrae/Engoilities: Verw./Ref. - Bhekl Bhengu Portion 100 (Ptn of Ptn 1) of Plet Retief Town and Townlands No. 149-HT DEPARTMENT OF CORPORATE SERVICES, TOWN PLANNING, HUMAN SETTLEMENTS AND BUILDING CONTROL OWNER NAME: Mkhondó Municipality DETAILS OF STAND 8. 1. STAND NUMBER: Pin 100 (Pin of Pin 1) of Plet Retief Town and Townlands No. 149-HT 2: PHYSICAL LOCATION: Brand Street S. TOWN-Plet Relief SUBURB: Plat Retief 5. EXTENTION: D, AREA OF STAND 7, 0254 Hectares DETAILS REGARDING MATION CONDITIONS ZONING OF neu OPMENT OF: 1. CONSENT USE None . 2. ZONING: Municipal 8. PRIMARY LAND USES Municipal Purposes 4. SECONDARY LAND USE (with consent) Dwelling units, Residential buildings, institutions, epecial uses, sports and recreation clubs 5: PROHIBITED USE: Noxious industrial activities. Shapping ceighting it can be done by Lorce 图 (017) 826 8100 (017) 826 3129/8102 5 23 Plot Retief 2380 indica o da wartung, sal op skriftelike varsoel gerig blivnes. Brown blevan, 'n soerogelyke brie la Abimzes san u ge Co written require mode water seven days from the data hered a cimilar lower in English with a solicitated to you if you as dealers

6. PARKING REQUIREMENTS:

Adequate and paved parking, together with the decessary manoeuring area, shall be provided on the property for the Use Zones and uses to the satisfaction of the local authority.

7. FLOOR AREA RATIO (FAR):

8. HEIGHT ZONE:

9. COVERAGE:

Residential buildings 1,2 and other buildings 2,1

D

Dwelling houses 50%, Residential buildings 40%, and Other buildings 75%.

10. BUILDING LINES:

5 metres along street boundaries and 2 metres on other boundaries.

12.

-

Sectory.

AL 18

EKI. BHENGU EK ADMIN CLERK TOWN PLANNING

1

15-11-201 DATE

Ref: 3470 / 8.17 / 0074

24 March 2014

Mkhondo Local Municipality Cnr. Market and De Wet Street Piet Retief 2380

Att: Mr. Madubula Mabuza

MALL@PIET RETIEF: WATER DEMANDS AND SEWERAGE FLOWS

Sotiralis Consulting Engineers (Pty) Ltd was appointed by Zarafusion (Pty) Ltd to administrate the design, monitoring and planning of the structural and civil engineering components for the proposed new Mall@Piet Retief shopping mall, situated on Portion 126 of Piet Retief town and Town lands 149HT, and the proposed new Municipal structures on a Portion of Portion 123 of Piet Retief Town and Town lands 149HT.

The purpose of this letter is to give an indication to the local council of the expected estimated sewerage flows and water demands of the proposed new developments on the above mentioned properties. An indication will also be given on the estimated existing water demands and sewerage flows based on the current land uses.

The following is a summary of the estimated existing water demands and sewerage flows based on the current land uses:

PROPOSED DEVELOPMENT SITE	EXISTING LAND USE	EXISTING COVERAGE USES	DAILY WATER DEMAND & SEWERAGE FLOW	ESTIMATED EXISTING WATER DEMEND & SEWERAGE FLOW	
	EST	IMATED EXIST	ING DAILY WATER DEMAND		
Mall site	Municipal (7.0254ha)	75%	400 litres per day / 100m ² of gross floor area	210.76 Kt/day	
New Municipal Site	Public open Space	N/A	N/A	0.00 Kt/day	
TOTAL ESTIMAT	ED DAILY WA	FER DEMEND		210.76 Kℓ/day	
	ESTI	ATED EXISTIN	IG DAILY SEWERAGE FLOWS		
Mall site	Municipal (7.0254ha)	75%	400 litres per day / 100m² of gross floor area	210.76 Kt/day	
New Municipal Site	Public open Space	N/A	N/A	0.00 Kt/day	
TOTAL ESTIMAT	210.76 Kt/day				

An existing Municipal outfall sewer pipeline, of which the size is unknown at this stage, is located along the southern boundary of the proposed new development. According to the survey obtained from the site it seems that the capacity of this pipeline can be estimated as follows for different pipe sizes:

- 160mmØ Pipe : ± 20l/s @ 80% Capacity
- 200mmØ Pipe : ± 60l/s @ 80% Capacity
- 300mmØ Pipe : ± 128t/s @ 80% Capacity

The following is a summary of the expected estimated water demands and sewerage flows for the proposed new developments:

PROPOSED DEVELOPMENT SITE	NEW LAND USE	COVERAGE DAILY WATER DEMAND & SEWERAGE FLOW		ESTIMATED EXPECTED WATER DEMEND & SEWERAGE FLOW	
		ESTIMATED D	AILY WATER DEMAND		
Mall site	Special for Business (7.0254ha)	60%	400 litres per day / 100m ² of gross floor area	168.61 Kℓ/day	
New Municipal Site	Municipal	Building Area: 400 litres per day / 100m ² ±588m ² of gross floor area		2.35 Kt/day	
TOTAL ESTIMATE	D DAILY WAT	ER DEMEND		170.96 Kℓ/day	
		ESTIMATED DA	ILY SEWERAGE FLOWS		
Mall site	Special for Business (7.0254ha)	60%	400 litres per day / 100m² of gross floor area	168.61 Kℓ/day	
New Municipal Site	Municipal	Building Area: ±588m²	400 litres per day / 100m ² of gross floor area	2.35 Kt/day	
TOTAL ESTIMATED DAILY SEWERAGE FLOWS				170.96 Kℓ/day	

All above calculations are based on the requirements as per the Guidelines for Human Settlement Planning and Design "RED BOOK".

You are welcome to contact us should you require any additional information.

Kind Regards

Kobus van Deventer For and on behalf of Sotiralis Consulting Engineers (Pty) Ltd

Tel: +27 12 991 0516 Fax: +27 12 991 0436

> PO Box 1829 Faerie Glen 0043

KHONDO MUNICIPALITY MUNISIPALITEIT

Ale Karrespondensie moet gerig word aan DIE MUNISIPALE BESTUURDER

All Correspondence to be addressed to THE MUNICIPAL MANAGER

Enquiries: MA.Jele Water and Sanitation Division

Date: 15 July 2015

Polla Scholtz Mall@ reds 1st Floor Cnr Rooi Huiskraal and Hendrick Verwoerd

Subject: CONFIRMATION OF SERVICES FOR THE MALL AND TRAFFIC DEPARTMENT OFFICES

The letter serves to confirm the availability of water, sewer and electricity services for the shopping mall and the traffic department that is to be constructed in eMkhondo (Piet Retief).

Water Services

The municipality do have the capacity to provide water to the two developments at a pressure of 3-5 bar.

Sewer Services

The development is responsible to upgrade the outfall sewer system through construction of holding or balance tank, approximately 500m3.

Electricity

The municipality is in a process of upgrading electric main substation, as a result the municipality do confirm availability of electric to the development.

NB:

Yours \$incerely

Mr. MJS. Mabuza Acting Municipal Manager Mkhondo Local Municipality

TEL: (017) 826 8100 P O Box 23 Piet Retief 2380 Fax: (017) 826 3129

- ALL MATERIAL AND WORKMANSHIP MUST COMPLY WITH THE REQUIREMENTS OF THE
- LATEST RELEVANT SANS CODES. ALL DIMENSIONS ARE IN METERS, UNLESS OTHERWISE INDICATED.
- DO NOT SCALE FROM THIS DRAWING. ALL DIMENSIONS AND SETTING OUT POINTS MUST BE CHECKED AND APPROVED ON SITE
- BEFORE CONSTRUCTION COMMENCES. FINAL POSITION OF EXISTING SERVICES TO BE
- CONFIRMED ON SITE BY CONTRACTOR. ALL EXISTING SERVICES TO BE EXPOSED BY HAND EXCAVATION AND INVERT LEVELS TO BE PROVIDED TO THE ENGINEER IN WRITING
- BEFORE CONSTRUCTION COMMENCES. ALL STORMWATER PIPES SHALL BE A MINIMUM 450mm DIAMETER INTERLOCKING JOINT CLASS 50D AND SHALL COMPLY WITH
- SANS 677, UNLESS OTHERWISE INDICATED. CONCRETE PRECAST MANHOLES TO BE
- SEALED WATERTIGHT WITH EPOXY SEALER SUCH AS EPIDERMIX 344 OR PRO-STRUCT 687. ENGINEER OR THE ENGINEER'S REPRESENTATIVE TO BE INVITED FOR
- INSPECTIONS ACCORDING TO SCE CIVIL ENGINEERING INSPECTION NOTIFICATION REQUIREMENTS. 0. CLEAN EXISTING STORMWATER INLETS AND
- REPAIR WHERE NECESSARY (IF APPLICABLE). 1. KERB INLET STRUCTURES (STEEL FRAME AND PRECAST COVERS), TO COMPLY WITH SCE STANDARD DRAWING SCE-SW001/002/003.
- 2. ALL STORMWATER JUNCTION BOX, MANHOLE AND COVER SLAB DETAILS TO COMPLY WITH SCE STANDARD DRAWING
- SCE-SW003/004/005/006/007. 3. ALL STORMWATER PIPE TRENCHES, BEDDING AND BACKFILLING TO COMPLY WITH SCE
- STANDARD DRAWING SCE-SW009. 14. MINIMUM FALL THROUGH ANY MANHOLE IS 80mm, UNLESS OTHERWISE INDICATED.
- 15. ALL STORMWATER PIPES TO BE LAID SOFFIT TO SOFFIT. 16. CONTRACTOR TO COMPLY WITH THE OCCUPATIONAL HEALTH AND SAFETY ACT (85
- OF 1993), THE CONSTRUCTION REGULATIONS OF 2014 AND ALL RELEVANT REGULATIONS AS WELL AS THEIR AMENDMENTS. 7. CONTRACTOR TO IMMEDIATELY REPORT ANY
- DAMAGE TO EXISTING SERVICES IN WRITING TO THE ENGINEER OR THE ENGINEER'S REPRESENTATIVE. 18. ON COMPLETION OF STORMWATER
- INSTALLATION, CONTRACTOR TO PROVIDE COMPLETE AS-BUILT INFORMATION TO THE ENGINEER.

LEGEND:

	- sw
	EXSW ———
MH	•
EXMH	
JB	
EXJB	► X
JBMH	
EXJBMH	
GI	
EXGI	-0
LGI	
EXLGI	
Œ	
EXFI	-×
KI	-🛛
EXKI	
	(0/0/0)
	[
_	>
	2%
	- VAL
	SUB
-00	
	100L ———
	-
SWXXX	<⊢∞
¥ ¥	+ + + + + + + +
	· · · · ·

- PROPOSED STORMWATER LINE EXISTING STORMWATER
- LINE PROPOSED MANHOLE
- EXISTING MANHOLE
- PROPOSED JUNCTION BOX

EXISTING JUNCTION BOX PROPOSED JUNCTION BOX

WITH MANHOLE EXISTING JUNCTION BOX WITH MANHOLE PROPOSED GRID INLET

EXISTING GRID INLET PROPOSED LONG GRID INLET EXISTING LONG GRID INLET

PROPOSED FIELD INLET

EXISTING FIELD INLET

PROPOSED KERB INLET

EXISTING KERB INLET

TRANSITION LENGTH	ł
UPSTREAM (US)	

CATCHPIT LENGTH (CP) TRANSITION LENGTH DOWNSTREAM (DS) FLOW DIRECTION OF STORMWATER PERCENTAGE AND

DIRECTION OF ROAD SLOPE STORMWATER VALLEY LINE

STORMWATER SUBSOIL LINE

ERF BOUNDARY

1:100 YEAR FLOODLINE

BENCHMARK STORMWATER

SETTING OUT POINT PROPOSED BUILDING

VEGETATION

EARTH BERM

REFERENCE DRAWINGS: 3470-BM-L01 BENCHMARK LAYOUT PLAN

ALL WORK TO SANS 1200						
A	2014-11-14				KVD	SC
NO	DATE	DES	SCRIPTION		DESIGN	DRAWN
CLIENT: ANAPROP PROPERTY MANAGEMENT						
PROJECT: MALL@PIET RETIEF PORTION 126 PIET RETIEF						
DRAWING TITLE: STORMWATER MANAGEMENT LAYOUT PLAN (CONSTRUCTION PHASE)						
DATI 201	E: 4-11-13		SCALE: AS SHOWN	DRAWN: S CHAME	BERS	
DES	GNED:		CHECKED:	REVISION	NUMBER:	

NOTES:

- ALL MATERIAL AND WORKMANSHIP MUST COMPLY WITH THE REQUIREMENTS OF THE
- LATEST RELEVANT SANS CODES. ALL DIMENSIONS ARE IN METERS, UNLESS OTHERWISE INDICATED.
- DO NOT SCALE FROM THIS DRAWING. ALL DIMENSIONS AND SETTING OUT POINTS MUST BE CHECKED AND APPROVED ON SITE
- BEFORE CONSTRUCTION COMMENCES. FINAL POSITION OF EXISTING SERVICES TO BE
- CONFIRMED ON SITE BY CONTRACTOR. ALL EXISTING SERVICES TO BE EXPOSED BY HAND EXCAVATION AND INVERT LEVELS TO BE PROVIDED TO THE ENGINEER IN WRITING BEFORE CONSTRUCTION COMMENCES.
- ALL STORMWATER PIPES SHALL BE A MINIMUM 450mm DIAMETER INTERLOCKING JOINT CLASS 50D AND SHALL COMPLY WITH
- SANS 677, UNLESS OTHERWISE INDICATED. CONCRETE PRECAST MANHOLES TO BE SEALED WATERTIGHT WITH EPOXY SEALER
- SUCH AS EPIDERMIX 344 OR PRO-STRUCT 687. ENGINEER OR THE ENGINEER'S REPRESENTATIVE TO BE INVITED FOR INSPECTIONS ACCORDING TO SCE CIVIL
- ENGINEERING INSPECTION NOTIFICATION REQUIREMENTS. 10. CLEAN EXISTING STORMWATER INLETS AND
- REPAIR WHERE NECESSARY (IF APPLICABLE). 1. KERB INLET STRUCTURES (STEEL FRAME AND PRECAST COVERS), TO COMPLY WITH SCE STANDARD DRAWING SCE-SW001/002/003.
- 2. ALL STORMWATER JUNCTION BOX, MANHOLE AND COVER SLAB DETAILS TO COMPLY WITH SCE STANDARD DRAWING SCE-SW003/004/005/006/007.
- 3. ALL STORMWATER PIPE TRENCHES, BEDDING AND BACKFILLING TO COMPLY WITH SCE
- STANDARD DRAWING SCE-SW009. 14. MINIMUM FALL THROUGH ANY MANHOLE IS 80mm, UNLESS OTHERWISE INDICATED.
- 15. ALL STORMWATER PIPES TO BE LAID SOFFIT TO SOFFIT. 16. CONTRACTOR TO COMPLY WITH THE OCCUPATIONAL HEALTH AND SAFETY ACT (85 OF 1993), THE CONSTRUCTION REGULATIONS
- OF 2014 AND ALL RELEVANT REGULATIONS AS WELL AS THEIR AMENDMENTS. 7. CONTRACTOR TO IMMEDIATELY REPORT ANY DAMAGE TO EXISTING SERVICES IN WRITING TO THE ENGINEER OR THE ENGINEER'S
- REPRESENTATIVE. 18. ON COMPLETION OF STORMWATER INSTALLATION, CONTRACTOR TO PROVIDE COMPLETE AS-BUILT INFORMATION TO THE

LEGEND:

ENGINEER.

SW	PROPOSED STORI
exsw MH	EXISTING STORM
	PROPOSED MANH
EXMH	EXISTING MANHO
	PROPOSED JUNCT
ехјв ————————————————————————————————————	EXISTING JUNCTIC
JBMH	PROPOSED JUNCT WITH MANHOLE
EXJBMH	EXISTING JUNCTIC
GI	PROPOSED GRID I
EXGI	EXISTING GRID INI
	PROPOSED LONG
	EXISTING LONG G
FI	PROPOSED FIELD
	EXISTING FIELD IN
KI	PROPOSED KERB
EXKI (0/0/0)	EXISTING KERB IN
	TRANSITION LENG UPSTREAM (US)
	CATCHPIT LENGTH
	TRANSITION LENG
\longrightarrow	FLOW DIRECTION STORMWATER
2%	PERCENTAGE AND DIRECTION OF RO
VAL	STORMWATER VA
SUB	STORMWATER SU LINE
-000	ERF BOUNDARY
100L	1:100 YEAR FLOOD
•	BENCHMARK
SWXXX –×	STORMWATER SETTING OUT POI
	PROPOSED BUILD

PROPOSED STORMWATER LINE EXISTING STORMWATER

PROPOSED MANHOLE

EXISTING MANHOLE

PROPOSED JUNCTION BOX

EXISTING JUNCTION BOX PROPOSED JUNCTION BOX WITH MANHOLE EXISTING JUNCTION BOX WITH MANHOLE PROPOSED GRID INLET

EXISTING GRID INLET PROPOSED LONG GRID INLET EXISTING LONG GRID INLET

PROPOSED FIELD INLET

EXISTING FIELD INLET

PROPOSED KERB INLET

EXISTING KERB INLET

TRANSITION LENGTH
UPSTREAM (US)

CATCHPIT LENGTH (CP) TRANSITION LENGTH DOWNSTREAM (DS) FLOW DIRECTION OF STORMWATER

PERCENTAGE AND DIRECTION OF ROAD SLOPE STORMWATER VALLEY LINE

STORMWATER SUBSOIL LINE

1:100 YEAR FLOODLINE

SETTING OUT POINT PROPOSED BUILDING

REFERENCE DRAWINGS: 3470-BM-L01 BENCHMARK LAYOUT PLAN 3470-SW-LS01 STORMWATER LONGSECTIONS

ALL WORK TO SANS 1200							
A	2014-11-13	FOF		1		KVD	SC
NO	DATE	DES	SCRIPTION			DESIGN	DRAWN
SOTIRALIS CONSULTING ENGINEERS (PTY) LTD. Consulting Civil And Structural Engineers PO BOX 1829 FAERIE GLEN 0043 TELEPHONE (012) 991 0516 admin@sotiralis.co.za FACSIMILE (012) 991 0436							
PROJECT: MALL@PIET RETIEF PORTION 126 PIET RETIEF							
DRAWING TITLE: STORMWATER LAYOUT PLAN							
DATE: SCALE: DRAWN: 2014-11-07 AS SHOWN S CHAMBERS							
	IGNED: AN DEVENTEI	R	CHECKED: S SOTIRALIS		REVISION I A	NUMBER:	
DRAWING NUMBER: 3470-SW-L01 FOR: INFORMATION							

NOTES:

- ALL MATERIAL AND WORKMANSHIP MUST COMPLY WITH THE REQUIREMENTS OF THE LATEST RELEVANT SANS CODES.
- ALL DIMENSIONS ARE IN METERS, UNLESS OTHERWISE INDICATED.
 DO NOT SCALE FROM THIS DRAWING.
 ALL SETTING OUT POINTS TO BE CHECKED
- AND CONFIRMED BEFORE ANY CONSTRUCTION COMMENCES. ANY DISCREPANCIES TO BE BROUGHT TO THE ENGINEER'S IMMEDIATE ATTENTION IN
- WRITING.
 5. FINAL POSITION OF EXISTING SERVICES TO BE CONFIRMED ON SITE BY CONTRACTOR.
 6. ALL EXISTING SERVICES TO BE EXPOSED BY HAND EXCAVATION AND INVERT LEVELS TO BE PROVIDED TO THE ENGINEER IN WRITING
- BEFORE CONSTRUCTION COMMENCES.
 7. ALL SEWER PIPES SHALL BE A MINIMUM 110mm DIAMETER TWIN WALL UNPLASTICIZED POLYVINYL CHLORIDE (uPVC) CLASS 34 400kPa STIFFNESS AND SHALL COMPLY WITH SANS 1601, UNLESS OTHERWISE INDICATED.
- CONCRETE PRECAST MANHOLES TO BE SEALED WATERTIGHT WITH EPOXY SEALER SUCH AS EPIDERMIX 344 OR PRO-STRUCT 687.
 ENGINEER OR THE ENGINEER'S
- REPRESENTATIVE TO BE INVITED FOR INSPECTIONS ACCORDING TO SCE CIVIL ENGINEERING INSPECTION NOTIFICATION REQUIREMENTS.
- ALL SEWER MANHOLES, MANHOLE COVERS AND MANHOLE FRAMES TO COMPLY WITH SCE STANDARD DRAWING SCE-SE001.
- 11. POSITION OF "CALAMITE" STEP IRONS OR SIMILAR APPROVED STEP IRONS IN ACCORDANCE WITH SCE STANDARD DRAWING SCE-SE001.
- ALL SEWER PIPE TRENCHES AND BEDDING TO COMPLY WITH SCE STANDARD DRAWING SCE-SE002.
 SEWER HOUSE CONNECTION DETAILS AND
- HOUSE CONNECTION MARKER BLOCKS TO COMPLY WITH SCE STANDARD DETAIL DRAWING SCE-SE003.
- MINIMUM FALL THROUGH ANY MANHOLE IS 80mm, UNLESS OTHERWISE INDICATED.
 SEWER PIPE LEVELS AT CONNECTIONS BETWEEN VARIOUS DIAMETER PIPES TO BE
- LAID INVERT TO INVERT.
 16. ALL SEWERS TO BE AIR TESTED, ACCORDING TO THE SANS 1200, IN THE PRESENCE OF THE ENGINEER OR THE ENGINEER'S
- REPRESENTATIVE. 17. CONTRACTOR TO COMPLY WITH THE OCCUPATIONAL HEALTH AND SAFETY ACT (85 OF 1993), THE CONSTRUCTION REGULATIONS OF 2014 AND ALL RELEVANT REGULATIONS AS
- WELL AS THEIR AMENDMENTS.
 18. CONTRACTOR TO IMMEDIATELY REPORT ANY DAMAGE TO EXISTING SERVICES IN WRITING TO THE ENGINEER OR THE ENGINEER'S
- REPRESENTATIVE. 19. CONCRETE ANCHOR BLOCKS TO BE PROVIDED ON SEWERS WITH SLOPES OF 1:6
- OR STEEPER TO ENGINEER'S DETAIL. 20. ON COMPLETION OF SEWER INSTALLATION, CONTRACTOR TO PROVIDE COMPLETE AS-BUILT INFORMATION TO THE ENGINEER.

LEGEND:

SEWER	PROPOSED SEWER LINE
—— EXSEWER ——	EXISTING SEWER LINE
MH 	PROPOSED MANHOLE
	EXISTING MANHOLE
CE	PROPOSED CLEANING EYE
EXCE	EXISTING CLEANING EYE
LH — ——	PROPOSED LAMP HOLE
EXLH	EXISTING LAMP HOLE
-000	ERF BOUNDARY
100L	1:100 YEAR FLOODLINE
•	BENCHMARK
SEXXX	SEWER SETTING OUT POINT
	PROPOSED BUILDING

REFERENCE DRAWINGS:3470-BM-L01BENCHMARK LAYOUT PLAN3470-SE-LS01SEWER LONGSECTIONS

ALL WORK TO SANS 1200							
A	2014-11-13	FOF				KVD	SC
NO	DATE			ч 		DESIGN	DRAWN
H.C	DATE					DECION	0101011
		••	Consulting C PO BOX 1829 FAEF admin@sotiralis.co.z	Civil And S	Structural E	Engineers DNE (012) 991	0516
	ANAPRO)P	PROPER	RTΥ Ν	/ANA(Geme	NT
PROJECT: MALL@PIET RETIEF PORTION 126 PIET RETIEF							
DRAWING TITLE: SEWER LAYOUT PLAN OPTION A							
DATE 2014	E: 4-11-07	_	SCALE: AS SHOWN		DRAWN: S CHAMB	BERS	
	IGNED: AN DEVENTEF	٦	CHECKED: S SOTIRALIS		REVISION N A	NUMBER:	
DRAWING NUMBER: 3470-SE-L01 FOR: INFORMATION					ON		

NOTES:

- ALL MATERIAL AND WORKMANSHIP MUST COMPLY WITH THE REQUIREMENTS OF THE LATEST RELEVANT SANS CODES.
- ALL DIMENSIONS ARE IN METERS, UNLESS OTHERWISE INDICATED.
 DO NOT SCALE FROM THIS DRAWING.
- ALL SETTING OUT POINTS TO BE CHECKED AND CONFIRMED BEFORE ANY CONSTRUCTION COMMENCES. ANY DISCREPANCIES TO BE BROUGHT TO THE ENGINEER'S IMMEDIATE ATTENTION IN
- WRITING. 5. FINAL POSITION OF EXISTING SERVICES TO BE
- CONFIRMED ON SITE BY CONTRACTOR.
 6. ALL EXISTING SERVICES TO BE EXPOSED BY HAND EXCAVATION AND INVERT LEVELS TO BE PROVIDED TO THE ENGINEER IN WRITING BEFORE CONSTRUCTION COMMENCES.
- 7. ALL SEWER PIPES SHALL BE A MINIMUM 110mm DIAMETER TWIN WALL UNPLASTICIZED POLYVINYL CHLORIDE (uPVC) CLASS 34 400kPa STIFFNESS AND SHALL COMPLY WITH SANS 1601, UNLESS OTHERWISE INDICATED.
- CONCRETE PRECAST MANHOLES TO BE SEALED WATERTIGHT WITH EPOXY SEALER SUCH AS EPIDERMIX 344 OR PRO-STRUCT 687.
 ENGINEER OR THE ENGINEER'S
- REPRESENTATIVE TO BE INVITED FOR INSPECTIONS ACCORDING TO SCE CIVIL ENGINEERING INSPECTION NOTIFICATION REQUIREMENTS.
- ALL SEWER MANHOLES, MANHOLE COVERS AND MANHOLE FRAMES TO COMPLY WITH SCE STANDARD DRAWING SCE-SE001.
 POSITION OF "CALAMITE" STEP (PONIO OF
- 11. POSITION OF "CALAMITE" STEP IRONS OR SIMILAR APPROVED STEP IRONS IN ACCORDANCE WITH SCE STANDARD DRAWING SCE-SE001.
- ALL SEWER PIPE TRENCHES AND BEDDING TO COMPLY WITH SCE STANDARD DRAWING SCE-SE002.
 SEWER HOUSE CONNECTION DETAILS AND
- HOUSE CONNECTION MARKER BLOCKS TO COMPLY WITH SCE STANDARD DETAIL DRAWING SCE-SE003.
- MINIMUM FALL THROUGH ANY MANHOLE IS 80mm, UNLESS OTHERWISE INDICATED.
 SEWER PIPE LEVELS AT CONNECTIONS BETWEEN VARIOUS DIAMETER SIDES TO FEET
- BETWEEN VARIOUS DIAMETER PIPES TO BE LAID INVERT TO INVERT.
 16. ALL SEWERS TO BE AIR TESTED, ACCORDING TO THE SANS 1200, IN THE PRESENCE OF THE ENGINEER OR THE ENGINEER'S
- REPRESENTATIVE. 17. CONTRACTOR TO COMPLY WITH THE OCCUPATIONAL HEALTH AND SAFETY ACT (85 OF 1993), THE CONSTRUCTION REGULATIONS OF 2014 AND ALL RELEVANT REGULATIONS AS
- WELL AS THEIR AMENDMENTS.
 18. CONTRACTOR TO IMMEDIATELY REPORT ANY DAMAGE TO EXISTING SERVICES IN WRITING TO THE ENGINEER OR THE ENGINEER'S
- REPRESENTATIVE. 19. CONCRETE ANCHOR BLOCKS TO BE PROVIDED ON SEWERS WITH SLOPES OF 1:6
- OR STEEPER TO ENGINEER'S DETAIL. 20. ON COMPLETION OF SEWER INSTALLATION, CONTRACTOR TO PROVIDE COMPLETE AS-BUILT INFORMATION TO THE ENGINEER.

LEGEND:

SEWER	PROPOSED SEWER LINE
EXSEWER	EXISTING SEWER LINE
MH 	PROPOSED MANHOLE
	EXISTING MANHOLE
CE	PROPOSED CLEANING EYE
EXCE	EXISTING CLEANING EYE
LH	PROPOSED LAMP HOLE
EXLH	EXISTING LAMP HOLE
-0000	ERF BOUNDARY
100L	1:100 YEAR FLOODLINE
-	BENCHMARK
<u>SEXXX</u> –X	SEWER SETTING OUT POINT
	PROPOSED BUILDING

REFERENCE DRAWINGS:3470-BM-L01BENCHMARK LAYOUT PLAN

3470-SE-LS01 SEWER LONGSECTIONS

ALL WORK TO SANS 1200							
•	2011 11 12	505					00
A	2014-11-13					KVD	
NO	DATE	DES	SCRIPTION			DESIGN	DRAWN
			Consulting C PO BOX 1829 FAEF admin@sotiralis.co.z	RIE GLEN 004		ONE (012) 991	
/	\NAPR(ЭР	PROPEF	VTY N	/ANA(GEME	NT
PROJECT: MALL@PIET RETIEF PORTION 126 PIET RETIEF							
DRAWING TITLE: SEWER LAYOUT PLAN OPTION B							
DATI 201-	E: 4-11-07		SCALE: AS SHOWN		DRAWN: S CHAME	ERS	
	IGNED: AN DEVENTEF	२	CHECKED: S SOTIRALIS		REVISION N A	NUMBER:	
DRAWING NUMBER: 3470-SE-L02 INFORMATION							

<< Tel: +27 12 348 0386 << Fax: +27 12 348 3587 << Cell: +27 83 447 9961 << Email: admin@techworld.co.za

> Number 78 Glenmore Ave Cnr Glenmore & Glenwood Rd Lynnwood Glen South Africa

> > << P0 Box 12530 Hatfield 0028 South Africa

> > > q

Traffic Engineering Transportation Planning Transport Economy Project Management Project Financing & Viability

TRAFFIC IMPACT STUDY

PIET RETIEF SHOPPING CENTRE MKHONDO MUNICIPALITY, MPUMALANGA November 2013

APPLICATION TO ROAD AUTHORITY			
OUR REFERENCE	REP01/TW646/01Nov13		
DATE	01 November 2013		
AGENCY	Mkhondo Municipality		
THE MANAGER	Municipal Manager		
ADDRESS	PO Box 23, Piet Retief, 2380		
FOR ATTENTION	Mr Absalom N. Mahlangu		
SUBJECT	TRAFFIC IMPACT STUDY FOR NEW PIET RETIEF SHOPPING CENTRE		

A new township is planned on Portion 126 (of Portion 100) of Piet Retief Town and Townlands 149-HT in the CBD of Piet Retief for commercial development ("Business 1") for a potential of 39,000 m² GLA that includes a shopping centre of maximum 25,000 m² GLA. The existing Municipal Buildings on the site will be relocated to a new site in Gerard Bohmer Road. Since the existing peak hour trip generation of the Municipal Buildings is negligible, the impact of the relocation was not addressed in this traffic impact study.

The primary access to the development is proposed from Brand Street opposite Kotze Street while a secondary access is proposed as a marginal access from Church Street (left-in and left-out).

No other large properties with existing undeveloped land use rights are known in the study area. An average to high traffic growth rate of 4.0% p.a. for the 5 year study period was assumed to account for growth in background traffic and any unknown latent land use rights.

The traffic impact study shows that the existing road network can accommodated the new development with relative ease. Mitigation measures are however required on the road network that provides access to the development and that borders the application site.

Improvements are recommended at the Church (N2) / Brand intersection (additional lanes and signalization), the Kotze / Brand intersection (additional lanes), the Church (N2) / Marginal Access intersection (additional lanes and widening to accommodate a physical curb median), and Church (N2) / Gerard Bohmer intersection (additional lanes and signalization).

The construction of taxi- / bus loading bays are also recommended along both sides of Church Street (N2) directly south of the intersection with Brand Street.

This comprehensive traffic impact study has determined the required mitigation measures for the township which are shown in *Figure 8: Required Road Improvements In Study Area.*

Your consideration and approval of this traffic impact study at your earliest convenience is hereby requested. Please do not hesitate to contact us (Pieter Kruger – 083 447 9961 / 012 348 0386) immediately for any discussions or enquiries.

1/mill

Kind Regards

Pieter Kruger for TECHWORLD

Page 3Z:\Projects Local TW 601_700\TW646_Piet Retief Mall\Reports\TIS_Piet Retief14/11/2013Mall_14Nov13_v2.docx

TABLE OF CONTENTS

1	APPLICATION
2	METHODOLOGY9
3	STUDY AREA AND NETWORK
3.1	LATENT DEVELOPMENT RIGHTS AND COMMITTED ROAD IMPROVEMENTS IN THE AREA
3.2	STUDY AREA 11
3.3	ROAD NETWORK DESCRIPTION 13
3.4	ACCESS
4	EXISTING TRAFFIC CHARACTERISTICS15
5	TRIP CHARACTERISTICS 17
5.1	TRIP GENERATION
5.2	TRIP DISTRIBUTION
5.3	MODAL SPLIT
5.4	TRIP ASSIGNMENT
6	CAPACITY AND OPERATIONAL ANALYSES21
7	ROAD IMPROVEMENTS AND MITIGATION MEASURES

Page 4Z:\Projects Local TW 601_700\TW646_Piet Retief Mall\Reports\TIS_Piet Retief14/11/2013Mall_14Nov13_v2.docx

7.1	REQUIRED ROAD IMPROVEMENTS BY APPLICANT TO SUPPORT THE APPLICATION	
7.2	REQUIRED ROAD RESERVE REQUIREMENTS BY THE APPLICANT TO SUPPORT TH APPLICATION	
8	PUBLIC TRANSPORT AND PEDESTRIANS REQUIREMENTS	5
8.1	PUBLIC TRANSPORT BACKGROUND	i
8.2	PEDESTRIAN AND NMT FACILITIES	,
9	PARKING REQUIREMENTS	7
9 10	PARKING REQUIREMENTS	
•		3
10	SITE DEVELOPMENT PLAN (SDP) ISSUES28	3

TABLE OF TABLES

Table 1: Expected Trip Generation	32
Table 2: Weekday PM Peak Hour: Results of Capacity and Operational Analyses	34
Table 3: Saturday AM Peak Hour: Results of Capacity and Operational Analyses	36

Page 5Z:\Projects Local TW 601_700\TW646_Piet Retief Mall\Reports\TIS_Piet Retief14/11/2013Mall_14Nov13_v2.docx

TABLE OF FIGURES

TABLE OF APPENDICES

Appendix A: Site Layout Plan: Portion 126	39
Appendix B: Concept SDP Mall@Piet Retief	39
Appendix C: Proposed Road Improvements at the Accesses & Church (N2) / Brand (R543) Inters to Support the Piet Retief Mall	section 39
Appendix D: Proposed Road Improvements at the Church (N2) / Gerard Bohmer Intersection to South the Piet Retief Mall	upport 39
Appendix E: Traffic Counts	39

Page 6Z:\Projects Local TW 601_700\TW646_Piet Retief Mall\Reports\TIS_Piet Retief14/11/2013Mall_14Nov13_v2.docx

TITLE PAGE OF REPORT				
TITLE OF REPORT	Traffic Impact Study: New Piet Retief Shopping Centre, Mkhondo Municipality, Mpumalanga Province.			
DESCRIPTION	This traffic impact study evaluates the traffic impact of a new community shopping centre in Piet Retief			
DATE		STATUS OF REPORT		
November 2013		Final Report		
CLIENTS		TOWN PLANNER		
SOUTHERN PALACE INVESTMENTS (Pty) Ltd		NUPLAN DEVELOPMENT PLANNERS		
t/a Anaprop Property Management		Martin Strydom		
Mr Yanni Anastasiadis		Tel: +27 13 752 3422		
Tel: +2712 656 8957		Fax: +27 13 752 5795		
Fax: +2712 656 8959				
PROJECT NUMBER		REPORT NUMBER		
TW646		REP01/TW646/01Nov13		
POSTAL ADDRESS		PHYSICAL ADDRESS		
PO Box 12530		78 Glenmore Street		
Hatfield, 0028		C/O Glenmore & Glenwood Streets		
Tel: (012) 998 3541		Lynnwood Glen		
Fax: (012) 993 5506		Email: admin@techworld.co.za		
PROJECT TEAM		COPYRIGHT		
P Kruger, J Daling, MM Wilson		TECHWORLD		

Page 7 Z:\Projects Local TW 601_700\TW646_Piet Retief Mall\Reports\TIS_Piet Retief Mall_14Nov13_v2.docx 14/11/2013

1 APPLICATION			e application and property in terms of current, and future usage		
THE TYPE OF LAND USE APPLICATION IS THE FOLLOWING					
Type of Application	New township application for commercial development ("Business 1") in the CBD of Piet Retief for 39,000 m ² GLA that includes a shopping centre of 25,000 m ² GLA.		Refer to: <i>Figure 1: Locality Plan</i>		
THE LOCATION OF THE SITE IN TERMS OF THE PROPERTY DESCRIPTION IS THE FOLLOWING					
Portion	Portion 126 (of Portion 100)		Refer to:		
Farm	Piet Retief Town and Townlands 149-HT		Appendix A: Site Layout Plan		
THE LOCATION OF THE SITE IN TERMS OF BORDERING AND/OR NEIGHBOURING ROADS ARE THE FOLLOWING					
Roads to the North	Brand Street (R543 East)		Directly bordering		
Roads to the East	None				
Roads to the South	Gerard Bohmer Road		Not directly bordering		
Roads to the West	Church Street (N2)		Directly bordering		
THE SIZE AND/OR EXTENT OF THE SITE IS THE FOLLOWING					
Extent of Total Property	±6.50ha				
THE EXISTING ZONING IS THE FOLLOWING					
Zoning	"Municipal"				
THE EXISTING USAGE OF THE SITE IS THE FOLLOWING					
Usage	Municipal Buildings. The existing Municipal Buildings will be relocated to a new site in Gerard Bohmer Road near the Cemetery.				

