Hydrological Assessment for a Proposed Railway Link at Beeshoek Iron Ore Mine

Project Number: ENG039

Prepared for:

EnviroGistics (Pty) Ltd P.O. Box 22014, Helderkruin, 1733 Email: tanja@envirogistics.co.za Tel: 082 412 1799 Fax: 086 551 5233

Prepared by:

Hydrospatial (Pty) Ltd

17 Sonop Place, Randpark, 2194 Email: andy@hydrospatial.co.za Tel: 084 441 9539

July 2021

DOCUMENT CONTROL

Project Name	Hydrological Assessment for a Proposed Railway Link at Beeshoek Iron Ore Mine	
Report Type	Hydrological Assessment	
Client	EnviroGistics (Pty) Ltd	
Project Number	ENG039	
Report Number	03	
Report Status	Final	
Submission Date	20 July 2021	
Author	Andy Pirie (M.Sc., <i>Pr.Sci.Nat.114</i> 988)	
Author Signature	Min	

DISCLAIMER

The opinions, results and findings expressed in this report, are based on the authors best scientific knowledge, as well as on the information supplied to Hydrospatial as part of the project. The accuracy of the results and conclusions in this report, are reliant on the accuracy and completeness of the supplied information. Hydrospatial does not accept responsibility for any errors or omissions in the supplied information and does not accept any consequential liability arising from commercial decisions or actions resulting from them.

DECLARATION OF INDEPENDENCE

I, Andy Pirie declare that:

- I act as an independent specialist in this application;
- I will perform the work relating to the application in an objective manner, even if this
 results in views and findings that are not favourable to the applicant;
- I declare that there are no circumstances that may compromise my objectivity in performing such work;
- I have the expertise in conducting the specialist study relevant to this application, including knowledge of the various acts, regulations and any guidelines that have relevance to the proposed project;
- I will comply with the acts, regulations and all other applicable legislation;
- I have no, and will not engage in, conflicting interests in the undertaking of the study;
- I undertake to disclose to the applicant and the competent authority all material information in my possession that reasonably has or may have the potential of influencing any decision to be taken with respect to the application by the competent authority; and the objectivity of any report, plan or document to be prepared by myself for submission to the competent authority; and
- All the particulars furnished by me are true and correct.

Andy Pirie Hydrologist Pr.Sci.Nat (reg no. 114988)

ACRONYMS AND ABBREVIATIONS

BA	Basic Assessment
DEM	Digital Elevation Model
DWS	Department of Water and Sanitation
km	Kilometres
mamsl	metres above mean sea level
MAE	Mean Annual Evaporation
MAP	Mean Annual Precipitation
mm	Millimetres
MPRDA	Mineral and Petroleum Resources Development Act, 2002 (Act No. 28 of 2002)
MRA	Mining Right Area
Pr.Sci.Nat.	Professional Natural Scientist
SACNASP	South African Council for Natural Scientific Professions
S-Pan	Symon's Pan
t	Tons
TFR	Transnet Freight Rail
WR 2012	Water Resources of South Africa, 2012 Study

TABLE OF CONTENTS

1	INT	RODUCTION AND BACKGROUND1		
	1.1	Terms of Reference		
	1.2	Project Location1		
	1.3	Project Description1		
	1.4	Details of the Specialist2		
2	ME	THODOLOGY AND SCOPE OF WORK4		
	2.1	Desktop Assessment of Contours		
	2.2	Site Investigation		
	2.3	Impact Assessment4		
	2.3.	1 Impact Status		
	2.3.	2 Impact Extent		
	2.3	4 Impact Probability 5		
	2.3.	5 Impact Intensity		
	2.3.	6 Impact Significance		
3	HYD	ROLOGICAL SETTING		
	3.1	Climate		
	3.2	Regional Catchments		
	3.3	Topography8		
	3.4	Vegetation and Soils 10		
	3.5	Surface Water and Groundwater10		
4	FIN	DINGS		
5	IMP	ACT ASSESSMENT10		
6	CO	NCLUSIONS AND RECOMMENDATIONS		
7	REFERENCES			
A	PPEN	DIX A: CURRICULUM VITAE		

LIST OF TABLES

Table 2-1: Impact status4	ŀ
Table 2-2: Extent of the impact5	;
Table 2-3: Duration of the impact5	;

Table 2-4: Probability of the impact	5
Table 2-5: Intensity of the impact	6
Table 2-6: Impact magnitude and significance rating	7
Table 5-1: Impact assessment and mitigation measures	12

LIST OF FIGURES

Figure 1-1: Location of the project	. 3
Figure 3-1: Mean annual rainfall and evaporation for the area	. 8
Figure 3-2: Topography, vegetation and Land Types	. 9
Figure 5-1: Features located near the proposed railway link	11

1 INTRODUCTION AND BACKGROUND

1.1 Terms of Reference

Hydrospatial (Pty) Ltd was appointed by EnviroGistics (Pty) Ltd to assess an area where a railway line is proposed to be constructed at the Beeshoek Iron Ore Mine (hereafter referred to as "Beeshoek" or the "Mine"). The proposed railway line will link the existing railway siding at Beeshoek to the existing Transnet Freight Rail (TFR) line. The purpose of the assessment was to determine whether the proposed railway link route will impact on any watercourses.