Page 8Z:\Projects Local TW 601_700\TW646_Piet Retief Mall\Reports\TIS_Piet Retief14/11/2013Mall_14Nov13_v2.docx

THE REQUIRED ZONING AND EXTENT IS THE FOLLOWING				
Required Zoning (refer to the Township Application for details on the development controls)	 "Business 1" - FAR = 0.60 Maximum Coverage = 80% Maximum Height = 3 storeys Parking = 2 bays / 100 m² GLA The allowable floor area is thus 39,011.4 m² of which the shopping centre will be limited to a maximum GLA of 25,000 m². The following development scenario was subsequently investigated from a traffic perspective: Shopping Centre 25000 m² 			
	Shopping Centre 25000 m² Motor Dealerships 3500 m² Offices 3500 m² Mini Storage 3500 m² Bulk Trade Centre 3500 m²			
THE STUDY AREA AND TOWN	OWNSHIP LAYOUT IS SHOWN ON THE ATTACHED PLANS			
Study Area	Refer to: <i>Figure 2: Study Area</i> <i>Appendix A: Site Layout Plan</i>			
2 METHODOLOG	GY The approach and methodology followed in the execution of this study is described in this section			
THE FOLLOWING GENERAL APPROACH AND METHODOLOGY WAS UTILIZED				
Guidelines	Guidelines contained in SA Manual for Traffic Impact Studies PR93/635,1995			
THE FOLLOWING TECHNICAL METHODOLOGY AND SOFTWARE WAS UTILIZED				

Page 9Z:\Projects Local TW 601_700\TW646_Piet Retief Mall\Reports\TIS_Piet Retief14/11/2013Mall_14Nov13_v2.docx

TRAFFIC IMPACT STUDY: PIET RETIEF SHOPPING CENTRE, MKHONDO MUNICIPALITY, MPUMALANGA		TECHWORLD	
Traffic Impact Analysis Software	VISTRO 2.0	Refer to: <i>Figure 3: Traffic Model</i> (VISTRO)	
Capacity and Operational Analysis Software	Latest HCM2010 methodology		
THE FOLLOWING CRITICAL P	EAK HOURS WERE ANALYZED		
Critical Design Peak Hours	Weekday PM Peak Hour		
	Saturday AM Peak Hour		
THE STUDY PERIOD FOR THE	DEVELOPMENT IS THE FOLLOWING		
Base Year (Existing Situation)	2013		
Study Period	5 years		
Horizon Year (Future Situation)	2018 2013 plus 5 years		
THE FOLLOWING PLANNED R	OAD NETWORK ALTERNATIVES WERE IN	/ESTIGATED	
Network alternatives	None		
THE FOLLOWING SCENARIOS WERE ANALYZED			
Scenario 1	Existing 2013 peak hours.	Existing road network.	
Scenario 2	Expected 2018 peak hours with growth in background traffic.	Existing road network.	
Scenario 3	Expected 2018 peak hours with growth in background traffic and with full application.Existing road network.		
Scenario 4	Expected 2018 peak hours with growth in background traffic and with full application.Required mitigation measures to support application.		

THE FOLLOWING TRAFFIC AND OTHER REPORTS WERE TAKEN INTO ACCOUNT

Available reports

Feasibility Study Update, Retail Development, Piet Retief Mpumalanga, October 2013, FERNRIDGE, October 2013

3 STUDY AREA AND NETWORK

This section describes the identification of an appropriate study area, and the characteristics of the network included in the study area.

3.1 LATENT DEVELOPMENT RIGHTS AND COMMITTED ROAD IMPROVEMENTS IN THE AREA

THE FOLLOWING LATENT (EXISTING AND UNDEVELOPED) LAND USE RIGHTS EXIST IN THE STUDY AREA

Approved Land Use Rights	No other large properties with existing undeveloped land use rights (i.e. latent rights) are known in the study area.	Refer to: <i>Figure 1: Locality Plan</i>
Growth in Background Traffic	An average to high traffic growth rate of 4.0% p.a. for the 5 year study perio was assumed to account for growth in background traffic and any unknown latent land use rights.	

THE FOLLOWING ROAD NETWORK IMPROVEMENTS ARE COMMITTED AND/OR PLANNED IN THE STUDY AREA

Committed / Planned Road None.

3.2 STUDY AREA

THE STUDY AREA WAS DETERMINED BASED ON THE FOLLOWING

Page 11Z:\Projects Local TW 601_700\TW646_Piet Retief Mall\Reports\TIS_Piet Retief14/11/2013Mall_14Nov13_v2.docx

The Layout of The Current Road Network Influences the Required Study Area	Major roads such as Church (N2), Piet Retief (R543), and Brand (R543) will distribute traffic in north-south and east-west directions.			
The Expected Trip Distribution Influences the Required Study Area	The primary and secondary markets for the planned development were obtained from the Market Study by FERNRIDGE.			
The Extent of the Trip Generation Influences the Required Study Area	The expected primary (new) vehicle trip generation for the application is about 857 and 1612 vehicle trips during the Weekday PM and the Saturday AM peak hours, respectively.			
THE FOLLOWING INTERSECT	TIONS WERE INCLUDED IN THE STUDY ARE INDICATED)	A (THE EXISTING TYPE OF		
Intersection 1	Church (N2) / Theo Mocke	Two-way Stop		
Intersection 2	Church (N2) / Smit Traffic Signals			
Intersection 3	Church (N2) / Piet Retief (R543)-Kruger Traffic Signals			
Intersection 4	Church (N2) / Retief Traffic Signals			
Intersection 5	Church (N2) / Brand (R543) One-way Stop			
Intersection 6	Church (N2) / Gerard Bohmer Two-way Stop			
Intersection 7	Kotze – Primary Access Piet Retief Mall / All-way Stop Brand (R543) All-way Stop			
Intersection 8	Pretorius / Brand (R543) One-way Stop			
Intersection 9	Von Brandis / Brand (R543) All-way Stop			
Intersection 10	Church (N2) / Secondary Access Piet Retief Planned One-way Stop Mall			

Page 12Z:\Projects Local TW 601_700\TW646_Piet Retief Mall\Reports\TIS_Piet Retief14/11/2013Mall_14Nov13_v2.docx

ATTACHED FIGURE

TRAFFIC IMPACT STUDY: PIET RETIEF SHOPPING CENTRE, MKHONDO MUNICIPALITY, MPUMALANGA Existing Road Network Refer to: Figure 4: Existing Road Network and Lane Layout 3.3 ROAD NETWORK DESCRIPTION **ROAD NETWORK PLANNING IN AREA** Road Network Planning None THE REGIONAL ACCESSIBILITY OF THE SITE IS PROVIDED BY THE FOLLOWING ROAD NETWORK N2 (Church Street), R543 The N2 connects Piet Retief with Ermelo in Refer to: West (Piet Retief Street), R543 the north and Pongola in the south, and Figure 1: Locality Plan East (Brand Street) also to Paulpietersburg in the south via the R33. The R543 WEST connects Piet Retief with Wakkerstroom in the west, while the R543 EAST connects Piet Retief with Swaziland in the west. The jurisdiction of SANRAL (by means of a national road declaration) starts / ends at Theo Mocke Street in the north and Kempville Street in the south. THE LOCAL ACCESSIBILITY OF THE SITE IS PROVIDED BY THE FOLLOWING ROAD NETWORK Refer to: Gerard Bohmer, Von Brandis, Traffic will also approach the development Pretorius, Kotze, Retief, from the various residential areas along the Figure 1: Locality Plan Kruger, and Smit Streets following local streets; Gerard Bohmer, Von Figure 2: Study Area Brandis, Pretorius, Kotze, Retief, Kruger, and Smit Streets. THE ROAD NETWORK THAT SERVES THE DEVELOPMENT HAS THE FOLLOWING CHARACTERISTICS

Page 13Z:\Projects Local TW 601_700\TW646_Piet Retief Mall\Reports\TIS_Piet Retief14/11/2013Mall_14Nov13_v2.docx

N2 (Church Street), R543 West (Piet Retief Street), R543 East (Brand Street)	The N2 and R543 are classified as Class 2 Rural Distributors outside the Piet Retief urban area, but only comply with the design standards of Class 3 and Class 4 facilities in the urban area. These single carriageway roads are controlled with priority control as well as traffic signals at the high-volume intersections.		
Gerard Bohmer, Von Brandis, Pretorius, Kotze, Retief, Kruger, and Smit Streets	The functional classification of these streets are either Class 4 or Class 5 streets.		
3.4 ACCESS			
ACCESS TO THE DEVELOPM	ENT WILL BE OBTAINED FROM THE FOLLO	WING STREETS	
Primary Access from Brand Street opposite Kotze Street	The primary access to the development is recommended from Brand Street opposite Kotze Street as the fourth approach of the Kotze / Brand Street T-junction approximately 150m from Church Street.	Refer to: <i>Figure 2: Study Area</i>	
	The expected trip distribution and assignment shows that 55% of the visitors are expected to use the primary access during the weekday PM peak hour and 62% during the Saturday AM peak hour.		
	Two inbound and two outbound lanes are required with a minimum throat length of about 35m.		
Secondary Access 2 from Church Street (N2)	A secondary access to the development is recommended from Church Street approximately 150m south of Brand Street (R543). This will basically extend the current block-pattern of the CBD – of 150m between cross-streets – with one block distance of 150m towards the south.	Refer to: <i>Figure 2: Study Area</i>	

Page 14Z:\Projects Local TW 601_700\TW646_Piet Retief Mall\Reports\TIS_Piet Retief14/11/2013Mall_14Nov13_v2.docx

MKHONDO MUNICIPA			consting context	
	– left-in and left-out – island must be provid	This access will only be a marginal access – left-in and left-out – and a physical curb island must be provided to prohibit any right-turn movements from/to Church Street at the access.		
	assignment shows th are expected to use the during the weekday f	The expected trip distribution and assignment shows that 45% of the visitors are expected to use the secondary access during the weekday PM peak hour and 38% during the Saturday AM peak hour. Two inbound lanes and two outbound lanes are required with a minimum throat length of about 35m.		
	are required with a m			
HE REQUIREMENTS FOR	ACCESS CONTROL IS	THE FOLLOWING:		
		THE FOLLOWING: planned at this stage.		
Access Control	Access control is not	planned at this stage.	emand is described in this	
Access Control	Access control is not	planned at this stage. <i>The existing traffic de</i>	emand is described in this	
	Access control is not AFFIC ISTICS	planned at this stage. <i>The existing traffic de</i> <i>section.</i>		
ACCESS Control	Access control is not AFFIC ISTICS	planned at this stage. <i>The existing traffic de</i> <i>section.</i>		
CCESS Control	Access control is not AFFIC ISTICS ONDUCTED DURING TI	planned at this stage. <i>The existing traffic de</i> <i>section.</i>	DS	
CCESS Control	Access control is not AFFIC ISTICS ONDUCTED DURING TI Friday 30/08/2013	planned at this stage. <i>The existing traffic de</i> <i>section.</i>	DS Peak Hour	
CCESS Control EXISTING TR CHARACTER RAFFIC COUNTS WERE C Veekday PM Peak Period	Access control is not AFFIC ISTICS ONDUCTED DURING TI Friday 30/08/2013 Counting Period	planned at this stage. <i>The existing traffic de</i> <i>section.</i> HE FOLLOWING PERIO	DS Peak Hour	
CCESS Control	Access control is not AFFIC ISTICS ONDUCTED DURING TI Friday 30/08/2013 Counting Period 12:00 to 18:00	planned at this stage. <i>The existing traffic de</i> <i>section.</i> HE FOLLOWING PERIO	DS Peak Hour 16:00 to 17:00	

Page 15Z:\Projects Local TW 601_700\TW646_Piet Retief Mall\Reports\TIS_Piet Retief14/11/2013Mall_14Nov13_v2.docx

TRAFFIC IMPACT STUDY: PIET RETIEF SHOPPING CENTRE, MKHONDO MUNICIPALITY, MPUMALANGA		TECHWORLD
Peak Hour Traffic Demand		Refer to:
		Figure 5: Weekday PM Peak Hour Traffic Demand
		Figure 6: Saturday AM Peak Hour Traffic Demand
THE CURRENT TWO DIRECTI PM / SATURDAY AM)	ONAL PEAK HOUR FLOWS ON THE NETWO	ORK ARE AS FOLLOWS (WEEK
	South of Theo Mocke	±900 / ±770
	South of Piet Retief (R543)	±1160 / ±950
Church Street (N2)	South of Brand (R543)	±1360 / ±1150
	South of Gerard Bohmer	±680 / ±430
Piet Retief Street (R543)	West of Church Street (N2)	±260 / ±240
	East of Church Street	±220 / ±80
Brand Street (R543)	East of Von Brandis Street	±370 / ±170
Corord Pohmor Street	West of Church Street	±540 / ±880
Gerard Bohmer Street	East of Church Street	±330 / ±220
THE CURRENT AVERAGE PHF'S FOR THE INTERSECTIONS IN THE STUDY AREA ARE AS FOLLOWS (WEEK PM / SAT AM)		
PHF'S	WEEK PM / SAT AM	0.90 / 0.90

5 TRIP CHARACTERISTICS

The expected trip characteristics of the development are described in this section in terms of trip generation, trip distribution, modal split, and trip assignment.

5.1 TRIP GENERATION

THE EXPECTED TRIP GENERATION WAS BASED ON THE FOLLOWING

Trip Generation	The trip generation was based on the South African Trip Generation Guidelines 2 nd Edition RR92/228, 1995; enhanced with more recent information on trip generation.
	A high utilization of public transportation and non-motorised transport trips is expected which is supported by the low parking requirement of only 2 bays per 100 m ² GLA. The average trip generation rates for shopping centres in urban areas (in South Africa) were thus reduced with 30% for application in Piet Retief; namely to 3.95 and 6.84 trips / 100 m ² GLA during the weekday afternoon (PM) and Saturday morning (AM) peak hours respectively. Standard average trip rates were used for all the other auxiliary land uses on the site.

THE APPLICATION IS EXPECTED TO GENERATE THE FOLLOWING TOTAL NUMBER OF PEAK HOUR TRIPS (SPLIT GIVEN)

TOTAL TRIPS		Refer to:
Weekday PM Peak Hour	1203 (51% in / 49% out)	Table 1: Expected Trip
Saturday AM Peak Hour	1954 (50% in / 50% out)	Generation
PRIMARY TRIPS		
Weekday PM Peak Hour	857 (52% in / 48% out)	
Saturday AM Peak Hour	1612 (50% in / 50% out)	
BYPASS TRIPS		
Weekday PM Peak Hour	346 (50% in / 50% out)	
Saturday AM Peak Hour	342 (50% in / 50% out)	

Page 17Z:\Projects Local TW 601_700\TW646_Piet Retief Mall\Reports\TIS_Piet Retief14/11/2013Mall_14Nov13_v2.docx

IT IS EXPECTED THAT THE CURRENT APPLICATION WILL GENERATE THE FOLLOWING % BYPASS TRIPS DURING THE RESPECTIVE PEAK HOURS **Bypass Trips** Bypass trips of 35% are expected during the weekday afternoon peak hour and 20% during the Saturday morning peak hour. The bypass trips were assumed to be attracted in proportion to the bypassing traffic; namely 85% from Church Street (N2) and 15% from Brand Street during the peak hours. IT IS EXPECTED THAT THE CURRENT APPLICATION WILL GENERATE THE FOLLOWING MULTIPLE PURPOSE AND PUBLIC TRANSPORTATION TRIPS DURING THE RESPECTIVE PEAK HOURS Multiple Purpose and Public All the vehicle trips generated by the new land uses will not be new trips in the **Transportation Trips** study area since some of these trips will be shared between land uses and will also be attracted from other land uses in the study area. A large utilization of public transportation is also expected given the target market of the shopping centre. A reduction of 30% in the standard vehicle trip generation rates of only the shopping centre were however assumed for the analyses which is a conservative approach. DETAIL ON THE EXPECTED TRIP GENERATION ARE SHOWN IN THE ATTACHED TABLE **Trip Generation Table** Refer to: Table 1: Expected Trip Generation 5.2 TRIP DISTRIBUTION THE TRIP DISTRIBUTION WAS BASED ON THE FOLLOWING METHODOLOGY Method Analogy Method An assessment of the existing traffic flow pattern in the area was used as an adaptation of the Analogy Method

THE FOLLOWING PRIMARY TRIP DISTRIBUTION (%) IS EXPECTED

Page 18Z:\Projects Local TW 601_700\TW646_Piet Retief Mall\Reports\TIS_Piet Retief14/11/2013Mall_14Nov13_v2.docx

Shopping Centre	Gerard Bohmer WEST	10%
	Church (N2) SOUTH	12%
	Gerard Bohmer EAST	4%
	Von Brandis SOUTH	6%
	Brand (R543 East) EAST	10%
	Von Brandis NORTH	7%
	Pretorius NORTH	7%
	Kotze NORTH	5%
	Retief EAST	1%
	Kruger EAST	1%
	Smit EAST	2%
	Bodorp EAST	2%
	Theo Mocke EAST	2%
	Church (N2) NORTH	8%
	Theo Mocke WEST	1%
	Bodorp WEST	4%
	Smit WEST	4%
	Kruger WEST	8%
	Retief WEST	1%
	Brand / Zuidend WEST	5%
THE FOLLOWING DISTRIBUT	ION OF TRIPS BETWEEN THE VARIOUS MA	RKETS IS EXPECTED
Trip Distribution	External	32%
	North-Eastern Quadrant	25%
	South-Eastern Quadrant	10%
	North-Western Quadrant	15%
	Western Suburbs	18%
		•

Page 19Z:\Projects Local TW 601_700\TW646_Piet Retief Mall\Reports\TIS_Piet Retief14/11/2013Mall_14Nov13_v2.docx

THE EXPECTED TRIP DISTRIBUTION IS SHOWN SCHEMATICALLY ON THE FOLLOWING FIGURE

Trip Distribution

Refer to:

Figure 7: Primary Trip Distribution

5.3 MODAL SPLIT

THE FOLLOWING MODAL SPLIT FOR PUBLIC TRANSPORT USAGE IS EXPECTED

Modal SplitThe average vehicle classification in the vicinity of the application site (i.e.
centre of town) was 80% private light vehicles, 13% public transportation (bus
and mini-bus taxi) vehicles, and 7% heavy commercial vehicles during the 6-
hour survey period on a weekday afternoon. However in terms of modal split
this translates into 43% private vehicle occupants, and 57% public transport
passengers.

THE EXPECTED UTILIZATION OF PUBLIC TRANSPORT WARRANTS THE FOLLOWING ADJUSTMENTS

The expected vehicle trip generation rates for the shopping centre were
reduced with 30% to make provision for the use of public transportation (which
also includes an adjustment for multiple purpose trips, and the rural nature of
the study area).

5.4 TRIP ASSIGNMENT

THE TRIP ASSIGNMENT WAS BASED ON THE FOLLOWING METHODOLOGY Trip Assignment Shortest travel time assignments taking into account the layout of the road network and the traffic control at key intersections. THE ASSIGNED TRIPS FOR THE VARIOUS SCENARIOS ARE SHOWN SCHEMATICALLY IN THE

THE ASSIGNED TRIPS FOR THE VARIOUS SCENARIOS ARE SHOWN SCHEMATICALLY IN THE FOLLOWING FIGURES

Page 20Z:\Projects Local TW 601_700\TW646_Piet Retief Mall\Reports\TIS_Piet Retief14/11/2013Mall_14Nov13_v2.docx

TRAFFIC IMPACT STUDY: PIET RETIEF SHOPPING CENTRE, MKHONDO MUNICIPALITY, MPUMALANGA			TECHWORLD
Trip Assignment			Refer to:
			Figure 5: Weekday PM Peak Hour Traffic Demand
			Figure 6: Saturday AM Peak Hour Traffic Demand
6 CAPACITY AND OPERATIONAL	subsequently done to		rational analyses were o determine the required road e various scenarios
THE FOLLOWING METHODOLO	GY WAS UTILIZED		
Capacity and Operational Analyses	Methodology according to the 2010 Highway Capacity Manual (2010HCM)		y Capacity Manual (2010HCM)
THE MEUSURES OF PERFORM	ANCE (MOE'S) ACC	ORDING TO THE HCM	WERE UTILIZED
The best service levels are A which indicates free flow conditions while F indicates congestion and jammed conditions	Total (Control) delay in seconds		
THE HCM2010 UTILIZES THE FOLLOWING LOS DELAY THRESHOLDS FOR SIGNALIZED AND UNSIGNALIZED INTERSECTIONS RESPECTIVELY			
The overall LOS and average	SIGNALIZED		UNSIGNALIZED
delay are reported for the intersection except with priority	LOS A <10		LOS A <10
control (stop on side road)	LOS B >10 and <20)	LOS B >10 and <15
where the critical side road LOS	LOS C >20 and <35	5	LOS C >15 and <25
and delay is reported.	LOS D >35 and <55	5	LOS D >25 and <35
	LOS E >55 and <80)	LOS E >35 and <50
	LOS F >80 LOS F >50		

Page 21Z:\Projects Local TW 601_700\TW646_Piet Retief Mall\Reports\TIS_Piet Retief14/11/2013Mall_14Nov13_v2.docx

THE RESULTS OF THE CAPACITY AND OPERATIONAL ANALYSES ARE SUMMARIZED IN THE FOLLOWING TABLES

 Detailed Results
 Refer to:

 Table 2: Weekday PM Peak
Hour: Results of Capacity and
Operational Analyses
 Hour: Results of Capacity and
Operational Analyses

 Table 3: Saturday AM Peak
Hour: Results of Capacity and
Operational Analyses
 Operational Analyses

THE FOLLOWING RESULTS WERE OBTAINED FROM THE CAPACITY AND OPERATIONAL ANALYSES

Intersection 1 Church (N2) / Theo Mocke	This two-way stop controlled intersection is already operating close to saturation during the critical peak hours (LOS F / LOS E – Scenario 1). The growth in background traffic will result in very poor operating conditions in future (LOS F / LOS F – Scenario 2). This situation will be exacerbated by the application.
	The construction of exclusive right-turn lanes on the southern (Church Street) and eastern approaches (Theo Mocke) in combination with the implementation of traffic signal control will ensure LOS B with the application in the design year (Scenario 4).
	The required mitigation measures are however not the responsibility of the applicant given that this intersection is already saturated and it is located a long distance from the application site.
Intersection 2 Church (N2) / Smit	This traffic signal controlled intersection is expected to operate at good service levels (LOS C / LOS B) with the application during the weekday PM and Saturday AM peak hours in the design year (Scenario 3). No mitigation measures are required to support the application.
Intersection 3 Church (N2) / Piet Retief (R543) – Kruger	This traffic signal controlled intersection is expected to operate at good service levels (LOS C / LOS C) with the application during the weekday PM and Saturday AM peak hours in the design year (Scenario 3). No mitigation measures are required to support the application.

Page 22Z:\Projects Local TW 601_700\TW646_Piet Retief Mall\Reports\TIS_Piet Retief14/11/2013Mall_14Nov13_v2.docx

Intersection 4 Church (N2) / Retief	This traffic signal controlled intersection is expected to operate at good service levels (LOS D / LOS C) with the application during the weekday PM and Saturday AM peak hours in the design year (Scenario 3). No mitigation measures are required to support the application.
Intersection 5 Church (N2) / Brand (R543)	Long waiting times are already experienced at this one-way stop controlled intersection during the weekday PM peak hour (LOS F – Scenario1). This situation will deteriorate with the growth in background traffic and the application (Scenario 2 and Scenario 3). The reconfiguration of this intersection through limited construction works, changes in lane designation, and the implementation of traffic signal control will ensure LOS C and LOS B with the application during the weekday PM and Saturday AM peak hours in the design year (Scenario 4).
Intersection 6 Church (N2) / Gerard Bohmer	These improvements are the responsibility of the applicant. Long waiting times are already experienced at this two-way stop controlled intersection during the critical peak hours (LOS F – Scenario1). This situation will deteriorate with the growth in background traffic and the application (Scenario 2 and Scenario 3). The reconfiguration of this intersection through the construction of additional lanes on all the approaches, changes in lane designation, and the implementation of traffic signal control will ensure LOS C and LOS B with the application during the weekday PM and Saturday AM peak hours in the design year (Scenario 4). These improvements are the responsibility of the applicant.
Intersection 7 Kotze – Primary Access Piet Retief Mall / Brand (R543)	Traffic operations are expected to deteriorate at this all-way stop controlled intersection – which will also serve as the primary access to the application - with the growth in background traffic and the application. The reconfiguration of this intersection through the construction of additional lanes on all the approaches, and changes in lane designation, will ensure LOS B with the application during the weekday PM and Saturday AM peak hours in the design year (Scenario 4). All-way stop control (AWSC) will however suffice. These improvements are the responsibility of the applicant.

Page 23Z:\Projects Local TW 601_700\TW646_Piet Retief Mall\Reports\TIS_Piet Retief14/11/2013Mall_14Nov13_v2.docx

Intersection 8 Pretorius / Brand (R543)This two-way stop controlled intersection is expected to operate at good service levels (LOS C) with the application during the weekday PM and Saturday AM peak hours in the design year (Scenario 3). No mitigation measures are required to support the application.			
Von Brandis / Brand (R543)service levels (LC PM and Saturday No mitigation meaIntersection 10This proposed ne operate at reason		controlled intersection is expected to operate at good OS C and LOS B) with the application during the weekday AM peak hours in the design year (Scenario 3). asures are required to support the application. wo one-way stop controlled intersection is expected to hable service levels (LOS D) with the application during the Saturday AM peak hours in the design year (Scenario 4).	
The improvements 7 ROAD IMPROVEMENTS AND MITIGATION MEASURES		are the responsibility of the applicant. All the required road improvements on the road network, the subsequent apportionment of cost, and the required road improvements by the developer is discussed in this section.	
7.1 REQUIRED ROAD IMPROVEMENTS BY APPLICANT TO SUPPORT THE APPLICATION			

THE FOLLOWING ROAD IMPROVEMENTS BY THE APPLICANT ARE REQUIRED TO SUPPORT THE APPLICATION

Intersection 5 Church (N2) / Brand (R543)	The reconfiguration of this intersection through limited construction works, changes in lane designation, and the implementation of traffic signal control is required.	Refer to: Figure 8: Required Road Improvements In Study Area
--	---	--

Page 24Z:\Projects Local TW 601_700\TW646_Piet Retief Mall\Reports\TIS_Piet Retief14/11/2013Mall_14Nov13_v2.docx

TRAFFIC IMPACT STUDY: I MKHONDO MUNICIPALITY,	PIET RETIEF SHOPPING CENTRE, MPUMALANGA	TECHWORLD
		Appendix C: Proposed Road Improvements at the Accesses & Church (N2) / Brand (R543) Intersection to Support the Piet Retief Mall
Intersection 6 Church (N2) / Gerard Bohmer	The reconfiguration of this intersection through the construction of additional lanes on all the approaches, changes in lane designation, and the implementation of traffic signal control is required.	Refer to: Figure 8: Required Road Improvements In Study Area Appendix D: Proposed Road Improvements at the Church (N2) / Gerard Bohmer Intersection to Support the Piet Retief Mall
Intersection 7 Kotze – Primary Access Piet Retief Mall / Brand (R543)	The reconfiguration of this intersection through the construction of additional lanes on all the approaches, and changes in lane designation is required. All-way stop control (AWSC) will however suffice.	Refer to: Figure 8: Required Road Improvements In Study Area Appendix C: Proposed Road Improvements at the Accesses & Church (N2) / Brand (R543) Intersection to Support the Piet Retief Mall
Intersection 10 Church (N2) / Secondary Access Piet Retief Mall	The construction of a left-turn deceleration lane of 45m / 45m (lane / taper) and a 2.5m wide physical median is required to prohibit any right-turn movements at this access.	Refer to: Figure 8: Required Road Improvements In Study Area Appendix C: Proposed Road Improvements at the Accesses & Church (N2) / Brand (R543) Intersection to Support the Piet Retief Mall

Page 25Z:\Projects Local TW 601_700\TW646_Piet Retief Mall\Reports\TIS_Piet Retief14/11/2013Mall_14Nov13_v2.docx

7.2 REQUIRED ROAD RESERVE REQUIREMENTS BY THE APPLICANT TO SUPPORT THE APPLICATION

THE FOLLOWING LAND MUST BE PROVIDED BY THE APPLICANT TO SUPPORT THE APPLICATION

	d Street (R543) and Church et (N2)	The applicant must provide the necessary land for the required widening of road reserves.		Refer to: Appendix C: Proposed Road Improvements at the Accesses & Church (N2) / Brand (R543) Intersection to Support the Piet Retief Mall
8	PUBLIC TRANSP PEDESTRIANS REQUIREMENTS	-		es requirements in terms of ansport and pedestrians (non- ransport).

8.1 PUBLIC TRANSPORT BACKGROUND

THE FOLLOWING ASSESSMENT IS REQUIRED

In terms of the National Land Transport Transition Act, Act 22 of 2000 (Section 29), it is also required to carry out a public transport assessment for all new developments. The assessment need to address aspects such as the number of new employment opportunities that will be created for public transport users, the expected travelling pattern of these users, as well as the impact it may have on the existing public transport network.

THE ESTIMATED DEMAND FOR PUBLIC TRANSPORT USERS ARE THE FOLLOWING

Full Application	In the absence of better information in this	The expected public transport
	regard, the number of public transport	users can be transported with
	users is estimated at about 2 per 100 m ²	about 65 mini-bus taxi's in the
	GLA for the commercial bulk which	peak hour (assuming an
	translates to about 780 persons during the	average occupancy of 12
	peak hours.	persons).

Page 26Z:\Projects Local TW 601_700\TW646_Piet Retief Mall\Reports\TIS_Piet Retief14/11/2013Mall_14Nov13_v2.docx

This is a conservative estimate since some of the public transport users will make use of bus transport.

THE FOLLOWING PUBLIC TRANSPORT FACILITIES ARE RECOMMENDED

The objectives of the National Transport Policy (published by the Department of Transport in September 1996) are to limit walking distances for public transport users to less than 1 km in urban areas.

Construction of Taxi- / Bus	The construction of taxi- / bus loading	Refer to:
Loading Zones	zones are recommended on both sides of the Church Street (N2) south of the intersection with Brand Street (R543). This position is recommended to enable pedestrians to cross Church Street (N2) at the signalized intersection with Brand Street.	Figure 8: Required Road Improvements In Study Area Appendix C: Proposed Road Improvements at the Accesses & Church (N2) / Brand (R543) Intersection to Support the Piet
		Retief Mall

8.2 PEDESTRIAN AND NMT FACILITIES

THE FOLLOWING PEDESTRIAN AND NMT FACILITIES ARE REQUIRED

Pedestrian Sidewalks	To improve road safety and to separate vehicle and pedestrian traffic a 1.5m wide paved sidewalk must be provided along Brand Street (R543) and Church Street (N2) that borders the application site.
	Particular attention must be given to the movement of pedestrians between the taxi- / bus loading zone and the Shopping Centre.

9 PARKING REQUIREMENTS

This section describes the parking requirements of the site based on the relevant town planning scheme conditions

THE FOLLOWING NUMBER OF PARKING BAYS WILL BE PROVIDED ON THE SITE

Parking Supply according to the
Town Planning SchemeThe normal Town Planning Scheme requirements of two (2) parking bays per
100m² GLA will apply to the application site.

Page 27Z:\Projects Local TW 601_700\TW646_Piet Retief Mall\Reports\TIS_Piet Retief14/11/2013Mall_14Nov13_v2.docx

10 SITE DEVELOPMENT PLAN (SDP) ISSUES

Internal circulation and parking issues which are important for the site development plan (SDP) are discussed in this section.

A SITE DEVELOPMENT PLAN (SDP) IS AVAILABLE FOR THE DEVELOPMENT			
SDP	Only Concept		
TRAFFIC ENGINEERING INPUT	WILL BE PROVIDE	D FOR THE FINAL SDP	
Traffic engineering input	Affirmative		
11 CONCLUSIONS AND		This section contains the conclusions and recommendations of the report.	
RECOMMENDA			
11.1 CONCLUSIONS			
THE FOLLOWING IS CONCLUD	ED		
Application	New township application for commercial development ("Business 1") in the CBD of Piet Retief for 39,000 m ² GLA that includes a shopping centre of 25,000 m ² GLA.		
Latent Rights and Growth in Background Traffic	No other large properties with existing undeveloped land use rights (i.e. latent rights) are known in the study area.		
	An average to high traffic growth rate of 4.0% p.a. for the 5-year study period was assumed to account for growth in background traffic and any unknown latent land use rights.		
ACCESS ARRANGEMENTS			
Primary Access from Brand Street opposite Kotze Street	The primary access to the development is recommended from Brand Street opposite Kotze Street as the fourth approach of the Kotze / Brand Street T-junction approximately 150m from Church Street.		

	The expected trip distribution and assignme are expected to use the primary access duri and 62% during the Saturday AM peak hour Two inbound and two outbound lanes are re length of about 35m.	ng the weekday PM peak hour :
Secondary Access 2 from Church Street (N2)	A secondary access to the development is recommended from Church Street approximately 150m south of Brand Street (R543). This will basically extend the current block-pattern of the CBD – of 150m between cross-streets – with one block distance of 150m towards the south.	
	This access will only be a marginal access - physical curb island must be provided to pro from/to Church Street at the access.	
	The expected trip distribution and assignme are expected to use the secondary access of and 38% during the Saturday AM peak hour	luring the weekday PM peak hour
	Two inbound lanes and two outbound lanes throat length of about 35m.	are required with a minimum
Expected Trip Generation	TOTAL TRIPS	
	Weekday PM Peak Hour	1203 (51% in / 49% out)
	Saturday AM Peak Hour	1954 (50% in / 50% out)
	PRIMARY TRIPS	
	Weekday PM Peak Hour	857 (52% in / 48% out)
	Saturday AM Peak Hour	1612 (50% in / 50% out)
	BYPASS TRIPS	
	Weekday PM Peak Hour	346 (50% in / 50% out)
	Saturday AM Peak Hour	342 (50% in / 50% out)
REQUIRED ROAD IMPROVEME	NTS TO SUPPORT THE APPLICATION	
Intersection 5 Church (N2) / Brand (R543)	The reconfiguration of this intersection through limited construction works, changes in lane designation, and the implementation of traffic signal control is required.	

Page 29Z:\Projects Local TW 601_700\TW646_Piet Retief Mall\Reports\TIS_Piet Retief14/11/2013Mall_14Nov13_v2.docx

Intersection 6 Church (N2) / Gerard Bohmer	The reconfiguration of this intersection through the construction of additional lanes on all the approaches, changes in lane designation, and the implementation of traffic signal control is required.	
Intersection 7 Kotze – Primary Access Piet Retief Mall / Brand (R543)	The reconfiguration of this intersection through the construction of additional lanes on all the approaches, and changes in lane designation is required. All-way stop control (AWSC) will however suffice.	
Intersection 10 Church (N2) / Secondary Access Piet Retief Mall	The construction of a left-turn deceleration lane of 45m / 45m (lane / taper) and a 2.5m wide physical median is required to prohibit any right-turn movements at this access.	
REQUIRED ROAD RESERVE FR	OM APPLICATION SITE	
Brand Street (R543) and Church Street (N2)	The applicant must provide the necessary land for the required widening of road reserves.	
PUBLIC TRANSPORTATION AND NMT REQUIREMENTS		
Public Transport Facilities	The construction of taxi- / bus loading zones are recommended on both sides of the Church Street (N2) south of the intersection with Brand Street (R543). This position is recommended to enable pedestrians to cross Church Street (N2) at the signalized intersection with Brand Street.	
Pedestrian and NMT facilities	To improve road safety and to separate vehicle and pedestrian traffic a 1.5m wide paved sidewalk must be provided along Brand Street (R543) and Church Street (N2) that borders the application site. Particular attention must be given to the movement of pedestrians between the taxi- / bus loading zone and the Shopping Centre.	
Parking Supply according to the Town Planning Scheme	The normal Town Planning Scheme requirements of two (2) parking bays per 100m ² GLA will apply to the application site.	

11.2 RECOMMENDATIONS

THE FOLLOWING IS RECOMMENDED Requirements It is recommended that the application be approved from a traffic engineering point of view subject to the required mitigation measures shown in *Figure 8, Appendix C, and Appendix D*.

Table 1: Expected Trip Generation											
ITEM	LAND USE	EXTENT	UNITS	WEEKDAY PM PEAK HOUR				SATURDAY AM PEAK HOUR			
				TRIP RATE	TOTAL TRIPS	IN	OUT	TRIP RATE	TOTAL TRIPS	IN	OUT
1	Retail	25000	m² GLA	3.95	988	50%	50%	6.84	1711	50%	50%
2	Motor Dealerships	3500	m ² GLA	2.30	81	50%	50%	2.20	77	45%	55%
3	Offices	3500	m² GLA	2.10	74	80%	20%	0.45	16	55%	45%
4	Mini Storage	3500	m ² GLA	0.25	9	50%	50%	0.40	14	50%	50%
5	Bulk Trade Centre	3500	m ² GLA	1.50	53	40%	60%	3.90	137	50%	50%
		39000	m² GLA		1203				1954		
А	Primary Trips			71%	857	446	412	82%	1612	803	809
В	Bypass Trips			29%	346	173	173	18%	342	171	171
С	Total Trips			100%	1203	618	585	100%	1954	974	980

Page 32 Z:\Projects Local TW 601_700\TW646_Piet Retief Mall\Reports\TIS_Piet Retief

14/11/2013 Mall_14Nov13_v2.docx

	Table 1: Expected Trip Generation										
ITEM	LAND USE	EXTENT	UNITS	WEEKDAY PM PEAK HOUR				SATURDAY AM PEAK HOUR			
				TRIP RATE	TOTAL TRIPS	IN	OUT	TRIP RATE	TOTAL TRIPS	IN	OUT
	Primary Trips			28%	243	137	106	28%	456	246	210
Church Street (N2)	Bypass Trips			85%	294	147	147	85%	290	145	145
(142)	Total Trips			45%	537	284	253	38%	746	391	355
	Primary Trips			72%	614	310	304	72%	1152	554	598
Brand Street (R543)	Bypass Trips			15%	52	26	26	15%	52	26	26
	Total Trips			55%	666	336	330	62%	1204	580	624

Page 33 Z:\Projects Local TW 601_700\TW646_Piet Retief Mall\Reports\TIS_Piet Retief

14/11/2013 Mall_14Nov13_v2.docx

Table 2: Weekday PM Peak Hour: Results of Capacity and Operational Analyses								
	(MOE)	1	2	3	4			
INTERSECTION	Measure of Effectiveness	Existing Situation	With Background Growth	With Application	With Application With Mitigation			
		2013	2018	2018	2018			
	Traffic Control	TWSC	TWSC	TWSC	TSC			
Intersection 1	Worse Movement	SWBR	SWBR	SWBR	-			
Church (N2) / Theo	V/C	0.234	0.780	1.344	0.531			
Mocke	Delay	75.1	468.4	871.8	15.90			
	LOS	F	F	F	В			
	Traffic Control	TSC	TSC	TSC				
Intersection 2	V/C	0.527	0.674	0.831				
Church (N2) / Smit	Delay	16.4	19.2	27.1				
	LOS	В	В	С				
latere etien 0	Traffic Control	TSC	TSC	TSC				
Intersection 3	V/C	0.581	0.707	0.832				
Church (N2) / Piet Retief	Delay	17.3	19.2	25.5				
(R543) - Kruger	LOS	В	В	С				
	Traffic Control	TSC	TSC	TSC				
Intersection 4	V/C	0.584	0.714	0.796				
Church (N2) / Retief	Delay	20.1	27.6	36.1				
	LOS	С	С	D				
	Traffic Control	OWSC	OWSC	OWSC	TSC			
Intersection 5	Worse Movement	WBR	WBT	WBR	-			
Church (N2) / Brand	V/C	0.195	0.949	12.490	0.582			
(R543)	Delay	67.0	236.4	5710.0	26.42			
	LOS	F	F	F	С			

Page 34Z:\Projects Local TW 601_700\TW646_Piet Retief Mall\Reports\TIS_Piet Retief14/11/2013Mall_14Nov13_v2.docx

Table 2: Weekday PM Peak Hour: Results of Capacity and Operational Analyses								
	(MOE)	1	2	3	4			
INTERSECTION	Measure of Effectiveness	Existing Situation	With Background Growth	With Application	With Application With Mitigation			
		2013	2018	2018	2018			
	Traffic Control	TWSC	TWSC	TWSC	TSC			
Intersection 6	Worse Movement	WBR	EBT	EBT	-			
Church (N2) / Gerard	V/C	7.467	2.024	4.547	0.708			
Bohmer	Delay	3447.7	10000.0	10000.0	24.88			
	LOS	F	F	F	С			
	Traffic Control	AWSC	AWSC	AWSC	AWSC			
Intersection 7	Worse Movement	SBR	SBR	NBL	EBR			
Kotze – Primary Access	V/C	-	-	-	-			
Piet Retief Mall / Brand (R543)	Delay	8.0	8.3	15.9	12.52			
	LOS	А	А	С	В			
	Traffic Control	TWSC	TWSC	TWSC				
Intersection 8	Worse Movement	NBR	NBR	NBR				
	V/C	0.000	0.000	0.000				
Pretorius / Brand (R543)	Delay	11.7	12.7	16.5				
	LOS	В	В	С				
	Traffic Control	AWSC	AWSC	AWSC				
Intersection 9	Worse Movement	EBT	EBT	EBT				
Von Brandis / Brand	V/C	-	-	-				
(R543)	Delay	10.1	11.9	17.1				
	LOS	В	В	С				
	Traffic Control	NA	NA	NA	OWSC			
Intersection 10	Worse Movement	NA	NA	NA	WBL			
Church (N2) / Secondary	V/C	NA	NA	NA	0.687			
Access Piet Retief Mall	Delay	NA	NA	NA	31.0			
	LOS	NA	NA	NA	D			

Page 35Z:\Projects Local TW 601_700\TW646_Piet Retief Mall\Reports\TIS_Piet Retief14/11/2013Mall_14Nov13_v2.docx

Table 3: Saturday AM Peak Hour: Results of Capacity and Operational Analyses								
	(MOE)	1	2	3	4			
INTERSECTION	Measure of Effectiveness	Existing Situation	With Background Growth	With Application	With Application With Mitigation			
		2013	2018	2018	2018			
	Traffic Control	TWSC	TWSC	TWSC	TSC			
Intersection 1	Worse Movement	NEBR	SWBR	NEBR				
Church (N2) / Theo	V/C	0.011	0.143	0.638	0.573			
Mocke	Delay	47.8	131.7	416.1	16.37			
	LOS	E	F	F	В			
	Traffic Control	TSC	TSC	TSC				
Intersection 2	V/C	0.458	0.562	0.678				
Church (N2) / Smit	Delay	14.1	16.0	18.3				
	LOS	В	В	В				
	Traffic Control	TSC	TSC	TSC				
Intersection 3	V/C	0.479	0.591	0.856				
Church (N2) / Piet Retief	Delay	15.0	16.4	26.6				
(R543) - Kruger	LOS	В	В	С				
	Traffic Control	TSC	TSC	TSC				
Intersection 4	V/C	0.464	0.567	0.750				
Church (N2) / Retief	Delay	16.4	18.3	26.3				
	LOS	В	В	С				
	Traffic Control	OWSC	OWSC	OWSC	TSC			
Intersection 5	Worse Movement	WBR	WBR	WBR				
Church (N2) / Brand	V/C	0.019	0.040	15.776	0.522			
(R543)	Delay	28.7	43.0	7028.6	13.67			
	LOS	D	E	F	В			

Page 36Z:\Projects Local TW 601_700\TW646_Piet Retief Mall\Reports\TIS_Piet Retief14/11/2013Mall_14Nov13_v2.docx

Table 3: Saturday AM Peak Hour: Results of Capacity and Operational Analyses								
	(MOE)	1	2	3	4			
INTERSECTION	Measure of Effectiveness	Existing Situation	With Background Growth	With Application	With Application With Mitigation			
		2013	2018	2018	2018			
	Traffic Control	TWSC	TWSC	TWSC	TSC			
Intersection 6	Worse Movement	WBR	EBT	EBT				
Church (N2) / Gerard	V/C	3.624	1.641	7.428	0.973			
Bohmer	Delay	1779.6	10000.0	10000.0	16.88			
	LOS	F	F	F	В			
	Traffic Control	AWSC	AWSC	AWSC	AWSC			
Intersection 7	Worse Movement	SBR	SBR	NBL				
Kotze – Primary Access	V/C	-	-	-	-			
Piet Retief Mall / Brand (R543)	Delay	7.3	7.5	86.5	13.33			
()	LOS	А	А	F	В			
	Traffic Control	TWSC	TWSC	TWSC				
Intersection 8	Worse Movement	SBT	SBT	SBR				
	V/C	0.000	0.000	0.328				
Pretorius / Brand (R543)	Delay	11.3	12.0	23.3				
	LOS	В	В	С				
	Traffic Control	AWSC	AWSC	AWSC				
Intersection 9	Worse Movement	NBT	NBT	EBT				
Von Brandis / Brand	V/C	-	-	-				
(R543)	Delay	8.1	8.5	11.3				
	LOS	А	А	В				
	Traffic Control	NA	NA	NA	OWSC			
Intersection 10	Worse Movement	NA	NA	NA	NBT			
Church (N2) / Secondary	V/C	NA	NA	NA	0.937			
Access Piet Retief Mall	Delay	NA	NA	NA	43.7			
	LOS	NA	NA	NA	D			

Page 37Z:\Projects Local TW 601_700\TW646_Piet Retief Mall\Reports\TIS_Piet Retief14/11/2013Mall_14Nov13_v2.docx

FIGURES

Figure 1: Locality Plan

Figure 2: Study Area

Figure 3: Traffic Model (VISTRO)

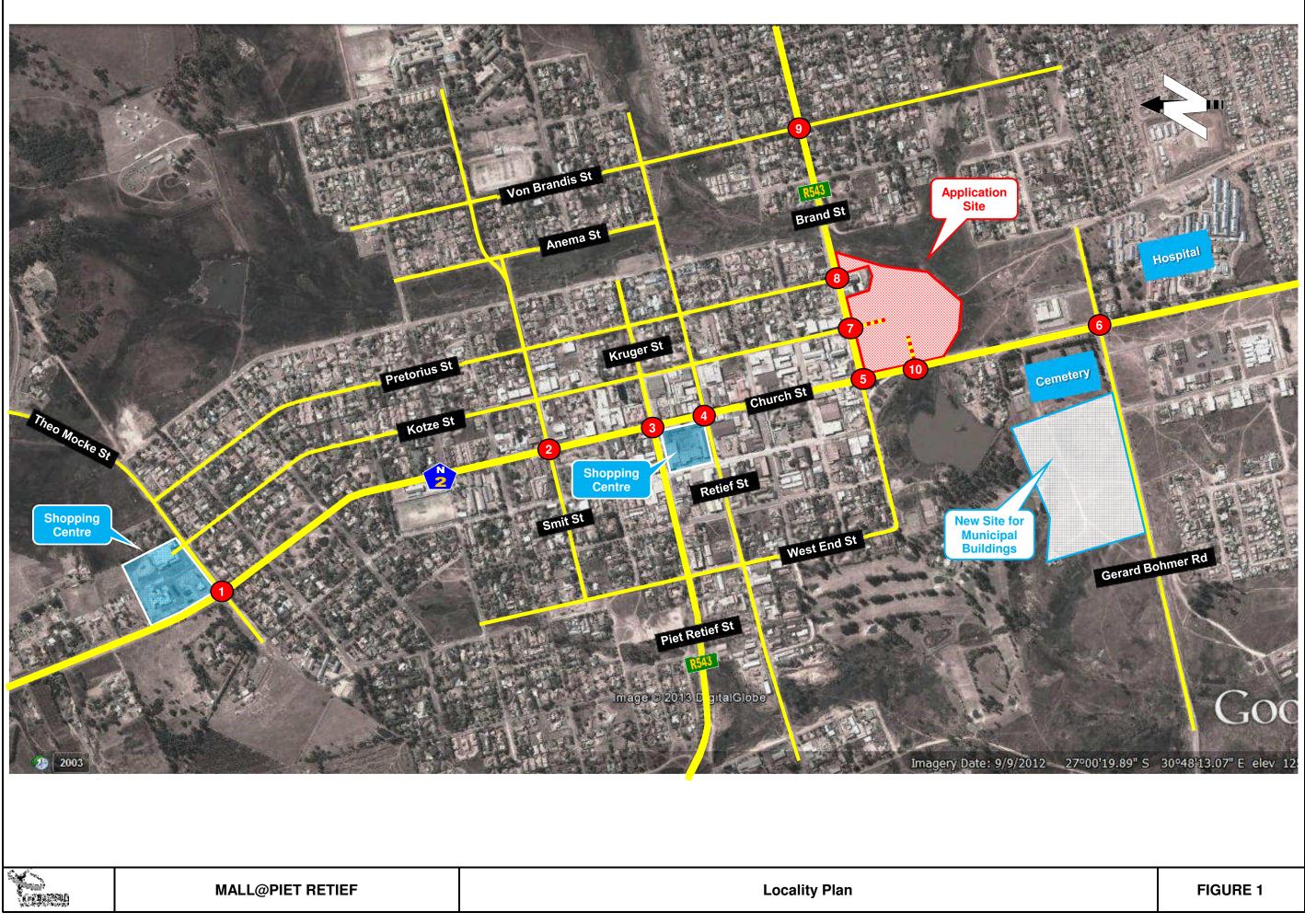

Figure 4: Existing Road Network and Lane Layout

Figure 5: Weekday PM Peak Hour Traffic Demand

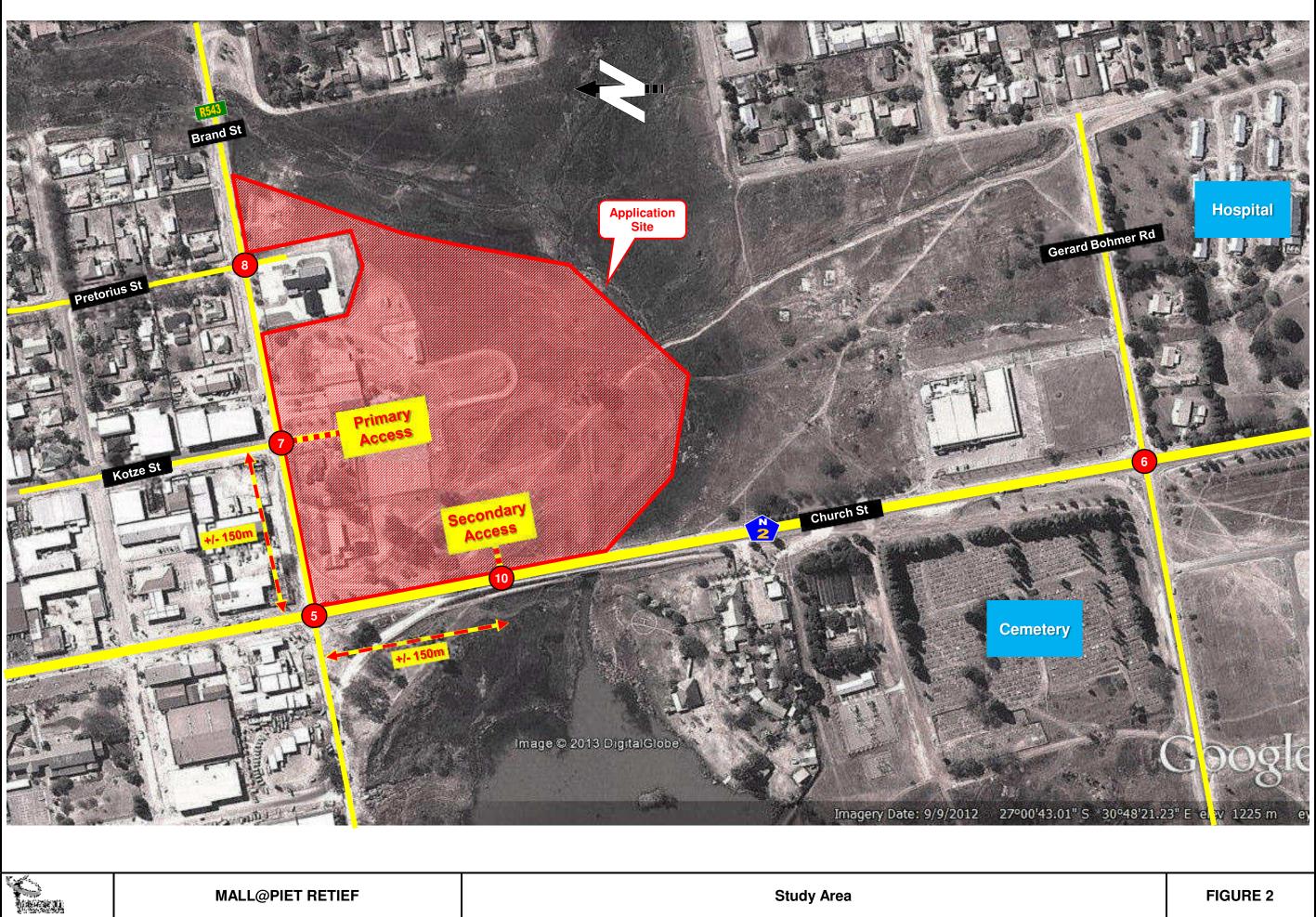
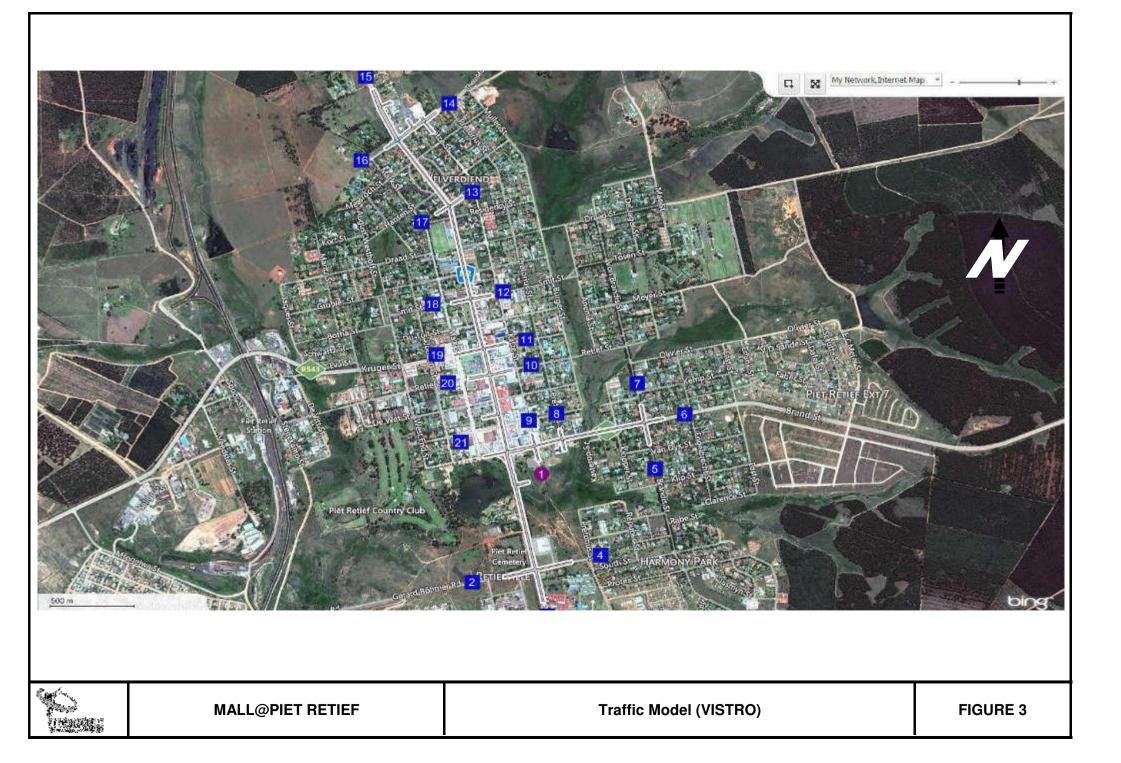
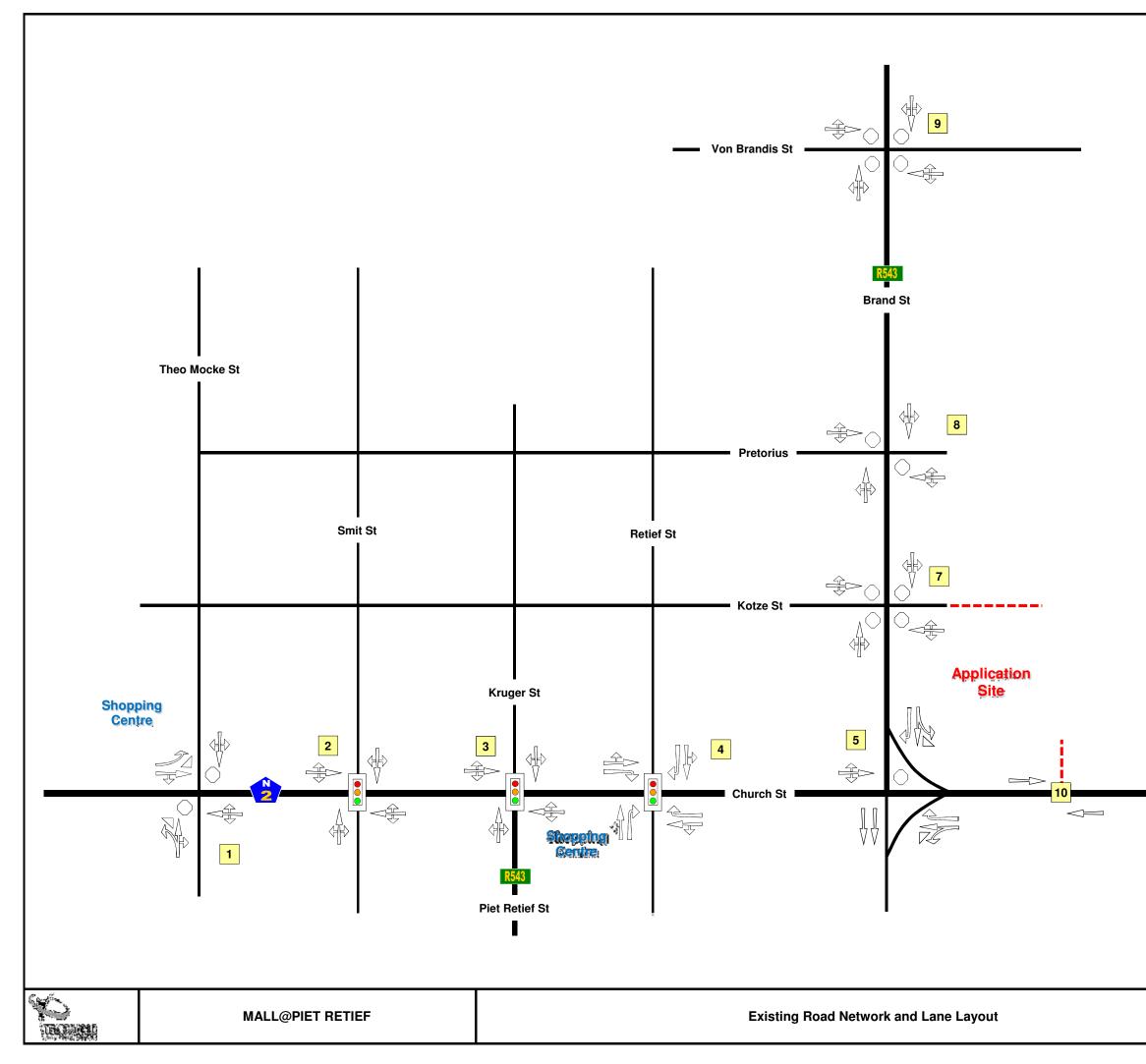
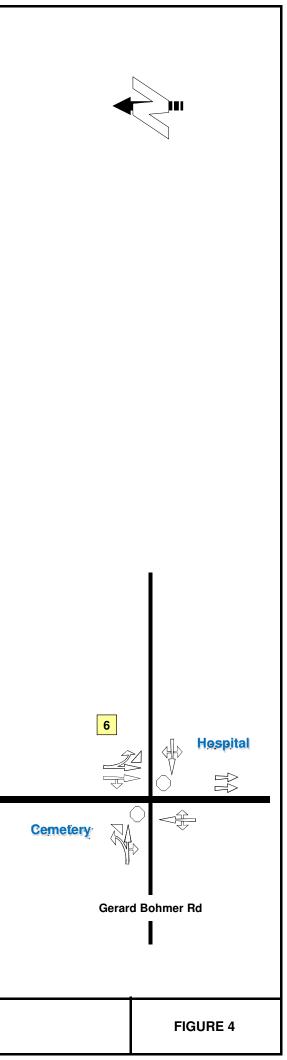
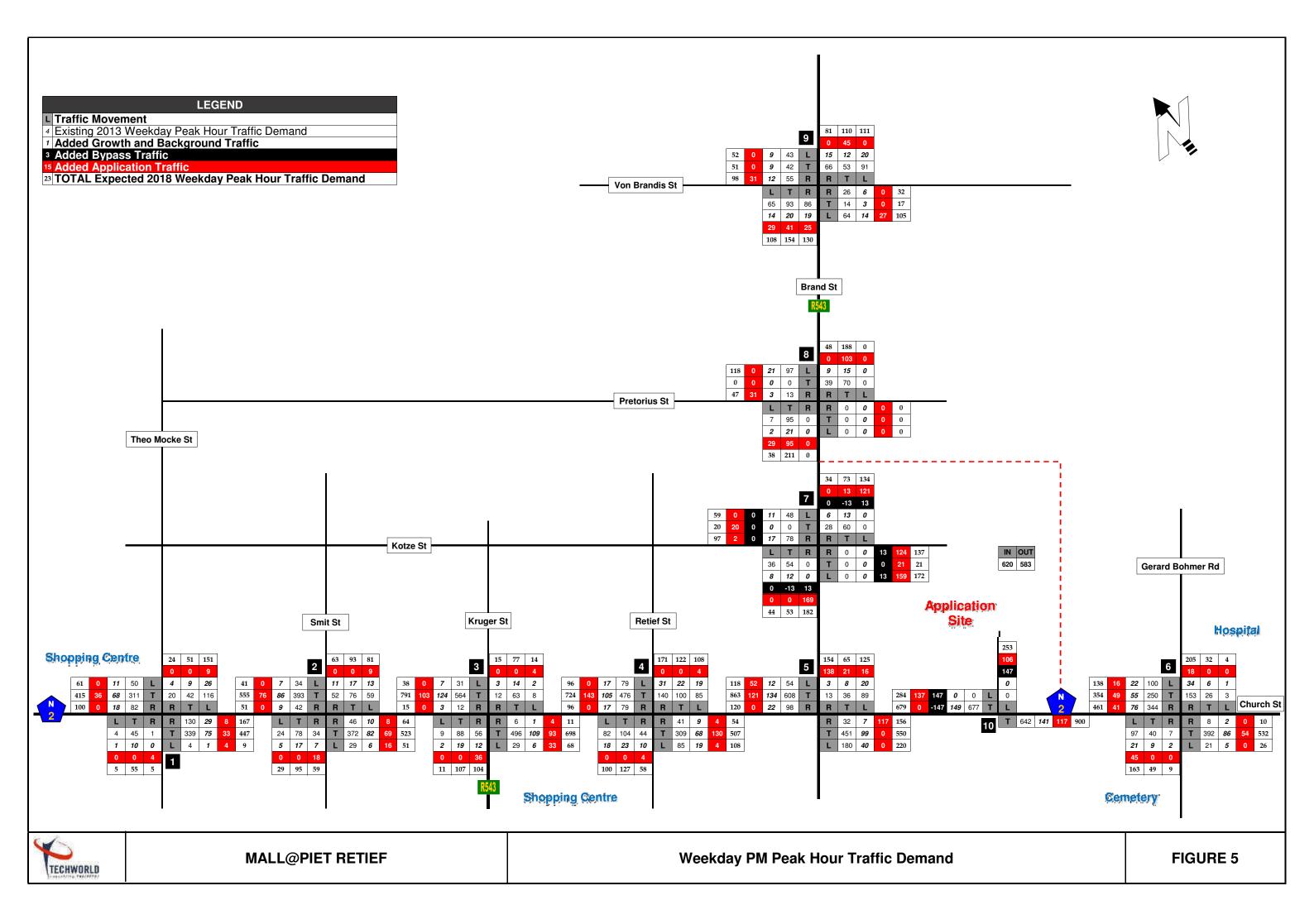

Figure 6: Saturday AM Peak Hour Traffic Demand

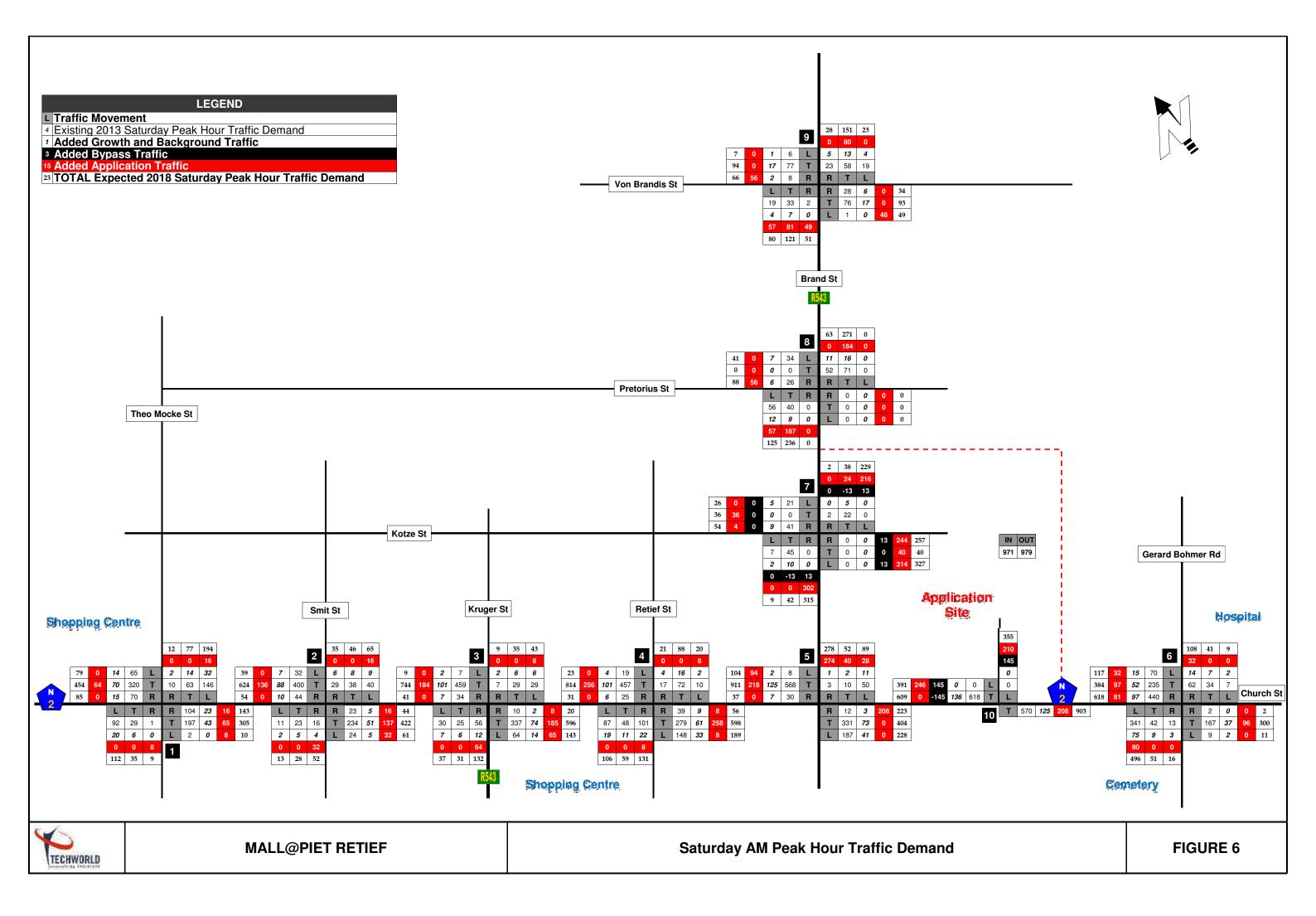
Figure 7: Primary Trip Distribution

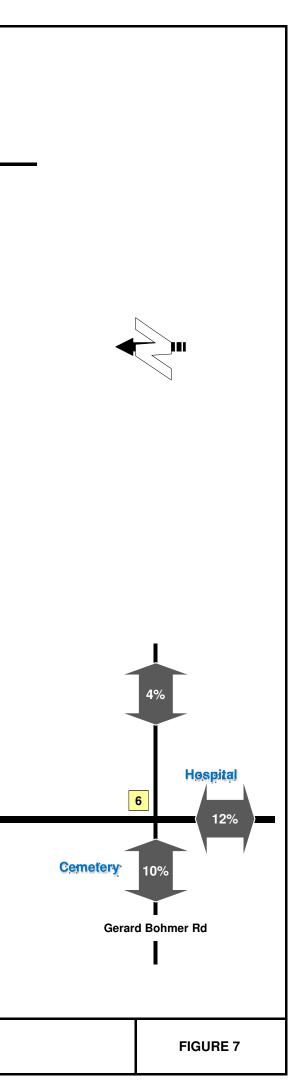

Figure 8: Required Road Improvements In Study Area

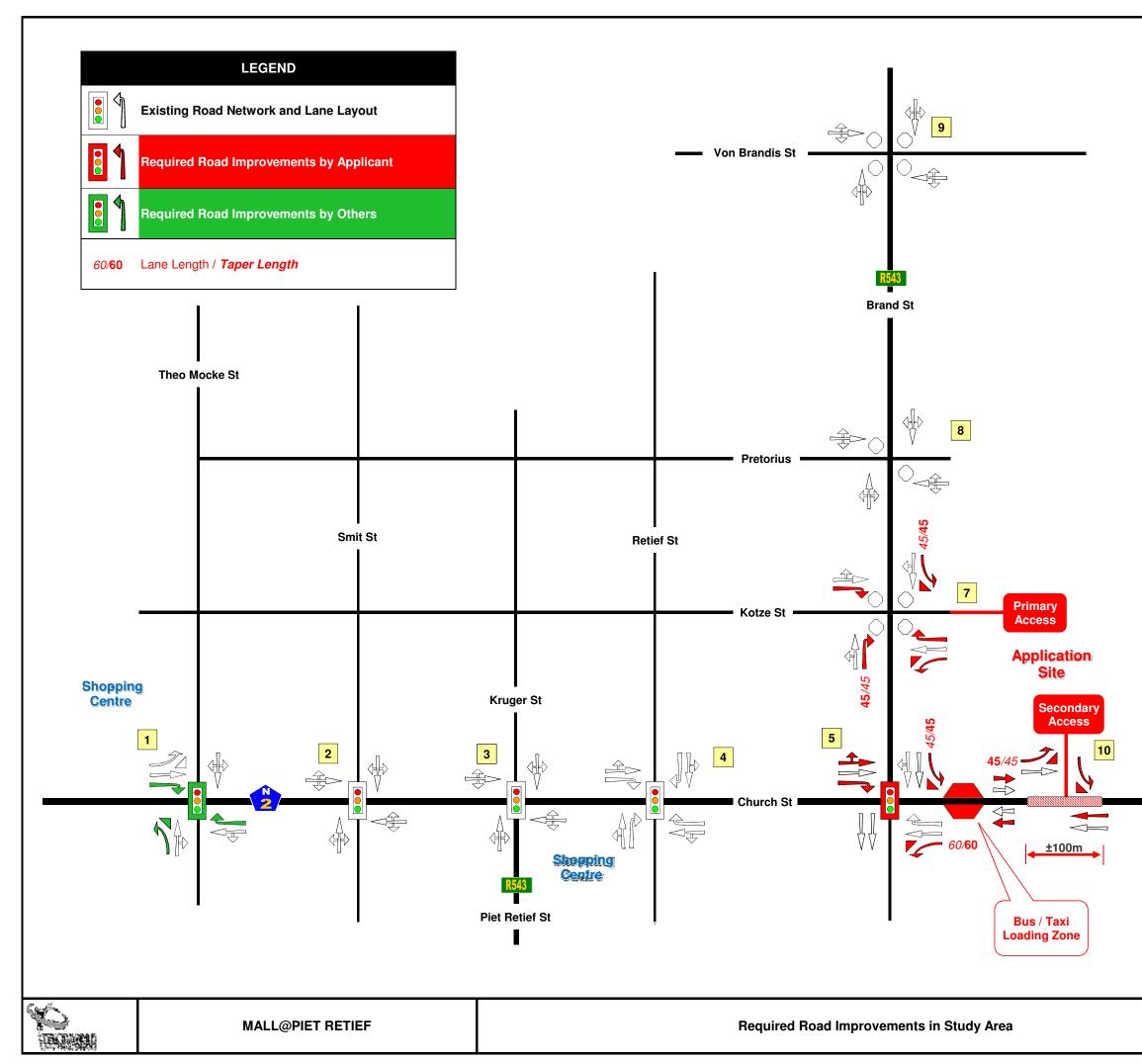


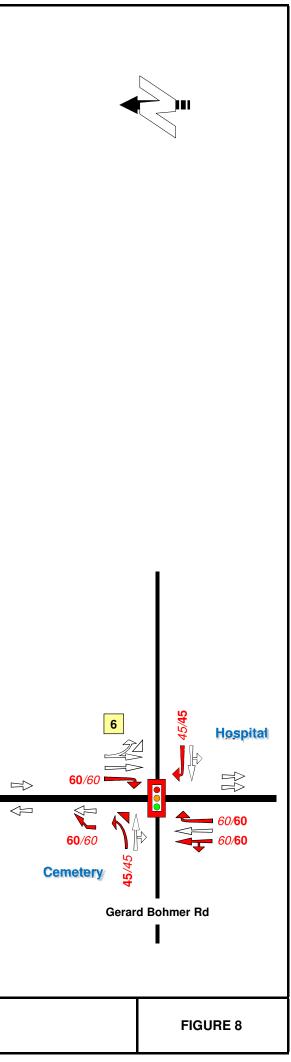












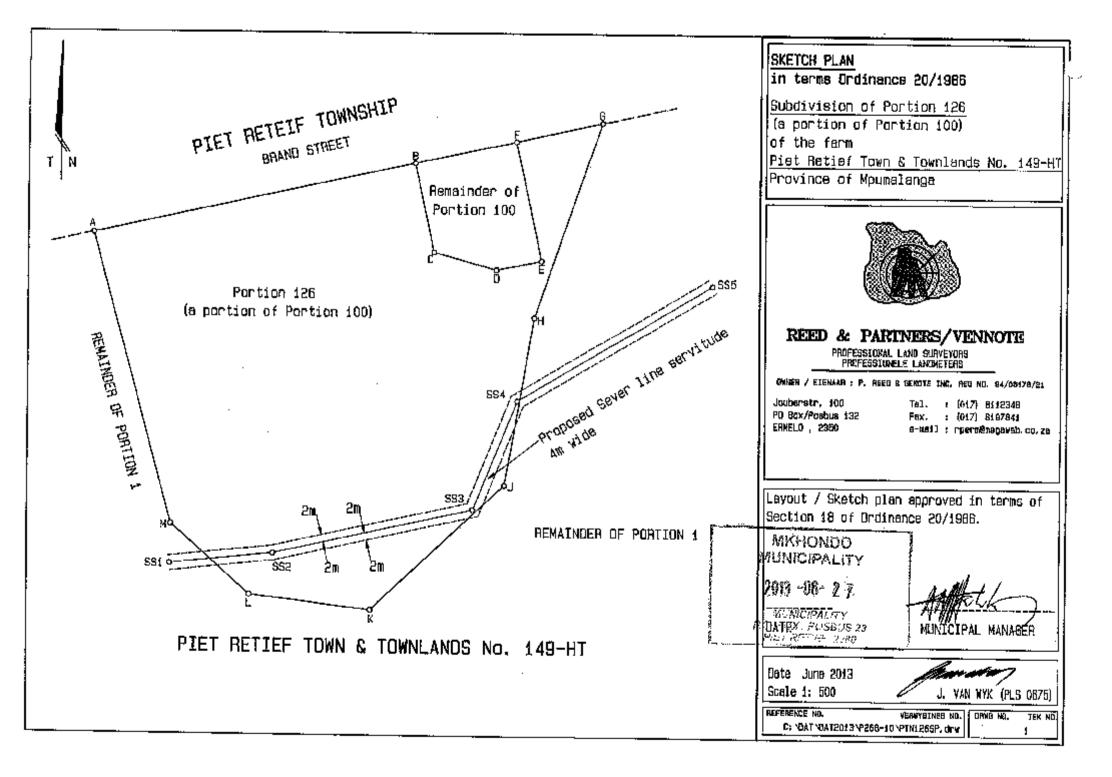
APPENDICES

Appendix A: Site Layout Plan: Portion 126

Appendix B: Concept SDP Mall@Piet Retief

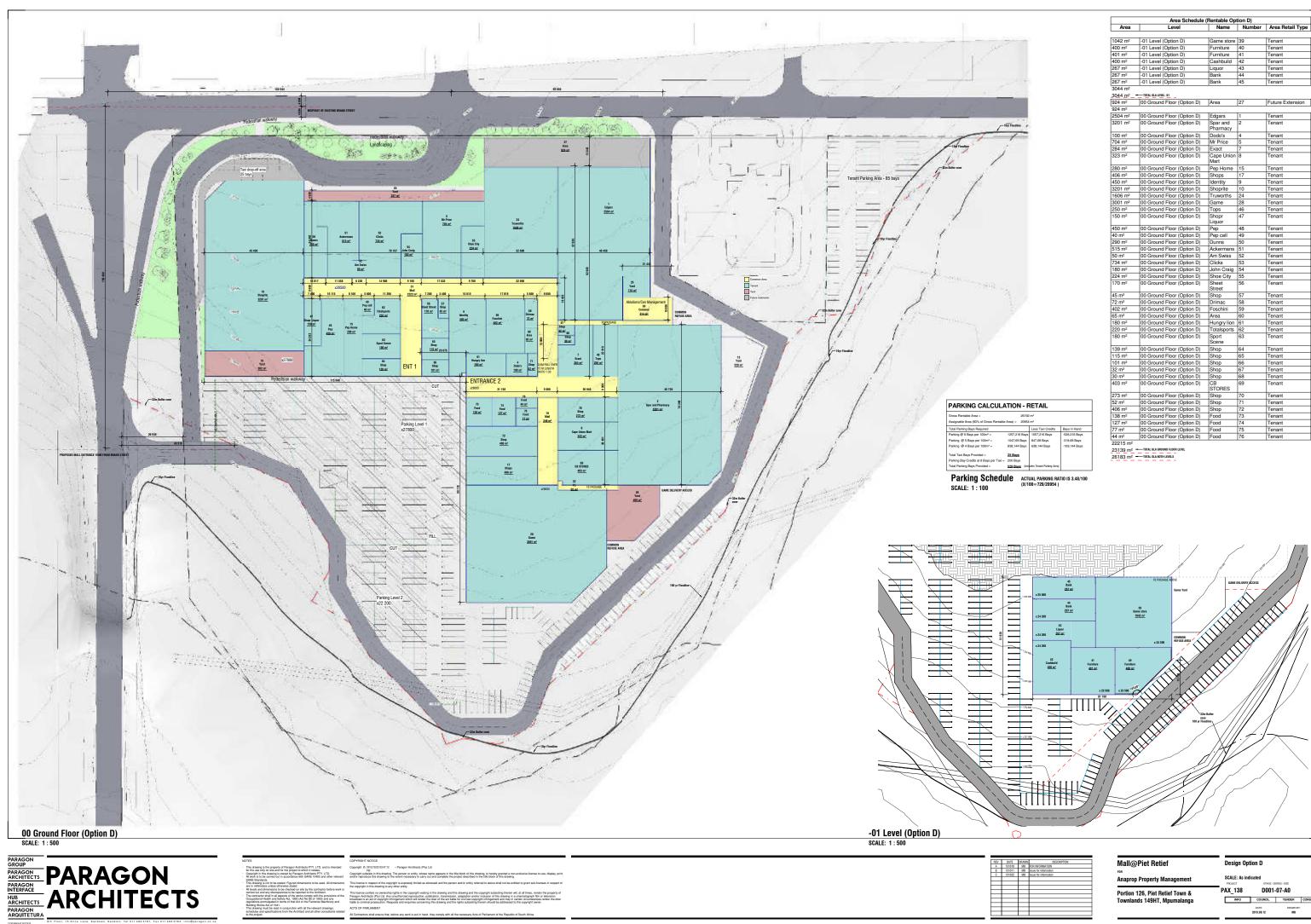
Appendix C: Proposed Road Improvements at the Accesses & Church (N2) / Brand (R543) Intersection to Support the Piet Retief Mall

Appendix D: Proposed Road Improvements at the Church (N2) / Gerard Bohmer Intersection to Support the Piet Retief Mall


Appendix E: Traffic Counts

Appendix A: Site Layout Plan

Page 40Z:\Projects Local TW 601_700\TW646_Piet Retief Mall\Reports\TIS_Piet Retief14/11/2013Mall_14Nov13_v2.docx



Appendix B: Concept SDP Mall@Piet Retief

Page 41Z:\Projects Local TW 601_700\TW646_Piet Retief Mall\Reports\TIS_Piet Retief14/11/2013Mall_14Nov13_v2.docx

COPYRIGHT NOTICE Copyright @ 2013/10/22 02:47:12 Paragon Architects (Pty) Ltd

DRAWN MB	DESCRIPTION FOR INFORMATION	Mall@Piet Retief	Design C	ption D		
MB	Issue for information	FOR Anaprop Property Management	SCALE: As	indicated		
		Anaprop Property Management	PROJECT	STAGE / S	ERIES / SIZE	REVISION
		Portion 126, Piet Retief Town &	PAX_138	D001	-07-A0	C
		Townlands 149HT, Mpumalanga	INFO	COUNCIL	TENDER	CONSTRUCTION
				DATE: 2013.08.12	DRAWN BY MB	5
ecution. Re	quests and enquiries concerning this drawing and the rights	ACTS OF PARLIAMENT All Contractors shall ensure that, before any work is put in hand, they con	rply with all the necessary Act	s of Parliament of the R	epublic of South Afric	ca.