This report has been prepared for a Basic Assessment (BA) which forms part of an environmental authorisation process for the proposed railway link.

1.2 Project Location

The proposed railway link is located within the Beeshoek Mining Right Area (MRA), approximately 9 kilometres (km) north-west of the town of Postmasburg in the Northern Cape Province (Figure 1-1). The Mine is divided into two areas that are separated by the R385 regional road that runs in a north-westerly direction between the towns of Postmasburg and Olifantshoek. The North Mine is located to the north of the R385, whilst the South Mine is located to the south.

1.3 Project Description

Mining at the Beeshoek was established in 1964 with a basic hand sorting operation. In 1975 a full Washing and Screening Plant was installed. Because of increased production, Beeshoek South, a southern extension of the Beeshoek Mine, was commissioned during 1999 on the farms Beesthoek and Olynfontein.

Assmang (Pty) Ltd is the holder of the new order rights in terms of the Mineral and Petroleum Resources Development Act, 2002 (Act No. 28 of 2002) (MPRDA) in respect of high-grade hematite iron ore deposits at Beeshoek on the farms Beesthoek and Olynfontein. The mining method currently entails an opencast mining operation, which consists of five (5) active opencast pits (Village Opencast Pit, HF Opencast Pit, BF Opencast Pit, East Opencast Pit, BN Opencast Pit). Although other opencast pits are dormant at this time, these are continuously assessed in terms of their economic value for intended remining. The current resources of the mine is approximately 87 million tonnes with a reserve of about 26 million tonnes.

Beeshoek can be broadly categorised as follows:

- Northern mining area (North Mine): This area comprises active as well as historical mining areas. A number of small quarries and mine residue dumps of various categories are located within this area. The area also includes the Iron Ore Beneficiation Plant, Slimes Dam, as well as the Beeshoek North Opencast Pit (BN Opencast Pit).
- Main Offices, Village (demolished) and recreational area; and
- Southern mining area (South Mine): This area comprises of large opencast pits and associated Waste Rock Dumps (WRDs). The Village Opencast Pit and associated

WRD are the main activities in this area. This area also includes a crushing and screening area as pre-preparation of the run of mine iron ore before being routed by overland conveyor to the Iron Ore Beneficiation Plant located at North Mine.

In order to allow Beeshoek to export iron ore through the Saldanha Port in the Western Cape Province, a railway line that links the existing siding at the Mine to the existing TFR line is required. The proposed railway will comprise a 2.8 km main link line from the existing TFR Postmasburg line, crossing under the R385 regional tar road before linking to the existing TFR Yard that services Kolomela Mine. A gravel service road will be constructed within the planned link line servitude to allow for access where required. The project requirements will include:

- Overall Design:
 - Railway formation 5.5 m;
 - Bulk fill 5 m;
 - One service road 4 m; and
 - Buffer 8 m on each side.
- TFR train design:
 - 348 wagons (3 x 116 rakes); and
 - 30 ton (t) axle load.
- Beeshoek Traffic:
 - 1 x 116 rake (Saldanha traffic); and
 - 30 t axle loads.

1.4 Details of the Specialist

The study was undertaken by Andy Pirie who is a senior surface water hydrologist at Hydrospatial (Pty) Ltd. Andy graduated with a Master of Science in Water Resource Management (cum laude). He is registered as a Professional Natural Scientist (Pr.Sci.Nat) (registration number: 114988) in Water Resources Science with the South African Council for Natural Scientific Professions (SACNASP). Work experience includes rainfall – runoff modelling, floodline determinations, stormwater management plans, water and salt balance modelling, setup of water monitoring networks and programmes, analysis of surface water quality and quantity, and surface water specialist studies for environmental and social impact assessments. He has worked on projects in South Africa, Cameroon, Senegal, Mali, Democratic Republic of the Congo, Botswana, Zambia and Namibia. A curriculum vitae is provided in Appendix A.

Figure 1-1: Location of the project

2 METHODOLOGY AND SCOPE OF WORK

The methodology and scope of work included the following:

2.1 Desktop Assessment of Contours

Detailed 0.5 m contours of the Beeshoek MRA was provided by the Mine. The contours were converted into a 0.5 m spatial resolution Digital Elevation Model (DEM). The DEM was assessed for any depressions that may be watercourses within the vicinity of the proposed railway link.

2.2 Site Investigation

An initial site investigation visit of the proposed railway link area was undertaken on 26 October 2020. A further site investigation was undertaken on 3 February 2021, due to a change in the railway link route. The purpose of the site investigations was to conduct a walkthrough the railway route, to assess whether any watercourses would be impacted by the construction and operation of the railway.

2.3 Impact Assessment

The impact assessment methodology used to rate the potential surface water impacts preand post-mitigation is provided below. The evaluation of impacts is conducted in terms of the criteria detailed in Table 2-1 to Table 2-6. The various impacts of the project are discussed in terms of impact status, extent, duration, probability and intensity. Impact significance is the sum of the impact extent, duration, probability and intensity, and a numerical rating system is applied to evaluate impact significance. Therefore, an impact magnitude and significance rating is applied to rate each identified impact in terms of its overall magnitude and significance in Table 2-6. The various components of impact methodology are discussed below.

2.3.1 Impact Status

The nature or status of the impact is determined by the conditions of the environment prior to construction and operation. The nature of the impact can be described as negative, positive or neutral (Table 2-1).