ON - F	RETAIL	
26192	m ²	
a) = 20954	m²	
	Less Taxi Credits	Bays in Hand
57,216 Bays	1057,216 Bays	-528,216 Bays
47,68 Bays	847,68 Bays	-318,68 Bays
8,144 Bays	638,144 Bays	-109,144 Bays
Bays		
0 Bays		

ON - F	RETAIL	
26192	m ²	
a) = 20954	m²	
	Less Taxi Credits	Bays in Hand
57,216 Bays	1057,216 Bays	-528,216 Bays
17,68 Bays	847,68 Bays	-318,68 Bays
8,144 Bays	638,144 Bays	-109,144 Bays
Bays Bays		
Days		

ON - RETAIL											
Bays in Hand											
-528,216 Bays											
-318,68 Bays											
-109,144 Bays											

	•			
1042 m ²	-01 Level (Option D)	Game store	39	Tenant
400 m ²	-01 Level (Option D)	Furniture	40	Tenant
401 m ²	-01 Level (Option D)	Furniture	41	Tenant
400 m ²	-01 Level (Option D)	Cashbuild	42	Tenant
267 m ²	-01 Level (Option D)	Liquor	43	Tenant
267 m ²	-01 Level (Option D)	Bank	44	Tenant
267 m ²	-01 Level (Option D)	Bank	45	Tenant
3044 m ²	1 (.),,		1.	
3044 m²_•	TOTAL GLA LEVEL -01			
924 m ²	00 Ground Floor (Option D)	Area	27	Future Extension
924 m ²	[10 0.000 0.000 (0p.000 2)	1	1	
2504 m ²	00 Ground Floor (Option D)	Edgars	1	Tenant
3201 m ²	00 Ground Floor (Option D)	Spar and	2	Tenant
	[Pharmacy	[⁻	
100 m ²	00 Ground Floor (Option D)	Dodo's	4	Tenant
704 m ²	00 Ground Floor (Option D)	Mr Price	5	Tenant
284 m²	00 Ground Floor (Option D)	Exact	7	Tenant
323 m²	00 Ground Floor (Option D)	Cape Union Mart	8	Tenant
280 m ²	00 Ground Floor (Option D)	Pep Home	15	Tenant
406 m ²	00 Ground Floor (Option D)	Shops	17	Tenant
450 m ²	00 Ground Floor (Option D)	Identity	9	Tenant
3201 m ²	00 Ground Floor (Option D)	Shoprite	10	Tenant
1606 m ²	00 Ground Floor (Option D)	Truworths	24	Tenant
3001 m ²	00 Ground Floor (Option D)	Game	28	Tenant
250 m ²	00 Ground Floor (Option D)	Tops	46	Tenant
150 m ²	00 Ground Floor (Option D)	Shopr Liquor	47	Tenant
450 m²	00 Ground Floor (Option D)	Pep	48	Tenant
40 m ²	00 Ground Floor (Option D)	Pep cell	49	Tenant
290 m ²	00 Ground Floor (Option D)	Dunns	50	Tenant
515 m ²	00 Ground Floor (Option D)	Ackermans	51	Tenant
50 m ²	00 Ground Floor (Option D)	Am Swiss	52	Tenant
734 m ²	00 Ground Floor (Option D)	Clicks	53	Tenant
180 m ²	00 Ground Floor (Option D)	John Craig	54	Tenant
224 m ²	00 Ground Floor (Option D)	Shoe City	55	Tenant
170 m ²	00 Ground Floor (Option D)	Sheet Street	56	Tenant
45 m²	00 Ground Floor (Option D)	Shop	57	Tenant
72 m ²	00 Ground Floor (Option D)	Drimac	58	Tenant
402 m ²	00 Ground Floor (Option D)	Foschini	59	Tenant
65 m ²	00 Ground Floor (Option D)	Area	60	Tenant
180 m ²	00 Ground Floor (Option D)	Hungry lion	61	Tenant
220 m ²	00 Ground Floor (Option D)	Totalsports	62	Tenant
180 m ²	00 Ground Floor (Option D)	Sport	63	Tenant
139 m²	00 Ground Floor (Option D)	Shop	64	Tenant
115 m ²	00 Ground Floor (Option D)	Shop	65	Tenant
101 m ²	00 Ground Floor (Option D)	Shop	66	Tenant
32 m ²	00 Ground Floor (Option D)	Shop	67	Tenant
32 m²	00 Ground Floor (Option D)	Shop	68	Tenant
403 m ²	00 Ground Floor (Option D)	CB STORES	69	Tenant
273 m ²	00 Ground Floor (Option D)	Shop	70	Tenant
52 m ²	00 Ground Floor (Option D)	Shop	70	Tenant
406 m ²	00 Ground Floor (Option D)	Shop	72	Tenant
138 m ²	00 Ground Floor (Option D)	Food	72	Tenant
120 m²	00 Ground Floor (Option D)	Food	73	Tenant
127 m² 77 m²	00 Ground Floor (Option D) 00 Ground Floor (Option D)	Food	74	Tenant
// m²	00 Ground Floor (Option D)	Food	75	Tenant

_______ 2013/10/22 03:47

Appendix C: Proposed Road Improvements at the Accesses & Church (N2) / Brand (R543) Intersection to Support the Piet Retief Mall

Page 42Z:\Projects Local TW 601_700\TW646_Piet Retief Mall\Reports\TIS_Piet Retief14/11/2013Mall_14Nov13_v2.docx

MALL@PIET RETIEF

Proposed Road Improvements at the Accesses & Church (N2) / Brand (R543) Intersection to Support the Piet Retief Mall

APPENDIX C

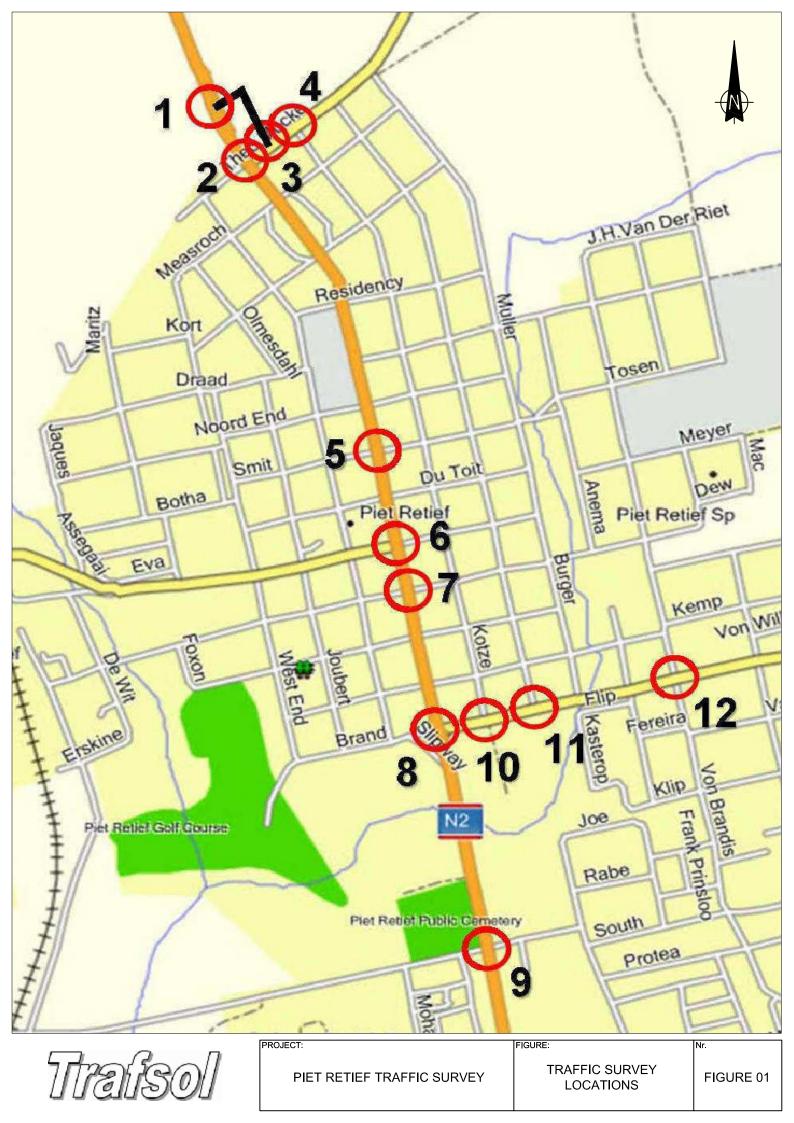
Appendix D: Proposed Road Improvements at the Church (N2) / Gerard Bohmer Intersection to Support the Piet Retief Mall

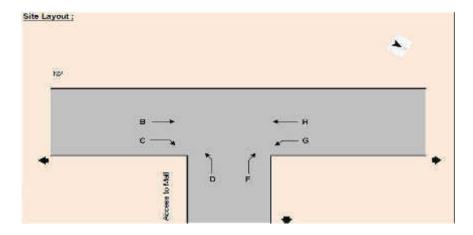
Page 43Z:\Projects Local TW 601_700\TW646_Piet Retief Mall\Reports\TIS_Piet Retief14/11/2013Mall_14Nov13_v2.docx

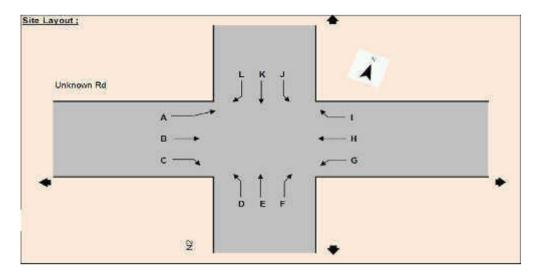
MALL@PIET RETIEF

TEL:012 998 FAX:012 993

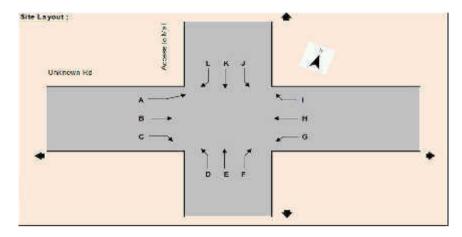
TECHWORLD

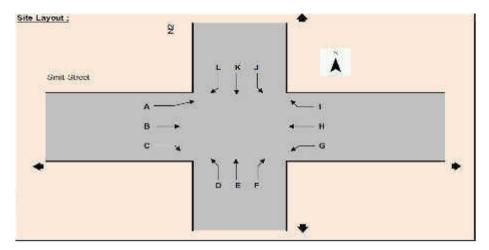

Proposed Road Improvements at the Church (N2) / Gerard Bohmer Intersection to Support the Piet Retief Mall

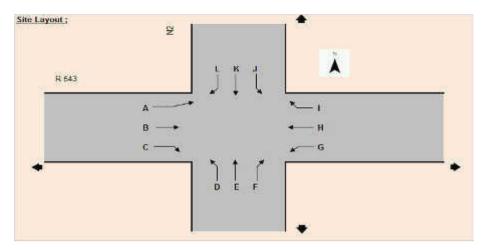


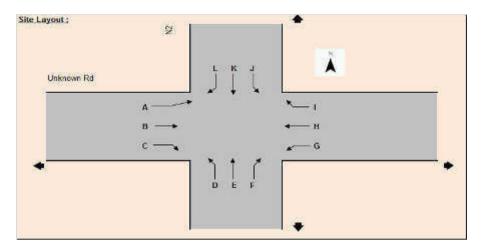

Appendix E: Traffic Counts

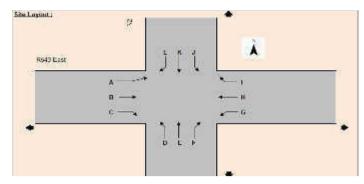
Page 44Z:\Projects Local TW 601_700\TW646_Piet Retief Mall\Reports\TIS_Piet Retief14/11/2013Mall_14Nov13_v2.docx

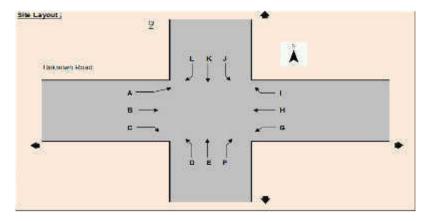

Time Period		TOTAL VEHI	CLES					
Start	End	Н	G	F	D	С	В	Total
12:00	12:15	71	16	28	25	38	29	207
12:15	12:30	101	5	10	8	16	56	196
12:30	12:45	78	12	21	17	16	53	197
12:45	13:00	66	17	24	21	25	59	212
13:00	13:15	172	13	23	14	28	132	382
13:15	13:30	97	5	9	7	8	113	239
13:30	13:45	90	10	11	8	16	90	225
13:45	14:00	97	8	24	15	32	80	256
14:00	14:15	126	17	28	16	31	92	310
14:15	14:30	95	28	17	20	36	61	257
14:30	14:45	92	22	28	22	27	85	276
14:45	15:00	84	12	28	19	38	78	259
15:00	15:15	105	20	29	17	27	70	268
15:15	15:30	108	8	19	17	21	85	258
15:30	15:45	73	10	30	20	35	52	220
15:45	16:00	60	17	24	16	21	39	177
16:00	16:15	82	20	31	17	24	55	229
16:15	16:30	129	16	20	16	33	69	283
16:30	16:45	80	23	38	19	24	71	255
16:45	17:00	92	13	27	17	36	64	249
17:00	17:15	98	14	30	16	34	79	271
17:15	17:30	94	16	28	17	31	51	237
17:30	17:45	47	18	31	19	37	68	220
17:45	18:00	76	23	29	9	24	31	192
TO	TAL	2213	363	587	392	658	166 <mark>2</mark>	5875

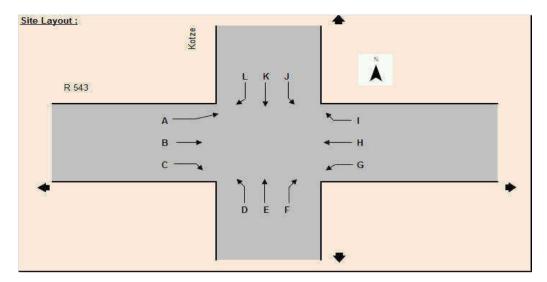

Time Period		Total vehicl	es											
Start	End	L	к	J	I	н	G	F	E	D	С	В	Α	Total
12:00	12:15	17	70	0	3	21	26	23	43	1	0	14	0	218
12:15	12:30	13	80	0	5	11	23	27	50	0	0	16	0	225
12:30	12:45	17	66	0	5	21	24	26	38	1	2	10	1	211
12:45	13:00	9	64	0	3	15	20	25	54	0	1	16	0	207
13:00	13:15	26	140	0	6	20	38	48	99	0	1	13	6	397
13:15	13:30	17	74	0	7	12	31	35	79	0	0	8	3	266
13:30	13:45	15	70	0	4	12	30	32	72	0	0	6	2	243
13:45	14:00	20	79	0	4	9	22	30	76	0	0	13	1	254
14:00	14:15	25	103	0	8	10	24	23	78	1	0	18	1	291
14:15	14:30	24	76	1	9	9	19	34	61	0	1	14	1	249
14:30	14:45	18	80	0	6	16	25	20	59	1	0	12	2	239
14:45	15:00	22	72	0	6	6	23	33	74	0	0	13	4	253
15:00	15:15	22	87	0	6	10	22	23	63	0	0	7	0	240
15:15	15:30	21	92	0	2	8	30	35	72	0	1	18	1	280
15:30	15:45	14	62	0	6	6	23	34	53	0	0	9	2	209
15:45	16:00	8	51	0	4	7	26	27	49	0	0	7	0	179
16:00	16:15	17	71	0	3	9	30	32	59	0	0	11	1	233
16:15	16:30	28	102	0	4	13	40	34	69	1	0	9	2	302
16:30	16:45	16	66	0	7	4	23	33	54	1	1	17	1	223
16:45	17:00	21	72	0	6	16	23	31	57	2	0	8	0	236
17:00	17:15	13	80	0	7	11	29	36	70	0	0	14	1	261
17:15	17:30	21	71	0	9	7	27	39	48	0	4	12	2	240
17:30	17:45	5	52	0	7	13	27	31	67	0	0	12	1	215
17:45	18:00	12	56	0	7	6	34	17	38	1	1	9	0	181
TOT	FAL	421	1836	1	134	272	639	728	1482	9	12	286	32	5852

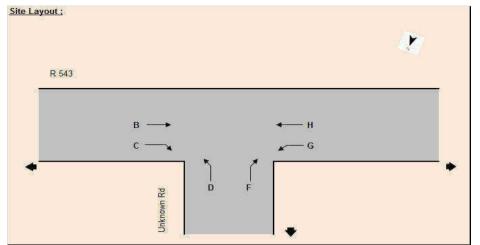

Time Period		TOTAL VEHI	CLES					
Start	End	Н	G	F	D	С	В	Total
12:00	12:15	36	10	15	12	0	35	108
12:15	12:30	33	26	8	13	11	31	122
12:30	12:45	21	27	19	25	6	31	129
12:45	13:00	25	30	19	26	12	19	131
13:00	13:15	27	34	17	18	14	47	157
13:15	13:30	34	22	23	13	12	27	131
13:30	13:45	30	16	16	15	14	30	121
13:45	14:00	37	13	9	13	12	26	110
14:00	14:15	34	20	18	17	20	24	133
14:15	14:30	29	12	18	19	17	19	114
14:30	14:45	27	11	21	20	12	26	117
14:45	15:00	17	38	14	17	15	21	122
15:00	15:15	30	13	18	15	14	20	110
15:15	15:30	34	31	13	26	16	27	147
15:30	15:45	23	37	14	11	10	21	116
15:45	16:00	27	24	18	14	12	19	114
16:00	16:15	18	36	17	28	14	25	138
16:15	16:30	28	30	25	16	14	32	145
16:30	16:45	29	38	18	26	13	16	140
16:45	17:00	30	25	23	28	14	22	142
17:00	17:15	34	37	22	29	10	25	157
17:15	17:30	30	40	23	21	17	20	151
17:30	17:45	22	30	27	20	20	20	139
17:45	18:00	21	22	22	18	16	25	124
TO	TAL	676	622	437	460	315	608	3118

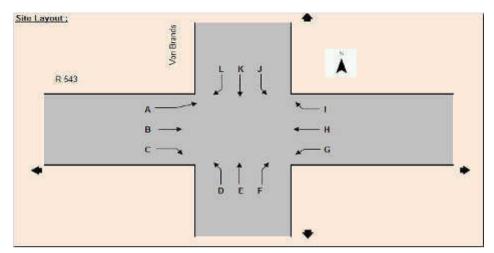

Time Period		Total vehicl	es											
Start	End	L	К	J	I	н	G	F	E	D	С	В	Α	Total
12:00	12:15	9	16	18	9	20	12	5	13	6	7	37	4	156
12:15	12:30	18	14	27	22	20	13	3	21	4	13	28	5	188
12:30	12:45	29	25	30	22	4	16	1	18	4	5	40	1	195
12:45	13:00	16	20	32	18	7	15	6	21	8	11	39	1	194
13:00	13:15	18	21	20	18	33	21	4	13	10	18	43	4	223
13:15	13:30	16	16	22	31	17	19	1	18	6	12	26	9	193
13:30	13:45	14	18	28	32	23	17	1	13	7	12	24	4	193
13:45	14:00	10	18	30	40	23	19	2	11	5	13	39	4	214
14:00	14:15	16	23	32	34	14	20	1	18	14	17	20	4	213
14:15	14:30	16	23	35	33	14	14	0	17	6	22	30	8	218
14:30	14:45	15	16	20	41	10	24	0	16	13	25	27	5	212
14:45	15:00	12	17	32	27	12	16	1	13	12	14	15	5	176
15:00	15:15	12	15	23	21	10	21	2	18	12	13	23	9	179
15:15	15:30	22	18	14	15	10	29	5	20	11	18	33	9	204
15:30	15:45	11	20	36	36	10	19	5	24	10	19	10	5	205
15:45	16:00	12	16	21	40	10	29	2	20	9	17	17	7	200
16:00	16:15	18	23	57	47	12	25	2	21	9	13	27	6	260
16:15	16:30	27	21	26	41	13	24	4	24	6	12	19	13	230
16:30	16:45	15	22	50	60	7	24	4	21	7	20	31	4	265
16:45	17:00	21	24	33	35	7	22	2	26	8	25	26	7	236
17:00	17:15	21	28	40	30	10	23	5	27	4	25	32	6	251
17:15	17:30	20	23	23	30	9	29	3	22	8	18	28	5	218
17:30	17:45	22	20	22	25	7	30	7	22	11	30	4	8	208
17:45	18:00	25	25	18	32	9	23	6	17	7	6	27	6	201
TO	FAL	415	482	689	739	311	504	72	454	197	385	645	139	5032

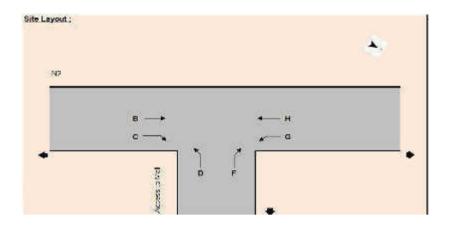

Time Period		Total vehicle	es											
Start	End	L	К	J	I	н	G	F	E	D	С	В	Α	Total
12:00	12:15	10	80	8	6	17	9	9	58	3	9	19	4	232
12:15	12:30	11	93	5	9	23	8	10	67	4	8	15	4	257
12:30	12:45	13	85	5	7	23	9	6	70	7	7	24	3	259
12:45	13:00	10	81	8	5	18	11	4	62	6	8	33	3	249
13:00	13:15	11	94	13	10	28	9	13	59	4	10	22	8	281
13:15	13:30	5	90	5	10	27	9	8	66	15	6	18	4	263
13:30	13:45	13	133	19	14	33	9	12	67	4	8	23	3	338
13:45	14:00	12	80	5	14	16	10	15	67	6	10	20	6	261
14:00	14:15	12	115	8	7	15	7	4	80	10	10	21	4	293
14:15	14:30	6	99	6	12	19	11	13	80	10	6	18	3	283
14:30	14:45	6	97	5	12	22	11	10	85	13	11	23	6	301
14:45	15:00	9	84	19	11	23	13	8	100	4	7	17	3	298
15:00	15:15	13	102	19	13	22	14	12	91	6	7	23	4	326
15:15	15:30	12	83	16	14	19	9	16	100	9	9	29	6	322
15:30	15:45	13	80	17	11	23	11	8	92	12	9	21	5	302
15:45	16:00	10	111	14	10	24	18	15	92	10	6	16	6	332
16:00	16:15	9	94	10	8	20	19	13	95	8	9	15	7	307
16:15	16:30	9	100	8	13	18	13	11	92	6	9	19	3	301
16:30	16:45	11	104	6	17	17	17	11	99	6	10	20	6	324
16:45	17:00	13	95	10	14	21	10	11	86	9	6	24	8	307
17:00	17:15	12	93	11	14	23	9	10	87	8	5	18	9	299
17:15	17:30	12	77	5	8	24	19	10	78	5	9	29	6	282
17:30	17:45	6	85	5	13	20	19	12	83	8	7	25	5	288
17:45	18:00	12	83	8	14	20	16	11	102	10	5	19	3	303
TO	TAL	250	2238	235	266	515	290	252	1958	183	191	511	119	7008

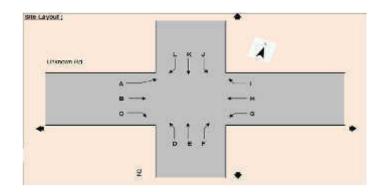

Time Period		Total vehicl	es											
Start	End	L	К	J	I	н	G	F	E	D	С	В	Α	Total
12:00	12:15	1	119	5	1	13	1	3	103	8	6	14	1	275
12:15	12:30	3	115	2	4	6	1	2	98	5	7	27	2	272
12:30	12:45	4	126	2	2	12	1	1	96	18	5	22	2	291
12:45	13:00	2	112	5	3	24	3	2	107	10	5	24	6	303
13:00	13:15	1	112	7	4	14	0	3	93	12	13	22	2	283
13:15	13:30	3	120	3	2	11	4	0	110	8	10	19	0	290
13:30	13:45	1	115	11	5	16	4	5	131	10	10	30	2	340
13:45	14:00	2	141	3	7	30	2	2	92	14	12	18	2	325
14:00	14:15	4	97	7	2	19	5	1	130	19	17	20	3	324
14:15	14:30	1	94	6	6	13	3	3	146	8	23	18	1	322
14:30	14:45	1	118	8	5	18	1	2	121	18	12	26	2	332
14:45	15:00	2	117	6	2	16	0	6	134	11	8	16	1	319
15:00	15:15	4	129	5	3	18	0	2	110	7	12	22	3	315
15:15	15:30	2	118	5	2	12	2	1	126	8	11	37	2	326
15:30	15:45	2	133	5	8	9	4	1	116	13	16	29	3	339
15:45	16:00	2	117	2	3	15	2	3	130	7	13	25	4	323
16:00	16:15	3	134	6	2	13	3	1	133	6	14	21	2	338
16:15	16:30	3	149	7	1	14	3	1	117	9	17	21	1	343
16:30	16:45	3	150	10	5	20	0	3	121	8	10	23	4	357
16:45	17:00	3	131	8	4	16	2	1	125	6	15	23	2	336
17:00	17:15	1	112	7	7	15	2	1	111	10	20	35	4	325
17:15	17:30	2	117	5	3	13	4	2	123	7	11	39	1	327
17:30	17:45	2	108	3	1	18	0	1	133	3	14	20	1	304
17:45	18:00	1	127	2	2	9	4	1	127	5	13	27	0	318
TOT	AL	53	2911	130	84	364	51	48	2833	230	294	578	51	7627


Time Period		Total vehicl	es											
Start	End	L	К	J	I	н	G	F	E	D	С	В	А	Total
12:00	12:15	14	109	12	33	25	20	4	68	23	4	18	12	342
12:15	12:30	13	107	13	32	29	18	6	61	23	5	18	12	337
12:30	12:45	15	111	16	35	28	20	6	67	22	5	18	13	356
12:45	13:00	21	93	10	29	26	28	8	78	26	7	34	12	372
13:00	13:15	20	99	11	27	35	23	5	70	29	10	41	11	381
13:15	13:30	20	101	15	23	33	24	16	80	33	6	45	15	411
13:30	13:45	19	99	15	35	37	15	9	84	25	8	20	27	393
13:45	14:00	25	118	16	34	69	20	21	45	29	6	39	29	451
14:00	14:15	24	86	16	30	19	28	13	102	24	10	25	18	395
14:15	14:30	23	90	16	33	14	26	11	102	23	10	25	22	395
14:30	14:45	21	102	16	36	25	29	16	84	38	12	33	22	434
14:45	15:00	19	93	14	31	27	15	3	97	35	10	38	22	404
15:00	15:15	27	101	19	44	18	21	9	67	36	9	27	8	386
15:15	15:30	11	113	19	34	25	34	10	90	22	10	17	11	396
15:30	15:45	24	116	13	32	23	20	15	82	28	13	38	18	422
15:45	16:00	14	114	11	45	28	23	14	80	30	9	17	15	400
16:00	16:15	26	117	9	38	21	15	17	82	27	14	20	20	406
16:15	16:30	20	121	28	26	24	23	12	81	16	6	38	20	415
16:30	16:45	17	122	23	36	34	25	7	75	22	14	22	21	418
16:45	17:00	16	116	19	40	21	22	5	71	20	10	24	21	385
17:00	17:15	8	112	9	35	27	20	9	72	32	12	29	16	381
17:15	17:30	11	107	17	41	23	18	7	78	12	14	18	14	360
17:30	17:45	10	99	13	29	21	11	10	93	16	13	15	16	346
17:45	18:00	12	126	13	38	14	12	6	84	20	5	17	11	358
TO	FAL	430	2572	363	816	646	510	239	1893	611	222	636	406	9344

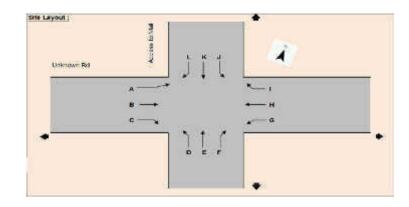

Time Period		Total vehicl	es											
Start	End	L	к	J	I	н	G	F	E	D	С	В	Α	Total
12:00	12:15	17	116	10	4	6	21	5	107	49	0	0	0	335
12:15	12:30	19	129	18	3	2	19	10	112	36	0	0	0	348
12:30	12:45	17	128	14	1	4	18	10	114	41	0	0	0	347
12:45	13:00	16	131	16	3	2	19	5	107	55	0	0	0	354
13:00	13:15	18	135	13	5	5	16	12	110	40	0	0	0	354
13:15	13:30	22	132	18	4	4	15	11	130	54	0	0	0	390
13:30	13:45	21	150	19	5	3	20	8	129	37	0	0	0	392
13:45	14:00	22	144	14	3	10	27	8	112	30	0	0	0	370
14:00	14:15	19	137	15	3	6	20	7	130	26	0	0	0	363
14:15	14:30	18	139	7	2	9	24	8	132	27	0	0	0	366
14:30	14:45	16	128	10	2	4	19	6	127	48	0	0	0	360
14:45	15:00	28	135	12	2	6	21	4	128	44	0	0	0	380
15:00	15:15	23	150	9	3	6	23	6	119	44	0	0	0	383
15:15	15:30	21	160	9	4	6	19	4	119	49	0	0	0	391
15:30	15:45	23	147	10	5	3	19	2	134	47	0	0	0	390
15:45	16:00	23	147	8	6	3	21	5	126	51	0	0	0	390
16:00	16:15	24	159	6	4	2	15	5	126	47	0	0	0	388
16:15	16:30	28	161	7	3	3	17	1	113	35	0	0	0	368
16:30	16:45	25	157	14	1	7	19	3	98	50	0	0	0	374
16:45	17:00	21	131	7	5	4	18	3	114	48	0	0	0	351
17:00	17:15	18	146	12	5	5	20	7	102	56	0	0	0	371
17:15	17:30	19	151	13	6	3	15	5	101	51	0	0	0	364
17:30	17:45	20	159	16	3	6	15	11	104	48	0	0	0	382
17:45	18:00	17	148	12	5	3	17	5	118	45	0	0	0	370
TO	TAL	495	3420	289	87	112	457	151	2812	1058	0	0	0	8881


Time Period		Total vehicl	es											
Start	End	L	К	J	I	н	G	F	E	D	С	В	Α	Total
12:00	12:15	58	41	15	22	6	1	0	59	6	1	8	2	219
12:15	12:30	68	42	14	22	7	5	1	78	5	3	7	7	259
12:30	12:45	72	34	16	27	5	3	2	85	2	1	8	10	265
12:45	13:00	75	38	18	24	8	2	5	93	14	3	4	12	296
13:00	13:15	80	44	22	24	6	4	6	93	5	1	2	16	303
13:15	13:30	73	41	20	22	4	5	3	102	6	2	3	13	294
13:30	13:45	76	52	18	33	6	2	2	103	9	3	10	14	328
13:45	14:00	76	50	21	30	8	3	5	100	5	3	2	18	321
14:00	14:15	61	42	23	34	6	3	4	101	4	3	10	14	305
14:15	14:30	95	70	23	32	6	3	5	96	17	6	7	12	372
14:30	14:45	84	68	29	21	17	6	3	73	7	4	13	16	341
14:45	15:00	101	82	22	19	8	2	2	94	2	3	11	10	356
15:00	15:15	101	84	22	27	10	5	2	59	2	1	8	15	336
15:15	15:30	90	62	23	13	8	2	4	70	2	4	9	9	296
15:30	15:45	90	64	39	13	11	1	2	59	5	2	9	14	309
15:45	16:00	92	66	16	24	9	4	1	55	4	0	8	14	293
16:00	16:15	112	93	17	20	4	0	3	42	4	1	14	5	315
16:15	16:30	111	79	32	13	9	2	0	54	7	4	10	12	333
16:30	16:45	57	38	19	6	7	0	3	19	1	0	6	7	163
16:45	17:00	64	40	32	13	6	1	2	18	9	2	10	9	206
17:00	17:15	62	42	30	16	2	1	1	33	8	4	10	4	213
17:15	17:30	58	39	30	16	5	0	0	33	5	1	6	11	204
17:30	17:45	54	32	27	8	6	0	0	45	5	4	5	5	191
17:45	18:00	34	34	20	10	3	0	0	40	1	2	6	6	156
TOT	FAL	1844	1277	548	489	167	55	56	1604	135	58	186	255	6674

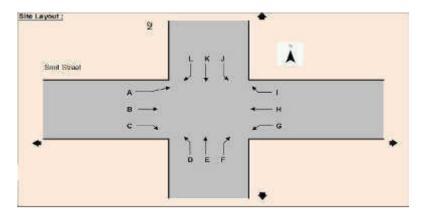

Time Period		Total vehicle	es											
Start	End	L	к	J	I	н	G	F	E	D	С	В	Α	Total
12:00	12:15	9	0	2	5	13	0	0	0	0	0	6	7	42
12:15	12:30	10	0	3	7	14	0	0	0	0	0	14	14	62
12:30	12:45	12	0	5	8	2	0	0	0	0	0	10	11	48
12:45	13:00	13	0	4	4	7	0	0	0	0	0	9	12	49
13:00	13:15	13	0	2	5	4	0	0	0	0	0	10	9	43
13:15	13:30	14	0	6	9	3	0	0	0	0	0	12	11	55
13:30	13:45	19	0	6	8	7	0	0	0	0	0	7	14	61
13:45	14:00	15	0	7	7	17	0	0	0	0	0	7	13	66
14:00	14:15	23	0	3	7	2	0	0	0	0	0	10	16	61
14:15	14:30	13	0	8	5	20	0	0	0	0	0	14	15	75
14:30	14:45	14	0	7	4	8	0	0	0	0	0	6	12	51
14:45	15:00	9	0	5	7	15	0	0	0	0	0	7	13	56
15:00	15:15	16	0	7	8	16	0	0	0	0	0	5	14	66
15:15	15:30	17	0	6	10	7	0	0	0	0	0	4	9	53
15:30	15:45	16	0	6	6	6	0	0	0	0	0	3	15	52
15:45	16:00	17	0	3	9	6	0	0	0	0	0	4	12	51
16:00	16:15	15	0	5	5	3	0	0	0	0	0	3	9	40
16:15	16:30	18	0	5	9	2	0	0	0	0	0	2	11	47
16:30	16:45	17	0	5	8	3	0	0	0	0	0	5	3	41
16:45	17:00	16	0	4	6	4	0	0	0	0	0	4	13	47
17:00	17:15	20	0	6	6	3	0	0	0	0	0	5	9	49
17:15	17:30	16	0	5	9	3	0	0	0	0	0	6	12	51
17:30	17:45	13	0	4	8	6	0	0	0	0	0	11	11	53
17:45	18:00	15	0	7	6	4	0	0	0	0	0	7	13	52
TO	TAL	360	0	121	166	175	0	0	0	0	0	171	278	1271


		TOTAL VEH	IICLES					
Start	End	Н	G	F	D	С	В	Total
12:00	12:15	10	2	2	23	6	16	59
12:15	12:30	15	2	3	22	6	18	66
12:30	12:45	10	4	6	24	10	6	60
12:45	13:00	17	3	2	27	9	10	68
13:00	13:15	11	5	3	27	5	5	56
13:15	13:30	12	2	5	22	4	12	57
13:30	13:45	17	2	6	19	5	11	60
13:45	14:00	16	2	2	23	5	23	71
14:00	14:15	15	3	3	22	8	5	56
14:15	14:30	15	2	6	26	7	19	75
14:30	14:45	17	4	5	22	8	6	62
14:45	15:00	17	1	4	23	2	17	64
15:00	15:15	15	2	4	23	7	20	71
15:15	15:30	15	5	3	23	7	15	68
15:30	15:45	13	2	6	26	6	5	58
15:45	16:00	14	2	5	23	10	11	65
16:00	16:15	13	2	2	24	9	6	56
16:15	16:30	13	2	3	25	4	9	56
16:30	16:45	15	1	2	23	2	10	53
16:45	17:00	14	2	6	25	4	5	56
17:00	17:15	15	3	7	25	6	1	57
17:15	17:30	16	4	5	26	10	8	69
17:30	17:45	16	2	2	31	2	12	65
17:45	18:00	17	2	5	29	2	6	61
TO	TAL	348	61	97	583	144	256	1489

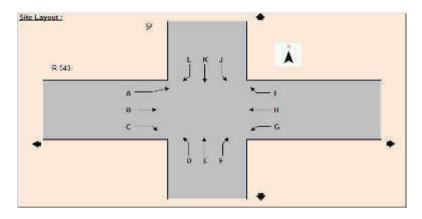
Time Period		Total vehicl	es											
Start	End	L	к	J	I	н	G	F	E	D	С	В	Α	Total
12:00	12:15	3	1	1	12	11	16	1	0	10	19	15	6	95
12:15	12:30	2	3	4	17	11	21	4	1	10	22	11	5	111
12:30	12:45	11	5	9	25	10	15	5	1	8	24	15	8	136
12:45	13:00	6	1	6	14	14	13	8	4	12	16	15	19	128
13:00	13:15	5	4	11	11	12	15	3	3	7	19	14	9	113
13:15	13:30	8	6	14	21	16	13	6	5	10	24	12	17	152
13:30	13:45	9	12	16	26	10	16	6	2	7	17	11	15	147
13:45	14:00	9	11	18	21	9	13	5	3	10	18	13	15	145
14:00	14:15	12	10	12	27	9	12	7	4	8	16	20	16	153
14:15	14:30	1	11	4	16	16	16	9	5	6	15	19	12	130
14:30	14:45	5	10	11	25	12	20	3	5	7	25	25	11	159
14:45	15:00	8	11	15	17	15	12	10	4	11	19	30	10	162
15:00	15:15	9	14	10	15	11	23	9	2	8	27	18	14	160
15:15	15:30	10	15	9	23	10	14	6	7	11	25	16	15	161
15:30	15:45	13	12	15	23	10	12	5	6	9	21	19	19	164
15:45	16:00	9	15	16	13	11	9	7	4	8	20	15	19	146
16:00	16:15	5	14	11	24	14	19	5	3	14	28	24	21	182
16:15	16:30	15	13	8	16	15	27	10	4	16	17	22	20	183
16:30	16:45	17	9	13	14	13	26	2	6	17	13	22	16	168
16:45	17:00	18	6	11	12	11	19	9	1	17	28	25	8	165
17:00	17:15	12	5	9	28	10	26	6	6	15	26	29	25	197
17:15	17:30	14	4	11	11	18	23	5	2	12	24	14	17	155
17:30	17:45	13	11	9	11	13	17	9	3	9	16	20	15	146
17:45	18:00	10	9	11	13	16	23	11	1	10	19	14	7	144
TO	FAL	224	212	254	435	297	420	151	82	252	498	438	339	3602

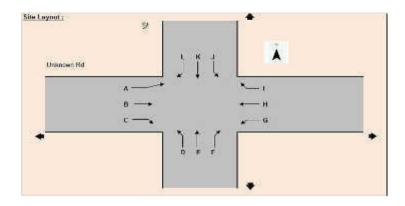


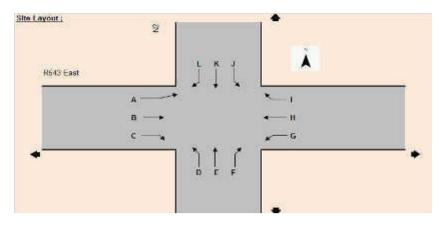
Time Period		Total vehicle	<u>es</u>					
<u>Start</u>	End	В	С	D	F	G	Н	Total
09:00	09:15	20	11	23	18	16	25	113
09:15	09:30	26	15	15	16	6	17	95
09:30	09:45	14	35	20	12	21	15	117
09:45	10:00	15	34	11	17	10	45	132
10:00	10:15	17	30	18	10	11	45	131
10:15	10:30	35	25	15	13	10	61	159
10:30	10:45	69	20	12	17	8	59	185
10:45	11:00	41	19	10	16	7	95	188
11:00	11:15	62	33	24	33	8	66	226
11:15	11:30	50	23	12	12	8	60	165
11:30	11:45	63	18	16	17	6	104	224
11:45	12:00	49	24	17	19	19	93	221
12:00	12:15	50	20	24	15	8	64	181
12:15	12:30	54	25	11	21	16	73	200
12:30	12:45	59	20	13	22	10	128	252
12:45	13:00	52	19	12	18	7	101	209
13:00	13:15	49	10	5	7	7	74	152
13:15	13:30	58	11	6	8	7	76	166
13:30	13:45	36	11	11	15	9	71	153
13:45	14:00	61	8	15	20	8	60	172
TO	FAL	880	411	290	326	202	1332	3441

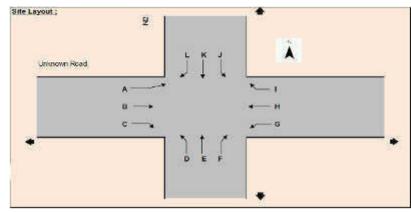


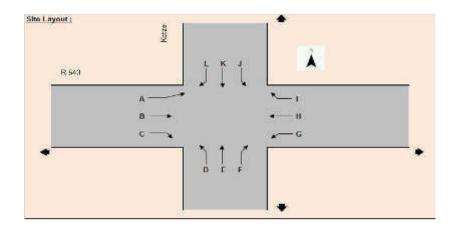
Time Period		Total vehicl	<u>es</u>											
<u>Start</u>	End	Α	В	С	D	E	F	G	Н	I	J	К	L	Total
09:00	09:15	13	2	3	1	11	11	4	2	1	23	26	2	99
09:15	09:30	15	9	1	2	17	7	12	2	3	13	16	4	101
09:30	09:45	11	6	4	1	30	13	7	5	5	13	21	2	118
09:45	10:00	13	4	5	0	36	21	5	3	2	6	41	4	140
10:00	10:15	14	3	2	4	30	21	12	4	1	9	43	5	148
10:15	10:30	16	8	4	2	33	25	19	12	1	3	61	2	186
10:30	10:45	26	13	0	1	75	14	22	7	1	6	63	7	235
10:45	11:00	18	4	1	1	47	20	20	4	1	15	83	8	222
11:00	11:15	24	10	0	1	61	19	23	4	6	13	65	19	245
11:15	11:30	23	10	0	0	50	30	17	5	6	9	51	10	211
11:30	11:45	28	42	0	0	61	29	13	5	7	46	67	13	311
11:45	12:00	30	17	0	1	43	37	18	7	3	8	77	21	262
12:00	12:15	25	12	1	0	49	21	22	10	7	16	61	15	239
12:15	12:30	27	10	0	1	48	21	22	6	3	10	59	17	224
12:30	12:45	23	8	0	0	63	26	71	21	4	27	117	27	387
12:45	13:00	25	5	0	0	37	32	50	18	3	17	81	21	289
13:00	13:15	17	6	0	1	49	25	3	18	0	11	63	5	198
13:15	13:30	18	9	1	1	48	20	21	14	1	16	71	3	223
13:30	13:45	23	7	0	0	12	26	16	4	1	12	69	3	173
13:45	14:00	22	5	1	0	63	27	25	10	2	13	65	4	237
TO	FAL	411	190	23	17	863	445	402	161	58	286	1200	192	4248

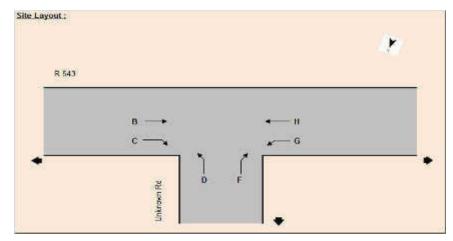

Time Period		Total vehicle	<u>es</u>					
<u>Start</u>	End	В	С	D	F	G	Н	Total
09:00	09:15	5	2	6	1	1	5	20
09:15	09:30	8	10	4	2	2	8	34
09:30	09:45	11	14	10	2	0	7	44
09:45	10:00	10	12	14	2	1	15	54
10:00	10:15	13	13	9	7	3	13	58
10:15	10:30	19	16	16	2	3	14	70
10:30	10:45	18	12	18	4	2	16	70
10:45	11:00	13	14	17	4	4	15	67
11:00	11:15	15	15	11	2	0	27	70
11:15	11:30	22	11	10	16	4	16	79
11:30	11:45	9	25	10	7	3	6	60
11:45	12:00	7	12	10	7	3	18	57
12:00	12:15	10	12	19	2	6	20	69
12:15	12:30	2	10	25	12	2	15	66
12:30	12:45	11	1	62	0	2	15	91
12:45	13:00	15	7	30	6	6	25	89
13:00	13:15	5	11	15	3	11	6	51
13:15	13:30	10	12	5	3	3	6	39
13:30	13:45	3	3	10	5	0	12	33
13:45	14:00	20	20	25	5	3	20	93
TO	TAL	226	232	326	92	59	279	1214

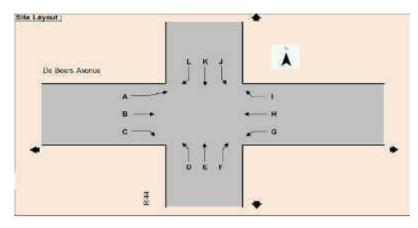

Time Period		Total vehicle	<u>es</u>											
Start	End	Α	В	С	D	E	F	G	Н	I	J	К	L	Total
09:00	09:15	7	9	16	9	6	5	5	28	11	6	11	7	120
09:15	09:30	11	5	10	5	6	4	8	13	8	7	8	4	89
09:30	09:45	7	9	11	4	3	0	2	17	7	10	6	8	84
09:45	10:00	2	7	9	4	8	1	1	13	9	4	9	8	75
10:00	10:15	11	7	10	5	6	1	3	7	8	11	16	7	92
10:15	10:30	2	12	9	5	3	1	3	16	12	7	11	17	98
10:30	10:45	5	15	9	9	4	1	2	15	7	5	12	3	87
10:45	11:00	5	11	14	8	9	5	1	15	8	7	17	12	112
11:00	11:15	8	6	19	11	7	0	1	8	9	9	15	10	103
11:15	11:30	10	8	10	1	11	2	0	16	10	9	11	5	93
11:30	11:45	11	14	11	9	14	3	5	7	6	6	10	5	101
11:45	12:00	61	6	13	11	2	1	1	11	9	8	13	14	150
12:00	12:15	12	12	14	8	5	6	2	12	4	3	10	7	95
12:15	12:30	6	13	13	8	6	1	3	16	13	8	10	11	108
12:30	12:45	7	13	11	5	11	0	3	10	4	3	9	7	83
12:45	13:00	5	14	13	7	7	1	1	11	7	5	8	10	89
13:00	13:15	5	11	4	5	11	1	3	49	0	4	3	5	101
13:15	13:30	5	18	11	1	6	3	2	10	11	7	14	11	99
13:30	13:45	7	18	20	16	8	0	1	10	9	5	9	7	110
13:45	14:00	15	36	12	17	0	0	0	4	6	2	7	2	101
тот	AL	202	244	239	148	133	36	47	288	158	126	209	160	1990

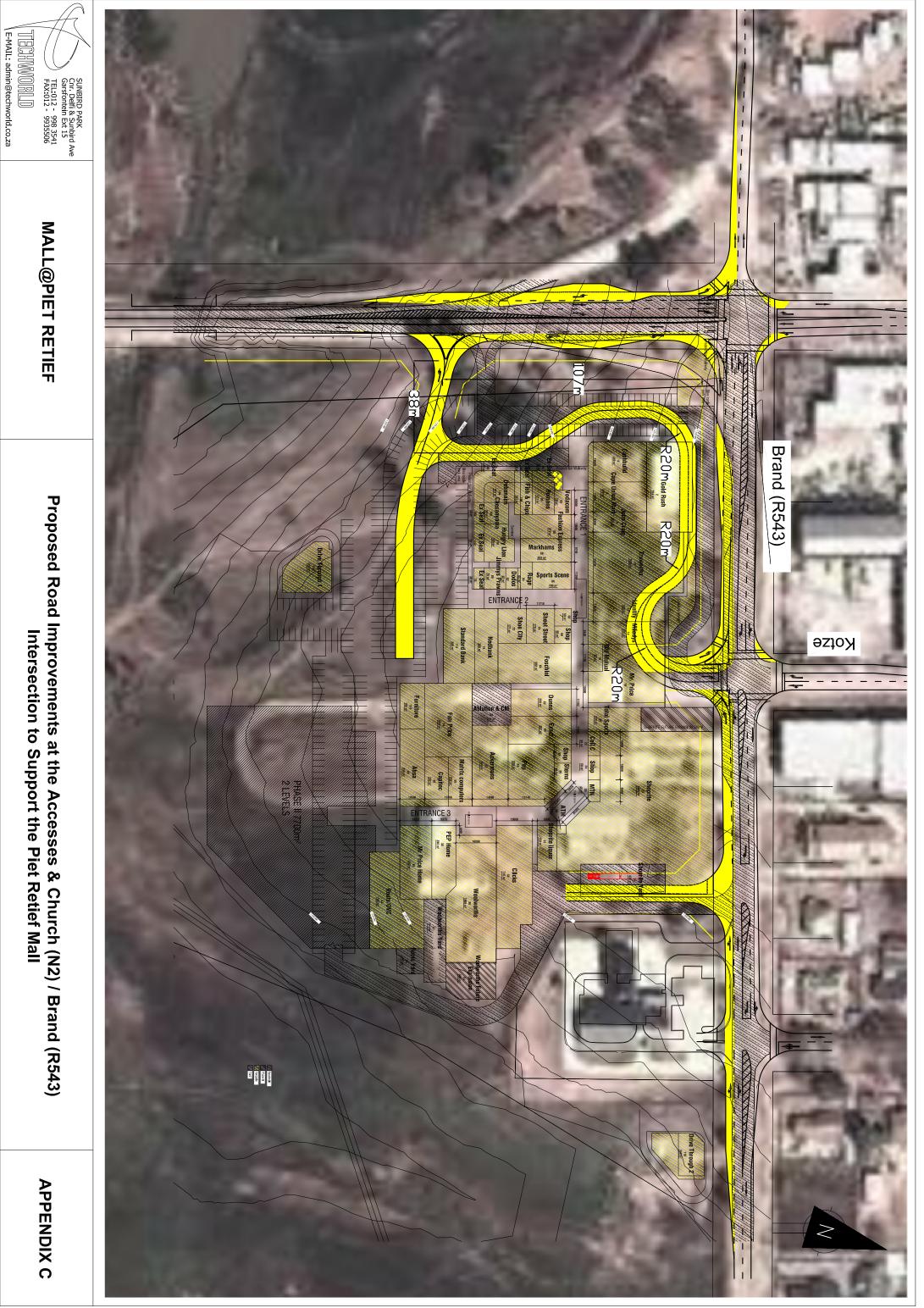

Time Period		Total vehicl	es											
<u>Start</u>	End	Α	В	С	D	E	F	G	н	I	J	К	L	Total
09:00	09:15	2	4	2	4	28	5	7	4	2	2	57	1	118
09:15	09:30	5	7	2	2	43	6	5	5	4	7	51	1	138
09:30	09:45	4	8	2	0	40	4	10	4	2	5	64	5	148
09:45	10:00	5	8	2	2	33	3	4	3	4	7	80	2	153
10:00	10:15	2	10	1	0	57	5	13	5	5	10	89	1	198
10:15	10:30	5	7	3	5	55	7	12	6	6	15	96	5	222
10:30	10:45	2	9	3	6	86	8	17	9	5	6	97	2	250
10:45	11:00	2	4	5	1	58	6	11	9	12	3	100	1	212
11:00	11:15	5	10	2	4	76	6	10	13	11	7	103	5	252
11:15	11:30	3	7	2	6	73	8	8	14	9	7	87	6	230
11:30	11:45	3	11	2	7	76	10	10	8	5	9	96	1	238
11:45	12:00	2	11	3	5	65	2	10	8	6	11	82	6	211
12:00	12:15	4	11	5	5	77	4	10	8	8	9	78	6	225
12:15	12:30	5	5	6	8	57	4	7	10	6	6	78	7	199
12:30	12:45	1	8	5	7	60	8	13	11	6	12	110	12	253
12:45	13:00	2	8	1	5	56	4	13	9	9	9	104	19	239
13:00	13:15	3	2	4	4	61	7	7	8	8	5	108	6	223
13:15	13:30	1	2	4	3	70	9	5	3	14	7	82	3	203
13:30	13:45	2	6	4	2	84	6	7	5	17	11	82	3	229
13:45	14:00	2	4	3	2	74	11	9	2	3	6	85	4	205
TOT		60	142	61	78	1229	123	188	144	142	154	1729	96	4146


Time Period		Total vehicl	es_											
<u>Start</u>	End	Α	В	С	D	E	F	G	Н	I	J	К	L	Total
09:00	09:15	4	4	5	6	40	4	1	2	1	1	46	2	116
09:15	09:30	6	2	7	3	31	1	5	2	2	0	62	3	124
09:30	09:45	5	4	14	2	58	3	1	3	1	2	91	5	189
09:45	10:00	3	2	9	3	50	2	2	2	1	1	75	3	153
10:00	10:15	8	4	14	8	64	3	2	5	1	2	98	2	211
10:15	10:30	8	3	15	9	72	3	5	5	2	4	104	7	237
10:30	10:45	9	8	15	12	85	5	2	5	3	5	104	4	257
10:45	11:00	9	6	11	16	65	5	2	3	1	2	111	12	243
11:00	11:15	14	6	12	18	62	4	4	4	1	1	111	8	245
11:15	11:30	11	7	22	22	102	5	6	7	4	3	86	14	289
11:30	11:45	11	4	26	17	86	3	3	6	3	5	105	9	278
11:45	12:00	9	10	13	17	84	1	6	6	3	3	112	10	274
12:00	12:15	10	9	15	22	74	6	5	8	1	3	103	9	265
12:15	12:30	9	7	16	17	89	3	9	2	2	2	85	8	249
12:30	12:45	9	6	16	13	83	1	5	10	1	1	115	9	269
12:45	13:00	6	5	12	16	84	2	4	9	2	2	127	8	277
13:00	13:15	6	7	12	18	81	4	11	8	2	2	132	9	292
13:15	13:30	10	5	10	6	81	3	2	6	2	4	102	7	238
13:30	13:45	8	6	10	14	101	4	3	1	2	2	92	9	252
13:45	14:00	8	4	18	14	102	1	4	0	3	1	90	7	252
TOT	ral	163	109	272	253	1494	63	82	94	38	46	1951	145	4710

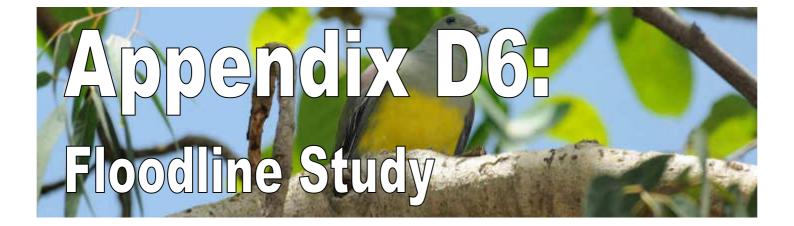

Time Period		Total vehicl	<u>es</u>											
<u>Start</u>	End	Α	В	С	D	E	F	G	н	I	J	К	L	Total
09:00	09:15	2	9	0	15	34	6	2	5	1	1	38	1	114
09:15	09:30	5	11	0	12	54	6	1	14	1	1	64	2	171
09:30	09:45	4	4	0	17	61	8	1	10	2	0	72	2	181
09:45	10:00	8	10	0	18	53	18	1	18	4	0	66	4	200
10:00	10:15	4	14	5	28	50	10	3	21	2	2	60	2	201
10:15	10:30	2	27	12	14	64	9	3	20	8	4	95	2	260
10:30	10:45	8	15	17	14	70	34	5	11	8	3	97	5	287
10:45	11:00	9	12	14	15	74	25	3	14	3	6	97	3	275
11:00	11:15	2	11	16	35	81	5	3	27	2	3	95	11	291
11:15	11:30	17	16	12	17	74	4	8	9	5	1	96	5	264
11:30	11:45	5	15	5	14	65	1	3	8	4	2	93	2	217
11:45	12:00	22	16	23	29	67	13	8	18	10	6	76	7	295
12:00	12:15	20	18	22	6	60	8	6	27	4	4	64	7	246
12:15	12:30	30	12	34	48	70	17	2	39	6	3	87	7	355
12:30	12:45	22	12	26	32	71	8	3	18	3	9	76	7	287
12:45	13:00	17	13	23	29	35	8	1	8	4	2	94	3	237
13:00	13:15	18	11	18	39	53	6	4	7	4	5	100	8	273
13:15	13:30	27	23	31	4	66	17	3	17	1	7	98	3	297
13:30	13:45	24	4	35	30	79	5	1	10	5	7	90	3	293
13:45	14:00	25	16	42	63	39	9	4	23	6	4	94	8	333
TOT	FAL	271	269	335	479	1220	217	65	324	83	70	1652	92	5077


Time Period	TOTAL VEHICLES													
<u>Start</u>	End	Α	В	С	D	E	F	G	н	I	J	к	L	Total
09:00	09:15	0	0	0	19	52	2	5	2	1	0	79	5	165
09:15	09:30	0	0	0	26	69	7	10	4	0	0	108	7	231
09:30	09:45	0	0	0	30	76	4	15	3	0	1	105	5	239
09:45	10:00	0	0	0	27	100	6	10	3	1	0	128	11	286
10:00	10:15	0	0	0	32	91	7	16	1	0	0	125	11	283
10:15	10:30	0	0	0	20	70	8	18	2	0	0	139	14	271
10:30	10:45	0	0	0	35	92	7	23	4	3	4	150	15	333
10:45	11:00	0	0	0	31	104	5	21	3	0	3	133	16	316
11:00	11:15	0	0	0	38	118	7	26	7	0	2	144	11	353
11:15	11:30	0	0	0	43	89	30	7	2	4	4	125	13	317
11:30	11:45	0	0	0	46	111	7	15	3	3	4	154	10	353
11:45	12:00	0	0	0	50	82	32	11	0	0	4	110	2	291
12:00	12:15	0	0	0	37	90	2	11	1	2	3	155	11	312
12:15	12:30	0	0	0	46	91	4	9	5	1	4	135	12	307
12:30	12:45	0	0	0	46	87	1	2	1	1	1	119	3	261
12:45	13:00	0	0	1	45	78	4	23	3	1	2	155	7	319
13:00	13:15	0	0	0	50	75	3	16	1	0	1	159	8	313
13:15	13:30	0	0	0	39	117	5	15	1	3	3	94	5	282
13:30	13:45	0	0	0	37	81	2	6	0	2	3	108	9	248
13:45	14:00	0	0	0	41	102	8	9	1	0	3	132	9	305
TO	TAL	0	0	1	738	1775	151	268	47	22	42	2557	184	5785


Time Period	TOTAL VEHICLES													
<u>Start</u>	<u>End</u>	Α	В	С	D	E	F	G	Н	I	J	К	L	Total
09:00	09:15	33	2	1	1	6	1	1	0	3	7	23	25	103
09:15	09:30	61	2	0	0	10	0	0	2	5	7	36	41	164
09:30	09:45	53	8	1	2	14	1	2	1	11	7	59	56	215
09:45	10:00	47	2	2	1	21	0	1	11	9	11	43	46	194
10:00	10:15	67	4	1	1	5	1	1	5	21	9	45	60	220
10:15	10:30	83	1	0	1	11	0	0	12	21	10	57	57	253
10:30	10:45	88	2	2	3	23	0	1	10	21	11	74	76	311
10:45	11:00	70	6	1	3	28	0	2	1	22	11	62	66	272
11:00	11:15	63	3	0	3	32	2	1	5	20	13	74	69	285
11:15	11:30	128	5	2	3	27	1	1	8	14	16	61	91	357
11:30	11:45	76	8	2	8	33	0	2	14	14	10	76	73	316
11:45	12:00	108	13	5	4	64	0	1	9	22	11	61	65	363
12:00	12:15	71	4	3	3	61	0	2	10	17	15	67	84	337
12:15	12:30	76	11	5	1	57	1	1	7	20	14	59	92	344
12:30	12:45	100	13	2	2	47	0	1	9	16	13	66	83	352
12:45	13:00	94	6	3	6	32	1	3	11	12	21	48	142	379
13:00	13:15	71	12	3	0	31	0	2	7	14	22	62	123	347
13:15	13:30	73	10	6	4	27	2	3	13	15	20	84	98	355
13:30	13:45	73	6	1	2	47	3	3	8	20	13	68	89	333
13:45	14:00	75	9	2	5	48	1	1	3	8	7	67	88	314
TO	FAL	1510	127	42	53	624	14	29	146	305	248	1192	1524	5814


Time Period		Total vehicle	<u>es</u>					
<u>Start</u>	End	Α	В	Н	I	J	L	Total
09:00	09:15	1	11	2	0	1	2	17
09:15	09:30	1	12	2	1	2	3	21
09:30	09:45	1	15	7	0	0	5	28
09:45	10:00	1	12	6	0	1	6	26
10:00	10:15	2	11	12	0	1	6	32
10:15	10:30	1	14	11	0	2	7	35
10:30	10:45	3	13	12	3	9	8	48
10:45	11:00	1	11	10	9	4	20	55
11:00	11:15	2	12	11	2	2	9	38
11:15	11:30	10	11	7	7	5	10	50
11:30	11:45	3	10	12	2	4	35	66
11:45	12:00	2	13	2	0	3	1	21
12:00	12:15	3	12	13	0	5	7	40
12:15	12:30	1	11	5	1	4	8	30
12:30	12:45	4	10	1	1	7	20	43
12:45	13:00	0	9	11	0	4	8	32
13:00	13:15	2	15	5	0	6	5	33
13:15	13:30	1	6	3	0	4	7	21
13:30	13:45	1	11	2	0	2	5	21
13:45	14:00	2	10	4	0	1	1	18
TOTAL		42	229	138	26	67	173	675

Time Period	Total vehicles									
<u>Start</u>	<u>End</u>	G	Н	F	В	С	D	Total		
09:00	09:15	6	10	7	11	7	4	45		
09:15	09:30	8	18	9	8	5	3	51		
09:30	09:45	8	6	9	11	6	6	46		
09:45	10:00	4	13	6	7	5	3	38		
10:00	10:15	6	18	4	10	8	1	47		
10:15	10:30	11	12	3	10	11	6	53		
10:30	10:45	6	11	4	18	7	5	51		
10:45	11:00	9	12	5	15	5	5	51		
11:00	11:15	7	16	7	15	4	8	57		
11:15	11:30	6	7	5	14	5	3	40		
11:30	11:45	6	12	5	8	10	5	46		
11:45	12:00	8	11	7	8	12	6	52		
12:00	12:15	16	11	2	10	10	15	64		
12:15	12:30	13	6	5	10	10	9	53		
12:30	12:45	15	5	9	19	13	9	70		
12:45	13:00	19	19	6	17	19	8	88		
13:00	13:15	9	10	6	25	10	8	68		
13:15	13:30	24	12	8	15	8	8	75		
13:30	13:45	21	9	9	9	8	7	63		
13:45	14:00	12	11	5	14	9	8	59		
TOTAL		214	229	121	254	172	127	1117		



Time Period		TOTAL VEH	ICLES											
<u>Start</u>	<u>End</u>	Α	В	С	D	E	F	G	н	I	J	К	L	Total
09:00	09:15	8	10	1	1	19	6	8	14	2	3	16	5	93
09:15	09:30	7	7	0	2	28	8	10	12	1	1	33	2	111
09:30	09:45	2	8	2	0	2	6	3	9	1	0	0	3	36
09:45	10:00	4	3	1	0	20	5	5	16	3	0	19	4	80
10:00	10:15	3	15	0	2	17	12	4	18	4	0	33	4	112
10:15	10:30	3	10	0	1	23	11	4	19	5	1	30	3	110
10:30	10:45	2	4	5	0	9	3	3	14	7	1	21	3	72
10:45	11:00	5	10	0	1	26	11	5	23	9	3	38	1	132
11:00	11:15	0	6	1	0	18	4	3	2	4	0	17	4	59
11:15	11:30	8	8	1	0	22	10	1	18	3	0	19	2	92
11:30	11:45	8	13	1	1	21	0	2	8	3	0	1	2	60
11:45	12:00	5	14	2	0	26	6	6	6	5	1	24	2	97
12:00	12:15	2	5	1	1	7	5	3	10	1	2	17	2	56
12:15	12:30	7	11	0	0	18	5	5	8	8	3	12	2	79
12:30	12:45	3	12	1	0	12	11	6	7	5	3	24	0	84
12:45	13:00	6	4	1	1	26	7	3	20	6	0	19	1	94
13:00	13:15	3	6	0	0	20	5	5	23	4	0	22	5	93
13:15	13:30	3	3	0	0	16	7	1	13	5	0	12	1	61
13:30	13:45	2	5	0	2	6	2	1	11	1	1	6	1	38
13:45	14:00	5	10	0	3	34	8	3	14	2	2	19	4	104
TOT	TAL	86	164	17	15	370	132	81	265	79	21	382	51	1663

Anaprop Property Management

<u>PROJECT</u>: Development of Portions 100 & 123 PIET RETIEF TOWN (Townland 149 HT)

Report on the Delineation of the 1:100 Year Floodlines

Report No PB/13/286/PIET-FL1 August 2013

Lekwa Consulting Engineers & Project Managers (Pty) Ltd Tel: +27 17 819 1985 Fax: +27 17 819 4017

PG Consulting Engineers P.J. Gouws (Pr Eng) Tel: 015 291 0951 / Cell: 082 337 6905

DELINEATION OF THE 1:100 YEAR FLOODLINES FOR DEVELOPMENT OF PORTIONS 100 & 123 - PIET RETIEF TOWN

i

1

CONTENTS

LIST OF ABBREVIATIO	SNC	2
SECTION 1:	INTRODUCTION	3
SECTION 2:	HYDROLOGY AND SUMMARY OF FLOW DIMENSIONS	3
SECTION 3:	CONCLUSIONS	11
SECTION 4:	LIST OF APPENDICES	12
SECTION 5:	REFERENCES	12

LIST OF ABBREVIATIONS

APP	Approved professional person
DWA	Department of Water Affairs
Ebb	Emergency preparedness plan
FSL	Full supply level
HRU	Hydrological Research Unit
κ	Regional coefficient
МАР	Mean annual precipitation
MAR	Mean annual run-off
MSL	Mean sea level
NOC	Non-averspill arest
NWA	National Water Act, Act 36 of 1998
ОММО	Operation and maintenance manual
PMF	Probable maximum flood
PMP	Probable maximum precipitation
RDD	Recommended design discharge
RDF	Recommended design flood
RI	Recurrence inferval
RL	Réduced level
RMF	Regional maximum flood
SANCOLD	South African Committee on Large Dams
ses	Soil Conservation Service
SED	Safety evaluation discharge
SEF	Safety evaluation flood

.

ł

DEVINEATION OF THE 1:100 YEAR FLOODLINES FOR DEVELOPMENT OF PORTIONS 100 & 123 – PIET RETIEF TOWN

SECTION 1: INTRODUCTION

A floodline analysis was required to determine the position of the 1 in 100 year floodlines for the developments to take place on porfions 100 and 123 in the town of Piet Reflef in the Mpumalanga Province. Both sijes are situated near the Klipmesselspruit (Townland 149 HT).

The analysis starts at approximately latitude **27° 00' 31,1"** and longitude **30° 48' 32,4"** (Cross-section RS100) and ends at latitude **27° 00' 50.8"** and longitude **30° 47' 54,4"** (Cross-section RS85) – WGS84.

The specific area which was analyzed curing this investigation will be affected by accumulated flood walers in the Klipmesselspruit and associate tributaries.

The determination / analysis of the post-development 1:100 year floodlines were carried out by PG Consulting Engineers on behalf of Lekwa Consulting Engineers & Project Managers.

SECTION 2: HYDROLOGY AND SUMMARY OF FLOW DIMENSIONS

a) Methods used for Calculations

Methods that were used to calculate the different run-off peaks with variance in return periods are summarised below (a deterministic method with two different implementations were used and compared against an empirical method). The empirical method was furthermore utilized to calculate the RMF peaks.

- Rational method Implementation 1: Based on the regional DDF-equations representing the HRU 1/78 DDF-relationships ("Op ten Noort & Stephenson" -1982)
- b) Rational method Implementation 2: Based on DWA's implementation
- c) Empirical Method (TR137) Regional maximum floods based on "Francou-Rodier" K-values ("Kovacs" - 1988) - Commonly used by DWAF for catchments >10km²

NBLIT was specifically decided on the above mentioned rational implementations as they provide for the incorporation of post-development site specific conditions. SUMMARY REPORT - FLOODLINES - AUGUST 2013

b) Catchment Parameters

Two (2) seperate catchments were identified in the study for the hydrology calculations in order to determine the expected flood peaks, referred to as Catchments A and B (Refer to ortho images below).

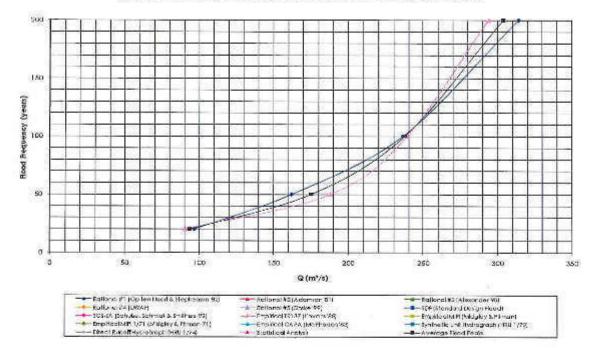
Homogeneous catchment characteristics for the different catchments were used for calculation purposes as obtained from appropriate 1:50 000 topographical maps, 1:10 000 ortho photos as well as GiSap software data. The main catchment characteristics are summarized below.

The specific sub-calchments are part of quaternary catchment W51D (Assegnai River). The mean annual precipitation (MAP) for the polygon grid covering the total tributary catchment area, based on the GISap software, is given as **887mm**.

Catchment A (Upper catchment)

Catchment area (km²)	14,818km²
Vertical difference in height of catchment (m)	98m
Flow length of longest watercourse (km)	5 250m
Average slope of catchment (10/85)	1,87%
Catchment run off coefficients applied (post-development)	
Q ₅₀	0,426
Q:00	0,504
Time of concentration (Tc)	3,10 hrs

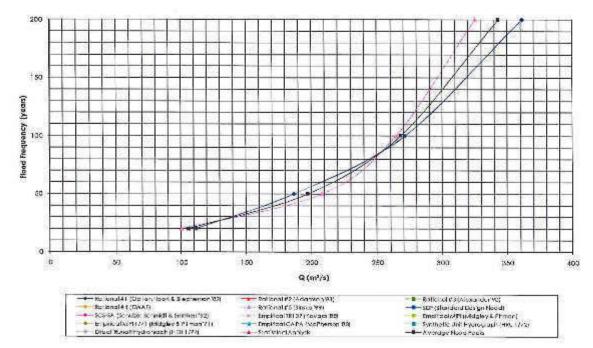
Catchment A&B (Combined total catchments)


Catchment area (km²)	17,733km²
Vertical difference in height of catchment (m)	104m
Flow length of longest watercourse (km)	5 &10m
Average slope of catchment (10/85)	1, 85 %
Catchment run-off coefficients applied (post-development)	
Q_{50}	0,426
Q100	0,504
Time of concentration (Tc)	1,16 hrs

NBJ Provision was made for urbanization conditions (i.e. 30% of total catchmont size) and area reduction factors were applied as the catchments exceed 10km².

c) Summary of Hydrology

Following the final hydrology calculations, it was found that the post-development flood peak values derived by the rational method implementation (1) had compared favourably with the values calculated utilizing the empirical TR137 method,


As some disparities were found between the two rational implementations applied (refer to the tables below), it was decided to rather follow a conservative approach by using the average of the two closest corresponding methods applied. The rational method implementation (2) values were therefore omitted. The following parameter sets, as tabled, were derived.