Rating	Description	Quantitative Rating
Positive	A benefit to the receiving environment.	Р
Neutral	No cost or benefit to the receiving environment.	-
<u>Negative</u>	A cost to the receiving environment.	Ν

Table 2-1: Impact status

2.3.2 Impact Extent

The extent of an impact is considered as to whether impacts are either limited in extent or affects a wide area. Impact extent can be site-specific (within the boundaries of the development area), local, regional or national and/or international (Table 2-2).

Table 2-2: Extent of the impact

Rating	Description	Quantitative Rating
Low	Site-specific; occurs within the site boundary.	1
Medium	Local ; extends beyond the site boundary; affects the immediate surrounding environment (i.e. up to 5 km from the project site boundary).	2
High	<u>Regional</u> ; extends far beyond the site boundary; widespread effect (i.e. 5 km and more from the project site boundary).	3
Very High	National and/or international ; extends far beyond the site boundary; widespread effect.	4

2.3.3 Impact Duration

The duration of the impact refers to the time scale of the impact or benefit (Table 2-3).

Table 2-3: Duration of the impact

Rating	Description	Quantitative Rating
Low	Short-term; quickly reversible; less than the project lifespan; 0 – 5 years.	1
Medium	Medium-term; reversible over time; approximate lifespan of the project; 5 – 17 years.	2
High	Long-term; permanent; extends beyond the decommissioning phase; >17 years.	3

2.3.4 Impact Probability

The probability of the impact describes the likelihood of the impact actually occurring (Table 2-4).

Table 2-4: Probability of the impact

Rating	Description	Quantitative Rating
Improbable	Possibility of the impact materialising is negligible; chance of occurrence <10%.	1
Probable	ProbablePossibility that the impact will materialise is likely; chance of occurrence 10 – 49.9%.	
<u>Highly</u> Probable	It is expected that the impact will occur; chance of occurrence 50 – 90%.	3
Definite Impact will occur regardless of any prevention measures; chance of occurrence >90%.		4
Definite and Cumulative	Impact will occur regardless of any prevention measures; chance of occurrence >90% and is likely to result in in cumulative impacts.	5

2.3.5 Impact Intensity

The intensity of the impact is determined to quantify the magnitude of the impacts and benefits associated with the proposed project (Table 2-5).

Table 2-5: Intensity of the impact

Rating	Rating Description	
<u>Maximum</u> <u>Benefit</u>	Where natural, cultural and / or social functions or processes are positively affected resulting in the maximum possible and permanent benefit.	+5
<u>Significant</u> <u>Benefit</u>	Where natural, cultural and / or social functions or processes are altered to the extent that it will result in temporary but significant benefit.	+4
<u>Beneficial</u>	Where the affected environment is altered but natural, cultural and / or social functions or processes continue, albeit in a modified, beneficial way.	+3
Minor Benefit	Where the impact affects the environment in such a way that natural, cultural and / or social functions or processes are only marginally benefited.	+2
<u>Negligible</u> <u>Benefit</u>	Where the impact affects the environment in such a way that natural, cultural and / or social functions or processes are negligibly benefited.	+1
NeutralWhere the impact affects the environment in such that natural, cultural and / or social functions or processes are not affected.		0
NegligibleWhere the impact affects the environment in such a way that natural, cultural and / or social functions or processes are negligibly affected.		-1
MinorWhere the impact affects the environment in such a w that natural, cultural and / or social functions or processes are only marginally affected.		-2
<u>Average</u>	AverageWhere the affected environment is altered but natural, cultural and / or social functions or processes continue, albeit in a modified way.	
<u>Severe</u>	Where natural, cultural and / or social functions or processes are altered to the extent that it will temporarily cease.	-4
Very SevereWhere natural, cultural and / or social functions or processes are altered to the extent that it will permanently cease.		-5

2.3.6 Impact Significance

The impact magnitude and significance rating is utilised to rate each identified impact in terms of its overall magnitude and significance (Table 2-6).

Table 2-6: Impact magnitude and significance rating

Impact	Rating	Description	Quantitative Rating
	<u>High</u>	Of the highest positive order possible within the bounds of impacts that could occur.	+12 to -16
<u>Positive</u>	<u>Medium</u>	Impact is real, but not substantial in relation to other impacts that might take effect within the bounds of those that could occur. Other means of achieving this benefit are approximately equal in time, cost and effort	+6 to -11
	Low	Impacts is of a low order and therefore likely to have a limited effect. Alternative means of achieving this benefit are likely to be easier, cheaper, more effective and less time-consuming	+1 to -5
No Impact	No Impact	Zero Impact	
	Low	Impact is of a low order and therefore likely to have little real effect. In the case of adverse impacts, mitigation is either easily achieved or little will be required, or both. Social, cultural, and economic activities of communities can continue unchanged.	-1 to -5
<u>Negative</u>	<u>Medium</u>	Impact is real, but not substantial in relation to other impacts that might take effect within the bounds of those that could occur. In the case of adverse impacts, mitigation is both feasible and fairly possible. Social cultural and economic activities of communities are changed but can be continued (albeit in a different form). Modification of the project design or alternative action may be required	-6 to -11
	<u>High</u>	Of the highest order possible within the bounds of impacts that could occur. In the case of adverse impacts, there is no possible mitigation that could offset the impact, or mitigation is difficult, expensive, time-consuming or a combination of these. Social, cultural and economic activities of communities are disrupted to such an extent that these come to a halt.	-12 to -17

3 HYDROLOGICAL SETTING

3.1 Climate

Rainfall data for the period of 1920 - 2010 was obtained from the Postmasburg weather station (0321110 W), whilst Symon's Pan (S-Pan) evaporation data was obtained from the Olifantshoek Dam weather station (D4E002), and was available for the period of 1960 - 2000.