DERIVED FLOOD PEAKS WITH DIFFERENT INTERVALS - Upper Catchment 14.818km^o

Flood peaks derived for catchm	ent A (Upper	Catchment)	1.1.6
Values in m³/s	Q50	Qico	
Rational (a) - Op ten Noort & Stephenson '82	96.5	161.9	236.0
Rational (b) – DWA	125.2	165.4	206.6
Empirical – (TR137) Ke - region 5,2	90.5	188,3	238.9
Average of all above	104.1	171.9	227.2

DERIVED FLOOD PEAKS WITH DIFFERENTINTERVALS - Combined Catchments 17.733km³

Flood peaks derived for catchments A&B (Combined catchments)							
Values in m ³ /s Q20 Q50 Q100							
Rational (a) – Op Ien Noort & Stophonson 182	111.0	186.3	271.3				
Rational (b) – DWA	142.6	187.6	233.4				
Empirical – (TR137) K _o - region 5,2	100,1	208.2	264.2				
Average of all above	117.9	194.0	256.3				

Recommended Flood Peaks for the Floodline Computations of the different stream flow sections

The recommended flood peaks adopted for the analysis, were hydrologically balanced between the two catchments, in order to determine the floodlines for each of the following streamflow sections.

Klipmesselspruit - Section RS100 to RS95

Regional maximum flood (RMF) - calculated for Ke- region 5.2:	453m³/s
Probable maximum flood (PMP) – graphically forecasted:	1 297m³/s
Q100 used for floodlines determination:	237m³/s

Klipmesselspruit - Section RS95 to R585

Regional maximum flood (RMF) – calculated for K_{e} - region 5,2;	500m³/s
Probable maximum flood (PMF) – graphically forecasted:	1 434m³/s
Q100 Used for floodlines determination:	268m³/s

(See calculations, attached as Appendix A)

e) Floodlines Computations

For the computation of the different floodlines, the HEC-RAS (Version 4.1) computer analysis software was used.

Initially sixteen (16) cross-sections were generated from the contour drawings provided. For the purpose of the floodline delineation, additional cross-sections were generated by interpolation. The sections, after interpolation, are approximately 25 meters apart (Refer to 3D schematic and layout drawings altached).

f} Assumptions

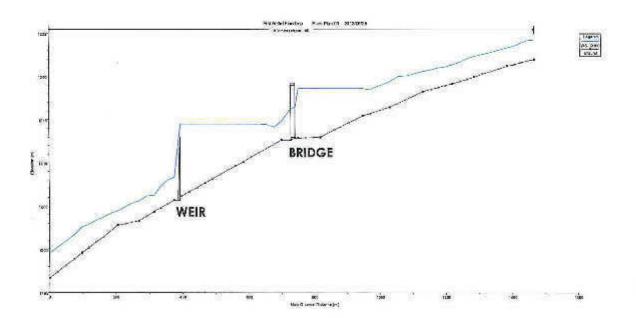
a) All the above calculations were based on Manning's tormula using an n-value (roughness coefficient) of 0,035 for the watercourse canal flow as well as the overbank flow sections as there are no significant differences to be found. This value represents the present scenario at the watercourse in question (i.e. clean, winding, with no significant pools and shoals, and relative undefined bank conditions with short to medium pasture covering).

- b) The following "s" value was adapted for the section boundary condition in the model; Section R\$100 to R\$85 0,01723 m/m (1,72%).
- c) All the computations were based on "steady flow stage" conditions with a "subcritical flow regime" due to the retention effects caused by the road bridge as well as the dam / weir.
- d) The main road bridge, crossing the Klipmesselspruit, was assumed to have an effective opening of 16m x 6m as measured from the contour layout drawing provided.
- e) The dam wall (weir) dimensions incorporated in the analysis were based on an effective overflow width of 84m with a total available freeboard of 1,85m.

The photos above are showing the actual stream flow conditions at the sites analyzed.

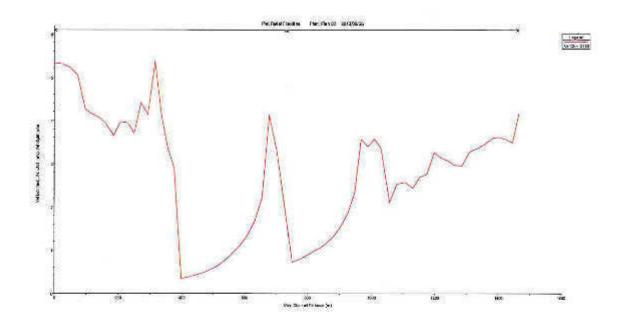
g) Results

The following tables give a summary of the flow data of the expected 1:100 year flood peak which were calculated for the specific stream flow sections, derived at each of the major cross-sections;

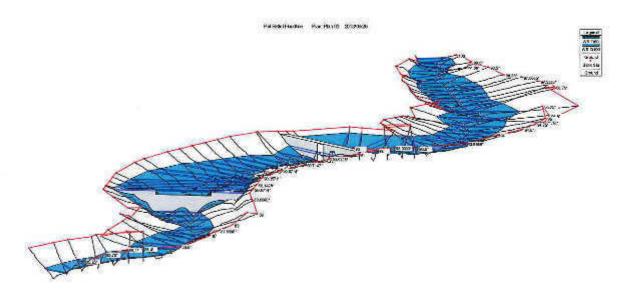

Klipi	messelspruit (Sea	tion R\$100 to R\$85) - 1:100 year flo	od
Cross-sections (see drawing)	Q100-value (m³/s)	Max. flow velocity (m/s)	Max. flow depth (m)	Section top width (m)
R\$100	237	4.17	2.30 (1224.30)	48
RS99	237	3.60	2.10 (1223.35)	60
R\$98	237	2.94	2.40 (1222.40)	97
RS97	237	3.13	2.23 (1221.43)	89
RS96	237	2.47	2,34 {1220.64}	109

SUMMARY REPORT - FLOODLINES - AUGUST 2013

RS95	268	3.29	2.90 (1219.40)	78
RS94	268	2,92	2.79 (1218.29)	90
RS93	268	1.02	5.26 (1218.26)	110
R\$92	268	0.75	5.35 (1218.26)	149
RS91	268	3.28	2.08 (1214.78)	77
WEIR	268	2.19	1.46 (1214.46)	84
R\$90	268	2.76	2.58 (1208.29)	69
R\$89	268	5.30	1.80 (1206.20)	47
R\$88	268	4.30	2.23 (1205.53)	70
RS87	268	3.85	1.62 (1204.42)	73
RS86	268	4.17	2,89 (1202.49)	52
RS85	268	5,18	2.82 (1199.52)	45


NB! Corresponding high flow actual contour levels indicated in brackets, in the tables. The section top flow width is rounded up to the nearest meter.

The following graph illustrates the expected water level to be generated by the 1:100 year flood peak over the stream flow section (Klipmesselspruit).



Graph on next page illustrates the expected variances in the flow velocities of the Klipmesselspruit stream flow section, during the 1:100 year recurrence intervals (Flow from right to left).

SUMMARY REPORT - FLOODLINES - AUGUST 2013

Following is a 3D schematic illustration of the high water level, during the expected 1:100 year flood peak.

(See calculations attached as Appendix A, and cross-sections attached as Appendix B).

h) XY Co-ordinates of the 1:100 Year Floodlines for reference (WGS84) Lo31°

The following tables give the exact XY co-ordinates of the 1:100 year floodlines as determined, for both the left and right banks of the applicable section of the Klipmesselspruit analyzed, with reference to each of the major cross-sections (refer to

		1:100 Yea	Floodlines		
	Left bank	• • •		Right bonk	
Cross-section	Х	Y	Cross section	X	Υ.Υ Y
R\$100	2 988 621	18 969	R5100	2 988 618	19 017
RS99	2 988 686	19 009	RS59	2 988 670	19 067
R\$98	2 988 785	12 008	RS98	2 788 755	19 101
RS97	2 988 844	19 031	R\$97	2 988 819	19-115
RS96	2 988 937	19 032	RS96	2 988 895	19 134
R\$95	2 989 009	17 098	RS95	2 988 956	19 159
RS94	2 989 074	19 189	RS94	2 988 975	19 221
R\$93	2 989 061	19 336	R\$93	2 988 954	19 284
R\$92	2 989 050	19 350	RS92	2 988 897	19 381
RS91	2 988 986	19 410	R\$91	2 988 908	19 425
RS9C	2 989 132	19 649	R\$90	2 989 082	19711
RS89	2 989 173	19 704	R\$89	2 989 134	19 734
RS88	2 989 205	19 729	RS88	2 989 151	19 777
RS87	2 989 233	19 793	R\$87	2 989 165	79 826
RS86	2 989 232	19 899	R\$86	2 989 179	17 886
RS85	2 989 217	19 986	R\$85	2 989 171	19 988

altached drawings). These co-ordinates can be utilized by a professional surveyor to set out the different floodlines.

SECTION 3: CONCLUSIONS

- For the analysis of the 1:100 year floodlines, cross-sections were generated from 0,5m-interval contours which were provided by Lekwa Consulting Engineers (Pty) Ltd. The 0,5m-interval contours are based on a recent survey conducted for the development area by Reed & Partners Professional Land Surveyors.
- The floodlines derived from the analysis are indicated on attached (A3) drawings PB-13-286-FL01 & PB-13-286-FL02. Appendix C. An electronic file with the foodlines and grid layers will be e-mailed.
- During final analysis the retention effects caused by the main road bridge as well as the dam wall / weir were incorporated.
- NB! It is important to note that any foreign / manmade obstacles (i.e. ponds, access walkways etc) in the watercourse may result in the alteration of the present specified floodline.
- It is hereby <u>certified</u> that the floodlines indicated on the attached contour layout drawings, along the watercourse with a catchment area exceeding one square kilometre, represent the maximum flood level likely to be reached on an average every 100 years, by floodwater in the watercourse.

SECTION 4: LIST OF APPENDICES

Appendix A:	Hydrology and hydraulic calculations spreadsheets
Appendix B:	Cross-sections with 1:100 year flow depths indicated with "blue" lines (scales adjusted to fit pages)
Appendix C:	Floodlines (indicated on layout drawings attached (reduced to fit A3)
Appendix D:	Floodline certificate

SECTION 5: REFERENCES

- a) Alexander WJR (1990) Flood hydrology for Southern Africa, SANCOLD
- b) HRU (1972) Design flood determination in South Africa, HRU Report 1/72, Wits University
- Kovaes Z (1988)
 Regional maximum flood peaks in Southern Africa, Z Kovaes, Technical Report IR137. Department of Water Afraits and Forestry
- d) Midgley DC & Pitman WV (1978) A deptin-duration-frequency diagram for point rainfall in Southern Africa, HRU Report 1/78, Wits University
- e) Op ten Noort & Stephenson (1982) Regional DDF-equations (epresenting the HRU 1/78 DDF-relationships)

Compiled by:

ful f

M.F. Joubert (Civil Eng Toch) F&B Consulting Engineering Services 23/08/2013 Date

Certified by:

P.J. Gouws (Pr Eng) – Reg No. 880061
PG Consulting Engineers
26/08/2013
Date

APPENDIX A

PG CONSULTING ENGINEERS (PTY) TTD

Appendix A1

Piet Retief Town - Portions 100, 123 & 126 (Upper catchment)

CALCULATION OF (RMF) REGIONAL MAXIMUM FLOOD AND THE RECOMMENDED (SEF) SAFETY EVALUATION FLOOD (TR 137 "DWAF" KOVACS - BASED ON THE FRANCOU-RODIER MODEL) EMPIRICAL METHOD

Ke - determined value if applicable
Ke - envolope value
Walersurface of FSL (ha.)
Areal catchment area (sq. km.)
is the dam: In the Southwest-Cape (Y/N) \$

0.0	Kg - vajue it deformine plinerwise "V"
5.2	28/34/4/46/5/52/54/56
N/A	In heature
14.818	Smaller than 10 use other mothod:
N	Important for region 5

Zone	Transition zone
RMF	452.5
Q200	294.1
Q100	238.9
Q50	188.3
Q20*	90.5
RDF	188.3
** RM7 - <>	384.9
** RMF <>	532.0

PMF (Grafic) PMF (K-max)	1297.1 625.4
PMF (Avg)	961.2
Q175	280.3
Q150	266.5
G125	252.7
Q75	221.2
Q25	110.1

	V.C.
PMP based	Ē
RMF based	Γ.
Average SEF	
SEE (Cot. II	

SEF (Cat. I) < 10km² - Q175

R	ecommended	SEF
	192.2	
	384.9	
	288.6	
	N/A	

Appendix A2

Piet Retief Town - Portions 100, 123 & 126 (Combined catchments)

CALCULATION OF (RMF) REGIONAL MAXIMUM FLOOD AND THE RECOMMENDED (SEF) SAFETY EVALUATION FLOOD (TR 137 "DWAF" KOVACS - BASED ON THE FRANCOU-RODIER MODEL) EMPIRICAL METHOD

(e - determined value if applicable
Kel-erwekipe volue
Watersorface of LSL (hp.)
Areal catchment area (sq. km)
is the dam in the Southwest-Cape $\{Y/N\}$?

0.0	Ke - value II determine ofherwise "0"
5,2	2,8/3.4/4/4.6/5/5.2/5.4/5.6
N/A	In noctare
\$7.73	Smaller than 10 use other methods
N	Important for region 5

Zono	Transition zone
RMF	500.4
Q260	325.3
Q100	264.2
Q50	208.2
Q20*	100.1
RDF	208.2
** RMF - <>	421.1
** RMF <> <>	594.6

N/A

PMF (Grafic) PMF (K-max)	1434.3 706.6
PMF (Avg)	1070.5
Q175	310.0
Q150	294,7
Q125	279.5
Q75	244.6
Q25	121.7

	Recommended	SEP
PMF based	2)4.1	<u> </u>
RMF based	421.1	
Average SEF	317.6	
SEF (Cat. l)		

< 10km² = Q175

:

RATIONAL METHOD # 1 Based on the Regional DDF-Equations representing the HRV 1/78 DDF-relationships (Dp tell Noorf & Stephention, 1982)

PROJECT

Fiet Reflet Development Ptn 100 & 123 (Upper catchment)

CATCHMENT CHARACTERISTICS		
(), ormoselia (A), <u>latel (A), 14894 (m)</u> Bitedfiles (va), <u>16863 (m)</u> Bitedfiles (m), <u>16863 (m)</u> (m)		5 &91) 112
Areu veigning Accord Ary Bus of As /	1.87	7
Visual y groun, <u>Z groun</u> Commission rest.		nm
Cverkand Row (Y/N) N Intel Concentration (I)() 이미 () () () () () () () () () () () () () (×≤0* 1 D(C

inigod (7/8)	- V
Constol (7/14)	N

······································			— <u>сі</u>						<u> </u>
Streepigess % XA	Factor Avg	Sol(Permaco3lly	%A	<u>100001</u>	Avg	Vagelalon	- 3A - 55	Lactor U.04	Avg 0,3%2
<1		Very Peanonbh		 .s.m		horest Plantation Dense Sush, Wood	3 5	0.6- 1	0,
ä i 1-3 i 100	i has i cosh		3 90	0.02		Pilo Sush			
	i i	Somi-Permetable Interemptable	1	0.26		Collyaina Land	40	0.11	0.044 ¦
2 10-30 3 2 30-50		111				Grassland			
		lotal %	102	C _E .	-0.(6)	Boyle Suttain	5	0	0.014
icia <u>100</u>	Cs <u>0.655</u>	Total <u>C Eva</u> ve	<u> </u>	0.221		<u>Toral</u> ≴	150	CV	0.080

			~
(idaar	for T < 2),	үесл	
.Secupation	34A	Factor	<u>2%A</u>
AMAK, Parks	12		0013
iuney litit < 2%		1	
andy 2-7%			
fondy sleep ≻7% _;			
Herevy solt \$41 < 2%	13	0.:50	C.D12
Hittervy soll 2 - 7%		1	
Sectory soll > 7%			
Cesidentica	. 40		0.160
ingle iarrily area	- 40	0.400	n. wa
(portment dweling)		<u>.</u>	<u> </u>
ech staal	. 33		2,150
löhu allada	30	0.631	0.155
icavy areas			L
Usness	10		0,085
)cwptnwn	10	0.650	0.085
leighbowthact	l		
heals	10	0.850	<u>0.085</u>
Tolai %	1111		1:530

or (21 to	50 Years					
5.A	Direction (Avg				
'C	2.490	0.545				
90	0.500	0.510				
nes		3.825				
p for $1 > 2$	ù Yeur <u>y</u>					
150	<u> </u>	1.000				
for 7 < 21		0.540				
Tota, C2 for 121 - 50						
²or ĭ > 50.		1.000				
	% <u>A</u> 'C 90 100 150 [0:1≤2] or 121 - 50	'C 2.450 90 -0.500 100: -0.500 n for 1 ≥ 20 Yeeps 150 1.002 for 7 ≤ 21 or 121 - 50				

juríace Conditog Factar () (1 0.85 Ľ

					STORM	RAINFALL						<u> </u>
Seed requercy				<u> </u>	<u>DRM DURA</u>	ito <u>n Ias a</u>	<u>JULTIP ES O</u>		YURS			5.22
	0.5	ic (h) =	0.55 ;	1.3	10 (h) =).1 <u>9</u>	i 20	<u>b(N = </u>	2.2D	3,0	<u>= (1 0 -</u>	
· · ·	D (mm)	ARF	li (meder)	Duremů	ARF	+ mm/h	D (mml	ARE	10003/02	0 (uns)	<u>ARL</u>	. Im White
i	3 :	0.970	55.49	35	6.525	. 35,17	4 <u>9 -</u>	1.020	20.94	<u></u>	1 1008	. 15.04
<u>- </u>	i	0.970	72.97	52	ç yan	46 27	61	1,000	27.57	_ 🔅 _	1.000)9.79
<u>⊢</u>	- 5 +	0.970	1 89.53	64	0.964	56.22	T 75	<u>. 1.000</u>	33.74	<u> </u>	. 1.020 j	24.37
		0.370	06.60	78	0.765	1 /0.17	· - 92	C20.1	41,78	· **	1.200	30.00
÷ 20+	<u></u>	0.970	14.00	105	0.985	92,35	121	1.0CD	55,00	.30	:.000	. 39.49
i <u>- 30</u>		0.975	175.24	127	0.995	i 11271	1 · 49	1.000	47.72	i iù	3.0.02	<u><8.62</u>
	- 125	0.970	220.6/	57	0.285	140.30	T- :34 ^{(**}	1.000	63,37	190	1.000	57 <u>84</u>
200	- 405	0,970	1 713.28		0,983	452.71	1174	1,000	249.58	640	1.000	193.57

		gUN-	OFF COTH					
Floors Termency (Yours)	<u> </u>	5	C 10	20	.50	100	230	PMP .
ID work	0.102	0.112	0122	0.136	0.[e5	0.204	2,244	0,590
$\frac{1}{1}$	1 2.162	; 0.166	D.179	0.197	0.237	0.300	0.000	0,300
Curchined C	0.274	0.220	Tin.362 T	0.004	0.425	0.504	0,544	C.8? <u>0</u>
C' adjused for Ad		·	· · ·		<u> </u>			· · · · · · · · · · · · · · · · · · ·
Fpgl adjusted grades	0.264	G.22C	0.300	0.334	<u>0.426</u>	D.504	<u>. 0.544</u>	0.890
		• PM ⁶ = 0	S I Crone	ix + Cv ma	2			

			PE.	AK DISCHA			·		
Г	[]and Frequency [⁹ nois]	2	5	I C .	20 1	<u> </u>	100	230	19-91-1
ŀ	0.5 !c	40.25	84.15	111.01	. (52.13	7/15.23	5 <u>71.72</u>	494.91	2616.17
	10 %	36.22	53.3B	70.43	96.52	161.92	235.95	313.99	1659.74
1	Q (m ³ /st)20 te	22.76	31.79	41.94	57.47	96.42	140.51	:86,98	985.36
Í	2.0 10	1 36,31	22.63	- 11 CE	41.27	59.24	<u>- 100,69</u>	15 <u>4.25</u>	7:9.40

	FI	LOOD VOLU	MES				
Food Requency (Yoors)	2 5	10	20	<u> </u>	190	200	i'w.r*
1 0.5 10	359 271 500 394	660 171	904.575	317 790	221 457	2,430,99	9 469 870
$\forall m^a\rangle = \frac{1.0 \text{ fc}}{5.0 \text{ fc}}$	227 294 917 468 123 239 109 040	418 793	578 742	94 <u>2 907</u> 575 408	1 464 1 <u>16</u> 835 540	1 111 57.5	5 277 421
- <u>20 kc</u> - <u>30 kc</u>	97 '26 13: 709		243.411	411/23	677 436	798 375	4 220 245

RATIONAL METHOD # 1 Based on the Regional DDF-Equations représenting the HRU 1/78 DDF-relationships (Op fan Nooti & Stephenson, 1982)

PROJECT

Piet Reflet Development Ptn 100 & 123 (Total catchment)

Colchement Area Total (A) 17,723 km3 Ellective (Ae) 17,730 km3 Donges Wolchement 4	5.610	kin:
pution we have to a feet of the second of th	104	T
Aradi weighting radiois: x+ (+) and a start of the 3 Maen Since IS	1.85	%
a (Ringli) V LIDOD C L LIDONA; <u>HOUNDARY IN</u> CONTRACTOR CONTRACTOR	627	DCDO
	1.14	hour
CVetand How (3/19) N glime of gardering libra (set	1 59.7	anit i

Island (MNI	Ϋ́
Coaștel (Y/NI	N

					<u> </u>	·		—· -¬
Stospies % 7A Factor			tector 1	.6%3	Vegraation Sprest Plankstion		Ha <u>qibi</u> Diuk	Avg 0.922
u <1 u 1-2 √2 3-10 √2 3-10	Very Pormoable DOVI Penneatic Semi Penneas)	3	0.00 0.14 0.24	0.144 0.144	Dense Buss, Wood Ithin Buss Carlingles: Land	10	c. 1	0.044
27 : 10-30 2	Total Solution		<u> </u>		ावडland Bane Surfecte ; Tatal क	. <u>5</u> 	908 	0/014
							•	

				C2
Phas	ler T < 21	Yoan		
Cecupation	1%A	Edutor	I wg	
Lawns, Parks	· 0		0.015	
Sandy #at < 27%		Į I		
Suncy 2 - 2% j			i l	
Sandy steep > 7%				
Heavy soistio* ≤ 27a	.11	0.150	0.015	
Horsey soll 2 - 75		ļ	l i	
Peopy on > 7%	_	<u>i</u>	·	
Residential	<u>40</u>		0.59	
Singh family uteu	40	0.420	0.162	
Apartment diveEria		L	ا·ا	
láctustri <u>a</u> l	30	!	0.185	
light areas	30	C,A52	0.175	
Heavy creas			<u> </u>	
Rsinoss	- ·2 .		0.085	
Dewntown	10	0.550	C 0.05	
Neighbo <u>whood</u>				
Sheets	$\Box_{i_{i_{j_{i_{j_{j_{j_{j_{j_{j_{j_{j_{j_{j_{j_{j_{j_$	0.850	0.565	
ି ତାର୍ଶ %	180	_	0.500	

			–							
Jrhan (ar 12) to 50 Years										
Occupation	% A	, Factor j	5.90							
Lowies	10	0,450	0.045							
Olha	70	0.9 <u>30</u>	U.‼ I0							
10*711 %	120		0.859							
Urac	n for I > %	Yeers								
Allightedad	<u> </u>	1.000 l	1.020							
TolorC2	0.540									
(ato C2 *	0,855									
30th C2 for T > 50										

_. .

Salace Constline Scaler (r) 0.35

					STO RM	RAINFALL						
Flood (requency	·			ŚT	<u>улм оц к/</u>	<u>JION (AS M</u>	utinia o					2.40
ln l	0.2	ito jbį e	0.28	<u></u>	" ta h¦ ⊐_		20	<u> </u>	2.32	<u> </u>	<u>) (i) = </u> ARI	U(rem/b)
Yeors) (mm)	ARF	11/20/22/12	$\mathcal{I}(mn)$	ARE	<u>! (mm/or</u>	<u> = (m) (</u>	<u></u>	1 <u>0 m/b</u>] 23.56	<u>u_rn</u> ::0	1:00	14.32
2	32	<u> </u>	\$3,40	40	C. <u>783</u>	<u> </u>	47-1	<u>1,000</u> 1,050	25.40	- 66 -	1.003	10.93
5	47	0.970	79.54	52	- 0.905	<u> 4430</u>	<u>61</u> 76	L.00	32.50	81	0.005	23.30
	52	<u></u>	66,87	65 <u>–</u>	0.985	. <u>54.79</u> = 67.45	່ ຕ	- 1000 ·	1 40.02	- 100 -	1,000	28.69
	64	0.97/1	106.95	ຍາ Lw	0.985 C.983	P8.77	122	1.000	52.66	132	1,000	37,77
<u> </u>	. 84	C. <u>575</u>	140.78	105	i 0.985	1 109.32	15	1.020	64.65	167	1.000	46.50
<u>bee</u>	<u>104</u>	0.975	17 <u>3,33</u> 213,39	122	0.995	134.58	180	i.::00	77.84	200	1.075	<u>- ///.25</u>
200 PME	125	0.370	690.02	513_	0,985	435.20	600	1.00	255,12	645	<u>: 030</u>	19512

Hood Reguency Foors)	2 <u>0.102</u> 0.142 0.764	RUN- 5 0.132 0.145 0.280	OFF C.OFFFICIENT 20 0.12? 0.138 0.178 0.137 0.507 1.334	50 0.167 0.257 0.426	130 0.204 0.504 0.504	200 0. <u>244 </u> 2.30 <u>0 </u> 6.544 _	<u>PMP</u> 0.8 <u>75</u> 0.920 0.390
s'), acjusted <u>for Ad</u> Pont adjusted D	C.254	0.250	0.300 0.394	0.420	0.504	0,344 _	C.8%

PMC+ Ca+ Cremax 4 Ck M9X

		PE	AK DIŞCHA	RGE			·	
Ecold Prequettoy (Years)	2	5	- 76 -	- 23	<u>, e</u>	105	<u>700</u>	PWP FORT 42
0.5 to	69.72	97.57	1/28.46	376 <u>.05</u>	292.36	400.39	577 13	50 <u>27.46 </u>
1.0 kg	43.97	61.41	\$1.02	111 03	186.28	271.45	363.22	1909.42
Q (m²/d)	26.09	36 43	42.05	5.5 A7	150-51	16 <u>.63</u>	2'4.79	1132.75
70 10	16.7G	26.12	i 34. <u>46</u>	47.23	72.24	L_115.46_	133.65	812.20

				FL	ο φαι γου	MES				·
1	Hood I	equency (Years)	2	5	10	20	50	ioc	<u>2411</u>	3644
ł	1	0.5 10	427 479	s) ⁶ 012	806.064	1106.885	1 555 355	2 700 (2)	3 573 77 3	18 996 553
		1.0 No	278 715	385 360	292 285	676 726	148 503	1 703 285	2 244 593 ! 244 642	15 981 342 7 107 341
	V (m²l	2/3 10	163.657	<u>208 818 -</u>	301 696	412 129	603 443	1,010,061	: 244 <u>642</u> 964 134	5 326 459
I		3.0 (c.	117 367	<u>, 140 922 -</u>	216,250	296.364	427 212	L (24 5 <u>20</u>	704124	3.00 - 20

THE CONSULTANCE CONSTRAINED SHOW THE

Utility Programs for Drainage
Flood calculations

Project a Analysie Norm of Descript Effense:	l hy: rivers ina nfatta:	MIY Jos Klipme Pice Ro	saelspruit def Towa unenis on	- Portica	s 109 &	123	Document	LEKPiet Ro		note ¹⁹⁴
Duter		26 Aug	ait 2013							
Primok 35	Ang si 2012	22512332	1963-55-5 1979 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 198	200			_			Page 1
Flouri Tree	terns fresh	yalat Ba	dirial Hill	341						
tele Area of a Inlemitic Fran cord, Leagth of Flow of a Reight di	liar m df site stid sat ares d sainfalt Laigest sh thar Massare s3	ALLAND		- 87 D - 111ps - 211ps - 211p - 211ps - 211ps	ndret Inneday Satiat 199716 IX Aw IX Aw IX Am IX	eula Tueu -	lipper Car Postilans I Is			
rainiail : Area disc				· Sata		tutes				
lawro fandy, 41 fandy, 45 Ctevy act	dessriptic el (22%) esg (22%) L. flat (42%) L. else (22%)	e io	Fisions Fiame Mane Mgbt In	isi ani i duncey	titestry 40 5 10 6	City Ridner Sulars	testre	10 0 11 0		
Factors of taken and Plat area 1973y Steep are	gaan .		Aros (b) Prosector Very pro versaal deal-pro Tepreses	Alty maskin	0.38 a		beah à tor beah à sui	rivated land	40 40	
Sun-off E Rand - C Cuban - C Calkan - C Cuban - C	et: et:c		Carallance (- 85.3 - 0.33 - 0.84 - 0.60 - 0.38				trains the point		
	rise of concerts thereal			1307 101	Ares	ge ac.by	Fatter TL	faceff acetificient (b)	Fish Ites 457(4)	
112 1.5 1.25 1.25 1.25 1.55 1.55 1.55 1.	C.99 C.95 C.95 C.95 C.95 C.95 C.95 C.95		5.6 1.1 1.1 1.1 11.1 11.1 20 Instatut	35.3 34.4 34.1 63.7	63.3 54.4 61.3 63.8 307.0 339.3		3.34 3.68 1.48 3.30 6.55 1.30 1.50	31.1 14.2 18.3 19.4 11.5 38.5 (71) Jug steep	84.33 76.16 55-30 535.33 161.41 329.63 htt Inperve	a

Chirolened using Phility Streptus for Losings 1.1.0 the contents projected were developed for the contents of for terms. Attempt every resonances which has been made an example the terms are concentre and collect the percent development for any comparing the light the terms of percents, physical the percent of any per-body are tell. Opported to 1233 INVERSION CO. we statistic the strengther because of a set body are tell. Strength of Light terms of the set of the set of the set of the set of the body are tell. Strength of Light terms of the set o

Utility Programs for Drainage Flood calculations

Project m			e Anniys	e (Comb	fired Cal	chmen	ts]		<	inob
Andyrel		H, Jui								CITE OF
Name of r			exispruit							
Description	m nisite: P	let Rø	def Town	- Pertion	is 100 &	123				
Fürnemz:		"Deer	ments an	d Setting	SECON	in o'Ms	Documents	LEK Piet Re	tief Hydrad	URY L
		bil.id		25203	S. S. C. S. C.	1000			N. C. S. S. C.	1.46
Desci			ist 2013							
			191 2015							
Private de A	Sales and the second	0.0.5	CARGO AN	2225				1.141		Pate
Quark Party	ivery Prairy	let by	Lona'. Het	ber.						
reject						alysis	iccations	istobasects!		
andpeed by and of riv					052400					
sanriptits					automalay.		Pestilons a			
ala				. 2013	raise		reading a			
ten of unt				. 11.1	23 3.00					
elietite e				- 0.0						
teas arrest	estatell it	entra -		- 665.						
length of 1 Devict wet	lagest esta	none	- M	* 8,43	Dail wate		2.0			
	Cor alors	. 10.0	aless.	- 104 J		a ante				
ainfahl re		19400	Saula .	a hile						
tes distei	Casties			 99.001 	4. 10. 1.	Ucta	64 JO % 5	akous U.B.		
	institution -									
8928	St 2325-221		desident.	the Lat:	incontry	anara -	441	20210		
andy, fint	14291	\$	Sever.					10		
	Eat I Sta		Blate alghe fo		9 40	A	texts 50	Ĩ.		
	steep (s7k)		Brony Se	drohmy	- <u>1</u>		an filmed	0		
Catebrant d	function -	- Warm	area 153	Easter St.						
factors als			Feergabo			Venet				
tabes sal 3	pene.		Area bei		· ?		briefs & for		11	
Cink ares		109	semestal fight-per		20	Genne		cloaced Land		
CARLY STARS		÷.	September 1	deler.		Marri			1	
										÷.
Weregen with	Contraction stans			- 0, 37	8172 m/m					
fun-off dag				2.00	5 8 5					
Ines1 - 01				+ 0.3	11					
tuban - ta				. 4.8						
in - nation				. 6.35						
Gueldenet				+ 1.2						
Lei KW, Te	ganti 2/28, 1	ion.	Personne 2	end read	, areiter	. and 1	and be delte	anyar pya boj	or retriall	£.
Latrada.	Time of		alet.	ATP	2000		Festar	Barnit	Perio	
fortas	OGGALITERS!			32396	inter	siler .	FL	a.m. holes		
	Cours		end (100	hin/f	9	193	105		
	edel allo			1999			11000		the state to post the	2
12	1.05		1.2	\$7.3	18.4		8.75	33.1	62.74	
	1.05		1.0	56.4	52.0		0.00	34.2	87.45	
	1.04		Y ACT	34.3	38.5		0.00	38.4	343.85	
1-53	5.84		15.3	\$5.0	101.		0.95	37.15	387.55	
	6.84		44.3	80.0	132.3	6. L	1,00	327	211.43	
21228								F.) for stars		

Orienteen using Uniting response for localings 1.1.0 The cofferer programs were developed for the conversions of the inner. Although every conversion willow has been made at assume this the propersy and astronom and calleded the process developers. Elevant 25, comparison that the of one shall be any continue, there provide the process developers, there every every statement of the one of the statement of the statement of the statement before every every the IC 1000 following it, we statements on an estimation procession statement of the stateme

Plan: Plan 03 Klipme	sselapruit AB_RS: 100 Profile: Q50		
E.G. Eiev (m)	1224.80 Flement	Left O3 Channel Right C	迥
Vel Fload (m)	1 0.75 Wt, n-Val.	<u> </u>	
W.S. Elev (m)	1224.05 Reach Lan. (in)	20.50 20.50 20.5	s0
Cr1 W.3. (m)	1224.20 Flow Area (m2)	45.60	_
E.G. Slope (m/m)	С.017234 Агев (тг2)	45.60	
Q Total (m3/a)	175.00 Flow (m3/s)	175.00	
Tep Width (m)	43.55 Top Width (m)	43.55	:
Vel Totel (rvs)	3.84 Avg. Vel. (m/s)	3.84	.
Max Chi Dpth (m)	2.05 Hydr. Depth (m)	1.05	
Conv, Total (m3/s)	1333.0 Conv. (v13/s)	133 <u>3.0</u>	
Length Wid. (m)	2B.5C Wotted Fer. (m)	44,08	
Min Ch El (m)	1222.00 Sinear (N/m2)	1/4.91	
Alpha	1.0D Stream Power (N/m s)	671.27	
Fratr Loss (m)	Cum Volume (1000 m3)	201.31	
C.A.E.Loss (m)	Gum SA (1009 m2)	124.54	

Plan: Plan 03 Küpmesselspruit AB (38: 100 Profile: G100) Channe! Right OB 1225.19 Element Left OB E.G. Elev (m) 0.035 0.89 Wt. n-Val. (m) beeH leV 20.50 20,50 20.50 1224.30 Reach Len. (m) W.S. Eav (m) 56.56 1224,40 Flow Area (m2) $\operatorname{Crit} W(S,\langle m\rangle)$ 58.86 0.017231 Area (m2) E.G. Sk<u>ope (m/m)</u> 237.00 237.00 Flow (m3/s) O Total (m3/s) 47.97 47.97 . Top Width (m) Top Wilth (m) <u>4.17</u> 4.17 Avg. Vel. (m/s) Val Tol<u>al (m/s)</u> 1,19 2.30 Hydr. Depth (m) Mark Chil Opth (m) 180<u>€,3</u> Conv. Total (m3/s) 1805,3 Conv. (m3/s) 48,54 20.50 Welled Per. (m) Longth Wtd. (m) 197.98 12,22.00 | Sheer (.V/m2) Min Ch<u>El (m)</u> 825,19 1,00 Stream Power (N/mis) Alpira 247.44 Cum Volume (1000 m3) Froin Loss (m) 137.88 Cum SA (1000.m2) C & E Loss (m)

Plan: Plan 03 Kilpmes	selapruit AB_RS: 99 Profile: Q50			· ,
E,G. Elev (m)	1223.66 Element	Lat. D5	Channer	Right OS
Vel Head (m)	0.44 Wt. n-Val.	ii	0.035	·
W.S. Elev (m)	1223.24 Reach Len. (m)	25.00	25.00 !	25.00
Citt W.S. (m)	1223.18 Flow Area (m2)	<u> </u>	59.43	··
5.G. Slope (rivin)	0.010527 Area (#12)	I:	59.43	
Q Total (m3/s)	175.00 Flow (m3/s)	<u></u>	175,00	!
Top Wildlh (m)	58.67 Tep Width (m)	<u> </u>	58.67	
Vol. Total (m/s)	2,94 Avg. Vol. (m/s)		2.94	
Mex Chi Dpth (m)	1.99 Hydr. Dopth (m)	·	1.01	_ ·
Corv. Total (m3/s)	1705 6 Ganv. (m3/s)		1705.6	!
Length Wild, (m)	25,00 Wetted Per. (m)	I	<u> </u>	
Min Ch El (m)	1221,25 Shaar (N/m2)		103.94	·,
Alpha	1, <u>60 Stream Power (N/mis)</u>	'	306.10	
Frain Loss (M)	0,25 Cum <u>Volume (1000 m3)</u>	·	197.01	
C&E1.cts (m)	0.01 Cum SA (1900 m2)	I I	120.30	

Plan: Plan 03 Klipmasselspruit AB RS: 99 Profile: Q100

E.G. Elev (m)	1224.01	Element	Lot: O3	<u>Çhannel</u>	Right OS
Vel Head (m)	0.66	Wt.n-Val,	. !	0.035	
W.S. Elev (m)	1223,35	Ruaci: Len. (m)		25.00	25,00
Crit W.S. (m)	1223.42	Flow Area (m2)	·· · ·	85 <u>,83</u>	
E.G. Slope (m/m)	D.D14 <u>125</u>	Area (m2)		65.83 [-	<u> </u>
G Total (m3/s)	237.00	Flaw (m3/s)	! I	237.00	