Figure 3-1 indicates the mean monthly rainfall and evaporation of the area. Majority of the rainfall occurs over the summer months of November to April, with February and March being the highest rainfall months. Although much higher than rainfall, evaporation follows a similar trend, with the warmer summer months of September to March having the highest evaporation. The Mean Annual Precipitation (MAP) of the area is 317 mm, whilst the Mean Annual Evaporation (MAE) is 2 213 mm. The area can be described as having a semi-arid to arid climate, with evaporation far exceeding rainfall.

Figure 3-1: Mean annual rainfall and evaporation for the area

3.2 Regional Catchments

Beeshoek is located in quaternary catchment D73A within the Vaal Water Management Area. According to the Water Resources of South Africa Study 2012 (WR 2012), quaternary catchment D73A is endoreic, meaning that surface water runoff does not flow out of the catchment, and that water is lost to evaporation and infiltration. This is mostly due to the low rainfall and high evaporation of the area.

3.3 Topography

The topography of the proposed railway link dips very gradually in an east to west direction, with the elevation varying from 1 319 metres above mean sea level (mamsl) on the eastern side of the railway link, to 1 302 mamsl in the west (Figure 3-2). This equates to a slope of less than 1 %, which can be considered flat terrain. A seasonal depression as well as excavated areas (which appear to be borrow pits) occur within the general vicinity of the railway link, and are discussed in further under the findings of this report.

Figure 3-2: Topography, vegetation and Land Types

3.4 Vegetation and Soils

According to Mucina and Rutherford (2006), two vegetation types split the railway link in two, namely, Postmasburg Thornveld to the west and Kuruman Thornveld to the east (Figure 3-2). These vegetation types are characterised by shrubby vegetation. Following the same boundary as the vegetation, the railway link falls over two Land Types, namely, Ag110 to the west and Ag111 to the east. According to the Land Type database (Land Type Survey Staff, 1972 - 2006), these Land Types are dominated by Hutton and Mispah soils, that are generally shallow, and semi-permeable to permeable in nature.

3.5 Surface Water and Groundwater

The nearest defined watercourse to the Mine is the Groenwaterspruit (EnviroGistics, 2018), which is located approximately 1.5 km east of the south-eastern MRA boundary. As previously mentioned, Beeshoek falls within an endoreic quaternary catchment, and therefore, very little to no surface water is expected to be generated.

Groundwater levels in the vicinity of the railway link vary from 1 290 mamsl to 1 310 mamsl (GPT, 2021), which is approximately 10 m to 30 m below ground level.

4 FINDINGS

Features located within the vicinity of the proposed railway link are indicated on Figure 5-1. The desktop assessment of contours and site investigation findings revealed the following:

- A number of man-made excavated areas that appear to be old borrow pits occur within the vicinity of the proposed railway;
- An artificial drainage channel, that begins at a culvert where the proposed railway link ties into the existing Beeshoek Railway, and flows in a westerly direction, has been created due to what appears to be a leaking pipe. Should the leak be fixed, then this drainage channel would cease to exist; and
- A seasonal / ephemeral depression is located approximately 125 m east of the point where the proposed railway link ties into the existing TFR railway line. According to the Wetland Specialist, although one floral species associated with wetlands was found, the soils did not show any morphological characteristics consistent with wetland conditions, and therefore, the depression was classified as a seasonal / ephemeral depression and not a wetland. More details can be found in the wetland assessment.

Based on the above, it can be concluded that there are no natural watercourses within the vicinity of the proposed railway link.

5 IMPACT ASSESSMENT

The potential surface water impacts pre- and post-mitigation for the construction, operational and decommissioning and closure phases are provided in Table 5-1.

Figure 5-1: Features located near the proposed railway link

Table 5-1: Impact assessment and mitigation measures

Dhana Antivity		Impact	Pre-Mitigation				Mitigation/Management	tigation/Management Post-Mitiga			tion		
Phase	Activity	Description	Extent	Duration	Probability	Intensity	Significance	Measures & Recommendations	Extent	Duration	Probability	Intensity	Significance
Construction Phase	Removal of vegetation for the railway link and service roads. Stripping and stockpiling of topsoils. Construction of a potential railway embankment.	Erosion of exposed soils leading to siltation and sedimentation of downslope drainage channels.	Local (2)	Short- term (1)	Probable (2)	Minor (-2)	Medium (-6 to -11)	Vegetation clearance should be kept to an absolute minimum. Temporary erosion measures should be employed at exposed areas. Exposed areas should be vegetated as soon as possible. The topsoil stockpiles must be managed according to a topsoil management plan and should be vegetated. Should a railway embankment be constructed, then the side slopes should not be steep (i.e. slopes should not be less than a 1:3 slope). The railway embankment should be vegetated as soon as possible.	Site- specific (1)	Short- term (1)	Improbable (1)	Negligible (-1)	Low (-1 to -5)
Construction Phase	Use of heavy machinery, trucks and vehicles for construction purposes.	Potential hydrocarbon spillages washed into downslope drainage channels.	Local (2)	Short- term (1)	Probable (2)	Average (-3)	Medium (-6 to -11)	Machinery, trucks and vehicles must be well maintained and serviced regularly as per a recommended service guide. Refuelling must be undertaken over hard park bunded areas that adequately sized to capture and contain spillages. Machinery and vehicles should be parked on appropriately lined areas. Drip trays must be employed under stationary machinery. Spillages should be reported immediately, and spill kits should be readily available at all times.	Site- specific (1)	Short- term (1)	Improbable (1)	Negligible (-1)	Low (-1 to -5)