Plan: Phen D3 Kilpmes	<u>selspru</u> it_ AB_R <u>S: 99_ P</u> rofil⇒: 0.100 <u>(Contin</u> u	<u>,ed) </u>	
Top Width (m)	59.93 Top Width (m)		
Vellifota (m/s)	2.60 Avij, Vel. (m/s)	3.60	
<u>Max Chi Dyth</u> (m)		<u>1.10</u> ' <u></u>]	
j Conv. Total (<u>m3/s)</u>	1994.1 Conv. (m3/s)		
Length Wild- (m)	25.0(Wetted Per. (m)	<u>60.31 </u>	
Min_Ch El (m)	! 1221.25 Sheer (N/m2)	151.21	
Alpha	1.00 Stream Power (N/m s)	544 87 1	
Frein Lo <u>ss (m)</u>	0.28 Gum Voume (1000 m3)	242.08 [
C & E Los <u>s (m)</u>	0.00 Cum SA (1000 m2)	133.16	
Plan: Plan 03 _ Kipme	ssolsprult ABRS: 95 Profile: Q50		I
E.G. <u>Elev (m</u>)	1222.60 Element	Left 03 Channel Right OB	
į Vel Hoα¢ <u>(m)</u>	<u> </u>	0.035 !	
W.S. Elev (m)	1222.23 Reach Len. (m)	21.67 21.67	:
C/it W.S. (m)	1222.22 Flow Area (m2)		·
E.G. Slope (m/m)	0.0 <u>13792</u> Area (m2)		ł
Q Totel (m <u>3/s)</u>	175.00 Flaw (m3/s)	i	ļ
Top Width (m)	89.10 Top Width (m)	<u> </u>	
Vel Total (m/s)	2.73 Avg. Vol. (<u>1Vs)</u>		i
ฟระ Chi Dpfh (m)	2.23 Hydr. Depth (m)	0.73	ł
Conv. Total (m3/a)	. <u>1490.1</u> Corv. (<u>m3/s)</u>	··· + 1690.3 ·	-
Length Wtd. (m)	21.67 Woited Per. (m)	_ ·+ ^{89.44} +	
Min Ch El (m)	1220,00 Shear (N/m2)		ĺ
Aiphta	1.00 Stream Power (N/c) s)	264.64 '	ļ
From Coss (m)	0.30 Curr Valu <u>me (300</u> 0 m3)		_
C & E Loss (m)	0.00 Cum SA (1000 m2)		_
Plan: Plan 03 Klipma	esselspruit AB_RS; 98 Profile: Q*00	- <u></u>	-
T.G. Elev (m)	1222.84 Element	Loft OB Channel Right OB	<u>}</u>
Vel Head (m)	0.44 Wt. n-Val.	0,035	-
W.S. Elev (m)	1222.40 Reach Lot. (m)	21.67 21.67 21.67	┥
Crlt W.S. (m)	1222.40 Flow Area (m2)	<u></u>	!
E.C. Slope (m/lth)	D.013641 Area (m2;		-
Q Totel (m3/s)	237.00 Flow (m3/s)		-i
Top Width (m)	98.67 Top Width (m)	96.67	4
j Vel Toral (m/s)	2.94 Avg. Vel. (m/s)	<u>+</u> 2,94	1
Max Chi Dpth (m)	2.4D Hydr. Depth (m)	0.83	_
Conv. Total (m3/s)	2036.7 Conv. (m9/s)	2035. (
Length Wtd. (m)	21,67 Welted Per. (π)	97.02	
) Min Ch Fl (m)	1220,00 Shear (N/m2)		
Alpha	1.30 Stream Power (Nhn s)	324.38	
Frote Loss (m)	, Cum Volume (1000 ສ3)	234.98	
C & E Loss (m)	Cum SA (1000 m2)	126.52	

Plan: Plan 03 Kilpmes	salapruit AB_RS: 97 Profile: Q50		·	I
E.G. Elev (m)	1221.68 Element	Left OB	Çhanna'.	Rkiht OB
Vel Head (m)	0.33 Wt. n-Vel.		0.035	
, W.S. Elev (m)	1221.35 Reach Lan. (m)	22.25	22.25	22 <u>,25</u>
Crit W.S. (m)	1221.29 Flow Агва (m2)	· ·	68.32	·
E.G. Slopa (m/m)	C.010762 Area (m2)	ı —	68.32	
Q Totel (m3/s)	175.00 Flow (m3/s)		175.00	
, Top Width (m)	84.80 Top Witth (m)	!	_ 84.80	
Ve. Total (m/s)	2.56 Avg, Vel. (m/s)	!	2.56	
M ₂ x Chl Dpth (π)	2.15 Hydr. Depta (m)	<u> </u>	0,81	
Conv. Total (m3/s)	1686.9 Conv. (m3/s)		1686.9 }-	
Length Wild, (m)	22.25 Wetted Per. (m)	<u> </u>	85.05	· — · · · 1
Min Ch El (m)	1218.20 Shee (N/m2)	I I	84.78	I

Plan: Plan 08 – Kipmess	elspruit <u>A3_RS: 97_Profile: Q50_(Contigu</u> o	xl}	.—	
Alpha	1,00 Stream Power (N/m s)	i	217.14	
Froin Loss (m)	0.24 Oum Volume (1000 m3)		186,35	
C& E Loss (m)	0.00 Cum SA (1000 m2)	I	107.41	
				•
·• ·	els <u>prurt_AB_RS: 97Prof</u> ile: @100			
E.G. Elev (m)	1221.93 Element		Channel	<u>Right O</u> B
Vol Head (m)	D.5CVVt. n-Ve		0.035	
<u>W.S. E</u> lev (m)	1221.43 <u>Reach Len. (n.)</u>	22.25	22.25	. 22.25
Crit W.S. (m)	1221.47 Flow Area (m2)	· ·	75 <u>.66 </u>	···
E.G. Slope (m/ni)	0.014771 Area (m2)		75.66	
Q Total (m3/s)	237.00 + low (m3/s)		237.00 +	
Yop Width (m)	88,06 Top Width (m)	/_	86.06	·· 1
Vel Total (m/s)	3.13 Avg. Vel. (m/s)		3.13	
Max CN Dpth (m)	2.20 Hydr. Depth (m)		0.56	
Conv. Total (#13/s)	1950.0 , Conv. (m3/s)		1950.0 I	
Longth Wid. (m)	22,25 Wotted Per. (m)	·	B5.32	
Min Ch E! (m)	1219.20 Shear (Mm2)		124.10 j	ı
Alpha	1.00 Stream Power (N/m/s)		388.72	
From Loss (m)	0.32 Cum Valume (1000 m3)		229.67	!
C&ELoss (m) .	0,00 Cum SA (1000 m2)	· ·	119.52	
00000000		·		
Plan: Pla <u>n 03 – Kilpm</u> os	solsprult AB_RS; 96_Profile: Q50	·· · ·		
E.G. Elev (m)	1220,72 Exoment	Left DB	Channel	Right OB
Vel Head (m)	0,26 Wt. n-Val.	<u> </u>	0.035	
W.8, E'ov (m)	1220.46 Reach Lon. (m)	25.UO	25.00	26,00
Crit W.S. (m)	Flow Area (in2)	-		
E.G. Stope (m/m)	0.008623 Arce (m2)	^I .	77.14	
Q Total (m3/s)	i 175.00 Flow (m3/s)		<u>175.00</u> j	. <u> </u>
Top Width (m)	97.21 Top Width (m)	ŀ·	97.21	
Vel Tolal (m/s)	2.27 Avg. Vol. (mvs)		2.27	
Max Chi Optin (m)	2.16 Hydr, Dopth (m)	!	0.79	
, Conv. Total (m3/s)	1284.5 Conv. (m3/s)		1884.5 j	
Cength Wtd. (m)	25.00 Wottes Per. (m)	· <u> </u>	97.56	
Min Ch El (m)	1218.30 Shear (N/m2)		68,86	
	1,00 Stream Power (N/m s)	·	151.89	_
Alpha	j 0.22 Cum Volume (1000 m3) 1		180.10	
Froin Loss (m) C & P.Lase (m)	0.00 Cum SA (\$000 m2)	— ï		
Lo di (<u>chas ten</u>)	ii			
Plan: Plan 03 Klipme	ssespruil AB RS: 96 Profile: Q100			
E.G. Ekov (m)	1220.95 Eloment	Left OB	Channel	Right O
Vol1tead (m)	0.31 Witn-Va.		0,0 <u>36 '</u>	
W.S. Elev (m)	1220,64 _ Reach Len. (m)	25.00	25.00	25.00
Crit W.S. (m)	Flow Area (m2)	:	96.04 j	
E.G. Skept (m/m)	0.008823 Area (1\2)		96.04	
Q Tatal (m3/c)	237.00 Flow (m3/s)		237.00	
Top Width (m)	108.56 Top Width (m)		108.56	
Vel Totel (m/s)	2.47 Avg. Vel. (m/s)		2.47	
Max Chi Dpth (ns)	2.34 Htydr Depth (ra)		0.88	
Curv. Total (rv3/s)	2523.2 Corv. (m3/a)		2523.2	
Longth Wtd. (m)	25.00 Wetted Per. (m)		108.92	
	1218.30 Shear (N/m2)		76.20	
[!] Min C <u>a El (m)</u> Notes	1.00 Stream Power (N/m s)		188.25	
Alpha	0,22 Cum Volume (1900 m3)	ŀ — :	222.47	
Freth Less (nt)		F	110.92	
Ç&EL≎SS (N1)	0,00 Cum SA (1000 m2)			

i

Pian: Plan 03 Klipmess	selspr <u>uit AB_RS:95_Profile;Q5</u> 0			
E.G. Elov (m)	1219.64 Element	, Left OB	Chan <u>nd</u>	Righl OB
Vol Head (m)	0.50 Wt <u>n-Val.</u>		0.035	
W S, Elev (m)	5219.14 Reach Lan. (m)	21.00	21.00	21.00
Crt. W.S. (m)	1219.14 Flow Area (m2)	· · · ——,	6 3 <u>,14</u>	
E.G. Slope (reVin)	0.012845 Area (m2)		63.14	—
) Q Total (m3/s)	197.00 Flow (m3/s)	!	197,00	!
Top Wielh (m)	66.36 Tep Width (m)		66.38	
Vel Total (m/s)	3.12 Avg. Vd. (m/s)		3.12	·· 1
. Max Chi Dpth (m)	2.64 Hydr. Depth (m)	1	D.95	
Conv. Total (m3/s)	1738.2 Cenv. (m3/s)		<u>1738.2</u>	
Length Wild. (m)	21.00 Wested Per. (m)		66.70	· ·
May Ch El (m)	1216.50 Shear (N/m2)		<u>119</u> .13	
. Alpha	1.00 Stream Power (N/m s)		371.69	
Froto Loss (m)	6.27 Cum Volume (1900 m3)		173.02	
C& E Loss (m)	0,00 Cum SA (1000 m2)	+ ·		

;

Plan: Plan C3 - Klipmess	selspruli _AB_RS: 95 _Profile: Q100			<u> </u>
E.G. Elev (m)	1219,95 Element	Left C <u>B</u>	_ Ghann <u>ck</u>	Right OB
Vel Head (m)	0.55 Wt. n-Val.		0.035	
Vy S, E'ev (m)	1219.43 Reach Len. (亚)i	21.00	21.00	21.90
Critt W.S. (m)	1219.40 Flow Area (m2)		<u>B1.46</u>	<u> </u>
E.G. Stope (m/so)	0.012396 Area (m2)	-		·
Q Totai (m3/s)	268.00 Ykw (m3/s)	I	268.00	<u> </u>
Top Witth (m)	77.02 Top Width (m)		77.92	
Vel Total (rrVs)	3.29 Avg. Vel. (m/s)			— I
Max Chil Opth (sn)	2.00 Hydr. Depth (m)		1.08	
Conv. Total (m3/s)	2407 2 Conv. (m3/s)		2407.2	
Longth Wild. (m)	21.00 Wetted Por. (m)	i	77.43	· 1
Min Ch El (m)	(216.50 Shear (N/m2)	<u> </u>	127.87	
. Alpha	1.00 Stream Power (N/m s)		420,7D	
From Loss (m)	0.26 Cum Volume (1000 m3)		213.32	<u> </u>
C & E (Loss (m)	+0.00 C <u>um SA (100</u> 0 m2)		10 <u>3.89</u>	

Plan: Plan 03 Klipmes	selsprult _AB_RS: 94Prcfile: Q50		<u> </u>	<u> </u>
E.G. Elev (m)	1218.43 Element		Chavinel	
Vel Haad (m)	0.46 Wt.n-Val.	I.	0.035	
W.S. Elev (m)	. 1217.96 Reach Lois. (m)	21. <u>50</u>	21 <u>.50</u>	21.50
Unt W.S. (m)	1217.98 Flow Area (m2)		85.36	- —
E.C. Slope (m/m)	0.013206 Area (I02)	I	65.38	I
Q Totai (m3/s)	197.00 Flow (m3/s)		197.00	
Tep Wildsh (m)	74.24 Top Width (m)		^{74.24} L	I
Vol 1 dtal (m/s)	j 3.01 Avg. Vel. (m/s)		3.0*	
Max Chil Doth (m)	2.48 Hydr, Depth (m)		C.8D	
Conv. Total (m3/s)	1710.4 Conv. (m3/s)		1710.4	· 1
Longlin Wtd. (m)	21.50 Wohed Per. (m)		74.57	
Min Ch El (m)	1215.50 3heer (N/m2)		114.03	'
Alpha	1.00 Stream Power (N/m a)		343.70	
Froto Loss (m)	1 0.31 Cum Volume (1000 m3)		167.75	
C & E Luss (m)	0.02 Cum SA (1009 m?)		84,92	
		· ·	·	

Plan: Plan C3 Ktpmesselspruit AB RS: 94 Profile: Q100 LeiLOB Channe: Right OB 1218.72 Eiement 0.43 Wt. n-Val. E.G. Elev (m) 0.035 Vol Flead (m) 1218.29 Reach Lon. (cr) 21.50 21.50 21.50 W.S. Elev (m) 91.80 1218,22 Flow Area (m2) _____Crit W.S._(m)___ ... 0.010085 Area (m2) 268.00 Flow (m3/s) 91,80 E.G. Slope (m/m) 268.00 Q_Total (mD/s) i

Plan: Plan 03 Klipmesse	sapruit A <u>B_RS: 94 Profile: Q100 (Contin</u>	uçd)		I
, Tap Width (m)	89.10 Top Width (m)		89.10	I
Vel Total (nvs)	2,92 Avg. Vel. (n/s)		2.92	
Mex Chi Upih (m)	2.79 Hydr. Depth (m)	<u> </u>	1.03	·
Conv. Tula' (m3/s)	2668.7 Conv. (m3/s)		2668.7	
Length Wtd. (m)	21.50 Wetted Pcr. (m)		<u> </u>	
Min Ch Er (m)	1215.50 Sheer (N/m2)		<u>404.50 j</u>	i
Aloha	1.00 ; Stream Power (N/mis)		296.34	
Froto Loss (PA)	0.14 Cum Volume (1000 m3)		206.67	
	0.05 Gum SA (1000 mZ)	["	94.28	
jC&E <u>Loss (m)</u>				
Play: Plan 03 Klipmess	elspruitAB_RS; 93 Profile: Q50			
E.G. Elev (m)	1217.35 Element	Lett CB	Channel	Right OB_
i Vel Head (m)	0.07 W1. n-Vel.		0.035 [
W.S. Elev (m)	1217.28 Reach Len. (m)	22.33	22.93	22.33
	Flow Area (m2)		168.59	. –i
Cult W.S. (m)	0,000746 Area (m2)		165.59	
E.G. <u>Slope (m</u> /m)	197.00 Flow (m3/s)	- -	197.00	I
Q Total <u>(m3/s)</u>		· [— I
Top Width (m)	88.71 Tep Width (m)		1.18	
[!] _Vel Total (m/s)	<u>1.13</u> Avg. <u>Ve. (m/s)</u>		1.85	· ·-
Max C <u>hi Dpth (</u> m)	<u>s,28</u> Hydr. Depth (::)	·	7201.0	
Corv. <u>fotal (mS/s)</u>	7201.0C <u>onv. (m</u> 3/a)			<u> </u>
Longth <u>V/14. (m)</u>	22.33 Wotted Per. (m)		89.52	
Min Ch El (m)	1213.00 Sheer (N/in2)		18,66	
Alpha	1.03Stream Power (N/mis)	<u> </u>	+6,15	<u> </u>
Freen Los <u>s (m)</u>	0.02 Cum Volume (1000 n3)	·	155.11	— · i
G & E Loss (m)	0.00 Cum SA (1000 m2)	!	74.61	
	eelspru <u>it AB_RS: 93</u> Profile: Q100		<u></u>	 Diekt OR (
¹ R.G. Elev (m)	<u>1218.31 Flement</u>	l_eft OB	Channel	Right. <u>OB</u>
Vel <u>Head (</u> m)	0.05 Wt. n-Val.	'	0.035	
W.S. Elsv (m)	1218.26 Reach Len. (n)	22.03	22.33	22.33
Crit W.S. (m)	Flow Area (m2)		262.45	·· 1
E.G. Slope (π/m)	0.000401 Area (m2)	I	282.45	
Q Total (m3/s)	268.00 Flow (m3/s)		268.00	· :
Top Width (πι)	109.22 Tap Width (m)		109.22	
Vel Total (m/s)	1.02 Avg. Vel. (m/s)		1.02	
Mex Chi Dpth (m)				
	5.26 Hydr, Depth (m)	· i	240	·
Conv. Total (m3/a)		'	13 <u>376.4</u>	!
Conv. Tots <u>i (m3/s)</u>	13376.4 Conv. (m3/s)	· '		
Length Wtd. (m)	13376.4 Co <u>rv. (m3/s)</u> 22.33 Wetred Par. (m)	· ' · -	13 <u>376.4</u> 110.1 <u>5</u>	– . i
Length Wtd. (m) Min Ce El (m)	13376.4 Co <u>(v, (m3/s)</u> 22.33 Weted Par. (m) (213.00 Shear (N/m2)	· '	13 <u>376.4</u> 110.15 9 38	
Length Wtd. (m) Min Ce El (m) Alpha	13376.4 Corv. (m3/s) 22.33 Wetred Par. (m) <2'3.00		13 <u>376.4</u> 110.1 <u>5</u> 9 38 <u>9.58</u>	
Length Wtd. (m) Min Co El (m) Alpha Froth Loss (m)	13376.4 Corv. (m3/s) 22.33 Weted Par. (m) (213.00 Shear (N/m2) 1.00 Stream Power (N/m s) 0.01 Cum Volume (1000 m3)	· ' · · · _ · · _ ·	13 <u>376.4</u> 110.15 9 38 <u>9.58</u> 183.33	
Length Wtd. (m) Min Ce El (m) Alpha	13376.4 Corv. (m3/s) 22.33 Wetred Par. (m) <2'3.00		13 <u>376.4</u> 110.1 <u>5</u> 9 38 <u>9.58</u>	
Length Wtd. (m) Min Co El (m) Alone From Loss (m) C & E Loss (m)	13376.4 Conv. (m3/s) 22.33 Weted Par. (m) (213.00 Shear (N/m2) 1.00 Stream Power (N/m s) 0.01 Cum Volume (1000 m3) 0.00 Gum SA (1000 m2)		13 <u>376.4</u> 110.15 9 38 <u>9.58</u> 183.33	
Length Wtd. (m) Min Ch El (m) Alpha Freth Loss (m) C & E Loss (m) Plan: Plan 03 Kipm <u>er</u>	13376.4 Coriv. (m3/s) 22.33 vi/eted Par. (m) (2'3.00 Shear (N/m2) 1.00 Stream Power (N/m s) 0.01 Cum Volume (1000 m3) 0.00 Gum SA (1000 m3) 0.00 Gum SA (1000 m3)		13 <u>376.4</u> 110.15 9 38 <u>9.58</u> 183.33	
Length Wtd. (ch) Min Ch El (n) Alpha Freth Loss (m) C & E Loss (m) Plan: Plan 03 Kipmer E.G. Elev (m)	13376.4 Co <u>(v, (m3/s)</u> 22.33 Wethed Par. (m) (2'3.00 Shear (N/m2) 1.00 Stream Power (N/m s) 0.01 Cum Volume (1000 m3) 0.00 Gum SA (1000 m2) 0.00 Gum SA (1000 m2) ssee spruit AB_RS: 92 Profile: Q50 1217.30 Element	· · · · · · · · · · · · · · · · · · ·	133 <u>76.4</u> 110.15 9 38 <u>9.58</u> 183.33 80.94 1	
Length Wtd. (m) Min Ce El (m) Alpha Freth Loss (m) C & E Loss (m) Plan: Plan 03 Kopmer e.G. Elev (m) Vol Heed (m)	13376.4 Corv. (m3/s) 22.33 Wetred Par. (m) <2'3.00	·	13 <u>376.4</u> 110,15 9 38 <u>9,58</u> 183, <u>33</u> 80,84 [Channel 0.035	
Length Wtd. (ch) Min Ch El (n) Alpha Freth Loss (m) C & E Loss (m) Plan: Plan 03 Kipmer E.G. Elev (m)	13376.4 Co <u>(v, (m3/s)</u> 22.33 Wethed Par. (m) (2'3.00 Shear (N/m2) 1.00 Stream Power (N/m s) 0.01 Cum Volume (1000 m3) 0.00 Gum SA (1000 m2) 0.00 Gum SA (1000 m2) ssee spruit AB_RS: 92 Profile: Q50 1217.30 Element		13 <u>376.4</u> 110.15 9 38 <u>9.58</u> 183.33 183.33 20.84 [

217.1B 1215.85 Flow Asse (m2) 217.18 197.00 0.000520 Area (m2) E.G. Sloce (m/m) 197.00 Flow (in3/s) Q Total (m3/s)

13D.88 Top Width (m)

8638.2 Conv (m3/s)

1212.90 Shear (N/m2)

0.91 Avg. Vel. (m/s)

4.36 Hydr. Depth (m)

50.00 Wetted Por. (m)

Top Wroth (m)

Vel Total (m/<u>6)</u>

Max Chi Dpth (m)

Conv. Total (m3/s)

Length Wtd. (m)

I Min Ch El (m)

130,85

0.91

1 66

2638.2

1<u>32.22</u> 8.38

	espruit AB RS: 92 Profile: Q50 (Continu		7.60	— I
Alotia	1,00 Stream Fower (N/m s)	· !	142.32	<u> </u>
Froth Loss (m)	Cum Volume (1000 m3)		67.30	· ·
C&ELoss <u>(m)</u>	Cum SA (1000 m2)			
Plan: Plan 03 – Kliaroessi	cisprinit AB_RS: 92 Profile: Q100			
E.G. Elev (m)	1218.28 Element	Left O3	Channel	Right 03
Vel Head (m)	0.03 Wt.n-Vel.		0.035	
W.S. Elev (m)	1218.26 Reach Lan. (m)	50.00	50.00	50.00
<u>V(.5. Elevin)</u> C/tW.S. (m)	1216.09 Flow Area (m2)		357.56	
	0.000217 Area (m2)	:	357.58	
(f. <u>Q. Slepo</u> (m/rr.)	268.00 Flow (m3/s)		268.00	I
Q T <u>otel (m3/s)</u> Can Wild's (m)	148.93 , Top Width (m)			
<u>i'cp Width (m)</u>	0.75 Avg. Vel. (m/a)	— · ·—	0.75	!
Vel Total (m/s)	5.35 Hydr. Depth (m)		2.40	
Max Chil Dpth (m)	18199.8 Conv (m3/s)	·	18139.8	
Conv. Tala' (m3/s)			150.39	—— I
Length Wtd. (m)	<u>50.00</u> Weted Per. (ii)	I	ä.06	··
<u>Min Ch El (m) <u>l</u></u>	1212.90 Shear (N/m2) 1.00 Stream Power (N/mt s)		3.79	· i
Alpha Curran and ()	1.00St <u>ream Power (N/m s)</u> Cum Volume (1000 m3)	· <u> </u>	162.61	
Frotr Loss (m)		+	72,16	— i
C& <u>ELos</u> s(m)]	Cum SA (1000 m2)	! .	<u> </u>	. <u> </u>
Plan: Plan 03 Klipmes:	selsonuit AB RS: 61_Profile: Q50			
E.G. Elev (m)	1215.02 Eloment	Lot OB	Channel	Right GB
Vel Road (m)	0,47 Wt. n-Val.		0.035	
W.S. Eluv (m)	1214.55 Rasch Lon. (可)	23.29	23.29	23,28
Grit W.S. (m)	1214.56 Flow Area (m2)	1	65.18	
E.G. Slope (m/m)	0.012901 , Area (m2)		65.18	·
Q Tutai (m3/s)	197.00 Flow (m3/s)		197.00	
Top Width (m)	72.24 Tap Width (m)	·	72.24	
VerTotal (m/s)	3.02 Avg. Vel. (m/s)	· I	3.02	_
Max Ch! Dpth (m)	1.66 Hydr. Capth (m)	·	0,80	i
Conv. Totai (m3/s)	1734.4 Conv. (m3/a)	· <u> </u>	1/34.4	
Lungth Wtd. (m)	23.29 Woted Per. (m)	- +	72.52	
· · · · · · · · · · · · · · · · · · ·	1212.70 Shear (N/m2)	·t.	113.71;	i
Min Ch <u>El (m)</u> Alpha	1.00 Stream Power (N/m s)	<u> </u>	343.07	
····	· · ·	⊢ ·+-	-	I
Froin L <u>oss (n</u> a)	0,30 Cum Volume (1000 m3)	⊢ · †-	<u>13</u> 5.26 -	·
····	· · ·	- · †· -	-	· · ·
Froin L <u>oss (m</u>) C & E Lo <u>ss (m)</u>	0,30 Cum Volume (1000 m3)	 	<u>136.26</u> 62.23	·
Froin L <u>oss (m)</u> C & E Loss (m) Plan: Plan 03 Kliomee	0.00 Cum <u>Volume (1000</u> m3)		<u>136.26</u> 62.2 <u>3</u> <u>Channel</u>	
Froin L <u>oss (m)</u> C & E Loss (m) Plan: Plan 03 Kliomes E.G. Elov (m)	0,30 Cum Volume (1000 m3)	 I ^{^−} _{La(L} OB [^]	<u>136.26</u> 62.2 <u>3</u> <u>Channel</u> 0.035	
Froin L <u>ross (m)</u> C & E Loss (m) Plant Plan 03 Klipmes E.G. Elev (m) Vel Head (m)	0,30 Cum Volume (1000 m3) 0.00 Cum <u>SA (1000 m2)</u> secispruit <u>AB RS: 91 Profile: Q100</u> 1 <u>215.33 Elemont</u>	└──── └── └───└aſLOB	<u>136.26</u> 62.2 <u>3</u> <u>Channel</u>	Ri <u>cht O</u> B
Froin L <u>ross (m)</u> C & E Loss (m) Plan: Plan 03 Klipmes E.G. Elev (m) Vel Head (m) W.S. Elev (m)	0.00 Сит Volume (1000 m3) 0.00 Сит SA (1000 m2) secispruit AB RS: 91 Уто <u>file: Q100</u> <u>1215.33</u> Element 0.55 Wt. n-Ve.		<u>136.26</u> 62.2 <u>3</u> <u>Channel</u> 0.035	
Froin L <u>ross (m)</u> C & E Lo <u>ss (m)</u> E.G. Elev (m) Vel Head (m) (W.S. Elev (m) <u>CritW.S. (m)</u>	0.00 Cum Volume (1000 m3) 0.00 Cum RA (1000 m2) sscispruit AB_RS: 91 Profile: Q100 1215.33 Element 0.55 Wt. n-Val. 12(4.78 Reach Len. (m) 12'4.78 Flow Area (m2)		<u> </u>	
Froin Loss (m) C & E Loss (m) Plan: Plan 03 Kliomes E.G. Elov (m) Vel Head (m) W.S. Elov (m) Chi W.S. (m) F.G. Slope (mvm)	0.00 Cum Volume (1000 m3) 0.00 Cum SA (1000 m2) isolspruit AB_RS: 91 %rofile: Q100 1215.33 Elemont 0.55 Wt. n-Va'. 1214.78 Resch Len. (m) 12*4.78 Flow Area (m2) 0.012176 Area (m2)		Channel 62.23 Channel 0.035 23.28 81.75 81.75 81.75 268.00	
Frolin Loss (m) C & E Loss (m) Plant Plan 03 Kliomee E.G. Elev (m) Vel Head (m) W.S. Elev (m) Chi W.S. (m) F.G. Slope (mvm) Q Total (m3/s)	0.30 Cum Volume (1000 m3) 0.00 Cum RA (1000 m2) isolspruit AB_RS: 91 Profile: Q100 1215.33 Elemont 0.55 Wt. n-Va'. 12(4.78 Resch Len. (m) 12*4.78 Flow Area (m2) 0.012176 Area (m2) 268,00 Flow (m3/s)		Channel 62.23 Channel 0.035 23.29 81.75 81.75	
Froin Loss (m) C & E Loss (m) Plan: Plan 03 Kliomee E.G. Elov (m) Vel Head (m) W.S. Elev (m) C6W.S. (m) F.G. Slope (m/m) Q Total (m3/s) rop Width (m)	0.00 Cum Volume (1000 m3) 0.00 Cum SA (1000 m2) isolspruit AB_RS: 91 %rofile: Q100 1215.33 Elemont 0.55 Wt. n-Va'. 1214.78 Resch Len. (m) 12*4.78 Flow Area (m2) 0.012176 Area (m2)		Channel 62.23 Channel 0.035 23.28 81.75 81.75 81.75 268.00	
Froin Loss (m) C & E Loss (m) Plan: Plan 03 Kliomes E.G. Elov (m) Vel Head (m) W.S. Elov (m) CritW.S. (m) F.G. Slope (m/m) Q Total (m3/s) Top Width (m) VelTotal (m/s)	0.30 Cum Volume (1000 m3) 0.00 Cum SA (1000 m2) secispruit AB RS: 91 Profile: Q100 1215.33 Element		Channel 62.23 0.035 23.29 81.75 81.75 268.00 76.77	
Froin Loss (m) C & E Loss (m) Plan: Plan 03 Kliomes E.G. Elev (m) Vel Head (m) W.S. Elev (m) CritW.S. (m) F.G. Slope (m/m) Q Total (m3/s) Cop Width (m) Vel Total (m/s) Max Chi Opth (m)	0.30 Cum Volume (1000 m3) 0.00 Cum SA (1000 m2) secispruit AB RS: 91 Profile: Q100 1215.33 Element		<u>Channel</u> 62.23 62.23 0.035 23.29 81.75 81.75 268.00 76.77 3.28	
Frein Loss (m) C & E Loss (m) Plan: Plan 03 Klipmes E.G. Elev (m) Vel Head (m) W.S. Elev (m) Crit W.S. (m) F.G. Slope (mvm) Q Total (m3/s) Cop Width (m) Vel Total (m/s) Max Chi Opth (m) Donv. Total (m3/s)	0.00 Сит Volume (1000 m3) 0.00 Сит SA (1000 m2) secispruit AB_RS: 91 Утоfile: Q100 1215.33 Element 0.55 Wt. n-Ve. 12(4.78 Reach Len. (m) 12*4.78 Flow Area (m2) 268.00 Flow (m3/s) 76.77 Top Width (m) 3.28 Avg. Val. (m/s) 2.08 Hydr. Death (m) 2428.7 Conv. (m3/s)		<u>Charnol</u> 62.23 62.23 0.035 23.29 81.75 81.75 <u>81.75</u> 268.00 <u>76.77</u> 3.28 1.06	
Frein Loss (m) C & E Loss (m) C & E Loss (m) Plan: Plan 03 - Klipmes E.G. Elev (m) Vel Head (m) Chi W.S. Elev (m) Chi W.S. Elev (m) Chi W.S. Elev (m) Chi W.S. Elev (m) Q Total (m3/s) Cop Width (m) Vel Total (m/s) Max Chi Opth (m) Donv. Total (m3/s) Length Wtd (m)	0.00 Сит Volume (1000 m3) 0.00 Сит SA (1000 m2) secispruit AB_RS: 91 Утоfile: Q100 1215.33 Element 0.55 Wt. n-Vet. 1214.78 Reach Len. (m) 1214.78 Flow Area (m2) 0.012176 Area (m2) 268.00 Flow (m3/s) 76.77 Top Width (m) 3.28 Avg. Val. (m/s) 2.08 Hydr. Death (m) 2428.7 Conv. (m3/s) 23.29 Wetted Per. (m)		<u>Charnol</u> 62.23 62.23 0.035 23.29 81.75 81.75 268.00 76.77 3.28 1.06 2428.7	
Frein Loss (m) C & E Loss (m) C & E Loss (m) Plan: Plan 03 - Klipmes E.G. Elev (m) Vel Head (m) C M.S. Elev (m) Chi W.S. Elev (m) Chi W.S. Elev (m) Chi W.S. (m) F.G. Slepe (m/m) Q Total (m3/s) Cop Width (m) Vel Total (m/s) Max Chi Opth (m) Bonv. Total (m3/s) Length Wid (m) Min Ch El (m)	0.00 Сит Volume (1000 m3) 0.00 Сит SA (1000 m2) secispruit AB_RS: 91 Утоfile: Q100 1215.33 Element 0.55 Wt. n-Vet. 1214.78 Reach Len. (m) 124.78 Flow Area (m2) 0.012176 Area (m2) 268.00 Flow (m3/s) 76.77 Top Width (m) 3.28 Avg. Val. (m/s) 2.08 Hydr. Death (m) 2428.7 Conv. (m3/s) 23.29 Wetted Per. (m) 1212.70 Shear (N/m2)		<u>Charn</u> ol 62.23 62.23 0.035 23.28 81.75 81.75 268.00 76.77 3.28 1.06 2428.7 1.06 2428.7 77.10	
Frein Loss (m) C & E Loss (m) C & E Loss (m) Plan: Plan 03 - Klipmes E.G. Elev (m) Vel Head (m) Chi W.S. Elev (m) Chi W.S. Elev (m) Chi W.S. Elev (m) Chi W.S. Elev (m) Q Total (m3/s) Cop Width (m) Vel Total (m/s) Max Chi Opth (m) Donv. Total (m3/s) Length Wtd (m)	0.00 Сит Volume (1000 m3) 0.00 Сит SA (1000 m2) secispruit AB_RS: 91 Утоfile: Q100 1215.33 Element 0.55 Wt. n-Vet. 1214.78 Reach Len. (m) 1214.78 Flow Area (m2) 0.012176 Area (m2) 268.00 Flow (m3/s) 76.77 Top Width (m) 3.28 Avg. Val. (m/s) 2.08 Hydr. Death (m) 2428.7 Conv. (m3/s) 23.29 Wetted Per. (m)		<u>Channol</u> 62.23 62.23 0.035 23.29 81.75 81.75 268.00 76.77 3.28 1.06 2428.7 77.10 225.60	

Plan: Plan 03 Kipmes:	selspruit AB RS: 90 Profile: Q60	
, E.G. Riev (m)	1209.35 ; Elament	Lott OB Channel Right OB
Vol Head (m)	0.29 Wt. p-Val.	0.035
W.S. Elev (m)	1208.06 Resol Lsn. (sr.)	20.00 20.09 20.00
C/it W.S. (m)	Flow Area (m2)	62.39
E.G. Slope (m/m)	0,005099 Area (m2)	82.39
Q Toss' (m3/s)	197.00 j Flow (m3/s)	197.00
Top Width (m)	64.06 Top Wigh (m)	64.03
Ve' Totsl (m/s)	2.39 Avg. Vol. (m/s)	2,39
Max Chi Dpth (m)	2.36 Hydr. Depth (m)	
Conv. Total (m3/s)	2758.7 Conv. (m3/s)	2758.7
Length Wid. (m)	20.00 Welled Pcr. (m)	64.94
Mtn Ch El (m)	1205.70 Sheer (N/m2)	63.44
Alpha	1.00 Stream Powor (N/mis)	151,70
From Loss (m)	0.15 Cum Volume (1(000 m3)	
C&ELass (m)	0.02 Cum SA (1000 m2)	20.35

•

Plan: Plan 03 Klipmes	solsaruit AB	RS: 90 Pro <u>file: Q100</u>			
E.G. Elev (m)	1208.67		Luft OB	Channel	Right OB
Vel Head (m)	0,39	Wt. r-Val.		0.035	
W.S. Elev (m)	1206.29	Reach Lon. (m)	20.00		2 0 (0)
Crit W.S. (m)		Flaw Area (m2)		97.24	
E.G. Slops (m/in)	0.005999	Area (m2)		97.24	· —;
Q Total (m3/e)	268.00	Flow (m3/s)		268.00 [!]	
Tep Width (m)	69.00	Top Width (m)		69. <u>00</u>	
Vel Total (m/s)	2.76	Avg. Vel., (m/s)	<u> </u>	2.76	·
Max Chi Opth (m)	2.58	Hydr Depth (m)		1.41	-
Conv. Tota: (m3/s)	3460.0	Cony, (m3/s)	۱ <u></u> ۱	3460.0	
Length Wtd. (m)	20.00	Wetted Per. (m)		69,97	
Min Ch El (11)	1205.70	Shear (N/m2)			. !
Alpha	1.00	Stream Power (N/m s)	I	225 34	
Froin Loss (m)	5.16	Cum Volume (1000 m3)		24.59	
C&ELoss (m)	Ū,C2	Cun: SA (1000 m2)	<u> </u>	22.61	I

Plan; Plan 03 – Klipmes	selspruit AB RS; 59 Profile; Q50			
E.G. Elev (m)	1207.25 Element	Left OB	Channe.	Kight OB
Voi Head (m)	1.32 Wt, n-Val.	·	D.035	
; W.S, Elev (m)	1205,94 Reach Lea. (m)	22 <u>50</u>	22.50	22,50
Crit W.S. (m)	1206.35 Flow Area (m2)	· .	38.73	
E.G. Slope (rwin)	0.035109 Area (m2)	L	38.73	-
Q Tolal (m3/s)	197.00 Flow (m3/a)	l. l_	197.00	
Top Width (m)	41.87 Top Width (m)	I	41.67	
, Vel Total (mvs)	5.09 Avg. Vel. (m/s)		5.09	
Max Chi Dp:h (m)	1.53 Hydr. Depth (m)	ı <u> </u>	0.93	· '
Conv. Tolai (#13/s)	1051.4 Cony. (m3/s)		1051.4	
Length Wtd. (m)	22.50 Wetled Per (m)	ļ '	41.81	
Min Ch El (m)	1204.40 Shear (N/m2)		318, <u>88</u>	
; Alpha	1.00 Stream Power (N/m s)	<u> </u>	1622.08	<u> </u>
Freth Losa (m)	0.53 Cum Volume (1000 m3)	<u> </u>	<u> </u>	
C & E Loss (m)	0.06 Cum SA (1000 m2)	<u> </u>	16,67	I

Plan: Plan 03 Klipmesselspruit AB_RS: 89 Profile: Q100

Plan; Plan 03 Klipmes	selspruit AB	RS: 89 Profile: Q100				
E.G. Elev (m)	1207.63	Element	i	Laft OB	Channal L	Rig <u>hi OB</u>
j Vel Heac (m)	1.43	WL n-Vai.			0,035	
W.S. Elev (m)	1206.20	Reach Len. (m)	!	22.5D	22.50	^{22.50}
Crit W.S. (m)	1206.66	Flow Area (m2)			50.53	
E,G, Slope (m/m)	0,031210	Area (m2)		· ·I	56 <u>.53</u>	
Q Total (m3/s)	268,00	Flow (m3/s)]	265.00	

Piant Plan 03	Klipmesselspruit	AB RS: 89	Profile: Q100 (Continued)

Pian; Plan 03 Klipmes	selspruit AB	<u>RS: 89 Profile: Q100 (C</u>	.on <u>tinued)</u>		_
Top Width (m)	46.75	Top Width (m)		48.75	
Vel Total (m/s)	5,30	Avg. Vol. (m/s)		5.30	
Max Chi Doth (m)	1,80	Hydr. Depth (m)		1.08	
Conv. Total (m.3/s)	1557.0	Conv. (m3/s)		:517.0	
Length Wtd. (m)	22.5D	Welled Per. (m)		46.92	
Min Ch El (m)	1204.40	Shear <u>(N/m2)</u>	<u> </u>	329.61	
Aloha	1.00	Stream Power (N/m s)		1745.04	· [
Fretri Less (m)	0.48	Cum Volume (1000 mS)		., 20.14	
C & E Loss (M)	0.08	Cum 8A (1000 m2)		18.65	-

... _____ .