HYDROSPATIAL

		Impact	Pre-Mitigation				Mitigation/Management		Post-Mitigation				
	Activity	Description	Extent	Duration	Probability	Intensity	Significance	Measures & Recommendations	Extent	Duration	Probability	Intensity	Significance
Construction Phase	Construction of a potential railway embankment.	Cutting off of the natural drainage of the area leading to the ponding of water.	Local (2)	Long- term (3)	Highly Probable (3)	Average (-3)	Medium (-6 to -11)	Implementation of suitably sized culverts at appropriate positions along the railway embankment to ensure effective drainage.	Site- specific (1)	Medium- term (2)	Improbable (1)	Negligible (-1)	Low (-1 to -5)
Operational Phase	Build-up of sediment and debris at culverts.	Cutting off of the natural drainage of the area leading to the ponding of water.	Local (2)	Long- term (3)	Highly Probable (3)	Average (-3)	Medium (-6 to -11)	Regular inspections and clearing of culverts particularly after high rainfall events.	Site- specific (1)	Medium- term (2)	Improbable (1)	Negligible (-1)	Low (-1 to -5)
Closure & Decommissioning Phase	Removal and rehabilitation of the railway link and associated infrastructure.	The removal of the railway link and associated infrastructure can potentially result in exposed soils that can be washed into downslope drainage channels. If rehabilitation is not done correctly in terms of removing any barriers (e.g., railway embankment), then ponding of water could become a long- term issue.	Local (2)	Long- term (3)	Highly Probable (3)	Average (-3)	Medium (-6 to -11)	Temporary erosion measures should be employed at exposed areas. Barriers such as the railway embankment should be removed, and the topography should be returned to its former state. Exposed areas should be vegetated as soon as possible. The topsoil stockpiles should be used to fill in areas and to create a suitable substrate to re- vegetate areas.	Site- specific (1)	Medium- term (2)	Improbable (1)	Negligible (-1)	Low (-1 to -5)

6 CONCLUSIONS AND RECOMMENDATIONS

A desktop assessment, two site investigations and a surface water impact assessment were undertaken to assess the impact of the proposed railway on the surface water hydrology of the area.

The proposed railway link is located in a flat area that has a semi-arid to arid climate. Quaternary catchment D73A, in which the railway link is proposed to be located, is endoreic, and therefore, very little surface water is expected to be generated.

The desktop assessment of contours and site investigation findings revealed that there are no natural watercourses near the proposed railway link.

The impact assessment indicated that all potential impacts can be mitigated to a low significance.

From a surface water hydrological perspective, it is the opinion of the specialist that the proposed railway link can be implemented, provided that the proposed mitigation measures are adhered to.

7 REFERENCES

EnviroGistics. 2018. Integrated Water and Waste Management Plan Update.

GPT. 2021. Hydrogeological Impact Assessment for Beeshoek Mine.

- Land Type Survey Staff. 1972 2006. Land types of South Africa; Digital Map (1:250 000 scale) and Soil Inventory Database. Pretoria: ARC-Instatute for Soil, Climate, and Water.
- Mucina L. and Rutherford M.C. 2006. The Vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19. South African National Biodiversity Institute. Pretoria.

Water Resources of South Africa, 2012 Study (WR 2012). WRC Project No. K5/2143/1).

APPENDIX A: CURRICULUM VITAE

Curriculum Vitae – Andy Pirie – Hydrologist

Details

Name and Surname:	Andy Pirie					
Occupation: Senior Hydrologist						
Company: Hydrospatial (Pty) Ltd						
Address:	7 Sonop Place, Randpark, Johannesburg, 2194					
Nationality:	South African					
First Language:	English					
Email Address:	andy@hydrospatial.co.za					
Tel:	+27 84 441 9539					

Andy Pirie is a senior hydrologist at Hydrospatial (Pty) Ltd. Andy graduated with a Master of Science (M.Sc.) in Water Resource Management (cum laude). He is registered as a Professional Natural Scientist (Pr.Sci.Nat.) in Water Resources Science with the South African Council for Natural Scientific Professions (SACNASP). He has worked on projects in South Africa, Cameroon, Senegal, Mali, Democratic Republic of the Congo (DRC), Botswana, Zambia and Namibia, for clients such as Assmang, Anglo American, Randgold Resources (now Barrick Gold), Sibanye-Stillwater, Birimian, Exxaro, Sasol, Eskom, Assore and SAFCOL. He has more than 9 years' experience in hydrological assessments and Geographical Information Systems (GIS). His expertise include the following:

- Floodline determinations;
- Mine water and salt balance modelling;
- Stormwater management plans;
- Surface water quality monitoring and assessment;
- Rainfall runoff modelling;
- Catchment yield assessments;
- Sizing of dams and channels;
- Crop irrigation requirement calculations;
- Environmental flow requirement assessments;
- Surface water impact assessments; and
- GN704 Regulation audits.

Education

• 2013: M.Sc. Water Resource Management (cum laude) (University of Pretoria).

Membership in Professional Associations

 Registered as a Professional Natural Scientist (Pr.Sci.Nat.) in Water Resources Science with the South African Council for Natural Scientific Professions (SACNASP). Registration number: 114988.

Employment

- March 2018 Present: Senior Hydrologist at Hydrospatial (Pty) Ltd.
- June 2012 February 2018: Hydrologist and GIS specialist at Digby Wells Environmental.

Company	Position	Project Location	Client	Project	Responsibilities
Hydrospatial (Pty) Ltd	Senior Hydrologist	Gauteng / North-West Province	Sibanye Gold	Hydrological Study for the Sibanye Driefontein Operations EMP and WULA Update	 Baseline hydrological assessment. Water quality assessment. Stormwater management plan update. Water and salt balance update. GN704 and GN509 exemption assessment.
Hydrospatial (Pty) Ltd	Senior Hydrologist	Limpopo South Africa	African Realty Trust	Hydrological Opinion on an Unsuccessful Water Use Licence Application for Two Proposed Balancing Dams at Letaba Estates	 Letaba catchment water resource assessment. Catchment runoff modelling using the Pitman model. Assessment of the impact of the dams on the Letaba catchment hydrology. Testimony at the Water Tribunal hearing.

Selected Project Experience

Company	Position	Project Location	Client	Project	Responsibilities
Hydrospatial (Pty) Ltd	Senior Hydrologist	Mpumalanga South Africa	SAFCOL	Streamflow Reduction Modelling due to Genus Exchange of Eucalyptus for Pine at the SAFCOL Berlin Plantations	 Setup of the WRSM/Pitman model. Calculation of the allowable genus exchange area using the Gush Tables. Reporting. Presentation of study and hand over of reports.
Hydrospatial (Pty) Ltd	Senior Hydrologist	Mpumalanga South Africa	Transvaal Gold Mining Estates	Hydrological Study for the Proposed Theta Mine Project	 Calculation of the water use freed up through the proposed removal of pine, eucalyptus and wattle in the Blyde River catchment for an offset strategy for the mine. Baseline hydrological study. Surface water impact assessment. Water quality sampling and analysis. Setup of a water monitoring network and programme. Stormwater structure placement and sizings of structures. Development of a water model. Terrain modelling and catchment delineation using ArcGIS software. Land use and soil assessment. Determination of Peak flows for the 1:50 and 1:100 year storm event. Hydraulic modelling to determine the 1:50 and 1:100 year floodlines. Reporting.

Company	Position	Project Location	Client	Project	Responsibilities
Hydrospatial (Pty) Ltd	Senior Hydrologist	Limpopo, South Africa	Lunsklip Farming	Hydrological Study for the Lunsklip Irrigation Dam	 Catchment runoff modelling using the WRSM/Pitman model which included afforested areas. Calculation of the farm irrigation requirements. Quantification of the irrigation dam water balance.
Hydrospatial (Pty) Ltd	Senior Hydrologist	Mpumalanga South Africa	Anglo American	Surface Water Assessment for the Proposed Leslie 1 Coal Mine	 Baseline hydrological study. Surface water impact assessment. Water quality sampling and analysis. Setup of a water monitoring network and programme. Stormwater structure placement and sizings of structures. Development of a water balance model. Terrain modelling and catchment delineation using ArcGIS software. Land use and soil assessment. Determination of Peak flows for the 1:50 and 1:100 year storm event. Hydraulic modelling to determine the 1:50 and 1:100 year floodlines. Reporting.
Hydrospatial (Pty) Ltd	Senior Hydrologist	Limpopo South Africa	Assmang	GN704 Legal Compliance Audit of the Dwarsrivier Chrome Mine	 Site audit of the mine to GN704 regulations. Reporting on findings and recommendations for improvement to comply with GN704 regulations.

Company	Position	Project Location	Client	Project	Responsibilities
Hydrospatial (Pty) Ltd	Senior Hydrologist	Limpopo South Africa	Assmang	Floodline Determination for the Resource and Reserve Drilling Project at the Dwarsrivier Chrome Mine	 Catchment delineation. Hydrological assessment to calculate the 1:50 and 1:100 year peak flows. Hydraulic modelling of 18 river reaches to determine the 1:50 and 1:100 year flood water elevations.
Hydrospatial (Pty) Ltd	Senior Hydrologist	Limpopo South Africa	Assore	GN704 Legal Compliance Audit of the Rustenburg Minerals Development Company Chrome Mine	 Site audit of the mine to GN704 regulations. Reporting on findings and recommendations for improvement to comply with GN704 regulations.
Hydrospatial (Pty) Ltd	Senior Hydrologist	Gauteng South Africa	Fry's Metals	Stormwater Management Plan for the Fry's Metal Factory	 Audit of site stormwater infrastructure. Calculation of peak flows and stormwater volumes. Calculation of stormwater channel capacities to assess whether capacities comply with regulatory requirements.
Hydrospatial (Pty) Ltd	Senior Hydrologist	North West South Africa	Assore	Hydrological Study for the Wonderstone Mine	 Baseline hydrological study. Surface water impact assessment. Water quality Assessment. Development of a stormwater. management plan. River diversion assessment.
Hydrospatial (Pty) Ltd	Senior Hydrologist	KwaZulu- Natal, South Africa	The Biodiversity Company	Water Quality Monitoring and Assessment for the Edendale	 Setup of a water monitoring network. Surface water sampling. Assessment of water quality results.