Plan: Plan 03 Klipmesseisphalt AB KS: 88 Profile: Q50

	<u> </u>					
E.G. Elev (m)	1206.14	Elenvent	. j	Left OB	Channel	Right OB
. Vel Hoad (m)	0.80	Wt. p-Vel.			0.035	· _
W.S. Elev (m)	1205.33	Reach Lan. (m)		21.33	21.33	21.33
Crit W.S. (m)	1205.57	Flow Area (m2)		'	<u>. 49.59</u>	
E.G. Slope (m/m)	0,026791	Area (m2)			49, <u>59</u>	
O Total (m3/s)	197.0D	P(ov (m8/s)	·		197.00	
Top Width (m)	62.91	Tep_Width (na)			62.91	
Vel Total (m/s)	3.97	Avg. Vel. (m/s)	·		3.97	
Max Chi Opth (m)	2.03	_i H <u>ydr. Depta (m)</u>			0.79	<u> </u>
Conv. Total (m3/s)	1 203.δ	Conv. (m3/s)	<u> </u>		1203.6	
Length Wld. (m)	21.33	Welled Per. (n)			63.33	
Min Ch El (m)	1203.30	Shear (N/m2)			205.71	
Alpha	1.00	; Stream Power (N/a) s)		<u> </u>	j \$1 <u>7,23</u>	- :
Froto Lass (m)	0.42	Gum Volume (5000 m3	<u>). </u>		<u>3.66</u>	_
C & E Loss (m)	0,02	Gum SA (1000 m2)			14.20	i

Plan: Plan 03 Klipmessolsprutt AB_RS: 68 Profile: Q100

Plan: Plan 03 Klipmesso	sspruit AB	RS: 68 Profile: Q:00	· · · ·	· _ ,	·
' E.G. E'#Y (m)	1206.47	Element .	Lon <u>OB</u>	Channell	Right OB
Vol Head (m)	0.94	Wt. n-Val.		0.035	
, W.S. Elev (m)	1205.53	Reach Lon. (m)	Z1,33	21.03	21.33
Cril W.S (m)	1205.79	Elow Area (m2)	i i	82.38	
E.G. Slops (m/m)	0.026/245	Ares (m2)		62.30	
Q Total (m8/s)	263.00	Flow (m3/s)	<u>.</u> !	268.00	····—·· ;
Top Width (m)	69.34	Tcp Width (m)		69.34	
Vel Total (m/s)	4.30	Avg, Vel. (m/s)	· · .	4.30	
Max Chi Dpth (m)	2.23	Hydr, D epth (m)			·
Conv. Total (m3/s)	1654.3	Conv. (m3/s)		1864 8	-
Longth Wtd. (m)	21,33	Wallod Per. (m)	· · ·	. 69.77	I
Min Ch El (m)	1203.30	Sheer (N/m2)		230.13	
Alpha	1.00	Stream Power (N/m s)	i	968.63	
; Frein Loss (m)	0,46	Cum Volume (1000 m3)	. <u> </u>	17.33	
C&EL033 (m)	0.02	Gum SA (1000 m2)		15.95	I

Plan: Plan 08 Killpimesaelspruit AB_RS: 87 Profile: Q50

the state of the s					· · · · · · · · · · · · · · · · · · ·	
E.G. Elov (m)	1204.06	Element		Left OR	Channel	Ri <u>çht OB</u>
Vel Head (m)	0.63	Wt. n-Val.			0.035	
W.S. Elev (m)	1204,23	Reach Len. (m)		21.8 <u>C</u>	21.80	21.80
Crit W.S. (m)	1204.36	Flow Area (m2)			56.13	
E.G. Slopa (mim)	0,019003	Area (m2)	_		56.13	
Q Total (m3/s)	197.00	flow (ສ3/ <u>5)</u>			197.00	
Top Width (m)	66,34	Top Wildt <u>h (m)</u>		<u> </u>	66.34	
Vel Total (m/s)	3.51	Avg. Vol. (m/s)	İ.		j <u>. 3.51</u>	F 1
Max Chillipth (m)	1.43	Hydr, Deoth (m)			0, <u>85</u>	
Conv. (Cetal (m3/s)	1429.1	Conv. (m3/s)	·		1429.1	
Lengtiv Wild. (m)	21.80	Wetted Per. (m)			B6.72	i
Min Ch El (m)	1202.80	Shear (N/m2)			155,77	

Plan; Plan 03 Kilpmes	so spruit_AB_RS; <u>87_Pr</u> ofile: G50 (<u>Continued</u>)		
Aipha	1.00 Stream Power (N/m ≈)	550.25	
Freth Leas (m)	0.42 Cum Voluma (1000 m3)		
C & F.Less (m)	0.01 Cum SA (1000 m2)	<u>.</u>	<u> </u>

Plan: Plan 03 Klipmasselapru¥ AB RS: 87 Profile: Q100

E.G. Elev (m)	1205.18 Element	Left 03	Channail	Right <u>OI3</u>
Vel Read (m)	0.75 Wt n-Val.		0.035	
. W.S. Elev (m)	1204,42 Reach Len. (m)	<u>∔. 21.80 [</u>	2:.BC	21,80
Grit W.S. (m)	1204,56 Flow Area (m2)	L	69.63	·
E.G. Slepe (m/m)	0.0*9394 Area (m2)		69.63	!
Q Total (m3/s)	268.00 Flow (m3/s)	<u> </u>	268.00	
Top Width (m)	72,80 Top Witch (m)		72,80	
Vel Total (m/s)	3.85 j Avg. Vel. (m/s)		3.85	
Max Chi Dpth (m)	1.62 Hydr. Depth (m)		0.96	
Conv. Tetal (m3/s)	1924.4 Conv. (m3/a)	·	<u>_1924.4</u> .j	
Length Wid, (m)	21,80 Wetted Por. (11)	<u> </u>	73.19	
Min Ch El (m)	1202.80 Shear (N/m2)		180.63	i
Aipha	1,00 Stream Power (N/m s)	!	626.35	
From Loss (m)	0.41 Cum Volume (1000 m3)		12.82	
C & E Loss (m)	0.00 j Cum SA (1 <u>000 m2</u>)	L	11.27	· · –

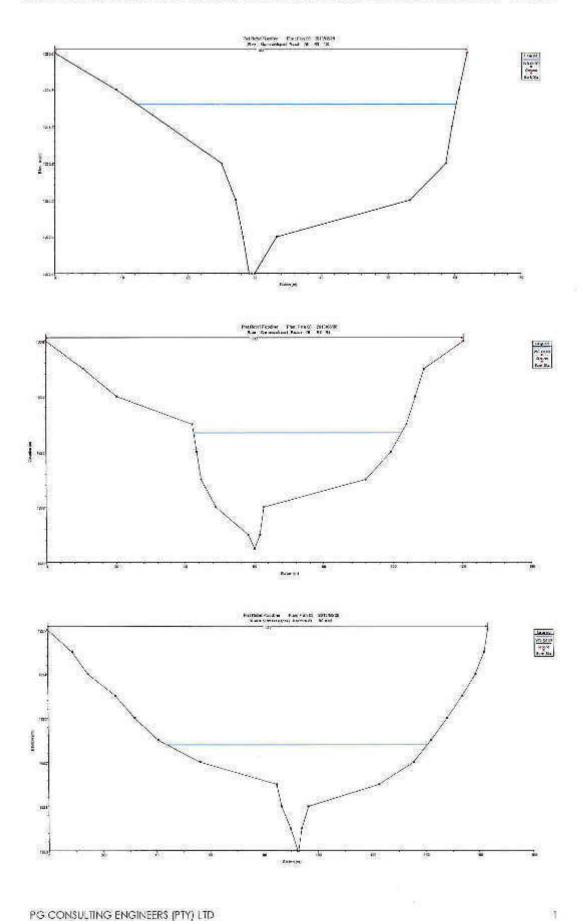
Pian: Plan 93 Kilpmessaleprult AS RS; 86 Profile; Q50 Right OB Left OB Channel E.G. Elev (m) 1202.98 Element 0.035 D. 00 | Wt n-Val. Vel Head (m) 2<u>4.5</u>9 24.50 24.50 1202.19 Reach Len. (m) W.S. Elev (m) 49.R1 1202.34 How Area (m2) Crit W.<u>S. (m)</u> 49,81 0,016832 Area (m2) E.G. Slope (m/m) 197.00 197.00 Flow (m3/s) Q Total (m3/s) 44.85 44.85 Top Width (m) Top Wid<u>th (m)</u> 3,96 3.96Avg, Vel. (m/s) Vel Total (m/a) 1.11 2.59 Hiyd:: Depth (m) Mex Chi Doth (m) 1518.4 1518.4 Conv. (<u>m3/s)</u> Conv. Total (m3/s) 45.19 Wistee Per. (n) 24.50 Length Wild, (m) 181.92 Shear (N/m2) :199.60 Min Ch 🖻 (m) 719,53 Stream Power (N/m a) 1.00 Alpha 4.13 Cum Volume (1000 m3) 0.37 Frath Loss (m) 3.91 Cum SA (1000 m2) 0.00 C & E Loss (in)

Plan 03 Klipracssespruit A6 R5:86 Profile: Q100 Right OB Left OB Channel 1203.37 Element 5.G. Elev (m) 0.035 0.38 Wt, n-Val. Ve: Head (m) 24,50 24.<u>50</u> Z4.50 \$202.49 Reach Len. (rs) W.S. Elev (m) 64.33 Flow Area (m2) 1202.87 Crit W.S. (m) 64<u>.33</u> 0.0<u>1597</u>0 Area (m2) E.G. Slope (n/m) 266.00 268.0D Flow (m3/s) ରୁ Total (m3/s)୍ଥ 51.55 Top Width $\langle m \rangle$ 51.55 <u> T</u>.თ Wioth (<u>m)</u> 4.17 4,17 [|] Avg. Vo<u>l. (m/s</u>) Vel Total (nv/s) 1.25 Hydr. Dept<u>h (m)</u> Mex Chi Dpth (m) 2.892120.1 2120.1 Cenv. Total (m3/s) Conv. (m3/s) 51.92 Watted Por. (m) Longth Wtd. (m) 24.50 194.13 Shear (N/cc2) ! Mrs C<u>h El (m</u>) ຼ 1199.60 808.77 Stream Power (N/m s) Alpha 1.00 5,30 Cum Volume (1000 m3) Frein Less (m) 0.35 4,49 0,00 Cum SA (1000 m2) C & E Loss (m)

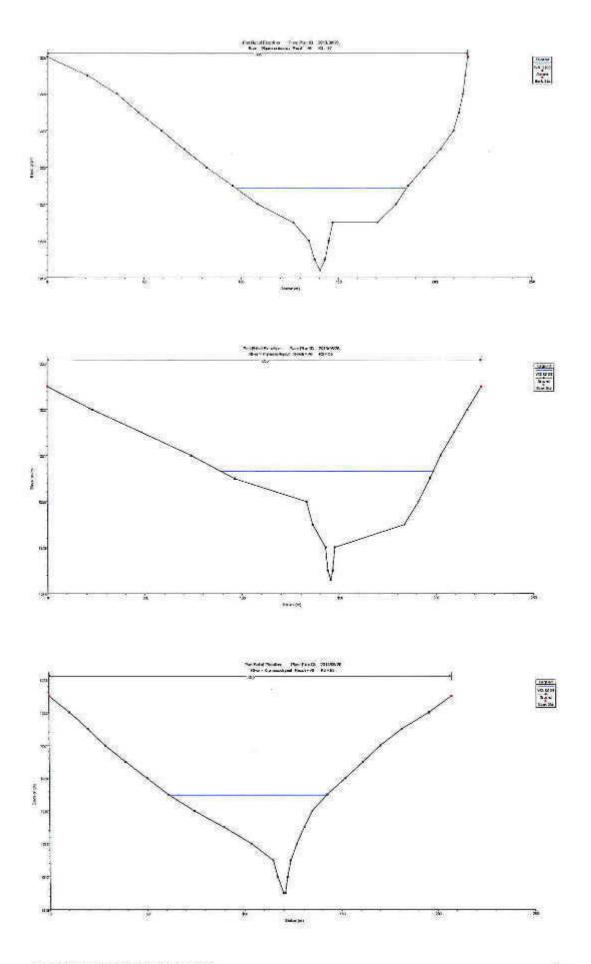
Plan: Plan 03 Kilpmesselspruit AB	RS: 85 Profile: Q50	······································
E.G. Elev (m) 1200.48	Element	Lafi OB Channel Right OB
Vel Post (m)1.21	Wt. n-Val.	0,035
W.S. Elov (m) 1199.25	Reach Len. (m)	<u> </u>
Crlt W.S. (m) 1199.63	Flow Area (m2)	40.47
i E.G. Slope (m/m) 0.027469	Area (m2)	
Q Total (<u>m3/s</u>) 197.00	F <u>low (m3/s)</u>	197.00
Top Winth (m) 38.46	Top Wi <u>nth (m)</u>	39.45
Vol Total (m/s) 4.87	Avg, Vel, (<u>m/s)</u>	4.87
Max Chi Dpth (m) 2.55	Hydr. Depth (m)	1.05
Conv. Tota: (m3/a) 1188 6	Conv. (m3/s)	
Length Wild, (m)	Watted Per. (m)	33.63
Min Ch E ^(m) 1196.70	Shear (N/m2)	283.74
Alpha100	Stream Power (N/m s)	
Firetn Loss (m) 0.67	Cum Volume (1000 m3)	! <u>. </u>
C & E Loss (m) 0.00	Gum SA (1000 m2)	···

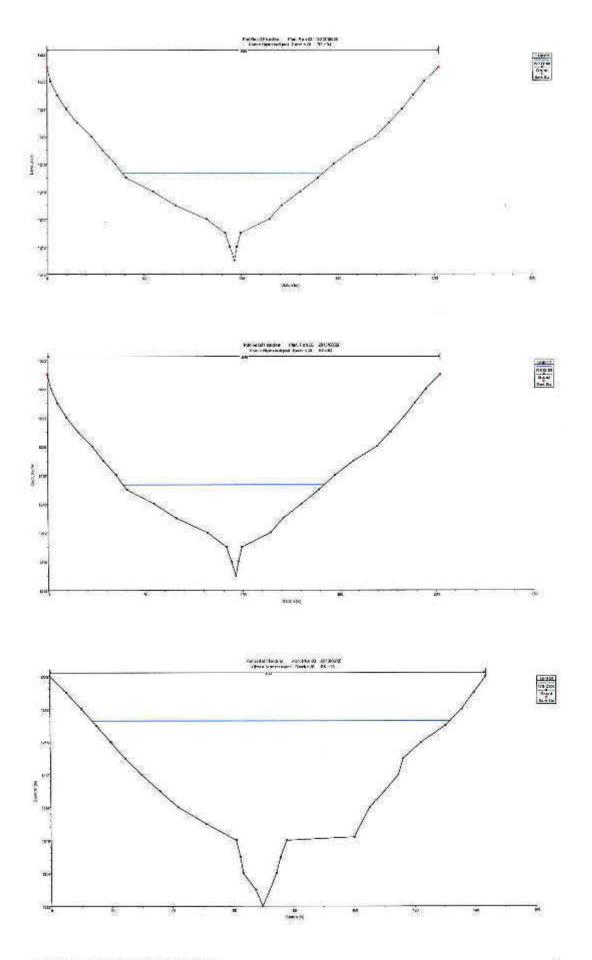
<u>Plan; Plan</u> 03 Klipmess	EISPINT AR	RS: 55 Prefile: Q100	17		
P,Q, Efev (m)	1200.89	Elemeni	Left 08	Channel	Right OB
Vel Head (m)	1.37	Wt. n-Val.		0.035	
W.S. Elev (m)	1199.52	Reach Lan. (in)	<u> </u>		·
Crit W.S. (m)	119 <u>9.93</u>	Flow Ares (m2)	j	. <u>- £1 74</u>	
E.G. Slope (m/m)	0.027077	Area (m2)		<u> </u>	
Q_Fotal (m3/s)	265.CD	Flow (m3/a)	!	268.00	
Top Width (m)	44.33	Top Widtt (m)		44.33	<u> </u>
Vel Total (m/s)	5.18	Avg Vel. (m/s)	<u> </u>	<u>5.18</u>	
Max Chi Opth (m)	2.82	Hydr. Liepth (m)		1.17	
Conv. Total (m3/s)	162 8 .7	Conv. (m3/s)		1628.7	
Langth Wtd. (m)		Wotted Per. (m)		44.74	
Min Ch E! (m)	1196.70	Shear (N/m2)		307.08	
Alpha	1.00	Stream Power (N/mis)		1590.34	
From Loss (11)	0.68	Cum Volume (1000 m3)		İ	
LC & E Losa (m)	0.00	Cum SA (1000 m2)			

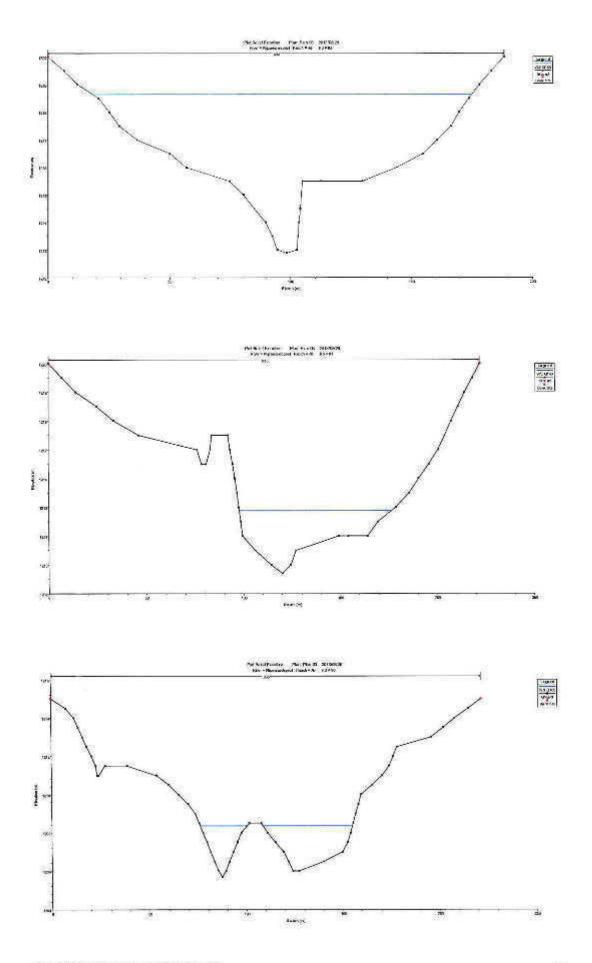
.

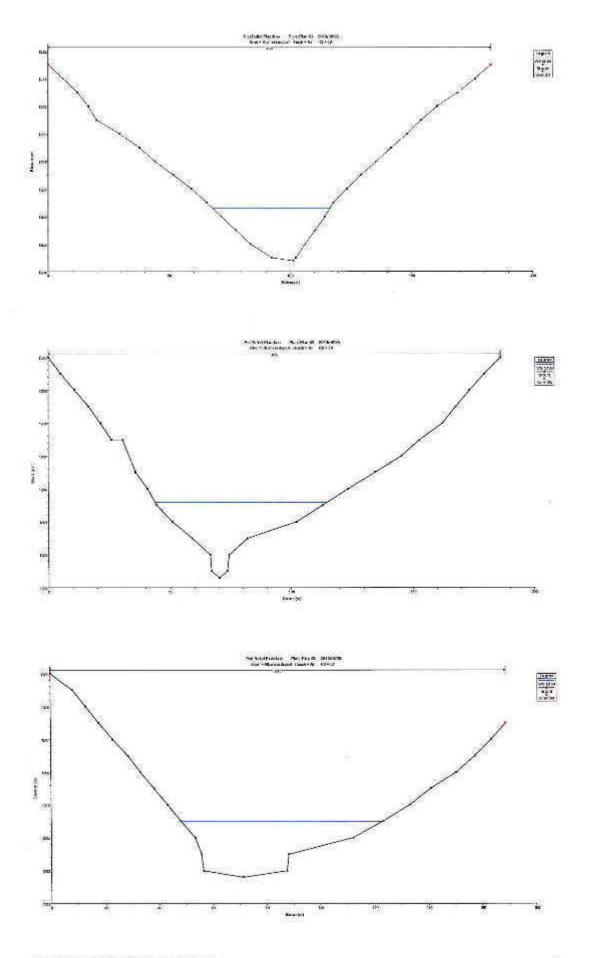

.

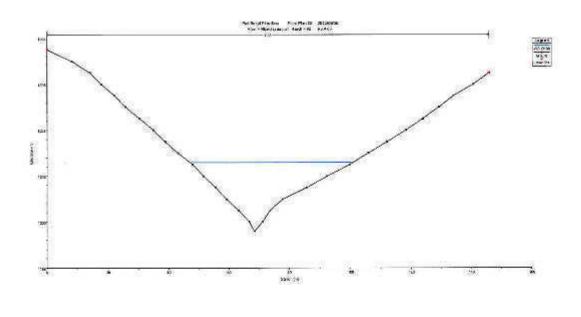
PO CONSULTING ENGINEERS (PTY) LTD

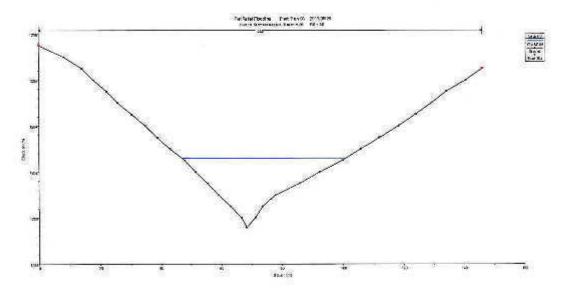

:


APPENDIX B

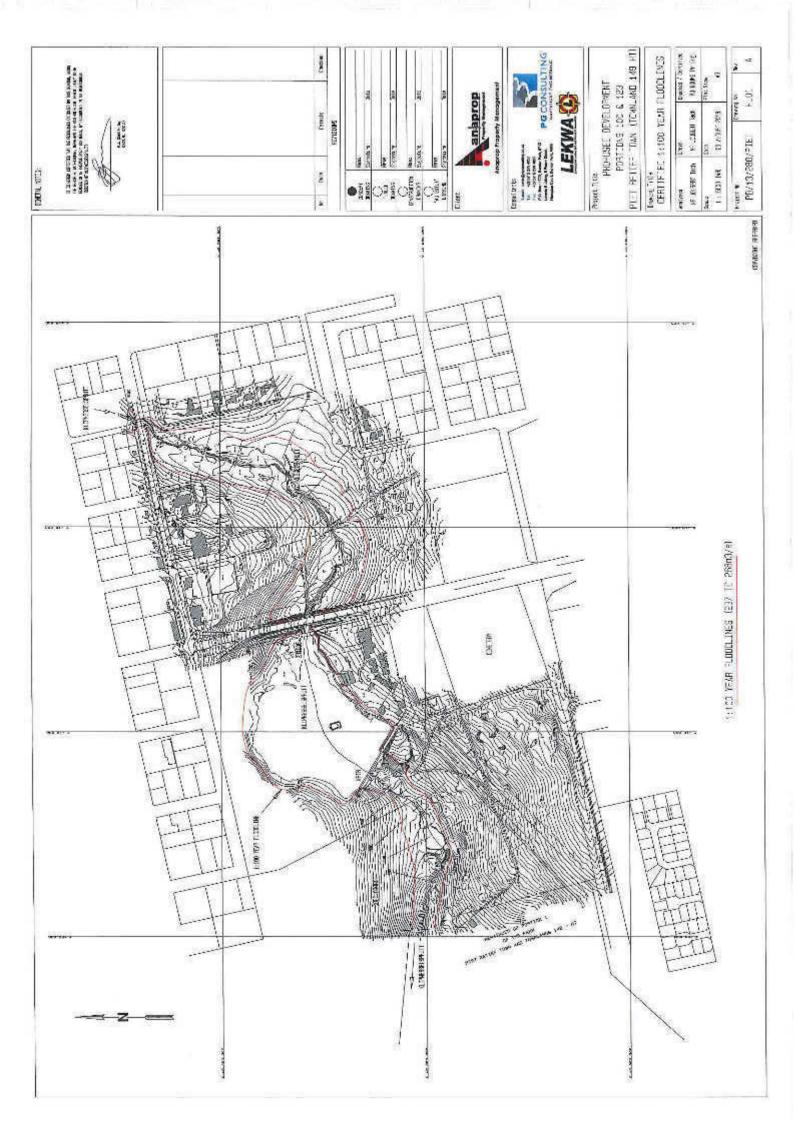

:

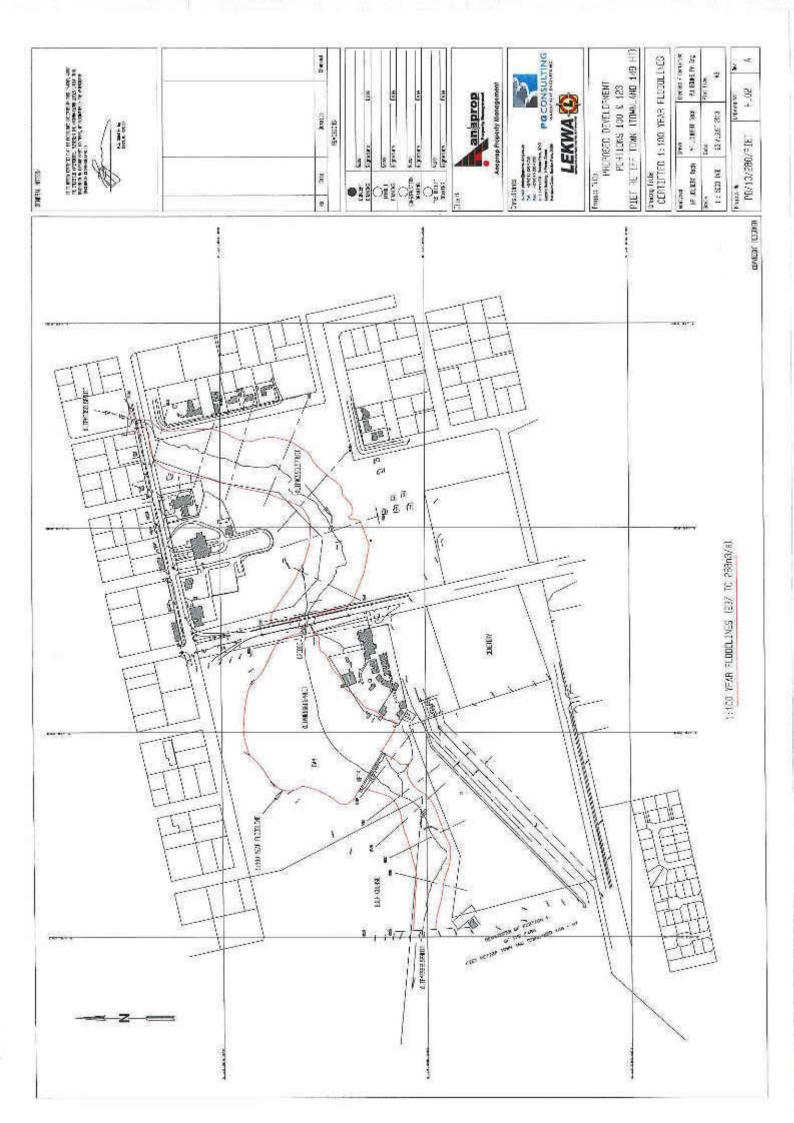

PG CONSULTING ENGINEERS (PTY) LTD





4


5



APPENDIX C

PIG CONSULTING ENGINCERS (PTY) LTD

APPENDIX D

:

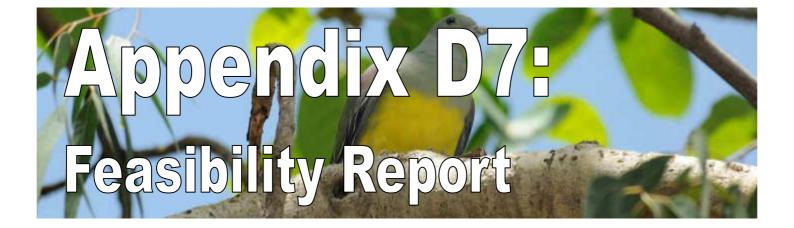
PG Consulting Engineers (Pty) Ltd. Reg Nr. 2012/039090/07 VAT No. 4260861278

E-mail: pieter@pgconsulting.co.za E-mail: esther@pgconsulting.co.za Tel: +27(0)15 291 0951 Fax: +27(0)15 291 0961 P.O. Box 11770, Bendor Park, 0713 Rentco Office No.16, 11 Pierre Street, Bendor, Polokwane, 0699 GPS: S'23'53'41,2' E'29'28'46,4" Website: www.pgconsulting.co.za

Offices also at: Polokwane | Pretoria | Nelspruit

PROJECT

DELINEATION OF THE 1:100 YEAR FLOODLINES FOR DEVELOPMENT PURPOSES AT PORTIONS 100, 123 & 126 – PIET RETIEF TOWN (TOWNLAND 149 HT)


DISTRICT OF GERT SIBANDE - MPUMALANGA PROVINCE

FLOODLINE CERTIFICATE:

I HEREBY CERTIFY, IN MY CAPACITY AS PROFESSIONAL ENGINEER, THAT IN TERMS OF THE SPECIFICATIONS LAID DOWN BY CLAUSE 144 OF THE NATIONAL WATER ACT (ACT 36 OF 1998), THE FLOODLINES INDICATED ON THE ATTACED LAYOUT DRAWING REPRESENT THE MAXIMUM FLOOD LEVELS LIKELY TO BE REACHED ON AN EVERY 100 YEARS BY FLOODWATERS IN THE SPECIFIC WATERCOURSE ANALYZED (SECTION RS100 TO RS85 OF THE KLIPMESSELSPRUIT – TRIBUTARY OF ASSEGAAI RIVER).

NAME:	P.,
REG NO:	88
DATE:	26

P.J. Gouws (Pr Eng) 880061 26 August 2013

<u>PLEASE NOTE:</u> This is an objective, independent market report with the sole aim of limiting risk for our client and to optimize development potential. Similarly, Fernridge cannot be held responsible for the failure or under performance of any development, as many other aspects, apart from demographic potential, determine the ultimate success or failure of a scheme.

Department: Development

Feasibility Study Update: Piet Retief, Mpumalanga Retail Development

October 2013

Important Notes:

- 1. This report is Confidential as it contains Data, Information and Intellectual Property of Fernridge Consulting (Limited Distribution) *Copyright 2013: Fernridge Consulting*.
- This report was done to determine the viability of a <u>shopping centre</u>. Any tenant recommendations made in this report are anecdotal and not substantiated through primary research. Retailers must do their own research.

Table of Content

Orientation

- Regional Orientation
- Town Orientation

Catchment Areas

≻Site Overview

- Site Dynamics
- Site Photos
- Site Layout
- Site Evaluation Model

Retail Overview

- Macro Retail Overview
- Town Retail Overview
- Existing Retail

New Developments

- Proposed Developments
- New Developments

Demographic Overview

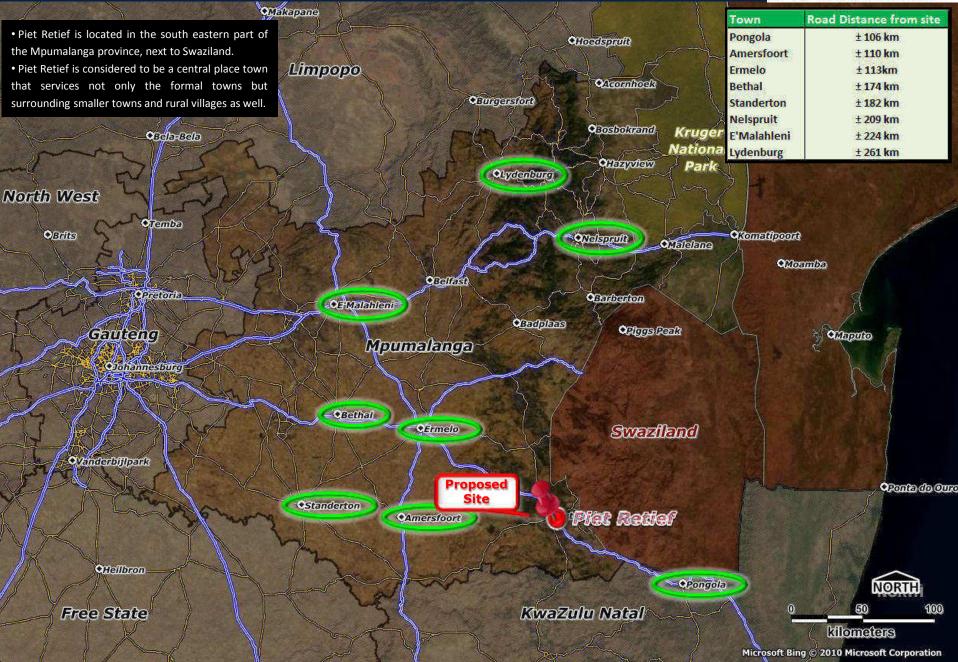
- Calculating Demographics
- Primary Catchment Demographics
- Secondary Catchment Demographics
- Density Modeling
- Demographic Breakdown

<u>Retail Potential Estimates</u>

- Retail Potential Estimate 2015
- Conclusion & Recommendations
 Proposed Retail Mix
 Contact Details

FERNRIDGE^{**}

Orientation


Piet Retief is placed in context of the larger area in order to provide a regional overview/understanding of the area.

Regional Orientation

Copyright 2013: Fernridge Consulting Source: Microsoft Bing Aerial Photography & www.saexplorer.co.za

5 FERNRIDGE

Town Orientation

Copyright 2013: Fernridge Consulting Source: 2012 Aerial Photography & Oct'13 Fieldwork

• Piet Retief is located along the N2 between Ermelo and Pongola.

• Middle income residential suburbs surround the Piet Retief CBD to the north, east and south, whilst the western area is occupied by industrial space.

• Middle to lower income households are located south east of the CBD in formal and informal residential dwellings.

• The proposed site is located on the southern periphery of the Piet Retief CBD.

Railway Line Lower income informal residential township CBD **Proposed Site** INDUSTRIAL Country Middle to upper GOLF COURSE income formal sidential townsh

> Lower income informal residential township

> > 2

Ermelo

Middle to lower income formal residential township NEW LOCATION

ETHANDAKUKHANY/

Wakkerstroom

Lower income informal residential township

kilometres

NORTH

Pongola

Nhlango

@ 2012 Dicitale

Middle to lower income formal residential township

PIET

Catchment Areas

A primary and secondary catchment area are delineated after taking the physical and psychological boundaries, existing retail, road infrastructure, etc. into consideration.

Catchment Area

Copyright 2013: Fernridge Consulting Source: Microsoft Bing Aerial Photography & O<u>ct'13 Fieldwork</u>

Amersfoort

1 And

Volksrust

Charlestown

• Population spread determines the northern border of the catchment area as people outside this delineated catchment would rather travel to Ermelo as a shopping destination.

Bankkop

• A primary and secondary catchment area was delineated for the purposes of this study.

• The primary catchment includes the formal town of Piet Retief.

• The secondary catchment area was delineated to include small towns and villages as Piet Retief is the major shopping destination in the larger area.

• Good support can be expected from the secondary catchment area as there is limited formal retail within the secondary catchment area and other shopping destinations outside the catchment area, such as Ermelo, have longer travelling distances (costly to travel – the majority of catchment residents are dependent on public transport).

 Population spread determines the western border of the catchment as people outside this delineated catchment area would rather travel to Volksrust as a shopping destination.

Wakkerstroom

Groenvlei

Secondary Catchment Area

Amsterdam

The primary catchment area includes the residents that we believe will form the primary support base of the proposed retail centre.

ullametre

Proposed Site

Piet Retief

⊙Sicunu:

oAnysspruit Primary Catchment Area

Luneberg

Braunschweig

*Dirkiesdorp

the state of the second second

Panbult

OIswepe

• The Mpumalanga provincial border was used to delineate the southern border of the catchment area. People south of the catchment would rather shop at Paulpietersburg (closer travelling distance).

prui Paulpietersburg

Commondale

Wittenberg

SWAZILAND

Nhlangano

Berbice

• The Swaziland border shapes the eastern border of the catchment area. This border forms a strong political boundary limiting free flow to South Africa.

> NORTH 20

kilometres Microsoft Bing © 2011 Microsoft Corporation

The Site

Site dynamics is a crucial element that needs to be assessed. A poor site could jeopardise the development.

Site Dynamics

NORTH

100

metres

Copyright 2013: Fernridge Consulting Source: Oct'13 Fieldwork

NISSA

Brand Street

ene

Z

(Church

To Pongola

± 106km

Str.)

-

To Ermelo

± 113km

formal Taxi Rank

TRUCK BOOK

Formal Taxi Rank

200

FERNRIDGE

• The proposed site is located on the corner of the N2 and Brand Street.

 $\mbox{ }\mbox{ The N2}$ is a busy road and experiences high traffic volumes throughout the day.

• Visibility from this road is very good – residents and passing trade will have a high awareness of the centre.

• The site is located just south of the main retail activity currently present in Piet Retief (CBD).

• Many of the secondary catchment residents travel via the N2 Rd to access the CBD.

• The site is ideally located to intercept this market en route to the CBD.

• It is important that the proposed centre caters for all market segments (lower, middle and upper income).

PROPOSED SITE (not to scale)

Please Note: The formal taxi rank is currently under construction and accordingly the majority of taxis now stop in Mark St.

Site Photos

11 FERNRIDGE The site is located on the Southern edge of Piet Retief's CBD, on the corner of the N2 freeway and Brand St. 61 AUTOMARK TOYOT Towards CBD Brand Rd SITE **N2** Northbound The site enjoys excellent visibility from the N2 through route. 2 (f) Fut Rever + SITE **N2** Southbound