Company	Position	Project Location	Client	Project	Responsibilities
				Bulwer Housing Development	
Hydrospatial (Pty) Ltd	Senior Hydrologist	Gauteng South Africa	Eskom	Hydrological Assessment of a Tributary of the Braamfonteins pruit near Sandton, Johannesburg	 Site assessment. Peak flow calculations. Storm event assessment. Hydraulic structure assessment. Assessment of gabion retaining wall failure. Hydraulic modelling of watercourse.
Hydrospatial (Pty) Ltd	Senior Hydrologist	Limpopo South Africa	Assore	GN704 Legal Compliance Audit of the Zeerust Chrome Mine	 Site audit of the mine to GN704 regulations. Reporting on findings and recommendations for improvement to comply with GN704 regulations.
Digby Wells Environmental	Hydrologist	Mali	Birimian	Hydrological Study for the Environmental and Social Impact Assessment for the Goulamina Lithium Project	 Baseline hydrological study. Development of a water and salt balance. Modelling of catchment flood hydrology. Calculation of storm rainfall depths. Stormwater management plan. Surface water impact assessment.
Digby Wells Environmental	Hydrologist	Senegal	Randgold Resources	Hydrological Study for the Randgold Massawa Gold Project ESIA	 Baseline hydrological study. Floodline determination. Development of a water and salt balance. Modelling of catchment hydrology. Environmental flow requirement calculations. Stormwater

Company	Position	Project Location	Client	Project	Responsibilities
					 management plan. Surface water impact assessment.
Digby Wells Environmental	Hydrologist	Cameroon	Caminex SA	Hydrological Study for the Environmental and Social Impact Assessment for the Ntem Iron Ore Project	 Baseline hydrological study. Surface water impact assessment.
Digby Wells Environmental	Hydrologist	Gauteng South Africa	Sibanye- Stillwater	Sibanye Gold Millsite TSF Reclamation Project EIA	 Audit of existing stormwater management controls. Development of a stormwater management plan to satisfy GN704 Regulation requirements. Development of a stormwater control monitoring programme. Water conservation and water demand management plan
Digby Wells Environmental	Hydrologist	Gauteng South Africa	Sibanye- Stillwater	Sibanye Gold Kloof Floodline Determination	 Site visit to assess channel and floodplains and to measure hydraulic structures. DEM creation from lidar dataset. Catchment delineation. Catchment assessment of soils, vegetation, slope and land cover to obtain suitable runoff coefficients. Calculation of peak flows using Rational and SDF methods. Hydraulic modelling in HEC-RAS for approximately 25 river reaches to determine the 1:50

Company	Position	Project Location	Client	Project	Responsibilities
					and 1:100 year surface water elevations.
Digby Wells Environmental	Hydrologist	Free State South Africa	Bothma and Son Transport	Stormwater management plan for the Bothma Sand Mine	 Audit of existing stormwater management structures. Rainfall assessment. Sizing of channels. Development of a stormwater management plan to satisfy GN704 conditions. Development of a stormwater structure monitoring programme. Development of a PCD rehabilitation action plan. Reporting.
Digby Wells Environmental	Hydrologist	Free State South Africa	Sasol Mining	Sasol Defunct Mines Surface Flow Analysis	 Project manager. Creation of detailed DEMs from Lidar data for 4 of Sasol's defunct subsided collieries. Modelling of surface water flow directions and accumulations to determine areas that are not free draining.
Digby Wells Environmental	Hydrologist	Gauteng South Africa	DRD Gold	DRD Gold Stormwater Management Plans for the Ergo Elsburg & Van Dyk Tailings Dams	 Project manager. Site visit audit of stormwater management structures. Flood peak calculations. Stormwater structure sizing. Management measures to ensure that stormwater structures are maintained. Reporting.

Company	Position	Project Location	Client	Project	Responsibilities
Digby Wells Environmental	Hydrologist	Mpumalanga South Africa	Exxaro	Exxaro Surface Water Study for the Environmental Authorisation for the Proposed Schoonoord Underground Mine, Arnot Coal, Mpumalanga	 Baseline hydrological study. Surface water impact assessment. Water quality sampling and analysis of results. Setup of a water monitoring network and programme. Stormwater structure placement and sizings of structures. Terrain modelling and catchment delineation using ArcGIS software. Land use and soil assessment. Determination of Peak flows for the 1:50 and 1:100 year storm event. Hydraulic modelling using the HEC- RAS model to determine the 1:50 and 1:100 year floodlines. Reporting.
Digby Wells Environmental	Hydrologist	Limpopo South Africa	Exxaro	Exxaro Floodline Determination for the Closure Environmental Management Plan for the Tshikondeni Coal Mine	 Catchment assessment of rainfall, topography, soils and land cover. Determination of the 1:50 and 1:100 year peak flows. Hydraulic modelling using HEC-RAS to determine the 1:50 and 1:100 year floodlines. Reporting on catchment characteristics, methods and results obtained.

Company	Position	Project Location	Client	Project	Responsibilities
Digby Wells Environmental	Hydrologist	Botswana, Zambia and Namibia	Botswana Government	Kazungula Bridge Project Surface Water Quality Monitoring	 Setup of a water quality monitoring network and programme. Monthly water sampling from the Zambezi and Chobe Rivers over a 6 year period to determine whether the construction and operation of the Kazungula Bridge is impacting on the water quality. Analysis of water quality results. Monthly monitoring reports describing the water quality for the month and identifying possible sources of pollution as well as providing mitigation measures.
Digby Wells Environmental	Hydrologist	Free State South Africa	Sibanye- Stillwater	Sibanye Beatrix ESIA	 Baseline hydrological study. Surface water impact assessment. Water quality and trend analysis.
Digby Wells Environmental	Hydrologist	Mpumalanga South Africa	Anker Coal	Anker Coal Elandsfontein Colliery Stormwater Management Plan	 Site visit audit of stormwater structures. Review of existing stormwater management plan. Recommendations for the improvement of existing stormwater management plan
Digby Wells Environmental	Hydrologist & GN704 Auditor	Northern Cape, South Africa	Assmang	GN704 Legal Compliance Audit for the Khumani Iron Ore Mine	 Project manager. Preparation of an audit checklist. Audit of the mine to GN704 regulations. Reporting on findings and recommendations for improvement to comply with GN704

Company	Position	Project Location	Client	Project	Responsibilities
					regulations.
Digby Wells Environmental	Hydrologist	Okavango, Botswana	Botswana Government	Mohembo Bridge Surface Water Baseline and Monitoring Programme	 Setup of a surface water quality monitoring network and programme. Surface water quality sampling and analysis of results. Analysis of streamflows from the Mohembo discharge gauging station. Climate assessment.
Digby Wells Environmental	Hydrologist	Mpumalanga South Africa	Sasol Mining	Sasol Surface Water Study for the Environmental Authorisation for the Imvula Coal Mining Project	 Baseline hydrological study. Surface water impact assessment. Terrain modelling and catchment delineation using ArcGIS software. Land cover and soil hydrological assessment. Surface water report writing and compilation.
Digby Wells Environmental	Hydrologist	North-west South Africa	Sun International	Sun City Drinking Water Quality Analysis	 Sampling of drinking water at Sun City. Interpretation of water quality results. Reporting.
Digby Wells Environmental	Hydrologist	Limpopo South Africa	De Groote Boom Minerals	Surface Water Study for the Mining Permit Application for the De Groote Boom Project	 Baseline hydrological study. Surface water impact assessment. Water quality sampling and assessment of water quality results. Setup of a water quality monitoring programme. Reporting.

Company	Position	Project Location	Client	Project	Responsibilities
Digby Wells Environmental	Hydrologist	South Africa	Fountain Capital	Floodline Determination for Proposed Development of an Open Pit Coal Mine and Associated Infrastructure near Bronkhorstspr uit, Gauteng	 Catchment assessment of rainfall, topography, soils and land cover. Determination of the 1:50 and 1:100 year peak flows. Hydraulic modelling using HEC-RAS to determine the 1:50 and 1:100 year floodlines. Reporting on catchment characteristics, methods and results obtained.
Digby Wells Environmental	Hydrologist	Limpopo South Africa	Pamish Investments No. 39	Floodline Determination for the Proposed Open Pit Magnetite Mine and Concentrator Plant, Mokopane, Limpopo Province	 Catchment assessment of rainfall, topography, soils and land cover. Determination of the 1:50 and 1:100 year peak flows. Hydraulic modelling using HEC-RAS to determine the 1:50 and 1:100 year floodlines. Reporting on catchment characteristics, methods and results obtained.
Digby Wells Environmental	Hydrologist	Mpumalanga South Africa	Eskom	Eskom Surface Water Study for the Mashala Resourses 22kV Power Line	 Baseline hydrological study Surface water impact assessment. Hydraulic modelling using HEC-RAS to determine the 1:50 and 1:100 year floodlines. Reporting.

Company	Position	Project Location	Client	Project	Responsibilities
Digby Wells Environmental	Hydrologist	Mpumalanga South Africa	Msobo Coal	Msobo Coal Surface Water Study for the Sara Buffels A and B: IWULA and IWWMP for Opencast and Underground Mining Activities	 Surface water impact assessment. Terrain modelling and catchment delineation using ArcGIS software. Land use and soil assessment. Determination of Peak flows for the 1:50 and 1:100 year storm event. Hydraulic modelling using the HEC- RAS model to determine the 1:50 and 1:100 year floodlines. Reporting.
Digby Wells Environmental	Hydrologist	Mali	Randgold Resources	Randgold Surface Water Study for the Morila Gold Mine Agri- Assessment Project	 Review of reports, mine layout plan and water quality data. Classification of clean and dirty water areas based on the above. Recommendations on water sources and areas for agri- business post mine closure.